* i386linux.c (linux_link_hash_table_create): Allocate table
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
ead49a57
RS
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
020d7251 57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
ead49a57
RS
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
f4416af6
AO
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
020d7251
RS
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
f4416af6
AO
101 struct mips_elf_link_hash_entry *h;
102 } d;
0f20cc35
DJ
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
b15e6682 111 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
b15e6682
AO
115};
116
c224138d
RS
117/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120struct mips_got_page_range
121{
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125};
126
127/* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129struct mips_got_page_entry
130{
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139};
140
f0abc2a1 141/* This structure is used to hold .got information when linking. */
b49e97c9
TS
142
143struct mips_got_info
144{
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
23cc69b6
RS
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
0f20cc35
DJ
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
c224138d 157 /* The number of local .got entries, eventually including page entries. */
b49e97c9 158 unsigned int local_gotno;
c224138d
RS
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
b49e97c9
TS
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
b15e6682
AO
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
c224138d
RS
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
f4416af6
AO
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
0f20cc35
DJ
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
f4416af6
AO
178};
179
180/* Map an input bfd to a got in a multi-got link. */
181
91d6fa6a
NC
182struct mips_elf_bfd2got_hash
183{
f4416af6
AO
184 bfd *bfd;
185 struct mips_got_info *g;
186};
187
188/* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191struct mips_elf_got_per_bfd_arg
192{
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
c224138d
RS
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
0f20cc35
DJ
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
f4416af6
AO
216};
217
218/* Another structure used to pass arguments for got entries traversal. */
219
220struct mips_elf_set_global_got_offset_arg
221{
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
b49e97c9
TS
226};
227
0f20cc35
DJ
228/* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231struct mips_elf_count_tls_arg
232{
233 struct bfd_link_info *info;
234 unsigned int needed;
235};
236
f0abc2a1
AM
237struct _mips_elf_section_data
238{
239 struct bfd_elf_section_data elf;
240 union
241 {
f0abc2a1
AM
242 bfd_byte *tdata;
243 } u;
244};
245
246#define mips_elf_section_data(sec) \
68bfbfcc 247 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 248
d5eaccd7
RS
249#define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
4dfe6ac6 252 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 253
634835ae
RS
254/* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271#define GGA_NORMAL 0
272#define GGA_RELOC_ONLY 1
273#define GGA_NONE 2
274
861fb55a
DJ
275/* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302};
303
304/* Macros for populating a mips_elf_la25_stub. */
305
306#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
309#define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311#define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313#define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 315
b49e97c9
TS
316/* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319struct mips_elf_hash_sort_data
320{
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
0f20cc35
DJ
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
b49e97c9 326 long min_got_dynindx;
f4416af6
AO
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 329 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 330 long max_unref_got_dynindx;
b49e97c9
TS
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334};
335
336/* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339struct mips_elf_link_hash_entry
340{
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
861fb55a
DJ
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
b49e97c9
TS
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
b49e97c9
TS
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
b49e97c9
TS
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
7c5fcef7 364
0f20cc35
DJ
365#define GOT_NORMAL 0
366#define GOT_TLS_GD 1
367#define GOT_TLS_LDM 2
368#define GOT_TLS_IE 4
369#define GOT_TLS_OFFSET_DONE 0x40
370#define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
71782a75 372
0f20cc35
DJ
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
71782a75 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
423#if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427#endif
861fb55a 428
b49e97c9
TS
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
861fb55a 431
b49e97c9
TS
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
861fb55a 434
e6aea42d
MR
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
436 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 437 bfd_boolean use_rld_obj_head;
861fb55a 438
b4082c70
DD
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
861fb55a 441
b49e97c9 442 /* This is set if we see any mips16 stub sections. */
b34976b6 443 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
0a44bf69
RS
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
861fb55a 450
0e53d9da
AN
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
861fb55a 453
0a44bf69
RS
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
4e41d0d7 462 asection *sstubs;
a8028dd0 463 asection *sgot;
861fb55a 464
a8028dd0
RS
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
861fb55a
DJ
467
468 /* The size of the PLT header in bytes. */
0a44bf69 469 bfd_vma plt_header_size;
861fb55a
DJ
470
471 /* The size of a PLT entry in bytes. */
0a44bf69 472 bfd_vma plt_entry_size;
861fb55a 473
33bb52fb
RS
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
861fb55a 476
5108fc1b
RS
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
861fb55a
DJ
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499};
500
4dfe6ac6
NC
501/* Get the MIPS ELF linker hash table from a link_info structure. */
502
503#define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
861fb55a 507/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
508struct mips_htab_traverse_info
509{
861fb55a
DJ
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
b49e97c9
TS
516};
517
6ae68ba3
MR
518/* MIPS ELF private object data. */
519
520struct mips_elf_obj_tdata
521{
522 /* Generic ELF private object data. */
523 struct elf_obj_tdata root;
524
525 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
526 bfd *abi_fp_bfd;
527};
528
529/* Get MIPS ELF private object data from BFD's tdata. */
530
531#define mips_elf_tdata(bfd) \
532 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
533
0f20cc35
DJ
534#define TLS_RELOC_P(r_type) \
535 (r_type == R_MIPS_TLS_DTPMOD32 \
536 || r_type == R_MIPS_TLS_DTPMOD64 \
537 || r_type == R_MIPS_TLS_DTPREL32 \
538 || r_type == R_MIPS_TLS_DTPREL64 \
539 || r_type == R_MIPS_TLS_GD \
540 || r_type == R_MIPS_TLS_LDM \
541 || r_type == R_MIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS_TLS_GOTTPREL \
544 || r_type == R_MIPS_TLS_TPREL32 \
545 || r_type == R_MIPS_TLS_TPREL64 \
546 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 547 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
548 || r_type == R_MIPS16_TLS_GD \
549 || r_type == R_MIPS16_TLS_LDM \
550 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
551 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
552 || r_type == R_MIPS16_TLS_GOTTPREL \
553 || r_type == R_MIPS16_TLS_TPREL_HI16 \
554 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
555 || r_type == R_MICROMIPS_TLS_GD \
556 || r_type == R_MICROMIPS_TLS_LDM \
557 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
558 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
559 || r_type == R_MICROMIPS_TLS_GOTTPREL \
560 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
561 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 562
b49e97c9
TS
563/* Structure used to pass information to mips_elf_output_extsym. */
564
565struct extsym_info
566{
9e4aeb93
RS
567 bfd *abfd;
568 struct bfd_link_info *info;
b49e97c9
TS
569 struct ecoff_debug_info *debug;
570 const struct ecoff_debug_swap *swap;
b34976b6 571 bfd_boolean failed;
b49e97c9
TS
572};
573
8dc1a139 574/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
575
576static const char * const mips_elf_dynsym_rtproc_names[] =
577{
578 "_procedure_table",
579 "_procedure_string_table",
580 "_procedure_table_size",
581 NULL
582};
583
584/* These structures are used to generate the .compact_rel section on
8dc1a139 585 IRIX5. */
b49e97c9
TS
586
587typedef struct
588{
589 unsigned long id1; /* Always one? */
590 unsigned long num; /* Number of compact relocation entries. */
591 unsigned long id2; /* Always two? */
592 unsigned long offset; /* The file offset of the first relocation. */
593 unsigned long reserved0; /* Zero? */
594 unsigned long reserved1; /* Zero? */
595} Elf32_compact_rel;
596
597typedef struct
598{
599 bfd_byte id1[4];
600 bfd_byte num[4];
601 bfd_byte id2[4];
602 bfd_byte offset[4];
603 bfd_byte reserved0[4];
604 bfd_byte reserved1[4];
605} Elf32_External_compact_rel;
606
607typedef struct
608{
609 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
610 unsigned int rtype : 4; /* Relocation types. See below. */
611 unsigned int dist2to : 8;
612 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
613 unsigned long konst; /* KONST field. See below. */
614 unsigned long vaddr; /* VADDR to be relocated. */
615} Elf32_crinfo;
616
617typedef struct
618{
619 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
620 unsigned int rtype : 4; /* Relocation types. See below. */
621 unsigned int dist2to : 8;
622 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
623 unsigned long konst; /* KONST field. See below. */
624} Elf32_crinfo2;
625
626typedef struct
627{
628 bfd_byte info[4];
629 bfd_byte konst[4];
630 bfd_byte vaddr[4];
631} Elf32_External_crinfo;
632
633typedef struct
634{
635 bfd_byte info[4];
636 bfd_byte konst[4];
637} Elf32_External_crinfo2;
638
639/* These are the constants used to swap the bitfields in a crinfo. */
640
641#define CRINFO_CTYPE (0x1)
642#define CRINFO_CTYPE_SH (31)
643#define CRINFO_RTYPE (0xf)
644#define CRINFO_RTYPE_SH (27)
645#define CRINFO_DIST2TO (0xff)
646#define CRINFO_DIST2TO_SH (19)
647#define CRINFO_RELVADDR (0x7ffff)
648#define CRINFO_RELVADDR_SH (0)
649
650/* A compact relocation info has long (3 words) or short (2 words)
651 formats. A short format doesn't have VADDR field and relvaddr
652 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
653#define CRF_MIPS_LONG 1
654#define CRF_MIPS_SHORT 0
655
656/* There are 4 types of compact relocation at least. The value KONST
657 has different meaning for each type:
658
659 (type) (konst)
660 CT_MIPS_REL32 Address in data
661 CT_MIPS_WORD Address in word (XXX)
662 CT_MIPS_GPHI_LO GP - vaddr
663 CT_MIPS_JMPAD Address to jump
664 */
665
666#define CRT_MIPS_REL32 0xa
667#define CRT_MIPS_WORD 0xb
668#define CRT_MIPS_GPHI_LO 0xc
669#define CRT_MIPS_JMPAD 0xd
670
671#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
672#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
673#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
674#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
675\f
676/* The structure of the runtime procedure descriptor created by the
677 loader for use by the static exception system. */
678
679typedef struct runtime_pdr {
ae9a127f
NC
680 bfd_vma adr; /* Memory address of start of procedure. */
681 long regmask; /* Save register mask. */
682 long regoffset; /* Save register offset. */
683 long fregmask; /* Save floating point register mask. */
684 long fregoffset; /* Save floating point register offset. */
685 long frameoffset; /* Frame size. */
686 short framereg; /* Frame pointer register. */
687 short pcreg; /* Offset or reg of return pc. */
688 long irpss; /* Index into the runtime string table. */
b49e97c9 689 long reserved;
ae9a127f 690 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
691} RPDR, *pRPDR;
692#define cbRPDR sizeof (RPDR)
693#define rpdNil ((pRPDR) 0)
694\f
b15e6682 695static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
696 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
697 struct mips_elf_link_hash_entry *, int);
b34976b6 698static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 699 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
700static bfd_vma mips_elf_high
701 (bfd_vma);
b34976b6 702static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
703 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
704 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
705 bfd_vma *, asection *);
9719ad41
RS
706static hashval_t mips_elf_got_entry_hash
707 (const void *);
f4416af6 708static bfd_vma mips_elf_adjust_gp
9719ad41 709 (bfd *, struct mips_got_info *, bfd *);
f4416af6 710static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 711 (struct mips_got_info *, bfd *);
f4416af6 712
b49e97c9
TS
713/* This will be used when we sort the dynamic relocation records. */
714static bfd *reldyn_sorting_bfd;
715
6d30f5b2
NC
716/* True if ABFD is for CPUs with load interlocking that include
717 non-MIPS1 CPUs and R3900. */
718#define LOAD_INTERLOCKS_P(abfd) \
719 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
720 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
721
cd8d5a82
CF
722/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
723 This should be safe for all architectures. We enable this predicate
724 for RM9000 for now. */
725#define JAL_TO_BAL_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
727
728/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
729 This should be safe for all architectures. We enable this predicate for
730 all CPUs. */
731#define JALR_TO_BAL_P(abfd) 1
732
38a7df63
CF
733/* True if ABFD is for CPUs that are faster if JR is converted to B.
