sched, timer: Use the atomic task_cputime in thread_group_cputimer
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
3fa0818b
RR
309/* cpus with isolated domains */
310cpumask_var_t cpu_isolated_map;
311
1da177e4 312/*
cc2a73b5 313 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 314 */
a9957449 315static struct rq *this_rq_lock(void)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4
LT
319
320 local_irq_disable();
321 rq = this_rq();
05fa785c 322 raw_spin_lock(&rq->lock);
1da177e4
LT
323
324 return rq;
325}
326
8f4d37ec
PZ
327#ifdef CONFIG_SCHED_HRTICK
328/*
329 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 330 */
8f4d37ec 331
8f4d37ec
PZ
332static void hrtick_clear(struct rq *rq)
333{
334 if (hrtimer_active(&rq->hrtick_timer))
335 hrtimer_cancel(&rq->hrtick_timer);
336}
337
8f4d37ec
PZ
338/*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
342static enum hrtimer_restart hrtick(struct hrtimer *timer)
343{
344 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
05fa785c 348 raw_spin_lock(&rq->lock);
3e51f33f 349 update_rq_clock(rq);
8f4d37ec 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 351 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
352
353 return HRTIMER_NORESTART;
354}
355
95e904c7 356#ifdef CONFIG_SMP
971ee28c
PZ
357
358static int __hrtick_restart(struct rq *rq)
359{
360 struct hrtimer *timer = &rq->hrtick_timer;
361 ktime_t time = hrtimer_get_softexpires(timer);
362
363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364}
365
31656519
PZ
366/*
367 * called from hardirq (IPI) context
368 */
369static void __hrtick_start(void *arg)
b328ca18 370{
31656519 371 struct rq *rq = arg;
b328ca18 372
05fa785c 373 raw_spin_lock(&rq->lock);
971ee28c 374 __hrtick_restart(rq);
31656519 375 rq->hrtick_csd_pending = 0;
05fa785c 376 raw_spin_unlock(&rq->lock);
b328ca18
PZ
377}
378
31656519
PZ
379/*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
029632fb 384void hrtick_start(struct rq *rq, u64 delay)
b328ca18 385{
31656519 386 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 387 ktime_t time;
388 s64 delta;
389
390 /*
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
393 */
394 delta = max_t(s64, delay, 10000LL);
395 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 396
cc584b21 397 hrtimer_set_expires(timer, time);
31656519
PZ
398
399 if (rq == this_rq()) {
971ee28c 400 __hrtick_restart(rq);
31656519 401 } else if (!rq->hrtick_csd_pending) {
c46fff2a 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
403 rq->hrtick_csd_pending = 1;
404 }
b328ca18
PZ
405}
406
407static int
408hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409{
410 int cpu = (int)(long)hcpu;
411
412 switch (action) {
413 case CPU_UP_CANCELED:
414 case CPU_UP_CANCELED_FROZEN:
415 case CPU_DOWN_PREPARE:
416 case CPU_DOWN_PREPARE_FROZEN:
417 case CPU_DEAD:
418 case CPU_DEAD_FROZEN:
31656519 419 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
420 return NOTIFY_OK;
421 }
422
423 return NOTIFY_DONE;
424}
425
fa748203 426static __init void init_hrtick(void)
b328ca18
PZ
427{
428 hotcpu_notifier(hotplug_hrtick, 0);
429}
31656519
PZ
430#else
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
31656519 437{
86893335
WL
438 /*
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
441 */
442 delay = max_t(u64, delay, 10000LL);
7f1e2ca9 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 444 HRTIMER_MODE_REL_PINNED, 0);
31656519 445}
b328ca18 446
006c75f1 447static inline void init_hrtick(void)
8f4d37ec 448{
8f4d37ec 449}
31656519 450#endif /* CONFIG_SMP */
8f4d37ec 451
31656519 452static void init_rq_hrtick(struct rq *rq)
8f4d37ec 453{
31656519
PZ
454#ifdef CONFIG_SMP
455 rq->hrtick_csd_pending = 0;
8f4d37ec 456
31656519
PZ
457 rq->hrtick_csd.flags = 0;
458 rq->hrtick_csd.func = __hrtick_start;
459 rq->hrtick_csd.info = rq;
460#endif
8f4d37ec 461
31656519
PZ
462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 rq->hrtick_timer.function = hrtick;
8f4d37ec 464}
006c75f1 465#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
466static inline void hrtick_clear(struct rq *rq)
467{
468}
469
8f4d37ec
PZ
470static inline void init_rq_hrtick(struct rq *rq)
471{
472}
473
b328ca18
PZ
474static inline void init_hrtick(void)
475{
476}
006c75f1 477#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 478
fd99f91a
PZ
479/*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482#define fetch_or(ptr, val) \
483({ typeof(*(ptr)) __old, __val = *(ptr); \
484 for (;;) { \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
487 break; \
488 __val = __old; \
489 } \
490 __old; \
491})
492
e3baac47 493#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
494/*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
499static bool set_nr_and_not_polling(struct task_struct *p)
500{
501 struct thread_info *ti = task_thread_info(p);
502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503}
e3baac47
PZ
504
505/*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
511static bool set_nr_if_polling(struct task_struct *p)
512{
513 struct thread_info *ti = task_thread_info(p);
316c1608 514 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
515
516 for (;;) {
517 if (!(val & _TIF_POLLING_NRFLAG))
518 return false;
519 if (val & _TIF_NEED_RESCHED)
520 return true;
521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 if (old == val)
523 break;
524 val = old;
525 }
526 return true;
527}
528
fd99f91a
PZ
529#else
530static bool set_nr_and_not_polling(struct task_struct *p)
531{
532 set_tsk_need_resched(p);
533 return true;
534}
e3baac47
PZ
535
536#ifdef CONFIG_SMP
537static bool set_nr_if_polling(struct task_struct *p)
538{
539 return false;
540}
541#endif
fd99f91a
PZ
542#endif
543
c24d20db 544/*
8875125e 545 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
546 *
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
549 * the target CPU.
550 */
8875125e 551void resched_curr(struct rq *rq)
c24d20db 552{
8875125e 553 struct task_struct *curr = rq->curr;
c24d20db
IM
554 int cpu;
555
8875125e 556 lockdep_assert_held(&rq->lock);
c24d20db 557
8875125e 558 if (test_tsk_need_resched(curr))
c24d20db
IM
559 return;
560
8875125e 561 cpu = cpu_of(rq);
fd99f91a 562
f27dde8d 563 if (cpu == smp_processor_id()) {
8875125e 564 set_tsk_need_resched(curr);
f27dde8d 565 set_preempt_need_resched();
c24d20db 566 return;
f27dde8d 567 }
c24d20db 568
8875125e 569 if (set_nr_and_not_polling(curr))
c24d20db 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
573}
574
029632fb 575void resched_cpu(int cpu)
c24d20db
IM
576{
577 struct rq *rq = cpu_rq(cpu);
578 unsigned long flags;
579
05fa785c 580 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 581 return;
8875125e 582 resched_curr(rq);
05fa785c 583 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 584}
06d8308c 585
b021fe3e 586#ifdef CONFIG_SMP
3451d024 587#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
588/*
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu. This is good for power-savings.
591 *
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595 */
6201b4d6 596int get_nohz_timer_target(int pinned)
83cd4fe2
VP
597{
598 int cpu = smp_processor_id();
599 int i;
600 struct sched_domain *sd;
601
6201b4d6
VK
602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 return cpu;
604
057f3fad 605 rcu_read_lock();
83cd4fe2 606 for_each_domain(cpu, sd) {
057f3fad
PZ
607 for_each_cpu(i, sched_domain_span(sd)) {
608 if (!idle_cpu(i)) {
609 cpu = i;
610 goto unlock;
611 }
612 }
83cd4fe2 613 }
057f3fad
PZ
614unlock:
615 rcu_read_unlock();
83cd4fe2
VP
616 return cpu;
617}
06d8308c
TG
618/*
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
627 */
1c20091e 628static void wake_up_idle_cpu(int cpu)
06d8308c
TG
629{
630 struct rq *rq = cpu_rq(cpu);
631
632 if (cpu == smp_processor_id())
633 return;
634
67b9ca70 635 if (set_nr_and_not_polling(rq->idle))
06d8308c 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
639}
640
c5bfece2 641static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 642{
53c5fa16
FW
643 /*
644 * We just need the target to call irq_exit() and re-evaluate
645 * the next tick. The nohz full kick at least implies that.
646 * If needed we can still optimize that later with an
647 * empty IRQ.
648 */
c5bfece2 649 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
650 if (cpu != smp_processor_id() ||
651 tick_nohz_tick_stopped())
53c5fa16 652 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
653 return true;
654 }
655
656 return false;
657}
658
659void wake_up_nohz_cpu(int cpu)
660{
c5bfece2 661 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
662 wake_up_idle_cpu(cpu);
663}
664
ca38062e 665static inline bool got_nohz_idle_kick(void)
45bf76df 666{
1c792db7 667 int cpu = smp_processor_id();
873b4c65
VG
668
669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 return false;
671
672 if (idle_cpu(cpu) && !need_resched())
673 return true;
674
675 /*
676 * We can't run Idle Load Balance on this CPU for this time so we
677 * cancel it and clear NOHZ_BALANCE_KICK
678 */
679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 return false;
45bf76df
IM
681}
682
3451d024 683#else /* CONFIG_NO_HZ_COMMON */
45bf76df 684
ca38062e 685static inline bool got_nohz_idle_kick(void)
2069dd75 686{
ca38062e 687 return false;
2069dd75
PZ
688}
689
3451d024 690#endif /* CONFIG_NO_HZ_COMMON */
d842de87 691
ce831b38
FW
692#ifdef CONFIG_NO_HZ_FULL
693bool sched_can_stop_tick(void)
694{
1e78cdbd
RR
695 /*
696 * FIFO realtime policy runs the highest priority task. Other runnable
697 * tasks are of a lower priority. The scheduler tick does nothing.
698 */
699 if (current->policy == SCHED_FIFO)
700 return true;
701
702 /*
703 * Round-robin realtime tasks time slice with other tasks at the same
704 * realtime priority. Is this task the only one at this priority?
705 */
706 if (current->policy == SCHED_RR) {
707 struct sched_rt_entity *rt_se = &current->rt;
708
709 return rt_se->run_list.prev == rt_se->run_list.next;
710 }
711
3882ec64
FW
712 /*
713 * More than one running task need preemption.
714 * nr_running update is assumed to be visible
715 * after IPI is sent from wakers.
716 */
541b8264
VK
717 if (this_rq()->nr_running > 1)
718 return false;
ce831b38 719
541b8264 720 return true;
ce831b38
FW
721}
722#endif /* CONFIG_NO_HZ_FULL */
d842de87 723
029632fb 724void sched_avg_update(struct rq *rq)
18d95a28 725{
e9e9250b
PZ
726 s64 period = sched_avg_period();
727
78becc27 728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
729 /*
730 * Inline assembly required to prevent the compiler
731 * optimising this loop into a divmod call.
732 * See __iter_div_u64_rem() for another example of this.
733 */
734 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
735 rq->age_stamp += period;
736 rq->rt_avg /= 2;
737 }
18d95a28
PZ
738}
739
6d6bc0ad 740#endif /* CONFIG_SMP */
18d95a28 741
a790de99
PT
742#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 744/*
8277434e
PT
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
747 *
748 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 749 */
029632fb 750int walk_tg_tree_from(struct task_group *from,
8277434e 751 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
752{
753 struct task_group *parent, *child;
eb755805 754 int ret;
c09595f6 755
8277434e
PT
756 parent = from;
757
c09595f6 758down:
eb755805
PZ
759 ret = (*down)(parent, data);
760 if (ret)
8277434e 761 goto out;
c09595f6
PZ
762 list_for_each_entry_rcu(child, &parent->children, siblings) {
763 parent = child;
764 goto down;
765
766up:
767 continue;
768 }
eb755805 769 ret = (*up)(parent, data);
8277434e
PT
770 if (ret || parent == from)
771 goto out;
c09595f6
PZ
772
773 child = parent;
774 parent = parent->parent;
775 if (parent)
776 goto up;
8277434e 777out:
eb755805 778 return ret;
c09595f6
PZ
779}
780
029632fb 781int tg_nop(struct task_group *tg, void *data)
eb755805 782{
e2b245f8 783 return 0;
eb755805 784}
18d95a28
PZ
785#endif
786
45bf76df
IM
787static void set_load_weight(struct task_struct *p)
788{
f05998d4
NR
789 int prio = p->static_prio - MAX_RT_PRIO;
790 struct load_weight *load = &p->se.load;
791
dd41f596
IM
792 /*
793 * SCHED_IDLE tasks get minimal weight:
794 */
795 if (p->policy == SCHED_IDLE) {
c8b28116 796 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 797 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
798 return;
799 }
71f8bd46 800
c8b28116 801 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 802 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
803}
804
371fd7e7 805static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 806{
a64692a3 807 update_rq_clock(rq);
43148951 808 sched_info_queued(rq, p);
371fd7e7 809 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
810}
811
371fd7e7 812static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 813{
a64692a3 814 update_rq_clock(rq);
43148951 815 sched_info_dequeued(rq, p);
371fd7e7 816 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
817}
818
029632fb 819void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
820{
821 if (task_contributes_to_load(p))
822 rq->nr_uninterruptible--;
823
371fd7e7 824 enqueue_task(rq, p, flags);
1e3c88bd
PZ
825}
826
029632fb 827void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
828{
829 if (task_contributes_to_load(p))
830 rq->nr_uninterruptible++;
831
371fd7e7 832 dequeue_task(rq, p, flags);
1e3c88bd
PZ
833}
834
fe44d621 835static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 836{
095c0aa8
GC
837/*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal = 0, irq_delta = 0;
843#endif
844#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
846
847 /*
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
850 * {soft,}irq region.
851 *
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
855 * monotonic.
856 *
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
860 * atomic ops.
861 */
862 if (irq_delta > delta)
863 irq_delta = delta;
864
865 rq->prev_irq_time += irq_delta;
866 delta -= irq_delta;
095c0aa8
GC
867#endif
868#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 869 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
870 steal = paravirt_steal_clock(cpu_of(rq));
871 steal -= rq->prev_steal_time_rq;
872
873 if (unlikely(steal > delta))
874 steal = delta;
875
095c0aa8 876 rq->prev_steal_time_rq += steal;
095c0aa8
GC
877 delta -= steal;
878 }
879#endif
880
fe44d621
PZ
881 rq->clock_task += delta;
882
095c0aa8 883#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
885 sched_rt_avg_update(rq, irq_delta + steal);
886#endif
aa483808
VP
887}
888
34f971f6
PZ
889void sched_set_stop_task(int cpu, struct task_struct *stop)
890{
891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894 if (stop) {
895 /*
896 * Make it appear like a SCHED_FIFO task, its something
897 * userspace knows about and won't get confused about.
898 *
899 * Also, it will make PI more or less work without too
900 * much confusion -- but then, stop work should not
901 * rely on PI working anyway.
902 */
903 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905 stop->sched_class = &stop_sched_class;
906 }
907
908 cpu_rq(cpu)->stop = stop;
909
910 if (old_stop) {
911 /*
912 * Reset it back to a normal scheduling class so that
913 * it can die in pieces.
914 */
915 old_stop->sched_class = &rt_sched_class;
916 }
917}
918
14531189 919/*
dd41f596 920 * __normal_prio - return the priority that is based on the static prio
14531189 921 */
14531189
IM
922static inline int __normal_prio(struct task_struct *p)
923{
dd41f596 924 return p->static_prio;
14531189
IM
925}
926
b29739f9
IM
927/*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
36c8b586 934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
935{
936 int prio;
937
aab03e05
DF
938 if (task_has_dl_policy(p))
939 prio = MAX_DL_PRIO-1;
940 else if (task_has_rt_policy(p))
b29739f9
IM
941 prio = MAX_RT_PRIO-1 - p->rt_priority;
942 else
943 prio = __normal_prio(p);
944 return prio;
945}
946
947/*
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
953 */
36c8b586 954static int effective_prio(struct task_struct *p)
b29739f9
IM
955{
956 p->normal_prio = normal_prio(p);
957 /*
958 * If we are RT tasks or we were boosted to RT priority,
959 * keep the priority unchanged. Otherwise, update priority
960 * to the normal priority:
961 */
962 if (!rt_prio(p->prio))
963 return p->normal_prio;
964 return p->prio;
965}
966
1da177e4
LT
967/**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
e69f6186
YB
970 *
971 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 972 */
36c8b586 973inline int task_curr(const struct task_struct *p)
1da177e4
LT
974{
975 return cpu_curr(task_cpu(p)) == p;
976}
977
67dfa1b7
KT
978/*
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980 */
cb469845
SR
981static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 const struct sched_class *prev_class,
da7a735e 983 int oldprio)
cb469845
SR
984{
985 if (prev_class != p->sched_class) {
986 if (prev_class->switched_from)
da7a735e 987 prev_class->switched_from(rq, p);
67dfa1b7 988 /* Possble rq->lock 'hole'. */
da7a735e 989 p->sched_class->switched_to(rq, p);
2d3d891d 990 } else if (oldprio != p->prio || dl_task(p))
da7a735e 991 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
992}
993
029632fb 994void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
995{
996 const struct sched_class *class;
997
998 if (p->sched_class == rq->curr->sched_class) {
999 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 } else {
1001 for_each_class(class) {
1002 if (class == rq->curr->sched_class)
1003 break;
1004 if (class == p->sched_class) {
8875125e 1005 resched_curr(rq);
1e5a7405
PZ
1006 break;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * A queue event has occurred, and we're going to schedule. In
1013 * this case, we can save a useless back to back clock update.
1014 */
da0c1e65 1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1016 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1017}
1018
1da177e4 1019#ifdef CONFIG_SMP
dd41f596 1020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1021{
e2912009
PZ
1022#ifdef CONFIG_SCHED_DEBUG
1023 /*
1024 * We should never call set_task_cpu() on a blocked task,
1025 * ttwu() will sort out the placement.
1026 */
077614ee 1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1028 !p->on_rq);
0122ec5b
PZ
1029
1030#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1031 /*
1032 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 *
1035 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1036 * see task_group().
6c6c54e1
PZ
1037 *
1038 * Furthermore, all task_rq users should acquire both locks, see
1039 * task_rq_lock().
1040 */
0122ec5b
PZ
1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 lockdep_is_held(&task_rq(p)->lock)));
1043#endif
e2912009
PZ
1044#endif
1045
de1d7286 1046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1047
0c69774e 1048 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1049 if (p->sched_class->migrate_task_rq)
1050 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1051 p->se.nr_migrations++;
86038c5e 1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1053 }
dd41f596
IM
1054
1055 __set_task_cpu(p, new_cpu);
c65cc870
IM
1056}
1057
ac66f547
PZ
1058static void __migrate_swap_task(struct task_struct *p, int cpu)
1059{
da0c1e65 1060 if (task_on_rq_queued(p)) {
ac66f547
PZ
1061 struct rq *src_rq, *dst_rq;
1062
1063 src_rq = task_rq(p);
1064 dst_rq = cpu_rq(cpu);
1065
1066 deactivate_task(src_rq, p, 0);
1067 set_task_cpu(p, cpu);
1068 activate_task(dst_rq, p, 0);
1069 check_preempt_curr(dst_rq, p, 0);
1070 } else {
1071 /*
1072 * Task isn't running anymore; make it appear like we migrated
1073 * it before it went to sleep. This means on wakeup we make the
1074 * previous cpu our targer instead of where it really is.
1075 */
1076 p->wake_cpu = cpu;
1077 }
1078}
1079
1080struct migration_swap_arg {
1081 struct task_struct *src_task, *dst_task;
1082 int src_cpu, dst_cpu;
1083};
1084
1085static int migrate_swap_stop(void *data)
1086{
1087 struct migration_swap_arg *arg = data;
1088 struct rq *src_rq, *dst_rq;
1089 int ret = -EAGAIN;
1090
1091 src_rq = cpu_rq(arg->src_cpu);
1092 dst_rq = cpu_rq(arg->dst_cpu);
1093
74602315
PZ
1094 double_raw_lock(&arg->src_task->pi_lock,
1095 &arg->dst_task->pi_lock);
ac66f547
PZ
1096 double_rq_lock(src_rq, dst_rq);
1097 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 goto unlock;
1099
1100 if (task_cpu(arg->src_task) != arg->src_cpu)
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 goto unlock;
1105
1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 goto unlock;
1108
1109 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112 ret = 0;
1113
1114unlock:
1115 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1116 raw_spin_unlock(&arg->dst_task->pi_lock);
1117 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1118
1119 return ret;
1120}
1121
1122/*
1123 * Cross migrate two tasks
1124 */
1125int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126{
1127 struct migration_swap_arg arg;
1128 int ret = -EINVAL;
1129
ac66f547
PZ
1130 arg = (struct migration_swap_arg){
1131 .src_task = cur,
1132 .src_cpu = task_cpu(cur),
1133 .dst_task = p,
1134 .dst_cpu = task_cpu(p),
1135 };
1136
1137 if (arg.src_cpu == arg.dst_cpu)
1138 goto out;
1139
6acce3ef
PZ
1140 /*
1141 * These three tests are all lockless; this is OK since all of them
1142 * will be re-checked with proper locks held further down the line.
1143 */
ac66f547
PZ
1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 goto out;
1149
1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 goto out;
1152
286549dc 1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156out:
ac66f547
PZ
1157 return ret;
1158}
1159
969c7921 1160struct migration_arg {
36c8b586 1161 struct task_struct *task;
1da177e4 1162 int dest_cpu;
70b97a7f 1163};
1da177e4 1164
969c7921
TH
1165static int migration_cpu_stop(void *data);
1166
1da177e4
LT
1167/*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
85ba2d86
RM
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change. If it changes, i.e. @p might have woken up,
1172 * then return zero. When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count). If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1176 *
1da177e4
LT
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1182 */
85ba2d86 1183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1184{
1185 unsigned long flags;
da0c1e65 1186 int running, queued;
85ba2d86 1187 unsigned long ncsw;
70b97a7f 1188 struct rq *rq;
1da177e4 1189
3a5c359a
AK
1190 for (;;) {
1191 /*
1192 * We do the initial early heuristics without holding
1193 * any task-queue locks at all. We'll only try to get
1194 * the runqueue lock when things look like they will
1195 * work out!
1196 */
1197 rq = task_rq(p);
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * If the task is actively running on another CPU
1201 * still, just relax and busy-wait without holding
1202 * any locks.
1203 *
1204 * NOTE! Since we don't hold any locks, it's not
1205 * even sure that "rq" stays as the right runqueue!
1206 * But we don't care, since "task_running()" will
1207 * return false if the runqueue has changed and p
1208 * is actually now running somewhere else!
1209 */
85ba2d86
RM
1210 while (task_running(rq, p)) {
1211 if (match_state && unlikely(p->state != match_state))
1212 return 0;
3a5c359a 1213 cpu_relax();
85ba2d86 1214 }
fa490cfd 1215
3a5c359a
AK
1216 /*
1217 * Ok, time to look more closely! We need the rq
1218 * lock now, to be *sure*. If we're wrong, we'll
1219 * just go back and repeat.
1220 */
1221 rq = task_rq_lock(p, &flags);
27a9da65 1222 trace_sched_wait_task(p);
3a5c359a 1223 running = task_running(rq, p);
da0c1e65 1224 queued = task_on_rq_queued(p);
85ba2d86 1225 ncsw = 0;
f31e11d8 1226 if (!match_state || p->state == match_state)
93dcf55f 1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1228 task_rq_unlock(rq, p, &flags);
fa490cfd 1229
85ba2d86
RM
1230 /*
1231 * If it changed from the expected state, bail out now.
1232 */
1233 if (unlikely(!ncsw))
1234 break;
1235
3a5c359a
AK
1236 /*
1237 * Was it really running after all now that we
1238 * checked with the proper locks actually held?
1239 *
1240 * Oops. Go back and try again..
1241 */
1242 if (unlikely(running)) {
1243 cpu_relax();
1244 continue;
1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * It's not enough that it's not actively running,
1249 * it must be off the runqueue _entirely_, and not
1250 * preempted!
1251 *
80dd99b3 1252 * So if it was still runnable (but just not actively
3a5c359a
AK
1253 * running right now), it's preempted, and we should
1254 * yield - it could be a while.
1255 */
da0c1e65 1256 if (unlikely(queued)) {
8eb90c30
TG
1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259 set_current_state(TASK_UNINTERRUPTIBLE);
1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1261 continue;
1262 }
fa490cfd 1263
3a5c359a
AK
1264 /*
1265 * Ahh, all good. It wasn't running, and it wasn't
1266 * runnable, which means that it will never become
1267 * running in the future either. We're all done!
1268 */
1269 break;
1270 }
85ba2d86
RM
1271
1272 return ncsw;
1da177e4
LT
1273}
1274
1275/***
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1278 *
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1281 *
25985edc 1282 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1286 * achieved as well.
1287 */
36c8b586 1288void kick_process(struct task_struct *p)
1da177e4
LT
1289{
1290 int cpu;
1291
1292 preempt_disable();
1293 cpu = task_cpu(p);
1294 if ((cpu != smp_processor_id()) && task_curr(p))
1295 smp_send_reschedule(cpu);
1296 preempt_enable();
1297}
b43e3521 1298EXPORT_SYMBOL_GPL(kick_process);
476d139c 1299#endif /* CONFIG_SMP */
1da177e4 1300
970b13ba 1301#ifdef CONFIG_SMP
30da688e 1302/*
013fdb80 1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1304 */
5da9a0fb
PZ
1305static int select_fallback_rq(int cpu, struct task_struct *p)
1306{
aa00d89c
TC
1307 int nid = cpu_to_node(cpu);
1308 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1309 enum { cpuset, possible, fail } state = cpuset;
1310 int dest_cpu;
5da9a0fb 1311
aa00d89c
TC
1312 /*
1313 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 * will return -1. There is no cpu on the node, and we should
1315 * select the cpu on the other node.
1316 */
1317 if (nid != -1) {
1318 nodemask = cpumask_of_node(nid);
1319
1320 /* Look for allowed, online CPU in same node. */
1321 for_each_cpu(dest_cpu, nodemask) {
1322 if (!cpu_online(dest_cpu))
1323 continue;
1324 if (!cpu_active(dest_cpu))
1325 continue;
1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 return dest_cpu;
1328 }
2baab4e9 1329 }
5da9a0fb 1330
2baab4e9
PZ
1331 for (;;) {
1332 /* Any allowed, online CPU? */
e3831edd 1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1334 if (!cpu_online(dest_cpu))
1335 continue;
1336 if (!cpu_active(dest_cpu))
1337 continue;
1338 goto out;
1339 }
5da9a0fb 1340
2baab4e9
PZ
1341 switch (state) {
1342 case cpuset:
1343 /* No more Mr. Nice Guy. */
1344 cpuset_cpus_allowed_fallback(p);
1345 state = possible;
1346 break;
1347
1348 case possible:
1349 do_set_cpus_allowed(p, cpu_possible_mask);
1350 state = fail;
1351 break;
1352
1353 case fail:
1354 BUG();
1355 break;
1356 }
1357 }
1358
1359out:
1360 if (state != cpuset) {
1361 /*
1362 * Don't tell them about moving exiting tasks or
1363 * kernel threads (both mm NULL), since they never
1364 * leave kernel.
1365 */
1366 if (p->mm && printk_ratelimit()) {
aac74dc4 1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1368 task_pid_nr(p), p->comm, cpu);
1369 }
5da9a0fb
PZ
1370 }
1371
1372 return dest_cpu;
1373}
1374
e2912009 1375/*
013fdb80 1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1377 */
970b13ba 1378static inline
ac66f547 1379int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1380{
6c1d9410
WL
1381 if (p->nr_cpus_allowed > 1)
1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1383
1384 /*
1385 * In order not to call set_task_cpu() on a blocking task we need
1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 * cpu.
1388 *
1389 * Since this is common to all placement strategies, this lives here.
1390 *
1391 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 * not worry about this generic constraint ]
1393 */
fa17b507 1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1395 !cpu_online(cpu)))
5da9a0fb 1396 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1397
1398 return cpu;
970b13ba 1399}
09a40af5
MG
1400
1401static void update_avg(u64 *avg, u64 sample)
1402{
1403 s64 diff = sample - *avg;
1404 *avg += diff >> 3;
1405}
970b13ba
PZ
1406#endif
1407
d7c01d27 1408static void
b84cb5df 1409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1410{
d7c01d27 1411#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1412 struct rq *rq = this_rq();
1413
d7c01d27
PZ
1414#ifdef CONFIG_SMP
1415 int this_cpu = smp_processor_id();
1416
1417 if (cpu == this_cpu) {
1418 schedstat_inc(rq, ttwu_local);
1419 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 } else {
1421 struct sched_domain *sd;
1422
1423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1424 rcu_read_lock();
d7c01d27
PZ
1425 for_each_domain(this_cpu, sd) {
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 schedstat_inc(sd, ttwu_wake_remote);
1428 break;
1429 }
1430 }
057f3fad 1431 rcu_read_unlock();
d7c01d27 1432 }
f339b9dc
PZ
1433
1434 if (wake_flags & WF_MIGRATED)
1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
d7c01d27
PZ
1437#endif /* CONFIG_SMP */
1438
1439 schedstat_inc(rq, ttwu_count);
9ed3811a 1440 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1441
1442 if (wake_flags & WF_SYNC)
9ed3811a 1443 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1444
d7c01d27
PZ
1445#endif /* CONFIG_SCHEDSTATS */
1446}
1447
1448static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449{
9ed3811a 1450 activate_task(rq, p, en_flags);
da0c1e65 1451 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1452
1453 /* if a worker is waking up, notify workqueue */
1454 if (p->flags & PF_WQ_WORKER)
1455 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1456}
1457
23f41eeb
PZ
1458/*
1459 * Mark the task runnable and perform wakeup-preemption.
