stop_machine: Introduce stop_two_cpus()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
969c7921 1016struct migration_arg {
36c8b586 1017 struct task_struct *task;
1da177e4 1018 int dest_cpu;
70b97a7f 1019};
1da177e4 1020
969c7921
TH
1021static int migration_cpu_stop(void *data);
1022
1da177e4
LT
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
85ba2d86
RM
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change. If it changes, i.e. @p might have woken up,
1028 * then return zero. When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count). If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1da177e4
LT
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
85ba2d86 1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1040{
1041 unsigned long flags;
dd41f596 1042 int running, on_rq;
85ba2d86 1043 unsigned long ncsw;
70b97a7f 1044 struct rq *rq;
1da177e4 1045
3a5c359a
AK
1046 for (;;) {
1047 /*
1048 * We do the initial early heuristics without holding
1049 * any task-queue locks at all. We'll only try to get
1050 * the runqueue lock when things look like they will
1051 * work out!
1052 */
1053 rq = task_rq(p);
fa490cfd 1054
3a5c359a
AK
1055 /*
1056 * If the task is actively running on another CPU
1057 * still, just relax and busy-wait without holding
1058 * any locks.
1059 *
1060 * NOTE! Since we don't hold any locks, it's not
1061 * even sure that "rq" stays as the right runqueue!
1062 * But we don't care, since "task_running()" will
1063 * return false if the runqueue has changed and p
1064 * is actually now running somewhere else!
1065 */
85ba2d86
RM
1066 while (task_running(rq, p)) {
1067 if (match_state && unlikely(p->state != match_state))
1068 return 0;
3a5c359a 1069 cpu_relax();
85ba2d86 1070 }
fa490cfd 1071
3a5c359a
AK
1072 /*
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1076 */
1077 rq = task_rq_lock(p, &flags);
27a9da65 1078 trace_sched_wait_task(p);
3a5c359a 1079 running = task_running(rq, p);
fd2f4419 1080 on_rq = p->on_rq;
85ba2d86 1081 ncsw = 0;
f31e11d8 1082 if (!match_state || p->state == match_state)
93dcf55f 1083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1084 task_rq_unlock(rq, p, &flags);
fa490cfd 1085
85ba2d86
RM
1086 /*
1087 * If it changed from the expected state, bail out now.
1088 */
1089 if (unlikely(!ncsw))
1090 break;
1091
3a5c359a
AK
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1099 cpu_relax();
1100 continue;
1101 }
fa490cfd 1102
3a5c359a
AK
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
80dd99b3 1108 * So if it was still runnable (but just not actively
3a5c359a
AK
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
1112 if (unlikely(on_rq)) {
8eb90c30
TG
1113 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1117 continue;
1118 }
fa490cfd 1119
3a5c359a
AK
1120 /*
1121 * Ahh, all good. It wasn't running, and it wasn't
1122 * runnable, which means that it will never become
1123 * running in the future either. We're all done!
1124 */
1125 break;
1126 }
85ba2d86
RM
1127
1128 return ncsw;
1da177e4
LT
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
25985edc 1138 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
36c8b586 1144void kick_process(struct task_struct *p)
1da177e4
LT
1145{
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153}
b43e3521 1154EXPORT_SYMBOL_GPL(kick_process);
476d139c 1155#endif /* CONFIG_SMP */
1da177e4 1156
970b13ba 1157#ifdef CONFIG_SMP
30da688e 1158/*
013fdb80 1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1160 */
5da9a0fb
PZ
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
aa00d89c
TC
1163 int nid = cpu_to_node(cpu);
1164 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1165 enum { cpuset, possible, fail } state = cpuset;
1166 int dest_cpu;
5da9a0fb 1167
aa00d89c
TC
1168 /*
1169 * If the node that the cpu is on has been offlined, cpu_to_node()
1170 * will return -1. There is no cpu on the node, and we should
1171 * select the cpu on the other node.
1172 */
1173 if (nid != -1) {
1174 nodemask = cpumask_of_node(nid);
1175
1176 /* Look for allowed, online CPU in same node. */
1177 for_each_cpu(dest_cpu, nodemask) {
1178 if (!cpu_online(dest_cpu))
1179 continue;
1180 if (!cpu_active(dest_cpu))
1181 continue;
1182 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183 return dest_cpu;
1184 }
2baab4e9 1185 }
5da9a0fb 1186
2baab4e9
PZ
1187 for (;;) {
1188 /* Any allowed, online CPU? */
e3831edd 1189 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1190 if (!cpu_online(dest_cpu))
1191 continue;
1192 if (!cpu_active(dest_cpu))
1193 continue;
1194 goto out;
1195 }
5da9a0fb 1196
2baab4e9
PZ
1197 switch (state) {
1198 case cpuset:
1199 /* No more Mr. Nice Guy. */
1200 cpuset_cpus_allowed_fallback(p);
1201 state = possible;
1202 break;
1203
1204 case possible:
1205 do_set_cpus_allowed(p, cpu_possible_mask);
1206 state = fail;
1207 break;
1208
1209 case fail:
1210 BUG();
1211 break;
1212 }
1213 }
1214
1215out:
1216 if (state != cpuset) {
1217 /*
1218 * Don't tell them about moving exiting tasks or
1219 * kernel threads (both mm NULL), since they never
1220 * leave kernel.
1221 */
1222 if (p->mm && printk_ratelimit()) {
1223 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224 task_pid_nr(p), p->comm, cpu);
1225 }
5da9a0fb
PZ
1226 }
1227
1228 return dest_cpu;
1229}
1230
e2912009 1231/*
013fdb80 1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1233 */
970b13ba 1234static inline
7608dec2 1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1236{
7608dec2 1237 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1238
1239 /*
1240 * In order not to call set_task_cpu() on a blocking task we need
1241 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242 * cpu.
1243 *
1244 * Since this is common to all placement strategies, this lives here.
1245 *
1246 * [ this allows ->select_task() to simply return task_cpu(p) and
1247 * not worry about this generic constraint ]
1248 */
fa17b507 1249 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1250 !cpu_online(cpu)))
5da9a0fb 1251 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1252
1253 return cpu;
970b13ba 1254}
09a40af5
MG
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258 s64 diff = sample - *avg;
1259 *avg += diff >> 3;
1260}
970b13ba
PZ
1261#endif
1262
d7c01d27 1263static void
b84cb5df 1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1265{
d7c01d27 1266#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1267 struct rq *rq = this_rq();
1268
d7c01d27
PZ
1269#ifdef CONFIG_SMP
1270 int this_cpu = smp_processor_id();
1271
1272 if (cpu == this_cpu) {
1273 schedstat_inc(rq, ttwu_local);
1274 schedstat_inc(p, se.statistics.nr_wakeups_local);
1275 } else {
1276 struct sched_domain *sd;
1277
1278 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1279 rcu_read_lock();
d7c01d27
PZ
1280 for_each_domain(this_cpu, sd) {
1281 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282 schedstat_inc(sd, ttwu_wake_remote);
1283 break;
1284 }
1285 }
057f3fad 1286 rcu_read_unlock();
d7c01d27 1287 }
f339b9dc
PZ
1288
1289 if (wake_flags & WF_MIGRATED)
1290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
d7c01d27
PZ
1292#endif /* CONFIG_SMP */
1293
1294 schedstat_inc(rq, ttwu_count);
9ed3811a 1295 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1296
1297 if (wake_flags & WF_SYNC)
9ed3811a 1298 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1299
d7c01d27
PZ
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
9ed3811a 1305 activate_task(rq, p, en_flags);
fd2f4419 1306 p->on_rq = 1;
c2f7115e
PZ
1307
1308 /* if a worker is waking up, notify workqueue */
1309 if (p->flags & PF_WQ_WORKER)
1310 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1311}
1312
23f41eeb
PZ
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
89363381 1316static void
23f41eeb 1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1318{
9ed3811a 1319 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1320 trace_sched_wakeup(p, true);
9ed3811a
TH
1321
1322 p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324 if (p->sched_class->task_woken)
1325 p->sched_class->task_woken(rq, p);
1326
e69c6341 1327 if (rq->idle_stamp) {
78becc27 1328 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1329 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1330
abfafa54
JL
1331 update_avg(&rq->avg_idle, delta);
1332
1333 if (rq->avg_idle > max)
9ed3811a 1334 rq->avg_idle = max;
abfafa54 1335
9ed3811a
TH
1336 rq->idle_stamp = 0;
1337 }
1338#endif
1339}
1340
c05fbafb
PZ
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345 if (p->sched_contributes_to_load)
1346 rq->nr_uninterruptible--;
1347#endif
1348
1349 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350 ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361 struct rq *rq;
1362 int ret = 0;
1363
1364 rq = __task_rq_lock(p);
1365 if (p->on_rq) {
1ad4ec0d
FW
1366 /* check_preempt_curr() may use rq clock */
1367 update_rq_clock(rq);
c05fbafb
PZ
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374}
1375
317f3941 1376#ifdef CONFIG_SMP
fa14ff4a 1377static void sched_ttwu_pending(void)
317f3941
PZ
1378{
1379 struct rq *rq = this_rq();
fa14ff4a
PZ
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
317f3941
PZ
1382
1383 raw_spin_lock(&rq->lock);
1384
fa14ff4a
PZ
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
317f3941
PZ
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
f27dde8d
PZ
1396 /*
1397 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399 * this IPI.
1400 */
1401 if (tif_need_resched())
1402 set_preempt_need_resched();
1403
873b4c65
VG
1404 if (llist_empty(&this_rq()->wake_list)
1405 && !tick_nohz_full_cpu(smp_processor_id())
1406 && !got_nohz_idle_kick())
c5d753a5
PZ
1407 return;
1408
1409 /*
1410 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411 * traditionally all their work was done from the interrupt return
1412 * path. Now that we actually do some work, we need to make sure
1413 * we do call them.
1414 *
1415 * Some archs already do call them, luckily irq_enter/exit nest
1416 * properly.
1417 *
1418 * Arguably we should visit all archs and update all handlers,
1419 * however a fair share of IPIs are still resched only so this would
1420 * somewhat pessimize the simple resched case.
1421 */
1422 irq_enter();
ff442c51 1423 tick_nohz_full_check();
fa14ff4a 1424 sched_ttwu_pending();
ca38062e
SS
1425
1426 /*
1427 * Check if someone kicked us for doing the nohz idle load balance.
1428 */
873b4c65 1429 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1430 this_rq()->idle_balance = 1;
ca38062e 1431 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1432 }
c5d753a5 1433 irq_exit();
317f3941
PZ
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
fa14ff4a 1438 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1439 smp_send_reschedule(cpu);
1440}
d6aa8f85 1441
39be3501 1442bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1443{
1444 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
d6aa8f85 1446#endif /* CONFIG_SMP */
317f3941 1447
c05fbafb
PZ
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450 struct rq *rq = cpu_rq(cpu);
1451
17d9f311 1452#if defined(CONFIG_SMP)
39be3501 1453 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1454 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1455 ttwu_queue_remote(p, cpu);
1456 return;
1457 }
1458#endif
1459
c05fbafb
PZ
1460 raw_spin_lock(&rq->lock);
1461 ttwu_do_activate(rq, p, 0);
1462 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1463}
1464
1465/**
1da177e4 1466 * try_to_wake_up - wake up a thread
9ed3811a 1467 * @p: the thread to be awakened
1da177e4 1468 * @state: the mask of task states that can be woken
9ed3811a 1469 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
e69f6186 1477 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1478 * or @state didn't match @p's state.
1da177e4 1479 */
e4a52bcb
PZ
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1482{
1da177e4 1483 unsigned long flags;
c05fbafb 1484 int cpu, success = 0;
2398f2c6 1485
e0acd0a6
ON
1486 /*
1487 * If we are going to wake up a thread waiting for CONDITION we
1488 * need to ensure that CONDITION=1 done by the caller can not be
1489 * reordered with p->state check below. This pairs with mb() in
1490 * set_current_state() the waiting thread does.
1491 */
1492 smp_mb__before_spinlock();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
7ad5b3a5 1585int wake_up_process(struct task_struct *p)
1da177e4 1586{
9067ac85
ON
1587 WARN_ON(task_is_stopped_or_traced(p));
1588 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1589}
1da177e4
LT
1590EXPORT_SYMBOL(wake_up_process);
1591
7ad5b3a5 1592int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1593{
1594 return try_to_wake_up(p, state, 0);
1595}
1596
1da177e4
LT
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
dd41f596
IM
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
fd2f4419
PZ
1605 p->on_rq = 0;
1606
1607 p->se.on_rq = 0;
dd41f596
IM
1608 p->se.exec_start = 0;
1609 p->se.sum_exec_runtime = 0;
f6cf891c 1610 p->se.prev_sum_exec_runtime = 0;
6c594c21 1611 p->se.nr_migrations = 0;
da7a735e 1612 p->se.vruntime = 0;
fd2f4419 1613 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1614
1615#ifdef CONFIG_SCHEDSTATS
41acab88 1616 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1617#endif
476d139c 1618
fa717060 1619 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1620
e107be36
AK
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622 INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
cbee9f88
PZ
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6
MG
1627 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1628 p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
cbee9f88
PZ
1629 p->mm->numa_scan_seq = 0;
1630 }
1631
1632 p->node_stamp = 0ULL;
1633 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
6fe6b2d6 1634 p->numa_migrate_seq = 1;
4b96a29b 1635 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
688b7585 1636 p->numa_preferred_nid = -1;
cbee9f88 1637 p->numa_work.next = &p->numa_work;
f809ca9a 1638 p->numa_faults = NULL;
745d6147 1639 p->numa_faults_buffer = NULL;
cbee9f88 1640#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1641}
1642
1a687c2e 1643#ifdef CONFIG_NUMA_BALANCING
3105b86a 1644#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1645void set_numabalancing_state(bool enabled)
1646{
1647 if (enabled)
1648 sched_feat_set("NUMA");
1649 else
1650 sched_feat_set("NO_NUMA");
1651}
3105b86a
MG
1652#else
1653__read_mostly bool numabalancing_enabled;
1654
1655void set_numabalancing_state(bool enabled)
1656{
1657 numabalancing_enabled = enabled;
dd41f596 1658}
3105b86a 1659#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1660#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1661
1662/*
1663 * fork()/clone()-time setup:
1664 */
3e51e3ed 1665void sched_fork(struct task_struct *p)
dd41f596 1666{
0122ec5b 1667 unsigned long flags;
dd41f596
IM
1668 int cpu = get_cpu();
1669
1670 __sched_fork(p);
06b83b5f 1671 /*
0017d735 1672 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1673 * nobody will actually run it, and a signal or other external
1674 * event cannot wake it up and insert it on the runqueue either.
1675 */
0017d735 1676 p->state = TASK_RUNNING;
dd41f596 1677
c350a04e
MG
1678 /*
1679 * Make sure we do not leak PI boosting priority to the child.
1680 */
1681 p->prio = current->normal_prio;
1682
b9dc29e7
MG
1683 /*
1684 * Revert to default priority/policy on fork if requested.
1685 */
1686 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1687 if (task_has_rt_policy(p)) {
b9dc29e7 1688 p->policy = SCHED_NORMAL;
6c697bdf 1689 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1690 p->rt_priority = 0;
1691 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1692 p->static_prio = NICE_TO_PRIO(0);
1693
1694 p->prio = p->normal_prio = __normal_prio(p);
1695 set_load_weight(p);
6c697bdf 1696
b9dc29e7
MG
1697 /*
1698 * We don't need the reset flag anymore after the fork. It has
1699 * fulfilled its duty:
1700 */
1701 p->sched_reset_on_fork = 0;
1702 }
ca94c442 1703
2ddbf952
HS
1704 if (!rt_prio(p->prio))
1705 p->sched_class = &fair_sched_class;
b29739f9 1706
cd29fe6f
PZ
1707 if (p->sched_class->task_fork)
1708 p->sched_class->task_fork(p);
1709
86951599
PZ
1710 /*
1711 * The child is not yet in the pid-hash so no cgroup attach races,
1712 * and the cgroup is pinned to this child due to cgroup_fork()
1713 * is ran before sched_fork().
1714 *
1715 * Silence PROVE_RCU.
1716 */
0122ec5b 1717 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1718 set_task_cpu(p, cpu);
0122ec5b 1719 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1720
52f17b6c 1721#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1722 if (likely(sched_info_on()))
52f17b6c 1723 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1724#endif
3ca7a440
PZ
1725#if defined(CONFIG_SMP)
1726 p->on_cpu = 0;
4866cde0 1727#endif
01028747 1728 init_task_preempt_count(p);
806c09a7 1729#ifdef CONFIG_SMP
917b627d 1730 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1731#endif
917b627d 1732
476d139c 1733 put_cpu();
1da177e4
LT
1734}
1735
1736/*
1737 * wake_up_new_task - wake up a newly created task for the first time.
1738 *
1739 * This function will do some initial scheduler statistics housekeeping
1740 * that must be done for every newly created context, then puts the task
1741 * on the runqueue and wakes it.
1742 */
3e51e3ed 1743void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1744{
1745 unsigned long flags;
dd41f596 1746 struct rq *rq;
fabf318e 1747
ab2515c4 1748 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1749#ifdef CONFIG_SMP
1750 /*
1751 * Fork balancing, do it here and not earlier because:
1752 * - cpus_allowed can change in the fork path
1753 * - any previously selected cpu might disappear through hotplug
fabf318e 1754 */
ab2515c4 1755 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1756#endif
1757
a75cdaa9
AS
1758 /* Initialize new task's runnable average */
1759 init_task_runnable_average(p);
ab2515c4 1760 rq = __task_rq_lock(p);
cd29fe6f 1761 activate_task(rq, p, 0);
fd2f4419 1762 p->on_rq = 1;
89363381 1763 trace_sched_wakeup_new(p, true);
a7558e01 1764 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1765#ifdef CONFIG_SMP
efbbd05a
PZ
1766 if (p->sched_class->task_woken)
1767 p->sched_class->task_woken(rq, p);
9a897c5a 1768#endif
0122ec5b 1769 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1770}
1771
e107be36
AK
1772#ifdef CONFIG_PREEMPT_NOTIFIERS
1773
1774/**
80dd99b3 1775 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1776 * @notifier: notifier struct to register
e107be36
AK
1777 */
1778void preempt_notifier_register(struct preempt_notifier *notifier)
1779{
1780 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1781}
1782EXPORT_SYMBOL_GPL(preempt_notifier_register);
1783
1784/**
1785 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1786 * @notifier: notifier struct to unregister
e107be36
AK
1787 *
1788 * This is safe to call from within a preemption notifier.
1789 */
1790void preempt_notifier_unregister(struct preempt_notifier *notifier)
1791{
1792 hlist_del(&notifier->link);
1793}
1794EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1795
1796static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1797{
1798 struct preempt_notifier *notifier;
e107be36 1799
b67bfe0d 1800 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1801 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1802}
1803
1804static void
1805fire_sched_out_preempt_notifiers(struct task_struct *curr,
1806 struct task_struct *next)
1807{
1808 struct preempt_notifier *notifier;
e107be36 1809
b67bfe0d 1810 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1811 notifier->ops->sched_out(notifier, next);
1812}
1813
6d6bc0ad 1814#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1815
1816static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1817{
1818}
1819
1820static void
1821fire_sched_out_preempt_notifiers(struct task_struct *curr,
1822 struct task_struct *next)
1823{
1824}
1825
6d6bc0ad 1826#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1827
4866cde0
NP
1828/**
1829 * prepare_task_switch - prepare to switch tasks
1830 * @rq: the runqueue preparing to switch
421cee29 1831 * @prev: the current task that is being switched out
4866cde0
NP
1832 * @next: the task we are going to switch to.
1833 *
1834 * This is called with the rq lock held and interrupts off. It must
1835 * be paired with a subsequent finish_task_switch after the context
1836 * switch.
1837 *
1838 * prepare_task_switch sets up locking and calls architecture specific
1839 * hooks.
1840 */
e107be36
AK
1841static inline void
1842prepare_task_switch(struct rq *rq, struct task_struct *prev,
1843 struct task_struct *next)
4866cde0 1844{
895dd92c 1845 trace_sched_switch(prev, next);
43148951 1846 sched_info_switch(rq, prev, next);
fe4b04fa 1847 perf_event_task_sched_out(prev, next);
e107be36 1848 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1849 prepare_lock_switch(rq, next);
1850 prepare_arch_switch(next);
1851}
1852
1da177e4
LT
1853/**
1854 * finish_task_switch - clean up after a task-switch
344babaa 1855 * @rq: runqueue associated with task-switch
1da177e4
LT
1856 * @prev: the thread we just switched away from.
1857 *
4866cde0
NP
1858 * finish_task_switch must be called after the context switch, paired
1859 * with a prepare_task_switch call before the context switch.
1860 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1861 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1862 *
1863 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1864 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1865 * with the lock held can cause deadlocks; see schedule() for
1866 * details.)
1867 */
a9957449 1868static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1869 __releases(rq->lock)
1870{
1da177e4 1871 struct mm_struct *mm = rq->prev_mm;
55a101f8 1872 long prev_state;
1da177e4
LT
1873
1874 rq->prev_mm = NULL;
1875
1876 /*
1877 * A task struct has one reference for the use as "current".
c394cc9f 1878 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1879 * schedule one last time. The schedule call will never return, and
1880 * the scheduled task must drop that reference.
c394cc9f 1881 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1882 * still held, otherwise prev could be scheduled on another cpu, die
1883 * there before we look at prev->state, and then the reference would
1884 * be dropped twice.
1885 * Manfred Spraul <manfred@colorfullife.com>
1886 */
55a101f8 1887 prev_state = prev->state;
bf9fae9f 1888 vtime_task_switch(prev);
4866cde0 1889 finish_arch_switch(prev);
a8d757ef 1890 perf_event_task_sched_in(prev, current);
4866cde0 1891 finish_lock_switch(rq, prev);
01f23e16 1892 finish_arch_post_lock_switch();
e8fa1362 1893
e107be36 1894 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1895 if (mm)
1896 mmdrop(mm);
c394cc9f 1897 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
1898 task_numa_free(prev);
1899
c6fd91f0 1900 /*
1901 * Remove function-return probe instances associated with this
1902 * task and put them back on the free list.
9761eea8 1903 */
c6fd91f0 1904 kprobe_flush_task(prev);
1da177e4 1905 put_task_struct(prev);
c6fd91f0 1906 }
99e5ada9
FW
1907
1908 tick_nohz_task_switch(current);
1da177e4
LT
1909}
1910
3f029d3c
GH
1911#ifdef CONFIG_SMP
1912
1913/* assumes rq->lock is held */
1914static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1915{
1916 if (prev->sched_class->pre_schedule)
1917 prev->sched_class->pre_schedule(rq, prev);
1918}
1919
1920/* rq->lock is NOT held, but preemption is disabled */
1921static inline void post_schedule(struct rq *rq)
1922{
1923 if (rq->post_schedule) {
1924 unsigned long flags;
1925
05fa785c 1926 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1927 if (rq->curr->sched_class->post_schedule)
1928 rq->curr->sched_class->post_schedule(rq);
05fa785c 1929 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1930
1931 rq->post_schedule = 0;
1932 }
1933}
1934
1935#else
da19ab51 1936
3f029d3c
GH
1937static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1938{
1939}
1940
1941static inline void post_schedule(struct rq *rq)
1942{
1da177e4
LT
1943}
1944
3f029d3c
GH
1945#endif
1946
1da177e4
LT
1947/**
1948 * schedule_tail - first thing a freshly forked thread must call.
1949 * @prev: the thread we just switched away from.
1950 */
36c8b586 1951asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1952 __releases(rq->lock)
1953{
70b97a7f
IM
1954 struct rq *rq = this_rq();
1955
4866cde0 1956 finish_task_switch(rq, prev);
da19ab51 1957
3f029d3c
GH
1958 /*
1959 * FIXME: do we need to worry about rq being invalidated by the
1960 * task_switch?
1961 */
1962 post_schedule(rq);
70b97a7f 1963
4866cde0
NP
1964#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1965 /* In this case, finish_task_switch does not reenable preemption */
1966 preempt_enable();
1967#endif
1da177e4 1968 if (current->set_child_tid)
b488893a 1969 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1970}
1971
1972/*
1973 * context_switch - switch to the new MM and the new
1974 * thread's register state.
1975 */
dd41f596 1976static inline void
70b97a7f 1977context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1978 struct task_struct *next)
1da177e4 1979{
dd41f596 1980 struct mm_struct *mm, *oldmm;
1da177e4 1981
e107be36 1982 prepare_task_switch(rq, prev, next);
fe4b04fa 1983
dd41f596
IM
1984 mm = next->mm;
1985 oldmm = prev->active_mm;
9226d125
ZA
1986 /*
1987 * For paravirt, this is coupled with an exit in switch_to to
1988 * combine the page table reload and the switch backend into
1989 * one hypercall.