734 This should be safe for all architectures. We enable this predicate for
735 all CPUs. */
736#define JR_TO_B_P(abfd) 1
737
861fb55a
DJ
738/* True if ABFD is a PIC object. */
739#define PIC_OBJECT_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
741
b49e97c9 742/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
743#define ABI_N32_P(abfd) \
744 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
745
4a14403c 746/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 747#define ABI_64_P(abfd) \
141ff970 748 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 749
4a14403c
TS
750/* Nonzero if ABFD is using NewABI conventions. */
751#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
752
753/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
754#define IRIX_COMPAT(abfd) \
755 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
756
b49e97c9
TS
757/* Whether we are trying to be compatible with IRIX at all. */
758#define SGI_COMPAT(abfd) \
759 (IRIX_COMPAT (abfd) != ict_none)
760
761/* The name of the options section. */
762#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 763 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 764
cc2e31b9
RS
765/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
766 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
767#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
768 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
769
943284cc
DJ
770/* Whether the section is readonly. */
771#define MIPS_ELF_READONLY_SECTION(sec) \
772 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
773 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
774
b49e97c9 775/* The name of the stub section. */
ca07892d 776#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
777
778/* The size of an external REL relocation. */
779#define MIPS_ELF_REL_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->sizeof_rel)
781
0a44bf69
RS
782/* The size of an external RELA relocation. */
783#define MIPS_ELF_RELA_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_rela)
785
b49e97c9
TS
786/* The size of an external dynamic table entry. */
787#define MIPS_ELF_DYN_SIZE(abfd) \
788 (get_elf_backend_data (abfd)->s->sizeof_dyn)
789
790/* The size of a GOT entry. */
791#define MIPS_ELF_GOT_SIZE(abfd) \
792 (get_elf_backend_data (abfd)->s->arch_size / 8)
793
b4082c70
DD
794/* The size of the .rld_map section. */
795#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
796 (get_elf_backend_data (abfd)->s->arch_size / 8)
797
b49e97c9
TS
798/* The size of a symbol-table entry. */
799#define MIPS_ELF_SYM_SIZE(abfd) \
800 (get_elf_backend_data (abfd)->s->sizeof_sym)
801
802/* The default alignment for sections, as a power of two. */
803#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 804 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
805
806/* Get word-sized data. */
807#define MIPS_ELF_GET_WORD(abfd, ptr) \
808 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
809
810/* Put out word-sized data. */
811#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
812 (ABI_64_P (abfd) \
813 ? bfd_put_64 (abfd, val, ptr) \
814 : bfd_put_32 (abfd, val, ptr))
815
861fb55a
DJ
816/* The opcode for word-sized loads (LW or LD). */
817#define MIPS_ELF_LOAD_WORD(abfd) \
818 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
819
b49e97c9 820/* Add a dynamic symbol table-entry. */
9719ad41 821#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 822 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
823
824#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
825 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
826
0a44bf69
RS
827/* The name of the dynamic relocation section. */
828#define MIPS_ELF_REL_DYN_NAME(INFO) \
829 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
830
b49e97c9
TS
831/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
832 from smaller values. Start with zero, widen, *then* decrement. */
833#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 834#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 835
51e38d68
RS
836/* The value to write into got[1] for SVR4 targets, to identify it is
837 a GNU object. The dynamic linker can then use got[1] to store the
838 module pointer. */
839#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
840 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
841
f4416af6 842/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
843#define ELF_MIPS_GP_OFFSET(INFO) \
844 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
845
846/* The maximum size of the GOT for it to be addressable using 16-bit
847 offsets from $gp. */
0a44bf69 848#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 849
6a691779 850/* Instructions which appear in a stub. */
3d6746ca
DD
851#define STUB_LW(abfd) \
852 ((ABI_64_P (abfd) \
853 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
854 : 0x8f998010)) /* lw t9,0x8010(gp) */
855#define STUB_MOVE(abfd) \
856 ((ABI_64_P (abfd) \
857 ? 0x03e0782d /* daddu t7,ra */ \
858 : 0x03e07821)) /* addu t7,ra */
859#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
860#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
861#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
862#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
863#define STUB_LI16S(abfd, VAL) \
864 ((ABI_64_P (abfd) \
865 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
866 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
867
5108fc1b
RS
868#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
869#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
870
871/* The name of the dynamic interpreter. This is put in the .interp
872 section. */
873
874#define ELF_DYNAMIC_INTERPRETER(abfd) \
875 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
876 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
877 : "/usr/lib/libc.so.1")
878
879#ifdef BFD64
ee6423ed
AO
880#define MNAME(bfd,pre,pos) \
881 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
882#define ELF_R_SYM(bfd, i) \
883 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
884#define ELF_R_TYPE(bfd, i) \
885 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
886#define ELF_R_INFO(bfd, s, t) \
887 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
888#else
ee6423ed 889#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
890#define ELF_R_SYM(bfd, i) \
891 (ELF32_R_SYM (i))
892#define ELF_R_TYPE(bfd, i) \
893 (ELF32_R_TYPE (i))
894#define ELF_R_INFO(bfd, s, t) \
895 (ELF32_R_INFO (s, t))
896#endif
897\f
898 /* The mips16 compiler uses a couple of special sections to handle
899 floating point arguments.
900
901 Section names that look like .mips16.fn.FNNAME contain stubs that
902 copy floating point arguments from the fp regs to the gp regs and
903 then jump to FNNAME. If any 32 bit function calls FNNAME, the
904 call should be redirected to the stub instead. If no 32 bit
905 function calls FNNAME, the stub should be discarded. We need to
906 consider any reference to the function, not just a call, because
907 if the address of the function is taken we will need the stub,
908 since the address might be passed to a 32 bit function.
909
910 Section names that look like .mips16.call.FNNAME contain stubs
911 that copy floating point arguments from the gp regs to the fp
912 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
913 then any 16 bit function that calls FNNAME should be redirected
914 to the stub instead. If FNNAME is not a 32 bit function, the
915 stub should be discarded.
916
917 .mips16.call.fp.FNNAME sections are similar, but contain stubs
918 which call FNNAME and then copy the return value from the fp regs
919 to the gp regs. These stubs store the return value in $18 while
920 calling FNNAME; any function which might call one of these stubs
921 must arrange to save $18 around the call. (This case is not
922 needed for 32 bit functions that call 16 bit functions, because
923 16 bit functions always return floating point values in both
924 $f0/$f1 and $2/$3.)
925
926 Note that in all cases FNNAME might be defined statically.
927 Therefore, FNNAME is not used literally. Instead, the relocation
928 information will indicate which symbol the section is for.
929
930 We record any stubs that we find in the symbol table. */
931
932#define FN_STUB ".mips16.fn."
933#define CALL_STUB ".mips16.call."
934#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
935
936#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
937#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
938#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 939\f
861fb55a 940/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
941static const bfd_vma mips_o32_exec_plt0_entry[] =
942{
861fb55a
DJ
943 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
944 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
945 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
946 0x031cc023, /* subu $24, $24, $28 */
81f5d455 947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
951};
952
953/* The format of the first PLT entry in an N32 executable. Different
954 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
955static const bfd_vma mips_n32_exec_plt0_entry[] =
956{
861fb55a
DJ
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
81f5d455 961 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
962 0x0018c082, /* srl $24, $24, 2 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
965};
966
967/* The format of the first PLT entry in an N64 executable. Different
968 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
969static const bfd_vma mips_n64_exec_plt0_entry[] =
970{
861fb55a
DJ
971 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
972 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
973 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
974 0x030ec023, /* subu $24, $24, $14 */
81f5d455 975 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
976 0x0018c0c2, /* srl $24, $24, 3 */
977 0x0320f809, /* jalr $25 */
978 0x2718fffe /* subu $24, $24, 2 */
979};
980
981/* The format of subsequent PLT entries. */
6d30f5b2
NC
982static const bfd_vma mips_exec_plt_entry[] =
983{
861fb55a
DJ
984 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
985 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
986 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
987 0x03200008 /* jr $25 */
988};
989
0a44bf69 990/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
991static const bfd_vma mips_vxworks_exec_plt0_entry[] =
992{
0a44bf69
RS
993 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
994 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
995 0x8f390008, /* lw t9, 8(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
998 0x00000000 /* nop */
999};
1000
1001/* The format of subsequent PLT entries. */
6d30f5b2
NC
1002static const bfd_vma mips_vxworks_exec_plt_entry[] =
1003{
0a44bf69
RS
1004 0x10000000, /* b .PLT_resolver */
1005 0x24180000, /* li t8, <pltindex> */
1006 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1007 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1008 0x8f390000, /* lw t9, 0(t9) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000 /* nop */
1012};
1013
1014/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1015static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1016{
0a44bf69
RS
1017 0x8f990008, /* lw t9, 8(gp) */
1018 0x00000000, /* nop */
1019 0x03200008, /* jr t9 */
1020 0x00000000, /* nop */
1021 0x00000000, /* nop */
1022 0x00000000 /* nop */
1023};
1024
1025/* The format of subsequent PLT entries. */
6d30f5b2
NC
1026static const bfd_vma mips_vxworks_shared_plt_entry[] =
1027{
0a44bf69
RS
1028 0x10000000, /* b .PLT_resolver */
1029 0x24180000 /* li t8, <pltindex> */
1030};
1031\f
d21911ea
MR
1032/* microMIPS 32-bit opcode helper installer. */
1033
1034static void
1035bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1036{
1037 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1038 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1039}
1040
1041/* microMIPS 32-bit opcode helper retriever. */
1042
1043static bfd_vma
1044bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1045{
1046 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1047}
1048\f
b49e97c9
TS
1049/* Look up an entry in a MIPS ELF linker hash table. */
1050
1051#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1052 ((struct mips_elf_link_hash_entry *) \
1053 elf_link_hash_lookup (&(table)->root, (string), (create), \
1054 (copy), (follow)))
1055
1056/* Traverse a MIPS ELF linker hash table. */
1057
1058#define mips_elf_link_hash_traverse(table, func, info) \
1059 (elf_link_hash_traverse \
1060 (&(table)->root, \