1460 */
89363381 1461static void
23f41eeb 1462ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1463{
9ed3811a 1464 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1465 trace_sched_wakeup(p, true);
9ed3811a
TH
1466
1467 p->state = TASK_RUNNING;
1468#ifdef CONFIG_SMP
1469 if (p->sched_class->task_woken)
1470 p->sched_class->task_woken(rq, p);
1471
e69c6341 1472 if (rq->idle_stamp) {
78becc27 1473 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1474 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1475
abfafa54
JL
1476 update_avg(&rq->avg_idle, delta);
1477
1478 if (rq->avg_idle > max)
9ed3811a 1479 rq->avg_idle = max;
abfafa54 1480
9ed3811a
TH
1481 rq->idle_stamp = 0;
1482 }
1483#endif
1484}
1485
c05fbafb
PZ
1486static void
1487ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489#ifdef CONFIG_SMP
1490 if (p->sched_contributes_to_load)
1491 rq->nr_uninterruptible--;
1492#endif
1493
1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 ttwu_do_wakeup(rq, p, wake_flags);
1496}
1497
1498/*
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1503 */
1504static int ttwu_remote(struct task_struct *p, int wake_flags)
1505{
1506 struct rq *rq;
1507 int ret = 0;
1508
1509 rq = __task_rq_lock(p);
da0c1e65 1510 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1511 /* check_preempt_curr() may use rq clock */
1512 update_rq_clock(rq);
c05fbafb
PZ
1513 ttwu_do_wakeup(rq, p, wake_flags);
1514 ret = 1;
1515 }
1516 __task_rq_unlock(rq);
1517
1518 return ret;
1519}
1520
317f3941 1521#ifdef CONFIG_SMP
e3baac47 1522void sched_ttwu_pending(void)
317f3941
PZ
1523{
1524 struct rq *rq = this_rq();
fa14ff4a
PZ
1525 struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 struct task_struct *p;
e3baac47 1527 unsigned long flags;
317f3941 1528
e3baac47
PZ
1529 if (!llist)
1530 return;
1531
1532 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1533
fa14ff4a
PZ
1534 while (llist) {
1535 p = llist_entry(llist, struct task_struct, wake_entry);
1536 llist = llist_next(llist);
317f3941
PZ
1537 ttwu_do_activate(rq, p, 0);
1538 }
1539
e3baac47 1540 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1541}
1542
1543void scheduler_ipi(void)
1544{
f27dde8d
PZ
1545 /*
1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 * this IPI.
1549 */
8cb75e0c 1550 preempt_fold_need_resched();
f27dde8d 1551
fd2ac4f4 1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1553 return;
1554
1555 /*
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1559 * we do call them.
1560 *
1561 * Some archs already do call them, luckily irq_enter/exit nest
1562 * properly.
1563 *
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1567 */
1568 irq_enter();
fa14ff4a 1569 sched_ttwu_pending();
ca38062e
SS
1570
1571 /*
1572 * Check if someone kicked us for doing the nohz idle load balance.
1573 */
873b4c65 1574 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1575 this_rq()->idle_balance = 1;
ca38062e 1576 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1577 }
c5d753a5 1578 irq_exit();
317f3941
PZ
1579}
1580
1581static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582{
e3baac47
PZ
1583 struct rq *rq = cpu_rq(cpu);
1584
1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 if (!set_nr_if_polling(rq->idle))
1587 smp_send_reschedule(cpu);
1588 else
1589 trace_sched_wake_idle_without_ipi(cpu);
1590 }
317f3941 1591}
d6aa8f85 1592
f6be8af1
CL
1593void wake_up_if_idle(int cpu)
1594{
1595 struct rq *rq = cpu_rq(cpu);
1596 unsigned long flags;
1597
fd7de1e8
AL
1598 rcu_read_lock();
1599
1600 if (!is_idle_task(rcu_dereference(rq->curr)))
1601 goto out;
f6be8af1
CL
1602
1603 if (set_nr_if_polling(rq->idle)) {
1604 trace_sched_wake_idle_without_ipi(cpu);
1605 } else {
1606 raw_spin_lock_irqsave(&rq->lock, flags);
1607 if (is_idle_task(rq->curr))
1608 smp_send_reschedule(cpu);
1609 /* Else cpu is not in idle, do nothing here */
1610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 }
fd7de1e8
AL
1612
1613out:
1614 rcu_read_unlock();
f6be8af1
CL
1615}
1616
39be3501 1617bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1618{
1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620}
d6aa8f85 1621#endif /* CONFIG_SMP */
317f3941 1622
c05fbafb
PZ
1623static void ttwu_queue(struct task_struct *p, int cpu)
1624{
1625 struct rq *rq = cpu_rq(cpu);
1626
17d9f311 1627#if defined(CONFIG_SMP)
39be3501 1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1630 ttwu_queue_remote(p, cpu);
1631 return;
1632 }
1633#endif
1634
c05fbafb
PZ
1635 raw_spin_lock(&rq->lock);
1636 ttwu_do_activate(rq, p, 0);
1637 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1638}
1639
1640/**
1da177e4 1641 * try_to_wake_up - wake up a thread
9ed3811a 1642 * @p: the thread to be awakened
1da177e4 1643 * @state: the mask of task states that can be woken
9ed3811a 1644 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1645 *
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1651 *
e69f6186 1652 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1653 * or @state didn't match @p's state.
1da177e4 1654 */
e4a52bcb
PZ
1655static int
1656try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1657{
1da177e4 1658 unsigned long flags;
c05fbafb 1659 int cpu, success = 0;
2398f2c6 1660
e0acd0a6
ON
1661 /*
1662 * If we are going to wake up a thread waiting for CONDITION we
1663 * need to ensure that CONDITION=1 done by the caller can not be
1664 * reordered with p->state check below. This pairs with mb() in
1665 * set_current_state() the waiting thread does.
1666 */
1667 smp_mb__before_spinlock();
013fdb80 1668 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1669 if (!(p->state & state))
1da177e4
LT
1670 goto out;
1671
c05fbafb 1672 success = 1; /* we're going to change ->state */
1da177e4 1673 cpu = task_cpu(p);
1da177e4 1674
c05fbafb
PZ
1675 if (p->on_rq && ttwu_remote(p, wake_flags))
1676 goto stat;
1da177e4 1677
1da177e4 1678#ifdef CONFIG_SMP
e9c84311 1679 /*
c05fbafb
PZ
1680 * If the owning (remote) cpu is still in the middle of schedule() with
1681 * this task as prev, wait until its done referencing the task.
e9c84311 1682 */
f3e94786 1683 while (p->on_cpu)
e4a52bcb 1684 cpu_relax();
0970d299 1685 /*
e4a52bcb 1686 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1687 */
e4a52bcb 1688 smp_rmb();
1da177e4 1689
a8e4f2ea 1690 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1691 p->state = TASK_WAKING;
e7693a36 1692
e4a52bcb 1693 if (p->sched_class->task_waking)
74f8e4b2 1694 p->sched_class->task_waking(p);
efbbd05a 1695
ac66f547 1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1697 if (task_cpu(p) != cpu) {
1698 wake_flags |= WF_MIGRATED;
e4a52bcb 1699 set_task_cpu(p, cpu);
f339b9dc 1700 }
1da177e4 1701#endif /* CONFIG_SMP */
1da177e4 1702
c05fbafb
PZ
1703 ttwu_queue(p, cpu);
1704stat:
b84cb5df 1705 ttwu_stat(p, cpu, wake_flags);
1da177e4 1706out:
013fdb80 1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1708
1709 return success;
1710}
1711
21aa9af0
TH
1712/**
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1715 *
2acca55e 1716 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1718 * the current task.
21aa9af0
TH
1719 */
1720static void try_to_wake_up_local(struct task_struct *p)
1721{
1722 struct rq *rq = task_rq(p);
21aa9af0 1723
383efcd0
TH
1724 if (WARN_ON_ONCE(rq != this_rq()) ||
1725 WARN_ON_ONCE(p == current))
1726 return;
1727
21aa9af0
TH
1728 lockdep_assert_held(&rq->lock);
1729
2acca55e
PZ
1730 if (!raw_spin_trylock(&p->pi_lock)) {
1731 raw_spin_unlock(&rq->lock);
1732 raw_spin_lock(&p->pi_lock);
1733 raw_spin_lock(&rq->lock);
1734 }
1735
21aa9af0 1736 if (!(p->state & TASK_NORMAL))
2acca55e 1737 goto out;
21aa9af0 1738
da0c1e65 1739 if (!task_on_rq_queued(p))
d7c01d27
PZ
1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
23f41eeb 1742 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1743 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1744out:
1745 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1746}
1747
50fa610a
DH
1748/**
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1751 *
1752 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1753 * processes.
1754 *
1755 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1756 *
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1759 */
7ad5b3a5 1760int wake_up_process(struct task_struct *p)
1da177e4 1761{
9067ac85
ON
1762 WARN_ON(task_is_stopped_or_traced(p));
1763 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1764}
1da177e4
LT
1765EXPORT_SYMBOL(wake_up_process);
1766
7ad5b3a5 1767int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1768{
1769 return try_to_wake_up(p, state, 0);
1770}
1771
a5e7be3b
JL
1772/*
1773 * This function clears the sched_dl_entity static params.
1774 */
1775void __dl_clear_params(struct task_struct *p)
1776{
1777 struct sched_dl_entity *dl_se = &p->dl;
1778
1779 dl_se->dl_runtime = 0;
1780 dl_se->dl_deadline = 0;
1781 dl_se->dl_period = 0;
1782 dl_se->flags = 0;
1783 dl_se->dl_bw = 0;
40767b0d
PZ
1784
1785 dl_se->dl_throttled = 0;
1786 dl_se->dl_new = 1;
1787 dl_se->dl_yielded = 0;
a5e7be3b
JL
1788}
1789
1da177e4
LT
1790/*
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
dd41f596
IM
1793 *
1794 * __sched_fork() is basic setup used by init_idle() too:
1795 */
5e1576ed 1796static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1797{
fd2f4419
PZ
1798 p->on_rq = 0;
1799
1800 p->se.on_rq = 0;
dd41f596
IM
1801 p->se.exec_start = 0;
1802 p->se.sum_exec_runtime = 0;
f6cf891c 1803 p->se.prev_sum_exec_runtime = 0;
6c594c21 1804 p->se.nr_migrations = 0;
da7a735e 1805 p->se.vruntime = 0;
bb04159d
KT
1806#ifdef CONFIG_SMP
1807 p->se.avg.decay_count = 0;
1808#endif
fd2f4419 1809 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1810
1811#ifdef CONFIG_SCHEDSTATS
41acab88 1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1813#endif
476d139c 1814
aab03e05 1815 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1816 init_dl_task_timer(&p->dl);
a5e7be3b 1817 __dl_clear_params(p);
aab03e05 1818
fa717060 1819 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1820
e107be36
AK
1821#ifdef CONFIG_PREEMPT_NOTIFIERS
1822 INIT_HLIST_HEAD(&p->preempt_notifiers);
1823#endif
cbee9f88
PZ
1824
1825#ifdef CONFIG_NUMA_BALANCING
1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1828 p->mm->numa_scan_seq = 0;
1829 }
1830
5e1576ed
RR
1831 if (clone_flags & CLONE_VM)
1832 p->numa_preferred_nid = current->numa_preferred_nid;
1833 else
1834 p->numa_preferred_nid = -1;
1835
cbee9f88
PZ
1836 p->node_stamp = 0ULL;
1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1839 p->numa_work.next = &p->numa_work;
44dba3d5 1840 p->numa_faults = NULL;
7e2703e6
RR
1841 p->last_task_numa_placement = 0;
1842 p->last_sum_exec_runtime = 0;
8c8a743c 1843
8c8a743c 1844 p->numa_group = NULL;
cbee9f88 1845#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1846}
1847
1a687c2e 1848#ifdef CONFIG_NUMA_BALANCING
3105b86a 1849#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1850void set_numabalancing_state(bool enabled)
1851{
1852 if (enabled)
1853 sched_feat_set("NUMA");
1854 else
1855 sched_feat_set("NO_NUMA");
1856}
3105b86a
MG
1857#else
1858__read_mostly bool numabalancing_enabled;
1859
1860void set_numabalancing_state(bool enabled)
1861{
1862 numabalancing_enabled = enabled;
dd41f596 1863}
3105b86a 1864#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1865
1866#ifdef CONFIG_PROC_SYSCTL
1867int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 void __user *buffer, size_t *lenp, loff_t *ppos)
1869{
1870 struct ctl_table t;
1871 int err;
1872 int state = numabalancing_enabled;
1873
1874 if (write && !capable(CAP_SYS_ADMIN))
1875 return -EPERM;
1876
1877 t = *table;
1878 t.data = &state;
1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 if (err < 0)
1881 return err;
1882 if (write)
1883 set_numabalancing_state(state);
1884 return err;
1885}
1886#endif
1887#endif
dd41f596
IM
1888
1889/*
1890 * fork()/clone()-time setup:
1891 */
aab03e05 1892int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1893{
0122ec5b 1894 unsigned long flags;
dd41f596
IM
1895 int cpu = get_cpu();
1896
5e1576ed 1897 __sched_fork(clone_flags, p);
06b83b5f 1898 /*
0017d735 1899 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1900 * nobody will actually run it, and a signal or other external
1901 * event cannot wake it up and insert it on the runqueue either.
1902 */
0017d735 1903 p->state = TASK_RUNNING;
dd41f596 1904
c350a04e
MG
1905 /*
1906 * Make sure we do not leak PI boosting priority to the child.
1907 */
1908 p->prio = current->normal_prio;
1909
b9dc29e7
MG
1910 /*
1911 * Revert to default priority/policy on fork if requested.
1912 */
1913 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1915 p->policy = SCHED_NORMAL;
6c697bdf 1916 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1917 p->rt_priority = 0;
1918 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 p->static_prio = NICE_TO_PRIO(0);
1920
1921 p->prio = p->normal_prio = __normal_prio(p);
1922 set_load_weight(p);
6c697bdf 1923
b9dc29e7
MG
1924 /*
1925 * We don't need the reset flag anymore after the fork. It has
1926 * fulfilled its duty:
1927 */
1928 p->sched_reset_on_fork = 0;
1929 }
ca94c442 1930
aab03e05
DF
1931 if (dl_prio(p->prio)) {
1932 put_cpu();
1933 return -EAGAIN;
1934 } else if (rt_prio(p->prio)) {
1935 p->sched_class = &rt_sched_class;
1936 } else {
2ddbf952 1937 p->sched_class = &fair_sched_class;
aab03e05 1938 }
b29739f9 1939
cd29fe6f
PZ
1940 if (p->sched_class->task_fork)
1941 p->sched_class->task_fork(p);
1942
86951599
PZ
1943 /*
1944 * The child is not yet in the pid-hash so no cgroup attach races,
1945 * and the cgroup is pinned to this child due to cgroup_fork()
1946 * is ran before sched_fork().
1947 *
1948 * Silence PROVE_RCU.
1949 */
0122ec5b 1950 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1951 set_task_cpu(p, cpu);
0122ec5b 1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1953
52f17b6c 1954#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1955 if (likely(sched_info_on()))
52f17b6c 1956 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1957#endif
3ca7a440
PZ
1958#if defined(CONFIG_SMP)
1959 p->on_cpu = 0;
4866cde0 1960#endif
01028747 1961 init_task_preempt_count(p);
806c09a7 1962#ifdef CONFIG_SMP
917b627d 1963 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1964 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1965#endif
917b627d 1966
476d139c 1967 put_cpu();
aab03e05 1968 return 0;
1da177e4
LT
1969}
1970
332ac17e
DF
1971unsigned long to_ratio(u64 period, u64 runtime)
1972{
1973 if (runtime == RUNTIME_INF)
1974 return 1ULL << 20;
1975
1976 /*
1977 * Doing this here saves a lot of checks in all
1978 * the calling paths, and returning zero seems
1979 * safe for them anyway.
1980 */
1981 if (period == 0)
1982 return 0;
1983
1984 return div64_u64(runtime << 20, period);
1985}
1986
1987#ifdef CONFIG_SMP
1988inline struct dl_bw *dl_bw_of(int i)
1989{
66339c31
KT
1990 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 "sched RCU must be held");
332ac17e
DF
1992 return &cpu_rq(i)->rd->dl_bw;
1993}
1994
de212f18 1995static inline int dl_bw_cpus(int i)
332ac17e 1996{
de212f18
PZ
1997 struct root_domain *rd = cpu_rq(i)->rd;
1998 int cpus = 0;
1999
66339c31
KT
2000 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 "sched RCU must be held");
de212f18
PZ
2002 for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 cpus++;
2004
2005 return cpus;
332ac17e
DF
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010 return &cpu_rq(i)->dl.dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e
DF
2014{
2015 return 1;
2016}
2017#endif
2018
332ac17e
DF
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
40767b0d
PZ
2026 *
2027 * XXX we should delay bw change until the task's 0-lag point, see
2028 * __setparam_dl().
332ac17e
DF
2029 */
2030static int dl_overflow(struct task_struct *p, int policy,
2031 const struct sched_attr *attr)
2032{
2033
2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2035 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2036 u64 runtime = attr->sched_runtime;
2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2038 int cpus, err = -1;
332ac17e
DF
2039
2040 if (new_bw == p->dl.dl_bw)
2041 return 0;
2042
2043 /*
2044 * Either if a task, enters, leave, or stays -deadline but changes
2045 * its parameters, we may need to update accordingly the total
2046 * allocated bandwidth of the container.
2047 */
2048 raw_spin_lock(&dl_b->lock);
de212f18 2049 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2050 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 __dl_add(dl_b, new_bw);
2053 err = 0;
2054 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 __dl_clear(dl_b, p->dl.dl_bw);
2057 __dl_add(dl_b, new_bw);
2058 err = 0;
2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 __dl_clear(dl_b, p->dl.dl_bw);
2061 err = 0;
2062 }
2063 raw_spin_unlock(&dl_b->lock);
2064
2065 return err;
2066}
2067
2068extern void init_dl_bw(struct dl_bw *dl_b);
2069
1da177e4
LT
2070/*
2071 * wake_up_new_task - wake up a newly created task for the first time.
2072 *
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2076 */
3e51e3ed 2077void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2078{
2079 unsigned long flags;
dd41f596 2080 struct rq *rq;
fabf318e 2081
ab2515c4 2082 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2083#ifdef CONFIG_SMP
2084 /*
2085 * Fork balancing, do it here and not earlier because:
2086 * - cpus_allowed can change in the fork path
2087 * - any previously selected cpu might disappear through hotplug
fabf318e 2088 */
ac66f547 2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2090#endif
2091
a75cdaa9
AS
2092 /* Initialize new task's runnable average */
2093 init_task_runnable_average(p);
ab2515c4 2094 rq = __task_rq_lock(p);
cd29fe6f 2095 activate_task(rq, p, 0);
da0c1e65 2096 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2097 trace_sched_wakeup_new(p, true);
a7558e01 2098 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2099#ifdef CONFIG_SMP
efbbd05a
PZ
2100 if (p->sched_class->task_woken)
2101 p->sched_class->task_woken(rq, p);
9a897c5a 2102#endif
0122ec5b 2103 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2104}
2105
e107be36
AK
2106#ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108/**
80dd99b3 2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2110 * @notifier: notifier struct to register
e107be36
AK
2111 */
2112void preempt_notifier_register(struct preempt_notifier *notifier)
2113{
2114 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115}
2116EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118/**
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2120 * @notifier: notifier struct to unregister
e107be36
AK
2121 *
2122 * This is safe to call from within a preemption notifier.
2123 */
2124void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125{
2126 hlist_del(&notifier->link);
2127}
2128EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131{
2132 struct preempt_notifier *notifier;
e107be36 2133
b67bfe0d 2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2135 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136}
2137
2138static void
2139fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 struct task_struct *next)
2141{
2142 struct preempt_notifier *notifier;
e107be36 2143
b67bfe0d 2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2145 notifier->ops->sched_out(notifier, next);
2146}
2147
6d6bc0ad 2148#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2149
2150static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151{
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 struct task_struct *next)
2157{
2158}
2159
6d6bc0ad 2160#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2161
4866cde0
NP
2162/**
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
421cee29 2165 * @prev: the current task that is being switched out
4866cde0
NP
2166 * @next: the task we are going to switch to.
2167 *
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2170 * switch.
2171 *
2172 * prepare_task_switch sets up locking and calls architecture specific
2173 * hooks.
2174 */
e107be36
AK
2175static inline void
2176prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 struct task_struct *next)
4866cde0 2178{
895dd92c 2179 trace_sched_switch(prev, next);
43148951 2180 sched_info_switch(rq, prev, next);
fe4b04fa 2181 perf_event_task_sched_out(prev, next);
e107be36 2182 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2183 prepare_lock_switch(rq, next);
2184 prepare_arch_switch(next);
2185}
2186
1da177e4
LT
2187/**
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2190 *
4866cde0
NP
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2195 *
2196 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2197 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2198 * with the lock held can cause deadlocks; see schedule() for
2199 * details.)
dfa50b60
ON
2200 *
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
1da177e4 2205 */
dfa50b60 2206static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2207 __releases(rq->lock)
2208{
dfa50b60 2209 struct rq *rq = this_rq();
1da177e4 2210 struct mm_struct *mm = rq->prev_mm;
55a101f8 2211 long prev_state;
1da177e4
LT
2212
2213 rq->prev_mm = NULL;
2214
2215 /*
2216 * A task struct has one reference for the use as "current".
c394cc9f 2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2218 * schedule one last time. The schedule call will never return, and
2219 * the scheduled task must drop that reference.
c394cc9f 2220 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2221 * still held, otherwise prev could be scheduled on another cpu, die
2222 * there before we look at prev->state, and then the reference would
2223 * be dropped twice.
2224 * Manfred Spraul <manfred@colorfullife.com>
2225 */
55a101f8 2226 prev_state = prev->state;
bf9fae9f 2227 vtime_task_switch(prev);
4866cde0 2228 finish_arch_switch(prev);
a8d757ef 2229 perf_event_task_sched_in(prev, current);
4866cde0 2230 finish_lock_switch(rq, prev);
01f23e16 2231 finish_arch_post_lock_switch();
e8fa1362 2232
e107be36 2233 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2234 if (mm)
2235 mmdrop(mm);
c394cc9f 2236 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2237 if (prev->sched_class->task_dead)
2238 prev->sched_class->task_dead(prev);
2239
c6fd91f0 2240 /*
2241 * Remove function-return probe instances associated with this
2242 * task and put them back on the free list.
9761eea8 2243 */
c6fd91f0 2244 kprobe_flush_task(prev);
1da177e4 2245 put_task_struct(prev);
c6fd91f0 2246 }
99e5ada9
FW
2247
2248 tick_nohz_task_switch(current);
dfa50b60 2249 return rq;
1da177e4
LT
2250}
2251
3f029d3c
GH
2252#ifdef CONFIG_SMP
2253
3f029d3c
GH
2254/* rq->lock is NOT held, but preemption is disabled */
2255static inline void post_schedule(struct rq *rq)
2256{
2257 if (rq->post_schedule) {
2258 unsigned long flags;
2259
05fa785c 2260 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2261 if (rq->curr->sched_class->post_schedule)
2262 rq->curr->sched_class->post_schedule(rq);
05fa785c 2263 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2264
2265 rq->post_schedule = 0;
2266 }
2267}
2268
2269#else
da19ab51 2270
3f029d3c
GH
2271static inline void post_schedule(struct rq *rq)
2272{
1da177e4
LT
2273}
2274
3f029d3c
GH
2275#endif
2276
1da177e4
LT
2277/**
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2280 */
722a9f92 2281asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2282 __releases(rq->lock)
2283{
1a43a14a 2284 struct rq *rq;
da19ab51 2285
1a43a14a
ON
2286 /* finish_task_switch() drops rq->lock and enables preemtion */
2287 preempt_disable();
dfa50b60 2288 rq = finish_task_switch(prev);
3f029d3c 2289 post_schedule(rq);
1a43a14a 2290 preempt_enable();
70b97a7f 2291
1da177e4 2292 if (current->set_child_tid)
b488893a 2293 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2294}
2295
2296/*
dfa50b60 2297 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2298 */
dfa50b60 2299static inline struct rq *
70b97a7f 2300context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2301 struct task_struct *next)
1da177e4 2302{
dd41f596 2303 struct mm_struct *mm, *oldmm;
1da177e4 2304
e107be36 2305 prepare_task_switch(rq, prev, next);
fe4b04fa 2306
dd41f596
IM
2307 mm = next->mm;
2308 oldmm = prev->active_mm;
9226d125
ZA
2309 /*
2310 * For paravirt, this is coupled with an exit in switch_to to
2311 * combine the page table reload and the switch backend into
2312 * one hypercall.
2313 */
224101ed 2314 arch_start_context_switch(prev);
9226d125 2315
31915ab4 2316 if (!mm) {
1da177e4
LT
2317 next->active_mm = oldmm;
2318 atomic_inc(&oldmm->mm_count);
2319 enter_lazy_tlb(oldmm, next);
2320 } else
2321 switch_mm(oldmm, mm, next);
2322
31915ab4 2323 if (!prev->mm) {
1da177e4 2324 prev->active_mm = NULL;
1da177e4
LT
2325 rq->prev_mm = oldmm;
2326 }
3a5f5e48
IM
2327 /*
2328 * Since the runqueue lock will be released by the next
2329 * task (which is an invalid locking op but in the case
2330 * of the scheduler it's an obvious special-case), so we
2331 * do an early lockdep release here:
2332 */
8a25d5de 2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2334
91d1aa43 2335 context_tracking_task_switch(prev, next);
1da177e4
LT
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
dd41f596 2338 barrier();
dfa50b60
ON
2339
2340 return finish_task_switch(prev);
1da177e4
LT
2341}
2342
2343/*
1c3e8264 2344 * nr_running and nr_context_switches:
1da177e4
LT
2345 *
2346 * externally visible scheduler statistics: current number of runnable
1c3e8264 2347 * threads, total number of context switches performed since bootup.
1da177e4
LT
2348 */
2349unsigned long nr_running(void)
2350{
2351 unsigned long i, sum = 0;
2352
2353 for_each_online_cpu(i)
2354 sum += cpu_rq(i)->nr_running;
2355
2356 return sum;
f711f609 2357}
1da177e4 2358
2ee507c4
TC
2359/*
2360 * Check if only the current task is running on the cpu.
2361 */
2362bool single_task_running(void)
2363{
2364 if (cpu_rq(smp_processor_id())->nr_running == 1)
2365 return true;
2366 else
2367 return false;
2368}
2369EXPORT_SYMBOL(single_task_running);
2370
1da177e4 2371unsigned long long nr_context_switches(void)
46cb4b7c 2372{
cc94abfc
SR
2373 int i;
2374 unsigned long long sum = 0;
46cb4b7c 2375
0a945022 2376 for_each_possible_cpu(i)
1da177e4 2377 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2378
1da177e4
LT
2379 return sum;
2380}
483b4ee6 2381
1da177e4
LT
2382unsigned long nr_iowait(void)
2383{
2384 unsigned long i, sum = 0;
483b4ee6 2385
0a945022 2386 for_each_possible_cpu(i)
1da177e4 2387 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2388
1da177e4
LT
2389 return sum;
2390}
483b4ee6 2391
8c215bd3 2392unsigned long nr_iowait_cpu(int cpu)
69d25870 2393{
8c215bd3 2394 struct rq *this = cpu_rq(cpu);
69d25870
AV
2395 return atomic_read(&this->nr_iowait);
2396}
46cb4b7c 2397
372ba8cb
MG
2398void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399{
3289bdb4
PZ
2400 struct rq *rq = this_rq();
2401 *nr_waiters = atomic_read(&rq->nr_iowait);
2402 *load = rq->load.weight;
372ba8cb
MG
2403}
2404
dd41f596 2405#ifdef CONFIG_SMP
8a0be9ef 2406
46cb4b7c 2407/*
38022906
PZ
2408 * sched_exec - execve() is a valuable balancing opportunity, because at
2409 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2410 */
38022906 2411void sched_exec(void)
46cb4b7c 2412{
38022906 2413 struct task_struct *p = current;
1da177e4 2414 unsigned long flags;
0017d735 2415 int dest_cpu;
46cb4b7c 2416
8f42ced9 2417 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2418 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2419 if (dest_cpu == smp_processor_id())
2420 goto unlock;
38022906 2421
8f42ced9 2422 if (likely(cpu_active(dest_cpu))) {
969c7921 2423 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2424
8f42ced9
PZ
2425 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2427 return;
2428 }
0017d735 2429unlock:
8f42ced9 2430 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2431}
dd41f596 2432
1da177e4
LT
2433#endif
2434
1da177e4 2435DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2436DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2437
2438EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2439EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2440
c5f8d995
HS
2441/*
2442 * Return accounted runtime for the task.
2443 * In case the task is currently running, return the runtime plus current's
2444 * pending runtime that have not been accounted yet.
2445 */
2446unsigned long long task_sched_runtime(struct task_struct *p)
2447{
2448 unsigned long flags;
2449 struct rq *rq;
6e998916 2450 u64 ns;
c5f8d995 2451
911b2898
PZ
2452#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453 /*
2454 * 64-bit doesn't need locks to atomically read a 64bit value.
2455 * So we have a optimization chance when the task's delta_exec is 0.
2456 * Reading ->on_cpu is racy, but this is ok.
2457 *
2458 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459 * If we race with it entering cpu, unaccounted time is 0. This is
2460 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2461 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462 * been accounted, so we're correct here as well.
911b2898 2463 */
da0c1e65 2464 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2465 return p->se.sum_exec_runtime;
2466#endif
2467
c5f8d995 2468 rq = task_rq_lock(p, &flags);
6e998916
SG
2469 /*
2470 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2471 * project cycles that may never be accounted to this
2472 * thread, breaking clock_gettime().
2473 */
2474 if (task_current(rq, p) && task_on_rq_queued(p)) {
2475 update_rq_clock(rq);
2476 p->sched_class->update_curr(rq);
2477 }
2478 ns = p->se.sum_exec_runtime;
0122ec5b 2479 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2480
2481 return ns;
2482}
48f24c4d 2483
7835b98b
CL
2484/*
2485 * This function gets called by the timer code, with HZ frequency.
2486 * We call it with interrupts disabled.
7835b98b
CL
2487 */
2488void scheduler_tick(void)
2489{
7835b98b
CL
2490 int cpu = smp_processor_id();
2491 struct rq *rq = cpu_rq(cpu);
dd41f596 2492 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2493
2494 sched_clock_tick();
dd41f596 2495
05fa785c 2496 raw_spin_lock(&rq->lock);
3e51f33f 2497 update_rq_clock(rq);
fa85ae24 2498 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2499 update_cpu_load_active(rq);
3289bdb4 2500 calc_global_load_tick(rq);
05fa785c 2501 raw_spin_unlock(&rq->lock);
7835b98b 2502
e9d2b064 2503 perf_event_task_tick();
e220d2dc 2504
e418e1c2 2505#ifdef CONFIG_SMP
6eb57e0d 2506 rq->idle_balance = idle_cpu(cpu);
7caff66f 2507 trigger_load_balance(rq);
e418e1c2 2508#endif
265f22a9 2509 rq_last_tick_reset(rq);
1da177e4
LT
2510}
2511
265f22a9
FW
2512#ifdef CONFIG_NO_HZ_FULL
2513/**
2514 * scheduler_tick_max_deferment
2515 *
2516 * Keep at least one tick per second when a single
2517 * active task is running because the scheduler doesn't
2518 * yet completely support full dynticks environment.