1990 */
224101ed 1991 arch_start_context_switch(prev);
9226d125 1992
31915ab4 1993 if (!mm) {
1da177e4
LT
1994 next->active_mm = oldmm;
1995 atomic_inc(&oldmm->mm_count);
1996 enter_lazy_tlb(oldmm, next);
1997 } else
1998 switch_mm(oldmm, mm, next);
1999
31915ab4 2000 if (!prev->mm) {
1da177e4 2001 prev->active_mm = NULL;
1da177e4
LT
2002 rq->prev_mm = oldmm;
2003 }
3a5f5e48
IM
2004 /*
2005 * Since the runqueue lock will be released by the next
2006 * task (which is an invalid locking op but in the case
2007 * of the scheduler it's an obvious special-case), so we
2008 * do an early lockdep release here:
2009 */
2010#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2011 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2012#endif
1da177e4 2013
91d1aa43 2014 context_tracking_task_switch(prev, next);
1da177e4
LT
2015 /* Here we just switch the register state and the stack. */
2016 switch_to(prev, next, prev);
2017
dd41f596
IM
2018 barrier();
2019 /*
2020 * this_rq must be evaluated again because prev may have moved
2021 * CPUs since it called schedule(), thus the 'rq' on its stack
2022 * frame will be invalid.
2023 */
2024 finish_task_switch(this_rq(), prev);
1da177e4
LT
2025}
2026
2027/*
1c3e8264 2028 * nr_running and nr_context_switches:
1da177e4
LT
2029 *
2030 * externally visible scheduler statistics: current number of runnable
1c3e8264 2031 * threads, total number of context switches performed since bootup.
1da177e4
LT
2032 */
2033unsigned long nr_running(void)
2034{
2035 unsigned long i, sum = 0;
2036
2037 for_each_online_cpu(i)
2038 sum += cpu_rq(i)->nr_running;
2039
2040 return sum;
f711f609 2041}
1da177e4 2042
1da177e4 2043unsigned long long nr_context_switches(void)
46cb4b7c 2044{
cc94abfc
SR
2045 int i;
2046 unsigned long long sum = 0;
46cb4b7c 2047
0a945022 2048 for_each_possible_cpu(i)
1da177e4 2049 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2050
1da177e4
LT
2051 return sum;
2052}
483b4ee6 2053
1da177e4
LT
2054unsigned long nr_iowait(void)
2055{
2056 unsigned long i, sum = 0;
483b4ee6 2057
0a945022 2058 for_each_possible_cpu(i)
1da177e4 2059 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2060
1da177e4
LT
2061 return sum;
2062}
483b4ee6 2063
8c215bd3 2064unsigned long nr_iowait_cpu(int cpu)
69d25870 2065{
8c215bd3 2066 struct rq *this = cpu_rq(cpu);
69d25870
AV
2067 return atomic_read(&this->nr_iowait);
2068}
46cb4b7c 2069
dd41f596 2070#ifdef CONFIG_SMP
8a0be9ef 2071
46cb4b7c 2072/*
38022906
PZ
2073 * sched_exec - execve() is a valuable balancing opportunity, because at
2074 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2075 */
38022906 2076void sched_exec(void)
46cb4b7c 2077{
38022906 2078 struct task_struct *p = current;
1da177e4 2079 unsigned long flags;
0017d735 2080 int dest_cpu;
46cb4b7c 2081
8f42ced9 2082 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2083 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2084 if (dest_cpu == smp_processor_id())
2085 goto unlock;
38022906 2086
8f42ced9 2087 if (likely(cpu_active(dest_cpu))) {
969c7921 2088 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2089
8f42ced9
PZ
2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2091 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2092 return;
2093 }
0017d735 2094unlock:
8f42ced9 2095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2096}
dd41f596 2097
1da177e4
LT
2098#endif
2099
1da177e4 2100DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2101DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2102
2103EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2104EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2105
2106/*
c5f8d995 2107 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2108 * @p in case that task is currently running.
c5f8d995
HS
2109 *
2110 * Called with task_rq_lock() held on @rq.
1da177e4 2111 */
c5f8d995
HS
2112static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2113{
2114 u64 ns = 0;
2115
2116 if (task_current(rq, p)) {
2117 update_rq_clock(rq);
78becc27 2118 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2119 if ((s64)ns < 0)
2120 ns = 0;
2121 }
2122
2123 return ns;
2124}
2125
bb34d92f 2126unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2127{
1da177e4 2128 unsigned long flags;
41b86e9c 2129 struct rq *rq;
bb34d92f 2130 u64 ns = 0;
48f24c4d 2131
41b86e9c 2132 rq = task_rq_lock(p, &flags);
c5f8d995 2133 ns = do_task_delta_exec(p, rq);
0122ec5b 2134 task_rq_unlock(rq, p, &flags);
1508487e 2135
c5f8d995
HS
2136 return ns;
2137}
f06febc9 2138
c5f8d995
HS
2139/*
2140 * Return accounted runtime for the task.
2141 * In case the task is currently running, return the runtime plus current's
2142 * pending runtime that have not been accounted yet.
2143 */
2144unsigned long long task_sched_runtime(struct task_struct *p)
2145{
2146 unsigned long flags;
2147 struct rq *rq;
2148 u64 ns = 0;
2149
2150 rq = task_rq_lock(p, &flags);
2151 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2152 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2153
2154 return ns;
2155}
48f24c4d 2156
7835b98b
CL
2157/*
2158 * This function gets called by the timer code, with HZ frequency.
2159 * We call it with interrupts disabled.
7835b98b
CL
2160 */
2161void scheduler_tick(void)
2162{
7835b98b
CL
2163 int cpu = smp_processor_id();
2164 struct rq *rq = cpu_rq(cpu);
dd41f596 2165 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2166
2167 sched_clock_tick();
dd41f596 2168
05fa785c 2169 raw_spin_lock(&rq->lock);
3e51f33f 2170 update_rq_clock(rq);
fa85ae24 2171 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2172 update_cpu_load_active(rq);
05fa785c 2173 raw_spin_unlock(&rq->lock);
7835b98b 2174
e9d2b064 2175 perf_event_task_tick();
e220d2dc 2176
e418e1c2 2177#ifdef CONFIG_SMP
6eb57e0d 2178 rq->idle_balance = idle_cpu(cpu);
dd41f596 2179 trigger_load_balance(rq, cpu);
e418e1c2 2180#endif
265f22a9 2181 rq_last_tick_reset(rq);
1da177e4
LT
2182}
2183
265f22a9
FW
2184#ifdef CONFIG_NO_HZ_FULL
2185/**
2186 * scheduler_tick_max_deferment
2187 *
2188 * Keep at least one tick per second when a single
2189 * active task is running because the scheduler doesn't
2190 * yet completely support full dynticks environment.
2191 *
2192 * This makes sure that uptime, CFS vruntime, load
2193 * balancing, etc... continue to move forward, even
2194 * with a very low granularity.
e69f6186
YB
2195 *
2196 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2197 */
2198u64 scheduler_tick_max_deferment(void)
2199{
2200 struct rq *rq = this_rq();
2201 unsigned long next, now = ACCESS_ONCE(jiffies);
2202
2203 next = rq->last_sched_tick + HZ;
2204
2205 if (time_before_eq(next, now))
2206 return 0;
2207
2208 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2209}
265f22a9 2210#endif
1da177e4 2211
132380a0 2212notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2213{
2214 if (in_lock_functions(addr)) {
2215 addr = CALLER_ADDR2;
2216 if (in_lock_functions(addr))
2217 addr = CALLER_ADDR3;
2218 }
2219 return addr;
2220}
1da177e4 2221
7e49fcce
SR
2222#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2223 defined(CONFIG_PREEMPT_TRACER))
2224
bdb43806 2225void __kprobes preempt_count_add(int val)
1da177e4 2226{
6cd8a4bb 2227#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2228 /*
2229 * Underflow?
2230 */
9a11b49a
IM
2231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2232 return;
6cd8a4bb 2233#endif
bdb43806 2234 __preempt_count_add(val);
6cd8a4bb 2235#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2236 /*
2237 * Spinlock count overflowing soon?
2238 */
33859f7f
MOS
2239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2240 PREEMPT_MASK - 10);
6cd8a4bb
SR
2241#endif
2242 if (preempt_count() == val)
2243 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2244}
bdb43806 2245EXPORT_SYMBOL(preempt_count_add);
1da177e4 2246
bdb43806 2247void __kprobes preempt_count_sub(int val)
1da177e4 2248{
6cd8a4bb 2249#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2250 /*
2251 * Underflow?
2252 */
01e3eb82 2253 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2254 return;
1da177e4
LT
2255 /*
2256 * Is the spinlock portion underflowing?
2257 */
9a11b49a
IM
2258 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2259 !(preempt_count() & PREEMPT_MASK)))
2260 return;
6cd8a4bb 2261#endif
9a11b49a 2262
6cd8a4bb
SR
2263 if (preempt_count() == val)
2264 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2265 __preempt_count_sub(val);
1da177e4 2266}
bdb43806 2267EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2268
2269#endif
2270
2271/*
dd41f596 2272 * Print scheduling while atomic bug:
1da177e4 2273 */
dd41f596 2274static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2275{
664dfa65
DJ
2276 if (oops_in_progress)
2277 return;
2278
3df0fc5b
PZ
2279 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2280 prev->comm, prev->pid, preempt_count());
838225b4 2281
dd41f596 2282 debug_show_held_locks(prev);
e21f5b15 2283 print_modules();
dd41f596
IM
2284 if (irqs_disabled())
2285 print_irqtrace_events(prev);
6135fc1e 2286 dump_stack();
373d4d09 2287 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2288}
1da177e4 2289
dd41f596
IM
2290/*
2291 * Various schedule()-time debugging checks and statistics:
2292 */
2293static inline void schedule_debug(struct task_struct *prev)
2294{
1da177e4 2295 /*
41a2d6cf 2296 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2297 * schedule() atomically, we ignore that path for now.
2298 * Otherwise, whine if we are scheduling when we should not be.
2299 */
3f33a7ce 2300 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2301 __schedule_bug(prev);
b3fbab05 2302 rcu_sleep_check();
dd41f596 2303
1da177e4
LT
2304 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2305
2d72376b 2306 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2307}
2308
6cecd084 2309static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2310{
61eadef6 2311 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2312 update_rq_clock(rq);
6cecd084 2313 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2314}
2315
dd41f596
IM
2316/*
2317 * Pick up the highest-prio task:
2318 */
2319static inline struct task_struct *
b67802ea 2320pick_next_task(struct rq *rq)
dd41f596 2321{
5522d5d5 2322 const struct sched_class *class;
dd41f596 2323 struct task_struct *p;
1da177e4
LT
2324
2325 /*
dd41f596
IM
2326 * Optimization: we know that if all tasks are in
2327 * the fair class we can call that function directly:
1da177e4 2328 */
953bfcd1 2329 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2330 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2331 if (likely(p))
2332 return p;
1da177e4
LT
2333 }
2334
34f971f6 2335 for_each_class(class) {
fb8d4724 2336 p = class->pick_next_task(rq);
dd41f596
IM
2337 if (p)
2338 return p;
dd41f596 2339 }
34f971f6
PZ
2340
2341 BUG(); /* the idle class will always have a runnable task */
dd41f596 2342}
1da177e4 2343
dd41f596 2344/*
c259e01a 2345 * __schedule() is the main scheduler function.
edde96ea
PE
2346 *
2347 * The main means of driving the scheduler and thus entering this function are:
2348 *
2349 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2350 *
2351 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2352 * paths. For example, see arch/x86/entry_64.S.
2353 *
2354 * To drive preemption between tasks, the scheduler sets the flag in timer
2355 * interrupt handler scheduler_tick().
2356 *
2357 * 3. Wakeups don't really cause entry into schedule(). They add a
2358 * task to the run-queue and that's it.
2359 *
2360 * Now, if the new task added to the run-queue preempts the current
2361 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2362 * called on the nearest possible occasion:
2363 *
2364 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2365 *
2366 * - in syscall or exception context, at the next outmost
2367 * preempt_enable(). (this might be as soon as the wake_up()'s
2368 * spin_unlock()!)
2369 *
2370 * - in IRQ context, return from interrupt-handler to
2371 * preemptible context
2372 *
2373 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2374 * then at the next:
2375 *
2376 * - cond_resched() call
2377 * - explicit schedule() call
2378 * - return from syscall or exception to user-space
2379 * - return from interrupt-handler to user-space
dd41f596 2380 */
c259e01a 2381static void __sched __schedule(void)
dd41f596
IM
2382{
2383 struct task_struct *prev, *next;
67ca7bde 2384 unsigned long *switch_count;
dd41f596 2385 struct rq *rq;
31656519 2386 int cpu;
dd41f596 2387
ff743345
PZ
2388need_resched:
2389 preempt_disable();
dd41f596
IM
2390 cpu = smp_processor_id();
2391 rq = cpu_rq(cpu);
25502a6c 2392 rcu_note_context_switch(cpu);
dd41f596 2393 prev = rq->curr;
dd41f596 2394
dd41f596 2395 schedule_debug(prev);
1da177e4 2396
31656519 2397 if (sched_feat(HRTICK))
f333fdc9 2398 hrtick_clear(rq);
8f4d37ec 2399
e0acd0a6
ON
2400 /*
2401 * Make sure that signal_pending_state()->signal_pending() below
2402 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2403 * done by the caller to avoid the race with signal_wake_up().
2404 */
2405 smp_mb__before_spinlock();
05fa785c 2406 raw_spin_lock_irq(&rq->lock);
1da177e4 2407
246d86b5 2408 switch_count = &prev->nivcsw;
1da177e4 2409 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2410 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2411 prev->state = TASK_RUNNING;
21aa9af0 2412 } else {
2acca55e
PZ
2413 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2414 prev->on_rq = 0;
2415
21aa9af0 2416 /*
2acca55e
PZ
2417 * If a worker went to sleep, notify and ask workqueue
2418 * whether it wants to wake up a task to maintain
2419 * concurrency.
21aa9af0
TH
2420 */
2421 if (prev->flags & PF_WQ_WORKER) {
2422 struct task_struct *to_wakeup;
2423
2424 to_wakeup = wq_worker_sleeping(prev, cpu);
2425 if (to_wakeup)
2426 try_to_wake_up_local(to_wakeup);
2427 }
21aa9af0 2428 }
dd41f596 2429 switch_count = &prev->nvcsw;
1da177e4
LT
2430 }
2431
3f029d3c 2432 pre_schedule(rq, prev);
f65eda4f 2433
dd41f596 2434 if (unlikely(!rq->nr_running))
1da177e4 2435 idle_balance(cpu, rq);
1da177e4 2436
df1c99d4 2437 put_prev_task(rq, prev);
b67802ea 2438 next = pick_next_task(rq);
f26f9aff 2439 clear_tsk_need_resched(prev);
f27dde8d 2440 clear_preempt_need_resched();
f26f9aff 2441 rq->skip_clock_update = 0;
1da177e4 2442
1da177e4 2443 if (likely(prev != next)) {
1da177e4
LT
2444 rq->nr_switches++;
2445 rq->curr = next;
2446 ++*switch_count;
2447
dd41f596 2448 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2449 /*
246d86b5
ON
2450 * The context switch have flipped the stack from under us
2451 * and restored the local variables which were saved when
2452 * this task called schedule() in the past. prev == current
2453 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2454 */
2455 cpu = smp_processor_id();
2456 rq = cpu_rq(cpu);
1da177e4 2457 } else
05fa785c 2458 raw_spin_unlock_irq(&rq->lock);
1da177e4 2459
3f029d3c 2460 post_schedule(rq);
1da177e4 2461
ba74c144 2462 sched_preempt_enable_no_resched();
ff743345 2463 if (need_resched())
1da177e4
LT
2464 goto need_resched;
2465}
c259e01a 2466
9c40cef2
TG
2467static inline void sched_submit_work(struct task_struct *tsk)
2468{
3c7d5184 2469 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2470 return;
2471 /*
2472 * If we are going to sleep and we have plugged IO queued,
2473 * make sure to submit it to avoid deadlocks.
2474 */
2475 if (blk_needs_flush_plug(tsk))
2476 blk_schedule_flush_plug(tsk);
2477}
2478
6ebbe7a0 2479asmlinkage void __sched schedule(void)
c259e01a 2480{
9c40cef2
TG
2481 struct task_struct *tsk = current;
2482
2483 sched_submit_work(tsk);
c259e01a
TG
2484 __schedule();
2485}
1da177e4
LT
2486EXPORT_SYMBOL(schedule);
2487
91d1aa43 2488#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2489asmlinkage void __sched schedule_user(void)
2490{
2491 /*
2492 * If we come here after a random call to set_need_resched(),
2493 * or we have been woken up remotely but the IPI has not yet arrived,
2494 * we haven't yet exited the RCU idle mode. Do it here manually until
2495 * we find a better solution.
2496 */
91d1aa43 2497 user_exit();
20ab65e3 2498 schedule();
91d1aa43 2499 user_enter();
20ab65e3
FW
2500}
2501#endif
2502
c5491ea7
TG
2503/**
2504 * schedule_preempt_disabled - called with preemption disabled
2505 *
2506 * Returns with preemption disabled. Note: preempt_count must be 1
2507 */
2508void __sched schedule_preempt_disabled(void)
2509{
ba74c144 2510 sched_preempt_enable_no_resched();
c5491ea7
TG
2511 schedule();
2512 preempt_disable();
2513}
2514
1da177e4
LT
2515#ifdef CONFIG_PREEMPT
2516/*
2ed6e34f 2517 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2518 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2519 * occur there and call schedule directly.
2520 */
d1f74e20 2521asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2522{
1da177e4
LT
2523 /*
2524 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2525 * we do not want to preempt the current task. Just return..
1da177e4 2526 */
fbb00b56 2527 if (likely(!preemptible()))
1da177e4
LT
2528 return;
2529
3a5c359a 2530 do {
bdb43806 2531 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2532 __schedule();
bdb43806 2533 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2534
3a5c359a
AK
2535 /*
2536 * Check again in case we missed a preemption opportunity
2537 * between schedule and now.
2538 */
2539 barrier();
5ed0cec0 2540 } while (need_resched());
1da177e4 2541}
1da177e4
LT
2542EXPORT_SYMBOL(preempt_schedule);
2543
2544/*
2ed6e34f 2545 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2546 * off of irq context.
2547 * Note, that this is called and return with irqs disabled. This will
2548 * protect us against recursive calling from irq.
2549 */
2550asmlinkage void __sched preempt_schedule_irq(void)
2551{
b22366cd 2552 enum ctx_state prev_state;
6478d880 2553
2ed6e34f 2554 /* Catch callers which need to be fixed */
f27dde8d 2555 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2556
b22366cd
FW
2557 prev_state = exception_enter();
2558
3a5c359a 2559 do {
bdb43806 2560 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2561 local_irq_enable();
c259e01a 2562 __schedule();
3a5c359a 2563 local_irq_disable();
bdb43806 2564 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2565
3a5c359a
AK
2566 /*
2567 * Check again in case we missed a preemption opportunity
2568 * between schedule and now.
2569 */
2570 barrier();
5ed0cec0 2571 } while (need_resched());
b22366cd
FW
2572
2573 exception_exit(prev_state);
1da177e4
LT
2574}
2575
2576#endif /* CONFIG_PREEMPT */
2577
63859d4f 2578int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2579 void *key)
1da177e4 2580{
63859d4f 2581 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2582}
1da177e4
LT
2583EXPORT_SYMBOL(default_wake_function);
2584
2585/*
41a2d6cf
IM
2586 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2587 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2588 * number) then we wake all the non-exclusive tasks and one exclusive task.
2589 *
2590 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2591 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2592 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2593 */
78ddb08f 2594static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2595 int nr_exclusive, int wake_flags, void *key)
1da177e4 2596{
2e45874c 2597 wait_queue_t *curr, *next;
1da177e4 2598
2e45874c 2599 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2600 unsigned flags = curr->flags;
2601
63859d4f 2602 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2603 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2604 break;
2605 }
2606}
2607
2608/**
2609 * __wake_up - wake up threads blocked on a waitqueue.
2610 * @q: the waitqueue
2611 * @mode: which threads
2612 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2613 * @key: is directly passed to the wakeup function
50fa610a
DH
2614 *
2615 * It may be assumed that this function implies a write memory barrier before
2616 * changing the task state if and only if any tasks are woken up.
1da177e4 2617 */
7ad5b3a5 2618void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2619 int nr_exclusive, void *key)
1da177e4
LT
2620{
2621 unsigned long flags;
2622
2623 spin_lock_irqsave(&q->lock, flags);
2624 __wake_up_common(q, mode, nr_exclusive, 0, key);
2625 spin_unlock_irqrestore(&q->lock, flags);
2626}
1da177e4
LT
2627EXPORT_SYMBOL(__wake_up);
2628
2629/*
2630 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2631 */
63b20011 2632void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2633{
63b20011 2634 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2635}
22c43c81 2636EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2637
4ede816a
DL
2638void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2639{
2640 __wake_up_common(q, mode, 1, 0, key);
2641}
bf294b41 2642EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2643
1da177e4 2644/**
4ede816a 2645 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2646 * @q: the waitqueue
2647 * @mode: which threads
2648 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2649 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2650 *
2651 * The sync wakeup differs that the waker knows that it will schedule
2652 * away soon, so while the target thread will be woken up, it will not
2653 * be migrated to another CPU - ie. the two threads are 'synchronized'
2654 * with each other. This can prevent needless bouncing between CPUs.
2655 *
2656 * On UP it can prevent extra preemption.
50fa610a
DH
2657 *
2658 * It may be assumed that this function implies a write memory barrier before
2659 * changing the task state if and only if any tasks are woken up.
1da177e4 2660 */
4ede816a
DL
2661void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2662 int nr_exclusive, void *key)
1da177e4
LT
2663{
2664 unsigned long flags;
7d478721 2665 int wake_flags = WF_SYNC;
1da177e4
LT
2666
2667 if (unlikely(!q))
2668 return;
2669
cedce3e7 2670 if (unlikely(nr_exclusive != 1))
7d478721 2671 wake_flags = 0;
1da177e4
LT
2672
2673 spin_lock_irqsave(&q->lock, flags);
7d478721 2674 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2675 spin_unlock_irqrestore(&q->lock, flags);
2676}
4ede816a
DL
2677EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2678
2679/*
2680 * __wake_up_sync - see __wake_up_sync_key()
2681 */
2682void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2683{
2684 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2685}
1da177e4
LT
2686EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2687
65eb3dc6
KD
2688/**
2689 * complete: - signals a single thread waiting on this completion
2690 * @x: holds the state of this particular completion
2691 *
2692 * This will wake up a single thread waiting on this completion. Threads will be
2693 * awakened in the same order in which they were queued.
2694 *
2695 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2696 *
2697 * It may be assumed that this function implies a write memory barrier before
2698 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2699 */
b15136e9 2700void complete(struct completion *x)
1da177e4
LT
2701{
2702 unsigned long flags;
2703
2704 spin_lock_irqsave(&x->wait.lock, flags);
2705 x->done++;
d9514f6c 2706 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2707 spin_unlock_irqrestore(&x->wait.lock, flags);
2708}
2709EXPORT_SYMBOL(complete);
2710
65eb3dc6
KD
2711/**
2712 * complete_all: - signals all threads waiting on this completion
2713 * @x: holds the state of this particular completion
2714 *
2715 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2716 *
2717 * It may be assumed that this function implies a write memory barrier before
2718 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2719 */
b15136e9 2720void complete_all(struct completion *x)
1da177e4
LT
2721{
2722 unsigned long flags;
2723
2724 spin_lock_irqsave(&x->wait.lock, flags);
2725 x->done += UINT_MAX/2;
d9514f6c 2726 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2727 spin_unlock_irqrestore(&x->wait.lock, flags);
2728}
2729EXPORT_SYMBOL(complete_all);
2730
8cbbe86d 2731static inline long __sched
686855f5
VD
2732do_wait_for_common(struct completion *x,
2733 long (*action)(long), long timeout, int state)
1da177e4 2734{
1da177e4
LT
2735 if (!x->done) {
2736 DECLARE_WAITQUEUE(wait, current);
2737
a93d2f17 2738 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2739 do {
94d3d824 2740 if (signal_pending_state(state, current)) {
ea71a546
ON
2741 timeout = -ERESTARTSYS;
2742 break;
8cbbe86d
AK
2743 }
2744 __set_current_state(state);
1da177e4 2745 spin_unlock_irq(&x->wait.lock);
686855f5 2746 timeout = action(timeout);
1da177e4 2747 spin_lock_irq(&x->wait.lock);
ea71a546 2748 } while (!x->done && timeout);
1da177e4 2749 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2750 if (!x->done)
2751 return timeout;
1da177e4
LT
2752 }
2753 x->done--;
ea71a546 2754 return timeout ?: 1;
1da177e4 2755}
1da177e4 2756
686855f5
VD
2757static inline long __sched
2758__wait_for_common(struct completion *x,
2759 long (*action)(long), long timeout, int state)
1da177e4 2760{
1da177e4
LT
2761 might_sleep();
2762
2763 spin_lock_irq(&x->wait.lock);
686855f5 2764 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2765 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2766 return timeout;
2767}
1da177e4 2768
686855f5
VD
2769static long __sched
2770wait_for_common(struct completion *x, long timeout, int state)
2771{
2772 return __wait_for_common(x, schedule_timeout, timeout, state);
2773}
2774
2775static long __sched
2776wait_for_common_io(struct completion *x, long timeout, int state)
2777{
2778 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2779}
2780
65eb3dc6
KD
2781/**
2782 * wait_for_completion: - waits for completion of a task
2783 * @x: holds the state of this particular completion
2784 *
2785 * This waits to be signaled for completion of a specific task. It is NOT
2786 * interruptible and there is no timeout.