9719ad41 1061 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1062 (info)))
1063
0f20cc35
DJ
1064/* Find the base offsets for thread-local storage in this object,
1065 for GD/LD and IE/LE respectively. */
1066
1067#define TP_OFFSET 0x7000
1068#define DTP_OFFSET 0x8000
1069
1070static bfd_vma
1071dtprel_base (struct bfd_link_info *info)
1072{
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1077}
1078
1079static bfd_vma
1080tprel_base (struct bfd_link_info *info)
1081{
1082 /* If tls_sec is NULL, we should have signalled an error already. */
1083 if (elf_hash_table (info)->tls_sec == NULL)
1084 return 0;
1085 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1086}
1087
b49e97c9
TS
1088/* Create an entry in a MIPS ELF linker hash table. */
1089
1090static struct bfd_hash_entry *
9719ad41
RS
1091mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1092 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1093{
1094 struct mips_elf_link_hash_entry *ret =
1095 (struct mips_elf_link_hash_entry *) entry;
1096
1097 /* Allocate the structure if it has not already been allocated by a
1098 subclass. */
9719ad41
RS
1099 if (ret == NULL)
1100 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1101 if (ret == NULL)
b49e97c9
TS
1102 return (struct bfd_hash_entry *) ret;
1103
1104 /* Call the allocation method of the superclass. */
1105 ret = ((struct mips_elf_link_hash_entry *)
1106 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1107 table, string));
9719ad41 1108 if (ret != NULL)
b49e97c9
TS
1109 {
1110 /* Set local fields. */
1111 memset (&ret->esym, 0, sizeof (EXTR));
1112 /* We use -2 as a marker to indicate that the information has
1113 not been set. -1 means there is no associated ifd. */
1114 ret->esym.ifd = -2;
861fb55a 1115 ret->la25_stub = 0;
b49e97c9 1116 ret->possibly_dynamic_relocs = 0;
b49e97c9 1117 ret->fn_stub = NULL;
b49e97c9
TS
1118 ret->call_stub = NULL;
1119 ret->call_fp_stub = NULL;
71782a75 1120 ret->tls_type = GOT_NORMAL;
634835ae 1121 ret->global_got_area = GGA_NONE;
6ccf4795 1122 ret->got_only_for_calls = TRUE;
71782a75 1123 ret->readonly_reloc = FALSE;
861fb55a 1124 ret->has_static_relocs = FALSE;
71782a75
RS
1125 ret->no_fn_stub = FALSE;
1126 ret->need_fn_stub = FALSE;
861fb55a 1127 ret->has_nonpic_branches = FALSE;
33bb52fb 1128 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1129 }
1130
1131 return (struct bfd_hash_entry *) ret;
1132}
f0abc2a1 1133
6ae68ba3
MR
1134/* Allocate MIPS ELF private object data. */
1135
1136bfd_boolean
1137_bfd_mips_elf_mkobject (bfd *abfd)
1138{
1139 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1140 MIPS_ELF_DATA);
1141}
1142
f0abc2a1 1143bfd_boolean
9719ad41 1144_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1145{
f592407e
AM
1146 if (!sec->used_by_bfd)
1147 {
1148 struct _mips_elf_section_data *sdata;
1149 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1150
f592407e
AM
1151 sdata = bfd_zalloc (abfd, amt);
1152 if (sdata == NULL)
1153 return FALSE;
1154 sec->used_by_bfd = sdata;
1155 }
f0abc2a1
AM
1156
1157 return _bfd_elf_new_section_hook (abfd, sec);
1158}
b49e97c9
TS
1159\f
1160/* Read ECOFF debugging information from a .mdebug section into a
1161 ecoff_debug_info structure. */
1162
b34976b6 1163bfd_boolean
9719ad41
RS
1164_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1165 struct ecoff_debug_info *debug)
b49e97c9
TS
1166{
1167 HDRR *symhdr;
1168 const struct ecoff_debug_swap *swap;
9719ad41 1169 char *ext_hdr;
b49e97c9
TS
1170
1171 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1172 memset (debug, 0, sizeof (*debug));
1173
9719ad41 1174 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1175 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1176 goto error_return;
1177
9719ad41 1178 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1179 swap->external_hdr_size))
b49e97c9
TS
1180 goto error_return;
1181
1182 symhdr = &debug->symbolic_header;
1183 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1184
1185 /* The symbolic header contains absolute file offsets and sizes to
1186 read. */
1187#define READ(ptr, offset, count, size, type) \
1188 if (symhdr->count == 0) \
1189 debug->ptr = NULL; \
1190 else \
1191 { \
1192 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1193 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1194 if (debug->ptr == NULL) \
1195 goto error_return; \
9719ad41 1196 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1197 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1198 goto error_return; \
1199 }
1200
1201 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1202 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1203 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1204 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1205 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1206 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1207 union aux_ext *);
1208 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1209 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1210 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1211 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1212 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1213#undef READ
1214
1215 debug->fdr = NULL;
b49e97c9 1216
b34976b6 1217 return TRUE;
b49e97c9
TS
1218
1219 error_return:
1220 if (ext_hdr != NULL)
1221 free (ext_hdr);
1222 if (debug->line != NULL)
1223 free (debug->line);
1224 if (debug->external_dnr != NULL)
1225 free (debug->external_dnr);
1226 if (debug->external_pdr != NULL)
1227 free (debug->external_pdr);
1228 if (debug->external_sym != NULL)
1229 free (debug->external_sym);
1230 if (debug->external_opt != NULL)
1231 free (debug->external_opt);
1232 if (debug->external_aux != NULL)
1233 free (debug->external_aux);
1234 if (debug->ss != NULL)
1235 free (debug->ss);
1236 if (debug->ssext != NULL)
1237 free (debug->ssext);
1238 if (debug->external_fdr != NULL)
1239 free (debug->external_fdr);
1240 if (debug->external_rfd != NULL)
1241 free (debug->external_rfd);
1242 if (debug->external_ext != NULL)
1243 free (debug->external_ext);
b34976b6 1244 return FALSE;
b49e97c9
TS
1245}
1246\f
1247/* Swap RPDR (runtime procedure table entry) for output. */
1248
1249static void
9719ad41 1250ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1251{
1252 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1253 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1254 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1255 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1256 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1257 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1258
1259 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1260 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1261
1262 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1263}
1264
1265/* Create a runtime procedure table from the .mdebug section. */
1266
b34976b6 1267static bfd_boolean
9719ad41
RS
1268mips_elf_create_procedure_table (void *handle, bfd *abfd,
1269 struct bfd_link_info *info, asection *s,
1270 struct ecoff_debug_info *debug)
b49e97c9
TS
1271{
1272 const struct ecoff_debug_swap *swap;
1273 HDRR *hdr = &debug->symbolic_header;
1274 RPDR *rpdr, *rp;
1275 struct rpdr_ext *erp;
9719ad41 1276 void *rtproc;
b49e97c9
TS
1277 struct pdr_ext *epdr;
1278 struct sym_ext *esym;
1279 char *ss, **sv;
1280 char *str;
1281 bfd_size_type size;
1282 bfd_size_type count;
1283 unsigned long sindex;
1284 unsigned long i;
1285 PDR pdr;
1286 SYMR sym;
1287 const char *no_name_func = _("static procedure (no name)");
1288
1289 epdr = NULL;
1290 rpdr = NULL;
1291 esym = NULL;
1292 ss = NULL;
1293 sv = NULL;
1294
1295 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1296
1297 sindex = strlen (no_name_func) + 1;
1298 count = hdr->ipdMax;
1299 if (count > 0)
1300 {
1301 size = swap->external_pdr_size;
1302
9719ad41 1303 epdr = bfd_malloc (size * count);
b49e97c9
TS
1304 if (epdr == NULL)
1305 goto error_return;
1306
9719ad41 1307 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1308 goto error_return;
1309
1310 size = sizeof (RPDR);
9719ad41 1311 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1312 if (rpdr == NULL)
1313 goto error_return;
1314
1315 size = sizeof (char *);
9719ad41 1316 sv = bfd_malloc (size * count);
b49e97c9
TS
1317 if (sv == NULL)
1318 goto error_return;
1319
1320 count = hdr->isymMax;
1321 size = swap->external_sym_size;
9719ad41 1322 esym = bfd_malloc (size * count);
b49e97c9
TS
1323 if (esym == NULL)
1324 goto error_return;
1325
9719ad41 1326 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1327 goto error_return;
1328
1329 count = hdr->issMax;
9719ad41 1330 ss = bfd_malloc (count);
b49e97c9
TS
1331 if (ss == NULL)
1332 goto error_return;
f075ee0c 1333 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1334 goto error_return;
1335
1336 count = hdr->ipdMax;
1337 for (i = 0; i < (unsigned long) count; i++, rp++)
1338 {
9719ad41
RS
1339 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1340 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1341 rp->adr = sym.value;
1342 rp->regmask = pdr.regmask;
1343 rp->regoffset = pdr.regoffset;
1344 rp->fregmask = pdr.fregmask;
1345 rp->fregoffset = pdr.fregoffset;
1346 rp->frameoffset = pdr.frameoffset;
1347 rp->framereg = pdr.framereg;
1348 rp->pcreg = pdr.pcreg;
1349 rp->irpss = sindex;
1350 sv[i] = ss + sym.iss;
1351 sindex += strlen (sv[i]) + 1;
1352 }
1353 }
1354
1355 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1356 size = BFD_ALIGN (size, 16);
9719ad41 1357 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1358 if (rtproc == NULL)
1359 {
1360 mips_elf_hash_table (info)->procedure_count = 0;
1361 goto error_return;
1362 }
1363
1364 mips_elf_hash_table (info)->procedure_count = count + 2;
1365
9719ad41 1366 erp = rtproc;
b49e97c9
TS
1367 memset (erp, 0, sizeof (struct rpdr_ext));
1368 erp++;
1369 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1370 strcpy (str, no_name_func);
1371 str += strlen (no_name_func) + 1;
1372 for (i = 0; i < count; i++)
1373 {
1374 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1375 strcpy (str, sv[i]);
1376 str += strlen (sv[i]) + 1;
1377 }
1378 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1379
1380 /* Set the size and contents of .rtproc section. */
eea6121a 1381 s->size = size;
9719ad41 1382 s->contents = rtproc;
b49e97c9
TS
1383
1384 /* Skip this section later on (I don't think this currently
1385 matters, but someday it might). */
8423293d 1386 s->map_head.link_order = NULL;
b49e97c9
TS
1387
1388 if (epdr != NULL)
1389 free (epdr);
1390 if (rpdr != NULL)
1391 free (rpdr);
1392 if (esym != NULL)
1393 free (esym);
1394 if (ss != NULL)
1395 free (ss);
1396 if (sv != NULL)
1397 free (sv);
1398
b34976b6 1399 return TRUE;
b49e97c9
TS
1400
1401 error_return:
1402 if (epdr != NULL)
1403 free (epdr);
1404 if (rpdr != NULL)
1405 free (rpdr);
1406 if (esym != NULL)
1407 free (esym);
1408 if (ss != NULL)
1409 free (ss);
1410 if (sv != NULL)
1411 free (sv);
b34976b6 1412 return FALSE;
b49e97c9 1413}
738e5348 1414\f
861fb55a
DJ
1415/* We're going to create a stub for H. Create a symbol for the stub's
1416 value and size, to help make the disassembly easier to read. */
1417
1418static bfd_boolean
1419mips_elf_create_stub_symbol (struct bfd_link_info *info,
1420 struct mips_elf_link_hash_entry *h,
1421 const char *prefix, asection *s, bfd_vma value,
1422 bfd_vma size)
1423{
1424 struct bfd_link_hash_entry *bh;
1425 struct elf_link_hash_entry *elfh;
1426 const char *name;
1427
df58fc94
RS
1428 if (ELF_ST_IS_MICROMIPS (h->root.other))
1429 value |= 1;
1430
861fb55a
DJ
1431 /* Create a new symbol. */
1432 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1433 bh = NULL;
1434 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1435 BSF_LOCAL, s, value, NULL,
1436 TRUE, FALSE, &bh))
1437 return FALSE;
1438
1439 /* Make it a local function. */
1440 elfh = (struct elf_link_hash_entry *) bh;
1441 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1442 elfh->size = size;
1443 elfh->forced_local = 1;
1444 return TRUE;
1445}
1446
738e5348
RS
1447/* We're about to redefine H. Create a symbol to represent H's
1448 current value and size, to help make the disassembly easier
1449 to read. */
1450
1451static bfd_boolean
1452mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1453 struct mips_elf_link_hash_entry *h,
1454 const char *prefix)
1455{
1456 struct bfd_link_hash_entry *bh;
1457 struct elf_link_hash_entry *elfh;
1458 const char *name;
1459 asection *s;
1460 bfd_vma value;
1461
1462 /* Read the symbol's value. */
