sched: Remove AFFINE_WAKEUPS feature flag
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
fe44d621 743static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 744{
095c0aa8
GC
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
095c0aa8
GC
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 777 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793#endif
794
fe44d621
PZ
795 rq->clock_task += delta;
796
095c0aa8
GC
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800#endif
aa483808
VP
801}
802
34f971f6
PZ
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831}
832
14531189 833/*
dd41f596 834 * __normal_prio - return the priority that is based on the static prio
14531189 835 */
14531189
IM
836static inline int __normal_prio(struct task_struct *p)
837{
dd41f596 838 return p->static_prio;
14531189
IM
839}
840
b29739f9
IM
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
36c8b586 848static inline int normal_prio(struct task_struct *p)
b29739f9
IM
849{
850 int prio;
851
e05606d3 852 if (task_has_rt_policy(p))
b29739f9
IM
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
36c8b586 866static int effective_prio(struct task_struct *p)
b29739f9
IM
867{
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877}
878
1da177e4
LT
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
36c8b586 883inline int task_curr(const struct task_struct *p)
1da177e4
LT
884{
885 return cpu_curr(task_cpu(p)) == p;
886}
887
cb469845
SR
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
da7a735e 890 int oldprio)
cb469845
SR
891{
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
da7a735e
PZ
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
fd2f4419 921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
922 rq->skip_clock_update = 1;
923}
924
1da177e4 925#ifdef CONFIG_SMP
dd41f596 926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 927{
e2912009
PZ
928#ifdef CONFIG_SCHED_DEBUG
929 /*
930 * We should never call set_task_cpu() on a blocked task,
931 * ttwu() will sort out the placement.
932 */
077614ee
PZ
933 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
935
936#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
937 /*
938 * The caller should hold either p->pi_lock or rq->lock, when changing
939 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 *
941 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 942 * see task_group().
6c6c54e1
PZ
943 *
944 * Furthermore, all task_rq users should acquire both locks, see
945 * task_rq_lock().
946 */
0122ec5b
PZ
947 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 lockdep_is_held(&task_rq(p)->lock)));
949#endif
e2912009
PZ
950#endif
951
de1d7286 952 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 953
0c69774e
PZ
954 if (task_cpu(p) != new_cpu) {
955 p->se.nr_migrations++;
a8b0ca17 956 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 957 }
dd41f596
IM
958
959 __set_task_cpu(p, new_cpu);
c65cc870
IM
960}
961
969c7921 962struct migration_arg {
36c8b586 963 struct task_struct *task;
1da177e4 964 int dest_cpu;
70b97a7f 965};
1da177e4 966
969c7921
TH
967static int migration_cpu_stop(void *data);
968
1da177e4
LT
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
85ba2d86
RM
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change. If it changes, i.e. @p might have woken up,
974 * then return zero. When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count). If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
1da177e4
LT
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
85ba2d86 985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
986{
987 unsigned long flags;
dd41f596 988 int running, on_rq;
85ba2d86 989 unsigned long ncsw;
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 /*
994 * We do the initial early heuristics without holding
995 * any task-queue locks at all. We'll only try to get
996 * the runqueue lock when things look like they will
997 * work out!
998 */
999 rq = task_rq(p);
fa490cfd 1000
3a5c359a
AK
1001 /*
1002 * If the task is actively running on another CPU
1003 * still, just relax and busy-wait without holding
1004 * any locks.
1005 *
1006 * NOTE! Since we don't hold any locks, it's not
1007 * even sure that "rq" stays as the right runqueue!
1008 * But we don't care, since "task_running()" will
1009 * return false if the runqueue has changed and p
1010 * is actually now running somewhere else!
1011 */
85ba2d86
RM
1012 while (task_running(rq, p)) {
1013 if (match_state && unlikely(p->state != match_state))
1014 return 0;
3a5c359a 1015 cpu_relax();
85ba2d86 1016 }
fa490cfd 1017
3a5c359a
AK
1018 /*
1019 * Ok, time to look more closely! We need the rq
1020 * lock now, to be *sure*. If we're wrong, we'll
1021 * just go back and repeat.
1022 */
1023 rq = task_rq_lock(p, &flags);
27a9da65 1024 trace_sched_wait_task(p);
3a5c359a 1025 running = task_running(rq, p);
fd2f4419 1026 on_rq = p->on_rq;
85ba2d86 1027 ncsw = 0;
f31e11d8 1028 if (!match_state || p->state == match_state)
93dcf55f 1029 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1030 task_rq_unlock(rq, p, &flags);
fa490cfd 1031
85ba2d86
RM
1032 /*
1033 * If it changed from the expected state, bail out now.
1034 */
1035 if (unlikely(!ncsw))
1036 break;
1037
3a5c359a
AK
1038 /*
1039 * Was it really running after all now that we
1040 * checked with the proper locks actually held?
1041 *
1042 * Oops. Go back and try again..
1043 */
1044 if (unlikely(running)) {
1045 cpu_relax();
1046 continue;
1047 }
fa490cfd 1048
3a5c359a
AK
1049 /*
1050 * It's not enough that it's not actively running,
1051 * it must be off the runqueue _entirely_, and not
1052 * preempted!
1053 *
80dd99b3 1054 * So if it was still runnable (but just not actively
3a5c359a
AK
1055 * running right now), it's preempted, and we should
1056 * yield - it could be a while.
1057 */
1058 if (unlikely(on_rq)) {
8eb90c30
TG
1059 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1063 continue;
1064 }
fa490cfd 1065
3a5c359a
AK
1066 /*
1067 * Ahh, all good. It wasn't running, and it wasn't
1068 * runnable, which means that it will never become
1069 * running in the future either. We're all done!
1070 */
1071 break;
1072 }
85ba2d86
RM
1073
1074 return ncsw;
1da177e4
LT
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
25985edc 1084 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
36c8b586 1090void kick_process(struct task_struct *p)
1da177e4
LT
1091{
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099}
b43e3521 1100EXPORT_SYMBOL_GPL(kick_process);
476d139c 1101#endif /* CONFIG_SMP */
1da177e4 1102
970b13ba 1103#ifdef CONFIG_SMP
30da688e 1104/*
013fdb80 1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1106 */
5da9a0fb
PZ
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
5da9a0fb 1109 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1110 enum { cpuset, possible, fail } state = cpuset;
1111 int dest_cpu;
5da9a0fb
PZ
1112
1113 /* Look for allowed, online CPU in same node. */
e3831edd 1114 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1115 if (!cpu_online(dest_cpu))
1116 continue;
1117 if (!cpu_active(dest_cpu))
1118 continue;
fa17b507 1119 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1120 return dest_cpu;
2baab4e9 1121 }
5da9a0fb 1122
2baab4e9
PZ
1123 for (;;) {
1124 /* Any allowed, online CPU? */
e3831edd 1125 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1126 if (!cpu_online(dest_cpu))
1127 continue;
1128 if (!cpu_active(dest_cpu))
1129 continue;
1130 goto out;
1131 }
5da9a0fb 1132
2baab4e9
PZ
1133 switch (state) {
1134 case cpuset:
1135 /* No more Mr. Nice Guy. */
1136 cpuset_cpus_allowed_fallback(p);
1137 state = possible;
1138 break;
1139
1140 case possible:
1141 do_set_cpus_allowed(p, cpu_possible_mask);
1142 state = fail;
1143 break;
1144
1145 case fail:
1146 BUG();
1147 break;
1148 }
1149 }
1150
1151out:
1152 if (state != cpuset) {
1153 /*
1154 * Don't tell them about moving exiting tasks or
1155 * kernel threads (both mm NULL), since they never
1156 * leave kernel.
1157 */
1158 if (p->mm && printk_ratelimit()) {
1159 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 task_pid_nr(p), p->comm, cpu);
1161 }
5da9a0fb
PZ
1162 }
1163
1164 return dest_cpu;
1165}
1166
e2912009 1167/*
013fdb80 1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1169 */
970b13ba 1170static inline
7608dec2 1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1172{
7608dec2 1173 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1174
1175 /*
1176 * In order not to call set_task_cpu() on a blocking task we need
1177 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 * cpu.
1179 *
1180 * Since this is common to all placement strategies, this lives here.
1181 *
1182 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 * not worry about this generic constraint ]
1184 */
fa17b507 1185 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1186 !cpu_online(cpu)))
5da9a0fb 1187 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1188
1189 return cpu;
970b13ba 1190}
09a40af5
MG
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194 s64 diff = sample - *avg;
1195 *avg += diff >> 3;
1196}
970b13ba
PZ
1197#endif
1198
d7c01d27 1199static void
b84cb5df 1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1201{
d7c01d27 1202#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1203 struct rq *rq = this_rq();
1204
d7c01d27
PZ
1205#ifdef CONFIG_SMP
1206 int this_cpu = smp_processor_id();
1207
1208 if (cpu == this_cpu) {
1209 schedstat_inc(rq, ttwu_local);
1210 schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 } else {
1212 struct sched_domain *sd;
1213
1214 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1215 rcu_read_lock();
d7c01d27
PZ
1216 for_each_domain(this_cpu, sd) {
1217 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 schedstat_inc(sd, ttwu_wake_remote);
1219 break;
1220 }
1221 }
057f3fad 1222 rcu_read_unlock();
d7c01d27 1223 }
f339b9dc
PZ
1224
1225 if (wake_flags & WF_MIGRATED)
1226 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
d7c01d27
PZ
1228#endif /* CONFIG_SMP */
1229
1230 schedstat_inc(rq, ttwu_count);
9ed3811a 1231 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1232
1233 if (wake_flags & WF_SYNC)
9ed3811a 1234 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1235
d7c01d27
PZ
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
9ed3811a 1241 activate_task(rq, p, en_flags);
fd2f4419 1242 p->on_rq = 1;
c2f7115e
PZ
1243
1244 /* if a worker is waking up, notify workqueue */
1245 if (p->flags & PF_WQ_WORKER)
1246 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1247}
1248
23f41eeb
PZ
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
89363381 1252static void
23f41eeb 1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1254{
89363381 1255 trace_sched_wakeup(p, true);
9ed3811a
TH
1256 check_preempt_curr(rq, p, wake_flags);
1257
1258 p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260 if (p->sched_class->task_woken)
1261 p->sched_class->task_woken(rq, p);
1262
e69c6341 1263 if (rq->idle_stamp) {
9ed3811a
TH
1264 u64 delta = rq->clock - rq->idle_stamp;
1265 u64 max = 2*sysctl_sched_migration_cost;
1266
1267 if (delta > max)
1268 rq->avg_idle = max;
1269 else
1270 update_avg(&rq->avg_idle, delta);
1271 rq->idle_stamp = 0;
1272 }
1273#endif
1274}
1275
c05fbafb
PZ
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280 if (p->sched_contributes_to_load)
1281 rq->nr_uninterruptible--;
1282#endif
1283
1284 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296 struct rq *rq;
1297 int ret = 0;
1298
1299 rq = __task_rq_lock(p);
1300 if (p->on_rq) {
1301 ttwu_do_wakeup(rq, p, wake_flags);
1302 ret = 1;
1303 }
1304 __task_rq_unlock(rq);
1305
1306 return ret;
1307}
1308
317f3941 1309#ifdef CONFIG_SMP
fa14ff4a 1310static void sched_ttwu_pending(void)
317f3941
PZ
1311{
1312 struct rq *rq = this_rq();
fa14ff4a
PZ
1313 struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 struct task_struct *p;
317f3941
PZ
1315
1316 raw_spin_lock(&rq->lock);
1317
fa14ff4a
PZ
1318 while (llist) {
1319 p = llist_entry(llist, struct task_struct, wake_entry);
1320 llist = llist_next(llist);
317f3941
PZ
1321 ttwu_do_activate(rq, p, 0);
1322 }
1323
1324 raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
ca38062e 1329 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1330 return;
1331
1332 /*
1333 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 * traditionally all their work was done from the interrupt return
1335 * path. Now that we actually do some work, we need to make sure
1336 * we do call them.
1337 *
1338 * Some archs already do call them, luckily irq_enter/exit nest
1339 * properly.
1340 *
1341 * Arguably we should visit all archs and update all handlers,
1342 * however a fair share of IPIs are still resched only so this would
1343 * somewhat pessimize the simple resched case.
1344 */
1345 irq_enter();
fa14ff4a 1346 sched_ttwu_pending();
ca38062e
SS
1347
1348 /*
1349 * Check if someone kicked us for doing the nohz idle load balance.
1350 */
6eb57e0d
SS
1351 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 this_rq()->idle_balance = 1;
ca38062e 1353 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1354 }
c5d753a5 1355 irq_exit();
317f3941
PZ
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
fa14ff4a 1360 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1361 smp_send_reschedule(cpu);
1362}
d6aa8f85
PZ
1363
1364#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1365static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1366{
1367 struct rq *rq;
1368 int ret = 0;
1369
1370 rq = __task_rq_lock(p);
1371 if (p->on_cpu) {
1372 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1373 ttwu_do_wakeup(rq, p, wake_flags);
1374 ret = 1;
1375 }
1376 __task_rq_unlock(rq);
1377
1378 return ret;
1379
1380}
1381#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1382
39be3501 1383bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1384{
1385 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1386}
d6aa8f85 1387#endif /* CONFIG_SMP */
317f3941 1388
c05fbafb
PZ
1389static void ttwu_queue(struct task_struct *p, int cpu)
1390{
1391 struct rq *rq = cpu_rq(cpu);
1392
17d9f311 1393#if defined(CONFIG_SMP)
39be3501 1394 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1395 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1396 ttwu_queue_remote(p, cpu);
1397 return;
1398 }
1399#endif
1400
c05fbafb
PZ
1401 raw_spin_lock(&rq->lock);
1402 ttwu_do_activate(rq, p, 0);
1403 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1404}
1405
1406/**
1da177e4 1407 * try_to_wake_up - wake up a thread
9ed3811a 1408 * @p: the thread to be awakened
1da177e4 1409 * @state: the mask of task states that can be woken
9ed3811a 1410 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1411 *
1412 * Put it on the run-queue if it's not already there. The "current"
1413 * thread is always on the run-queue (except when the actual
1414 * re-schedule is in progress), and as such you're allowed to do
1415 * the simpler "current->state = TASK_RUNNING" to mark yourself
1416 * runnable without the overhead of this.
1417 *
9ed3811a
TH
1418 * Returns %true if @p was woken up, %false if it was already running
1419 * or @state didn't match @p's state.
1da177e4 1420 */
e4a52bcb
PZ
1421static int
1422try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1423{
1da177e4 1424 unsigned long flags;
c05fbafb 1425 int cpu, success = 0;
2398f2c6 1426
04e2f174 1427 smp_wmb();
013fdb80 1428 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1429 if (!(p->state & state))
1da177e4
LT
1430 goto out;
1431
c05fbafb 1432 success = 1; /* we're going to change ->state */
1da177e4 1433 cpu = task_cpu(p);
1da177e4 1434
c05fbafb
PZ
1435 if (p->on_rq && ttwu_remote(p, wake_flags))
1436 goto stat;
1da177e4 1437
1da177e4 1438#ifdef CONFIG_SMP
e9c84311 1439 /*
c05fbafb
PZ
1440 * If the owning (remote) cpu is still in the middle of schedule() with
1441 * this task as prev, wait until its done referencing the task.
e9c84311 1442 */
e4a52bcb
PZ
1443 while (p->on_cpu) {
1444#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1445 /*
d6aa8f85
PZ
1446 * In case the architecture enables interrupts in
1447 * context_switch(), we cannot busy wait, since that
1448 * would lead to deadlocks when an interrupt hits and
1449 * tries to wake up @prev. So bail and do a complete
1450 * remote wakeup.
e4a52bcb 1451 */
d6aa8f85 1452 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1453 goto stat;
d6aa8f85 1454#else
e4a52bcb 1455 cpu_relax();
d6aa8f85 1456#endif
371fd7e7 1457 }
0970d299 1458 /*
e4a52bcb 1459 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1460 */
e4a52bcb 1461 smp_rmb();
1da177e4 1462
a8e4f2ea 1463 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1464 p->state = TASK_WAKING;
e7693a36 1465
e4a52bcb 1466 if (p->sched_class->task_waking)
74f8e4b2 1467 p->sched_class->task_waking(p);
efbbd05a 1468
7608dec2 1469 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1470 if (task_cpu(p) != cpu) {
1471 wake_flags |= WF_MIGRATED;
e4a52bcb 1472 set_task_cpu(p, cpu);
f339b9dc 1473 }
1da177e4 1474#endif /* CONFIG_SMP */
1da177e4 1475
c05fbafb
PZ
1476 ttwu_queue(p, cpu);
1477stat:
b84cb5df 1478 ttwu_stat(p, cpu, wake_flags);
1da177e4 1479out:
013fdb80 1480 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1481
1482 return success;
1483}
1484
21aa9af0
TH
1485/**
1486 * try_to_wake_up_local - try to wake up a local task with rq lock held
1487 * @p: the thread to be awakened
1488 *
2acca55e 1489 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1490 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1491 * the current task.
21aa9af0
TH
1492 */
1493static void try_to_wake_up_local(struct task_struct *p)
1494{
1495 struct rq *rq = task_rq(p);
21aa9af0
TH
1496
1497 BUG_ON(rq != this_rq());
1498 BUG_ON(p == current);
1499 lockdep_assert_held(&rq->lock);
1500
2acca55e
PZ
1501 if (!raw_spin_trylock(&p->pi_lock)) {
1502 raw_spin_unlock(&rq->lock);
1503 raw_spin_lock(&p->pi_lock);
1504 raw_spin_lock(&rq->lock);
1505 }
1506
21aa9af0 1507 if (!(p->state & TASK_NORMAL))
2acca55e 1508 goto out;
21aa9af0 1509
fd2f4419 1510 if (!p->on_rq)
d7c01d27
PZ
1511 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1512
23f41eeb 1513 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1514 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1515out:
1516 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1517}
1518
50fa610a
DH
1519/**
1520 * wake_up_process - Wake up a specific process
1521 * @p: The process to be woken up.
1522 *
1523 * Attempt to wake up the nominated process and move it to the set of runnable
1524 * processes. Returns 1 if the process was woken up, 0 if it was already
1525 * running.
1526 *
1527 * It may be assumed that this function implies a write memory barrier before
1528 * changing the task state if and only if any tasks are woken up.
1529 */
7ad5b3a5 1530int wake_up_process(struct task_struct *p)
1da177e4 1531{
d9514f6c 1532 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1533}
1da177e4
LT
1534EXPORT_SYMBOL(wake_up_process);
1535
7ad5b3a5 1536int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1537{
1538 return try_to_wake_up(p, state, 0);
1539}
1540
1da177e4
LT
1541/*
1542 * Perform scheduler related setup for a newly forked process p.
1543 * p is forked by current.
dd41f596
IM
1544 *
1545 * __sched_fork() is basic setup used by init_idle() too:
1546 */
1547static void __sched_fork(struct task_struct *p)
1548{
fd2f4419
PZ
1549 p->on_rq = 0;
1550
1551 p->se.on_rq = 0;
dd41f596
IM
1552 p->se.exec_start = 0;
1553 p->se.sum_exec_runtime = 0;
f6cf891c 1554 p->se.prev_sum_exec_runtime = 0;
6c594c21 1555 p->se.nr_migrations = 0;
da7a735e 1556 p->se.vruntime = 0;
fd2f4419 1557 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1558
1559#ifdef CONFIG_SCHEDSTATS
41acab88 1560 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1561#endif
476d139c 1562
fa717060 1563 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1564
e107be36
AK
1565#ifdef CONFIG_PREEMPT_NOTIFIERS
1566 INIT_HLIST_HEAD(&p->preempt_notifiers);
1567#endif
dd41f596
IM
1568}
1569
1570/*
1571 * fork()/clone()-time setup:
1572 */
3e51e3ed 1573void sched_fork(struct task_struct *p)
dd41f596 1574{
0122ec5b 1575 unsigned long flags;
dd41f596
IM
1576 int cpu = get_cpu();
1577
1578 __sched_fork(p);
06b83b5f 1579 /*
0017d735 1580 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
0017d735 1584 p->state = TASK_RUNNING;
dd41f596 1585
c350a04e
MG
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child.
1588 */
1589 p->prio = current->normal_prio;
1590
b9dc29e7
MG
1591 /*
1592 * Revert to default priority/policy on fork if requested.
1593 */
1594 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1595 if (task_has_rt_policy(p)) {
b9dc29e7 1596 p->policy = SCHED_NORMAL;
6c697bdf 1597 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1598 p->rt_priority = 0;
1599 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1600 p->static_prio = NICE_TO_PRIO(0);
1601
1602 p->prio = p->normal_prio = __normal_prio(p);
1603 set_load_weight(p);
6c697bdf 1604
b9dc29e7
MG
1605 /*
1606 * We don't need the reset flag anymore after the fork. It has
1607 * fulfilled its duty:
1608 */
1609 p->sched_reset_on_fork = 0;
1610 }
ca94c442 1611
2ddbf952
HS
1612 if (!rt_prio(p->prio))
1613 p->sched_class = &fair_sched_class;
b29739f9 1614
cd29fe6f
PZ
1615 if (p->sched_class->task_fork)
1616 p->sched_class->task_fork(p);
1617
86951599
PZ
1618 /*
1619 * The child is not yet in the pid-hash so no cgroup attach races,
1620 * and the cgroup is pinned to this child due to cgroup_fork()
1621 * is ran before sched_fork().
1622 *
1623 * Silence PROVE_RCU.
1624 */
0122ec5b 1625 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1626 set_task_cpu(p, cpu);
0122ec5b 1627 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1628
52f17b6c 1629#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1630 if (likely(sched_info_on()))
52f17b6c 1631 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1632#endif
3ca7a440
PZ
1633#if defined(CONFIG_SMP)
1634 p->on_cpu = 0;
4866cde0 1635#endif
bdd4e85d 1636#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1637 /* Want to start with kernel preemption disabled. */
a1261f54 1638 task_thread_info(p)->preempt_count = 1;
1da177e4 1639#endif
806c09a7 1640#ifdef CONFIG_SMP
917b627d 1641 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1642#endif
917b627d 1643
476d139c 1644 put_cpu();
1da177e4
LT
1645}
1646
1647/*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
3e51e3ed 1654void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1655{
1656 unsigned long flags;
dd41f596 1657 struct rq *rq;
fabf318e 1658
ab2515c4 1659 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1660#ifdef CONFIG_SMP
1661 /*
1662 * Fork balancing, do it here and not earlier because:
1663 * - cpus_allowed can change in the fork path
1664 * - any previously selected cpu might disappear through hotplug
fabf318e 1665 */
ab2515c4 1666 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1667#endif
1668
ab2515c4 1669 rq = __task_rq_lock(p);
cd29fe6f 1670 activate_task(rq, p, 0);
fd2f4419 1671 p->on_rq = 1;
89363381 1672 trace_sched_wakeup_new(p, true);
a7558e01 1673 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1674#ifdef CONFIG_SMP
efbbd05a
PZ
1675 if (p->sched_class->task_woken)
1676 p->sched_class->task_woken(rq, p);
9a897c5a 1677#endif
0122ec5b 1678 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1679}
1680
e107be36
AK
1681#ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683/**
80dd99b3 1684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1685 * @notifier: notifier struct to register
e107be36
AK
1686 */
1687void preempt_notifier_register(struct preempt_notifier *notifier)
1688{
1689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690}
1691EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693/**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1695 * @notifier: notifier struct to unregister
e107be36
AK
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700{
1701 hlist_del(&notifier->link);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706{
1707 struct preempt_notifier *notifier;
1708 struct hlist_node *node;
1709
1710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716 struct task_struct *next)
1717{
1718 struct preempt_notifier *notifier;
1719 struct hlist_node *node;
1720
1721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722 notifier->ops->sched_out(notifier, next);
1723}
1724
6d6bc0ad 1725#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1726
1727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728{
1729}
1730
1731static void
1732fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733 struct task_struct *next)
1734{
1735}
1736
6d6bc0ad 1737#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1738
4866cde0
NP
1739/**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
421cee29 1742 * @prev: the current task that is being switched out
4866cde0
NP
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
e107be36
AK
1752static inline void
1753prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754 struct task_struct *next)
4866cde0 1755{
895dd92c 1756 trace_sched_switch(prev, next);
fe4b04fa
PZ
1757 sched_info_switch(prev, next);
1758 perf_event_task_sched_out(prev, next);
e107be36 1759 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1760 prepare_lock_switch(rq, next);
1761 prepare_arch_switch(next);
1762}
1763
1da177e4
LT
1764/**
1765 * finish_task_switch - clean up after a task-switch
344babaa 1766 * @rq: runqueue associated with task-switch
1da177e4
LT
1767 * @prev: the thread we just switched away from.
1768 *
4866cde0
NP
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1775 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
a9957449 1779static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1780 __releases(rq->lock)
1781{
1da177e4 1782 struct mm_struct *mm = rq->prev_mm;
55a101f8 1783 long prev_state;
1da177e4
LT
1784
1785 rq->prev_mm = NULL;
1786
1787 /*
1788 * A task struct has one reference for the use as "current".
c394cc9f 1789 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1790 * schedule one last time. The schedule call will never return, and
1791 * the scheduled task must drop that reference.
c394cc9f 1792 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1793 * still held, otherwise prev could be scheduled on another cpu, die
1794 * there before we look at prev->state, and then the reference would
1795 * be dropped twice.
1796 * Manfred Spraul <manfred@colorfullife.com>
1797 */
55a101f8 1798 prev_state = prev->state;
baa36046 1799 account_switch_vtime(prev);
4866cde0 1800 finish_arch_switch(prev);
8381f65d
JI
1801#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1802 local_irq_disable();
1803#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1804 perf_event_task_sched_in(prev, current);
8381f65d
JI
1805#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1806 local_irq_enable();
1807#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1808 finish_lock_switch(rq, prev);
01f23e16 1809 finish_arch_post_lock_switch();
e8fa1362 1810
e107be36 1811 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1812 if (mm)
1813 mmdrop(mm);
c394cc9f 1814 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1815 /*
1816 * Remove function-return probe instances associated with this
1817 * task and put them back on the free list.
9761eea8 1818 */
c6fd91f0 1819 kprobe_flush_task(prev);
1da177e4 1820 put_task_struct(prev);
c6fd91f0 1821 }
1da177e4
LT
1822}
1823
3f029d3c
GH
1824#ifdef CONFIG_SMP
1825
1826/* assumes rq->lock is held */
1827static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1828{
1829 if (prev->sched_class->pre_schedule)
1830 prev->sched_class->pre_schedule(rq, prev);
1831}
1832
1833/* rq->lock is NOT held, but preemption is disabled */
1834static inline void post_schedule(struct rq *rq)
1835{
1836 if (rq->post_schedule) {
1837 unsigned long flags;
1838
05fa785c 1839 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1840 if (rq->curr->sched_class->post_schedule)
1841 rq->curr->sched_class->post_schedule(rq);
05fa785c 1842 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1843
1844 rq->post_schedule = 0;
1845 }
1846}
1847
1848#else
da19ab51 1849
3f029d3c
GH
1850static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1851{
1852}
1853
1854static inline void post_schedule(struct rq *rq)
1855{
1da177e4
LT
1856}
1857
3f029d3c
GH
1858#endif
1859
1da177e4
LT
1860/**
1861 * schedule_tail - first thing a freshly forked thread must call.
1862 * @prev: the thread we just switched away from.
