Merge remote-tracking branch 'spi/topic/core' into spi-next
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
344babaa 2223 * @rq: runqueue associated with task-switch
1da177e4
LT
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
a9957449 2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2237 __releases(rq->lock)
2238{
1da177e4 2239 struct mm_struct *mm = rq->prev_mm;
55a101f8 2240 long prev_state;
1da177e4
LT
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
c394cc9f 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
c394cc9f 2249 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
55a101f8 2255 prev_state = prev->state;
bf9fae9f 2256 vtime_task_switch(prev);
4866cde0 2257 finish_arch_switch(prev);
a8d757ef 2258 perf_event_task_sched_in(prev, current);
4866cde0 2259 finish_lock_switch(rq, prev);
01f23e16 2260 finish_arch_post_lock_switch();
e8fa1362 2261
e107be36 2262 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2263 if (mm)
2264 mmdrop(mm);
c394cc9f 2265 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
c6fd91f0 2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
9761eea8 2272 */
c6fd91f0 2273 kprobe_flush_task(prev);
1da177e4 2274 put_task_struct(prev);
c6fd91f0 2275 }
99e5ada9
FW
2276
2277 tick_nohz_task_switch(current);
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
70b97a7f
IM
2312 struct rq *rq = this_rq();
2313
4866cde0 2314 finish_task_switch(rq, prev);
da19ab51 2315
3f029d3c
GH
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
70b97a7f 2321
1da177e4 2322 if (current->set_child_tid)
b488893a 2323 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
dd41f596 2330static inline void
70b97a7f 2331context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2332 struct task_struct *next)
1da177e4 2333{
dd41f596 2334 struct mm_struct *mm, *oldmm;
1da177e4 2335
e107be36 2336 prepare_task_switch(rq, prev, next);
fe4b04fa 2337
dd41f596
IM
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
9226d125
ZA
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
224101ed 2345 arch_start_context_switch(prev);
9226d125 2346
31915ab4 2347 if (!mm) {
1da177e4
LT
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
31915ab4 2354 if (!prev->mm) {
1da177e4 2355 prev->active_mm = NULL;
1da177e4
LT
2356 rq->prev_mm = oldmm;
2357 }
3a5f5e48
IM
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
8a25d5de 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2365
91d1aa43 2366 context_tracking_task_switch(prev, next);
1da177e4
LT
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
dd41f596
IM
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
1da177e4
LT
2377}
2378
2379/*
1c3e8264 2380 * nr_running and nr_context_switches:
1da177e4
LT
2381 *
2382 * externally visible scheduler statistics: current number of runnable
1c3e8264 2383 * threads, total number of context switches performed since bootup.
1da177e4
LT
2384 */
2385unsigned long nr_running(void)
2386{
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
f711f609 2393}
1da177e4 2394
2ee507c4
TC
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
1da177e4 2407unsigned long long nr_context_switches(void)
46cb4b7c 2408{
cc94abfc
SR
2409 int i;
2410 unsigned long long sum = 0;
46cb4b7c 2411
0a945022 2412 for_each_possible_cpu(i)
1da177e4 2413 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2414
1da177e4
LT
2415 return sum;
2416}
483b4ee6 2417
1da177e4
LT
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
483b4ee6 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
8c215bd3 2428unsigned long nr_iowait_cpu(int cpu)
69d25870 2429{
8c215bd3 2430 struct rq *this = cpu_rq(cpu);
69d25870
AV
2431 return atomic_read(&this->nr_iowait);
2432}
46cb4b7c 2433
372ba8cb
MG
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
dd41f596 2441#ifdef CONFIG_SMP
8a0be9ef 2442
46cb4b7c 2443/*
38022906
PZ
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2446 */
38022906 2447void sched_exec(void)
46cb4b7c 2448{
38022906 2449 struct task_struct *p = current;
1da177e4 2450 unsigned long flags;
0017d735 2451 int dest_cpu;
46cb4b7c 2452
8f42ced9 2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
38022906 2457
8f42ced9 2458 if (likely(cpu_active(dest_cpu))) {
969c7921 2459 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2460
8f42ced9
PZ
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2463 return;
2464 }
0017d735 2465unlock:
8f42ced9 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2467}
dd41f596 2468
1da177e4
LT
2469#endif
2470
1da177e4 2471DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2476
c5f8d995
HS
2477/*
2478 * Return accounted runtime for the task.
2479 * In case the task is currently running, return the runtime plus current's
2480 * pending runtime that have not been accounted yet.
2481 */
2482unsigned long long task_sched_runtime(struct task_struct *p)
2483{
2484 unsigned long flags;
2485 struct rq *rq;
6e998916 2486 u64 ns;
c5f8d995 2487
911b2898
PZ
2488#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 /*
2490 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 * So we have a optimization chance when the task's delta_exec is 0.
2492 * Reading ->on_cpu is racy, but this is ok.
2493 *
2494 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 * If we race with it entering cpu, unaccounted time is 0. This is
2496 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 * been accounted, so we're correct here as well.
911b2898 2499 */
da0c1e65 2500 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2501 return p->se.sum_exec_runtime;
2502#endif
2503
c5f8d995 2504 rq = task_rq_lock(p, &flags);
6e998916
SG
2505 /*
2506 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2507 * project cycles that may never be accounted to this
2508 * thread, breaking clock_gettime().
2509 */
2510 if (task_current(rq, p) && task_on_rq_queued(p)) {
2511 update_rq_clock(rq);
2512 p->sched_class->update_curr(rq);
2513 }
2514 ns = p->se.sum_exec_runtime;
0122ec5b 2515 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2516
2517 return ns;
2518}
48f24c4d 2519
7835b98b
CL
2520/*
2521 * This function gets called by the timer code, with HZ frequency.
2522 * We call it with interrupts disabled.
7835b98b
CL
2523 */
2524void scheduler_tick(void)
2525{
7835b98b
CL
2526 int cpu = smp_processor_id();
2527 struct rq *rq = cpu_rq(cpu);
dd41f596 2528 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2529
2530 sched_clock_tick();
dd41f596 2531
05fa785c 2532 raw_spin_lock(&rq->lock);
3e51f33f 2533 update_rq_clock(rq);
fa85ae24 2534 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2535 update_cpu_load_active(rq);
05fa785c 2536 raw_spin_unlock(&rq->lock);
7835b98b 2537
e9d2b064 2538 perf_event_task_tick();
e220d2dc 2539
e418e1c2 2540#ifdef CONFIG_SMP
6eb57e0d 2541 rq->idle_balance = idle_cpu(cpu);
7caff66f 2542 trigger_load_balance(rq);
e418e1c2 2543#endif
265f22a9 2544 rq_last_tick_reset(rq);
1da177e4
LT
2545}
2546
265f22a9
FW
2547#ifdef CONFIG_NO_HZ_FULL
2548/**
2549 * scheduler_tick_max_deferment
2550 *
2551 * Keep at least one tick per second when a single
2552 * active task is running because the scheduler doesn't
2553 * yet completely support full dynticks environment.
2554 *
2555 * This makes sure that uptime, CFS vruntime, load
2556 * balancing, etc... continue to move forward, even
2557 * with a very low granularity.
e69f6186
YB
2558 *
2559 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2560 */
2561u64 scheduler_tick_max_deferment(void)
2562{
2563 struct rq *rq = this_rq();
2564 unsigned long next, now = ACCESS_ONCE(jiffies);
2565
2566 next = rq->last_sched_tick + HZ;
2567
2568 if (time_before_eq(next, now))
2569 return 0;
2570
8fe8ff09 2571 return jiffies_to_nsecs(next - now);
1da177e4 2572}
265f22a9 2573#endif
1da177e4 2574
132380a0 2575notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2576{
2577 if (in_lock_functions(addr)) {
2578 addr = CALLER_ADDR2;
2579 if (in_lock_functions(addr))
2580 addr = CALLER_ADDR3;
2581 }
2582 return addr;
2583}
1da177e4 2584
7e49fcce
SR
2585#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2586 defined(CONFIG_PREEMPT_TRACER))
2587
edafe3a5 2588void preempt_count_add(int val)
1da177e4 2589{
6cd8a4bb 2590#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2591 /*
2592 * Underflow?
2593 */
9a11b49a
IM
2594 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2595 return;
6cd8a4bb 2596#endif
bdb43806 2597 __preempt_count_add(val);
6cd8a4bb 2598#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2599 /*
2600 * Spinlock count overflowing soon?
2601 */
33859f7f
MOS
2602 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2603 PREEMPT_MASK - 10);
6cd8a4bb 2604#endif
8f47b187
TG
2605 if (preempt_count() == val) {
2606 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2607#ifdef CONFIG_DEBUG_PREEMPT
2608 current->preempt_disable_ip = ip;
2609#endif
2610 trace_preempt_off(CALLER_ADDR0, ip);
2611 }
1da177e4 2612}
bdb43806 2613EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2614NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2615
edafe3a5 2616void preempt_count_sub(int val)
1da177e4 2617{
6cd8a4bb 2618#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2619 /*
2620 * Underflow?
2621 */
01e3eb82 2622 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2623 return;
1da177e4
LT
2624 /*
2625 * Is the spinlock portion underflowing?
2626 */
9a11b49a
IM
2627 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2628 !(preempt_count() & PREEMPT_MASK)))
2629 return;
6cd8a4bb 2630#endif
9a11b49a 2631
6cd8a4bb
SR
2632 if (preempt_count() == val)
2633 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2634 __preempt_count_sub(val);
1da177e4 2635}
bdb43806 2636EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2637NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2638
2639#endif
2640
2641/*
dd41f596 2642 * Print scheduling while atomic bug:
1da177e4 2643 */
dd41f596 2644static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2645{
664dfa65
DJ
2646 if (oops_in_progress)
2647 return;
2648
3df0fc5b
PZ
2649 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2650 prev->comm, prev->pid, preempt_count());
838225b4 2651
dd41f596 2652 debug_show_held_locks(prev);
e21f5b15 2653 print_modules();
dd41f596
IM
2654 if (irqs_disabled())
2655 print_irqtrace_events(prev);
8f47b187
TG
2656#ifdef CONFIG_DEBUG_PREEMPT
2657 if (in_atomic_preempt_off()) {
2658 pr_err("Preemption disabled at:");
2659 print_ip_sym(current->preempt_disable_ip);
2660 pr_cont("\n");
2661 }
2662#endif
6135fc1e 2663 dump_stack();
373d4d09 2664 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2665}
1da177e4 2666
dd41f596
IM
2667/*
2668 * Various schedule()-time debugging checks and statistics:
2669 */
2670static inline void schedule_debug(struct task_struct *prev)
2671{
0d9e2632
AT
2672#ifdef CONFIG_SCHED_STACK_END_CHECK
2673 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2674#endif
1da177e4 2675 /*
41a2d6cf 2676 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2677 * schedule() atomically, we ignore that path. Otherwise whine
2678 * if we are scheduling when we should not.
1da177e4 2679 */
192301e7 2680 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2681 __schedule_bug(prev);
b3fbab05 2682 rcu_sleep_check();
dd41f596 2683
1da177e4
LT
2684 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2685
2d72376b 2686 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2687}
2688
2689/*
2690 * Pick up the highest-prio task:
2691 */
2692static inline struct task_struct *
606dba2e 2693pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2694{
37e117c0 2695 const struct sched_class *class = &fair_sched_class;
dd41f596 2696 struct task_struct *p;
1da177e4
LT
2697
2698 /*
dd41f596
IM
2699 * Optimization: we know that if all tasks are in
2700 * the fair class we can call that function directly:
1da177e4 2701 */
37e117c0 2702 if (likely(prev->sched_class == class &&
38033c37 2703 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2704 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2705 if (unlikely(p == RETRY_TASK))
2706 goto again;
2707
2708 /* assumes fair_sched_class->next == idle_sched_class */
2709 if (unlikely(!p))
2710 p = idle_sched_class.pick_next_task(rq, prev);
2711
2712 return p;
1da177e4
LT
2713 }
2714
37e117c0 2715again:
34f971f6 2716 for_each_class(class) {
606dba2e 2717 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2718 if (p) {
2719 if (unlikely(p == RETRY_TASK))
2720 goto again;
dd41f596 2721 return p;
37e117c0 2722 }
dd41f596 2723 }
34f971f6
PZ
2724
2725 BUG(); /* the idle class will always have a runnable task */
dd41f596 2726}
1da177e4 2727
dd41f596 2728/*
c259e01a 2729 * __schedule() is the main scheduler function.
edde96ea
PE
2730 *
2731 * The main means of driving the scheduler and thus entering this function are:
2732 *
2733 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2734 *
2735 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2736 * paths. For example, see arch/x86/entry_64.S.
2737 *
2738 * To drive preemption between tasks, the scheduler sets the flag in timer
2739 * interrupt handler scheduler_tick().
2740 *
2741 * 3. Wakeups don't really cause entry into schedule(). They add a
2742 * task to the run-queue and that's it.
2743 *
2744 * Now, if the new task added to the run-queue preempts the current
2745 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2746 * called on the nearest possible occasion:
2747 *
2748 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2749 *
2750 * - in syscall or exception context, at the next outmost
2751 * preempt_enable(). (this might be as soon as the wake_up()'s
2752 * spin_unlock()!)
2753 *
2754 * - in IRQ context, return from interrupt-handler to
2755 * preemptible context
2756 *
2757 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2758 * then at the next:
2759 *
2760 * - cond_resched() call
2761 * - explicit schedule() call
2762 * - return from syscall or exception to user-space
2763 * - return from interrupt-handler to user-space
dd41f596 2764 */
c259e01a 2765static void __sched __schedule(void)
dd41f596
IM
2766{
2767 struct task_struct *prev, *next;
67ca7bde 2768 unsigned long *switch_count;
dd41f596 2769 struct rq *rq;
31656519 2770 int cpu;
dd41f596 2771
ff743345
PZ
2772need_resched:
2773 preempt_disable();
dd41f596
IM
2774 cpu = smp_processor_id();
2775 rq = cpu_rq(cpu);
25502a6c 2776 rcu_note_context_switch(cpu);
dd41f596 2777 prev = rq->curr;
dd41f596 2778
dd41f596 2779 schedule_debug(prev);
1da177e4 2780
31656519 2781 if (sched_feat(HRTICK))
f333fdc9 2782 hrtick_clear(rq);
8f4d37ec 2783
e0acd0a6
ON
2784 /*
2785 * Make sure that signal_pending_state()->signal_pending() below
2786 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2787 * done by the caller to avoid the race with signal_wake_up().
2788 */
2789 smp_mb__before_spinlock();
05fa785c 2790 raw_spin_lock_irq(&rq->lock);
1da177e4 2791
246d86b5 2792 switch_count = &prev->nivcsw;
1da177e4 2793 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2794 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2795 prev->state = TASK_RUNNING;
21aa9af0 2796 } else {
2acca55e
PZ
2797 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2798 prev->on_rq = 0;
2799
21aa9af0 2800 /*
2acca55e
PZ
2801 * If a worker went to sleep, notify and ask workqueue
2802 * whether it wants to wake up a task to maintain
2803 * concurrency.
21aa9af0
TH
2804 */
2805 if (prev->flags & PF_WQ_WORKER) {
2806 struct task_struct *to_wakeup;
2807
2808 to_wakeup = wq_worker_sleeping(prev, cpu);
2809 if (to_wakeup)
2810 try_to_wake_up_local(to_wakeup);
2811 }
21aa9af0 2812 }
dd41f596 2813 switch_count = &prev->nvcsw;
1da177e4
LT
2814 }
2815
da0c1e65 2816 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2817 update_rq_clock(rq);
2818
2819 next = pick_next_task(rq, prev);
f26f9aff 2820 clear_tsk_need_resched(prev);
f27dde8d 2821 clear_preempt_need_resched();
f26f9aff 2822 rq->skip_clock_update = 0;
1da177e4 2823
1da177e4 2824 if (likely(prev != next)) {
1da177e4
LT
2825 rq->nr_switches++;
2826 rq->curr = next;
2827 ++*switch_count;
2828
dd41f596 2829 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2830 /*
246d86b5
ON
2831 * The context switch have flipped the stack from under us
2832 * and restored the local variables which were saved when
2833 * this task called schedule() in the past. prev == current
2834 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2835 */
2836 cpu = smp_processor_id();
2837 rq = cpu_rq(cpu);
1da177e4 2838 } else
05fa785c 2839 raw_spin_unlock_irq(&rq->lock);
1da177e4 2840
3f029d3c 2841 post_schedule(rq);
1da177e4 2842
ba74c144 2843 sched_preempt_enable_no_resched();
ff743345 2844 if (need_resched())
1da177e4
LT
2845 goto need_resched;
2846}
c259e01a 2847
9c40cef2
TG
2848static inline void sched_submit_work(struct task_struct *tsk)
2849{
3c7d5184 2850 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2851 return;
2852 /*
2853 * If we are going to sleep and we have plugged IO queued,
2854 * make sure to submit it to avoid deadlocks.
2855 */
2856 if (blk_needs_flush_plug(tsk))
2857 blk_schedule_flush_plug(tsk);
2858}
2859
722a9f92 2860asmlinkage __visible void __sched schedule(void)
c259e01a 2861{
9c40cef2
TG
2862 struct task_struct *tsk = current;
2863
2864 sched_submit_work(tsk);
c259e01a
TG
2865 __schedule();
2866}
1da177e4
LT
2867EXPORT_SYMBOL(schedule);
2868
91d1aa43 2869#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2870asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2871{
2872 /*
2873 * If we come here after a random call to set_need_resched(),
2874 * or we have been woken up remotely but the IPI has not yet arrived,
2875 * we haven't yet exited the RCU idle mode. Do it here manually until
2876 * we find a better solution.
7cc78f8f
AL
2877 *
2878 * NB: There are buggy callers of this function. Ideally we
2879 * should warn if prev_state != IN_USER, but that will trigger
2880 * too frequently to make sense yet.
20ab65e3 2881 */
7cc78f8f 2882 enum ctx_state prev_state = exception_enter();
20ab65e3 2883 schedule();
7cc78f8f 2884 exception_exit(prev_state);
20ab65e3
FW
2885}
2886#endif
2887
c5491ea7
TG
2888/**
2889 * schedule_preempt_disabled - called with preemption disabled
2890 *
2891 * Returns with preemption disabled. Note: preempt_count must be 1
2892 */
2893void __sched schedule_preempt_disabled(void)
2894{
ba74c144 2895 sched_preempt_enable_no_resched();
c5491ea7
TG
2896 schedule();
2897 preempt_disable();
2898}
2899
1da177e4
LT
2900#ifdef CONFIG_PREEMPT
2901/*
2ed6e34f 2902 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2903 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2904 * occur there and call schedule directly.
2905 */
722a9f92 2906asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2907{
1da177e4
LT
2908 /*
2909 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2910 * we do not want to preempt the current task. Just return..
1da177e4 2911 */
fbb00b56 2912 if (likely(!preemptible()))
1da177e4
LT
2913 return;
2914
3a5c359a 2915 do {
bdb43806 2916 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2917 __schedule();
bdb43806 2918 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2919
3a5c359a
AK
2920 /*
2921 * Check again in case we missed a preemption opportunity
2922 * between schedule and now.
2923 */
2924 barrier();
5ed0cec0 2925 } while (need_resched());
1da177e4 2926}
376e2424 2927NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2928EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2929
2930#ifdef CONFIG_CONTEXT_TRACKING
2931/**
2932 * preempt_schedule_context - preempt_schedule called by tracing
2933 *
2934 * The tracing infrastructure uses preempt_enable_notrace to prevent
2935 * recursion and tracing preempt enabling caused by the tracing
2936 * infrastructure itself. But as tracing can happen in areas coming
2937 * from userspace or just about to enter userspace, a preempt enable
2938 * can occur before user_exit() is called. This will cause the scheduler
2939 * to be called when the system is still in usermode.
2940 *
2941 * To prevent this, the preempt_enable_notrace will use this function
2942 * instead of preempt_schedule() to exit user context if needed before
2943 * calling the scheduler.
2944 */
2945asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2946{
2947 enum ctx_state prev_ctx;
2948
2949 if (likely(!preemptible()))
2950 return;
2951
2952 do {
2953 __preempt_count_add(PREEMPT_ACTIVE);
2954 /*
2955 * Needs preempt disabled in case user_exit() is traced
2956 * and the tracer calls preempt_enable_notrace() causing
2957 * an infinite recursion.
2958 */
2959 prev_ctx = exception_enter();
2960 __schedule();
2961 exception_exit(prev_ctx);
2962
2963 __preempt_count_sub(PREEMPT_ACTIVE);
2964 barrier();
2965 } while (need_resched());
2966}
2967EXPORT_SYMBOL_GPL(preempt_schedule_context);
2968#endif /* CONFIG_CONTEXT_TRACKING */
2969
32e475d7 2970#endif /* CONFIG_PREEMPT */
1da177e4
LT
2971
2972/*
2ed6e34f 2973 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2974 * off of irq context.
2975 * Note, that this is called and return with irqs disabled. This will
2976 * protect us against recursive calling from irq.
2977 */
722a9f92 2978asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2979{
b22366cd 2980 enum ctx_state prev_state;
6478d880 2981
2ed6e34f 2982 /* Catch callers which need to be fixed */
f27dde8d 2983 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2984
b22366cd
FW
2985 prev_state = exception_enter();
2986
3a5c359a 2987 do {
bdb43806 2988 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2989 local_irq_enable();
c259e01a 2990 __schedule();
3a5c359a 2991 local_irq_disable();
bdb43806 2992 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2993
3a5c359a
AK
2994 /*
2995 * Check again in case we missed a preemption opportunity
2996 * between schedule and now.
2997 */
2998 barrier();
5ed0cec0 2999 } while (need_resched());
b22366cd
FW
3000
3001 exception_exit(prev_state);
1da177e4
LT
3002}
3003
63859d4f 3004int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3005 void *key)
1da177e4 3006{
63859d4f 3007 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3008}
1da177e4
LT
3009EXPORT_SYMBOL(default_wake_function);
3010
b29739f9
IM
3011#ifdef CONFIG_RT_MUTEXES
3012
3013/*
3014 * rt_mutex_setprio - set the current priority of a task
3015 * @p: task
3016 * @prio: prio value (kernel-internal form)
3017 *
3018 * This function changes the 'effective' priority of a task. It does
3019 * not touch ->normal_prio like __setscheduler().
3020 *
c365c292
TG
3021 * Used by the rt_mutex code to implement priority inheritance
3022 * logic. Call site only calls if the priority of the task changed.
b29739f9 3023 */
36c8b586 3024void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3025{
da0c1e65 3026 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3027 struct rq *rq;
83ab0aa0 3028 const struct sched_class *prev_class;
b29739f9 3029
aab03e05 3030 BUG_ON(prio > MAX_PRIO);
b29739f9 3031
0122ec5b 3032 rq = __task_rq_lock(p);
b29739f9 3033
1c4dd99b
TG
3034 /*
3035 * Idle task boosting is a nono in general. There is one
3036 * exception, when PREEMPT_RT and NOHZ is active:
3037 *
3038 * The idle task calls get_next_timer_interrupt() and holds
3039 * the timer wheel base->lock on the CPU and another CPU wants
3040 * to access the timer (probably to cancel it). We can safely
3041 * ignore the boosting request, as the idle CPU runs this code
3042 * with interrupts disabled and will complete the lock
3043 * protected section without being interrupted. So there is no
3044 * real need to boost.
