perf/x86/intel: Handle new arch perfmon v4 status bits
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
b37609c3 15#include <linux/watchdog.h>
de0428a7 16
3a632cb2 17#include <asm/cpufeature.h>
de0428a7
KW
18#include <asm/hardirq.h>
19#include <asm/apic.h>
20
21#include "perf_event.h"
a7e3ed1e 22
f22f54f4 23/*
b622d644 24 * Intel PerfMon, used on Core and later.
f22f54f4 25 */
ec75a716 26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 27{
c3b7cdf1
PE
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
36};
37
5c543e3c 38static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
39{
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47};
48
5c543e3c 49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 50{
b622d644
PZ
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65};
66
5c543e3c 67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 68{
b622d644
PZ
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81};
82
5c543e3c 83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 84{
53ad0447
YZ
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
88 EVENT_EXTRA_END
89};
90
5c543e3c 91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 92{
b622d644
PZ
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
100 EVENT_CONSTRAINT_END
101};
102
5c543e3c 103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
104{
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
93fcf72c
MD
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
b06b3d49
LM
123 EVENT_CONSTRAINT_END
124};
125
69943182
SE
126static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127{
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
93fcf72c
MD
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
69943182
SE
147 EVENT_CONSTRAINT_END
148};
149
5c543e3c 150static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 151{
53ad0447
YZ
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
156 EVENT_EXTRA_END
157};
158
0af3ac1f
AK
159static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160{
161 EVENT_CONSTRAINT_END
162};
163
5c543e3c 164static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 165{
b622d644
PZ
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
169 EVENT_CONSTRAINT_END
170};
171
1fa64180
YZ
172static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173{
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178};
179
ee89cbc2 180static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
181 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 184 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
185 EVENT_EXTRA_END
186};
187
188static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
193 EVENT_EXTRA_END
194};
195
7f2ee91f
IM
196EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
197EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
198EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee
SE
199
200struct attribute *nhm_events_attrs[] = {
201 EVENT_PTR(mem_ld_nhm),
202 NULL,
203};
204
205struct attribute *snb_events_attrs[] = {
206 EVENT_PTR(mem_ld_snb),
9ad64c0f 207 EVENT_PTR(mem_st_snb),
f20093ee
SE
208 NULL,
209};
210
3a632cb2
AK
211static struct event_constraint intel_hsw_event_constraints[] = {
212 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
c420f19b 219 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
3a632cb2 220 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
c420f19b 221 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
3a632cb2 222 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
c420f19b 223 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
93fcf72c
MD
224
225 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229
3a632cb2
AK
230 EVENT_CONSTRAINT_END
231};
232
91f1b705
AK
233struct event_constraint intel_bdw_event_constraints[] = {
234 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
235 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
236 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
237 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
238 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
239 EVENT_CONSTRAINT_END
240};
241
f22f54f4
PZ
242static u64 intel_pmu_event_map(int hw_event)
243{
244 return intel_perfmon_event_map[hw_event];
245}
246
74e6543f
YZ
247#define SNB_DMND_DATA_RD (1ULL << 0)
248#define SNB_DMND_RFO (1ULL << 1)
249#define SNB_DMND_IFETCH (1ULL << 2)
250#define SNB_DMND_WB (1ULL << 3)
251#define SNB_PF_DATA_RD (1ULL << 4)
252#define SNB_PF_RFO (1ULL << 5)
253#define SNB_PF_IFETCH (1ULL << 6)
254#define SNB_LLC_DATA_RD (1ULL << 7)
255#define SNB_LLC_RFO (1ULL << 8)
256#define SNB_LLC_IFETCH (1ULL << 9)
257#define SNB_BUS_LOCKS (1ULL << 10)
258#define SNB_STRM_ST (1ULL << 11)
259#define SNB_OTHER (1ULL << 15)
260#define SNB_RESP_ANY (1ULL << 16)
261#define SNB_NO_SUPP (1ULL << 17)
262#define SNB_LLC_HITM (1ULL << 18)
263#define SNB_LLC_HITE (1ULL << 19)
264#define SNB_LLC_HITS (1ULL << 20)
265#define SNB_LLC_HITF (1ULL << 21)
266#define SNB_LOCAL (1ULL << 22)
267#define SNB_REMOTE (0xffULL << 23)
268#define SNB_SNP_NONE (1ULL << 31)
269#define SNB_SNP_NOT_NEEDED (1ULL << 32)
270#define SNB_SNP_MISS (1ULL << 33)
271#define SNB_NO_FWD (1ULL << 34)
272#define SNB_SNP_FWD (1ULL << 35)
273#define SNB_HITM (1ULL << 36)
274#define SNB_NON_DRAM (1ULL << 37)
275
276#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
278#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
279
280#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282 SNB_HITM)
283
284#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
286
287#define SNB_L3_ACCESS SNB_RESP_ANY
288#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
289
290static __initconst const u64 snb_hw_cache_extra_regs
291 [PERF_COUNT_HW_CACHE_MAX]
292 [PERF_COUNT_HW_CACHE_OP_MAX]
293 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
294{
295 [ C(LL ) ] = {
296 [ C(OP_READ) ] = {
297 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
299 },
300 [ C(OP_WRITE) ] = {
301 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
303 },
304 [ C(OP_PREFETCH) ] = {
305 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307 },
308 },
309 [ C(NODE) ] = {
310 [ C(OP_READ) ] = {
311 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313 },
314 [ C(OP_WRITE) ] = {
315 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317 },
318 [ C(OP_PREFETCH) ] = {
319 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321 },
322 },
323};
324
b06b3d49
LM
325static __initconst const u64 snb_hw_cache_event_ids
326 [PERF_COUNT_HW_CACHE_MAX]
327 [PERF_COUNT_HW_CACHE_OP_MAX]
328 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
329{
330 [ C(L1D) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
333 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
334 },
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
337 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
338 },
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0x0,
341 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
342 },
343 },
344 [ C(L1I ) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x0,
347 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = -1,
351 [ C(RESULT_MISS) ] = -1,
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = 0x0,
355 [ C(RESULT_MISS) ] = 0x0,
356 },
357 },
358 [ C(LL ) ] = {
b06b3d49 359 [ C(OP_READ) ] = {
63b6a675 360 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 361 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
362 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
364 },
365 [ C(OP_WRITE) ] = {
63b6a675 366 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 367 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
368 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
370 },
371 [ C(OP_PREFETCH) ] = {
63b6a675 372 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 373 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
374 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
376 },
377 },
378 [ C(DTLB) ] = {
379 [ C(OP_READ) ] = {
380 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382 },
383 [ C(OP_WRITE) ] = {
384 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386 },
387 [ C(OP_PREFETCH) ] = {
388 [ C(RESULT_ACCESS) ] = 0x0,
389 [ C(RESULT_MISS) ] = 0x0,
390 },
391 },
392 [ C(ITLB) ] = {
393 [ C(OP_READ) ] = {
394 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
395 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
396 },
397 [ C(OP_WRITE) ] = {
398 [ C(RESULT_ACCESS) ] = -1,
399 [ C(RESULT_MISS) ] = -1,
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 },
406 [ C(BPU ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = -1,
413 [ C(RESULT_MISS) ] = -1,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = -1,
417 [ C(RESULT_MISS) ] = -1,
418 },
419 },
89d6c0b5
PZ
420 [ C(NODE) ] = {
421 [ C(OP_READ) ] = {
74e6543f
YZ
422 [ C(RESULT_ACCESS) ] = 0x01b7,
423 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
424 },
425 [ C(OP_WRITE) ] = {
74e6543f
YZ
426 [ C(RESULT_ACCESS) ] = 0x01b7,
427 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
428 },
429 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
430 [ C(RESULT_ACCESS) ] = 0x01b7,
431 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
432 },
433 },
434
b06b3d49
LM
435};
436
0f1b5ca2
AK
437/*
438 * Notes on the events:
439 * - data reads do not include code reads (comparable to earlier tables)
440 * - data counts include speculative execution (except L1 write, dtlb, bpu)
441 * - remote node access includes remote memory, remote cache, remote mmio.
442 * - prefetches are not included in the counts because they are not
443 * reliably counted.
444 */
445
446#define HSW_DEMAND_DATA_RD BIT_ULL(0)
447#define HSW_DEMAND_RFO BIT_ULL(1)
448#define HSW_ANY_RESPONSE BIT_ULL(16)
449#define HSW_SUPPLIER_NONE BIT_ULL(17)
450#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
451#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
452#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
453#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
454#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
455 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456 HSW_L3_MISS_REMOTE_HOP2P)
457#define HSW_SNOOP_NONE BIT_ULL(31)
458#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
459#define HSW_SNOOP_MISS BIT_ULL(33)
460#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
461#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
462#define HSW_SNOOP_HITM BIT_ULL(36)
463#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
464#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
465 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
470#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
471#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
472 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
474
91f1b705
AK
475#define BDW_L3_MISS_LOCAL BIT(26)
476#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
477 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478 HSW_L3_MISS_REMOTE_HOP2P)
479
480
0f1b5ca2
AK
481static __initconst const u64 hsw_hw_cache_event_ids
482 [PERF_COUNT_HW_CACHE_MAX]
483 [PERF_COUNT_HW_CACHE_OP_MAX]
484 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
485{
486 [ C(L1D ) ] = {
487 [ C(OP_READ) ] = {
488 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
489 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
490 },
491 [ C(OP_WRITE) ] = {
492 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
493 [ C(RESULT_MISS) ] = 0x0,
494 },
495 [ C(OP_PREFETCH) ] = {
496 [ C(RESULT_ACCESS) ] = 0x0,
497 [ C(RESULT_MISS) ] = 0x0,
498 },
499 },
500 [ C(L1I ) ] = {
501 [ C(OP_READ) ] = {
502 [ C(RESULT_ACCESS) ] = 0x0,
503 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
504 },
505 [ C(OP_WRITE) ] = {
506 [ C(RESULT_ACCESS) ] = -1,
507 [ C(RESULT_MISS) ] = -1,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(LL ) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
517 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
518 },
519 [ C(OP_WRITE) ] = {
520 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
521 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
522 },
523 [ C(OP_PREFETCH) ] = {
524 [ C(RESULT_ACCESS) ] = 0x0,
525 [ C(RESULT_MISS) ] = 0x0,
526 },
527 },
528 [ C(DTLB) ] = {
529 [ C(OP_READ) ] = {
530 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
531 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532 },
533 [ C(OP_WRITE) ] = {
534 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
535 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536 },
537 [ C(OP_PREFETCH) ] = {
538 [ C(RESULT_ACCESS) ] = 0x0,
539 [ C(RESULT_MISS) ] = 0x0,
540 },
541 },
542 [ C(ITLB) ] = {
543 [ C(OP_READ) ] = {
544 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
545 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
546 },
547 [ C(OP_WRITE) ] = {
548 [ C(RESULT_ACCESS) ] = -1,
549 [ C(RESULT_MISS) ] = -1,
550 },
551 [ C(OP_PREFETCH) ] = {
552 [ C(RESULT_ACCESS) ] = -1,
553 [ C(RESULT_MISS) ] = -1,
554 },
555 },
556 [ C(BPU ) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
559 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = -1,
563 [ C(RESULT_MISS) ] = -1,
564 },
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = -1,
567 [ C(RESULT_MISS) ] = -1,
568 },
569 },
570 [ C(NODE) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
573 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
574 },
575 [ C(OP_WRITE) ] = {
576 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
577 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
578 },
579 [ C(OP_PREFETCH) ] = {
580 [ C(RESULT_ACCESS) ] = 0x0,
581 [ C(RESULT_MISS) ] = 0x0,
582 },
583 },
584};
585
586static __initconst const u64 hsw_hw_cache_extra_regs
587 [PERF_COUNT_HW_CACHE_MAX]
588 [PERF_COUNT_HW_CACHE_OP_MAX]
589 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
590{
591 [ C(LL ) ] = {
592 [ C(OP_READ) ] = {
593 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594 HSW_LLC_ACCESS,
595 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
596 HSW_L3_MISS|HSW_ANY_SNOOP,
597 },
598 [ C(OP_WRITE) ] = {
599 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600 HSW_LLC_ACCESS,
601 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
602 HSW_L3_MISS|HSW_ANY_SNOOP,
603 },
604 [ C(OP_PREFETCH) ] = {
605 [ C(RESULT_ACCESS) ] = 0x0,
606 [ C(RESULT_MISS) ] = 0x0,
607 },
608 },
609 [ C(NODE) ] = {
610 [ C(OP_READ) ] = {
611 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612 HSW_L3_MISS_LOCAL_DRAM|
613 HSW_SNOOP_DRAM,
614 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
615 HSW_L3_MISS_REMOTE|
616 HSW_SNOOP_DRAM,
617 },
618 [ C(OP_WRITE) ] = {
619 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620 HSW_L3_MISS_LOCAL_DRAM|
621 HSW_SNOOP_DRAM,
622 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
623 HSW_L3_MISS_REMOTE|
624 HSW_SNOOP_DRAM,
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x0,
629 },
630 },
631};
632
caaa8be3 633static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
634 [PERF_COUNT_HW_CACHE_MAX]
635 [PERF_COUNT_HW_CACHE_OP_MAX]
636 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
637{
638 [ C(L1D) ] = {
639 [ C(OP_READ) ] = {
640 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
641 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
642 },
643 [ C(OP_WRITE) ] = {
644 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
645 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
646 },
647 [ C(OP_PREFETCH) ] = {
648 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
649 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
650 },
651 },
652 [ C(L1I ) ] = {
653 [ C(OP_READ) ] = {
654 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
655 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
656 },
657 [ C(OP_WRITE) ] = {
658 [ C(RESULT_ACCESS) ] = -1,
659 [ C(RESULT_MISS) ] = -1,
660 },
661 [ C(OP_PREFETCH) ] = {
662 [ C(RESULT_ACCESS) ] = 0x0,
663 [ C(RESULT_MISS) ] = 0x0,
664 },
665 },
666 [ C(LL ) ] = {
667 [ C(OP_READ) ] = {
63b6a675 668 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 669 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
670 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 672 },
e994d7d2
AK
673 /*
674 * Use RFO, not WRITEBACK, because a write miss would typically occur
675 * on RFO.