2787 *
2788 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2789 * and interrupt capability. Also see complete().
2790 */
b15136e9 2791void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2792{
2793 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2794}
8cbbe86d 2795EXPORT_SYMBOL(wait_for_completion);
1da177e4 2796
65eb3dc6
KD
2797/**
2798 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2799 * @x: holds the state of this particular completion
2800 * @timeout: timeout value in jiffies
2801 *
2802 * This waits for either a completion of a specific task to be signaled or for a
2803 * specified timeout to expire. The timeout is in jiffies. It is not
2804 * interruptible.
c6dc7f05 2805 *
e69f6186
YB
2806 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2807 * till timeout) if completed.
65eb3dc6 2808 */
b15136e9 2809unsigned long __sched
8cbbe86d 2810wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2811{
8cbbe86d 2812 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2813}
8cbbe86d 2814EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2815
686855f5
VD
2816/**
2817 * wait_for_completion_io: - waits for completion of a task
2818 * @x: holds the state of this particular completion
2819 *
2820 * This waits to be signaled for completion of a specific task. It is NOT
2821 * interruptible and there is no timeout. The caller is accounted as waiting
2822 * for IO.
2823 */
2824void __sched wait_for_completion_io(struct completion *x)
2825{
2826 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2827}
2828EXPORT_SYMBOL(wait_for_completion_io);
2829
2830/**
2831 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2832 * @x: holds the state of this particular completion
2833 * @timeout: timeout value in jiffies
2834 *
2835 * This waits for either a completion of a specific task to be signaled or for a
2836 * specified timeout to expire. The timeout is in jiffies. It is not
2837 * interruptible. The caller is accounted as waiting for IO.
2838 *
e69f6186
YB
2839 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2840 * till timeout) if completed.
686855f5
VD
2841 */
2842unsigned long __sched
2843wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2844{
2845 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2846}
2847EXPORT_SYMBOL(wait_for_completion_io_timeout);
2848
65eb3dc6
KD
2849/**
2850 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2851 * @x: holds the state of this particular completion
2852 *
2853 * This waits for completion of a specific task to be signaled. It is
2854 * interruptible.
c6dc7f05 2855 *
e69f6186 2856 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2857 */
8cbbe86d 2858int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2859{
51e97990
AK
2860 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2861 if (t == -ERESTARTSYS)
2862 return t;
2863 return 0;
0fec171c 2864}
8cbbe86d 2865EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2866
65eb3dc6
KD
2867/**
2868 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2869 * @x: holds the state of this particular completion
2870 * @timeout: timeout value in jiffies
2871 *
2872 * This waits for either a completion of a specific task to be signaled or for a
2873 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2874 *
e69f6186
YB
2875 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2876 * or number of jiffies left till timeout) if completed.
65eb3dc6 2877 */
6bf41237 2878long __sched
8cbbe86d
AK
2879wait_for_completion_interruptible_timeout(struct completion *x,
2880 unsigned long timeout)
0fec171c 2881{
8cbbe86d 2882 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2883}
8cbbe86d 2884EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2885
65eb3dc6
KD
2886/**
2887 * wait_for_completion_killable: - waits for completion of a task (killable)
2888 * @x: holds the state of this particular completion
2889 *
2890 * This waits to be signaled for completion of a specific task. It can be
2891 * interrupted by a kill signal.
c6dc7f05 2892 *
e69f6186 2893 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2894 */
009e577e
MW
2895int __sched wait_for_completion_killable(struct completion *x)
2896{
2897 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2898 if (t == -ERESTARTSYS)
2899 return t;
2900 return 0;
2901}
2902EXPORT_SYMBOL(wait_for_completion_killable);
2903
0aa12fb4
SW
2904/**
2905 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2906 * @x: holds the state of this particular completion
2907 * @timeout: timeout value in jiffies
2908 *
2909 * This waits for either a completion of a specific task to be
2910 * signaled or for a specified timeout to expire. It can be
2911 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2912 *
e69f6186
YB
2913 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2914 * or number of jiffies left till timeout) if completed.
0aa12fb4 2915 */
6bf41237 2916long __sched
0aa12fb4
SW
2917wait_for_completion_killable_timeout(struct completion *x,
2918 unsigned long timeout)
2919{
2920 return wait_for_common(x, timeout, TASK_KILLABLE);
2921}
2922EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2923
be4de352
DC
2924/**
2925 * try_wait_for_completion - try to decrement a completion without blocking
2926 * @x: completion structure
2927 *
e69f6186 2928 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2929 * 1 if a decrement succeeded.
2930 *
2931 * If a completion is being used as a counting completion,
2932 * attempt to decrement the counter without blocking. This
2933 * enables us to avoid waiting if the resource the completion
2934 * is protecting is not available.
2935 */
2936bool try_wait_for_completion(struct completion *x)
2937{
7539a3b3 2938 unsigned long flags;
be4de352
DC
2939 int ret = 1;
2940
7539a3b3 2941 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2942 if (!x->done)
2943 ret = 0;
2944 else
2945 x->done--;
7539a3b3 2946 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2947 return ret;
2948}
2949EXPORT_SYMBOL(try_wait_for_completion);
2950
2951/**
2952 * completion_done - Test to see if a completion has any waiters
2953 * @x: completion structure
2954 *
e69f6186 2955 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2956 * 1 if there are no waiters.
2957 *
2958 */
2959bool completion_done(struct completion *x)
2960{
7539a3b3 2961 unsigned long flags;
be4de352
DC
2962 int ret = 1;
2963
7539a3b3 2964 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2965 if (!x->done)
2966 ret = 0;
7539a3b3 2967 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2968 return ret;
2969}
2970EXPORT_SYMBOL(completion_done);
2971
8cbbe86d
AK
2972static long __sched
2973sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2974{
0fec171c
IM
2975 unsigned long flags;
2976 wait_queue_t wait;
2977
2978 init_waitqueue_entry(&wait, current);
1da177e4 2979
8cbbe86d 2980 __set_current_state(state);
1da177e4 2981
8cbbe86d
AK
2982 spin_lock_irqsave(&q->lock, flags);
2983 __add_wait_queue(q, &wait);
2984 spin_unlock(&q->lock);
2985 timeout = schedule_timeout(timeout);
2986 spin_lock_irq(&q->lock);
2987 __remove_wait_queue(q, &wait);
2988 spin_unlock_irqrestore(&q->lock, flags);
2989
2990 return timeout;
2991}
2992
2993void __sched interruptible_sleep_on(wait_queue_head_t *q)
2994{
2995 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2996}
1da177e4
LT
2997EXPORT_SYMBOL(interruptible_sleep_on);
2998
0fec171c 2999long __sched
95cdf3b7 3000interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3001{
8cbbe86d 3002 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3003}
1da177e4
LT
3004EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3005
0fec171c 3006void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3007{
8cbbe86d 3008 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3009}
1da177e4
LT
3010EXPORT_SYMBOL(sleep_on);
3011
0fec171c 3012long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3013{
8cbbe86d 3014 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3015}
1da177e4
LT
3016EXPORT_SYMBOL(sleep_on_timeout);
3017
b29739f9
IM
3018#ifdef CONFIG_RT_MUTEXES
3019
3020/*
3021 * rt_mutex_setprio - set the current priority of a task
3022 * @p: task
3023 * @prio: prio value (kernel-internal form)
3024 *
3025 * This function changes the 'effective' priority of a task. It does
3026 * not touch ->normal_prio like __setscheduler().
3027 *
3028 * Used by the rt_mutex code to implement priority inheritance logic.
3029 */
36c8b586 3030void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3031{
83b699ed 3032 int oldprio, on_rq, running;
70b97a7f 3033 struct rq *rq;
83ab0aa0 3034 const struct sched_class *prev_class;
b29739f9
IM
3035
3036 BUG_ON(prio < 0 || prio > MAX_PRIO);
3037
0122ec5b 3038 rq = __task_rq_lock(p);
b29739f9 3039
1c4dd99b
TG
3040 /*
3041 * Idle task boosting is a nono in general. There is one
3042 * exception, when PREEMPT_RT and NOHZ is active:
3043 *
3044 * The idle task calls get_next_timer_interrupt() and holds
3045 * the timer wheel base->lock on the CPU and another CPU wants
3046 * to access the timer (probably to cancel it). We can safely
3047 * ignore the boosting request, as the idle CPU runs this code
3048 * with interrupts disabled and will complete the lock
3049 * protected section without being interrupted. So there is no
3050 * real need to boost.
3051 */
3052 if (unlikely(p == rq->idle)) {
3053 WARN_ON(p != rq->curr);
3054 WARN_ON(p->pi_blocked_on);
3055 goto out_unlock;
3056 }
3057
a8027073 3058 trace_sched_pi_setprio(p, prio);
d5f9f942 3059 oldprio = p->prio;
83ab0aa0 3060 prev_class = p->sched_class;
fd2f4419 3061 on_rq = p->on_rq;
051a1d1a 3062 running = task_current(rq, p);
0e1f3483 3063 if (on_rq)
69be72c1 3064 dequeue_task(rq, p, 0);
0e1f3483
HS
3065 if (running)
3066 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3067
3068 if (rt_prio(prio))
3069 p->sched_class = &rt_sched_class;
3070 else
3071 p->sched_class = &fair_sched_class;
3072
b29739f9
IM
3073 p->prio = prio;
3074
0e1f3483
HS
3075 if (running)
3076 p->sched_class->set_curr_task(rq);
da7a735e 3077 if (on_rq)
371fd7e7 3078 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3079
da7a735e 3080 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3081out_unlock:
0122ec5b 3082 __task_rq_unlock(rq);
b29739f9 3083}
b29739f9 3084#endif
36c8b586 3085void set_user_nice(struct task_struct *p, long nice)
1da177e4 3086{
dd41f596 3087 int old_prio, delta, on_rq;
1da177e4 3088 unsigned long flags;
70b97a7f 3089 struct rq *rq;
1da177e4
LT
3090
3091 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3092 return;
3093 /*
3094 * We have to be careful, if called from sys_setpriority(),
3095 * the task might be in the middle of scheduling on another CPU.
3096 */
3097 rq = task_rq_lock(p, &flags);
3098 /*
3099 * The RT priorities are set via sched_setscheduler(), but we still
3100 * allow the 'normal' nice value to be set - but as expected
3101 * it wont have any effect on scheduling until the task is
dd41f596 3102 * SCHED_FIFO/SCHED_RR:
1da177e4 3103 */
e05606d3 3104 if (task_has_rt_policy(p)) {
1da177e4
LT
3105 p->static_prio = NICE_TO_PRIO(nice);
3106 goto out_unlock;
3107 }
fd2f4419 3108 on_rq = p->on_rq;
c09595f6 3109 if (on_rq)
69be72c1 3110 dequeue_task(rq, p, 0);
1da177e4 3111
1da177e4 3112 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3113 set_load_weight(p);
b29739f9
IM
3114 old_prio = p->prio;
3115 p->prio = effective_prio(p);
3116 delta = p->prio - old_prio;
1da177e4 3117
dd41f596 3118 if (on_rq) {
371fd7e7 3119 enqueue_task(rq, p, 0);
1da177e4 3120 /*
d5f9f942
AM
3121 * If the task increased its priority or is running and
3122 * lowered its priority, then reschedule its CPU:
1da177e4 3123 */
d5f9f942 3124 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3125 resched_task(rq->curr);
3126 }
3127out_unlock:
0122ec5b 3128 task_rq_unlock(rq, p, &flags);
1da177e4 3129}
1da177e4
LT
3130EXPORT_SYMBOL(set_user_nice);
3131
e43379f1
MM
3132/*
3133 * can_nice - check if a task can reduce its nice value
3134 * @p: task
3135 * @nice: nice value
3136 */
36c8b586 3137int can_nice(const struct task_struct *p, const int nice)
e43379f1 3138{
024f4747
MM
3139 /* convert nice value [19,-20] to rlimit style value [1,40] */
3140 int nice_rlim = 20 - nice;
48f24c4d 3141
78d7d407 3142 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3143 capable(CAP_SYS_NICE));
3144}
3145
1da177e4
LT
3146#ifdef __ARCH_WANT_SYS_NICE
3147
3148/*
3149 * sys_nice - change the priority of the current process.
3150 * @increment: priority increment
3151 *
3152 * sys_setpriority is a more generic, but much slower function that
3153 * does similar things.
3154 */
5add95d4 3155SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3156{
48f24c4d 3157 long nice, retval;
1da177e4
LT
3158
3159 /*
3160 * Setpriority might change our priority at the same moment.
3161 * We don't have to worry. Conceptually one call occurs first
3162 * and we have a single winner.
3163 */
e43379f1
MM
3164 if (increment < -40)
3165 increment = -40;
1da177e4
LT
3166 if (increment > 40)
3167 increment = 40;
3168
2b8f836f 3169 nice = TASK_NICE(current) + increment;
1da177e4
LT
3170 if (nice < -20)
3171 nice = -20;
3172 if (nice > 19)
3173 nice = 19;
3174
e43379f1
MM
3175 if (increment < 0 && !can_nice(current, nice))
3176 return -EPERM;
3177
1da177e4
LT
3178 retval = security_task_setnice(current, nice);
3179 if (retval)
3180 return retval;
3181
3182 set_user_nice(current, nice);
3183 return 0;
3184}
3185
3186#endif
3187
3188/**
3189 * task_prio - return the priority value of a given task.
3190 * @p: the task in question.
3191 *
e69f6186 3192 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3193 * RT tasks are offset by -200. Normal tasks are centered
3194 * around 0, value goes from -16 to +15.
3195 */
36c8b586 3196int task_prio(const struct task_struct *p)
1da177e4
LT
3197{
3198 return p->prio - MAX_RT_PRIO;
3199}
3200
3201/**
3202 * task_nice - return the nice value of a given task.
3203 * @p: the task in question.
e69f6186
YB
3204 *
3205 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3206 */
36c8b586 3207int task_nice(const struct task_struct *p)
1da177e4
LT
3208{
3209 return TASK_NICE(p);
3210}
150d8bed 3211EXPORT_SYMBOL(task_nice);
1da177e4
LT
3212
3213/**
3214 * idle_cpu - is a given cpu idle currently?
3215 * @cpu: the processor in question.
e69f6186
YB
3216 *
3217 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3218 */
3219int idle_cpu(int cpu)
3220{
908a3283
TG
3221 struct rq *rq = cpu_rq(cpu);
3222
3223 if (rq->curr != rq->idle)
3224 return 0;
3225
3226 if (rq->nr_running)
3227 return 0;
3228
3229#ifdef CONFIG_SMP
3230 if (!llist_empty(&rq->wake_list))
3231 return 0;
3232#endif
3233
3234 return 1;
1da177e4
LT
3235}
3236
1da177e4
LT
3237/**
3238 * idle_task - return the idle task for a given cpu.
3239 * @cpu: the processor in question.
e69f6186
YB
3240 *
3241 * Return: The idle task for the cpu @cpu.
1da177e4 3242 */
36c8b586 3243struct task_struct *idle_task(int cpu)
1da177e4
LT
3244{
3245 return cpu_rq(cpu)->idle;
3246}
3247
3248/**
3249 * find_process_by_pid - find a process with a matching PID value.
3250 * @pid: the pid in question.
e69f6186
YB
3251 *
3252 * The task of @pid, if found. %NULL otherwise.
1da177e4 3253 */
a9957449 3254static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3255{
228ebcbe 3256 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3257}
3258
3259/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3260static void
3261__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3262{
1da177e4
LT
3263 p->policy = policy;
3264 p->rt_priority = prio;
b29739f9
IM
3265 p->normal_prio = normal_prio(p);
3266 /* we are holding p->pi_lock already */
3267 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3268 if (rt_prio(p->prio))
3269 p->sched_class = &rt_sched_class;
3270 else
3271 p->sched_class = &fair_sched_class;
2dd73a4f 3272 set_load_weight(p);
1da177e4
LT
3273}
3274
c69e8d9c
DH
3275/*
3276 * check the target process has a UID that matches the current process's
3277 */
3278static bool check_same_owner(struct task_struct *p)
3279{
3280 const struct cred *cred = current_cred(), *pcred;
3281 bool match;
3282
3283 rcu_read_lock();
3284 pcred = __task_cred(p);
9c806aa0
EB
3285 match = (uid_eq(cred->euid, pcred->euid) ||
3286 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3287 rcu_read_unlock();
3288 return match;
3289}
3290
961ccddd 3291static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3292 const struct sched_param *param, bool user)
1da177e4 3293{
83b699ed 3294 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3295 unsigned long flags;
83ab0aa0 3296 const struct sched_class *prev_class;
70b97a7f 3297 struct rq *rq;
ca94c442 3298 int reset_on_fork;
1da177e4 3299
66e5393a
SR
3300 /* may grab non-irq protected spin_locks */
3301 BUG_ON(in_interrupt());
1da177e4
LT
3302recheck:
3303 /* double check policy once rq lock held */
ca94c442
LP
3304 if (policy < 0) {
3305 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3306 policy = oldpolicy = p->policy;
ca94c442
LP
3307 } else {
3308 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3309 policy &= ~SCHED_RESET_ON_FORK;
3310
3311 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3312 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3313 policy != SCHED_IDLE)
3314 return -EINVAL;
3315 }
3316
1da177e4
LT
3317 /*
3318 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3319 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3320 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3321 */
3322 if (param->sched_priority < 0 ||
95cdf3b7 3323 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3324 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3325 return -EINVAL;
e05606d3 3326 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3327 return -EINVAL;
3328
37e4ab3f
OC
3329 /*
3330 * Allow unprivileged RT tasks to decrease priority:
3331 */
961ccddd 3332 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3333 if (rt_policy(policy)) {
a44702e8
ON
3334 unsigned long rlim_rtprio =
3335 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3336
3337 /* can't set/change the rt policy */
3338 if (policy != p->policy && !rlim_rtprio)
3339 return -EPERM;
3340
3341 /* can't increase priority */
3342 if (param->sched_priority > p->rt_priority &&
3343 param->sched_priority > rlim_rtprio)
3344 return -EPERM;
3345 }
c02aa73b 3346
dd41f596 3347 /*
c02aa73b
DH
3348 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3349 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3350 */
c02aa73b
DH
3351 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3352 if (!can_nice(p, TASK_NICE(p)))
3353 return -EPERM;
3354 }
5fe1d75f 3355
37e4ab3f 3356 /* can't change other user's priorities */
c69e8d9c 3357 if (!check_same_owner(p))
37e4ab3f 3358 return -EPERM;
ca94c442
LP
3359
3360 /* Normal users shall not reset the sched_reset_on_fork flag */
3361 if (p->sched_reset_on_fork && !reset_on_fork)
3362 return -EPERM;
37e4ab3f 3363 }
1da177e4 3364
725aad24 3365 if (user) {
b0ae1981 3366 retval = security_task_setscheduler(p);
725aad24
JF
3367 if (retval)
3368 return retval;
3369 }
3370
b29739f9
IM
3371 /*
3372 * make sure no PI-waiters arrive (or leave) while we are
3373 * changing the priority of the task:
0122ec5b 3374 *
25985edc 3375 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3376 * runqueue lock must be held.
3377 */
0122ec5b 3378 rq = task_rq_lock(p, &flags);
dc61b1d6 3379
34f971f6
PZ
3380 /*
3381 * Changing the policy of the stop threads its a very bad idea
3382 */
3383 if (p == rq->stop) {
0122ec5b 3384 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3385 return -EINVAL;
3386 }
3387
a51e9198
DF
3388 /*
3389 * If not changing anything there's no need to proceed further:
3390 */
3391 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3392 param->sched_priority == p->rt_priority))) {
45afb173 3393 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3394 return 0;
3395 }
3396
dc61b1d6
PZ
3397#ifdef CONFIG_RT_GROUP_SCHED
3398 if (user) {
3399 /*
3400 * Do not allow realtime tasks into groups that have no runtime
3401 * assigned.
3402 */
3403 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3404 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3405 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3406 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3407 return -EPERM;
3408 }
3409 }
3410#endif
3411
1da177e4
LT
3412 /* recheck policy now with rq lock held */
3413 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3414 policy = oldpolicy = -1;
0122ec5b 3415 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3416 goto recheck;
3417 }
fd2f4419 3418 on_rq = p->on_rq;
051a1d1a 3419 running = task_current(rq, p);
0e1f3483 3420 if (on_rq)
4ca9b72b 3421 dequeue_task(rq, p, 0);
0e1f3483
HS
3422 if (running)
3423 p->sched_class->put_prev_task(rq, p);
f6b53205 3424
ca94c442
LP
3425 p->sched_reset_on_fork = reset_on_fork;
3426
1da177e4 3427 oldprio = p->prio;
83ab0aa0 3428 prev_class = p->sched_class;
dd41f596 3429 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3430
0e1f3483
HS
3431 if (running)
3432 p->sched_class->set_curr_task(rq);
da7a735e 3433 if (on_rq)
4ca9b72b 3434 enqueue_task(rq, p, 0);
cb469845 3435
da7a735e 3436 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3437 task_rq_unlock(rq, p, &flags);
b29739f9 3438
95e02ca9
TG
3439 rt_mutex_adjust_pi(p);
3440
1da177e4
LT
3441 return 0;
3442}
961ccddd
RR
3443
3444/**
3445 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3446 * @p: the task in question.
3447 * @policy: new policy.
3448 * @param: structure containing the new RT priority.
3449 *
e69f6186
YB
3450 * Return: 0 on success. An error code otherwise.
3451 *
961ccddd
RR
3452 * NOTE that the task may be already dead.
3453 */
3454int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3455 const struct sched_param *param)
961ccddd
RR
3456{
3457 return __sched_setscheduler(p, policy, param, true);
3458}
1da177e4
LT
3459EXPORT_SYMBOL_GPL(sched_setscheduler);
3460
961ccddd
RR
3461/**
3462 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3463 * @p: the task in question.
3464 * @policy: new policy.
3465 * @param: structure containing the new RT priority.
3466 *
3467 * Just like sched_setscheduler, only don't bother checking if the
3468 * current context has permission. For example, this is needed in
3469 * stop_machine(): we create temporary high priority worker threads,
3470 * but our caller might not have that capability.
e69f6186
YB
3471 *
3472 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3473 */
3474int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3475 const struct sched_param *param)
961ccddd
RR
3476{
3477 return __sched_setscheduler(p, policy, param, false);
3478}
3479
95cdf3b7
IM
3480static int
3481do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3482{
1da177e4
LT
3483 struct sched_param lparam;
3484 struct task_struct *p;
36c8b586 3485 int retval;
1da177e4
LT
3486
3487 if (!param || pid < 0)
3488 return -EINVAL;
3489 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3490 return -EFAULT;
5fe1d75f
ON
3491
3492 rcu_read_lock();
3493 retval = -ESRCH;
1da177e4 3494 p = find_process_by_pid(pid);
5fe1d75f
ON
3495 if (p != NULL)
3496 retval = sched_setscheduler(p, policy, &lparam);
3497 rcu_read_unlock();
36c8b586 3498
1da177e4
LT
3499 return retval;
3500}
3501
3502/**
3503 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3504 * @pid: the pid in question.
3505 * @policy: new policy.
3506 * @param: structure containing the new RT priority.
e69f6186
YB
3507 *
3508 * Return: 0 on success. An error code otherwise.
1da177e4 3509 */
5add95d4
HC
3510SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3511 struct sched_param __user *, param)
1da177e4 3512{
c21761f1
JB
3513 /* negative values for policy are not valid */
3514 if (policy < 0)
3515 return -EINVAL;
3516
1da177e4
LT
3517 return do_sched_setscheduler(pid, policy, param);
3518}
3519
3520/**
3521 * sys_sched_setparam - set/change the RT priority of a thread
3522 * @pid: the pid in question.
3523 * @param: structure containing the new RT priority.
e69f6186
YB
3524 *
3525 * Return: 0 on success. An error code otherwise.
1da177e4 3526 */
5add95d4 3527SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3528{
3529 return do_sched_setscheduler(pid, -1, param);
3530}
3531
3532/**
3533 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3534 * @pid: the pid in question.
e69f6186
YB
3535 *
3536 * Return: On success, the policy of the thread. Otherwise, a negative error
3537 * code.