1463 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1464 || h->root.root.type == bfd_link_hash_defweak);
1465 s = h->root.root.u.def.section;
1466 value = h->root.root.u.def.value;
1467
1468 /* Create a new symbol. */
1469 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1470 bh = NULL;
1471 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1472 BSF_LOCAL, s, value, NULL,
1473 TRUE, FALSE, &bh))
1474 return FALSE;
1475
1476 /* Make it local and copy the other attributes from H. */
1477 elfh = (struct elf_link_hash_entry *) bh;
1478 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1479 elfh->other = h->root.other;
1480 elfh->size = h->root.size;
1481 elfh->forced_local = 1;
1482 return TRUE;
1483}
1484
1485/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1486 function rather than to a hard-float stub. */
1487
1488static bfd_boolean
1489section_allows_mips16_refs_p (asection *section)
1490{
1491 const char *name;
1492
1493 name = bfd_get_section_name (section->owner, section);
1494 return (FN_STUB_P (name)
1495 || CALL_STUB_P (name)
1496 || CALL_FP_STUB_P (name)
1497 || strcmp (name, ".pdr") == 0);
1498}
1499
1500/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1501 stub section of some kind. Return the R_SYMNDX of the target
1502 function, or 0 if we can't decide which function that is. */
1503
1504static unsigned long
cb4437b8
MR
1505mips16_stub_symndx (const struct elf_backend_data *bed,
1506 asection *sec ATTRIBUTE_UNUSED,
502e814e 1507 const Elf_Internal_Rela *relocs,
738e5348
RS
1508 const Elf_Internal_Rela *relend)
1509{
cb4437b8 1510 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1511 const Elf_Internal_Rela *rel;
1512
cb4437b8
MR
1513 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1514 one in a compound relocation. */
1515 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1516 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1517 return ELF_R_SYM (sec->owner, rel->r_info);
1518
1519 /* Otherwise trust the first relocation, whatever its kind. This is
1520 the traditional behavior. */
1521 if (relocs < relend)
1522 return ELF_R_SYM (sec->owner, relocs->r_info);
1523
1524 return 0;
1525}
b49e97c9
TS
1526
1527/* Check the mips16 stubs for a particular symbol, and see if we can
1528 discard them. */
1529
861fb55a
DJ
1530static void
1531mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1532 struct mips_elf_link_hash_entry *h)
b49e97c9 1533{
738e5348
RS
1534 /* Dynamic symbols must use the standard call interface, in case other
1535 objects try to call them. */
1536 if (h->fn_stub != NULL
1537 && h->root.dynindx != -1)
1538 {
1539 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1540 h->need_fn_stub = TRUE;
1541 }
1542
b49e97c9
TS
1543 if (h->fn_stub != NULL
1544 && ! h->need_fn_stub)
1545 {
1546 /* We don't need the fn_stub; the only references to this symbol
1547 are 16 bit calls. Clobber the size to 0 to prevent it from
1548 being included in the link. */
eea6121a 1549 h->fn_stub->size = 0;
b49e97c9
TS
1550 h->fn_stub->flags &= ~SEC_RELOC;
1551 h->fn_stub->reloc_count = 0;
1552 h->fn_stub->flags |= SEC_EXCLUDE;
1553 }
1554
1555 if (h->call_stub != NULL
30c09090 1556 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1557 {
1558 /* We don't need the call_stub; this is a 16 bit function, so
1559 calls from other 16 bit functions are OK. Clobber the size
1560 to 0 to prevent it from being included in the link. */
eea6121a 1561 h->call_stub->size = 0;
b49e97c9
TS
1562 h->call_stub->flags &= ~SEC_RELOC;
1563 h->call_stub->reloc_count = 0;
1564 h->call_stub->flags |= SEC_EXCLUDE;
1565 }
1566
1567 if (h->call_fp_stub != NULL
30c09090 1568 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1569 {
1570 /* We don't need the call_stub; this is a 16 bit function, so
1571 calls from other 16 bit functions are OK. Clobber the size
1572 to 0 to prevent it from being included in the link. */
eea6121a 1573 h->call_fp_stub->size = 0;
b49e97c9
TS
1574 h->call_fp_stub->flags &= ~SEC_RELOC;
1575 h->call_fp_stub->reloc_count = 0;
1576 h->call_fp_stub->flags |= SEC_EXCLUDE;
1577 }
861fb55a
DJ
1578}
1579
1580/* Hashtable callbacks for mips_elf_la25_stubs. */
1581
1582static hashval_t
1583mips_elf_la25_stub_hash (const void *entry_)
1584{
1585 const struct mips_elf_la25_stub *entry;
1586
1587 entry = (struct mips_elf_la25_stub *) entry_;
1588 return entry->h->root.root.u.def.section->id
1589 + entry->h->root.root.u.def.value;
1590}
1591
1592static int
1593mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1594{
1595 const struct mips_elf_la25_stub *entry1, *entry2;
1596
1597 entry1 = (struct mips_elf_la25_stub *) entry1_;
1598 entry2 = (struct mips_elf_la25_stub *) entry2_;
1599 return ((entry1->h->root.root.u.def.section
1600 == entry2->h->root.root.u.def.section)
1601 && (entry1->h->root.root.u.def.value
1602 == entry2->h->root.root.u.def.value));
1603}
1604
1605/* Called by the linker to set up the la25 stub-creation code. FN is
1606 the linker's implementation of add_stub_function. Return true on
1607 success. */
1608
1609bfd_boolean
1610_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1611 asection *(*fn) (const char *, asection *,
1612 asection *))
1613{
1614 struct mips_elf_link_hash_table *htab;
1615
1616 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1617 if (htab == NULL)
1618 return FALSE;
1619
861fb55a
DJ
1620 htab->add_stub_section = fn;
1621 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1622 mips_elf_la25_stub_eq, NULL);
1623 if (htab->la25_stubs == NULL)
1624 return FALSE;
1625
1626 return TRUE;
1627}
1628
1629/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1630 that it or its fn_stub might need $25 to be valid on entry.
1631 Note that MIPS16 functions set up $gp using PC-relative instructions,
1632 so they themselves never need $25 to be valid. Only non-MIPS16
1633 entry points are of interest here. */
861fb55a
DJ
1634
1635static bfd_boolean
1636mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1637{
1638 return ((h->root.root.type == bfd_link_hash_defined
1639 || h->root.root.type == bfd_link_hash_defweak)
1640 && h->root.def_regular
1641 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1642 && (!ELF_ST_IS_MIPS16 (h->root.other)
1643 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1644 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1645 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1646}
1647
8f0c309a
CLT
1648/* Set *SEC to the input section that contains the target of STUB.
1649 Return the offset of the target from the start of that section. */
1650
1651static bfd_vma
1652mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1653 asection **sec)
1654{
1655 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1656 {
1657 BFD_ASSERT (stub->h->need_fn_stub);
1658 *sec = stub->h->fn_stub;
1659 return 0;
1660 }
1661 else
1662 {
1663 *sec = stub->h->root.root.u.def.section;
1664 return stub->h->root.root.u.def.value;
1665 }
1666}
1667
861fb55a
DJ
1668/* STUB describes an la25 stub that we have decided to implement
1669 by inserting an LUI/ADDIU pair before the target function.
1670 Create the section and redirect the function symbol to it. */
1671
1672static bfd_boolean
1673mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1674 struct bfd_link_info *info)
1675{
1676 struct mips_elf_link_hash_table *htab;
1677 char *name;
1678 asection *s, *input_section;
1679 unsigned int align;
1680
1681 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1682 if (htab == NULL)
1683 return FALSE;
861fb55a
DJ
1684
1685 /* Create a unique name for the new section. */
1686 name = bfd_malloc (11 + sizeof (".text.stub."));
1687 if (name == NULL)
1688 return FALSE;
1689 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1690
1691 /* Create the section. */
8f0c309a 1692 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1693 s = htab->add_stub_section (name, input_section,
1694 input_section->output_section);
1695 if (s == NULL)
1696 return FALSE;
1697
1698 /* Make sure that any padding goes before the stub. */
1699 align = input_section->alignment_power;
1700 if (!bfd_set_section_alignment (s->owner, s, align))
1701 return FALSE;
1702 if (align > 3)
1703 s->size = (1 << align) - 8;
1704
1705 /* Create a symbol for the stub. */
1706 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1707 stub->stub_section = s;
1708 stub->offset = s->size;
1709
1710 /* Allocate room for it. */
1711 s->size += 8;
1712 return TRUE;
1713}
1714
1715/* STUB describes an la25 stub that we have decided to implement
1716 with a separate trampoline. Allocate room for it and redirect
1717 the function symbol to it. */
1718
1719static bfd_boolean
1720mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1721 struct bfd_link_info *info)
1722{
1723 struct mips_elf_link_hash_table *htab;
1724 asection *s;
1725
1726 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1727 if (htab == NULL)
1728 return FALSE;
861fb55a
DJ
1729
1730 /* Create a trampoline section, if we haven't already. */
1731 s = htab->strampoline;
1732 if (s == NULL)
1733 {
1734 asection *input_section = stub->h->root.root.u.def.section;
1735 s = htab->add_stub_section (".text", NULL,
1736 input_section->output_section);
1737 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1738 return FALSE;
1739 htab->strampoline = s;
1740 }
1741
1742 /* Create a symbol for the stub. */
1743 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1744 stub->stub_section = s;
1745 stub->offset = s->size;
1746
1747 /* Allocate room for it. */
1748 s->size += 16;
1749 return TRUE;
1750}
1751
1752/* H describes a symbol that needs an la25 stub. Make sure that an
1753 appropriate stub exists and point H at it. */
1754
1755static bfd_boolean
1756mips_elf_add_la25_stub (struct bfd_link_info *info,
1757 struct mips_elf_link_hash_entry *h)
1758{
1759 struct mips_elf_link_hash_table *htab;
1760 struct mips_elf_la25_stub search, *stub;
1761 bfd_boolean use_trampoline_p;
1762 asection *s;
1763 bfd_vma value;
1764 void **slot;
1765
861fb55a
DJ
1766 /* Describe the stub we want. */
1767 search.stub_section = NULL;
1768 search.offset = 0;
1769 search.h = h;
1770
1771 /* See if we've already created an equivalent stub. */
1772 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1773 if (htab == NULL)
1774 return FALSE;
1775
861fb55a
DJ
1776 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1777 if (slot == NULL)
1778 return FALSE;
1779
1780 stub = (struct mips_elf_la25_stub *) *slot;
1781 if (stub != NULL)
1782 {
1783 /* We can reuse the existing stub. */
1784 h->la25_stub = stub;
1785 return TRUE;
1786 }
1787
1788 /* Create a permanent copy of ENTRY and add it to the hash table. */
1789 stub = bfd_malloc (sizeof (search));
1790 if (stub == NULL)
1791 return FALSE;
1792 *stub = search;
1793 *slot = stub;
1794
8f0c309a
CLT
1795 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1796 of the section and if we would need no more than 2 nops. */
1797 value = mips_elf_get_la25_target (stub, &s);
1798 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1799
861fb55a
DJ
1800 h->la25_stub = stub;
1801 return (use_trampoline_p
1802 ? mips_elf_add_la25_trampoline (stub, info)
1803 : mips_elf_add_la25_intro (stub, info));
1804}
1805
1806/* A mips_elf_link_hash_traverse callback that is called before sizing
1807 sections. DATA points to a mips_htab_traverse_info structure. */
1808
1809static bfd_boolean
1810mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1811{
1812 struct mips_htab_traverse_info *hti;
1813
1814 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1815 if (!hti->info->relocatable)
1816 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1817
861fb55a
DJ
1818 if (mips_elf_local_pic_function_p (h))
1819 {
ba85c43e
NC
1820 /* PR 12845: If H is in a section that has been garbage
1821 collected it will have its output section set to *ABS*. */
1822 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1823 return TRUE;
1824
861fb55a
DJ
1825 /* H is a function that might need $25 to be valid on entry.
1826 If we're creating a non-PIC relocatable object, mark H as
1827 being PIC. If we're creating a non-relocatable object with
1828 non-PIC branches and jumps to H, make sure that H has an la25
1829 stub. */
1830 if (hti->info->relocatable)
1831 {
1832 if (!PIC_OBJECT_P (hti->output_bfd))
1833 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1834 }
1835 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1836 {
1837 hti->error = TRUE;
1838 return FALSE;
1839 }
1840 }
b34976b6 1841 return TRUE;
b49e97c9
TS
1842}
1843\f
d6f16593
MR
1844/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1845 Most mips16 instructions are 16 bits, but these instructions
1846 are 32 bits.