676 */
f22f54f4 677 [ C(OP_WRITE) ] = {
63b6a675
PZ
678 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679 [ C(RESULT_ACCESS) ] = 0x01b7,
680 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 681 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
682 },
683 [ C(OP_PREFETCH) ] = {
63b6a675 684 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 685 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
686 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
688 },
689 },
690 [ C(DTLB) ] = {
691 [ C(OP_READ) ] = {
692 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
693 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
694 },
695 [ C(OP_WRITE) ] = {
696 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
697 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
698 },
699 [ C(OP_PREFETCH) ] = {
700 [ C(RESULT_ACCESS) ] = 0x0,
701 [ C(RESULT_MISS) ] = 0x0,
702 },
703 },
704 [ C(ITLB) ] = {
705 [ C(OP_READ) ] = {
706 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
707 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
708 },
709 [ C(OP_WRITE) ] = {
710 [ C(RESULT_ACCESS) ] = -1,
711 [ C(RESULT_MISS) ] = -1,
712 },
713 [ C(OP_PREFETCH) ] = {
714 [ C(RESULT_ACCESS) ] = -1,
715 [ C(RESULT_MISS) ] = -1,
716 },
717 },
718 [ C(BPU ) ] = {
719 [ C(OP_READ) ] = {
720 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
722 },
723 [ C(OP_WRITE) ] = {
724 [ C(RESULT_ACCESS) ] = -1,
725 [ C(RESULT_MISS) ] = -1,
726 },
727 [ C(OP_PREFETCH) ] = {
728 [ C(RESULT_ACCESS) ] = -1,
729 [ C(RESULT_MISS) ] = -1,
730 },
731 },
89d6c0b5
PZ
732 [ C(NODE) ] = {
733 [ C(OP_READ) ] = {
734 [ C(RESULT_ACCESS) ] = 0x01b7,
735 [ C(RESULT_MISS) ] = 0x01b7,
736 },
737 [ C(OP_WRITE) ] = {
738 [ C(RESULT_ACCESS) ] = 0x01b7,
739 [ C(RESULT_MISS) ] = 0x01b7,
740 },
741 [ C(OP_PREFETCH) ] = {
742 [ C(RESULT_ACCESS) ] = 0x01b7,
743 [ C(RESULT_MISS) ] = 0x01b7,
744 },
745 },
f22f54f4
PZ
746};
747
e994d7d2 748/*
63b6a675
PZ
749 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
751 */
752
63b6a675
PZ
753#define NHM_DMND_DATA_RD (1 << 0)
754#define NHM_DMND_RFO (1 << 1)
755#define NHM_DMND_IFETCH (1 << 2)
756#define NHM_DMND_WB (1 << 3)
757#define NHM_PF_DATA_RD (1 << 4)
758#define NHM_PF_DATA_RFO (1 << 5)
759#define NHM_PF_IFETCH (1 << 6)
760#define NHM_OFFCORE_OTHER (1 << 7)
761#define NHM_UNCORE_HIT (1 << 8)
762#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
763#define NHM_OTHER_CORE_HITM (1 << 10)
764 /* reserved */
765#define NHM_REMOTE_CACHE_FWD (1 << 12)
766#define NHM_REMOTE_DRAM (1 << 13)
767#define NHM_LOCAL_DRAM (1 << 14)
768#define NHM_NON_DRAM (1 << 15)
769
87e24f4b
PZ
770#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
772
773#define NHM_DMND_READ (NHM_DMND_DATA_RD)
774#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
775#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776
777#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 778#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 779#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
780
781static __initconst const u64 nehalem_hw_cache_extra_regs
782 [PERF_COUNT_HW_CACHE_MAX]
783 [PERF_COUNT_HW_CACHE_OP_MAX]
784 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785{
786 [ C(LL ) ] = {
787 [ C(OP_READ) ] = {
63b6a675
PZ
788 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
790 },
791 [ C(OP_WRITE) ] = {
63b6a675
PZ
792 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
794 },
795 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
796 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 798 },
89d6c0b5
PZ
799 },
800 [ C(NODE) ] = {
801 [ C(OP_READ) ] = {
87e24f4b
PZ
802 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
804 },
805 [ C(OP_WRITE) ] = {
87e24f4b
PZ
806 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
808 },
809 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
810 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
812 },
813 },
e994d7d2
AK
814};
815
caaa8be3 816static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
817 [PERF_COUNT_HW_CACHE_MAX]
818 [PERF_COUNT_HW_CACHE_OP_MAX]
819 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820{
821 [ C(L1D) ] = {
822 [ C(OP_READ) ] = {
f4929bd3
PZ
823 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
824 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
825 },
826 [ C(OP_WRITE) ] = {
f4929bd3
PZ
827 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
828 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
829 },
830 [ C(OP_PREFETCH) ] = {
831 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
832 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
833 },
834 },
835 [ C(L1I ) ] = {
836 [ C(OP_READ) ] = {
837 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
838 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
839 },
840 [ C(OP_WRITE) ] = {
841 [ C(RESULT_ACCESS) ] = -1,
842 [ C(RESULT_MISS) ] = -1,
843 },
844 [ C(OP_PREFETCH) ] = {
845 [ C(RESULT_ACCESS) ] = 0x0,
846 [ C(RESULT_MISS) ] = 0x0,
847 },
848 },
849 [ C(LL ) ] = {
850 [ C(OP_READ) ] = {
e994d7d2
AK
851 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852 [ C(RESULT_ACCESS) ] = 0x01b7,
853 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 855 },
e994d7d2
AK
856 /*
857 * Use RFO, not WRITEBACK, because a write miss would typically occur
858 * on RFO.
859 */
f22f54f4 860 [ C(OP_WRITE) ] = {
e994d7d2
AK
861 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862 [ C(RESULT_ACCESS) ] = 0x01b7,
863 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
865 },
866 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
867 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868 [ C(RESULT_ACCESS) ] = 0x01b7,
869 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
871 },
872 },
873 [ C(DTLB) ] = {
874 [ C(OP_READ) ] = {
875 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
876 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
877 },
878 [ C(OP_WRITE) ] = {
879 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
880 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
881 },
882 [ C(OP_PREFETCH) ] = {
883 [ C(RESULT_ACCESS) ] = 0x0,
884 [ C(RESULT_MISS) ] = 0x0,
885 },
886 },
887 [ C(ITLB) ] = {
888 [ C(OP_READ) ] = {
889 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
890 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
891 },
892 [ C(OP_WRITE) ] = {
893 [ C(RESULT_ACCESS) ] = -1,
894 [ C(RESULT_MISS) ] = -1,
895 },
896 [ C(OP_PREFETCH) ] = {
897 [ C(RESULT_ACCESS) ] = -1,
898 [ C(RESULT_MISS) ] = -1,
899 },
900 },
901 [ C(BPU ) ] = {
902 [ C(OP_READ) ] = {
903 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
905 },
906 [ C(OP_WRITE) ] = {
907 [ C(RESULT_ACCESS) ] = -1,
908 [ C(RESULT_MISS) ] = -1,
909 },
910 [ C(OP_PREFETCH) ] = {
911 [ C(RESULT_ACCESS) ] = -1,
912 [ C(RESULT_MISS) ] = -1,
913 },
914 },
89d6c0b5
PZ
915 [ C(NODE) ] = {
916 [ C(OP_READ) ] = {
917 [ C(RESULT_ACCESS) ] = 0x01b7,
918 [ C(RESULT_MISS) ] = 0x01b7,
919 },
920 [ C(OP_WRITE) ] = {
921 [ C(RESULT_ACCESS) ] = 0x01b7,
922 [ C(RESULT_MISS) ] = 0x01b7,
923 },
924 [ C(OP_PREFETCH) ] = {
925 [ C(RESULT_ACCESS) ] = 0x01b7,
926 [ C(RESULT_MISS) ] = 0x01b7,
927 },
928 },
f22f54f4
PZ
929};
930
caaa8be3 931static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
932 [PERF_COUNT_HW_CACHE_MAX]
933 [PERF_COUNT_HW_CACHE_OP_MAX]
934 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
935{
936 [ C(L1D) ] = {
937 [ C(OP_READ) ] = {
938 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
939 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
940 },
941 [ C(OP_WRITE) ] = {
942 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
943 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
944 },
945 [ C(OP_PREFETCH) ] = {
946 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
947 [ C(RESULT_MISS) ] = 0,
948 },
949 },
950 [ C(L1I ) ] = {
951 [ C(OP_READ) ] = {
952 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
953 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
954 },
955 [ C(OP_WRITE) ] = {
956 [ C(RESULT_ACCESS) ] = -1,
957 [ C(RESULT_MISS) ] = -1,
958 },
959 [ C(OP_PREFETCH) ] = {
960 [ C(RESULT_ACCESS) ] = 0,
961 [ C(RESULT_MISS) ] = 0,
962 },
963 },
964 [ C(LL ) ] = {
965 [ C(OP_READ) ] = {
966 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
967 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
968 },
969 [ C(OP_WRITE) ] = {
970 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
971 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
972 },
973 [ C(OP_PREFETCH) ] = {
974 [ C(RESULT_ACCESS) ] = 0,
975 [ C(RESULT_MISS) ] = 0,
976 },
977 },
978 [ C(DTLB) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
981 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
985 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0,
989 [ C(RESULT_MISS) ] = 0,
990 },
991 },
992 [ C(ITLB) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
995 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 },
1006 [ C(BPU ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1009 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1018 },
1019 },
1020};
1021
caaa8be3 1022static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
1023 [PERF_COUNT_HW_CACHE_MAX]
1024 [PERF_COUNT_HW_CACHE_OP_MAX]
1025 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026{
1027 [ C(L1D) ] = {
1028 [ C(OP_READ) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1030 [ C(RESULT_MISS) ] = 0,
1031 },
1032 [ C(OP_WRITE) ] = {
1033 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1034 [ C(RESULT_MISS) ] = 0,
1035 },
1036 [ C(OP_PREFETCH) ] = {
1037 [ C(RESULT_ACCESS) ] = 0x0,
1038 [ C(RESULT_MISS) ] = 0,
1039 },
1040 },
1041 [ C(L1I ) ] = {
1042 [ C(OP_READ) ] = {
1043 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1044 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1045 },
1046 [ C(OP_WRITE) ] = {
1047 [ C(RESULT_ACCESS) ] = -1,
1048 [ C(RESULT_MISS) ] = -1,
1049 },
1050 [ C(OP_PREFETCH) ] = {
1051 [ C(RESULT_ACCESS) ] = 0,
1052 [ C(RESULT_MISS) ] = 0,
1053 },
1054 },
1055 [ C(LL ) ] = {
1056 [ C(OP_READ) ] = {
1057 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1058 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1059 },
1060 [ C(OP_WRITE) ] = {
1061 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1062 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1063 },
1064 [ C(OP_PREFETCH) ] = {
1065 [ C(RESULT_ACCESS) ] = 0,
1066 [ C(RESULT_MISS) ] = 0,
1067 },
1068 },
1069 [ C(DTLB) ] = {
1070 [ C(OP_READ) ] = {
1071 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1072 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1073 },
1074 [ C(OP_WRITE) ] = {
1075 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1076 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1077 },
1078 [ C(OP_PREFETCH) ] = {
1079 [ C(RESULT_ACCESS) ] = 0,
1080 [ C(RESULT_MISS) ] = 0,
1081 },
1082 },
1083 [ C(ITLB) ] = {
1084 [ C(OP_READ) ] = {
1085 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1086 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1087 },
1088 [ C(OP_WRITE) ] = {
1089 [ C(RESULT_ACCESS) ] = -1,
1090 [ C(RESULT_MISS) ] = -1,
1091 },
1092 [ C(OP_PREFETCH) ] = {
1093 [ C(RESULT_ACCESS) ] = -1,
1094 [ C(RESULT_MISS) ] = -1,
1095 },
1096 },
1097 [ C(BPU ) ] = {
1098 [ C(OP_READ) ] = {
1099 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1100 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1101 },
1102 [ C(OP_WRITE) ] = {
1103 [ C(RESULT_ACCESS) ] = -1,
1104 [ C(RESULT_MISS) ] = -1,
1105 },
1106 [ C(OP_PREFETCH) ] = {
1107 [ C(RESULT_ACCESS) ] = -1,
1108 [ C(RESULT_MISS) ] = -1,
1109 },
1110 },
1111};
1112
1fa64180
YZ
1113static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114{
1115 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1 1116 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
ae3f011f 1117 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1fa64180
YZ
1118 EVENT_EXTRA_END
1119};
1120
1121#define SLM_DMND_READ SNB_DMND_DATA_RD
1122#define SLM_DMND_WRITE SNB_DMND_RFO
1123#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1124
1125#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126#define SLM_LLC_ACCESS SNB_RESP_ANY
