Merge branch 'spi/merge' of git://git.secretlab.ca/git/linux-2.6
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c
XG
62char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
6903074c
XG
66 "post pte write",
67 "pre sync",
68 "post sync"
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78#else
79
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82
83#endif
84
8b1fe17c 85#ifdef MMU_DEBUG
6ada8cca
AK
86static int dbg = 0;
87module_param(dbg, bool, 0644);
37a7d8b0 88#endif
6aa8b732 89
582801a9
MT
90static int oos_shadow = 1;
91module_param(oos_shadow, bool, 0644);
92
d6c69ee9
YD
93#ifndef MMU_DEBUG
94#define ASSERT(x) do { } while (0)
95#else
6aa8b732
AK
96#define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
d6c69ee9 101#endif
6aa8b732 102
957ed9ef
XG
103#define PTE_PREFETCH_NUM 8
104
6aa8b732
AK
105#define PT_FIRST_AVAIL_BITS_SHIFT 9
106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
6aa8b732
AK
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
d77c26fc 111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 112
6aa8b732
AK
113#define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
d77c26fc 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 121
e04da980
JR
122#define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
125
126#define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
27aba766 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
131#define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
133#define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136#define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
139
140#define PT32_BASE_ADDR_MASK PAGE_MASK
141#define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
143#define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
6aa8b732 146
79539cec
AK
147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
6aa8b732 149
53c07b18 150#define PTE_LIST_EXT 4
cd4a4e53 151
fe135d2c
AK
152#define ACC_EXEC_MASK 1
153#define ACC_WRITE_MASK PT_WRITABLE_MASK
154#define ACC_USER_MASK PT_USER_MASK
155#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
90bb6fc5
AK
157#include <trace/events/kvm.h>
158
07420171
AK
159#define CREATE_TRACE_POINTS
160#include "mmutrace.h"
161
1403283a
IE
162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
135f8c2b
AK
164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
53c07b18
XG
166struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
cd4a4e53
AK
169};
170
2d11123a
AK
171struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
2d11123a 174 u64 *sptep;
dd3bfd59 175 int level;
2d11123a
AK
176 unsigned index;
177};
178
179#define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
c2a2ac2b
XG
184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
53c07b18 190static struct kmem_cache *pte_list_desc_cache;
d3d25b04 191static struct kmem_cache *mmu_page_header_cache;
45221ab6 192static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 193
7b52345e
SY
194static u64 __read_mostly shadow_nx_mask;
195static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196static u64 __read_mostly shadow_user_mask;
197static u64 __read_mostly shadow_accessed_mask;
198static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
199static u64 __read_mostly shadow_mmio_mask;
200
201static void mmu_spte_set(u64 *sptep, u64 spte);
202
203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204{
205 shadow_mmio_mask = mmio_mask;
206}
207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210{
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
4f022648 213 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215}
216
217static bool is_mmio_spte(u64 spte)
218{
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220}
221
222static gfn_t get_mmio_spte_gfn(u64 spte)
223{
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225}
226
227static unsigned get_mmio_spte_access(u64 spte)
228{
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230}
231
232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233{
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240}
c7addb90 241
82725b20
DE
242static inline u64 rsvd_bits(int s, int e)
243{
244 return ((1ULL << (e - s + 1)) - 1) << s;
245}
246
7b52345e 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
249{
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255}
256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
6aa8b732
AK
258static int is_cpuid_PSE36(void)
259{
260 return 1;
261}
262
73b1087e
AK
263static int is_nx(struct kvm_vcpu *vcpu)
264{
f6801dff 265 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
266}
267
c7addb90
AK
268static int is_shadow_present_pte(u64 pte)
269{
ce88decf 270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
271}
272
05da4558
MT
273static int is_large_pte(u64 pte)
274{
275 return pte & PT_PAGE_SIZE_MASK;
276}
277
43a3795a 278static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 279{
439e218a 280 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
281}
282
43a3795a 283static int is_rmap_spte(u64 pte)
cd4a4e53 284{
4b1a80fa 285 return is_shadow_present_pte(pte);
cd4a4e53
AK
286}
287
776e6633
MT
288static int is_last_spte(u64 pte, int level)
289{
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
852e3c19 292 if (is_large_pte(pte))
776e6633
MT
293 return 1;
294 return 0;
295}
296
35149e21 297static pfn_t spte_to_pfn(u64 pte)
0b49ea86 298{
35149e21 299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
300}
301
da928521
AK
302static gfn_t pse36_gfn_delta(u32 gpte)
303{
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307}
308
603e0651 309#ifdef CONFIG_X86_64
d555c333 310static void __set_spte(u64 *sptep, u64 spte)
e663ee64 311{
603e0651 312 *sptep = spte;
e663ee64
AK
313}
314
603e0651 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 316{
603e0651
XG
317 *sptep = spte;
318}
319
320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321{
322 return xchg(sptep, spte);
323}
c2a2ac2b
XG
324
325static u64 __get_spte_lockless(u64 *sptep)
326{
327 return ACCESS_ONCE(*sptep);
328}
ce88decf
XG
329
330static bool __check_direct_spte_mmio_pf(u64 spte)
331{
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334}
a9221dd5 335#else
603e0651
XG
336union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342};
a9221dd5 343
c2a2ac2b
XG
344static void count_spte_clear(u64 *sptep, u64 spte)
345{
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354}
355
603e0651
XG
356static void __set_spte(u64 *sptep, u64 spte)
357{
358 union split_spte *ssptep, sspte;
a9221dd5 359
603e0651
XG
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
373}
374
603e0651
XG
375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376{
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 391 count_spte_clear(sptep, spte);
603e0651
XG
392}
393
394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395{
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
403 orig.spte_high = ssptep->spte_high = sspte.spte_high;
c2a2ac2b 404 count_spte_clear(sptep, spte);
603e0651
XG
405
406 return orig.spte;
407}
c2a2ac2b
XG
408
409/*
410 * The idea using the light way get the spte on x86_32 guest is from
411 * gup_get_pte(arch/x86/mm/gup.c).
412 * The difference is we can not catch the spte tlb flush if we leave
413 * guest mode, so we emulate it by increase clear_spte_count when spte
414 * is cleared.
415 */
416static u64 __get_spte_lockless(u64 *sptep)
417{
418 struct kvm_mmu_page *sp = page_header(__pa(sptep));
419 union split_spte spte, *orig = (union split_spte *)sptep;
420 int count;
421
422retry:
423 count = sp->clear_spte_count;
424 smp_rmb();
425
426 spte.spte_low = orig->spte_low;
427 smp_rmb();
428
429 spte.spte_high = orig->spte_high;
430 smp_rmb();
431
432 if (unlikely(spte.spte_low != orig->spte_low ||
433 count != sp->clear_spte_count))
434 goto retry;
435
436 return spte.spte;
437}
ce88decf
XG
438
439static bool __check_direct_spte_mmio_pf(u64 spte)
440{
441 union split_spte sspte = (union split_spte)spte;
442 u32 high_mmio_mask = shadow_mmio_mask >> 32;
443
444 /* It is valid if the spte is zapped. */
445 if (spte == 0ull)
446 return true;
447
448 /* It is valid if the spte is being zapped. */
449 if (sspte.spte_low == 0ull &&
450 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
451 return true;
452
453 return false;
454}
603e0651
XG
455#endif
456
8672b721
XG
457static bool spte_has_volatile_bits(u64 spte)
458{
459 if (!shadow_accessed_mask)
460 return false;
461
462 if (!is_shadow_present_pte(spte))
463 return false;
464
4132779b
XG
465 if ((spte & shadow_accessed_mask) &&
466 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
467 return false;
468
469 return true;
470}
471
4132779b
XG
472static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
473{
474 return (old_spte & bit_mask) && !(new_spte & bit_mask);
475}
476
1df9f2dc
XG
477/* Rules for using mmu_spte_set:
478 * Set the sptep from nonpresent to present.
479 * Note: the sptep being assigned *must* be either not present
480 * or in a state where the hardware will not attempt to update
481 * the spte.
482 */
483static void mmu_spte_set(u64 *sptep, u64 new_spte)
484{
485 WARN_ON(is_shadow_present_pte(*sptep));
486 __set_spte(sptep, new_spte);
487}
488
489/* Rules for using mmu_spte_update:
490 * Update the state bits, it means the mapped pfn is not changged.
491 */
492static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 493{
4132779b
XG
494 u64 mask, old_spte = *sptep;
495
496 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 497
1df9f2dc
XG
498 if (!is_shadow_present_pte(old_spte))
499 return mmu_spte_set(sptep, new_spte);
500
4132779b
XG
501 new_spte |= old_spte & shadow_dirty_mask;
502
503 mask = shadow_accessed_mask;
504 if (is_writable_pte(old_spte))
505 mask |= shadow_dirty_mask;
506
507 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 508 __update_clear_spte_fast(sptep, new_spte);
4132779b 509 else
603e0651 510 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
511
512 if (!shadow_accessed_mask)
513 return;
514
515 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
516 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
517 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
518 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
519}
520
1df9f2dc
XG
521/*
522 * Rules for using mmu_spte_clear_track_bits:
523 * It sets the sptep from present to nonpresent, and track the
524 * state bits, it is used to clear the last level sptep.
525 */
526static int mmu_spte_clear_track_bits(u64 *sptep)
527{
528 pfn_t pfn;
529 u64 old_spte = *sptep;
530
531 if (!spte_has_volatile_bits(old_spte))
603e0651 532 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 533 else
603e0651 534 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
535
536 if (!is_rmap_spte(old_spte))
537 return 0;
538
539 pfn = spte_to_pfn(old_spte);
540 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
541 kvm_set_pfn_accessed(pfn);
542 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
543 kvm_set_pfn_dirty(pfn);
544 return 1;
545}
546
547/*
548 * Rules for using mmu_spte_clear_no_track:
549 * Directly clear spte without caring the state bits of sptep,
550 * it is used to set the upper level spte.
551 */
552static void mmu_spte_clear_no_track(u64 *sptep)
553{
603e0651 554 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
555}
556
c2a2ac2b
XG
557static u64 mmu_spte_get_lockless(u64 *sptep)
558{
559 return __get_spte_lockless(sptep);
560}
561
562static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
563{
564 rcu_read_lock();
565 atomic_inc(&vcpu->kvm->arch.reader_counter);
566
567 /* Increase the counter before walking shadow page table */
568 smp_mb__after_atomic_inc();
569}
570
571static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
572{
573 /* Decrease the counter after walking shadow page table finished */
574 smp_mb__before_atomic_dec();
575 atomic_dec(&vcpu->kvm->arch.reader_counter);
576 rcu_read_unlock();
577}
578
e2dec939 579static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 580 struct kmem_cache *base_cache, int min)
714b93da
AK
581{
582 void *obj;
583
584 if (cache->nobjs >= min)
e2dec939 585 return 0;
714b93da 586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 588 if (!obj)
e2dec939 589 return -ENOMEM;
714b93da
AK
590 cache->objects[cache->nobjs++] = obj;
591 }
e2dec939 592 return 0;
714b93da
AK
593}
594
e8ad9a70
XG
595static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
596 struct kmem_cache *cache)
714b93da
AK
597{
598 while (mc->nobjs)
e8ad9a70 599 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
600}
601
c1158e63 602static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 603 int min)
c1158e63 604{
842f22ed 605 void *page;
c1158e63
AK
606
607 if (cache->nobjs >= min)
608 return 0;
609 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 610 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
611 if (!page)
612 return -ENOMEM;
842f22ed 613 cache->objects[cache->nobjs++] = page;
c1158e63
AK
614 }
615 return 0;
616}
617
618static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
619{
620 while (mc->nobjs)
c4d198d5 621 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
622}
623
2e3e5882 624static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 625{
e2dec939
AK
626 int r;
627
53c07b18 628 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 629 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
630 if (r)
631 goto out;
ad312c7c 632 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
633 if (r)
634 goto out;
ad312c7c 635 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 636 mmu_page_header_cache, 4);
e2dec939
AK
637out:
638 return r;
714b93da
AK
639}
640
641static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
642{
53c07b18
XG
643 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
644 pte_list_desc_cache);
ad312c7c 645 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
646 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
647 mmu_page_header_cache);
714b93da
AK
648}
649
650static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
651 size_t size)
652{
653 void *p;
654
655 BUG_ON(!mc->nobjs);
656 p = mc->objects[--mc->nobjs];
714b93da
AK
657 return p;
658}
659
53c07b18 660static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 661{
53c07b18
XG
662 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
663 sizeof(struct pte_list_desc));
714b93da
AK
664}
665
53c07b18 666static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 667{
53c07b18 668 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
669}
670
2032a93d
LJ
671static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
672{
673 if (!sp->role.direct)
674 return sp->gfns[index];
675
676 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
677}
678
679static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
680{
681 if (sp->role.direct)
682 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
683 else
684 sp->gfns[index] = gfn;
685}
686
05da4558 687/*
d4dbf470
TY
688 * Return the pointer to the large page information for a given gfn,
689 * handling slots that are not large page aligned.