1da177e4 3538 */
5add95d4 3539SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3540{
36c8b586 3541 struct task_struct *p;
3a5c359a 3542 int retval;
1da177e4
LT
3543
3544 if (pid < 0)
3a5c359a 3545 return -EINVAL;
1da177e4
LT
3546
3547 retval = -ESRCH;
5fe85be0 3548 rcu_read_lock();
1da177e4
LT
3549 p = find_process_by_pid(pid);
3550 if (p) {
3551 retval = security_task_getscheduler(p);
3552 if (!retval)
ca94c442
LP
3553 retval = p->policy
3554 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3555 }
5fe85be0 3556 rcu_read_unlock();
1da177e4
LT
3557 return retval;
3558}
3559
3560/**
ca94c442 3561 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3562 * @pid: the pid in question.
3563 * @param: structure containing the RT priority.
e69f6186
YB
3564 *
3565 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3566 * code.
1da177e4 3567 */
5add95d4 3568SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3569{
3570 struct sched_param lp;
36c8b586 3571 struct task_struct *p;
3a5c359a 3572 int retval;
1da177e4
LT
3573
3574 if (!param || pid < 0)
3a5c359a 3575 return -EINVAL;
1da177e4 3576
5fe85be0 3577 rcu_read_lock();
1da177e4
LT
3578 p = find_process_by_pid(pid);
3579 retval = -ESRCH;
3580 if (!p)
3581 goto out_unlock;
3582
3583 retval = security_task_getscheduler(p);
3584 if (retval)
3585 goto out_unlock;
3586
3587 lp.sched_priority = p->rt_priority;
5fe85be0 3588 rcu_read_unlock();
1da177e4
LT
3589
3590 /*
3591 * This one might sleep, we cannot do it with a spinlock held ...
3592 */
3593 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3594
1da177e4
LT
3595 return retval;
3596
3597out_unlock:
5fe85be0 3598 rcu_read_unlock();
1da177e4
LT
3599 return retval;
3600}
3601
96f874e2 3602long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3603{
5a16f3d3 3604 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3605 struct task_struct *p;
3606 int retval;
1da177e4 3607
95402b38 3608 get_online_cpus();
23f5d142 3609 rcu_read_lock();
1da177e4
LT
3610
3611 p = find_process_by_pid(pid);
3612 if (!p) {
23f5d142 3613 rcu_read_unlock();
95402b38 3614 put_online_cpus();
1da177e4
LT
3615 return -ESRCH;
3616 }
3617
23f5d142 3618 /* Prevent p going away */
1da177e4 3619 get_task_struct(p);
23f5d142 3620 rcu_read_unlock();
1da177e4 3621
14a40ffc
TH
3622 if (p->flags & PF_NO_SETAFFINITY) {
3623 retval = -EINVAL;
3624 goto out_put_task;
3625 }
5a16f3d3
RR
3626 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3627 retval = -ENOMEM;
3628 goto out_put_task;
3629 }
3630 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3631 retval = -ENOMEM;
3632 goto out_free_cpus_allowed;
3633 }
1da177e4 3634 retval = -EPERM;
4c44aaaf
EB
3635 if (!check_same_owner(p)) {
3636 rcu_read_lock();
3637 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3638 rcu_read_unlock();
3639 goto out_unlock;
3640 }
3641 rcu_read_unlock();
3642 }
1da177e4 3643
b0ae1981 3644 retval = security_task_setscheduler(p);
e7834f8f
DQ
3645 if (retval)
3646 goto out_unlock;
3647
5a16f3d3
RR
3648 cpuset_cpus_allowed(p, cpus_allowed);
3649 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3650again:
5a16f3d3 3651 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3652
8707d8b8 3653 if (!retval) {
5a16f3d3
RR
3654 cpuset_cpus_allowed(p, cpus_allowed);
3655 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3656 /*
3657 * We must have raced with a concurrent cpuset
3658 * update. Just reset the cpus_allowed to the
3659 * cpuset's cpus_allowed
3660 */
5a16f3d3 3661 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3662 goto again;
3663 }
3664 }
1da177e4 3665out_unlock:
5a16f3d3
RR
3666 free_cpumask_var(new_mask);
3667out_free_cpus_allowed:
3668 free_cpumask_var(cpus_allowed);
3669out_put_task:
1da177e4 3670 put_task_struct(p);
95402b38 3671 put_online_cpus();
1da177e4
LT
3672 return retval;
3673}
3674
3675static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3676 struct cpumask *new_mask)
1da177e4 3677{
96f874e2
RR
3678 if (len < cpumask_size())
3679 cpumask_clear(new_mask);
3680 else if (len > cpumask_size())
3681 len = cpumask_size();
3682
1da177e4
LT
3683 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3684}
3685
3686/**
3687 * sys_sched_setaffinity - set the cpu affinity of a process
3688 * @pid: pid of the process
3689 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3690 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3691 *
3692 * Return: 0 on success. An error code otherwise.
1da177e4 3693 */
5add95d4
HC
3694SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3695 unsigned long __user *, user_mask_ptr)
1da177e4 3696{
5a16f3d3 3697 cpumask_var_t new_mask;
1da177e4
LT
3698 int retval;
3699
5a16f3d3
RR
3700 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3701 return -ENOMEM;
1da177e4 3702
5a16f3d3
RR
3703 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3704 if (retval == 0)
3705 retval = sched_setaffinity(pid, new_mask);
3706 free_cpumask_var(new_mask);
3707 return retval;
1da177e4
LT
3708}
3709
96f874e2 3710long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3711{
36c8b586 3712 struct task_struct *p;
31605683 3713 unsigned long flags;
1da177e4 3714 int retval;
1da177e4 3715
95402b38 3716 get_online_cpus();
23f5d142 3717 rcu_read_lock();
1da177e4
LT
3718
3719 retval = -ESRCH;
3720 p = find_process_by_pid(pid);
3721 if (!p)
3722 goto out_unlock;
3723
e7834f8f
DQ
3724 retval = security_task_getscheduler(p);
3725 if (retval)
3726 goto out_unlock;
3727
013fdb80 3728 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3729 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3731
3732out_unlock:
23f5d142 3733 rcu_read_unlock();
95402b38 3734 put_online_cpus();
1da177e4 3735
9531b62f 3736 return retval;
1da177e4
LT
3737}
3738
3739/**
3740 * sys_sched_getaffinity - get the cpu affinity of a process
3741 * @pid: pid of the process
3742 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3743 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3744 *
3745 * Return: 0 on success. An error code otherwise.
1da177e4 3746 */
5add95d4
HC
3747SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3748 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3749{
3750 int ret;
f17c8607 3751 cpumask_var_t mask;
1da177e4 3752
84fba5ec 3753 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3754 return -EINVAL;
3755 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3756 return -EINVAL;
3757
f17c8607
RR
3758 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3759 return -ENOMEM;
1da177e4 3760
f17c8607
RR
3761 ret = sched_getaffinity(pid, mask);
3762 if (ret == 0) {
8bc037fb 3763 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3764
3765 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3766 ret = -EFAULT;
3767 else
cd3d8031 3768 ret = retlen;
f17c8607
RR
3769 }
3770 free_cpumask_var(mask);
1da177e4 3771
f17c8607 3772 return ret;
1da177e4
LT
3773}
3774
3775/**
3776 * sys_sched_yield - yield the current processor to other threads.
3777 *
dd41f596
IM
3778 * This function yields the current CPU to other tasks. If there are no
3779 * other threads running on this CPU then this function will return.
e69f6186
YB
3780 *
3781 * Return: 0.
1da177e4 3782 */
5add95d4 3783SYSCALL_DEFINE0(sched_yield)
1da177e4 3784{
70b97a7f 3785 struct rq *rq = this_rq_lock();
1da177e4 3786
2d72376b 3787 schedstat_inc(rq, yld_count);
4530d7ab 3788 current->sched_class->yield_task(rq);
1da177e4
LT
3789
3790 /*
3791 * Since we are going to call schedule() anyway, there's
3792 * no need to preempt or enable interrupts:
3793 */
3794 __release(rq->lock);
8a25d5de 3795 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3796 do_raw_spin_unlock(&rq->lock);
ba74c144 3797 sched_preempt_enable_no_resched();
1da177e4
LT
3798
3799 schedule();
3800
3801 return 0;
3802}
3803
e7b38404 3804static void __cond_resched(void)
1da177e4 3805{
bdb43806 3806 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3807 __schedule();
bdb43806 3808 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3809}
3810
02b67cc3 3811int __sched _cond_resched(void)
1da177e4 3812{
d86ee480 3813 if (should_resched()) {
1da177e4
LT
3814 __cond_resched();
3815 return 1;
3816 }
3817 return 0;
3818}
02b67cc3 3819EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3820
3821/*
613afbf8 3822 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3823 * call schedule, and on return reacquire the lock.
3824 *
41a2d6cf 3825 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3826 * operations here to prevent schedule() from being called twice (once via
3827 * spin_unlock(), once by hand).
3828 */
613afbf8 3829int __cond_resched_lock(spinlock_t *lock)
1da177e4 3830{
d86ee480 3831 int resched = should_resched();
6df3cecb
JK
3832 int ret = 0;
3833
f607c668
PZ
3834 lockdep_assert_held(lock);
3835
95c354fe 3836 if (spin_needbreak(lock) || resched) {
1da177e4 3837 spin_unlock(lock);
d86ee480 3838 if (resched)
95c354fe
NP
3839 __cond_resched();
3840 else
3841 cpu_relax();
6df3cecb 3842 ret = 1;
1da177e4 3843 spin_lock(lock);
1da177e4 3844 }
6df3cecb 3845 return ret;
1da177e4 3846}
613afbf8 3847EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3848
613afbf8 3849int __sched __cond_resched_softirq(void)
1da177e4
LT
3850{
3851 BUG_ON(!in_softirq());
3852
d86ee480 3853 if (should_resched()) {
98d82567 3854 local_bh_enable();
1da177e4
LT
3855 __cond_resched();
3856 local_bh_disable();
3857 return 1;
3858 }
3859 return 0;
3860}
613afbf8 3861EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3862
1da177e4
LT
3863/**
3864 * yield - yield the current processor to other threads.
3865 *
8e3fabfd
PZ
3866 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3867 *
3868 * The scheduler is at all times free to pick the calling task as the most
3869 * eligible task to run, if removing the yield() call from your code breaks
3870 * it, its already broken.
3871 *
3872 * Typical broken usage is:
3873 *
3874 * while (!event)
3875 * yield();
3876 *
3877 * where one assumes that yield() will let 'the other' process run that will
3878 * make event true. If the current task is a SCHED_FIFO task that will never
3879 * happen. Never use yield() as a progress guarantee!!
3880 *
3881 * If you want to use yield() to wait for something, use wait_event().
3882 * If you want to use yield() to be 'nice' for others, use cond_resched().
3883 * If you still want to use yield(), do not!
1da177e4
LT
3884 */
3885void __sched yield(void)
3886{
3887 set_current_state(TASK_RUNNING);
3888 sys_sched_yield();
3889}
1da177e4
LT
3890EXPORT_SYMBOL(yield);
3891
d95f4122
MG
3892/**
3893 * yield_to - yield the current processor to another thread in
3894 * your thread group, or accelerate that thread toward the
3895 * processor it's on.
16addf95
RD
3896 * @p: target task
3897 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3898 *
3899 * It's the caller's job to ensure that the target task struct
3900 * can't go away on us before we can do any checks.
3901 *
e69f6186 3902 * Return:
7b270f60
PZ
3903 * true (>0) if we indeed boosted the target task.
3904 * false (0) if we failed to boost the target.
3905 * -ESRCH if there's no task to yield to.
d95f4122
MG
3906 */
3907bool __sched yield_to(struct task_struct *p, bool preempt)
3908{
3909 struct task_struct *curr = current;
3910 struct rq *rq, *p_rq;
3911 unsigned long flags;
c3c18640 3912 int yielded = 0;
d95f4122
MG
3913
3914 local_irq_save(flags);
3915 rq = this_rq();
3916
3917again:
3918 p_rq = task_rq(p);
7b270f60
PZ
3919 /*
3920 * If we're the only runnable task on the rq and target rq also
3921 * has only one task, there's absolutely no point in yielding.
3922 */
3923 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3924 yielded = -ESRCH;
3925 goto out_irq;
3926 }
3927
d95f4122
MG
3928 double_rq_lock(rq, p_rq);
3929 while (task_rq(p) != p_rq) {
3930 double_rq_unlock(rq, p_rq);
3931 goto again;
3932 }
3933
3934 if (!curr->sched_class->yield_to_task)
7b270f60 3935 goto out_unlock;
d95f4122
MG
3936
3937 if (curr->sched_class != p->sched_class)
7b270f60 3938 goto out_unlock;
d95f4122
MG
3939
3940 if (task_running(p_rq, p) || p->state)
7b270f60 3941 goto out_unlock;
d95f4122
MG
3942
3943 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3944 if (yielded) {
d95f4122 3945 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3946 /*
3947 * Make p's CPU reschedule; pick_next_entity takes care of
3948 * fairness.
3949 */
3950 if (preempt && rq != p_rq)
3951 resched_task(p_rq->curr);
3952 }
d95f4122 3953
7b270f60 3954out_unlock:
d95f4122 3955 double_rq_unlock(rq, p_rq);
7b270f60 3956out_irq:
d95f4122
MG
3957 local_irq_restore(flags);
3958
7b270f60 3959 if (yielded > 0)
d95f4122
MG
3960 schedule();
3961
3962 return yielded;
3963}
3964EXPORT_SYMBOL_GPL(yield_to);
3965
1da177e4 3966/*
41a2d6cf 3967 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3968 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3969 */
3970void __sched io_schedule(void)
3971{
54d35f29 3972 struct rq *rq = raw_rq();
1da177e4 3973
0ff92245 3974 delayacct_blkio_start();
1da177e4 3975 atomic_inc(&rq->nr_iowait);
73c10101 3976 blk_flush_plug(current);
8f0dfc34 3977 current->in_iowait = 1;
1da177e4 3978 schedule();
8f0dfc34 3979 current->in_iowait = 0;
1da177e4 3980 atomic_dec(&rq->nr_iowait);
0ff92245 3981 delayacct_blkio_end();
1da177e4 3982}
1da177e4
LT
3983EXPORT_SYMBOL(io_schedule);
3984
3985long __sched io_schedule_timeout(long timeout)
3986{
54d35f29 3987 struct rq *rq = raw_rq();
1da177e4
LT
3988 long ret;
3989
0ff92245 3990 delayacct_blkio_start();
1da177e4 3991 atomic_inc(&rq->nr_iowait);
73c10101 3992 blk_flush_plug(current);
8f0dfc34 3993 current->in_iowait = 1;
1da177e4 3994 ret = schedule_timeout(timeout);
8f0dfc34 3995 current->in_iowait = 0;
1da177e4 3996 atomic_dec(&rq->nr_iowait);
0ff92245 3997 delayacct_blkio_end();
1da177e4
LT
3998 return ret;
3999}
4000
4001/**
4002 * sys_sched_get_priority_max - return maximum RT priority.
4003 * @policy: scheduling class.
4004 *
e69f6186
YB
4005 * Return: On success, this syscall returns the maximum
4006 * rt_priority that can be used by a given scheduling class.
4007 * On failure, a negative error code is returned.
1da177e4 4008 */
5add95d4 4009SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4010{
4011 int ret = -EINVAL;
4012
4013 switch (policy) {
4014 case SCHED_FIFO:
4015 case SCHED_RR:
4016 ret = MAX_USER_RT_PRIO-1;
4017 break;
4018 case SCHED_NORMAL:
b0a9499c 4019 case SCHED_BATCH:
dd41f596 4020 case SCHED_IDLE:
1da177e4
LT
4021 ret = 0;
4022 break;
4023 }
4024 return ret;
4025}
4026
4027/**
4028 * sys_sched_get_priority_min - return minimum RT priority.
4029 * @policy: scheduling class.
4030 *
e69f6186
YB
4031 * Return: On success, this syscall returns the minimum
4032 * rt_priority that can be used by a given scheduling class.
4033 * On failure, a negative error code is returned.
1da177e4 4034 */
5add95d4 4035SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4036{
4037 int ret = -EINVAL;
4038
4039 switch (policy) {
4040 case SCHED_FIFO:
4041 case SCHED_RR:
4042 ret = 1;
4043 break;
4044 case SCHED_NORMAL:
b0a9499c 4045 case SCHED_BATCH:
dd41f596 4046 case SCHED_IDLE:
1da177e4
LT
4047 ret = 0;
4048 }
4049 return ret;
4050}
4051
4052/**
4053 * sys_sched_rr_get_interval - return the default timeslice of a process.
4054 * @pid: pid of the process.
4055 * @interval: userspace pointer to the timeslice value.
4056 *
4057 * this syscall writes the default timeslice value of a given process
4058 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4059 *
4060 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4061 * an error code.
1da177e4 4062 */
17da2bd9 4063SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4064 struct timespec __user *, interval)
1da177e4 4065{
36c8b586 4066 struct task_struct *p;
a4ec24b4 4067 unsigned int time_slice;
dba091b9
TG
4068 unsigned long flags;
4069 struct rq *rq;
3a5c359a 4070 int retval;
1da177e4 4071 struct timespec t;
1da177e4
LT
4072
4073 if (pid < 0)
3a5c359a 4074 return -EINVAL;
1da177e4
LT
4075
4076 retval = -ESRCH;
1a551ae7 4077 rcu_read_lock();
1da177e4
LT
4078 p = find_process_by_pid(pid);
4079 if (!p)
4080 goto out_unlock;
4081
4082 retval = security_task_getscheduler(p);
4083 if (retval)
4084 goto out_unlock;
4085
dba091b9
TG
4086 rq = task_rq_lock(p, &flags);
4087 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4088 task_rq_unlock(rq, p, &flags);
a4ec24b4 4089
1a551ae7 4090 rcu_read_unlock();
a4ec24b4 4091 jiffies_to_timespec(time_slice, &t);
1da177e4 4092 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4093 return retval;
3a5c359a 4094
1da177e4 4095out_unlock:
1a551ae7 4096 rcu_read_unlock();
1da177e4
LT
4097 return retval;
4098}
4099
7c731e0a 4100static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4101
82a1fcb9 4102void sched_show_task(struct task_struct *p)
1da177e4 4103{
1da177e4 4104 unsigned long free = 0;
4e79752c 4105 int ppid;
36c8b586 4106 unsigned state;
1da177e4 4107
1da177e4 4108 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4109 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4110 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4111#if BITS_PER_LONG == 32
1da177e4 4112 if (state == TASK_RUNNING)
3df0fc5b 4113 printk(KERN_CONT " running ");
1da177e4 4114 else
3df0fc5b 4115 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4116#else
4117 if (state == TASK_RUNNING)
3df0fc5b 4118 printk(KERN_CONT " running task ");
1da177e4 4119 else
3df0fc5b 4120 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4121#endif
4122#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4123 free = stack_not_used(p);
1da177e4 4124#endif
4e79752c
PM
4125 rcu_read_lock();
4126 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4127 rcu_read_unlock();
3df0fc5b 4128 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4129 task_pid_nr(p), ppid,
aa47b7e0 4130 (unsigned long)task_thread_info(p)->flags);
1da177e4 4131
3d1cb205 4132 print_worker_info(KERN_INFO, p);
5fb5e6de 4133 show_stack(p, NULL);
1da177e4
LT
4134}
4135
e59e2ae2 4136void show_state_filter(unsigned long state_filter)
1da177e4 4137{
36c8b586 4138 struct task_struct *g, *p;
1da177e4 4139
4bd77321 4140#if BITS_PER_LONG == 32
3df0fc5b
PZ
4141 printk(KERN_INFO
4142 " task PC stack pid father\n");
1da177e4 4143#else
3df0fc5b
PZ
4144 printk(KERN_INFO
4145 " task PC stack pid father\n");
1da177e4 4146#endif
510f5acc 4147 rcu_read_lock();
1da177e4
LT
4148 do_each_thread(g, p) {
4149 /*
4150 * reset the NMI-timeout, listing all files on a slow
25985edc 4151 * console might take a lot of time:
1da177e4
LT
4152 */
4153 touch_nmi_watchdog();
39bc89fd 4154 if (!state_filter || (p->state & state_filter))
82a1fcb9 4155 sched_show_task(p);
1da177e4
LT
4156 } while_each_thread(g, p);
4157
04c9167f
JF
4158 touch_all_softlockup_watchdogs();
4159
dd41f596
IM
4160#ifdef CONFIG_SCHED_DEBUG
4161 sysrq_sched_debug_show();
4162#endif
510f5acc 4163 rcu_read_unlock();
e59e2ae2
IM
4164 /*
4165 * Only show locks if all tasks are dumped:
4166 */
93335a21 4167 if (!state_filter)
e59e2ae2 4168 debug_show_all_locks();
1da177e4
LT
4169}
4170
0db0628d 4171void init_idle_bootup_task(struct task_struct *idle)
1df21055 4172{
dd41f596 4173 idle->sched_class = &idle_sched_class;
1df21055
IM
4174}
4175
f340c0d1
IM
4176/**
4177 * init_idle - set up an idle thread for a given CPU
4178 * @idle: task in question
4179 * @cpu: cpu the idle task belongs to
4180 *
4181 * NOTE: this function does not set the idle thread's NEED_RESCHED
4182 * flag, to make booting more robust.
4183 */
0db0628d 4184void init_idle(struct task_struct *idle, int cpu)
1da177e4 4185{
70b97a7f 4186 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4187 unsigned long flags;
4188
05fa785c 4189 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4190
dd41f596 4191 __sched_fork(idle);
06b83b5f 4192 idle->state = TASK_RUNNING;
dd41f596
IM
4193 idle->se.exec_start = sched_clock();
4194
1e1b6c51 4195 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4196 /*
4197 * We're having a chicken and egg problem, even though we are
4198 * holding rq->lock, the cpu isn't yet set to this cpu so the
4199 * lockdep check in task_group() will fail.
4200 *
4201 * Similar case to sched_fork(). / Alternatively we could
4202 * use task_rq_lock() here and obtain the other rq->lock.
4203 *
4204 * Silence PROVE_RCU
4205 */
4206 rcu_read_lock();
dd41f596 4207 __set_task_cpu(idle, cpu);
6506cf6c 4208 rcu_read_unlock();
1da177e4 4209
1da177e4 4210 rq->curr = rq->idle = idle;
3ca7a440
PZ
4211#if defined(CONFIG_SMP)
4212 idle->on_cpu = 1;
4866cde0 4213#endif
05fa785c 4214 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4215
4216 /* Set the preempt count _outside_ the spinlocks! */
01028747 4217 init_idle_preempt_count(idle, cpu);
55cd5340 4218
dd41f596
IM
4219 /*
4220 * The idle tasks have their own, simple scheduling class:
4221 */
4222 idle->sched_class = &idle_sched_class;
868baf07 4223 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4224 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4225#if defined(CONFIG_SMP)
4226 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4227#endif
19978ca6
IM
4228}
4229
1da177e4 4230#ifdef CONFIG_SMP
1e1b6c51
KM
4231void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4232{
4233 if (p->sched_class && p->sched_class->set_cpus_allowed)
4234 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4235
4236 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4237 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4238}
4239
1da177e4
LT
4240/*
4241 * This is how migration works:
4242 *
969c7921
TH
4243 * 1) we invoke migration_cpu_stop() on the target CPU using
4244 * stop_one_cpu().
4245 * 2) stopper starts to run (implicitly forcing the migrated thread
4246 * off the CPU)
4247 * 3) it checks whether the migrated task is still in the wrong runqueue.
4248 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4249 * it and puts it into the right queue.
969c7921
TH
4250 * 5) stopper completes and stop_one_cpu() returns and the migration
4251 * is done.
1da177e4
LT
4252 */
4253
4254/*
4255 * Change a given task's CPU affinity. Migrate the thread to a
4256 * proper CPU and schedule it away if the CPU it's executing on
4257 * is removed from the allowed bitmask.
4258 *
4259 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4260 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4261 * call is not atomic; no spinlocks may be held.
4262 */
96f874e2 4263int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4264{
4265 unsigned long flags;
70b97a7f 4266 struct rq *rq;
969c7921 4267 unsigned int dest_cpu;
48f24c4d 4268 int ret = 0;
1da177e4
LT
4269
4270 rq = task_rq_lock(p, &flags);
e2912009 4271
db44fc01
YZ
4272 if (cpumask_equal(&p->cpus_allowed, new_mask))
4273 goto out;
4274
6ad4c188 4275 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4276 ret = -EINVAL;
4277 goto out;
4278 }
4279
1e1b6c51 4280 do_set_cpus_allowed(p, new_mask);
73fe6aae 4281
1da177e4 4282 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4283 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4284 goto out;
4285
969c7921 4286 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4287 if (p->on_rq) {
969c7921 4288 struct migration_arg arg = { p, dest_cpu };
1da177e4 4289 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4290 task_rq_unlock(rq, p, &flags);
969c7921 4291 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4292 tlb_migrate_finish(p->mm);
4293 return 0;
4294 }
4295out:
0122ec5b 4296 task_rq_unlock(rq, p, &flags);
48f24c4d 4297
1da177e4
LT
4298 return ret;
4299}
cd8ba7cd 4300EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4301
4302/*
41a2d6cf 4303 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4304 * this because either it can't run here any more (set_cpus_allowed()
4305 * away from this CPU, or CPU going down), or because we're
4306 * attempting to rebalance this task on exec (sched_exec).