2519 *
2520 * This makes sure that uptime, CFS vruntime, load
2521 * balancing, etc... continue to move forward, even
2522 * with a very low granularity.
e69f6186
YB
2523 *
2524 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2525 */
2526u64 scheduler_tick_max_deferment(void)
2527{
2528 struct rq *rq = this_rq();
316c1608 2529 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2530
2531 next = rq->last_sched_tick + HZ;
2532
2533 if (time_before_eq(next, now))
2534 return 0;
2535
8fe8ff09 2536 return jiffies_to_nsecs(next - now);
1da177e4 2537}
265f22a9 2538#endif
1da177e4 2539
132380a0 2540notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2541{
2542 if (in_lock_functions(addr)) {
2543 addr = CALLER_ADDR2;
2544 if (in_lock_functions(addr))
2545 addr = CALLER_ADDR3;
2546 }
2547 return addr;
2548}
1da177e4 2549
7e49fcce
SR
2550#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2551 defined(CONFIG_PREEMPT_TRACER))
2552
edafe3a5 2553void preempt_count_add(int val)
1da177e4 2554{
6cd8a4bb 2555#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2556 /*
2557 * Underflow?
2558 */
9a11b49a
IM
2559 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2560 return;
6cd8a4bb 2561#endif
bdb43806 2562 __preempt_count_add(val);
6cd8a4bb 2563#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2564 /*
2565 * Spinlock count overflowing soon?
2566 */
33859f7f
MOS
2567 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2568 PREEMPT_MASK - 10);
6cd8a4bb 2569#endif
8f47b187
TG
2570 if (preempt_count() == val) {
2571 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2572#ifdef CONFIG_DEBUG_PREEMPT
2573 current->preempt_disable_ip = ip;
2574#endif
2575 trace_preempt_off(CALLER_ADDR0, ip);
2576 }
1da177e4 2577}
bdb43806 2578EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2579NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2580
edafe3a5 2581void preempt_count_sub(int val)
1da177e4 2582{
6cd8a4bb 2583#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2584 /*
2585 * Underflow?
2586 */
01e3eb82 2587 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2588 return;
1da177e4
LT
2589 /*
2590 * Is the spinlock portion underflowing?
2591 */
9a11b49a
IM
2592 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2593 !(preempt_count() & PREEMPT_MASK)))
2594 return;
6cd8a4bb 2595#endif
9a11b49a 2596
6cd8a4bb
SR
2597 if (preempt_count() == val)
2598 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2599 __preempt_count_sub(val);
1da177e4 2600}
bdb43806 2601EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2602NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2603
2604#endif
2605
2606/*
dd41f596 2607 * Print scheduling while atomic bug:
1da177e4 2608 */
dd41f596 2609static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2610{
664dfa65
DJ
2611 if (oops_in_progress)
2612 return;
2613
3df0fc5b
PZ
2614 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2615 prev->comm, prev->pid, preempt_count());
838225b4 2616
dd41f596 2617 debug_show_held_locks(prev);
e21f5b15 2618 print_modules();
dd41f596
IM
2619 if (irqs_disabled())
2620 print_irqtrace_events(prev);
8f47b187
TG
2621#ifdef CONFIG_DEBUG_PREEMPT
2622 if (in_atomic_preempt_off()) {
2623 pr_err("Preemption disabled at:");
2624 print_ip_sym(current->preempt_disable_ip);
2625 pr_cont("\n");
2626 }
2627#endif
6135fc1e 2628 dump_stack();
373d4d09 2629 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2630}
1da177e4 2631
dd41f596
IM
2632/*
2633 * Various schedule()-time debugging checks and statistics:
2634 */
2635static inline void schedule_debug(struct task_struct *prev)
2636{
0d9e2632
AT
2637#ifdef CONFIG_SCHED_STACK_END_CHECK
2638 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2639#endif
1da177e4 2640 /*
41a2d6cf 2641 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2642 * schedule() atomically, we ignore that path. Otherwise whine
2643 * if we are scheduling when we should not.
1da177e4 2644 */
192301e7 2645 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2646 __schedule_bug(prev);
b3fbab05 2647 rcu_sleep_check();
dd41f596 2648
1da177e4
LT
2649 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2650
2d72376b 2651 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2652}
2653
2654/*
2655 * Pick up the highest-prio task:
2656 */
2657static inline struct task_struct *
606dba2e 2658pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2659{
37e117c0 2660 const struct sched_class *class = &fair_sched_class;
dd41f596 2661 struct task_struct *p;
1da177e4
LT
2662
2663 /*
dd41f596
IM
2664 * Optimization: we know that if all tasks are in
2665 * the fair class we can call that function directly:
1da177e4 2666 */
37e117c0 2667 if (likely(prev->sched_class == class &&
38033c37 2668 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2669 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2670 if (unlikely(p == RETRY_TASK))
2671 goto again;
2672
2673 /* assumes fair_sched_class->next == idle_sched_class */
2674 if (unlikely(!p))
2675 p = idle_sched_class.pick_next_task(rq, prev);
2676
2677 return p;
1da177e4
LT
2678 }
2679
37e117c0 2680again:
34f971f6 2681 for_each_class(class) {
606dba2e 2682 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2683 if (p) {
2684 if (unlikely(p == RETRY_TASK))
2685 goto again;
dd41f596 2686 return p;
37e117c0 2687 }
dd41f596 2688 }
34f971f6
PZ
2689
2690 BUG(); /* the idle class will always have a runnable task */
dd41f596 2691}
1da177e4 2692
dd41f596 2693/*
c259e01a 2694 * __schedule() is the main scheduler function.
edde96ea
PE
2695 *
2696 * The main means of driving the scheduler and thus entering this function are:
2697 *
2698 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2699 *
2700 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2701 * paths. For example, see arch/x86/entry_64.S.
2702 *
2703 * To drive preemption between tasks, the scheduler sets the flag in timer
2704 * interrupt handler scheduler_tick().
2705 *
2706 * 3. Wakeups don't really cause entry into schedule(). They add a
2707 * task to the run-queue and that's it.
2708 *
2709 * Now, if the new task added to the run-queue preempts the current
2710 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2711 * called on the nearest possible occasion:
2712 *
2713 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2714 *
2715 * - in syscall or exception context, at the next outmost
2716 * preempt_enable(). (this might be as soon as the wake_up()'s
2717 * spin_unlock()!)
2718 *
2719 * - in IRQ context, return from interrupt-handler to
2720 * preemptible context
2721 *
2722 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2723 * then at the next:
2724 *
2725 * - cond_resched() call
2726 * - explicit schedule() call
2727 * - return from syscall or exception to user-space
2728 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2729 *
2730 * WARNING: all callers must re-check need_resched() afterward and reschedule
2731 * accordingly in case an event triggered the need for rescheduling (such as
2732 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2733 */
c259e01a 2734static void __sched __schedule(void)
dd41f596
IM
2735{
2736 struct task_struct *prev, *next;
67ca7bde 2737 unsigned long *switch_count;
dd41f596 2738 struct rq *rq;
31656519 2739 int cpu;
dd41f596 2740
ff743345 2741 preempt_disable();
dd41f596
IM
2742 cpu = smp_processor_id();
2743 rq = cpu_rq(cpu);
38200cf2 2744 rcu_note_context_switch();
dd41f596 2745 prev = rq->curr;
dd41f596 2746
dd41f596 2747 schedule_debug(prev);
1da177e4 2748
31656519 2749 if (sched_feat(HRTICK))
f333fdc9 2750 hrtick_clear(rq);
8f4d37ec 2751
e0acd0a6
ON
2752 /*
2753 * Make sure that signal_pending_state()->signal_pending() below
2754 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2755 * done by the caller to avoid the race with signal_wake_up().
2756 */
2757 smp_mb__before_spinlock();
05fa785c 2758 raw_spin_lock_irq(&rq->lock);
1da177e4 2759
9edfbfed
PZ
2760 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2761
246d86b5 2762 switch_count = &prev->nivcsw;
1da177e4 2763 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2764 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2765 prev->state = TASK_RUNNING;
21aa9af0 2766 } else {
2acca55e
PZ
2767 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2768 prev->on_rq = 0;
2769
21aa9af0 2770 /*
2acca55e
PZ
2771 * If a worker went to sleep, notify and ask workqueue
2772 * whether it wants to wake up a task to maintain
2773 * concurrency.
21aa9af0
TH
2774 */
2775 if (prev->flags & PF_WQ_WORKER) {
2776 struct task_struct *to_wakeup;
2777
2778 to_wakeup = wq_worker_sleeping(prev, cpu);
2779 if (to_wakeup)
2780 try_to_wake_up_local(to_wakeup);
2781 }
21aa9af0 2782 }
dd41f596 2783 switch_count = &prev->nvcsw;
1da177e4
LT
2784 }
2785
9edfbfed 2786 if (task_on_rq_queued(prev))
606dba2e
PZ
2787 update_rq_clock(rq);
2788
2789 next = pick_next_task(rq, prev);
f26f9aff 2790 clear_tsk_need_resched(prev);
f27dde8d 2791 clear_preempt_need_resched();
9edfbfed 2792 rq->clock_skip_update = 0;
1da177e4 2793
1da177e4 2794 if (likely(prev != next)) {
1da177e4
LT
2795 rq->nr_switches++;
2796 rq->curr = next;
2797 ++*switch_count;
2798
dfa50b60
ON
2799 rq = context_switch(rq, prev, next); /* unlocks the rq */
2800 cpu = cpu_of(rq);
1da177e4 2801 } else
05fa785c 2802 raw_spin_unlock_irq(&rq->lock);
1da177e4 2803
3f029d3c 2804 post_schedule(rq);
1da177e4 2805
ba74c144 2806 sched_preempt_enable_no_resched();
1da177e4 2807}
c259e01a 2808
9c40cef2
TG
2809static inline void sched_submit_work(struct task_struct *tsk)
2810{
3c7d5184 2811 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2812 return;
2813 /*
2814 * If we are going to sleep and we have plugged IO queued,
2815 * make sure to submit it to avoid deadlocks.
2816 */
2817 if (blk_needs_flush_plug(tsk))
2818 blk_schedule_flush_plug(tsk);
2819}
2820
722a9f92 2821asmlinkage __visible void __sched schedule(void)
c259e01a 2822{
9c40cef2
TG
2823 struct task_struct *tsk = current;
2824
2825 sched_submit_work(tsk);
bfd9b2b5
FW
2826 do {
2827 __schedule();
2828 } while (need_resched());
c259e01a 2829}
1da177e4
LT
2830EXPORT_SYMBOL(schedule);
2831
91d1aa43 2832#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2833asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2834{
2835 /*
2836 * If we come here after a random call to set_need_resched(),
2837 * or we have been woken up remotely but the IPI has not yet arrived,
2838 * we haven't yet exited the RCU idle mode. Do it here manually until
2839 * we find a better solution.
7cc78f8f
AL
2840 *
2841 * NB: There are buggy callers of this function. Ideally we
c467ea76 2842 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2843 * too frequently to make sense yet.
20ab65e3 2844 */
7cc78f8f 2845 enum ctx_state prev_state = exception_enter();
20ab65e3 2846 schedule();
7cc78f8f 2847 exception_exit(prev_state);
20ab65e3
FW
2848}
2849#endif
2850
c5491ea7
TG
2851/**
2852 * schedule_preempt_disabled - called with preemption disabled
2853 *
2854 * Returns with preemption disabled. Note: preempt_count must be 1
2855 */
2856void __sched schedule_preempt_disabled(void)
2857{
ba74c144 2858 sched_preempt_enable_no_resched();
c5491ea7
TG
2859 schedule();
2860 preempt_disable();
2861}
2862
06b1f808 2863static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2864{
2865 do {
2866 __preempt_count_add(PREEMPT_ACTIVE);
2867 __schedule();
2868 __preempt_count_sub(PREEMPT_ACTIVE);
2869
2870 /*
2871 * Check again in case we missed a preemption opportunity
2872 * between schedule and now.
2873 */
2874 barrier();
2875 } while (need_resched());
2876}
2877
1da177e4
LT
2878#ifdef CONFIG_PREEMPT
2879/*
2ed6e34f 2880 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2881 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2882 * occur there and call schedule directly.
2883 */
722a9f92 2884asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2885{
1da177e4
LT
2886 /*
2887 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2888 * we do not want to preempt the current task. Just return..
1da177e4 2889 */
fbb00b56 2890 if (likely(!preemptible()))
1da177e4
LT
2891 return;
2892
a18b5d01 2893 preempt_schedule_common();
1da177e4 2894}
376e2424 2895NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2896EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2897
2898#ifdef CONFIG_CONTEXT_TRACKING
2899/**
2900 * preempt_schedule_context - preempt_schedule called by tracing
2901 *
2902 * The tracing infrastructure uses preempt_enable_notrace to prevent
2903 * recursion and tracing preempt enabling caused by the tracing
2904 * infrastructure itself. But as tracing can happen in areas coming
2905 * from userspace or just about to enter userspace, a preempt enable
2906 * can occur before user_exit() is called. This will cause the scheduler
2907 * to be called when the system is still in usermode.
2908 *
2909 * To prevent this, the preempt_enable_notrace will use this function
2910 * instead of preempt_schedule() to exit user context if needed before
2911 * calling the scheduler.
2912 */
2913asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2914{
2915 enum ctx_state prev_ctx;
2916
2917 if (likely(!preemptible()))
2918 return;
2919
2920 do {
2921 __preempt_count_add(PREEMPT_ACTIVE);
2922 /*
2923 * Needs preempt disabled in case user_exit() is traced
2924 * and the tracer calls preempt_enable_notrace() causing
2925 * an infinite recursion.
2926 */
2927 prev_ctx = exception_enter();
2928 __schedule();
2929 exception_exit(prev_ctx);
2930
2931 __preempt_count_sub(PREEMPT_ACTIVE);
2932 barrier();
2933 } while (need_resched());
2934}
2935EXPORT_SYMBOL_GPL(preempt_schedule_context);
2936#endif /* CONFIG_CONTEXT_TRACKING */
2937
32e475d7 2938#endif /* CONFIG_PREEMPT */
1da177e4
LT
2939
2940/*
2ed6e34f 2941 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2942 * off of irq context.
2943 * Note, that this is called and return with irqs disabled. This will
2944 * protect us against recursive calling from irq.
2945 */
722a9f92 2946asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2947{
b22366cd 2948 enum ctx_state prev_state;
6478d880 2949
2ed6e34f 2950 /* Catch callers which need to be fixed */
f27dde8d 2951 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2952
b22366cd
FW
2953 prev_state = exception_enter();
2954
3a5c359a 2955 do {
bdb43806 2956 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2957 local_irq_enable();
c259e01a 2958 __schedule();
3a5c359a 2959 local_irq_disable();
bdb43806 2960 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2961
3a5c359a
AK
2962 /*
2963 * Check again in case we missed a preemption opportunity
2964 * between schedule and now.
2965 */
2966 barrier();
5ed0cec0 2967 } while (need_resched());
b22366cd
FW
2968
2969 exception_exit(prev_state);
1da177e4
LT
2970}
2971
63859d4f 2972int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2973 void *key)
1da177e4 2974{
63859d4f 2975 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2976}
1da177e4
LT
2977EXPORT_SYMBOL(default_wake_function);
2978
b29739f9
IM
2979#ifdef CONFIG_RT_MUTEXES
2980
2981/*
2982 * rt_mutex_setprio - set the current priority of a task
2983 * @p: task
2984 * @prio: prio value (kernel-internal form)
2985 *
2986 * This function changes the 'effective' priority of a task. It does
2987 * not touch ->normal_prio like __setscheduler().
2988 *
c365c292
TG
2989 * Used by the rt_mutex code to implement priority inheritance
2990 * logic. Call site only calls if the priority of the task changed.
b29739f9 2991 */
36c8b586 2992void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2993{
da0c1e65 2994 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2995 struct rq *rq;
83ab0aa0 2996 const struct sched_class *prev_class;
b29739f9 2997
aab03e05 2998 BUG_ON(prio > MAX_PRIO);
b29739f9 2999
0122ec5b 3000 rq = __task_rq_lock(p);
b29739f9 3001
1c4dd99b
TG
3002 /*
3003 * Idle task boosting is a nono in general. There is one
3004 * exception, when PREEMPT_RT and NOHZ is active:
3005 *
3006 * The idle task calls get_next_timer_interrupt() and holds
3007 * the timer wheel base->lock on the CPU and another CPU wants
3008 * to access the timer (probably to cancel it). We can safely
3009 * ignore the boosting request, as the idle CPU runs this code
3010 * with interrupts disabled and will complete the lock
3011 * protected section without being interrupted. So there is no
3012 * real need to boost.
3013 */
3014 if (unlikely(p == rq->idle)) {
3015 WARN_ON(p != rq->curr);
3016 WARN_ON(p->pi_blocked_on);
3017 goto out_unlock;
3018 }
3019
a8027073 3020 trace_sched_pi_setprio(p, prio);
d5f9f942 3021 oldprio = p->prio;
83ab0aa0 3022 prev_class = p->sched_class;
da0c1e65 3023 queued = task_on_rq_queued(p);
051a1d1a 3024 running = task_current(rq, p);
da0c1e65 3025 if (queued)
69be72c1 3026 dequeue_task(rq, p, 0);
0e1f3483 3027 if (running)
f3cd1c4e 3028 put_prev_task(rq, p);
dd41f596 3029
2d3d891d
DF
3030 /*
3031 * Boosting condition are:
3032 * 1. -rt task is running and holds mutex A
3033 * --> -dl task blocks on mutex A
3034 *
3035 * 2. -dl task is running and holds mutex A
3036 * --> -dl task blocks on mutex A and could preempt the
3037 * running task
3038 */
3039 if (dl_prio(prio)) {
466af29b
ON
3040 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3041 if (!dl_prio(p->normal_prio) ||
3042 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3043 p->dl.dl_boosted = 1;
3044 p->dl.dl_throttled = 0;
3045 enqueue_flag = ENQUEUE_REPLENISH;
3046 } else
3047 p->dl.dl_boosted = 0;
aab03e05 3048 p->sched_class = &dl_sched_class;
2d3d891d
DF
3049 } else if (rt_prio(prio)) {
3050 if (dl_prio(oldprio))
3051 p->dl.dl_boosted = 0;
3052 if (oldprio < prio)
3053 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3054 p->sched_class = &rt_sched_class;
2d3d891d
DF
3055 } else {
3056 if (dl_prio(oldprio))
3057 p->dl.dl_boosted = 0;
746db944
BS
3058 if (rt_prio(oldprio))
3059 p->rt.timeout = 0;
dd41f596 3060 p->sched_class = &fair_sched_class;
2d3d891d 3061 }
dd41f596 3062
b29739f9
IM
3063 p->prio = prio;
3064
0e1f3483
HS
3065 if (running)
3066 p->sched_class->set_curr_task(rq);
da0c1e65 3067 if (queued)
2d3d891d 3068 enqueue_task(rq, p, enqueue_flag);
cb469845 3069
da7a735e 3070 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3071out_unlock:
0122ec5b 3072 __task_rq_unlock(rq);
b29739f9 3073}
b29739f9 3074#endif
d50dde5a 3075
36c8b586 3076void set_user_nice(struct task_struct *p, long nice)
1da177e4 3077{
da0c1e65 3078 int old_prio, delta, queued;
1da177e4 3079 unsigned long flags;
70b97a7f 3080 struct rq *rq;
1da177e4 3081
75e45d51 3082 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3083 return;
3084 /*
3085 * We have to be careful, if called from sys_setpriority(),
3086 * the task might be in the middle of scheduling on another CPU.
3087 */
3088 rq = task_rq_lock(p, &flags);
3089 /*
3090 * The RT priorities are set via sched_setscheduler(), but we still
3091 * allow the 'normal' nice value to be set - but as expected
3092 * it wont have any effect on scheduling until the task is
aab03e05 3093 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3094 */
aab03e05 3095 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3096 p->static_prio = NICE_TO_PRIO(nice);
3097 goto out_unlock;
3098 }
da0c1e65
KT
3099 queued = task_on_rq_queued(p);
3100 if (queued)
69be72c1 3101 dequeue_task(rq, p, 0);
1da177e4 3102
1da177e4 3103 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3104 set_load_weight(p);
b29739f9
IM
3105 old_prio = p->prio;
3106 p->prio = effective_prio(p);
3107 delta = p->prio - old_prio;
1da177e4 3108
da0c1e65 3109 if (queued) {
371fd7e7 3110 enqueue_task(rq, p, 0);
1da177e4 3111 /*
d5f9f942
AM
3112 * If the task increased its priority or is running and
3113 * lowered its priority, then reschedule its CPU:
1da177e4 3114 */
d5f9f942 3115 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3116 resched_curr(rq);
1da177e4
LT
3117 }
3118out_unlock:
0122ec5b 3119 task_rq_unlock(rq, p, &flags);
1da177e4 3120}
1da177e4
LT
3121EXPORT_SYMBOL(set_user_nice);
3122
e43379f1
MM
3123/*
3124 * can_nice - check if a task can reduce its nice value
3125 * @p: task
3126 * @nice: nice value
3127 */
36c8b586 3128int can_nice(const struct task_struct *p, const int nice)
e43379f1 3129{
024f4747 3130 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3131 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3132
78d7d407 3133 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3134 capable(CAP_SYS_NICE));
3135}
3136
1da177e4
LT
3137#ifdef __ARCH_WANT_SYS_NICE
3138
3139/*
3140 * sys_nice - change the priority of the current process.
3141 * @increment: priority increment
3142 *
3143 * sys_setpriority is a more generic, but much slower function that
3144 * does similar things.
3145 */
5add95d4 3146SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3147{
48f24c4d 3148 long nice, retval;
1da177e4
LT
3149
3150 /*
3151 * Setpriority might change our priority at the same moment.
3152 * We don't have to worry. Conceptually one call occurs first
3153 * and we have a single winner.
3154 */
a9467fa3 3155 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3156 nice = task_nice(current) + increment;
1da177e4 3157
a9467fa3 3158 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3159 if (increment < 0 && !can_nice(current, nice))
3160 return -EPERM;
3161
1da177e4
LT
3162 retval = security_task_setnice(current, nice);
3163 if (retval)
3164 return retval;
3165
3166 set_user_nice(current, nice);
3167 return 0;
3168}
3169
3170#endif
3171
3172/**
3173 * task_prio - return the priority value of a given task.
3174 * @p: the task in question.
3175 *
e69f6186 3176 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3177 * RT tasks are offset by -200. Normal tasks are centered
3178 * around 0, value goes from -16 to +15.
3179 */
36c8b586 3180int task_prio(const struct task_struct *p)
1da177e4
LT
3181{
3182 return p->prio - MAX_RT_PRIO;
3183}
3184
1da177e4
LT
3185/**
3186 * idle_cpu - is a given cpu idle currently?
3187 * @cpu: the processor in question.
e69f6186
YB
3188 *
3189 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3190 */
3191int idle_cpu(int cpu)
3192{
908a3283
TG
3193 struct rq *rq = cpu_rq(cpu);
3194
3195 if (rq->curr != rq->idle)
3196 return 0;
3197
3198 if (rq->nr_running)
3199 return 0;
3200
3201#ifdef CONFIG_SMP
3202 if (!llist_empty(&rq->wake_list))
3203 return 0;
3204#endif
3205
3206 return 1;
1da177e4
LT
3207}
3208
1da177e4
LT
3209/**
3210 * idle_task - return the idle task for a given cpu.
3211 * @cpu: the processor in question.
e69f6186
YB
3212 *
3213 * Return: The idle task for the cpu @cpu.
1da177e4 3214 */
36c8b586 3215struct task_struct *idle_task(int cpu)
1da177e4
LT
3216{
3217 return cpu_rq(cpu)->idle;
3218}
3219
3220/**
3221 * find_process_by_pid - find a process with a matching PID value.
3222 * @pid: the pid in question.
e69f6186
YB
3223 *
3224 * The task of @pid, if found. %NULL otherwise.
1da177e4 3225 */
a9957449 3226static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3227{
228ebcbe 3228 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3229}
3230
aab03e05
DF
3231/*
3232 * This function initializes the sched_dl_entity of a newly becoming
3233 * SCHED_DEADLINE task.
3234 *
3235 * Only the static values are considered here, the actual runtime and the
3236 * absolute deadline will be properly calculated when the task is enqueued
3237 * for the first time with its new policy.
3238 */
3239static void
3240__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3241{
3242 struct sched_dl_entity *dl_se = &p->dl;
3243
aab03e05
DF
3244 dl_se->dl_runtime = attr->sched_runtime;
3245 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3246 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3247 dl_se->flags = attr->sched_flags;
332ac17e 3248 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3249
3250 /*
3251 * Changing the parameters of a task is 'tricky' and we're not doing
3252 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3253 *
3254 * What we SHOULD do is delay the bandwidth release until the 0-lag
3255 * point. This would include retaining the task_struct until that time
3256 * and change dl_overflow() to not immediately decrement the current
3257 * amount.
3258 *
3259 * Instead we retain the current runtime/deadline and let the new
3260 * parameters take effect after the current reservation period lapses.
3261 * This is safe (albeit pessimistic) because the 0-lag point is always
3262 * before the current scheduling deadline.
3263 *
3264 * We can still have temporary overloads because we do not delay the
3265 * change in bandwidth until that time; so admission control is
3266 * not on the safe side. It does however guarantee tasks will never
3267 * consume more than promised.
3268 */
aab03e05
DF
3269}
3270
c13db6b1
SR
3271/*
3272 * sched_setparam() passes in -1 for its policy, to let the functions
3273 * it calls know not to change it.
3274 */
3275#define SETPARAM_POLICY -1
3276
c365c292
TG
3277static void __setscheduler_params(struct task_struct *p,
3278 const struct sched_attr *attr)
1da177e4 3279{
d50dde5a
DF
3280 int policy = attr->sched_policy;
3281
c13db6b1 3282 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3283 policy = p->policy;
3284
1da177e4 3285 p->policy = policy;
d50dde5a 3286
aab03e05
DF
3287 if (dl_policy(policy))
3288 __setparam_dl(p, attr);
39fd8fd2 3289 else if (fair_policy(policy))
d50dde5a
DF
3290 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3291
39fd8fd2
PZ
3292 /*
3293 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3294 * !rt_policy. Always setting this ensures that things like
3295 * getparam()/getattr() don't report silly values for !rt tasks.
3296 */
3297 p->rt_priority = attr->sched_priority;
383afd09 3298 p->normal_prio = normal_prio(p);
c365c292
TG
3299 set_load_weight(p);
3300}
39fd8fd2 3301
c365c292
TG
3302/* Actually do priority change: must hold pi & rq lock. */
3303static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3304 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3305{
3306 __setscheduler_params(p, attr);
d50dde5a 3307
383afd09 3308 /*
0782e63b
TG
3309 * Keep a potential priority boosting if called from
3310 * sched_setscheduler().
383afd09 3311 */
0782e63b
TG
3312 if (keep_boost)
3313 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3314 else
3315 p->prio = normal_prio(p);
383afd09 3316
aab03e05
DF
3317 if (dl_prio(p->prio))
3318 p->sched_class = &dl_sched_class;
3319 else if (rt_prio(p->prio))
ffd44db5
PZ
3320 p->sched_class = &rt_sched_class;
3321 else
3322 p->sched_class = &fair_sched_class;
1da177e4 3323}
aab03e05
DF
3324
3325static void
3326__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3327{
3328 struct sched_dl_entity *dl_se = &p->dl;
3329
3330 attr->sched_priority = p->rt_priority;
3331 attr->sched_runtime = dl_se->dl_runtime;
3332 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3333 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3334 attr->sched_flags = dl_se->flags;
3335}
3336
3337/*
3338 * This function validates the new parameters of a -deadline task.
3339 * We ask for the deadline not being zero, and greater or equal
755378a4 3340 * than the runtime, as well as the period of being zero or
332ac17e 3341 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3342 * user parameters are above the internal resolution of 1us (we
3343 * check sched_runtime only since it is always the smaller one) and
3344 * below 2^63 ns (we have to check both sched_deadline and
3345 * sched_period, as the latter can be zero).
aab03e05
DF
3346 */
3347static bool
3348__checkparam_dl(const struct sched_attr *attr)
3349{
b0827819
JL
3350 /* deadline != 0 */
3351 if (attr->sched_deadline == 0)
3352 return false;
3353
3354 /*
3355 * Since we truncate DL_SCALE bits, make sure we're at least
3356 * that big.
3357 */
3358 if (attr->sched_runtime < (1ULL << DL_SCALE))
3359 return false;
3360
3361 /*
3362 * Since we use the MSB for wrap-around and sign issues, make
3363 * sure it's not set (mind that period can be equal to zero).
3364 */
3365 if (attr->sched_deadline & (1ULL << 63) ||
3366 attr->sched_period & (1ULL << 63))
3367 return false;
3368
3369 /* runtime <= deadline <= period (if period != 0) */
3370 if ((attr->sched_period != 0 &&
3371 attr->sched_period < attr->sched_deadline) ||
3372 attr->sched_deadline < attr->sched_runtime)
3373 return false;
3374
3375 return true;
aab03e05
DF
3376}
3377
c69e8d9c
DH
3378/*
3379 * check the target process has a UID that matches the current process's
3380 */
3381static bool check_same_owner(struct task_struct *p)
3382{
3383 const struct cred *cred = current_cred(), *pcred;
3384 bool match;
3385
3386 rcu_read_lock();
3387 pcred = __task_cred(p);
9c806aa0
EB
3388 match = (uid_eq(cred->euid, pcred->euid) ||
3389 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3390 rcu_read_unlock();
3391 return match;
3392}
3393
75381608
WL
3394static bool dl_param_changed(struct task_struct *p,
3395 const struct sched_attr *attr)
3396{
3397 struct sched_dl_entity *dl_se = &p->dl;
3398
3399 if (dl_se->dl_runtime != attr->sched_runtime ||
3400 dl_se->dl_deadline != attr->sched_deadline ||
3401 dl_se->dl_period != attr->sched_period ||
3402 dl_se->flags != attr->sched_flags)
3403 return true;
3404
3405 return false;
3406}
3407
d50dde5a
DF
3408static int __sched_setscheduler(struct task_struct *p,
3409 const struct sched_attr *attr,
3410 bool user)
1da177e4 3411{
383afd09
SR
3412 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3413 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3414 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3415 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3416 unsigned long flags;
83ab0aa0 3417 const struct sched_class *prev_class;
70b97a7f 3418 struct rq *rq;
ca94c442 3419 int reset_on_fork;
1da177e4 3420
66e5393a
SR
3421 /* may grab non-irq protected spin_locks */
3422 BUG_ON(in_interrupt());
1da177e4
LT
3423recheck:
3424 /* double check policy once rq lock held */
ca94c442
LP
3425 if (policy < 0) {
3426 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3427 policy = oldpolicy = p->policy;
ca94c442 3428 } else {
7479f3c9 3429 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3430
aab03e05
DF
3431 if (policy != SCHED_DEADLINE &&
3432 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3433 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3434 policy != SCHED_IDLE)
3435 return -EINVAL;
3436 }
3437
7479f3c9
PZ
3438 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3439 return -EINVAL;
3440
1da177e4
LT
3441 /*
3442 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3443 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3444 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3445 */
0bb040a4 3446 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3447 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3448 return -EINVAL;
aab03e05
DF
3449 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3450 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3451 return -EINVAL;
3452
37e4ab3f
OC
3453 /*
3454 * Allow unprivileged RT tasks to decrease priority:
3455 */
961ccddd 3456 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3457 if (fair_policy(policy)) {
d0ea0268 3458 if (attr->sched_nice < task_nice(p) &&
eaad4513 3459 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3460 return -EPERM;
3461 }
3462
e05606d3 3463 if (rt_policy(policy)) {
a44702e8
ON
3464 unsigned long rlim_rtprio =
3465 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3466
3467 /* can't set/change the rt policy */
3468 if (policy != p->policy && !rlim_rtprio)
3469 return -EPERM;
3470
3471 /* can't increase priority */
d50dde5a
DF
3472 if (attr->sched_priority > p->rt_priority &&
3473 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3474 return -EPERM;
3475 }
c02aa73b 3476
d44753b8
JL
3477 /*
3478 * Can't set/change SCHED_DEADLINE policy at all for now
3479 * (safest behavior); in the future we would like to allow
3480 * unprivileged DL tasks to increase their relative deadline
3481 * or reduce their runtime (both ways reducing utilization)
3482 */
3483 if (dl_policy(policy))
3484 return -EPERM;
3485
dd41f596 3486 /*
c02aa73b
DH
3487 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3488 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3489 */
c02aa73b 3490 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3491 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3492 return -EPERM;
3493 }
5fe1d75f 3494
37e4ab3f 3495 /* can't change other user's priorities */
c69e8d9c 3496 if (!check_same_owner(p))
37e4ab3f 3497 return -EPERM;
ca94c442
LP
3498
3499 /* Normal users shall not reset the sched_reset_on_fork flag */
3500 if (p->sched_reset_on_fork && !reset_on_fork)
3501 return -EPERM;
37e4ab3f 3502 }
1da177e4 3503
725aad24 3504 if (user) {
b0ae1981 3505 retval = security_task_setscheduler(p);
725aad24
JF
3506 if (retval)
3507 return retval;
3508 }
3509
b29739f9
IM
3510 /*
3511 * make sure no PI-waiters arrive (or leave) while we are
3512 * changing the priority of the task:
0122ec5b 3513 *
25985edc 3514 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3515 * runqueue lock must be held.