05da4558 690 */
d4dbf470
TY
691static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
692 struct kvm_memory_slot *slot,
693 int level)
05da4558
MT
694{
695 unsigned long idx;
696
82855413
JR
697 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
698 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 699 return &slot->lpage_info[level - 2][idx];
05da4558
MT
700}
701
702static void account_shadowed(struct kvm *kvm, gfn_t gfn)
703{
d25797b2 704 struct kvm_memory_slot *slot;
d4dbf470 705 struct kvm_lpage_info *linfo;
d25797b2 706 int i;
05da4558 707
a1f4d395 708 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
709 for (i = PT_DIRECTORY_LEVEL;
710 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
711 linfo = lpage_info_slot(gfn, slot, i);
712 linfo->write_count += 1;
d25797b2 713 }
332b207d 714 kvm->arch.indirect_shadow_pages++;
05da4558
MT
715}
716
717static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
718{
d25797b2 719 struct kvm_memory_slot *slot;
d4dbf470 720 struct kvm_lpage_info *linfo;
d25797b2 721 int i;
05da4558 722
a1f4d395 723 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
724 for (i = PT_DIRECTORY_LEVEL;
725 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
726 linfo = lpage_info_slot(gfn, slot, i);
727 linfo->write_count -= 1;
728 WARN_ON(linfo->write_count < 0);
d25797b2 729 }
332b207d 730 kvm->arch.indirect_shadow_pages--;
05da4558
MT
731}
732
d25797b2
JR
733static int has_wrprotected_page(struct kvm *kvm,
734 gfn_t gfn,
735 int level)
05da4558 736{
2843099f 737 struct kvm_memory_slot *slot;
d4dbf470 738 struct kvm_lpage_info *linfo;
05da4558 739
a1f4d395 740 slot = gfn_to_memslot(kvm, gfn);
05da4558 741 if (slot) {
d4dbf470
TY
742 linfo = lpage_info_slot(gfn, slot, level);
743 return linfo->write_count;
05da4558
MT
744 }
745
746 return 1;
747}
748
d25797b2 749static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 750{
8f0b1ab6 751 unsigned long page_size;
d25797b2 752 int i, ret = 0;
05da4558 753
8f0b1ab6 754 page_size = kvm_host_page_size(kvm, gfn);
05da4558 755
d25797b2
JR
756 for (i = PT_PAGE_TABLE_LEVEL;
757 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
758 if (page_size >= KVM_HPAGE_SIZE(i))
759 ret = i;
760 else
761 break;
762 }
763
4c2155ce 764 return ret;
05da4558
MT
765}
766
5d163b1c
XG
767static struct kvm_memory_slot *
768gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
769 bool no_dirty_log)
05da4558
MT
770{
771 struct kvm_memory_slot *slot;
5d163b1c
XG
772
773 slot = gfn_to_memslot(vcpu->kvm, gfn);
774 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
775 (no_dirty_log && slot->dirty_bitmap))
776 slot = NULL;
777
778 return slot;
779}
780
781static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
782{
a0a8eaba 783 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
784}
785
786static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
787{
788 int host_level, level, max_level;
05da4558 789
d25797b2
JR
790 host_level = host_mapping_level(vcpu->kvm, large_gfn);
791
792 if (host_level == PT_PAGE_TABLE_LEVEL)
793 return host_level;
794
878403b7
SY
795 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
796 kvm_x86_ops->get_lpage_level() : host_level;
797
798 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
799 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
800 break;
d25797b2
JR
801
802 return level - 1;
05da4558
MT
803}
804
290fc38d 805/*
53c07b18 806 * Pte mapping structures:
cd4a4e53 807 *
53c07b18 808 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 809 *
53c07b18
XG
810 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
811 * pte_list_desc containing more mappings.
53a27b39 812 *
53c07b18 813 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
814 * the spte was not added.
815 *
cd4a4e53 816 */
53c07b18
XG
817static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
818 unsigned long *pte_list)
cd4a4e53 819{
53c07b18 820 struct pte_list_desc *desc;
53a27b39 821 int i, count = 0;
cd4a4e53 822
53c07b18
XG
823 if (!*pte_list) {
824 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
825 *pte_list = (unsigned long)spte;
826 } else if (!(*pte_list & 1)) {
827 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
828 desc = mmu_alloc_pte_list_desc(vcpu);
829 desc->sptes[0] = (u64 *)*pte_list;
d555c333 830 desc->sptes[1] = spte;
53c07b18 831 *pte_list = (unsigned long)desc | 1;
cb16a7b3 832 ++count;
cd4a4e53 833 } else {
53c07b18
XG
834 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
835 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
836 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 837 desc = desc->more;
53c07b18 838 count += PTE_LIST_EXT;
53a27b39 839 }
53c07b18
XG
840 if (desc->sptes[PTE_LIST_EXT-1]) {
841 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
842 desc = desc->more;
843 }
d555c333 844 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 845 ++count;
d555c333 846 desc->sptes[i] = spte;
cd4a4e53 847 }
53a27b39 848 return count;
cd4a4e53
AK
849}
850
53c07b18
XG
851static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
852{
853 struct pte_list_desc *desc;
854 u64 *prev_spte;
855 int i;
856
857 if (!*pte_list)
858 return NULL;
859 else if (!(*pte_list & 1)) {
860 if (!spte)
861 return (u64 *)*pte_list;
862 return NULL;
863 }
864 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
865 prev_spte = NULL;
866 while (desc) {
867 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
868 if (prev_spte == spte)
869 return desc->sptes[i];
870 prev_spte = desc->sptes[i];
871 }
872 desc = desc->more;
873 }
874 return NULL;
875}
876
877static void
878pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
879 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
53c07b18 890 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
53c07b18
XG
895 *pte_list = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
53c07b18 899static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
53c07b18
XG
905 if (!*pte_list) {
906 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 907 BUG();
53c07b18
XG
908 } else if (!(*pte_list & 1)) {
909 rmap_printk("pte_list_remove: %p 1->0\n", spte);
910 if ((u64 *)*pte_list != spte) {
911 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
912 BUG();
913 }
53c07b18 914 *pte_list = 0;
cd4a4e53 915 } else {
53c07b18
XG
916 rmap_printk("pte_list_remove: %p many->many\n", spte);
917 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
53c07b18 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 921 if (desc->sptes[i] == spte) {
53c07b18 922 pte_list_desc_remove_entry(pte_list,
714b93da 923 desc, i,
cd4a4e53
AK
924 prev_desc);
925 return;
926 }
927 prev_desc = desc;
928 desc = desc->more;
929 }
53c07b18 930 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
67052b35
XG
935typedef void (*pte_list_walk_fn) (u64 *spte);
936static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
937{
938 struct pte_list_desc *desc;
939 int i;
940
941 if (!*pte_list)
942 return;
943
944 if (!(*pte_list & 1))
945 return fn((u64 *)*pte_list);
946
947 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
948 while (desc) {
949 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
950 fn(desc->sptes[i]);
951 desc = desc->more;
952 }
953}
954
53c07b18
XG
955/*
956 * Take gfn and return the reverse mapping to it.
957 */
958static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
959{
960 struct kvm_memory_slot *slot;
961 struct kvm_lpage_info *linfo;
962
963 slot = gfn_to_memslot(kvm, gfn);
964 if (likely(level == PT_PAGE_TABLE_LEVEL))
965 return &slot->rmap[gfn - slot->base_gfn];
966
967 linfo = lpage_info_slot(gfn, slot, level);
968
969 return &linfo->rmap_pde;
970}
971
972static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
973{
974 struct kvm_mmu_page *sp;
975 unsigned long *rmapp;
976
53c07b18
XG
977 sp = page_header(__pa(spte));
978 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
979 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
980 return pte_list_add(vcpu, spte, rmapp);
981}
982
983static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
984{
985 return pte_list_next(rmapp, spte);
986}
987
988static void rmap_remove(struct kvm *kvm, u64 *spte)
989{
990 struct kvm_mmu_page *sp;
991 gfn_t gfn;
992 unsigned long *rmapp;
993
994 sp = page_header(__pa(spte));
995 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
996 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
997 pte_list_remove(spte, rmapp);
998}
999
c3707958 1000static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1001{
1df9f2dc 1002 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1003 rmap_remove(kvm, sptep);
be38d276
AK
1004}
1005
b1a36821 1006static int rmap_write_protect(struct kvm *kvm, u64 gfn)
98348e95 1007{
290fc38d 1008 unsigned long *rmapp;
374cbac0 1009 u64 *spte;
44ad9944 1010 int i, write_protected = 0;
374cbac0 1011
44ad9944 1012 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
374cbac0 1013
98348e95
IE
1014 spte = rmap_next(kvm, rmapp, NULL);
1015 while (spte) {
374cbac0 1016 BUG_ON(!spte);
374cbac0 1017 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1018 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1019 if (is_writable_pte(*spte)) {
1df9f2dc 1020 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1021 write_protected = 1;
1022 }
9647c14c 1023 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1024 }
855149aa 1025
05da4558 1026 /* check for huge page mappings */
44ad9944
JR
1027 for (i = PT_DIRECTORY_LEVEL;
1028 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1029 rmapp = gfn_to_rmap(kvm, gfn, i);
1030 spte = rmap_next(kvm, rmapp, NULL);
1031 while (spte) {
1032 BUG_ON(!spte);
1033 BUG_ON(!(*spte & PT_PRESENT_MASK));
1034 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1035 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1036 if (is_writable_pte(*spte)) {
c3707958 1037 drop_spte(kvm, spte);
44ad9944 1038 --kvm->stat.lpages;
44ad9944
JR
1039 spte = NULL;
1040 write_protected = 1;
1041 }
1042 spte = rmap_next(kvm, rmapp, spte);
05da4558 1043 }
05da4558
MT
1044 }
1045
b1a36821 1046 return write_protected;
374cbac0
AK
1047}
1048
8a8365c5
FD
1049static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1050 unsigned long data)
e930bffe
AA
1051{
1052 u64 *spte;
1053 int need_tlb_flush = 0;
1054
1055 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1056 BUG_ON(!(*spte & PT_PRESENT_MASK));
1057 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1058 drop_spte(kvm, spte);
e930bffe
AA
1059 need_tlb_flush = 1;
1060 }
1061 return need_tlb_flush;
1062}
1063
8a8365c5
FD
1064static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1065 unsigned long data)
3da0dd43
IE
1066{
1067 int need_flush = 0;
e4b502ea 1068 u64 *spte, new_spte;
3da0dd43
IE
1069 pte_t *ptep = (pte_t *)data;
1070 pfn_t new_pfn;
1071
1072 WARN_ON(pte_huge(*ptep));
1073 new_pfn = pte_pfn(*ptep);
1074 spte = rmap_next(kvm, rmapp, NULL);
1075 while (spte) {
1076 BUG_ON(!is_shadow_present_pte(*spte));
1077 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1078 need_flush = 1;
1079 if (pte_write(*ptep)) {
c3707958 1080 drop_spte(kvm, spte);
3da0dd43
IE
1081 spte = rmap_next(kvm, rmapp, NULL);
1082 } else {
1083 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1084 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1085
1086 new_spte &= ~PT_WRITABLE_MASK;
1087 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1088 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1089 mmu_spte_clear_track_bits(spte);
1090 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1091 spte = rmap_next(kvm, rmapp, spte);
1092 }
1093 }
1094 if (need_flush)
1095 kvm_flush_remote_tlbs(kvm);
1096
1097 return 0;
1098}
1099
8a8365c5
FD
1100static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1101 unsigned long data,
3da0dd43 1102 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1103 unsigned long data))
e930bffe 1104{
852e3c19 1105 int i, j;
90bb6fc5 1106 int ret;
e930bffe 1107 int retval = 0;
bc6678a3
MT
1108 struct kvm_memslots *slots;
1109
90d83dc3 1110 slots = kvm_memslots(kvm);
e930bffe 1111
46a26bf5
MT
1112 for (i = 0; i < slots->nmemslots; i++) {
1113 struct kvm_memory_slot *memslot = &slots->memslots[i];
e930bffe
AA
1114 unsigned long start = memslot->userspace_addr;
1115 unsigned long end;
1116
e930bffe
AA
1117 end = start + (memslot->npages << PAGE_SHIFT);
1118 if (hva >= start && hva < end) {
1119 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1120 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1121
90bb6fc5 1122 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1123
1124 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1125 struct kvm_lpage_info *linfo;
1126
1127 linfo = lpage_info_slot(gfn, memslot,
1128 PT_DIRECTORY_LEVEL + j);
1129 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1130 }
90bb6fc5
AK
1131 trace_kvm_age_page(hva, memslot, ret);
1132 retval |= ret;
e930bffe
AA
1133 }
1134 }
1135
1136 return retval;
1137}
1138
1139int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1140{
3da0dd43
IE
1141 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1142}
1143
1144void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1145{
8a8365c5 1146 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1147}
1148
8a8365c5
FD
1149static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1150 unsigned long data)
e930bffe
AA
1151{
1152 u64 *spte;
1153 int young = 0;
1154
6316e1c8
RR
1155 /*
1156 * Emulate the accessed bit for EPT, by checking if this page has
1157 * an EPT mapping, and clearing it if it does. On the next access,
1158 * a new EPT mapping will be established.
1159 * This has some overhead, but not as much as the cost of swapping
1160 * out actively used pages or breaking up actively used hugepages.
1161 */
534e38b4 1162 if (!shadow_accessed_mask)
6316e1c8 1163 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1164
e930bffe
AA
1165 spte = rmap_next(kvm, rmapp, NULL);
1166 while (spte) {
1167 int _young;
1168 u64 _spte = *spte;
1169 BUG_ON(!(_spte & PT_PRESENT_MASK));
1170 _young = _spte & PT_ACCESSED_MASK;
1171 if (_young) {
1172 young = 1;
1173 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1174 }
1175 spte = rmap_next(kvm, rmapp, spte);
1176 }
1177 return young;
1178}
1179
8ee53820
AA
1180static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1181 unsigned long data)
1182{
1183 u64 *spte;
1184 int young = 0;
1185
1186 /*
1187 * If there's no access bit in the secondary pte set by the
1188 * hardware it's up to gup-fast/gup to set the access bit in
1189 * the primary pte or in the page structure.
1190 */
1191 if (!shadow_accessed_mask)
1192 goto out;
1193
1194 spte = rmap_next(kvm, rmapp, NULL);
1195 while (spte) {
1196 u64 _spte = *spte;
1197 BUG_ON(!(_spte & PT_PRESENT_MASK));
1198 young = _spte & PT_ACCESSED_MASK;
1199 if (young) {
1200 young = 1;
1201 break;
1202 }
1203 spte = rmap_next(kvm, rmapp, spte);
1204 }
1205out:
1206 return young;
1207}
1208
53a27b39
MT
1209#define RMAP_RECYCLE_THRESHOLD 1000
1210
852e3c19 1211static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1212{
1213 unsigned long *rmapp;
852e3c19
JR
1214 struct kvm_mmu_page *sp;
1215
1216 sp = page_header(__pa(spte));
53a27b39 1217
852e3c19 1218 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1219
3da0dd43 1220 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1221 kvm_flush_remote_tlbs(vcpu->kvm);
1222}
1223
e930bffe
AA
1224int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1225{
3da0dd43 1226 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1227}
1228
8ee53820
AA
1229int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1230{
1231 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1232}
1233
d6c69ee9 1234#ifdef MMU_DEBUG
47ad8e68 1235static int is_empty_shadow_page(u64 *spt)
6aa8b732 1236{
139bdb2d
AK
1237 u64 *pos;
1238 u64 *end;
1239
47ad8e68 1240 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1241 if (is_shadow_present_pte(*pos)) {
b8688d51 1242 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1243 pos, *pos);
6aa8b732 1244 return 0;
139bdb2d 1245 }
6aa8b732
AK
1246 return 1;
1247}
d6c69ee9 1248#endif
6aa8b732 1249
45221ab6
DH
1250/*
1251 * This value is the sum of all of the kvm instances's
1252 * kvm->arch.n_used_mmu_pages values. We need a global,
1253 * aggregate version in order to make the slab shrinker
1254 * faster
1255 */
1256static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1257{
1258 kvm->arch.n_used_mmu_pages += nr;
1259 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1260}
1261
bd4c86ea
XG
1262/*
1263 * Remove the sp from shadow page cache, after call it,
1264 * we can not find this sp from the cache, and the shadow
1265 * page table is still valid.