4307 *
4308 * So we race with normal scheduler movements, but that's OK, as long
4309 * as the task is no longer on this CPU.
efc30814
KK
4310 *
4311 * Returns non-zero if task was successfully migrated.
1da177e4 4312 */
efc30814 4313static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4314{
70b97a7f 4315 struct rq *rq_dest, *rq_src;
e2912009 4316 int ret = 0;
1da177e4 4317
e761b772 4318 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4319 return ret;
1da177e4
LT
4320
4321 rq_src = cpu_rq(src_cpu);
4322 rq_dest = cpu_rq(dest_cpu);
4323
0122ec5b 4324 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4325 double_rq_lock(rq_src, rq_dest);
4326 /* Already moved. */
4327 if (task_cpu(p) != src_cpu)
b1e38734 4328 goto done;
1da177e4 4329 /* Affinity changed (again). */
fa17b507 4330 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4331 goto fail;
1da177e4 4332
e2912009
PZ
4333 /*
4334 * If we're not on a rq, the next wake-up will ensure we're
4335 * placed properly.
4336 */
fd2f4419 4337 if (p->on_rq) {
4ca9b72b 4338 dequeue_task(rq_src, p, 0);
e2912009 4339 set_task_cpu(p, dest_cpu);
4ca9b72b 4340 enqueue_task(rq_dest, p, 0);
15afe09b 4341 check_preempt_curr(rq_dest, p, 0);
1da177e4 4342 }
b1e38734 4343done:
efc30814 4344 ret = 1;
b1e38734 4345fail:
1da177e4 4346 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4347 raw_spin_unlock(&p->pi_lock);
efc30814 4348 return ret;
1da177e4
LT
4349}
4350
e6628d5b
MG
4351#ifdef CONFIG_NUMA_BALANCING
4352/* Migrate current task p to target_cpu */
4353int migrate_task_to(struct task_struct *p, int target_cpu)
4354{
4355 struct migration_arg arg = { p, target_cpu };
4356 int curr_cpu = task_cpu(p);
4357
4358 if (curr_cpu == target_cpu)
4359 return 0;
4360
4361 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4362 return -EINVAL;
4363
4364 /* TODO: This is not properly updating schedstats */
4365
4366 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4367}
4368#endif
4369
1da177e4 4370/*
969c7921
TH
4371 * migration_cpu_stop - this will be executed by a highprio stopper thread
4372 * and performs thread migration by bumping thread off CPU then
4373 * 'pushing' onto another runqueue.
1da177e4 4374 */
969c7921 4375static int migration_cpu_stop(void *data)
1da177e4 4376{
969c7921 4377 struct migration_arg *arg = data;
f7b4cddc 4378
969c7921
TH
4379 /*
4380 * The original target cpu might have gone down and we might
4381 * be on another cpu but it doesn't matter.
4382 */
f7b4cddc 4383 local_irq_disable();
969c7921 4384 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4385 local_irq_enable();
1da177e4 4386 return 0;
f7b4cddc
ON
4387}
4388
1da177e4 4389#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4390
054b9108 4391/*
48c5ccae
PZ
4392 * Ensures that the idle task is using init_mm right before its cpu goes
4393 * offline.
054b9108 4394 */
48c5ccae 4395void idle_task_exit(void)
1da177e4 4396{
48c5ccae 4397 struct mm_struct *mm = current->active_mm;
e76bd8d9 4398
48c5ccae 4399 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4400
48c5ccae
PZ
4401 if (mm != &init_mm)
4402 switch_mm(mm, &init_mm, current);
4403 mmdrop(mm);
1da177e4
LT
4404}
4405
4406/*
5d180232
PZ
4407 * Since this CPU is going 'away' for a while, fold any nr_active delta
4408 * we might have. Assumes we're called after migrate_tasks() so that the
4409 * nr_active count is stable.
4410 *
4411 * Also see the comment "Global load-average calculations".
1da177e4 4412 */
5d180232 4413static void calc_load_migrate(struct rq *rq)
1da177e4 4414{
5d180232
PZ
4415 long delta = calc_load_fold_active(rq);
4416 if (delta)
4417 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4418}
4419
48f24c4d 4420/*
48c5ccae
PZ
4421 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4422 * try_to_wake_up()->select_task_rq().
4423 *
4424 * Called with rq->lock held even though we'er in stop_machine() and
4425 * there's no concurrency possible, we hold the required locks anyway
4426 * because of lock validation efforts.
1da177e4 4427 */
48c5ccae 4428static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4429{
70b97a7f 4430 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4431 struct task_struct *next, *stop = rq->stop;
4432 int dest_cpu;
1da177e4
LT
4433
4434 /*
48c5ccae
PZ
4435 * Fudge the rq selection such that the below task selection loop
4436 * doesn't get stuck on the currently eligible stop task.
4437 *
4438 * We're currently inside stop_machine() and the rq is either stuck
4439 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4440 * either way we should never end up calling schedule() until we're
4441 * done here.
1da177e4 4442 */
48c5ccae 4443 rq->stop = NULL;
48f24c4d 4444
77bd3970
FW
4445 /*
4446 * put_prev_task() and pick_next_task() sched
4447 * class method both need to have an up-to-date
4448 * value of rq->clock[_task]
4449 */
4450 update_rq_clock(rq);
4451
dd41f596 4452 for ( ; ; ) {
48c5ccae
PZ
4453 /*
4454 * There's this thread running, bail when that's the only
4455 * remaining thread.
4456 */
4457 if (rq->nr_running == 1)
dd41f596 4458 break;
48c5ccae 4459
b67802ea 4460 next = pick_next_task(rq);
48c5ccae 4461 BUG_ON(!next);
79c53799 4462 next->sched_class->put_prev_task(rq, next);
e692ab53 4463
48c5ccae
PZ
4464 /* Find suitable destination for @next, with force if needed. */
4465 dest_cpu = select_fallback_rq(dead_cpu, next);
4466 raw_spin_unlock(&rq->lock);
4467
4468 __migrate_task(next, dead_cpu, dest_cpu);
4469
4470 raw_spin_lock(&rq->lock);
1da177e4 4471 }
dce48a84 4472
48c5ccae 4473 rq->stop = stop;
dce48a84 4474}
48c5ccae 4475
1da177e4
LT
4476#endif /* CONFIG_HOTPLUG_CPU */
4477
e692ab53
NP
4478#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4479
4480static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4481 {
4482 .procname = "sched_domain",
c57baf1e 4483 .mode = 0555,
e0361851 4484 },
56992309 4485 {}
e692ab53
NP
4486};
4487
4488static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4489 {
4490 .procname = "kernel",
c57baf1e 4491 .mode = 0555,
e0361851
AD
4492 .child = sd_ctl_dir,
4493 },
56992309 4494 {}
e692ab53
NP
4495};
4496
4497static struct ctl_table *sd_alloc_ctl_entry(int n)
4498{
4499 struct ctl_table *entry =
5cf9f062 4500 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4501
e692ab53
NP
4502 return entry;
4503}
4504
6382bc90
MM
4505static void sd_free_ctl_entry(struct ctl_table **tablep)
4506{
cd790076 4507 struct ctl_table *entry;
6382bc90 4508
cd790076
MM
4509 /*
4510 * In the intermediate directories, both the child directory and
4511 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4512 * will always be set. In the lowest directory the names are
cd790076
MM
4513 * static strings and all have proc handlers.
4514 */
4515 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4516 if (entry->child)
4517 sd_free_ctl_entry(&entry->child);
cd790076
MM
4518 if (entry->proc_handler == NULL)
4519 kfree(entry->procname);
4520 }
6382bc90
MM
4521
4522 kfree(*tablep);
4523 *tablep = NULL;
4524}
4525
201c373e 4526static int min_load_idx = 0;
fd9b86d3 4527static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4528
e692ab53 4529static void
e0361851 4530set_table_entry(struct ctl_table *entry,
e692ab53 4531 const char *procname, void *data, int maxlen,
201c373e
NK
4532 umode_t mode, proc_handler *proc_handler,
4533 bool load_idx)
e692ab53 4534{
e692ab53
NP
4535 entry->procname = procname;
4536 entry->data = data;
4537 entry->maxlen = maxlen;
4538 entry->mode = mode;
4539 entry->proc_handler = proc_handler;
201c373e
NK
4540
4541 if (load_idx) {
4542 entry->extra1 = &min_load_idx;
4543 entry->extra2 = &max_load_idx;
4544 }
e692ab53
NP
4545}
4546
4547static struct ctl_table *
4548sd_alloc_ctl_domain_table(struct sched_domain *sd)
4549{
a5d8c348 4550 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4551
ad1cdc1d
MM
4552 if (table == NULL)
4553 return NULL;
4554
e0361851 4555 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4556 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4557 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4558 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4559 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4560 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4561 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4562 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4563 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4564 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4565 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4566 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4567 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4568 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4569 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4570 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4571 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4572 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4573 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4574 &sd->cache_nice_tries,
201c373e 4575 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4576 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4577 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4578 set_table_entry(&table[11], "name", sd->name,
201c373e 4579 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4580 /* &table[12] is terminator */
e692ab53
NP
4581
4582 return table;
4583}
4584
be7002e6 4585static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4586{
4587 struct ctl_table *entry, *table;
4588 struct sched_domain *sd;
4589 int domain_num = 0, i;
4590 char buf[32];
4591
4592 for_each_domain(cpu, sd)
4593 domain_num++;
4594 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4595 if (table == NULL)
4596 return NULL;
e692ab53
NP
4597
4598 i = 0;
4599 for_each_domain(cpu, sd) {
4600 snprintf(buf, 32, "domain%d", i);
e692ab53 4601 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4602 entry->mode = 0555;
e692ab53
NP
4603 entry->child = sd_alloc_ctl_domain_table(sd);
4604 entry++;
4605 i++;
4606 }
4607 return table;
4608}
4609
4610static struct ctl_table_header *sd_sysctl_header;
6382bc90 4611static void register_sched_domain_sysctl(void)
e692ab53 4612{
6ad4c188 4613 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4614 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4615 char buf[32];
4616
7378547f
MM
4617 WARN_ON(sd_ctl_dir[0].child);
4618 sd_ctl_dir[0].child = entry;
4619
ad1cdc1d
MM
4620 if (entry == NULL)
4621 return;
4622
6ad4c188 4623 for_each_possible_cpu(i) {
e692ab53 4624 snprintf(buf, 32, "cpu%d", i);
e692ab53 4625 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4626 entry->mode = 0555;
e692ab53 4627 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4628 entry++;
e692ab53 4629 }
7378547f
MM
4630
4631 WARN_ON(sd_sysctl_header);
e692ab53
NP
4632 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4633}
6382bc90 4634
7378547f 4635/* may be called multiple times per register */
6382bc90
MM
4636static void unregister_sched_domain_sysctl(void)
4637{
7378547f
MM
4638 if (sd_sysctl_header)
4639 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4640 sd_sysctl_header = NULL;
7378547f
MM
4641 if (sd_ctl_dir[0].child)
4642 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4643}
e692ab53 4644#else
6382bc90
MM
4645static void register_sched_domain_sysctl(void)
4646{
4647}
4648static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4649{
4650}
4651#endif
4652
1f11eb6a
GH
4653static void set_rq_online(struct rq *rq)
4654{
4655 if (!rq->online) {
4656 const struct sched_class *class;
4657
c6c4927b 4658 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4659 rq->online = 1;
4660
4661 for_each_class(class) {
4662 if (class->rq_online)
4663 class->rq_online(rq);
4664 }
4665 }
4666}
4667
4668static void set_rq_offline(struct rq *rq)
4669{
4670 if (rq->online) {
4671 const struct sched_class *class;
4672
4673 for_each_class(class) {
4674 if (class->rq_offline)
4675 class->rq_offline(rq);
4676 }
4677
c6c4927b 4678 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4679 rq->online = 0;
4680 }
4681}
4682
1da177e4
LT
4683/*
4684 * migration_call - callback that gets triggered when a CPU is added.
4685 * Here we can start up the necessary migration thread for the new CPU.
4686 */
0db0628d 4687static int
48f24c4d 4688migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4689{
48f24c4d 4690 int cpu = (long)hcpu;
1da177e4 4691 unsigned long flags;
969c7921 4692 struct rq *rq = cpu_rq(cpu);
1da177e4 4693
48c5ccae 4694 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4695
1da177e4 4696 case CPU_UP_PREPARE:
a468d389 4697 rq->calc_load_update = calc_load_update;
1da177e4 4698 break;
48f24c4d 4699
1da177e4 4700 case CPU_ONLINE:
1f94ef59 4701 /* Update our root-domain */
05fa785c 4702 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4703 if (rq->rd) {
c6c4927b 4704 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4705
4706 set_rq_online(rq);
1f94ef59 4707 }
05fa785c 4708 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4709 break;
48f24c4d 4710
1da177e4 4711#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4712 case CPU_DYING:
317f3941 4713 sched_ttwu_pending();
57d885fe 4714 /* Update our root-domain */
05fa785c 4715 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4716 if (rq->rd) {
c6c4927b 4717 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4718 set_rq_offline(rq);
57d885fe 4719 }
48c5ccae
PZ
4720 migrate_tasks(cpu);
4721 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4722 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4723 break;
48c5ccae 4724
5d180232 4725 case CPU_DEAD:
f319da0c 4726 calc_load_migrate(rq);
57d885fe 4727 break;
1da177e4
LT
4728#endif
4729 }
49c022e6
PZ
4730
4731 update_max_interval();
4732
1da177e4
LT
4733 return NOTIFY_OK;
4734}
4735
f38b0820
PM
4736/*
4737 * Register at high priority so that task migration (migrate_all_tasks)
4738 * happens before everything else. This has to be lower priority than
cdd6c482 4739 * the notifier in the perf_event subsystem, though.
1da177e4 4740 */
0db0628d 4741static struct notifier_block migration_notifier = {
1da177e4 4742 .notifier_call = migration_call,
50a323b7 4743 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4744};
4745
0db0628d 4746static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4747 unsigned long action, void *hcpu)
4748{
4749 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4750 case CPU_STARTING:
3a101d05
TH
4751 case CPU_DOWN_FAILED:
4752 set_cpu_active((long)hcpu, true);
4753 return NOTIFY_OK;
4754 default:
4755 return NOTIFY_DONE;
4756 }
4757}
4758
0db0628d 4759static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4760 unsigned long action, void *hcpu)
4761{
4762 switch (action & ~CPU_TASKS_FROZEN) {
4763 case CPU_DOWN_PREPARE:
4764 set_cpu_active((long)hcpu, false);
4765 return NOTIFY_OK;
4766 default:
4767 return NOTIFY_DONE;
4768 }
4769}
4770
7babe8db 4771static int __init migration_init(void)
1da177e4
LT
4772{
4773 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4774 int err;
48f24c4d 4775
3a101d05 4776 /* Initialize migration for the boot CPU */
07dccf33
AM
4777 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4778 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4779 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4780 register_cpu_notifier(&migration_notifier);
7babe8db 4781
3a101d05
TH
4782 /* Register cpu active notifiers */
4783 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4784 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4785
a004cd42 4786 return 0;
1da177e4 4787}
7babe8db 4788early_initcall(migration_init);
1da177e4
LT
4789#endif
4790
4791#ifdef CONFIG_SMP
476f3534 4792
4cb98839
PZ
4793static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4794
3e9830dc 4795#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4796
d039ac60 4797static __read_mostly int sched_debug_enabled;
f6630114 4798
d039ac60 4799static int __init sched_debug_setup(char *str)
f6630114 4800{
d039ac60 4801 sched_debug_enabled = 1;
f6630114
MT
4802
4803 return 0;
4804}
d039ac60
PZ
4805early_param("sched_debug", sched_debug_setup);
4806
4807static inline bool sched_debug(void)
4808{
4809 return sched_debug_enabled;
4810}
f6630114 4811
7c16ec58 4812static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4813 struct cpumask *groupmask)
1da177e4 4814{
4dcf6aff 4815 struct sched_group *group = sd->groups;
434d53b0 4816 char str[256];
1da177e4 4817
968ea6d8 4818 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4819 cpumask_clear(groupmask);
4dcf6aff
IM
4820
4821 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4822
4823 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4824 printk("does not load-balance\n");
4dcf6aff 4825 if (sd->parent)
3df0fc5b
PZ
4826 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4827 " has parent");
4dcf6aff 4828 return -1;
41c7ce9a
NP
4829 }
4830
3df0fc5b 4831 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4832
758b2cdc 4833 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4834 printk(KERN_ERR "ERROR: domain->span does not contain "
4835 "CPU%d\n", cpu);
4dcf6aff 4836 }
758b2cdc 4837 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4838 printk(KERN_ERR "ERROR: domain->groups does not contain"
4839 " CPU%d\n", cpu);
4dcf6aff 4840 }
1da177e4 4841
4dcf6aff 4842 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4843 do {
4dcf6aff 4844 if (!group) {
3df0fc5b
PZ
4845 printk("\n");
4846 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4847 break;
4848 }
4849
c3decf0d
PZ
4850 /*
4851 * Even though we initialize ->power to something semi-sane,
4852 * we leave power_orig unset. This allows us to detect if
4853 * domain iteration is still funny without causing /0 traps.
4854 */
4855 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4856 printk(KERN_CONT "\n");
4857 printk(KERN_ERR "ERROR: domain->cpu_power not "
4858 "set\n");
4dcf6aff
IM
4859 break;
4860 }
1da177e4 4861
758b2cdc 4862 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4863 printk(KERN_CONT "\n");
4864 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4865 break;
4866 }
1da177e4 4867
cb83b629
PZ
4868 if (!(sd->flags & SD_OVERLAP) &&
4869 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4870 printk(KERN_CONT "\n");
4871 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4872 break;
4873 }
1da177e4 4874
758b2cdc 4875 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4876
968ea6d8 4877 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4878
3df0fc5b 4879 printk(KERN_CONT " %s", str);
9c3f75cb 4880 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4881 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4882 group->sgp->power);
381512cf 4883 }
1da177e4 4884
4dcf6aff
IM
4885 group = group->next;
4886 } while (group != sd->groups);
3df0fc5b 4887 printk(KERN_CONT "\n");
1da177e4 4888
758b2cdc 4889 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4890 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4891
758b2cdc
RR
4892 if (sd->parent &&
4893 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4894 printk(KERN_ERR "ERROR: parent span is not a superset "
4895 "of domain->span\n");
4dcf6aff
IM
4896 return 0;
4897}
1da177e4 4898
4dcf6aff
IM
4899static void sched_domain_debug(struct sched_domain *sd, int cpu)
4900{
4901 int level = 0;
1da177e4 4902
d039ac60 4903 if (!sched_debug_enabled)
f6630114
MT
4904 return;
4905
4dcf6aff
IM
4906 if (!sd) {
4907 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4908 return;
4909 }
1da177e4 4910
4dcf6aff
IM
4911 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4912
4913 for (;;) {
4cb98839 4914 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4915 break;
1da177e4
LT
4916 level++;
4917 sd = sd->parent;
33859f7f 4918 if (!sd)
4dcf6aff
IM
4919 break;
4920 }
1da177e4 4921}
6d6bc0ad 4922#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4923# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4924static inline bool sched_debug(void)
4925{
4926 return false;
4927}
6d6bc0ad 4928#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4929
1a20ff27 4930static int sd_degenerate(struct sched_domain *sd)
245af2c7 4931{
758b2cdc 4932 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4933 return 1;
4934
4935 /* Following flags need at least 2 groups */
4936 if (sd->flags & (SD_LOAD_BALANCE |
4937 SD_BALANCE_NEWIDLE |
4938 SD_BALANCE_FORK |
89c4710e
SS
4939 SD_BALANCE_EXEC |
4940 SD_SHARE_CPUPOWER |
4941 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4942 if (sd->groups != sd->groups->next)
4943 return 0;
4944 }
4945
4946 /* Following flags don't use groups */
c88d5910 4947 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4948 return 0;
4949
4950 return 1;
4951}
4952
48f24c4d
IM
4953static int
4954sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4955{
4956 unsigned long cflags = sd->flags, pflags = parent->flags;
4957
4958 if (sd_degenerate(parent))
4959 return 1;
4960
758b2cdc 4961 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4962 return 0;
4963
245af2c7
SS
4964 /* Flags needing groups don't count if only 1 group in parent */
4965 if (parent->groups == parent->groups->next) {
4966 pflags &= ~(SD_LOAD_BALANCE |
4967 SD_BALANCE_NEWIDLE |
4968 SD_BALANCE_FORK |
89c4710e
SS
4969 SD_BALANCE_EXEC |
4970 SD_SHARE_CPUPOWER |
10866e62
PZ
4971 SD_SHARE_PKG_RESOURCES |
4972 SD_PREFER_SIBLING);
5436499e
KC
4973 if (nr_node_ids == 1)
4974 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4975 }
4976 if (~cflags & pflags)
4977 return 0;
4978
4979 return 1;
4980}
4981
dce840a0 4982static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4983{
dce840a0 4984 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4985
68e74568 4986 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4987 free_cpumask_var(rd->rto_mask);
4988 free_cpumask_var(rd->online);
4989 free_cpumask_var(rd->span);
4990 kfree(rd);
4991}
4992
57d885fe
GH
4993static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4994{
a0490fa3 4995 struct root_domain *old_rd = NULL;
57d885fe 4996 unsigned long flags;
57d885fe 4997
05fa785c 4998 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4999
5000 if (rq->rd) {
a0490fa3 5001 old_rd = rq->rd;
57d885fe 5002
c6c4927b 5003 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5004 set_rq_offline(rq);
57d885fe 5005
c6c4927b 5006 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5007
a0490fa3
IM
5008 /*
5009 * If we dont want to free the old_rt yet then
5010 * set old_rd to NULL to skip the freeing later
5011 * in this function:
5012 */
5013 if (!atomic_dec_and_test(&old_rd->refcount))
5014 old_rd = NULL;
57d885fe
GH
5015 }
5016
5017 atomic_inc(&rd->refcount);
5018 rq->rd = rd;
5019
c6c4927b 5020 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5021 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5022 set_rq_online(rq);
57d885fe 5023
05fa785c 5024 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5025
5026 if (old_rd)
dce840a0 5027 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5028}
5029
68c38fc3 5030static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5031{
5032 memset(rd, 0, sizeof(*rd));
5033
68c38fc3 5034 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5035 goto out;
68c38fc3 5036 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5037 goto free_span;
68c38fc3 5038 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5039 goto free_online;
6e0534f2 5040
68c38fc3 5041 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5042 goto free_rto_mask;
c6c4927b 5043 return 0;
6e0534f2 5044
68e74568
RR
5045free_rto_mask:
5046 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5047free_online:
5048 free_cpumask_var(rd->online);
5049free_span:
5050 free_cpumask_var(rd->span);
0c910d28 5051out:
c6c4927b 5052 return -ENOMEM;
57d885fe
GH
5053}
5054
029632fb
PZ
5055/*
5056 * By default the system creates a single root-domain with all cpus as
5057 * members (mimicking the global state we have today).
5058 */
5059struct root_domain def_root_domain;
5060
57d885fe
GH
5061static void init_defrootdomain(void)
5062{
68c38fc3 5063 init_rootdomain(&def_root_domain);
c6c4927b 5064
57d885fe
GH
5065 atomic_set(&def_root_domain.refcount, 1);
5066}
5067
dc938520 5068static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5069{
5070 struct root_domain *rd;
5071
5072 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5073 if (!rd)
5074 return NULL;
5075
68c38fc3 5076 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5077 kfree(rd);
5078 return NULL;
5079 }
57d885fe
GH
5080
5081 return rd;
5082}
5083
e3589f6c
PZ
5084static void free_sched_groups(struct sched_group *sg, int free_sgp)
5085{
5086 struct sched_group *tmp, *first;
5087
5088 if (!sg)
5089 return;
5090
5091 first = sg;
5092 do {
5093 tmp = sg->next;
5094
5095 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5096 kfree(sg->sgp);
5097
5098 kfree(sg);
5099 sg = tmp;
5100 } while (sg != first);
5101}
5102
dce840a0
PZ
5103static void free_sched_domain(struct rcu_head *rcu)
5104{
5105 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5106
5107 /*
5108 * If its an overlapping domain it has private groups, iterate and
5109 * nuke them all.