3516 */
0122ec5b 3517 rq = task_rq_lock(p, &flags);
dc61b1d6 3518
34f971f6
PZ
3519 /*
3520 * Changing the policy of the stop threads its a very bad idea
3521 */
3522 if (p == rq->stop) {
0122ec5b 3523 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3524 return -EINVAL;
3525 }
3526
a51e9198 3527 /*
d6b1e911
TG
3528 * If not changing anything there's no need to proceed further,
3529 * but store a possible modification of reset_on_fork.
a51e9198 3530 */
d50dde5a 3531 if (unlikely(policy == p->policy)) {
d0ea0268 3532 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3533 goto change;
3534 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3535 goto change;
75381608 3536 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3537 goto change;
d50dde5a 3538
d6b1e911 3539 p->sched_reset_on_fork = reset_on_fork;
45afb173 3540 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3541 return 0;
3542 }
d50dde5a 3543change:
a51e9198 3544
dc61b1d6 3545 if (user) {
332ac17e 3546#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3547 /*
3548 * Do not allow realtime tasks into groups that have no runtime
3549 * assigned.
3550 */
3551 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3552 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3553 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3554 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3555 return -EPERM;
3556 }
dc61b1d6 3557#endif
332ac17e
DF
3558#ifdef CONFIG_SMP
3559 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3560 cpumask_t *span = rq->rd->span;
332ac17e
DF
3561
3562 /*
3563 * Don't allow tasks with an affinity mask smaller than
3564 * the entire root_domain to become SCHED_DEADLINE. We
3565 * will also fail if there's no bandwidth available.
3566 */
e4099a5e
PZ
3567 if (!cpumask_subset(span, &p->cpus_allowed) ||
3568 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3569 task_rq_unlock(rq, p, &flags);
3570 return -EPERM;
3571 }
3572 }
3573#endif
3574 }
dc61b1d6 3575
1da177e4
LT
3576 /* recheck policy now with rq lock held */
3577 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3578 policy = oldpolicy = -1;
0122ec5b 3579 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3580 goto recheck;
3581 }
332ac17e
DF
3582
3583 /*
3584 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3585 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3586 * is available.
3587 */
e4099a5e 3588 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3589 task_rq_unlock(rq, p, &flags);
3590 return -EBUSY;
3591 }
3592
c365c292
TG
3593 p->sched_reset_on_fork = reset_on_fork;
3594 oldprio = p->prio;
3595
3596 /*
0782e63b
TG
3597 * Take priority boosted tasks into account. If the new
3598 * effective priority is unchanged, we just store the new
c365c292
TG
3599 * normal parameters and do not touch the scheduler class and
3600 * the runqueue. This will be done when the task deboost
3601 * itself.
3602 */
0782e63b
TG
3603 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3604 if (new_effective_prio == oldprio) {
c365c292
TG
3605 __setscheduler_params(p, attr);
3606 task_rq_unlock(rq, p, &flags);
3607 return 0;
3608 }
3609
da0c1e65 3610 queued = task_on_rq_queued(p);
051a1d1a 3611 running = task_current(rq, p);
da0c1e65 3612 if (queued)
4ca9b72b 3613 dequeue_task(rq, p, 0);
0e1f3483 3614 if (running)
f3cd1c4e 3615 put_prev_task(rq, p);
f6b53205 3616
83ab0aa0 3617 prev_class = p->sched_class;
0782e63b 3618 __setscheduler(rq, p, attr, true);
f6b53205 3619
0e1f3483
HS
3620 if (running)
3621 p->sched_class->set_curr_task(rq);
da0c1e65 3622 if (queued) {
81a44c54
TG
3623 /*
3624 * We enqueue to tail when the priority of a task is
3625 * increased (user space view).
3626 */
3627 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3628 }
cb469845 3629
da7a735e 3630 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3631 task_rq_unlock(rq, p, &flags);
b29739f9 3632
95e02ca9
TG
3633 rt_mutex_adjust_pi(p);
3634
1da177e4
LT
3635 return 0;
3636}
961ccddd 3637
7479f3c9
PZ
3638static int _sched_setscheduler(struct task_struct *p, int policy,
3639 const struct sched_param *param, bool check)
3640{
3641 struct sched_attr attr = {
3642 .sched_policy = policy,
3643 .sched_priority = param->sched_priority,
3644 .sched_nice = PRIO_TO_NICE(p->static_prio),
3645 };
3646
c13db6b1
SR
3647 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3648 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3649 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3650 policy &= ~SCHED_RESET_ON_FORK;
3651 attr.sched_policy = policy;
3652 }
3653
3654 return __sched_setscheduler(p, &attr, check);
3655}
961ccddd
RR
3656/**
3657 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3658 * @p: the task in question.
3659 * @policy: new policy.
3660 * @param: structure containing the new RT priority.
3661 *
e69f6186
YB
3662 * Return: 0 on success. An error code otherwise.
3663 *
961ccddd
RR
3664 * NOTE that the task may be already dead.
3665 */
3666int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3667 const struct sched_param *param)
961ccddd 3668{
7479f3c9 3669 return _sched_setscheduler(p, policy, param, true);
961ccddd 3670}
1da177e4
LT
3671EXPORT_SYMBOL_GPL(sched_setscheduler);
3672
d50dde5a
DF
3673int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3674{
3675 return __sched_setscheduler(p, attr, true);
3676}
3677EXPORT_SYMBOL_GPL(sched_setattr);
3678
961ccddd
RR
3679/**
3680 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3681 * @p: the task in question.
3682 * @policy: new policy.
3683 * @param: structure containing the new RT priority.
3684 *
3685 * Just like sched_setscheduler, only don't bother checking if the
3686 * current context has permission. For example, this is needed in
3687 * stop_machine(): we create temporary high priority worker threads,
3688 * but our caller might not have that capability.
e69f6186
YB
3689 *
3690 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3691 */
3692int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3693 const struct sched_param *param)
961ccddd 3694{
7479f3c9 3695 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3696}
3697
95cdf3b7
IM
3698static int
3699do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3700{
1da177e4
LT
3701 struct sched_param lparam;
3702 struct task_struct *p;
36c8b586 3703 int retval;
1da177e4
LT
3704
3705 if (!param || pid < 0)
3706 return -EINVAL;
3707 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3708 return -EFAULT;
5fe1d75f
ON
3709
3710 rcu_read_lock();
3711 retval = -ESRCH;
1da177e4 3712 p = find_process_by_pid(pid);
5fe1d75f
ON
3713 if (p != NULL)
3714 retval = sched_setscheduler(p, policy, &lparam);
3715 rcu_read_unlock();
36c8b586 3716
1da177e4
LT
3717 return retval;
3718}
3719
d50dde5a
DF
3720/*
3721 * Mimics kernel/events/core.c perf_copy_attr().
3722 */
3723static int sched_copy_attr(struct sched_attr __user *uattr,
3724 struct sched_attr *attr)
3725{
3726 u32 size;
3727 int ret;
3728
3729 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3730 return -EFAULT;
3731
3732 /*
3733 * zero the full structure, so that a short copy will be nice.
3734 */
3735 memset(attr, 0, sizeof(*attr));
3736
3737 ret = get_user(size, &uattr->size);
3738 if (ret)
3739 return ret;
3740
3741 if (size > PAGE_SIZE) /* silly large */
3742 goto err_size;
3743
3744 if (!size) /* abi compat */
3745 size = SCHED_ATTR_SIZE_VER0;
3746
3747 if (size < SCHED_ATTR_SIZE_VER0)
3748 goto err_size;
3749
3750 /*
3751 * If we're handed a bigger struct than we know of,
3752 * ensure all the unknown bits are 0 - i.e. new
3753 * user-space does not rely on any kernel feature
3754 * extensions we dont know about yet.
3755 */
3756 if (size > sizeof(*attr)) {
3757 unsigned char __user *addr;
3758 unsigned char __user *end;
3759 unsigned char val;
3760
3761 addr = (void __user *)uattr + sizeof(*attr);
3762 end = (void __user *)uattr + size;
3763
3764 for (; addr < end; addr++) {
3765 ret = get_user(val, addr);
3766 if (ret)
3767 return ret;
3768 if (val)
3769 goto err_size;
3770 }
3771 size = sizeof(*attr);
3772 }
3773
3774 ret = copy_from_user(attr, uattr, size);
3775 if (ret)
3776 return -EFAULT;
3777
3778 /*
3779 * XXX: do we want to be lenient like existing syscalls; or do we want
3780 * to be strict and return an error on out-of-bounds values?
3781 */
75e45d51 3782 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3783
e78c7bca 3784 return 0;
d50dde5a
DF
3785
3786err_size:
3787 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3788 return -E2BIG;
d50dde5a
DF
3789}
3790
1da177e4
LT
3791/**
3792 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3793 * @pid: the pid in question.
3794 * @policy: new policy.
3795 * @param: structure containing the new RT priority.
e69f6186
YB
3796 *
3797 * Return: 0 on success. An error code otherwise.
1da177e4 3798 */
5add95d4
HC
3799SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3800 struct sched_param __user *, param)
1da177e4 3801{
c21761f1
JB
3802 /* negative values for policy are not valid */
3803 if (policy < 0)
3804 return -EINVAL;
3805
1da177e4
LT
3806 return do_sched_setscheduler(pid, policy, param);
3807}
3808
3809/**
3810 * sys_sched_setparam - set/change the RT priority of a thread
3811 * @pid: the pid in question.
3812 * @param: structure containing the new RT priority.
e69f6186
YB
3813 *
3814 * Return: 0 on success. An error code otherwise.
1da177e4 3815 */
5add95d4 3816SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3817{
c13db6b1 3818 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3819}
3820
d50dde5a
DF
3821/**
3822 * sys_sched_setattr - same as above, but with extended sched_attr
3823 * @pid: the pid in question.
5778fccf 3824 * @uattr: structure containing the extended parameters.
db66d756 3825 * @flags: for future extension.
d50dde5a 3826 */
6d35ab48
PZ
3827SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3828 unsigned int, flags)
d50dde5a
DF
3829{
3830 struct sched_attr attr;
3831 struct task_struct *p;
3832 int retval;
3833
6d35ab48 3834 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3835 return -EINVAL;
3836
143cf23d
MK
3837 retval = sched_copy_attr(uattr, &attr);
3838 if (retval)
3839 return retval;
d50dde5a 3840
b14ed2c2 3841 if ((int)attr.sched_policy < 0)
dbdb2275 3842 return -EINVAL;
d50dde5a
DF
3843
3844 rcu_read_lock();
3845 retval = -ESRCH;
3846 p = find_process_by_pid(pid);
3847 if (p != NULL)
3848 retval = sched_setattr(p, &attr);
3849 rcu_read_unlock();
3850
3851 return retval;
3852}
3853
1da177e4
LT
3854/**
3855 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3856 * @pid: the pid in question.
e69f6186
YB
3857 *
3858 * Return: On success, the policy of the thread. Otherwise, a negative error
3859 * code.
1da177e4 3860 */
5add95d4 3861SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3862{
36c8b586 3863 struct task_struct *p;
3a5c359a 3864 int retval;
1da177e4
LT
3865
3866 if (pid < 0)
3a5c359a 3867 return -EINVAL;
1da177e4
LT
3868
3869 retval = -ESRCH;
5fe85be0 3870 rcu_read_lock();
1da177e4
LT
3871 p = find_process_by_pid(pid);
3872 if (p) {
3873 retval = security_task_getscheduler(p);
3874 if (!retval)
ca94c442
LP
3875 retval = p->policy
3876 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3877 }
5fe85be0 3878 rcu_read_unlock();
1da177e4
LT
3879 return retval;
3880}
3881
3882/**
ca94c442 3883 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3884 * @pid: the pid in question.
3885 * @param: structure containing the RT priority.
e69f6186
YB
3886 *
3887 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3888 * code.
1da177e4 3889 */
5add95d4 3890SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3891{
ce5f7f82 3892 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3893 struct task_struct *p;
3a5c359a 3894 int retval;
1da177e4
LT
3895
3896 if (!param || pid < 0)
3a5c359a 3897 return -EINVAL;
1da177e4 3898
5fe85be0 3899 rcu_read_lock();
1da177e4
LT
3900 p = find_process_by_pid(pid);
3901 retval = -ESRCH;
3902 if (!p)
3903 goto out_unlock;
3904
3905 retval = security_task_getscheduler(p);
3906 if (retval)
3907 goto out_unlock;
3908
ce5f7f82
PZ
3909 if (task_has_rt_policy(p))
3910 lp.sched_priority = p->rt_priority;
5fe85be0 3911 rcu_read_unlock();
1da177e4
LT
3912
3913 /*
3914 * This one might sleep, we cannot do it with a spinlock held ...
3915 */
3916 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3917
1da177e4
LT
3918 return retval;
3919
3920out_unlock:
5fe85be0 3921 rcu_read_unlock();
1da177e4
LT
3922 return retval;
3923}
3924
d50dde5a
DF
3925static int sched_read_attr(struct sched_attr __user *uattr,
3926 struct sched_attr *attr,
3927 unsigned int usize)
3928{
3929 int ret;
3930
3931 if (!access_ok(VERIFY_WRITE, uattr, usize))
3932 return -EFAULT;
3933
3934 /*
3935 * If we're handed a smaller struct than we know of,
3936 * ensure all the unknown bits are 0 - i.e. old
3937 * user-space does not get uncomplete information.
3938 */
3939 if (usize < sizeof(*attr)) {
3940 unsigned char *addr;
3941 unsigned char *end;
3942
3943 addr = (void *)attr + usize;
3944 end = (void *)attr + sizeof(*attr);
3945
3946 for (; addr < end; addr++) {
3947 if (*addr)
22400674 3948 return -EFBIG;
d50dde5a
DF
3949 }
3950
3951 attr->size = usize;
3952 }
3953
4efbc454 3954 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3955 if (ret)
3956 return -EFAULT;
3957
22400674 3958 return 0;
d50dde5a
DF
3959}
3960
3961/**
aab03e05 3962 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3963 * @pid: the pid in question.
5778fccf 3964 * @uattr: structure containing the extended parameters.
d50dde5a 3965 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3966 * @flags: for future extension.
d50dde5a 3967 */
6d35ab48
PZ
3968SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3969 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3970{
3971 struct sched_attr attr = {
3972 .size = sizeof(struct sched_attr),
3973 };
3974 struct task_struct *p;
3975 int retval;
3976
3977 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3978 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3979 return -EINVAL;
3980
3981 rcu_read_lock();
3982 p = find_process_by_pid(pid);
3983 retval = -ESRCH;
3984 if (!p)
3985 goto out_unlock;
3986
3987 retval = security_task_getscheduler(p);
3988 if (retval)
3989 goto out_unlock;
3990
3991 attr.sched_policy = p->policy;
7479f3c9
PZ
3992 if (p->sched_reset_on_fork)
3993 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3994 if (task_has_dl_policy(p))
3995 __getparam_dl(p, &attr);
3996 else if (task_has_rt_policy(p))
d50dde5a
DF
3997 attr.sched_priority = p->rt_priority;
3998 else
d0ea0268 3999 attr.sched_nice = task_nice(p);
d50dde5a
DF
4000
4001 rcu_read_unlock();
4002
4003 retval = sched_read_attr(uattr, &attr, size);
4004 return retval;
4005
4006out_unlock:
4007 rcu_read_unlock();
4008 return retval;
4009}
4010
96f874e2 4011long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4012{
5a16f3d3 4013 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4014 struct task_struct *p;
4015 int retval;
1da177e4 4016
23f5d142 4017 rcu_read_lock();
1da177e4
LT
4018
4019 p = find_process_by_pid(pid);
4020 if (!p) {
23f5d142 4021 rcu_read_unlock();
1da177e4
LT
4022 return -ESRCH;
4023 }
4024
23f5d142 4025 /* Prevent p going away */
1da177e4 4026 get_task_struct(p);
23f5d142 4027 rcu_read_unlock();
1da177e4 4028
14a40ffc
TH
4029 if (p->flags & PF_NO_SETAFFINITY) {
4030 retval = -EINVAL;
4031 goto out_put_task;
4032 }
5a16f3d3
RR
4033 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4034 retval = -ENOMEM;
4035 goto out_put_task;
4036 }
4037 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4038 retval = -ENOMEM;
4039 goto out_free_cpus_allowed;
4040 }
1da177e4 4041 retval = -EPERM;
4c44aaaf
EB
4042 if (!check_same_owner(p)) {
4043 rcu_read_lock();
4044 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4045 rcu_read_unlock();
16303ab2 4046 goto out_free_new_mask;
4c44aaaf
EB
4047 }
4048 rcu_read_unlock();
4049 }
1da177e4 4050
b0ae1981 4051 retval = security_task_setscheduler(p);
e7834f8f 4052 if (retval)
16303ab2 4053 goto out_free_new_mask;
e7834f8f 4054
e4099a5e
PZ
4055
4056 cpuset_cpus_allowed(p, cpus_allowed);
4057 cpumask_and(new_mask, in_mask, cpus_allowed);
4058
332ac17e
DF
4059 /*
4060 * Since bandwidth control happens on root_domain basis,
4061 * if admission test is enabled, we only admit -deadline
4062 * tasks allowed to run on all the CPUs in the task's
4063 * root_domain.
4064 */
4065#ifdef CONFIG_SMP
f1e3a093
KT
4066 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4067 rcu_read_lock();
4068 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4069 retval = -EBUSY;
f1e3a093 4070 rcu_read_unlock();
16303ab2 4071 goto out_free_new_mask;
332ac17e 4072 }
f1e3a093 4073 rcu_read_unlock();
332ac17e
DF
4074 }
4075#endif
49246274 4076again:
5a16f3d3 4077 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4078
8707d8b8 4079 if (!retval) {
5a16f3d3
RR
4080 cpuset_cpus_allowed(p, cpus_allowed);
4081 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4082 /*
4083 * We must have raced with a concurrent cpuset
4084 * update. Just reset the cpus_allowed to the
4085 * cpuset's cpus_allowed
4086 */
5a16f3d3 4087 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4088 goto again;
4089 }
4090 }
16303ab2 4091out_free_new_mask:
5a16f3d3
RR
4092 free_cpumask_var(new_mask);
4093out_free_cpus_allowed:
4094 free_cpumask_var(cpus_allowed);
4095out_put_task:
1da177e4 4096 put_task_struct(p);
1da177e4
LT
4097 return retval;
4098}
4099
4100static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4101 struct cpumask *new_mask)
1da177e4 4102{
96f874e2
RR
4103 if (len < cpumask_size())
4104 cpumask_clear(new_mask);
4105 else if (len > cpumask_size())
4106 len = cpumask_size();
4107
1da177e4
LT
4108 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4109}
4110
4111/**
4112 * sys_sched_setaffinity - set the cpu affinity of a process
4113 * @pid: pid of the process
4114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4115 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4116 *
4117 * Return: 0 on success. An error code otherwise.
1da177e4 4118 */
5add95d4
HC
4119SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4120 unsigned long __user *, user_mask_ptr)
1da177e4 4121{
5a16f3d3 4122 cpumask_var_t new_mask;
1da177e4
LT
4123 int retval;
4124
5a16f3d3
RR
4125 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4126 return -ENOMEM;
1da177e4 4127
5a16f3d3
RR
4128 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4129 if (retval == 0)
4130 retval = sched_setaffinity(pid, new_mask);
4131 free_cpumask_var(new_mask);
4132 return retval;
1da177e4
LT
4133}
4134
96f874e2 4135long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4136{
36c8b586 4137 struct task_struct *p;
31605683 4138 unsigned long flags;
1da177e4 4139 int retval;
1da177e4 4140
23f5d142 4141 rcu_read_lock();
1da177e4
LT
4142
4143 retval = -ESRCH;
4144 p = find_process_by_pid(pid);
4145 if (!p)
4146 goto out_unlock;
4147
e7834f8f
DQ
4148 retval = security_task_getscheduler(p);
4149 if (retval)
4150 goto out_unlock;
4151
013fdb80 4152 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4153 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4154 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4155
4156out_unlock:
23f5d142 4157 rcu_read_unlock();
1da177e4 4158
9531b62f 4159 return retval;
1da177e4
LT
4160}
4161
4162/**
4163 * sys_sched_getaffinity - get the cpu affinity of a process
4164 * @pid: pid of the process
4165 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4166 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4167 *
4168 * Return: 0 on success. An error code otherwise.
1da177e4 4169 */
5add95d4
HC
4170SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4171 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4172{
4173 int ret;
f17c8607 4174 cpumask_var_t mask;
1da177e4 4175
84fba5ec 4176 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4177 return -EINVAL;
4178 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4179 return -EINVAL;
4180
f17c8607
RR
4181 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4182 return -ENOMEM;
1da177e4 4183
f17c8607
RR
4184 ret = sched_getaffinity(pid, mask);
4185 if (ret == 0) {
8bc037fb 4186 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4187
4188 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4189 ret = -EFAULT;
4190 else
cd3d8031 4191 ret = retlen;
f17c8607
RR
4192 }
4193 free_cpumask_var(mask);
1da177e4 4194
f17c8607 4195 return ret;
1da177e4
LT
4196}
4197
4198/**
4199 * sys_sched_yield - yield the current processor to other threads.
4200 *
dd41f596
IM
4201 * This function yields the current CPU to other tasks. If there are no
4202 * other threads running on this CPU then this function will return.
e69f6186
YB
4203 *
4204 * Return: 0.
1da177e4 4205 */
5add95d4 4206SYSCALL_DEFINE0(sched_yield)
1da177e4 4207{
70b97a7f 4208 struct rq *rq = this_rq_lock();
1da177e4 4209
2d72376b 4210 schedstat_inc(rq, yld_count);
4530d7ab 4211 current->sched_class->yield_task(rq);
1da177e4
LT
4212
4213 /*
4214 * Since we are going to call schedule() anyway, there's
4215 * no need to preempt or enable interrupts:
4216 */
4217 __release(rq->lock);
8a25d5de 4218 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4219 do_raw_spin_unlock(&rq->lock);
ba74c144 4220 sched_preempt_enable_no_resched();
1da177e4
LT
4221
4222 schedule();
4223
4224 return 0;
4225}
4226
02b67cc3 4227int __sched _cond_resched(void)
1da177e4 4228{
d86ee480 4229 if (should_resched()) {
a18b5d01 4230 preempt_schedule_common();
1da177e4
LT
4231 return 1;
4232 }
4233 return 0;
4234}
02b67cc3 4235EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4236
4237/*
613afbf8 4238 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4239 * call schedule, and on return reacquire the lock.
4240 *
41a2d6cf 4241 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4242 * operations here to prevent schedule() from being called twice (once via
4243 * spin_unlock(), once by hand).
4244 */
613afbf8 4245int __cond_resched_lock(spinlock_t *lock)
1da177e4 4246{
d86ee480 4247 int resched = should_resched();
6df3cecb
JK
4248 int ret = 0;
4249
f607c668
PZ
4250 lockdep_assert_held(lock);
4251
4a81e832 4252 if (spin_needbreak(lock) || resched) {
1da177e4 4253 spin_unlock(lock);
d86ee480 4254 if (resched)
a18b5d01 4255 preempt_schedule_common();
95c354fe
NP
4256 else
4257 cpu_relax();
6df3cecb 4258 ret = 1;
1da177e4 4259 spin_lock(lock);
1da177e4 4260 }
6df3cecb 4261 return ret;
1da177e4 4262}
613afbf8 4263EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4264
613afbf8 4265int __sched __cond_resched_softirq(void)
1da177e4
LT
4266{
4267 BUG_ON(!in_softirq());
4268
d86ee480 4269 if (should_resched()) {
98d82567 4270 local_bh_enable();
a18b5d01 4271 preempt_schedule_common();
1da177e4
LT
4272 local_bh_disable();
4273 return 1;
4274 }
4275 return 0;
4276}
613afbf8 4277EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4278
1da177e4
LT
4279/**
4280 * yield - yield the current processor to other threads.
4281 *
8e3fabfd
PZ
4282 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4283 *
4284 * The scheduler is at all times free to pick the calling task as the most
4285 * eligible task to run, if removing the yield() call from your code breaks
4286 * it, its already broken.
4287 *
4288 * Typical broken usage is:
4289 *
4290 * while (!event)
4291 * yield();
4292 *
4293 * where one assumes that yield() will let 'the other' process run that will
4294 * make event true. If the current task is a SCHED_FIFO task that will never
4295 * happen. Never use yield() as a progress guarantee!!
4296 *
4297 * If you want to use yield() to wait for something, use wait_event().
4298 * If you want to use yield() to be 'nice' for others, use cond_resched().
4299 * If you still want to use yield(), do not!
1da177e4
LT
4300 */
4301void __sched yield(void)
4302{
4303 set_current_state(TASK_RUNNING);
4304 sys_sched_yield();
4305}
1da177e4
LT
4306EXPORT_SYMBOL(yield);
4307
d95f4122
MG
4308/**
4309 * yield_to - yield the current processor to another thread in
4310 * your thread group, or accelerate that thread toward the
4311 * processor it's on.
16addf95
RD
4312 * @p: target task
4313 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4314 *
4315 * It's the caller's job to ensure that the target task struct
4316 * can't go away on us before we can do any checks.
4317 *
e69f6186 4318 * Return:
7b270f60
PZ
4319 * true (>0) if we indeed boosted the target task.
4320 * false (0) if we failed to boost the target.
4321 * -ESRCH if there's no task to yield to.
d95f4122 4322 */
fa93384f 4323int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4324{
4325 struct task_struct *curr = current;
4326 struct rq *rq, *p_rq;
4327 unsigned long flags;
c3c18640 4328 int yielded = 0;
d95f4122
MG
4329
4330 local_irq_save(flags);
4331 rq = this_rq();
4332
4333again:
4334 p_rq = task_rq(p);
7b270f60
PZ
4335 /*
4336 * If we're the only runnable task on the rq and target rq also
4337 * has only one task, there's absolutely no point in yielding.
4338 */
4339 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4340 yielded = -ESRCH;
4341 goto out_irq;
4342 }
4343
d95f4122 4344 double_rq_lock(rq, p_rq);
39e24d8f 4345 if (task_rq(p) != p_rq) {
d95f4122
MG
4346 double_rq_unlock(rq, p_rq);
4347 goto again;
4348 }
4349
4350 if (!curr->sched_class->yield_to_task)
7b270f60 4351 goto out_unlock;
d95f4122
MG
4352
4353 if (curr->sched_class != p->sched_class)
7b270f60 4354 goto out_unlock;
d95f4122
MG
4355
4356 if (task_running(p_rq, p) || p->state)
7b270f60 4357 goto out_unlock;
d95f4122
MG
4358
4359 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4360 if (yielded) {
d95f4122 4361 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4362 /*
4363 * Make p's CPU reschedule; pick_next_entity takes care of
4364 * fairness.
4365 */
4366 if (preempt && rq != p_rq)
8875125e 4367 resched_curr(p_rq);
6d1cafd8 4368 }
d95f4122 4369
7b270f60 4370out_unlock:
d95f4122 4371 double_rq_unlock(rq, p_rq);
7b270f60 4372out_irq:
d95f4122
MG
4373 local_irq_restore(flags);
4374
7b270f60 4375 if (yielded > 0)
d95f4122
MG
4376 schedule();
4377
4378 return yielded;
4379}
4380EXPORT_SYMBOL_GPL(yield_to);
4381
1da177e4 4382/*
41a2d6cf 4383 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4384 * that process accounting knows that this is a task in IO wait state.
1da177e4 4385 */
1da177e4
LT
4386long __sched io_schedule_timeout(long timeout)
4387{
9cff8ade
N
4388 int old_iowait = current->in_iowait;
4389 struct rq *rq;
1da177e4
LT
4390 long ret;
4391
9cff8ade
N
4392 current->in_iowait = 1;
4393 if (old_iowait)
4394 blk_schedule_flush_plug(current);
4395 else
4396 blk_flush_plug(current);
4397
0ff92245 4398 delayacct_blkio_start();
9cff8ade 4399 rq = raw_rq();
1da177e4
LT
4400 atomic_inc(&rq->nr_iowait);
4401 ret = schedule_timeout(timeout);
9cff8ade 4402 current->in_iowait = old_iowait;
1da177e4 4403 atomic_dec(&rq->nr_iowait);
0ff92245 4404 delayacct_blkio_end();
9cff8ade 4405
1da177e4
LT
4406 return ret;
4407}
9cff8ade 4408EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4409
4410/**
4411 * sys_sched_get_priority_max - return maximum RT priority.
4412 * @policy: scheduling class.