1847
1848 The format of these instructions is:
1849
1850 +--------------+--------------------------------+
1851 | JALX | X| Imm 20:16 | Imm 25:21 |
1852 +--------------+--------------------------------+
1853 | Immediate 15:0 |
1854 +-----------------------------------------------+
1855
1856 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1857 Note that the immediate value in the first word is swapped.
1858
1859 When producing a relocatable object file, R_MIPS16_26 is
1860 handled mostly like R_MIPS_26. In particular, the addend is
1861 stored as a straight 26-bit value in a 32-bit instruction.
1862 (gas makes life simpler for itself by never adjusting a
1863 R_MIPS16_26 reloc to be against a section, so the addend is
1864 always zero). However, the 32 bit instruction is stored as 2
1865 16-bit values, rather than a single 32-bit value. In a
1866 big-endian file, the result is the same; in a little-endian
1867 file, the two 16-bit halves of the 32 bit value are swapped.
1868 This is so that a disassembler can recognize the jal
1869 instruction.
1870
1871 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1872 instruction stored as two 16-bit values. The addend A is the
1873 contents of the targ26 field. The calculation is the same as
1874 R_MIPS_26. When storing the calculated value, reorder the
1875 immediate value as shown above, and don't forget to store the
1876 value as two 16-bit values.
1877
1878 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1879 defined as
1880
1881 big-endian:
1882 +--------+----------------------+
1883 | | |
1884 | | targ26-16 |
1885 |31 26|25 0|
1886 +--------+----------------------+
1887
1888 little-endian:
1889 +----------+------+-------------+
1890 | | | |
1891 | sub1 | | sub2 |
1892 |0 9|10 15|16 31|
1893 +----------+--------------------+
1894 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1895 ((sub1 << 16) | sub2)).
1896
1897 When producing a relocatable object file, the calculation is
1898 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1899 When producing a fully linked file, the calculation is
1900 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1901 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1902
738e5348
RS
1903 The table below lists the other MIPS16 instruction relocations.
1904 Each one is calculated in the same way as the non-MIPS16 relocation
1905 given on the right, but using the extended MIPS16 layout of 16-bit
1906 immediate fields:
1907
1908 R_MIPS16_GPREL R_MIPS_GPREL16
1909 R_MIPS16_GOT16 R_MIPS_GOT16
1910 R_MIPS16_CALL16 R_MIPS_CALL16
1911 R_MIPS16_HI16 R_MIPS_HI16
1912 R_MIPS16_LO16 R_MIPS_LO16
1913
1914 A typical instruction will have a format like this:
d6f16593
MR
1915
1916 +--------------+--------------------------------+
1917 | EXTEND | Imm 10:5 | Imm 15:11 |
1918 +--------------+--------------------------------+
1919 | Major | rx | ry | Imm 4:0 |
1920 +--------------+--------------------------------+
1921
1922 EXTEND is the five bit value 11110. Major is the instruction
1923 opcode.
1924
738e5348
RS
1925 All we need to do here is shuffle the bits appropriately.
1926 As above, the two 16-bit halves must be swapped on a
1927 little-endian system. */
1928
1929static inline bfd_boolean
1930mips16_reloc_p (int r_type)
1931{
1932 switch (r_type)
1933 {
1934 case R_MIPS16_26:
1935 case R_MIPS16_GPREL:
1936 case R_MIPS16_GOT16:
1937 case R_MIPS16_CALL16:
1938 case R_MIPS16_HI16:
1939 case R_MIPS16_LO16:
d0f13682
CLT
1940 case R_MIPS16_TLS_GD:
1941 case R_MIPS16_TLS_LDM:
1942 case R_MIPS16_TLS_DTPREL_HI16:
1943 case R_MIPS16_TLS_DTPREL_LO16:
1944 case R_MIPS16_TLS_GOTTPREL:
1945 case R_MIPS16_TLS_TPREL_HI16:
1946 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1947 return TRUE;
1948
1949 default:
1950 return FALSE;
1951 }
1952}
1953
df58fc94
RS
1954/* Check if a microMIPS reloc. */
1955
1956static inline bfd_boolean
1957micromips_reloc_p (unsigned int r_type)
1958{
1959 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1960}
1961
1962/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1963 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1964 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1965
1966static inline bfd_boolean
1967micromips_reloc_shuffle_p (unsigned int r_type)
1968{
1969 return (micromips_reloc_p (r_type)
1970 && r_type != R_MICROMIPS_PC7_S1
1971 && r_type != R_MICROMIPS_PC10_S1);
1972}
1973
738e5348
RS
1974static inline bfd_boolean
1975got16_reloc_p (int r_type)
1976{
df58fc94
RS
1977 return (r_type == R_MIPS_GOT16
1978 || r_type == R_MIPS16_GOT16
1979 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1980}
1981
1982static inline bfd_boolean
1983call16_reloc_p (int r_type)
1984{
df58fc94
RS
1985 return (r_type == R_MIPS_CALL16
1986 || r_type == R_MIPS16_CALL16
1987 || r_type == R_MICROMIPS_CALL16);
1988}
1989
1990static inline bfd_boolean
1991got_disp_reloc_p (unsigned int r_type)
1992{
1993 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1994}
1995
1996static inline bfd_boolean
1997got_page_reloc_p (unsigned int r_type)
1998{
1999 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2000}
2001
2002static inline bfd_boolean
2003got_ofst_reloc_p (unsigned int r_type)
2004{
2005 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2006}
2007
2008static inline bfd_boolean
2009got_hi16_reloc_p (unsigned int r_type)
2010{
2011 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2012}
2013
2014static inline bfd_boolean
2015got_lo16_reloc_p (unsigned int r_type)
2016{
2017 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2018}
2019
2020static inline bfd_boolean
2021call_hi16_reloc_p (unsigned int r_type)
2022{
2023 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2024}
2025
2026static inline bfd_boolean
2027call_lo16_reloc_p (unsigned int r_type)
2028{
2029 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2030}
2031
2032static inline bfd_boolean
2033hi16_reloc_p (int r_type)
2034{
df58fc94
RS
2035 return (r_type == R_MIPS_HI16
2036 || r_type == R_MIPS16_HI16
2037 || r_type == R_MICROMIPS_HI16);
738e5348 2038}
d6f16593 2039
738e5348
RS
2040static inline bfd_boolean
2041lo16_reloc_p (int r_type)
2042{
df58fc94
RS
2043 return (r_type == R_MIPS_LO16
2044 || r_type == R_MIPS16_LO16
2045 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2046}
2047
2048static inline bfd_boolean
2049mips16_call_reloc_p (int r_type)
2050{
2051 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2052}
d6f16593 2053
38a7df63
CF
2054static inline bfd_boolean
2055jal_reloc_p (int r_type)
2056{
df58fc94
RS
2057 return (r_type == R_MIPS_26
2058 || r_type == R_MIPS16_26
2059 || r_type == R_MICROMIPS_26_S1);
2060}
2061
2062static inline bfd_boolean
2063micromips_branch_reloc_p (int r_type)
2064{
2065 return (r_type == R_MICROMIPS_26_S1
2066 || r_type == R_MICROMIPS_PC16_S1
2067 || r_type == R_MICROMIPS_PC10_S1
2068 || r_type == R_MICROMIPS_PC7_S1);
2069}
2070
2071static inline bfd_boolean
2072tls_gd_reloc_p (unsigned int r_type)
2073{
d0f13682
CLT
2074 return (r_type == R_MIPS_TLS_GD
2075 || r_type == R_MIPS16_TLS_GD
2076 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2077}
2078
2079static inline bfd_boolean
2080tls_ldm_reloc_p (unsigned int r_type)
2081{
d0f13682
CLT
2082 return (r_type == R_MIPS_TLS_LDM
2083 || r_type == R_MIPS16_TLS_LDM
2084 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2085}
2086
2087static inline bfd_boolean
2088tls_gottprel_reloc_p (unsigned int r_type)
2089{
d0f13682
CLT
2090 return (r_type == R_MIPS_TLS_GOTTPREL
2091 || r_type == R_MIPS16_TLS_GOTTPREL
2092 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2093}
2094
d6f16593 2095void
df58fc94
RS
2096_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2097 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2098{
df58fc94 2099 bfd_vma first, second, val;
d6f16593 2100
df58fc94 2101 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2102 return;
2103
df58fc94
RS
2104 /* Pick up the first and second halfwords of the instruction. */
2105 first = bfd_get_16 (abfd, data);
2106 second = bfd_get_16 (abfd, data + 2);
2107 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2108 val = first << 16 | second;
2109 else if (r_type != R_MIPS16_26)
2110 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2111 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2112 else
df58fc94
RS
2113 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2114 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2115 bfd_put_32 (abfd, val, data);
2116}
2117
2118void
df58fc94
RS
2119_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2120 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2121{
df58fc94 2122 bfd_vma first, second, val;
d6f16593 2123
df58fc94 2124 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2125 return;
2126
2127 val = bfd_get_32 (abfd, data);
df58fc94 2128 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2129 {
df58fc94
RS
2130 second = val & 0xffff;
2131 first = val >> 16;
2132 }
2133 else if (r_type != R_MIPS16_26)
2134 {
2135 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2136 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2137 }
2138 else
2139 {
df58fc94
RS
2140 second = val & 0xffff;
2141 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2142 | ((val >> 21) & 0x1f);
d6f16593 2143 }
df58fc94
RS
2144 bfd_put_16 (abfd, second, data + 2);
2145 bfd_put_16 (abfd, first, data);
d6f16593
MR
2146}
2147
b49e97c9 2148bfd_reloc_status_type
9719ad41
RS
2149_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2150 arelent *reloc_entry, asection *input_section,
2151 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2152{
2153 bfd_vma relocation;
a7ebbfdf 2154 bfd_signed_vma val;
30ac9238 2155 bfd_reloc_status_type status;
b49e97c9
TS
2156
2157 if (bfd_is_com_section (symbol->section))
2158 relocation = 0;
2159 else
2160 relocation = symbol->value;
2161
2162 relocation += symbol->section->output_section->vma;
2163 relocation += symbol->section->output_offset;
2164
07515404 2165 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2166 return bfd_reloc_outofrange;
2167
b49e97c9 2168 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2169 val = reloc_entry->addend;
2170
30ac9238 2171 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2172
b49e97c9 2173 /* Adjust val for the final section location and GP value. If we
1049f94e 2174 are producing relocatable output, we don't want to do this for
b49e97c9 2175 an external symbol. */
1049f94e 2176 if (! relocatable
b49e97c9
TS
2177 || (symbol->flags & BSF_SECTION_SYM) != 0)
2178 val += relocation - gp;
2179
a7ebbfdf
TS
2180 if (reloc_entry->howto->partial_inplace)
2181 {
30ac9238
RS
2182 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2183 (bfd_byte *) data
2184 + reloc_entry->address);
2185 if (status != bfd_reloc_ok)
2186 return status;
a7ebbfdf
TS
2187 }
2188 else
2189 reloc_entry->addend = val;
b49e97c9 2190
1049f94e 2191 if (relocatable)
b49e97c9 2192 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2193
2194 return bfd_reloc_ok;
2195}
2196
2197/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2198 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2199 that contains the relocation field and DATA points to the start of
2200 INPUT_SECTION. */
2201
2202struct mips_hi16
2203{
2204 struct mips_hi16 *next;
2205 bfd_byte *data;
2206 asection *input_section;
2207 arelent rel;
2208};
2209
2210/* FIXME: This should not be a static variable. */
2211
2212static struct mips_hi16 *mips_hi16_list;
2213
2214/* A howto special_function for REL *HI16 relocations. We can only
2215 calculate the correct value once we've seen the partnering
2216 *LO16 relocation, so just save the information for later.