3045 */
3046 if (unlikely(p == rq->idle)) {
3047 WARN_ON(p != rq->curr);
3048 WARN_ON(p->pi_blocked_on);
3049 goto out_unlock;
3050 }
3051
a8027073 3052 trace_sched_pi_setprio(p, prio);
d5f9f942 3053 oldprio = p->prio;
83ab0aa0 3054 prev_class = p->sched_class;
da0c1e65 3055 queued = task_on_rq_queued(p);
051a1d1a 3056 running = task_current(rq, p);
da0c1e65 3057 if (queued)
69be72c1 3058 dequeue_task(rq, p, 0);
0e1f3483 3059 if (running)
f3cd1c4e 3060 put_prev_task(rq, p);
dd41f596 3061
2d3d891d
DF
3062 /*
3063 * Boosting condition are:
3064 * 1. -rt task is running and holds mutex A
3065 * --> -dl task blocks on mutex A
3066 *
3067 * 2. -dl task is running and holds mutex A
3068 * --> -dl task blocks on mutex A and could preempt the
3069 * running task
3070 */
3071 if (dl_prio(prio)) {
466af29b
ON
3072 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3073 if (!dl_prio(p->normal_prio) ||
3074 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3075 p->dl.dl_boosted = 1;
3076 p->dl.dl_throttled = 0;
3077 enqueue_flag = ENQUEUE_REPLENISH;
3078 } else
3079 p->dl.dl_boosted = 0;
aab03e05 3080 p->sched_class = &dl_sched_class;
2d3d891d
DF
3081 } else if (rt_prio(prio)) {
3082 if (dl_prio(oldprio))
3083 p->dl.dl_boosted = 0;
3084 if (oldprio < prio)
3085 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3086 p->sched_class = &rt_sched_class;
2d3d891d
DF
3087 } else {
3088 if (dl_prio(oldprio))
3089 p->dl.dl_boosted = 0;
dd41f596 3090 p->sched_class = &fair_sched_class;
2d3d891d 3091 }
dd41f596 3092
b29739f9
IM
3093 p->prio = prio;
3094
0e1f3483
HS
3095 if (running)
3096 p->sched_class->set_curr_task(rq);
da0c1e65 3097 if (queued)
2d3d891d 3098 enqueue_task(rq, p, enqueue_flag);
cb469845 3099
da7a735e 3100 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3101out_unlock:
0122ec5b 3102 __task_rq_unlock(rq);
b29739f9 3103}
b29739f9 3104#endif
d50dde5a 3105
36c8b586 3106void set_user_nice(struct task_struct *p, long nice)
1da177e4 3107{
da0c1e65 3108 int old_prio, delta, queued;
1da177e4 3109 unsigned long flags;
70b97a7f 3110 struct rq *rq;
1da177e4 3111
75e45d51 3112 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3113 return;
3114 /*
3115 * We have to be careful, if called from sys_setpriority(),
3116 * the task might be in the middle of scheduling on another CPU.
3117 */
3118 rq = task_rq_lock(p, &flags);
3119 /*
3120 * The RT priorities are set via sched_setscheduler(), but we still
3121 * allow the 'normal' nice value to be set - but as expected
3122 * it wont have any effect on scheduling until the task is
aab03e05 3123 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3124 */
aab03e05 3125 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3126 p->static_prio = NICE_TO_PRIO(nice);
3127 goto out_unlock;
3128 }
da0c1e65
KT
3129 queued = task_on_rq_queued(p);
3130 if (queued)
69be72c1 3131 dequeue_task(rq, p, 0);
1da177e4 3132
1da177e4 3133 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3134 set_load_weight(p);
b29739f9
IM
3135 old_prio = p->prio;
3136 p->prio = effective_prio(p);
3137 delta = p->prio - old_prio;
1da177e4 3138
da0c1e65 3139 if (queued) {
371fd7e7 3140 enqueue_task(rq, p, 0);
1da177e4 3141 /*
d5f9f942
AM
3142 * If the task increased its priority or is running and
3143 * lowered its priority, then reschedule its CPU:
1da177e4 3144 */
d5f9f942 3145 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3146 resched_curr(rq);
1da177e4
LT
3147 }
3148out_unlock:
0122ec5b 3149 task_rq_unlock(rq, p, &flags);
1da177e4 3150}
1da177e4
LT
3151EXPORT_SYMBOL(set_user_nice);
3152
e43379f1
MM
3153/*
3154 * can_nice - check if a task can reduce its nice value
3155 * @p: task
3156 * @nice: nice value
3157 */
36c8b586 3158int can_nice(const struct task_struct *p, const int nice)
e43379f1 3159{
024f4747 3160 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3161 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3162
78d7d407 3163 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3164 capable(CAP_SYS_NICE));
3165}
3166
1da177e4
LT
3167#ifdef __ARCH_WANT_SYS_NICE
3168
3169/*
3170 * sys_nice - change the priority of the current process.
3171 * @increment: priority increment
3172 *
3173 * sys_setpriority is a more generic, but much slower function that
3174 * does similar things.
3175 */
5add95d4 3176SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3177{
48f24c4d 3178 long nice, retval;
1da177e4
LT
3179
3180 /*
3181 * Setpriority might change our priority at the same moment.
3182 * We don't have to worry. Conceptually one call occurs first
3183 * and we have a single winner.
3184 */
a9467fa3 3185 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3186 nice = task_nice(current) + increment;
1da177e4 3187
a9467fa3 3188 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3189 if (increment < 0 && !can_nice(current, nice))
3190 return -EPERM;
3191
1da177e4
LT
3192 retval = security_task_setnice(current, nice);
3193 if (retval)
3194 return retval;
3195
3196 set_user_nice(current, nice);
3197 return 0;
3198}
3199
3200#endif
3201
3202/**
3203 * task_prio - return the priority value of a given task.
3204 * @p: the task in question.
3205 *
e69f6186 3206 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3207 * RT tasks are offset by -200. Normal tasks are centered
3208 * around 0, value goes from -16 to +15.
3209 */
36c8b586 3210int task_prio(const struct task_struct *p)
1da177e4
LT
3211{
3212 return p->prio - MAX_RT_PRIO;
3213}
3214
1da177e4
LT
3215/**
3216 * idle_cpu - is a given cpu idle currently?
3217 * @cpu: the processor in question.
e69f6186
YB
3218 *
3219 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3220 */
3221int idle_cpu(int cpu)
3222{
908a3283
TG
3223 struct rq *rq = cpu_rq(cpu);
3224
3225 if (rq->curr != rq->idle)
3226 return 0;
3227
3228 if (rq->nr_running)
3229 return 0;
3230
3231#ifdef CONFIG_SMP
3232 if (!llist_empty(&rq->wake_list))
3233 return 0;
3234#endif
3235
3236 return 1;
1da177e4
LT
3237}
3238
1da177e4
LT
3239/**
3240 * idle_task - return the idle task for a given cpu.
3241 * @cpu: the processor in question.
e69f6186
YB
3242 *
3243 * Return: The idle task for the cpu @cpu.
1da177e4 3244 */
36c8b586 3245struct task_struct *idle_task(int cpu)
1da177e4
LT
3246{
3247 return cpu_rq(cpu)->idle;
3248}
3249
3250/**
3251 * find_process_by_pid - find a process with a matching PID value.
3252 * @pid: the pid in question.
e69f6186
YB
3253 *
3254 * The task of @pid, if found. %NULL otherwise.
1da177e4 3255 */
a9957449 3256static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3257{
228ebcbe 3258 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3259}
3260
aab03e05
DF
3261/*
3262 * This function initializes the sched_dl_entity of a newly becoming
3263 * SCHED_DEADLINE task.
3264 *
3265 * Only the static values are considered here, the actual runtime and the
3266 * absolute deadline will be properly calculated when the task is enqueued
3267 * for the first time with its new policy.
3268 */
3269static void
3270__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3271{
3272 struct sched_dl_entity *dl_se = &p->dl;
3273
3274 init_dl_task_timer(dl_se);
3275 dl_se->dl_runtime = attr->sched_runtime;
3276 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3277 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3278 dl_se->flags = attr->sched_flags;
332ac17e 3279 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3280 dl_se->dl_throttled = 0;
3281 dl_se->dl_new = 1;
5bfd126e 3282 dl_se->dl_yielded = 0;
aab03e05
DF
3283}
3284
c13db6b1
SR
3285/*
3286 * sched_setparam() passes in -1 for its policy, to let the functions
3287 * it calls know not to change it.
3288 */
3289#define SETPARAM_POLICY -1
3290
c365c292
TG
3291static void __setscheduler_params(struct task_struct *p,
3292 const struct sched_attr *attr)
1da177e4 3293{
d50dde5a
DF
3294 int policy = attr->sched_policy;
3295
c13db6b1 3296 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3297 policy = p->policy;
3298
1da177e4 3299 p->policy = policy;
d50dde5a 3300
aab03e05
DF
3301 if (dl_policy(policy))
3302 __setparam_dl(p, attr);
39fd8fd2 3303 else if (fair_policy(policy))
d50dde5a
DF
3304 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3305
39fd8fd2
PZ
3306 /*
3307 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3308 * !rt_policy. Always setting this ensures that things like
3309 * getparam()/getattr() don't report silly values for !rt tasks.
3310 */
3311 p->rt_priority = attr->sched_priority;
383afd09 3312 p->normal_prio = normal_prio(p);
c365c292
TG
3313 set_load_weight(p);
3314}
39fd8fd2 3315
c365c292
TG
3316/* Actually do priority change: must hold pi & rq lock. */
3317static void __setscheduler(struct rq *rq, struct task_struct *p,
3318 const struct sched_attr *attr)
3319{
3320 __setscheduler_params(p, attr);
d50dde5a 3321
383afd09
SR
3322 /*
3323 * If we get here, there was no pi waiters boosting the
3324 * task. It is safe to use the normal prio.
3325 */
3326 p->prio = normal_prio(p);
3327
aab03e05
DF
3328 if (dl_prio(p->prio))
3329 p->sched_class = &dl_sched_class;
3330 else if (rt_prio(p->prio))
ffd44db5
PZ
3331 p->sched_class = &rt_sched_class;
3332 else
3333 p->sched_class = &fair_sched_class;
1da177e4 3334}
aab03e05
DF
3335
3336static void
3337__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3338{
3339 struct sched_dl_entity *dl_se = &p->dl;
3340
3341 attr->sched_priority = p->rt_priority;
3342 attr->sched_runtime = dl_se->dl_runtime;
3343 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3344 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3345 attr->sched_flags = dl_se->flags;
3346}
3347
3348/*
3349 * This function validates the new parameters of a -deadline task.
3350 * We ask for the deadline not being zero, and greater or equal
755378a4 3351 * than the runtime, as well as the period of being zero or
332ac17e 3352 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3353 * user parameters are above the internal resolution of 1us (we
3354 * check sched_runtime only since it is always the smaller one) and
3355 * below 2^63 ns (we have to check both sched_deadline and
3356 * sched_period, as the latter can be zero).
aab03e05
DF
3357 */
3358static bool
3359__checkparam_dl(const struct sched_attr *attr)
3360{
b0827819
JL
3361 /* deadline != 0 */
3362 if (attr->sched_deadline == 0)
3363 return false;
3364
3365 /*
3366 * Since we truncate DL_SCALE bits, make sure we're at least
3367 * that big.
3368 */
3369 if (attr->sched_runtime < (1ULL << DL_SCALE))
3370 return false;
3371
3372 /*
3373 * Since we use the MSB for wrap-around and sign issues, make
3374 * sure it's not set (mind that period can be equal to zero).
3375 */
3376 if (attr->sched_deadline & (1ULL << 63) ||
3377 attr->sched_period & (1ULL << 63))
3378 return false;
3379
3380 /* runtime <= deadline <= period (if period != 0) */
3381 if ((attr->sched_period != 0 &&
3382 attr->sched_period < attr->sched_deadline) ||
3383 attr->sched_deadline < attr->sched_runtime)
3384 return false;
3385
3386 return true;
aab03e05
DF
3387}
3388
c69e8d9c
DH
3389/*
3390 * check the target process has a UID that matches the current process's
3391 */
3392static bool check_same_owner(struct task_struct *p)
3393{
3394 const struct cred *cred = current_cred(), *pcred;
3395 bool match;
3396
3397 rcu_read_lock();
3398 pcred = __task_cred(p);
9c806aa0
EB
3399 match = (uid_eq(cred->euid, pcred->euid) ||
3400 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3401 rcu_read_unlock();
3402 return match;
3403}
3404
d50dde5a
DF
3405static int __sched_setscheduler(struct task_struct *p,
3406 const struct sched_attr *attr,
3407 bool user)
1da177e4 3408{
383afd09
SR
3409 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3410 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3411 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3412 int policy = attr->sched_policy;
1da177e4 3413 unsigned long flags;
83ab0aa0 3414 const struct sched_class *prev_class;
70b97a7f 3415 struct rq *rq;
ca94c442 3416 int reset_on_fork;
1da177e4 3417
66e5393a
SR
3418 /* may grab non-irq protected spin_locks */
3419 BUG_ON(in_interrupt());
1da177e4
LT
3420recheck:
3421 /* double check policy once rq lock held */
ca94c442
LP
3422 if (policy < 0) {
3423 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3424 policy = oldpolicy = p->policy;
ca94c442 3425 } else {
7479f3c9 3426 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3427
aab03e05
DF
3428 if (policy != SCHED_DEADLINE &&
3429 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3430 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3431 policy != SCHED_IDLE)
3432 return -EINVAL;
3433 }
3434
7479f3c9
PZ
3435 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3436 return -EINVAL;
3437
1da177e4
LT
3438 /*
3439 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3440 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3441 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3442 */
0bb040a4 3443 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3444 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3445 return -EINVAL;
aab03e05
DF
3446 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3447 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3448 return -EINVAL;
3449
37e4ab3f
OC
3450 /*
3451 * Allow unprivileged RT tasks to decrease priority:
3452 */
961ccddd 3453 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3454 if (fair_policy(policy)) {
d0ea0268 3455 if (attr->sched_nice < task_nice(p) &&
eaad4513 3456 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3457 return -EPERM;
3458 }
3459
e05606d3 3460 if (rt_policy(policy)) {
a44702e8
ON
3461 unsigned long rlim_rtprio =
3462 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3463
3464 /* can't set/change the rt policy */
3465 if (policy != p->policy && !rlim_rtprio)
3466 return -EPERM;
3467
3468 /* can't increase priority */
d50dde5a
DF
3469 if (attr->sched_priority > p->rt_priority &&
3470 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3471 return -EPERM;
3472 }
c02aa73b 3473
d44753b8
JL
3474 /*
3475 * Can't set/change SCHED_DEADLINE policy at all for now
3476 * (safest behavior); in the future we would like to allow
3477 * unprivileged DL tasks to increase their relative deadline
3478 * or reduce their runtime (both ways reducing utilization)
3479 */
3480 if (dl_policy(policy))
3481 return -EPERM;
3482
dd41f596 3483 /*
c02aa73b
DH
3484 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3485 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3486 */
c02aa73b 3487 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3488 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3489 return -EPERM;
3490 }
5fe1d75f 3491
37e4ab3f 3492 /* can't change other user's priorities */
c69e8d9c 3493 if (!check_same_owner(p))
37e4ab3f 3494 return -EPERM;
ca94c442
LP
3495
3496 /* Normal users shall not reset the sched_reset_on_fork flag */
3497 if (p->sched_reset_on_fork && !reset_on_fork)
3498 return -EPERM;
37e4ab3f 3499 }
1da177e4 3500
725aad24 3501 if (user) {
b0ae1981 3502 retval = security_task_setscheduler(p);
725aad24
JF
3503 if (retval)
3504 return retval;
3505 }
3506
b29739f9
IM
3507 /*
3508 * make sure no PI-waiters arrive (or leave) while we are
3509 * changing the priority of the task:
0122ec5b 3510 *
25985edc 3511 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3512 * runqueue lock must be held.
3513 */
0122ec5b 3514 rq = task_rq_lock(p, &flags);
dc61b1d6 3515
34f971f6
PZ
3516 /*
3517 * Changing the policy of the stop threads its a very bad idea
3518 */
3519 if (p == rq->stop) {
0122ec5b 3520 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3521 return -EINVAL;
3522 }
3523
a51e9198 3524 /*
d6b1e911
TG
3525 * If not changing anything there's no need to proceed further,
3526 * but store a possible modification of reset_on_fork.
a51e9198 3527 */
d50dde5a 3528 if (unlikely(policy == p->policy)) {
d0ea0268 3529 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3530 goto change;
3531 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3532 goto change;
aab03e05
DF
3533 if (dl_policy(policy))
3534 goto change;
d50dde5a 3535
d6b1e911 3536 p->sched_reset_on_fork = reset_on_fork;
45afb173 3537 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3538 return 0;
3539 }
d50dde5a 3540change:
a51e9198 3541
dc61b1d6 3542 if (user) {
332ac17e 3543#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3544 /*
3545 * Do not allow realtime tasks into groups that have no runtime
3546 * assigned.
3547 */
3548 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3549 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3550 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3551 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3552 return -EPERM;
3553 }
dc61b1d6 3554#endif
332ac17e
DF
3555#ifdef CONFIG_SMP
3556 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3557 cpumask_t *span = rq->rd->span;
332ac17e
DF
3558
3559 /*
3560 * Don't allow tasks with an affinity mask smaller than
3561 * the entire root_domain to become SCHED_DEADLINE. We
3562 * will also fail if there's no bandwidth available.
3563 */
e4099a5e
PZ
3564 if (!cpumask_subset(span, &p->cpus_allowed) ||
3565 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3566 task_rq_unlock(rq, p, &flags);
3567 return -EPERM;
3568 }
3569 }
3570#endif
3571 }
dc61b1d6 3572
1da177e4
LT
3573 /* recheck policy now with rq lock held */
3574 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3575 policy = oldpolicy = -1;
0122ec5b 3576 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3577 goto recheck;
3578 }
332ac17e
DF
3579
3580 /*
3581 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3582 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3583 * is available.
3584 */
e4099a5e 3585 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3586 task_rq_unlock(rq, p, &flags);
3587 return -EBUSY;
3588 }
3589
c365c292
TG
3590 p->sched_reset_on_fork = reset_on_fork;
3591 oldprio = p->prio;
3592
3593 /*
3594 * Special case for priority boosted tasks.
3595 *
3596 * If the new priority is lower or equal (user space view)
3597 * than the current (boosted) priority, we just store the new
3598 * normal parameters and do not touch the scheduler class and
3599 * the runqueue. This will be done when the task deboost
3600 * itself.
3601 */
3602 if (rt_mutex_check_prio(p, newprio)) {
3603 __setscheduler_params(p, attr);
3604 task_rq_unlock(rq, p, &flags);
3605 return 0;
3606 }
3607
da0c1e65 3608 queued = task_on_rq_queued(p);
051a1d1a 3609 running = task_current(rq, p);
da0c1e65 3610 if (queued)
4ca9b72b 3611 dequeue_task(rq, p, 0);
0e1f3483 3612 if (running)
f3cd1c4e 3613 put_prev_task(rq, p);
f6b53205 3614
83ab0aa0 3615 prev_class = p->sched_class;
d50dde5a 3616 __setscheduler(rq, p, attr);
f6b53205 3617
0e1f3483
HS
3618 if (running)
3619 p->sched_class->set_curr_task(rq);
da0c1e65 3620 if (queued) {
81a44c54
TG
3621 /*
3622 * We enqueue to tail when the priority of a task is
3623 * increased (user space view).
3624 */
3625 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3626 }
cb469845 3627
da7a735e 3628 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3629 task_rq_unlock(rq, p, &flags);
b29739f9 3630
95e02ca9
TG
3631 rt_mutex_adjust_pi(p);
3632
1da177e4
LT
3633 return 0;
3634}
961ccddd 3635
7479f3c9
PZ
3636static int _sched_setscheduler(struct task_struct *p, int policy,
3637 const struct sched_param *param, bool check)
3638{
3639 struct sched_attr attr = {
3640 .sched_policy = policy,
3641 .sched_priority = param->sched_priority,
3642 .sched_nice = PRIO_TO_NICE(p->static_prio),
3643 };
3644
c13db6b1
SR
3645 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3646 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3647 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3648 policy &= ~SCHED_RESET_ON_FORK;
3649 attr.sched_policy = policy;
3650 }
3651
3652 return __sched_setscheduler(p, &attr, check);
3653}
961ccddd
RR
3654/**
3655 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3656 * @p: the task in question.
3657 * @policy: new policy.
3658 * @param: structure containing the new RT priority.
3659 *
e69f6186
YB
3660 * Return: 0 on success. An error code otherwise.
3661 *
961ccddd
RR
3662 * NOTE that the task may be already dead.
3663 */
3664int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3665 const struct sched_param *param)
961ccddd 3666{
7479f3c9 3667 return _sched_setscheduler(p, policy, param, true);
961ccddd 3668}
1da177e4
LT
3669EXPORT_SYMBOL_GPL(sched_setscheduler);
3670
d50dde5a
DF
3671int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3672{
3673 return __sched_setscheduler(p, attr, true);
3674}
3675EXPORT_SYMBOL_GPL(sched_setattr);
3676
961ccddd
RR
3677/**
3678 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3679 * @p: the task in question.
3680 * @policy: new policy.
3681 * @param: structure containing the new RT priority.
3682 *
3683 * Just like sched_setscheduler, only don't bother checking if the
3684 * current context has permission. For example, this is needed in
3685 * stop_machine(): we create temporary high priority worker threads,
3686 * but our caller might not have that capability.
e69f6186
YB
3687 *
3688 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3689 */
3690int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3691 const struct sched_param *param)
961ccddd 3692{
7479f3c9 3693 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3694}
3695
95cdf3b7
IM
3696static int
3697do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3698{
1da177e4
LT
3699 struct sched_param lparam;
3700 struct task_struct *p;
36c8b586 3701 int retval;
1da177e4
LT
3702
3703 if (!param || pid < 0)
3704 return -EINVAL;
3705 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3706 return -EFAULT;
5fe1d75f
ON
3707
3708 rcu_read_lock();
3709 retval = -ESRCH;
1da177e4 3710 p = find_process_by_pid(pid);
5fe1d75f
ON
3711 if (p != NULL)
3712 retval = sched_setscheduler(p, policy, &lparam);
3713 rcu_read_unlock();
36c8b586 3714
1da177e4
LT
3715 return retval;
3716}
3717
d50dde5a
DF
3718/*
3719 * Mimics kernel/events/core.c perf_copy_attr().
3720 */
3721static int sched_copy_attr(struct sched_attr __user *uattr,
3722 struct sched_attr *attr)
3723{
3724 u32 size;
3725 int ret;
3726
3727 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3728 return -EFAULT;
3729
3730 /*
3731 * zero the full structure, so that a short copy will be nice.
3732 */
3733 memset(attr, 0, sizeof(*attr));
3734
3735 ret = get_user(size, &uattr->size);
3736 if (ret)
3737 return ret;
3738
3739 if (size > PAGE_SIZE) /* silly large */
3740 goto err_size;
3741
3742 if (!size) /* abi compat */
3743 size = SCHED_ATTR_SIZE_VER0;
3744
3745 if (size < SCHED_ATTR_SIZE_VER0)
3746 goto err_size;
3747
3748 /*
3749 * If we're handed a bigger struct than we know of,
3750 * ensure all the unknown bits are 0 - i.e. new
3751 * user-space does not rely on any kernel feature
3752 * extensions we dont know about yet.