1127#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1128
1129static __initconst const u64 slm_hw_cache_extra_regs
1130 [PERF_COUNT_HW_CACHE_MAX]
1131 [PERF_COUNT_HW_CACHE_OP_MAX]
1132 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133{
1134 [ C(LL ) ] = {
1135 [ C(OP_READ) ] = {
1136 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
6d374056 1137 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1138 },
1139 [ C(OP_WRITE) ] = {
1140 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142 },
1143 [ C(OP_PREFETCH) ] = {
1144 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146 },
1147 },
1148};
1149
1150static __initconst const u64 slm_hw_cache_event_ids
1151 [PERF_COUNT_HW_CACHE_MAX]
1152 [PERF_COUNT_HW_CACHE_OP_MAX]
1153 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154{
1155 [ C(L1D) ] = {
1156 [ C(OP_READ) ] = {
1157 [ C(RESULT_ACCESS) ] = 0,
1158 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1159 },
1160 [ C(OP_WRITE) ] = {
1161 [ C(RESULT_ACCESS) ] = 0,
1162 [ C(RESULT_MISS) ] = 0,
1163 },
1164 [ C(OP_PREFETCH) ] = {
1165 [ C(RESULT_ACCESS) ] = 0,
1166 [ C(RESULT_MISS) ] = 0,
1167 },
1168 },
1169 [ C(L1I ) ] = {
1170 [ C(OP_READ) ] = {
1171 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1173 },
1174 [ C(OP_WRITE) ] = {
1175 [ C(RESULT_ACCESS) ] = -1,
1176 [ C(RESULT_MISS) ] = -1,
1177 },
1178 [ C(OP_PREFETCH) ] = {
1179 [ C(RESULT_ACCESS) ] = 0,
1180 [ C(RESULT_MISS) ] = 0,
1181 },
1182 },
1183 [ C(LL ) ] = {
1184 [ C(OP_READ) ] = {
1185 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 [ C(RESULT_ACCESS) ] = 0x01b7,
6d374056 1187 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1188 },
1189 [ C(OP_WRITE) ] = {
1190 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1191 [ C(RESULT_ACCESS) ] = 0x01b7,
1192 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1193 [ C(RESULT_MISS) ] = 0x01b7,
1194 },
1195 [ C(OP_PREFETCH) ] = {
1196 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1197 [ C(RESULT_ACCESS) ] = 0x01b7,
1198 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1199 [ C(RESULT_MISS) ] = 0x01b7,
1200 },
1201 },
1202 [ C(DTLB) ] = {
1203 [ C(OP_READ) ] = {
1204 [ C(RESULT_ACCESS) ] = 0,
1205 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1206 },
1207 [ C(OP_WRITE) ] = {
1208 [ C(RESULT_ACCESS) ] = 0,
1209 [ C(RESULT_MISS) ] = 0,
1210 },
1211 [ C(OP_PREFETCH) ] = {
1212 [ C(RESULT_ACCESS) ] = 0,
1213 [ C(RESULT_MISS) ] = 0,
1214 },
1215 },
1216 [ C(ITLB) ] = {
1217 [ C(OP_READ) ] = {
1218 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
6d374056 1219 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1fa64180
YZ
1220 },
1221 [ C(OP_WRITE) ] = {
1222 [ C(RESULT_ACCESS) ] = -1,
1223 [ C(RESULT_MISS) ] = -1,
1224 },
1225 [ C(OP_PREFETCH) ] = {
1226 [ C(RESULT_ACCESS) ] = -1,
1227 [ C(RESULT_MISS) ] = -1,
1228 },
1229 },
1230 [ C(BPU ) ] = {
1231 [ C(OP_READ) ] = {
1232 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1233 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234 },
1235 [ C(OP_WRITE) ] = {
1236 [ C(RESULT_ACCESS) ] = -1,
1237 [ C(RESULT_MISS) ] = -1,
1238 },
1239 [ C(OP_PREFETCH) ] = {
1240 [ C(RESULT_ACCESS) ] = -1,
1241 [ C(RESULT_MISS) ] = -1,
1242 },
1243 },
1244};
1245
1a78d937
AK
1246/*
1247 * Use from PMIs where the LBRs are already disabled.
1248 */
1249static void __intel_pmu_disable_all(void)
f22f54f4 1250{
89cbc767 1251 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4
PZ
1252
1253 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1254
15c7ad51 1255 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1256 intel_pmu_disable_bts();
8062382c
AS
1257 else
1258 intel_bts_disable_local();
ca037701
PZ
1259
1260 intel_pmu_pebs_disable_all();
1a78d937
AK
1261}
1262
1263static void intel_pmu_disable_all(void)
1264{
1265 __intel_pmu_disable_all();
caff2bef 1266 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1267}
1268
1a78d937 1269static void __intel_pmu_enable_all(int added, bool pmi)
f22f54f4 1270{
89cbc767 1271 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1272
d329527e 1273 intel_pmu_pebs_enable_all();
1a78d937 1274 intel_pmu_lbr_enable_all(pmi);
144d31e6
GN
1275 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1276 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1277
15c7ad51 1278 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1279 struct perf_event *event =
15c7ad51 1280 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1281
1282 if (WARN_ON_ONCE(!event))
1283 return;
1284
1285 intel_pmu_enable_bts(event->hw.config);
8062382c
AS
1286 } else
1287 intel_bts_enable_local();
f22f54f4
PZ
1288}
1289
1a78d937
AK
1290static void intel_pmu_enable_all(int added)
1291{
1292 __intel_pmu_enable_all(added, false);
1293}
1294
11164cd4
PZ
1295/*
1296 * Workaround for:
1297 * Intel Errata AAK100 (model 26)
1298 * Intel Errata AAP53 (model 30)
40b91cd1 1299 * Intel Errata BD53 (model 44)
11164cd4 1300 *
351af072
ZY
1301 * The official story:
1302 * These chips need to be 'reset' when adding counters by programming the
1303 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1304 * in sequence on the same PMC or on different PMCs.
1305 *
1306 * In practise it appears some of these events do in fact count, and
1307 * we need to programm all 4 events.
11164cd4 1308 */
351af072 1309static void intel_pmu_nhm_workaround(void)
11164cd4 1310{
89cbc767 1311 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351af072
ZY
1312 static const unsigned long nhm_magic[4] = {
1313 0x4300B5,
1314 0x4300D2,
1315 0x4300B1,
1316 0x4300B1
1317 };
1318 struct perf_event *event;
1319 int i;
11164cd4 1320
351af072
ZY
1321 /*
1322 * The Errata requires below steps:
1323 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1324 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1325 * the corresponding PMCx;
1326 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1327 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1328 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1329 */
11164cd4 1330
351af072
ZY
1331 /*
1332 * The real steps we choose are a little different from above.
1333 * A) To reduce MSR operations, we don't run step 1) as they
1334 * are already cleared before this function is called;
1335 * B) Call x86_perf_event_update to save PMCx before configuring
1336 * PERFEVTSELx with magic number;
1337 * C) With step 5), we do clear only when the PERFEVTSELx is
1338 * not used currently.
1339 * D) Call x86_perf_event_set_period to restore PMCx;
1340 */
11164cd4 1341
351af072
ZY
1342 /* We always operate 4 pairs of PERF Counters */
1343 for (i = 0; i < 4; i++) {
1344 event = cpuc->events[i];
1345 if (event)
1346 x86_perf_event_update(event);
1347 }
11164cd4 1348
351af072
ZY
1349 for (i = 0; i < 4; i++) {
1350 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1351 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1352 }
1353
1354 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1355 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1356
351af072
ZY
1357 for (i = 0; i < 4; i++) {
1358 event = cpuc->events[i];
1359
1360 if (event) {
1361 x86_perf_event_set_period(event);
31fa58af 1362 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1363 ARCH_PERFMON_EVENTSEL_ENABLE);
1364 } else
1365 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1366 }
351af072
ZY
1367}
1368
1369static void intel_pmu_nhm_enable_all(int added)
1370{
1371 if (added)
1372 intel_pmu_nhm_workaround();
11164cd4
PZ
1373 intel_pmu_enable_all(added);
1374}
1375
f22f54f4
PZ
1376static inline u64 intel_pmu_get_status(void)
1377{
1378 u64 status;
1379
1380 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1381
1382 return status;
1383}
1384
1385static inline void intel_pmu_ack_status(u64 ack)
1386{
1387 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1388}
1389
ca037701 1390static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 1391{
15c7ad51 1392 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
1393 u64 ctrl_val, mask;
1394
1395 mask = 0xfULL << (idx * 4);
1396
1397 rdmsrl(hwc->config_base, ctrl_val);
1398 ctrl_val &= ~mask;
7645a24c 1399 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1400}
1401
2b9e344d
PZ
1402static inline bool event_is_checkpointed(struct perf_event *event)
1403{
1404 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1405}
1406
ca037701 1407static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 1408{
aff3d91a 1409 struct hw_perf_event *hwc = &event->hw;
89cbc767 1410 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1411
15c7ad51 1412 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
1413 intel_pmu_disable_bts();
1414 intel_pmu_drain_bts_buffer();
1415 return;
1416 }
1417
144d31e6
GN
1418 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1419 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 1420 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 1421
60ce0fbd
SE
1422 /*
1423 * must disable before any actual event
1424 * because any event may be combined with LBR
1425 */
a46a2300 1426 if (needs_branch_stack(event))
60ce0fbd
SE
1427 intel_pmu_lbr_disable(event);
1428
f22f54f4 1429 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1430 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1431 return;
1432 }
1433
aff3d91a 1434 x86_pmu_disable_event(event);
ca037701 1435
ab608344 1436 if (unlikely(event->attr.precise_ip))
ef21f683 1437 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1438}
1439
ca037701 1440static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1441{
15c7ad51 1442 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1443 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1444
1445 /*
1446 * Enable IRQ generation (0x8),
1447 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1448 * if requested:
1449 */
1450 bits = 0x8ULL;
1451 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1452 bits |= 0x2;
1453 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1454 bits |= 0x1;
1455
1456 /*
1457 * ANY bit is supported in v3 and up
1458 */
1459 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1460 bits |= 0x4;
1461
1462 bits <<= (idx * 4);
1463 mask = 0xfULL << (idx * 4);
1464
1465 rdmsrl(hwc->config_base, ctrl_val);
1466 ctrl_val &= ~mask;
1467 ctrl_val |= bits;
7645a24c 1468 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1469}
1470
aff3d91a 1471static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1472{
aff3d91a 1473 struct hw_perf_event *hwc = &event->hw;
89cbc767 1474 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1475
15c7ad51 1476 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1477 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1478 return;
1479
1480 intel_pmu_enable_bts(hwc->config);
1481 return;
1482 }
60ce0fbd
SE
1483 /*
1484 * must enabled before any actual event
1485 * because any event may be combined with LBR
1486 */
a46a2300 1487 if (needs_branch_stack(event))
60ce0fbd 1488 intel_pmu_lbr_enable(event);
f22f54f4 1489
144d31e6
GN
1490 if (event->attr.exclude_host)
1491 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1492 if (event->attr.exclude_guest)
1493 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1494
2b9e344d
PZ
1495 if (unlikely(event_is_checkpointed(event)))
1496 cpuc->intel_cp_status |= (1ull << hwc->idx);
1497
f22f54f4 1498 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1499 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1500 return;
1501 }
1502
ab608344 1503 if (unlikely(event->attr.precise_ip))
ef21f683 1504 intel_pmu_pebs_enable(event);
ca037701 1505
31fa58af 1506 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1507}
1508
1509/*
1510 * Save and restart an expired event. Called by NMI contexts,
1511 * so it has to be careful about preempting normal event ops:
1512 */
de0428a7 1513int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1514{
cc2ad4ba 1515 x86_perf_event_update(event);
2dbf0116
AK
1516 /*
1517 * For a checkpointed counter always reset back to 0. This
1518 * avoids a situation where the counter overflows, aborts the
1519 * transaction and is then set back to shortly before the
1520 * overflow, and overflows and aborts again.