1266 * It should be under the protection of mmu lock.
1267 */
1268static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1269{
4db35314 1270 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1271 hlist_del(&sp->hash_link);
2032a93d 1272 if (!sp->role.direct)
842f22ed 1273 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1274}
1275
1276/*
1277 * Free the shadow page table and the sp, we can do it
1278 * out of the protection of mmu lock.
1279 */
1280static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1281{
1282 list_del(&sp->link);
1283 free_page((unsigned long)sp->spt);
e8ad9a70 1284 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1285}
1286
cea0f0e7
AK
1287static unsigned kvm_page_table_hashfn(gfn_t gfn)
1288{
1ae0a13d 1289 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1290}
1291
714b93da 1292static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1293 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1294{
cea0f0e7
AK
1295 if (!parent_pte)
1296 return;
cea0f0e7 1297
67052b35 1298 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1299}
1300
4db35314 1301static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1302 u64 *parent_pte)
1303{
67052b35 1304 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1305}
1306
bcdd9a93
XG
1307static void drop_parent_pte(struct kvm_mmu_page *sp,
1308 u64 *parent_pte)
1309{
1310 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1311 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1312}
1313
67052b35
XG
1314static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1315 u64 *parent_pte, int direct)
ad8cfbe3 1316{
67052b35
XG
1317 struct kvm_mmu_page *sp;
1318 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1319 sizeof *sp);
1320 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1321 if (!direct)
1322 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1323 PAGE_SIZE);
1324 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1325 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1326 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1327 sp->parent_ptes = 0;
1328 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1329 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1330 return sp;
ad8cfbe3
MT
1331}
1332
67052b35 1333static void mark_unsync(u64 *spte);
1047df1f 1334static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1335{
67052b35 1336 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1337}
1338
67052b35 1339static void mark_unsync(u64 *spte)
0074ff63 1340{
67052b35 1341 struct kvm_mmu_page *sp;
1047df1f 1342 unsigned int index;
0074ff63 1343
67052b35 1344 sp = page_header(__pa(spte));
1047df1f
XG
1345 index = spte - sp->spt;
1346 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1347 return;
1047df1f 1348 if (sp->unsync_children++)
0074ff63 1349 return;
1047df1f 1350 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1351}
1352
e8bc217a 1353static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1354 struct kvm_mmu_page *sp)
e8bc217a
MT
1355{
1356 return 1;
1357}
1358
a7052897
MT
1359static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1360{
1361}
1362
0f53b5b1
XG
1363static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1364 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1365 const void *pte)
0f53b5b1
XG
1366{
1367 WARN_ON(1);
1368}
1369
60c8aec6
MT
1370#define KVM_PAGE_ARRAY_NR 16
1371
1372struct kvm_mmu_pages {
1373 struct mmu_page_and_offset {
1374 struct kvm_mmu_page *sp;
1375 unsigned int idx;
1376 } page[KVM_PAGE_ARRAY_NR];
1377 unsigned int nr;
1378};
1379
0074ff63
MT
1380#define for_each_unsync_children(bitmap, idx) \
1381 for (idx = find_first_bit(bitmap, 512); \
1382 idx < 512; \
1383 idx = find_next_bit(bitmap, 512, idx+1))
1384
cded19f3
HE
1385static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1386 int idx)
4731d4c7 1387{
60c8aec6 1388 int i;
4731d4c7 1389
60c8aec6
MT
1390 if (sp->unsync)
1391 for (i=0; i < pvec->nr; i++)
1392 if (pvec->page[i].sp == sp)
1393 return 0;
1394
1395 pvec->page[pvec->nr].sp = sp;
1396 pvec->page[pvec->nr].idx = idx;
1397 pvec->nr++;
1398 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1399}
1400
1401static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1402 struct kvm_mmu_pages *pvec)
1403{
1404 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1405
0074ff63 1406 for_each_unsync_children(sp->unsync_child_bitmap, i) {
7a8f1a74 1407 struct kvm_mmu_page *child;
4731d4c7
MT
1408 u64 ent = sp->spt[i];
1409
7a8f1a74
XG
1410 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1411 goto clear_child_bitmap;
1412
1413 child = page_header(ent & PT64_BASE_ADDR_MASK);
1414
1415 if (child->unsync_children) {
1416 if (mmu_pages_add(pvec, child, i))
1417 return -ENOSPC;
1418
1419 ret = __mmu_unsync_walk(child, pvec);
1420 if (!ret)
1421 goto clear_child_bitmap;
1422 else if (ret > 0)
1423 nr_unsync_leaf += ret;
1424 else
1425 return ret;
1426 } else if (child->unsync) {
1427 nr_unsync_leaf++;
1428 if (mmu_pages_add(pvec, child, i))
1429 return -ENOSPC;
1430 } else
1431 goto clear_child_bitmap;
1432
1433 continue;
1434
1435clear_child_bitmap:
1436 __clear_bit(i, sp->unsync_child_bitmap);
1437 sp->unsync_children--;
1438 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1439 }
1440
4731d4c7 1441
60c8aec6
MT
1442 return nr_unsync_leaf;
1443}
1444
1445static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1446 struct kvm_mmu_pages *pvec)
1447{
1448 if (!sp->unsync_children)
1449 return 0;
1450
1451 mmu_pages_add(pvec, sp, 0);
1452 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1453}
1454
4731d4c7
MT
1455static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1456{
1457 WARN_ON(!sp->unsync);
5e1b3ddb 1458 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1459 sp->unsync = 0;
1460 --kvm->stat.mmu_unsync;
1461}
1462
7775834a
XG
1463static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1464 struct list_head *invalid_list);
1465static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1466 struct list_head *invalid_list);
4731d4c7 1467
f41d335a
XG
1468#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1469 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1470 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1471 if ((sp)->gfn != (gfn)) {} else
1472
f41d335a
XG
1473#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1474 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1475 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1476 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1477 (sp)->role.invalid) {} else
1478
f918b443 1479/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1480static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1481 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1482{
5b7e0102 1483 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1484 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1485 return 1;
1486 }
1487
f918b443 1488 if (clear_unsync)
1d9dc7e0 1489 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1490
a4a8e6f7 1491 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1492 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1493 return 1;
1494 }
1495
1496 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1497 return 0;
1498}
1499
1d9dc7e0
XG
1500static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1501 struct kvm_mmu_page *sp)
1502{
d98ba053 1503 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1504 int ret;
1505
d98ba053 1506 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1507 if (ret)
d98ba053
XG
1508 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1509
1d9dc7e0
XG
1510 return ret;
1511}
1512
d98ba053
XG
1513static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1514 struct list_head *invalid_list)
1d9dc7e0 1515{
d98ba053 1516 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1517}
1518
9f1a122f
XG
1519/* @gfn should be write-protected at the call site */
1520static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1521{
9f1a122f 1522 struct kvm_mmu_page *s;
f41d335a 1523 struct hlist_node *node;
d98ba053 1524 LIST_HEAD(invalid_list);
9f1a122f
XG
1525 bool flush = false;
1526
f41d335a 1527 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1528 if (!s->unsync)
9f1a122f
XG
1529 continue;
1530
1531 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1532 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1533 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1534 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1535 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1536 continue;
1537 }
9f1a122f
XG
1538 flush = true;
1539 }
1540
d98ba053 1541 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1542 if (flush)
1543 kvm_mmu_flush_tlb(vcpu);
1544}
1545
60c8aec6
MT
1546struct mmu_page_path {
1547 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1548 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1549};
1550
60c8aec6
MT
1551#define for_each_sp(pvec, sp, parents, i) \
1552 for (i = mmu_pages_next(&pvec, &parents, -1), \
1553 sp = pvec.page[i].sp; \
1554 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1555 i = mmu_pages_next(&pvec, &parents, i))
1556
cded19f3
HE
1557static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1558 struct mmu_page_path *parents,
1559 int i)
60c8aec6
MT
1560{
1561 int n;
1562
1563 for (n = i+1; n < pvec->nr; n++) {
1564 struct kvm_mmu_page *sp = pvec->page[n].sp;
1565
1566 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1567 parents->idx[0] = pvec->page[n].idx;
1568 return n;
1569 }
1570
1571 parents->parent[sp->role.level-2] = sp;
1572 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1573 }
1574
1575 return n;
1576}
1577
cded19f3 1578static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1579{
60c8aec6
MT
1580 struct kvm_mmu_page *sp;
1581 unsigned int level = 0;
1582
1583 do {
1584 unsigned int idx = parents->idx[level];
4731d4c7 1585
60c8aec6
MT
1586 sp = parents->parent[level];
1587 if (!sp)
1588 return;
1589
1590 --sp->unsync_children;
1591 WARN_ON((int)sp->unsync_children < 0);
1592 __clear_bit(idx, sp->unsync_child_bitmap);
1593 level++;
1594 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1595}
1596
60c8aec6
MT
1597static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1598 struct mmu_page_path *parents,
1599 struct kvm_mmu_pages *pvec)
4731d4c7 1600{
60c8aec6
MT
1601 parents->parent[parent->role.level-1] = NULL;
1602 pvec->nr = 0;
1603}
4731d4c7 1604
60c8aec6
MT
1605static void mmu_sync_children(struct kvm_vcpu *vcpu,
1606 struct kvm_mmu_page *parent)
1607{
1608 int i;
1609 struct kvm_mmu_page *sp;
1610 struct mmu_page_path parents;
1611 struct kvm_mmu_pages pages;
d98ba053 1612 LIST_HEAD(invalid_list);
60c8aec6
MT
1613
1614 kvm_mmu_pages_init(parent, &parents, &pages);
1615 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1616 int protected = 0;
1617
1618 for_each_sp(pages, sp, parents, i)
1619 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1620
1621 if (protected)
1622 kvm_flush_remote_tlbs(vcpu->kvm);
1623
60c8aec6 1624 for_each_sp(pages, sp, parents, i) {
d98ba053 1625 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1626 mmu_pages_clear_parents(&parents);
1627 }
d98ba053 1628 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1629 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1630 kvm_mmu_pages_init(parent, &parents, &pages);
1631 }
4731d4c7
MT
1632}
1633
c3707958
XG
1634static void init_shadow_page_table(struct kvm_mmu_page *sp)
1635{
1636 int i;
1637
1638 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1639 sp->spt[i] = 0ull;
1640}
1641
cea0f0e7
AK
1642static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1643 gfn_t gfn,
1644 gva_t gaddr,
1645 unsigned level,
f6e2c02b 1646 int direct,
41074d07 1647 unsigned access,
f7d9c7b7 1648 u64 *parent_pte)
cea0f0e7
AK
1649{
1650 union kvm_mmu_page_role role;
cea0f0e7 1651 unsigned quadrant;
9f1a122f 1652 struct kvm_mmu_page *sp;
f41d335a 1653 struct hlist_node *node;
9f1a122f 1654 bool need_sync = false;
cea0f0e7 1655
a770f6f2 1656 role = vcpu->arch.mmu.base_role;
cea0f0e7 1657 role.level = level;
f6e2c02b 1658 role.direct = direct;
84b0c8c6 1659 if (role.direct)
5b7e0102 1660 role.cr4_pae = 0;
41074d07 1661 role.access = access;
c5a78f2b
JR
1662 if (!vcpu->arch.mmu.direct_map
1663 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1664 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1665 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1666 role.quadrant = quadrant;
1667 }
f41d335a 1668 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1669 if (!need_sync && sp->unsync)
1670 need_sync = true;
4731d4c7 1671
7ae680eb
XG
1672 if (sp->role.word != role.word)
1673 continue;
4731d4c7 1674
7ae680eb
XG
1675 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1676 break;
e02aa901 1677
7ae680eb
XG
1678 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1679 if (sp->unsync_children) {
a8eeb04a 1680 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1681 kvm_mmu_mark_parents_unsync(sp);
1682 } else if (sp->unsync)
1683 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1684
7ae680eb
XG
1685 trace_kvm_mmu_get_page(sp, false);
1686 return sp;
1687 }
dfc5aa00 1688 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1689 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1690 if (!sp)
1691 return sp;
4db35314
AK
1692 sp->gfn = gfn;
1693 sp->role = role;
7ae680eb
XG
1694 hlist_add_head(&sp->hash_link,
1695 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1696 if (!direct) {
b1a36821
MT
1697 if (rmap_write_protect(vcpu->kvm, gfn))
1698 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1699 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1700 kvm_sync_pages(vcpu, gfn);
1701
4731d4c7
MT
1702 account_shadowed(vcpu->kvm, gfn);
1703 }
c3707958 1704 init_shadow_page_table(sp);
f691fe1d 1705 trace_kvm_mmu_get_page(sp, true);
4db35314 1706 return sp;
cea0f0e7
AK
1707}
1708
2d11123a
AK
1709static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1710 struct kvm_vcpu *vcpu, u64 addr)
1711{
1712 iterator->addr = addr;
1713 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1714 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1715
1716 if (iterator->level == PT64_ROOT_LEVEL &&
1717 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1718 !vcpu->arch.mmu.direct_map)
1719 --iterator->level;
1720
2d11123a
AK
1721 if (iterator->level == PT32E_ROOT_LEVEL) {
1722 iterator->shadow_addr
1723 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1724 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1725 --iterator->level;
1726 if (!iterator->shadow_addr)
1727 iterator->level = 0;
1728 }
1729}
1730
1731static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1732{
1733 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1734 return false;
4d88954d 1735
2d11123a
AK
1736 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1737 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1738 return true;
1739}
1740
c2a2ac2b
XG
1741static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1742 u64 spte)
2d11123a 1743{
c2a2ac2b 1744 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1745 iterator->level = 0;
1746 return;
1747 }
1748
c2a2ac2b 1749 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1750 --iterator->level;
1751}
1752
c2a2ac2b
XG
1753static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1754{
1755 return __shadow_walk_next(iterator, *iterator->sptep);
1756}
1757
32ef26a3
AK
1758static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1759{
1760 u64 spte;
1761
1762 spte = __pa(sp->spt)
1763 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1764 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1765 mmu_spte_set(sptep, spte);
32ef26a3
AK
1766}
1767
a3aa51cf
AK
1768static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1769{
1770 if (is_large_pte(*sptep)) {
c3707958 1771 drop_spte(vcpu->kvm, sptep);
a3aa51cf
AK
1772 kvm_flush_remote_tlbs(vcpu->kvm);
1773 }
1774}
1775
a357bd22
AK
1776static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1777 unsigned direct_access)
1778{
1779 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1780 struct kvm_mmu_page *child;
1781
1782 /*
1783 * For the direct sp, if the guest pte's dirty bit
1784 * changed form clean to dirty, it will corrupt the
1785 * sp's access: allow writable in the read-only sp,
1786 * so we should update the spte at this point to get
1787 * a new sp with the correct access.