3753 */
3754 if (size > sizeof(*attr)) {
3755 unsigned char __user *addr;
3756 unsigned char __user *end;
3757 unsigned char val;
3758
3759 addr = (void __user *)uattr + sizeof(*attr);
3760 end = (void __user *)uattr + size;
3761
3762 for (; addr < end; addr++) {
3763 ret = get_user(val, addr);
3764 if (ret)
3765 return ret;
3766 if (val)
3767 goto err_size;
3768 }
3769 size = sizeof(*attr);
3770 }
3771
3772 ret = copy_from_user(attr, uattr, size);
3773 if (ret)
3774 return -EFAULT;
3775
3776 /*
3777 * XXX: do we want to be lenient like existing syscalls; or do we want
3778 * to be strict and return an error on out-of-bounds values?
3779 */
75e45d51 3780 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3781
e78c7bca 3782 return 0;
d50dde5a
DF
3783
3784err_size:
3785 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3786 return -E2BIG;
d50dde5a
DF
3787}
3788
1da177e4
LT
3789/**
3790 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3791 * @pid: the pid in question.
3792 * @policy: new policy.
3793 * @param: structure containing the new RT priority.
e69f6186
YB
3794 *
3795 * Return: 0 on success. An error code otherwise.
1da177e4 3796 */
5add95d4
HC
3797SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3798 struct sched_param __user *, param)
1da177e4 3799{
c21761f1
JB
3800 /* negative values for policy are not valid */
3801 if (policy < 0)
3802 return -EINVAL;
3803
1da177e4
LT
3804 return do_sched_setscheduler(pid, policy, param);
3805}
3806
3807/**
3808 * sys_sched_setparam - set/change the RT priority of a thread
3809 * @pid: the pid in question.
3810 * @param: structure containing the new RT priority.
e69f6186
YB
3811 *
3812 * Return: 0 on success. An error code otherwise.
1da177e4 3813 */
5add95d4 3814SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3815{
c13db6b1 3816 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3817}
3818
d50dde5a
DF
3819/**
3820 * sys_sched_setattr - same as above, but with extended sched_attr
3821 * @pid: the pid in question.
5778fccf 3822 * @uattr: structure containing the extended parameters.
db66d756 3823 * @flags: for future extension.
d50dde5a 3824 */
6d35ab48
PZ
3825SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3826 unsigned int, flags)
d50dde5a
DF
3827{
3828 struct sched_attr attr;
3829 struct task_struct *p;
3830 int retval;
3831
6d35ab48 3832 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3833 return -EINVAL;
3834
143cf23d
MK
3835 retval = sched_copy_attr(uattr, &attr);
3836 if (retval)
3837 return retval;
d50dde5a 3838
b14ed2c2 3839 if ((int)attr.sched_policy < 0)
dbdb2275 3840 return -EINVAL;
d50dde5a
DF
3841
3842 rcu_read_lock();
3843 retval = -ESRCH;
3844 p = find_process_by_pid(pid);
3845 if (p != NULL)
3846 retval = sched_setattr(p, &attr);
3847 rcu_read_unlock();
3848
3849 return retval;
3850}
3851
1da177e4
LT
3852/**
3853 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3854 * @pid: the pid in question.
e69f6186
YB
3855 *
3856 * Return: On success, the policy of the thread. Otherwise, a negative error
3857 * code.
1da177e4 3858 */
5add95d4 3859SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3860{
36c8b586 3861 struct task_struct *p;
3a5c359a 3862 int retval;
1da177e4
LT
3863
3864 if (pid < 0)
3a5c359a 3865 return -EINVAL;
1da177e4
LT
3866
3867 retval = -ESRCH;
5fe85be0 3868 rcu_read_lock();
1da177e4
LT
3869 p = find_process_by_pid(pid);
3870 if (p) {
3871 retval = security_task_getscheduler(p);
3872 if (!retval)
ca94c442
LP
3873 retval = p->policy
3874 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3875 }
5fe85be0 3876 rcu_read_unlock();
1da177e4
LT
3877 return retval;
3878}
3879
3880/**
ca94c442 3881 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3882 * @pid: the pid in question.
3883 * @param: structure containing the RT priority.
e69f6186
YB
3884 *
3885 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3886 * code.
1da177e4 3887 */
5add95d4 3888SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3889{
ce5f7f82 3890 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3891 struct task_struct *p;
3a5c359a 3892 int retval;
1da177e4
LT
3893
3894 if (!param || pid < 0)
3a5c359a 3895 return -EINVAL;
1da177e4 3896
5fe85be0 3897 rcu_read_lock();
1da177e4
LT
3898 p = find_process_by_pid(pid);
3899 retval = -ESRCH;
3900 if (!p)
3901 goto out_unlock;
3902
3903 retval = security_task_getscheduler(p);
3904 if (retval)
3905 goto out_unlock;
3906
ce5f7f82
PZ
3907 if (task_has_rt_policy(p))
3908 lp.sched_priority = p->rt_priority;
5fe85be0 3909 rcu_read_unlock();
1da177e4
LT
3910
3911 /*
3912 * This one might sleep, we cannot do it with a spinlock held ...
3913 */
3914 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3915
1da177e4
LT
3916 return retval;
3917
3918out_unlock:
5fe85be0 3919 rcu_read_unlock();
1da177e4
LT
3920 return retval;
3921}
3922
d50dde5a
DF
3923static int sched_read_attr(struct sched_attr __user *uattr,
3924 struct sched_attr *attr,
3925 unsigned int usize)
3926{
3927 int ret;
3928
3929 if (!access_ok(VERIFY_WRITE, uattr, usize))
3930 return -EFAULT;
3931
3932 /*
3933 * If we're handed a smaller struct than we know of,
3934 * ensure all the unknown bits are 0 - i.e. old
3935 * user-space does not get uncomplete information.
3936 */
3937 if (usize < sizeof(*attr)) {
3938 unsigned char *addr;
3939 unsigned char *end;
3940
3941 addr = (void *)attr + usize;
3942 end = (void *)attr + sizeof(*attr);
3943
3944 for (; addr < end; addr++) {
3945 if (*addr)
22400674 3946 return -EFBIG;
d50dde5a
DF
3947 }
3948
3949 attr->size = usize;
3950 }
3951
4efbc454 3952 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3953 if (ret)
3954 return -EFAULT;
3955
22400674 3956 return 0;
d50dde5a
DF
3957}
3958
3959/**
aab03e05 3960 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3961 * @pid: the pid in question.
5778fccf 3962 * @uattr: structure containing the extended parameters.
d50dde5a 3963 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3964 * @flags: for future extension.
d50dde5a 3965 */
6d35ab48
PZ
3966SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3967 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3968{
3969 struct sched_attr attr = {
3970 .size = sizeof(struct sched_attr),
3971 };
3972 struct task_struct *p;
3973 int retval;
3974
3975 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3976 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3977 return -EINVAL;
3978
3979 rcu_read_lock();
3980 p = find_process_by_pid(pid);
3981 retval = -ESRCH;
3982 if (!p)
3983 goto out_unlock;
3984
3985 retval = security_task_getscheduler(p);
3986 if (retval)
3987 goto out_unlock;
3988
3989 attr.sched_policy = p->policy;
7479f3c9
PZ
3990 if (p->sched_reset_on_fork)
3991 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3992 if (task_has_dl_policy(p))
3993 __getparam_dl(p, &attr);
3994 else if (task_has_rt_policy(p))
d50dde5a
DF
3995 attr.sched_priority = p->rt_priority;
3996 else
d0ea0268 3997 attr.sched_nice = task_nice(p);
d50dde5a
DF
3998
3999 rcu_read_unlock();
4000
4001 retval = sched_read_attr(uattr, &attr, size);
4002 return retval;
4003
4004out_unlock:
4005 rcu_read_unlock();
4006 return retval;
4007}
4008
96f874e2 4009long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4010{
5a16f3d3 4011 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4012 struct task_struct *p;
4013 int retval;
1da177e4 4014
23f5d142 4015 rcu_read_lock();
1da177e4
LT
4016
4017 p = find_process_by_pid(pid);
4018 if (!p) {
23f5d142 4019 rcu_read_unlock();
1da177e4
LT
4020 return -ESRCH;
4021 }
4022
23f5d142 4023 /* Prevent p going away */
1da177e4 4024 get_task_struct(p);
23f5d142 4025 rcu_read_unlock();
1da177e4 4026
14a40ffc
TH
4027 if (p->flags & PF_NO_SETAFFINITY) {
4028 retval = -EINVAL;
4029 goto out_put_task;
4030 }
5a16f3d3
RR
4031 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4032 retval = -ENOMEM;
4033 goto out_put_task;
4034 }
4035 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4036 retval = -ENOMEM;
4037 goto out_free_cpus_allowed;
4038 }
1da177e4 4039 retval = -EPERM;
4c44aaaf
EB
4040 if (!check_same_owner(p)) {
4041 rcu_read_lock();
4042 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4043 rcu_read_unlock();
16303ab2 4044 goto out_free_new_mask;
4c44aaaf
EB
4045 }
4046 rcu_read_unlock();
4047 }
1da177e4 4048
b0ae1981 4049 retval = security_task_setscheduler(p);
e7834f8f 4050 if (retval)
16303ab2 4051 goto out_free_new_mask;
e7834f8f 4052
e4099a5e
PZ
4053
4054 cpuset_cpus_allowed(p, cpus_allowed);
4055 cpumask_and(new_mask, in_mask, cpus_allowed);
4056
332ac17e
DF
4057 /*
4058 * Since bandwidth control happens on root_domain basis,
4059 * if admission test is enabled, we only admit -deadline
4060 * tasks allowed to run on all the CPUs in the task's
4061 * root_domain.
4062 */
4063#ifdef CONFIG_SMP
f1e3a093
KT
4064 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4065 rcu_read_lock();
4066 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4067 retval = -EBUSY;
f1e3a093 4068 rcu_read_unlock();
16303ab2 4069 goto out_free_new_mask;
332ac17e 4070 }
f1e3a093 4071 rcu_read_unlock();
332ac17e
DF
4072 }
4073#endif
49246274 4074again:
5a16f3d3 4075 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4076
8707d8b8 4077 if (!retval) {
5a16f3d3
RR
4078 cpuset_cpus_allowed(p, cpus_allowed);
4079 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4080 /*
4081 * We must have raced with a concurrent cpuset
4082 * update. Just reset the cpus_allowed to the
4083 * cpuset's cpus_allowed
4084 */
5a16f3d3 4085 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4086 goto again;
4087 }
4088 }
16303ab2 4089out_free_new_mask:
5a16f3d3
RR
4090 free_cpumask_var(new_mask);
4091out_free_cpus_allowed:
4092 free_cpumask_var(cpus_allowed);
4093out_put_task:
1da177e4 4094 put_task_struct(p);
1da177e4
LT
4095 return retval;
4096}
4097
4098static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4099 struct cpumask *new_mask)
1da177e4 4100{
96f874e2
RR
4101 if (len < cpumask_size())
4102 cpumask_clear(new_mask);
4103 else if (len > cpumask_size())
4104 len = cpumask_size();
4105
1da177e4
LT
4106 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4107}
4108
4109/**
4110 * sys_sched_setaffinity - set the cpu affinity of a process
4111 * @pid: pid of the process
4112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4113 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4114 *
4115 * Return: 0 on success. An error code otherwise.
1da177e4 4116 */
5add95d4
HC
4117SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4118 unsigned long __user *, user_mask_ptr)
1da177e4 4119{
5a16f3d3 4120 cpumask_var_t new_mask;
1da177e4
LT
4121 int retval;
4122
5a16f3d3
RR
4123 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4124 return -ENOMEM;
1da177e4 4125
5a16f3d3
RR
4126 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4127 if (retval == 0)
4128 retval = sched_setaffinity(pid, new_mask);
4129 free_cpumask_var(new_mask);
4130 return retval;
1da177e4
LT
4131}
4132
96f874e2 4133long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4134{
36c8b586 4135 struct task_struct *p;
31605683 4136 unsigned long flags;
1da177e4 4137 int retval;
1da177e4 4138
23f5d142 4139 rcu_read_lock();
1da177e4
LT
4140
4141 retval = -ESRCH;
4142 p = find_process_by_pid(pid);
4143 if (!p)
4144 goto out_unlock;
4145
e7834f8f
DQ
4146 retval = security_task_getscheduler(p);
4147 if (retval)
4148 goto out_unlock;
4149
013fdb80 4150 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4151 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4152 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4153
4154out_unlock:
23f5d142 4155 rcu_read_unlock();
1da177e4 4156
9531b62f 4157 return retval;
1da177e4
LT
4158}
4159
4160/**
4161 * sys_sched_getaffinity - get the cpu affinity of a process
4162 * @pid: pid of the process
4163 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4164 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4165 *
4166 * Return: 0 on success. An error code otherwise.
1da177e4 4167 */
5add95d4
HC
4168SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4169 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4170{
4171 int ret;
f17c8607 4172 cpumask_var_t mask;
1da177e4 4173
84fba5ec 4174 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4175 return -EINVAL;
4176 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4177 return -EINVAL;
4178
f17c8607
RR
4179 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4180 return -ENOMEM;
1da177e4 4181
f17c8607
RR
4182 ret = sched_getaffinity(pid, mask);
4183 if (ret == 0) {
8bc037fb 4184 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4185
4186 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4187 ret = -EFAULT;
4188 else
cd3d8031 4189 ret = retlen;
f17c8607
RR
4190 }
4191 free_cpumask_var(mask);
1da177e4 4192
f17c8607 4193 return ret;
1da177e4
LT
4194}
4195
4196/**
4197 * sys_sched_yield - yield the current processor to other threads.
4198 *
dd41f596
IM
4199 * This function yields the current CPU to other tasks. If there are no
4200 * other threads running on this CPU then this function will return.
e69f6186
YB
4201 *
4202 * Return: 0.
1da177e4 4203 */
5add95d4 4204SYSCALL_DEFINE0(sched_yield)
1da177e4 4205{
70b97a7f 4206 struct rq *rq = this_rq_lock();
1da177e4 4207
2d72376b 4208 schedstat_inc(rq, yld_count);
4530d7ab 4209 current->sched_class->yield_task(rq);
1da177e4
LT
4210
4211 /*
4212 * Since we are going to call schedule() anyway, there's
4213 * no need to preempt or enable interrupts:
4214 */
4215 __release(rq->lock);
8a25d5de 4216 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4217 do_raw_spin_unlock(&rq->lock);
ba74c144 4218 sched_preempt_enable_no_resched();
1da177e4
LT
4219
4220 schedule();
4221
4222 return 0;
4223}
4224
e7b38404 4225static void __cond_resched(void)
1da177e4 4226{
bdb43806 4227 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4228 __schedule();
bdb43806 4229 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4230}
4231
02b67cc3 4232int __sched _cond_resched(void)
1da177e4 4233{
d86ee480 4234 if (should_resched()) {
1da177e4
LT
4235 __cond_resched();
4236 return 1;
4237 }
4238 return 0;
4239}
02b67cc3 4240EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4241
4242/*
613afbf8 4243 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4244 * call schedule, and on return reacquire the lock.
4245 *
41a2d6cf 4246 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4247 * operations here to prevent schedule() from being called twice (once via
4248 * spin_unlock(), once by hand).
4249 */
613afbf8 4250int __cond_resched_lock(spinlock_t *lock)
1da177e4 4251{
d86ee480 4252 int resched = should_resched();
6df3cecb
JK
4253 int ret = 0;
4254
f607c668
PZ
4255 lockdep_assert_held(lock);
4256
4a81e832 4257 if (spin_needbreak(lock) || resched) {
1da177e4 4258 spin_unlock(lock);
d86ee480 4259 if (resched)
95c354fe
NP
4260 __cond_resched();
4261 else
4262 cpu_relax();
6df3cecb 4263 ret = 1;
1da177e4 4264 spin_lock(lock);
1da177e4 4265 }
6df3cecb 4266 return ret;
1da177e4 4267}
613afbf8 4268EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4269
613afbf8 4270int __sched __cond_resched_softirq(void)
1da177e4
LT
4271{
4272 BUG_ON(!in_softirq());
4273
d86ee480 4274 if (should_resched()) {
98d82567 4275 local_bh_enable();
1da177e4
LT
4276 __cond_resched();
4277 local_bh_disable();
4278 return 1;
4279 }
4280 return 0;
4281}
613afbf8 4282EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4283
1da177e4
LT
4284/**
4285 * yield - yield the current processor to other threads.
4286 *
8e3fabfd
PZ
4287 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4288 *
4289 * The scheduler is at all times free to pick the calling task as the most
4290 * eligible task to run, if removing the yield() call from your code breaks
4291 * it, its already broken.
4292 *
4293 * Typical broken usage is:
4294 *
4295 * while (!event)
4296 * yield();
4297 *
4298 * where one assumes that yield() will let 'the other' process run that will
4299 * make event true. If the current task is a SCHED_FIFO task that will never
4300 * happen. Never use yield() as a progress guarantee!!
4301 *
4302 * If you want to use yield() to wait for something, use wait_event().
4303 * If you want to use yield() to be 'nice' for others, use cond_resched().
4304 * If you still want to use yield(), do not!
1da177e4
LT
4305 */
4306void __sched yield(void)
4307{
4308 set_current_state(TASK_RUNNING);
4309 sys_sched_yield();
4310}
1da177e4
LT
4311EXPORT_SYMBOL(yield);
4312
d95f4122
MG
4313/**
4314 * yield_to - yield the current processor to another thread in
4315 * your thread group, or accelerate that thread toward the
4316 * processor it's on.
16addf95
RD
4317 * @p: target task
4318 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4319 *
4320 * It's the caller's job to ensure that the target task struct
4321 * can't go away on us before we can do any checks.
4322 *
e69f6186 4323 * Return:
7b270f60
PZ
4324 * true (>0) if we indeed boosted the target task.
4325 * false (0) if we failed to boost the target.
4326 * -ESRCH if there's no task to yield to.
d95f4122 4327 */
fa93384f 4328int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4329{
4330 struct task_struct *curr = current;
4331 struct rq *rq, *p_rq;
4332 unsigned long flags;
c3c18640 4333 int yielded = 0;
d95f4122
MG
4334
4335 local_irq_save(flags);
4336 rq = this_rq();
4337
4338again:
4339 p_rq = task_rq(p);
7b270f60
PZ
4340 /*
4341 * If we're the only runnable task on the rq and target rq also
4342 * has only one task, there's absolutely no point in yielding.
4343 */
4344 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4345 yielded = -ESRCH;
4346 goto out_irq;
4347 }
4348
d95f4122 4349 double_rq_lock(rq, p_rq);
39e24d8f 4350 if (task_rq(p) != p_rq) {
d95f4122
MG
4351 double_rq_unlock(rq, p_rq);
4352 goto again;
4353 }
4354
4355 if (!curr->sched_class->yield_to_task)
7b270f60 4356 goto out_unlock;
d95f4122
MG
4357
4358 if (curr->sched_class != p->sched_class)
7b270f60 4359 goto out_unlock;
d95f4122
MG
4360
4361 if (task_running(p_rq, p) || p->state)
7b270f60 4362 goto out_unlock;
d95f4122
MG
4363
4364 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4365 if (yielded) {
d95f4122 4366 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4367 /*
4368 * Make p's CPU reschedule; pick_next_entity takes care of
4369 * fairness.
4370 */
4371 if (preempt && rq != p_rq)
8875125e 4372 resched_curr(p_rq);
6d1cafd8 4373 }
d95f4122 4374
7b270f60 4375out_unlock:
d95f4122 4376 double_rq_unlock(rq, p_rq);
7b270f60 4377out_irq:
d95f4122
MG
4378 local_irq_restore(flags);
4379
7b270f60 4380 if (yielded > 0)
d95f4122
MG
4381 schedule();
4382
4383 return yielded;
4384}
4385EXPORT_SYMBOL_GPL(yield_to);
4386
1da177e4 4387/*
41a2d6cf 4388 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4389 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4390 */
4391void __sched io_schedule(void)
4392{
54d35f29 4393 struct rq *rq = raw_rq();
1da177e4 4394
0ff92245 4395 delayacct_blkio_start();
1da177e4 4396 atomic_inc(&rq->nr_iowait);
73c10101 4397 blk_flush_plug(current);
8f0dfc34 4398 current->in_iowait = 1;
1da177e4 4399 schedule();
8f0dfc34 4400 current->in_iowait = 0;
1da177e4 4401 atomic_dec(&rq->nr_iowait);
0ff92245 4402 delayacct_blkio_end();
1da177e4 4403}
1da177e4
LT
4404EXPORT_SYMBOL(io_schedule);
4405
4406long __sched io_schedule_timeout(long timeout)
4407{
54d35f29 4408 struct rq *rq = raw_rq();
1da177e4
LT
4409 long ret;
4410
0ff92245 4411 delayacct_blkio_start();
1da177e4 4412 atomic_inc(&rq->nr_iowait);
73c10101 4413 blk_flush_plug(current);
8f0dfc34 4414 current->in_iowait = 1;
1da177e4 4415 ret = schedule_timeout(timeout);
8f0dfc34 4416 current->in_iowait = 0;
1da177e4 4417 atomic_dec(&rq->nr_iowait);
0ff92245 4418 delayacct_blkio_end();
1da177e4
LT
4419 return ret;
4420}
4421
4422/**
4423 * sys_sched_get_priority_max - return maximum RT priority.
4424 * @policy: scheduling class.
4425 *
e69f6186
YB
4426 * Return: On success, this syscall returns the maximum
4427 * rt_priority that can be used by a given scheduling class.
4428 * On failure, a negative error code is returned.
1da177e4 4429 */
5add95d4 4430SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4431{
4432 int ret = -EINVAL;
4433
4434 switch (policy) {
4435 case SCHED_FIFO:
4436 case SCHED_RR:
4437 ret = MAX_USER_RT_PRIO-1;
4438 break;
aab03e05 4439 case SCHED_DEADLINE:
1da177e4 4440 case SCHED_NORMAL:
b0a9499c 4441 case SCHED_BATCH:
dd41f596 4442 case SCHED_IDLE:
1da177e4
LT
4443 ret = 0;
4444 break;
4445 }
4446 return ret;
4447}
4448
4449/**
4450 * sys_sched_get_priority_min - return minimum RT priority.
4451 * @policy: scheduling class.
4452 *
e69f6186
YB
4453 * Return: On success, this syscall returns the minimum
4454 * rt_priority that can be used by a given scheduling class.
4455 * On failure, a negative error code is returned.
1da177e4 4456 */
5add95d4 4457SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4458{
4459 int ret = -EINVAL;
4460
4461 switch (policy) {
4462 case SCHED_FIFO:
4463 case SCHED_RR:
4464 ret = 1;
4465 break;
aab03e05 4466 case SCHED_DEADLINE:
1da177e4 4467 case SCHED_NORMAL:
b0a9499c 4468 case SCHED_BATCH:
dd41f596 4469 case SCHED_IDLE:
1da177e4
LT
4470 ret = 0;
4471 }
4472 return ret;
4473}
4474
4475/**
4476 * sys_sched_rr_get_interval - return the default timeslice of a process.
4477 * @pid: pid of the process.
4478 * @interval: userspace pointer to the timeslice value.