1863 */
36c8b586 1864asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1865 __releases(rq->lock)
1866{
70b97a7f
IM
1867 struct rq *rq = this_rq();
1868
4866cde0 1869 finish_task_switch(rq, prev);
da19ab51 1870
3f029d3c
GH
1871 /*
1872 * FIXME: do we need to worry about rq being invalidated by the
1873 * task_switch?
1874 */
1875 post_schedule(rq);
70b97a7f 1876
4866cde0
NP
1877#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1878 /* In this case, finish_task_switch does not reenable preemption */
1879 preempt_enable();
1880#endif
1da177e4 1881 if (current->set_child_tid)
b488893a 1882 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1883}
1884
1885/*
1886 * context_switch - switch to the new MM and the new
1887 * thread's register state.
1888 */
dd41f596 1889static inline void
70b97a7f 1890context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1891 struct task_struct *next)
1da177e4 1892{
dd41f596 1893 struct mm_struct *mm, *oldmm;
1da177e4 1894
e107be36 1895 prepare_task_switch(rq, prev, next);
fe4b04fa 1896
dd41f596
IM
1897 mm = next->mm;
1898 oldmm = prev->active_mm;
9226d125
ZA
1899 /*
1900 * For paravirt, this is coupled with an exit in switch_to to
1901 * combine the page table reload and the switch backend into
1902 * one hypercall.
1903 */
224101ed 1904 arch_start_context_switch(prev);
9226d125 1905
31915ab4 1906 if (!mm) {
1da177e4
LT
1907 next->active_mm = oldmm;
1908 atomic_inc(&oldmm->mm_count);
1909 enter_lazy_tlb(oldmm, next);
1910 } else
1911 switch_mm(oldmm, mm, next);
1912
31915ab4 1913 if (!prev->mm) {
1da177e4 1914 prev->active_mm = NULL;
1da177e4
LT
1915 rq->prev_mm = oldmm;
1916 }
3a5f5e48
IM
1917 /*
1918 * Since the runqueue lock will be released by the next
1919 * task (which is an invalid locking op but in the case
1920 * of the scheduler it's an obvious special-case), so we
1921 * do an early lockdep release here:
1922 */
1923#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1924 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1925#endif
1da177e4
LT
1926
1927 /* Here we just switch the register state and the stack. */
1928 switch_to(prev, next, prev);
1929
dd41f596
IM
1930 barrier();
1931 /*
1932 * this_rq must be evaluated again because prev may have moved
1933 * CPUs since it called schedule(), thus the 'rq' on its stack
1934 * frame will be invalid.
1935 */
1936 finish_task_switch(this_rq(), prev);
1da177e4
LT
1937}
1938
1939/*
1940 * nr_running, nr_uninterruptible and nr_context_switches:
1941 *
1942 * externally visible scheduler statistics: current number of runnable
1943 * threads, current number of uninterruptible-sleeping threads, total
1944 * number of context switches performed since bootup.
1945 */
1946unsigned long nr_running(void)
1947{
1948 unsigned long i, sum = 0;
1949
1950 for_each_online_cpu(i)
1951 sum += cpu_rq(i)->nr_running;
1952
1953 return sum;
f711f609 1954}
1da177e4
LT
1955
1956unsigned long nr_uninterruptible(void)
f711f609 1957{
1da177e4 1958 unsigned long i, sum = 0;
f711f609 1959
0a945022 1960 for_each_possible_cpu(i)
1da177e4 1961 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1962
1963 /*
1da177e4
LT
1964 * Since we read the counters lockless, it might be slightly
1965 * inaccurate. Do not allow it to go below zero though:
f711f609 1966 */
1da177e4
LT
1967 if (unlikely((long)sum < 0))
1968 sum = 0;
f711f609 1969
1da177e4 1970 return sum;
f711f609 1971}
f711f609 1972
1da177e4 1973unsigned long long nr_context_switches(void)
46cb4b7c 1974{
cc94abfc
SR
1975 int i;
1976 unsigned long long sum = 0;
46cb4b7c 1977
0a945022 1978 for_each_possible_cpu(i)
1da177e4 1979 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1980
1da177e4
LT
1981 return sum;
1982}
483b4ee6 1983
1da177e4
LT
1984unsigned long nr_iowait(void)
1985{
1986 unsigned long i, sum = 0;
483b4ee6 1987
0a945022 1988 for_each_possible_cpu(i)
1da177e4 1989 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 1990
1da177e4
LT
1991 return sum;
1992}
483b4ee6 1993
8c215bd3 1994unsigned long nr_iowait_cpu(int cpu)
69d25870 1995{
8c215bd3 1996 struct rq *this = cpu_rq(cpu);
69d25870
AV
1997 return atomic_read(&this->nr_iowait);
1998}
46cb4b7c 1999
69d25870
AV
2000unsigned long this_cpu_load(void)
2001{
2002 struct rq *this = this_rq();
2003 return this->cpu_load[0];
2004}
e790fb0b 2005
46cb4b7c 2006
5167e8d5
PZ
2007/*
2008 * Global load-average calculations
2009 *
2010 * We take a distributed and async approach to calculating the global load-avg
2011 * in order to minimize overhead.
2012 *
2013 * The global load average is an exponentially decaying average of nr_running +
2014 * nr_uninterruptible.
2015 *
2016 * Once every LOAD_FREQ:
2017 *
2018 * nr_active = 0;
2019 * for_each_possible_cpu(cpu)
2020 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2021 *
2022 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2023 *
2024 * Due to a number of reasons the above turns in the mess below:
2025 *
2026 * - for_each_possible_cpu() is prohibitively expensive on machines with
2027 * serious number of cpus, therefore we need to take a distributed approach
2028 * to calculating nr_active.
2029 *
2030 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2031 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2032 *
2033 * So assuming nr_active := 0 when we start out -- true per definition, we
2034 * can simply take per-cpu deltas and fold those into a global accumulate
2035 * to obtain the same result. See calc_load_fold_active().
2036 *
2037 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2038 * across the machine, we assume 10 ticks is sufficient time for every
2039 * cpu to have completed this task.
2040 *
2041 * This places an upper-bound on the IRQ-off latency of the machine. Then
2042 * again, being late doesn't loose the delta, just wrecks the sample.
2043 *
2044 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2045 * this would add another cross-cpu cacheline miss and atomic operation
2046 * to the wakeup path. Instead we increment on whatever cpu the task ran
2047 * when it went into uninterruptible state and decrement on whatever cpu
2048 * did the wakeup. This means that only the sum of nr_uninterruptible over
2049 * all cpus yields the correct result.
2050 *
2051 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2052 */
2053
dce48a84
TG
2054/* Variables and functions for calc_load */
2055static atomic_long_t calc_load_tasks;
2056static unsigned long calc_load_update;
2057unsigned long avenrun[3];
5167e8d5
PZ
2058EXPORT_SYMBOL(avenrun); /* should be removed */
2059
2060/**
2061 * get_avenrun - get the load average array
2062 * @loads: pointer to dest load array
2063 * @offset: offset to add
2064 * @shift: shift count to shift the result left
2065 *
2066 * These values are estimates at best, so no need for locking.
2067 */
2068void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2069{
2070 loads[0] = (avenrun[0] + offset) << shift;
2071 loads[1] = (avenrun[1] + offset) << shift;
2072 loads[2] = (avenrun[2] + offset) << shift;
2073}
46cb4b7c 2074
74f5187a
PZ
2075static long calc_load_fold_active(struct rq *this_rq)
2076{
2077 long nr_active, delta = 0;
2078
2079 nr_active = this_rq->nr_running;
2080 nr_active += (long) this_rq->nr_uninterruptible;
2081
2082 if (nr_active != this_rq->calc_load_active) {
2083 delta = nr_active - this_rq->calc_load_active;
2084 this_rq->calc_load_active = nr_active;
2085 }
2086
2087 return delta;
2088}
2089
5167e8d5
PZ
2090/*
2091 * a1 = a0 * e + a * (1 - e)
2092 */
0f004f5a
PZ
2093static unsigned long
2094calc_load(unsigned long load, unsigned long exp, unsigned long active)
2095{
2096 load *= exp;
2097 load += active * (FIXED_1 - exp);
2098 load += 1UL << (FSHIFT - 1);
2099 return load >> FSHIFT;
2100}
2101
74f5187a
PZ
2102#ifdef CONFIG_NO_HZ
2103/*
5167e8d5
PZ
2104 * Handle NO_HZ for the global load-average.
2105 *
2106 * Since the above described distributed algorithm to compute the global
2107 * load-average relies on per-cpu sampling from the tick, it is affected by
2108 * NO_HZ.
2109 *
2110 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2111 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2112 * when we read the global state.
2113 *
2114 * Obviously reality has to ruin such a delightfully simple scheme:
2115 *
2116 * - When we go NO_HZ idle during the window, we can negate our sample
2117 * contribution, causing under-accounting.
2118 *
2119 * We avoid this by keeping two idle-delta counters and flipping them
2120 * when the window starts, thus separating old and new NO_HZ load.
2121 *
2122 * The only trick is the slight shift in index flip for read vs write.
2123 *
2124 * 0s 5s 10s 15s
2125 * +10 +10 +10 +10
2126 * |-|-----------|-|-----------|-|-----------|-|
2127 * r:0 0 1 1 0 0 1 1 0
2128 * w:0 1 1 0 0 1 1 0 0
2129 *
2130 * This ensures we'll fold the old idle contribution in this window while
2131 * accumlating the new one.
2132 *
2133 * - When we wake up from NO_HZ idle during the window, we push up our
2134 * contribution, since we effectively move our sample point to a known
2135 * busy state.
2136 *
2137 * This is solved by pushing the window forward, and thus skipping the
2138 * sample, for this cpu (effectively using the idle-delta for this cpu which
2139 * was in effect at the time the window opened). This also solves the issue
2140 * of having to deal with a cpu having been in NOHZ idle for multiple
2141 * LOAD_FREQ intervals.
74f5187a
PZ
2142 *
2143 * When making the ILB scale, we should try to pull this in as well.
2144 */
5167e8d5
PZ
2145static atomic_long_t calc_load_idle[2];
2146static int calc_load_idx;
74f5187a 2147
5167e8d5 2148static inline int calc_load_write_idx(void)
74f5187a 2149{
5167e8d5
PZ
2150 int idx = calc_load_idx;
2151
2152 /*
2153 * See calc_global_nohz(), if we observe the new index, we also
2154 * need to observe the new update time.
2155 */
2156 smp_rmb();
2157
2158 /*
2159 * If the folding window started, make sure we start writing in the
2160 * next idle-delta.
2161 */
2162 if (!time_before(jiffies, calc_load_update))
2163 idx++;
2164
2165 return idx & 1;
2166}
2167
2168static inline int calc_load_read_idx(void)
2169{
2170 return calc_load_idx & 1;
2171}
2172
2173void calc_load_enter_idle(void)
2174{
2175 struct rq *this_rq = this_rq();
74f5187a
PZ
2176 long delta;
2177
5167e8d5
PZ
2178 /*
2179 * We're going into NOHZ mode, if there's any pending delta, fold it
2180 * into the pending idle delta.
2181 */
74f5187a 2182 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2183 if (delta) {
2184 int idx = calc_load_write_idx();
2185 atomic_long_add(delta, &calc_load_idle[idx]);
2186 }
74f5187a
PZ
2187}
2188
5167e8d5 2189void calc_load_exit_idle(void)
74f5187a 2190{
5167e8d5
PZ
2191 struct rq *this_rq = this_rq();
2192
2193 /*
2194 * If we're still before the sample window, we're done.
2195 */
2196 if (time_before(jiffies, this_rq->calc_load_update))
2197 return;
74f5187a
PZ
2198
2199 /*
5167e8d5
PZ
2200 * We woke inside or after the sample window, this means we're already
2201 * accounted through the nohz accounting, so skip the entire deal and
2202 * sync up for the next window.
74f5187a 2203 */
5167e8d5
PZ
2204 this_rq->calc_load_update = calc_load_update;
2205 if (time_before(jiffies, this_rq->calc_load_update + 10))
2206 this_rq->calc_load_update += LOAD_FREQ;
2207}
2208
2209static long calc_load_fold_idle(void)
2210{
2211 int idx = calc_load_read_idx();
2212 long delta = 0;
2213
2214 if (atomic_long_read(&calc_load_idle[idx]))
2215 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2216
2217 return delta;
2218}
0f004f5a
PZ
2219
2220/**
2221 * fixed_power_int - compute: x^n, in O(log n) time
2222 *
2223 * @x: base of the power
2224 * @frac_bits: fractional bits of @x
2225 * @n: power to raise @x to.
2226 *
2227 * By exploiting the relation between the definition of the natural power
2228 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2229 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2230 * (where: n_i \elem {0, 1}, the binary vector representing n),
2231 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2232 * of course trivially computable in O(log_2 n), the length of our binary
2233 * vector.
2234 */
2235static unsigned long
2236fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2237{
2238 unsigned long result = 1UL << frac_bits;
2239
2240 if (n) for (;;) {
2241 if (n & 1) {
2242 result *= x;
2243 result += 1UL << (frac_bits - 1);
2244 result >>= frac_bits;
2245 }
2246 n >>= 1;
2247 if (!n)
2248 break;
2249 x *= x;
2250 x += 1UL << (frac_bits - 1);
2251 x >>= frac_bits;
2252 }
2253
2254 return result;
2255}
2256
2257/*
2258 * a1 = a0 * e + a * (1 - e)
2259 *
2260 * a2 = a1 * e + a * (1 - e)
2261 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2262 * = a0 * e^2 + a * (1 - e) * (1 + e)
2263 *
2264 * a3 = a2 * e + a * (1 - e)
2265 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2266 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2267 *
2268 * ...
2269 *
2270 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2271 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2272 * = a0 * e^n + a * (1 - e^n)
2273 *
2274 * [1] application of the geometric series:
2275 *
2276 * n 1 - x^(n+1)
2277 * S_n := \Sum x^i = -------------
2278 * i=0 1 - x
2279 */
2280static unsigned long
2281calc_load_n(unsigned long load, unsigned long exp,
2282 unsigned long active, unsigned int n)
2283{
2284
2285 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2286}
2287
2288/*
2289 * NO_HZ can leave us missing all per-cpu ticks calling
2290 * calc_load_account_active(), but since an idle CPU folds its delta into
2291 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2292 * in the pending idle delta if our idle period crossed a load cycle boundary.
2293 *
2294 * Once we've updated the global active value, we need to apply the exponential
2295 * weights adjusted to the number of cycles missed.
2296 */
c308b56b 2297static void calc_global_nohz(void)
0f004f5a
PZ
2298{
2299 long delta, active, n;
2300
5167e8d5
PZ
2301 if (!time_before(jiffies, calc_load_update + 10)) {
2302 /*
2303 * Catch-up, fold however many we are behind still
2304 */
2305 delta = jiffies - calc_load_update - 10;
2306 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2307
5167e8d5
PZ
2308 active = atomic_long_read(&calc_load_tasks);
2309 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2310
5167e8d5
PZ
2311 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2312 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2313 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2314
5167e8d5
PZ
2315 calc_load_update += n * LOAD_FREQ;
2316 }
74f5187a 2317
5167e8d5
PZ
2318 /*
2319 * Flip the idle index...
2320 *
2321 * Make sure we first write the new time then flip the index, so that
2322 * calc_load_write_idx() will see the new time when it reads the new
2323 * index, this avoids a double flip messing things up.
2324 */
2325 smp_wmb();
2326 calc_load_idx++;
74f5187a 2327}
5167e8d5 2328#else /* !CONFIG_NO_HZ */
0f004f5a 2329
5167e8d5
PZ
2330static inline long calc_load_fold_idle(void) { return 0; }
2331static inline void calc_global_nohz(void) { }
74f5187a 2332
5167e8d5 2333#endif /* CONFIG_NO_HZ */
46cb4b7c 2334
46cb4b7c 2335/*
dce48a84
TG
2336 * calc_load - update the avenrun load estimates 10 ticks after the
2337 * CPUs have updated calc_load_tasks.
7835b98b 2338 */
0f004f5a 2339void calc_global_load(unsigned long ticks)
7835b98b 2340{
5167e8d5 2341 long active, delta;
1da177e4 2342
0f004f5a 2343 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2344 return;
1da177e4 2345
5167e8d5
PZ
2346 /*
2347 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2348 */
2349 delta = calc_load_fold_idle();
2350 if (delta)
2351 atomic_long_add(delta, &calc_load_tasks);
2352
dce48a84
TG
2353 active = atomic_long_read(&calc_load_tasks);
2354 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2355
dce48a84
TG
2356 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2357 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2358 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2359
dce48a84 2360 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2361
2362 /*
5167e8d5 2363 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2364 */
2365 calc_global_nohz();
dce48a84 2366}
1da177e4 2367
dce48a84 2368/*
74f5187a
PZ
2369 * Called from update_cpu_load() to periodically update this CPU's
2370 * active count.
dce48a84
TG
2371 */
2372static void calc_load_account_active(struct rq *this_rq)
2373{
74f5187a 2374 long delta;
08c183f3 2375
74f5187a
PZ
2376 if (time_before(jiffies, this_rq->calc_load_update))
2377 return;
783609c6 2378
74f5187a 2379 delta = calc_load_fold_active(this_rq);
74f5187a 2380 if (delta)
dce48a84 2381 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2382
2383 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2384}
2385
5167e8d5
PZ
2386/*
2387 * End of global load-average stuff
2388 */
2389
fdf3e95d
VP
2390/*
2391 * The exact cpuload at various idx values, calculated at every tick would be
2392 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2393 *
2394 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2395 * on nth tick when cpu may be busy, then we have:
2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2398 *
2399 * decay_load_missed() below does efficient calculation of
2400 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2401 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2402 *
2403 * The calculation is approximated on a 128 point scale.
2404 * degrade_zero_ticks is the number of ticks after which load at any
2405 * particular idx is approximated to be zero.
2406 * degrade_factor is a precomputed table, a row for each load idx.
2407 * Each column corresponds to degradation factor for a power of two ticks,
2408 * based on 128 point scale.
2409 * Example:
2410 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2411 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2412 *
2413 * With this power of 2 load factors, we can degrade the load n times
2414 * by looking at 1 bits in n and doing as many mult/shift instead of
2415 * n mult/shifts needed by the exact degradation.
2416 */
2417#define DEGRADE_SHIFT 7
2418static const unsigned char
2419 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2420static const unsigned char
2421 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2422 {0, 0, 0, 0, 0, 0, 0, 0},
2423 {64, 32, 8, 0, 0, 0, 0, 0},
2424 {96, 72, 40, 12, 1, 0, 0},
2425 {112, 98, 75, 43, 15, 1, 0},
2426 {120, 112, 98, 76, 45, 16, 2} };
2427
2428/*
2429 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2430 * would be when CPU is idle and so we just decay the old load without
2431 * adding any new load.
2432 */
2433static unsigned long
2434decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2435{
2436 int j = 0;
2437
2438 if (!missed_updates)
2439 return load;
2440
2441 if (missed_updates >= degrade_zero_ticks[idx])
2442 return 0;
2443
2444 if (idx == 1)
2445 return load >> missed_updates;
2446
2447 while (missed_updates) {
2448 if (missed_updates % 2)
2449 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2450
2451 missed_updates >>= 1;
2452 j++;
2453 }
2454 return load;
2455}
2456
46cb4b7c 2457/*
dd41f596 2458 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2459 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2460 * every tick. We fix it up based on jiffies.
46cb4b7c 2461 */
556061b0
PZ
2462static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2463 unsigned long pending_updates)
46cb4b7c 2464{
dd41f596 2465 int i, scale;
46cb4b7c 2466
dd41f596 2467 this_rq->nr_load_updates++;
46cb4b7c 2468
dd41f596 2469 /* Update our load: */
fdf3e95d
VP
2470 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2471 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2472 unsigned long old_load, new_load;
7d1e6a9b 2473
dd41f596 2474 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2475
dd41f596 2476 old_load = this_rq->cpu_load[i];
fdf3e95d 2477 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2478 new_load = this_load;
a25707f3
IM
2479 /*
2480 * Round up the averaging division if load is increasing. This
2481 * prevents us from getting stuck on 9 if the load is 10, for
2482 * example.
2483 */
2484 if (new_load > old_load)
fdf3e95d
VP
2485 new_load += scale - 1;
2486
2487 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2488 }
da2b71ed
SS
2489
2490 sched_avg_update(this_rq);
fdf3e95d
VP
2491}
2492
5aaa0b7a
PZ
2493#ifdef CONFIG_NO_HZ
2494/*
2495 * There is no sane way to deal with nohz on smp when using jiffies because the
2496 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2497 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2498 *
2499 * Therefore we cannot use the delta approach from the regular tick since that
2500 * would seriously skew the load calculation. However we'll make do for those
2501 * updates happening while idle (nohz_idle_balance) or coming out of idle
2502 * (tick_nohz_idle_exit).
2503 *
2504 * This means we might still be one tick off for nohz periods.
2505 */
2506
556061b0
PZ
2507/*
2508 * Called from nohz_idle_balance() to update the load ratings before doing the
2509 * idle balance.
2510 */
2511void update_idle_cpu_load(struct rq *this_rq)
2512{
5aaa0b7a 2513 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2514 unsigned long load = this_rq->load.weight;
2515 unsigned long pending_updates;
2516
2517 /*
5aaa0b7a 2518 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2519 */
2520 if (load || curr_jiffies == this_rq->last_load_update_tick)
2521 return;
2522
2523 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2524 this_rq->last_load_update_tick = curr_jiffies;
2525
2526 __update_cpu_load(this_rq, load, pending_updates);
2527}
2528
5aaa0b7a
PZ
2529/*
2530 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2531 */
2532void update_cpu_load_nohz(void)
2533{
2534 struct rq *this_rq = this_rq();
2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 unsigned long pending_updates;
2537
2538 if (curr_jiffies == this_rq->last_load_update_tick)
2539 return;
2540
2541 raw_spin_lock(&this_rq->lock);
2542 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2543 if (pending_updates) {
2544 this_rq->last_load_update_tick = curr_jiffies;
2545 /*
2546 * We were idle, this means load 0, the current load might be
2547 * !0 due to remote wakeups and the sort.
2548 */
2549 __update_cpu_load(this_rq, 0, pending_updates);
2550 }
2551 raw_spin_unlock(&this_rq->lock);
2552}
2553#endif /* CONFIG_NO_HZ */
2554
556061b0
PZ
2555/*
2556 * Called from scheduler_tick()
2557 */
fdf3e95d
VP
2558static void update_cpu_load_active(struct rq *this_rq)
2559{
556061b0 2560 /*
5aaa0b7a 2561 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2562 */
2563 this_rq->last_load_update_tick = jiffies;
2564 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2565
74f5187a 2566 calc_load_account_active(this_rq);
46cb4b7c
SS
2567}
2568
dd41f596 2569#ifdef CONFIG_SMP
8a0be9ef 2570
46cb4b7c 2571/*
38022906
PZ
2572 * sched_exec - execve() is a valuable balancing opportunity, because at
2573 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2574 */
38022906 2575void sched_exec(void)
46cb4b7c 2576{
38022906 2577 struct task_struct *p = current;
1da177e4 2578 unsigned long flags;
0017d735 2579 int dest_cpu;
46cb4b7c 2580
8f42ced9 2581 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2582 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2583 if (dest_cpu == smp_processor_id())
2584 goto unlock;
38022906 2585
8f42ced9 2586 if (likely(cpu_active(dest_cpu))) {
969c7921 2587 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2588
8f42ced9
PZ
2589 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2590 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2591 return;
2592 }
0017d735 2593unlock:
8f42ced9 2594 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2595}
dd41f596 2596
1da177e4
LT
2597#endif
2598
1da177e4 2599DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2600DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2601
2602EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2603EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2604
2605/*
c5f8d995 2606 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2607 * @p in case that task is currently running.
c5f8d995
HS
2608 *
2609 * Called with task_rq_lock() held on @rq.
1da177e4 2610 */
c5f8d995
HS
2611static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2612{
2613 u64 ns = 0;
2614
2615 if (task_current(rq, p)) {
2616 update_rq_clock(rq);
305e6835 2617 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2618 if ((s64)ns < 0)
2619 ns = 0;
2620 }
2621
2622 return ns;
2623}
2624
bb34d92f 2625unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2626{
1da177e4 2627 unsigned long flags;
41b86e9c 2628 struct rq *rq;
bb34d92f 2629 u64 ns = 0;
48f24c4d 2630
41b86e9c 2631 rq = task_rq_lock(p, &flags);
c5f8d995 2632 ns = do_task_delta_exec(p, rq);
0122ec5b 2633 task_rq_unlock(rq, p, &flags);
1508487e 2634
c5f8d995
HS
2635 return ns;
2636}
f06febc9 2637
c5f8d995
HS
2638/*
2639 * Return accounted runtime for the task.
2640 * In case the task is currently running, return the runtime plus current's
2641 * pending runtime that have not been accounted yet.
2642 */
2643unsigned long long task_sched_runtime(struct task_struct *p)
2644{
2645 unsigned long flags;
2646 struct rq *rq;
2647 u64 ns = 0;
2648
2649 rq = task_rq_lock(p, &flags);
2650 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2651 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2652
2653 return ns;
2654}
48f24c4d 2655
7835b98b
CL
2656/*
2657 * This function gets called by the timer code, with HZ frequency.
2658 * We call it with interrupts disabled.
7835b98b
CL
2659 */
2660void scheduler_tick(void)
2661{
7835b98b
CL
2662 int cpu = smp_processor_id();
2663 struct rq *rq = cpu_rq(cpu);
dd41f596 2664 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2665
2666 sched_clock_tick();
dd41f596 2667
05fa785c 2668 raw_spin_lock(&rq->lock);
3e51f33f 2669 update_rq_clock(rq);
fdf3e95d 2670 update_cpu_load_active(rq);
fa85ae24 2671 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2672 raw_spin_unlock(&rq->lock);
7835b98b 2673
e9d2b064 2674 perf_event_task_tick();
e220d2dc 2675
e418e1c2 2676#ifdef CONFIG_SMP
6eb57e0d 2677 rq->idle_balance = idle_cpu(cpu);
dd41f596 2678 trigger_load_balance(rq, cpu);
e418e1c2 2679#endif
1da177e4
LT
2680}
2681
132380a0 2682notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2683{
2684 if (in_lock_functions(addr)) {
2685 addr = CALLER_ADDR2;
2686 if (in_lock_functions(addr))
2687 addr = CALLER_ADDR3;
2688 }
2689 return addr;
2690}
1da177e4 2691
7e49fcce
SR
2692#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2693 defined(CONFIG_PREEMPT_TRACER))
2694
43627582 2695void __kprobes add_preempt_count(int val)
1da177e4 2696{
6cd8a4bb 2697#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2698 /*
2699 * Underflow?
2700 */
9a11b49a
IM
2701 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2702 return;
6cd8a4bb 2703#endif
1da177e4 2704 preempt_count() += val;
6cd8a4bb 2705#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2706 /*
2707 * Spinlock count overflowing soon?
2708 */
33859f7f
MOS
2709 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2710 PREEMPT_MASK - 10);
6cd8a4bb
SR
2711#endif
2712 if (preempt_count() == val)
2713 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2714}
2715EXPORT_SYMBOL(add_preempt_count);
2716
43627582 2717void __kprobes sub_preempt_count(int val)
1da177e4 2718{
6cd8a4bb 2719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2720 /*
2721 * Underflow?
2722 */
01e3eb82 2723 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2724 return;
1da177e4
LT
2725 /*
2726 * Is the spinlock portion underflowing?