4413 *
e69f6186
YB
4414 * Return: On success, this syscall returns the maximum
4415 * rt_priority that can be used by a given scheduling class.
4416 * On failure, a negative error code is returned.
1da177e4 4417 */
5add95d4 4418SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4419{
4420 int ret = -EINVAL;
4421
4422 switch (policy) {
4423 case SCHED_FIFO:
4424 case SCHED_RR:
4425 ret = MAX_USER_RT_PRIO-1;
4426 break;
aab03e05 4427 case SCHED_DEADLINE:
1da177e4 4428 case SCHED_NORMAL:
b0a9499c 4429 case SCHED_BATCH:
dd41f596 4430 case SCHED_IDLE:
1da177e4
LT
4431 ret = 0;
4432 break;
4433 }
4434 return ret;
4435}
4436
4437/**
4438 * sys_sched_get_priority_min - return minimum RT priority.
4439 * @policy: scheduling class.
4440 *
e69f6186
YB
4441 * Return: On success, this syscall returns the minimum
4442 * rt_priority that can be used by a given scheduling class.
4443 * On failure, a negative error code is returned.
1da177e4 4444 */
5add95d4 4445SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4446{
4447 int ret = -EINVAL;
4448
4449 switch (policy) {
4450 case SCHED_FIFO:
4451 case SCHED_RR:
4452 ret = 1;
4453 break;
aab03e05 4454 case SCHED_DEADLINE:
1da177e4 4455 case SCHED_NORMAL:
b0a9499c 4456 case SCHED_BATCH:
dd41f596 4457 case SCHED_IDLE:
1da177e4
LT
4458 ret = 0;
4459 }
4460 return ret;
4461}
4462
4463/**
4464 * sys_sched_rr_get_interval - return the default timeslice of a process.
4465 * @pid: pid of the process.
4466 * @interval: userspace pointer to the timeslice value.
4467 *
4468 * this syscall writes the default timeslice value of a given process
4469 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4470 *
4471 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4472 * an error code.
1da177e4 4473 */
17da2bd9 4474SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4475 struct timespec __user *, interval)
1da177e4 4476{
36c8b586 4477 struct task_struct *p;
a4ec24b4 4478 unsigned int time_slice;
dba091b9
TG
4479 unsigned long flags;
4480 struct rq *rq;
3a5c359a 4481 int retval;
1da177e4 4482 struct timespec t;
1da177e4
LT
4483
4484 if (pid < 0)
3a5c359a 4485 return -EINVAL;
1da177e4
LT
4486
4487 retval = -ESRCH;
1a551ae7 4488 rcu_read_lock();
1da177e4
LT
4489 p = find_process_by_pid(pid);
4490 if (!p)
4491 goto out_unlock;
4492
4493 retval = security_task_getscheduler(p);
4494 if (retval)
4495 goto out_unlock;
4496
dba091b9 4497 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4498 time_slice = 0;
4499 if (p->sched_class->get_rr_interval)
4500 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4501 task_rq_unlock(rq, p, &flags);
a4ec24b4 4502
1a551ae7 4503 rcu_read_unlock();
a4ec24b4 4504 jiffies_to_timespec(time_slice, &t);
1da177e4 4505 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4506 return retval;
3a5c359a 4507
1da177e4 4508out_unlock:
1a551ae7 4509 rcu_read_unlock();
1da177e4
LT
4510 return retval;
4511}
4512
7c731e0a 4513static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4514
82a1fcb9 4515void sched_show_task(struct task_struct *p)
1da177e4 4516{
1da177e4 4517 unsigned long free = 0;
4e79752c 4518 int ppid;
1f8a7633 4519 unsigned long state = p->state;
1da177e4 4520
1f8a7633
TH
4521 if (state)
4522 state = __ffs(state) + 1;
28d0686c 4523 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4524 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4525#if BITS_PER_LONG == 32
1da177e4 4526 if (state == TASK_RUNNING)
3df0fc5b 4527 printk(KERN_CONT " running ");
1da177e4 4528 else
3df0fc5b 4529 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4530#else
4531 if (state == TASK_RUNNING)
3df0fc5b 4532 printk(KERN_CONT " running task ");
1da177e4 4533 else
3df0fc5b 4534 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4535#endif
4536#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4537 free = stack_not_used(p);
1da177e4 4538#endif
a90e984c 4539 ppid = 0;
4e79752c 4540 rcu_read_lock();
a90e984c
ON
4541 if (pid_alive(p))
4542 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4543 rcu_read_unlock();
3df0fc5b 4544 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4545 task_pid_nr(p), ppid,
aa47b7e0 4546 (unsigned long)task_thread_info(p)->flags);
1da177e4 4547
3d1cb205 4548 print_worker_info(KERN_INFO, p);
5fb5e6de 4549 show_stack(p, NULL);
1da177e4
LT
4550}
4551
e59e2ae2 4552void show_state_filter(unsigned long state_filter)
1da177e4 4553{
36c8b586 4554 struct task_struct *g, *p;
1da177e4 4555
4bd77321 4556#if BITS_PER_LONG == 32
3df0fc5b
PZ
4557 printk(KERN_INFO
4558 " task PC stack pid father\n");
1da177e4 4559#else
3df0fc5b
PZ
4560 printk(KERN_INFO
4561 " task PC stack pid father\n");
1da177e4 4562#endif
510f5acc 4563 rcu_read_lock();
5d07f420 4564 for_each_process_thread(g, p) {
1da177e4
LT
4565 /*
4566 * reset the NMI-timeout, listing all files on a slow
25985edc 4567 * console might take a lot of time:
1da177e4
LT
4568 */
4569 touch_nmi_watchdog();
39bc89fd 4570 if (!state_filter || (p->state & state_filter))
82a1fcb9 4571 sched_show_task(p);
5d07f420 4572 }
1da177e4 4573
04c9167f
JF
4574 touch_all_softlockup_watchdogs();
4575
dd41f596
IM
4576#ifdef CONFIG_SCHED_DEBUG
4577 sysrq_sched_debug_show();
4578#endif
510f5acc 4579 rcu_read_unlock();
e59e2ae2
IM
4580 /*
4581 * Only show locks if all tasks are dumped:
4582 */
93335a21 4583 if (!state_filter)
e59e2ae2 4584 debug_show_all_locks();
1da177e4
LT
4585}
4586
0db0628d 4587void init_idle_bootup_task(struct task_struct *idle)
1df21055 4588{
dd41f596 4589 idle->sched_class = &idle_sched_class;
1df21055
IM
4590}
4591
f340c0d1
IM
4592/**
4593 * init_idle - set up an idle thread for a given CPU
4594 * @idle: task in question
4595 * @cpu: cpu the idle task belongs to
4596 *
4597 * NOTE: this function does not set the idle thread's NEED_RESCHED
4598 * flag, to make booting more robust.
4599 */
0db0628d 4600void init_idle(struct task_struct *idle, int cpu)
1da177e4 4601{
70b97a7f 4602 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4603 unsigned long flags;
4604
05fa785c 4605 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4606
5e1576ed 4607 __sched_fork(0, idle);
06b83b5f 4608 idle->state = TASK_RUNNING;
dd41f596
IM
4609 idle->se.exec_start = sched_clock();
4610
1e1b6c51 4611 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4612 /*
4613 * We're having a chicken and egg problem, even though we are
4614 * holding rq->lock, the cpu isn't yet set to this cpu so the
4615 * lockdep check in task_group() will fail.
4616 *
4617 * Similar case to sched_fork(). / Alternatively we could
4618 * use task_rq_lock() here and obtain the other rq->lock.
4619 *
4620 * Silence PROVE_RCU
4621 */
4622 rcu_read_lock();
dd41f596 4623 __set_task_cpu(idle, cpu);
6506cf6c 4624 rcu_read_unlock();
1da177e4 4625
1da177e4 4626 rq->curr = rq->idle = idle;
da0c1e65 4627 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4628#if defined(CONFIG_SMP)
4629 idle->on_cpu = 1;
4866cde0 4630#endif
05fa785c 4631 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4632
4633 /* Set the preempt count _outside_ the spinlocks! */
01028747 4634 init_idle_preempt_count(idle, cpu);
55cd5340 4635
dd41f596
IM
4636 /*
4637 * The idle tasks have their own, simple scheduling class:
4638 */
4639 idle->sched_class = &idle_sched_class;
868baf07 4640 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4641 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4642#if defined(CONFIG_SMP)
4643 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4644#endif
19978ca6
IM
4645}
4646
f82f8042
JL
4647int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4648 const struct cpumask *trial)
4649{
4650 int ret = 1, trial_cpus;
4651 struct dl_bw *cur_dl_b;
4652 unsigned long flags;
4653
bb2bc55a
MG
4654 if (!cpumask_weight(cur))
4655 return ret;
4656
75e23e49 4657 rcu_read_lock_sched();
f82f8042
JL
4658 cur_dl_b = dl_bw_of(cpumask_any(cur));
4659 trial_cpus = cpumask_weight(trial);
4660
4661 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4662 if (cur_dl_b->bw != -1 &&
4663 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4664 ret = 0;
4665 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4666 rcu_read_unlock_sched();
f82f8042
JL
4667
4668 return ret;
4669}
4670
7f51412a
JL
4671int task_can_attach(struct task_struct *p,
4672 const struct cpumask *cs_cpus_allowed)
4673{
4674 int ret = 0;
4675
4676 /*
4677 * Kthreads which disallow setaffinity shouldn't be moved
4678 * to a new cpuset; we don't want to change their cpu
4679 * affinity and isolating such threads by their set of
4680 * allowed nodes is unnecessary. Thus, cpusets are not
4681 * applicable for such threads. This prevents checking for
4682 * success of set_cpus_allowed_ptr() on all attached tasks
4683 * before cpus_allowed may be changed.
4684 */
4685 if (p->flags & PF_NO_SETAFFINITY) {
4686 ret = -EINVAL;
4687 goto out;
4688 }
4689
4690#ifdef CONFIG_SMP
4691 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4692 cs_cpus_allowed)) {
4693 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4694 cs_cpus_allowed);
75e23e49 4695 struct dl_bw *dl_b;
7f51412a
JL
4696 bool overflow;
4697 int cpus;
4698 unsigned long flags;
4699
75e23e49
JL
4700 rcu_read_lock_sched();
4701 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4702 raw_spin_lock_irqsave(&dl_b->lock, flags);
4703 cpus = dl_bw_cpus(dest_cpu);
4704 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4705 if (overflow)
4706 ret = -EBUSY;
4707 else {
4708 /*
4709 * We reserve space for this task in the destination
4710 * root_domain, as we can't fail after this point.
4711 * We will free resources in the source root_domain
4712 * later on (see set_cpus_allowed_dl()).
4713 */
4714 __dl_add(dl_b, p->dl.dl_bw);
4715 }
4716 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4717 rcu_read_unlock_sched();
7f51412a
JL
4718
4719 }
4720#endif
4721out:
4722 return ret;
4723}
4724
1da177e4 4725#ifdef CONFIG_SMP
a15b12ac
KT
4726/*
4727 * move_queued_task - move a queued task to new rq.
4728 *
4729 * Returns (locked) new rq. Old rq's lock is released.
4730 */
4731static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4732{
4733 struct rq *rq = task_rq(p);
4734
4735 lockdep_assert_held(&rq->lock);
4736
4737 dequeue_task(rq, p, 0);
4738 p->on_rq = TASK_ON_RQ_MIGRATING;
4739 set_task_cpu(p, new_cpu);
4740 raw_spin_unlock(&rq->lock);
4741
4742 rq = cpu_rq(new_cpu);
4743
4744 raw_spin_lock(&rq->lock);
4745 BUG_ON(task_cpu(p) != new_cpu);
4746 p->on_rq = TASK_ON_RQ_QUEUED;
4747 enqueue_task(rq, p, 0);
4748 check_preempt_curr(rq, p, 0);
4749
4750 return rq;
4751}
4752
1e1b6c51
KM
4753void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4754{
1b537c7d 4755 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4756 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4757
4758 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4759 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4760}
4761
1da177e4
LT
4762/*
4763 * This is how migration works:
4764 *
969c7921
TH
4765 * 1) we invoke migration_cpu_stop() on the target CPU using
4766 * stop_one_cpu().
4767 * 2) stopper starts to run (implicitly forcing the migrated thread
4768 * off the CPU)
4769 * 3) it checks whether the migrated task is still in the wrong runqueue.
4770 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4771 * it and puts it into the right queue.
969c7921
TH
4772 * 5) stopper completes and stop_one_cpu() returns and the migration
4773 * is done.
1da177e4
LT
4774 */
4775
4776/*
4777 * Change a given task's CPU affinity. Migrate the thread to a
4778 * proper CPU and schedule it away if the CPU it's executing on
4779 * is removed from the allowed bitmask.
4780 *
4781 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4782 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4783 * call is not atomic; no spinlocks may be held.
4784 */
96f874e2 4785int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4786{
4787 unsigned long flags;
70b97a7f 4788 struct rq *rq;
969c7921 4789 unsigned int dest_cpu;
48f24c4d 4790 int ret = 0;
1da177e4
LT
4791
4792 rq = task_rq_lock(p, &flags);
e2912009 4793
db44fc01
YZ
4794 if (cpumask_equal(&p->cpus_allowed, new_mask))
4795 goto out;
4796
6ad4c188 4797 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4798 ret = -EINVAL;
4799 goto out;
4800 }
4801
1e1b6c51 4802 do_set_cpus_allowed(p, new_mask);
73fe6aae 4803
1da177e4 4804 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4805 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4806 goto out;
4807
969c7921 4808 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4809 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4810 struct migration_arg arg = { p, dest_cpu };
1da177e4 4811 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4812 task_rq_unlock(rq, p, &flags);
969c7921 4813 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4814 tlb_migrate_finish(p->mm);
4815 return 0;
a15b12ac
KT
4816 } else if (task_on_rq_queued(p))
4817 rq = move_queued_task(p, dest_cpu);
1da177e4 4818out:
0122ec5b 4819 task_rq_unlock(rq, p, &flags);
48f24c4d 4820
1da177e4
LT
4821 return ret;
4822}
cd8ba7cd 4823EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4824
4825/*
41a2d6cf 4826 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4827 * this because either it can't run here any more (set_cpus_allowed()
4828 * away from this CPU, or CPU going down), or because we're
4829 * attempting to rebalance this task on exec (sched_exec).
4830 *
4831 * So we race with normal scheduler movements, but that's OK, as long
4832 * as the task is no longer on this CPU.
efc30814
KK
4833 *
4834 * Returns non-zero if task was successfully migrated.
1da177e4 4835 */
efc30814 4836static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4837{
a1e01829 4838 struct rq *rq;
e2912009 4839 int ret = 0;
1da177e4 4840
e761b772 4841 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4842 return ret;
1da177e4 4843
a1e01829 4844 rq = cpu_rq(src_cpu);
1da177e4 4845
0122ec5b 4846 raw_spin_lock(&p->pi_lock);
a1e01829 4847 raw_spin_lock(&rq->lock);
1da177e4
LT
4848 /* Already moved. */
4849 if (task_cpu(p) != src_cpu)
b1e38734 4850 goto done;
a1e01829 4851
1da177e4 4852 /* Affinity changed (again). */
fa17b507 4853 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4854 goto fail;
1da177e4 4855
e2912009
PZ
4856 /*
4857 * If we're not on a rq, the next wake-up will ensure we're
4858 * placed properly.
4859 */
a15b12ac
KT
4860 if (task_on_rq_queued(p))
4861 rq = move_queued_task(p, dest_cpu);
b1e38734 4862done:
efc30814 4863 ret = 1;
b1e38734 4864fail:
a1e01829 4865 raw_spin_unlock(&rq->lock);
0122ec5b 4866 raw_spin_unlock(&p->pi_lock);
efc30814 4867 return ret;
1da177e4
LT
4868}
4869
e6628d5b
MG
4870#ifdef CONFIG_NUMA_BALANCING
4871/* Migrate current task p to target_cpu */
4872int migrate_task_to(struct task_struct *p, int target_cpu)
4873{
4874 struct migration_arg arg = { p, target_cpu };
4875 int curr_cpu = task_cpu(p);
4876
4877 if (curr_cpu == target_cpu)
4878 return 0;
4879
4880 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4881 return -EINVAL;
4882
4883 /* TODO: This is not properly updating schedstats */
4884
286549dc 4885 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4886 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4887}
0ec8aa00
PZ
4888
4889/*
4890 * Requeue a task on a given node and accurately track the number of NUMA
4891 * tasks on the runqueues
4892 */
4893void sched_setnuma(struct task_struct *p, int nid)
4894{
4895 struct rq *rq;
4896 unsigned long flags;
da0c1e65 4897 bool queued, running;
0ec8aa00
PZ
4898
4899 rq = task_rq_lock(p, &flags);
da0c1e65 4900 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4901 running = task_current(rq, p);
4902
da0c1e65 4903 if (queued)
0ec8aa00
PZ
4904 dequeue_task(rq, p, 0);
4905 if (running)
f3cd1c4e 4906 put_prev_task(rq, p);
0ec8aa00
PZ
4907
4908 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4909
4910 if (running)
4911 p->sched_class->set_curr_task(rq);
da0c1e65 4912 if (queued)
0ec8aa00
PZ
4913 enqueue_task(rq, p, 0);
4914 task_rq_unlock(rq, p, &flags);
4915}
e6628d5b
MG
4916#endif
4917
1da177e4 4918/*
969c7921
TH
4919 * migration_cpu_stop - this will be executed by a highprio stopper thread
4920 * and performs thread migration by bumping thread off CPU then
4921 * 'pushing' onto another runqueue.
1da177e4 4922 */
969c7921 4923static int migration_cpu_stop(void *data)
1da177e4 4924{
969c7921 4925 struct migration_arg *arg = data;
f7b4cddc 4926
969c7921
TH
4927 /*
4928 * The original target cpu might have gone down and we might
4929 * be on another cpu but it doesn't matter.
4930 */
f7b4cddc 4931 local_irq_disable();
5cd038f5
LJ
4932 /*
4933 * We need to explicitly wake pending tasks before running
4934 * __migrate_task() such that we will not miss enforcing cpus_allowed
4935 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4936 */
4937 sched_ttwu_pending();
969c7921 4938 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4939 local_irq_enable();
1da177e4 4940 return 0;
f7b4cddc
ON
4941}
4942
1da177e4 4943#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4944
054b9108 4945/*
48c5ccae
PZ
4946 * Ensures that the idle task is using init_mm right before its cpu goes
4947 * offline.
054b9108 4948 */
48c5ccae 4949void idle_task_exit(void)
1da177e4 4950{
48c5ccae 4951 struct mm_struct *mm = current->active_mm;
e76bd8d9 4952
48c5ccae 4953 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4954
a53efe5f 4955 if (mm != &init_mm) {
48c5ccae 4956 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4957 finish_arch_post_lock_switch();
4958 }
48c5ccae 4959 mmdrop(mm);
1da177e4
LT
4960}
4961
4962/*
5d180232
PZ
4963 * Since this CPU is going 'away' for a while, fold any nr_active delta
4964 * we might have. Assumes we're called after migrate_tasks() so that the
4965 * nr_active count is stable.
4966 *
4967 * Also see the comment "Global load-average calculations".
1da177e4 4968 */
5d180232 4969static void calc_load_migrate(struct rq *rq)
1da177e4 4970{
5d180232
PZ
4971 long delta = calc_load_fold_active(rq);
4972 if (delta)
4973 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4974}
4975
3f1d2a31
PZ
4976static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4977{
4978}
4979
4980static const struct sched_class fake_sched_class = {
4981 .put_prev_task = put_prev_task_fake,
4982};
4983
4984static struct task_struct fake_task = {
4985 /*
4986 * Avoid pull_{rt,dl}_task()
4987 */
4988 .prio = MAX_PRIO + 1,
4989 .sched_class = &fake_sched_class,
4990};
4991
48f24c4d 4992/*
48c5ccae
PZ
4993 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4994 * try_to_wake_up()->select_task_rq().
4995 *
4996 * Called with rq->lock held even though we'er in stop_machine() and
4997 * there's no concurrency possible, we hold the required locks anyway
4998 * because of lock validation efforts.
1da177e4 4999 */
48c5ccae 5000static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5001{
70b97a7f 5002 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5003 struct task_struct *next, *stop = rq->stop;
5004 int dest_cpu;
1da177e4
LT
5005
5006 /*
48c5ccae
PZ
5007 * Fudge the rq selection such that the below task selection loop
5008 * doesn't get stuck on the currently eligible stop task.
5009 *
5010 * We're currently inside stop_machine() and the rq is either stuck
5011 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5012 * either way we should never end up calling schedule() until we're
5013 * done here.
1da177e4 5014 */
48c5ccae 5015 rq->stop = NULL;
48f24c4d 5016
77bd3970
FW
5017 /*
5018 * put_prev_task() and pick_next_task() sched
5019 * class method both need to have an up-to-date
5020 * value of rq->clock[_task]
5021 */
5022 update_rq_clock(rq);
5023
dd41f596 5024 for ( ; ; ) {
48c5ccae
PZ
5025 /*
5026 * There's this thread running, bail when that's the only
5027 * remaining thread.
5028 */
5029 if (rq->nr_running == 1)
dd41f596 5030 break;
48c5ccae 5031
3f1d2a31 5032 next = pick_next_task(rq, &fake_task);
48c5ccae 5033 BUG_ON(!next);
79c53799 5034 next->sched_class->put_prev_task(rq, next);
e692ab53 5035
48c5ccae
PZ
5036 /* Find suitable destination for @next, with force if needed. */
5037 dest_cpu = select_fallback_rq(dead_cpu, next);
5038 raw_spin_unlock(&rq->lock);
5039
5040 __migrate_task(next, dead_cpu, dest_cpu);
5041
5042 raw_spin_lock(&rq->lock);
1da177e4 5043 }
dce48a84 5044
48c5ccae 5045 rq->stop = stop;
dce48a84 5046}
48c5ccae 5047
1da177e4
LT
5048#endif /* CONFIG_HOTPLUG_CPU */
5049
e692ab53
NP
5050#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5051
5052static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5053 {
5054 .procname = "sched_domain",
c57baf1e 5055 .mode = 0555,
e0361851 5056 },
56992309 5057 {}
e692ab53
NP
5058};
5059
5060static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5061 {
5062 .procname = "kernel",
c57baf1e 5063 .mode = 0555,
e0361851
AD
5064 .child = sd_ctl_dir,
5065 },
56992309 5066 {}
e692ab53
NP
5067};
5068
5069static struct ctl_table *sd_alloc_ctl_entry(int n)
5070{
5071 struct ctl_table *entry =
5cf9f062 5072 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5073
e692ab53
NP
5074 return entry;
5075}
5076
6382bc90
MM
5077static void sd_free_ctl_entry(struct ctl_table **tablep)
5078{
cd790076 5079 struct ctl_table *entry;
6382bc90 5080
cd790076
MM
5081 /*
5082 * In the intermediate directories, both the child directory and
5083 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5084 * will always be set. In the lowest directory the names are
cd790076
MM
5085 * static strings and all have proc handlers.
5086 */
5087 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5088 if (entry->child)
5089 sd_free_ctl_entry(&entry->child);
cd790076
MM
5090 if (entry->proc_handler == NULL)
5091 kfree(entry->procname);
5092 }
6382bc90
MM
5093
5094 kfree(*tablep);
5095 *tablep = NULL;
5096}
5097
201c373e 5098static int min_load_idx = 0;
fd9b86d3 5099static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5100
e692ab53 5101static void
e0361851 5102set_table_entry(struct ctl_table *entry,
e692ab53 5103 const char *procname, void *data, int maxlen,
201c373e
NK
5104 umode_t mode, proc_handler *proc_handler,
5105 bool load_idx)
e692ab53 5106{
e692ab53
NP
5107 entry->procname = procname;
5108 entry->data = data;
5109 entry->maxlen = maxlen;
5110 entry->mode = mode;
5111 entry->proc_handler = proc_handler;
201c373e
NK
5112
5113 if (load_idx) {
5114 entry->extra1 = &min_load_idx;
5115 entry->extra2 = &max_load_idx;
5116 }
e692ab53
NP
5117}
5118
5119static struct ctl_table *
5120sd_alloc_ctl_domain_table(struct sched_domain *sd)
5121{
37e6bae8 5122 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5123
ad1cdc1d
MM
5124 if (table == NULL)
5125 return NULL;
5126
e0361851 5127 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5128 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5129 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5130 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5131 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5132 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5133 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5134 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5135 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5136 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5137 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5138 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5139 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5140 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5141 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5142 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5143 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5144 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5145 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5146 &sd->cache_nice_tries,
201c373e 5147 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5148 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5149 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5150 set_table_entry(&table[11], "max_newidle_lb_cost",
5151 &sd->max_newidle_lb_cost,
5152 sizeof(long), 0644, proc_doulongvec_minmax, false);
5153 set_table_entry(&table[12], "name", sd->name,
201c373e 5154 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5155 /* &table[13] is terminator */
e692ab53
NP
5156
5157 return table;
5158}
5159
be7002e6 5160static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5161{
5162 struct ctl_table *entry, *table;
5163 struct sched_domain *sd;
5164 int domain_num = 0, i;
5165 char buf[32];
5166
5167 for_each_domain(cpu, sd)
5168 domain_num++;
5169 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5170 if (table == NULL)
5171 return NULL;
e692ab53
NP
5172
5173 i = 0;
5174 for_each_domain(cpu, sd) {
5175 snprintf(buf, 32, "domain%d", i);
e692ab53 5176 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5177 entry->mode = 0555;
e692ab53
NP
5178 entry->child = sd_alloc_ctl_domain_table(sd);
5179 entry++;
5180 i++;
5181 }
5182 return table;
5183}
5184
5185static struct ctl_table_header *sd_sysctl_header;
6382bc90 5186static void register_sched_domain_sysctl(void)
e692ab53 5187{
6ad4c188 5188 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5189 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5190 char buf[32];
5191
7378547f
MM
5192 WARN_ON(sd_ctl_dir[0].child);
5193 sd_ctl_dir[0].child = entry;
5194
ad1cdc1d
MM
5195 if (entry == NULL)
5196 return;
5197
6ad4c188 5198 for_each_possible_cpu(i) {
e692ab53 5199 snprintf(buf, 32, "cpu%d", i);
e692ab53 5200 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5201 entry->mode = 0555;
e692ab53 5202 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5203 entry++;
e692ab53 5204 }
7378547f
MM
5205
5206 WARN_ON(sd_sysctl_header);
e692ab53
NP
5207 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5208}
6382bc90 5209
7378547f 5210/* may be called multiple times per register */
6382bc90
MM
5211static void unregister_sched_domain_sysctl(void)
5212{
7378547f
MM
5213 if (sd_sysctl_header)
5214 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5215 sd_sysctl_header = NULL;
7378547f
MM
5216 if (sd_ctl_dir[0].child)
5217 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5218}
e692ab53 5219#else
6382bc90
MM
5220static void register_sched_domain_sysctl(void)
5221{
5222}
5223static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5224{
5225}
5226#endif
5227
1f11eb6a
GH
5228static void set_rq_online(struct rq *rq)
5229{
5230 if (!rq->online) {
5231 const struct sched_class *class;
5232
c6c4927b 5233 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5234 rq->online = 1;
5235
5236 for_each_class(class) {
5237 if (class->rq_online)
5238 class->rq_online(rq);
5239 }
5240 }
5241}
5242
5243static void set_rq_offline(struct rq *rq)
5244{
5245 if (rq->online) {
5246 const struct sched_class *class;
5247
5248 for_each_class(class) {
5249 if (class->rq_offline)
5250 class->rq_offline(rq);
5251 }
5252
c6c4927b 5253 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5254 rq->online = 0;
5255 }
5256}
5257
1da177e4
LT
5258/*
5259 * migration_call - callback that gets triggered when a CPU is added.
5260 * Here we can start up the necessary migration thread for the new CPU.
5261 */
0db0628d 5262static int
48f24c4d 5263migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5264{
48f24c4d 5265 int cpu = (long)hcpu;
1da177e4 5266 unsigned long flags;
969c7921 5267 struct rq *rq = cpu_rq(cpu);
1da177e4 5268
48c5ccae 5269 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5270
1da177e4 5271 case CPU_UP_PREPARE:
a468d389 5272 rq->calc_load_update = calc_load_update;
1da177e4 5273 break;
48f24c4d 5274
1da177e4 5275 case CPU_ONLINE:
1f94ef59 5276 /* Update our root-domain */
05fa785c 5277 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5278 if (rq->rd) {
c6c4927b 5279 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5280
5281 set_rq_online(rq);
1f94ef59 5282 }
05fa785c 5283 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5284 break;
48f24c4d 5285
1da177e4 5286#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5287 case CPU_DYING:
317f3941 5288 sched_ttwu_pending();
57d885fe 5289 /* Update our root-domain */
05fa785c 5290 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5291 if (rq->rd) {
c6c4927b 5292 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5293 set_rq_offline(rq);
57d885fe 5294 }
48c5ccae
PZ
5295 migrate_tasks(cpu);
5296 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5297 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5298 break;
48c5ccae 5299
5d180232 5300 case CPU_DEAD:
f319da0c 5301 calc_load_migrate(rq);
57d885fe 5302 break;
1da177e4
LT
5303#endif
5304 }
49c022e6
PZ
5305
5306 update_max_interval();
5307
1da177e4
LT
5308 return NOTIFY_OK;
5309}
5310
f38b0820
PM
5311/*
5312 * Register at high priority so that task migration (migrate_all_tasks)
5313 * happens before everything else. This has to be lower priority than
cdd6c482 5314 * the notifier in the perf_event subsystem, though.