1788 */
1789 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1790 if (child->role.access == direct_access)
1791 return;
1792
bcdd9a93 1793 drop_parent_pte(child, sptep);
a357bd22
AK
1794 kvm_flush_remote_tlbs(vcpu->kvm);
1795 }
1796}
1797
38e3b2b2
XG
1798static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1799 u64 *spte)
1800{
1801 u64 pte;
1802 struct kvm_mmu_page *child;
1803
1804 pte = *spte;
1805 if (is_shadow_present_pte(pte)) {
1806 if (is_last_spte(pte, sp->role.level))
c3707958 1807 drop_spte(kvm, spte);
38e3b2b2
XG
1808 else {
1809 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1810 drop_parent_pte(child, spte);
38e3b2b2 1811 }
ce88decf
XG
1812 } else if (is_mmio_spte(pte))
1813 mmu_spte_clear_no_track(spte);
c3707958 1814
38e3b2b2
XG
1815 if (is_large_pte(pte))
1816 --kvm->stat.lpages;
1817}
1818
90cb0529 1819static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1820 struct kvm_mmu_page *sp)
a436036b 1821{
697fe2e2 1822 unsigned i;
697fe2e2 1823
38e3b2b2
XG
1824 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1825 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1826}
1827
4db35314 1828static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1829{
4db35314 1830 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1831}
1832
12b7d28f
AK
1833static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1834{
1835 int i;
988a2cae 1836 struct kvm_vcpu *vcpu;
12b7d28f 1837
988a2cae
GN
1838 kvm_for_each_vcpu(i, vcpu, kvm)
1839 vcpu->arch.last_pte_updated = NULL;
12b7d28f
AK
1840}
1841
31aa2b44 1842static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1843{
1844 u64 *parent_pte;
1845
bcdd9a93
XG
1846 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1847 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1848}
1849
60c8aec6 1850static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1851 struct kvm_mmu_page *parent,
1852 struct list_head *invalid_list)
4731d4c7 1853{
60c8aec6
MT
1854 int i, zapped = 0;
1855 struct mmu_page_path parents;
1856 struct kvm_mmu_pages pages;
4731d4c7 1857
60c8aec6 1858 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1859 return 0;
60c8aec6
MT
1860
1861 kvm_mmu_pages_init(parent, &parents, &pages);
1862 while (mmu_unsync_walk(parent, &pages)) {
1863 struct kvm_mmu_page *sp;
1864
1865 for_each_sp(pages, sp, parents, i) {
7775834a 1866 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1867 mmu_pages_clear_parents(&parents);
77662e00 1868 zapped++;
60c8aec6 1869 }
60c8aec6
MT
1870 kvm_mmu_pages_init(parent, &parents, &pages);
1871 }
1872
1873 return zapped;
4731d4c7
MT
1874}
1875
7775834a
XG
1876static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1877 struct list_head *invalid_list)
31aa2b44 1878{
4731d4c7 1879 int ret;
f691fe1d 1880
7775834a 1881 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1882 ++kvm->stat.mmu_shadow_zapped;
7775834a 1883 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1884 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1885 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1886 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1887 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1888 if (sp->unsync)
1889 kvm_unlink_unsync_page(kvm, sp);
4db35314 1890 if (!sp->root_count) {
54a4f023
GJ
1891 /* Count self */
1892 ret++;
7775834a 1893 list_move(&sp->link, invalid_list);
aa6bd187 1894 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1895 } else {
5b5c6a5a 1896 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1897 kvm_reload_remote_mmus(kvm);
1898 }
7775834a
XG
1899
1900 sp->role.invalid = 1;
12b7d28f 1901 kvm_mmu_reset_last_pte_updated(kvm);
4731d4c7 1902 return ret;
a436036b
AK
1903}
1904
c2a2ac2b
XG
1905static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1906{
1907 struct kvm_mmu_page *sp;
1908
1909 list_for_each_entry(sp, invalid_list, link)
1910 kvm_mmu_isolate_page(sp);
1911}
1912
1913static void free_pages_rcu(struct rcu_head *head)
1914{
1915 struct kvm_mmu_page *next, *sp;
1916
1917 sp = container_of(head, struct kvm_mmu_page, rcu);
1918 while (sp) {
1919 if (!list_empty(&sp->link))
1920 next = list_first_entry(&sp->link,
1921 struct kvm_mmu_page, link);
1922 else
1923 next = NULL;
1924 kvm_mmu_free_page(sp);
1925 sp = next;
1926 }
1927}
1928
7775834a
XG
1929static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1930 struct list_head *invalid_list)
1931{
1932 struct kvm_mmu_page *sp;
1933
1934 if (list_empty(invalid_list))
1935 return;
1936
1937 kvm_flush_remote_tlbs(kvm);
1938
c2a2ac2b
XG
1939 if (atomic_read(&kvm->arch.reader_counter)) {
1940 kvm_mmu_isolate_pages(invalid_list);
1941 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1942 list_del_init(invalid_list);
4f022648
XG
1943
1944 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1945 call_rcu(&sp->rcu, free_pages_rcu);
1946 return;
1947 }
1948
7775834a
XG
1949 do {
1950 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1951 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1952 kvm_mmu_isolate_page(sp);
aa6bd187 1953 kvm_mmu_free_page(sp);
7775834a
XG
1954 } while (!list_empty(invalid_list));
1955
1956}
1957
82ce2c96
IE
1958/*
1959 * Changing the number of mmu pages allocated to the vm
49d5ca26 1960 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1961 */
49d5ca26 1962void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1963{
d98ba053 1964 LIST_HEAD(invalid_list);
82ce2c96
IE
1965 /*
1966 * If we set the number of mmu pages to be smaller be than the
1967 * number of actived pages , we must to free some mmu pages before we
1968 * change the value
1969 */
1970
49d5ca26
DH
1971 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1972 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 1973 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
1974 struct kvm_mmu_page *page;
1975
f05e70ac 1976 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 1977 struct kvm_mmu_page, link);
80b63faf 1978 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 1979 }
aa6bd187 1980 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 1981 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 1982 }
82ce2c96 1983
49d5ca26 1984 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
1985}
1986
f67a46f4 1987static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 1988{
4db35314 1989 struct kvm_mmu_page *sp;
f41d335a 1990 struct hlist_node *node;
d98ba053 1991 LIST_HEAD(invalid_list);
a436036b
AK
1992 int r;
1993
9ad17b10 1994 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 1995 r = 0;
f41d335a
XG
1996
1997 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 1998 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
1999 sp->role.word);
2000 r = 1;
f41d335a 2001 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2002 }
d98ba053 2003 kvm_mmu_commit_zap_page(kvm, &invalid_list);
a436036b 2004 return r;
cea0f0e7
AK
2005}
2006
f67a46f4 2007static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
97a0a01e 2008{
4db35314 2009 struct kvm_mmu_page *sp;
f41d335a 2010 struct hlist_node *node;
d98ba053 2011 LIST_HEAD(invalid_list);
97a0a01e 2012
f41d335a 2013 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2014 pgprintk("%s: zap %llx %x\n",
7ae680eb 2015 __func__, gfn, sp->role.word);
f41d335a 2016 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
97a0a01e 2017 }
d98ba053 2018 kvm_mmu_commit_zap_page(kvm, &invalid_list);
97a0a01e
AK
2019}
2020
38c335f1 2021static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2022{
bc6678a3 2023 int slot = memslot_id(kvm, gfn);
4db35314 2024 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2025
291f26bc 2026 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2027}
2028
74be52e3
SY
2029/*
2030 * The function is based on mtrr_type_lookup() in
2031 * arch/x86/kernel/cpu/mtrr/generic.c
2032 */
2033static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2034 u64 start, u64 end)
2035{
2036 int i;
2037 u64 base, mask;
2038 u8 prev_match, curr_match;
2039 int num_var_ranges = KVM_NR_VAR_MTRR;
2040
2041 if (!mtrr_state->enabled)
2042 return 0xFF;
2043
2044 /* Make end inclusive end, instead of exclusive */
2045 end--;
2046
2047 /* Look in fixed ranges. Just return the type as per start */
2048 if (mtrr_state->have_fixed && (start < 0x100000)) {
2049 int idx;
2050
2051 if (start < 0x80000) {
2052 idx = 0;
2053 idx += (start >> 16);
2054 return mtrr_state->fixed_ranges[idx];
2055 } else if (start < 0xC0000) {
2056 idx = 1 * 8;
2057 idx += ((start - 0x80000) >> 14);
2058 return mtrr_state->fixed_ranges[idx];
2059 } else if (start < 0x1000000) {
2060 idx = 3 * 8;
2061 idx += ((start - 0xC0000) >> 12);
2062 return mtrr_state->fixed_ranges[idx];
2063 }
2064 }
2065
2066 /*
2067 * Look in variable ranges
2068 * Look of multiple ranges matching this address and pick type
2069 * as per MTRR precedence
2070 */
2071 if (!(mtrr_state->enabled & 2))
2072 return mtrr_state->def_type;
2073
2074 prev_match = 0xFF;
2075 for (i = 0; i < num_var_ranges; ++i) {
2076 unsigned short start_state, end_state;
2077
2078 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2079 continue;
2080
2081 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2082 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2083 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2084 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2085
2086 start_state = ((start & mask) == (base & mask));
2087 end_state = ((end & mask) == (base & mask));
2088 if (start_state != end_state)
2089 return 0xFE;
2090
2091 if ((start & mask) != (base & mask))
2092 continue;
2093
2094 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2095 if (prev_match == 0xFF) {
2096 prev_match = curr_match;
2097 continue;
2098 }
2099
2100 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2101 curr_match == MTRR_TYPE_UNCACHABLE)
2102 return MTRR_TYPE_UNCACHABLE;
2103
2104 if ((prev_match == MTRR_TYPE_WRBACK &&
2105 curr_match == MTRR_TYPE_WRTHROUGH) ||
2106 (prev_match == MTRR_TYPE_WRTHROUGH &&
2107 curr_match == MTRR_TYPE_WRBACK)) {
2108 prev_match = MTRR_TYPE_WRTHROUGH;
2109 curr_match = MTRR_TYPE_WRTHROUGH;
2110 }
2111
2112 if (prev_match != curr_match)
2113 return MTRR_TYPE_UNCACHABLE;
2114 }
2115
2116 if (prev_match != 0xFF)
2117 return prev_match;
2118
2119 return mtrr_state->def_type;
2120}
2121
4b12f0de 2122u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2123{
2124 u8 mtrr;
2125
2126 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2127 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2128 if (mtrr == 0xfe || mtrr == 0xff)
2129 mtrr = MTRR_TYPE_WRBACK;
2130 return mtrr;
2131}
4b12f0de 2132EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2133
9cf5cf5a
XG
2134static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2135{
2136 trace_kvm_mmu_unsync_page(sp);
2137 ++vcpu->kvm->stat.mmu_unsync;
2138 sp->unsync = 1;
2139
2140 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2141}
2142
2143static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2144{
4731d4c7 2145 struct kvm_mmu_page *s;
f41d335a 2146 struct hlist_node *node;
9cf5cf5a 2147
f41d335a 2148 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2149 if (s->unsync)
4731d4c7 2150 continue;
9cf5cf5a
XG
2151 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2152 __kvm_unsync_page(vcpu, s);
4731d4c7 2153 }
4731d4c7
MT
2154}
2155
2156static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2157 bool can_unsync)
2158{
9cf5cf5a 2159 struct kvm_mmu_page *s;
f41d335a 2160 struct hlist_node *node;
9cf5cf5a
XG
2161 bool need_unsync = false;
2162
f41d335a 2163 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2164 if (!can_unsync)
2165 return 1;
2166
9cf5cf5a 2167 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2168 return 1;
9cf5cf5a
XG
2169
2170 if (!need_unsync && !s->unsync) {
36a2e677 2171 if (!oos_shadow)
9cf5cf5a
XG
2172 return 1;
2173 need_unsync = true;
2174 }
4731d4c7 2175 }
9cf5cf5a
XG
2176 if (need_unsync)
2177 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2178 return 0;
2179}
2180
d555c333 2181static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2182 unsigned pte_access, int user_fault,
640d9b0d 2183 int write_fault, int level,
c2d0ee46 2184 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2185 bool can_unsync, bool host_writable)
1c4f1fd6 2186{
b330aa0c 2187 u64 spte, entry = *sptep;
1e73f9dd 2188 int ret = 0;
64d4d521 2189
ce88decf
XG
2190 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2191 return 0;
2192
1c4f1fd6
AK
2193 /*
2194 * We don't set the accessed bit, since we sometimes want to see
2195 * whether the guest actually used the pte (in order to detect
2196 * demand paging).