2727 */
9a11b49a
IM
2728 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2729 !(preempt_count() & PREEMPT_MASK)))
2730 return;
6cd8a4bb 2731#endif
9a11b49a 2732
6cd8a4bb
SR
2733 if (preempt_count() == val)
2734 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2735 preempt_count() -= val;
2736}
2737EXPORT_SYMBOL(sub_preempt_count);
2738
2739#endif
2740
2741/*
dd41f596 2742 * Print scheduling while atomic bug:
1da177e4 2743 */
dd41f596 2744static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2745{
664dfa65
DJ
2746 if (oops_in_progress)
2747 return;
2748
3df0fc5b
PZ
2749 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2750 prev->comm, prev->pid, preempt_count());
838225b4 2751
dd41f596 2752 debug_show_held_locks(prev);
e21f5b15 2753 print_modules();
dd41f596
IM
2754 if (irqs_disabled())
2755 print_irqtrace_events(prev);
6135fc1e 2756 dump_stack();
1c2927f1 2757 add_taint(TAINT_WARN);
dd41f596 2758}
1da177e4 2759
dd41f596
IM
2760/*
2761 * Various schedule()-time debugging checks and statistics:
2762 */
2763static inline void schedule_debug(struct task_struct *prev)
2764{
1da177e4 2765 /*
41a2d6cf 2766 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2767 * schedule() atomically, we ignore that path for now.
2768 * Otherwise, whine if we are scheduling when we should not be.
2769 */
3f33a7ce 2770 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2771 __schedule_bug(prev);
b3fbab05 2772 rcu_sleep_check();
dd41f596 2773
1da177e4
LT
2774 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2775
2d72376b 2776 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2777}
2778
6cecd084 2779static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2780{
61eadef6 2781 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2782 update_rq_clock(rq);
6cecd084 2783 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2784}
2785
dd41f596
IM
2786/*
2787 * Pick up the highest-prio task:
2788 */
2789static inline struct task_struct *
b67802ea 2790pick_next_task(struct rq *rq)
dd41f596 2791{
5522d5d5 2792 const struct sched_class *class;
dd41f596 2793 struct task_struct *p;
1da177e4
LT
2794
2795 /*
dd41f596
IM
2796 * Optimization: we know that if all tasks are in
2797 * the fair class we can call that function directly:
1da177e4 2798 */
953bfcd1 2799 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2800 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2801 if (likely(p))
2802 return p;
1da177e4
LT
2803 }
2804
34f971f6 2805 for_each_class(class) {
fb8d4724 2806 p = class->pick_next_task(rq);
dd41f596
IM
2807 if (p)
2808 return p;
dd41f596 2809 }
34f971f6
PZ
2810
2811 BUG(); /* the idle class will always have a runnable task */
dd41f596 2812}
1da177e4 2813
dd41f596 2814/*
c259e01a 2815 * __schedule() is the main scheduler function.
edde96ea
PE
2816 *
2817 * The main means of driving the scheduler and thus entering this function are:
2818 *
2819 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2820 *
2821 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2822 * paths. For example, see arch/x86/entry_64.S.
2823 *
2824 * To drive preemption between tasks, the scheduler sets the flag in timer
2825 * interrupt handler scheduler_tick().
2826 *
2827 * 3. Wakeups don't really cause entry into schedule(). They add a
2828 * task to the run-queue and that's it.
2829 *
2830 * Now, if the new task added to the run-queue preempts the current
2831 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2832 * called on the nearest possible occasion:
2833 *
2834 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2835 *
2836 * - in syscall or exception context, at the next outmost
2837 * preempt_enable(). (this might be as soon as the wake_up()'s
2838 * spin_unlock()!)
2839 *
2840 * - in IRQ context, return from interrupt-handler to
2841 * preemptible context
2842 *
2843 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2844 * then at the next:
2845 *
2846 * - cond_resched() call
2847 * - explicit schedule() call
2848 * - return from syscall or exception to user-space
2849 * - return from interrupt-handler to user-space
dd41f596 2850 */
c259e01a 2851static void __sched __schedule(void)
dd41f596
IM
2852{
2853 struct task_struct *prev, *next;
67ca7bde 2854 unsigned long *switch_count;
dd41f596 2855 struct rq *rq;
31656519 2856 int cpu;
dd41f596 2857
ff743345
PZ
2858need_resched:
2859 preempt_disable();
dd41f596
IM
2860 cpu = smp_processor_id();
2861 rq = cpu_rq(cpu);
25502a6c 2862 rcu_note_context_switch(cpu);
dd41f596 2863 prev = rq->curr;
dd41f596 2864
dd41f596 2865 schedule_debug(prev);
1da177e4 2866
31656519 2867 if (sched_feat(HRTICK))
f333fdc9 2868 hrtick_clear(rq);
8f4d37ec 2869
05fa785c 2870 raw_spin_lock_irq(&rq->lock);
1da177e4 2871
246d86b5 2872 switch_count = &prev->nivcsw;
1da177e4 2873 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2874 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2875 prev->state = TASK_RUNNING;
21aa9af0 2876 } else {
2acca55e
PZ
2877 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2878 prev->on_rq = 0;
2879
21aa9af0 2880 /*
2acca55e
PZ
2881 * If a worker went to sleep, notify and ask workqueue
2882 * whether it wants to wake up a task to maintain
2883 * concurrency.
21aa9af0
TH
2884 */
2885 if (prev->flags & PF_WQ_WORKER) {
2886 struct task_struct *to_wakeup;
2887
2888 to_wakeup = wq_worker_sleeping(prev, cpu);
2889 if (to_wakeup)
2890 try_to_wake_up_local(to_wakeup);
2891 }
21aa9af0 2892 }
dd41f596 2893 switch_count = &prev->nvcsw;
1da177e4
LT
2894 }
2895
3f029d3c 2896 pre_schedule(rq, prev);
f65eda4f 2897
dd41f596 2898 if (unlikely(!rq->nr_running))
1da177e4 2899 idle_balance(cpu, rq);
1da177e4 2900
df1c99d4 2901 put_prev_task(rq, prev);
b67802ea 2902 next = pick_next_task(rq);
f26f9aff
MG
2903 clear_tsk_need_resched(prev);
2904 rq->skip_clock_update = 0;
1da177e4 2905
1da177e4 2906 if (likely(prev != next)) {
1da177e4
LT
2907 rq->nr_switches++;
2908 rq->curr = next;
2909 ++*switch_count;
2910
dd41f596 2911 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2912 /*
246d86b5
ON
2913 * The context switch have flipped the stack from under us
2914 * and restored the local variables which were saved when
2915 * this task called schedule() in the past. prev == current
2916 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2917 */
2918 cpu = smp_processor_id();
2919 rq = cpu_rq(cpu);
1da177e4 2920 } else
05fa785c 2921 raw_spin_unlock_irq(&rq->lock);
1da177e4 2922
3f029d3c 2923 post_schedule(rq);
1da177e4 2924
ba74c144 2925 sched_preempt_enable_no_resched();
ff743345 2926 if (need_resched())
1da177e4
LT
2927 goto need_resched;
2928}
c259e01a 2929
9c40cef2
TG
2930static inline void sched_submit_work(struct task_struct *tsk)
2931{
3c7d5184 2932 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2933 return;
2934 /*
2935 * If we are going to sleep and we have plugged IO queued,
2936 * make sure to submit it to avoid deadlocks.
2937 */
2938 if (blk_needs_flush_plug(tsk))
2939 blk_schedule_flush_plug(tsk);
2940}
2941
6ebbe7a0 2942asmlinkage void __sched schedule(void)
c259e01a 2943{
9c40cef2
TG
2944 struct task_struct *tsk = current;
2945
2946 sched_submit_work(tsk);
c259e01a
TG
2947 __schedule();
2948}
1da177e4
LT
2949EXPORT_SYMBOL(schedule);
2950
c5491ea7
TG
2951/**
2952 * schedule_preempt_disabled - called with preemption disabled
2953 *
2954 * Returns with preemption disabled. Note: preempt_count must be 1
2955 */
2956void __sched schedule_preempt_disabled(void)
2957{
ba74c144 2958 sched_preempt_enable_no_resched();
c5491ea7
TG
2959 schedule();
2960 preempt_disable();
2961}
2962
c08f7829 2963#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2964
c6eb3dda
PZ
2965static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2966{
c6eb3dda 2967 if (lock->owner != owner)
307bf980 2968 return false;
0d66bf6d
PZ
2969
2970 /*
c6eb3dda
PZ
2971 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2972 * lock->owner still matches owner, if that fails, owner might
2973 * point to free()d memory, if it still matches, the rcu_read_lock()
2974 * ensures the memory stays valid.
0d66bf6d 2975 */
c6eb3dda 2976 barrier();
0d66bf6d 2977
307bf980 2978 return owner->on_cpu;
c6eb3dda 2979}
0d66bf6d 2980
c6eb3dda
PZ
2981/*
2982 * Look out! "owner" is an entirely speculative pointer
2983 * access and not reliable.
2984 */
2985int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2986{
2987 if (!sched_feat(OWNER_SPIN))
2988 return 0;
0d66bf6d 2989
307bf980 2990 rcu_read_lock();
c6eb3dda
PZ
2991 while (owner_running(lock, owner)) {
2992 if (need_resched())
307bf980 2993 break;
0d66bf6d 2994
335d7afb 2995 arch_mutex_cpu_relax();
0d66bf6d 2996 }
307bf980 2997 rcu_read_unlock();
4b402210 2998
c6eb3dda 2999 /*
307bf980
TG
3000 * We break out the loop above on need_resched() and when the
3001 * owner changed, which is a sign for heavy contention. Return
3002 * success only when lock->owner is NULL.
c6eb3dda 3003 */
307bf980 3004 return lock->owner == NULL;
0d66bf6d
PZ
3005}
3006#endif
3007
1da177e4
LT
3008#ifdef CONFIG_PREEMPT
3009/*
2ed6e34f 3010 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3011 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3012 * occur there and call schedule directly.
3013 */
d1f74e20 3014asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3015{
3016 struct thread_info *ti = current_thread_info();
6478d880 3017
1da177e4
LT
3018 /*
3019 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3020 * we do not want to preempt the current task. Just return..
1da177e4 3021 */
beed33a8 3022 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3023 return;
3024
3a5c359a 3025 do {
d1f74e20 3026 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3027 __schedule();
d1f74e20 3028 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3029
3a5c359a
AK
3030 /*
3031 * Check again in case we missed a preemption opportunity
3032 * between schedule and now.
3033 */
3034 barrier();
5ed0cec0 3035 } while (need_resched());
1da177e4 3036}
1da177e4
LT
3037EXPORT_SYMBOL(preempt_schedule);
3038
3039/*
2ed6e34f 3040 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3041 * off of irq context.
3042 * Note, that this is called and return with irqs disabled. This will
3043 * protect us against recursive calling from irq.
3044 */
3045asmlinkage void __sched preempt_schedule_irq(void)
3046{
3047 struct thread_info *ti = current_thread_info();
6478d880 3048
2ed6e34f 3049 /* Catch callers which need to be fixed */
1da177e4
LT
3050 BUG_ON(ti->preempt_count || !irqs_disabled());
3051
3a5c359a
AK
3052 do {
3053 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3054 local_irq_enable();
c259e01a 3055 __schedule();
3a5c359a 3056 local_irq_disable();
3a5c359a 3057 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3058
3a5c359a
AK
3059 /*
3060 * Check again in case we missed a preemption opportunity
3061 * between schedule and now.
3062 */
3063 barrier();
5ed0cec0 3064 } while (need_resched());
1da177e4
LT
3065}
3066
3067#endif /* CONFIG_PREEMPT */
3068
63859d4f 3069int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3070 void *key)
1da177e4 3071{
63859d4f 3072 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3073}
1da177e4
LT
3074EXPORT_SYMBOL(default_wake_function);
3075
3076/*
41a2d6cf
IM
3077 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3078 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3079 * number) then we wake all the non-exclusive tasks and one exclusive task.
3080 *
3081 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3082 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3083 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3084 */
78ddb08f 3085static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3086 int nr_exclusive, int wake_flags, void *key)
1da177e4 3087{
2e45874c 3088 wait_queue_t *curr, *next;
1da177e4 3089
2e45874c 3090 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3091 unsigned flags = curr->flags;
3092
63859d4f 3093 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3094 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3095 break;
3096 }
3097}
3098
3099/**
3100 * __wake_up - wake up threads blocked on a waitqueue.
3101 * @q: the waitqueue
3102 * @mode: which threads
3103 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3104 * @key: is directly passed to the wakeup function
50fa610a
DH
3105 *
3106 * It may be assumed that this function implies a write memory barrier before
3107 * changing the task state if and only if any tasks are woken up.
1da177e4 3108 */
7ad5b3a5 3109void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3110 int nr_exclusive, void *key)
1da177e4
LT
3111{
3112 unsigned long flags;
3113
3114 spin_lock_irqsave(&q->lock, flags);
3115 __wake_up_common(q, mode, nr_exclusive, 0, key);
3116 spin_unlock_irqrestore(&q->lock, flags);
3117}
1da177e4
LT
3118EXPORT_SYMBOL(__wake_up);
3119
3120/*
3121 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3122 */
63b20011 3123void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3124{
63b20011 3125 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3126}
22c43c81 3127EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3128
4ede816a
DL
3129void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3130{
3131 __wake_up_common(q, mode, 1, 0, key);
3132}
bf294b41 3133EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3134
1da177e4 3135/**
4ede816a 3136 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3137 * @q: the waitqueue
3138 * @mode: which threads
3139 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3140 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3141 *
3142 * The sync wakeup differs that the waker knows that it will schedule
3143 * away soon, so while the target thread will be woken up, it will not
3144 * be migrated to another CPU - ie. the two threads are 'synchronized'
3145 * with each other. This can prevent needless bouncing between CPUs.
3146 *
3147 * On UP it can prevent extra preemption.
50fa610a
DH
3148 *
3149 * It may be assumed that this function implies a write memory barrier before
3150 * changing the task state if and only if any tasks are woken up.
1da177e4 3151 */
4ede816a
DL
3152void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3153 int nr_exclusive, void *key)
1da177e4
LT
3154{
3155 unsigned long flags;
7d478721 3156 int wake_flags = WF_SYNC;
1da177e4
LT
3157
3158 if (unlikely(!q))
3159 return;
3160
3161 if (unlikely(!nr_exclusive))
7d478721 3162 wake_flags = 0;
1da177e4
LT
3163
3164 spin_lock_irqsave(&q->lock, flags);
7d478721 3165 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3166 spin_unlock_irqrestore(&q->lock, flags);
3167}
4ede816a
DL
3168EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3169
3170/*
3171 * __wake_up_sync - see __wake_up_sync_key()
3172 */
3173void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3174{
3175 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3176}
1da177e4
LT
3177EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3178
65eb3dc6
KD
3179/**
3180 * complete: - signals a single thread waiting on this completion
3181 * @x: holds the state of this particular completion
3182 *
3183 * This will wake up a single thread waiting on this completion. Threads will be
3184 * awakened in the same order in which they were queued.
3185 *
3186 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3187 *
3188 * It may be assumed that this function implies a write memory barrier before
3189 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3190 */
b15136e9 3191void complete(struct completion *x)
1da177e4
LT
3192{
3193 unsigned long flags;
3194
3195 spin_lock_irqsave(&x->wait.lock, flags);
3196 x->done++;
d9514f6c 3197 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3198 spin_unlock_irqrestore(&x->wait.lock, flags);
3199}
3200EXPORT_SYMBOL(complete);
3201
65eb3dc6
KD
3202/**
3203 * complete_all: - signals all threads waiting on this completion
3204 * @x: holds the state of this particular completion
3205 *
3206 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3207 *
3208 * It may be assumed that this function implies a write memory barrier before
3209 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3210 */
b15136e9 3211void complete_all(struct completion *x)
1da177e4
LT
3212{
3213 unsigned long flags;
3214
3215 spin_lock_irqsave(&x->wait.lock, flags);
3216 x->done += UINT_MAX/2;
d9514f6c 3217 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3218 spin_unlock_irqrestore(&x->wait.lock, flags);
3219}
3220EXPORT_SYMBOL(complete_all);
3221
8cbbe86d
AK
3222static inline long __sched
3223do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3224{
1da177e4
LT
3225 if (!x->done) {
3226 DECLARE_WAITQUEUE(wait, current);
3227
a93d2f17 3228 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3229 do {
94d3d824 3230 if (signal_pending_state(state, current)) {
ea71a546
ON
3231 timeout = -ERESTARTSYS;
3232 break;
8cbbe86d
AK
3233 }
3234 __set_current_state(state);
1da177e4
LT
3235 spin_unlock_irq(&x->wait.lock);
3236 timeout = schedule_timeout(timeout);
3237 spin_lock_irq(&x->wait.lock);
ea71a546 3238 } while (!x->done && timeout);
1da177e4 3239 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3240 if (!x->done)
3241 return timeout;
1da177e4
LT
3242 }
3243 x->done--;
ea71a546 3244 return timeout ?: 1;
1da177e4 3245}
1da177e4 3246
8cbbe86d
AK
3247static long __sched
3248wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3249{
1da177e4
LT
3250 might_sleep();
3251
3252 spin_lock_irq(&x->wait.lock);
8cbbe86d 3253 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3254 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3255 return timeout;
3256}
1da177e4 3257
65eb3dc6
KD
3258/**
3259 * wait_for_completion: - waits for completion of a task
3260 * @x: holds the state of this particular completion
3261 *
3262 * This waits to be signaled for completion of a specific task. It is NOT
3263 * interruptible and there is no timeout.
3264 *
3265 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3266 * and interrupt capability. Also see complete().
3267 */
b15136e9 3268void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3269{
3270 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3271}
8cbbe86d 3272EXPORT_SYMBOL(wait_for_completion);
1da177e4 3273
65eb3dc6
KD
3274/**
3275 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3276 * @x: holds the state of this particular completion
3277 * @timeout: timeout value in jiffies
3278 *
3279 * This waits for either a completion of a specific task to be signaled or for a
3280 * specified timeout to expire. The timeout is in jiffies. It is not
3281 * interruptible.
c6dc7f05
BF
3282 *
3283 * The return value is 0 if timed out, and positive (at least 1, or number of
3284 * jiffies left till timeout) if completed.
65eb3dc6 3285 */
b15136e9 3286unsigned long __sched
8cbbe86d 3287wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3288{
8cbbe86d 3289 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3290}
8cbbe86d 3291EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3292
65eb3dc6
KD
3293/**
3294 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3295 * @x: holds the state of this particular completion
3296 *
3297 * This waits for completion of a specific task to be signaled. It is
3298 * interruptible.
c6dc7f05
BF
3299 *
3300 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3301 */
8cbbe86d 3302int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3303{
51e97990
AK
3304 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3305 if (t == -ERESTARTSYS)
3306 return t;
3307 return 0;
0fec171c 3308}
8cbbe86d 3309EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3310
65eb3dc6
KD
3311/**
3312 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3313 * @x: holds the state of this particular completion
3314 * @timeout: timeout value in jiffies
3315 *
3316 * This waits for either a completion of a specific task to be signaled or for a
3317 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3318 *
3319 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3320 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3321 */
6bf41237 3322long __sched
8cbbe86d
AK
3323wait_for_completion_interruptible_timeout(struct completion *x,
3324 unsigned long timeout)
0fec171c 3325{
8cbbe86d 3326 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3327}
8cbbe86d 3328EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3329
65eb3dc6
KD
3330/**
3331 * wait_for_completion_killable: - waits for completion of a task (killable)
3332 * @x: holds the state of this particular completion
3333 *
3334 * This waits to be signaled for completion of a specific task. It can be
3335 * interrupted by a kill signal.
c6dc7f05
BF
3336 *
3337 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3338 */
009e577e
MW
3339int __sched wait_for_completion_killable(struct completion *x)
3340{
3341 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3342 if (t == -ERESTARTSYS)
3343 return t;
3344 return 0;
3345}
3346EXPORT_SYMBOL(wait_for_completion_killable);
3347
0aa12fb4
SW
3348/**
3349 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3350 * @x: holds the state of this particular completion
3351 * @timeout: timeout value in jiffies
3352 *
3353 * This waits for either a completion of a specific task to be
3354 * signaled or for a specified timeout to expire. It can be
3355 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3356 *
3357 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3358 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3359 */
6bf41237 3360long __sched
0aa12fb4
SW
3361wait_for_completion_killable_timeout(struct completion *x,
3362 unsigned long timeout)
3363{
3364 return wait_for_common(x, timeout, TASK_KILLABLE);
3365}
3366EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3367
be4de352
DC
3368/**
3369 * try_wait_for_completion - try to decrement a completion without blocking
3370 * @x: completion structure
3371 *
3372 * Returns: 0 if a decrement cannot be done without blocking
3373 * 1 if a decrement succeeded.
3374 *
3375 * If a completion is being used as a counting completion,
3376 * attempt to decrement the counter without blocking. This
3377 * enables us to avoid waiting if the resource the completion
3378 * is protecting is not available.
3379 */
3380bool try_wait_for_completion(struct completion *x)
3381{
7539a3b3 3382 unsigned long flags;
be4de352
DC
3383 int ret = 1;
3384
7539a3b3 3385 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3386 if (!x->done)
3387 ret = 0;
3388 else
3389 x->done--;
7539a3b3 3390 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3391 return ret;
3392}
3393EXPORT_SYMBOL(try_wait_for_completion);
3394
3395/**
3396 * completion_done - Test to see if a completion has any waiters
3397 * @x: completion structure
3398 *
3399 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3400 * 1 if there are no waiters.
3401 *
3402 */
3403bool completion_done(struct completion *x)
3404{
7539a3b3 3405 unsigned long flags;
be4de352
DC
3406 int ret = 1;
3407
7539a3b3 3408 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3409 if (!x->done)
3410 ret = 0;
7539a3b3 3411 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3412 return ret;
3413}
3414EXPORT_SYMBOL(completion_done);
3415
8cbbe86d
AK
3416static long __sched
3417sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3418{
0fec171c
IM
3419 unsigned long flags;
3420 wait_queue_t wait;
3421
3422 init_waitqueue_entry(&wait, current);
1da177e4 3423
8cbbe86d 3424 __set_current_state(state);
1da177e4 3425
8cbbe86d
AK
3426 spin_lock_irqsave(&q->lock, flags);
3427 __add_wait_queue(q, &wait);
3428 spin_unlock(&q->lock);
3429 timeout = schedule_timeout(timeout);
3430 spin_lock_irq(&q->lock);
3431 __remove_wait_queue(q, &wait);
3432 spin_unlock_irqrestore(&q->lock, flags);
3433
3434 return timeout;
3435}
3436
3437void __sched interruptible_sleep_on(wait_queue_head_t *q)
3438{
3439 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3440}
1da177e4
LT
3441EXPORT_SYMBOL(interruptible_sleep_on);
3442
0fec171c 3443long __sched
95cdf3b7 3444interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3445{
8cbbe86d 3446 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3447}
1da177e4
LT
3448EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3449
0fec171c 3450void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3451{
8cbbe86d 3452 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3453}
1da177e4
LT
3454EXPORT_SYMBOL(sleep_on);
3455
0fec171c 3456long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3457{
8cbbe86d 3458 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3459}
1da177e4
LT
3460EXPORT_SYMBOL(sleep_on_timeout);
3461
b29739f9
IM
3462#ifdef CONFIG_RT_MUTEXES
3463
3464/*
3465 * rt_mutex_setprio - set the current priority of a task
3466 * @p: task
3467 * @prio: prio value (kernel-internal form)
3468 *
3469 * This function changes the 'effective' priority of a task. It does
3470 * not touch ->normal_prio like __setscheduler().
3471 *
3472 * Used by the rt_mutex code to implement priority inheritance logic.
3473 */
36c8b586 3474void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3475{
83b699ed 3476 int oldprio, on_rq, running;
70b97a7f 3477 struct rq *rq;
83ab0aa0 3478 const struct sched_class *prev_class;
b29739f9
IM
3479
3480 BUG_ON(prio < 0 || prio > MAX_PRIO);
3481
0122ec5b 3482 rq = __task_rq_lock(p);
b29739f9 3483
1c4dd99b
TG
3484 /*
3485 * Idle task boosting is a nono in general. There is one
3486 * exception, when PREEMPT_RT and NOHZ is active:
3487 *
3488 * The idle task calls get_next_timer_interrupt() and holds
3489 * the timer wheel base->lock on the CPU and another CPU wants
3490 * to access the timer (probably to cancel it). We can safely
3491 * ignore the boosting request, as the idle CPU runs this code
3492 * with interrupts disabled and will complete the lock
3493 * protected section without being interrupted. So there is no
3494 * real need to boost.
3495 */
3496 if (unlikely(p == rq->idle)) {
3497 WARN_ON(p != rq->curr);
3498 WARN_ON(p->pi_blocked_on);
3499 goto out_unlock;
3500 }
3501
a8027073 3502 trace_sched_pi_setprio(p, prio);
d5f9f942 3503 oldprio = p->prio;
83ab0aa0 3504 prev_class = p->sched_class;
fd2f4419 3505 on_rq = p->on_rq;
051a1d1a 3506 running = task_current(rq, p);
0e1f3483 3507 if (on_rq)
69be72c1 3508 dequeue_task(rq, p, 0);
0e1f3483
HS
3509 if (running)
3510 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3511
3512 if (rt_prio(prio))
3513 p->sched_class = &rt_sched_class;
3514 else
3515 p->sched_class = &fair_sched_class;
3516
b29739f9
IM
3517 p->prio = prio;
3518
0e1f3483
HS
3519 if (running)
3520 p->sched_class->set_curr_task(rq);
da7a735e 3521 if (on_rq)
371fd7e7 3522 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3523
da7a735e 3524 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3525out_unlock:
0122ec5b 3526 __task_rq_unlock(rq);
b29739f9 3527}
b29739f9 3528#endif
36c8b586 3529void set_user_nice(struct task_struct *p, long nice)
1da177e4 3530{
dd41f596 3531 int old_prio, delta, on_rq;
1da177e4 3532 unsigned long flags;
70b97a7f 3533 struct rq *rq;
1da177e4
LT
3534
3535 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3536 return;
3537 /*
3538 * We have to be careful, if called from sys_setpriority(),
3539 * the task might be in the middle of scheduling on another CPU.
3540 */
3541 rq = task_rq_lock(p, &flags);
3542 /*
3543 * The RT priorities are set via sched_setscheduler(), but we still
3544 * allow the 'normal' nice value to be set - but as expected
3545 * it wont have any effect on scheduling until the task is
dd41f596 3546 * SCHED_FIFO/SCHED_RR:
1da177e4 3547 */
e05606d3 3548 if (task_has_rt_policy(p)) {
1da177e4
LT
3549 p->static_prio = NICE_TO_PRIO(nice);
3550 goto out_unlock;
3551 }
fd2f4419 3552 on_rq = p->on_rq;
c09595f6 3553 if (on_rq)
69be72c1 3554 dequeue_task(rq, p, 0);
1da177e4 3555
1da177e4 3556 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3557 set_load_weight(p);
b29739f9
IM
3558 old_prio = p->prio;
3559 p->prio = effective_prio(p);
3560 delta = p->prio - old_prio;
1da177e4 3561
dd41f596 3562 if (on_rq) {
371fd7e7 3563 enqueue_task(rq, p, 0);
1da177e4 3564 /*
d5f9f942
AM
3565 * If the task increased its priority or is running and
3566 * lowered its priority, then reschedule its CPU:
1da177e4 3567 */
d5f9f942 3568 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3569 resched_task(rq->curr);
3570 }
3571out_unlock:
0122ec5b 3572 task_rq_unlock(rq, p, &flags);
1da177e4 3573}
1da177e4
LT
3574EXPORT_SYMBOL(set_user_nice);
3575
e43379f1
MM
3576/*
3577 * can_nice - check if a task can reduce its nice value
3578 * @p: task
3579 * @nice: nice value
3580 */
36c8b586 3581int can_nice(const struct task_struct *p, const int nice)
e43379f1 3582{
024f4747
MM
3583 /* convert nice value [19,-20] to rlimit style value [1,40] */
3584 int nice_rlim = 20 - nice;
48f24c4d 3585
78d7d407 3586 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3587 capable(CAP_SYS_NICE));
3588}
3589
1da177e4
LT
3590#ifdef __ARCH_WANT_SYS_NICE
3591
3592/*
3593 * sys_nice - change the priority of the current process.