4479 *
4480 * this syscall writes the default timeslice value of a given process
4481 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4482 *
4483 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4484 * an error code.
1da177e4 4485 */
17da2bd9 4486SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4487 struct timespec __user *, interval)
1da177e4 4488{
36c8b586 4489 struct task_struct *p;
a4ec24b4 4490 unsigned int time_slice;
dba091b9
TG
4491 unsigned long flags;
4492 struct rq *rq;
3a5c359a 4493 int retval;
1da177e4 4494 struct timespec t;
1da177e4
LT
4495
4496 if (pid < 0)
3a5c359a 4497 return -EINVAL;
1da177e4
LT
4498
4499 retval = -ESRCH;
1a551ae7 4500 rcu_read_lock();
1da177e4
LT
4501 p = find_process_by_pid(pid);
4502 if (!p)
4503 goto out_unlock;
4504
4505 retval = security_task_getscheduler(p);
4506 if (retval)
4507 goto out_unlock;
4508
dba091b9 4509 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4510 time_slice = 0;
4511 if (p->sched_class->get_rr_interval)
4512 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4513 task_rq_unlock(rq, p, &flags);
a4ec24b4 4514
1a551ae7 4515 rcu_read_unlock();
a4ec24b4 4516 jiffies_to_timespec(time_slice, &t);
1da177e4 4517 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4518 return retval;
3a5c359a 4519
1da177e4 4520out_unlock:
1a551ae7 4521 rcu_read_unlock();
1da177e4
LT
4522 return retval;
4523}
4524
7c731e0a 4525static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4526
82a1fcb9 4527void sched_show_task(struct task_struct *p)
1da177e4 4528{
1da177e4 4529 unsigned long free = 0;
4e79752c 4530 int ppid;
36c8b586 4531 unsigned state;
1da177e4 4532
1da177e4 4533 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4534 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4535 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4536#if BITS_PER_LONG == 32
1da177e4 4537 if (state == TASK_RUNNING)
3df0fc5b 4538 printk(KERN_CONT " running ");
1da177e4 4539 else
3df0fc5b 4540 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4541#else
4542 if (state == TASK_RUNNING)
3df0fc5b 4543 printk(KERN_CONT " running task ");
1da177e4 4544 else
3df0fc5b 4545 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4546#endif
4547#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4548 free = stack_not_used(p);
1da177e4 4549#endif
4e79752c
PM
4550 rcu_read_lock();
4551 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4552 rcu_read_unlock();
3df0fc5b 4553 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4554 task_pid_nr(p), ppid,
aa47b7e0 4555 (unsigned long)task_thread_info(p)->flags);
1da177e4 4556
3d1cb205 4557 print_worker_info(KERN_INFO, p);
5fb5e6de 4558 show_stack(p, NULL);
1da177e4
LT
4559}
4560
e59e2ae2 4561void show_state_filter(unsigned long state_filter)
1da177e4 4562{
36c8b586 4563 struct task_struct *g, *p;
1da177e4 4564
4bd77321 4565#if BITS_PER_LONG == 32
3df0fc5b
PZ
4566 printk(KERN_INFO
4567 " task PC stack pid father\n");
1da177e4 4568#else
3df0fc5b
PZ
4569 printk(KERN_INFO
4570 " task PC stack pid father\n");
1da177e4 4571#endif
510f5acc 4572 rcu_read_lock();
5d07f420 4573 for_each_process_thread(g, p) {
1da177e4
LT
4574 /*
4575 * reset the NMI-timeout, listing all files on a slow
25985edc 4576 * console might take a lot of time:
1da177e4
LT
4577 */
4578 touch_nmi_watchdog();
39bc89fd 4579 if (!state_filter || (p->state & state_filter))
82a1fcb9 4580 sched_show_task(p);
5d07f420 4581 }
1da177e4 4582
04c9167f
JF
4583 touch_all_softlockup_watchdogs();
4584
dd41f596
IM
4585#ifdef CONFIG_SCHED_DEBUG
4586 sysrq_sched_debug_show();
4587#endif
510f5acc 4588 rcu_read_unlock();
e59e2ae2
IM
4589 /*
4590 * Only show locks if all tasks are dumped:
4591 */
93335a21 4592 if (!state_filter)
e59e2ae2 4593 debug_show_all_locks();
1da177e4
LT
4594}
4595
0db0628d 4596void init_idle_bootup_task(struct task_struct *idle)
1df21055 4597{
dd41f596 4598 idle->sched_class = &idle_sched_class;
1df21055
IM
4599}
4600
f340c0d1
IM
4601/**
4602 * init_idle - set up an idle thread for a given CPU
4603 * @idle: task in question
4604 * @cpu: cpu the idle task belongs to
4605 *
4606 * NOTE: this function does not set the idle thread's NEED_RESCHED
4607 * flag, to make booting more robust.
4608 */
0db0628d 4609void init_idle(struct task_struct *idle, int cpu)
1da177e4 4610{
70b97a7f 4611 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4612 unsigned long flags;
4613
05fa785c 4614 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4615
5e1576ed 4616 __sched_fork(0, idle);
06b83b5f 4617 idle->state = TASK_RUNNING;
dd41f596
IM
4618 idle->se.exec_start = sched_clock();
4619
1e1b6c51 4620 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4621 /*
4622 * We're having a chicken and egg problem, even though we are
4623 * holding rq->lock, the cpu isn't yet set to this cpu so the
4624 * lockdep check in task_group() will fail.
4625 *
4626 * Similar case to sched_fork(). / Alternatively we could
4627 * use task_rq_lock() here and obtain the other rq->lock.
4628 *
4629 * Silence PROVE_RCU
4630 */
4631 rcu_read_lock();
dd41f596 4632 __set_task_cpu(idle, cpu);
6506cf6c 4633 rcu_read_unlock();
1da177e4 4634
1da177e4 4635 rq->curr = rq->idle = idle;
da0c1e65 4636 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4637#if defined(CONFIG_SMP)
4638 idle->on_cpu = 1;
4866cde0 4639#endif
05fa785c 4640 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4641
4642 /* Set the preempt count _outside_ the spinlocks! */
01028747 4643 init_idle_preempt_count(idle, cpu);
55cd5340 4644
dd41f596
IM
4645 /*
4646 * The idle tasks have their own, simple scheduling class:
4647 */
4648 idle->sched_class = &idle_sched_class;
868baf07 4649 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4650 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4651#if defined(CONFIG_SMP)
4652 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4653#endif
19978ca6
IM
4654}
4655
1da177e4 4656#ifdef CONFIG_SMP
a15b12ac
KT
4657/*
4658 * move_queued_task - move a queued task to new rq.
4659 *
4660 * Returns (locked) new rq. Old rq's lock is released.
4661 */
4662static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4663{
4664 struct rq *rq = task_rq(p);
4665
4666 lockdep_assert_held(&rq->lock);
4667
4668 dequeue_task(rq, p, 0);
4669 p->on_rq = TASK_ON_RQ_MIGRATING;
4670 set_task_cpu(p, new_cpu);
4671 raw_spin_unlock(&rq->lock);
4672
4673 rq = cpu_rq(new_cpu);
4674
4675 raw_spin_lock(&rq->lock);
4676 BUG_ON(task_cpu(p) != new_cpu);
4677 p->on_rq = TASK_ON_RQ_QUEUED;
4678 enqueue_task(rq, p, 0);
4679 check_preempt_curr(rq, p, 0);
4680
4681 return rq;
4682}
4683
1e1b6c51
KM
4684void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4685{
4686 if (p->sched_class && p->sched_class->set_cpus_allowed)
4687 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4688
4689 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4690 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4691}
4692
1da177e4
LT
4693/*
4694 * This is how migration works:
4695 *
969c7921
TH
4696 * 1) we invoke migration_cpu_stop() on the target CPU using
4697 * stop_one_cpu().
4698 * 2) stopper starts to run (implicitly forcing the migrated thread
4699 * off the CPU)
4700 * 3) it checks whether the migrated task is still in the wrong runqueue.
4701 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4702 * it and puts it into the right queue.
969c7921
TH
4703 * 5) stopper completes and stop_one_cpu() returns and the migration
4704 * is done.
1da177e4
LT
4705 */
4706
4707/*
4708 * Change a given task's CPU affinity. Migrate the thread to a
4709 * proper CPU and schedule it away if the CPU it's executing on
4710 * is removed from the allowed bitmask.
4711 *
4712 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4713 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4714 * call is not atomic; no spinlocks may be held.
4715 */
96f874e2 4716int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4717{
4718 unsigned long flags;
70b97a7f 4719 struct rq *rq;
969c7921 4720 unsigned int dest_cpu;
48f24c4d 4721 int ret = 0;
1da177e4
LT
4722
4723 rq = task_rq_lock(p, &flags);
e2912009 4724
db44fc01
YZ
4725 if (cpumask_equal(&p->cpus_allowed, new_mask))
4726 goto out;
4727
6ad4c188 4728 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4729 ret = -EINVAL;
4730 goto out;
4731 }
4732
1e1b6c51 4733 do_set_cpus_allowed(p, new_mask);
73fe6aae 4734
1da177e4 4735 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4736 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4737 goto out;
4738
969c7921 4739 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4740 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4741 struct migration_arg arg = { p, dest_cpu };
1da177e4 4742 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4743 task_rq_unlock(rq, p, &flags);
969c7921 4744 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4745 tlb_migrate_finish(p->mm);
4746 return 0;
a15b12ac
KT
4747 } else if (task_on_rq_queued(p))
4748 rq = move_queued_task(p, dest_cpu);
1da177e4 4749out:
0122ec5b 4750 task_rq_unlock(rq, p, &flags);
48f24c4d 4751
1da177e4
LT
4752 return ret;
4753}
cd8ba7cd 4754EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4755
4756/*
41a2d6cf 4757 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4758 * this because either it can't run here any more (set_cpus_allowed()
4759 * away from this CPU, or CPU going down), or because we're
4760 * attempting to rebalance this task on exec (sched_exec).
4761 *
4762 * So we race with normal scheduler movements, but that's OK, as long
4763 * as the task is no longer on this CPU.
efc30814
KK
4764 *
4765 * Returns non-zero if task was successfully migrated.
1da177e4 4766 */
efc30814 4767static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4768{
a1e01829 4769 struct rq *rq;
e2912009 4770 int ret = 0;
1da177e4 4771
e761b772 4772 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4773 return ret;
1da177e4 4774
a1e01829 4775 rq = cpu_rq(src_cpu);
1da177e4 4776
0122ec5b 4777 raw_spin_lock(&p->pi_lock);
a1e01829 4778 raw_spin_lock(&rq->lock);
1da177e4
LT
4779 /* Already moved. */
4780 if (task_cpu(p) != src_cpu)
b1e38734 4781 goto done;
a1e01829 4782
1da177e4 4783 /* Affinity changed (again). */
fa17b507 4784 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4785 goto fail;
1da177e4 4786
e2912009
PZ
4787 /*
4788 * If we're not on a rq, the next wake-up will ensure we're
4789 * placed properly.
4790 */
a15b12ac
KT
4791 if (task_on_rq_queued(p))
4792 rq = move_queued_task(p, dest_cpu);
b1e38734 4793done:
efc30814 4794 ret = 1;
b1e38734 4795fail:
a1e01829 4796 raw_spin_unlock(&rq->lock);
0122ec5b 4797 raw_spin_unlock(&p->pi_lock);
efc30814 4798 return ret;
1da177e4
LT
4799}
4800
e6628d5b
MG
4801#ifdef CONFIG_NUMA_BALANCING
4802/* Migrate current task p to target_cpu */
4803int migrate_task_to(struct task_struct *p, int target_cpu)
4804{
4805 struct migration_arg arg = { p, target_cpu };
4806 int curr_cpu = task_cpu(p);
4807
4808 if (curr_cpu == target_cpu)
4809 return 0;
4810
4811 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4812 return -EINVAL;
4813
4814 /* TODO: This is not properly updating schedstats */
4815
286549dc 4816 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4817 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4818}
0ec8aa00
PZ
4819
4820/*
4821 * Requeue a task on a given node and accurately track the number of NUMA
4822 * tasks on the runqueues
4823 */
4824void sched_setnuma(struct task_struct *p, int nid)
4825{
4826 struct rq *rq;
4827 unsigned long flags;
da0c1e65 4828 bool queued, running;
0ec8aa00
PZ
4829
4830 rq = task_rq_lock(p, &flags);
da0c1e65 4831 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4832 running = task_current(rq, p);
4833
da0c1e65 4834 if (queued)
0ec8aa00
PZ
4835 dequeue_task(rq, p, 0);
4836 if (running)
f3cd1c4e 4837 put_prev_task(rq, p);
0ec8aa00
PZ
4838
4839 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4840
4841 if (running)
4842 p->sched_class->set_curr_task(rq);
da0c1e65 4843 if (queued)
0ec8aa00
PZ
4844 enqueue_task(rq, p, 0);
4845 task_rq_unlock(rq, p, &flags);
4846}
e6628d5b
MG
4847#endif
4848
1da177e4 4849/*
969c7921
TH
4850 * migration_cpu_stop - this will be executed by a highprio stopper thread
4851 * and performs thread migration by bumping thread off CPU then
4852 * 'pushing' onto another runqueue.
1da177e4 4853 */
969c7921 4854static int migration_cpu_stop(void *data)
1da177e4 4855{
969c7921 4856 struct migration_arg *arg = data;
f7b4cddc 4857
969c7921
TH
4858 /*
4859 * The original target cpu might have gone down and we might
4860 * be on another cpu but it doesn't matter.
4861 */
f7b4cddc 4862 local_irq_disable();
5cd038f5
LJ
4863 /*
4864 * We need to explicitly wake pending tasks before running
4865 * __migrate_task() such that we will not miss enforcing cpus_allowed
4866 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4867 */
4868 sched_ttwu_pending();
969c7921 4869 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4870 local_irq_enable();
1da177e4 4871 return 0;
f7b4cddc
ON
4872}
4873
1da177e4 4874#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4875
054b9108 4876/*
48c5ccae
PZ
4877 * Ensures that the idle task is using init_mm right before its cpu goes
4878 * offline.
054b9108 4879 */
48c5ccae 4880void idle_task_exit(void)
1da177e4 4881{
48c5ccae 4882 struct mm_struct *mm = current->active_mm;
e76bd8d9 4883
48c5ccae 4884 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4885
a53efe5f 4886 if (mm != &init_mm) {
48c5ccae 4887 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4888 finish_arch_post_lock_switch();
4889 }
48c5ccae 4890 mmdrop(mm);
1da177e4
LT
4891}
4892
4893/*
5d180232
PZ
4894 * Since this CPU is going 'away' for a while, fold any nr_active delta
4895 * we might have. Assumes we're called after migrate_tasks() so that the
4896 * nr_active count is stable.
4897 *
4898 * Also see the comment "Global load-average calculations".
1da177e4 4899 */
5d180232 4900static void calc_load_migrate(struct rq *rq)
1da177e4 4901{
5d180232
PZ
4902 long delta = calc_load_fold_active(rq);
4903 if (delta)
4904 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4905}
4906
3f1d2a31
PZ
4907static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4908{
4909}
4910
4911static const struct sched_class fake_sched_class = {
4912 .put_prev_task = put_prev_task_fake,
4913};
4914
4915static struct task_struct fake_task = {
4916 /*
4917 * Avoid pull_{rt,dl}_task()
4918 */
4919 .prio = MAX_PRIO + 1,
4920 .sched_class = &fake_sched_class,
4921};
4922
48f24c4d 4923/*
48c5ccae
PZ
4924 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4925 * try_to_wake_up()->select_task_rq().
4926 *
4927 * Called with rq->lock held even though we'er in stop_machine() and
4928 * there's no concurrency possible, we hold the required locks anyway
4929 * because of lock validation efforts.
1da177e4 4930 */
48c5ccae 4931static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4932{
70b97a7f 4933 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4934 struct task_struct *next, *stop = rq->stop;
4935 int dest_cpu;
1da177e4
LT
4936
4937 /*
48c5ccae
PZ
4938 * Fudge the rq selection such that the below task selection loop
4939 * doesn't get stuck on the currently eligible stop task.
4940 *
4941 * We're currently inside stop_machine() and the rq is either stuck
4942 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4943 * either way we should never end up calling schedule() until we're
4944 * done here.
1da177e4 4945 */
48c5ccae 4946 rq->stop = NULL;
48f24c4d 4947
77bd3970
FW
4948 /*
4949 * put_prev_task() and pick_next_task() sched
4950 * class method both need to have an up-to-date
4951 * value of rq->clock[_task]
4952 */
4953 update_rq_clock(rq);
4954
dd41f596 4955 for ( ; ; ) {
48c5ccae
PZ
4956 /*
4957 * There's this thread running, bail when that's the only
4958 * remaining thread.
4959 */
4960 if (rq->nr_running == 1)
dd41f596 4961 break;
48c5ccae 4962
3f1d2a31 4963 next = pick_next_task(rq, &fake_task);
48c5ccae 4964 BUG_ON(!next);
79c53799 4965 next->sched_class->put_prev_task(rq, next);
e692ab53 4966
48c5ccae
PZ
4967 /* Find suitable destination for @next, with force if needed. */
4968 dest_cpu = select_fallback_rq(dead_cpu, next);
4969 raw_spin_unlock(&rq->lock);
4970
4971 __migrate_task(next, dead_cpu, dest_cpu);
4972
4973 raw_spin_lock(&rq->lock);
1da177e4 4974 }
dce48a84 4975
48c5ccae 4976 rq->stop = stop;
dce48a84 4977}
48c5ccae 4978
1da177e4
LT
4979#endif /* CONFIG_HOTPLUG_CPU */
4980
e692ab53
NP
4981#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4982
4983static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4984 {
4985 .procname = "sched_domain",
c57baf1e 4986 .mode = 0555,
e0361851 4987 },
56992309 4988 {}
e692ab53
NP
4989};
4990
4991static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4992 {
4993 .procname = "kernel",
c57baf1e 4994 .mode = 0555,
e0361851
AD
4995 .child = sd_ctl_dir,
4996 },
56992309 4997 {}
e692ab53
NP
4998};
4999
5000static struct ctl_table *sd_alloc_ctl_entry(int n)
5001{
5002 struct ctl_table *entry =
5cf9f062 5003 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5004
e692ab53
NP
5005 return entry;
5006}
5007
6382bc90
MM
5008static void sd_free_ctl_entry(struct ctl_table **tablep)
5009{
cd790076 5010 struct ctl_table *entry;
6382bc90 5011
cd790076
MM
5012 /*
5013 * In the intermediate directories, both the child directory and
5014 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5015 * will always be set. In the lowest directory the names are
cd790076
MM
5016 * static strings and all have proc handlers.
5017 */
5018 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5019 if (entry->child)
5020 sd_free_ctl_entry(&entry->child);
cd790076
MM
5021 if (entry->proc_handler == NULL)
5022 kfree(entry->procname);
5023 }
6382bc90
MM
5024
5025 kfree(*tablep);
5026 *tablep = NULL;
5027}
5028
201c373e 5029static int min_load_idx = 0;
fd9b86d3 5030static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5031
e692ab53 5032static void
e0361851 5033set_table_entry(struct ctl_table *entry,
e692ab53 5034 const char *procname, void *data, int maxlen,
201c373e
NK
5035 umode_t mode, proc_handler *proc_handler,
5036 bool load_idx)
e692ab53 5037{
e692ab53
NP
5038 entry->procname = procname;
5039 entry->data = data;
5040 entry->maxlen = maxlen;
5041 entry->mode = mode;
5042 entry->proc_handler = proc_handler;
201c373e
NK
5043
5044 if (load_idx) {
5045 entry->extra1 = &min_load_idx;
5046 entry->extra2 = &max_load_idx;
5047 }
e692ab53
NP
5048}
5049
5050static struct ctl_table *
5051sd_alloc_ctl_domain_table(struct sched_domain *sd)
5052{
37e6bae8 5053 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5054
ad1cdc1d
MM
5055 if (table == NULL)
5056 return NULL;
5057
e0361851 5058 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5059 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5060 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5061 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5062 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5063 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5064 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5065 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5066 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5067 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5068 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5069 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5070 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5071 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5072 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5073 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5074 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5075 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5076 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5077 &sd->cache_nice_tries,
201c373e 5078 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5079 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5080 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5081 set_table_entry(&table[11], "max_newidle_lb_cost",
5082 &sd->max_newidle_lb_cost,
5083 sizeof(long), 0644, proc_doulongvec_minmax, false);
5084 set_table_entry(&table[12], "name", sd->name,
201c373e 5085 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5086 /* &table[13] is terminator */
e692ab53
NP
5087
5088 return table;
5089}
5090
be7002e6 5091static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5092{
5093 struct ctl_table *entry, *table;
5094 struct sched_domain *sd;
5095 int domain_num = 0, i;
5096 char buf[32];
5097
5098 for_each_domain(cpu, sd)
5099 domain_num++;
5100 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5101 if (table == NULL)
5102 return NULL;
e692ab53
NP
5103
5104 i = 0;
5105 for_each_domain(cpu, sd) {
5106 snprintf(buf, 32, "domain%d", i);
e692ab53 5107 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5108 entry->mode = 0555;
e692ab53
NP
5109 entry->child = sd_alloc_ctl_domain_table(sd);
5110 entry++;
5111 i++;
5112 }
5113 return table;
5114}
5115
5116static struct ctl_table_header *sd_sysctl_header;
6382bc90 5117static void register_sched_domain_sysctl(void)
e692ab53 5118{
6ad4c188 5119 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5120 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5121 char buf[32];
5122
7378547f
MM
5123 WARN_ON(sd_ctl_dir[0].child);
5124 sd_ctl_dir[0].child = entry;
5125
ad1cdc1d
MM
5126 if (entry == NULL)
5127 return;
5128
6ad4c188 5129 for_each_possible_cpu(i) {
e692ab53 5130 snprintf(buf, 32, "cpu%d", i);
e692ab53 5131 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5132 entry->mode = 0555;
e692ab53 5133 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5134 entry++;
e692ab53 5135 }
7378547f
MM
5136
5137 WARN_ON(sd_sysctl_header);
e692ab53
NP
5138 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5139}
6382bc90 5140
7378547f 5141/* may be called multiple times per register */
6382bc90
MM
5142static void unregister_sched_domain_sysctl(void)
5143{
7378547f
MM
5144 if (sd_sysctl_header)
5145 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5146 sd_sysctl_header = NULL;
7378547f
MM
5147 if (sd_ctl_dir[0].child)
5148 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5149}
e692ab53 5150#else
6382bc90
MM
5151static void register_sched_domain_sysctl(void)
5152{
5153}
5154static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5155{
5156}
5157#endif
5158
1f11eb6a
GH
5159static void set_rq_online(struct rq *rq)
5160{
5161 if (!rq->online) {
5162 const struct sched_class *class;
5163
c6c4927b 5164 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5165 rq->online = 1;
5166
5167 for_each_class(class) {
5168 if (class->rq_online)
5169 class->rq_online(rq);
5170 }
5171 }
5172}
5173
5174static void set_rq_offline(struct rq *rq)
5175{
5176 if (rq->online) {
5177 const struct sched_class *class;
5178
5179 for_each_class(class) {
5180 if (class->rq_offline)
5181 class->rq_offline(rq);
5182 }
5183
c6c4927b 5184 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5185 rq->online = 0;
5186 }
5187}
5188
1da177e4
LT
5189/*
5190 * migration_call - callback that gets triggered when a CPU is added.