5110 */
5111 if (sd->flags & SD_OVERLAP) {
5112 free_sched_groups(sd->groups, 1);
5113 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5114 kfree(sd->groups->sgp);
dce840a0 5115 kfree(sd->groups);
9c3f75cb 5116 }
dce840a0
PZ
5117 kfree(sd);
5118}
5119
5120static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5121{
5122 call_rcu(&sd->rcu, free_sched_domain);
5123}
5124
5125static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5126{
5127 for (; sd; sd = sd->parent)
5128 destroy_sched_domain(sd, cpu);
5129}
5130
518cd623
PZ
5131/*
5132 * Keep a special pointer to the highest sched_domain that has
5133 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5134 * allows us to avoid some pointer chasing select_idle_sibling().
5135 *
5136 * Also keep a unique ID per domain (we use the first cpu number in
5137 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5138 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5139 */
5140DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5141DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5142DEFINE_PER_CPU(int, sd_llc_id);
5143
5144static void update_top_cache_domain(int cpu)
5145{
5146 struct sched_domain *sd;
5147 int id = cpu;
7d9ffa89 5148 int size = 1;
518cd623
PZ
5149
5150 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5151 if (sd) {
518cd623 5152 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5153 size = cpumask_weight(sched_domain_span(sd));
5154 }
518cd623
PZ
5155
5156 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5157 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5158 per_cpu(sd_llc_id, cpu) = id;
5159}
5160
1da177e4 5161/*
0eab9146 5162 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5163 * hold the hotplug lock.
5164 */
0eab9146
IM
5165static void
5166cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5167{
70b97a7f 5168 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5169 struct sched_domain *tmp;
5170
5171 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5172 for (tmp = sd; tmp; ) {
245af2c7
SS
5173 struct sched_domain *parent = tmp->parent;
5174 if (!parent)
5175 break;
f29c9b1c 5176
1a848870 5177 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5178 tmp->parent = parent->parent;
1a848870
SS
5179 if (parent->parent)
5180 parent->parent->child = tmp;
10866e62
PZ
5181 /*
5182 * Transfer SD_PREFER_SIBLING down in case of a
5183 * degenerate parent; the spans match for this
5184 * so the property transfers.
5185 */
5186 if (parent->flags & SD_PREFER_SIBLING)
5187 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5188 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5189 } else
5190 tmp = tmp->parent;
245af2c7
SS
5191 }
5192
1a848870 5193 if (sd && sd_degenerate(sd)) {
dce840a0 5194 tmp = sd;
245af2c7 5195 sd = sd->parent;
dce840a0 5196 destroy_sched_domain(tmp, cpu);
1a848870
SS
5197 if (sd)
5198 sd->child = NULL;
5199 }
1da177e4 5200
4cb98839 5201 sched_domain_debug(sd, cpu);
1da177e4 5202
57d885fe 5203 rq_attach_root(rq, rd);
dce840a0 5204 tmp = rq->sd;
674311d5 5205 rcu_assign_pointer(rq->sd, sd);
dce840a0 5206 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5207
5208 update_top_cache_domain(cpu);
1da177e4
LT
5209}
5210
5211/* cpus with isolated domains */
dcc30a35 5212static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5213
5214/* Setup the mask of cpus configured for isolated domains */
5215static int __init isolated_cpu_setup(char *str)
5216{
bdddd296 5217 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5218 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5219 return 1;
5220}
5221
8927f494 5222__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5223
d3081f52
PZ
5224static const struct cpumask *cpu_cpu_mask(int cpu)
5225{
5226 return cpumask_of_node(cpu_to_node(cpu));
5227}
5228
dce840a0
PZ
5229struct sd_data {
5230 struct sched_domain **__percpu sd;
5231 struct sched_group **__percpu sg;
9c3f75cb 5232 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5233};
5234
49a02c51 5235struct s_data {
21d42ccf 5236 struct sched_domain ** __percpu sd;
49a02c51
AH
5237 struct root_domain *rd;
5238};
5239
2109b99e 5240enum s_alloc {
2109b99e 5241 sa_rootdomain,
21d42ccf 5242 sa_sd,
dce840a0 5243 sa_sd_storage,
2109b99e
AH
5244 sa_none,
5245};
5246
54ab4ff4
PZ
5247struct sched_domain_topology_level;
5248
5249typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5250typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5251
e3589f6c
PZ
5252#define SDTL_OVERLAP 0x01
5253
eb7a74e6 5254struct sched_domain_topology_level {
2c402dc3
PZ
5255 sched_domain_init_f init;
5256 sched_domain_mask_f mask;
e3589f6c 5257 int flags;
cb83b629 5258 int numa_level;
54ab4ff4 5259 struct sd_data data;
eb7a74e6
PZ
5260};
5261
c1174876
PZ
5262/*
5263 * Build an iteration mask that can exclude certain CPUs from the upwards
5264 * domain traversal.
5265 *
5266 * Asymmetric node setups can result in situations where the domain tree is of
5267 * unequal depth, make sure to skip domains that already cover the entire
5268 * range.
5269 *
5270 * In that case build_sched_domains() will have terminated the iteration early
5271 * and our sibling sd spans will be empty. Domains should always include the
5272 * cpu they're built on, so check that.
5273 *
5274 */
5275static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5276{
5277 const struct cpumask *span = sched_domain_span(sd);
5278 struct sd_data *sdd = sd->private;
5279 struct sched_domain *sibling;
5280 int i;
5281
5282 for_each_cpu(i, span) {
5283 sibling = *per_cpu_ptr(sdd->sd, i);
5284 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5285 continue;
5286
5287 cpumask_set_cpu(i, sched_group_mask(sg));
5288 }
5289}
5290
5291/*
5292 * Return the canonical balance cpu for this group, this is the first cpu
5293 * of this group that's also in the iteration mask.
5294 */
5295int group_balance_cpu(struct sched_group *sg)
5296{
5297 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5298}
5299
e3589f6c
PZ
5300static int
5301build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5302{
5303 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5304 const struct cpumask *span = sched_domain_span(sd);
5305 struct cpumask *covered = sched_domains_tmpmask;
5306 struct sd_data *sdd = sd->private;
5307 struct sched_domain *child;
5308 int i;
5309
5310 cpumask_clear(covered);
5311
5312 for_each_cpu(i, span) {
5313 struct cpumask *sg_span;
5314
5315 if (cpumask_test_cpu(i, covered))
5316 continue;
5317
c1174876
PZ
5318 child = *per_cpu_ptr(sdd->sd, i);
5319
5320 /* See the comment near build_group_mask(). */
5321 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5322 continue;
5323
e3589f6c 5324 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5325 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5326
5327 if (!sg)
5328 goto fail;
5329
5330 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5331 if (child->child) {
5332 child = child->child;
5333 cpumask_copy(sg_span, sched_domain_span(child));
5334 } else
5335 cpumask_set_cpu(i, sg_span);
5336
5337 cpumask_or(covered, covered, sg_span);
5338
74a5ce20 5339 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5340 if (atomic_inc_return(&sg->sgp->ref) == 1)
5341 build_group_mask(sd, sg);
5342
c3decf0d
PZ
5343 /*
5344 * Initialize sgp->power such that even if we mess up the
5345 * domains and no possible iteration will get us here, we won't
5346 * die on a /0 trap.
5347 */
5348 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5349
c1174876
PZ
5350 /*
5351 * Make sure the first group of this domain contains the
5352 * canonical balance cpu. Otherwise the sched_domain iteration
5353 * breaks. See update_sg_lb_stats().
5354 */
74a5ce20 5355 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5356 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5357 groups = sg;
5358
5359 if (!first)
5360 first = sg;
5361 if (last)
5362 last->next = sg;
5363 last = sg;
5364 last->next = first;
5365 }
5366 sd->groups = groups;
5367
5368 return 0;
5369
5370fail:
5371 free_sched_groups(first, 0);
5372
5373 return -ENOMEM;
5374}
5375
dce840a0 5376static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5377{
dce840a0
PZ
5378 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5379 struct sched_domain *child = sd->child;
1da177e4 5380
dce840a0
PZ
5381 if (child)
5382 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5383
9c3f75cb 5384 if (sg) {
dce840a0 5385 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5386 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5387 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5388 }
dce840a0
PZ
5389
5390 return cpu;
1e9f28fa 5391}
1e9f28fa 5392
01a08546 5393/*
dce840a0
PZ
5394 * build_sched_groups will build a circular linked list of the groups
5395 * covered by the given span, and will set each group's ->cpumask correctly,
5396 * and ->cpu_power to 0.
e3589f6c
PZ
5397 *
5398 * Assumes the sched_domain tree is fully constructed
01a08546 5399 */
e3589f6c
PZ
5400static int
5401build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5402{
dce840a0
PZ
5403 struct sched_group *first = NULL, *last = NULL;
5404 struct sd_data *sdd = sd->private;
5405 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5406 struct cpumask *covered;
dce840a0 5407 int i;
9c1cfda2 5408
e3589f6c
PZ
5409 get_group(cpu, sdd, &sd->groups);
5410 atomic_inc(&sd->groups->ref);
5411
0936629f 5412 if (cpu != cpumask_first(span))
e3589f6c
PZ
5413 return 0;
5414
f96225fd
PZ
5415 lockdep_assert_held(&sched_domains_mutex);
5416 covered = sched_domains_tmpmask;
5417
dce840a0 5418 cpumask_clear(covered);
6711cab4 5419
dce840a0
PZ
5420 for_each_cpu(i, span) {
5421 struct sched_group *sg;
cd08e923 5422 int group, j;
6711cab4 5423
dce840a0
PZ
5424 if (cpumask_test_cpu(i, covered))
5425 continue;
6711cab4 5426
cd08e923 5427 group = get_group(i, sdd, &sg);
dce840a0 5428 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5429 sg->sgp->power = 0;
c1174876 5430 cpumask_setall(sched_group_mask(sg));
0601a88d 5431
dce840a0
PZ
5432 for_each_cpu(j, span) {
5433 if (get_group(j, sdd, NULL) != group)
5434 continue;
0601a88d 5435
dce840a0
PZ
5436 cpumask_set_cpu(j, covered);
5437 cpumask_set_cpu(j, sched_group_cpus(sg));
5438 }
0601a88d 5439
dce840a0
PZ
5440 if (!first)
5441 first = sg;
5442 if (last)
5443 last->next = sg;
5444 last = sg;
5445 }
5446 last->next = first;
e3589f6c
PZ
5447
5448 return 0;
0601a88d 5449}
51888ca2 5450
89c4710e
SS
5451/*
5452 * Initialize sched groups cpu_power.
5453 *
5454 * cpu_power indicates the capacity of sched group, which is used while
5455 * distributing the load between different sched groups in a sched domain.
5456 * Typically cpu_power for all the groups in a sched domain will be same unless
5457 * there are asymmetries in the topology. If there are asymmetries, group
5458 * having more cpu_power will pickup more load compared to the group having
5459 * less cpu_power.
89c4710e
SS
5460 */
5461static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5462{
e3589f6c 5463 struct sched_group *sg = sd->groups;
89c4710e 5464
94c95ba6 5465 WARN_ON(!sg);
e3589f6c
PZ
5466
5467 do {
5468 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5469 sg = sg->next;
5470 } while (sg != sd->groups);
89c4710e 5471
c1174876 5472 if (cpu != group_balance_cpu(sg))
e3589f6c 5473 return;
aae6d3dd 5474
d274cb30 5475 update_group_power(sd, cpu);
69e1e811 5476 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5477}
5478
029632fb
PZ
5479int __weak arch_sd_sibling_asym_packing(void)
5480{
5481 return 0*SD_ASYM_PACKING;
89c4710e
SS
5482}
5483
7c16ec58
MT
5484/*
5485 * Initializers for schedule domains
5486 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5487 */
5488
a5d8c348
IM
5489#ifdef CONFIG_SCHED_DEBUG
5490# define SD_INIT_NAME(sd, type) sd->name = #type
5491#else
5492# define SD_INIT_NAME(sd, type) do { } while (0)
5493#endif
5494
54ab4ff4
PZ
5495#define SD_INIT_FUNC(type) \
5496static noinline struct sched_domain * \
5497sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5498{ \
5499 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5500 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5501 SD_INIT_NAME(sd, type); \
5502 sd->private = &tl->data; \
5503 return sd; \
7c16ec58
MT
5504}
5505
5506SD_INIT_FUNC(CPU)
7c16ec58
MT
5507#ifdef CONFIG_SCHED_SMT
5508 SD_INIT_FUNC(SIBLING)
5509#endif
5510#ifdef CONFIG_SCHED_MC
5511 SD_INIT_FUNC(MC)
5512#endif
01a08546
HC
5513#ifdef CONFIG_SCHED_BOOK
5514 SD_INIT_FUNC(BOOK)
5515#endif
7c16ec58 5516
1d3504fc 5517static int default_relax_domain_level = -1;
60495e77 5518int sched_domain_level_max;
1d3504fc
HS
5519
5520static int __init setup_relax_domain_level(char *str)
5521{
a841f8ce
DS
5522 if (kstrtoint(str, 0, &default_relax_domain_level))
5523 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5524
1d3504fc
HS
5525 return 1;
5526}
5527__setup("relax_domain_level=", setup_relax_domain_level);
5528
5529static void set_domain_attribute(struct sched_domain *sd,
5530 struct sched_domain_attr *attr)
5531{
5532 int request;
5533
5534 if (!attr || attr->relax_domain_level < 0) {
5535 if (default_relax_domain_level < 0)
5536 return;
5537 else
5538 request = default_relax_domain_level;
5539 } else
5540 request = attr->relax_domain_level;
5541 if (request < sd->level) {
5542 /* turn off idle balance on this domain */
c88d5910 5543 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5544 } else {
5545 /* turn on idle balance on this domain */
c88d5910 5546 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5547 }
5548}
5549
54ab4ff4
PZ
5550static void __sdt_free(const struct cpumask *cpu_map);
5551static int __sdt_alloc(const struct cpumask *cpu_map);
5552
2109b99e
AH
5553static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5554 const struct cpumask *cpu_map)
5555{
5556 switch (what) {
2109b99e 5557 case sa_rootdomain:
822ff793
PZ
5558 if (!atomic_read(&d->rd->refcount))
5559 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5560 case sa_sd:
5561 free_percpu(d->sd); /* fall through */
dce840a0 5562 case sa_sd_storage:
54ab4ff4 5563 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5564 case sa_none:
5565 break;
5566 }
5567}
3404c8d9 5568
2109b99e
AH
5569static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5570 const struct cpumask *cpu_map)
5571{
dce840a0
PZ
5572 memset(d, 0, sizeof(*d));
5573
54ab4ff4
PZ
5574 if (__sdt_alloc(cpu_map))
5575 return sa_sd_storage;
dce840a0
PZ
5576 d->sd = alloc_percpu(struct sched_domain *);
5577 if (!d->sd)
5578 return sa_sd_storage;
2109b99e 5579 d->rd = alloc_rootdomain();
dce840a0 5580 if (!d->rd)
21d42ccf 5581 return sa_sd;
2109b99e
AH
5582 return sa_rootdomain;
5583}
57d885fe 5584
dce840a0
PZ
5585/*
5586 * NULL the sd_data elements we've used to build the sched_domain and
5587 * sched_group structure so that the subsequent __free_domain_allocs()
5588 * will not free the data we're using.
5589 */
5590static void claim_allocations(int cpu, struct sched_domain *sd)
5591{
5592 struct sd_data *sdd = sd->private;
dce840a0
PZ
5593
5594 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5595 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5596
e3589f6c 5597 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5598 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5599
5600 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5601 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5602}
5603
2c402dc3
PZ
5604#ifdef CONFIG_SCHED_SMT
5605static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5606{
2c402dc3 5607 return topology_thread_cpumask(cpu);
3bd65a80 5608}
2c402dc3 5609#endif
7f4588f3 5610
d069b916
PZ
5611/*
5612 * Topology list, bottom-up.
5613 */
2c402dc3 5614static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5615#ifdef CONFIG_SCHED_SMT
5616 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5617#endif
1e9f28fa 5618#ifdef CONFIG_SCHED_MC
2c402dc3 5619 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5620#endif
d069b916
PZ
5621#ifdef CONFIG_SCHED_BOOK
5622 { sd_init_BOOK, cpu_book_mask, },
5623#endif
5624 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5625 { NULL, },
5626};
5627
5628static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5629
27723a68
VK
5630#define for_each_sd_topology(tl) \
5631 for (tl = sched_domain_topology; tl->init; tl++)
5632
cb83b629
PZ
5633#ifdef CONFIG_NUMA
5634
5635static int sched_domains_numa_levels;
cb83b629
PZ
5636static int *sched_domains_numa_distance;
5637static struct cpumask ***sched_domains_numa_masks;
5638static int sched_domains_curr_level;
5639
cb83b629
PZ
5640static inline int sd_local_flags(int level)
5641{
10717dcd 5642 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5643 return 0;
5644
5645 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5646}
5647
5648static struct sched_domain *
5649sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5650{
5651 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5652 int level = tl->numa_level;
5653 int sd_weight = cpumask_weight(
5654 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5655
5656 *sd = (struct sched_domain){
5657 .min_interval = sd_weight,
5658 .max_interval = 2*sd_weight,
5659 .busy_factor = 32,
870a0bb5 5660 .imbalance_pct = 125,
cb83b629
PZ
5661 .cache_nice_tries = 2,
5662 .busy_idx = 3,
5663 .idle_idx = 2,
5664 .newidle_idx = 0,
5665 .wake_idx = 0,
5666 .forkexec_idx = 0,
5667
5668 .flags = 1*SD_LOAD_BALANCE
5669 | 1*SD_BALANCE_NEWIDLE
5670 | 0*SD_BALANCE_EXEC
5671 | 0*SD_BALANCE_FORK
5672 | 0*SD_BALANCE_WAKE
5673 | 0*SD_WAKE_AFFINE
cb83b629 5674 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5675 | 0*SD_SHARE_PKG_RESOURCES
5676 | 1*SD_SERIALIZE
5677 | 0*SD_PREFER_SIBLING
3a7053b3 5678 | 1*SD_NUMA
cb83b629
PZ
5679 | sd_local_flags(level)
5680 ,
5681 .last_balance = jiffies,
5682 .balance_interval = sd_weight,
5683 };
5684 SD_INIT_NAME(sd, NUMA);
5685 sd->private = &tl->data;
5686
5687 /*
5688 * Ugly hack to pass state to sd_numa_mask()...
5689 */
5690 sched_domains_curr_level = tl->numa_level;
5691
5692 return sd;
5693}
5694
5695static const struct cpumask *sd_numa_mask(int cpu)
5696{
5697 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5698}
5699
d039ac60
PZ
5700static void sched_numa_warn(const char *str)
5701{
5702 static int done = false;
5703 int i,j;
5704
5705 if (done)
5706 return;
5707
5708 done = true;
5709
5710 printk(KERN_WARNING "ERROR: %s\n\n", str);
5711
5712 for (i = 0; i < nr_node_ids; i++) {
5713 printk(KERN_WARNING " ");
5714 for (j = 0; j < nr_node_ids; j++)
5715 printk(KERN_CONT "%02d ", node_distance(i,j));
5716 printk(KERN_CONT "\n");
5717 }
5718 printk(KERN_WARNING "\n");
5719}
5720
5721static bool find_numa_distance(int distance)
5722{
5723 int i;
5724
5725 if (distance == node_distance(0, 0))
5726 return true;
5727
5728 for (i = 0; i < sched_domains_numa_levels; i++) {
5729 if (sched_domains_numa_distance[i] == distance)
5730 return true;
5731 }
5732
5733 return false;
5734}
5735
cb83b629
PZ
5736static void sched_init_numa(void)
5737{
5738 int next_distance, curr_distance = node_distance(0, 0);
5739 struct sched_domain_topology_level *tl;
5740 int level = 0;
5741 int i, j, k;
5742
cb83b629
PZ
5743 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5744 if (!sched_domains_numa_distance)
5745 return;
5746
5747 /*
5748 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5749 * unique distances in the node_distance() table.
5750 *
5751 * Assumes node_distance(0,j) includes all distances in
5752 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5753 */
5754 next_distance = curr_distance;
5755 for (i = 0; i < nr_node_ids; i++) {
5756 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5757 for (k = 0; k < nr_node_ids; k++) {
5758 int distance = node_distance(i, k);
5759
5760 if (distance > curr_distance &&
5761 (distance < next_distance ||
5762 next_distance == curr_distance))
5763 next_distance = distance;
5764
5765 /*
5766 * While not a strong assumption it would be nice to know
5767 * about cases where if node A is connected to B, B is not
5768 * equally connected to A.
5769 */
5770 if (sched_debug() && node_distance(k, i) != distance)
5771 sched_numa_warn("Node-distance not symmetric");
5772
5773 if (sched_debug() && i && !find_numa_distance(distance))
5774 sched_numa_warn("Node-0 not representative");
5775 }
5776 if (next_distance != curr_distance) {
5777 sched_domains_numa_distance[level++] = next_distance;
5778 sched_domains_numa_levels = level;
5779 curr_distance = next_distance;
5780 } else break;
cb83b629 5781 }
d039ac60
PZ
5782
5783 /*
5784 * In case of sched_debug() we verify the above assumption.
5785 */
5786 if (!sched_debug())
5787 break;
cb83b629
PZ
5788 }
5789 /*
5790 * 'level' contains the number of unique distances, excluding the
5791 * identity distance node_distance(i,i).
5792 *
28b4a521 5793 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5794 * numbers.
5795 */
5796
5f7865f3
TC
5797 /*
5798 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5799 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5800 * the array will contain less then 'level' members. This could be
5801 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5802 * in other functions.
5803 *
5804 * We reset it to 'level' at the end of this function.
5805 */
5806 sched_domains_numa_levels = 0;
5807
cb83b629
PZ
5808 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5809 if (!sched_domains_numa_masks)
5810 return;
5811
5812 /*
5813 * Now for each level, construct a mask per node which contains all
5814 * cpus of nodes that are that many hops away from us.
5815 */
5816 for (i = 0; i < level; i++) {
5817 sched_domains_numa_masks[i] =
5818 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5819 if (!sched_domains_numa_masks[i])
5820 return;
5821
5822 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5823 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5824 if (!mask)
5825 return;
5826
5827 sched_domains_numa_masks[i][j] = mask;
5828
5829 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5830 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5831 continue;
5832
5833 cpumask_or(mask, mask, cpumask_of_node(k));
5834 }
5835 }
5836 }
5837
5838 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5839 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5840 if (!tl)
5841 return;
5842
5843 /*
5844 * Copy the default topology bits..
5845 */
5846 for (i = 0; default_topology[i].init; i++)
5847 tl[i] = default_topology[i];
5848
5849 /*
5850 * .. and append 'j' levels of NUMA goodness.
5851 */
5852 for (j = 0; j < level; i++, j++) {
5853 tl[i] = (struct sched_domain_topology_level){
5854 .init = sd_numa_init,
5855 .mask = sd_numa_mask,
5856 .flags = SDTL_OVERLAP,
5857 .numa_level = j,
5858 };
5859 }
5860
5861 sched_domain_topology = tl;
5f7865f3
TC
5862
5863 sched_domains_numa_levels = level;
cb83b629 5864}
301a5cba
TC
5865
5866static void sched_domains_numa_masks_set(int cpu)
5867{
5868 int i, j;
5869 int node = cpu_to_node(cpu);
5870
5871 for (i = 0; i < sched_domains_numa_levels; i++) {
5872 for (j = 0; j < nr_node_ids; j++) {
5873 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5874 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5875 }
5876 }
5877}
5878
5879static void sched_domains_numa_masks_clear(int cpu)
5880{
5881 int i, j;
5882 for (i = 0; i < sched_domains_numa_levels; i++) {
5883 for (j = 0; j < nr_node_ids; j++)
5884 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5885 }
5886}
5887
5888/*
5889 * Update sched_domains_numa_masks[level][node] array when new cpus
5890 * are onlined.