2217
2218 The ABI requires that the *LO16 immediately follow the *HI16.
2219 However, as a GNU extension, we permit an arbitrary number of
2220 *HI16s to be associated with a single *LO16. This significantly
2221 simplies the relocation handling in gcc. */
2222
2223bfd_reloc_status_type
2224_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2225 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2226 asection *input_section, bfd *output_bfd,
2227 char **error_message ATTRIBUTE_UNUSED)
2228{
2229 struct mips_hi16 *n;
2230
07515404 2231 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2232 return bfd_reloc_outofrange;
2233
2234 n = bfd_malloc (sizeof *n);
2235 if (n == NULL)
2236 return bfd_reloc_outofrange;
2237
2238 n->next = mips_hi16_list;
2239 n->data = data;
2240 n->input_section = input_section;
2241 n->rel = *reloc_entry;
2242 mips_hi16_list = n;
2243
2244 if (output_bfd != NULL)
2245 reloc_entry->address += input_section->output_offset;
2246
2247 return bfd_reloc_ok;
2248}
2249
738e5348 2250/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2251 like any other 16-bit relocation when applied to global symbols, but is
2252 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2253
2254bfd_reloc_status_type
2255_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2256 void *data, asection *input_section,
2257 bfd *output_bfd, char **error_message)
2258{
2259 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2260 || bfd_is_und_section (bfd_get_section (symbol))
2261 || bfd_is_com_section (bfd_get_section (symbol)))
2262 /* The relocation is against a global symbol. */
2263 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd,
2265 error_message);
2266
2267 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2268 input_section, output_bfd, error_message);
2269}
2270
2271/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2272 is a straightforward 16 bit inplace relocation, but we must deal with
2273 any partnering high-part relocations as well. */
2274
2275bfd_reloc_status_type
2276_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2277 void *data, asection *input_section,
2278 bfd *output_bfd, char **error_message)
2279{
2280 bfd_vma vallo;
d6f16593 2281 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2282
07515404 2283 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2284 return bfd_reloc_outofrange;
2285
df58fc94 2286 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2287 location);
df58fc94
RS
2288 vallo = bfd_get_32 (abfd, location);
2289 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2290 location);
d6f16593 2291
30ac9238
RS
2292 while (mips_hi16_list != NULL)
2293 {
2294 bfd_reloc_status_type ret;
2295 struct mips_hi16 *hi;
2296
2297 hi = mips_hi16_list;
2298
738e5348
RS
2299 /* R_MIPS*_GOT16 relocations are something of a special case. We
2300 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2301 relocation (with a rightshift of 16). However, since GOT16
2302 relocations can also be used with global symbols, their howto
2303 has a rightshift of 0. */
2304 if (hi->rel.howto->type == R_MIPS_GOT16)
2305 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2306 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2307 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2308 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2309 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2310
2311 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2312 carry or borrow will induce a change of +1 or -1 in the high part. */
2313 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2314
30ac9238
RS
2315 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2316 hi->input_section, output_bfd,
2317 error_message);
2318 if (ret != bfd_reloc_ok)
2319 return ret;
2320
2321 mips_hi16_list = hi->next;
2322 free (hi);
2323 }
2324
2325 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2326 input_section, output_bfd,
2327 error_message);
2328}
2329
2330/* A generic howto special_function. This calculates and installs the
2331 relocation itself, thus avoiding the oft-discussed problems in
2332 bfd_perform_relocation and bfd_install_relocation. */
2333
2334bfd_reloc_status_type
2335_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2336 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2337 asection *input_section, bfd *output_bfd,
2338 char **error_message ATTRIBUTE_UNUSED)
2339{
2340 bfd_signed_vma val;
2341 bfd_reloc_status_type status;
2342 bfd_boolean relocatable;
2343
2344 relocatable = (output_bfd != NULL);
2345
07515404 2346 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2347 return bfd_reloc_outofrange;
2348
2349 /* Build up the field adjustment in VAL. */
2350 val = 0;
2351 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2352 {
2353 /* Either we're calculating the final field value or we have a
2354 relocation against a section symbol. Add in the section's
2355 offset or address. */
2356 val += symbol->section->output_section->vma;
2357 val += symbol->section->output_offset;
2358 }
2359
2360 if (!relocatable)
2361 {
2362 /* We're calculating the final field value. Add in the symbol's value
2363 and, if pc-relative, subtract the address of the field itself. */
2364 val += symbol->value;
2365 if (reloc_entry->howto->pc_relative)
2366 {
2367 val -= input_section->output_section->vma;
2368 val -= input_section->output_offset;
2369 val -= reloc_entry->address;
2370 }
2371 }
2372
2373 /* VAL is now the final adjustment. If we're keeping this relocation
2374 in the output file, and if the relocation uses a separate addend,
2375 we just need to add VAL to that addend. Otherwise we need to add
2376 VAL to the relocation field itself. */
2377 if (relocatable && !reloc_entry->howto->partial_inplace)
2378 reloc_entry->addend += val;
2379 else
2380 {
d6f16593
MR
2381 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2382
30ac9238
RS
2383 /* Add in the separate addend, if any. */
2384 val += reloc_entry->addend;
2385
2386 /* Add VAL to the relocation field. */
df58fc94
RS
2387 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2388 location);
30ac9238 2389 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2390 location);
df58fc94
RS
2391 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2392 location);
d6f16593 2393
30ac9238
RS
2394 if (status != bfd_reloc_ok)
2395 return status;
2396 }
2397
2398 if (relocatable)
2399 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2400
2401 return bfd_reloc_ok;
2402}
2403\f
2404/* Swap an entry in a .gptab section. Note that these routines rely
2405 on the equivalence of the two elements of the union. */
2406
2407static void
9719ad41
RS
2408bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2409 Elf32_gptab *in)
b49e97c9
TS
2410{
2411 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2412 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2413}
2414
2415static void
9719ad41
RS
2416bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2417 Elf32_External_gptab *ex)
b49e97c9
TS
2418{
2419 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2420 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2421}
2422
2423static void
9719ad41
RS
2424bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2425 Elf32_External_compact_rel *ex)
b49e97c9
TS
2426{
2427 H_PUT_32 (abfd, in->id1, ex->id1);
2428 H_PUT_32 (abfd, in->num, ex->num);
2429 H_PUT_32 (abfd, in->id2, ex->id2);
2430 H_PUT_32 (abfd, in->offset, ex->offset);
2431 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2432 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2433}
2434
2435static void
9719ad41
RS
2436bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2437 Elf32_External_crinfo *ex)
b49e97c9
TS
2438{
2439 unsigned long l;
2440
2441 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2442 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2443 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2444 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2445 H_PUT_32 (abfd, l, ex->info);
2446 H_PUT_32 (abfd, in->konst, ex->konst);
2447 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2448}
b49e97c9
TS
2449\f
2450/* A .reginfo section holds a single Elf32_RegInfo structure. These
2451 routines swap this structure in and out. They are used outside of
2452 BFD, so they are globally visible. */
2453
2454void
9719ad41
RS
2455bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2456 Elf32_RegInfo *in)
b49e97c9
TS
2457{
2458 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2459 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2460 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2461 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2462 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2463 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2464}
2465
2466void
9719ad41
RS
2467bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2468 Elf32_External_RegInfo *ex)
b49e97c9
TS
2469{
2470 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2471 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2472 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2473 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2474 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2475 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2476}
2477
2478/* In the 64 bit ABI, the .MIPS.options section holds register
2479 information in an Elf64_Reginfo structure. These routines swap
2480 them in and out. They are globally visible because they are used
2481 outside of BFD. These routines are here so that gas can call them
2482 without worrying about whether the 64 bit ABI has been included. */
2483
2484void
9719ad41
RS
2485bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2486 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2487{
2488 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2489 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2490 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2491 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2492 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2493 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2494 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2495}
2496
2497void
9719ad41
RS
2498bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2499 Elf64_External_RegInfo *ex)
b49e97c9
TS
2500{
2501 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2502 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2503 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2504 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2505 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2506 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2507 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2508}
2509
2510/* Swap in an options header. */
2511
2512void
9719ad41
RS
2513bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2514 Elf_Internal_Options *in)
b49e97c9
TS
2515{
2516 in->kind = H_GET_8 (abfd, ex->kind);
2517 in->size = H_GET_8 (abfd, ex->size);
2518 in->section = H_GET_16 (abfd, ex->section);
2519 in->info = H_GET_32 (abfd, ex->info);
2520}
2521
2522/* Swap out an options header. */
2523
2524void
9719ad41
RS
2525bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2526 Elf_External_Options *ex)
b49e97c9
TS
2527{
2528 H_PUT_8 (abfd, in->kind, ex->kind);
2529 H_PUT_8 (abfd, in->size, ex->size);
2530 H_PUT_16 (abfd, in->section, ex->section);
2531 H_PUT_32 (abfd, in->info, ex->info);
2532}
2533\f
2534/* This function is called via qsort() to sort the dynamic relocation
2535 entries by increasing r_symndx value. */
2536
2537static int
9719ad41 2538sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2539{
947216bf
AM
2540 Elf_Internal_Rela int_reloc1;
2541 Elf_Internal_Rela int_reloc2;
6870500c 2542 int diff;
b49e97c9 2543
947216bf
AM
2544 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2545 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2546
6870500c
RS
2547 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2548 if (diff != 0)
2549 return diff;
2550
2551 if (int_reloc1.r_offset < int_reloc2.r_offset)
2552 return -1;
2553 if (int_reloc1.r_offset > int_reloc2.r_offset)
2554 return 1;
2555 return 0;
b49e97c9
TS
2556}
2557
f4416af6
AO
2558/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2559
2560static int
7e3102a7
AM
2561sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2562 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2563{
7e3102a7 2564#ifdef BFD64
f4416af6
AO
2565 Elf_Internal_Rela int_reloc1[3];
2566 Elf_Internal_Rela int_reloc2[3];
2567
2568 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2569 (reldyn_sorting_bfd, arg1, int_reloc1);
2570 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2571 (reldyn_sorting_bfd, arg2, int_reloc2);
2572
6870500c
RS
2573 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2574 return -1;
2575 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2576 return 1;
2577
2578 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2579 return -1;
2580 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2581 return 1;
2582 return 0;
7e3102a7
AM
2583#else
2584 abort ();
2585#endif
f4416af6
AO
2586}
2587
2588
b49e97c9
TS
2589/* This routine is used to write out ECOFF debugging external symbol
2590 information. It is called via mips_elf_link_hash_traverse. The
2591 ECOFF external symbol information must match the ELF external
2592 symbol information. Unfortunately, at this point we don't know
2593 whether a symbol is required by reloc information, so the two
2594 tables may wind up being different. We must sort out the external
2595 symbol information before we can set the final size of the .mdebug
2596 section, and we must set the size of the .mdebug section before we
2597 can relocate any sections, and we can't know which symbols are
2598 required by relocation until we relocate the sections.