3594 * @increment: priority increment
3595 *
3596 * sys_setpriority is a more generic, but much slower function that
3597 * does similar things.
3598 */
5add95d4 3599SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3600{
48f24c4d 3601 long nice, retval;
1da177e4
LT
3602
3603 /*
3604 * Setpriority might change our priority at the same moment.
3605 * We don't have to worry. Conceptually one call occurs first
3606 * and we have a single winner.
3607 */
e43379f1
MM
3608 if (increment < -40)
3609 increment = -40;
1da177e4
LT
3610 if (increment > 40)
3611 increment = 40;
3612
2b8f836f 3613 nice = TASK_NICE(current) + increment;
1da177e4
LT
3614 if (nice < -20)
3615 nice = -20;
3616 if (nice > 19)
3617 nice = 19;
3618
e43379f1
MM
3619 if (increment < 0 && !can_nice(current, nice))
3620 return -EPERM;
3621
1da177e4
LT
3622 retval = security_task_setnice(current, nice);
3623 if (retval)
3624 return retval;
3625
3626 set_user_nice(current, nice);
3627 return 0;
3628}
3629
3630#endif
3631
3632/**
3633 * task_prio - return the priority value of a given task.
3634 * @p: the task in question.
3635 *
3636 * This is the priority value as seen by users in /proc.
3637 * RT tasks are offset by -200. Normal tasks are centered
3638 * around 0, value goes from -16 to +15.
3639 */
36c8b586 3640int task_prio(const struct task_struct *p)
1da177e4
LT
3641{
3642 return p->prio - MAX_RT_PRIO;
3643}
3644
3645/**
3646 * task_nice - return the nice value of a given task.
3647 * @p: the task in question.
3648 */
36c8b586 3649int task_nice(const struct task_struct *p)
1da177e4
LT
3650{
3651 return TASK_NICE(p);
3652}
150d8bed 3653EXPORT_SYMBOL(task_nice);
1da177e4
LT
3654
3655/**
3656 * idle_cpu - is a given cpu idle currently?
3657 * @cpu: the processor in question.
3658 */
3659int idle_cpu(int cpu)
3660{
908a3283
TG
3661 struct rq *rq = cpu_rq(cpu);
3662
3663 if (rq->curr != rq->idle)
3664 return 0;
3665
3666 if (rq->nr_running)
3667 return 0;
3668
3669#ifdef CONFIG_SMP
3670 if (!llist_empty(&rq->wake_list))
3671 return 0;
3672#endif
3673
3674 return 1;
1da177e4
LT
3675}
3676
1da177e4
LT
3677/**
3678 * idle_task - return the idle task for a given cpu.
3679 * @cpu: the processor in question.
3680 */
36c8b586 3681struct task_struct *idle_task(int cpu)
1da177e4
LT
3682{
3683 return cpu_rq(cpu)->idle;
3684}
3685
3686/**
3687 * find_process_by_pid - find a process with a matching PID value.
3688 * @pid: the pid in question.
3689 */
a9957449 3690static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3691{
228ebcbe 3692 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3693}
3694
3695/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3696static void
3697__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3698{
1da177e4
LT
3699 p->policy = policy;
3700 p->rt_priority = prio;
b29739f9
IM
3701 p->normal_prio = normal_prio(p);
3702 /* we are holding p->pi_lock already */
3703 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3704 if (rt_prio(p->prio))
3705 p->sched_class = &rt_sched_class;
3706 else
3707 p->sched_class = &fair_sched_class;
2dd73a4f 3708 set_load_weight(p);
1da177e4
LT
3709}
3710
c69e8d9c
DH
3711/*
3712 * check the target process has a UID that matches the current process's
3713 */
3714static bool check_same_owner(struct task_struct *p)
3715{
3716 const struct cred *cred = current_cred(), *pcred;
3717 bool match;
3718
3719 rcu_read_lock();
3720 pcred = __task_cred(p);
9c806aa0
EB
3721 match = (uid_eq(cred->euid, pcred->euid) ||
3722 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3723 rcu_read_unlock();
3724 return match;
3725}
3726
961ccddd 3727static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3728 const struct sched_param *param, bool user)
1da177e4 3729{
83b699ed 3730 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3731 unsigned long flags;
83ab0aa0 3732 const struct sched_class *prev_class;
70b97a7f 3733 struct rq *rq;
ca94c442 3734 int reset_on_fork;
1da177e4 3735
66e5393a
SR
3736 /* may grab non-irq protected spin_locks */
3737 BUG_ON(in_interrupt());
1da177e4
LT
3738recheck:
3739 /* double check policy once rq lock held */
ca94c442
LP
3740 if (policy < 0) {
3741 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3742 policy = oldpolicy = p->policy;
ca94c442
LP
3743 } else {
3744 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3745 policy &= ~SCHED_RESET_ON_FORK;
3746
3747 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3748 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3749 policy != SCHED_IDLE)
3750 return -EINVAL;
3751 }
3752
1da177e4
LT
3753 /*
3754 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3755 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3756 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3757 */
3758 if (param->sched_priority < 0 ||
95cdf3b7 3759 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3760 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3761 return -EINVAL;
e05606d3 3762 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3763 return -EINVAL;
3764
37e4ab3f
OC
3765 /*
3766 * Allow unprivileged RT tasks to decrease priority:
3767 */
961ccddd 3768 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3769 if (rt_policy(policy)) {
a44702e8
ON
3770 unsigned long rlim_rtprio =
3771 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3772
3773 /* can't set/change the rt policy */
3774 if (policy != p->policy && !rlim_rtprio)
3775 return -EPERM;
3776
3777 /* can't increase priority */
3778 if (param->sched_priority > p->rt_priority &&
3779 param->sched_priority > rlim_rtprio)
3780 return -EPERM;
3781 }
c02aa73b 3782
dd41f596 3783 /*
c02aa73b
DH
3784 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3785 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3786 */
c02aa73b
DH
3787 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3788 if (!can_nice(p, TASK_NICE(p)))
3789 return -EPERM;
3790 }
5fe1d75f 3791
37e4ab3f 3792 /* can't change other user's priorities */
c69e8d9c 3793 if (!check_same_owner(p))
37e4ab3f 3794 return -EPERM;
ca94c442
LP
3795
3796 /* Normal users shall not reset the sched_reset_on_fork flag */
3797 if (p->sched_reset_on_fork && !reset_on_fork)
3798 return -EPERM;
37e4ab3f 3799 }
1da177e4 3800
725aad24 3801 if (user) {
b0ae1981 3802 retval = security_task_setscheduler(p);
725aad24
JF
3803 if (retval)
3804 return retval;
3805 }
3806
b29739f9
IM
3807 /*
3808 * make sure no PI-waiters arrive (or leave) while we are
3809 * changing the priority of the task:
0122ec5b 3810 *
25985edc 3811 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3812 * runqueue lock must be held.
3813 */
0122ec5b 3814 rq = task_rq_lock(p, &flags);
dc61b1d6 3815
34f971f6
PZ
3816 /*
3817 * Changing the policy of the stop threads its a very bad idea
3818 */
3819 if (p == rq->stop) {
0122ec5b 3820 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3821 return -EINVAL;
3822 }
3823
a51e9198
DF
3824 /*
3825 * If not changing anything there's no need to proceed further:
3826 */
3827 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3828 param->sched_priority == p->rt_priority))) {
45afb173 3829 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3830 return 0;
3831 }
3832
dc61b1d6
PZ
3833#ifdef CONFIG_RT_GROUP_SCHED
3834 if (user) {
3835 /*
3836 * Do not allow realtime tasks into groups that have no runtime
3837 * assigned.
3838 */
3839 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3840 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3841 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3842 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3843 return -EPERM;
3844 }
3845 }
3846#endif
3847
1da177e4
LT
3848 /* recheck policy now with rq lock held */
3849 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3850 policy = oldpolicy = -1;
0122ec5b 3851 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3852 goto recheck;
3853 }
fd2f4419 3854 on_rq = p->on_rq;
051a1d1a 3855 running = task_current(rq, p);
0e1f3483 3856 if (on_rq)
4ca9b72b 3857 dequeue_task(rq, p, 0);
0e1f3483
HS
3858 if (running)
3859 p->sched_class->put_prev_task(rq, p);
f6b53205 3860
ca94c442
LP
3861 p->sched_reset_on_fork = reset_on_fork;
3862
1da177e4 3863 oldprio = p->prio;
83ab0aa0 3864 prev_class = p->sched_class;
dd41f596 3865 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3866
0e1f3483
HS
3867 if (running)
3868 p->sched_class->set_curr_task(rq);
da7a735e 3869 if (on_rq)
4ca9b72b 3870 enqueue_task(rq, p, 0);
cb469845 3871
da7a735e 3872 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3873 task_rq_unlock(rq, p, &flags);
b29739f9 3874
95e02ca9
TG
3875 rt_mutex_adjust_pi(p);
3876
1da177e4
LT
3877 return 0;
3878}
961ccddd
RR
3879
3880/**
3881 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3882 * @p: the task in question.
3883 * @policy: new policy.
3884 * @param: structure containing the new RT priority.
3885 *
3886 * NOTE that the task may be already dead.
3887 */
3888int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3889 const struct sched_param *param)
961ccddd
RR
3890{
3891 return __sched_setscheduler(p, policy, param, true);
3892}
1da177e4
LT
3893EXPORT_SYMBOL_GPL(sched_setscheduler);
3894
961ccddd
RR
3895/**
3896 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3897 * @p: the task in question.
3898 * @policy: new policy.
3899 * @param: structure containing the new RT priority.
3900 *
3901 * Just like sched_setscheduler, only don't bother checking if the
3902 * current context has permission. For example, this is needed in
3903 * stop_machine(): we create temporary high priority worker threads,
3904 * but our caller might not have that capability.
3905 */
3906int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3907 const struct sched_param *param)
961ccddd
RR
3908{
3909 return __sched_setscheduler(p, policy, param, false);
3910}
3911
95cdf3b7
IM
3912static int
3913do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3914{
1da177e4
LT
3915 struct sched_param lparam;
3916 struct task_struct *p;
36c8b586 3917 int retval;
1da177e4
LT
3918
3919 if (!param || pid < 0)
3920 return -EINVAL;
3921 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3922 return -EFAULT;
5fe1d75f
ON
3923
3924 rcu_read_lock();
3925 retval = -ESRCH;
1da177e4 3926 p = find_process_by_pid(pid);
5fe1d75f
ON
3927 if (p != NULL)
3928 retval = sched_setscheduler(p, policy, &lparam);
3929 rcu_read_unlock();
36c8b586 3930
1da177e4
LT
3931 return retval;
3932}
3933
3934/**
3935 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3936 * @pid: the pid in question.
3937 * @policy: new policy.
3938 * @param: structure containing the new RT priority.
3939 */
5add95d4
HC
3940SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3941 struct sched_param __user *, param)
1da177e4 3942{
c21761f1
JB
3943 /* negative values for policy are not valid */
3944 if (policy < 0)
3945 return -EINVAL;
3946
1da177e4
LT
3947 return do_sched_setscheduler(pid, policy, param);
3948}
3949
3950/**
3951 * sys_sched_setparam - set/change the RT priority of a thread
3952 * @pid: the pid in question.
3953 * @param: structure containing the new RT priority.
3954 */
5add95d4 3955SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3956{
3957 return do_sched_setscheduler(pid, -1, param);
3958}
3959
3960/**
3961 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3962 * @pid: the pid in question.
3963 */
5add95d4 3964SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3965{
36c8b586 3966 struct task_struct *p;
3a5c359a 3967 int retval;
1da177e4
LT
3968
3969 if (pid < 0)
3a5c359a 3970 return -EINVAL;
1da177e4
LT
3971
3972 retval = -ESRCH;
5fe85be0 3973 rcu_read_lock();
1da177e4
LT
3974 p = find_process_by_pid(pid);
3975 if (p) {
3976 retval = security_task_getscheduler(p);
3977 if (!retval)
ca94c442
LP
3978 retval = p->policy
3979 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3980 }
5fe85be0 3981 rcu_read_unlock();
1da177e4
LT
3982 return retval;
3983}
3984
3985/**
ca94c442 3986 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3987 * @pid: the pid in question.
3988 * @param: structure containing the RT priority.
3989 */
5add95d4 3990SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3991{
3992 struct sched_param lp;
36c8b586 3993 struct task_struct *p;
3a5c359a 3994 int retval;
1da177e4
LT
3995
3996 if (!param || pid < 0)
3a5c359a 3997 return -EINVAL;
1da177e4 3998
5fe85be0 3999 rcu_read_lock();
1da177e4
LT
4000 p = find_process_by_pid(pid);
4001 retval = -ESRCH;
4002 if (!p)
4003 goto out_unlock;
4004
4005 retval = security_task_getscheduler(p);
4006 if (retval)
4007 goto out_unlock;
4008
4009 lp.sched_priority = p->rt_priority;
5fe85be0 4010 rcu_read_unlock();
1da177e4
LT
4011
4012 /*
4013 * This one might sleep, we cannot do it with a spinlock held ...
4014 */
4015 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4016
1da177e4
LT
4017 return retval;
4018
4019out_unlock:
5fe85be0 4020 rcu_read_unlock();
1da177e4
LT
4021 return retval;
4022}
4023
96f874e2 4024long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4025{
5a16f3d3 4026 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4027 struct task_struct *p;
4028 int retval;
1da177e4 4029
95402b38 4030 get_online_cpus();
23f5d142 4031 rcu_read_lock();
1da177e4
LT
4032
4033 p = find_process_by_pid(pid);
4034 if (!p) {
23f5d142 4035 rcu_read_unlock();
95402b38 4036 put_online_cpus();
1da177e4
LT
4037 return -ESRCH;
4038 }
4039
23f5d142 4040 /* Prevent p going away */
1da177e4 4041 get_task_struct(p);
23f5d142 4042 rcu_read_unlock();
1da177e4 4043
5a16f3d3
RR
4044 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4045 retval = -ENOMEM;
4046 goto out_put_task;
4047 }
4048 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4049 retval = -ENOMEM;
4050 goto out_free_cpus_allowed;
4051 }
1da177e4 4052 retval = -EPERM;
f1c84dae 4053 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4054 goto out_unlock;
4055
b0ae1981 4056 retval = security_task_setscheduler(p);
e7834f8f
DQ
4057 if (retval)
4058 goto out_unlock;
4059
5a16f3d3
RR
4060 cpuset_cpus_allowed(p, cpus_allowed);
4061 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4062again:
5a16f3d3 4063 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4064
8707d8b8 4065 if (!retval) {
5a16f3d3
RR
4066 cpuset_cpus_allowed(p, cpus_allowed);
4067 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4068 /*
4069 * We must have raced with a concurrent cpuset
4070 * update. Just reset the cpus_allowed to the
4071 * cpuset's cpus_allowed
4072 */
5a16f3d3 4073 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4074 goto again;
4075 }
4076 }
1da177e4 4077out_unlock:
5a16f3d3
RR
4078 free_cpumask_var(new_mask);
4079out_free_cpus_allowed:
4080 free_cpumask_var(cpus_allowed);
4081out_put_task:
1da177e4 4082 put_task_struct(p);
95402b38 4083 put_online_cpus();
1da177e4
LT
4084 return retval;
4085}
4086
4087static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4088 struct cpumask *new_mask)
1da177e4 4089{
96f874e2
RR
4090 if (len < cpumask_size())
4091 cpumask_clear(new_mask);
4092 else if (len > cpumask_size())
4093 len = cpumask_size();
4094
1da177e4
LT
4095 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4096}
4097
4098/**
4099 * sys_sched_setaffinity - set the cpu affinity of a process
4100 * @pid: pid of the process
4101 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4102 * @user_mask_ptr: user-space pointer to the new cpu mask
4103 */
5add95d4
HC
4104SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4105 unsigned long __user *, user_mask_ptr)
1da177e4 4106{
5a16f3d3 4107 cpumask_var_t new_mask;
1da177e4
LT
4108 int retval;
4109
5a16f3d3
RR
4110 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4111 return -ENOMEM;
1da177e4 4112
5a16f3d3
RR
4113 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4114 if (retval == 0)
4115 retval = sched_setaffinity(pid, new_mask);
4116 free_cpumask_var(new_mask);
4117 return retval;
1da177e4
LT
4118}
4119
96f874e2 4120long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4121{
36c8b586 4122 struct task_struct *p;
31605683 4123 unsigned long flags;
1da177e4 4124 int retval;
1da177e4 4125
95402b38 4126 get_online_cpus();
23f5d142 4127 rcu_read_lock();
1da177e4
LT
4128
4129 retval = -ESRCH;
4130 p = find_process_by_pid(pid);
4131 if (!p)
4132 goto out_unlock;
4133
e7834f8f
DQ
4134 retval = security_task_getscheduler(p);
4135 if (retval)
4136 goto out_unlock;
4137
013fdb80 4138 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4139 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4140 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4141
4142out_unlock:
23f5d142 4143 rcu_read_unlock();
95402b38 4144 put_online_cpus();
1da177e4 4145
9531b62f 4146 return retval;
1da177e4
LT
4147}
4148
4149/**
4150 * sys_sched_getaffinity - get the cpu affinity of a process
4151 * @pid: pid of the process
4152 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4153 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4154 */
5add95d4
HC
4155SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4156 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4157{
4158 int ret;
f17c8607 4159 cpumask_var_t mask;
1da177e4 4160
84fba5ec 4161 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4162 return -EINVAL;
4163 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4164 return -EINVAL;
4165
f17c8607
RR
4166 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4167 return -ENOMEM;
1da177e4 4168
f17c8607
RR
4169 ret = sched_getaffinity(pid, mask);
4170 if (ret == 0) {
8bc037fb 4171 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4172
4173 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4174 ret = -EFAULT;
4175 else
cd3d8031 4176 ret = retlen;
f17c8607
RR
4177 }
4178 free_cpumask_var(mask);
1da177e4 4179
f17c8607 4180 return ret;
1da177e4
LT
4181}
4182
4183/**
4184 * sys_sched_yield - yield the current processor to other threads.
4185 *
dd41f596
IM
4186 * This function yields the current CPU to other tasks. If there are no
4187 * other threads running on this CPU then this function will return.
1da177e4 4188 */
5add95d4 4189SYSCALL_DEFINE0(sched_yield)
1da177e4 4190{
70b97a7f 4191 struct rq *rq = this_rq_lock();
1da177e4 4192
2d72376b 4193 schedstat_inc(rq, yld_count);
4530d7ab 4194 current->sched_class->yield_task(rq);
1da177e4
LT
4195
4196 /*
4197 * Since we are going to call schedule() anyway, there's
4198 * no need to preempt or enable interrupts:
4199 */
4200 __release(rq->lock);
8a25d5de 4201 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4202 do_raw_spin_unlock(&rq->lock);
ba74c144 4203 sched_preempt_enable_no_resched();
1da177e4
LT
4204
4205 schedule();
4206
4207 return 0;
4208}
4209
d86ee480
PZ
4210static inline int should_resched(void)
4211{
4212 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4213}
4214
e7b38404 4215static void __cond_resched(void)
1da177e4 4216{
e7aaaa69 4217 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4218 __schedule();
e7aaaa69 4219 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4220}
4221
02b67cc3 4222int __sched _cond_resched(void)
1da177e4 4223{
d86ee480 4224 if (should_resched()) {
1da177e4
LT
4225 __cond_resched();
4226 return 1;
4227 }
4228 return 0;
4229}
02b67cc3 4230EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4231
4232/*
613afbf8 4233 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4234 * call schedule, and on return reacquire the lock.
4235 *
41a2d6cf 4236 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4237 * operations here to prevent schedule() from being called twice (once via
4238 * spin_unlock(), once by hand).
4239 */
613afbf8 4240int __cond_resched_lock(spinlock_t *lock)
1da177e4 4241{
d86ee480 4242 int resched = should_resched();
6df3cecb
JK
4243 int ret = 0;
4244
f607c668
PZ
4245 lockdep_assert_held(lock);
4246
95c354fe 4247 if (spin_needbreak(lock) || resched) {
1da177e4 4248 spin_unlock(lock);
d86ee480 4249 if (resched)
95c354fe
NP
4250 __cond_resched();
4251 else
4252 cpu_relax();
6df3cecb 4253 ret = 1;
1da177e4 4254 spin_lock(lock);
1da177e4 4255 }
6df3cecb 4256 return ret;
1da177e4 4257}
613afbf8 4258EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4259
613afbf8 4260int __sched __cond_resched_softirq(void)
1da177e4
LT
4261{
4262 BUG_ON(!in_softirq());
4263
d86ee480 4264 if (should_resched()) {
98d82567 4265 local_bh_enable();
1da177e4
LT
4266 __cond_resched();
4267 local_bh_disable();
4268 return 1;
4269 }
4270 return 0;
4271}
613afbf8 4272EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4273
1da177e4
LT
4274/**
4275 * yield - yield the current processor to other threads.
4276 *
8e3fabfd
PZ
4277 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4278 *
4279 * The scheduler is at all times free to pick the calling task as the most
4280 * eligible task to run, if removing the yield() call from your code breaks
4281 * it, its already broken.
4282 *
4283 * Typical broken usage is:
4284 *
4285 * while (!event)
4286 * yield();
4287 *
4288 * where one assumes that yield() will let 'the other' process run that will
4289 * make event true. If the current task is a SCHED_FIFO task that will never
4290 * happen. Never use yield() as a progress guarantee!!
4291 *
4292 * If you want to use yield() to wait for something, use wait_event().
4293 * If you want to use yield() to be 'nice' for others, use cond_resched().
4294 * If you still want to use yield(), do not!
1da177e4
LT
4295 */
4296void __sched yield(void)
4297{
4298 set_current_state(TASK_RUNNING);
4299 sys_sched_yield();
4300}
1da177e4
LT
4301EXPORT_SYMBOL(yield);
4302
d95f4122
MG
4303/**
4304 * yield_to - yield the current processor to another thread in
4305 * your thread group, or accelerate that thread toward the
4306 * processor it's on.
16addf95
RD
4307 * @p: target task
4308 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4309 *
4310 * It's the caller's job to ensure that the target task struct
4311 * can't go away on us before we can do any checks.
4312 *
4313 * Returns true if we indeed boosted the target task.
4314 */
4315bool __sched yield_to(struct task_struct *p, bool preempt)
4316{
4317 struct task_struct *curr = current;
4318 struct rq *rq, *p_rq;
4319 unsigned long flags;
4320 bool yielded = 0;
4321
4322 local_irq_save(flags);
4323 rq = this_rq();
4324
4325again:
4326 p_rq = task_rq(p);
4327 double_rq_lock(rq, p_rq);
4328 while (task_rq(p) != p_rq) {
4329 double_rq_unlock(rq, p_rq);
4330 goto again;
4331 }
4332
4333 if (!curr->sched_class->yield_to_task)
4334 goto out;
4335
4336 if (curr->sched_class != p->sched_class)
4337 goto out;
4338
4339 if (task_running(p_rq, p) || p->state)
4340 goto out;
4341
4342 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4343 if (yielded) {
d95f4122 4344 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4345 /*
4346 * Make p's CPU reschedule; pick_next_entity takes care of
4347 * fairness.
4348 */
4349 if (preempt && rq != p_rq)
4350 resched_task(p_rq->curr);
916671c0
MG
4351 } else {
4352 /*
4353 * We might have set it in task_yield_fair(), but are
4354 * not going to schedule(), so don't want to skip
4355 * the next update.
4356 */
4357 rq->skip_clock_update = 0;
6d1cafd8 4358 }
d95f4122
MG
4359
4360out:
4361 double_rq_unlock(rq, p_rq);
4362 local_irq_restore(flags);
4363
4364 if (yielded)
4365 schedule();
4366
4367 return yielded;
4368}
4369EXPORT_SYMBOL_GPL(yield_to);
4370
1da177e4 4371/*
41a2d6cf 4372 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4373 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4374 */
4375void __sched io_schedule(void)
4376{
54d35f29 4377 struct rq *rq = raw_rq();
1da177e4 4378
0ff92245 4379 delayacct_blkio_start();
1da177e4 4380 atomic_inc(&rq->nr_iowait);
73c10101 4381 blk_flush_plug(current);
8f0dfc34 4382 current->in_iowait = 1;
1da177e4 4383 schedule();
8f0dfc34 4384 current->in_iowait = 0;
1da177e4 4385 atomic_dec(&rq->nr_iowait);
0ff92245 4386 delayacct_blkio_end();
1da177e4 4387}
1da177e4
LT
4388EXPORT_SYMBOL(io_schedule);
4389
4390long __sched io_schedule_timeout(long timeout)
4391{
54d35f29 4392 struct rq *rq = raw_rq();
1da177e4
LT
4393 long ret;
4394
0ff92245 4395 delayacct_blkio_start();
1da177e4 4396 atomic_inc(&rq->nr_iowait);
73c10101 4397 blk_flush_plug(current);
8f0dfc34 4398 current->in_iowait = 1;
1da177e4 4399 ret = schedule_timeout(timeout);
8f0dfc34 4400 current->in_iowait = 0;
1da177e4 4401 atomic_dec(&rq->nr_iowait);
0ff92245 4402 delayacct_blkio_end();
1da177e4
LT
4403 return ret;
4404}
4405
4406/**
4407 * sys_sched_get_priority_max - return maximum RT priority.
4408 * @policy: scheduling class.
4409 *
4410 * this syscall returns the maximum rt_priority that can be used
4411 * by a given scheduling class.
4412 */
5add95d4 4413SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4414{
4415 int ret = -EINVAL;
4416
4417 switch (policy) {
4418 case SCHED_FIFO:
4419 case SCHED_RR:
4420 ret = MAX_USER_RT_PRIO-1;
4421 break;
4422 case SCHED_NORMAL:
b0a9499c 4423 case SCHED_BATCH:
dd41f596 4424 case SCHED_IDLE:
1da177e4
LT
4425 ret = 0;
4426 break;
4427 }
4428 return ret;
4429}
4430
4431/**
4432 * sys_sched_get_priority_min - return minimum RT priority.
4433 * @policy: scheduling class.
4434 *
4435 * this syscall returns the minimum rt_priority that can be used
4436 * by a given scheduling class.
4437 */
5add95d4 4438SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4439{
4440 int ret = -EINVAL;
4441
4442 switch (policy) {
4443 case SCHED_FIFO:
4444 case SCHED_RR:
4445 ret = 1;
4446 break;
4447 case SCHED_NORMAL:
b0a9499c 4448 case SCHED_BATCH:
dd41f596 4449 case SCHED_IDLE:
1da177e4
LT
4450 ret = 0;
4451 }
4452 return ret;
4453}
4454
4455/**
4456 * sys_sched_rr_get_interval - return the default timeslice of a process.