5191 * Here we can start up the necessary migration thread for the new CPU.
5192 */
0db0628d 5193static int
48f24c4d 5194migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5195{
48f24c4d 5196 int cpu = (long)hcpu;
1da177e4 5197 unsigned long flags;
969c7921 5198 struct rq *rq = cpu_rq(cpu);
1da177e4 5199
48c5ccae 5200 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5201
1da177e4 5202 case CPU_UP_PREPARE:
a468d389 5203 rq->calc_load_update = calc_load_update;
1da177e4 5204 break;
48f24c4d 5205
1da177e4 5206 case CPU_ONLINE:
1f94ef59 5207 /* Update our root-domain */
05fa785c 5208 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5209 if (rq->rd) {
c6c4927b 5210 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5211
5212 set_rq_online(rq);
1f94ef59 5213 }
05fa785c 5214 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5215 break;
48f24c4d 5216
1da177e4 5217#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5218 case CPU_DYING:
317f3941 5219 sched_ttwu_pending();
57d885fe 5220 /* Update our root-domain */
05fa785c 5221 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5222 if (rq->rd) {
c6c4927b 5223 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5224 set_rq_offline(rq);
57d885fe 5225 }
48c5ccae
PZ
5226 migrate_tasks(cpu);
5227 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5228 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5229 break;
48c5ccae 5230
5d180232 5231 case CPU_DEAD:
f319da0c 5232 calc_load_migrate(rq);
57d885fe 5233 break;
1da177e4
LT
5234#endif
5235 }
49c022e6
PZ
5236
5237 update_max_interval();
5238
1da177e4
LT
5239 return NOTIFY_OK;
5240}
5241
f38b0820
PM
5242/*
5243 * Register at high priority so that task migration (migrate_all_tasks)
5244 * happens before everything else. This has to be lower priority than
cdd6c482 5245 * the notifier in the perf_event subsystem, though.
1da177e4 5246 */
0db0628d 5247static struct notifier_block migration_notifier = {
1da177e4 5248 .notifier_call = migration_call,
50a323b7 5249 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5250};
5251
a803f026
CM
5252static void __cpuinit set_cpu_rq_start_time(void)
5253{
5254 int cpu = smp_processor_id();
5255 struct rq *rq = cpu_rq(cpu);
5256 rq->age_stamp = sched_clock_cpu(cpu);
5257}
5258
0db0628d 5259static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5260 unsigned long action, void *hcpu)
5261{
5262 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5263 case CPU_STARTING:
5264 set_cpu_rq_start_time();
5265 return NOTIFY_OK;
3a101d05
TH
5266 case CPU_DOWN_FAILED:
5267 set_cpu_active((long)hcpu, true);
5268 return NOTIFY_OK;
5269 default:
5270 return NOTIFY_DONE;
5271 }
5272}
5273
0db0628d 5274static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5275 unsigned long action, void *hcpu)
5276{
de212f18
PZ
5277 unsigned long flags;
5278 long cpu = (long)hcpu;
f10e00f4 5279 struct dl_bw *dl_b;
de212f18 5280
3a101d05
TH
5281 switch (action & ~CPU_TASKS_FROZEN) {
5282 case CPU_DOWN_PREPARE:
de212f18
PZ
5283 set_cpu_active(cpu, false);
5284
5285 /* explicitly allow suspend */
5286 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5287 bool overflow;
5288 int cpus;
5289
f10e00f4
KT
5290 rcu_read_lock_sched();
5291 dl_b = dl_bw_of(cpu);
5292
de212f18
PZ
5293 raw_spin_lock_irqsave(&dl_b->lock, flags);
5294 cpus = dl_bw_cpus(cpu);
5295 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5296 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5297
f10e00f4
KT
5298 rcu_read_unlock_sched();
5299
de212f18
PZ
5300 if (overflow)
5301 return notifier_from_errno(-EBUSY);
5302 }
3a101d05 5303 return NOTIFY_OK;
3a101d05 5304 }
de212f18
PZ
5305
5306 return NOTIFY_DONE;
3a101d05
TH
5307}
5308
7babe8db 5309static int __init migration_init(void)
1da177e4
LT
5310{
5311 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5312 int err;
48f24c4d 5313
3a101d05 5314 /* Initialize migration for the boot CPU */
07dccf33
AM
5315 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5316 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5317 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5318 register_cpu_notifier(&migration_notifier);
7babe8db 5319
3a101d05
TH
5320 /* Register cpu active notifiers */
5321 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5322 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5323
a004cd42 5324 return 0;
1da177e4 5325}
7babe8db 5326early_initcall(migration_init);
1da177e4
LT
5327#endif
5328
5329#ifdef CONFIG_SMP
476f3534 5330
4cb98839
PZ
5331static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5332
3e9830dc 5333#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5334
d039ac60 5335static __read_mostly int sched_debug_enabled;
f6630114 5336
d039ac60 5337static int __init sched_debug_setup(char *str)
f6630114 5338{
d039ac60 5339 sched_debug_enabled = 1;
f6630114
MT
5340
5341 return 0;
5342}
d039ac60
PZ
5343early_param("sched_debug", sched_debug_setup);
5344
5345static inline bool sched_debug(void)
5346{
5347 return sched_debug_enabled;
5348}
f6630114 5349
7c16ec58 5350static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5351 struct cpumask *groupmask)
1da177e4 5352{
4dcf6aff 5353 struct sched_group *group = sd->groups;
434d53b0 5354 char str[256];
1da177e4 5355
968ea6d8 5356 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5357 cpumask_clear(groupmask);
4dcf6aff
IM
5358
5359 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5360
5361 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5362 printk("does not load-balance\n");
4dcf6aff 5363 if (sd->parent)
3df0fc5b
PZ
5364 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5365 " has parent");
4dcf6aff 5366 return -1;
41c7ce9a
NP
5367 }
5368
3df0fc5b 5369 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5370
758b2cdc 5371 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5372 printk(KERN_ERR "ERROR: domain->span does not contain "
5373 "CPU%d\n", cpu);
4dcf6aff 5374 }
758b2cdc 5375 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5376 printk(KERN_ERR "ERROR: domain->groups does not contain"
5377 " CPU%d\n", cpu);
4dcf6aff 5378 }
1da177e4 5379
4dcf6aff 5380 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5381 do {
4dcf6aff 5382 if (!group) {
3df0fc5b
PZ
5383 printk("\n");
5384 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5385 break;
5386 }
5387
c3decf0d 5388 /*
63b2ca30
NP
5389 * Even though we initialize ->capacity to something semi-sane,
5390 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5391 * domain iteration is still funny without causing /0 traps.
5392 */
63b2ca30 5393 if (!group->sgc->capacity_orig) {
3df0fc5b 5394 printk(KERN_CONT "\n");
63b2ca30 5395 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5396 break;
5397 }
1da177e4 5398
758b2cdc 5399 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5400 printk(KERN_CONT "\n");
5401 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5402 break;
5403 }
1da177e4 5404
cb83b629
PZ
5405 if (!(sd->flags & SD_OVERLAP) &&
5406 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5407 printk(KERN_CONT "\n");
5408 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5409 break;
5410 }
1da177e4 5411
758b2cdc 5412 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5413
968ea6d8 5414 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5415
3df0fc5b 5416 printk(KERN_CONT " %s", str);
ca8ce3d0 5417 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5418 printk(KERN_CONT " (cpu_capacity = %d)",
5419 group->sgc->capacity);
381512cf 5420 }
1da177e4 5421
4dcf6aff
IM
5422 group = group->next;
5423 } while (group != sd->groups);
3df0fc5b 5424 printk(KERN_CONT "\n");
1da177e4 5425
758b2cdc 5426 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5427 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5428
758b2cdc
RR
5429 if (sd->parent &&
5430 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5431 printk(KERN_ERR "ERROR: parent span is not a superset "
5432 "of domain->span\n");
4dcf6aff
IM
5433 return 0;
5434}
1da177e4 5435
4dcf6aff
IM
5436static void sched_domain_debug(struct sched_domain *sd, int cpu)
5437{
5438 int level = 0;
1da177e4 5439
d039ac60 5440 if (!sched_debug_enabled)
f6630114
MT
5441 return;
5442
4dcf6aff
IM
5443 if (!sd) {
5444 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5445 return;
5446 }
1da177e4 5447
4dcf6aff
IM
5448 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5449
5450 for (;;) {
4cb98839 5451 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5452 break;
1da177e4
LT
5453 level++;
5454 sd = sd->parent;
33859f7f 5455 if (!sd)
4dcf6aff
IM
5456 break;
5457 }
1da177e4 5458}
6d6bc0ad 5459#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5460# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5461static inline bool sched_debug(void)
5462{
5463 return false;
5464}
6d6bc0ad 5465#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5466
1a20ff27 5467static int sd_degenerate(struct sched_domain *sd)
245af2c7 5468{
758b2cdc 5469 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5470 return 1;
5471
5472 /* Following flags need at least 2 groups */
5473 if (sd->flags & (SD_LOAD_BALANCE |
5474 SD_BALANCE_NEWIDLE |
5475 SD_BALANCE_FORK |
89c4710e 5476 SD_BALANCE_EXEC |
5d4dfddd 5477 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5478 SD_SHARE_PKG_RESOURCES |
5479 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5480 if (sd->groups != sd->groups->next)
5481 return 0;
5482 }
5483
5484 /* Following flags don't use groups */
c88d5910 5485 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5486 return 0;
5487
5488 return 1;
5489}
5490
48f24c4d
IM
5491static int
5492sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5493{
5494 unsigned long cflags = sd->flags, pflags = parent->flags;
5495
5496 if (sd_degenerate(parent))
5497 return 1;
5498
758b2cdc 5499 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5500 return 0;
5501
245af2c7
SS
5502 /* Flags needing groups don't count if only 1 group in parent */
5503 if (parent->groups == parent->groups->next) {
5504 pflags &= ~(SD_LOAD_BALANCE |
5505 SD_BALANCE_NEWIDLE |
5506 SD_BALANCE_FORK |
89c4710e 5507 SD_BALANCE_EXEC |
5d4dfddd 5508 SD_SHARE_CPUCAPACITY |
10866e62 5509 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5510 SD_PREFER_SIBLING |
5511 SD_SHARE_POWERDOMAIN);
5436499e
KC
5512 if (nr_node_ids == 1)
5513 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5514 }
5515 if (~cflags & pflags)
5516 return 0;
5517
5518 return 1;
5519}
5520
dce840a0 5521static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5522{
dce840a0 5523 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5524
68e74568 5525 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5526 cpudl_cleanup(&rd->cpudl);
1baca4ce 5527 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5528 free_cpumask_var(rd->rto_mask);
5529 free_cpumask_var(rd->online);
5530 free_cpumask_var(rd->span);
5531 kfree(rd);
5532}
5533
57d885fe
GH
5534static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5535{
a0490fa3 5536 struct root_domain *old_rd = NULL;
57d885fe 5537 unsigned long flags;
57d885fe 5538
05fa785c 5539 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5540
5541 if (rq->rd) {
a0490fa3 5542 old_rd = rq->rd;
57d885fe 5543
c6c4927b 5544 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5545 set_rq_offline(rq);
57d885fe 5546
c6c4927b 5547 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5548
a0490fa3 5549 /*
0515973f 5550 * If we dont want to free the old_rd yet then
a0490fa3
IM
5551 * set old_rd to NULL to skip the freeing later
5552 * in this function:
5553 */
5554 if (!atomic_dec_and_test(&old_rd->refcount))
5555 old_rd = NULL;
57d885fe
GH
5556 }
5557
5558 atomic_inc(&rd->refcount);
5559 rq->rd = rd;
5560
c6c4927b 5561 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5562 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5563 set_rq_online(rq);
57d885fe 5564
05fa785c 5565 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5566
5567 if (old_rd)
dce840a0 5568 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5569}
5570
68c38fc3 5571static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5572{
5573 memset(rd, 0, sizeof(*rd));
5574
68c38fc3 5575 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5576 goto out;
68c38fc3 5577 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5578 goto free_span;
1baca4ce 5579 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5580 goto free_online;
1baca4ce
JL
5581 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5582 goto free_dlo_mask;
6e0534f2 5583
332ac17e 5584 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5585 if (cpudl_init(&rd->cpudl) != 0)
5586 goto free_dlo_mask;
332ac17e 5587
68c38fc3 5588 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5589 goto free_rto_mask;
c6c4927b 5590 return 0;
6e0534f2 5591
68e74568
RR
5592free_rto_mask:
5593 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5594free_dlo_mask:
5595 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5596free_online:
5597 free_cpumask_var(rd->online);
5598free_span:
5599 free_cpumask_var(rd->span);
0c910d28 5600out:
c6c4927b 5601 return -ENOMEM;
57d885fe
GH
5602}
5603
029632fb
PZ
5604/*
5605 * By default the system creates a single root-domain with all cpus as
5606 * members (mimicking the global state we have today).
5607 */
5608struct root_domain def_root_domain;
5609
57d885fe
GH
5610static void init_defrootdomain(void)
5611{
68c38fc3 5612 init_rootdomain(&def_root_domain);
c6c4927b 5613
57d885fe
GH
5614 atomic_set(&def_root_domain.refcount, 1);
5615}
5616
dc938520 5617static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5618{
5619 struct root_domain *rd;
5620
5621 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5622 if (!rd)
5623 return NULL;
5624
68c38fc3 5625 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5626 kfree(rd);
5627 return NULL;
5628 }
57d885fe
GH
5629
5630 return rd;
5631}
5632
63b2ca30 5633static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5634{
5635 struct sched_group *tmp, *first;
5636
5637 if (!sg)
5638 return;
5639
5640 first = sg;
5641 do {
5642 tmp = sg->next;
5643
63b2ca30
NP
5644 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5645 kfree(sg->sgc);
e3589f6c
PZ
5646
5647 kfree(sg);
5648 sg = tmp;
5649 } while (sg != first);
5650}
5651
dce840a0
PZ
5652static void free_sched_domain(struct rcu_head *rcu)
5653{
5654 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5655
5656 /*
5657 * If its an overlapping domain it has private groups, iterate and
5658 * nuke them all.
5659 */
5660 if (sd->flags & SD_OVERLAP) {
5661 free_sched_groups(sd->groups, 1);
5662 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5663 kfree(sd->groups->sgc);
dce840a0 5664 kfree(sd->groups);
9c3f75cb 5665 }
dce840a0
PZ
5666 kfree(sd);
5667}
5668
5669static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5670{
5671 call_rcu(&sd->rcu, free_sched_domain);
5672}
5673
5674static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5675{
5676 for (; sd; sd = sd->parent)
5677 destroy_sched_domain(sd, cpu);
5678}
5679
518cd623
PZ
5680/*
5681 * Keep a special pointer to the highest sched_domain that has
5682 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5683 * allows us to avoid some pointer chasing select_idle_sibling().
5684 *
5685 * Also keep a unique ID per domain (we use the first cpu number in
5686 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5687 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5688 */
5689DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5690DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5691DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5692DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5693DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5694DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5695
5696static void update_top_cache_domain(int cpu)
5697{
5698 struct sched_domain *sd;
5d4cf996 5699 struct sched_domain *busy_sd = NULL;
518cd623 5700 int id = cpu;
7d9ffa89 5701 int size = 1;
518cd623
PZ
5702
5703 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5704 if (sd) {
518cd623 5705 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5706 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5707 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5708 }
5d4cf996 5709 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5710
5711 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5712 per_cpu(sd_llc_size, cpu) = size;
518cd623 5713 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5714
5715 sd = lowest_flag_domain(cpu, SD_NUMA);
5716 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5717
5718 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5719 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5720}
5721
1da177e4 5722/*
0eab9146 5723 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5724 * hold the hotplug lock.
5725 */
0eab9146
IM
5726static void
5727cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5728{
70b97a7f 5729 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5730 struct sched_domain *tmp;
5731
5732 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5733 for (tmp = sd; tmp; ) {
245af2c7
SS
5734 struct sched_domain *parent = tmp->parent;
5735 if (!parent)
5736 break;
f29c9b1c 5737
1a848870 5738 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5739 tmp->parent = parent->parent;
1a848870
SS
5740 if (parent->parent)
5741 parent->parent->child = tmp;
10866e62
PZ
5742 /*
5743 * Transfer SD_PREFER_SIBLING down in case of a
5744 * degenerate parent; the spans match for this
5745 * so the property transfers.
5746 */
5747 if (parent->flags & SD_PREFER_SIBLING)
5748 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5749 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5750 } else
5751 tmp = tmp->parent;
245af2c7
SS
5752 }
5753
1a848870 5754 if (sd && sd_degenerate(sd)) {
dce840a0 5755 tmp = sd;
245af2c7 5756 sd = sd->parent;
dce840a0 5757 destroy_sched_domain(tmp, cpu);
1a848870
SS
5758 if (sd)
5759 sd->child = NULL;
5760 }
1da177e4 5761
4cb98839 5762 sched_domain_debug(sd, cpu);
1da177e4 5763
57d885fe 5764 rq_attach_root(rq, rd);
dce840a0 5765 tmp = rq->sd;
674311d5 5766 rcu_assign_pointer(rq->sd, sd);
dce840a0 5767 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5768
5769 update_top_cache_domain(cpu);
1da177e4
LT
5770}
5771
5772/* cpus with isolated domains */
dcc30a35 5773static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5774
5775/* Setup the mask of cpus configured for isolated domains */
5776static int __init isolated_cpu_setup(char *str)
5777{
bdddd296 5778 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5779 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5780 return 1;
5781}
5782
8927f494 5783__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5784
49a02c51 5785struct s_data {
21d42ccf 5786 struct sched_domain ** __percpu sd;
49a02c51
AH
5787 struct root_domain *rd;
5788};
5789
2109b99e 5790enum s_alloc {
2109b99e 5791 sa_rootdomain,
21d42ccf 5792 sa_sd,
dce840a0 5793 sa_sd_storage,
2109b99e
AH
5794 sa_none,
5795};
5796
c1174876
PZ
5797/*
5798 * Build an iteration mask that can exclude certain CPUs from the upwards
5799 * domain traversal.
5800 *
5801 * Asymmetric node setups can result in situations where the domain tree is of
5802 * unequal depth, make sure to skip domains that already cover the entire
5803 * range.
5804 *
5805 * In that case build_sched_domains() will have terminated the iteration early
5806 * and our sibling sd spans will be empty. Domains should always include the
5807 * cpu they're built on, so check that.
5808 *
5809 */
5810static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5811{
5812 const struct cpumask *span = sched_domain_span(sd);
5813 struct sd_data *sdd = sd->private;
5814 struct sched_domain *sibling;
5815 int i;
5816
5817 for_each_cpu(i, span) {
5818 sibling = *per_cpu_ptr(sdd->sd, i);
5819 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5820 continue;
5821
5822 cpumask_set_cpu(i, sched_group_mask(sg));
5823 }
5824}
5825
5826/*
5827 * Return the canonical balance cpu for this group, this is the first cpu
5828 * of this group that's also in the iteration mask.
5829 */
5830int group_balance_cpu(struct sched_group *sg)
5831{
5832 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5833}
5834
e3589f6c
PZ
5835static int
5836build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5837{
5838 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5839 const struct cpumask *span = sched_domain_span(sd);
5840 struct cpumask *covered = sched_domains_tmpmask;
5841 struct sd_data *sdd = sd->private;
aaecac4a 5842 struct sched_domain *sibling;
e3589f6c
PZ
5843 int i;
5844
5845 cpumask_clear(covered);
5846
5847 for_each_cpu(i, span) {
5848 struct cpumask *sg_span;
5849
5850 if (cpumask_test_cpu(i, covered))
5851 continue;
5852
aaecac4a 5853 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5854
5855 /* See the comment near build_group_mask(). */
aaecac4a 5856 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5857 continue;
5858
e3589f6c 5859 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5860 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5861
5862 if (!sg)
5863 goto fail;
5864
5865 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5866 if (sibling->child)
5867 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5868 else
e3589f6c
PZ
5869 cpumask_set_cpu(i, sg_span);
5870
5871 cpumask_or(covered, covered, sg_span);
5872
63b2ca30
NP
5873 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5874 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5875 build_group_mask(sd, sg);
5876
c3decf0d 5877 /*
63b2ca30 5878 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5879 * domains and no possible iteration will get us here, we won't
5880 * die on a /0 trap.
5881 */
ca8ce3d0 5882 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5883 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5884
c1174876
PZ
5885 /*
5886 * Make sure the first group of this domain contains the
5887 * canonical balance cpu. Otherwise the sched_domain iteration
5888 * breaks. See update_sg_lb_stats().
5889 */
74a5ce20 5890 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5891 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5892 groups = sg;
5893
5894 if (!first)
5895 first = sg;
5896 if (last)
5897 last->next = sg;
5898 last = sg;
5899 last->next = first;
5900 }
5901 sd->groups = groups;
5902
5903 return 0;
5904
5905fail:
5906 free_sched_groups(first, 0);
5907
5908 return -ENOMEM;
5909}
5910
dce840a0 5911static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5912{
dce840a0
PZ
5913 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5914 struct sched_domain *child = sd->child;
1da177e4 5915
dce840a0
PZ
5916 if (child)
5917 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5918
9c3f75cb 5919 if (sg) {
dce840a0 5920 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5921 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5922 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5923 }
dce840a0
PZ
5924
5925 return cpu;
1e9f28fa 5926}
1e9f28fa 5927
01a08546 5928/*
dce840a0
PZ
5929 * build_sched_groups will build a circular linked list of the groups
5930 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5931 * and ->cpu_capacity to 0.
e3589f6c
PZ
5932 *
5933 * Assumes the sched_domain tree is fully constructed
01a08546 5934 */
e3589f6c
PZ
5935static int
5936build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5937{
dce840a0
PZ
5938 struct sched_group *first = NULL, *last = NULL;
5939 struct sd_data *sdd = sd->private;
5940 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5941 struct cpumask *covered;
dce840a0 5942 int i;
9c1cfda2 5943
e3589f6c
PZ
5944 get_group(cpu, sdd, &sd->groups);
5945 atomic_inc(&sd->groups->ref);
5946
0936629f 5947 if (cpu != cpumask_first(span))
e3589f6c
PZ
5948 return 0;
5949
f96225fd
PZ
5950 lockdep_assert_held(&sched_domains_mutex);
5951 covered = sched_domains_tmpmask;
5952
dce840a0 5953 cpumask_clear(covered);
6711cab4 5954
dce840a0
PZ
5955 for_each_cpu(i, span) {
5956 struct sched_group *sg;
cd08e923 5957 int group, j;
6711cab4 5958
dce840a0
PZ
5959 if (cpumask_test_cpu(i, covered))
5960 continue;
6711cab4 5961
cd08e923 5962 group = get_group(i, sdd, &sg);
c1174876 5963 cpumask_setall(sched_group_mask(sg));
0601a88d 5964
dce840a0
PZ
5965 for_each_cpu(j, span) {
5966 if (get_group(j, sdd, NULL) != group)
5967 continue;
0601a88d 5968
dce840a0
PZ
5969 cpumask_set_cpu(j, covered);
5970 cpumask_set_cpu(j, sched_group_cpus(sg));
5971 }
0601a88d 5972
dce840a0
PZ
5973 if (!first)
5974 first = sg;
5975 if (last)
5976 last->next = sg;
5977 last = sg;
5978 }
5979 last->next = first;
e3589f6c
PZ
5980
5981 return 0;
0601a88d 5982}
51888ca2 5983
89c4710e 5984/*
63b2ca30 5985 * Initialize sched groups cpu_capacity.