2197 */
982c2565 2198 spte = PT_PRESENT_MASK;
947da538 2199 if (!speculative)
3201b5d9 2200 spte |= shadow_accessed_mask;
640d9b0d 2201
7b52345e
SY
2202 if (pte_access & ACC_EXEC_MASK)
2203 spte |= shadow_x_mask;
2204 else
2205 spte |= shadow_nx_mask;
1c4f1fd6 2206 if (pte_access & ACC_USER_MASK)
7b52345e 2207 spte |= shadow_user_mask;
852e3c19 2208 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2209 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2210 if (tdp_enabled)
4b12f0de
SY
2211 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2212 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2213
9bdbba13 2214 if (host_writable)
1403283a 2215 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2216 else
2217 pte_access &= ~ACC_WRITE_MASK;
1403283a 2218
35149e21 2219 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2220
2221 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2222 || (!vcpu->arch.mmu.direct_map && write_fault
2223 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2224
852e3c19
JR
2225 if (level > PT_PAGE_TABLE_LEVEL &&
2226 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2227 ret = 1;
c3707958 2228 drop_spte(vcpu->kvm, sptep);
be38d276 2229 goto done;
38187c83
MT
2230 }
2231
1c4f1fd6 2232 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2233
c5a78f2b 2234 if (!vcpu->arch.mmu.direct_map
411c588d 2235 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2236 spte &= ~PT_USER_MASK;
411c588d
AK
2237 /*
2238 * If we converted a user page to a kernel page,
2239 * so that the kernel can write to it when cr0.wp=0,
2240 * then we should prevent the kernel from executing it
2241 * if SMEP is enabled.
2242 */
2243 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2244 spte |= PT64_NX_MASK;
2245 }
69325a12 2246
ecc5589f
MT
2247 /*
2248 * Optimization: for pte sync, if spte was writable the hash
2249 * lookup is unnecessary (and expensive). Write protection
2250 * is responsibility of mmu_get_page / kvm_sync_page.
2251 * Same reasoning can be applied to dirty page accounting.
2252 */
8dae4445 2253 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2254 goto set_pte;
2255
4731d4c7 2256 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2257 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2258 __func__, gfn);
1e73f9dd 2259 ret = 1;
1c4f1fd6 2260 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2261 if (is_writable_pte(spte))
1c4f1fd6 2262 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2263 }
2264 }
2265
1c4f1fd6
AK
2266 if (pte_access & ACC_WRITE_MASK)
2267 mark_page_dirty(vcpu->kvm, gfn);
2268
38187c83 2269set_pte:
1df9f2dc 2270 mmu_spte_update(sptep, spte);
b330aa0c
XG
2271 /*
2272 * If we overwrite a writable spte with a read-only one we
2273 * should flush remote TLBs. Otherwise rmap_write_protect
2274 * will find a read-only spte, even though the writable spte
2275 * might be cached on a CPU's TLB.
2276 */
2277 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2278 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2279done:
1e73f9dd
MT
2280 return ret;
2281}
2282
d555c333 2283static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2284 unsigned pt_access, unsigned pte_access,
640d9b0d 2285 int user_fault, int write_fault,
b90a0e6c 2286 int *emulate, int level, gfn_t gfn,
1403283a 2287 pfn_t pfn, bool speculative,
9bdbba13 2288 bool host_writable)
1e73f9dd
MT
2289{
2290 int was_rmapped = 0;
53a27b39 2291 int rmap_count;
1e73f9dd
MT
2292
2293 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2294 " user_fault %d gfn %llx\n",
d555c333 2295 __func__, *sptep, pt_access,
1e73f9dd
MT
2296 write_fault, user_fault, gfn);
2297
d555c333 2298 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2299 /*
2300 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2301 * the parent of the now unreachable PTE.
2302 */
852e3c19
JR
2303 if (level > PT_PAGE_TABLE_LEVEL &&
2304 !is_large_pte(*sptep)) {
1e73f9dd 2305 struct kvm_mmu_page *child;
d555c333 2306 u64 pte = *sptep;
1e73f9dd
MT
2307
2308 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2309 drop_parent_pte(child, sptep);
3be2264b 2310 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2311 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2312 pgprintk("hfn old %llx new %llx\n",
d555c333 2313 spte_to_pfn(*sptep), pfn);
c3707958 2314 drop_spte(vcpu->kvm, sptep);
91546356 2315 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2316 } else
2317 was_rmapped = 1;
1e73f9dd 2318 }
852e3c19 2319
d555c333 2320 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2321 level, gfn, pfn, speculative, true,
9bdbba13 2322 host_writable)) {
1e73f9dd 2323 if (write_fault)
b90a0e6c 2324 *emulate = 1;
5304efde 2325 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2326 }
1e73f9dd 2327
ce88decf
XG
2328 if (unlikely(is_mmio_spte(*sptep) && emulate))
2329 *emulate = 1;
2330
d555c333 2331 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2332 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2333 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2334 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2335 *sptep, sptep);
d555c333 2336 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2337 ++vcpu->kvm->stat.lpages;
2338
ffb61bb3
XG
2339 if (is_shadow_present_pte(*sptep)) {
2340 page_header_update_slot(vcpu->kvm, sptep, gfn);
2341 if (!was_rmapped) {
2342 rmap_count = rmap_add(vcpu, sptep, gfn);
2343 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2344 rmap_recycle(vcpu, sptep, gfn);
2345 }
1c4f1fd6 2346 }
9ed5520d 2347 kvm_release_pfn_clean(pfn);
1b7fcd32 2348 if (speculative) {
d555c333 2349 vcpu->arch.last_pte_updated = sptep;
1b7fcd32
AK
2350 vcpu->arch.last_pte_gfn = gfn;
2351 }
1c4f1fd6
AK
2352}
2353
6aa8b732
AK
2354static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2355{
2356}
2357
957ed9ef
XG
2358static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2359 bool no_dirty_log)
2360{
2361 struct kvm_memory_slot *slot;
2362 unsigned long hva;
2363
5d163b1c 2364 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2365 if (!slot) {
fce92dce
XG
2366 get_page(fault_page);
2367 return page_to_pfn(fault_page);
957ed9ef
XG
2368 }
2369
2370 hva = gfn_to_hva_memslot(slot, gfn);
2371
2372 return hva_to_pfn_atomic(vcpu->kvm, hva);
2373}
2374
2375static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2376 struct kvm_mmu_page *sp,
2377 u64 *start, u64 *end)
2378{
2379 struct page *pages[PTE_PREFETCH_NUM];
2380 unsigned access = sp->role.access;
2381 int i, ret;
2382 gfn_t gfn;
2383
2384 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2385 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2386 return -1;
2387
2388 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2389 if (ret <= 0)
2390 return -1;
2391
2392 for (i = 0; i < ret; i++, gfn++, start++)
2393 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2394 access, 0, 0, NULL,
957ed9ef
XG
2395 sp->role.level, gfn,
2396 page_to_pfn(pages[i]), true, true);
2397
2398 return 0;
2399}
2400
2401static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2402 struct kvm_mmu_page *sp, u64 *sptep)
2403{
2404 u64 *spte, *start = NULL;
2405 int i;
2406
2407 WARN_ON(!sp->role.direct);
2408
2409 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2410 spte = sp->spt + i;
2411
2412 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2413 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2414 if (!start)
2415 continue;
2416 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2417 break;
2418 start = NULL;
2419 } else if (!start)
2420 start = spte;
2421 }
2422}
2423
2424static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2425{
2426 struct kvm_mmu_page *sp;
2427
2428 /*
2429 * Since it's no accessed bit on EPT, it's no way to
2430 * distinguish between actually accessed translations
2431 * and prefetched, so disable pte prefetch if EPT is
2432 * enabled.
2433 */
2434 if (!shadow_accessed_mask)
2435 return;
2436
2437 sp = page_header(__pa(sptep));
2438 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2439 return;
2440
2441 __direct_pte_prefetch(vcpu, sp, sptep);
2442}
2443
9f652d21 2444static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2445 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2446 bool prefault)
140754bc 2447{
9f652d21 2448 struct kvm_shadow_walk_iterator iterator;
140754bc 2449 struct kvm_mmu_page *sp;
b90a0e6c 2450 int emulate = 0;
140754bc 2451 gfn_t pseudo_gfn;
6aa8b732 2452
9f652d21 2453 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2454 if (iterator.level == level) {
612819c3
MT
2455 unsigned pte_access = ACC_ALL;
2456
612819c3 2457 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2458 0, write, &emulate,
2ec4739d 2459 level, gfn, pfn, prefault, map_writable);
957ed9ef 2460 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2461 ++vcpu->stat.pf_fixed;
2462 break;
6aa8b732
AK
2463 }
2464
c3707958 2465 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2466 u64 base_addr = iterator.addr;
2467
2468 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2469 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2470 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2471 iterator.level - 1,
2472 1, ACC_ALL, iterator.sptep);
2473 if (!sp) {
2474 pgprintk("nonpaging_map: ENOMEM\n");
2475 kvm_release_pfn_clean(pfn);
2476 return -ENOMEM;
2477 }
140754bc 2478
1df9f2dc
XG
2479 mmu_spte_set(iterator.sptep,
2480 __pa(sp->spt)
2481 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2482 | shadow_user_mask | shadow_x_mask
2483 | shadow_accessed_mask);
9f652d21
AK
2484 }
2485 }
b90a0e6c 2486 return emulate;
6aa8b732
AK
2487}
2488
77db5cbd 2489static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2490{
77db5cbd
HY
2491 siginfo_t info;
2492
2493 info.si_signo = SIGBUS;
2494 info.si_errno = 0;
2495 info.si_code = BUS_MCEERR_AR;
2496 info.si_addr = (void __user *)address;
2497 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2498
77db5cbd 2499 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2500}
2501
d7c55201 2502static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2503{
2504 kvm_release_pfn_clean(pfn);
2505 if (is_hwpoison_pfn(pfn)) {
bebb106a 2506 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2507 return 0;
d7c55201 2508 }
edba23e5 2509
d7c55201 2510 return -EFAULT;
bf998156
HY
2511}
2512
936a5fe6
AA
2513static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2514 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2515{
2516 pfn_t pfn = *pfnp;
2517 gfn_t gfn = *gfnp;
2518 int level = *levelp;
2519
2520 /*
2521 * Check if it's a transparent hugepage. If this would be an
2522 * hugetlbfs page, level wouldn't be set to
2523 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2524 * here.
2525 */
2526 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2527 level == PT_PAGE_TABLE_LEVEL &&
2528 PageTransCompound(pfn_to_page(pfn)) &&
2529 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2530 unsigned long mask;
2531 /*
2532 * mmu_notifier_retry was successful and we hold the
2533 * mmu_lock here, so the pmd can't become splitting
2534 * from under us, and in turn
2535 * __split_huge_page_refcount() can't run from under
2536 * us and we can safely transfer the refcount from
2537 * PG_tail to PG_head as we switch the pfn to tail to
2538 * head.
2539 */
2540 *levelp = level = PT_DIRECTORY_LEVEL;
2541 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2542 VM_BUG_ON((gfn & mask) != (pfn & mask));
2543 if (pfn & mask) {
2544 gfn &= ~mask;
2545 *gfnp = gfn;
2546 kvm_release_pfn_clean(pfn);
2547 pfn &= ~mask;
2548 if (!get_page_unless_zero(pfn_to_page(pfn)))
2549 BUG();
2550 *pfnp = pfn;
2551 }
2552 }
2553}
2554
d7c55201
XG
2555static bool mmu_invalid_pfn(pfn_t pfn)
2556{
ce88decf 2557 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2558}
2559
2560static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2561 pfn_t pfn, unsigned access, int *ret_val)
2562{
2563 bool ret = true;
2564
2565 /* The pfn is invalid, report the error! */
2566 if (unlikely(is_invalid_pfn(pfn))) {
2567 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2568 goto exit;
2569 }
2570
ce88decf 2571 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2572 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2573
2574 ret = false;
2575exit:
2576 return ret;
2577}
2578
78b2c54a 2579static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2580 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2581
2582static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2583 bool prefault)
10589a46
MT
2584{
2585 int r;
852e3c19 2586 int level;
936a5fe6 2587 int force_pt_level;
35149e21 2588 pfn_t pfn;
e930bffe 2589 unsigned long mmu_seq;
612819c3 2590 bool map_writable;
aaee2c94 2591
936a5fe6
AA
2592 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2593 if (likely(!force_pt_level)) {
2594 level = mapping_level(vcpu, gfn);
2595 /*
2596 * This path builds a PAE pagetable - so we can map
2597 * 2mb pages at maximum. Therefore check if the level
2598 * is larger than that.
2599 */
2600 if (level > PT_DIRECTORY_LEVEL)
2601 level = PT_DIRECTORY_LEVEL;
852e3c19 2602
936a5fe6
AA
2603 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2604 } else
2605 level = PT_PAGE_TABLE_LEVEL;
05da4558 2606
e930bffe 2607 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2608 smp_rmb();
060c2abe 2609
78b2c54a 2610 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2611 return 0;
aaee2c94 2612
d7c55201
XG
2613 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2614 return r;
d196e343 2615
aaee2c94 2616 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2617 if (mmu_notifier_retry(vcpu, mmu_seq))
2618 goto out_unlock;
eb787d10 2619 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2620 if (likely(!force_pt_level))
2621 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2622 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2623 prefault);
aaee2c94
MT
2624 spin_unlock(&vcpu->kvm->mmu_lock);
2625
aaee2c94 2626
10589a46 2627 return r;
e930bffe
AA
2628
2629out_unlock:
2630 spin_unlock(&vcpu->kvm->mmu_lock);
2631 kvm_release_pfn_clean(pfn);
2632 return 0;
10589a46
MT
2633}
2634
2635
17ac10ad
AK
2636static void mmu_free_roots(struct kvm_vcpu *vcpu)
2637{
2638 int i;
4db35314 2639 struct kvm_mmu_page *sp;
d98ba053 2640 LIST_HEAD(invalid_list);
17ac10ad 2641
ad312c7c 2642 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2643 return;
aaee2c94 2644 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2645 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2646 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2647 vcpu->arch.mmu.direct_map)) {
ad312c7c 2648 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2649
4db35314
AK
2650 sp = page_header(root);
2651 --sp->root_count;
d98ba053
XG
2652 if (!sp->root_count && sp->role.invalid) {
2653 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2654 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2655 }
ad312c7c 2656 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2657 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2658 return;
2659 }
17ac10ad 2660 for (i = 0; i < 4; ++i) {
ad312c7c 2661 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2662
417726a3 2663 if (root) {
417726a3 2664 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2665 sp = page_header(root);
2666 --sp->root_count;
2e53d63a 2667 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2668 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2669 &invalid_list);
417726a3 2670 }
ad312c7c 2671 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2672 }
d98ba053 2673 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2674 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2675 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2676}
2677
8986ecc0
MT
2678static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2679{
2680 int ret = 0;
2681
2682 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2683 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2684 ret = 1;
2685 }
2686
2687 return ret;
2688}
2689
651dd37a
JR
2690static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2691{
2692 struct kvm_mmu_page *sp;
7ebaf15e 2693 unsigned i;
651dd37a
JR
2694
2695 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2696 spin_lock(&vcpu->kvm->mmu_lock);
2697 kvm_mmu_free_some_pages(vcpu);
2698 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2699 1, ACC_ALL, NULL);
2700 ++sp->root_count;
2701 spin_unlock(&vcpu->kvm->mmu_lock);
2702 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2703 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2704 for (i = 0; i < 4; ++i) {
2705 hpa_t root = vcpu->arch.mmu.pae_root[i];
2706
2707 ASSERT(!VALID_PAGE(root));
2708 spin_lock(&vcpu->kvm->mmu_lock);
2709 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2710 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2711 i << 30,
651dd37a
JR
2712 PT32_ROOT_LEVEL, 1, ACC_ALL,
2713 NULL);
2714 root = __pa(sp->spt);
2715 ++sp->root_count;
2716 spin_unlock(&vcpu->kvm->mmu_lock);
2717 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2718 }
6292757f 2719 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2720 } else
2721 BUG();
2722
2723 return 0;
2724}
2725
2726static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2727{
4db35314 2728 struct kvm_mmu_page *sp;
81407ca5
JR
2729 u64 pdptr, pm_mask;
2730 gfn_t root_gfn;
2731 int i;
3bb65a22 2732
5777ed34 2733 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2734
651dd37a
JR
2735 if (mmu_check_root(vcpu, root_gfn))
2736 return 1;
2737
2738 /*
2739 * Do we shadow a long mode page table? If so we need to
2740 * write-protect the guests page table root.