4457 * @pid: pid of the process.
4458 * @interval: userspace pointer to the timeslice value.
4459 *
4460 * this syscall writes the default timeslice value of a given process
4461 * into the user-space timespec buffer. A value of '0' means infinity.
4462 */
17da2bd9 4463SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4464 struct timespec __user *, interval)
1da177e4 4465{
36c8b586 4466 struct task_struct *p;
a4ec24b4 4467 unsigned int time_slice;
dba091b9
TG
4468 unsigned long flags;
4469 struct rq *rq;
3a5c359a 4470 int retval;
1da177e4 4471 struct timespec t;
1da177e4
LT
4472
4473 if (pid < 0)
3a5c359a 4474 return -EINVAL;
1da177e4
LT
4475
4476 retval = -ESRCH;
1a551ae7 4477 rcu_read_lock();
1da177e4
LT
4478 p = find_process_by_pid(pid);
4479 if (!p)
4480 goto out_unlock;
4481
4482 retval = security_task_getscheduler(p);
4483 if (retval)
4484 goto out_unlock;
4485
dba091b9
TG
4486 rq = task_rq_lock(p, &flags);
4487 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4488 task_rq_unlock(rq, p, &flags);
a4ec24b4 4489
1a551ae7 4490 rcu_read_unlock();
a4ec24b4 4491 jiffies_to_timespec(time_slice, &t);
1da177e4 4492 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4493 return retval;
3a5c359a 4494
1da177e4 4495out_unlock:
1a551ae7 4496 rcu_read_unlock();
1da177e4
LT
4497 return retval;
4498}
4499
7c731e0a 4500static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4501
82a1fcb9 4502void sched_show_task(struct task_struct *p)
1da177e4 4503{
1da177e4 4504 unsigned long free = 0;
36c8b586 4505 unsigned state;
1da177e4 4506
1da177e4 4507 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4508 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4509 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4510#if BITS_PER_LONG == 32
1da177e4 4511 if (state == TASK_RUNNING)
3df0fc5b 4512 printk(KERN_CONT " running ");
1da177e4 4513 else
3df0fc5b 4514 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4515#else
4516 if (state == TASK_RUNNING)
3df0fc5b 4517 printk(KERN_CONT " running task ");
1da177e4 4518 else
3df0fc5b 4519 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4520#endif
4521#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4522 free = stack_not_used(p);
1da177e4 4523#endif
3df0fc5b 4524 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4525 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4526 (unsigned long)task_thread_info(p)->flags);
1da177e4 4527
5fb5e6de 4528 show_stack(p, NULL);
1da177e4
LT
4529}
4530
e59e2ae2 4531void show_state_filter(unsigned long state_filter)
1da177e4 4532{
36c8b586 4533 struct task_struct *g, *p;
1da177e4 4534
4bd77321 4535#if BITS_PER_LONG == 32
3df0fc5b
PZ
4536 printk(KERN_INFO
4537 " task PC stack pid father\n");
1da177e4 4538#else
3df0fc5b
PZ
4539 printk(KERN_INFO
4540 " task PC stack pid father\n");
1da177e4 4541#endif
510f5acc 4542 rcu_read_lock();
1da177e4
LT
4543 do_each_thread(g, p) {
4544 /*
4545 * reset the NMI-timeout, listing all files on a slow
25985edc 4546 * console might take a lot of time:
1da177e4
LT
4547 */
4548 touch_nmi_watchdog();
39bc89fd 4549 if (!state_filter || (p->state & state_filter))
82a1fcb9 4550 sched_show_task(p);
1da177e4
LT
4551 } while_each_thread(g, p);
4552
04c9167f
JF
4553 touch_all_softlockup_watchdogs();
4554
dd41f596
IM
4555#ifdef CONFIG_SCHED_DEBUG
4556 sysrq_sched_debug_show();
4557#endif
510f5acc 4558 rcu_read_unlock();
e59e2ae2
IM
4559 /*
4560 * Only show locks if all tasks are dumped:
4561 */
93335a21 4562 if (!state_filter)
e59e2ae2 4563 debug_show_all_locks();
1da177e4
LT
4564}
4565
1df21055
IM
4566void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4567{
dd41f596 4568 idle->sched_class = &idle_sched_class;
1df21055
IM
4569}
4570
f340c0d1
IM
4571/**
4572 * init_idle - set up an idle thread for a given CPU
4573 * @idle: task in question
4574 * @cpu: cpu the idle task belongs to
4575 *
4576 * NOTE: this function does not set the idle thread's NEED_RESCHED
4577 * flag, to make booting more robust.
4578 */
5c1e1767 4579void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4580{
70b97a7f 4581 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4582 unsigned long flags;
4583
05fa785c 4584 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4585
dd41f596 4586 __sched_fork(idle);
06b83b5f 4587 idle->state = TASK_RUNNING;
dd41f596
IM
4588 idle->se.exec_start = sched_clock();
4589
1e1b6c51 4590 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4591 /*
4592 * We're having a chicken and egg problem, even though we are
4593 * holding rq->lock, the cpu isn't yet set to this cpu so the
4594 * lockdep check in task_group() will fail.
4595 *
4596 * Similar case to sched_fork(). / Alternatively we could
4597 * use task_rq_lock() here and obtain the other rq->lock.
4598 *
4599 * Silence PROVE_RCU
4600 */
4601 rcu_read_lock();
dd41f596 4602 __set_task_cpu(idle, cpu);
6506cf6c 4603 rcu_read_unlock();
1da177e4 4604
1da177e4 4605 rq->curr = rq->idle = idle;
3ca7a440
PZ
4606#if defined(CONFIG_SMP)
4607 idle->on_cpu = 1;
4866cde0 4608#endif
05fa785c 4609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4610
4611 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4612 task_thread_info(idle)->preempt_count = 0;
55cd5340 4613
dd41f596
IM
4614 /*
4615 * The idle tasks have their own, simple scheduling class:
4616 */
4617 idle->sched_class = &idle_sched_class;
868baf07 4618 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4619#if defined(CONFIG_SMP)
4620 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4621#endif
19978ca6
IM
4622}
4623
1da177e4 4624#ifdef CONFIG_SMP
1e1b6c51
KM
4625void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4626{
4627 if (p->sched_class && p->sched_class->set_cpus_allowed)
4628 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4629
4630 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4631 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4632}
4633
1da177e4
LT
4634/*
4635 * This is how migration works:
4636 *
969c7921
TH
4637 * 1) we invoke migration_cpu_stop() on the target CPU using
4638 * stop_one_cpu().
4639 * 2) stopper starts to run (implicitly forcing the migrated thread
4640 * off the CPU)
4641 * 3) it checks whether the migrated task is still in the wrong runqueue.
4642 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4643 * it and puts it into the right queue.
969c7921
TH
4644 * 5) stopper completes and stop_one_cpu() returns and the migration
4645 * is done.
1da177e4
LT
4646 */
4647
4648/*
4649 * Change a given task's CPU affinity. Migrate the thread to a
4650 * proper CPU and schedule it away if the CPU it's executing on
4651 * is removed from the allowed bitmask.
4652 *
4653 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4654 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4655 * call is not atomic; no spinlocks may be held.
4656 */
96f874e2 4657int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4658{
4659 unsigned long flags;
70b97a7f 4660 struct rq *rq;
969c7921 4661 unsigned int dest_cpu;
48f24c4d 4662 int ret = 0;
1da177e4
LT
4663
4664 rq = task_rq_lock(p, &flags);
e2912009 4665
db44fc01
YZ
4666 if (cpumask_equal(&p->cpus_allowed, new_mask))
4667 goto out;
4668
6ad4c188 4669 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4670 ret = -EINVAL;
4671 goto out;
4672 }
4673
db44fc01 4674 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4675 ret = -EINVAL;
4676 goto out;
4677 }
4678
1e1b6c51 4679 do_set_cpus_allowed(p, new_mask);
73fe6aae 4680
1da177e4 4681 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4682 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4683 goto out;
4684
969c7921 4685 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4686 if (p->on_rq) {
969c7921 4687 struct migration_arg arg = { p, dest_cpu };
1da177e4 4688 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4689 task_rq_unlock(rq, p, &flags);
969c7921 4690 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4691 tlb_migrate_finish(p->mm);
4692 return 0;
4693 }
4694out:
0122ec5b 4695 task_rq_unlock(rq, p, &flags);
48f24c4d 4696
1da177e4
LT
4697 return ret;
4698}
cd8ba7cd 4699EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4700
4701/*
41a2d6cf 4702 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4703 * this because either it can't run here any more (set_cpus_allowed()
4704 * away from this CPU, or CPU going down), or because we're
4705 * attempting to rebalance this task on exec (sched_exec).
4706 *
4707 * So we race with normal scheduler movements, but that's OK, as long
4708 * as the task is no longer on this CPU.
efc30814
KK
4709 *
4710 * Returns non-zero if task was successfully migrated.
1da177e4 4711 */
efc30814 4712static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4713{
70b97a7f 4714 struct rq *rq_dest, *rq_src;
e2912009 4715 int ret = 0;
1da177e4 4716
e761b772 4717 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4718 return ret;
1da177e4
LT
4719
4720 rq_src = cpu_rq(src_cpu);
4721 rq_dest = cpu_rq(dest_cpu);
4722
0122ec5b 4723 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4724 double_rq_lock(rq_src, rq_dest);
4725 /* Already moved. */
4726 if (task_cpu(p) != src_cpu)
b1e38734 4727 goto done;
1da177e4 4728 /* Affinity changed (again). */
fa17b507 4729 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4730 goto fail;
1da177e4 4731
e2912009
PZ
4732 /*
4733 * If we're not on a rq, the next wake-up will ensure we're
4734 * placed properly.
4735 */
fd2f4419 4736 if (p->on_rq) {
4ca9b72b 4737 dequeue_task(rq_src, p, 0);
e2912009 4738 set_task_cpu(p, dest_cpu);
4ca9b72b 4739 enqueue_task(rq_dest, p, 0);
15afe09b 4740 check_preempt_curr(rq_dest, p, 0);
1da177e4 4741 }
b1e38734 4742done:
efc30814 4743 ret = 1;
b1e38734 4744fail:
1da177e4 4745 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4746 raw_spin_unlock(&p->pi_lock);
efc30814 4747 return ret;
1da177e4
LT
4748}
4749
4750/*
969c7921
TH
4751 * migration_cpu_stop - this will be executed by a highprio stopper thread
4752 * and performs thread migration by bumping thread off CPU then
4753 * 'pushing' onto another runqueue.
1da177e4 4754 */
969c7921 4755static int migration_cpu_stop(void *data)
1da177e4 4756{
969c7921 4757 struct migration_arg *arg = data;
f7b4cddc 4758
969c7921
TH
4759 /*
4760 * The original target cpu might have gone down and we might
4761 * be on another cpu but it doesn't matter.
4762 */
f7b4cddc 4763 local_irq_disable();
969c7921 4764 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4765 local_irq_enable();
1da177e4 4766 return 0;
f7b4cddc
ON
4767}
4768
1da177e4 4769#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4770
054b9108 4771/*
48c5ccae
PZ
4772 * Ensures that the idle task is using init_mm right before its cpu goes
4773 * offline.
054b9108 4774 */
48c5ccae 4775void idle_task_exit(void)
1da177e4 4776{
48c5ccae 4777 struct mm_struct *mm = current->active_mm;
e76bd8d9 4778
48c5ccae 4779 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4780
48c5ccae
PZ
4781 if (mm != &init_mm)
4782 switch_mm(mm, &init_mm, current);
4783 mmdrop(mm);
1da177e4
LT
4784}
4785
4786/*
f319da0c
PZ
4787 * Since this CPU is going 'away' for a while, fold any nr_active delta
4788 * we might have. Assumes we're called after migrate_tasks() so that the
4789 * nr_active count is stable.
4790 *
4791 * Also see the comment "Global load-average calculations".
1da177e4 4792 */
f319da0c 4793static void calc_load_migrate(struct rq *rq)
1da177e4 4794{
f319da0c
PZ
4795 long delta = calc_load_fold_active(rq);
4796 if (delta)
4797 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4798}
4799
48f24c4d 4800/*
48c5ccae
PZ
4801 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4802 * try_to_wake_up()->select_task_rq().
4803 *
4804 * Called with rq->lock held even though we'er in stop_machine() and
4805 * there's no concurrency possible, we hold the required locks anyway
4806 * because of lock validation efforts.
1da177e4 4807 */
48c5ccae 4808static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4809{
70b97a7f 4810 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4811 struct task_struct *next, *stop = rq->stop;
4812 int dest_cpu;
1da177e4
LT
4813
4814 /*
48c5ccae
PZ
4815 * Fudge the rq selection such that the below task selection loop
4816 * doesn't get stuck on the currently eligible stop task.
4817 *
4818 * We're currently inside stop_machine() and the rq is either stuck
4819 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4820 * either way we should never end up calling schedule() until we're
4821 * done here.
1da177e4 4822 */
48c5ccae 4823 rq->stop = NULL;
48f24c4d 4824
dd41f596 4825 for ( ; ; ) {
48c5ccae
PZ
4826 /*
4827 * There's this thread running, bail when that's the only
4828 * remaining thread.
4829 */
4830 if (rq->nr_running == 1)
dd41f596 4831 break;
48c5ccae 4832
b67802ea 4833 next = pick_next_task(rq);
48c5ccae 4834 BUG_ON(!next);
79c53799 4835 next->sched_class->put_prev_task(rq, next);
e692ab53 4836
48c5ccae
PZ
4837 /* Find suitable destination for @next, with force if needed. */
4838 dest_cpu = select_fallback_rq(dead_cpu, next);
4839 raw_spin_unlock(&rq->lock);
4840
4841 __migrate_task(next, dead_cpu, dest_cpu);
4842
4843 raw_spin_lock(&rq->lock);
1da177e4 4844 }
dce48a84 4845
48c5ccae 4846 rq->stop = stop;
dce48a84 4847}
48c5ccae 4848
1da177e4
LT
4849#endif /* CONFIG_HOTPLUG_CPU */
4850
e692ab53
NP
4851#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4852
4853static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4854 {
4855 .procname = "sched_domain",
c57baf1e 4856 .mode = 0555,
e0361851 4857 },
56992309 4858 {}
e692ab53
NP
4859};
4860
4861static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4862 {
4863 .procname = "kernel",
c57baf1e 4864 .mode = 0555,
e0361851
AD
4865 .child = sd_ctl_dir,
4866 },
56992309 4867 {}
e692ab53
NP
4868};
4869
4870static struct ctl_table *sd_alloc_ctl_entry(int n)
4871{
4872 struct ctl_table *entry =
5cf9f062 4873 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4874
e692ab53
NP
4875 return entry;
4876}
4877
6382bc90
MM
4878static void sd_free_ctl_entry(struct ctl_table **tablep)
4879{
cd790076 4880 struct ctl_table *entry;
6382bc90 4881
cd790076
MM
4882 /*
4883 * In the intermediate directories, both the child directory and
4884 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4885 * will always be set. In the lowest directory the names are
cd790076
MM
4886 * static strings and all have proc handlers.
4887 */
4888 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4889 if (entry->child)
4890 sd_free_ctl_entry(&entry->child);
cd790076
MM
4891 if (entry->proc_handler == NULL)
4892 kfree(entry->procname);
4893 }
6382bc90
MM
4894
4895 kfree(*tablep);
4896 *tablep = NULL;
4897}
4898
e692ab53 4899static void
e0361851 4900set_table_entry(struct ctl_table *entry,
e692ab53 4901 const char *procname, void *data, int maxlen,
36fcb589 4902 umode_t mode, proc_handler *proc_handler)
e692ab53 4903{
e692ab53
NP
4904 entry->procname = procname;
4905 entry->data = data;
4906 entry->maxlen = maxlen;
4907 entry->mode = mode;
4908 entry->proc_handler = proc_handler;
4909}
4910
4911static struct ctl_table *
4912sd_alloc_ctl_domain_table(struct sched_domain *sd)
4913{
a5d8c348 4914 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4915
ad1cdc1d
MM
4916 if (table == NULL)
4917 return NULL;
4918
e0361851 4919 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 4920 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 4921 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 4922 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 4923 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 4924 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4925 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 4926 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4927 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 4928 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4929 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 4930 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4931 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 4932 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4933 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 4934 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 4935 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 4936 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 4937 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
4938 &sd->cache_nice_tries,
4939 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 4940 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 4941 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
4942 set_table_entry(&table[11], "name", sd->name,
4943 CORENAME_MAX_SIZE, 0444, proc_dostring);
4944 /* &table[12] is terminator */
e692ab53
NP
4945
4946 return table;
4947}
4948
9a4e7159 4949static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4950{
4951 struct ctl_table *entry, *table;
4952 struct sched_domain *sd;
4953 int domain_num = 0, i;
4954 char buf[32];
4955
4956 for_each_domain(cpu, sd)
4957 domain_num++;
4958 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4959 if (table == NULL)
4960 return NULL;
e692ab53
NP
4961
4962 i = 0;
4963 for_each_domain(cpu, sd) {
4964 snprintf(buf, 32, "domain%d", i);
e692ab53 4965 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4966 entry->mode = 0555;
e692ab53
NP
4967 entry->child = sd_alloc_ctl_domain_table(sd);
4968 entry++;
4969 i++;
4970 }
4971 return table;
4972}
4973
4974static struct ctl_table_header *sd_sysctl_header;
6382bc90 4975static void register_sched_domain_sysctl(void)
e692ab53 4976{
6ad4c188 4977 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4978 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4979 char buf[32];
4980
7378547f
MM
4981 WARN_ON(sd_ctl_dir[0].child);
4982 sd_ctl_dir[0].child = entry;
4983
ad1cdc1d
MM
4984 if (entry == NULL)
4985 return;
4986
6ad4c188 4987 for_each_possible_cpu(i) {
e692ab53 4988 snprintf(buf, 32, "cpu%d", i);
e692ab53 4989 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4990 entry->mode = 0555;
e692ab53 4991 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4992 entry++;
e692ab53 4993 }
7378547f
MM
4994
4995 WARN_ON(sd_sysctl_header);
e692ab53
NP
4996 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4997}
6382bc90 4998
7378547f 4999/* may be called multiple times per register */
6382bc90
MM
5000static void unregister_sched_domain_sysctl(void)
5001{
7378547f
MM
5002 if (sd_sysctl_header)
5003 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5004 sd_sysctl_header = NULL;
7378547f
MM
5005 if (sd_ctl_dir[0].child)
5006 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5007}
e692ab53 5008#else
6382bc90
MM
5009static void register_sched_domain_sysctl(void)
5010{
5011}
5012static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5013{
5014}
5015#endif
5016
1f11eb6a
GH
5017static void set_rq_online(struct rq *rq)
5018{
5019 if (!rq->online) {
5020 const struct sched_class *class;
5021
c6c4927b 5022 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5023 rq->online = 1;
5024
5025 for_each_class(class) {
5026 if (class->rq_online)
5027 class->rq_online(rq);
5028 }
5029 }
5030}
5031
5032static void set_rq_offline(struct rq *rq)
5033{
5034 if (rq->online) {
5035 const struct sched_class *class;
5036
5037 for_each_class(class) {
5038 if (class->rq_offline)
5039 class->rq_offline(rq);
5040 }
5041
c6c4927b 5042 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5043 rq->online = 0;
5044 }
5045}
5046
1da177e4
LT
5047/*
5048 * migration_call - callback that gets triggered when a CPU is added.
5049 * Here we can start up the necessary migration thread for the new CPU.
5050 */
48f24c4d
IM
5051static int __cpuinit
5052migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5053{
48f24c4d 5054 int cpu = (long)hcpu;
1da177e4 5055 unsigned long flags;
969c7921 5056 struct rq *rq = cpu_rq(cpu);
1da177e4 5057
48c5ccae 5058 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5059
1da177e4 5060 case CPU_UP_PREPARE:
a468d389 5061 rq->calc_load_update = calc_load_update;
1da177e4 5062 break;
48f24c4d 5063
1da177e4 5064 case CPU_ONLINE:
1f94ef59 5065 /* Update our root-domain */
05fa785c 5066 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5067 if (rq->rd) {
c6c4927b 5068 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5069
5070 set_rq_online(rq);
1f94ef59 5071 }
05fa785c 5072 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5073 break;
48f24c4d 5074
1da177e4 5075#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5076 case CPU_DYING:
317f3941 5077 sched_ttwu_pending();
57d885fe 5078 /* Update our root-domain */
05fa785c 5079 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5080 if (rq->rd) {
c6c4927b 5081 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5082 set_rq_offline(rq);
57d885fe 5083 }
48c5ccae
PZ
5084 migrate_tasks(cpu);
5085 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5086 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae 5087
f319da0c 5088 calc_load_migrate(rq);
57d885fe 5089 break;
1da177e4
LT
5090#endif
5091 }
49c022e6
PZ
5092
5093 update_max_interval();
5094
1da177e4
LT
5095 return NOTIFY_OK;
5096}
5097
f38b0820
PM
5098/*
5099 * Register at high priority so that task migration (migrate_all_tasks)
5100 * happens before everything else. This has to be lower priority than
cdd6c482 5101 * the notifier in the perf_event subsystem, though.
1da177e4 5102 */
26c2143b 5103static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5104 .notifier_call = migration_call,
50a323b7 5105 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5106};
5107
3a101d05
TH
5108static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5109 unsigned long action, void *hcpu)
5110{
5111 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5112 case CPU_STARTING:
3a101d05
TH
5113 case CPU_DOWN_FAILED:
5114 set_cpu_active((long)hcpu, true);
5115 return NOTIFY_OK;
5116 default:
5117 return NOTIFY_DONE;
5118 }
5119}
5120
5121static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5122 unsigned long action, void *hcpu)
5123{
5124 switch (action & ~CPU_TASKS_FROZEN) {
5125 case CPU_DOWN_PREPARE:
5126 set_cpu_active((long)hcpu, false);
5127 return NOTIFY_OK;
5128 default:
5129 return NOTIFY_DONE;
5130 }
5131}
5132
7babe8db 5133static int __init migration_init(void)
1da177e4
LT
5134{
5135 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5136 int err;
48f24c4d 5137
3a101d05 5138 /* Initialize migration for the boot CPU */
07dccf33
AM
5139 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5140 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5141 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5142 register_cpu_notifier(&migration_notifier);
7babe8db 5143
3a101d05
TH
5144 /* Register cpu active notifiers */
5145 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5146 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5147
a004cd42 5148 return 0;
1da177e4 5149}
7babe8db 5150early_initcall(migration_init);
1da177e4
LT
5151#endif
5152
5153#ifdef CONFIG_SMP
476f3534 5154
4cb98839
PZ
5155static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5156
3e9830dc 5157#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5158
d039ac60 5159static __read_mostly int sched_debug_enabled;
f6630114 5160
d039ac60 5161static int __init sched_debug_setup(char *str)
f6630114 5162{
d039ac60 5163 sched_debug_enabled = 1;
f6630114
MT
5164
5165 return 0;
5166}
d039ac60
PZ
5167early_param("sched_debug", sched_debug_setup);
5168
5169static inline bool sched_debug(void)
5170{
5171 return sched_debug_enabled;
5172}
f6630114 5173
7c16ec58 5174static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5175 struct cpumask *groupmask)
1da177e4 5176{
4dcf6aff 5177 struct sched_group *group = sd->groups;
434d53b0 5178 char str[256];
1da177e4 5179
968ea6d8 5180 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5181 cpumask_clear(groupmask);
4dcf6aff
IM
5182
5183 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5184
5185 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5186 printk("does not load-balance\n");
4dcf6aff 5187 if (sd->parent)
3df0fc5b
PZ
5188 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5189 " has parent");
4dcf6aff 5190 return -1;
41c7ce9a
NP
5191 }
5192
3df0fc5b 5193 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5194
758b2cdc 5195 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5196 printk(KERN_ERR "ERROR: domain->span does not contain "
5197 "CPU%d\n", cpu);
4dcf6aff 5198 }
758b2cdc 5199 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5200 printk(KERN_ERR "ERROR: domain->groups does not contain"
5201 " CPU%d\n", cpu);
4dcf6aff 5202 }
1da177e4 5203
4dcf6aff 5204 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5205 do {
4dcf6aff 5206 if (!group) {
3df0fc5b
PZ
5207 printk("\n");
5208 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5209 break;
5210 }
5211
c3decf0d
PZ
5212 /*
5213 * Even though we initialize ->power to something semi-sane,
5214 * we leave power_orig unset. This allows us to detect if
5215 * domain iteration is still funny without causing /0 traps.