89c4710e 5986 *
63b2ca30 5987 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5988 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5989 * Typically cpu_capacity for all the groups in a sched domain will be same
5990 * unless there are asymmetries in the topology. If there are asymmetries,
5991 * group having more cpu_capacity will pickup more load compared to the
5992 * group having less cpu_capacity.
89c4710e 5993 */
63b2ca30 5994static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5995{
e3589f6c 5996 struct sched_group *sg = sd->groups;
89c4710e 5997
94c95ba6 5998 WARN_ON(!sg);
e3589f6c
PZ
5999
6000 do {
6001 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6002 sg = sg->next;
6003 } while (sg != sd->groups);
89c4710e 6004
c1174876 6005 if (cpu != group_balance_cpu(sg))
e3589f6c 6006 return;
aae6d3dd 6007
63b2ca30
NP
6008 update_group_capacity(sd, cpu);
6009 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6010}
6011
7c16ec58
MT
6012/*
6013 * Initializers for schedule domains
6014 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6015 */
6016
1d3504fc 6017static int default_relax_domain_level = -1;
60495e77 6018int sched_domain_level_max;
1d3504fc
HS
6019
6020static int __init setup_relax_domain_level(char *str)
6021{
a841f8ce
DS
6022 if (kstrtoint(str, 0, &default_relax_domain_level))
6023 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6024
1d3504fc
HS
6025 return 1;
6026}
6027__setup("relax_domain_level=", setup_relax_domain_level);
6028
6029static void set_domain_attribute(struct sched_domain *sd,
6030 struct sched_domain_attr *attr)
6031{
6032 int request;
6033
6034 if (!attr || attr->relax_domain_level < 0) {
6035 if (default_relax_domain_level < 0)
6036 return;
6037 else
6038 request = default_relax_domain_level;
6039 } else
6040 request = attr->relax_domain_level;
6041 if (request < sd->level) {
6042 /* turn off idle balance on this domain */
c88d5910 6043 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6044 } else {
6045 /* turn on idle balance on this domain */
c88d5910 6046 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6047 }
6048}
6049
54ab4ff4
PZ
6050static void __sdt_free(const struct cpumask *cpu_map);
6051static int __sdt_alloc(const struct cpumask *cpu_map);
6052
2109b99e
AH
6053static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6054 const struct cpumask *cpu_map)
6055{
6056 switch (what) {
2109b99e 6057 case sa_rootdomain:
822ff793
PZ
6058 if (!atomic_read(&d->rd->refcount))
6059 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6060 case sa_sd:
6061 free_percpu(d->sd); /* fall through */
dce840a0 6062 case sa_sd_storage:
54ab4ff4 6063 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6064 case sa_none:
6065 break;
6066 }
6067}
3404c8d9 6068
2109b99e
AH
6069static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6070 const struct cpumask *cpu_map)
6071{
dce840a0
PZ
6072 memset(d, 0, sizeof(*d));
6073
54ab4ff4
PZ
6074 if (__sdt_alloc(cpu_map))
6075 return sa_sd_storage;
dce840a0
PZ
6076 d->sd = alloc_percpu(struct sched_domain *);
6077 if (!d->sd)
6078 return sa_sd_storage;
2109b99e 6079 d->rd = alloc_rootdomain();
dce840a0 6080 if (!d->rd)
21d42ccf 6081 return sa_sd;
2109b99e
AH
6082 return sa_rootdomain;
6083}
57d885fe 6084
dce840a0
PZ
6085/*
6086 * NULL the sd_data elements we've used to build the sched_domain and
6087 * sched_group structure so that the subsequent __free_domain_allocs()
6088 * will not free the data we're using.
6089 */
6090static void claim_allocations(int cpu, struct sched_domain *sd)
6091{
6092 struct sd_data *sdd = sd->private;
dce840a0
PZ
6093
6094 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6095 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6096
e3589f6c 6097 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6098 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6099
63b2ca30
NP
6100 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6101 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6102}
6103
cb83b629 6104#ifdef CONFIG_NUMA
cb83b629 6105static int sched_domains_numa_levels;
cb83b629
PZ
6106static int *sched_domains_numa_distance;
6107static struct cpumask ***sched_domains_numa_masks;
6108static int sched_domains_curr_level;
143e1e28 6109#endif
cb83b629 6110
143e1e28
VG
6111/*
6112 * SD_flags allowed in topology descriptions.
6113 *
5d4dfddd 6114 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6115 * SD_SHARE_PKG_RESOURCES - describes shared caches
6116 * SD_NUMA - describes NUMA topologies
d77b3ed5 6117 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6118 *
6119 * Odd one out:
6120 * SD_ASYM_PACKING - describes SMT quirks
6121 */
6122#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6123 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6124 SD_SHARE_PKG_RESOURCES | \
6125 SD_NUMA | \
d77b3ed5
VG
6126 SD_ASYM_PACKING | \
6127 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6128
6129static struct sched_domain *
143e1e28 6130sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6131{
6132 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6133 int sd_weight, sd_flags = 0;
6134
6135#ifdef CONFIG_NUMA
6136 /*
6137 * Ugly hack to pass state to sd_numa_mask()...
6138 */
6139 sched_domains_curr_level = tl->numa_level;
6140#endif
6141
6142 sd_weight = cpumask_weight(tl->mask(cpu));
6143
6144 if (tl->sd_flags)
6145 sd_flags = (*tl->sd_flags)();
6146 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6147 "wrong sd_flags in topology description\n"))
6148 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6149
6150 *sd = (struct sched_domain){
6151 .min_interval = sd_weight,
6152 .max_interval = 2*sd_weight,
6153 .busy_factor = 32,
870a0bb5 6154 .imbalance_pct = 125,
143e1e28
VG
6155
6156 .cache_nice_tries = 0,
6157 .busy_idx = 0,
6158 .idle_idx = 0,
cb83b629
PZ
6159 .newidle_idx = 0,
6160 .wake_idx = 0,
6161 .forkexec_idx = 0,
6162
6163 .flags = 1*SD_LOAD_BALANCE
6164 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6165 | 1*SD_BALANCE_EXEC
6166 | 1*SD_BALANCE_FORK
cb83b629 6167 | 0*SD_BALANCE_WAKE
143e1e28 6168 | 1*SD_WAKE_AFFINE
5d4dfddd 6169 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6170 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6171 | 0*SD_SERIALIZE
cb83b629 6172 | 0*SD_PREFER_SIBLING
143e1e28
VG
6173 | 0*SD_NUMA
6174 | sd_flags
cb83b629 6175 ,
143e1e28 6176
cb83b629
PZ
6177 .last_balance = jiffies,
6178 .balance_interval = sd_weight,
143e1e28 6179 .smt_gain = 0,
2b4cfe64
JL
6180 .max_newidle_lb_cost = 0,
6181 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6182#ifdef CONFIG_SCHED_DEBUG
6183 .name = tl->name,
6184#endif
cb83b629 6185 };
cb83b629
PZ
6186
6187 /*
143e1e28 6188 * Convert topological properties into behaviour.
cb83b629 6189 */
143e1e28 6190
5d4dfddd 6191 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6192 sd->imbalance_pct = 110;
6193 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6194
6195 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6196 sd->imbalance_pct = 117;
6197 sd->cache_nice_tries = 1;
6198 sd->busy_idx = 2;
6199
6200#ifdef CONFIG_NUMA
6201 } else if (sd->flags & SD_NUMA) {
6202 sd->cache_nice_tries = 2;
6203 sd->busy_idx = 3;
6204 sd->idle_idx = 2;
6205
6206 sd->flags |= SD_SERIALIZE;
6207 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6208 sd->flags &= ~(SD_BALANCE_EXEC |
6209 SD_BALANCE_FORK |
6210 SD_WAKE_AFFINE);
6211 }
6212
6213#endif
6214 } else {
6215 sd->flags |= SD_PREFER_SIBLING;
6216 sd->cache_nice_tries = 1;
6217 sd->busy_idx = 2;
6218 sd->idle_idx = 1;
6219 }
6220
6221 sd->private = &tl->data;
cb83b629
PZ
6222
6223 return sd;
6224}
6225
143e1e28
VG
6226/*
6227 * Topology list, bottom-up.
6228 */
6229static struct sched_domain_topology_level default_topology[] = {
6230#ifdef CONFIG_SCHED_SMT
6231 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6232#endif
6233#ifdef CONFIG_SCHED_MC
6234 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6235#endif
6236 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6237 { NULL, },
6238};
6239
6240struct sched_domain_topology_level *sched_domain_topology = default_topology;
6241
6242#define for_each_sd_topology(tl) \
6243 for (tl = sched_domain_topology; tl->mask; tl++)
6244
6245void set_sched_topology(struct sched_domain_topology_level *tl)
6246{
6247 sched_domain_topology = tl;
6248}
6249
6250#ifdef CONFIG_NUMA
6251
cb83b629
PZ
6252static const struct cpumask *sd_numa_mask(int cpu)
6253{
6254 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6255}
6256
d039ac60
PZ
6257static void sched_numa_warn(const char *str)
6258{
6259 static int done = false;
6260 int i,j;
6261
6262 if (done)
6263 return;
6264
6265 done = true;
6266
6267 printk(KERN_WARNING "ERROR: %s\n\n", str);
6268
6269 for (i = 0; i < nr_node_ids; i++) {
6270 printk(KERN_WARNING " ");
6271 for (j = 0; j < nr_node_ids; j++)
6272 printk(KERN_CONT "%02d ", node_distance(i,j));
6273 printk(KERN_CONT "\n");
6274 }
6275 printk(KERN_WARNING "\n");
6276}
6277
6278static bool find_numa_distance(int distance)
6279{
6280 int i;
6281
6282 if (distance == node_distance(0, 0))
6283 return true;
6284
6285 for (i = 0; i < sched_domains_numa_levels; i++) {
6286 if (sched_domains_numa_distance[i] == distance)
6287 return true;
6288 }
6289
6290 return false;
6291}
6292
cb83b629
PZ
6293static void sched_init_numa(void)
6294{
6295 int next_distance, curr_distance = node_distance(0, 0);
6296 struct sched_domain_topology_level *tl;
6297 int level = 0;
6298 int i, j, k;
6299
cb83b629
PZ
6300 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6301 if (!sched_domains_numa_distance)
6302 return;
6303
6304 /*
6305 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6306 * unique distances in the node_distance() table.
6307 *
6308 * Assumes node_distance(0,j) includes all distances in
6309 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6310 */
6311 next_distance = curr_distance;
6312 for (i = 0; i < nr_node_ids; i++) {
6313 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6314 for (k = 0; k < nr_node_ids; k++) {
6315 int distance = node_distance(i, k);
6316
6317 if (distance > curr_distance &&
6318 (distance < next_distance ||
6319 next_distance == curr_distance))
6320 next_distance = distance;
6321
6322 /*
6323 * While not a strong assumption it would be nice to know
6324 * about cases where if node A is connected to B, B is not
6325 * equally connected to A.
6326 */
6327 if (sched_debug() && node_distance(k, i) != distance)
6328 sched_numa_warn("Node-distance not symmetric");
6329
6330 if (sched_debug() && i && !find_numa_distance(distance))
6331 sched_numa_warn("Node-0 not representative");
6332 }
6333 if (next_distance != curr_distance) {
6334 sched_domains_numa_distance[level++] = next_distance;
6335 sched_domains_numa_levels = level;
6336 curr_distance = next_distance;
6337 } else break;
cb83b629 6338 }
d039ac60
PZ
6339
6340 /*
6341 * In case of sched_debug() we verify the above assumption.
6342 */
6343 if (!sched_debug())
6344 break;
cb83b629 6345 }
c123588b
AR
6346
6347 if (!level)
6348 return;
6349
cb83b629
PZ
6350 /*
6351 * 'level' contains the number of unique distances, excluding the
6352 * identity distance node_distance(i,i).
6353 *
28b4a521 6354 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6355 * numbers.
6356 */
6357
5f7865f3
TC
6358 /*
6359 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6360 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6361 * the array will contain less then 'level' members. This could be
6362 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6363 * in other functions.
6364 *
6365 * We reset it to 'level' at the end of this function.
6366 */
6367 sched_domains_numa_levels = 0;
6368
cb83b629
PZ
6369 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6370 if (!sched_domains_numa_masks)
6371 return;
6372
6373 /*
6374 * Now for each level, construct a mask per node which contains all
6375 * cpus of nodes that are that many hops away from us.
6376 */
6377 for (i = 0; i < level; i++) {
6378 sched_domains_numa_masks[i] =
6379 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6380 if (!sched_domains_numa_masks[i])
6381 return;
6382
6383 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6384 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6385 if (!mask)
6386 return;
6387
6388 sched_domains_numa_masks[i][j] = mask;
6389
6390 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6391 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6392 continue;
6393
6394 cpumask_or(mask, mask, cpumask_of_node(k));
6395 }
6396 }
6397 }
6398
143e1e28
VG
6399 /* Compute default topology size */
6400 for (i = 0; sched_domain_topology[i].mask; i++);
6401
c515db8c 6402 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6403 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6404 if (!tl)
6405 return;
6406
6407 /*
6408 * Copy the default topology bits..
6409 */
143e1e28
VG
6410 for (i = 0; sched_domain_topology[i].mask; i++)
6411 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6412
6413 /*
6414 * .. and append 'j' levels of NUMA goodness.
6415 */
6416 for (j = 0; j < level; i++, j++) {
6417 tl[i] = (struct sched_domain_topology_level){
cb83b629 6418 .mask = sd_numa_mask,
143e1e28 6419 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6420 .flags = SDTL_OVERLAP,
6421 .numa_level = j,
143e1e28 6422 SD_INIT_NAME(NUMA)
cb83b629
PZ
6423 };
6424 }
6425
6426 sched_domain_topology = tl;
5f7865f3
TC
6427
6428 sched_domains_numa_levels = level;
cb83b629 6429}
301a5cba
TC
6430
6431static void sched_domains_numa_masks_set(int cpu)
6432{
6433 int i, j;
6434 int node = cpu_to_node(cpu);
6435
6436 for (i = 0; i < sched_domains_numa_levels; i++) {
6437 for (j = 0; j < nr_node_ids; j++) {
6438 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6439 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6440 }
6441 }
6442}
6443
6444static void sched_domains_numa_masks_clear(int cpu)
6445{
6446 int i, j;
6447 for (i = 0; i < sched_domains_numa_levels; i++) {
6448 for (j = 0; j < nr_node_ids; j++)
6449 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6450 }
6451}
6452
6453/*
6454 * Update sched_domains_numa_masks[level][node] array when new cpus
6455 * are onlined.
6456 */
6457static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6458 unsigned long action,
6459 void *hcpu)
6460{
6461 int cpu = (long)hcpu;
6462
6463 switch (action & ~CPU_TASKS_FROZEN) {
6464 case CPU_ONLINE:
6465 sched_domains_numa_masks_set(cpu);
6466 break;
6467
6468 case CPU_DEAD:
6469 sched_domains_numa_masks_clear(cpu);
6470 break;
6471
6472 default:
6473 return NOTIFY_DONE;
6474 }
6475
6476 return NOTIFY_OK;
cb83b629
PZ
6477}
6478#else
6479static inline void sched_init_numa(void)
6480{
6481}
301a5cba
TC
6482
6483static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6484 unsigned long action,
6485 void *hcpu)
6486{
6487 return 0;
6488}
cb83b629
PZ
6489#endif /* CONFIG_NUMA */
6490
54ab4ff4
PZ
6491static int __sdt_alloc(const struct cpumask *cpu_map)
6492{
6493 struct sched_domain_topology_level *tl;
6494 int j;
6495
27723a68 6496 for_each_sd_topology(tl) {
54ab4ff4
PZ
6497 struct sd_data *sdd = &tl->data;
6498
6499 sdd->sd = alloc_percpu(struct sched_domain *);
6500 if (!sdd->sd)
6501 return -ENOMEM;
6502
6503 sdd->sg = alloc_percpu(struct sched_group *);
6504 if (!sdd->sg)
6505 return -ENOMEM;
6506
63b2ca30
NP
6507 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6508 if (!sdd->sgc)
9c3f75cb
PZ
6509 return -ENOMEM;
6510
54ab4ff4
PZ
6511 for_each_cpu(j, cpu_map) {
6512 struct sched_domain *sd;
6513 struct sched_group *sg;
63b2ca30 6514 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6515
6516 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6517 GFP_KERNEL, cpu_to_node(j));
6518 if (!sd)
6519 return -ENOMEM;
6520
6521 *per_cpu_ptr(sdd->sd, j) = sd;
6522
6523 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6524 GFP_KERNEL, cpu_to_node(j));
6525 if (!sg)
6526 return -ENOMEM;
6527
30b4e9eb
IM
6528 sg->next = sg;
6529
54ab4ff4 6530 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6531
63b2ca30 6532 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6533 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6534 if (!sgc)
9c3f75cb
PZ
6535 return -ENOMEM;
6536
63b2ca30 6537 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6538 }
6539 }
6540
6541 return 0;
6542}
6543
6544static void __sdt_free(const struct cpumask *cpu_map)
6545{
6546 struct sched_domain_topology_level *tl;
6547 int j;
6548
27723a68 6549 for_each_sd_topology(tl) {
54ab4ff4
PZ
6550 struct sd_data *sdd = &tl->data;
6551
6552 for_each_cpu(j, cpu_map) {
fb2cf2c6 6553 struct sched_domain *sd;
6554
6555 if (sdd->sd) {
6556 sd = *per_cpu_ptr(sdd->sd, j);
6557 if (sd && (sd->flags & SD_OVERLAP))
6558 free_sched_groups(sd->groups, 0);
6559 kfree(*per_cpu_ptr(sdd->sd, j));
6560 }
6561
6562 if (sdd->sg)
6563 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6564 if (sdd->sgc)
6565 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6566 }
6567 free_percpu(sdd->sd);
fb2cf2c6 6568 sdd->sd = NULL;
54ab4ff4 6569 free_percpu(sdd->sg);
fb2cf2c6 6570 sdd->sg = NULL;
63b2ca30
NP
6571 free_percpu(sdd->sgc);
6572 sdd->sgc = NULL;
54ab4ff4
PZ
6573 }
6574}
6575
2c402dc3 6576struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6577 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6578 struct sched_domain *child, int cpu)
2c402dc3 6579{
143e1e28 6580 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6581 if (!sd)
d069b916 6582 return child;
2c402dc3 6583
2c402dc3 6584 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6585 if (child) {
6586 sd->level = child->level + 1;
6587 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6588 child->parent = sd;
c75e0128 6589 sd->child = child;
6ae72dff
PZ
6590
6591 if (!cpumask_subset(sched_domain_span(child),
6592 sched_domain_span(sd))) {
6593 pr_err("BUG: arch topology borken\n");
6594#ifdef CONFIG_SCHED_DEBUG
6595 pr_err(" the %s domain not a subset of the %s domain\n",
6596 child->name, sd->name);
6597#endif
6598 /* Fixup, ensure @sd has at least @child cpus. */
6599 cpumask_or(sched_domain_span(sd),
6600 sched_domain_span(sd),
6601 sched_domain_span(child));
6602 }
6603
60495e77 6604 }
a841f8ce 6605 set_domain_attribute(sd, attr);
2c402dc3
PZ
6606
6607 return sd;
6608}
6609
2109b99e
AH
6610/*
6611 * Build sched domains for a given set of cpus and attach the sched domains
6612 * to the individual cpus
6613 */
dce840a0
PZ
6614static int build_sched_domains(const struct cpumask *cpu_map,
6615 struct sched_domain_attr *attr)
2109b99e 6616{
1c632169 6617 enum s_alloc alloc_state;
dce840a0 6618 struct sched_domain *sd;
2109b99e 6619 struct s_data d;
822ff793 6620 int i, ret = -ENOMEM;
9c1cfda2 6621
2109b99e
AH
6622 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6623 if (alloc_state != sa_rootdomain)
6624 goto error;
9c1cfda2 6625
dce840a0 6626 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6627 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6628 struct sched_domain_topology_level *tl;
6629
3bd65a80 6630 sd = NULL;
27723a68 6631 for_each_sd_topology(tl) {
4a850cbe 6632 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6633 if (tl == sched_domain_topology)
6634 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6635 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6636 sd->flags |= SD_OVERLAP;
d110235d
PZ
6637 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6638 break;
e3589f6c 6639 }
dce840a0
PZ
6640 }
6641
6642 /* Build the groups for the domains */
6643 for_each_cpu(i, cpu_map) {
6644 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6645 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6646 if (sd->flags & SD_OVERLAP) {
6647 if (build_overlap_sched_groups(sd, i))
6648 goto error;
6649 } else {
6650 if (build_sched_groups(sd, i))
6651 goto error;
6652 }
1cf51902 6653 }
a06dadbe 6654 }
9c1cfda2 6655
ced549fa 6656 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6657 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6658 if (!cpumask_test_cpu(i, cpu_map))
6659 continue;
9c1cfda2 6660
dce840a0
PZ
6661 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6662 claim_allocations(i, sd);
63b2ca30 6663 init_sched_groups_capacity(i, sd);
dce840a0 6664 }
f712c0c7 6665 }
9c1cfda2 6666
1da177e4 6667 /* Attach the domains */
dce840a0 6668 rcu_read_lock();
abcd083a 6669 for_each_cpu(i, cpu_map) {
21d42ccf 6670 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6671 cpu_attach_domain(sd, d.rd, i);
1da177e4 6672 }
dce840a0 6673 rcu_read_unlock();
51888ca2 6674
822ff793 6675 ret = 0;
51888ca2 6676error:
2109b99e 6677 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6678 return ret;
1da177e4 6679}
029190c5 6680
acc3f5d7 6681static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6682static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6683static struct sched_domain_attr *dattr_cur;
6684 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6685
6686/*
6687 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6688 * cpumask) fails, then fallback to a single sched domain,
6689 * as determined by the single cpumask fallback_doms.
029190c5 6690 */
4212823f 6691static cpumask_var_t fallback_doms;
029190c5 6692
ee79d1bd
HC
6693/*
6694 * arch_update_cpu_topology lets virtualized architectures update the
6695 * cpu core maps. It is supposed to return 1 if the topology changed
6696 * or 0 if it stayed the same.
6697 */
52f5684c 6698int __weak arch_update_cpu_topology(void)
22e52b07 6699{
ee79d1bd 6700 return 0;
22e52b07
HC
6701}
6702
acc3f5d7
RR
6703cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6704{
6705 int i;
6706 cpumask_var_t *doms;
6707
6708 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6709 if (!doms)
6710 return NULL;
6711 for (i = 0; i < ndoms; i++) {
6712 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6713 free_sched_domains(doms, i);
6714 return NULL;
6715 }
6716 }
6717 return doms;
6718}
6719
6720void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6721{
6722 unsigned int i;
6723 for (i = 0; i < ndoms; i++)
6724 free_cpumask_var(doms[i]);
6725 kfree(doms);
6726}
6727
1a20ff27 6728/*
41a2d6cf 6729 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6730 * For now this just excludes isolated cpus, but could be used to
6731 * exclude other special cases in the future.