1da177e4 5315 */
0db0628d 5316static struct notifier_block migration_notifier = {
1da177e4 5317 .notifier_call = migration_call,
50a323b7 5318 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5319};
5320
6a82b60d 5321static void set_cpu_rq_start_time(void)
a803f026
CM
5322{
5323 int cpu = smp_processor_id();
5324 struct rq *rq = cpu_rq(cpu);
5325 rq->age_stamp = sched_clock_cpu(cpu);
5326}
5327
0db0628d 5328static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5329 unsigned long action, void *hcpu)
5330{
5331 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5332 case CPU_STARTING:
5333 set_cpu_rq_start_time();
5334 return NOTIFY_OK;
3a101d05
TH
5335 case CPU_DOWN_FAILED:
5336 set_cpu_active((long)hcpu, true);
5337 return NOTIFY_OK;
5338 default:
5339 return NOTIFY_DONE;
5340 }
5341}
5342
0db0628d 5343static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5344 unsigned long action, void *hcpu)
5345{
5346 switch (action & ~CPU_TASKS_FROZEN) {
5347 case CPU_DOWN_PREPARE:
3c18d447 5348 set_cpu_active((long)hcpu, false);
3a101d05 5349 return NOTIFY_OK;
3c18d447
JL
5350 default:
5351 return NOTIFY_DONE;
3a101d05
TH
5352 }
5353}
5354
7babe8db 5355static int __init migration_init(void)
1da177e4
LT
5356{
5357 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5358 int err;
48f24c4d 5359
3a101d05 5360 /* Initialize migration for the boot CPU */
07dccf33
AM
5361 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5362 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5363 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5364 register_cpu_notifier(&migration_notifier);
7babe8db 5365
3a101d05
TH
5366 /* Register cpu active notifiers */
5367 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5368 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5369
a004cd42 5370 return 0;
1da177e4 5371}
7babe8db 5372early_initcall(migration_init);
1da177e4
LT
5373#endif
5374
5375#ifdef CONFIG_SMP
476f3534 5376
4cb98839
PZ
5377static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5378
3e9830dc 5379#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5380
d039ac60 5381static __read_mostly int sched_debug_enabled;
f6630114 5382
d039ac60 5383static int __init sched_debug_setup(char *str)
f6630114 5384{
d039ac60 5385 sched_debug_enabled = 1;
f6630114
MT
5386
5387 return 0;
5388}
d039ac60
PZ
5389early_param("sched_debug", sched_debug_setup);
5390
5391static inline bool sched_debug(void)
5392{
5393 return sched_debug_enabled;
5394}
f6630114 5395
7c16ec58 5396static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5397 struct cpumask *groupmask)
1da177e4 5398{
4dcf6aff 5399 struct sched_group *group = sd->groups;
1da177e4 5400
96f874e2 5401 cpumask_clear(groupmask);
4dcf6aff
IM
5402
5403 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5404
5405 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5406 printk("does not load-balance\n");
4dcf6aff 5407 if (sd->parent)
3df0fc5b
PZ
5408 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5409 " has parent");
4dcf6aff 5410 return -1;
41c7ce9a
NP
5411 }
5412
333470ee
TH
5413 printk(KERN_CONT "span %*pbl level %s\n",
5414 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5415
758b2cdc 5416 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5417 printk(KERN_ERR "ERROR: domain->span does not contain "
5418 "CPU%d\n", cpu);
4dcf6aff 5419 }
758b2cdc 5420 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5421 printk(KERN_ERR "ERROR: domain->groups does not contain"
5422 " CPU%d\n", cpu);
4dcf6aff 5423 }
1da177e4 5424
4dcf6aff 5425 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5426 do {
4dcf6aff 5427 if (!group) {
3df0fc5b
PZ
5428 printk("\n");
5429 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5430 break;
5431 }
5432
758b2cdc 5433 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5434 printk(KERN_CONT "\n");
5435 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5436 break;
5437 }
1da177e4 5438
cb83b629
PZ
5439 if (!(sd->flags & SD_OVERLAP) &&
5440 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5441 printk(KERN_CONT "\n");
5442 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5443 break;
5444 }
1da177e4 5445
758b2cdc 5446 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5447
333470ee
TH
5448 printk(KERN_CONT " %*pbl",
5449 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5450 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5451 printk(KERN_CONT " (cpu_capacity = %d)",
5452 group->sgc->capacity);
381512cf 5453 }
1da177e4 5454
4dcf6aff
IM
5455 group = group->next;
5456 } while (group != sd->groups);
3df0fc5b 5457 printk(KERN_CONT "\n");
1da177e4 5458
758b2cdc 5459 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5460 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5461
758b2cdc
RR
5462 if (sd->parent &&
5463 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5464 printk(KERN_ERR "ERROR: parent span is not a superset "
5465 "of domain->span\n");
4dcf6aff
IM
5466 return 0;
5467}
1da177e4 5468
4dcf6aff
IM
5469static void sched_domain_debug(struct sched_domain *sd, int cpu)
5470{
5471 int level = 0;
1da177e4 5472
d039ac60 5473 if (!sched_debug_enabled)
f6630114
MT
5474 return;
5475
4dcf6aff
IM
5476 if (!sd) {
5477 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5478 return;
5479 }
1da177e4 5480
4dcf6aff
IM
5481 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5482
5483 for (;;) {
4cb98839 5484 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5485 break;
1da177e4
LT
5486 level++;
5487 sd = sd->parent;
33859f7f 5488 if (!sd)
4dcf6aff
IM
5489 break;
5490 }
1da177e4 5491}
6d6bc0ad 5492#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5493# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5494static inline bool sched_debug(void)
5495{
5496 return false;
5497}
6d6bc0ad 5498#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5499
1a20ff27 5500static int sd_degenerate(struct sched_domain *sd)
245af2c7 5501{
758b2cdc 5502 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5503 return 1;
5504
5505 /* Following flags need at least 2 groups */
5506 if (sd->flags & (SD_LOAD_BALANCE |
5507 SD_BALANCE_NEWIDLE |
5508 SD_BALANCE_FORK |
89c4710e 5509 SD_BALANCE_EXEC |
5d4dfddd 5510 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5511 SD_SHARE_PKG_RESOURCES |
5512 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5513 if (sd->groups != sd->groups->next)
5514 return 0;
5515 }
5516
5517 /* Following flags don't use groups */
c88d5910 5518 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5519 return 0;
5520
5521 return 1;
5522}
5523
48f24c4d
IM
5524static int
5525sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5526{
5527 unsigned long cflags = sd->flags, pflags = parent->flags;
5528
5529 if (sd_degenerate(parent))
5530 return 1;
5531
758b2cdc 5532 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5533 return 0;
5534
245af2c7
SS
5535 /* Flags needing groups don't count if only 1 group in parent */
5536 if (parent->groups == parent->groups->next) {
5537 pflags &= ~(SD_LOAD_BALANCE |
5538 SD_BALANCE_NEWIDLE |
5539 SD_BALANCE_FORK |
89c4710e 5540 SD_BALANCE_EXEC |
5d4dfddd 5541 SD_SHARE_CPUCAPACITY |
10866e62 5542 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5543 SD_PREFER_SIBLING |
5544 SD_SHARE_POWERDOMAIN);
5436499e
KC
5545 if (nr_node_ids == 1)
5546 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5547 }
5548 if (~cflags & pflags)
5549 return 0;
5550
5551 return 1;
5552}
5553
dce840a0 5554static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5555{
dce840a0 5556 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5557
68e74568 5558 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5559 cpudl_cleanup(&rd->cpudl);
1baca4ce 5560 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5561 free_cpumask_var(rd->rto_mask);
5562 free_cpumask_var(rd->online);
5563 free_cpumask_var(rd->span);
5564 kfree(rd);
5565}
5566
57d885fe
GH
5567static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5568{
a0490fa3 5569 struct root_domain *old_rd = NULL;
57d885fe 5570 unsigned long flags;
57d885fe 5571
05fa785c 5572 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5573
5574 if (rq->rd) {
a0490fa3 5575 old_rd = rq->rd;
57d885fe 5576
c6c4927b 5577 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5578 set_rq_offline(rq);
57d885fe 5579
c6c4927b 5580 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5581
a0490fa3 5582 /*
0515973f 5583 * If we dont want to free the old_rd yet then
a0490fa3
IM
5584 * set old_rd to NULL to skip the freeing later
5585 * in this function:
5586 */
5587 if (!atomic_dec_and_test(&old_rd->refcount))
5588 old_rd = NULL;
57d885fe
GH
5589 }
5590
5591 atomic_inc(&rd->refcount);
5592 rq->rd = rd;
5593
c6c4927b 5594 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5595 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5596 set_rq_online(rq);
57d885fe 5597
05fa785c 5598 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5599
5600 if (old_rd)
dce840a0 5601 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5602}
5603
68c38fc3 5604static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5605{
5606 memset(rd, 0, sizeof(*rd));
5607
68c38fc3 5608 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5609 goto out;
68c38fc3 5610 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5611 goto free_span;
1baca4ce 5612 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5613 goto free_online;
1baca4ce
JL
5614 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5615 goto free_dlo_mask;
6e0534f2 5616
332ac17e 5617 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5618 if (cpudl_init(&rd->cpudl) != 0)
5619 goto free_dlo_mask;
332ac17e 5620
68c38fc3 5621 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5622 goto free_rto_mask;
c6c4927b 5623 return 0;
6e0534f2 5624
68e74568
RR
5625free_rto_mask:
5626 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5627free_dlo_mask:
5628 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5629free_online:
5630 free_cpumask_var(rd->online);
5631free_span:
5632 free_cpumask_var(rd->span);
0c910d28 5633out:
c6c4927b 5634 return -ENOMEM;
57d885fe
GH
5635}
5636
029632fb
PZ
5637/*
5638 * By default the system creates a single root-domain with all cpus as
5639 * members (mimicking the global state we have today).
5640 */
5641struct root_domain def_root_domain;
5642
57d885fe
GH
5643static void init_defrootdomain(void)
5644{
68c38fc3 5645 init_rootdomain(&def_root_domain);
c6c4927b 5646
57d885fe
GH
5647 atomic_set(&def_root_domain.refcount, 1);
5648}
5649
dc938520 5650static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5651{
5652 struct root_domain *rd;
5653
5654 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5655 if (!rd)
5656 return NULL;
5657
68c38fc3 5658 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5659 kfree(rd);
5660 return NULL;
5661 }
57d885fe
GH
5662
5663 return rd;
5664}
5665
63b2ca30 5666static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5667{
5668 struct sched_group *tmp, *first;
5669
5670 if (!sg)
5671 return;
5672
5673 first = sg;
5674 do {
5675 tmp = sg->next;
5676
63b2ca30
NP
5677 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5678 kfree(sg->sgc);
e3589f6c
PZ
5679
5680 kfree(sg);
5681 sg = tmp;
5682 } while (sg != first);
5683}
5684
dce840a0
PZ
5685static void free_sched_domain(struct rcu_head *rcu)
5686{
5687 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5688
5689 /*
5690 * If its an overlapping domain it has private groups, iterate and
5691 * nuke them all.
5692 */
5693 if (sd->flags & SD_OVERLAP) {
5694 free_sched_groups(sd->groups, 1);
5695 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5696 kfree(sd->groups->sgc);
dce840a0 5697 kfree(sd->groups);
9c3f75cb 5698 }
dce840a0
PZ
5699 kfree(sd);
5700}
5701
5702static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5703{
5704 call_rcu(&sd->rcu, free_sched_domain);
5705}
5706
5707static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5708{
5709 for (; sd; sd = sd->parent)
5710 destroy_sched_domain(sd, cpu);
5711}
5712
518cd623
PZ
5713/*
5714 * Keep a special pointer to the highest sched_domain that has
5715 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5716 * allows us to avoid some pointer chasing select_idle_sibling().
5717 *
5718 * Also keep a unique ID per domain (we use the first cpu number in
5719 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5720 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5721 */
5722DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5723DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5724DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5725DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5726DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5727DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5728
5729static void update_top_cache_domain(int cpu)
5730{
5731 struct sched_domain *sd;
5d4cf996 5732 struct sched_domain *busy_sd = NULL;
518cd623 5733 int id = cpu;
7d9ffa89 5734 int size = 1;
518cd623
PZ
5735
5736 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5737 if (sd) {
518cd623 5738 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5739 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5740 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5741 }
5d4cf996 5742 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5743
5744 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5745 per_cpu(sd_llc_size, cpu) = size;
518cd623 5746 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5747
5748 sd = lowest_flag_domain(cpu, SD_NUMA);
5749 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5750
5751 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5752 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5753}
5754
1da177e4 5755/*
0eab9146 5756 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5757 * hold the hotplug lock.
5758 */
0eab9146
IM
5759static void
5760cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5761{
70b97a7f 5762 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5763 struct sched_domain *tmp;
5764
5765 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5766 for (tmp = sd; tmp; ) {
245af2c7
SS
5767 struct sched_domain *parent = tmp->parent;
5768 if (!parent)
5769 break;
f29c9b1c 5770
1a848870 5771 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5772 tmp->parent = parent->parent;
1a848870
SS
5773 if (parent->parent)
5774 parent->parent->child = tmp;
10866e62
PZ
5775 /*
5776 * Transfer SD_PREFER_SIBLING down in case of a
5777 * degenerate parent; the spans match for this
5778 * so the property transfers.
5779 */
5780 if (parent->flags & SD_PREFER_SIBLING)
5781 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5782 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5783 } else
5784 tmp = tmp->parent;
245af2c7
SS
5785 }
5786
1a848870 5787 if (sd && sd_degenerate(sd)) {
dce840a0 5788 tmp = sd;
245af2c7 5789 sd = sd->parent;
dce840a0 5790 destroy_sched_domain(tmp, cpu);
1a848870
SS
5791 if (sd)
5792 sd->child = NULL;
5793 }
1da177e4 5794
4cb98839 5795 sched_domain_debug(sd, cpu);
1da177e4 5796
57d885fe 5797 rq_attach_root(rq, rd);
dce840a0 5798 tmp = rq->sd;
674311d5 5799 rcu_assign_pointer(rq->sd, sd);
dce840a0 5800 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5801
5802 update_top_cache_domain(cpu);
1da177e4
LT
5803}
5804
1da177e4
LT
5805/* Setup the mask of cpus configured for isolated domains */
5806static int __init isolated_cpu_setup(char *str)
5807{
bdddd296 5808 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5809 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5810 return 1;
5811}
5812
8927f494 5813__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5814
49a02c51 5815struct s_data {
21d42ccf 5816 struct sched_domain ** __percpu sd;
49a02c51
AH
5817 struct root_domain *rd;
5818};
5819
2109b99e 5820enum s_alloc {
2109b99e 5821 sa_rootdomain,
21d42ccf 5822 sa_sd,
dce840a0 5823 sa_sd_storage,
2109b99e
AH
5824 sa_none,
5825};
5826
c1174876
PZ
5827/*
5828 * Build an iteration mask that can exclude certain CPUs from the upwards
5829 * domain traversal.
5830 *
5831 * Asymmetric node setups can result in situations where the domain tree is of
5832 * unequal depth, make sure to skip domains that already cover the entire
5833 * range.
5834 *
5835 * In that case build_sched_domains() will have terminated the iteration early
5836 * and our sibling sd spans will be empty. Domains should always include the
5837 * cpu they're built on, so check that.
5838 *
5839 */
5840static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5841{
5842 const struct cpumask *span = sched_domain_span(sd);
5843 struct sd_data *sdd = sd->private;
5844 struct sched_domain *sibling;
5845 int i;
5846
5847 for_each_cpu(i, span) {
5848 sibling = *per_cpu_ptr(sdd->sd, i);
5849 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5850 continue;
5851
5852 cpumask_set_cpu(i, sched_group_mask(sg));
5853 }
5854}
5855
5856/*
5857 * Return the canonical balance cpu for this group, this is the first cpu
5858 * of this group that's also in the iteration mask.
5859 */
5860int group_balance_cpu(struct sched_group *sg)
5861{
5862 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5863}
5864
e3589f6c
PZ
5865static int
5866build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5867{
5868 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5869 const struct cpumask *span = sched_domain_span(sd);
5870 struct cpumask *covered = sched_domains_tmpmask;
5871 struct sd_data *sdd = sd->private;
aaecac4a 5872 struct sched_domain *sibling;
e3589f6c
PZ
5873 int i;
5874
5875 cpumask_clear(covered);
5876
5877 for_each_cpu(i, span) {
5878 struct cpumask *sg_span;
5879
5880 if (cpumask_test_cpu(i, covered))
5881 continue;
5882
aaecac4a 5883 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5884
5885 /* See the comment near build_group_mask(). */
aaecac4a 5886 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5887 continue;
5888
e3589f6c 5889 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5890 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5891
5892 if (!sg)
5893 goto fail;
5894
5895 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5896 if (sibling->child)
5897 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5898 else
e3589f6c
PZ
5899 cpumask_set_cpu(i, sg_span);
5900
5901 cpumask_or(covered, covered, sg_span);
5902
63b2ca30
NP
5903 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5904 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5905 build_group_mask(sd, sg);
5906
c3decf0d 5907 /*
63b2ca30 5908 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5909 * domains and no possible iteration will get us here, we won't
5910 * die on a /0 trap.
5911 */
ca8ce3d0 5912 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5913
c1174876
PZ
5914 /*
5915 * Make sure the first group of this domain contains the
5916 * canonical balance cpu. Otherwise the sched_domain iteration
5917 * breaks. See update_sg_lb_stats().
5918 */
74a5ce20 5919 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5920 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5921 groups = sg;
5922
5923 if (!first)
5924 first = sg;
5925 if (last)
5926 last->next = sg;
5927 last = sg;
5928 last->next = first;
5929 }
5930 sd->groups = groups;
5931
5932 return 0;
5933
5934fail:
5935 free_sched_groups(first, 0);
5936
5937 return -ENOMEM;
5938}
5939
dce840a0 5940static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5941{
dce840a0
PZ
5942 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5943 struct sched_domain *child = sd->child;
1da177e4 5944
dce840a0
PZ
5945 if (child)
5946 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5947
9c3f75cb 5948 if (sg) {
dce840a0 5949 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5950 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5951 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5952 }
dce840a0
PZ
5953
5954 return cpu;
1e9f28fa 5955}
1e9f28fa 5956
01a08546 5957/*
dce840a0
PZ
5958 * build_sched_groups will build a circular linked list of the groups
5959 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5960 * and ->cpu_capacity to 0.
e3589f6c
PZ
5961 *
5962 * Assumes the sched_domain tree is fully constructed
01a08546 5963 */
e3589f6c
PZ
5964static int
5965build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5966{
dce840a0
PZ
5967 struct sched_group *first = NULL, *last = NULL;
5968 struct sd_data *sdd = sd->private;
5969 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5970 struct cpumask *covered;
dce840a0 5971 int i;
9c1cfda2 5972
e3589f6c
PZ
5973 get_group(cpu, sdd, &sd->groups);
5974 atomic_inc(&sd->groups->ref);
5975
0936629f 5976 if (cpu != cpumask_first(span))
e3589f6c
PZ
5977 return 0;
5978
f96225fd
PZ
5979 lockdep_assert_held(&sched_domains_mutex);
5980 covered = sched_domains_tmpmask;
5981
dce840a0 5982 cpumask_clear(covered);
6711cab4 5983
dce840a0
PZ
5984 for_each_cpu(i, span) {
5985 struct sched_group *sg;
cd08e923 5986 int group, j;
6711cab4 5987
dce840a0
PZ
5988 if (cpumask_test_cpu(i, covered))
5989 continue;
6711cab4 5990
cd08e923 5991 group = get_group(i, sdd, &sg);
c1174876 5992 cpumask_setall(sched_group_mask(sg));
0601a88d 5993
dce840a0
PZ
5994 for_each_cpu(j, span) {
5995 if (get_group(j, sdd, NULL) != group)
5996 continue;
0601a88d 5997
dce840a0
PZ
5998 cpumask_set_cpu(j, covered);
5999 cpumask_set_cpu(j, sched_group_cpus(sg));
6000 }
0601a88d 6001
dce840a0
PZ
6002 if (!first)
6003 first = sg;
6004 if (last)
6005 last->next = sg;
6006 last = sg;
6007 }
6008 last->next = first;
e3589f6c
PZ
6009
6010 return 0;
0601a88d 6011}
51888ca2 6012
89c4710e 6013/*
63b2ca30 6014 * Initialize sched groups cpu_capacity.
89c4710e 6015 *
63b2ca30 6016 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6017 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6018 * Typically cpu_capacity for all the groups in a sched domain will be same
6019 * unless there are asymmetries in the topology. If there are asymmetries,
6020 * group having more cpu_capacity will pickup more load compared to the
6021 * group having less cpu_capacity.
89c4710e 6022 */
63b2ca30 6023static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6024{
e3589f6c 6025 struct sched_group *sg = sd->groups;
89c4710e 6026
94c95ba6 6027 WARN_ON(!sg);
e3589f6c
PZ
6028
6029 do {
6030 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6031 sg = sg->next;
6032 } while (sg != sd->groups);
89c4710e 6033
c1174876 6034 if (cpu != group_balance_cpu(sg))
e3589f6c 6035 return;
aae6d3dd 6036
63b2ca30
NP
6037 update_group_capacity(sd, cpu);
6038 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6039}
6040
7c16ec58
MT
6041/*
6042 * Initializers for schedule domains
6043 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6044 */
6045
1d3504fc 6046static int default_relax_domain_level = -1;
60495e77 6047int sched_domain_level_max;
1d3504fc
HS
6048
6049static int __init setup_relax_domain_level(char *str)
6050{
a841f8ce
DS
6051 if (kstrtoint(str, 0, &default_relax_domain_level))
6052 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6053
1d3504fc
HS
6054 return 1;
6055}
6056__setup("relax_domain_level=", setup_relax_domain_level);
6057
6058static void set_domain_attribute(struct sched_domain *sd,
6059 struct sched_domain_attr *attr)
6060{
6061 int request;
6062
6063 if (!attr || attr->relax_domain_level < 0) {
6064 if (default_relax_domain_level < 0)
6065 return;
6066 else
6067 request = default_relax_domain_level;
6068 } else
6069 request = attr->relax_domain_level;
6070 if (request < sd->level) {
6071 /* turn off idle balance on this domain */
c88d5910 6072 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6073 } else {
6074 /* turn on idle balance on this domain */
c88d5910 6075 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6076 }
6077}
6078
54ab4ff4
PZ
6079static void __sdt_free(const struct cpumask *cpu_map);
6080static int __sdt_alloc(const struct cpumask *cpu_map);
6081
2109b99e
AH
6082static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6083 const struct cpumask *cpu_map)
6084{
6085 switch (what) {
2109b99e 6086 case sa_rootdomain:
822ff793
PZ
6087 if (!atomic_read(&d->rd->refcount))
6088 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6089 case sa_sd:
6090 free_percpu(d->sd); /* fall through */
dce840a0 6091 case sa_sd_storage:
54ab4ff4 6092 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6093 case sa_none:
6094 break;
6095 }
6096}
3404c8d9 6097
2109b99e
AH
6098static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6099 const struct cpumask *cpu_map)
6100{
dce840a0
PZ
6101 memset(d, 0, sizeof(*d));
6102
54ab4ff4
PZ
6103 if (__sdt_alloc(cpu_map))
6104 return sa_sd_storage;
dce840a0
PZ
6105 d->sd = alloc_percpu(struct sched_domain *);
6106 if (!d->sd)
6107 return sa_sd_storage;
2109b99e 6108 d->rd = alloc_rootdomain();
dce840a0 6109 if (!d->rd)
21d42ccf 6110 return sa_sd;
2109b99e
AH
6111 return sa_rootdomain;
6112}
57d885fe 6113
dce840a0
PZ
6114/*
6115 * NULL the sd_data elements we've used to build the sched_domain and
6116 * sched_group structure so that the subsequent __free_domain_allocs()
6117 * will not free the data we're using.
6118 */
6119static void claim_allocations(int cpu, struct sched_domain *sd)
6120{
6121 struct sd_data *sdd = sd->private;
dce840a0
PZ
6122
6123 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6124 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6125
e3589f6c 6126 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6127 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6128
63b2ca30
NP
6129 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6130 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6131}
6132
cb83b629 6133#ifdef CONFIG_NUMA
cb83b629 6134static int sched_domains_numa_levels;
e3fe70b1 6135enum numa_topology_type sched_numa_topology_type;
cb83b629 6136static int *sched_domains_numa_distance;
9942f79b 6137int sched_max_numa_distance;
cb83b629
PZ
6138static struct cpumask ***sched_domains_numa_masks;
6139static int sched_domains_curr_level;
143e1e28 6140#endif
cb83b629 6141
143e1e28
VG
6142/*
6143 * SD_flags allowed in topology descriptions.
6144 *
5d4dfddd 6145 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6146 * SD_SHARE_PKG_RESOURCES - describes shared caches
6147 * SD_NUMA - describes NUMA topologies
d77b3ed5 6148 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6149 *
6150 * Odd one out:
6151 * SD_ASYM_PACKING - describes SMT quirks
6152 */
6153#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6154 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6155 SD_SHARE_PKG_RESOURCES | \
6156 SD_NUMA | \
d77b3ed5
VG
6157 SD_ASYM_PACKING | \
6158 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6159
6160static struct sched_domain *
143e1e28 6161sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6162{
6163 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6164 int sd_weight, sd_flags = 0;
6165
6166#ifdef CONFIG_NUMA
6167 /*
6168 * Ugly hack to pass state to sd_numa_mask()...
6169 */
6170 sched_domains_curr_level = tl->numa_level;
6171#endif
6172
6173 sd_weight = cpumask_weight(tl->mask(cpu));
6174
6175 if (tl->sd_flags)
6176 sd_flags = (*tl->sd_flags)();
6177 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6178 "wrong sd_flags in topology description\n"))
6179 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6180
6181 *sd = (struct sched_domain){
6182 .min_interval = sd_weight,
6183 .max_interval = 2*sd_weight,
6184 .busy_factor = 32,
870a0bb5 6185 .imbalance_pct = 125,
143e1e28
VG
6186
6187 .cache_nice_tries = 0,
6188 .busy_idx = 0,
6189 .idle_idx = 0,
cb83b629
PZ
6190 .newidle_idx = 0,
6191 .wake_idx = 0,
6192 .forkexec_idx = 0,
6193
6194 .flags = 1*SD_LOAD_BALANCE
6195 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6196 | 1*SD_BALANCE_EXEC
6197 | 1*SD_BALANCE_FORK
cb83b629 6198 | 0*SD_BALANCE_WAKE
143e1e28 6199 | 1*SD_WAKE_AFFINE
5d4dfddd 6200 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6201 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6202 | 0*SD_SERIALIZE
cb83b629 6203 | 0*SD_PREFER_SIBLING
143e1e28
VG
6204 | 0*SD_NUMA
6205 | sd_flags
cb83b629 6206 ,
143e1e28 6207
cb83b629
PZ
6208 .last_balance = jiffies,
6209 .balance_interval = sd_weight,
143e1e28 6210 .smt_gain = 0,
2b4cfe64
JL
6211 .max_newidle_lb_cost = 0,
6212 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6213#ifdef CONFIG_SCHED_DEBUG
6214 .name = tl->name,
6215#endif
cb83b629 6216 };
cb83b629
PZ
6217
6218 /*
143e1e28 6219 * Convert topological properties into behaviour.
cb83b629 6220 */
143e1e28 6221
5d4dfddd 6222 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6223 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6224 sd->imbalance_pct = 110;
6225 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6226
6227 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6228 sd->imbalance_pct = 117;
6229 sd->cache_nice_tries = 1;
6230 sd->busy_idx = 2;
6231
6232#ifdef CONFIG_NUMA
6233 } else if (sd->flags & SD_NUMA) {
6234 sd->cache_nice_tries = 2;
6235 sd->busy_idx = 3;
6236 sd->idle_idx = 2;
6237
6238 sd->flags |= SD_SERIALIZE;
6239 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6240 sd->flags &= ~(SD_BALANCE_EXEC |
6241 SD_BALANCE_FORK |
6242 SD_WAKE_AFFINE);
6243 }
6244
6245#endif
6246 } else {
6247 sd->flags |= SD_PREFER_SIBLING;
6248 sd->cache_nice_tries = 1;
6249 sd->busy_idx = 2;
6250 sd->idle_idx = 1;
6251 }
6252
6253 sd->private = &tl->data;
cb83b629
PZ
6254
6255 return sd;
6256}
6257
143e1e28
VG
6258/*
6259 * Topology list, bottom-up.
6260 */
6261static struct sched_domain_topology_level default_topology[] = {
6262#ifdef CONFIG_SCHED_SMT
6263 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6264#endif
6265#ifdef CONFIG_SCHED_MC
6266 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6267#endif
6268 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6269 { NULL, },
6270};
6271
6272struct sched_domain_topology_level *sched_domain_topology = default_topology;
6273
6274#define for_each_sd_topology(tl) \
6275 for (tl = sched_domain_topology; tl->mask; tl++)
6276
6277void set_sched_topology(struct sched_domain_topology_level *tl)
6278{
6279 sched_domain_topology = tl;
6280}
6281
6282#ifdef CONFIG_NUMA
6283
cb83b629
PZ
6284static const struct cpumask *sd_numa_mask(int cpu)
6285{
6286 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6287}
6288
d039ac60
PZ
6289static void sched_numa_warn(const char *str)
6290{
6291 static int done = false;
6292 int i,j;
6293
6294 if (done)
6295 return;
6296
6297 done = true;
6298
6299 printk(KERN_WARNING "ERROR: %s\n\n", str);
6300
6301 for (i = 0; i < nr_node_ids; i++) {
6302 printk(KERN_WARNING " ");
6303 for (j = 0; j < nr_node_ids; j++)
6304 printk(KERN_CONT "%02d ", node_distance(i,j));
6305 printk(KERN_CONT "\n");
6306 }
6307 printk(KERN_WARNING "\n");
6308}
6309
9942f79b 6310bool find_numa_distance(int distance)
d039ac60
PZ
6311{
6312 int i;
6313
6314 if (distance == node_distance(0, 0))
6315 return true;
6316
6317 for (i = 0; i < sched_domains_numa_levels; i++) {
6318 if (sched_domains_numa_distance[i] == distance)
6319 return true;
6320 }
6321
6322 return false;
6323}
6324
e3fe70b1
RR
6325/*
6326 * A system can have three types of NUMA topology:
6327 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6328 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6329 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6330 *
6331 * The difference between a glueless mesh topology and a backplane
6332 * topology lies in whether communication between not directly
6333 * connected nodes goes through intermediary nodes (where programs
6334 * could run), or through backplane controllers. This affects
6335 * placement of programs.
6336 *
6337 * The type of topology can be discerned with the following tests:
6338 * - If the maximum distance between any nodes is 1 hop, the system
6339 * is directly connected.
6340 * - If for two nodes A and B, located N > 1 hops away from each other,
6341 * there is an intermediary node C, which is < N hops away from both
6342 * nodes A and B, the system is a glueless mesh.
6343 */
6344static void init_numa_topology_type(void)
6345{
6346 int a, b, c, n;
6347
6348 n = sched_max_numa_distance;
6349
6350 if (n <= 1)
6351 sched_numa_topology_type = NUMA_DIRECT;
6352
6353 for_each_online_node(a) {
6354 for_each_online_node(b) {
6355 /* Find two nodes furthest removed from each other. */
6356 if (node_distance(a, b) < n)
6357 continue;
6358
6359 /* Is there an intermediary node between a and b? */
6360 for_each_online_node(c) {
6361 if (node_distance(a, c) < n &&
6362 node_distance(b, c) < n) {
6363 sched_numa_topology_type =
6364 NUMA_GLUELESS_MESH;
6365 return;
6366 }
6367 }
6368
6369 sched_numa_topology_type = NUMA_BACKPLANE;
6370 return;
6371 }
6372 }
6373}
6374
cb83b629
PZ
6375static void sched_init_numa(void)
6376{
6377 int next_distance, curr_distance = node_distance(0, 0);
6378 struct sched_domain_topology_level *tl;
6379 int level = 0;
6380 int i, j, k;
6381
cb83b629
PZ
6382 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6383 if (!sched_domains_numa_distance)
6384 return;
6385
6386 /*
6387 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6388 * unique distances in the node_distance() table.