1521 */
1522 if (unlikely(event_is_checkpointed(event))) {
1523 /* No race with NMIs because the counter should not be armed */
1524 wrmsrl(event->hw.event_base, 0);
1525 local64_set(&event->hw.prev_count, 0);
1526 }
cc2ad4ba 1527 return x86_perf_event_set_period(event);
f22f54f4
PZ
1528}
1529
1530static void intel_pmu_reset(void)
1531{
0a3aee0d 1532 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1533 unsigned long flags;
1534 int idx;
1535
948b1bb8 1536 if (!x86_pmu.num_counters)
f22f54f4
PZ
1537 return;
1538
1539 local_irq_save(flags);
1540
c767a54b 1541 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1542
948b1bb8 1543 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1544 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1545 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1546 }
948b1bb8 1547 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1548 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1549
f22f54f4
PZ
1550 if (ds)
1551 ds->bts_index = ds->bts_buffer_base;
1552
8882edf7
AK
1553 /* Ack all overflows and disable fixed counters */
1554 if (x86_pmu.version >= 2) {
1555 intel_pmu_ack_status(intel_pmu_get_status());
1556 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1557 }
1558
1559 /* Reset LBRs and LBR freezing */
1560 if (x86_pmu.lbr_nr) {
1561 update_debugctlmsr(get_debugctlmsr() &
1562 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1563 }
1564
f22f54f4
PZ
1565 local_irq_restore(flags);
1566}
1567
1568/*
1569 * This handler is triggered by the local APIC, so the APIC IRQ handling
1570 * rules apply:
1571 */
1572static int intel_pmu_handle_irq(struct pt_regs *regs)
1573{
1574 struct perf_sample_data data;
1575 struct cpu_hw_events *cpuc;
1576 int bit, loops;
2e556b5b 1577 u64 status;
b0b2072d 1578 int handled;
f22f54f4 1579
89cbc767 1580 cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1581
2bce5dac 1582 /*
72db5596
AK
1583 * No known reason to not always do late ACK,
1584 * but just in case do it opt-in.
2bce5dac 1585 */
72db5596
AK
1586 if (!x86_pmu.late_ack)
1587 apic_write(APIC_LVTPC, APIC_DM_NMI);
1a78d937 1588 __intel_pmu_disable_all();
b0b2072d 1589 handled = intel_pmu_drain_bts_buffer();
8062382c 1590 handled += intel_bts_interrupt();
f22f54f4 1591 status = intel_pmu_get_status();
a3ef2229
MM
1592 if (!status)
1593 goto done;
f22f54f4
PZ
1594
1595 loops = 0;
1596again:
2e556b5b 1597 intel_pmu_ack_status(status);
f22f54f4 1598 if (++loops > 100) {
ae0def05
DH
1599 static bool warned = false;
1600 if (!warned) {
1601 WARN(1, "perfevents: irq loop stuck!\n");
1602 perf_event_print_debug();
1603 warned = true;
1604 }
f22f54f4 1605 intel_pmu_reset();
3fb2b8dd 1606 goto done;
f22f54f4
PZ
1607 }
1608
1609 inc_irq_stat(apic_perf_irqs);
ca037701 1610
caff2bef
PZ
1611 intel_pmu_lbr_read();
1612
b292d7a1 1613 /*
d8020bee
AK
1614 * Ignore a range of extra bits in status that do not indicate
1615 * overflow by themselves.
b292d7a1 1616 */
d8020bee
AK
1617 status &= ~(GLOBAL_STATUS_COND_CHG |
1618 GLOBAL_STATUS_ASIF |
1619 GLOBAL_STATUS_LBRS_FROZEN);
1620 if (!status)
1621 goto done;
b292d7a1 1622
ca037701
PZ
1623 /*
1624 * PEBS overflow sets bit 62 in the global status register
1625 */
de725dec
PZ
1626 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1627 handled++;
ca037701 1628 x86_pmu.drain_pebs(regs);
de725dec 1629 }
ca037701 1630
52ca9ced
AS
1631 /*
1632 * Intel PT
1633 */
1634 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1635 handled++;
1636 intel_pt_interrupt();
1637 }
1638
2dbf0116 1639 /*
2b9e344d
PZ
1640 * Checkpointed counters can lead to 'spurious' PMIs because the
1641 * rollback caused by the PMI will have cleared the overflow status
1642 * bit. Therefore always force probe these counters.
2dbf0116 1643 */
2b9e344d 1644 status |= cpuc->intel_cp_status;
2dbf0116 1645
984b3f57 1646 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
1647 struct perf_event *event = cpuc->events[bit];
1648
de725dec
PZ
1649 handled++;
1650
f22f54f4
PZ
1651 if (!test_bit(bit, cpuc->active_mask))
1652 continue;
1653
1654 if (!intel_pmu_save_and_restart(event))
1655 continue;
1656
fd0d000b 1657 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 1658
60ce0fbd
SE
1659 if (has_branch_stack(event))
1660 data.br_stack = &cpuc->lbr_stack;
1661
a8b0ca17 1662 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1663 x86_pmu_stop(event, 0);
f22f54f4
PZ
1664 }
1665
f22f54f4
PZ
1666 /*
1667 * Repeat if there is more work to be done:
1668 */
1669 status = intel_pmu_get_status();
1670 if (status)
1671 goto again;
1672
3fb2b8dd 1673done:
1a78d937 1674 __intel_pmu_enable_all(0, true);
72db5596
AK
1675 /*
1676 * Only unmask the NMI after the overflow counters
1677 * have been reset. This avoids spurious NMIs on
1678 * Haswell CPUs.
1679 */
1680 if (x86_pmu.late_ack)
1681 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 1682 return handled;
f22f54f4
PZ
1683}
1684
f22f54f4 1685static struct event_constraint *
ca037701 1686intel_bts_constraints(struct perf_event *event)
f22f54f4 1687{
ca037701
PZ
1688 struct hw_perf_event *hwc = &event->hw;
1689 unsigned int hw_event, bts_event;
f22f54f4 1690
18a073a3
PZ
1691 if (event->attr.freq)
1692 return NULL;
1693
ca037701
PZ
1694 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1695 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1696
ca037701 1697 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1698 return &bts_constraint;
ca037701 1699
f22f54f4
PZ
1700 return NULL;
1701}
1702
ae3f011f 1703static int intel_alt_er(int idx, u64 config)
b79e8941 1704{
ae3f011f 1705 int alt_idx;
9a5e3fb5 1706 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
5a425294 1707 return idx;
b79e8941 1708
5a425294 1709 if (idx == EXTRA_REG_RSP_0)
ae3f011f 1710 alt_idx = EXTRA_REG_RSP_1;
5a425294
PZ
1711
1712 if (idx == EXTRA_REG_RSP_1)
ae3f011f 1713 alt_idx = EXTRA_REG_RSP_0;
5a425294 1714
ae3f011f
KL
1715 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1716 return idx;
1717
1718 return alt_idx;
5a425294
PZ
1719}
1720
1721static void intel_fixup_er(struct perf_event *event, int idx)
1722{
1723 event->hw.extra_reg.idx = idx;
1724
1725 if (idx == EXTRA_REG_RSP_0) {
b79e8941 1726 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1727 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 1728 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
1729 } else if (idx == EXTRA_REG_RSP_1) {
1730 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1731 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 1732 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 1733 }
b79e8941
PZ
1734}
1735
efc9f05d
SE
1736/*
1737 * manage allocation of shared extra msr for certain events
1738 *
1739 * sharing can be:
1740 * per-cpu: to be shared between the various events on a single PMU
1741 * per-core: per-cpu + shared by HT threads
1742 */
a7e3ed1e 1743static struct event_constraint *
efc9f05d 1744__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
1745 struct perf_event *event,
1746 struct hw_perf_event_extra *reg)
a7e3ed1e 1747{
efc9f05d 1748 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 1749 struct er_account *era;
cd8a38d3 1750 unsigned long flags;
5a425294 1751 int idx = reg->idx;
a7e3ed1e 1752
5a425294
PZ
1753 /*
1754 * reg->alloc can be set due to existing state, so for fake cpuc we
1755 * need to ignore this, otherwise we might fail to allocate proper fake
1756 * state for this extra reg constraint. Also see the comment below.
1757 */
1758 if (reg->alloc && !cpuc->is_fake)
b36817e8 1759 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 1760
b79e8941 1761again:
5a425294 1762 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
1763 /*
1764 * we use spin_lock_irqsave() to avoid lockdep issues when
1765 * passing a fake cpuc
1766 */
1767 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
1768
1769 if (!atomic_read(&era->ref) || era->config == reg->config) {
1770
5a425294
PZ
1771 /*
1772 * If its a fake cpuc -- as per validate_{group,event}() we
1773 * shouldn't touch event state and we can avoid doing so
1774 * since both will only call get_event_constraints() once
1775 * on each event, this avoids the need for reg->alloc.
1776 *
1777 * Not doing the ER fixup will only result in era->reg being
1778 * wrong, but since we won't actually try and program hardware
1779 * this isn't a problem either.
1780 */
1781 if (!cpuc->is_fake) {
1782 if (idx != reg->idx)
1783 intel_fixup_er(event, idx);
1784
1785 /*
1786 * x86_schedule_events() can call get_event_constraints()
1787 * multiple times on events in the case of incremental
1788 * scheduling(). reg->alloc ensures we only do the ER
1789 * allocation once.
1790 */
1791 reg->alloc = 1;
1792 }
1793
efc9f05d
SE
1794 /* lock in msr value */
1795 era->config = reg->config;
1796 era->reg = reg->reg;
1797
1798 /* one more user */
1799 atomic_inc(&era->ref);
1800
a7e3ed1e 1801 /*
b36817e8
SE
1802 * need to call x86_get_event_constraint()
1803 * to check if associated event has constraints
a7e3ed1e 1804 */
b36817e8 1805 c = NULL;
5a425294 1806 } else {
ae3f011f 1807 idx = intel_alt_er(idx, reg->config);
5a425294
PZ
1808 if (idx != reg->idx) {
1809 raw_spin_unlock_irqrestore(&era->lock, flags);
1810 goto again;
1811 }
a7e3ed1e 1812 }
cd8a38d3 1813 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 1814
efc9f05d
SE
1815 return c;
1816}
1817
1818static void
1819__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1820 struct hw_perf_event_extra *reg)
1821{
1822 struct er_account *era;
1823
1824 /*
5a425294
PZ
1825 * Only put constraint if extra reg was actually allocated. Also takes
1826 * care of event which do not use an extra shared reg.