1a20ff27 6732 */
c4a8849a 6733static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6734{
7378547f
MM
6735 int err;
6736
22e52b07 6737 arch_update_cpu_topology();
029190c5 6738 ndoms_cur = 1;
acc3f5d7 6739 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6740 if (!doms_cur)
acc3f5d7
RR
6741 doms_cur = &fallback_doms;
6742 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6743 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6744 register_sched_domain_sysctl();
7378547f
MM
6745
6746 return err;
1a20ff27
DG
6747}
6748
1a20ff27
DG
6749/*
6750 * Detach sched domains from a group of cpus specified in cpu_map
6751 * These cpus will now be attached to the NULL domain
6752 */
96f874e2 6753static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6754{
6755 int i;
6756
dce840a0 6757 rcu_read_lock();
abcd083a 6758 for_each_cpu(i, cpu_map)
57d885fe 6759 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6760 rcu_read_unlock();
1a20ff27
DG
6761}
6762
1d3504fc
HS
6763/* handle null as "default" */
6764static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6765 struct sched_domain_attr *new, int idx_new)
6766{
6767 struct sched_domain_attr tmp;
6768
6769 /* fast path */
6770 if (!new && !cur)
6771 return 1;
6772
6773 tmp = SD_ATTR_INIT;
6774 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6775 new ? (new + idx_new) : &tmp,
6776 sizeof(struct sched_domain_attr));
6777}
6778
029190c5
PJ
6779/*
6780 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6781 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6782 * doms_new[] to the current sched domain partitioning, doms_cur[].
6783 * It destroys each deleted domain and builds each new domain.
6784 *
acc3f5d7 6785 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6786 * The masks don't intersect (don't overlap.) We should setup one
6787 * sched domain for each mask. CPUs not in any of the cpumasks will
6788 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6789 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6790 * it as it is.
6791 *
acc3f5d7
RR
6792 * The passed in 'doms_new' should be allocated using
6793 * alloc_sched_domains. This routine takes ownership of it and will
6794 * free_sched_domains it when done with it. If the caller failed the
6795 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6796 * and partition_sched_domains() will fallback to the single partition
6797 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6798 *
96f874e2 6799 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6800 * ndoms_new == 0 is a special case for destroying existing domains,
6801 * and it will not create the default domain.
dfb512ec 6802 *
029190c5
PJ
6803 * Call with hotplug lock held
6804 */
acc3f5d7 6805void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6806 struct sched_domain_attr *dattr_new)
029190c5 6807{
dfb512ec 6808 int i, j, n;
d65bd5ec 6809 int new_topology;
029190c5 6810
712555ee 6811 mutex_lock(&sched_domains_mutex);
a1835615 6812
7378547f
MM
6813 /* always unregister in case we don't destroy any domains */
6814 unregister_sched_domain_sysctl();
6815
d65bd5ec
HC
6816 /* Let architecture update cpu core mappings. */
6817 new_topology = arch_update_cpu_topology();
6818
dfb512ec 6819 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6820
6821 /* Destroy deleted domains */
6822 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6823 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6824 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6825 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6826 goto match1;
6827 }
6828 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6829 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6830match1:
6831 ;
6832 }
6833
c8d2d47a 6834 n = ndoms_cur;
e761b772 6835 if (doms_new == NULL) {
c8d2d47a 6836 n = 0;
acc3f5d7 6837 doms_new = &fallback_doms;
6ad4c188 6838 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6839 WARN_ON_ONCE(dattr_new);
e761b772
MK
6840 }
6841
029190c5
PJ
6842 /* Build new domains */
6843 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6844 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6845 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6846 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6847 goto match2;
6848 }
6849 /* no match - add a new doms_new */
dce840a0 6850 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6851match2:
6852 ;
6853 }
6854
6855 /* Remember the new sched domains */
acc3f5d7
RR
6856 if (doms_cur != &fallback_doms)
6857 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6858 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6859 doms_cur = doms_new;
1d3504fc 6860 dattr_cur = dattr_new;
029190c5 6861 ndoms_cur = ndoms_new;
7378547f
MM
6862
6863 register_sched_domain_sysctl();
a1835615 6864
712555ee 6865 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6866}
6867
d35be8ba
SB
6868static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6869
1da177e4 6870/*
3a101d05
TH
6871 * Update cpusets according to cpu_active mask. If cpusets are
6872 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6873 * around partition_sched_domains().
d35be8ba
SB
6874 *
6875 * If we come here as part of a suspend/resume, don't touch cpusets because we
6876 * want to restore it back to its original state upon resume anyway.
1da177e4 6877 */
0b2e918a
TH
6878static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6879 void *hcpu)
e761b772 6880{
d35be8ba
SB
6881 switch (action) {
6882 case CPU_ONLINE_FROZEN:
6883 case CPU_DOWN_FAILED_FROZEN:
6884
6885 /*
6886 * num_cpus_frozen tracks how many CPUs are involved in suspend
6887 * resume sequence. As long as this is not the last online
6888 * operation in the resume sequence, just build a single sched
6889 * domain, ignoring cpusets.
6890 */
6891 num_cpus_frozen--;
6892 if (likely(num_cpus_frozen)) {
6893 partition_sched_domains(1, NULL, NULL);
6894 break;
6895 }
6896
6897 /*
6898 * This is the last CPU online operation. So fall through and
6899 * restore the original sched domains by considering the
6900 * cpuset configurations.
6901 */
6902
e761b772 6903 case CPU_ONLINE:
6ad4c188 6904 case CPU_DOWN_FAILED:
7ddf96b0 6905 cpuset_update_active_cpus(true);
d35be8ba 6906 break;
3a101d05
TH
6907 default:
6908 return NOTIFY_DONE;
6909 }
d35be8ba 6910 return NOTIFY_OK;
3a101d05 6911}
e761b772 6912
0b2e918a
TH
6913static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6914 void *hcpu)
3a101d05 6915{
d35be8ba 6916 switch (action) {
3a101d05 6917 case CPU_DOWN_PREPARE:
7ddf96b0 6918 cpuset_update_active_cpus(false);
d35be8ba
SB
6919 break;
6920 case CPU_DOWN_PREPARE_FROZEN:
6921 num_cpus_frozen++;
6922 partition_sched_domains(1, NULL, NULL);
6923 break;
e761b772
MK
6924 default:
6925 return NOTIFY_DONE;
6926 }
d35be8ba 6927 return NOTIFY_OK;
e761b772 6928}
e761b772 6929
1da177e4
LT
6930void __init sched_init_smp(void)
6931{
dcc30a35
RR
6932 cpumask_var_t non_isolated_cpus;
6933
6934 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6935 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6936
cb83b629
PZ
6937 sched_init_numa();
6938
6acce3ef
PZ
6939 /*
6940 * There's no userspace yet to cause hotplug operations; hence all the
6941 * cpu masks are stable and all blatant races in the below code cannot
6942 * happen.
6943 */
712555ee 6944 mutex_lock(&sched_domains_mutex);
c4a8849a 6945 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6946 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6947 if (cpumask_empty(non_isolated_cpus))
6948 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6949 mutex_unlock(&sched_domains_mutex);
e761b772 6950
301a5cba 6951 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6952 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6953 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6954
b328ca18 6955 init_hrtick();
5c1e1767
NP
6956
6957 /* Move init over to a non-isolated CPU */
dcc30a35 6958 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6959 BUG();
19978ca6 6960 sched_init_granularity();
dcc30a35 6961 free_cpumask_var(non_isolated_cpus);
4212823f 6962
0e3900e6 6963 init_sched_rt_class();
1baca4ce 6964 init_sched_dl_class();
1da177e4
LT
6965}
6966#else
6967void __init sched_init_smp(void)
6968{
19978ca6 6969 sched_init_granularity();
1da177e4
LT
6970}
6971#endif /* CONFIG_SMP */
6972
cd1bb94b
AB
6973const_debug unsigned int sysctl_timer_migration = 1;
6974
1da177e4
LT
6975int in_sched_functions(unsigned long addr)
6976{
1da177e4
LT
6977 return in_lock_functions(addr) ||
6978 (addr >= (unsigned long)__sched_text_start
6979 && addr < (unsigned long)__sched_text_end);
6980}
6981
029632fb 6982#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6983/*
6984 * Default task group.
6985 * Every task in system belongs to this group at bootup.
6986 */
029632fb 6987struct task_group root_task_group;
35cf4e50 6988LIST_HEAD(task_groups);
052f1dc7 6989#endif
6f505b16 6990
e6252c3e 6991DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6992
1da177e4
LT
6993void __init sched_init(void)
6994{
dd41f596 6995 int i, j;
434d53b0
MT
6996 unsigned long alloc_size = 0, ptr;
6997
6998#ifdef CONFIG_FAIR_GROUP_SCHED
6999 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7000#endif
7001#ifdef CONFIG_RT_GROUP_SCHED
7002 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7003#endif
df7c8e84 7004#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7005 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7006#endif
434d53b0 7007 if (alloc_size) {
36b7b6d4 7008 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7009
7010#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7011 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7012 ptr += nr_cpu_ids * sizeof(void **);
7013
07e06b01 7014 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7015 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7016
6d6bc0ad 7017#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7018#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7019 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7020 ptr += nr_cpu_ids * sizeof(void **);
7021
07e06b01 7022 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7023 ptr += nr_cpu_ids * sizeof(void **);
7024
6d6bc0ad 7025#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7026#ifdef CONFIG_CPUMASK_OFFSTACK
7027 for_each_possible_cpu(i) {
e6252c3e 7028 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7029 ptr += cpumask_size();
7030 }
7031#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7032 }
dd41f596 7033
332ac17e
DF
7034 init_rt_bandwidth(&def_rt_bandwidth,
7035 global_rt_period(), global_rt_runtime());
7036 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7037 global_rt_period(), global_rt_runtime());
332ac17e 7038
57d885fe
GH
7039#ifdef CONFIG_SMP
7040 init_defrootdomain();
7041#endif
7042
d0b27fa7 7043#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7044 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7045 global_rt_period(), global_rt_runtime());
6d6bc0ad 7046#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7047
7c941438 7048#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7049 list_add(&root_task_group.list, &task_groups);
7050 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7051 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7052 autogroup_init(&init_task);
54c707e9 7053
7c941438 7054#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7055
0a945022 7056 for_each_possible_cpu(i) {
70b97a7f 7057 struct rq *rq;
1da177e4
LT
7058
7059 rq = cpu_rq(i);
05fa785c 7060 raw_spin_lock_init(&rq->lock);
7897986b 7061 rq->nr_running = 0;
dce48a84
TG
7062 rq->calc_load_active = 0;
7063 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7064 init_cfs_rq(&rq->cfs);
6f505b16 7065 init_rt_rq(&rq->rt, rq);
aab03e05 7066 init_dl_rq(&rq->dl, rq);
dd41f596 7067#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7068 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7070 /*
07e06b01 7071 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7072 *
7073 * In case of task-groups formed thr' the cgroup filesystem, it
7074 * gets 100% of the cpu resources in the system. This overall
7075 * system cpu resource is divided among the tasks of
07e06b01 7076 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7077 * based on each entity's (task or task-group's) weight
7078 * (se->load.weight).
7079 *
07e06b01 7080 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7081 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7082 * then A0's share of the cpu resource is:
7083 *
0d905bca 7084 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7085 *
07e06b01
YZ
7086 * We achieve this by letting root_task_group's tasks sit
7087 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7088 */
ab84d31e 7089 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092
7093 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7094#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7095 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7096#endif
1da177e4 7097
dd41f596
IM
7098 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7099 rq->cpu_load[j] = 0;
fdf3e95d
VP
7100
7101 rq->last_load_update_tick = jiffies;
7102
1da177e4 7103#ifdef CONFIG_SMP
41c7ce9a 7104 rq->sd = NULL;
57d885fe 7105 rq->rd = NULL;
ca8ce3d0 7106 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7107 rq->post_schedule = 0;
1da177e4 7108 rq->active_balance = 0;
dd41f596 7109 rq->next_balance = jiffies;
1da177e4 7110 rq->push_cpu = 0;
0a2966b4 7111 rq->cpu = i;
1f11eb6a 7112 rq->online = 0;
eae0c9df
MG
7113 rq->idle_stamp = 0;
7114 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7115 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7116
7117 INIT_LIST_HEAD(&rq->cfs_tasks);
7118
dc938520 7119 rq_attach_root(rq, &def_root_domain);
3451d024 7120#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7121 rq->nohz_flags = 0;
83cd4fe2 7122#endif
265f22a9
FW
7123#ifdef CONFIG_NO_HZ_FULL
7124 rq->last_sched_tick = 0;
7125#endif
1da177e4 7126#endif
8f4d37ec 7127 init_rq_hrtick(rq);
1da177e4 7128 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7129 }
7130
2dd73a4f 7131 set_load_weight(&init_task);
b50f60ce 7132
e107be36
AK
7133#ifdef CONFIG_PREEMPT_NOTIFIERS
7134 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7135#endif
7136
1da177e4
LT
7137 /*
7138 * The boot idle thread does lazy MMU switching as well:
7139 */
7140 atomic_inc(&init_mm.mm_count);
7141 enter_lazy_tlb(&init_mm, current);
7142
7143 /*
7144 * Make us the idle thread. Technically, schedule() should not be
7145 * called from this thread, however somewhere below it might be,
7146 * but because we are the idle thread, we just pick up running again
7147 * when this runqueue becomes "idle".
7148 */
7149 init_idle(current, smp_processor_id());
dce48a84
TG
7150
7151 calc_load_update = jiffies + LOAD_FREQ;
7152
dd41f596
IM
7153 /*
7154 * During early bootup we pretend to be a normal task:
7155 */
7156 current->sched_class = &fair_sched_class;
6892b75e 7157
bf4d83f6 7158#ifdef CONFIG_SMP
4cb98839 7159 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7160 /* May be allocated at isolcpus cmdline parse time */
7161 if (cpu_isolated_map == NULL)
7162 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7163 idle_thread_set_boot_cpu();
a803f026 7164 set_cpu_rq_start_time();
029632fb
PZ
7165#endif
7166 init_sched_fair_class();
6a7b3dc3 7167
6892b75e 7168 scheduler_running = 1;
1da177e4
LT
7169}
7170
d902db1e 7171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7172static inline int preempt_count_equals(int preempt_offset)
7173{
234da7bc 7174 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7175
4ba8216c 7176 return (nested == preempt_offset);
e4aafea2
FW
7177}
7178
d894837f 7179void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7180{
1da177e4
LT
7181 static unsigned long prev_jiffy; /* ratelimiting */
7182
b3fbab05 7183 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7184 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7185 !is_idle_task(current)) ||
e4aafea2 7186 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7187 return;
7188 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7189 return;
7190 prev_jiffy = jiffies;
7191
3df0fc5b
PZ
7192 printk(KERN_ERR
7193 "BUG: sleeping function called from invalid context at %s:%d\n",
7194 file, line);
7195 printk(KERN_ERR
7196 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7197 in_atomic(), irqs_disabled(),
7198 current->pid, current->comm);
aef745fc
IM
7199
7200 debug_show_held_locks(current);
7201 if (irqs_disabled())
7202 print_irqtrace_events(current);
8f47b187
TG
7203#ifdef CONFIG_DEBUG_PREEMPT
7204 if (!preempt_count_equals(preempt_offset)) {
7205 pr_err("Preemption disabled at:");
7206 print_ip_sym(current->preempt_disable_ip);
7207 pr_cont("\n");
7208 }
7209#endif
aef745fc 7210 dump_stack();
1da177e4
LT
7211}
7212EXPORT_SYMBOL(__might_sleep);
7213#endif
7214
7215#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7216static void normalize_task(struct rq *rq, struct task_struct *p)
7217{
da7a735e 7218 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7219 struct sched_attr attr = {
7220 .sched_policy = SCHED_NORMAL,
7221 };
da7a735e 7222 int old_prio = p->prio;
da0c1e65 7223 int queued;
3e51f33f 7224
da0c1e65
KT
7225 queued = task_on_rq_queued(p);
7226 if (queued)
4ca9b72b 7227 dequeue_task(rq, p, 0);
d50dde5a 7228 __setscheduler(rq, p, &attr);
da0c1e65 7229 if (queued) {
4ca9b72b 7230 enqueue_task(rq, p, 0);
8875125e 7231 resched_curr(rq);
3a5e4dc1 7232 }
da7a735e
PZ
7233
7234 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7235}
7236
1da177e4
LT
7237void normalize_rt_tasks(void)
7238{
a0f98a1c 7239 struct task_struct *g, *p;
1da177e4 7240 unsigned long flags;
70b97a7f 7241 struct rq *rq;
1da177e4 7242
3472eaa1 7243 read_lock(&tasklist_lock);
5d07f420 7244 for_each_process_thread(g, p) {
178be793
IM
7245 /*
7246 * Only normalize user tasks:
7247 */
3472eaa1 7248 if (p->flags & PF_KTHREAD)
178be793
IM
7249 continue;
7250
6cfb0d5d 7251 p->se.exec_start = 0;
6cfb0d5d 7252#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7253 p->se.statistics.wait_start = 0;
7254 p->se.statistics.sleep_start = 0;
7255 p->se.statistics.block_start = 0;
6cfb0d5d 7256#endif
dd41f596 7257
aab03e05 7258 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7259 /*
7260 * Renice negative nice level userspace
7261 * tasks back to 0:
7262 */
3472eaa1 7263 if (task_nice(p) < 0)
dd41f596 7264 set_user_nice(p, 0);
1da177e4 7265 continue;
dd41f596 7266 }
1da177e4 7267
3472eaa1 7268 rq = task_rq_lock(p, &flags);
178be793 7269 normalize_task(rq, p);
3472eaa1 7270 task_rq_unlock(rq, p, &flags);
5d07f420 7271 }
3472eaa1 7272 read_unlock(&tasklist_lock);
1da177e4
LT
7273}
7274
7275#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7276
67fc4e0c 7277#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7278/*
67fc4e0c 7279 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7280 *
7281 * They can only be called when the whole system has been
7282 * stopped - every CPU needs to be quiescent, and no scheduling
7283 * activity can take place. Using them for anything else would
7284 * be a serious bug, and as a result, they aren't even visible
7285 * under any other configuration.
7286 */
7287
7288/**
7289 * curr_task - return the current task for a given cpu.
7290 * @cpu: the processor in question.
7291 *
7292 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7293 *
7294 * Return: The current task for @cpu.
1df5c10a 7295 */
36c8b586 7296struct task_struct *curr_task(int cpu)
1df5c10a
LT
7297{
7298 return cpu_curr(cpu);
7299}
7300
67fc4e0c
JW
7301#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7302
7303#ifdef CONFIG_IA64
1df5c10a
LT
7304/**
7305 * set_curr_task - set the current task for a given cpu.
7306 * @cpu: the processor in question.
7307 * @p: the task pointer to set.
7308 *
7309 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7310 * are serviced on a separate stack. It allows the architecture to switch the
7311 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7312 * must be called with all CPU's synchronized, and interrupts disabled, the
7313 * and caller must save the original value of the current task (see
7314 * curr_task() above) and restore that value before reenabling interrupts and
7315 * re-starting the system.
7316 *
7317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7318 */
36c8b586 7319void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7320{
7321 cpu_curr(cpu) = p;
7322}
7323
7324#endif
29f59db3 7325
7c941438 7326#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7327/* task_group_lock serializes the addition/removal of task groups */
7328static DEFINE_SPINLOCK(task_group_lock);
7329
bccbe08a
PZ
7330static void free_sched_group(struct task_group *tg)
7331{
7332 free_fair_sched_group(tg);
7333 free_rt_sched_group(tg);
e9aa1dd1 7334 autogroup_free(tg);
bccbe08a
PZ
7335 kfree(tg);
7336}
7337
7338/* allocate runqueue etc for a new task group */
ec7dc8ac 7339struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7340{
7341 struct task_group *tg;
bccbe08a
PZ
7342
7343 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7344 if (!tg)
7345 return ERR_PTR(-ENOMEM);
7346
ec7dc8ac 7347 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7348 goto err;
7349
ec7dc8ac 7350 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7351 goto err;
7352
ace783b9
LZ
7353 return tg;
7354
7355err:
7356 free_sched_group(tg);
7357 return ERR_PTR(-ENOMEM);
7358}
7359
7360void sched_online_group(struct task_group *tg, struct task_group *parent)
7361{
7362 unsigned long flags;
7363
8ed36996 7364 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7365 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7366
7367 WARN_ON(!parent); /* root should already exist */
7368
7369 tg->parent = parent;
f473aa5e 7370 INIT_LIST_HEAD(&tg->children);
09f2724a 7371 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7372 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7373}
7374
9b5b7751 7375/* rcu callback to free various structures associated with a task group */
6f505b16 7376static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7377{
29f59db3 7378 /* now it should be safe to free those cfs_rqs */
6f505b16 7379 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7380}
7381
9b5b7751 7382/* Destroy runqueue etc associated with a task group */
4cf86d77 7383void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7384{
7385 /* wait for possible concurrent references to cfs_rqs complete */
7386 call_rcu(&tg->rcu, free_sched_group_rcu);
7387}
7388
7389void sched_offline_group(struct task_group *tg)
29f59db3 7390{
8ed36996 7391 unsigned long flags;
9b5b7751 7392 int i;
29f59db3 7393
3d4b47b4
PZ
7394 /* end participation in shares distribution */
7395 for_each_possible_cpu(i)
bccbe08a 7396 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7397
7398 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7399 list_del_rcu(&tg->list);
f473aa5e 7400 list_del_rcu(&tg->siblings);
8ed36996 7401 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7402}
7403
9b5b7751 7404/* change task's runqueue when it moves between groups.
3a252015
IM
7405 * The caller of this function should have put the task in its new group
7406 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7407 * reflect its new group.
9b5b7751
SV
7408 */
7409void sched_move_task(struct task_struct *tsk)
29f59db3 7410{
8323f26c 7411 struct task_group *tg;
da0c1e65 7412 int queued, running;
29f59db3
SV
7413 unsigned long flags;
7414 struct rq *rq;
7415
7416 rq = task_rq_lock(tsk, &flags);
7417
051a1d1a 7418 running = task_current(rq, tsk);
da0c1e65 7419 queued = task_on_rq_queued(tsk);
29f59db3 7420
da0c1e65 7421 if (queued)
29f59db3 7422 dequeue_task(rq, tsk, 0);
0e1f3483 7423 if (unlikely(running))
f3cd1c4e 7424 put_prev_task(rq, tsk);
29f59db3 7425
f7b8a47d
KT
7426 /*
7427 * All callers are synchronized by task_rq_lock(); we do not use RCU
7428 * which is pointless here. Thus, we pass "true" to task_css_check()
7429 * to prevent lockdep warnings.
7430 */
7431 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7432 struct task_group, css);
7433 tg = autogroup_task_group(tsk, tg);
7434 tsk->sched_task_group = tg;
7435
810b3817 7436#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7437 if (tsk->sched_class->task_move_group)
da0c1e65 7438 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7439 else
810b3817 7440#endif
b2b5ce02 7441 set_task_rq(tsk, task_cpu(tsk));
810b3817 7442
0e1f3483
HS
7443 if (unlikely(running))
7444 tsk->sched_class->set_curr_task(rq);
da0c1e65 7445 if (queued)
371fd7e7 7446 enqueue_task(rq, tsk, 0);
29f59db3 7447
0122ec5b 7448 task_rq_unlock(rq, tsk, &flags);
29f59db3 7449}
7c941438 7450#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7451
a790de99
PT
7452#ifdef CONFIG_RT_GROUP_SCHED
7453/*
7454 * Ensure that the real time constraints are schedulable.