2741 */
2742 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2743 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2744
2745 ASSERT(!VALID_PAGE(root));
651dd37a 2746
8facbbff 2747 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2748 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2749 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2750 0, ACC_ALL, NULL);
4db35314
AK
2751 root = __pa(sp->spt);
2752 ++sp->root_count;
8facbbff 2753 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2754 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2755 return 0;
17ac10ad 2756 }
f87f9288 2757
651dd37a
JR
2758 /*
2759 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2760 * or a PAE 3-level page table. In either case we need to be aware that
2761 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2762 */
81407ca5
JR
2763 pm_mask = PT_PRESENT_MASK;
2764 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2765 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2766
17ac10ad 2767 for (i = 0; i < 4; ++i) {
ad312c7c 2768 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2769
2770 ASSERT(!VALID_PAGE(root));
ad312c7c 2771 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
d41d1895 2772 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
43a3795a 2773 if (!is_present_gpte(pdptr)) {
ad312c7c 2774 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2775 continue;
2776 }
6de4f3ad 2777 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2778 if (mmu_check_root(vcpu, root_gfn))
2779 return 1;
5a7388c2 2780 }
8facbbff 2781 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2782 kvm_mmu_free_some_pages(vcpu);
4db35314 2783 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2784 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2785 ACC_ALL, NULL);
4db35314
AK
2786 root = __pa(sp->spt);
2787 ++sp->root_count;
8facbbff
AK
2788 spin_unlock(&vcpu->kvm->mmu_lock);
2789
81407ca5 2790 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2791 }
6292757f 2792 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2793
2794 /*
2795 * If we shadow a 32 bit page table with a long mode page
2796 * table we enter this path.
2797 */
2798 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2799 if (vcpu->arch.mmu.lm_root == NULL) {
2800 /*
2801 * The additional page necessary for this is only
2802 * allocated on demand.
2803 */
2804
2805 u64 *lm_root;
2806
2807 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2808 if (lm_root == NULL)
2809 return 1;
2810
2811 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2812
2813 vcpu->arch.mmu.lm_root = lm_root;
2814 }
2815
2816 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2817 }
2818
8986ecc0 2819 return 0;
17ac10ad
AK
2820}
2821
651dd37a
JR
2822static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2823{
2824 if (vcpu->arch.mmu.direct_map)
2825 return mmu_alloc_direct_roots(vcpu);
2826 else
2827 return mmu_alloc_shadow_roots(vcpu);
2828}
2829
0ba73cda
MT
2830static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2831{
2832 int i;
2833 struct kvm_mmu_page *sp;
2834
81407ca5
JR
2835 if (vcpu->arch.mmu.direct_map)
2836 return;
2837
0ba73cda
MT
2838 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2839 return;
6903074c 2840
bebb106a 2841 vcpu_clear_mmio_info(vcpu, ~0ul);
6903074c 2842 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2843 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2844 hpa_t root = vcpu->arch.mmu.root_hpa;
2845 sp = page_header(root);
2846 mmu_sync_children(vcpu, sp);
5054c0de 2847 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2848 return;
2849 }
2850 for (i = 0; i < 4; ++i) {
2851 hpa_t root = vcpu->arch.mmu.pae_root[i];
2852
8986ecc0 2853 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2854 root &= PT64_BASE_ADDR_MASK;
2855 sp = page_header(root);
2856 mmu_sync_children(vcpu, sp);
2857 }
2858 }
6903074c 2859 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2860}
2861
2862void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2863{
2864 spin_lock(&vcpu->kvm->mmu_lock);
2865 mmu_sync_roots(vcpu);
6cffe8ca 2866 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2867}
2868
1871c602 2869static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2870 u32 access, struct x86_exception *exception)
6aa8b732 2871{
ab9ae313
AK
2872 if (exception)
2873 exception->error_code = 0;
6aa8b732
AK
2874 return vaddr;
2875}
2876
6539e738 2877static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2878 u32 access,
2879 struct x86_exception *exception)
6539e738 2880{
ab9ae313
AK
2881 if (exception)
2882 exception->error_code = 0;
6539e738
JR
2883 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2884}
2885
ce88decf
XG
2886static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2887{
2888 if (direct)
2889 return vcpu_match_mmio_gpa(vcpu, addr);
2890
2891 return vcpu_match_mmio_gva(vcpu, addr);
2892}
2893
2894
2895/*
2896 * On direct hosts, the last spte is only allows two states
2897 * for mmio page fault:
2898 * - It is the mmio spte
2899 * - It is zapped or it is being zapped.
2900 *
2901 * This function completely checks the spte when the last spte
2902 * is not the mmio spte.
2903 */
2904static bool check_direct_spte_mmio_pf(u64 spte)
2905{
2906 return __check_direct_spte_mmio_pf(spte);
2907}
2908
2909static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2910{
2911 struct kvm_shadow_walk_iterator iterator;
2912 u64 spte = 0ull;
2913
2914 walk_shadow_page_lockless_begin(vcpu);
2915 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2916 if (!is_shadow_present_pte(spte))
2917 break;
2918 walk_shadow_page_lockless_end(vcpu);
2919
2920 return spte;
2921}
2922
2923/*
2924 * If it is a real mmio page fault, return 1 and emulat the instruction
2925 * directly, return 0 to let CPU fault again on the address, -1 is
2926 * returned if bug is detected.
2927 */
2928int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2929{
2930 u64 spte;
2931
2932 if (quickly_check_mmio_pf(vcpu, addr, direct))
2933 return 1;
2934
2935 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2936
2937 if (is_mmio_spte(spte)) {
2938 gfn_t gfn = get_mmio_spte_gfn(spte);
2939 unsigned access = get_mmio_spte_access(spte);
2940
2941 if (direct)
2942 addr = 0;
4f022648
XG
2943
2944 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2945 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2946 return 1;
2947 }
2948
2949 /*
2950 * It's ok if the gva is remapped by other cpus on shadow guest,
2951 * it's a BUG if the gfn is not a mmio page.
2952 */
2953 if (direct && !check_direct_spte_mmio_pf(spte))
2954 return -1;
2955
2956 /*
2957 * If the page table is zapped by other cpus, let CPU fault again on
2958 * the address.
2959 */
2960 return 0;
2961}
2962EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2963
2964static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2965 u32 error_code, bool direct)
2966{
2967 int ret;
2968
2969 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2970 WARN_ON(ret < 0);
2971 return ret;
2972}
2973
6aa8b732 2974static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2975 u32 error_code, bool prefault)
6aa8b732 2976{
e833240f 2977 gfn_t gfn;
e2dec939 2978 int r;
6aa8b732 2979
b8688d51 2980 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2981
2982 if (unlikely(error_code & PFERR_RSVD_MASK))
2983 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2984
e2dec939
AK
2985 r = mmu_topup_memory_caches(vcpu);
2986 if (r)
2987 return r;
714b93da 2988
6aa8b732 2989 ASSERT(vcpu);
ad312c7c 2990 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 2991
e833240f 2992 gfn = gva >> PAGE_SHIFT;
6aa8b732 2993
e833240f 2994 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 2995 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
2996}
2997
7e1fbeac 2998static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
2999{
3000 struct kvm_arch_async_pf arch;
fb67e14f 3001
7c90705b 3002 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3003 arch.gfn = gfn;
c4806acd 3004 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3005 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3006
3007 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3008}
3009
3010static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3011{
3012 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3013 kvm_event_needs_reinjection(vcpu)))
3014 return false;
3015
3016 return kvm_x86_ops->interrupt_allowed(vcpu);
3017}
3018
78b2c54a 3019static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3020 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3021{
3022 bool async;
3023
612819c3 3024 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3025
3026 if (!async)
3027 return false; /* *pfn has correct page already */
3028
3029 put_page(pfn_to_page(*pfn));
3030
78b2c54a 3031 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3032 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3033 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3034 trace_kvm_async_pf_doublefault(gva, gfn);
3035 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3036 return true;
3037 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3038 return true;
3039 }
3040
612819c3 3041 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3042
3043 return false;
3044}
3045
56028d08 3046static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3047 bool prefault)
fb72d167 3048{
35149e21 3049 pfn_t pfn;
fb72d167 3050 int r;
852e3c19 3051 int level;
936a5fe6 3052 int force_pt_level;
05da4558 3053 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3054 unsigned long mmu_seq;
612819c3
MT
3055 int write = error_code & PFERR_WRITE_MASK;
3056 bool map_writable;
fb72d167
JR
3057
3058 ASSERT(vcpu);
3059 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3060
ce88decf
XG
3061 if (unlikely(error_code & PFERR_RSVD_MASK))
3062 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3063
fb72d167
JR
3064 r = mmu_topup_memory_caches(vcpu);
3065 if (r)
3066 return r;
3067
936a5fe6
AA
3068 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3069 if (likely(!force_pt_level)) {
3070 level = mapping_level(vcpu, gfn);
3071 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3072 } else
3073 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3074
e930bffe 3075 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3076 smp_rmb();
af585b92 3077
78b2c54a 3078 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3079 return 0;
3080
d7c55201
XG
3081 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3082 return r;
3083
fb72d167 3084 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3085 if (mmu_notifier_retry(vcpu, mmu_seq))
3086 goto out_unlock;
fb72d167 3087 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3088 if (likely(!force_pt_level))
3089 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3090 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3091 level, gfn, pfn, prefault);
fb72d167 3092 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3093
3094 return r;
e930bffe
AA
3095
3096out_unlock:
3097 spin_unlock(&vcpu->kvm->mmu_lock);
3098 kvm_release_pfn_clean(pfn);
3099 return 0;
fb72d167
JR
3100}
3101
6aa8b732
AK
3102static void nonpaging_free(struct kvm_vcpu *vcpu)
3103{
17ac10ad 3104 mmu_free_roots(vcpu);
6aa8b732
AK
3105}
3106
52fde8df
JR
3107static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3108 struct kvm_mmu *context)
6aa8b732 3109{
6aa8b732
AK
3110 context->new_cr3 = nonpaging_new_cr3;
3111 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3112 context->gva_to_gpa = nonpaging_gva_to_gpa;
3113 context->free = nonpaging_free;
e8bc217a 3114 context->sync_page = nonpaging_sync_page;
a7052897 3115 context->invlpg = nonpaging_invlpg;
0f53b5b1 3116 context->update_pte = nonpaging_update_pte;
cea0f0e7 3117 context->root_level = 0;
6aa8b732 3118 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3119 context->root_hpa = INVALID_PAGE;
c5a78f2b 3120 context->direct_map = true;
2d48a985 3121 context->nx = false;
6aa8b732
AK
3122 return 0;
3123}
3124
d835dfec 3125void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3126{
1165f5fe 3127 ++vcpu->stat.tlb_flush;
a8eeb04a 3128 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3129}
3130
3131static void paging_new_cr3(struct kvm_vcpu *vcpu)
3132{
9f8fe504 3133 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3134 mmu_free_roots(vcpu);
6aa8b732
AK
3135}
3136
5777ed34
JR
3137static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3138{
9f8fe504 3139 return kvm_read_cr3(vcpu);
5777ed34
JR
3140}
3141
6389ee94
AK
3142static void inject_page_fault(struct kvm_vcpu *vcpu,
3143 struct x86_exception *fault)
6aa8b732 3144{
6389ee94 3145 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3146}
3147
6aa8b732
AK
3148static void paging_free(struct kvm_vcpu *vcpu)
3149{
3150 nonpaging_free(vcpu);
3151}
3152
3241f22d 3153static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3154{
3155 int bit7;
3156
3157 bit7 = (gpte >> 7) & 1;
3241f22d 3158 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3159}
3160
ce88decf
XG
3161static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3162 int *nr_present)
3163{
3164 if (unlikely(is_mmio_spte(*sptep))) {
3165 if (gfn != get_mmio_spte_gfn(*sptep)) {
3166 mmu_spte_clear_no_track(sptep);
3167 return true;
3168 }
3169
3170 (*nr_present)++;
3171 mark_mmio_spte(sptep, gfn, access);
3172 return true;
3173 }
3174
3175 return false;
3176}
3177
6aa8b732
AK
3178#define PTTYPE 64
3179#include "paging_tmpl.h"
3180#undef PTTYPE
3181
3182#define PTTYPE 32
3183#include "paging_tmpl.h"
3184#undef PTTYPE
3185
52fde8df
JR
3186static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3187 struct kvm_mmu *context,
3188 int level)
82725b20 3189{
82725b20
DE
3190 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3191 u64 exb_bit_rsvd = 0;
3192
2d48a985 3193 if (!context->nx)
82725b20
DE
3194 exb_bit_rsvd = rsvd_bits(63, 63);
3195 switch (level) {
3196 case PT32_ROOT_LEVEL:
3197 /* no rsvd bits for 2 level 4K page table entries */
3198 context->rsvd_bits_mask[0][1] = 0;
3199 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3200 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3201
3202 if (!is_pse(vcpu)) {
3203 context->rsvd_bits_mask[1][1] = 0;
3204 break;
3205 }
3206
82725b20
DE
3207 if (is_cpuid_PSE36())
3208 /* 36bits PSE 4MB page */
3209 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3210 else
3211 /* 32 bits PSE 4MB page */
3212 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3213 break;