1827 *
1828 * Also, if this is a fake cpuc we shouldn't touch any event state
1829 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1830 * either since it'll be thrown out.
efc9f05d 1831 */
5a425294 1832 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
1833 return;
1834
1835 era = &cpuc->shared_regs->regs[reg->idx];
1836
1837 /* one fewer user */
1838 atomic_dec(&era->ref);
1839
1840 /* allocate again next time */
1841 reg->alloc = 0;
1842}
1843
1844static struct event_constraint *
1845intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1846 struct perf_event *event)
1847{
b36817e8
SE
1848 struct event_constraint *c = NULL, *d;
1849 struct hw_perf_event_extra *xreg, *breg;
1850
1851 xreg = &event->hw.extra_reg;
1852 if (xreg->idx != EXTRA_REG_NONE) {
1853 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1854 if (c == &emptyconstraint)
1855 return c;
1856 }
1857 breg = &event->hw.branch_reg;
1858 if (breg->idx != EXTRA_REG_NONE) {
1859 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1860 if (d == &emptyconstraint) {
1861 __intel_shared_reg_put_constraints(cpuc, xreg);
1862 c = d;
1863 }
1864 }
efc9f05d 1865 return c;
a7e3ed1e
AK
1866}
1867
de0428a7 1868struct event_constraint *
79cba822
SE
1869x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1870 struct perf_event *event)
de0428a7
KW
1871{
1872 struct event_constraint *c;
1873
1874 if (x86_pmu.event_constraints) {
1875 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 1876 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 1877 event->hw.flags |= c->flags;
de0428a7 1878 return c;
9fac2cf3 1879 }
de0428a7
KW
1880 }
1881 }
1882
1883 return &unconstrained;
1884}
1885
f22f54f4 1886static struct event_constraint *
e979121b 1887__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
79cba822 1888 struct perf_event *event)
f22f54f4
PZ
1889{
1890 struct event_constraint *c;
1891
ca037701
PZ
1892 c = intel_bts_constraints(event);
1893 if (c)
1894 return c;
1895
687805e4 1896 c = intel_shared_regs_constraints(cpuc, event);
f22f54f4
PZ
1897 if (c)
1898 return c;
1899
687805e4 1900 c = intel_pebs_constraints(event);
a7e3ed1e
AK
1901 if (c)
1902 return c;
1903
79cba822 1904 return x86_get_event_constraints(cpuc, idx, event);
f22f54f4
PZ
1905}
1906
e979121b
MD
1907static void
1908intel_start_scheduling(struct cpu_hw_events *cpuc)
1909{
1910 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 1911 struct intel_excl_states *xl;
e979121b 1912 int tid = cpuc->excl_thread_id;
e979121b
MD
1913
1914 /*
1915 * nothing needed if in group validation mode
1916 */
b37609c3 1917 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b 1918 return;
b37609c3 1919
e979121b
MD
1920 /*
1921 * no exclusion needed
1922 */
17186ccd 1923 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
1924 return;
1925
e979121b
MD
1926 xl = &excl_cntrs->states[tid];
1927
1928 xl->sched_started = true;
e979121b
MD
1929 /*
1930 * lock shared state until we are done scheduling
1931 * in stop_event_scheduling()
1932 * makes scheduling appear as a transaction
1933 */
e979121b 1934 raw_spin_lock(&excl_cntrs->lock);
e979121b
MD
1935}
1936
0c41e756
PZ
1937static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
1938{
1939 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1940 struct event_constraint *c = cpuc->event_constraint[idx];
1941 struct intel_excl_states *xl;
1942 int tid = cpuc->excl_thread_id;
1943
1944 if (cpuc->is_fake || !is_ht_workaround_enabled())
1945 return;
1946
1947 if (WARN_ON_ONCE(!excl_cntrs))
1948 return;
1949
1950 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
1951 return;
1952
1953 xl = &excl_cntrs->states[tid];
1954
1955 lockdep_assert_held(&excl_cntrs->lock);
1956
1fe684e3 1957 if (c->flags & PERF_X86_EVENT_EXCL)
43ef205b 1958 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
1fe684e3 1959 else
43ef205b 1960 xl->state[cntr] = INTEL_EXCL_SHARED;
0c41e756
PZ
1961}
1962
e979121b
MD
1963static void
1964intel_stop_scheduling(struct cpu_hw_events *cpuc)
1965{
1966 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 1967 struct intel_excl_states *xl;
e979121b 1968 int tid = cpuc->excl_thread_id;
e979121b
MD
1969
1970 /*
1971 * nothing needed if in group validation mode
1972 */
b37609c3 1973 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b
MD
1974 return;
1975 /*
1976 * no exclusion needed
1977 */
17186ccd 1978 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
1979 return;
1980
e979121b
MD
1981 xl = &excl_cntrs->states[tid];
1982
e979121b
MD
1983 xl->sched_started = false;
1984 /*
1985 * release shared state lock (acquired in intel_start_scheduling())
1986 */
1987 raw_spin_unlock(&excl_cntrs->lock);
1988}
1989
1990static struct event_constraint *
1991intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1992 int idx, struct event_constraint *c)
1993{
e979121b 1994 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 1995 struct intel_excl_states *xlo;
e979121b 1996 int tid = cpuc->excl_thread_id;
1c565833 1997 int is_excl, i;
e979121b
MD
1998
1999 /*
2000 * validating a group does not require
2001 * enforcing cross-thread exclusion
2002 */
b37609c3
SE
2003 if (cpuc->is_fake || !is_ht_workaround_enabled())
2004 return c;
2005
2006 /*
2007 * no exclusion needed
2008 */
17186ccd 2009 if (WARN_ON_ONCE(!excl_cntrs))
e979121b 2010 return c;
e979121b 2011
e979121b
MD
2012 /*
2013 * because we modify the constraint, we need
2014 * to make a copy. Static constraints come
2015 * from static const tables.
2016 *
2017 * only needed when constraint has not yet
2018 * been cloned (marked dynamic)
2019 */
2020 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
aaf932e8 2021 struct event_constraint *cx;
e979121b 2022
e979121b
MD
2023 /*
2024 * grab pre-allocated constraint entry
2025 */
2026 cx = &cpuc->constraint_list[idx];
2027
2028 /*
2029 * initialize dynamic constraint
2030 * with static constraint
2031 */
aaf932e8 2032 *cx = *c;
e979121b
MD
2033
2034 /*
2035 * mark constraint as dynamic, so we
2036 * can free it later on
2037 */
2038 cx->flags |= PERF_X86_EVENT_DYNAMIC;
aaf932e8 2039 c = cx;
e979121b
MD
2040 }
2041
2042 /*
2043 * From here on, the constraint is dynamic.
2044 * Either it was just allocated above, or it
2045 * was allocated during a earlier invocation
2046 * of this function
2047 */
2048
1c565833
PZ
2049 /*
2050 * state of sibling HT
2051 */
2052 xlo = &excl_cntrs->states[tid ^ 1];
2053
2054 /*
2055 * event requires exclusive counter access
2056 * across HT threads
2057 */
2058 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2059 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2060 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2061 if (!cpuc->n_excl++)
2062 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2063 }
2064
e979121b
MD
2065 /*
2066 * Modify static constraint with current dynamic
2067 * state of thread
2068 *
2069 * EXCLUSIVE: sibling counter measuring exclusive event
2070 * SHARED : sibling counter measuring non-exclusive event
2071 * UNUSED : sibling counter unused
2072 */
aaf932e8 2073 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
e979121b
MD
2074 /*
2075 * exclusive event in sibling counter
2076 * our corresponding counter cannot be used
2077 * regardless of our event
2078 */
1c565833 2079 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
aaf932e8 2080 __clear_bit(i, c->idxmsk);
e979121b
MD
2081 /*
2082 * if measuring an exclusive event, sibling
2083 * measuring non-exclusive, then counter cannot
2084 * be used
2085 */
1c565833 2086 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
aaf932e8 2087 __clear_bit(i, c->idxmsk);
e979121b
MD
2088 }
2089
2090 /*
2091 * recompute actual bit weight for scheduling algorithm
2092 */
aaf932e8 2093 c->weight = hweight64(c->idxmsk64);
e979121b
MD
2094
2095 /*
2096 * if we return an empty mask, then switch
2097 * back to static empty constraint to avoid
2098 * the cost of freeing later on
2099 */
aaf932e8
PZ
2100 if (c->weight == 0)
2101 c = &emptyconstraint;
e979121b 2102
aaf932e8 2103 return c;
e979121b
MD
2104}
2105
2106static struct event_constraint *
2107intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2108 struct perf_event *event)
2109{
b371b594 2110 struct event_constraint *c1 = cpuc->event_constraint[idx];
a90738c2 2111 struct event_constraint *c2;
e979121b
MD
2112
2113 /*
2114 * first time only
2115 * - static constraint: no change across incremental scheduling calls
2116 * - dynamic constraint: handled by intel_get_excl_constraints()
2117 */
a90738c2
SE
2118 c2 = __intel_get_event_constraints(cpuc, idx, event);
2119 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2120 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2121 c1->weight = c2->weight;
2122 c2 = c1;
2123 }
e979121b
MD
2124
2125 if (cpuc->excl_cntrs)
a90738c2 2126 return intel_get_excl_constraints(cpuc, event, idx, c2);
e979121b 2127
a90738c2 2128 return c2;
e979121b
MD
2129}
2130
2131static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2132 struct perf_event *event)
2133{
2134 struct hw_perf_event *hwc = &event->hw;
2135 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
e979121b 2136 int tid = cpuc->excl_thread_id;
1c565833 2137 struct intel_excl_states *xl;
e979121b
MD
2138
2139 /*
2140 * nothing needed if in group validation mode
2141 */
2142 if (cpuc->is_fake)
2143 return;
2144
17186ccd 2145 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2146 return;
2147
cc1790cf
PZ
2148 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2149 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2150 if (!--cpuc->n_excl)
2151 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2152 }
e979121b
MD
2153
2154 /*
ba040653
PZ
2155 * If event was actually assigned, then mark the counter state as
2156 * unused now.
e979121b 2157 */
ba040653
PZ
2158 if (hwc->idx >= 0) {
2159 xl = &excl_cntrs->states[tid];
2160
2161 /*
2162 * put_constraint may be called from x86_schedule_events()
2163 * which already has the lock held so here make locking
2164 * conditional.
2165 */
2166 if (!xl->sched_started)
2167 raw_spin_lock(&excl_cntrs->lock);
e979121b 2168
1c565833 2169 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
e979121b 2170
ba040653
PZ
2171 if (!xl->sched_started)
2172 raw_spin_unlock(&excl_cntrs->lock);
2173 }
e979121b
MD
2174}
2175
efc9f05d
SE
2176static void
2177intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
2178 struct perf_event *event)
2179{
efc9f05d 2180 struct hw_perf_event_extra *reg;
a7e3ed1e 2181
efc9f05d
SE
2182 reg = &event->hw.extra_reg;
2183 if (reg->idx != EXTRA_REG_NONE)
2184 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
2185
2186 reg = &event->hw.branch_reg;
2187 if (reg->idx != EXTRA_REG_NONE)
2188 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 2189}
a7e3ed1e 2190
efc9f05d
SE
2191static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2192 struct perf_event *event)
2193{
2194 intel_put_shared_regs_event_constraints(cpuc, event);
e979121b
MD
2195
2196 /*
2197 * is PMU has exclusive counter restrictions, then
2198 * all events are subject to and must call the
2199 * put_excl_constraints() routine
2200 */
b371b594 2201 if (cpuc->excl_cntrs)
e979121b 2202 intel_put_excl_constraints(cpuc, event);
e979121b
MD
2203}
2204
0780c927 2205static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 2206{
0780c927 2207 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
2208 /*
2209 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2210 * (0x003c) so that we can use it with PEBS.
2211 *
2212 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2213 * PEBS capable. However we can use INST_RETIRED.ANY_P
2214 * (0x00c0), which is a PEBS capable event, to get the same
2215 * count.
2216 *
2217 * INST_RETIRED.ANY_P counts the number of cycles that retires
2218 * CNTMASK instructions. By setting CNTMASK to a value (16)
2219 * larger than the maximum number of instructions that can be
2220 * retired per cycle (4) and then inverting the condition, we
2221 * count all cycles that retire 16 or less instructions, which
2222 * is every cycle.
2223 *
2224 * Thereby we gain a PEBS capable cycle counter.
2225 */
f9b4eeb8
PZ
2226 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2227
0780c927
PZ
2228 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2229 event->hw.config = alt_config;
2230 }
2231}
2232
2233static void intel_pebs_aliases_snb(struct perf_event *event)
2234{
2235 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2236 /*
2237 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2238 * (0x003c) so that we can use it with PEBS.
2239 *
2240 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2241 * PEBS capable. However we can use UOPS_RETIRED.ALL
2242 * (0x01c2), which is a PEBS capable event, to get the same
2243 * count.
2244 *
2245 * UOPS_RETIRED.ALL counts the number of cycles that retires
2246 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2247 * larger than the maximum number of micro-ops that can be
2248 * retired per cycle (4) and then inverting the condition, we
2249 * count all cycles that retire 16 or less micro-ops, which
2250 * is every cycle.
2251 *
2252 * Thereby we gain a PEBS capable cycle counter.