5891 */
5892static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5893 unsigned long action,
5894 void *hcpu)
5895{
5896 int cpu = (long)hcpu;
5897
5898 switch (action & ~CPU_TASKS_FROZEN) {
5899 case CPU_ONLINE:
5900 sched_domains_numa_masks_set(cpu);
5901 break;
5902
5903 case CPU_DEAD:
5904 sched_domains_numa_masks_clear(cpu);
5905 break;
5906
5907 default:
5908 return NOTIFY_DONE;
5909 }
5910
5911 return NOTIFY_OK;
cb83b629
PZ
5912}
5913#else
5914static inline void sched_init_numa(void)
5915{
5916}
301a5cba
TC
5917
5918static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5919 unsigned long action,
5920 void *hcpu)
5921{
5922 return 0;
5923}
cb83b629
PZ
5924#endif /* CONFIG_NUMA */
5925
54ab4ff4
PZ
5926static int __sdt_alloc(const struct cpumask *cpu_map)
5927{
5928 struct sched_domain_topology_level *tl;
5929 int j;
5930
27723a68 5931 for_each_sd_topology(tl) {
54ab4ff4
PZ
5932 struct sd_data *sdd = &tl->data;
5933
5934 sdd->sd = alloc_percpu(struct sched_domain *);
5935 if (!sdd->sd)
5936 return -ENOMEM;
5937
5938 sdd->sg = alloc_percpu(struct sched_group *);
5939 if (!sdd->sg)
5940 return -ENOMEM;
5941
9c3f75cb
PZ
5942 sdd->sgp = alloc_percpu(struct sched_group_power *);
5943 if (!sdd->sgp)
5944 return -ENOMEM;
5945
54ab4ff4
PZ
5946 for_each_cpu(j, cpu_map) {
5947 struct sched_domain *sd;
5948 struct sched_group *sg;
9c3f75cb 5949 struct sched_group_power *sgp;
54ab4ff4
PZ
5950
5951 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5952 GFP_KERNEL, cpu_to_node(j));
5953 if (!sd)
5954 return -ENOMEM;
5955
5956 *per_cpu_ptr(sdd->sd, j) = sd;
5957
5958 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5959 GFP_KERNEL, cpu_to_node(j));
5960 if (!sg)
5961 return -ENOMEM;
5962
30b4e9eb
IM
5963 sg->next = sg;
5964
54ab4ff4 5965 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5966
c1174876 5967 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5968 GFP_KERNEL, cpu_to_node(j));
5969 if (!sgp)
5970 return -ENOMEM;
5971
5972 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5973 }
5974 }
5975
5976 return 0;
5977}
5978
5979static void __sdt_free(const struct cpumask *cpu_map)
5980{
5981 struct sched_domain_topology_level *tl;
5982 int j;
5983
27723a68 5984 for_each_sd_topology(tl) {
54ab4ff4
PZ
5985 struct sd_data *sdd = &tl->data;
5986
5987 for_each_cpu(j, cpu_map) {
fb2cf2c6 5988 struct sched_domain *sd;
5989
5990 if (sdd->sd) {
5991 sd = *per_cpu_ptr(sdd->sd, j);
5992 if (sd && (sd->flags & SD_OVERLAP))
5993 free_sched_groups(sd->groups, 0);
5994 kfree(*per_cpu_ptr(sdd->sd, j));
5995 }
5996
5997 if (sdd->sg)
5998 kfree(*per_cpu_ptr(sdd->sg, j));
5999 if (sdd->sgp)
6000 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6001 }
6002 free_percpu(sdd->sd);
fb2cf2c6 6003 sdd->sd = NULL;
54ab4ff4 6004 free_percpu(sdd->sg);
fb2cf2c6 6005 sdd->sg = NULL;
9c3f75cb 6006 free_percpu(sdd->sgp);
fb2cf2c6 6007 sdd->sgp = NULL;
54ab4ff4
PZ
6008 }
6009}
6010
2c402dc3 6011struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6012 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6013 struct sched_domain *child, int cpu)
2c402dc3 6014{
54ab4ff4 6015 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6016 if (!sd)
d069b916 6017 return child;
2c402dc3 6018
2c402dc3 6019 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6020 if (child) {
6021 sd->level = child->level + 1;
6022 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6023 child->parent = sd;
c75e0128 6024 sd->child = child;
60495e77 6025 }
a841f8ce 6026 set_domain_attribute(sd, attr);
2c402dc3
PZ
6027
6028 return sd;
6029}
6030
2109b99e
AH
6031/*
6032 * Build sched domains for a given set of cpus and attach the sched domains
6033 * to the individual cpus
6034 */
dce840a0
PZ
6035static int build_sched_domains(const struct cpumask *cpu_map,
6036 struct sched_domain_attr *attr)
2109b99e 6037{
1c632169 6038 enum s_alloc alloc_state;
dce840a0 6039 struct sched_domain *sd;
2109b99e 6040 struct s_data d;
822ff793 6041 int i, ret = -ENOMEM;
9c1cfda2 6042
2109b99e
AH
6043 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6044 if (alloc_state != sa_rootdomain)
6045 goto error;
9c1cfda2 6046
dce840a0 6047 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6048 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6049 struct sched_domain_topology_level *tl;
6050
3bd65a80 6051 sd = NULL;
27723a68 6052 for_each_sd_topology(tl) {
4a850cbe 6053 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6054 if (tl == sched_domain_topology)
6055 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6056 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6057 sd->flags |= SD_OVERLAP;
d110235d
PZ
6058 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6059 break;
e3589f6c 6060 }
dce840a0
PZ
6061 }
6062
6063 /* Build the groups for the domains */
6064 for_each_cpu(i, cpu_map) {
6065 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6066 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6067 if (sd->flags & SD_OVERLAP) {
6068 if (build_overlap_sched_groups(sd, i))
6069 goto error;
6070 } else {
6071 if (build_sched_groups(sd, i))
6072 goto error;
6073 }
1cf51902 6074 }
a06dadbe 6075 }
9c1cfda2 6076
1da177e4 6077 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6078 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6079 if (!cpumask_test_cpu(i, cpu_map))
6080 continue;
9c1cfda2 6081
dce840a0
PZ
6082 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6083 claim_allocations(i, sd);
cd4ea6ae 6084 init_sched_groups_power(i, sd);
dce840a0 6085 }
f712c0c7 6086 }
9c1cfda2 6087
1da177e4 6088 /* Attach the domains */
dce840a0 6089 rcu_read_lock();
abcd083a 6090 for_each_cpu(i, cpu_map) {
21d42ccf 6091 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6092 cpu_attach_domain(sd, d.rd, i);
1da177e4 6093 }
dce840a0 6094 rcu_read_unlock();
51888ca2 6095
822ff793 6096 ret = 0;
51888ca2 6097error:
2109b99e 6098 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6099 return ret;
1da177e4 6100}
029190c5 6101
acc3f5d7 6102static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6103static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6104static struct sched_domain_attr *dattr_cur;
6105 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6106
6107/*
6108 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6109 * cpumask) fails, then fallback to a single sched domain,
6110 * as determined by the single cpumask fallback_doms.
029190c5 6111 */
4212823f 6112static cpumask_var_t fallback_doms;
029190c5 6113
ee79d1bd
HC
6114/*
6115 * arch_update_cpu_topology lets virtualized architectures update the
6116 * cpu core maps. It is supposed to return 1 if the topology changed
6117 * or 0 if it stayed the same.
6118 */
6119int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6120{
ee79d1bd 6121 return 0;
22e52b07
HC
6122}
6123
acc3f5d7
RR
6124cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6125{
6126 int i;
6127 cpumask_var_t *doms;
6128
6129 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6130 if (!doms)
6131 return NULL;
6132 for (i = 0; i < ndoms; i++) {
6133 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6134 free_sched_domains(doms, i);
6135 return NULL;
6136 }
6137 }
6138 return doms;
6139}
6140
6141void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6142{
6143 unsigned int i;
6144 for (i = 0; i < ndoms; i++)
6145 free_cpumask_var(doms[i]);
6146 kfree(doms);
6147}
6148
1a20ff27 6149/*
41a2d6cf 6150 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6151 * For now this just excludes isolated cpus, but could be used to
6152 * exclude other special cases in the future.
1a20ff27 6153 */
c4a8849a 6154static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6155{
7378547f
MM
6156 int err;
6157
22e52b07 6158 arch_update_cpu_topology();
029190c5 6159 ndoms_cur = 1;
acc3f5d7 6160 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6161 if (!doms_cur)
acc3f5d7
RR
6162 doms_cur = &fallback_doms;
6163 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6164 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6165 register_sched_domain_sysctl();
7378547f
MM
6166
6167 return err;
1a20ff27
DG
6168}
6169
1a20ff27
DG
6170/*
6171 * Detach sched domains from a group of cpus specified in cpu_map
6172 * These cpus will now be attached to the NULL domain
6173 */
96f874e2 6174static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6175{
6176 int i;
6177
dce840a0 6178 rcu_read_lock();
abcd083a 6179 for_each_cpu(i, cpu_map)
57d885fe 6180 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6181 rcu_read_unlock();
1a20ff27
DG
6182}
6183
1d3504fc
HS
6184/* handle null as "default" */
6185static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6186 struct sched_domain_attr *new, int idx_new)
6187{
6188 struct sched_domain_attr tmp;
6189
6190 /* fast path */
6191 if (!new && !cur)
6192 return 1;
6193
6194 tmp = SD_ATTR_INIT;
6195 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6196 new ? (new + idx_new) : &tmp,
6197 sizeof(struct sched_domain_attr));
6198}
6199
029190c5
PJ
6200/*
6201 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6202 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6203 * doms_new[] to the current sched domain partitioning, doms_cur[].
6204 * It destroys each deleted domain and builds each new domain.
6205 *
acc3f5d7 6206 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6207 * The masks don't intersect (don't overlap.) We should setup one
6208 * sched domain for each mask. CPUs not in any of the cpumasks will
6209 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6210 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6211 * it as it is.
6212 *
acc3f5d7
RR
6213 * The passed in 'doms_new' should be allocated using
6214 * alloc_sched_domains. This routine takes ownership of it and will
6215 * free_sched_domains it when done with it. If the caller failed the
6216 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6217 * and partition_sched_domains() will fallback to the single partition
6218 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6219 *
96f874e2 6220 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6221 * ndoms_new == 0 is a special case for destroying existing domains,
6222 * and it will not create the default domain.
dfb512ec 6223 *
029190c5
PJ
6224 * Call with hotplug lock held
6225 */
acc3f5d7 6226void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6227 struct sched_domain_attr *dattr_new)
029190c5 6228{
dfb512ec 6229 int i, j, n;
d65bd5ec 6230 int new_topology;
029190c5 6231
712555ee 6232 mutex_lock(&sched_domains_mutex);
a1835615 6233
7378547f
MM
6234 /* always unregister in case we don't destroy any domains */
6235 unregister_sched_domain_sysctl();
6236
d65bd5ec
HC
6237 /* Let architecture update cpu core mappings. */
6238 new_topology = arch_update_cpu_topology();
6239
dfb512ec 6240 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6241
6242 /* Destroy deleted domains */
6243 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6244 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6245 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6246 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6247 goto match1;
6248 }
6249 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6250 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6251match1:
6252 ;
6253 }
6254
c8d2d47a 6255 n = ndoms_cur;
e761b772 6256 if (doms_new == NULL) {
c8d2d47a 6257 n = 0;
acc3f5d7 6258 doms_new = &fallback_doms;
6ad4c188 6259 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6260 WARN_ON_ONCE(dattr_new);
e761b772
MK
6261 }
6262
029190c5
PJ
6263 /* Build new domains */
6264 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6265 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6266 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6267 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6268 goto match2;
6269 }
6270 /* no match - add a new doms_new */
dce840a0 6271 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6272match2:
6273 ;
6274 }
6275
6276 /* Remember the new sched domains */
acc3f5d7
RR
6277 if (doms_cur != &fallback_doms)
6278 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6279 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6280 doms_cur = doms_new;
1d3504fc 6281 dattr_cur = dattr_new;
029190c5 6282 ndoms_cur = ndoms_new;
7378547f
MM
6283
6284 register_sched_domain_sysctl();
a1835615 6285
712555ee 6286 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6287}
6288
d35be8ba
SB
6289static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6290
1da177e4 6291/*
3a101d05
TH
6292 * Update cpusets according to cpu_active mask. If cpusets are
6293 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6294 * around partition_sched_domains().
d35be8ba
SB
6295 *
6296 * If we come here as part of a suspend/resume, don't touch cpusets because we
6297 * want to restore it back to its original state upon resume anyway.
1da177e4 6298 */
0b2e918a
TH
6299static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6300 void *hcpu)
e761b772 6301{
d35be8ba
SB
6302 switch (action) {
6303 case CPU_ONLINE_FROZEN:
6304 case CPU_DOWN_FAILED_FROZEN:
6305
6306 /*
6307 * num_cpus_frozen tracks how many CPUs are involved in suspend
6308 * resume sequence. As long as this is not the last online
6309 * operation in the resume sequence, just build a single sched
6310 * domain, ignoring cpusets.
6311 */
6312 num_cpus_frozen--;
6313 if (likely(num_cpus_frozen)) {
6314 partition_sched_domains(1, NULL, NULL);
6315 break;
6316 }
6317
6318 /*
6319 * This is the last CPU online operation. So fall through and
6320 * restore the original sched domains by considering the
6321 * cpuset configurations.
6322 */
6323
e761b772 6324 case CPU_ONLINE:
6ad4c188 6325 case CPU_DOWN_FAILED:
7ddf96b0 6326 cpuset_update_active_cpus(true);
d35be8ba 6327 break;
3a101d05
TH
6328 default:
6329 return NOTIFY_DONE;
6330 }
d35be8ba 6331 return NOTIFY_OK;
3a101d05 6332}
e761b772 6333
0b2e918a
TH
6334static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6335 void *hcpu)
3a101d05 6336{
d35be8ba 6337 switch (action) {
3a101d05 6338 case CPU_DOWN_PREPARE:
7ddf96b0 6339 cpuset_update_active_cpus(false);
d35be8ba
SB
6340 break;
6341 case CPU_DOWN_PREPARE_FROZEN:
6342 num_cpus_frozen++;
6343 partition_sched_domains(1, NULL, NULL);
6344 break;
e761b772
MK
6345 default:
6346 return NOTIFY_DONE;
6347 }
d35be8ba 6348 return NOTIFY_OK;
e761b772 6349}
e761b772 6350
1da177e4
LT
6351void __init sched_init_smp(void)
6352{
dcc30a35
RR
6353 cpumask_var_t non_isolated_cpus;
6354
6355 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6356 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6357
cb83b629
PZ
6358 sched_init_numa();
6359
95402b38 6360 get_online_cpus();
712555ee 6361 mutex_lock(&sched_domains_mutex);
c4a8849a 6362 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6363 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6364 if (cpumask_empty(non_isolated_cpus))
6365 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6366 mutex_unlock(&sched_domains_mutex);
95402b38 6367 put_online_cpus();
e761b772 6368
301a5cba 6369 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6370 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6371 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6372
b328ca18 6373 init_hrtick();
5c1e1767
NP
6374
6375 /* Move init over to a non-isolated CPU */
dcc30a35 6376 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6377 BUG();
19978ca6 6378 sched_init_granularity();
dcc30a35 6379 free_cpumask_var(non_isolated_cpus);
4212823f 6380
0e3900e6 6381 init_sched_rt_class();
1da177e4
LT
6382}
6383#else
6384void __init sched_init_smp(void)
6385{
19978ca6 6386 sched_init_granularity();
1da177e4
LT
6387}
6388#endif /* CONFIG_SMP */
6389
cd1bb94b
AB
6390const_debug unsigned int sysctl_timer_migration = 1;
6391
1da177e4
LT
6392int in_sched_functions(unsigned long addr)
6393{
1da177e4
LT
6394 return in_lock_functions(addr) ||
6395 (addr >= (unsigned long)__sched_text_start
6396 && addr < (unsigned long)__sched_text_end);
6397}
6398
029632fb 6399#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6400/*
6401 * Default task group.
6402 * Every task in system belongs to this group at bootup.
6403 */
029632fb 6404struct task_group root_task_group;
35cf4e50 6405LIST_HEAD(task_groups);
052f1dc7 6406#endif
6f505b16 6407
e6252c3e 6408DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6409
1da177e4
LT
6410void __init sched_init(void)
6411{
dd41f596 6412 int i, j;
434d53b0
MT
6413 unsigned long alloc_size = 0, ptr;
6414
6415#ifdef CONFIG_FAIR_GROUP_SCHED
6416 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6417#endif
6418#ifdef CONFIG_RT_GROUP_SCHED
6419 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6420#endif
df7c8e84 6421#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6422 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6423#endif
434d53b0 6424 if (alloc_size) {
36b7b6d4 6425 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6426
6427#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6428 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6429 ptr += nr_cpu_ids * sizeof(void **);
6430
07e06b01 6431 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6432 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6433
6d6bc0ad 6434#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6435#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6436 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6437 ptr += nr_cpu_ids * sizeof(void **);
6438
07e06b01 6439 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6440 ptr += nr_cpu_ids * sizeof(void **);
6441
6d6bc0ad 6442#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6443#ifdef CONFIG_CPUMASK_OFFSTACK
6444 for_each_possible_cpu(i) {
e6252c3e 6445 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6446 ptr += cpumask_size();
6447 }
6448#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6449 }
dd41f596 6450
57d885fe
GH
6451#ifdef CONFIG_SMP
6452 init_defrootdomain();
6453#endif
6454
d0b27fa7
PZ
6455 init_rt_bandwidth(&def_rt_bandwidth,
6456 global_rt_period(), global_rt_runtime());
6457
6458#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6459 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6460 global_rt_period(), global_rt_runtime());
6d6bc0ad 6461#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6462
7c941438 6463#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6464 list_add(&root_task_group.list, &task_groups);
6465 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6466 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6467 autogroup_init(&init_task);
54c707e9 6468
7c941438 6469#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6470
0a945022 6471 for_each_possible_cpu(i) {
70b97a7f 6472 struct rq *rq;
1da177e4
LT
6473
6474 rq = cpu_rq(i);
05fa785c 6475 raw_spin_lock_init(&rq->lock);
7897986b 6476 rq->nr_running = 0;
dce48a84
TG
6477 rq->calc_load_active = 0;
6478 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6479 init_cfs_rq(&rq->cfs);
6f505b16 6480 init_rt_rq(&rq->rt, rq);
dd41f596 6481#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6482 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6483 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6484 /*
07e06b01 6485 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6486 *
6487 * In case of task-groups formed thr' the cgroup filesystem, it
6488 * gets 100% of the cpu resources in the system. This overall
6489 * system cpu resource is divided among the tasks of
07e06b01 6490 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6491 * based on each entity's (task or task-group's) weight
6492 * (se->load.weight).
6493 *
07e06b01 6494 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6495 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6496 * then A0's share of the cpu resource is:
6497 *
0d905bca 6498 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6499 *
07e06b01
YZ
6500 * We achieve this by letting root_task_group's tasks sit
6501 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6502 */
ab84d31e 6503 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6504 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6505#endif /* CONFIG_FAIR_GROUP_SCHED */
6506
6507 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6508#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6509 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6510 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6511#endif
1da177e4 6512
dd41f596
IM
6513 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6514 rq->cpu_load[j] = 0;
fdf3e95d
VP
6515
6516 rq->last_load_update_tick = jiffies;
6517
1da177e4 6518#ifdef CONFIG_SMP
41c7ce9a 6519 rq->sd = NULL;
57d885fe 6520 rq->rd = NULL;
1399fa78 6521 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6522 rq->post_schedule = 0;
1da177e4 6523 rq->active_balance = 0;
dd41f596 6524 rq->next_balance = jiffies;
1da177e4 6525 rq->push_cpu = 0;
0a2966b4 6526 rq->cpu = i;
1f11eb6a 6527 rq->online = 0;
eae0c9df
MG
6528 rq->idle_stamp = 0;
6529 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6530 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6531
6532 INIT_LIST_HEAD(&rq->cfs_tasks);
6533
dc938520 6534 rq_attach_root(rq, &def_root_domain);
3451d024 6535#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6536 rq->nohz_flags = 0;
83cd4fe2 6537#endif
265f22a9
FW
6538#ifdef CONFIG_NO_HZ_FULL
6539 rq->last_sched_tick = 0;
6540#endif
1da177e4 6541#endif
8f4d37ec 6542 init_rq_hrtick(rq);
1da177e4 6543 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6544 }
6545
2dd73a4f 6546 set_load_weight(&init_task);
b50f60ce 6547
e107be36
AK
6548#ifdef CONFIG_PREEMPT_NOTIFIERS
6549 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6550#endif
6551
b50f60ce 6552#ifdef CONFIG_RT_MUTEXES
732375c6 6553 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6554#endif
6555
1da177e4
LT
6556 /*
6557 * The boot idle thread does lazy MMU switching as well:
6558 */
6559 atomic_inc(&init_mm.mm_count);
6560 enter_lazy_tlb(&init_mm, current);
6561
6562 /*
6563 * Make us the idle thread. Technically, schedule() should not be
6564 * called from this thread, however somewhere below it might be,
6565 * but because we are the idle thread, we just pick up running again
6566 * when this runqueue becomes "idle".
6567 */
6568 init_idle(current, smp_processor_id());
dce48a84
TG
6569
6570 calc_load_update = jiffies + LOAD_FREQ;
6571
dd41f596
IM
6572 /*
6573 * During early bootup we pretend to be a normal task:
6574 */
6575 current->sched_class = &fair_sched_class;
6892b75e 6576
bf4d83f6 6577#ifdef CONFIG_SMP
4cb98839 6578 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6579 /* May be allocated at isolcpus cmdline parse time */
6580 if (cpu_isolated_map == NULL)
6581 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6582 idle_thread_set_boot_cpu();
029632fb
PZ
6583#endif
6584 init_sched_fair_class();
6a7b3dc3 6585
6892b75e 6586 scheduler_running = 1;
1da177e4
LT
6587}
6588
d902db1e 6589#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6590static inline int preempt_count_equals(int preempt_offset)
6591{
234da7bc 6592 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6593
4ba8216c 6594 return (nested == preempt_offset);
e4aafea2
FW
6595}
6596
d894837f 6597void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6598{
1da177e4
LT
6599 static unsigned long prev_jiffy; /* ratelimiting */
6600
b3fbab05 6601 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6602 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6603 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6604 return;
6605 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6606 return;
6607 prev_jiffy = jiffies;
6608
3df0fc5b
PZ
6609 printk(KERN_ERR
6610 "BUG: sleeping function called from invalid context at %s:%d\n",
6611 file, line);
6612 printk(KERN_ERR
6613 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6614 in_atomic(), irqs_disabled(),
6615 current->pid, current->comm);
aef745fc
IM
6616
6617 debug_show_held_locks(current);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current);
6620 dump_stack();
1da177e4
LT
6621}
6622EXPORT_SYMBOL(__might_sleep);
6623#endif
6624
6625#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6626static void normalize_task(struct rq *rq, struct task_struct *p)
6627{
da7a735e
PZ
6628 const struct sched_class *prev_class = p->sched_class;
6629 int old_prio = p->prio;
3a5e4dc1 6630 int on_rq;
3e51f33f 6631
fd2f4419 6632 on_rq = p->on_rq;
3a5e4dc1 6633 if (on_rq)
4ca9b72b 6634 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6635 __setscheduler(rq, p, SCHED_NORMAL, 0);
6636 if (on_rq) {
4ca9b72b 6637 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6638 resched_task(rq->curr);
6639 }
da7a735e
PZ
6640
6641 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6642}
6643
1da177e4
LT
6644void normalize_rt_tasks(void)
6645{
a0f98a1c 6646 struct task_struct *g, *p;
1da177e4 6647 unsigned long flags;
70b97a7f 6648 struct rq *rq;
1da177e4 6649
4cf5d77a 6650 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6651 do_each_thread(g, p) {
178be793
IM
6652 /*
6653 * Only normalize user tasks:
6654 */
6655 if (!p->mm)
6656 continue;
6657
6cfb0d5d 6658 p->se.exec_start = 0;
6cfb0d5d 6659#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6660 p->se.statistics.wait_start = 0;
6661 p->se.statistics.sleep_start = 0;
6662 p->se.statistics.block_start = 0;
6cfb0d5d 6663#endif
dd41f596
IM
6664
6665 if (!rt_task(p)) {
6666 /*
6667 * Renice negative nice level userspace
6668 * tasks back to 0:
6669 */
6670 if (TASK_NICE(p) < 0 && p->mm)
6671 set_user_nice(p, 0);
1da177e4 6672 continue;
dd41f596 6673 }
1da177e4 6674
1d615482 6675 raw_spin_lock(&p->pi_lock);
b29739f9 6676 rq = __task_rq_lock(p);
1da177e4 6677
178be793 6678 normalize_task(rq, p);
3a5e4dc1 6679
b29739f9 6680 __task_rq_unlock(rq);
1d615482 6681 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6682 } while_each_thread(g, p);
6683
4cf5d77a 6684 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6685}
6686
6687#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6688
67fc4e0c 6689#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6690/*
67fc4e0c 6691 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6692 *
6693 * They can only be called when the whole system has been
6694 * stopped - every CPU needs to be quiescent, and no scheduling
6695 * activity can take place. Using them for anything else would
6696 * be a serious bug, and as a result, they aren't even visible
6697 * under any other configuration.
6698 */
6699
6700/**
6701 * curr_task - return the current task for a given cpu.
6702 * @cpu: the processor in question.
6703 *
6704 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6705 *
6706 * Return: The current task for @cpu.
1df5c10a 6707 */
36c8b586 6708struct task_struct *curr_task(int cpu)
1df5c10a
LT
6709{
6710 return cpu_curr(cpu);
6711}
6712
67fc4e0c
JW
6713#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6714
6715#ifdef CONFIG_IA64
1df5c10a
LT
6716/**
6717 * set_curr_task - set the current task for a given cpu.
6718 * @cpu: the processor in question.
6719 * @p: the task pointer to set.
6720 *
6721 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6722 * are serviced on a separate stack. It allows the architecture to switch the
6723 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6724 * must be called with all CPU's synchronized, and interrupts disabled, the
6725 * and caller must save the original value of the current task (see
6726 * curr_task() above) and restore that value before reenabling interrupts and
6727 * re-starting the system.