6389 *
6390 * Assumes node_distance(0,j) includes all distances in
6391 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6392 */
6393 next_distance = curr_distance;
6394 for (i = 0; i < nr_node_ids; i++) {
6395 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6396 for (k = 0; k < nr_node_ids; k++) {
6397 int distance = node_distance(i, k);
6398
6399 if (distance > curr_distance &&
6400 (distance < next_distance ||
6401 next_distance == curr_distance))
6402 next_distance = distance;
6403
6404 /*
6405 * While not a strong assumption it would be nice to know
6406 * about cases where if node A is connected to B, B is not
6407 * equally connected to A.
6408 */
6409 if (sched_debug() && node_distance(k, i) != distance)
6410 sched_numa_warn("Node-distance not symmetric");
6411
6412 if (sched_debug() && i && !find_numa_distance(distance))
6413 sched_numa_warn("Node-0 not representative");
6414 }
6415 if (next_distance != curr_distance) {
6416 sched_domains_numa_distance[level++] = next_distance;
6417 sched_domains_numa_levels = level;
6418 curr_distance = next_distance;
6419 } else break;
cb83b629 6420 }
d039ac60
PZ
6421
6422 /*
6423 * In case of sched_debug() we verify the above assumption.
6424 */
6425 if (!sched_debug())
6426 break;
cb83b629 6427 }
c123588b
AR
6428
6429 if (!level)
6430 return;
6431
cb83b629
PZ
6432 /*
6433 * 'level' contains the number of unique distances, excluding the
6434 * identity distance node_distance(i,i).
6435 *
28b4a521 6436 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6437 * numbers.
6438 */
6439
5f7865f3
TC
6440 /*
6441 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6442 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6443 * the array will contain less then 'level' members. This could be
6444 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6445 * in other functions.
6446 *
6447 * We reset it to 'level' at the end of this function.
6448 */
6449 sched_domains_numa_levels = 0;
6450
cb83b629
PZ
6451 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6452 if (!sched_domains_numa_masks)
6453 return;
6454
6455 /*
6456 * Now for each level, construct a mask per node which contains all
6457 * cpus of nodes that are that many hops away from us.
6458 */
6459 for (i = 0; i < level; i++) {
6460 sched_domains_numa_masks[i] =
6461 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6462 if (!sched_domains_numa_masks[i])
6463 return;
6464
6465 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6466 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6467 if (!mask)
6468 return;
6469
6470 sched_domains_numa_masks[i][j] = mask;
6471
6472 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6473 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6474 continue;
6475
6476 cpumask_or(mask, mask, cpumask_of_node(k));
6477 }
6478 }
6479 }
6480
143e1e28
VG
6481 /* Compute default topology size */
6482 for (i = 0; sched_domain_topology[i].mask; i++);
6483
c515db8c 6484 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6485 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6486 if (!tl)
6487 return;
6488
6489 /*
6490 * Copy the default topology bits..
6491 */
143e1e28
VG
6492 for (i = 0; sched_domain_topology[i].mask; i++)
6493 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6494
6495 /*
6496 * .. and append 'j' levels of NUMA goodness.
6497 */
6498 for (j = 0; j < level; i++, j++) {
6499 tl[i] = (struct sched_domain_topology_level){
cb83b629 6500 .mask = sd_numa_mask,
143e1e28 6501 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6502 .flags = SDTL_OVERLAP,
6503 .numa_level = j,
143e1e28 6504 SD_INIT_NAME(NUMA)
cb83b629
PZ
6505 };
6506 }
6507
6508 sched_domain_topology = tl;
5f7865f3
TC
6509
6510 sched_domains_numa_levels = level;
9942f79b 6511 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6512
6513 init_numa_topology_type();
cb83b629 6514}
301a5cba
TC
6515
6516static void sched_domains_numa_masks_set(int cpu)
6517{
6518 int i, j;
6519 int node = cpu_to_node(cpu);
6520
6521 for (i = 0; i < sched_domains_numa_levels; i++) {
6522 for (j = 0; j < nr_node_ids; j++) {
6523 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6524 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6525 }
6526 }
6527}
6528
6529static void sched_domains_numa_masks_clear(int cpu)
6530{
6531 int i, j;
6532 for (i = 0; i < sched_domains_numa_levels; i++) {
6533 for (j = 0; j < nr_node_ids; j++)
6534 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6535 }
6536}
6537
6538/*
6539 * Update sched_domains_numa_masks[level][node] array when new cpus
6540 * are onlined.
6541 */
6542static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6543 unsigned long action,
6544 void *hcpu)
6545{
6546 int cpu = (long)hcpu;
6547
6548 switch (action & ~CPU_TASKS_FROZEN) {
6549 case CPU_ONLINE:
6550 sched_domains_numa_masks_set(cpu);
6551 break;
6552
6553 case CPU_DEAD:
6554 sched_domains_numa_masks_clear(cpu);
6555 break;
6556
6557 default:
6558 return NOTIFY_DONE;
6559 }
6560
6561 return NOTIFY_OK;
cb83b629
PZ
6562}
6563#else
6564static inline void sched_init_numa(void)
6565{
6566}
301a5cba
TC
6567
6568static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6569 unsigned long action,
6570 void *hcpu)
6571{
6572 return 0;
6573}
cb83b629
PZ
6574#endif /* CONFIG_NUMA */
6575
54ab4ff4
PZ
6576static int __sdt_alloc(const struct cpumask *cpu_map)
6577{
6578 struct sched_domain_topology_level *tl;
6579 int j;
6580
27723a68 6581 for_each_sd_topology(tl) {
54ab4ff4
PZ
6582 struct sd_data *sdd = &tl->data;
6583
6584 sdd->sd = alloc_percpu(struct sched_domain *);
6585 if (!sdd->sd)
6586 return -ENOMEM;
6587
6588 sdd->sg = alloc_percpu(struct sched_group *);
6589 if (!sdd->sg)
6590 return -ENOMEM;
6591
63b2ca30
NP
6592 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6593 if (!sdd->sgc)
9c3f75cb
PZ
6594 return -ENOMEM;
6595
54ab4ff4
PZ
6596 for_each_cpu(j, cpu_map) {
6597 struct sched_domain *sd;
6598 struct sched_group *sg;
63b2ca30 6599 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6600
6601 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6602 GFP_KERNEL, cpu_to_node(j));
6603 if (!sd)
6604 return -ENOMEM;
6605
6606 *per_cpu_ptr(sdd->sd, j) = sd;
6607
6608 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6609 GFP_KERNEL, cpu_to_node(j));
6610 if (!sg)
6611 return -ENOMEM;
6612
30b4e9eb
IM
6613 sg->next = sg;
6614
54ab4ff4 6615 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6616
63b2ca30 6617 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6618 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6619 if (!sgc)
9c3f75cb
PZ
6620 return -ENOMEM;
6621
63b2ca30 6622 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6623 }
6624 }
6625
6626 return 0;
6627}
6628
6629static void __sdt_free(const struct cpumask *cpu_map)
6630{
6631 struct sched_domain_topology_level *tl;
6632 int j;
6633
27723a68 6634 for_each_sd_topology(tl) {
54ab4ff4
PZ
6635 struct sd_data *sdd = &tl->data;
6636
6637 for_each_cpu(j, cpu_map) {
fb2cf2c6 6638 struct sched_domain *sd;
6639
6640 if (sdd->sd) {
6641 sd = *per_cpu_ptr(sdd->sd, j);
6642 if (sd && (sd->flags & SD_OVERLAP))
6643 free_sched_groups(sd->groups, 0);
6644 kfree(*per_cpu_ptr(sdd->sd, j));
6645 }
6646
6647 if (sdd->sg)
6648 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6649 if (sdd->sgc)
6650 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6651 }
6652 free_percpu(sdd->sd);
fb2cf2c6 6653 sdd->sd = NULL;
54ab4ff4 6654 free_percpu(sdd->sg);
fb2cf2c6 6655 sdd->sg = NULL;
63b2ca30
NP
6656 free_percpu(sdd->sgc);
6657 sdd->sgc = NULL;
54ab4ff4
PZ
6658 }
6659}
6660
2c402dc3 6661struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6662 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6663 struct sched_domain *child, int cpu)
2c402dc3 6664{
143e1e28 6665 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6666 if (!sd)
d069b916 6667 return child;
2c402dc3 6668
2c402dc3 6669 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6670 if (child) {
6671 sd->level = child->level + 1;
6672 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6673 child->parent = sd;
c75e0128 6674 sd->child = child;
6ae72dff
PZ
6675
6676 if (!cpumask_subset(sched_domain_span(child),
6677 sched_domain_span(sd))) {
6678 pr_err("BUG: arch topology borken\n");
6679#ifdef CONFIG_SCHED_DEBUG
6680 pr_err(" the %s domain not a subset of the %s domain\n",
6681 child->name, sd->name);
6682#endif
6683 /* Fixup, ensure @sd has at least @child cpus. */
6684 cpumask_or(sched_domain_span(sd),
6685 sched_domain_span(sd),
6686 sched_domain_span(child));
6687 }
6688
60495e77 6689 }
a841f8ce 6690 set_domain_attribute(sd, attr);
2c402dc3
PZ
6691
6692 return sd;
6693}
6694
2109b99e
AH
6695/*
6696 * Build sched domains for a given set of cpus and attach the sched domains
6697 * to the individual cpus
6698 */
dce840a0
PZ
6699static int build_sched_domains(const struct cpumask *cpu_map,
6700 struct sched_domain_attr *attr)
2109b99e 6701{
1c632169 6702 enum s_alloc alloc_state;
dce840a0 6703 struct sched_domain *sd;
2109b99e 6704 struct s_data d;
822ff793 6705 int i, ret = -ENOMEM;
9c1cfda2 6706
2109b99e
AH
6707 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6708 if (alloc_state != sa_rootdomain)
6709 goto error;
9c1cfda2 6710
dce840a0 6711 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6712 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6713 struct sched_domain_topology_level *tl;
6714
3bd65a80 6715 sd = NULL;
27723a68 6716 for_each_sd_topology(tl) {
4a850cbe 6717 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6718 if (tl == sched_domain_topology)
6719 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6720 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6721 sd->flags |= SD_OVERLAP;
d110235d
PZ
6722 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6723 break;
e3589f6c 6724 }
dce840a0
PZ
6725 }
6726
6727 /* Build the groups for the domains */
6728 for_each_cpu(i, cpu_map) {
6729 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6730 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6731 if (sd->flags & SD_OVERLAP) {
6732 if (build_overlap_sched_groups(sd, i))
6733 goto error;
6734 } else {
6735 if (build_sched_groups(sd, i))
6736 goto error;
6737 }
1cf51902 6738 }
a06dadbe 6739 }
9c1cfda2 6740
ced549fa 6741 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6742 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6743 if (!cpumask_test_cpu(i, cpu_map))
6744 continue;
9c1cfda2 6745
dce840a0
PZ
6746 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6747 claim_allocations(i, sd);
63b2ca30 6748 init_sched_groups_capacity(i, sd);
dce840a0 6749 }
f712c0c7 6750 }
9c1cfda2 6751
1da177e4 6752 /* Attach the domains */
dce840a0 6753 rcu_read_lock();
abcd083a 6754 for_each_cpu(i, cpu_map) {
21d42ccf 6755 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6756 cpu_attach_domain(sd, d.rd, i);
1da177e4 6757 }
dce840a0 6758 rcu_read_unlock();
51888ca2 6759
822ff793 6760 ret = 0;
51888ca2 6761error:
2109b99e 6762 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6763 return ret;
1da177e4 6764}
029190c5 6765
acc3f5d7 6766static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6767static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6768static struct sched_domain_attr *dattr_cur;
6769 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6770
6771/*
6772 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6773 * cpumask) fails, then fallback to a single sched domain,
6774 * as determined by the single cpumask fallback_doms.
029190c5 6775 */
4212823f 6776static cpumask_var_t fallback_doms;
029190c5 6777
ee79d1bd
HC
6778/*
6779 * arch_update_cpu_topology lets virtualized architectures update the
6780 * cpu core maps. It is supposed to return 1 if the topology changed
6781 * or 0 if it stayed the same.
6782 */
52f5684c 6783int __weak arch_update_cpu_topology(void)
22e52b07 6784{
ee79d1bd 6785 return 0;
22e52b07
HC
6786}
6787
acc3f5d7
RR
6788cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6789{
6790 int i;
6791 cpumask_var_t *doms;
6792
6793 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6794 if (!doms)
6795 return NULL;
6796 for (i = 0; i < ndoms; i++) {
6797 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6798 free_sched_domains(doms, i);
6799 return NULL;
6800 }
6801 }
6802 return doms;
6803}
6804
6805void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6806{
6807 unsigned int i;
6808 for (i = 0; i < ndoms; i++)
6809 free_cpumask_var(doms[i]);
6810 kfree(doms);
6811}
6812
1a20ff27 6813/*
41a2d6cf 6814 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6815 * For now this just excludes isolated cpus, but could be used to
6816 * exclude other special cases in the future.
1a20ff27 6817 */
c4a8849a 6818static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6819{
7378547f
MM
6820 int err;
6821
22e52b07 6822 arch_update_cpu_topology();
029190c5 6823 ndoms_cur = 1;
acc3f5d7 6824 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6825 if (!doms_cur)
acc3f5d7
RR
6826 doms_cur = &fallback_doms;
6827 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6828 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6829 register_sched_domain_sysctl();
7378547f
MM
6830
6831 return err;
1a20ff27
DG
6832}
6833
1a20ff27
DG
6834/*
6835 * Detach sched domains from a group of cpus specified in cpu_map
6836 * These cpus will now be attached to the NULL domain
6837 */
96f874e2 6838static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6839{
6840 int i;
6841
dce840a0 6842 rcu_read_lock();
abcd083a 6843 for_each_cpu(i, cpu_map)
57d885fe 6844 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6845 rcu_read_unlock();
1a20ff27
DG
6846}
6847
1d3504fc
HS
6848/* handle null as "default" */
6849static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6850 struct sched_domain_attr *new, int idx_new)
6851{
6852 struct sched_domain_attr tmp;
6853
6854 /* fast path */
6855 if (!new && !cur)
6856 return 1;
6857
6858 tmp = SD_ATTR_INIT;
6859 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6860 new ? (new + idx_new) : &tmp,
6861 sizeof(struct sched_domain_attr));
6862}
6863
029190c5
PJ
6864/*
6865 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6866 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6867 * doms_new[] to the current sched domain partitioning, doms_cur[].
6868 * It destroys each deleted domain and builds each new domain.
6869 *
acc3f5d7 6870 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6871 * The masks don't intersect (don't overlap.) We should setup one
6872 * sched domain for each mask. CPUs not in any of the cpumasks will
6873 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6874 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6875 * it as it is.
6876 *
acc3f5d7
RR
6877 * The passed in 'doms_new' should be allocated using
6878 * alloc_sched_domains. This routine takes ownership of it and will
6879 * free_sched_domains it when done with it. If the caller failed the
6880 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6881 * and partition_sched_domains() will fallback to the single partition
6882 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6883 *
96f874e2 6884 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6885 * ndoms_new == 0 is a special case for destroying existing domains,
6886 * and it will not create the default domain.
dfb512ec 6887 *
029190c5
PJ
6888 * Call with hotplug lock held
6889 */
acc3f5d7 6890void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6891 struct sched_domain_attr *dattr_new)
029190c5 6892{
dfb512ec 6893 int i, j, n;
d65bd5ec 6894 int new_topology;
029190c5 6895
712555ee 6896 mutex_lock(&sched_domains_mutex);
a1835615 6897
7378547f
MM
6898 /* always unregister in case we don't destroy any domains */
6899 unregister_sched_domain_sysctl();
6900
d65bd5ec
HC
6901 /* Let architecture update cpu core mappings. */
6902 new_topology = arch_update_cpu_topology();
6903
dfb512ec 6904 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6905
6906 /* Destroy deleted domains */
6907 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6908 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6909 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6910 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6911 goto match1;
6912 }
6913 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6914 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6915match1:
6916 ;
6917 }
6918
c8d2d47a 6919 n = ndoms_cur;
e761b772 6920 if (doms_new == NULL) {
c8d2d47a 6921 n = 0;
acc3f5d7 6922 doms_new = &fallback_doms;
6ad4c188 6923 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6924 WARN_ON_ONCE(dattr_new);
e761b772
MK
6925 }
6926
029190c5
PJ
6927 /* Build new domains */
6928 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6929 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6930 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6931 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6932 goto match2;
6933 }
6934 /* no match - add a new doms_new */
dce840a0 6935 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6936match2:
6937 ;
6938 }
6939
6940 /* Remember the new sched domains */
acc3f5d7
RR
6941 if (doms_cur != &fallback_doms)
6942 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6943 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6944 doms_cur = doms_new;
1d3504fc 6945 dattr_cur = dattr_new;
029190c5 6946 ndoms_cur = ndoms_new;
7378547f
MM
6947
6948 register_sched_domain_sysctl();
a1835615 6949
712555ee 6950 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6951}
6952
d35be8ba
SB
6953static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6954
1da177e4 6955/*
3a101d05
TH
6956 * Update cpusets according to cpu_active mask. If cpusets are
6957 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6958 * around partition_sched_domains().
d35be8ba
SB
6959 *
6960 * If we come here as part of a suspend/resume, don't touch cpusets because we
6961 * want to restore it back to its original state upon resume anyway.
1da177e4 6962 */
0b2e918a
TH
6963static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6964 void *hcpu)
e761b772 6965{
d35be8ba
SB
6966 switch (action) {
6967 case CPU_ONLINE_FROZEN:
6968 case CPU_DOWN_FAILED_FROZEN:
6969
6970 /*
6971 * num_cpus_frozen tracks how many CPUs are involved in suspend
6972 * resume sequence. As long as this is not the last online
6973 * operation in the resume sequence, just build a single sched
6974 * domain, ignoring cpusets.
6975 */
6976 num_cpus_frozen--;
6977 if (likely(num_cpus_frozen)) {
6978 partition_sched_domains(1, NULL, NULL);
6979 break;
6980 }
6981
6982 /*
6983 * This is the last CPU online operation. So fall through and
6984 * restore the original sched domains by considering the
6985 * cpuset configurations.
6986 */
6987
e761b772 6988 case CPU_ONLINE:
7ddf96b0 6989 cpuset_update_active_cpus(true);
d35be8ba 6990 break;
3a101d05
TH
6991 default:
6992 return NOTIFY_DONE;
6993 }
d35be8ba 6994 return NOTIFY_OK;
3a101d05 6995}
e761b772 6996
0b2e918a
TH
6997static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6998 void *hcpu)
3a101d05 6999{
3c18d447
JL
7000 unsigned long flags;
7001 long cpu = (long)hcpu;
7002 struct dl_bw *dl_b;
533445c6
OS
7003 bool overflow;
7004 int cpus;
3c18d447 7005
533445c6 7006 switch (action) {
3a101d05 7007 case CPU_DOWN_PREPARE:
533445c6
OS
7008 rcu_read_lock_sched();
7009 dl_b = dl_bw_of(cpu);
3c18d447 7010
533445c6
OS
7011 raw_spin_lock_irqsave(&dl_b->lock, flags);
7012 cpus = dl_bw_cpus(cpu);
7013 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7014 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7015
533445c6 7016 rcu_read_unlock_sched();
3c18d447 7017
533445c6
OS
7018 if (overflow)
7019 return notifier_from_errno(-EBUSY);
7ddf96b0 7020 cpuset_update_active_cpus(false);
d35be8ba
SB
7021 break;
7022 case CPU_DOWN_PREPARE_FROZEN:
7023 num_cpus_frozen++;
7024 partition_sched_domains(1, NULL, NULL);
7025 break;
e761b772
MK
7026 default:
7027 return NOTIFY_DONE;
7028 }
d35be8ba 7029 return NOTIFY_OK;
e761b772 7030}
e761b772 7031
1da177e4
LT
7032void __init sched_init_smp(void)
7033{
dcc30a35
RR
7034 cpumask_var_t non_isolated_cpus;
7035
7036 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7037 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7038
cb83b629
PZ
7039 sched_init_numa();
7040
6acce3ef
PZ
7041 /*
7042 * There's no userspace yet to cause hotplug operations; hence all the
7043 * cpu masks are stable and all blatant races in the below code cannot
7044 * happen.
7045 */
712555ee 7046 mutex_lock(&sched_domains_mutex);
c4a8849a 7047 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7048 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7049 if (cpumask_empty(non_isolated_cpus))
7050 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7051 mutex_unlock(&sched_domains_mutex);
e761b772 7052
301a5cba 7053 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7054 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7055 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7056
b328ca18 7057 init_hrtick();
5c1e1767
NP
7058
7059 /* Move init over to a non-isolated CPU */
dcc30a35 7060 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7061 BUG();
19978ca6 7062 sched_init_granularity();
dcc30a35 7063 free_cpumask_var(non_isolated_cpus);
4212823f 7064
0e3900e6 7065 init_sched_rt_class();
1baca4ce 7066 init_sched_dl_class();
1da177e4
LT
7067}
7068#else
7069void __init sched_init_smp(void)
7070{
19978ca6 7071 sched_init_granularity();
1da177e4
LT
7072}
7073#endif /* CONFIG_SMP */
7074
cd1bb94b
AB
7075const_debug unsigned int sysctl_timer_migration = 1;
7076
1da177e4
LT
7077int in_sched_functions(unsigned long addr)
7078{
1da177e4
LT
7079 return in_lock_functions(addr) ||
7080 (addr >= (unsigned long)__sched_text_start
7081 && addr < (unsigned long)__sched_text_end);
7082}
7083
029632fb 7084#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7085/*
7086 * Default task group.
7087 * Every task in system belongs to this group at bootup.
7088 */
029632fb 7089struct task_group root_task_group;
35cf4e50 7090LIST_HEAD(task_groups);
052f1dc7 7091#endif
6f505b16 7092
e6252c3e 7093DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7094
1da177e4
LT
7095void __init sched_init(void)
7096{
dd41f596 7097 int i, j;
434d53b0
MT
7098 unsigned long alloc_size = 0, ptr;
7099
7100#ifdef CONFIG_FAIR_GROUP_SCHED
7101 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7102#endif
7103#ifdef CONFIG_RT_GROUP_SCHED
7104 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7105#endif
434d53b0 7106 if (alloc_size) {
36b7b6d4 7107 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7108
7109#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7110 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7111 ptr += nr_cpu_ids * sizeof(void **);
7112
07e06b01 7113 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7114 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7115
6d6bc0ad 7116#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7117#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7118 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7119 ptr += nr_cpu_ids * sizeof(void **);
7120
07e06b01 7121 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7122 ptr += nr_cpu_ids * sizeof(void **);
7123
6d6bc0ad 7124#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7125 }
df7c8e84 7126#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7127 for_each_possible_cpu(i) {
7128 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7129 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7130 }
b74e6278 7131#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7132
332ac17e
DF
7133 init_rt_bandwidth(&def_rt_bandwidth,
7134 global_rt_period(), global_rt_runtime());
7135 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7136 global_rt_period(), global_rt_runtime());
332ac17e 7137
57d885fe
GH
7138#ifdef CONFIG_SMP
7139 init_defrootdomain();
7140#endif
7141
d0b27fa7 7142#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7143 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7144 global_rt_period(), global_rt_runtime());
6d6bc0ad 7145#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7146
7c941438 7147#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7148 list_add(&root_task_group.list, &task_groups);
7149 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7150 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7151 autogroup_init(&init_task);
54c707e9 7152
7c941438 7153#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7154
0a945022 7155 for_each_possible_cpu(i) {
70b97a7f 7156 struct rq *rq;
1da177e4
LT
7157
7158 rq = cpu_rq(i);
05fa785c 7159 raw_spin_lock_init(&rq->lock);
7897986b 7160 rq->nr_running = 0;
dce48a84
TG
7161 rq->calc_load_active = 0;
7162 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7163 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7164 init_rt_rq(&rq->rt);
7165 init_dl_rq(&rq->dl);
dd41f596 7166#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7167 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7168 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7169 /*
07e06b01 7170 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7171 *
7172 * In case of task-groups formed thr' the cgroup filesystem, it
7173 * gets 100% of the cpu resources in the system. This overall
7174 * system cpu resource is divided among the tasks of
07e06b01 7175 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7176 * based on each entity's (task or task-group's) weight
7177 * (se->load.weight).
7178 *
07e06b01 7179 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7180 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7181 * then A0's share of the cpu resource is:
7182 *
0d905bca 7183 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7184 *
07e06b01
YZ
7185 * We achieve this by letting root_task_group's tasks sit
7186 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7187 */
ab84d31e 7188 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7189 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7190#endif /* CONFIG_FAIR_GROUP_SCHED */
7191
7192 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7193#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7194 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7195#endif
1da177e4 7196
dd41f596
IM
7197 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7198 rq->cpu_load[j] = 0;
fdf3e95d
VP
7199
7200 rq->last_load_update_tick = jiffies;
7201
1da177e4 7202#ifdef CONFIG_SMP
41c7ce9a 7203 rq->sd = NULL;
57d885fe 7204 rq->rd = NULL;
ca6d75e6 7205 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7206 rq->post_schedule = 0;
1da177e4 7207 rq->active_balance = 0;
dd41f596 7208 rq->next_balance = jiffies;
1da177e4 7209 rq->push_cpu = 0;
0a2966b4 7210 rq->cpu = i;
1f11eb6a 7211 rq->online = 0;
eae0c9df
MG
7212 rq->idle_stamp = 0;
7213 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7214 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7215
7216 INIT_LIST_HEAD(&rq->cfs_tasks);
7217
dc938520 7218 rq_attach_root(rq, &def_root_domain);
3451d024 7219#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7220 rq->nohz_flags = 0;
83cd4fe2 7221#endif
265f22a9
FW
7222#ifdef CONFIG_NO_HZ_FULL
7223 rq->last_sched_tick = 0;
7224#endif
1da177e4 7225#endif
8f4d37ec 7226 init_rq_hrtick(rq);
1da177e4 7227 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7228 }
7229
2dd73a4f 7230 set_load_weight(&init_task);
b50f60ce 7231
e107be36
AK
7232#ifdef CONFIG_PREEMPT_NOTIFIERS
7233 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7234#endif
7235
1da177e4
LT
7236 /*
7237 * The boot idle thread does lazy MMU switching as well:
7238 */
7239 atomic_inc(&init_mm.mm_count);
7240 enter_lazy_tlb(&init_mm, current);
7241
1b537c7d
YD
7242 /*
7243 * During early bootup we pretend to be a normal task:
7244 */
7245 current->sched_class = &fair_sched_class;
7246
1da177e4
LT
7247 /*
7248 * Make us the idle thread. Technically, schedule() should not be
7249 * called from this thread, however somewhere below it might be,
7250 * but because we are the idle thread, we just pick up running again
7251 * when this runqueue becomes "idle".
7252 */
7253 init_idle(current, smp_processor_id());
dce48a84
TG
7254
7255 calc_load_update = jiffies + LOAD_FREQ;
7256
bf4d83f6 7257#ifdef CONFIG_SMP
4cb98839 7258 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7259 /* May be allocated at isolcpus cmdline parse time */
7260 if (cpu_isolated_map == NULL)
7261 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7262 idle_thread_set_boot_cpu();
a803f026 7263 set_cpu_rq_start_time();
029632fb
PZ
7264#endif
7265 init_sched_fair_class();
6a7b3dc3 7266
6892b75e 7267 scheduler_running = 1;
1da177e4
LT
7268}
7269
d902db1e 7270#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7271static inline int preempt_count_equals(int preempt_offset)
7272{
234da7bc 7273 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7274
4ba8216c 7275 return (nested == preempt_offset);
e4aafea2
FW
7276}
7277
d894837f 7278void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7279{
8eb23b9f
PZ
7280 /*
7281 * Blocking primitives will set (and therefore destroy) current->state,
7282 * since we will exit with TASK_RUNNING make sure we enter with it,
7283 * otherwise we will destroy state.
7284 */
00845eb9 7285 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7286 "do not call blocking ops when !TASK_RUNNING; "
7287 "state=%lx set at [<%p>] %pS\n",
7288 current->state,
7289 (void *)current->task_state_change,
00845eb9 7290 (void *)current->task_state_change);
8eb23b9f 7291
3427445a
PZ
7292 ___might_sleep(file, line, preempt_offset);
7293}
7294EXPORT_SYMBOL(__might_sleep);
7295
7296void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7297{
1da177e4
LT
7298 static unsigned long prev_jiffy; /* ratelimiting */
7299
b3fbab05 7300 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7301 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7302 !is_idle_task(current)) ||
e4aafea2 7303 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7304 return;
7305 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7306 return;
7307 prev_jiffy = jiffies;
7308
3df0fc5b
PZ
7309 printk(KERN_ERR
7310 "BUG: sleeping function called from invalid context at %s:%d\n",
7311 file, line);
7312 printk(KERN_ERR
7313 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7314 in_atomic(), irqs_disabled(),
7315 current->pid, current->comm);
aef745fc 7316
a8b686b3
ES
7317 if (task_stack_end_corrupted(current))
7318 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7319
aef745fc
IM
7320 debug_show_held_locks(current);
7321 if (irqs_disabled())
7322 print_irqtrace_events(current);
8f47b187
TG
7323#ifdef CONFIG_DEBUG_PREEMPT
7324 if (!preempt_count_equals(preempt_offset)) {
7325 pr_err("Preemption disabled at:");
7326 print_ip_sym(current->preempt_disable_ip);
7327 pr_cont("\n");
7328 }
7329#endif
aef745fc 7330 dump_stack();
1da177e4 7331}
3427445a 7332EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7333#endif
7334
7335#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7336static void normalize_task(struct rq *rq, struct task_struct *p)
7337{
da7a735e 7338 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7339 struct sched_attr attr = {
7340 .sched_policy = SCHED_NORMAL,
7341 };
da7a735e 7342 int old_prio = p->prio;
da0c1e65 7343 int queued;
3e51f33f 7344
da0c1e65
KT
7345 queued = task_on_rq_queued(p);
7346 if (queued)
4ca9b72b 7347 dequeue_task(rq, p, 0);
0782e63b 7348 __setscheduler(rq, p, &attr, false);
da0c1e65 7349 if (queued) {
4ca9b72b 7350 enqueue_task(rq, p, 0);
8875125e 7351 resched_curr(rq);
3a5e4dc1 7352 }
da7a735e
PZ
7353
7354 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7355}
7356
1da177e4
LT
7357void normalize_rt_tasks(void)
7358{
a0f98a1c 7359 struct task_struct *g, *p;
1da177e4 7360 unsigned long flags;
70b97a7f 7361 struct rq *rq;
1da177e4 7362
3472eaa1 7363 read_lock(&tasklist_lock);
5d07f420 7364 for_each_process_thread(g, p) {
178be793
IM
7365 /*
7366 * Only normalize user tasks:
7367 */
3472eaa1 7368 if (p->flags & PF_KTHREAD)
178be793
IM
7369 continue;
7370
6cfb0d5d 7371 p->se.exec_start = 0;
6cfb0d5d 7372#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7373 p->se.statistics.wait_start = 0;
7374 p->se.statistics.sleep_start = 0;
7375 p->se.statistics.block_start = 0;
6cfb0d5d 7376#endif
dd41f596 7377
aab03e05 7378 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7379 /*
7380 * Renice negative nice level userspace
7381 * tasks back to 0:
7382 */
3472eaa1 7383 if (task_nice(p) < 0)
dd41f596 7384 set_user_nice(p, 0);
1da177e4 7385 continue;
dd41f596 7386 }
1da177e4 7387
3472eaa1 7388 rq = task_rq_lock(p, &flags);
178be793 7389 normalize_task(rq, p);
3472eaa1 7390 task_rq_unlock(rq, p, &flags);
5d07f420 7391 }
3472eaa1 7392 read_unlock(&tasklist_lock);
1da177e4
LT
7393}
7394
7395#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7396
67fc4e0c 7397#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7398/*
67fc4e0c 7399 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7400 *
7401 * They can only be called when the whole system has been
7402 * stopped - every CPU needs to be quiescent, and no scheduling
7403 * activity can take place. Using them for anything else would
7404 * be a serious bug, and as a result, they aren't even visible
7405 * under any other configuration.