2253 */
2254 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
2255
2256 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2257 event->hw.config = alt_config;
2258 }
0780c927
PZ
2259}
2260
a7b58d21
AK
2261static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2262{
2263 unsigned long flags = x86_pmu.free_running_flags;
2264
2265 if (event->attr.use_clockid)
2266 flags &= ~PERF_SAMPLE_TIME;
2267 return flags;
2268}
2269
0780c927
PZ
2270static int intel_pmu_hw_config(struct perf_event *event)
2271{
2272 int ret = x86_pmu_hw_config(event);
2273
2274 if (ret)
2275 return ret;
2276
851559e3 2277 if (event->attr.precise_ip) {
3569c0d7 2278 if (!event->attr.freq) {
851559e3 2279 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
a7b58d21
AK
2280 if (!(event->attr.sample_type &
2281 ~intel_pmu_free_running_flags(event)))
3569c0d7
YZ
2282 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2283 }
851559e3
YZ
2284 if (x86_pmu.pebs_aliases)
2285 x86_pmu.pebs_aliases(event);
2286 }
7639dae0 2287
a46a2300 2288 if (needs_branch_stack(event)) {
60ce0fbd
SE
2289 ret = intel_pmu_setup_lbr_filter(event);
2290 if (ret)
2291 return ret;
48070342
AS
2292
2293 /*
2294 * BTS is set up earlier in this path, so don't account twice
2295 */
2296 if (!intel_pmu_has_bts(event)) {
2297 /* disallow lbr if conflicting events are present */
2298 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2299 return -EBUSY;
2300
2301 event->destroy = hw_perf_lbr_event_destroy;
2302 }
60ce0fbd
SE
2303 }
2304
b4cdc5c2
PZ
2305 if (event->attr.type != PERF_TYPE_RAW)
2306 return 0;
2307
2308 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2309 return 0;
2310
2311 if (x86_pmu.version < 3)
2312 return -EINVAL;
2313
2314 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2315 return -EACCES;
2316
2317 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2318
2319 return 0;
2320}
2321
144d31e6
GN
2322struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2323{
2324 if (x86_pmu.guest_get_msrs)
2325 return x86_pmu.guest_get_msrs(nr);
2326 *nr = 0;
2327 return NULL;
2328}
2329EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2330
2331static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2332{
89cbc767 2333 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2334 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2335
2336 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2337 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2338 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
2339 /*
2340 * If PMU counter has PEBS enabled it is not enough to disable counter
2341 * on a guest entry since PEBS memory write can overshoot guest entry
2342 * and corrupt guest memory. Disabling PEBS solves the problem.
2343 */
2344 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2345 arr[1].host = cpuc->pebs_enabled;
2346 arr[1].guest = 0;
144d31e6 2347
26a4f3c0 2348 *nr = 2;
144d31e6
GN
2349 return arr;
2350}
2351
2352static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2353{
89cbc767 2354 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2355 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2356 int idx;
2357
2358 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2359 struct perf_event *event = cpuc->events[idx];
2360
2361 arr[idx].msr = x86_pmu_config_addr(idx);
2362 arr[idx].host = arr[idx].guest = 0;
2363
2364 if (!test_bit(idx, cpuc->active_mask))
2365 continue;
2366
2367 arr[idx].host = arr[idx].guest =
2368 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2369
2370 if (event->attr.exclude_host)
2371 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2372 else if (event->attr.exclude_guest)
2373 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2374 }
2375
2376 *nr = x86_pmu.num_counters;
2377 return arr;
2378}
2379
2380static void core_pmu_enable_event(struct perf_event *event)
2381{
2382 if (!event->attr.exclude_host)
2383 x86_pmu_enable_event(event);
2384}
2385
2386static void core_pmu_enable_all(int added)
2387{
89cbc767 2388 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2389 int idx;
2390
2391 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2392 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2393
2394 if (!test_bit(idx, cpuc->active_mask) ||
2395 cpuc->events[idx]->attr.exclude_host)
2396 continue;
2397
2398 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2399 }
2400}
2401
3a632cb2
AK
2402static int hsw_hw_config(struct perf_event *event)
2403{
2404 int ret = intel_pmu_hw_config(event);
2405
2406 if (ret)
2407 return ret;
2408 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2409 return 0;
2410 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2411
2412 /*
2413 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2414 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2415 * this combination.
2416 */
2417 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2418 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2419 event->attr.precise_ip > 0))
2420 return -EOPNOTSUPP;
2421
2dbf0116
AK
2422 if (event_is_checkpointed(event)) {
2423 /*
2424 * Sampling of checkpointed events can cause situations where
2425 * the CPU constantly aborts because of a overflow, which is
2426 * then checkpointed back and ignored. Forbid checkpointing
2427 * for sampling.
2428 *
2429 * But still allow a long sampling period, so that perf stat
2430 * from KVM works.
2431 */
2432 if (event->attr.sample_period > 0 &&
2433 event->attr.sample_period < 0x7fffffff)
2434 return -EOPNOTSUPP;
2435 }
3a632cb2
AK
2436 return 0;
2437}
2438
2439static struct event_constraint counter2_constraint =
2440 EVENT_CONSTRAINT(0, 0x4, 0);
2441
2442static struct event_constraint *
79cba822
SE
2443hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2444 struct perf_event *event)
3a632cb2 2445{
79cba822
SE
2446 struct event_constraint *c;
2447
2448 c = intel_get_event_constraints(cpuc, idx, event);
3a632cb2
AK
2449
2450 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2451 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2452 if (c->idxmsk64 & (1U << 2))
2453 return &counter2_constraint;
2454 return &emptyconstraint;
2455 }
2456
2457 return c;
2458}
2459
294fe0f5
AK
2460/*
2461 * Broadwell:
2462 *
2463 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2464 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2465 * the two to enforce a minimum period of 128 (the smallest value that has bits
2466 * 0-5 cleared and >= 100).
2467 *
2468 * Because of how the code in x86_perf_event_set_period() works, the truncation
2469 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2470 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2471 *
2472 * Therefore the effective (average) period matches the requested period,
2473 * despite coarser hardware granularity.
2474 */
2475static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2476{
2477 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2478 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2479 if (left < 128)
2480 left = 128;
2481 left &= ~0x3fu;
2482 }
2483 return left;
2484}
2485
641cc938
JO
2486PMU_FORMAT_ATTR(event, "config:0-7" );
2487PMU_FORMAT_ATTR(umask, "config:8-15" );
2488PMU_FORMAT_ATTR(edge, "config:18" );
2489PMU_FORMAT_ATTR(pc, "config:19" );
2490PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2491PMU_FORMAT_ATTR(inv, "config:23" );
2492PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
2493PMU_FORMAT_ATTR(in_tx, "config:32");
2494PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
2495
2496static struct attribute *intel_arch_formats_attr[] = {
2497 &format_attr_event.attr,
2498 &format_attr_umask.attr,
2499 &format_attr_edge.attr,
2500 &format_attr_pc.attr,
2501 &format_attr_inv.attr,
2502 &format_attr_cmask.attr,
2503 NULL,
2504};
2505
0bf79d44
JO
2506ssize_t intel_event_sysfs_show(char *page, u64 config)
2507{
2508 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2509
2510 return x86_event_sysfs_show(page, config, event);
2511}
2512
de0428a7 2513struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
2514{
2515 struct intel_shared_regs *regs;
2516 int i;
2517
2518 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2519 GFP_KERNEL, cpu_to_node(cpu));
2520 if (regs) {
2521 /*
2522 * initialize the locks to keep lockdep happy
2523 */
2524 for (i = 0; i < EXTRA_REG_MAX; i++)
2525 raw_spin_lock_init(&regs->regs[i].lock);
2526
2527 regs->core_id = -1;
2528 }
2529 return regs;
2530}
2531
6f6539ca
MD
2532static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2533{
2534 struct intel_excl_cntrs *c;
6f6539ca
MD
2535
2536 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2537 GFP_KERNEL, cpu_to_node(cpu));
2538 if (c) {
2539 raw_spin_lock_init(&c->lock);
6f6539ca
MD
2540 c->core_id = -1;
2541 }
2542 return c;
2543}
2544
a7e3ed1e
AK
2545static int intel_pmu_cpu_prepare(int cpu)
2546{
2547 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2548
6f6539ca
MD
2549 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2550 cpuc->shared_regs = allocate_shared_regs(cpu);
2551 if (!cpuc->shared_regs)
2552 return NOTIFY_BAD;
2553 }
69092624 2554
6f6539ca
MD
2555 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2556 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2557
2558 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2559 if (!cpuc->constraint_list)
2560 return NOTIFY_BAD;
2561
2562 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2563 if (!cpuc->excl_cntrs) {
2564 kfree(cpuc->constraint_list);
2565 kfree(cpuc->shared_regs);
2566 return NOTIFY_BAD;
2567 }
2568 cpuc->excl_thread_id = 0;
2569 }
a7e3ed1e 2570
a7e3ed1e
AK
2571 return NOTIFY_OK;
2572}
2573
74846d35
PZ
2574static void intel_pmu_cpu_starting(int cpu)
2575{
a7e3ed1e
AK
2576 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2577 int core_id = topology_core_id(cpu);
2578 int i;
2579
69092624
LM
2580 init_debug_store_on_cpu(cpu);
2581 /*
2582 * Deal with CPUs that don't clear their LBRs on power-up.
2583 */
2584 intel_pmu_lbr_reset();
2585
b36817e8
SE
2586 cpuc->lbr_sel = NULL;
2587
2588 if (!cpuc->shared_regs)
69092624
LM
2589 return;
2590
9a5e3fb5 2591 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
90413464
SE
2592 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2593
06931e62 2594 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
b36817e8 2595 struct intel_shared_regs *pc;
a7e3ed1e 2596
b36817e8
SE
2597 pc = per_cpu(cpu_hw_events, i).shared_regs;
2598 if (pc && pc->core_id == core_id) {
90413464 2599 *onln = cpuc->shared_regs;
b36817e8
SE
2600 cpuc->shared_regs = pc;
2601 break;
2602 }
a7e3ed1e 2603 }
b36817e8
SE
2604 cpuc->shared_regs->core_id = core_id;
2605 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
2606 }
2607
b36817e8
SE
2608 if (x86_pmu.lbr_sel_map)
2609 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6f6539ca
MD
2610
2611 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
06931e62 2612 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6f6539ca
MD
2613 struct intel_excl_cntrs *c;
2614
2615 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2616 if (c && c->core_id == core_id) {
2617 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2618 cpuc->excl_cntrs = c;
2619 cpuc->excl_thread_id = 1;
2620 break;
2621 }
2622 }
2623 cpuc->excl_cntrs->core_id = core_id;
2624 cpuc->excl_cntrs->refcnt++;
2625 }
74846d35
PZ
2626}
2627
b37609c3 2628static void free_excl_cntrs(int cpu)
74846d35 2629{
a7e3ed1e 2630 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6f6539ca 2631 struct intel_excl_cntrs *c;
a7e3ed1e 2632
6f6539ca
MD
2633 c = cpuc->excl_cntrs;
2634 if (c) {
2635 if (c->core_id == -1 || --c->refcnt == 0)
2636 kfree(c);
2637 cpuc->excl_cntrs = NULL;
2638 kfree(cpuc->constraint_list);
2639 cpuc->constraint_list = NULL;
2640 }
b37609c3 2641}
a7e3ed1e 2642
b37609c3
SE
2643static void intel_pmu_cpu_dying(int cpu)
2644{
2645 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2646 struct intel_shared_regs *pc;
2647
2648 pc = cpuc->shared_regs;
2649 if (pc) {
2650 if (pc->core_id == -1 || --pc->refcnt == 0)
2651 kfree(pc);
2652 cpuc->shared_regs = NULL;
e979121b
MD
2653 }
2654
b37609c3
SE
2655 free_excl_cntrs(cpu);
2656
74846d35
PZ
2657 fini_debug_store_on_cpu(cpu);
2658}
2659
9c964efa
YZ
2660static void intel_pmu_sched_task(struct perf_event_context *ctx,
2661 bool sched_in)
2662{
2663 if (x86_pmu.pebs_active)
2664 intel_pmu_pebs_sched_task(ctx, sched_in);
2665 if (x86_pmu.lbr_nr)
2666 intel_pmu_lbr_sched_task(ctx, sched_in);
2667}
2668
641cc938
JO
2669PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2670
a63fcab4
SE
2671PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2672
641cc938
JO
2673static struct attribute *intel_arch3_formats_attr[] = {
2674 &format_attr_event.attr,
2675 &format_attr_umask.attr,
2676 &format_attr_edge.attr,
2677 &format_attr_pc.attr,
2678 &format_attr_any.attr,
2679 &format_attr_inv.attr,
2680 &format_attr_cmask.attr,
3a632cb2
AK
2681 &format_attr_in_tx.attr,
2682 &format_attr_in_tx_cp.attr,
641cc938
JO
2683
2684 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
a63fcab4 2685 &format_attr_ldlat.attr, /* PEBS load latency */
641cc938
JO
2686 NULL,
2687};
2688
3b6e0421
JO
2689static __initconst const struct x86_pmu core_pmu = {
2690 .name = "core",
2691 .handle_irq = x86_pmu_handle_irq,
2692 .disable_all = x86_pmu_disable_all,
2693 .enable_all = core_pmu_enable_all,
2694 .enable = core_pmu_enable_event,
2695 .disable = x86_pmu_disable_event,
2696 .hw_config = x86_pmu_hw_config,
2697 .schedule_events = x86_schedule_events,
2698 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2699 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2700 .event_map = intel_pmu_event_map,
2701 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2702 .apic = 1,
a7b58d21
AK
2703 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2704
3b6e0421
JO
2705 /*
2706 * Intel PMCs cannot be accessed sanely above 32-bit width,
2707 * so we install an artificial 1<<31 period regardless of
2708 * the generic event period:
2709 */
2710 .max_period = (1ULL<<31) - 1,
2711 .get_event_constraints = intel_get_event_constraints,
2712 .put_event_constraints = intel_put_event_constraints,
2713 .event_constraints = intel_core_event_constraints,
2714 .guest_get_msrs = core_guest_get_msrs,
2715 .format_attrs = intel_arch_formats_attr,
2716 .events_sysfs_show = intel_event_sysfs_show,
2717
2718 /*
2719 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2720 * together with PMU version 1 and thus be using core_pmu with
2721 * shared_regs. We need following callbacks here to allocate
2722 * it properly.