7455 */
7456static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7457
9a7e0b18
PZ
7458/* Must be called with tasklist_lock held */
7459static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7460{
9a7e0b18 7461 struct task_struct *g, *p;
b40b2e8e 7462
5d07f420 7463 for_each_process_thread(g, p) {
8651c658 7464 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7465 return 1;
5d07f420 7466 }
b40b2e8e 7467
9a7e0b18
PZ
7468 return 0;
7469}
b40b2e8e 7470
9a7e0b18
PZ
7471struct rt_schedulable_data {
7472 struct task_group *tg;
7473 u64 rt_period;
7474 u64 rt_runtime;
7475};
b40b2e8e 7476
a790de99 7477static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7478{
7479 struct rt_schedulable_data *d = data;
7480 struct task_group *child;
7481 unsigned long total, sum = 0;
7482 u64 period, runtime;
b40b2e8e 7483
9a7e0b18
PZ
7484 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7485 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7486
9a7e0b18
PZ
7487 if (tg == d->tg) {
7488 period = d->rt_period;
7489 runtime = d->rt_runtime;
b40b2e8e 7490 }
b40b2e8e 7491
4653f803
PZ
7492 /*
7493 * Cannot have more runtime than the period.
7494 */
7495 if (runtime > period && runtime != RUNTIME_INF)
7496 return -EINVAL;
6f505b16 7497
4653f803
PZ
7498 /*
7499 * Ensure we don't starve existing RT tasks.
7500 */
9a7e0b18
PZ
7501 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7502 return -EBUSY;
6f505b16 7503
9a7e0b18 7504 total = to_ratio(period, runtime);
6f505b16 7505
4653f803
PZ
7506 /*
7507 * Nobody can have more than the global setting allows.
7508 */
7509 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7510 return -EINVAL;
6f505b16 7511
4653f803
PZ
7512 /*
7513 * The sum of our children's runtime should not exceed our own.
7514 */
9a7e0b18
PZ
7515 list_for_each_entry_rcu(child, &tg->children, siblings) {
7516 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7517 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7518
9a7e0b18
PZ
7519 if (child == d->tg) {
7520 period = d->rt_period;
7521 runtime = d->rt_runtime;
7522 }
6f505b16 7523
9a7e0b18 7524 sum += to_ratio(period, runtime);
9f0c1e56 7525 }
6f505b16 7526
9a7e0b18
PZ
7527 if (sum > total)
7528 return -EINVAL;
7529
7530 return 0;
6f505b16
PZ
7531}
7532
9a7e0b18 7533static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7534{
8277434e
PT
7535 int ret;
7536
9a7e0b18
PZ
7537 struct rt_schedulable_data data = {
7538 .tg = tg,
7539 .rt_period = period,
7540 .rt_runtime = runtime,
7541 };
7542
8277434e
PT
7543 rcu_read_lock();
7544 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7545 rcu_read_unlock();
7546
7547 return ret;
521f1a24
DG
7548}
7549
ab84d31e 7550static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7551 u64 rt_period, u64 rt_runtime)
6f505b16 7552{
ac086bc2 7553 int i, err = 0;
9f0c1e56 7554
9f0c1e56 7555 mutex_lock(&rt_constraints_mutex);
521f1a24 7556 read_lock(&tasklist_lock);
9a7e0b18
PZ
7557 err = __rt_schedulable(tg, rt_period, rt_runtime);
7558 if (err)
9f0c1e56 7559 goto unlock;
ac086bc2 7560
0986b11b 7561 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7562 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7563 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7564
7565 for_each_possible_cpu(i) {
7566 struct rt_rq *rt_rq = tg->rt_rq[i];
7567
0986b11b 7568 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7569 rt_rq->rt_runtime = rt_runtime;
0986b11b 7570 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7571 }
0986b11b 7572 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7573unlock:
521f1a24 7574 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7575 mutex_unlock(&rt_constraints_mutex);
7576
7577 return err;
6f505b16
PZ
7578}
7579
25cc7da7 7580static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7581{
7582 u64 rt_runtime, rt_period;
7583
7584 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7585 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7586 if (rt_runtime_us < 0)
7587 rt_runtime = RUNTIME_INF;
7588
ab84d31e 7589 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7590}
7591
25cc7da7 7592static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7593{
7594 u64 rt_runtime_us;
7595
d0b27fa7 7596 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7597 return -1;
7598
d0b27fa7 7599 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7600 do_div(rt_runtime_us, NSEC_PER_USEC);
7601 return rt_runtime_us;
7602}
d0b27fa7 7603
25cc7da7 7604static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7605{
7606 u64 rt_runtime, rt_period;
7607
7608 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7609 rt_runtime = tg->rt_bandwidth.rt_runtime;
7610
619b0488
R
7611 if (rt_period == 0)
7612 return -EINVAL;
7613
ab84d31e 7614 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7615}
7616
25cc7da7 7617static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7618{
7619 u64 rt_period_us;
7620
7621 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7622 do_div(rt_period_us, NSEC_PER_USEC);
7623 return rt_period_us;
7624}
332ac17e 7625#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7626
332ac17e 7627#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7628static int sched_rt_global_constraints(void)
7629{
7630 int ret = 0;
7631
7632 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7633 read_lock(&tasklist_lock);
4653f803 7634 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7635 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7636 mutex_unlock(&rt_constraints_mutex);
7637
7638 return ret;
7639}
54e99124 7640
25cc7da7 7641static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7642{
7643 /* Don't accept realtime tasks when there is no way for them to run */
7644 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7645 return 0;
7646
7647 return 1;
7648}
7649
6d6bc0ad 7650#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7651static int sched_rt_global_constraints(void)
7652{
ac086bc2 7653 unsigned long flags;
332ac17e 7654 int i, ret = 0;
ec5d4989 7655
0986b11b 7656 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7657 for_each_possible_cpu(i) {
7658 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7659
0986b11b 7660 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7661 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7662 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7663 }
0986b11b 7664 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7665
332ac17e 7666 return ret;
d0b27fa7 7667}
6d6bc0ad 7668#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7669
332ac17e
DF
7670static int sched_dl_global_constraints(void)
7671{
1724813d
PZ
7672 u64 runtime = global_rt_runtime();
7673 u64 period = global_rt_period();
332ac17e 7674 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7675 struct dl_bw *dl_b;
1724813d 7676 int cpu, ret = 0;
49516342 7677 unsigned long flags;
332ac17e
DF
7678
7679 /*
7680 * Here we want to check the bandwidth not being set to some
7681 * value smaller than the currently allocated bandwidth in
7682 * any of the root_domains.
7683 *
7684 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7685 * cycling on root_domains... Discussion on different/better
7686 * solutions is welcome!
7687 */
1724813d 7688 for_each_possible_cpu(cpu) {
f10e00f4
KT
7689 rcu_read_lock_sched();
7690 dl_b = dl_bw_of(cpu);
332ac17e 7691
49516342 7692 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7693 if (new_bw < dl_b->total_bw)
7694 ret = -EBUSY;
49516342 7695 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7696
f10e00f4
KT
7697 rcu_read_unlock_sched();
7698
1724813d
PZ
7699 if (ret)
7700 break;
332ac17e
DF
7701 }
7702
1724813d 7703 return ret;
332ac17e
DF
7704}
7705
1724813d 7706static void sched_dl_do_global(void)
ce0dbbbb 7707{
1724813d 7708 u64 new_bw = -1;
f10e00f4 7709 struct dl_bw *dl_b;
1724813d 7710 int cpu;
49516342 7711 unsigned long flags;
ce0dbbbb 7712
1724813d
PZ
7713 def_dl_bandwidth.dl_period = global_rt_period();
7714 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7715
7716 if (global_rt_runtime() != RUNTIME_INF)
7717 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7718
7719 /*
7720 * FIXME: As above...
7721 */
7722 for_each_possible_cpu(cpu) {
f10e00f4
KT
7723 rcu_read_lock_sched();
7724 dl_b = dl_bw_of(cpu);
1724813d 7725
49516342 7726 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7727 dl_b->bw = new_bw;
49516342 7728 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7729
7730 rcu_read_unlock_sched();
ce0dbbbb 7731 }
1724813d
PZ
7732}
7733
7734static int sched_rt_global_validate(void)
7735{
7736 if (sysctl_sched_rt_period <= 0)
7737 return -EINVAL;
7738
e9e7cb38
JL
7739 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7740 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7741 return -EINVAL;
7742
7743 return 0;
7744}
7745
7746static void sched_rt_do_global(void)
7747{
7748 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7749 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7750}
7751
d0b27fa7 7752int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7753 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7754 loff_t *ppos)
7755{
d0b27fa7
PZ
7756 int old_period, old_runtime;
7757 static DEFINE_MUTEX(mutex);
1724813d 7758 int ret;
d0b27fa7
PZ
7759
7760 mutex_lock(&mutex);
7761 old_period = sysctl_sched_rt_period;
7762 old_runtime = sysctl_sched_rt_runtime;
7763
8d65af78 7764 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7765
7766 if (!ret && write) {
1724813d
PZ
7767 ret = sched_rt_global_validate();
7768 if (ret)
7769 goto undo;
7770
d0b27fa7 7771 ret = sched_rt_global_constraints();
1724813d
PZ
7772 if (ret)
7773 goto undo;
7774
7775 ret = sched_dl_global_constraints();
7776 if (ret)
7777 goto undo;
7778
7779 sched_rt_do_global();
7780 sched_dl_do_global();
7781 }
7782 if (0) {
7783undo:
7784 sysctl_sched_rt_period = old_period;
7785 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7786 }
7787 mutex_unlock(&mutex);
7788
7789 return ret;
7790}
68318b8e 7791
1724813d 7792int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7793 void __user *buffer, size_t *lenp,
7794 loff_t *ppos)
7795{
7796 int ret;
332ac17e 7797 static DEFINE_MUTEX(mutex);
332ac17e
DF
7798
7799 mutex_lock(&mutex);
332ac17e 7800 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7801 /* make sure that internally we keep jiffies */
7802 /* also, writing zero resets timeslice to default */
332ac17e 7803 if (!ret && write) {
1724813d
PZ
7804 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7805 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7806 }
7807 mutex_unlock(&mutex);
332ac17e
DF
7808 return ret;
7809}
7810
052f1dc7 7811#ifdef CONFIG_CGROUP_SCHED
68318b8e 7812
a7c6d554 7813static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7814{
a7c6d554 7815 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7816}
7817
eb95419b
TH
7818static struct cgroup_subsys_state *
7819cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7820{
eb95419b
TH
7821 struct task_group *parent = css_tg(parent_css);
7822 struct task_group *tg;
68318b8e 7823
eb95419b 7824 if (!parent) {
68318b8e 7825 /* This is early initialization for the top cgroup */
07e06b01 7826 return &root_task_group.css;
68318b8e
SV
7827 }
7828
ec7dc8ac 7829 tg = sched_create_group(parent);
68318b8e
SV
7830 if (IS_ERR(tg))
7831 return ERR_PTR(-ENOMEM);
7832
68318b8e
SV
7833 return &tg->css;
7834}
7835
eb95419b 7836static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7837{
eb95419b 7838 struct task_group *tg = css_tg(css);
5c9d535b 7839 struct task_group *parent = css_tg(css->parent);
ace783b9 7840
63876986
TH
7841 if (parent)
7842 sched_online_group(tg, parent);
ace783b9
LZ
7843 return 0;
7844}
7845
eb95419b 7846static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7847{
eb95419b 7848 struct task_group *tg = css_tg(css);
68318b8e
SV
7849
7850 sched_destroy_group(tg);
7851}
7852
eb95419b 7853static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7854{
eb95419b 7855 struct task_group *tg = css_tg(css);
ace783b9
LZ
7856
7857 sched_offline_group(tg);
7858}
7859
eeb61e53
KT
7860static void cpu_cgroup_fork(struct task_struct *task)
7861{
7862 sched_move_task(task);
7863}
7864
eb95419b 7865static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7866 struct cgroup_taskset *tset)
68318b8e 7867{
bb9d97b6
TH
7868 struct task_struct *task;
7869
924f0d9a 7870 cgroup_taskset_for_each(task, tset) {
b68aa230 7871#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7872 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7873 return -EINVAL;
b68aa230 7874#else
bb9d97b6
TH
7875 /* We don't support RT-tasks being in separate groups */
7876 if (task->sched_class != &fair_sched_class)
7877 return -EINVAL;
b68aa230 7878#endif
bb9d97b6 7879 }
be367d09
BB
7880 return 0;
7881}
68318b8e 7882
eb95419b 7883static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7884 struct cgroup_taskset *tset)
68318b8e 7885{
bb9d97b6
TH
7886 struct task_struct *task;
7887
924f0d9a 7888 cgroup_taskset_for_each(task, tset)
bb9d97b6 7889 sched_move_task(task);
68318b8e
SV
7890}
7891
eb95419b
TH
7892static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7893 struct cgroup_subsys_state *old_css,
7894 struct task_struct *task)
068c5cc5
PZ
7895{
7896 /*
7897 * cgroup_exit() is called in the copy_process() failure path.
7898 * Ignore this case since the task hasn't ran yet, this avoids
7899 * trying to poke a half freed task state from generic code.
7900 */
7901 if (!(task->flags & PF_EXITING))
7902 return;
7903
7904 sched_move_task(task);
7905}
7906
052f1dc7 7907#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7908static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7909 struct cftype *cftype, u64 shareval)
68318b8e 7910{
182446d0 7911 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7912}
7913
182446d0
TH
7914static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7915 struct cftype *cft)
68318b8e 7916{
182446d0 7917 struct task_group *tg = css_tg(css);
68318b8e 7918
c8b28116 7919 return (u64) scale_load_down(tg->shares);
68318b8e 7920}
ab84d31e
PT
7921
7922#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7923static DEFINE_MUTEX(cfs_constraints_mutex);
7924
ab84d31e
PT
7925const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7926const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7927
a790de99
PT
7928static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7929
ab84d31e
PT
7930static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7931{
56f570e5 7932 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7933 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7934
7935 if (tg == &root_task_group)
7936 return -EINVAL;
7937
7938 /*
7939 * Ensure we have at some amount of bandwidth every period. This is
7940 * to prevent reaching a state of large arrears when throttled via
7941 * entity_tick() resulting in prolonged exit starvation.
7942 */
7943 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7944 return -EINVAL;
7945
7946 /*
7947 * Likewise, bound things on the otherside by preventing insane quota
7948 * periods. This also allows us to normalize in computing quota
7949 * feasibility.
7950 */
7951 if (period > max_cfs_quota_period)
7952 return -EINVAL;
7953
0e59bdae
KT
7954 /*
7955 * Prevent race between setting of cfs_rq->runtime_enabled and
7956 * unthrottle_offline_cfs_rqs().
7957 */
7958 get_online_cpus();
a790de99
PT
7959 mutex_lock(&cfs_constraints_mutex);
7960 ret = __cfs_schedulable(tg, period, quota);
7961 if (ret)
7962 goto out_unlock;
7963
58088ad0 7964 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7965 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7966 /*
7967 * If we need to toggle cfs_bandwidth_used, off->on must occur
7968 * before making related changes, and on->off must occur afterwards
7969 */
7970 if (runtime_enabled && !runtime_was_enabled)
7971 cfs_bandwidth_usage_inc();
ab84d31e
PT
7972 raw_spin_lock_irq(&cfs_b->lock);
7973 cfs_b->period = ns_to_ktime(period);
7974 cfs_b->quota = quota;
58088ad0 7975
a9cf55b2 7976 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7977 /* restart the period timer (if active) to handle new period expiry */
7978 if (runtime_enabled && cfs_b->timer_active) {
7979 /* force a reprogram */
09dc4ab0 7980 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7981 }
ab84d31e
PT
7982 raw_spin_unlock_irq(&cfs_b->lock);
7983
0e59bdae 7984 for_each_online_cpu(i) {
ab84d31e 7985 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7986 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7987
7988 raw_spin_lock_irq(&rq->lock);
58088ad0 7989 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7990 cfs_rq->runtime_remaining = 0;
671fd9da 7991
029632fb 7992 if (cfs_rq->throttled)
671fd9da 7993 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7994 raw_spin_unlock_irq(&rq->lock);
7995 }
1ee14e6c
BS
7996 if (runtime_was_enabled && !runtime_enabled)
7997 cfs_bandwidth_usage_dec();
a790de99
PT
7998out_unlock:
7999 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8000 put_online_cpus();
ab84d31e 8001
a790de99 8002 return ret;
ab84d31e
PT
8003}
8004
8005int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8006{
8007 u64 quota, period;
8008
029632fb 8009 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8010 if (cfs_quota_us < 0)
8011 quota = RUNTIME_INF;
8012 else
8013 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8014
8015 return tg_set_cfs_bandwidth(tg, period, quota);
8016}
8017
8018long tg_get_cfs_quota(struct task_group *tg)
8019{
8020 u64 quota_us;
8021
029632fb 8022 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8023 return -1;
8024
029632fb 8025 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8026 do_div(quota_us, NSEC_PER_USEC);
8027
8028 return quota_us;
8029}
8030
8031int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8032{
8033 u64 quota, period;
8034
8035 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8036 quota = tg->cfs_bandwidth.quota;
ab84d31e 8037
ab84d31e
PT
8038 return tg_set_cfs_bandwidth(tg, period, quota);
8039}
8040
8041long tg_get_cfs_period(struct task_group *tg)
8042{
8043 u64 cfs_period_us;
8044
029632fb 8045 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8046 do_div(cfs_period_us, NSEC_PER_USEC);
8047
8048 return cfs_period_us;
8049}
8050
182446d0
TH
8051static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
ab84d31e 8053{
182446d0 8054 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8055}
8056
182446d0
TH
8057static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8058 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8059{
182446d0 8060 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8061}
8062
182446d0
TH
8063static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8064 struct cftype *cft)
ab84d31e 8065{
182446d0 8066 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8067}
8068
182446d0
TH
8069static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8070 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8071{
182446d0 8072 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8073}
8074
a790de99
PT
8075struct cfs_schedulable_data {
8076 struct task_group *tg;
8077 u64 period, quota;
8078};
8079
8080/*
8081 * normalize group quota/period to be quota/max_period
8082 * note: units are usecs
8083 */
8084static u64 normalize_cfs_quota(struct task_group *tg,
8085 struct cfs_schedulable_data *d)
8086{
8087 u64 quota, period;
8088
8089 if (tg == d->tg) {
8090 period = d->period;
8091 quota = d->quota;
8092 } else {
8093 period = tg_get_cfs_period(tg);
8094 quota = tg_get_cfs_quota(tg);
8095 }
8096
8097 /* note: these should typically be equivalent */
8098 if (quota == RUNTIME_INF || quota == -1)
8099 return RUNTIME_INF;
8100
8101 return to_ratio(period, quota);
8102}
8103
8104static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8105{
8106 struct cfs_schedulable_data *d = data;
029632fb 8107 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8108 s64 quota = 0, parent_quota = -1;
8109
8110 if (!tg->parent) {
8111 quota = RUNTIME_INF;
8112 } else {
029632fb 8113 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8114
8115 quota = normalize_cfs_quota(tg, d);
9c58c79a 8116 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8117
8118 /*
8119 * ensure max(child_quota) <= parent_quota, inherit when no
8120 * limit is set
8121 */
8122 if (quota == RUNTIME_INF)
8123 quota = parent_quota;
8124 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8125 return -EINVAL;
8126 }
9c58c79a 8127 cfs_b->hierarchical_quota = quota;
a790de99
PT
8128
8129 return 0;
8130}
8131
8132static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8133{
8277434e 8134 int ret;
a790de99
PT
8135 struct cfs_schedulable_data data = {
8136 .tg = tg,
8137 .period = period,
8138 .quota = quota,
8139 };
8140
8141 if (quota != RUNTIME_INF) {
8142 do_div(data.period, NSEC_PER_USEC);
8143 do_div(data.quota, NSEC_PER_USEC);
8144 }
8145
8277434e
PT
8146 rcu_read_lock();
8147 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8148 rcu_read_unlock();
8149
8150 return ret;
a790de99 8151}
e8da1b18 8152
2da8ca82 8153static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8154{
2da8ca82 8155 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8157
44ffc75b
TH
8158 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8159 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8160 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8161
8162 return 0;
8163}
ab84d31e 8164#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8165#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8166
052f1dc7 8167#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8168static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8169 struct cftype *cft, s64 val)
6f505b16 8170{
182446d0 8171 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8172}
8173
182446d0
TH
8174static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8175 struct cftype *cft)
6f505b16 8176{
182446d0 8177 return sched_group_rt_runtime(css_tg(css));
6f505b16 8178}
d0b27fa7 8179
182446d0
TH
8180static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8181 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8182{
182446d0 8183 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8184}
8185
182446d0
TH
8186static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8187 struct cftype *cft)
d0b27fa7 8188{
182446d0 8189 return sched_group_rt_period(css_tg(css));
d0b27fa7 8190}
6d6bc0ad 8191#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8192
fe5c7cc2 8193static struct cftype cpu_files[] = {
052f1dc7 8194#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8195 {
8196 .name = "shares",
f4c753b7
PM
8197 .read_u64 = cpu_shares_read_u64,
8198 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8199 },
052f1dc7 8200#endif
ab84d31e
PT
8201#ifdef CONFIG_CFS_BANDWIDTH
8202 {
8203 .name = "cfs_quota_us",
8204 .read_s64 = cpu_cfs_quota_read_s64,
8205 .write_s64 = cpu_cfs_quota_write_s64,
8206 },
8207 {
8208 .name = "cfs_period_us",
8209 .read_u64 = cpu_cfs_period_read_u64,
8210 .write_u64 = cpu_cfs_period_write_u64,
8211 },
e8da1b18
NR
8212 {
8213 .name = "stat",
2da8ca82 8214 .seq_show = cpu_stats_show,
e8da1b18 8215 },
ab84d31e 8216#endif
052f1dc7 8217#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8218 {
9f0c1e56 8219 .name = "rt_runtime_us",
06ecb27c
PM
8220 .read_s64 = cpu_rt_runtime_read,
8221 .write_s64 = cpu_rt_runtime_write,
6f505b16 8222 },
d0b27fa7
PZ
8223 {
8224 .name = "rt_period_us",
f4c753b7
PM
8225 .read_u64 = cpu_rt_period_read_uint,
8226 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8227 },
052f1dc7 8228#endif
4baf6e33 8229 { } /* terminate */
68318b8e
SV
8230};
8231
073219e9 8232struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8233 .css_alloc = cpu_cgroup_css_alloc,
8234 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8235 .css_online = cpu_cgroup_css_online,
8236 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8237 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8238 .can_attach = cpu_cgroup_can_attach,
8239 .attach = cpu_cgroup_attach,
068c5cc5 8240 .exit = cpu_cgroup_exit,
5577964e 8241 .legacy_cftypes = cpu_files,
68318b8e
SV
8242 .early_init = 1,
8243};
8244
052f1dc7 8245#endif /* CONFIG_CGROUP_SCHED */
d842de87 8246
b637a328
PM
8247void dump_cpu_task(int cpu)
8248{
8249 pr_info("Task dump for CPU %d:\n", cpu);
8250 sched_show_task(cpu_curr(cpu));
8251}
This page took 2.838612 seconds and 5 git commands to generate.