7406 */
7407
7408/**
7409 * curr_task - return the current task for a given cpu.
7410 * @cpu: the processor in question.
7411 *
7412 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7413 *
7414 * Return: The current task for @cpu.
1df5c10a 7415 */
36c8b586 7416struct task_struct *curr_task(int cpu)
1df5c10a
LT
7417{
7418 return cpu_curr(cpu);
7419}
7420
67fc4e0c
JW
7421#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7422
7423#ifdef CONFIG_IA64
1df5c10a
LT
7424/**
7425 * set_curr_task - set the current task for a given cpu.
7426 * @cpu: the processor in question.
7427 * @p: the task pointer to set.
7428 *
7429 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7430 * are serviced on a separate stack. It allows the architecture to switch the
7431 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7432 * must be called with all CPU's synchronized, and interrupts disabled, the
7433 * and caller must save the original value of the current task (see
7434 * curr_task() above) and restore that value before reenabling interrupts and
7435 * re-starting the system.
7436 *
7437 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7438 */
36c8b586 7439void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7440{
7441 cpu_curr(cpu) = p;
7442}
7443
7444#endif
29f59db3 7445
7c941438 7446#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7447/* task_group_lock serializes the addition/removal of task groups */
7448static DEFINE_SPINLOCK(task_group_lock);
7449
bccbe08a
PZ
7450static void free_sched_group(struct task_group *tg)
7451{
7452 free_fair_sched_group(tg);
7453 free_rt_sched_group(tg);
e9aa1dd1 7454 autogroup_free(tg);
bccbe08a
PZ
7455 kfree(tg);
7456}
7457
7458/* allocate runqueue etc for a new task group */
ec7dc8ac 7459struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7460{
7461 struct task_group *tg;
bccbe08a
PZ
7462
7463 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7464 if (!tg)
7465 return ERR_PTR(-ENOMEM);
7466
ec7dc8ac 7467 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7468 goto err;
7469
ec7dc8ac 7470 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7471 goto err;
7472
ace783b9
LZ
7473 return tg;
7474
7475err:
7476 free_sched_group(tg);
7477 return ERR_PTR(-ENOMEM);
7478}
7479
7480void sched_online_group(struct task_group *tg, struct task_group *parent)
7481{
7482 unsigned long flags;
7483
8ed36996 7484 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7485 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7486
7487 WARN_ON(!parent); /* root should already exist */
7488
7489 tg->parent = parent;
f473aa5e 7490 INIT_LIST_HEAD(&tg->children);
09f2724a 7491 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7492 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7493}
7494
9b5b7751 7495/* rcu callback to free various structures associated with a task group */
6f505b16 7496static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7497{
29f59db3 7498 /* now it should be safe to free those cfs_rqs */
6f505b16 7499 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7500}
7501
9b5b7751 7502/* Destroy runqueue etc associated with a task group */
4cf86d77 7503void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7504{
7505 /* wait for possible concurrent references to cfs_rqs complete */
7506 call_rcu(&tg->rcu, free_sched_group_rcu);
7507}
7508
7509void sched_offline_group(struct task_group *tg)
29f59db3 7510{
8ed36996 7511 unsigned long flags;
9b5b7751 7512 int i;
29f59db3 7513
3d4b47b4
PZ
7514 /* end participation in shares distribution */
7515 for_each_possible_cpu(i)
bccbe08a 7516 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7517
7518 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7519 list_del_rcu(&tg->list);
f473aa5e 7520 list_del_rcu(&tg->siblings);
8ed36996 7521 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7522}
7523
9b5b7751 7524/* change task's runqueue when it moves between groups.
3a252015
IM
7525 * The caller of this function should have put the task in its new group
7526 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7527 * reflect its new group.
9b5b7751
SV
7528 */
7529void sched_move_task(struct task_struct *tsk)
29f59db3 7530{
8323f26c 7531 struct task_group *tg;
da0c1e65 7532 int queued, running;
29f59db3
SV
7533 unsigned long flags;
7534 struct rq *rq;
7535
7536 rq = task_rq_lock(tsk, &flags);
7537
051a1d1a 7538 running = task_current(rq, tsk);
da0c1e65 7539 queued = task_on_rq_queued(tsk);
29f59db3 7540
da0c1e65 7541 if (queued)
29f59db3 7542 dequeue_task(rq, tsk, 0);
0e1f3483 7543 if (unlikely(running))
f3cd1c4e 7544 put_prev_task(rq, tsk);
29f59db3 7545
f7b8a47d
KT
7546 /*
7547 * All callers are synchronized by task_rq_lock(); we do not use RCU
7548 * which is pointless here. Thus, we pass "true" to task_css_check()
7549 * to prevent lockdep warnings.
7550 */
7551 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7552 struct task_group, css);
7553 tg = autogroup_task_group(tsk, tg);
7554 tsk->sched_task_group = tg;
7555
810b3817 7556#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7557 if (tsk->sched_class->task_move_group)
da0c1e65 7558 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7559 else
810b3817 7560#endif
b2b5ce02 7561 set_task_rq(tsk, task_cpu(tsk));
810b3817 7562
0e1f3483
HS
7563 if (unlikely(running))
7564 tsk->sched_class->set_curr_task(rq);
da0c1e65 7565 if (queued)
371fd7e7 7566 enqueue_task(rq, tsk, 0);
29f59db3 7567
0122ec5b 7568 task_rq_unlock(rq, tsk, &flags);
29f59db3 7569}
7c941438 7570#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7571
a790de99
PT
7572#ifdef CONFIG_RT_GROUP_SCHED
7573/*
7574 * Ensure that the real time constraints are schedulable.
7575 */
7576static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7577
9a7e0b18
PZ
7578/* Must be called with tasklist_lock held */
7579static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7580{
9a7e0b18 7581 struct task_struct *g, *p;
b40b2e8e 7582
1fe89e1b
PZ
7583 /*
7584 * Autogroups do not have RT tasks; see autogroup_create().
7585 */
7586 if (task_group_is_autogroup(tg))
7587 return 0;
7588
5d07f420 7589 for_each_process_thread(g, p) {
8651c658 7590 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7591 return 1;
5d07f420 7592 }
b40b2e8e 7593
9a7e0b18
PZ
7594 return 0;
7595}
b40b2e8e 7596
9a7e0b18
PZ
7597struct rt_schedulable_data {
7598 struct task_group *tg;
7599 u64 rt_period;
7600 u64 rt_runtime;
7601};
b40b2e8e 7602
a790de99 7603static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7604{
7605 struct rt_schedulable_data *d = data;
7606 struct task_group *child;
7607 unsigned long total, sum = 0;
7608 u64 period, runtime;
b40b2e8e 7609
9a7e0b18
PZ
7610 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7611 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7612
9a7e0b18
PZ
7613 if (tg == d->tg) {
7614 period = d->rt_period;
7615 runtime = d->rt_runtime;
b40b2e8e 7616 }
b40b2e8e 7617
4653f803
PZ
7618 /*
7619 * Cannot have more runtime than the period.
7620 */
7621 if (runtime > period && runtime != RUNTIME_INF)
7622 return -EINVAL;
6f505b16 7623
4653f803
PZ
7624 /*
7625 * Ensure we don't starve existing RT tasks.
7626 */
9a7e0b18
PZ
7627 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7628 return -EBUSY;
6f505b16 7629
9a7e0b18 7630 total = to_ratio(period, runtime);
6f505b16 7631
4653f803
PZ
7632 /*
7633 * Nobody can have more than the global setting allows.
7634 */
7635 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7636 return -EINVAL;
6f505b16 7637
4653f803
PZ
7638 /*
7639 * The sum of our children's runtime should not exceed our own.
7640 */
9a7e0b18
PZ
7641 list_for_each_entry_rcu(child, &tg->children, siblings) {
7642 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7643 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7644
9a7e0b18
PZ
7645 if (child == d->tg) {
7646 period = d->rt_period;
7647 runtime = d->rt_runtime;
7648 }
6f505b16 7649
9a7e0b18 7650 sum += to_ratio(period, runtime);
9f0c1e56 7651 }
6f505b16 7652
9a7e0b18
PZ
7653 if (sum > total)
7654 return -EINVAL;
7655
7656 return 0;
6f505b16
PZ
7657}
7658
9a7e0b18 7659static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7660{
8277434e
PT
7661 int ret;
7662
9a7e0b18
PZ
7663 struct rt_schedulable_data data = {
7664 .tg = tg,
7665 .rt_period = period,
7666 .rt_runtime = runtime,
7667 };
7668
8277434e
PT
7669 rcu_read_lock();
7670 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7671 rcu_read_unlock();
7672
7673 return ret;
521f1a24
DG
7674}
7675
ab84d31e 7676static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7677 u64 rt_period, u64 rt_runtime)
6f505b16 7678{
ac086bc2 7679 int i, err = 0;
9f0c1e56 7680
2636ed5f
PZ
7681 /*
7682 * Disallowing the root group RT runtime is BAD, it would disallow the
7683 * kernel creating (and or operating) RT threads.
7684 */
7685 if (tg == &root_task_group && rt_runtime == 0)
7686 return -EINVAL;
7687
7688 /* No period doesn't make any sense. */
7689 if (rt_period == 0)
7690 return -EINVAL;
7691
9f0c1e56 7692 mutex_lock(&rt_constraints_mutex);
521f1a24 7693 read_lock(&tasklist_lock);
9a7e0b18
PZ
7694 err = __rt_schedulable(tg, rt_period, rt_runtime);
7695 if (err)
9f0c1e56 7696 goto unlock;
ac086bc2 7697
0986b11b 7698 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7699 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7700 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7701
7702 for_each_possible_cpu(i) {
7703 struct rt_rq *rt_rq = tg->rt_rq[i];
7704
0986b11b 7705 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7706 rt_rq->rt_runtime = rt_runtime;
0986b11b 7707 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7708 }
0986b11b 7709 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7710unlock:
521f1a24 7711 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7712 mutex_unlock(&rt_constraints_mutex);
7713
7714 return err;
6f505b16
PZ
7715}
7716
25cc7da7 7717static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7718{
7719 u64 rt_runtime, rt_period;
7720
7721 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7722 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7723 if (rt_runtime_us < 0)
7724 rt_runtime = RUNTIME_INF;
7725
ab84d31e 7726 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7727}
7728
25cc7da7 7729static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7730{
7731 u64 rt_runtime_us;
7732
d0b27fa7 7733 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7734 return -1;
7735
d0b27fa7 7736 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7737 do_div(rt_runtime_us, NSEC_PER_USEC);
7738 return rt_runtime_us;
7739}
d0b27fa7 7740
ce2f5fe4 7741static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7742{
7743 u64 rt_runtime, rt_period;
7744
ce2f5fe4 7745 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7746 rt_runtime = tg->rt_bandwidth.rt_runtime;
7747
ab84d31e 7748 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7749}
7750
25cc7da7 7751static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7752{
7753 u64 rt_period_us;
7754
7755 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7756 do_div(rt_period_us, NSEC_PER_USEC);
7757 return rt_period_us;
7758}
332ac17e 7759#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7760
332ac17e 7761#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7762static int sched_rt_global_constraints(void)
7763{
7764 int ret = 0;
7765
7766 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7767 read_lock(&tasklist_lock);
4653f803 7768 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7769 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7770 mutex_unlock(&rt_constraints_mutex);
7771
7772 return ret;
7773}
54e99124 7774
25cc7da7 7775static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7776{
7777 /* Don't accept realtime tasks when there is no way for them to run */
7778 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7779 return 0;
7780
7781 return 1;
7782}
7783
6d6bc0ad 7784#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7785static int sched_rt_global_constraints(void)
7786{
ac086bc2 7787 unsigned long flags;
332ac17e 7788 int i, ret = 0;
ec5d4989 7789
0986b11b 7790 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7791 for_each_possible_cpu(i) {
7792 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7793
0986b11b 7794 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7795 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7796 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7797 }
0986b11b 7798 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7799
332ac17e 7800 return ret;
d0b27fa7 7801}
6d6bc0ad 7802#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7803
a1963b81 7804static int sched_dl_global_validate(void)
332ac17e 7805{
1724813d
PZ
7806 u64 runtime = global_rt_runtime();
7807 u64 period = global_rt_period();
332ac17e 7808 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7809 struct dl_bw *dl_b;
1724813d 7810 int cpu, ret = 0;
49516342 7811 unsigned long flags;
332ac17e
DF
7812
7813 /*
7814 * Here we want to check the bandwidth not being set to some
7815 * value smaller than the currently allocated bandwidth in
7816 * any of the root_domains.
7817 *
7818 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7819 * cycling on root_domains... Discussion on different/better
7820 * solutions is welcome!
7821 */
1724813d 7822 for_each_possible_cpu(cpu) {
f10e00f4
KT
7823 rcu_read_lock_sched();
7824 dl_b = dl_bw_of(cpu);
332ac17e 7825
49516342 7826 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7827 if (new_bw < dl_b->total_bw)
7828 ret = -EBUSY;
49516342 7829 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7830
f10e00f4
KT
7831 rcu_read_unlock_sched();
7832
1724813d
PZ
7833 if (ret)
7834 break;
332ac17e
DF
7835 }
7836
1724813d 7837 return ret;
332ac17e
DF
7838}
7839
1724813d 7840static void sched_dl_do_global(void)
ce0dbbbb 7841{
1724813d 7842 u64 new_bw = -1;
f10e00f4 7843 struct dl_bw *dl_b;
1724813d 7844 int cpu;
49516342 7845 unsigned long flags;
ce0dbbbb 7846
1724813d
PZ
7847 def_dl_bandwidth.dl_period = global_rt_period();
7848 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7849
7850 if (global_rt_runtime() != RUNTIME_INF)
7851 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7852
7853 /*
7854 * FIXME: As above...
7855 */
7856 for_each_possible_cpu(cpu) {
f10e00f4
KT
7857 rcu_read_lock_sched();
7858 dl_b = dl_bw_of(cpu);
1724813d 7859
49516342 7860 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7861 dl_b->bw = new_bw;
49516342 7862 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7863
7864 rcu_read_unlock_sched();
ce0dbbbb 7865 }
1724813d
PZ
7866}
7867
7868static int sched_rt_global_validate(void)
7869{
7870 if (sysctl_sched_rt_period <= 0)
7871 return -EINVAL;
7872
e9e7cb38
JL
7873 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7874 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7875 return -EINVAL;
7876
7877 return 0;
7878}
7879
7880static void sched_rt_do_global(void)
7881{
7882 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7883 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7884}
7885
d0b27fa7 7886int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7887 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7888 loff_t *ppos)
7889{
d0b27fa7
PZ
7890 int old_period, old_runtime;
7891 static DEFINE_MUTEX(mutex);
1724813d 7892 int ret;
d0b27fa7
PZ
7893
7894 mutex_lock(&mutex);
7895 old_period = sysctl_sched_rt_period;
7896 old_runtime = sysctl_sched_rt_runtime;
7897
8d65af78 7898 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7899
7900 if (!ret && write) {
1724813d
PZ
7901 ret = sched_rt_global_validate();
7902 if (ret)
7903 goto undo;
7904
a1963b81 7905 ret = sched_dl_global_validate();
1724813d
PZ
7906 if (ret)
7907 goto undo;
7908
a1963b81 7909 ret = sched_rt_global_constraints();
1724813d
PZ
7910 if (ret)
7911 goto undo;
7912
7913 sched_rt_do_global();
7914 sched_dl_do_global();
7915 }
7916 if (0) {
7917undo:
7918 sysctl_sched_rt_period = old_period;
7919 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7920 }
7921 mutex_unlock(&mutex);
7922
7923 return ret;
7924}
68318b8e 7925
1724813d 7926int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7927 void __user *buffer, size_t *lenp,
7928 loff_t *ppos)
7929{
7930 int ret;
332ac17e 7931 static DEFINE_MUTEX(mutex);
332ac17e
DF
7932
7933 mutex_lock(&mutex);
332ac17e 7934 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7935 /* make sure that internally we keep jiffies */
7936 /* also, writing zero resets timeslice to default */
332ac17e 7937 if (!ret && write) {
1724813d
PZ
7938 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7939 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7940 }
7941 mutex_unlock(&mutex);
332ac17e
DF
7942 return ret;
7943}
7944
052f1dc7 7945#ifdef CONFIG_CGROUP_SCHED
68318b8e 7946
a7c6d554 7947static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7948{
a7c6d554 7949 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7950}
7951
eb95419b
TH
7952static struct cgroup_subsys_state *
7953cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7954{
eb95419b
TH
7955 struct task_group *parent = css_tg(parent_css);
7956 struct task_group *tg;
68318b8e 7957
eb95419b 7958 if (!parent) {
68318b8e 7959 /* This is early initialization for the top cgroup */
07e06b01 7960 return &root_task_group.css;
68318b8e
SV
7961 }
7962
ec7dc8ac 7963 tg = sched_create_group(parent);
68318b8e
SV
7964 if (IS_ERR(tg))
7965 return ERR_PTR(-ENOMEM);
7966
68318b8e
SV
7967 return &tg->css;
7968}
7969
eb95419b 7970static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7971{
eb95419b 7972 struct task_group *tg = css_tg(css);
5c9d535b 7973 struct task_group *parent = css_tg(css->parent);
ace783b9 7974
63876986
TH
7975 if (parent)
7976 sched_online_group(tg, parent);
ace783b9
LZ
7977 return 0;
7978}
7979
eb95419b 7980static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7981{
eb95419b 7982 struct task_group *tg = css_tg(css);
68318b8e
SV
7983
7984 sched_destroy_group(tg);
7985}
7986
eb95419b 7987static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7988{
eb95419b 7989 struct task_group *tg = css_tg(css);
ace783b9
LZ
7990
7991 sched_offline_group(tg);
7992}
7993
eeb61e53
KT
7994static void cpu_cgroup_fork(struct task_struct *task)
7995{
7996 sched_move_task(task);
7997}
7998
eb95419b 7999static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8000 struct cgroup_taskset *tset)
68318b8e 8001{
bb9d97b6
TH
8002 struct task_struct *task;
8003
924f0d9a 8004 cgroup_taskset_for_each(task, tset) {
b68aa230 8005#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8006 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8007 return -EINVAL;
b68aa230 8008#else
bb9d97b6
TH
8009 /* We don't support RT-tasks being in separate groups */
8010 if (task->sched_class != &fair_sched_class)
8011 return -EINVAL;
b68aa230 8012#endif
bb9d97b6 8013 }
be367d09
BB
8014 return 0;
8015}
68318b8e 8016
eb95419b 8017static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8018 struct cgroup_taskset *tset)
68318b8e 8019{
bb9d97b6
TH
8020 struct task_struct *task;
8021
924f0d9a 8022 cgroup_taskset_for_each(task, tset)
bb9d97b6 8023 sched_move_task(task);
68318b8e
SV
8024}
8025
eb95419b
TH
8026static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8027 struct cgroup_subsys_state *old_css,
8028 struct task_struct *task)
068c5cc5
PZ
8029{
8030 /*
8031 * cgroup_exit() is called in the copy_process() failure path.
8032 * Ignore this case since the task hasn't ran yet, this avoids
8033 * trying to poke a half freed task state from generic code.
8034 */
8035 if (!(task->flags & PF_EXITING))
8036 return;
8037
8038 sched_move_task(task);
8039}
8040
052f1dc7 8041#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8042static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8043 struct cftype *cftype, u64 shareval)
68318b8e 8044{
182446d0 8045 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8046}
8047
182446d0
TH
8048static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8049 struct cftype *cft)
68318b8e 8050{
182446d0 8051 struct task_group *tg = css_tg(css);
68318b8e 8052
c8b28116 8053 return (u64) scale_load_down(tg->shares);
68318b8e 8054}
ab84d31e
PT
8055
8056#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8057static DEFINE_MUTEX(cfs_constraints_mutex);
8058
ab84d31e
PT
8059const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8060const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8061
a790de99
PT
8062static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8063
ab84d31e
PT
8064static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8065{
56f570e5 8066 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8067 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8068
8069 if (tg == &root_task_group)
8070 return -EINVAL;
8071
8072 /*
8073 * Ensure we have at some amount of bandwidth every period. This is
8074 * to prevent reaching a state of large arrears when throttled via
8075 * entity_tick() resulting in prolonged exit starvation.
8076 */
8077 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8078 return -EINVAL;
8079
8080 /*
8081 * Likewise, bound things on the otherside by preventing insane quota
8082 * periods. This also allows us to normalize in computing quota
8083 * feasibility.
8084 */
8085 if (period > max_cfs_quota_period)
8086 return -EINVAL;
8087
0e59bdae
KT
8088 /*
8089 * Prevent race between setting of cfs_rq->runtime_enabled and
8090 * unthrottle_offline_cfs_rqs().
8091 */
8092 get_online_cpus();
a790de99
PT
8093 mutex_lock(&cfs_constraints_mutex);
8094 ret = __cfs_schedulable(tg, period, quota);
8095 if (ret)
8096 goto out_unlock;
8097
58088ad0 8098 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8099 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8100 /*
8101 * If we need to toggle cfs_bandwidth_used, off->on must occur
8102 * before making related changes, and on->off must occur afterwards
8103 */
8104 if (runtime_enabled && !runtime_was_enabled)
8105 cfs_bandwidth_usage_inc();
ab84d31e
PT
8106 raw_spin_lock_irq(&cfs_b->lock);
8107 cfs_b->period = ns_to_ktime(period);
8108 cfs_b->quota = quota;
58088ad0 8109
a9cf55b2 8110 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8111 /* restart the period timer (if active) to handle new period expiry */
8112 if (runtime_enabled && cfs_b->timer_active) {
8113 /* force a reprogram */
09dc4ab0 8114 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8115 }
ab84d31e
PT
8116 raw_spin_unlock_irq(&cfs_b->lock);
8117
0e59bdae 8118 for_each_online_cpu(i) {
ab84d31e 8119 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8120 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8121
8122 raw_spin_lock_irq(&rq->lock);
58088ad0 8123 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8124 cfs_rq->runtime_remaining = 0;
671fd9da 8125
029632fb 8126 if (cfs_rq->throttled)
671fd9da 8127 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8128 raw_spin_unlock_irq(&rq->lock);
8129 }
1ee14e6c
BS
8130 if (runtime_was_enabled && !runtime_enabled)
8131 cfs_bandwidth_usage_dec();
a790de99
PT
8132out_unlock:
8133 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8134 put_online_cpus();
ab84d31e 8135
a790de99 8136 return ret;
ab84d31e
PT
8137}
8138
8139int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8140{
8141 u64 quota, period;
8142
029632fb 8143 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8144 if (cfs_quota_us < 0)
8145 quota = RUNTIME_INF;
8146 else
8147 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8148
8149 return tg_set_cfs_bandwidth(tg, period, quota);
8150}
8151
8152long tg_get_cfs_quota(struct task_group *tg)
8153{
8154 u64 quota_us;
8155
029632fb 8156 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8157 return -1;
8158
029632fb 8159 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8160 do_div(quota_us, NSEC_PER_USEC);
8161
8162 return quota_us;
8163}
8164
8165int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8166{
8167 u64 quota, period;
8168
8169 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8170 quota = tg->cfs_bandwidth.quota;
ab84d31e 8171
ab84d31e
PT
8172 return tg_set_cfs_bandwidth(tg, period, quota);
8173}
8174
8175long tg_get_cfs_period(struct task_group *tg)
8176{
8177 u64 cfs_period_us;
8178
029632fb 8179 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8180 do_div(cfs_period_us, NSEC_PER_USEC);
8181
8182 return cfs_period_us;
8183}
8184
182446d0
TH
8185static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8186 struct cftype *cft)
ab84d31e 8187{
182446d0 8188 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8189}
8190
182446d0
TH
8191static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8192 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8193{
182446d0 8194 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8195}
8196
182446d0
TH
8197static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8198 struct cftype *cft)
ab84d31e 8199{
182446d0 8200 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8201}
8202
182446d0
TH
8203static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8204 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8205{
182446d0 8206 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8207}
8208
a790de99
PT
8209struct cfs_schedulable_data {
8210 struct task_group *tg;
8211 u64 period, quota;
8212};
8213
8214/*
8215 * normalize group quota/period to be quota/max_period
8216 * note: units are usecs
8217 */
8218static u64 normalize_cfs_quota(struct task_group *tg,
8219 struct cfs_schedulable_data *d)
8220{
8221 u64 quota, period;
8222
8223 if (tg == d->tg) {
8224 period = d->period;
8225 quota = d->quota;
8226 } else {
8227 period = tg_get_cfs_period(tg);
8228 quota = tg_get_cfs_quota(tg);
8229 }
8230
8231 /* note: these should typically be equivalent */
8232 if (quota == RUNTIME_INF || quota == -1)
8233 return RUNTIME_INF;
8234
8235 return to_ratio(period, quota);
8236}
8237
8238static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8239{
8240 struct cfs_schedulable_data *d = data;
029632fb 8241 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8242 s64 quota = 0, parent_quota = -1;
8243
8244 if (!tg->parent) {
8245 quota = RUNTIME_INF;
8246 } else {
029632fb 8247 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8248
8249 quota = normalize_cfs_quota(tg, d);
9c58c79a 8250 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8251
8252 /*
8253 * ensure max(child_quota) <= parent_quota, inherit when no
8254 * limit is set
8255 */
8256 if (quota == RUNTIME_INF)
8257 quota = parent_quota;
8258 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8259 return -EINVAL;
8260 }
9c58c79a 8261 cfs_b->hierarchical_quota = quota;
a790de99
PT
8262
8263 return 0;
8264}
8265
8266static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8267{
8277434e 8268 int ret;
a790de99
PT
8269 struct cfs_schedulable_data data = {
8270 .tg = tg,
8271 .period = period,
8272 .quota = quota,
8273 };
8274
8275 if (quota != RUNTIME_INF) {
8276 do_div(data.period, NSEC_PER_USEC);
8277 do_div(data.quota, NSEC_PER_USEC);
8278 }
8279
8277434e
PT
8280 rcu_read_lock();
8281 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8282 rcu_read_unlock();
8283
8284 return ret;
a790de99 8285}
e8da1b18 8286
2da8ca82 8287static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8288{
2da8ca82 8289 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8290 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8291
44ffc75b
TH
8292 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8293 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8294 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8295
8296 return 0;
8297}
ab84d31e 8298#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8299#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8300
052f1dc7 8301#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8302static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8303 struct cftype *cft, s64 val)
6f505b16 8304{
182446d0 8305 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8306}
8307
182446d0
TH
8308static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8309 struct cftype *cft)
6f505b16 8310{
182446d0 8311 return sched_group_rt_runtime(css_tg(css));
6f505b16 8312}
d0b27fa7 8313
182446d0
TH
8314static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8315 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8316{
182446d0 8317 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8318}
8319
182446d0
TH
8320static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8321 struct cftype *cft)
d0b27fa7 8322{
182446d0 8323 return sched_group_rt_period(css_tg(css));
d0b27fa7 8324}
6d6bc0ad 8325#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8326
fe5c7cc2 8327static struct cftype cpu_files[] = {
052f1dc7 8328#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8329 {
8330 .name = "shares",
f4c753b7
PM
8331 .read_u64 = cpu_shares_read_u64,
8332 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8333 },
052f1dc7 8334#endif
ab84d31e
PT
8335#ifdef CONFIG_CFS_BANDWIDTH
8336 {
8337 .name = "cfs_quota_us",
8338 .read_s64 = cpu_cfs_quota_read_s64,
8339 .write_s64 = cpu_cfs_quota_write_s64,
8340 },
8341 {
8342 .name = "cfs_period_us",
8343 .read_u64 = cpu_cfs_period_read_u64,
8344 .write_u64 = cpu_cfs_period_write_u64,
8345 },
e8da1b18
NR
8346 {
8347 .name = "stat",
2da8ca82 8348 .seq_show = cpu_stats_show,
e8da1b18 8349 },
ab84d31e 8350#endif
052f1dc7 8351#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8352 {
9f0c1e56 8353 .name = "rt_runtime_us",
06ecb27c
PM
8354 .read_s64 = cpu_rt_runtime_read,
8355 .write_s64 = cpu_rt_runtime_write,
6f505b16 8356 },
d0b27fa7
PZ
8357 {
8358 .name = "rt_period_us",
f4c753b7
PM
8359 .read_u64 = cpu_rt_period_read_uint,
8360 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8361 },
052f1dc7 8362#endif
4baf6e33 8363 { } /* terminate */
68318b8e
SV
8364};
8365
073219e9 8366struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8367 .css_alloc = cpu_cgroup_css_alloc,
8368 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8369 .css_online = cpu_cgroup_css_online,
8370 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8371 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8372 .can_attach = cpu_cgroup_can_attach,
8373 .attach = cpu_cgroup_attach,
068c5cc5 8374 .exit = cpu_cgroup_exit,
5577964e 8375 .legacy_cftypes = cpu_files,
68318b8e
SV
8376 .early_init = 1,
8377};
8378
052f1dc7 8379#endif /* CONFIG_CGROUP_SCHED */
d842de87 8380
b637a328
PM
8381void dump_cpu_task(int cpu)
8382{
8383 pr_info("Task dump for CPU %d:\n", cpu);
8384 sched_show_task(cpu_curr(cpu));
8385}
This page took 2.684965 seconds and 5 git commands to generate.