5216 */
5217 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5218 printk(KERN_CONT "\n");
5219 printk(KERN_ERR "ERROR: domain->cpu_power not "
5220 "set\n");
4dcf6aff
IM
5221 break;
5222 }
1da177e4 5223
758b2cdc 5224 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5225 printk(KERN_CONT "\n");
5226 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5227 break;
5228 }
1da177e4 5229
cb83b629
PZ
5230 if (!(sd->flags & SD_OVERLAP) &&
5231 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5232 printk(KERN_CONT "\n");
5233 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5234 break;
5235 }
1da177e4 5236
758b2cdc 5237 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5238
968ea6d8 5239 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5240
3df0fc5b 5241 printk(KERN_CONT " %s", str);
9c3f75cb 5242 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5243 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5244 group->sgp->power);
381512cf 5245 }
1da177e4 5246
4dcf6aff
IM
5247 group = group->next;
5248 } while (group != sd->groups);
3df0fc5b 5249 printk(KERN_CONT "\n");
1da177e4 5250
758b2cdc 5251 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5252 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5253
758b2cdc
RR
5254 if (sd->parent &&
5255 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5256 printk(KERN_ERR "ERROR: parent span is not a superset "
5257 "of domain->span\n");
4dcf6aff
IM
5258 return 0;
5259}
1da177e4 5260
4dcf6aff
IM
5261static void sched_domain_debug(struct sched_domain *sd, int cpu)
5262{
5263 int level = 0;
1da177e4 5264
d039ac60 5265 if (!sched_debug_enabled)
f6630114
MT
5266 return;
5267
4dcf6aff
IM
5268 if (!sd) {
5269 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5270 return;
5271 }
1da177e4 5272
4dcf6aff
IM
5273 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5274
5275 for (;;) {
4cb98839 5276 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5277 break;
1da177e4
LT
5278 level++;
5279 sd = sd->parent;
33859f7f 5280 if (!sd)
4dcf6aff
IM
5281 break;
5282 }
1da177e4 5283}
6d6bc0ad 5284#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5285# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5286static inline bool sched_debug(void)
5287{
5288 return false;
5289}
6d6bc0ad 5290#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5291
1a20ff27 5292static int sd_degenerate(struct sched_domain *sd)
245af2c7 5293{
758b2cdc 5294 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5295 return 1;
5296
5297 /* Following flags need at least 2 groups */
5298 if (sd->flags & (SD_LOAD_BALANCE |
5299 SD_BALANCE_NEWIDLE |
5300 SD_BALANCE_FORK |
89c4710e
SS
5301 SD_BALANCE_EXEC |
5302 SD_SHARE_CPUPOWER |
5303 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5304 if (sd->groups != sd->groups->next)
5305 return 0;
5306 }
5307
5308 /* Following flags don't use groups */
c88d5910 5309 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5310 return 0;
5311
5312 return 1;
5313}
5314
48f24c4d
IM
5315static int
5316sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5317{
5318 unsigned long cflags = sd->flags, pflags = parent->flags;
5319
5320 if (sd_degenerate(parent))
5321 return 1;
5322
758b2cdc 5323 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5324 return 0;
5325
245af2c7
SS
5326 /* Flags needing groups don't count if only 1 group in parent */
5327 if (parent->groups == parent->groups->next) {
5328 pflags &= ~(SD_LOAD_BALANCE |
5329 SD_BALANCE_NEWIDLE |
5330 SD_BALANCE_FORK |
89c4710e
SS
5331 SD_BALANCE_EXEC |
5332 SD_SHARE_CPUPOWER |
5333 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5334 if (nr_node_ids == 1)
5335 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5336 }
5337 if (~cflags & pflags)
5338 return 0;
5339
5340 return 1;
5341}
5342
dce840a0 5343static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5344{
dce840a0 5345 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5346
68e74568 5347 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5348 free_cpumask_var(rd->rto_mask);
5349 free_cpumask_var(rd->online);
5350 free_cpumask_var(rd->span);
5351 kfree(rd);
5352}
5353
57d885fe
GH
5354static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5355{
a0490fa3 5356 struct root_domain *old_rd = NULL;
57d885fe 5357 unsigned long flags;
57d885fe 5358
05fa785c 5359 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5360
5361 if (rq->rd) {
a0490fa3 5362 old_rd = rq->rd;
57d885fe 5363
c6c4927b 5364 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5365 set_rq_offline(rq);
57d885fe 5366
c6c4927b 5367 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5368
a0490fa3
IM
5369 /*
5370 * If we dont want to free the old_rt yet then
5371 * set old_rd to NULL to skip the freeing later
5372 * in this function:
5373 */
5374 if (!atomic_dec_and_test(&old_rd->refcount))
5375 old_rd = NULL;
57d885fe
GH
5376 }
5377
5378 atomic_inc(&rd->refcount);
5379 rq->rd = rd;
5380
c6c4927b 5381 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5382 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5383 set_rq_online(rq);
57d885fe 5384
05fa785c 5385 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5386
5387 if (old_rd)
dce840a0 5388 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5389}
5390
68c38fc3 5391static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5392{
5393 memset(rd, 0, sizeof(*rd));
5394
68c38fc3 5395 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5396 goto out;
68c38fc3 5397 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5398 goto free_span;
68c38fc3 5399 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5400 goto free_online;
6e0534f2 5401
68c38fc3 5402 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5403 goto free_rto_mask;
c6c4927b 5404 return 0;
6e0534f2 5405
68e74568
RR
5406free_rto_mask:
5407 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5408free_online:
5409 free_cpumask_var(rd->online);
5410free_span:
5411 free_cpumask_var(rd->span);
0c910d28 5412out:
c6c4927b 5413 return -ENOMEM;
57d885fe
GH
5414}
5415
029632fb
PZ
5416/*
5417 * By default the system creates a single root-domain with all cpus as
5418 * members (mimicking the global state we have today).
5419 */
5420struct root_domain def_root_domain;
5421
57d885fe
GH
5422static void init_defrootdomain(void)
5423{
68c38fc3 5424 init_rootdomain(&def_root_domain);
c6c4927b 5425
57d885fe
GH
5426 atomic_set(&def_root_domain.refcount, 1);
5427}
5428
dc938520 5429static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5430{
5431 struct root_domain *rd;
5432
5433 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5434 if (!rd)
5435 return NULL;
5436
68c38fc3 5437 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5438 kfree(rd);
5439 return NULL;
5440 }
57d885fe
GH
5441
5442 return rd;
5443}
5444
e3589f6c
PZ
5445static void free_sched_groups(struct sched_group *sg, int free_sgp)
5446{
5447 struct sched_group *tmp, *first;
5448
5449 if (!sg)
5450 return;
5451
5452 first = sg;
5453 do {
5454 tmp = sg->next;
5455
5456 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5457 kfree(sg->sgp);
5458
5459 kfree(sg);
5460 sg = tmp;
5461 } while (sg != first);
5462}
5463
dce840a0
PZ
5464static void free_sched_domain(struct rcu_head *rcu)
5465{
5466 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5467
5468 /*
5469 * If its an overlapping domain it has private groups, iterate and
5470 * nuke them all.
5471 */
5472 if (sd->flags & SD_OVERLAP) {
5473 free_sched_groups(sd->groups, 1);
5474 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5475 kfree(sd->groups->sgp);
dce840a0 5476 kfree(sd->groups);
9c3f75cb 5477 }
dce840a0
PZ
5478 kfree(sd);
5479}
5480
5481static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5482{
5483 call_rcu(&sd->rcu, free_sched_domain);
5484}
5485
5486static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5487{
5488 for (; sd; sd = sd->parent)
5489 destroy_sched_domain(sd, cpu);
5490}
5491
518cd623
PZ
5492/*
5493 * Keep a special pointer to the highest sched_domain that has
5494 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5495 * allows us to avoid some pointer chasing select_idle_sibling().
5496 *
970e1789
MG
5497 * Iterate domains and sched_groups downward, assigning CPUs to be
5498 * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing
5499 * due to random perturbation self canceling, ie sw buddies pull
5500 * their counterpart to their CPU's hw counterpart.
5501 *
518cd623
PZ
5502 * Also keep a unique ID per domain (we use the first cpu number in
5503 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5504 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5505 */
5506DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5507DEFINE_PER_CPU(int, sd_llc_id);
5508
5509static void update_top_cache_domain(int cpu)
5510{
5511 struct sched_domain *sd;
5512 int id = cpu;
5513
5514 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
970e1789
MG
5515 if (sd) {
5516 struct sched_domain *tmp = sd;
5517 struct sched_group *sg, *prev;
5518 bool right;
5519
5520 /*
5521 * Traverse to first CPU in group, and count hops
5522 * to cpu from there, switching direction on each
5523 * hop, never ever pointing the last CPU rightward.
5524 */
5525 do {
5526 id = cpumask_first(sched_domain_span(tmp));
5527 prev = sg = tmp->groups;
5528 right = 1;
5529
5530 while (cpumask_first(sched_group_cpus(sg)) != id)
5531 sg = sg->next;
5532
5533 while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
5534 prev = sg;
5535 sg = sg->next;
5536 right = !right;
5537 }
5538
5539 /* A CPU went down, never point back to domain start. */
5540 if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
5541 right = false;
5542
5543 sg = right ? sg->next : prev;
5544 tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
5545 } while ((tmp = tmp->child));
5546
518cd623 5547 id = cpumask_first(sched_domain_span(sd));
970e1789 5548 }
518cd623
PZ
5549
5550 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5551 per_cpu(sd_llc_id, cpu) = id;
5552}
5553
1da177e4 5554/*
0eab9146 5555 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5556 * hold the hotplug lock.
5557 */
0eab9146
IM
5558static void
5559cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5560{
70b97a7f 5561 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5562 struct sched_domain *tmp;
5563
5564 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5565 for (tmp = sd; tmp; ) {
245af2c7
SS
5566 struct sched_domain *parent = tmp->parent;
5567 if (!parent)
5568 break;
f29c9b1c 5569
1a848870 5570 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5571 tmp->parent = parent->parent;
1a848870
SS
5572 if (parent->parent)
5573 parent->parent->child = tmp;
dce840a0 5574 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5575 } else
5576 tmp = tmp->parent;
245af2c7
SS
5577 }
5578
1a848870 5579 if (sd && sd_degenerate(sd)) {
dce840a0 5580 tmp = sd;
245af2c7 5581 sd = sd->parent;
dce840a0 5582 destroy_sched_domain(tmp, cpu);
1a848870
SS
5583 if (sd)
5584 sd->child = NULL;
5585 }
1da177e4 5586
4cb98839 5587 sched_domain_debug(sd, cpu);
1da177e4 5588
57d885fe 5589 rq_attach_root(rq, rd);
dce840a0 5590 tmp = rq->sd;
674311d5 5591 rcu_assign_pointer(rq->sd, sd);
dce840a0 5592 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5593
5594 update_top_cache_domain(cpu);
1da177e4
LT
5595}
5596
5597/* cpus with isolated domains */
dcc30a35 5598static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5599
5600/* Setup the mask of cpus configured for isolated domains */
5601static int __init isolated_cpu_setup(char *str)
5602{
bdddd296 5603 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5604 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5605 return 1;
5606}
5607
8927f494 5608__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5609
d3081f52
PZ
5610static const struct cpumask *cpu_cpu_mask(int cpu)
5611{
5612 return cpumask_of_node(cpu_to_node(cpu));
5613}
5614
dce840a0
PZ
5615struct sd_data {
5616 struct sched_domain **__percpu sd;
5617 struct sched_group **__percpu sg;
9c3f75cb 5618 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5619};
5620
49a02c51 5621struct s_data {
21d42ccf 5622 struct sched_domain ** __percpu sd;
49a02c51
AH
5623 struct root_domain *rd;
5624};
5625
2109b99e 5626enum s_alloc {
2109b99e 5627 sa_rootdomain,
21d42ccf 5628 sa_sd,
dce840a0 5629 sa_sd_storage,
2109b99e
AH
5630 sa_none,
5631};
5632
54ab4ff4
PZ
5633struct sched_domain_topology_level;
5634
5635typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5636typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5637
e3589f6c
PZ
5638#define SDTL_OVERLAP 0x01
5639
eb7a74e6 5640struct sched_domain_topology_level {
2c402dc3
PZ
5641 sched_domain_init_f init;
5642 sched_domain_mask_f mask;
e3589f6c 5643 int flags;
cb83b629 5644 int numa_level;
54ab4ff4 5645 struct sd_data data;
eb7a74e6
PZ
5646};
5647
c1174876
PZ
5648/*
5649 * Build an iteration mask that can exclude certain CPUs from the upwards
5650 * domain traversal.
5651 *
5652 * Asymmetric node setups can result in situations where the domain tree is of
5653 * unequal depth, make sure to skip domains that already cover the entire
5654 * range.
5655 *
5656 * In that case build_sched_domains() will have terminated the iteration early
5657 * and our sibling sd spans will be empty. Domains should always include the
5658 * cpu they're built on, so check that.
5659 *
5660 */
5661static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5662{
5663 const struct cpumask *span = sched_domain_span(sd);
5664 struct sd_data *sdd = sd->private;
5665 struct sched_domain *sibling;
5666 int i;
5667
5668 for_each_cpu(i, span) {
5669 sibling = *per_cpu_ptr(sdd->sd, i);
5670 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5671 continue;
5672
5673 cpumask_set_cpu(i, sched_group_mask(sg));
5674 }
5675}
5676
5677/*
5678 * Return the canonical balance cpu for this group, this is the first cpu
5679 * of this group that's also in the iteration mask.
5680 */
5681int group_balance_cpu(struct sched_group *sg)
5682{
5683 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5684}
5685
e3589f6c
PZ
5686static int
5687build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5688{
5689 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5690 const struct cpumask *span = sched_domain_span(sd);
5691 struct cpumask *covered = sched_domains_tmpmask;
5692 struct sd_data *sdd = sd->private;
5693 struct sched_domain *child;
5694 int i;
5695
5696 cpumask_clear(covered);
5697
5698 for_each_cpu(i, span) {
5699 struct cpumask *sg_span;
5700
5701 if (cpumask_test_cpu(i, covered))
5702 continue;
5703
c1174876
PZ
5704 child = *per_cpu_ptr(sdd->sd, i);
5705
5706 /* See the comment near build_group_mask(). */
5707 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5708 continue;
5709
e3589f6c 5710 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5711 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5712
5713 if (!sg)
5714 goto fail;
5715
5716 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5717 if (child->child) {
5718 child = child->child;
5719 cpumask_copy(sg_span, sched_domain_span(child));
5720 } else
5721 cpumask_set_cpu(i, sg_span);
5722
5723 cpumask_or(covered, covered, sg_span);
5724
74a5ce20 5725 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5726 if (atomic_inc_return(&sg->sgp->ref) == 1)
5727 build_group_mask(sd, sg);
5728
c3decf0d
PZ
5729 /*
5730 * Initialize sgp->power such that even if we mess up the
5731 * domains and no possible iteration will get us here, we won't
5732 * die on a /0 trap.
5733 */
5734 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5735
c1174876
PZ
5736 /*
5737 * Make sure the first group of this domain contains the
5738 * canonical balance cpu. Otherwise the sched_domain iteration
5739 * breaks. See update_sg_lb_stats().
5740 */
74a5ce20 5741 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5742 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5743 groups = sg;
5744
5745 if (!first)
5746 first = sg;
5747 if (last)
5748 last->next = sg;
5749 last = sg;
5750 last->next = first;
5751 }
5752 sd->groups = groups;
5753
5754 return 0;
5755
5756fail:
5757 free_sched_groups(first, 0);
5758
5759 return -ENOMEM;
5760}
5761
dce840a0 5762static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5763{
dce840a0
PZ
5764 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5765 struct sched_domain *child = sd->child;
1da177e4 5766
dce840a0
PZ
5767 if (child)
5768 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5769
9c3f75cb 5770 if (sg) {
dce840a0 5771 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5772 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5773 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5774 }
dce840a0
PZ
5775
5776 return cpu;
1e9f28fa 5777}
1e9f28fa 5778
01a08546 5779/*
dce840a0
PZ
5780 * build_sched_groups will build a circular linked list of the groups
5781 * covered by the given span, and will set each group's ->cpumask correctly,
5782 * and ->cpu_power to 0.
e3589f6c
PZ
5783 *
5784 * Assumes the sched_domain tree is fully constructed
01a08546 5785 */
e3589f6c
PZ
5786static int
5787build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5788{
dce840a0
PZ
5789 struct sched_group *first = NULL, *last = NULL;
5790 struct sd_data *sdd = sd->private;
5791 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5792 struct cpumask *covered;
dce840a0 5793 int i;
9c1cfda2 5794
e3589f6c
PZ
5795 get_group(cpu, sdd, &sd->groups);
5796 atomic_inc(&sd->groups->ref);
5797
5798 if (cpu != cpumask_first(sched_domain_span(sd)))
5799 return 0;
5800
f96225fd
PZ
5801 lockdep_assert_held(&sched_domains_mutex);
5802 covered = sched_domains_tmpmask;
5803
dce840a0 5804 cpumask_clear(covered);
6711cab4 5805
dce840a0
PZ
5806 for_each_cpu(i, span) {
5807 struct sched_group *sg;
5808 int group = get_group(i, sdd, &sg);
5809 int j;
6711cab4 5810
dce840a0
PZ
5811 if (cpumask_test_cpu(i, covered))
5812 continue;
6711cab4 5813
dce840a0 5814 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5815 sg->sgp->power = 0;
c1174876 5816 cpumask_setall(sched_group_mask(sg));
0601a88d 5817
dce840a0
PZ
5818 for_each_cpu(j, span) {
5819 if (get_group(j, sdd, NULL) != group)
5820 continue;
0601a88d 5821
dce840a0
PZ
5822 cpumask_set_cpu(j, covered);
5823 cpumask_set_cpu(j, sched_group_cpus(sg));
5824 }
0601a88d 5825
dce840a0
PZ
5826 if (!first)
5827 first = sg;
5828 if (last)
5829 last->next = sg;
5830 last = sg;
5831 }
5832 last->next = first;
e3589f6c
PZ
5833
5834 return 0;
0601a88d 5835}
51888ca2 5836
89c4710e
SS
5837/*
5838 * Initialize sched groups cpu_power.
5839 *
5840 * cpu_power indicates the capacity of sched group, which is used while
5841 * distributing the load between different sched groups in a sched domain.
5842 * Typically cpu_power for all the groups in a sched domain will be same unless
5843 * there are asymmetries in the topology. If there are asymmetries, group
5844 * having more cpu_power will pickup more load compared to the group having
5845 * less cpu_power.
89c4710e
SS
5846 */
5847static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5848{
e3589f6c 5849 struct sched_group *sg = sd->groups;
89c4710e 5850
e3589f6c
PZ
5851 WARN_ON(!sd || !sg);
5852
5853 do {
5854 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5855 sg = sg->next;
5856 } while (sg != sd->groups);
89c4710e 5857
c1174876 5858 if (cpu != group_balance_cpu(sg))
e3589f6c 5859 return;
aae6d3dd 5860
d274cb30 5861 update_group_power(sd, cpu);
69e1e811 5862 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5863}
5864
029632fb
PZ
5865int __weak arch_sd_sibling_asym_packing(void)
5866{
5867 return 0*SD_ASYM_PACKING;
89c4710e
SS
5868}
5869
7c16ec58
MT
5870/*
5871 * Initializers for schedule domains
5872 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5873 */
5874
a5d8c348
IM
5875#ifdef CONFIG_SCHED_DEBUG
5876# define SD_INIT_NAME(sd, type) sd->name = #type
5877#else
5878# define SD_INIT_NAME(sd, type) do { } while (0)
5879#endif
5880
54ab4ff4
PZ
5881#define SD_INIT_FUNC(type) \
5882static noinline struct sched_domain * \
5883sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5884{ \
5885 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5886 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5887 SD_INIT_NAME(sd, type); \
5888 sd->private = &tl->data; \
5889 return sd; \
7c16ec58
MT
5890}
5891
5892SD_INIT_FUNC(CPU)
7c16ec58
MT
5893#ifdef CONFIG_SCHED_SMT
5894 SD_INIT_FUNC(SIBLING)
5895#endif
5896#ifdef CONFIG_SCHED_MC
5897 SD_INIT_FUNC(MC)
5898#endif
01a08546
HC
5899#ifdef CONFIG_SCHED_BOOK
5900 SD_INIT_FUNC(BOOK)
5901#endif
7c16ec58 5902
1d3504fc 5903static int default_relax_domain_level = -1;
60495e77 5904int sched_domain_level_max;
1d3504fc
HS
5905
5906static int __init setup_relax_domain_level(char *str)
5907{
a841f8ce
DS
5908 if (kstrtoint(str, 0, &default_relax_domain_level))
5909 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5910
1d3504fc
HS
5911 return 1;
5912}
5913__setup("relax_domain_level=", setup_relax_domain_level);
5914
5915static void set_domain_attribute(struct sched_domain *sd,
5916 struct sched_domain_attr *attr)
5917{
5918 int request;
5919
5920 if (!attr || attr->relax_domain_level < 0) {
5921 if (default_relax_domain_level < 0)
5922 return;
5923 else
5924 request = default_relax_domain_level;
5925 } else
5926 request = attr->relax_domain_level;
5927 if (request < sd->level) {
5928 /* turn off idle balance on this domain */
c88d5910 5929 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5930 } else {
5931 /* turn on idle balance on this domain */
c88d5910 5932 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5933 }
5934}
5935
54ab4ff4
PZ
5936static void __sdt_free(const struct cpumask *cpu_map);
5937static int __sdt_alloc(const struct cpumask *cpu_map);
5938
2109b99e
AH
5939static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5940 const struct cpumask *cpu_map)
5941{
5942 switch (what) {
2109b99e 5943 case sa_rootdomain:
822ff793
PZ
5944 if (!atomic_read(&d->rd->refcount))
5945 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5946 case sa_sd:
5947 free_percpu(d->sd); /* fall through */
dce840a0 5948 case sa_sd_storage:
54ab4ff4 5949 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5950 case sa_none:
5951 break;
5952 }
5953}
3404c8d9 5954
2109b99e
AH
5955static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5956 const struct cpumask *cpu_map)
5957{
dce840a0
PZ
5958 memset(d, 0, sizeof(*d));
5959
54ab4ff4
PZ
5960 if (__sdt_alloc(cpu_map))
5961 return sa_sd_storage;
dce840a0
PZ
5962 d->sd = alloc_percpu(struct sched_domain *);
5963 if (!d->sd)
5964 return sa_sd_storage;
2109b99e 5965 d->rd = alloc_rootdomain();
dce840a0 5966 if (!d->rd)
21d42ccf 5967 return sa_sd;
2109b99e
AH
5968 return sa_rootdomain;
5969}
57d885fe 5970
dce840a0
PZ
5971/*
5972 * NULL the sd_data elements we've used to build the sched_domain and
5973 * sched_group structure so that the subsequent __free_domain_allocs()
5974 * will not free the data we're using.
5975 */
5976static void claim_allocations(int cpu, struct sched_domain *sd)
5977{
5978 struct sd_data *sdd = sd->private;
dce840a0
PZ
5979
5980 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5981 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5982
e3589f6c 5983 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5984 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5985
5986 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5987 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5988}
5989
2c402dc3
PZ
5990#ifdef CONFIG_SCHED_SMT
5991static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5992{
2c402dc3 5993 return topology_thread_cpumask(cpu);
3bd65a80 5994}
2c402dc3 5995#endif
7f4588f3 5996
d069b916
PZ
5997/*
5998 * Topology list, bottom-up.
5999 */
2c402dc3 6000static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6001#ifdef CONFIG_SCHED_SMT
6002 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6003#endif
1e9f28fa 6004#ifdef CONFIG_SCHED_MC
2c402dc3 6005 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6006#endif
d069b916
PZ
6007#ifdef CONFIG_SCHED_BOOK
6008 { sd_init_BOOK, cpu_book_mask, },
6009#endif
6010 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6011 { NULL, },
6012};
6013
6014static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6015
cb83b629
PZ
6016#ifdef CONFIG_NUMA
6017
6018static int sched_domains_numa_levels;
cb83b629
PZ
6019static int *sched_domains_numa_distance;
6020static struct cpumask ***sched_domains_numa_masks;
6021static int sched_domains_curr_level;
6022
cb83b629
PZ
6023static inline int sd_local_flags(int level)
6024{
10717dcd 6025 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6026 return 0;
6027
6028 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6029}
6030
6031static struct sched_domain *
6032sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6033{
6034 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6035 int level = tl->numa_level;
6036 int sd_weight = cpumask_weight(
6037 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6038
6039 *sd = (struct sched_domain){
6040 .min_interval = sd_weight,
6041 .max_interval = 2*sd_weight,
6042 .busy_factor = 32,
870a0bb5 6043 .imbalance_pct = 125,
cb83b629
PZ
6044 .cache_nice_tries = 2,
6045 .busy_idx = 3,
6046 .idle_idx = 2,
6047 .newidle_idx = 0,
6048 .wake_idx = 0,
6049 .forkexec_idx = 0,
6050
6051 .flags = 1*SD_LOAD_BALANCE
6052 | 1*SD_BALANCE_NEWIDLE
6053 | 0*SD_BALANCE_EXEC
6054 | 0*SD_BALANCE_FORK
6055 | 0*SD_BALANCE_WAKE
6056 | 0*SD_WAKE_AFFINE
cb83b629 6057 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6058 | 0*SD_SHARE_PKG_RESOURCES
6059 | 1*SD_SERIALIZE
6060 | 0*SD_PREFER_SIBLING
6061 | sd_local_flags(level)
6062 ,
6063 .last_balance = jiffies,
6064 .balance_interval = sd_weight,
6065 };
6066 SD_INIT_NAME(sd, NUMA);
6067 sd->private = &tl->data;
6068
6069 /*
6070 * Ugly hack to pass state to sd_numa_mask()...
6071 */
6072 sched_domains_curr_level = tl->numa_level;
6073
6074 return sd;
6075}
6076
6077static const struct cpumask *sd_numa_mask(int cpu)
6078{
6079 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6080}
6081
d039ac60
PZ
6082static void sched_numa_warn(const char *str)
6083{
6084 static int done = false;
6085 int i,j;
6086
6087 if (done)
6088 return;
6089
6090 done = true;
6091
6092 printk(KERN_WARNING "ERROR: %s\n\n", str);
6093
6094 for (i = 0; i < nr_node_ids; i++) {
6095 printk(KERN_WARNING " ");
6096 for (j = 0; j < nr_node_ids; j++)
6097 printk(KERN_CONT "%02d ", node_distance(i,j));
6098 printk(KERN_CONT "\n");
6099 }
6100 printk(KERN_WARNING "\n");
6101}
6102
6103static bool find_numa_distance(int distance)
6104{
6105 int i;
6106
6107 if (distance == node_distance(0, 0))
6108 return true;
6109
6110 for (i = 0; i < sched_domains_numa_levels; i++) {
6111 if (sched_domains_numa_distance[i] == distance)
6112 return true;
6113 }
6114
6115 return false;
6116}
6117
cb83b629
PZ
6118static void sched_init_numa(void)
6119{
6120 int next_distance, curr_distance = node_distance(0, 0);
6121 struct sched_domain_topology_level *tl;
6122 int level = 0;
6123 int i, j, k;
6124
cb83b629
PZ
6125 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6126 if (!sched_domains_numa_distance)
6127 return;
6128
6129 /*
6130 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6131 * unique distances in the node_distance() table.
6132 *
6133 * Assumes node_distance(0,j) includes all distances in
6134 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6135 */
6136 next_distance = curr_distance;
6137 for (i = 0; i < nr_node_ids; i++) {
6138 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6139 for (k = 0; k < nr_node_ids; k++) {
6140 int distance = node_distance(i, k);
6141
6142 if (distance > curr_distance &&
6143 (distance < next_distance ||
6144 next_distance == curr_distance))
6145 next_distance = distance;
6146
6147 /*
6148 * While not a strong assumption it would be nice to know
6149 * about cases where if node A is connected to B, B is not
6150 * equally connected to A.
6151 */
6152 if (sched_debug() && node_distance(k, i) != distance)
6153 sched_numa_warn("Node-distance not symmetric");
6154
6155 if (sched_debug() && i && !find_numa_distance(distance))
6156 sched_numa_warn("Node-0 not representative");
6157 }
6158 if (next_distance != curr_distance) {
6159 sched_domains_numa_distance[level++] = next_distance;
6160 sched_domains_numa_levels = level;
6161 curr_distance = next_distance;
6162 } else break;
cb83b629 6163 }
d039ac60
PZ
6164
6165 /*
6166 * In case of sched_debug() we verify the above assumption.
6167 */
6168 if (!sched_debug())
6169 break;
cb83b629
PZ
6170 }
6171 /*
6172 * 'level' contains the number of unique distances, excluding the
6173 * identity distance node_distance(i,i).
6174 *
6175 * The sched_domains_nume_distance[] array includes the actual distance
6176 * numbers.
6177 */
6178
6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180 if (!sched_domains_numa_masks)
6181 return;
6182
6183 /*
6184 * Now for each level, construct a mask per node which contains all
6185 * cpus of nodes that are that many hops away from us.
6186 */
6187 for (i = 0; i < level; i++) {
6188 sched_domains_numa_masks[i] =
6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190 if (!sched_domains_numa_masks[i])
6191 return;
6192
6193 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6195 if (!mask)
6196 return;
6197
6198 sched_domains_numa_masks[i][j] = mask;
6199
6200 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6201 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6202 continue;
6203
6204 cpumask_or(mask, mask, cpumask_of_node(k));
6205 }
6206 }
6207 }
6208
6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211 if (!tl)
6212 return;
6213
6214 /*
6215 * Copy the default topology bits..
6216 */
6217 for (i = 0; default_topology[i].init; i++)
6218 tl[i] = default_topology[i];
6219
6220 /*
6221 * .. and append 'j' levels of NUMA goodness.