2599 Fortunately, it is relatively unlikely that any symbol will be
2600 stripped but required by a reloc. In particular, it can not happen
2601 when generating a final executable. */
2602
b34976b6 2603static bfd_boolean
9719ad41 2604mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2605{
9719ad41 2606 struct extsym_info *einfo = data;
b34976b6 2607 bfd_boolean strip;
b49e97c9
TS
2608 asection *sec, *output_section;
2609
b49e97c9 2610 if (h->root.indx == -2)
b34976b6 2611 strip = FALSE;
f5385ebf 2612 else if ((h->root.def_dynamic
77cfaee6
AM
2613 || h->root.ref_dynamic
2614 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2615 && !h->root.def_regular
2616 && !h->root.ref_regular)
b34976b6 2617 strip = TRUE;
b49e97c9
TS
2618 else if (einfo->info->strip == strip_all
2619 || (einfo->info->strip == strip_some
2620 && bfd_hash_lookup (einfo->info->keep_hash,
2621 h->root.root.root.string,
b34976b6
AM
2622 FALSE, FALSE) == NULL))
2623 strip = TRUE;
b49e97c9 2624 else
b34976b6 2625 strip = FALSE;
b49e97c9
TS
2626
2627 if (strip)
b34976b6 2628 return TRUE;
b49e97c9
TS
2629
2630 if (h->esym.ifd == -2)
2631 {
2632 h->esym.jmptbl = 0;
2633 h->esym.cobol_main = 0;
2634 h->esym.weakext = 0;
2635 h->esym.reserved = 0;
2636 h->esym.ifd = ifdNil;
2637 h->esym.asym.value = 0;
2638 h->esym.asym.st = stGlobal;
2639
2640 if (h->root.root.type == bfd_link_hash_undefined
2641 || h->root.root.type == bfd_link_hash_undefweak)
2642 {
2643 const char *name;
2644
2645 /* Use undefined class. Also, set class and type for some
2646 special symbols. */
2647 name = h->root.root.root.string;
2648 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2649 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2650 {
2651 h->esym.asym.sc = scData;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = 0;
2654 }
2655 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2656 {
2657 h->esym.asym.sc = scAbs;
2658 h->esym.asym.st = stLabel;
2659 h->esym.asym.value =
2660 mips_elf_hash_table (einfo->info)->procedure_count;
2661 }
4a14403c 2662 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2663 {
2664 h->esym.asym.sc = scAbs;
2665 h->esym.asym.st = stLabel;
2666 h->esym.asym.value = elf_gp (einfo->abfd);
2667 }
2668 else
2669 h->esym.asym.sc = scUndefined;
2670 }
2671 else if (h->root.root.type != bfd_link_hash_defined
2672 && h->root.root.type != bfd_link_hash_defweak)
2673 h->esym.asym.sc = scAbs;
2674 else
2675 {
2676 const char *name;
2677
2678 sec = h->root.root.u.def.section;
2679 output_section = sec->output_section;
2680
2681 /* When making a shared library and symbol h is the one from
2682 the another shared library, OUTPUT_SECTION may be null. */
2683 if (output_section == NULL)
2684 h->esym.asym.sc = scUndefined;
2685 else
2686 {
2687 name = bfd_section_name (output_section->owner, output_section);
2688
2689 if (strcmp (name, ".text") == 0)
2690 h->esym.asym.sc = scText;
2691 else if (strcmp (name, ".data") == 0)
2692 h->esym.asym.sc = scData;
2693 else if (strcmp (name, ".sdata") == 0)
2694 h->esym.asym.sc = scSData;
2695 else if (strcmp (name, ".rodata") == 0
2696 || strcmp (name, ".rdata") == 0)
2697 h->esym.asym.sc = scRData;
2698 else if (strcmp (name, ".bss") == 0)
2699 h->esym.asym.sc = scBss;
2700 else if (strcmp (name, ".sbss") == 0)
2701 h->esym.asym.sc = scSBss;
2702 else if (strcmp (name, ".init") == 0)
2703 h->esym.asym.sc = scInit;
2704 else if (strcmp (name, ".fini") == 0)
2705 h->esym.asym.sc = scFini;
2706 else
2707 h->esym.asym.sc = scAbs;
2708 }
2709 }
2710
2711 h->esym.asym.reserved = 0;
2712 h->esym.asym.index = indexNil;
2713 }
2714
2715 if (h->root.root.type == bfd_link_hash_common)
2716 h->esym.asym.value = h->root.root.u.c.size;
2717 else if (h->root.root.type == bfd_link_hash_defined
2718 || h->root.root.type == bfd_link_hash_defweak)
2719 {
2720 if (h->esym.asym.sc == scCommon)
2721 h->esym.asym.sc = scBss;
2722 else if (h->esym.asym.sc == scSCommon)
2723 h->esym.asym.sc = scSBss;
2724
2725 sec = h->root.root.u.def.section;
2726 output_section = sec->output_section;
2727 if (output_section != NULL)
2728 h->esym.asym.value = (h->root.root.u.def.value
2729 + sec->output_offset
2730 + output_section->vma);
2731 else
2732 h->esym.asym.value = 0;
2733 }
33bb52fb 2734 else
b49e97c9
TS
2735 {
2736 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2737
2738 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2739 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2740
33bb52fb 2741 if (hd->needs_lazy_stub)
b49e97c9
TS
2742 {
2743 /* Set type and value for a symbol with a function stub. */
2744 h->esym.asym.st = stProc;
2745 sec = hd->root.root.u.def.section;
2746 if (sec == NULL)
2747 h->esym.asym.value = 0;
2748 else
2749 {
2750 output_section = sec->output_section;
2751 if (output_section != NULL)
2752 h->esym.asym.value = (hd->root.plt.offset
2753 + sec->output_offset
2754 + output_section->vma);
2755 else
2756 h->esym.asym.value = 0;
2757 }
b49e97c9
TS
2758 }
2759 }
2760
2761 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2762 h->root.root.root.string,
2763 &h->esym))
2764 {
b34976b6
AM
2765 einfo->failed = TRUE;
2766 return FALSE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return TRUE;
b49e97c9
TS
2770}
2771
2772/* A comparison routine used to sort .gptab entries. */
2773
2774static int
9719ad41 2775gptab_compare (const void *p1, const void *p2)
b49e97c9 2776{
9719ad41
RS
2777 const Elf32_gptab *a1 = p1;
2778 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2779
2780 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2781}
2782\f
b15e6682 2783/* Functions to manage the got entry hash table. */
f4416af6
AO
2784
2785/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2786 hash number. */
2787
2788static INLINE hashval_t
9719ad41 2789mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2790{
2791#ifdef BFD64
2792 return addr + (addr >> 32);
2793#else
2794 return addr;
2795#endif
2796}
2797
2798/* got_entries only match if they're identical, except for gotidx, so
2799 use all fields to compute the hash, and compare the appropriate
2800 union members. */
2801
b15e6682 2802static hashval_t
9719ad41 2803mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2804{
2805 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2806
38985a1c 2807 return entry->symndx
0f20cc35 2808 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2809 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2810 : entry->abfd->id
2811 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2812 : entry->d.h->root.root.root.hash));
b15e6682
AO
2813}
2814
2815static int
9719ad41 2816mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2817{
2818 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2819 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2820
0f20cc35
DJ
2821 /* An LDM entry can only match another LDM entry. */
2822 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2823 return 0;
2824
b15e6682 2825 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2826 && (! e1->abfd ? e1->d.address == e2->d.address
2827 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2828 : e1->d.h == e2->d.h);
2829}
2830
2831/* multi_got_entries are still a match in the case of global objects,
2832 even if the input bfd in which they're referenced differs, so the
2833 hash computation and compare functions are adjusted
2834 accordingly. */
2835
2836static hashval_t
9719ad41 2837mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2838{
2839 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2840
2841 return entry->symndx
2842 + (! entry->abfd
2843 ? mips_elf_hash_bfd_vma (entry->d.address)
2844 : entry->symndx >= 0
0f20cc35
DJ
2845 ? ((entry->tls_type & GOT_TLS_LDM)
2846 ? (GOT_TLS_LDM << 17)
2847 : (entry->abfd->id
2848 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2849 : entry->d.h->root.root.root.hash);
2850}
2851
2852static int
9719ad41 2853mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2854{
2855 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2856 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2857
0f20cc35
DJ
2858 /* Any two LDM entries match. */
2859 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2860 return 1;
2861
2862 /* Nothing else matches an LDM entry. */
2863 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2864 return 0;
2865
f4416af6
AO
2866 return e1->symndx == e2->symndx
2867 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2868 : e1->abfd == NULL || e2->abfd == NULL
2869 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2870 : e1->d.h == e2->d.h);
b15e6682 2871}
c224138d
RS
2872
2873static hashval_t
2874mips_got_page_entry_hash (const void *entry_)
2875{
2876 const struct mips_got_page_entry *entry;
2877
2878 entry = (const struct mips_got_page_entry *) entry_;
2879 return entry->abfd->id + entry->symndx;
2880}
2881
2882static int
2883mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2884{
2885 const struct mips_got_page_entry *entry1, *entry2;
2886
2887 entry1 = (const struct mips_got_page_entry *) entry1_;
2888 entry2 = (const struct mips_got_page_entry *) entry2_;
2889 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2890}
b15e6682 2891\f
0a44bf69
RS
2892/* Return the dynamic relocation section. If it doesn't exist, try to
2893 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2894 if creation fails. */
f4416af6
AO
2895
2896static asection *
0a44bf69 2897mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2898{
0a44bf69 2899 const char *dname;
f4416af6 2900 asection *sreloc;
0a44bf69 2901 bfd *dynobj;
f4416af6 2902
0a44bf69
RS
2903 dname = MIPS_ELF_REL_DYN_NAME (info);
2904 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2905 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2906 if (sreloc == NULL && create_p)
2907 {
3d4d4302
AM
2908 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2909 (SEC_ALLOC
2910 | SEC_LOAD
2911 | SEC_HAS_CONTENTS
2912 | SEC_IN_MEMORY
2913 | SEC_LINKER_CREATED
2914 | SEC_READONLY));
f4416af6 2915 if (sreloc == NULL
f4416af6 2916 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2917 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2918 return NULL;
2919 }
2920 return sreloc;
2921}
2922
0f20cc35
DJ
2923/* Count the number of relocations needed for a TLS GOT entry, with
2924 access types from TLS_TYPE, and symbol H (or a local symbol if H
2925 is NULL). */
2926
2927static int
2928mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2929 struct elf_link_hash_entry *h)
2930{
2931 int indx = 0;
2932 int ret = 0;
2933 bfd_boolean need_relocs = FALSE;
2934 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2935
2936 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2937 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2938 indx = h->dynindx;
2939
2940 if ((info->shared || indx != 0)
2941 && (h == NULL
2942 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2943 || h->root.type != bfd_link_hash_undefweak))
2944 need_relocs = TRUE;
2945
2946 if (!need_relocs)
2947 return FALSE;
2948
2949 if (tls_type & GOT_TLS_GD)
2950 {
2951 ret++;
2952 if (indx != 0)
2953 ret++;
2954 }
2955
2956 if (tls_type & GOT_TLS_IE)
2957 ret++;
2958
2959 if ((tls_type & GOT_TLS_LDM) && info->shared)
2960 ret++;
2961
2962 return ret;
2963}
2964
2965/* Count the number of TLS relocations required for the GOT entry in
2966 ARG1, if it describes a local symbol. */
2967
2968static int
2969mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2970{
2971 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2972 struct mips_elf_count_tls_arg *arg = arg2;
2973
2974 if (entry->abfd != NULL && entry->symndx != -1)
2975 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2976
2977 return 1;
2978}
2979
2980/* Count the number of TLS GOT entries required for the global (or
2981 forced-local) symbol in ARG1. */
2982
2983static int
2984mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2985{
2986 struct mips_elf_link_hash_entry *hm
2987 = (struct mips_elf_link_hash_entry *) arg1;
2988 struct mips_elf_count_tls_arg *arg = arg2;
2989
2990 if (hm->tls_type & GOT_TLS_GD)
2991 arg->needed += 2;
2992 if (hm->tls_type & GOT_TLS_IE)
2993 arg->needed += 1;
2994
2995 return 1;
2996}
2997
2998/* Count the number of TLS relocations required for the global (or
2999 forced-local) symbol in ARG1. */
3000
3001static int
3002mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3003{
3004 struct mips_elf_link_hash_entry *hm
3005 = (struct mips_elf_link_hash_entry *) arg1;
3006 struct mips_elf_count_tls_arg *arg = arg2;
3007
3008 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3009
3010 return 1;
3011}
3012
3013/* Output a simple dynamic relocation into SRELOC. */
3014
3015static void
3016mips_elf_output_dynamic_relocation (bfd *output_bfd,
3017 asection *sreloc,
861fb55a 3018 unsigned long reloc_index,
0f20cc35
DJ
3019 unsigned long indx,
3020 int r_type,
3021 bfd_vma offset)
3022{
3023 Elf_Internal_Rela rel[3];
3024
3025 memset (rel, 0, sizeof (rel));
3026
3027 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3029
3030 if (ABI_64_P (output_bfd))
3031 {