2723 */
2724 .cpu_prepare = intel_pmu_cpu_prepare,
2725 .cpu_starting = intel_pmu_cpu_starting,
2726 .cpu_dying = intel_pmu_cpu_dying,
2727};
2728
caaa8be3 2729static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
2730 .name = "Intel",
2731 .handle_irq = intel_pmu_handle_irq,
2732 .disable_all = intel_pmu_disable_all,
2733 .enable_all = intel_pmu_enable_all,
2734 .enable = intel_pmu_enable_event,
2735 .disable = intel_pmu_disable_event,
b4cdc5c2 2736 .hw_config = intel_pmu_hw_config,
a072738e 2737 .schedule_events = x86_schedule_events,
f22f54f4
PZ
2738 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2739 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2740 .event_map = intel_pmu_event_map,
f22f54f4
PZ
2741 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2742 .apic = 1,
a7b58d21 2743 .free_running_flags = PEBS_FREERUNNING_FLAGS,
f22f54f4
PZ
2744 /*
2745 * Intel PMCs cannot be accessed sanely above 32 bit width,
2746 * so we install an artificial 1<<31 period regardless of
2747 * the generic event period:
2748 */
2749 .max_period = (1ULL << 31) - 1,
3f6da390 2750 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 2751 .put_event_constraints = intel_put_event_constraints,
0780c927 2752 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 2753
641cc938 2754 .format_attrs = intel_arch3_formats_attr,
0bf79d44 2755 .events_sysfs_show = intel_event_sysfs_show,
641cc938 2756
a7e3ed1e 2757 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
2758 .cpu_starting = intel_pmu_cpu_starting,
2759 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 2760 .guest_get_msrs = intel_guest_get_msrs,
9c964efa 2761 .sched_task = intel_pmu_sched_task,
f22f54f4
PZ
2762};
2763
c1d6f42f 2764static __init void intel_clovertown_quirk(void)
3c44780b
PZ
2765{
2766 /*
2767 * PEBS is unreliable due to:
2768 *
2769 * AJ67 - PEBS may experience CPL leaks
2770 * AJ68 - PEBS PMI may be delayed by one event
2771 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2772 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2773 *
2774 * AJ67 could be worked around by restricting the OS/USR flags.
2775 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2776 *
2777 * AJ106 could possibly be worked around by not allowing LBR
2778 * usage from PEBS, including the fixup.
2779 * AJ68 could possibly be worked around by always programming
ec75a716 2780 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
2781 *
2782 * But taken together it might just make sense to not enable PEBS on
2783 * these chips.
2784 */
c767a54b 2785 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
2786 x86_pmu.pebs = 0;
2787 x86_pmu.pebs_constraints = NULL;
2788}
2789
c93dc84c
PZ
2790static int intel_snb_pebs_broken(int cpu)
2791{
2792 u32 rev = UINT_MAX; /* default to broken for unknown models */
2793
2794 switch (cpu_data(cpu).x86_model) {
2795 case 42: /* SNB */
2796 rev = 0x28;
2797 break;
2798
2799 case 45: /* SNB-EP */
2800 switch (cpu_data(cpu).x86_mask) {
2801 case 6: rev = 0x618; break;
2802 case 7: rev = 0x70c; break;
2803 }
2804 }
2805
2806 return (cpu_data(cpu).microcode < rev);
2807}
2808
2809static void intel_snb_check_microcode(void)
2810{
2811 int pebs_broken = 0;
2812 int cpu;
2813
2814 get_online_cpus();
2815 for_each_online_cpu(cpu) {
2816 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2817 break;
2818 }
2819 put_online_cpus();
2820
2821 if (pebs_broken == x86_pmu.pebs_broken)
2822 return;
2823
2824 /*
2825 * Serialized by the microcode lock..
2826 */
2827 if (x86_pmu.pebs_broken) {
2828 pr_info("PEBS enabled due to microcode update\n");
2829 x86_pmu.pebs_broken = 0;
2830 } else {
2831 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2832 x86_pmu.pebs_broken = 1;
2833 }
2834}
2835
338b522c
KL
2836/*
2837 * Under certain circumstances, access certain MSR may cause #GP.
2838 * The function tests if the input MSR can be safely accessed.
2839 */
2840static bool check_msr(unsigned long msr, u64 mask)
2841{
2842 u64 val_old, val_new, val_tmp;
2843
2844 /*
2845 * Read the current value, change it and read it back to see if it
2846 * matches, this is needed to detect certain hardware emulators
2847 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2848 */
2849 if (rdmsrl_safe(msr, &val_old))
2850 return false;
2851
2852 /*
2853 * Only change the bits which can be updated by wrmsrl.
2854 */
2855 val_tmp = val_old ^ mask;
2856 if (wrmsrl_safe(msr, val_tmp) ||
2857 rdmsrl_safe(msr, &val_new))
2858 return false;
2859
2860 if (val_new != val_tmp)
2861 return false;
2862
2863 /* Here it's sure that the MSR can be safely accessed.
2864 * Restore the old value and return.
2865 */
2866 wrmsrl(msr, val_old);
2867
2868 return true;
2869}
2870
c1d6f42f 2871static __init void intel_sandybridge_quirk(void)
6a600a8b 2872{
c93dc84c
PZ
2873 x86_pmu.check_microcode = intel_snb_check_microcode;
2874 intel_snb_check_microcode();
6a600a8b
PZ
2875}
2876
c1d6f42f
PZ
2877static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2878 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2879 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2880 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2881 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2882 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2883 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2884 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
2885};
2886
c1d6f42f
PZ
2887static __init void intel_arch_events_quirk(void)
2888{
2889 int bit;
2890
2891 /* disable event that reported as not presend by cpuid */
2892 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2893 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
2894 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2895 intel_arch_events_map[bit].name);
c1d6f42f
PZ
2896 }
2897}
2898
2899static __init void intel_nehalem_quirk(void)
2900{
2901 union cpuid10_ebx ebx;
2902
2903 ebx.full = x86_pmu.events_maskl;
2904 if (ebx.split.no_branch_misses_retired) {
2905 /*
2906 * Erratum AAJ80 detected, we work it around by using
2907 * the BR_MISP_EXEC.ANY event. This will over-count
2908 * branch-misses, but it's still much better than the
2909 * architectural event which is often completely bogus:
2910 */
2911 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2912 ebx.split.no_branch_misses_retired = 0;
2913 x86_pmu.events_maskl = ebx.full;
c767a54b 2914 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
2915 }
2916}
2917
93fcf72c
MD
2918/*
2919 * enable software workaround for errata:
2920 * SNB: BJ122
2921 * IVB: BV98
2922 * HSW: HSD29
2923 *
2924 * Only needed when HT is enabled. However detecting
b37609c3
SE
2925 * if HT is enabled is difficult (model specific). So instead,
2926 * we enable the workaround in the early boot, and verify if
2927 * it is needed in a later initcall phase once we have valid
2928 * topology information to check if HT is actually enabled
93fcf72c
MD
2929 */
2930static __init void intel_ht_bug(void)
2931{
b37609c3 2932 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
93fcf72c 2933
93fcf72c 2934 x86_pmu.start_scheduling = intel_start_scheduling;
0c41e756 2935 x86_pmu.commit_scheduling = intel_commit_scheduling;
93fcf72c 2936 x86_pmu.stop_scheduling = intel_stop_scheduling;
93fcf72c
MD
2937}
2938
7f2ee91f
IM
2939EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2940EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 2941
4b2c4f1f 2942/* Haswell special events */
7f2ee91f
IM
2943EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2944EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2945EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2946EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2947EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2948EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2949EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2950EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2951EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2952EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2953EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2954EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 2955
f9134f36 2956static struct attribute *hsw_events_attrs[] = {
4b2c4f1f
AK
2957 EVENT_PTR(tx_start),
2958 EVENT_PTR(tx_commit),
2959 EVENT_PTR(tx_abort),
2960 EVENT_PTR(tx_capacity),
2961 EVENT_PTR(tx_conflict),
2962 EVENT_PTR(el_start),
2963 EVENT_PTR(el_commit),
2964 EVENT_PTR(el_abort),
2965 EVENT_PTR(el_capacity),
2966 EVENT_PTR(el_conflict),
2967 EVENT_PTR(cycles_t),
2968 EVENT_PTR(cycles_ct),
f9134f36
AK
2969 EVENT_PTR(mem_ld_hsw),
2970 EVENT_PTR(mem_st_hsw),
2971 NULL
2972};
2973
de0428a7 2974__init int intel_pmu_init(void)
f22f54f4
PZ
2975{
2976 union cpuid10_edx edx;
2977 union cpuid10_eax eax;
ffb871bc 2978 union cpuid10_ebx ebx;
a1eac7ac 2979 struct event_constraint *c;
f22f54f4 2980 unsigned int unused;
338b522c
KL
2981 struct extra_reg *er;
2982 int version, i;
f22f54f4
PZ
2983
2984 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
2985 switch (boot_cpu_data.x86) {
2986 case 0x6:
2987 return p6_pmu_init();
e717bf4e
VW
2988 case 0xb:
2989 return knc_pmu_init();
a072738e
CG
2990 case 0xf:
2991 return p4_pmu_init();
2992 }
f22f54f4 2993 return -ENODEV;
f22f54f4
PZ
2994 }
2995
2996 /*
2997 * Check whether the Architectural PerfMon supports
2998 * Branch Misses Retired hw_event or not.