6222 */
6223 for (j = 0; j < level; i++, j++) {
6224 tl[i] = (struct sched_domain_topology_level){
6225 .init = sd_numa_init,
6226 .mask = sd_numa_mask,
6227 .flags = SDTL_OVERLAP,
6228 .numa_level = j,
6229 };
6230 }
6231
6232 sched_domain_topology = tl;
6233}
6234#else
6235static inline void sched_init_numa(void)
6236{
6237}
6238#endif /* CONFIG_NUMA */
6239
54ab4ff4
PZ
6240static int __sdt_alloc(const struct cpumask *cpu_map)
6241{
6242 struct sched_domain_topology_level *tl;
6243 int j;
6244
6245 for (tl = sched_domain_topology; tl->init; tl++) {
6246 struct sd_data *sdd = &tl->data;
6247
6248 sdd->sd = alloc_percpu(struct sched_domain *);
6249 if (!sdd->sd)
6250 return -ENOMEM;
6251
6252 sdd->sg = alloc_percpu(struct sched_group *);
6253 if (!sdd->sg)
6254 return -ENOMEM;
6255
9c3f75cb
PZ
6256 sdd->sgp = alloc_percpu(struct sched_group_power *);
6257 if (!sdd->sgp)
6258 return -ENOMEM;
6259
54ab4ff4
PZ
6260 for_each_cpu(j, cpu_map) {
6261 struct sched_domain *sd;
6262 struct sched_group *sg;
9c3f75cb 6263 struct sched_group_power *sgp;
54ab4ff4
PZ
6264
6265 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6266 GFP_KERNEL, cpu_to_node(j));
6267 if (!sd)
6268 return -ENOMEM;
6269
6270 *per_cpu_ptr(sdd->sd, j) = sd;
6271
6272 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6273 GFP_KERNEL, cpu_to_node(j));
6274 if (!sg)
6275 return -ENOMEM;
6276
30b4e9eb
IM
6277 sg->next = sg;
6278
54ab4ff4 6279 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6280
c1174876 6281 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6282 GFP_KERNEL, cpu_to_node(j));
6283 if (!sgp)
6284 return -ENOMEM;
6285
6286 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6287 }
6288 }
6289
6290 return 0;
6291}
6292
6293static void __sdt_free(const struct cpumask *cpu_map)
6294{
6295 struct sched_domain_topology_level *tl;
6296 int j;
6297
6298 for (tl = sched_domain_topology; tl->init; tl++) {
6299 struct sd_data *sdd = &tl->data;
6300
6301 for_each_cpu(j, cpu_map) {
fb2cf2c6 6302 struct sched_domain *sd;
6303
6304 if (sdd->sd) {
6305 sd = *per_cpu_ptr(sdd->sd, j);
6306 if (sd && (sd->flags & SD_OVERLAP))
6307 free_sched_groups(sd->groups, 0);
6308 kfree(*per_cpu_ptr(sdd->sd, j));
6309 }
6310
6311 if (sdd->sg)
6312 kfree(*per_cpu_ptr(sdd->sg, j));
6313 if (sdd->sgp)
6314 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6315 }
6316 free_percpu(sdd->sd);
fb2cf2c6 6317 sdd->sd = NULL;
54ab4ff4 6318 free_percpu(sdd->sg);
fb2cf2c6 6319 sdd->sg = NULL;
9c3f75cb 6320 free_percpu(sdd->sgp);
fb2cf2c6 6321 sdd->sgp = NULL;
54ab4ff4
PZ
6322 }
6323}
6324
2c402dc3
PZ
6325struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6326 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6327 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6328 int cpu)
6329{
54ab4ff4 6330 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6331 if (!sd)
d069b916 6332 return child;
2c402dc3 6333
2c402dc3 6334 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6335 if (child) {
6336 sd->level = child->level + 1;
6337 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6338 child->parent = sd;
60495e77 6339 }
d069b916 6340 sd->child = child;
a841f8ce 6341 set_domain_attribute(sd, attr);
2c402dc3
PZ
6342
6343 return sd;
6344}
6345
2109b99e
AH
6346/*
6347 * Build sched domains for a given set of cpus and attach the sched domains
6348 * to the individual cpus
6349 */
dce840a0
PZ
6350static int build_sched_domains(const struct cpumask *cpu_map,
6351 struct sched_domain_attr *attr)
2109b99e
AH
6352{
6353 enum s_alloc alloc_state = sa_none;
dce840a0 6354 struct sched_domain *sd;
2109b99e 6355 struct s_data d;
822ff793 6356 int i, ret = -ENOMEM;
9c1cfda2 6357
2109b99e
AH
6358 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6359 if (alloc_state != sa_rootdomain)
6360 goto error;
9c1cfda2 6361
dce840a0 6362 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6363 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6364 struct sched_domain_topology_level *tl;
6365
3bd65a80 6366 sd = NULL;
e3589f6c 6367 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6368 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6369 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6370 sd->flags |= SD_OVERLAP;
d110235d
PZ
6371 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6372 break;
e3589f6c 6373 }
d274cb30 6374
d069b916
PZ
6375 while (sd->child)
6376 sd = sd->child;
6377
21d42ccf 6378 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6379 }
6380
6381 /* Build the groups for the domains */
6382 for_each_cpu(i, cpu_map) {
6383 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6384 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6385 if (sd->flags & SD_OVERLAP) {
6386 if (build_overlap_sched_groups(sd, i))
6387 goto error;
6388 } else {
6389 if (build_sched_groups(sd, i))
6390 goto error;
6391 }
1cf51902 6392 }
a06dadbe 6393 }
9c1cfda2 6394
1da177e4 6395 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6396 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6397 if (!cpumask_test_cpu(i, cpu_map))
6398 continue;
9c1cfda2 6399
dce840a0
PZ
6400 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6401 claim_allocations(i, sd);
cd4ea6ae 6402 init_sched_groups_power(i, sd);
dce840a0 6403 }
f712c0c7 6404 }
9c1cfda2 6405
1da177e4 6406 /* Attach the domains */
dce840a0 6407 rcu_read_lock();
abcd083a 6408 for_each_cpu(i, cpu_map) {
21d42ccf 6409 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6410 cpu_attach_domain(sd, d.rd, i);
1da177e4 6411 }
dce840a0 6412 rcu_read_unlock();
51888ca2 6413
822ff793 6414 ret = 0;
51888ca2 6415error:
2109b99e 6416 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6417 return ret;
1da177e4 6418}
029190c5 6419
acc3f5d7 6420static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6421static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6422static struct sched_domain_attr *dattr_cur;
6423 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6424
6425/*
6426 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6427 * cpumask) fails, then fallback to a single sched domain,
6428 * as determined by the single cpumask fallback_doms.
029190c5 6429 */
4212823f 6430static cpumask_var_t fallback_doms;
029190c5 6431
ee79d1bd
HC
6432/*
6433 * arch_update_cpu_topology lets virtualized architectures update the
6434 * cpu core maps. It is supposed to return 1 if the topology changed
6435 * or 0 if it stayed the same.
6436 */
6437int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6438{
ee79d1bd 6439 return 0;
22e52b07
HC
6440}
6441
acc3f5d7
RR
6442cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6443{
6444 int i;
6445 cpumask_var_t *doms;
6446
6447 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6448 if (!doms)
6449 return NULL;
6450 for (i = 0; i < ndoms; i++) {
6451 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6452 free_sched_domains(doms, i);
6453 return NULL;
6454 }
6455 }
6456 return doms;
6457}
6458
6459void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6460{
6461 unsigned int i;
6462 for (i = 0; i < ndoms; i++)
6463 free_cpumask_var(doms[i]);
6464 kfree(doms);
6465}
6466
1a20ff27 6467/*
41a2d6cf 6468 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6469 * For now this just excludes isolated cpus, but could be used to
6470 * exclude other special cases in the future.
1a20ff27 6471 */
c4a8849a 6472static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6473{
7378547f
MM
6474 int err;
6475
22e52b07 6476 arch_update_cpu_topology();
029190c5 6477 ndoms_cur = 1;
acc3f5d7 6478 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6479 if (!doms_cur)
acc3f5d7
RR
6480 doms_cur = &fallback_doms;
6481 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6482 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6483 register_sched_domain_sysctl();
7378547f
MM
6484
6485 return err;
1a20ff27
DG
6486}
6487
1a20ff27
DG
6488/*
6489 * Detach sched domains from a group of cpus specified in cpu_map
6490 * These cpus will now be attached to the NULL domain
6491 */
96f874e2 6492static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6493{
6494 int i;
6495
dce840a0 6496 rcu_read_lock();
abcd083a 6497 for_each_cpu(i, cpu_map)
57d885fe 6498 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6499 rcu_read_unlock();
1a20ff27
DG
6500}
6501
1d3504fc
HS
6502/* handle null as "default" */
6503static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6504 struct sched_domain_attr *new, int idx_new)
6505{
6506 struct sched_domain_attr tmp;
6507
6508 /* fast path */
6509 if (!new && !cur)
6510 return 1;
6511
6512 tmp = SD_ATTR_INIT;
6513 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6514 new ? (new + idx_new) : &tmp,
6515 sizeof(struct sched_domain_attr));
6516}
6517
029190c5
PJ
6518/*
6519 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6520 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6521 * doms_new[] to the current sched domain partitioning, doms_cur[].
6522 * It destroys each deleted domain and builds each new domain.
6523 *
acc3f5d7 6524 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6525 * The masks don't intersect (don't overlap.) We should setup one
6526 * sched domain for each mask. CPUs not in any of the cpumasks will
6527 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6528 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6529 * it as it is.
6530 *
acc3f5d7
RR
6531 * The passed in 'doms_new' should be allocated using
6532 * alloc_sched_domains. This routine takes ownership of it and will
6533 * free_sched_domains it when done with it. If the caller failed the
6534 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6535 * and partition_sched_domains() will fallback to the single partition
6536 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6537 *
96f874e2 6538 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6539 * ndoms_new == 0 is a special case for destroying existing domains,
6540 * and it will not create the default domain.
dfb512ec 6541 *
029190c5
PJ
6542 * Call with hotplug lock held
6543 */
acc3f5d7 6544void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6545 struct sched_domain_attr *dattr_new)
029190c5 6546{
dfb512ec 6547 int i, j, n;
d65bd5ec 6548 int new_topology;
029190c5 6549
712555ee 6550 mutex_lock(&sched_domains_mutex);
a1835615 6551
7378547f
MM
6552 /* always unregister in case we don't destroy any domains */
6553 unregister_sched_domain_sysctl();
6554
d65bd5ec
HC
6555 /* Let architecture update cpu core mappings. */
6556 new_topology = arch_update_cpu_topology();
6557
dfb512ec 6558 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6559
6560 /* Destroy deleted domains */
6561 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6562 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6563 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6564 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6565 goto match1;
6566 }
6567 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6568 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6569match1:
6570 ;
6571 }
6572
e761b772
MK
6573 if (doms_new == NULL) {
6574 ndoms_cur = 0;
acc3f5d7 6575 doms_new = &fallback_doms;
6ad4c188 6576 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6577 WARN_ON_ONCE(dattr_new);
e761b772
MK
6578 }
6579
029190c5
PJ
6580 /* Build new domains */
6581 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6582 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6583 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6584 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6585 goto match2;
6586 }
6587 /* no match - add a new doms_new */
dce840a0 6588 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6589match2:
6590 ;
6591 }
6592
6593 /* Remember the new sched domains */
acc3f5d7
RR
6594 if (doms_cur != &fallback_doms)
6595 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6596 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6597 doms_cur = doms_new;
1d3504fc 6598 dattr_cur = dattr_new;
029190c5 6599 ndoms_cur = ndoms_new;
7378547f
MM
6600
6601 register_sched_domain_sysctl();
a1835615 6602
712555ee 6603 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6604}
6605
d35be8ba
SB
6606static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6607
1da177e4 6608/*
3a101d05
TH
6609 * Update cpusets according to cpu_active mask. If cpusets are
6610 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6611 * around partition_sched_domains().
d35be8ba
SB
6612 *
6613 * If we come here as part of a suspend/resume, don't touch cpusets because we
6614 * want to restore it back to its original state upon resume anyway.
1da177e4 6615 */
0b2e918a
TH
6616static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6617 void *hcpu)
e761b772 6618{
d35be8ba
SB
6619 switch (action) {
6620 case CPU_ONLINE_FROZEN:
6621 case CPU_DOWN_FAILED_FROZEN:
6622
6623 /*
6624 * num_cpus_frozen tracks how many CPUs are involved in suspend
6625 * resume sequence. As long as this is not the last online
6626 * operation in the resume sequence, just build a single sched
6627 * domain, ignoring cpusets.
6628 */
6629 num_cpus_frozen--;
6630 if (likely(num_cpus_frozen)) {
6631 partition_sched_domains(1, NULL, NULL);
6632 break;
6633 }
6634
6635 /*
6636 * This is the last CPU online operation. So fall through and
6637 * restore the original sched domains by considering the
6638 * cpuset configurations.
6639 */
6640
e761b772 6641 case CPU_ONLINE:
6ad4c188 6642 case CPU_DOWN_FAILED:
7ddf96b0 6643 cpuset_update_active_cpus(true);
d35be8ba 6644 break;
3a101d05
TH
6645 default:
6646 return NOTIFY_DONE;
6647 }
d35be8ba 6648 return NOTIFY_OK;
3a101d05 6649}
e761b772 6650
0b2e918a
TH
6651static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6652 void *hcpu)
3a101d05 6653{
d35be8ba 6654 switch (action) {
3a101d05 6655 case CPU_DOWN_PREPARE:
7ddf96b0 6656 cpuset_update_active_cpus(false);
d35be8ba
SB
6657 break;
6658 case CPU_DOWN_PREPARE_FROZEN:
6659 num_cpus_frozen++;
6660 partition_sched_domains(1, NULL, NULL);
6661 break;
e761b772
MK
6662 default:
6663 return NOTIFY_DONE;
6664 }
d35be8ba 6665 return NOTIFY_OK;
e761b772 6666}
e761b772 6667
1da177e4
LT
6668void __init sched_init_smp(void)
6669{
dcc30a35
RR
6670 cpumask_var_t non_isolated_cpus;
6671
6672 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6673 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6674
cb83b629
PZ
6675 sched_init_numa();
6676
95402b38 6677 get_online_cpus();
712555ee 6678 mutex_lock(&sched_domains_mutex);
c4a8849a 6679 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6680 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6681 if (cpumask_empty(non_isolated_cpus))
6682 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6683 mutex_unlock(&sched_domains_mutex);
95402b38 6684 put_online_cpus();
e761b772 6685
3a101d05
TH
6686 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6687 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6688
6689 /* RT runtime code needs to handle some hotplug events */
6690 hotcpu_notifier(update_runtime, 0);
6691
b328ca18 6692 init_hrtick();
5c1e1767
NP
6693
6694 /* Move init over to a non-isolated CPU */
dcc30a35 6695 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6696 BUG();
19978ca6 6697 sched_init_granularity();
dcc30a35 6698 free_cpumask_var(non_isolated_cpus);
4212823f 6699
0e3900e6 6700 init_sched_rt_class();
1da177e4
LT
6701}
6702#else
6703void __init sched_init_smp(void)
6704{
19978ca6 6705 sched_init_granularity();
1da177e4
LT
6706}
6707#endif /* CONFIG_SMP */
6708
cd1bb94b
AB
6709const_debug unsigned int sysctl_timer_migration = 1;
6710
1da177e4
LT
6711int in_sched_functions(unsigned long addr)
6712{
1da177e4
LT
6713 return in_lock_functions(addr) ||
6714 (addr >= (unsigned long)__sched_text_start
6715 && addr < (unsigned long)__sched_text_end);
6716}
6717
029632fb
PZ
6718#ifdef CONFIG_CGROUP_SCHED
6719struct task_group root_task_group;
35cf4e50 6720LIST_HEAD(task_groups);
052f1dc7 6721#endif
6f505b16 6722
029632fb 6723DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6724
1da177e4
LT
6725void __init sched_init(void)
6726{
dd41f596 6727 int i, j;
434d53b0
MT
6728 unsigned long alloc_size = 0, ptr;
6729
6730#ifdef CONFIG_FAIR_GROUP_SCHED
6731 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6732#endif
6733#ifdef CONFIG_RT_GROUP_SCHED
6734 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6735#endif
df7c8e84 6736#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6737 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6738#endif
434d53b0 6739 if (alloc_size) {
36b7b6d4 6740 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6741
6742#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6743 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6744 ptr += nr_cpu_ids * sizeof(void **);
6745
07e06b01 6746 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6747 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6748
6d6bc0ad 6749#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6750#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6751 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6752 ptr += nr_cpu_ids * sizeof(void **);
6753
07e06b01 6754 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6755 ptr += nr_cpu_ids * sizeof(void **);
6756
6d6bc0ad 6757#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6758#ifdef CONFIG_CPUMASK_OFFSTACK
6759 for_each_possible_cpu(i) {
6760 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6761 ptr += cpumask_size();
6762 }
6763#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6764 }
dd41f596 6765
57d885fe
GH
6766#ifdef CONFIG_SMP
6767 init_defrootdomain();
6768#endif
6769
d0b27fa7
PZ
6770 init_rt_bandwidth(&def_rt_bandwidth,
6771 global_rt_period(), global_rt_runtime());
6772
6773#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6774 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6775 global_rt_period(), global_rt_runtime());
6d6bc0ad 6776#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6777
7c941438 6778#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6779 list_add(&root_task_group.list, &task_groups);
6780 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6781 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6782 autogroup_init(&init_task);
54c707e9 6783
7c941438 6784#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6785
54c707e9
GC
6786#ifdef CONFIG_CGROUP_CPUACCT
6787 root_cpuacct.cpustat = &kernel_cpustat;
6788 root_cpuacct.cpuusage = alloc_percpu(u64);
6789 /* Too early, not expected to fail */
6790 BUG_ON(!root_cpuacct.cpuusage);
6791#endif
0a945022 6792 for_each_possible_cpu(i) {
70b97a7f 6793 struct rq *rq;
1da177e4
LT
6794
6795 rq = cpu_rq(i);
05fa785c 6796 raw_spin_lock_init(&rq->lock);
7897986b 6797 rq->nr_running = 0;
dce48a84
TG
6798 rq->calc_load_active = 0;
6799 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6800 init_cfs_rq(&rq->cfs);
6f505b16 6801 init_rt_rq(&rq->rt, rq);
dd41f596 6802#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6803 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6804 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6805 /*
07e06b01 6806 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6807 *
6808 * In case of task-groups formed thr' the cgroup filesystem, it
6809 * gets 100% of the cpu resources in the system. This overall
6810 * system cpu resource is divided among the tasks of
07e06b01 6811 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6812 * based on each entity's (task or task-group's) weight
6813 * (se->load.weight).
6814 *
07e06b01 6815 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6816 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6817 * then A0's share of the cpu resource is:
6818 *
0d905bca 6819 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6820 *
07e06b01
YZ
6821 * We achieve this by letting root_task_group's tasks sit
6822 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6823 */
ab84d31e 6824 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6825 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6826#endif /* CONFIG_FAIR_GROUP_SCHED */
6827
6828 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6829#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6830 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6831 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6832#endif
1da177e4 6833
dd41f596
IM
6834 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6835 rq->cpu_load[j] = 0;
fdf3e95d
VP
6836
6837 rq->last_load_update_tick = jiffies;
6838
1da177e4 6839#ifdef CONFIG_SMP
41c7ce9a 6840 rq->sd = NULL;
57d885fe 6841 rq->rd = NULL;
1399fa78 6842 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6843 rq->post_schedule = 0;
1da177e4 6844 rq->active_balance = 0;
dd41f596 6845 rq->next_balance = jiffies;
1da177e4 6846 rq->push_cpu = 0;
0a2966b4 6847 rq->cpu = i;
1f11eb6a 6848 rq->online = 0;
eae0c9df
MG
6849 rq->idle_stamp = 0;
6850 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6851
6852 INIT_LIST_HEAD(&rq->cfs_tasks);
6853
dc938520 6854 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6855#ifdef CONFIG_NO_HZ
1c792db7 6856 rq->nohz_flags = 0;
83cd4fe2 6857#endif
1da177e4 6858#endif
8f4d37ec 6859 init_rq_hrtick(rq);
1da177e4 6860 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6861 }
6862
2dd73a4f 6863 set_load_weight(&init_task);
b50f60ce 6864
e107be36
AK
6865#ifdef CONFIG_PREEMPT_NOTIFIERS
6866 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6867#endif
6868
b50f60ce 6869#ifdef CONFIG_RT_MUTEXES
732375c6 6870 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6871#endif
6872
1da177e4
LT
6873 /*
6874 * The boot idle thread does lazy MMU switching as well:
6875 */
6876 atomic_inc(&init_mm.mm_count);
6877 enter_lazy_tlb(&init_mm, current);
6878
6879 /*
6880 * Make us the idle thread. Technically, schedule() should not be
6881 * called from this thread, however somewhere below it might be,
6882 * but because we are the idle thread, we just pick up running again
6883 * when this runqueue becomes "idle".
6884 */
6885 init_idle(current, smp_processor_id());
dce48a84
TG
6886
6887 calc_load_update = jiffies + LOAD_FREQ;
6888
dd41f596
IM
6889 /*
6890 * During early bootup we pretend to be a normal task:
6891 */
6892 current->sched_class = &fair_sched_class;
6892b75e 6893
bf4d83f6 6894#ifdef CONFIG_SMP
4cb98839 6895 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6896 /* May be allocated at isolcpus cmdline parse time */
6897 if (cpu_isolated_map == NULL)
6898 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6899 idle_thread_set_boot_cpu();
029632fb
PZ
6900#endif
6901 init_sched_fair_class();
6a7b3dc3 6902
6892b75e 6903 scheduler_running = 1;
1da177e4
LT
6904}
6905
d902db1e 6906#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6907static inline int preempt_count_equals(int preempt_offset)
6908{
234da7bc 6909 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6910
4ba8216c 6911 return (nested == preempt_offset);
e4aafea2
FW
6912}
6913
d894837f 6914void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6915{
1da177e4
LT
6916 static unsigned long prev_jiffy; /* ratelimiting */
6917
b3fbab05 6918 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6919 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6920 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6921 return;
6922 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6923 return;
6924 prev_jiffy = jiffies;
6925
3df0fc5b
PZ
6926 printk(KERN_ERR
6927 "BUG: sleeping function called from invalid context at %s:%d\n",
6928 file, line);
6929 printk(KERN_ERR
6930 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6931 in_atomic(), irqs_disabled(),
6932 current->pid, current->comm);
aef745fc
IM
6933
6934 debug_show_held_locks(current);
6935 if (irqs_disabled())
6936 print_irqtrace_events(current);
6937 dump_stack();
1da177e4
LT
6938}
6939EXPORT_SYMBOL(__might_sleep);
6940#endif
6941
6942#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6943static void normalize_task(struct rq *rq, struct task_struct *p)
6944{
da7a735e
PZ
6945 const struct sched_class *prev_class = p->sched_class;
6946 int old_prio = p->prio;
3a5e4dc1 6947 int on_rq;
3e51f33f 6948
fd2f4419 6949 on_rq = p->on_rq;
3a5e4dc1 6950 if (on_rq)
4ca9b72b 6951 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6952 __setscheduler(rq, p, SCHED_NORMAL, 0);
6953 if (on_rq) {
4ca9b72b 6954 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6955 resched_task(rq->curr);
6956 }
da7a735e
PZ
6957
6958 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6959}
6960
1da177e4
LT
6961void normalize_rt_tasks(void)
6962{
a0f98a1c 6963 struct task_struct *g, *p;
1da177e4 6964 unsigned long flags;
70b97a7f 6965 struct rq *rq;
1da177e4 6966
4cf5d77a 6967 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6968 do_each_thread(g, p) {
178be793
IM
6969 /*
6970 * Only normalize user tasks:
6971 */
6972 if (!p->mm)
6973 continue;
6974
6cfb0d5d 6975 p->se.exec_start = 0;
6cfb0d5d 6976#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6977 p->se.statistics.wait_start = 0;
6978 p->se.statistics.sleep_start = 0;
6979 p->se.statistics.block_start = 0;
6cfb0d5d 6980#endif
dd41f596
IM
6981
6982 if (!rt_task(p)) {
6983 /*
6984 * Renice negative nice level userspace
6985 * tasks back to 0:
6986 */
6987 if (TASK_NICE(p) < 0 && p->mm)
6988 set_user_nice(p, 0);
1da177e4 6989 continue;
dd41f596 6990 }
1da177e4 6991
1d615482 6992 raw_spin_lock(&p->pi_lock);
b29739f9 6993 rq = __task_rq_lock(p);
1da177e4 6994
178be793 6995 normalize_task(rq, p);
3a5e4dc1 6996
b29739f9 6997 __task_rq_unlock(rq);
1d615482 6998 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6999 } while_each_thread(g, p);
7000
4cf5d77a 7001 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7002}
7003
7004#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7005
67fc4e0c 7006#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7007/*
67fc4e0c 7008 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7009 *
7010 * They can only be called when the whole system has been
7011 * stopped - every CPU needs to be quiescent, and no scheduling
7012 * activity can take place. Using them for anything else would
7013 * be a serious bug, and as a result, they aren't even visible
7014 * under any other configuration.
7015 */
7016
7017/**
7018 * curr_task - return the current task for a given cpu.
7019 * @cpu: the processor in question.
7020 *
7021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7022 */
36c8b586 7023struct task_struct *curr_task(int cpu)
1df5c10a
LT
7024{
7025 return cpu_curr(cpu);
7026}
7027
67fc4e0c
JW
7028#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7029
7030#ifdef CONFIG_IA64
1df5c10a
LT
7031/**
7032 * set_curr_task - set the current task for a given cpu.
7033 * @cpu: the processor in question.
7034 * @p: the task pointer to set.
7035 *
7036 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7037 * are serviced on a separate stack. It allows the architecture to switch the
7038 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7039 * must be called with all CPU's synchronized, and interrupts disabled, the
7040 * and caller must save the original value of the current task (see
7041 * curr_task() above) and restore that value before reenabling interrupts and
7042 * re-starting the system.
7043 *
7044 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7045 */
36c8b586 7046void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7047{
7048 cpu_curr(cpu) = p;
7049}
7050
7051#endif
29f59db3 7052
7c941438 7053#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7054/* task_group_lock serializes the addition/removal of task groups */
7055static DEFINE_SPINLOCK(task_group_lock);
7056
bccbe08a
PZ
7057static void free_sched_group(struct task_group *tg)
7058{
7059 free_fair_sched_group(tg);
7060 free_rt_sched_group(tg);
e9aa1dd1 7061 autogroup_free(tg);
bccbe08a
PZ
7062 kfree(tg);
7063}
7064
7065/* allocate runqueue etc for a new task group */
ec7dc8ac 7066struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7067{
7068 struct task_group *tg;
7069 unsigned long flags;
bccbe08a
PZ
7070
7071 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7072 if (!tg)
7073 return ERR_PTR(-ENOMEM);
7074
ec7dc8ac 7075 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7076 goto err;
7077
ec7dc8ac 7078 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7079 goto err;
7080
8ed36996 7081 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7082 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7083
7084 WARN_ON(!parent); /* root should already exist */
7085
7086 tg->parent = parent;
f473aa5e 7087 INIT_LIST_HEAD(&tg->children);
09f2724a 7088 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7089 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7090
9b5b7751 7091 return tg;
29f59db3
SV
7092
7093err:
6f505b16 7094 free_sched_group(tg);
29f59db3
SV
7095 return ERR_PTR(-ENOMEM);
7096}
7097
9b5b7751 7098/* rcu callback to free various structures associated with a task group */
6f505b16 7099static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7100{
29f59db3 7101 /* now it should be safe to free those cfs_rqs */
6f505b16 7102 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7103}
7104
9b5b7751 7105/* Destroy runqueue etc associated with a task group */
4cf86d77 7106void sched_destroy_group(struct task_group *tg)
29f59db3 7107{
8ed36996 7108 unsigned long flags;
9b5b7751 7109 int i;
29f59db3 7110
3d4b47b4
PZ
7111 /* end participation in shares distribution */
7112 for_each_possible_cpu(i)
bccbe08a 7113 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7114
7115 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7116 list_del_rcu(&tg->list);
f473aa5e 7117 list_del_rcu(&tg->siblings);
8ed36996 7118 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7119
9b5b7751 7120 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7121 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7122}
7123
9b5b7751 7124/* change task's runqueue when it moves between groups.