6728 *
6729 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6730 */
36c8b586 6731void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6732{
6733 cpu_curr(cpu) = p;
6734}
6735
6736#endif
29f59db3 6737
7c941438 6738#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6739/* task_group_lock serializes the addition/removal of task groups */
6740static DEFINE_SPINLOCK(task_group_lock);
6741
bccbe08a
PZ
6742static void free_sched_group(struct task_group *tg)
6743{
6744 free_fair_sched_group(tg);
6745 free_rt_sched_group(tg);
e9aa1dd1 6746 autogroup_free(tg);
bccbe08a
PZ
6747 kfree(tg);
6748}
6749
6750/* allocate runqueue etc for a new task group */
ec7dc8ac 6751struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6752{
6753 struct task_group *tg;
bccbe08a
PZ
6754
6755 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6756 if (!tg)
6757 return ERR_PTR(-ENOMEM);
6758
ec7dc8ac 6759 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6760 goto err;
6761
ec7dc8ac 6762 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6763 goto err;
6764
ace783b9
LZ
6765 return tg;
6766
6767err:
6768 free_sched_group(tg);
6769 return ERR_PTR(-ENOMEM);
6770}
6771
6772void sched_online_group(struct task_group *tg, struct task_group *parent)
6773{
6774 unsigned long flags;
6775
8ed36996 6776 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6777 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6778
6779 WARN_ON(!parent); /* root should already exist */
6780
6781 tg->parent = parent;
f473aa5e 6782 INIT_LIST_HEAD(&tg->children);
09f2724a 6783 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6784 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6785}
6786
9b5b7751 6787/* rcu callback to free various structures associated with a task group */
6f505b16 6788static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6789{
29f59db3 6790 /* now it should be safe to free those cfs_rqs */
6f505b16 6791 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6792}
6793
9b5b7751 6794/* Destroy runqueue etc associated with a task group */
4cf86d77 6795void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6796{
6797 /* wait for possible concurrent references to cfs_rqs complete */
6798 call_rcu(&tg->rcu, free_sched_group_rcu);
6799}
6800
6801void sched_offline_group(struct task_group *tg)
29f59db3 6802{
8ed36996 6803 unsigned long flags;
9b5b7751 6804 int i;
29f59db3 6805
3d4b47b4
PZ
6806 /* end participation in shares distribution */
6807 for_each_possible_cpu(i)
bccbe08a 6808 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6809
6810 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6811 list_del_rcu(&tg->list);
f473aa5e 6812 list_del_rcu(&tg->siblings);
8ed36996 6813 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6814}
6815
9b5b7751 6816/* change task's runqueue when it moves between groups.
3a252015
IM
6817 * The caller of this function should have put the task in its new group
6818 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6819 * reflect its new group.
9b5b7751
SV
6820 */
6821void sched_move_task(struct task_struct *tsk)
29f59db3 6822{
8323f26c 6823 struct task_group *tg;
29f59db3
SV
6824 int on_rq, running;
6825 unsigned long flags;
6826 struct rq *rq;
6827
6828 rq = task_rq_lock(tsk, &flags);
6829
051a1d1a 6830 running = task_current(rq, tsk);
fd2f4419 6831 on_rq = tsk->on_rq;
29f59db3 6832
0e1f3483 6833 if (on_rq)
29f59db3 6834 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6835 if (unlikely(running))
6836 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6837
8af01f56 6838 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6839 lockdep_is_held(&tsk->sighand->siglock)),
6840 struct task_group, css);
6841 tg = autogroup_task_group(tsk, tg);
6842 tsk->sched_task_group = tg;
6843
810b3817 6844#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6845 if (tsk->sched_class->task_move_group)
6846 tsk->sched_class->task_move_group(tsk, on_rq);
6847 else
810b3817 6848#endif
b2b5ce02 6849 set_task_rq(tsk, task_cpu(tsk));
810b3817 6850
0e1f3483
HS
6851 if (unlikely(running))
6852 tsk->sched_class->set_curr_task(rq);
6853 if (on_rq)
371fd7e7 6854 enqueue_task(rq, tsk, 0);
29f59db3 6855
0122ec5b 6856 task_rq_unlock(rq, tsk, &flags);
29f59db3 6857}
7c941438 6858#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6859
a790de99 6860#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6861static unsigned long to_ratio(u64 period, u64 runtime)
6862{
6863 if (runtime == RUNTIME_INF)
9a7e0b18 6864 return 1ULL << 20;
9f0c1e56 6865
9a7e0b18 6866 return div64_u64(runtime << 20, period);
9f0c1e56 6867}
a790de99
PT
6868#endif
6869
6870#ifdef CONFIG_RT_GROUP_SCHED
6871/*
6872 * Ensure that the real time constraints are schedulable.
6873 */
6874static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6875
9a7e0b18
PZ
6876/* Must be called with tasklist_lock held */
6877static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6878{
9a7e0b18 6879 struct task_struct *g, *p;
b40b2e8e 6880
9a7e0b18 6881 do_each_thread(g, p) {
029632fb 6882 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6883 return 1;
6884 } while_each_thread(g, p);
b40b2e8e 6885
9a7e0b18
PZ
6886 return 0;
6887}
b40b2e8e 6888
9a7e0b18
PZ
6889struct rt_schedulable_data {
6890 struct task_group *tg;
6891 u64 rt_period;
6892 u64 rt_runtime;
6893};
b40b2e8e 6894
a790de99 6895static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6896{
6897 struct rt_schedulable_data *d = data;
6898 struct task_group *child;
6899 unsigned long total, sum = 0;
6900 u64 period, runtime;
b40b2e8e 6901
9a7e0b18
PZ
6902 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6903 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6904
9a7e0b18
PZ
6905 if (tg == d->tg) {
6906 period = d->rt_period;
6907 runtime = d->rt_runtime;
b40b2e8e 6908 }
b40b2e8e 6909
4653f803
PZ
6910 /*
6911 * Cannot have more runtime than the period.
6912 */
6913 if (runtime > period && runtime != RUNTIME_INF)
6914 return -EINVAL;
6f505b16 6915
4653f803
PZ
6916 /*
6917 * Ensure we don't starve existing RT tasks.
6918 */
9a7e0b18
PZ
6919 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6920 return -EBUSY;
6f505b16 6921
9a7e0b18 6922 total = to_ratio(period, runtime);
6f505b16 6923
4653f803
PZ
6924 /*
6925 * Nobody can have more than the global setting allows.
6926 */
6927 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6928 return -EINVAL;
6f505b16 6929
4653f803
PZ
6930 /*
6931 * The sum of our children's runtime should not exceed our own.
6932 */
9a7e0b18
PZ
6933 list_for_each_entry_rcu(child, &tg->children, siblings) {
6934 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6935 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6936
9a7e0b18
PZ
6937 if (child == d->tg) {
6938 period = d->rt_period;
6939 runtime = d->rt_runtime;
6940 }
6f505b16 6941
9a7e0b18 6942 sum += to_ratio(period, runtime);
9f0c1e56 6943 }
6f505b16 6944
9a7e0b18
PZ
6945 if (sum > total)
6946 return -EINVAL;
6947
6948 return 0;
6f505b16
PZ
6949}
6950
9a7e0b18 6951static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6952{
8277434e
PT
6953 int ret;
6954
9a7e0b18
PZ
6955 struct rt_schedulable_data data = {
6956 .tg = tg,
6957 .rt_period = period,
6958 .rt_runtime = runtime,
6959 };
6960
8277434e
PT
6961 rcu_read_lock();
6962 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6963 rcu_read_unlock();
6964
6965 return ret;
521f1a24
DG
6966}
6967
ab84d31e 6968static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6969 u64 rt_period, u64 rt_runtime)
6f505b16 6970{
ac086bc2 6971 int i, err = 0;
9f0c1e56 6972
9f0c1e56 6973 mutex_lock(&rt_constraints_mutex);
521f1a24 6974 read_lock(&tasklist_lock);
9a7e0b18
PZ
6975 err = __rt_schedulable(tg, rt_period, rt_runtime);
6976 if (err)
9f0c1e56 6977 goto unlock;
ac086bc2 6978
0986b11b 6979 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6980 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6981 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6982
6983 for_each_possible_cpu(i) {
6984 struct rt_rq *rt_rq = tg->rt_rq[i];
6985
0986b11b 6986 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6987 rt_rq->rt_runtime = rt_runtime;
0986b11b 6988 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6989 }
0986b11b 6990 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6991unlock:
521f1a24 6992 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6993 mutex_unlock(&rt_constraints_mutex);
6994
6995 return err;
6f505b16
PZ
6996}
6997
25cc7da7 6998static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6999{
7000 u64 rt_runtime, rt_period;
7001
7002 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7003 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7004 if (rt_runtime_us < 0)
7005 rt_runtime = RUNTIME_INF;
7006
ab84d31e 7007 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7008}
7009
25cc7da7 7010static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7011{
7012 u64 rt_runtime_us;
7013
d0b27fa7 7014 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7015 return -1;
7016
d0b27fa7 7017 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7018 do_div(rt_runtime_us, NSEC_PER_USEC);
7019 return rt_runtime_us;
7020}
d0b27fa7 7021
25cc7da7 7022static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7023{
7024 u64 rt_runtime, rt_period;
7025
7026 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7027 rt_runtime = tg->rt_bandwidth.rt_runtime;
7028
619b0488
R
7029 if (rt_period == 0)
7030 return -EINVAL;
7031
ab84d31e 7032 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7033}
7034
25cc7da7 7035static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7036{
7037 u64 rt_period_us;
7038
7039 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7040 do_div(rt_period_us, NSEC_PER_USEC);
7041 return rt_period_us;
7042}
7043
7044static int sched_rt_global_constraints(void)
7045{
4653f803 7046 u64 runtime, period;
d0b27fa7
PZ
7047 int ret = 0;
7048
ec5d4989
HS
7049 if (sysctl_sched_rt_period <= 0)
7050 return -EINVAL;
7051
4653f803
PZ
7052 runtime = global_rt_runtime();
7053 period = global_rt_period();
7054
7055 /*
7056 * Sanity check on the sysctl variables.
7057 */
7058 if (runtime > period && runtime != RUNTIME_INF)
7059 return -EINVAL;
10b612f4 7060
d0b27fa7 7061 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7062 read_lock(&tasklist_lock);
4653f803 7063 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7064 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7065 mutex_unlock(&rt_constraints_mutex);
7066
7067 return ret;
7068}
54e99124 7069
25cc7da7 7070static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7071{
7072 /* Don't accept realtime tasks when there is no way for them to run */
7073 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7074 return 0;
7075
7076 return 1;
7077}
7078
6d6bc0ad 7079#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7080static int sched_rt_global_constraints(void)
7081{
ac086bc2
PZ
7082 unsigned long flags;
7083 int i;
7084
ec5d4989
HS
7085 if (sysctl_sched_rt_period <= 0)
7086 return -EINVAL;
7087
60aa605d
PZ
7088 /*
7089 * There's always some RT tasks in the root group
7090 * -- migration, kstopmachine etc..
7091 */
7092 if (sysctl_sched_rt_runtime == 0)
7093 return -EBUSY;
7094
0986b11b 7095 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7096 for_each_possible_cpu(i) {
7097 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7098
0986b11b 7099 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7100 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7101 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7102 }
0986b11b 7103 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7104
d0b27fa7
PZ
7105 return 0;
7106}
6d6bc0ad 7107#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7108
ce0dbbbb
CW
7109int sched_rr_handler(struct ctl_table *table, int write,
7110 void __user *buffer, size_t *lenp,
7111 loff_t *ppos)
7112{
7113 int ret;
7114 static DEFINE_MUTEX(mutex);
7115
7116 mutex_lock(&mutex);
7117 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7118 /* make sure that internally we keep jiffies */
7119 /* also, writing zero resets timeslice to default */
7120 if (!ret && write) {
7121 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7122 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7123 }
7124 mutex_unlock(&mutex);
7125 return ret;
7126}
7127
d0b27fa7 7128int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7129 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7130 loff_t *ppos)
7131{
7132 int ret;
7133 int old_period, old_runtime;
7134 static DEFINE_MUTEX(mutex);
7135
7136 mutex_lock(&mutex);
7137 old_period = sysctl_sched_rt_period;
7138 old_runtime = sysctl_sched_rt_runtime;
7139
8d65af78 7140 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7141
7142 if (!ret && write) {
7143 ret = sched_rt_global_constraints();
7144 if (ret) {
7145 sysctl_sched_rt_period = old_period;
7146 sysctl_sched_rt_runtime = old_runtime;
7147 } else {
7148 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7149 def_rt_bandwidth.rt_period =
7150 ns_to_ktime(global_rt_period());
7151 }
7152 }
7153 mutex_unlock(&mutex);
7154
7155 return ret;
7156}
68318b8e 7157
052f1dc7 7158#ifdef CONFIG_CGROUP_SCHED
68318b8e 7159
a7c6d554 7160static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7161{
a7c6d554 7162 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7163}
7164
eb95419b
TH
7165static struct cgroup_subsys_state *
7166cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7167{
eb95419b
TH
7168 struct task_group *parent = css_tg(parent_css);
7169 struct task_group *tg;
68318b8e 7170
eb95419b 7171 if (!parent) {
68318b8e 7172 /* This is early initialization for the top cgroup */
07e06b01 7173 return &root_task_group.css;
68318b8e
SV
7174 }
7175
ec7dc8ac 7176 tg = sched_create_group(parent);
68318b8e
SV
7177 if (IS_ERR(tg))
7178 return ERR_PTR(-ENOMEM);
7179
68318b8e
SV
7180 return &tg->css;
7181}
7182
eb95419b 7183static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7184{
eb95419b
TH
7185 struct task_group *tg = css_tg(css);
7186 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7187
63876986
TH
7188 if (parent)
7189 sched_online_group(tg, parent);
ace783b9
LZ
7190 return 0;
7191}
7192
eb95419b 7193static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7194{
eb95419b 7195 struct task_group *tg = css_tg(css);
68318b8e
SV
7196
7197 sched_destroy_group(tg);
7198}
7199
eb95419b 7200static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7201{
eb95419b 7202 struct task_group *tg = css_tg(css);
ace783b9
LZ
7203
7204 sched_offline_group(tg);
7205}
7206
eb95419b 7207static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7208 struct cgroup_taskset *tset)
68318b8e 7209{
bb9d97b6
TH
7210 struct task_struct *task;
7211
d99c8727 7212 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7213#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7214 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7215 return -EINVAL;
b68aa230 7216#else
bb9d97b6
TH
7217 /* We don't support RT-tasks being in separate groups */
7218 if (task->sched_class != &fair_sched_class)
7219 return -EINVAL;
b68aa230 7220#endif
bb9d97b6 7221 }
be367d09
BB
7222 return 0;
7223}
68318b8e 7224
eb95419b 7225static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7226 struct cgroup_taskset *tset)
68318b8e 7227{
bb9d97b6
TH
7228 struct task_struct *task;
7229
d99c8727 7230 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7231 sched_move_task(task);
68318b8e
SV
7232}
7233
eb95419b
TH
7234static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7235 struct cgroup_subsys_state *old_css,
7236 struct task_struct *task)
068c5cc5
PZ
7237{
7238 /*
7239 * cgroup_exit() is called in the copy_process() failure path.
7240 * Ignore this case since the task hasn't ran yet, this avoids
7241 * trying to poke a half freed task state from generic code.
7242 */
7243 if (!(task->flags & PF_EXITING))
7244 return;
7245
7246 sched_move_task(task);
7247}
7248
052f1dc7 7249#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7250static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7251 struct cftype *cftype, u64 shareval)
68318b8e 7252{
182446d0 7253 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7254}
7255
182446d0
TH
7256static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7257 struct cftype *cft)
68318b8e 7258{
182446d0 7259 struct task_group *tg = css_tg(css);
68318b8e 7260
c8b28116 7261 return (u64) scale_load_down(tg->shares);
68318b8e 7262}
ab84d31e
PT
7263
7264#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7265static DEFINE_MUTEX(cfs_constraints_mutex);
7266
ab84d31e
PT
7267const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7268const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7269
a790de99
PT
7270static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7271
ab84d31e
PT
7272static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7273{
56f570e5 7274 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7275 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7276
7277 if (tg == &root_task_group)
7278 return -EINVAL;
7279
7280 /*
7281 * Ensure we have at some amount of bandwidth every period. This is
7282 * to prevent reaching a state of large arrears when throttled via
7283 * entity_tick() resulting in prolonged exit starvation.
7284 */
7285 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7286 return -EINVAL;
7287
7288 /*
7289 * Likewise, bound things on the otherside by preventing insane quota
7290 * periods. This also allows us to normalize in computing quota
7291 * feasibility.
7292 */
7293 if (period > max_cfs_quota_period)
7294 return -EINVAL;
7295
a790de99
PT
7296 mutex_lock(&cfs_constraints_mutex);
7297 ret = __cfs_schedulable(tg, period, quota);
7298 if (ret)
7299 goto out_unlock;
7300
58088ad0 7301 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7302 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7303 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7304 raw_spin_lock_irq(&cfs_b->lock);
7305 cfs_b->period = ns_to_ktime(period);
7306 cfs_b->quota = quota;
58088ad0 7307
a9cf55b2 7308 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7309 /* restart the period timer (if active) to handle new period expiry */
7310 if (runtime_enabled && cfs_b->timer_active) {
7311 /* force a reprogram */
7312 cfs_b->timer_active = 0;
7313 __start_cfs_bandwidth(cfs_b);
7314 }
ab84d31e
PT
7315 raw_spin_unlock_irq(&cfs_b->lock);
7316
7317 for_each_possible_cpu(i) {
7318 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7319 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7320
7321 raw_spin_lock_irq(&rq->lock);
58088ad0 7322 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7323 cfs_rq->runtime_remaining = 0;
671fd9da 7324
029632fb 7325 if (cfs_rq->throttled)
671fd9da 7326 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7327 raw_spin_unlock_irq(&rq->lock);
7328 }
a790de99
PT
7329out_unlock:
7330 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7331
a790de99 7332 return ret;
ab84d31e
PT
7333}
7334
7335int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7336{
7337 u64 quota, period;
7338
029632fb 7339 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7340 if (cfs_quota_us < 0)
7341 quota = RUNTIME_INF;
7342 else
7343 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7344
7345 return tg_set_cfs_bandwidth(tg, period, quota);
7346}
7347
7348long tg_get_cfs_quota(struct task_group *tg)
7349{
7350 u64 quota_us;
7351
029632fb 7352 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7353 return -1;
7354
029632fb 7355 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7356 do_div(quota_us, NSEC_PER_USEC);
7357
7358 return quota_us;
7359}
7360
7361int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7362{
7363 u64 quota, period;
7364
7365 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7366 quota = tg->cfs_bandwidth.quota;
ab84d31e 7367
ab84d31e
PT
7368 return tg_set_cfs_bandwidth(tg, period, quota);
7369}
7370
7371long tg_get_cfs_period(struct task_group *tg)
7372{
7373 u64 cfs_period_us;
7374
029632fb 7375 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7376 do_div(cfs_period_us, NSEC_PER_USEC);
7377
7378 return cfs_period_us;
7379}
7380
182446d0
TH
7381static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7382 struct cftype *cft)
ab84d31e 7383{
182446d0 7384 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7385}
7386
182446d0
TH
7387static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7388 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7389{
182446d0 7390 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7391}
7392
182446d0
TH
7393static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7394 struct cftype *cft)
ab84d31e 7395{
182446d0 7396 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7397}
7398
182446d0
TH
7399static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7400 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7401{
182446d0 7402 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7403}
7404
a790de99
PT
7405struct cfs_schedulable_data {
7406 struct task_group *tg;
7407 u64 period, quota;
7408};
7409
7410/*
7411 * normalize group quota/period to be quota/max_period
7412 * note: units are usecs
7413 */
7414static u64 normalize_cfs_quota(struct task_group *tg,
7415 struct cfs_schedulable_data *d)
7416{
7417 u64 quota, period;
7418
7419 if (tg == d->tg) {
7420 period = d->period;
7421 quota = d->quota;
7422 } else {
7423 period = tg_get_cfs_period(tg);
7424 quota = tg_get_cfs_quota(tg);
7425 }
7426
7427 /* note: these should typically be equivalent */
7428 if (quota == RUNTIME_INF || quota == -1)
7429 return RUNTIME_INF;
7430
7431 return to_ratio(period, quota);
7432}
7433
7434static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7435{
7436 struct cfs_schedulable_data *d = data;
029632fb 7437 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7438 s64 quota = 0, parent_quota = -1;
7439
7440 if (!tg->parent) {
7441 quota = RUNTIME_INF;
7442 } else {
029632fb 7443 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7444
7445 quota = normalize_cfs_quota(tg, d);
7446 parent_quota = parent_b->hierarchal_quota;
7447
7448 /*
7449 * ensure max(child_quota) <= parent_quota, inherit when no
7450 * limit is set
7451 */
7452 if (quota == RUNTIME_INF)
7453 quota = parent_quota;
7454 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7455 return -EINVAL;
7456 }
7457 cfs_b->hierarchal_quota = quota;
7458
7459 return 0;
7460}
7461
7462static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7463{
8277434e 7464 int ret;
a790de99
PT
7465 struct cfs_schedulable_data data = {
7466 .tg = tg,
7467 .period = period,
7468 .quota = quota,
7469 };
7470
7471 if (quota != RUNTIME_INF) {
7472 do_div(data.period, NSEC_PER_USEC);
7473 do_div(data.quota, NSEC_PER_USEC);
7474 }
7475
8277434e
PT
7476 rcu_read_lock();
7477 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7478 rcu_read_unlock();
7479
7480 return ret;
a790de99 7481}
e8da1b18 7482
182446d0 7483static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7484 struct cgroup_map_cb *cb)
7485{
182446d0 7486 struct task_group *tg = css_tg(css);
029632fb 7487 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7488
7489 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7490 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7491 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7492
7493 return 0;
7494}
ab84d31e 7495#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7496#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7497
052f1dc7 7498#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7499static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7500 struct cftype *cft, s64 val)
6f505b16 7501{
182446d0 7502 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7503}
7504
182446d0
TH
7505static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7506 struct cftype *cft)
6f505b16 7507{
182446d0 7508 return sched_group_rt_runtime(css_tg(css));
6f505b16 7509}
d0b27fa7 7510
182446d0
TH
7511static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7512 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7513{
182446d0 7514 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7515}
7516
182446d0
TH
7517static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7518 struct cftype *cft)
d0b27fa7 7519{
182446d0 7520 return sched_group_rt_period(css_tg(css));
d0b27fa7 7521}
6d6bc0ad 7522#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7523
fe5c7cc2 7524static struct cftype cpu_files[] = {
052f1dc7 7525#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7526 {
7527 .name = "shares",
f4c753b7
PM
7528 .read_u64 = cpu_shares_read_u64,
7529 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7530 },
052f1dc7 7531#endif
ab84d31e
PT
7532#ifdef CONFIG_CFS_BANDWIDTH
7533 {
7534 .name = "cfs_quota_us",
7535 .read_s64 = cpu_cfs_quota_read_s64,
7536 .write_s64 = cpu_cfs_quota_write_s64,
7537 },
7538 {
7539 .name = "cfs_period_us",
7540 .read_u64 = cpu_cfs_period_read_u64,
7541 .write_u64 = cpu_cfs_period_write_u64,
7542 },
e8da1b18
NR
7543 {
7544 .name = "stat",
7545 .read_map = cpu_stats_show,
7546 },
ab84d31e 7547#endif
052f1dc7 7548#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7549 {
9f0c1e56 7550 .name = "rt_runtime_us",
06ecb27c
PM
7551 .read_s64 = cpu_rt_runtime_read,
7552 .write_s64 = cpu_rt_runtime_write,
6f505b16 7553 },
d0b27fa7
PZ
7554 {
7555 .name = "rt_period_us",
f4c753b7
PM
7556 .read_u64 = cpu_rt_period_read_uint,
7557 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7558 },
052f1dc7 7559#endif
4baf6e33 7560 { } /* terminate */
68318b8e
SV
7561};
7562
68318b8e 7563struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7564 .name = "cpu",
92fb9748
TH
7565 .css_alloc = cpu_cgroup_css_alloc,
7566 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7567 .css_online = cpu_cgroup_css_online,
7568 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7569 .can_attach = cpu_cgroup_can_attach,
7570 .attach = cpu_cgroup_attach,
068c5cc5 7571 .exit = cpu_cgroup_exit,
38605cae 7572 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7573 .base_cftypes = cpu_files,
68318b8e
SV
7574 .early_init = 1,
7575};
7576
052f1dc7 7577#endif /* CONFIG_CGROUP_SCHED */
d842de87 7578
b637a328
PM
7579void dump_cpu_task(int cpu)
7580{
7581 pr_info("Task dump for CPU %d:\n", cpu);
7582 sched_show_task(cpu_curr(cpu));
7583}
This page took 3.272141 seconds and 5 git commands to generate.