3214 case PT32E_ROOT_LEVEL:
20c466b5
DE
3215 context->rsvd_bits_mask[0][2] =
3216 rsvd_bits(maxphyaddr, 63) |
3217 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3218 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3219 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3220 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3221 rsvd_bits(maxphyaddr, 62); /* PTE */
3222 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3223 rsvd_bits(maxphyaddr, 62) |
3224 rsvd_bits(13, 20); /* large page */
f815bce8 3225 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3226 break;
3227 case PT64_ROOT_LEVEL:
3228 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3229 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3230 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3231 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3233 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 51);
3236 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3237 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 51) |
3239 rsvd_bits(13, 29);
82725b20 3240 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3241 rsvd_bits(maxphyaddr, 51) |
3242 rsvd_bits(13, 20); /* large page */
f815bce8 3243 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3244 break;
3245 }
3246}
3247
52fde8df
JR
3248static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3249 struct kvm_mmu *context,
3250 int level)
6aa8b732 3251{
2d48a985
JR
3252 context->nx = is_nx(vcpu);
3253
52fde8df 3254 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3255
3256 ASSERT(is_pae(vcpu));
3257 context->new_cr3 = paging_new_cr3;
3258 context->page_fault = paging64_page_fault;
6aa8b732 3259 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3260 context->sync_page = paging64_sync_page;
a7052897 3261 context->invlpg = paging64_invlpg;
0f53b5b1 3262 context->update_pte = paging64_update_pte;
6aa8b732 3263 context->free = paging_free;
17ac10ad
AK
3264 context->root_level = level;
3265 context->shadow_root_level = level;
17c3ba9d 3266 context->root_hpa = INVALID_PAGE;
c5a78f2b 3267 context->direct_map = false;
6aa8b732
AK
3268 return 0;
3269}
3270
52fde8df
JR
3271static int paging64_init_context(struct kvm_vcpu *vcpu,
3272 struct kvm_mmu *context)
17ac10ad 3273{
52fde8df 3274 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3275}
3276
52fde8df
JR
3277static int paging32_init_context(struct kvm_vcpu *vcpu,
3278 struct kvm_mmu *context)
6aa8b732 3279{
2d48a985
JR
3280 context->nx = false;
3281
52fde8df 3282 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3283
3284 context->new_cr3 = paging_new_cr3;
3285 context->page_fault = paging32_page_fault;
6aa8b732
AK
3286 context->gva_to_gpa = paging32_gva_to_gpa;
3287 context->free = paging_free;
e8bc217a 3288 context->sync_page = paging32_sync_page;
a7052897 3289 context->invlpg = paging32_invlpg;
0f53b5b1 3290 context->update_pte = paging32_update_pte;
6aa8b732
AK
3291 context->root_level = PT32_ROOT_LEVEL;
3292 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3293 context->root_hpa = INVALID_PAGE;
c5a78f2b 3294 context->direct_map = false;
6aa8b732
AK
3295 return 0;
3296}
3297
52fde8df
JR
3298static int paging32E_init_context(struct kvm_vcpu *vcpu,
3299 struct kvm_mmu *context)
6aa8b732 3300{
52fde8df 3301 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3302}
3303
fb72d167
JR
3304static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3305{
14dfe855 3306 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3307
c445f8ef 3308 context->base_role.word = 0;
fb72d167
JR
3309 context->new_cr3 = nonpaging_new_cr3;
3310 context->page_fault = tdp_page_fault;
3311 context->free = nonpaging_free;
e8bc217a 3312 context->sync_page = nonpaging_sync_page;
a7052897 3313 context->invlpg = nonpaging_invlpg;
0f53b5b1 3314 context->update_pte = nonpaging_update_pte;
67253af5 3315 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3316 context->root_hpa = INVALID_PAGE;
c5a78f2b 3317 context->direct_map = true;
1c97f0a0 3318 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3319 context->get_cr3 = get_cr3;
cb659db8 3320 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3321 context->nx = is_nx(vcpu);
fb72d167
JR
3322
3323 if (!is_paging(vcpu)) {
2d48a985 3324 context->nx = false;
fb72d167
JR
3325 context->gva_to_gpa = nonpaging_gva_to_gpa;
3326 context->root_level = 0;
3327 } else if (is_long_mode(vcpu)) {
2d48a985 3328 context->nx = is_nx(vcpu);
52fde8df 3329 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3330 context->gva_to_gpa = paging64_gva_to_gpa;
3331 context->root_level = PT64_ROOT_LEVEL;
3332 } else if (is_pae(vcpu)) {
2d48a985 3333 context->nx = is_nx(vcpu);
52fde8df 3334 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3335 context->gva_to_gpa = paging64_gva_to_gpa;
3336 context->root_level = PT32E_ROOT_LEVEL;
3337 } else {
2d48a985 3338 context->nx = false;
52fde8df 3339 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3340 context->gva_to_gpa = paging32_gva_to_gpa;
3341 context->root_level = PT32_ROOT_LEVEL;
3342 }
3343
3344 return 0;
3345}
3346
52fde8df 3347int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3348{
a770f6f2 3349 int r;
411c588d 3350 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3351 ASSERT(vcpu);
ad312c7c 3352 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3353
3354 if (!is_paging(vcpu))
52fde8df 3355 r = nonpaging_init_context(vcpu, context);
a9058ecd 3356 else if (is_long_mode(vcpu))
52fde8df 3357 r = paging64_init_context(vcpu, context);
6aa8b732 3358 else if (is_pae(vcpu))
52fde8df 3359 r = paging32E_init_context(vcpu, context);
6aa8b732 3360 else
52fde8df 3361 r = paging32_init_context(vcpu, context);
a770f6f2 3362
5b7e0102 3363 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3364 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3365 vcpu->arch.mmu.base_role.smep_andnot_wp
3366 = smep && !is_write_protection(vcpu);
52fde8df
JR
3367
3368 return r;
3369}
3370EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3371
3372static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3373{
14dfe855 3374 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3375
14dfe855
JR
3376 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3377 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3378 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3379
3380 return r;
6aa8b732
AK
3381}
3382
02f59dc9
JR
3383static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3384{
3385 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3386
3387 g_context->get_cr3 = get_cr3;
3388 g_context->inject_page_fault = kvm_inject_page_fault;
3389
3390 /*
3391 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3392 * translation of l2_gpa to l1_gpa addresses is done using the
3393 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3394 * functions between mmu and nested_mmu are swapped.
3395 */
3396 if (!is_paging(vcpu)) {
2d48a985 3397 g_context->nx = false;
02f59dc9
JR
3398 g_context->root_level = 0;
3399 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3400 } else if (is_long_mode(vcpu)) {
2d48a985 3401 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3402 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3403 g_context->root_level = PT64_ROOT_LEVEL;
3404 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3405 } else if (is_pae(vcpu)) {
2d48a985 3406 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3407 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3408 g_context->root_level = PT32E_ROOT_LEVEL;
3409 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3410 } else {
2d48a985 3411 g_context->nx = false;
02f59dc9
JR
3412 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3413 g_context->root_level = PT32_ROOT_LEVEL;
3414 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3415 }
3416
3417 return 0;
3418}
3419
fb72d167
JR
3420static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3421{
02f59dc9
JR
3422 if (mmu_is_nested(vcpu))
3423 return init_kvm_nested_mmu(vcpu);
3424 else if (tdp_enabled)
fb72d167
JR
3425 return init_kvm_tdp_mmu(vcpu);
3426 else
3427 return init_kvm_softmmu(vcpu);
3428}
3429
6aa8b732
AK
3430static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3431{
3432 ASSERT(vcpu);
62ad0755
SY
3433 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3434 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3435 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3436}
3437
3438int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3439{
3440 destroy_kvm_mmu(vcpu);
f8f7e5ee 3441 return init_kvm_mmu(vcpu);
17c3ba9d 3442}
8668a3c4 3443EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3444
3445int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3446{
714b93da
AK
3447 int r;
3448
e2dec939 3449 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3450 if (r)
3451 goto out;
8986ecc0 3452 r = mmu_alloc_roots(vcpu);
8facbbff 3453 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3454 mmu_sync_roots(vcpu);
aaee2c94 3455 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3456 if (r)
3457 goto out;
3662cb1c 3458 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3459 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3460out:
3461 return r;
6aa8b732 3462}
17c3ba9d
AK
3463EXPORT_SYMBOL_GPL(kvm_mmu_load);
3464
3465void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3466{
3467 mmu_free_roots(vcpu);
3468}
4b16184c 3469EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3470
0028425f 3471static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3472 struct kvm_mmu_page *sp, u64 *spte,
3473 const void *new)
0028425f 3474{
30945387 3475 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3476 ++vcpu->kvm->stat.mmu_pde_zapped;
3477 return;
30945387 3478 }
0028425f 3479
4cee5764 3480 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3481 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3482}
3483
79539cec
AK
3484static bool need_remote_flush(u64 old, u64 new)
3485{
3486 if (!is_shadow_present_pte(old))
3487 return false;
3488 if (!is_shadow_present_pte(new))
3489 return true;
3490 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3491 return true;
3492 old ^= PT64_NX_MASK;
3493 new ^= PT64_NX_MASK;
3494 return (old & ~new & PT64_PERM_MASK) != 0;
3495}
3496
0671a8e7
XG
3497static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3498 bool remote_flush, bool local_flush)
79539cec 3499{
0671a8e7
XG
3500 if (zap_page)
3501 return;
3502
3503 if (remote_flush)
79539cec 3504 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3505 else if (local_flush)
79539cec
AK
3506 kvm_mmu_flush_tlb(vcpu);
3507}
3508
12b7d28f
AK
3509static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3510{
ad312c7c 3511 u64 *spte = vcpu->arch.last_pte_updated;
12b7d28f 3512
7b52345e 3513 return !!(spte && (*spte & shadow_accessed_mask));
12b7d28f
AK
3514}
3515
1b7fcd32
AK
3516static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3517{
3518 u64 *spte = vcpu->arch.last_pte_updated;
3519
3520 if (spte
3521 && vcpu->arch.last_pte_gfn == gfn
3522 && shadow_accessed_mask
3523 && !(*spte & shadow_accessed_mask)
3524 && is_shadow_present_pte(*spte))
3525 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3526}
3527
09072daf 3528void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
ad218f85
MT
3529 const u8 *new, int bytes,
3530 bool guest_initiated)
da4a00f0 3531{
9b7a0325 3532 gfn_t gfn = gpa >> PAGE_SHIFT;
fa1de2bf 3533 union kvm_mmu_page_role mask = { .word = 0 };
4db35314 3534 struct kvm_mmu_page *sp;
f41d335a 3535 struct hlist_node *node;
d98ba053 3536 LIST_HEAD(invalid_list);
0f53b5b1
XG
3537 u64 entry, gentry, *spte;
3538 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3539 int level, npte, invlpg_counter, r, flooded = 0;
0671a8e7
XG
3540 bool remote_flush, local_flush, zap_page;
3541
332b207d
XG
3542 /*
3543 * If we don't have indirect shadow pages, it means no page is
3544 * write-protected, so we can exit simply.
3545 */
3546 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3547 return;
3548
0671a8e7 3549 zap_page = remote_flush = local_flush = false;
0f53b5b1 3550 offset = offset_in_page(gpa);
9b7a0325 3551
b8688d51 3552 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
72016f3a 3553
08e850c6 3554 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
72016f3a
AK
3555
3556 /*
3557 * Assume that the pte write on a page table of the same type
49b26e26
XG
3558 * as the current vcpu paging mode since we update the sptes only
3559 * when they have the same mode.
72016f3a 3560 */
08e850c6 3561 if ((is_pae(vcpu) && bytes == 4) || !new) {
72016f3a 3562 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
08e850c6
AK
3563 if (is_pae(vcpu)) {
3564 gpa &= ~(gpa_t)7;
3565 bytes = 8;
3566 }
3567 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
72016f3a
AK
3568 if (r)
3569 gentry = 0;
08e850c6
AK
3570 new = (const u8 *)&gentry;
3571 }
3572
3573 switch (bytes) {
3574 case 4:
3575 gentry = *(const u32 *)new;
3576 break;
3577 case 8:
3578 gentry = *(const u64 *)new;
3579 break;
3580 default:
3581 gentry = 0;
3582 break;
72016f3a
AK
3583 }
3584
aaee2c94 3585 spin_lock(&vcpu->kvm->mmu_lock);
08e850c6
AK
3586 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3587 gentry = 0;
eb787d10 3588 kvm_mmu_free_some_pages(vcpu);
4cee5764 3589 ++vcpu->kvm->stat.mmu_pte_write;
8b1fe17c 3590 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
ad218f85 3591 if (guest_initiated) {
1b7fd45c 3592 kvm_mmu_access_page(vcpu, gfn);
ad218f85
MT
3593 if (gfn == vcpu->arch.last_pt_write_gfn
3594 && !last_updated_pte_accessed(vcpu)) {
3595 ++vcpu->arch.last_pt_write_count;
3596 if (vcpu->arch.last_pt_write_count >= 3)
3597 flooded = 1;
3598 } else {
3599 vcpu->arch.last_pt_write_gfn = gfn;
3600 vcpu->arch.last_pt_write_count = 1;
3601 vcpu->arch.last_pte_updated = NULL;
3602 }
86a5ba02 3603 }
3246af0e 3604
fa1de2bf 3605 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3606 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
5b7e0102 3607 pte_size = sp->role.cr4_pae ? 8 : 4;
0e7bc4b9 3608 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 3609 misaligned |= bytes < 4;
86a5ba02 3610 if (misaligned || flooded) {
0e7bc4b9
AK
3611 /*
3612 * Misaligned accesses are too much trouble to fix
3613 * up; also, they usually indicate a page is not used
3614 * as a page table.
86a5ba02
AK
3615 *
3616 * If we're seeing too many writes to a page,
3617 * it may no longer be a page table, or we may be
3618 * forking, in which case it is better to unmap the
3619 * page.