3a252015
IM
7125 * The caller of this function should have put the task in its new group
7126 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7127 * reflect its new group.
9b5b7751
SV
7128 */
7129void sched_move_task(struct task_struct *tsk)
29f59db3 7130{
8323f26c 7131 struct task_group *tg;
29f59db3
SV
7132 int on_rq, running;
7133 unsigned long flags;
7134 struct rq *rq;
7135
7136 rq = task_rq_lock(tsk, &flags);
7137
051a1d1a 7138 running = task_current(rq, tsk);
fd2f4419 7139 on_rq = tsk->on_rq;
29f59db3 7140
0e1f3483 7141 if (on_rq)
29f59db3 7142 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7143 if (unlikely(running))
7144 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7145
8323f26c
PZ
7146 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7147 lockdep_is_held(&tsk->sighand->siglock)),
7148 struct task_group, css);
7149 tg = autogroup_task_group(tsk, tg);
7150 tsk->sched_task_group = tg;
7151
810b3817 7152#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7153 if (tsk->sched_class->task_move_group)
7154 tsk->sched_class->task_move_group(tsk, on_rq);
7155 else
810b3817 7156#endif
b2b5ce02 7157 set_task_rq(tsk, task_cpu(tsk));
810b3817 7158
0e1f3483
HS
7159 if (unlikely(running))
7160 tsk->sched_class->set_curr_task(rq);
7161 if (on_rq)
371fd7e7 7162 enqueue_task(rq, tsk, 0);
29f59db3 7163
0122ec5b 7164 task_rq_unlock(rq, tsk, &flags);
29f59db3 7165}
7c941438 7166#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7167
a790de99 7168#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7169static unsigned long to_ratio(u64 period, u64 runtime)
7170{
7171 if (runtime == RUNTIME_INF)
9a7e0b18 7172 return 1ULL << 20;
9f0c1e56 7173
9a7e0b18 7174 return div64_u64(runtime << 20, period);
9f0c1e56 7175}
a790de99
PT
7176#endif
7177
7178#ifdef CONFIG_RT_GROUP_SCHED
7179/*
7180 * Ensure that the real time constraints are schedulable.
7181 */
7182static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7183
9a7e0b18
PZ
7184/* Must be called with tasklist_lock held */
7185static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7186{
9a7e0b18 7187 struct task_struct *g, *p;
b40b2e8e 7188
9a7e0b18 7189 do_each_thread(g, p) {
029632fb 7190 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7191 return 1;
7192 } while_each_thread(g, p);
b40b2e8e 7193
9a7e0b18
PZ
7194 return 0;
7195}
b40b2e8e 7196
9a7e0b18
PZ
7197struct rt_schedulable_data {
7198 struct task_group *tg;
7199 u64 rt_period;
7200 u64 rt_runtime;
7201};
b40b2e8e 7202
a790de99 7203static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7204{
7205 struct rt_schedulable_data *d = data;
7206 struct task_group *child;
7207 unsigned long total, sum = 0;
7208 u64 period, runtime;
b40b2e8e 7209
9a7e0b18
PZ
7210 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7211 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7212
9a7e0b18
PZ
7213 if (tg == d->tg) {
7214 period = d->rt_period;
7215 runtime = d->rt_runtime;
b40b2e8e 7216 }
b40b2e8e 7217
4653f803
PZ
7218 /*
7219 * Cannot have more runtime than the period.
7220 */
7221 if (runtime > period && runtime != RUNTIME_INF)
7222 return -EINVAL;
6f505b16 7223
4653f803
PZ
7224 /*
7225 * Ensure we don't starve existing RT tasks.
7226 */
9a7e0b18
PZ
7227 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7228 return -EBUSY;
6f505b16 7229
9a7e0b18 7230 total = to_ratio(period, runtime);
6f505b16 7231
4653f803
PZ
7232 /*
7233 * Nobody can have more than the global setting allows.
7234 */
7235 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7236 return -EINVAL;
6f505b16 7237
4653f803
PZ
7238 /*
7239 * The sum of our children's runtime should not exceed our own.
7240 */
9a7e0b18
PZ
7241 list_for_each_entry_rcu(child, &tg->children, siblings) {
7242 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7243 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7244
9a7e0b18
PZ
7245 if (child == d->tg) {
7246 period = d->rt_period;
7247 runtime = d->rt_runtime;
7248 }
6f505b16 7249
9a7e0b18 7250 sum += to_ratio(period, runtime);
9f0c1e56 7251 }
6f505b16 7252
9a7e0b18
PZ
7253 if (sum > total)
7254 return -EINVAL;
7255
7256 return 0;
6f505b16
PZ
7257}
7258
9a7e0b18 7259static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7260{
8277434e
PT
7261 int ret;
7262
9a7e0b18
PZ
7263 struct rt_schedulable_data data = {
7264 .tg = tg,
7265 .rt_period = period,
7266 .rt_runtime = runtime,
7267 };
7268
8277434e
PT
7269 rcu_read_lock();
7270 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7271 rcu_read_unlock();
7272
7273 return ret;
521f1a24
DG
7274}
7275
ab84d31e 7276static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7277 u64 rt_period, u64 rt_runtime)
6f505b16 7278{
ac086bc2 7279 int i, err = 0;
9f0c1e56 7280
9f0c1e56 7281 mutex_lock(&rt_constraints_mutex);
521f1a24 7282 read_lock(&tasklist_lock);
9a7e0b18
PZ
7283 err = __rt_schedulable(tg, rt_period, rt_runtime);
7284 if (err)
9f0c1e56 7285 goto unlock;
ac086bc2 7286
0986b11b 7287 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7288 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7289 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7290
7291 for_each_possible_cpu(i) {
7292 struct rt_rq *rt_rq = tg->rt_rq[i];
7293
0986b11b 7294 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7295 rt_rq->rt_runtime = rt_runtime;
0986b11b 7296 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7297 }
0986b11b 7298 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7299unlock:
521f1a24 7300 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7301 mutex_unlock(&rt_constraints_mutex);
7302
7303 return err;
6f505b16
PZ
7304}
7305
d0b27fa7
PZ
7306int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7307{
7308 u64 rt_runtime, rt_period;
7309
7310 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7311 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7312 if (rt_runtime_us < 0)
7313 rt_runtime = RUNTIME_INF;
7314
ab84d31e 7315 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7316}
7317
9f0c1e56
PZ
7318long sched_group_rt_runtime(struct task_group *tg)
7319{
7320 u64 rt_runtime_us;
7321
d0b27fa7 7322 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7323 return -1;
7324
d0b27fa7 7325 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7326 do_div(rt_runtime_us, NSEC_PER_USEC);
7327 return rt_runtime_us;
7328}
d0b27fa7
PZ
7329
7330int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7331{
7332 u64 rt_runtime, rt_period;
7333
7334 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7335 rt_runtime = tg->rt_bandwidth.rt_runtime;
7336
619b0488
R
7337 if (rt_period == 0)
7338 return -EINVAL;
7339
ab84d31e 7340 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7341}
7342
7343long sched_group_rt_period(struct task_group *tg)
7344{
7345 u64 rt_period_us;
7346
7347 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7348 do_div(rt_period_us, NSEC_PER_USEC);
7349 return rt_period_us;
7350}
7351
7352static int sched_rt_global_constraints(void)
7353{
4653f803 7354 u64 runtime, period;
d0b27fa7
PZ
7355 int ret = 0;
7356
ec5d4989
HS
7357 if (sysctl_sched_rt_period <= 0)
7358 return -EINVAL;
7359
4653f803
PZ
7360 runtime = global_rt_runtime();
7361 period = global_rt_period();
7362
7363 /*
7364 * Sanity check on the sysctl variables.
7365 */
7366 if (runtime > period && runtime != RUNTIME_INF)
7367 return -EINVAL;
10b612f4 7368
d0b27fa7 7369 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7370 read_lock(&tasklist_lock);
4653f803 7371 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7372 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7373 mutex_unlock(&rt_constraints_mutex);
7374
7375 return ret;
7376}
54e99124
DG
7377
7378int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7379{
7380 /* Don't accept realtime tasks when there is no way for them to run */
7381 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7382 return 0;
7383
7384 return 1;
7385}
7386
6d6bc0ad 7387#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7388static int sched_rt_global_constraints(void)
7389{
ac086bc2
PZ
7390 unsigned long flags;
7391 int i;
7392
ec5d4989
HS
7393 if (sysctl_sched_rt_period <= 0)
7394 return -EINVAL;
7395
60aa605d
PZ
7396 /*
7397 * There's always some RT tasks in the root group
7398 * -- migration, kstopmachine etc..
7399 */
7400 if (sysctl_sched_rt_runtime == 0)
7401 return -EBUSY;
7402
0986b11b 7403 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7404 for_each_possible_cpu(i) {
7405 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7406
0986b11b 7407 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7408 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7409 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7410 }
0986b11b 7411 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7412
d0b27fa7
PZ
7413 return 0;
7414}
6d6bc0ad 7415#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7416
7417int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7418 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7419 loff_t *ppos)
7420{
7421 int ret;
7422 int old_period, old_runtime;
7423 static DEFINE_MUTEX(mutex);
7424
7425 mutex_lock(&mutex);
7426 old_period = sysctl_sched_rt_period;
7427 old_runtime = sysctl_sched_rt_runtime;
7428
8d65af78 7429 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7430
7431 if (!ret && write) {
7432 ret = sched_rt_global_constraints();
7433 if (ret) {
7434 sysctl_sched_rt_period = old_period;
7435 sysctl_sched_rt_runtime = old_runtime;
7436 } else {
7437 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7438 def_rt_bandwidth.rt_period =
7439 ns_to_ktime(global_rt_period());
7440 }
7441 }
7442 mutex_unlock(&mutex);
7443
7444 return ret;
7445}
68318b8e 7446
052f1dc7 7447#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7448
7449/* return corresponding task_group object of a cgroup */
2b01dfe3 7450static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7451{
2b01dfe3
PM
7452 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7453 struct task_group, css);
68318b8e
SV
7454}
7455
761b3ef5 7456static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7457{
ec7dc8ac 7458 struct task_group *tg, *parent;
68318b8e 7459
2b01dfe3 7460 if (!cgrp->parent) {
68318b8e 7461 /* This is early initialization for the top cgroup */
07e06b01 7462 return &root_task_group.css;
68318b8e
SV
7463 }
7464
ec7dc8ac
DG
7465 parent = cgroup_tg(cgrp->parent);
7466 tg = sched_create_group(parent);
68318b8e
SV
7467 if (IS_ERR(tg))
7468 return ERR_PTR(-ENOMEM);
7469
68318b8e
SV
7470 return &tg->css;
7471}
7472
761b3ef5 7473static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7474{
2b01dfe3 7475 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7476
7477 sched_destroy_group(tg);
7478}
7479
761b3ef5 7480static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7481 struct cgroup_taskset *tset)
68318b8e 7482{
bb9d97b6
TH
7483 struct task_struct *task;
7484
7485 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7486#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7487 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7488 return -EINVAL;
b68aa230 7489#else
bb9d97b6
TH
7490 /* We don't support RT-tasks being in separate groups */
7491 if (task->sched_class != &fair_sched_class)
7492 return -EINVAL;
b68aa230 7493#endif
bb9d97b6 7494 }
be367d09
BB
7495 return 0;
7496}
68318b8e 7497
761b3ef5 7498static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7499 struct cgroup_taskset *tset)
68318b8e 7500{
bb9d97b6
TH
7501 struct task_struct *task;
7502
7503 cgroup_taskset_for_each(task, cgrp, tset)
7504 sched_move_task(task);
68318b8e
SV
7505}
7506
068c5cc5 7507static void
761b3ef5
LZ
7508cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7509 struct task_struct *task)
068c5cc5
PZ
7510{
7511 /*
7512 * cgroup_exit() is called in the copy_process() failure path.
7513 * Ignore this case since the task hasn't ran yet, this avoids
7514 * trying to poke a half freed task state from generic code.
7515 */
7516 if (!(task->flags & PF_EXITING))
7517 return;
7518
7519 sched_move_task(task);
7520}
7521
052f1dc7 7522#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7523static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7524 u64 shareval)
68318b8e 7525{
c8b28116 7526 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7527}
7528
f4c753b7 7529static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7530{
2b01dfe3 7531 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7532
c8b28116 7533 return (u64) scale_load_down(tg->shares);
68318b8e 7534}
ab84d31e
PT
7535
7536#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7537static DEFINE_MUTEX(cfs_constraints_mutex);
7538
ab84d31e
PT
7539const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7540const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7541
a790de99
PT
7542static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7543
ab84d31e
PT
7544static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7545{
56f570e5 7546 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7547 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7548
7549 if (tg == &root_task_group)
7550 return -EINVAL;
7551
7552 /*
7553 * Ensure we have at some amount of bandwidth every period. This is
7554 * to prevent reaching a state of large arrears when throttled via
7555 * entity_tick() resulting in prolonged exit starvation.
7556 */
7557 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7558 return -EINVAL;
7559
7560 /*
7561 * Likewise, bound things on the otherside by preventing insane quota
7562 * periods. This also allows us to normalize in computing quota
7563 * feasibility.
7564 */
7565 if (period > max_cfs_quota_period)
7566 return -EINVAL;
7567
a790de99
PT
7568 mutex_lock(&cfs_constraints_mutex);
7569 ret = __cfs_schedulable(tg, period, quota);
7570 if (ret)
7571 goto out_unlock;
7572
58088ad0 7573 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7574 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7575 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7576 raw_spin_lock_irq(&cfs_b->lock);
7577 cfs_b->period = ns_to_ktime(period);
7578 cfs_b->quota = quota;
58088ad0 7579
a9cf55b2 7580 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7581 /* restart the period timer (if active) to handle new period expiry */
7582 if (runtime_enabled && cfs_b->timer_active) {
7583 /* force a reprogram */
7584 cfs_b->timer_active = 0;
7585 __start_cfs_bandwidth(cfs_b);
7586 }
ab84d31e
PT
7587 raw_spin_unlock_irq(&cfs_b->lock);
7588
7589 for_each_possible_cpu(i) {
7590 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7591 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7592
7593 raw_spin_lock_irq(&rq->lock);
58088ad0 7594 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7595 cfs_rq->runtime_remaining = 0;
671fd9da 7596
029632fb 7597 if (cfs_rq->throttled)
671fd9da 7598 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7599 raw_spin_unlock_irq(&rq->lock);
7600 }
a790de99
PT
7601out_unlock:
7602 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7603
a790de99 7604 return ret;
ab84d31e
PT
7605}
7606
7607int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7608{
7609 u64 quota, period;
7610
029632fb 7611 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7612 if (cfs_quota_us < 0)
7613 quota = RUNTIME_INF;
7614 else
7615 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7616
7617 return tg_set_cfs_bandwidth(tg, period, quota);
7618}
7619
7620long tg_get_cfs_quota(struct task_group *tg)
7621{
7622 u64 quota_us;
7623
029632fb 7624 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7625 return -1;
7626
029632fb 7627 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7628 do_div(quota_us, NSEC_PER_USEC);
7629
7630 return quota_us;
7631}
7632
7633int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7634{
7635 u64 quota, period;
7636
7637 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7638 quota = tg->cfs_bandwidth.quota;
ab84d31e 7639
ab84d31e
PT
7640 return tg_set_cfs_bandwidth(tg, period, quota);
7641}
7642
7643long tg_get_cfs_period(struct task_group *tg)
7644{
7645 u64 cfs_period_us;
7646
029632fb 7647 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7648 do_div(cfs_period_us, NSEC_PER_USEC);
7649
7650 return cfs_period_us;
7651}
7652
7653static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7654{
7655 return tg_get_cfs_quota(cgroup_tg(cgrp));
7656}
7657
7658static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7659 s64 cfs_quota_us)
7660{
7661 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7662}
7663
7664static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7665{
7666 return tg_get_cfs_period(cgroup_tg(cgrp));
7667}
7668
7669static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7670 u64 cfs_period_us)
7671{
7672 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7673}
7674
a790de99
PT
7675struct cfs_schedulable_data {
7676 struct task_group *tg;
7677 u64 period, quota;
7678};
7679
7680/*
7681 * normalize group quota/period to be quota/max_period
7682 * note: units are usecs
7683 */
7684static u64 normalize_cfs_quota(struct task_group *tg,
7685 struct cfs_schedulable_data *d)
7686{
7687 u64 quota, period;
7688
7689 if (tg == d->tg) {
7690 period = d->period;
7691 quota = d->quota;
7692 } else {
7693 period = tg_get_cfs_period(tg);
7694 quota = tg_get_cfs_quota(tg);
7695 }
7696
7697 /* note: these should typically be equivalent */
7698 if (quota == RUNTIME_INF || quota == -1)
7699 return RUNTIME_INF;
7700
7701 return to_ratio(period, quota);
7702}
7703
7704static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7705{
7706 struct cfs_schedulable_data *d = data;
029632fb 7707 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7708 s64 quota = 0, parent_quota = -1;
7709
7710 if (!tg->parent) {
7711 quota = RUNTIME_INF;
7712 } else {
029632fb 7713 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7714
7715 quota = normalize_cfs_quota(tg, d);
7716 parent_quota = parent_b->hierarchal_quota;
7717
7718 /*
7719 * ensure max(child_quota) <= parent_quota, inherit when no
7720 * limit is set
7721 */
7722 if (quota == RUNTIME_INF)
7723 quota = parent_quota;
7724 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7725 return -EINVAL;
7726 }
7727 cfs_b->hierarchal_quota = quota;
7728
7729 return 0;
7730}
7731
7732static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7733{
8277434e 7734 int ret;
a790de99
PT
7735 struct cfs_schedulable_data data = {
7736 .tg = tg,
7737 .period = period,
7738 .quota = quota,
7739 };
7740
7741 if (quota != RUNTIME_INF) {
7742 do_div(data.period, NSEC_PER_USEC);
7743 do_div(data.quota, NSEC_PER_USEC);
7744 }
7745
8277434e
PT
7746 rcu_read_lock();
7747 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7748 rcu_read_unlock();
7749
7750 return ret;
a790de99 7751}
e8da1b18
NR
7752
7753static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7754 struct cgroup_map_cb *cb)
7755{
7756 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7757 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7758
7759 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7760 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7761 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7762
7763 return 0;
7764}
ab84d31e 7765#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7766#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7767
052f1dc7 7768#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7769static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7770 s64 val)
6f505b16 7771{
06ecb27c 7772 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7773}
7774
06ecb27c 7775static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7776{
06ecb27c 7777 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7778}
d0b27fa7
PZ
7779
7780static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7781 u64 rt_period_us)
7782{
7783 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7784}
7785
7786static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7787{
7788 return sched_group_rt_period(cgroup_tg(cgrp));
7789}
6d6bc0ad 7790#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7791
fe5c7cc2 7792static struct cftype cpu_files[] = {
052f1dc7 7793#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7794 {
7795 .name = "shares",
f4c753b7
PM
7796 .read_u64 = cpu_shares_read_u64,
7797 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7798 },
052f1dc7 7799#endif
ab84d31e
PT
7800#ifdef CONFIG_CFS_BANDWIDTH
7801 {
7802 .name = "cfs_quota_us",
7803 .read_s64 = cpu_cfs_quota_read_s64,
7804 .write_s64 = cpu_cfs_quota_write_s64,
7805 },
7806 {
7807 .name = "cfs_period_us",
7808 .read_u64 = cpu_cfs_period_read_u64,
7809 .write_u64 = cpu_cfs_period_write_u64,
7810 },
e8da1b18
NR
7811 {
7812 .name = "stat",
7813 .read_map = cpu_stats_show,
7814 },
ab84d31e 7815#endif
052f1dc7 7816#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7817 {
9f0c1e56 7818 .name = "rt_runtime_us",
06ecb27c
PM
7819 .read_s64 = cpu_rt_runtime_read,
7820 .write_s64 = cpu_rt_runtime_write,
6f505b16 7821 },
d0b27fa7
PZ
7822 {
7823 .name = "rt_period_us",
f4c753b7
PM
7824 .read_u64 = cpu_rt_period_read_uint,
7825 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7826 },
052f1dc7 7827#endif
4baf6e33 7828 { } /* terminate */
68318b8e
SV
7829};
7830
68318b8e 7831struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7832 .name = "cpu",
7833 .create = cpu_cgroup_create,
7834 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7835 .can_attach = cpu_cgroup_can_attach,
7836 .attach = cpu_cgroup_attach,
068c5cc5 7837 .exit = cpu_cgroup_exit,
38605cae 7838 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7839 .base_cftypes = cpu_files,
68318b8e
SV
7840 .early_init = 1,
7841};
7842
052f1dc7 7843#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7844
7845#ifdef CONFIG_CGROUP_CPUACCT
7846
7847/*
7848 * CPU accounting code for task groups.
7849 *
7850 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7851 * (balbir@in.ibm.com).
7852 */
7853
73fbec60
FW
7854struct cpuacct root_cpuacct;
7855
d842de87 7856/* create a new cpu accounting group */
761b3ef5 7857static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 7858{
54c707e9 7859 struct cpuacct *ca;
d842de87 7860
54c707e9
GC
7861 if (!cgrp->parent)
7862 return &root_cpuacct.css;
7863
7864 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7865 if (!ca)
ef12fefa 7866 goto out;
d842de87
SV
7867
7868 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7869 if (!ca->cpuusage)
7870 goto out_free_ca;
7871
54c707e9
GC
7872 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7873 if (!ca->cpustat)
7874 goto out_free_cpuusage;
934352f2 7875
d842de87 7876 return &ca->css;
ef12fefa 7877
54c707e9 7878out_free_cpuusage:
ef12fefa
BR
7879 free_percpu(ca->cpuusage);
7880out_free_ca:
7881 kfree(ca);
7882out:
7883 return ERR_PTR(-ENOMEM);
d842de87
SV
7884}
7885
7886/* destroy an existing cpu accounting group */
761b3ef5 7887static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 7888{
32cd756a 7889 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7890
54c707e9 7891 free_percpu(ca->cpustat);
d842de87
SV
7892 free_percpu(ca->cpuusage);
7893 kfree(ca);
7894}
7895
720f5498
KC
7896static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7897{
b36128c8 7898 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7899 u64 data;
7900
7901#ifndef CONFIG_64BIT
7902 /*
7903 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7904 */
05fa785c 7905 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7906 data = *cpuusage;
05fa785c 7907 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7908#else
7909 data = *cpuusage;
7910#endif
7911
7912 return data;
7913}
7914
7915static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7916{
b36128c8 7917 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7918
7919#ifndef CONFIG_64BIT
7920 /*
7921 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7922 */
05fa785c 7923 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7924 *cpuusage = val;
05fa785c 7925 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7926#else
7927 *cpuusage = val;
7928#endif
7929}
7930
d842de87 7931/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7932static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7933{
32cd756a 7934 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7935 u64 totalcpuusage = 0;
7936 int i;
7937
720f5498
KC
7938 for_each_present_cpu(i)
7939 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7940
7941 return totalcpuusage;
7942}
7943
0297b803
DG
7944static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7945 u64 reset)
7946{
7947 struct cpuacct *ca = cgroup_ca(cgrp);
7948 int err = 0;
7949 int i;
7950
7951 if (reset) {
7952 err = -EINVAL;
7953 goto out;
7954 }
7955
720f5498
KC
7956 for_each_present_cpu(i)
7957 cpuacct_cpuusage_write(ca, i, 0);
0297b803 7958
0297b803
DG
7959out:
7960 return err;
7961}
7962
e9515c3c
KC
7963static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7964 struct seq_file *m)
7965{
7966 struct cpuacct *ca = cgroup_ca(cgroup);
7967 u64 percpu;
7968 int i;
7969
7970 for_each_present_cpu(i) {
7971 percpu = cpuacct_cpuusage_read(ca, i);
7972 seq_printf(m, "%llu ", (unsigned long long) percpu);
7973 }
7974 seq_printf(m, "\n");
7975 return 0;
7976}
7977
ef12fefa
BR
7978static const char *cpuacct_stat_desc[] = {
7979 [CPUACCT_STAT_USER] = "user",
7980 [CPUACCT_STAT_SYSTEM] = "system",
7981};
7982
7983static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 7984 struct cgroup_map_cb *cb)
ef12fefa
BR
7985{
7986 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
7987 int cpu;
7988 s64 val = 0;
ef12fefa 7989
54c707e9
GC
7990 for_each_online_cpu(cpu) {
7991 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7992 val += kcpustat->cpustat[CPUTIME_USER];
7993 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 7994 }
54c707e9
GC
7995 val = cputime64_to_clock_t(val);
7996 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 7997
54c707e9
GC
7998 val = 0;
7999 for_each_online_cpu(cpu) {
8000 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8001 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8002 val += kcpustat->cpustat[CPUTIME_IRQ];
8003 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8004 }
54c707e9
GC
8005
8006 val = cputime64_to_clock_t(val);
8007 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8008
ef12fefa
BR
8009 return 0;
8010}
8011
d842de87
SV
8012static struct cftype files[] = {
8013 {
8014 .name = "usage",
f4c753b7
PM
8015 .read_u64 = cpuusage_read,
8016 .write_u64 = cpuusage_write,
d842de87 8017 },
e9515c3c
KC
8018 {
8019 .name = "usage_percpu",
8020 .read_seq_string = cpuacct_percpu_seq_read,
8021 },
ef12fefa
BR
8022 {
8023 .name = "stat",
8024 .read_map = cpuacct_stats_show,
8025 },
4baf6e33 8026 { } /* terminate */
d842de87
SV
8027};
8028
d842de87
SV
8029/*
8030 * charge this task's execution time to its accounting group.
8031 *
8032 * called with rq->lock held.
8033 */
029632fb 8034void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8035{
8036 struct cpuacct *ca;
934352f2 8037 int cpu;
d842de87 8038
c40c6f85 8039 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8040 return;
8041
934352f2 8042 cpu = task_cpu(tsk);
a18b83b7
BR
8043
8044 rcu_read_lock();
8045
d842de87 8046 ca = task_ca(tsk);
d842de87 8047
44252e42 8048 for (; ca; ca = parent_ca(ca)) {
b36128c8 8049 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8050 *cpuusage += cputime;
8051 }
a18b83b7
BR
8052
8053 rcu_read_unlock();
d842de87
SV
8054}
8055
8056struct cgroup_subsys cpuacct_subsys = {
8057 .name = "cpuacct",
8058 .create = cpuacct_create,
8059 .destroy = cpuacct_destroy,
d842de87 8060 .subsys_id = cpuacct_subsys_id,
4baf6e33 8061 .base_cftypes = files,
d842de87
SV
8062};
8063#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.833079 seconds and 5 git commands to generate.