2999 */
ffb871bc
GN
3000 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3001 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
3002 return -ENODEV;
3003
3004 version = eax.split.version_id;
3005 if (version < 2)
3006 x86_pmu = core_pmu;
3007 else
3008 x86_pmu = intel_pmu;
3009
3010 x86_pmu.version = version;
948b1bb8
RR
3011 x86_pmu.num_counters = eax.split.num_counters;
3012 x86_pmu.cntval_bits = eax.split.bit_width;
3013 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 3014
c1d6f42f
PZ
3015 x86_pmu.events_maskl = ebx.full;
3016 x86_pmu.events_mask_len = eax.split.mask_length;
3017
70ab7003
AK
3018 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3019
f22f54f4
PZ
3020 /*
3021 * Quirk: v2 perfmon does not report fixed-purpose events, so
3022 * assume at least 3 events:
3023 */
3024 if (version > 1)
948b1bb8 3025 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 3026
c9b08884 3027 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
3028 u64 capabilities;
3029
3030 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3031 x86_pmu.intel_cap.capabilities = capabilities;
3032 }
3033
ca037701
PZ
3034 intel_ds_init();
3035
c1d6f42f
PZ
3036 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3037
f22f54f4
PZ
3038 /*
3039 * Install the hw-cache-events table:
3040 */
3041 switch (boot_cpu_data.x86_model) {
0f7c29ce 3042 case 14: /* 65nm Core "Yonah" */
f22f54f4
PZ
3043 pr_cont("Core events, ");
3044 break;
3045
0f7c29ce 3046 case 15: /* 65nm Core2 "Merom" */
c1d6f42f 3047 x86_add_quirk(intel_clovertown_quirk);
0f7c29ce
PZ
3048 case 22: /* 65nm Core2 "Merom-L" */
3049 case 23: /* 45nm Core2 "Penryn" */
3050 case 29: /* 45nm Core2 "Dunnington (MP) */
f22f54f4
PZ
3051 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3052 sizeof(hw_cache_event_ids));
3053
caff2bef
PZ
3054 intel_pmu_lbr_init_core();
3055
f22f54f4 3056 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 3057 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
3058 pr_cont("Core2 events, ");
3059 break;
3060
0f7c29ce
PZ
3061 case 30: /* 45nm Nehalem */
3062 case 26: /* 45nm Nehalem-EP */
3063 case 46: /* 45nm Nehalem-EX */
f22f54f4
PZ
3064 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3065 sizeof(hw_cache_event_ids));
e994d7d2
AK
3066 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3067 sizeof(hw_cache_extra_regs));
f22f54f4 3068
caff2bef
PZ
3069 intel_pmu_lbr_init_nhm();
3070
f22f54f4 3071 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 3072 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 3073 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 3074 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 3075
f20093ee
SE
3076 x86_pmu.cpu_events = nhm_events_attrs;
3077
91fc4cc0 3078 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3079 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3080 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 3081 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3082 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3083 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 3084
c1d6f42f 3085 x86_add_quirk(intel_nehalem_quirk);
ec75a716 3086
11164cd4 3087 pr_cont("Nehalem events, ");
f22f54f4 3088 break;
caff2bef 3089
0f7c29ce
PZ
3090 case 28: /* 45nm Atom "Pineview" */
3091 case 38: /* 45nm Atom "Lincroft" */
3092 case 39: /* 32nm Atom "Penwell" */
3093 case 53: /* 32nm Atom "Cloverview" */
3094 case 54: /* 32nm Atom "Cedarview" */
f22f54f4
PZ
3095 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3096 sizeof(hw_cache_event_ids));
3097
caff2bef
PZ
3098 intel_pmu_lbr_init_atom();
3099
f22f54f4 3100 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 3101 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
3102 pr_cont("Atom events, ");
3103 break;
3104
0f7c29ce 3105 case 55: /* 22nm Atom "Silvermont" */
ef454cae 3106 case 76: /* 14nm Atom "Airmont" */
0f7c29ce 3107 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
1fa64180
YZ
3108 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3109 sizeof(hw_cache_event_ids));
3110 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3111 sizeof(hw_cache_extra_regs));
3112
3113 intel_pmu_lbr_init_atom();
3114
3115 x86_pmu.event_constraints = intel_slm_event_constraints;
3116 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3117 x86_pmu.extra_regs = intel_slm_extra_regs;
9a5e3fb5 3118 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
1fa64180
YZ
3119 pr_cont("Silvermont events, ");
3120 break;
3121
0f7c29ce
PZ
3122 case 37: /* 32nm Westmere */
3123 case 44: /* 32nm Westmere-EP */
3124 case 47: /* 32nm Westmere-EX */
f22f54f4
PZ
3125 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3126 sizeof(hw_cache_event_ids));
e994d7d2
AK
3127 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3128 sizeof(hw_cache_extra_regs));
f22f54f4 3129
caff2bef
PZ
3130 intel_pmu_lbr_init_nhm();
3131
f22f54f4 3132 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 3133 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 3134 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 3135 x86_pmu.extra_regs = intel_westmere_extra_regs;
9a5e3fb5 3136 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
30112039 3137
f20093ee
SE
3138 x86_pmu.cpu_events = nhm_events_attrs;
3139
30112039 3140 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3141 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3142 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 3143 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3144 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3145 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 3146
f22f54f4
PZ
3147 pr_cont("Westmere events, ");
3148 break;
b622d644 3149
0f7c29ce
PZ
3150 case 42: /* 32nm SandyBridge */
3151 case 45: /* 32nm SandyBridge-E/EN/EP */
47a8863d 3152 x86_add_quirk(intel_sandybridge_quirk);
93fcf72c 3153 x86_add_quirk(intel_ht_bug);
b06b3d49
LM
3154 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3155 sizeof(hw_cache_event_ids));
74e6543f
YZ
3156 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3157 sizeof(hw_cache_extra_regs));
b06b3d49 3158
c5cc2cd9 3159 intel_pmu_lbr_init_snb();
b06b3d49
LM
3160
3161 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 3162 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 3163 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3164 if (boot_cpu_data.x86_model == 45)
3165 x86_pmu.extra_regs = intel_snbep_extra_regs;
3166 else
3167 x86_pmu.extra_regs = intel_snb_extra_regs;
93fcf72c
MD
3168
3169
ee89cbc2 3170 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3171 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3172 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
e04d1b23 3173
f20093ee
SE
3174 x86_pmu.cpu_events = snb_events_attrs;
3175
e04d1b23 3176 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
3177 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3178 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3179 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
3180 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3181 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3182
b06b3d49
LM
3183 pr_cont("SandyBridge events, ");
3184 break;
0f7c29ce
PZ
3185
3186 case 58: /* 22nm IvyBridge */
3187 case 62: /* 22nm IvyBridge-EP/EX */
93fcf72c 3188 x86_add_quirk(intel_ht_bug);
20a36e39
SE
3189 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3190 sizeof(hw_cache_event_ids));
1996388e
VW
3191 /* dTLB-load-misses on IVB is different than SNB */
3192 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3193
20a36e39
SE
3194 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3195 sizeof(hw_cache_extra_regs));
3196
3197 intel_pmu_lbr_init_snb();
3198
69943182 3199 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39
SE
3200 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3201 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3202 if (boot_cpu_data.x86_model == 62)
3203 x86_pmu.extra_regs = intel_snbep_extra_regs;
3204 else
3205 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39 3206 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3207 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3208 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
20a36e39 3209
f20093ee
SE
3210 x86_pmu.cpu_events = snb_events_attrs;
3211
20a36e39
SE
3212 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3213 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3214 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3215
3216 pr_cont("IvyBridge events, ");
3217 break;
3218
b06b3d49 3219
d86c8eaf
AK
3220 case 60: /* 22nm Haswell Core */
3221 case 63: /* 22nm Haswell Server */
3222 case 69: /* 22nm Haswell ULT */
3223 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
93fcf72c 3224 x86_add_quirk(intel_ht_bug);
72db5596 3225 x86_pmu.late_ack = true;
0f1b5ca2
AK
3226 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3227 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3a632cb2 3228
e9d7f7cd 3229 intel_pmu_lbr_init_hsw();
3a632cb2
AK
3230
3231 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 3232 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
36bbb2f2 3233 x86_pmu.extra_regs = intel_snbep_extra_regs;
3044318f 3234 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3a632cb2 3235 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3236 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3237 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3a632cb2
AK
3238
3239 x86_pmu.hw_config = hsw_hw_config;
3240 x86_pmu.get_event_constraints = hsw_get_event_constraints;
f9134f36 3241 x86_pmu.cpu_events = hsw_events_attrs;
b7af41a1 3242 x86_pmu.lbr_double_abort = true;
3a632cb2
AK
3243 pr_cont("Haswell events, ");
3244 break;
3245
91f1b705
AK
3246 case 61: /* 14nm Broadwell Core-M */
3247 case 86: /* 14nm Broadwell Xeon D */
4b36f1a4
AK
3248 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3249 case 79: /* 14nm Broadwell Server */
91f1b705
AK
3250 x86_pmu.late_ack = true;
3251 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3252 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3253
3254 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3255 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3256 BDW_L3_MISS|HSW_SNOOP_DRAM;
3257 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3258 HSW_SNOOP_DRAM;
3259 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3260 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3261 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3262 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3263
78d504bc 3264 intel_pmu_lbr_init_hsw();
91f1b705
AK
3265
3266 x86_pmu.event_constraints = intel_bdw_event_constraints;
3267 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3268 x86_pmu.extra_regs = intel_snbep_extra_regs;
3269 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3270 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3271 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3272 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
91f1b705
AK
3273
3274 x86_pmu.hw_config = hsw_hw_config;
3275 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3276 x86_pmu.cpu_events = hsw_events_attrs;
294fe0f5 3277 x86_pmu.limit_period = bdw_limit_period;
91f1b705
AK
3278 pr_cont("Broadwell events, ");
3279 break;
3280
f22f54f4 3281 default:
0af3ac1f
AK
3282 switch (x86_pmu.version) {
3283 case 1:
3284 x86_pmu.event_constraints = intel_v1_event_constraints;
3285 pr_cont("generic architected perfmon v1, ");
3286 break;
3287 default:
3288 /*
3289 * default constraints for v2 and up
3290 */
3291 x86_pmu.event_constraints = intel_gen_event_constraints;
3292 pr_cont("generic architected perfmon, ");
3293 break;
3294 }
f22f54f4 3295 }
ffb871bc 3296
a1eac7ac
RR
3297 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3298 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3299 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3300 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3301 }
3302 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3303
3304 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3305 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3306 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3307 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3308 }
3309
3310 x86_pmu.intel_ctrl |=
3311 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3312
3313 if (x86_pmu.event_constraints) {
3314 /*
3315 * event on fixed counter2 (REF_CYCLES) only works on this
3316 * counter, so do not extend mask to generic counters
3317 */
3318 for_each_event_constraint(c, x86_pmu.event_constraints) {
2c33645d
PI
3319 if (c->cmask == FIXED_EVENT_FLAGS
3320 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3321 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
a1eac7ac 3322 }
2c33645d
PI
3323 c->idxmsk64 &=
3324 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3325 c->weight = hweight64(c->idxmsk64);
a1eac7ac
RR
3326 }
3327 }
3328
338b522c
KL
3329 /*
3330 * Access LBR MSR may cause #GP under certain circumstances.
3331 * E.g. KVM doesn't support LBR MSR
3332 * Check all LBT MSR here.
3333 * Disable LBR access if any LBR MSRs can not be accessed.
3334 */
3335 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3336 x86_pmu.lbr_nr = 0;
3337 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3338 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3339 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3340 x86_pmu.lbr_nr = 0;
3341 }
3342
3343 /*
3344 * Access extra MSR may cause #GP under certain circumstances.
3345 * E.g. KVM doesn't support offcore event
3346 * Check all extra_regs here.
3347 */
3348 if (x86_pmu.extra_regs) {
3349 for (er = x86_pmu.extra_regs; er->msr; er++) {
3350 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3351 /* Disable LBR select mapping */
3352 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3353 x86_pmu.lbr_sel_map = NULL;
3354 }
3355 }
3356
069e0c3c
AK
3357 /* Support full width counters using alternative MSR range */
3358 if (x86_pmu.intel_cap.full_width_write) {
3359 x86_pmu.max_period = x86_pmu.cntval_mask;
3360 x86_pmu.perfctr = MSR_IA32_PMC0;
3361 pr_cont("full-width counters, ");
3362 }
3363
f22f54f4
PZ
3364 return 0;
3365}
b37609c3
SE
3366
3367/*
3368 * HT bug: phase 2 init
3369 * Called once we have valid topology information to check
3370 * whether or not HT is enabled
3371 * If HT is off, then we disable the workaround
3372 */
3373static __init int fixup_ht_bug(void)
3374{
3375 int cpu = smp_processor_id();
3376 int w, c;
3377 /*
3378 * problem not present on this CPU model, nothing to do
3379 */
3380 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3381 return 0;
3382
06931e62 3383 w = cpumask_weight(topology_sibling_cpumask(cpu));
b37609c3
SE
3384 if (w > 1) {
3385 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3386 return 0;
3387 }
3388
3389 watchdog_nmi_disable_all();
3390
3391 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3392
b37609c3 3393 x86_pmu.start_scheduling = NULL;
0c41e756 3394 x86_pmu.commit_scheduling = NULL;
b37609c3
SE
3395 x86_pmu.stop_scheduling = NULL;
3396
3397 watchdog_nmi_enable_all();
3398
3399 get_online_cpus();
3400
3401 for_each_online_cpu(c) {
3402 free_excl_cntrs(c);
3403 }
3404
3405 put_online_cpus();
3406 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3407 return 0;
3408}
3409subsys_initcall(fixup_ht_bug)
This page took 0.406506 seconds and 5 git commands to generate.