0e7bc4b9
AK
3620 */
3621 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4db35314 3622 gpa, bytes, sp->role.word);
0671a8e7 3623 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3624 &invalid_list);
4cee5764 3625 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3626 continue;
3627 }
9b7a0325 3628 page_offset = offset;
4db35314 3629 level = sp->role.level;
ac1b714e 3630 npte = 1;
5b7e0102 3631 if (!sp->role.cr4_pae) {
ac1b714e
AK
3632 page_offset <<= 1; /* 32->64 */
3633 /*
3634 * A 32-bit pde maps 4MB while the shadow pdes map
3635 * only 2MB. So we need to double the offset again
3636 * and zap two pdes instead of one.
3637 */
3638 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 3639 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
3640 page_offset <<= 1;
3641 npte = 2;
3642 }
fce0657f 3643 quadrant = page_offset >> PAGE_SHIFT;
9b7a0325 3644 page_offset &= ~PAGE_MASK;
4db35314 3645 if (quadrant != sp->role.quadrant)
fce0657f 3646 continue;
9b7a0325 3647 }
0671a8e7 3648 local_flush = true;
4db35314 3649 spte = &sp->spt[page_offset / sizeof(*spte)];
ac1b714e 3650 while (npte--) {
79539cec 3651 entry = *spte;
38e3b2b2 3652 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3653 if (gentry &&
3654 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3655 & mask.word))
7c562522 3656 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3657 if (!remote_flush && need_remote_flush(entry, *spte))
3658 remote_flush = true;
ac1b714e 3659 ++spte;
9b7a0325 3660 }
9b7a0325 3661 }
0671a8e7 3662 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3663 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
8b1fe17c 3664 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3665 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3666}
3667
a436036b
AK
3668int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3669{
10589a46
MT
3670 gpa_t gpa;
3671 int r;
a436036b 3672
c5a78f2b 3673 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3674 return 0;
3675
1871c602 3676 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3677
aaee2c94 3678 spin_lock(&vcpu->kvm->mmu_lock);
10589a46 3679 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
aaee2c94 3680 spin_unlock(&vcpu->kvm->mmu_lock);
10589a46 3681 return r;
a436036b 3682}
577bdc49 3683EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3684
22d95b12 3685void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3686{
d98ba053 3687 LIST_HEAD(invalid_list);
103ad25a 3688
e0df7b9f 3689 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3690 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3691 struct kvm_mmu_page *sp;
ebeace86 3692
f05e70ac 3693 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3694 struct kvm_mmu_page, link);
e0df7b9f 3695 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3696 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3697 }
aa6bd187 3698 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3699}
ebeace86 3700
dc25e89e
AP
3701int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3702 void *insn, int insn_len)
3067714c
AK
3703{
3704 int r;
3705 enum emulation_result er;
3706
56028d08 3707 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3708 if (r < 0)
3709 goto out;
3710
3711 if (!r) {
3712 r = 1;
3713 goto out;
3714 }
3715
b733bfb5
AK
3716 r = mmu_topup_memory_caches(vcpu);
3717 if (r)
3718 goto out;
3719
dc25e89e 3720 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3067714c
AK
3721
3722 switch (er) {
3723 case EMULATE_DONE:
3724 return 1;
3725 case EMULATE_DO_MMIO:
3726 ++vcpu->stat.mmio_exits;
6d77dbfc 3727 /* fall through */
3067714c 3728 case EMULATE_FAIL:
3f5d18a9 3729 return 0;
3067714c
AK
3730 default:
3731 BUG();
3732 }
3733out:
3067714c
AK
3734 return r;
3735}
3736EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3737
a7052897
MT
3738void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3739{
a7052897 3740 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3741 kvm_mmu_flush_tlb(vcpu);
3742 ++vcpu->stat.invlpg;
3743}
3744EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3745
18552672
JR
3746void kvm_enable_tdp(void)
3747{
3748 tdp_enabled = true;
3749}
3750EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3751
5f4cb662
JR
3752void kvm_disable_tdp(void)
3753{
3754 tdp_enabled = false;
3755}
3756EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3757
6aa8b732
AK
3758static void free_mmu_pages(struct kvm_vcpu *vcpu)
3759{
ad312c7c 3760 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3761 if (vcpu->arch.mmu.lm_root != NULL)
3762 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3763}
3764
3765static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3766{
17ac10ad 3767 struct page *page;
6aa8b732
AK
3768 int i;
3769
3770 ASSERT(vcpu);
3771
17ac10ad
AK
3772 /*
3773 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3774 * Therefore we need to allocate shadow page tables in the first
3775 * 4GB of memory, which happens to fit the DMA32 zone.
3776 */
3777 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3778 if (!page)
d7fa6ab2
WY
3779 return -ENOMEM;
3780
ad312c7c 3781 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3782 for (i = 0; i < 4; ++i)
ad312c7c 3783 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3784
6aa8b732 3785 return 0;
6aa8b732
AK
3786}
3787
8018c27b 3788int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3789{
6aa8b732 3790 ASSERT(vcpu);
ad312c7c 3791 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3792
8018c27b
IM
3793 return alloc_mmu_pages(vcpu);
3794}
6aa8b732 3795
8018c27b
IM
3796int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3797{
3798 ASSERT(vcpu);
ad312c7c 3799 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3800
8018c27b 3801 return init_kvm_mmu(vcpu);
6aa8b732
AK
3802}
3803
90cb0529 3804void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3805{
4db35314 3806 struct kvm_mmu_page *sp;
6aa8b732 3807
f05e70ac 3808 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3809 int i;
3810 u64 *pt;
3811
291f26bc 3812 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3813 continue;
3814
4db35314 3815 pt = sp->spt;
8234b22e 3816 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3817 if (!is_shadow_present_pte(pt[i]) ||
3818 !is_last_spte(pt[i], sp->role.level))
3819 continue;
3820
3821 if (is_large_pte(pt[i])) {
c3707958 3822 drop_spte(kvm, &pt[i]);
8234b22e 3823 --kvm->stat.lpages;
da8dc75f 3824 continue;
8234b22e 3825 }
da8dc75f 3826
6aa8b732 3827 /* avoid RMW */
01c168ac 3828 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3829 mmu_spte_update(&pt[i],
3830 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3831 }
6aa8b732 3832 }
171d595d 3833 kvm_flush_remote_tlbs(kvm);
6aa8b732 3834}
37a7d8b0 3835
90cb0529 3836void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3837{
4db35314 3838 struct kvm_mmu_page *sp, *node;
d98ba053 3839 LIST_HEAD(invalid_list);
e0fa826f 3840
aaee2c94 3841 spin_lock(&kvm->mmu_lock);
3246af0e 3842restart:
f05e70ac 3843 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3844 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3845 goto restart;
3846
d98ba053 3847 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3848 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3849}
3850
d98ba053
XG
3851static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3852 struct list_head *invalid_list)
3ee16c81
IE
3853{
3854 struct kvm_mmu_page *page;
3855
3856 page = container_of(kvm->arch.active_mmu_pages.prev,
3857 struct kvm_mmu_page, link);
d98ba053 3858 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3859}
3860
1495f230 3861static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3862{
3863 struct kvm *kvm;
3864 struct kvm *kvm_freed = NULL;
1495f230 3865 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3866
3867 if (nr_to_scan == 0)
3868 goto out;
3ee16c81 3869
e935b837 3870 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3871
3872 list_for_each_entry(kvm, &vm_list, vm_list) {
45221ab6 3873 int idx, freed_pages;
d98ba053 3874 LIST_HEAD(invalid_list);
3ee16c81 3875
f656ce01 3876 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3877 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3878 if (!kvm_freed && nr_to_scan > 0 &&
3879 kvm->arch.n_used_mmu_pages > 0) {
d98ba053
XG
3880 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3881 &invalid_list);
3ee16c81
IE
3882 kvm_freed = kvm;
3883 }
3884 nr_to_scan--;
3885
d98ba053 3886 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3887 spin_unlock(&kvm->mmu_lock);
f656ce01 3888 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3889 }
3890 if (kvm_freed)
3891 list_move_tail(&kvm_freed->vm_list, &vm_list);
3892
e935b837 3893 raw_spin_unlock(&kvm_lock);
3ee16c81 3894
45221ab6
DH
3895out:
3896 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3897}
3898
3899static struct shrinker mmu_shrinker = {
3900 .shrink = mmu_shrink,
3901 .seeks = DEFAULT_SEEKS * 10,
3902};
3903
2ddfd20e 3904static void mmu_destroy_caches(void)
b5a33a75 3905{
53c07b18
XG
3906 if (pte_list_desc_cache)
3907 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3908 if (mmu_page_header_cache)
3909 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3910}
3911
3912int kvm_mmu_module_init(void)
3913{
53c07b18
XG
3914 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3915 sizeof(struct pte_list_desc),
20c2df83 3916 0, 0, NULL);
53c07b18 3917 if (!pte_list_desc_cache)
b5a33a75
AK
3918 goto nomem;
3919
d3d25b04
AK
3920 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3921 sizeof(struct kvm_mmu_page),
20c2df83 3922 0, 0, NULL);
d3d25b04
AK
3923 if (!mmu_page_header_cache)
3924 goto nomem;
3925
45bf21a8
WY
3926 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3927 goto nomem;
3928
3ee16c81
IE
3929 register_shrinker(&mmu_shrinker);
3930
b5a33a75
AK
3931 return 0;
3932
3933nomem:
3ee16c81 3934 mmu_destroy_caches();
b5a33a75
AK
3935 return -ENOMEM;
3936}
3937
3ad82a7e
ZX
3938/*
3939 * Caculate mmu pages needed for kvm.
3940 */
3941unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3942{
3943 int i;
3944 unsigned int nr_mmu_pages;
3945 unsigned int nr_pages = 0;
bc6678a3 3946 struct kvm_memslots *slots;
3ad82a7e 3947
90d83dc3
LJ
3948 slots = kvm_memslots(kvm);
3949
bc6678a3
MT
3950 for (i = 0; i < slots->nmemslots; i++)
3951 nr_pages += slots->memslots[i].npages;
3ad82a7e
ZX
3952
3953 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3954 nr_mmu_pages = max(nr_mmu_pages,
3955 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3956
3957 return nr_mmu_pages;
3958}
3959
2f333bcb
MT
3960static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3961 unsigned len)
3962{
3963 if (len > buffer->len)
3964 return NULL;
3965 return buffer->ptr;
3966}
3967
3968static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3969 unsigned len)
3970{
3971 void *ret;
3972
3973 ret = pv_mmu_peek_buffer(buffer, len);
3974 if (!ret)
3975 return ret;
3976 buffer->ptr += len;
3977 buffer->len -= len;
3978 buffer->processed += len;
3979 return ret;
3980}
3981
3982static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3983 gpa_t addr, gpa_t value)
3984{
3985 int bytes = 8;
3986 int r;
3987
3988 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3989 bytes = 4;
3990
3991 r = mmu_topup_memory_caches(vcpu);
3992 if (r)
3993 return r;
3994
3200f405 3995 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2f333bcb
MT
3996 return -EFAULT;
3997
3998 return 1;
3999}
4000
4001static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4002{
9f8fe504 4003 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
2f333bcb
MT
4004 return 1;
4005}
4006
4007static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4008{
4009 spin_lock(&vcpu->kvm->mmu_lock);
4010 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4011 spin_unlock(&vcpu->kvm->mmu_lock);
4012 return 1;
4013}
4014
4015static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4016 struct kvm_pv_mmu_op_buffer *buffer)
4017{
4018 struct kvm_mmu_op_header *header;
4019
4020 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4021 if (!header)
4022 return 0;
4023 switch (header->op) {
4024 case KVM_MMU_OP_WRITE_PTE: {
4025 struct kvm_mmu_op_write_pte *wpte;
4026
4027 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4028 if (!wpte)
4029 return 0;
4030 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4031 wpte->pte_val);
4032 }
4033 case KVM_MMU_OP_FLUSH_TLB: {
4034 struct kvm_mmu_op_flush_tlb *ftlb;
4035
4036 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4037 if (!ftlb)
4038 return 0;
4039 return kvm_pv_mmu_flush_tlb(vcpu);
4040 }
4041 case KVM_MMU_OP_RELEASE_PT: {
4042 struct kvm_mmu_op_release_pt *rpt;
4043
4044 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4045 if (!rpt)
4046 return 0;
4047 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4048 }
4049 default: return 0;
4050 }
4051}
4052
4053int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4054 gpa_t addr, unsigned long *ret)
4055{
4056 int r;
6ad18fba 4057 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2f333bcb 4058
6ad18fba
DH
4059 buffer->ptr = buffer->buf;
4060 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4061 buffer->processed = 0;
2f333bcb 4062
6ad18fba 4063 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2f333bcb
MT
4064 if (r)
4065 goto out;
4066
6ad18fba
DH
4067 while (buffer->len) {
4068 r = kvm_pv_mmu_op_one(vcpu, buffer);
2f333bcb
MT
4069 if (r < 0)
4070 goto out;
4071 if (r == 0)
4072 break;
4073 }
4074
4075 r = 1;
4076out:
6ad18fba 4077 *ret = buffer->processed;
2f333bcb
MT
4078 return r;
4079}
4080
94d8b056
MT
4081int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4082{
4083 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4084 u64 spte;
94d8b056
MT
4085 int nr_sptes = 0;
4086
c2a2ac2b
XG
4087 walk_shadow_page_lockless_begin(vcpu);
4088 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4089 sptes[iterator.level-1] = spte;
94d8b056 4090 nr_sptes++;
c2a2ac2b 4091 if (!is_shadow_present_pte(spte))
94d8b056
MT
4092 break;
4093 }
c2a2ac2b 4094 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4095
4096 return nr_sptes;
4097}
4098EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4099
c42fffe3
XG
4100void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4101{
4102 ASSERT(vcpu);
4103
4104 destroy_kvm_mmu(vcpu);
4105 free_mmu_pages(vcpu);
4106 mmu_free_memory_caches(vcpu);
b034cf01
XG
4107}
4108
4109#ifdef CONFIG_KVM_MMU_AUDIT
4110#include "mmu_audit.c"
4111#else
4112static void mmu_audit_disable(void) { }
4113#endif
4114
4115void kvm_mmu_module_exit(void)
4116{
4117 mmu_destroy_caches();
4118 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4119 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4120 mmu_audit_disable();
4121}
This page took 1.0359 seconds and 5 git commands to generate.