3032 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3033 (output_bfd, &rel[0],
3034 (sreloc->contents
861fb55a 3035 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3036 }
3037 else
3038 bfd_elf32_swap_reloc_out
3039 (output_bfd, &rel[0],
3040 (sreloc->contents
861fb55a 3041 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3042}
3043
3044/* Initialize a set of TLS GOT entries for one symbol. */
3045
3046static void
3047mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3048 unsigned char *tls_type_p,
3049 struct bfd_link_info *info,
3050 struct mips_elf_link_hash_entry *h,
3051 bfd_vma value)
3052{
23cc69b6 3053 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3054 int indx;
3055 asection *sreloc, *sgot;
3056 bfd_vma offset, offset2;
0f20cc35
DJ
3057 bfd_boolean need_relocs = FALSE;
3058
23cc69b6 3059 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3060 if (htab == NULL)
3061 return;
3062
23cc69b6 3063 sgot = htab->sgot;
0f20cc35
DJ
3064
3065 indx = 0;
3066 if (h != NULL)
3067 {
3068 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3069
3070 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3071 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3072 indx = h->root.dynindx;
3073 }
3074
3075 if (*tls_type_p & GOT_TLS_DONE)
3076 return;
3077
3078 if ((info->shared || indx != 0)
3079 && (h == NULL
3080 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3081 || h->root.type != bfd_link_hash_undefweak))
3082 need_relocs = TRUE;
3083
3084 /* MINUS_ONE means the symbol is not defined in this object. It may not
3085 be defined at all; assume that the value doesn't matter in that
3086 case. Otherwise complain if we would use the value. */
3087 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3088 || h->root.root.type == bfd_link_hash_undefweak);
3089
3090 /* Emit necessary relocations. */
0a44bf69 3091 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
3092
3093 /* General Dynamic. */
3094 if (*tls_type_p & GOT_TLS_GD)
3095 {
3096 offset = got_offset;
3097 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3098
3099 if (need_relocs)
3100 {
3101 mips_elf_output_dynamic_relocation
861fb55a 3102 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3103 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3104 sgot->output_offset + sgot->output_section->vma + offset);
3105
3106 if (indx)
3107 mips_elf_output_dynamic_relocation
861fb55a 3108 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3109 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3110 sgot->output_offset + sgot->output_section->vma + offset2);
3111 else
3112 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3113 sgot->contents + offset2);
3114 }
3115 else
3116 {
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + offset);
3119 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3120 sgot->contents + offset2);
3121 }
3122
3123 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3124 }
3125
3126 /* Initial Exec model. */
3127 if (*tls_type_p & GOT_TLS_IE)
3128 {
3129 offset = got_offset;
3130
3131 if (need_relocs)
3132 {
3133 if (indx == 0)
3134 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3135 sgot->contents + offset);
3136 else
3137 MIPS_ELF_PUT_WORD (abfd, 0,
3138 sgot->contents + offset);
3139
3140 mips_elf_output_dynamic_relocation
861fb55a 3141 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3142 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3143 sgot->output_offset + sgot->output_section->vma + offset);
3144 }
3145 else
3146 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3147 sgot->contents + offset);
3148 }
3149
3150 if (*tls_type_p & GOT_TLS_LDM)
3151 {
3152 /* The initial offset is zero, and the LD offsets will include the
3153 bias by DTP_OFFSET. */
3154 MIPS_ELF_PUT_WORD (abfd, 0,
3155 sgot->contents + got_offset
3156 + MIPS_ELF_GOT_SIZE (abfd));
3157
3158 if (!info->shared)
3159 MIPS_ELF_PUT_WORD (abfd, 1,
3160 sgot->contents + got_offset);
3161 else
3162 mips_elf_output_dynamic_relocation
861fb55a 3163 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3164 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3165 sgot->output_offset + sgot->output_section->vma + got_offset);
3166 }
3167
3168 *tls_type_p |= GOT_TLS_DONE;
3169}
3170
3171/* Return the GOT index to use for a relocation of type R_TYPE against
3172 a symbol accessed using TLS_TYPE models. The GOT entries for this
3173 symbol in this GOT start at GOT_INDEX. This function initializes the
3174 GOT entries and corresponding relocations. */
3175
3176static bfd_vma
3177mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3178 int r_type, struct bfd_link_info *info,
3179 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3180{
df58fc94
RS
3181 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3182 || tls_gd_reloc_p (r_type)
3183 || tls_ldm_reloc_p (r_type));
0f20cc35
DJ
3184
3185 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3186
df58fc94 3187 if (tls_gottprel_reloc_p (r_type))
0f20cc35
DJ
3188 {
3189 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3190 if (*tls_type & GOT_TLS_GD)
3191 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3192 else
3193 return got_index;
3194 }
3195
df58fc94 3196 if (tls_gd_reloc_p (r_type))
0f20cc35
DJ
3197 {
3198 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3199 return got_index;
3200 }
3201
df58fc94 3202 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3203 {
3204 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3205 return got_index;
3206 }
3207
3208 return got_index;
3209}
3210
0a44bf69
RS
3211/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3212 for global symbol H. .got.plt comes before the GOT, so the offset
3213 will be negative. */
3214
3215static bfd_vma
3216mips_elf_gotplt_index (struct bfd_link_info *info,
3217 struct elf_link_hash_entry *h)
3218{
3219 bfd_vma plt_index, got_address, got_value;
3220 struct mips_elf_link_hash_table *htab;
3221
3222 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3223 BFD_ASSERT (htab != NULL);
3224
0a44bf69
RS
3225 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3226
861fb55a
DJ
3227 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3228 section starts with reserved entries. */
3229 BFD_ASSERT (htab->is_vxworks);
3230
0a44bf69
RS
3231 /* Calculate the index of the symbol's PLT entry. */
3232 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3233
3234 /* Calculate the address of the associated .got.plt entry. */
3235 got_address = (htab->sgotplt->output_section->vma
3236 + htab->sgotplt->output_offset
3237 + plt_index * 4);
3238
3239 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3240 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3241 + htab->root.hgot->root.u.def.section->output_offset
3242 + htab->root.hgot->root.u.def.value);
3243
3244 return got_address - got_value;
3245}
3246
5c18022e 3247/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3248 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3249 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3250 offset can be found. */
b49e97c9
TS
3251
3252static bfd_vma
9719ad41 3253mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3254 bfd_vma value, unsigned long r_symndx,
0f20cc35 3255 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3256{
a8028dd0 3257 struct mips_elf_link_hash_table *htab;
b15e6682 3258 struct mips_got_entry *entry;
b49e97c9 3259
a8028dd0 3260 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3261 BFD_ASSERT (htab != NULL);
3262
a8028dd0
RS
3263 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3264 r_symndx, h, r_type);
0f20cc35 3265 if (!entry)
b15e6682 3266 return MINUS_ONE;
0f20cc35
DJ
3267
3268 if (TLS_RELOC_P (r_type))
ead49a57 3269 {
a8028dd0 3270 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3271 /* A type (3) entry in the single-GOT case. We use the symbol's
3272 hash table entry to track the index. */
3273 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3274 r_type, info, h, value);
3275 else
3276 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3277 r_type, info, h, value);
3278 }
0f20cc35
DJ
3279 else
3280 return entry->gotidx;
b49e97c9
TS
3281}
3282
3283/* Returns the GOT index for the global symbol indicated by H. */
3284
3285static bfd_vma
0f20cc35
DJ
3286mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3287 int r_type, struct bfd_link_info *info)
b49e97c9 3288{
a8028dd0 3289 struct mips_elf_link_hash_table *htab;
91d6fa6a 3290 bfd_vma got_index;
f4416af6 3291 struct mips_got_info *g, *gg;
d0c7ff07 3292 long global_got_dynindx = 0;
b49e97c9 3293
a8028dd0 3294 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3295 BFD_ASSERT (htab != NULL);
3296
a8028dd0 3297 gg = g = htab->got_info;
f4416af6
AO
3298 if (g->bfd2got && ibfd)
3299 {
3300 struct mips_got_entry e, *p;
143d77c5 3301
f4416af6
AO
3302 BFD_ASSERT (h->dynindx >= 0);
3303
3304 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3305 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3306 {
3307 e.abfd = ibfd;
3308 e.symndx = -1;
3309 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3310 e.tls_type = 0;
f4416af6 3311
9719ad41 3312 p = htab_find (g->got_entries, &e);
f4416af6
AO
3313
3314 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3315
3316 if (TLS_RELOC_P (r_type))
3317 {
3318 bfd_vma value = MINUS_ONE;
3319 if ((h->root.type == bfd_link_hash_defined
3320 || h->root.type == bfd_link_hash_defweak)
3321 && h->root.u.def.section->output_section)
3322 value = (h->root.u.def.value
3323 + h->root.u.def.section->output_offset
3324 + h->root.u.def.section->output_section->vma);
3325
3326 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3327 info, e.d.h, value);
3328 }
3329 else
3330 return p->gotidx;
f4416af6
AO
3331 }
3332 }
3333
3334 if (gg->global_gotsym != NULL)
3335 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 3336
0f20cc35
DJ
3337 if (TLS_RELOC_P (r_type))
3338 {
3339 struct mips_elf_link_hash_entry *hm
3340 = (struct mips_elf_link_hash_entry *) h;
3341 bfd_vma value = MINUS_ONE;
3342
3343 if ((h->root.type == bfd_link_hash_defined
3344 || h->root.type == bfd_link_hash_defweak)
3345 && h->root.u.def.section->output_section)
3346 value = (h->root.u.def.value
3347 + h->root.u.def.section->output_offset
3348 + h->root.u.def.section->output_section->vma);
3349
91d6fa6a
NC
3350 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3351 r_type, info, hm, value);
0f20cc35
DJ
3352 }
3353 else
3354 {
3355 /* Once we determine the global GOT entry with the lowest dynamic
3356 symbol table index, we must put all dynamic symbols with greater
3357 indices into the GOT. That makes it easy to calculate the GOT
3358 offset. */
3359 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3360 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3361 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3362 }
91d6fa6a 3363 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3364
91d6fa6a 3365 return got_index;
b49e97c9
TS
3366}
3367
5c18022e
RS
3368/* Find a GOT page entry that points to within 32KB of VALUE. These
3369 entries are supposed to be placed at small offsets in the GOT, i.e.,
3370 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3371 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3372 offset of the GOT entry from VALUE. */
b49e97c9
TS
3373
3374static bfd_vma
9719ad41 3375mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3376 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3377{
91d6fa6a 3378 bfd_vma page, got_index;
b15e6682 3379 struct mips_got_entry *entry;
b49e97c9 3380
0a44bf69 3381 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3382 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3383 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3384
b15e6682
AO
3385 if (!entry)
3386 return MINUS_ONE;
143d77c5 3387
91d6fa6a 3388 got_index = entry->gotidx;
b49e97c9
TS
3389
3390 if (offsetp)
f4416af6 3391 *offsetp = value - entry->d.address;
b49e97c9 3392
91d6fa6a 3393 return got_index;
b49e97c9
TS
3394}
3395
738e5348 3396/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3397 EXTERNAL is true if the relocation was originally against a global
3398 symbol that binds locally. */
b49e97c9
TS
3399
3400static bfd_vma
9719ad41 3401mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3402 bfd_vma value, bfd_boolean external)
b49e97c9 3403{
b15e6682 3404 struct mips_got_entry *entry;
b49e97c9 3405
0a44bf69
RS
3406 /* GOT16 relocations against local symbols are followed by a LO16
3407 relocation; those against global symbols are not. Thus if the
3408 symbol was originally local, the GOT16 relocation should load the
3409 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3410 if (! external)
0a44bf69 3411 value = mips_elf_high (value) << 16;
b49e97c9 3412
738e5348
RS
3413 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3414 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3415 same in all cases. */
a8028dd0
RS
3416 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3417 NULL, R_MIPS_GOT16);
b15e6682
AO
3418 if (entry)
3419 return entry->gotidx;
3420 else
3421 return MINUS_ONE;
b49e97c9
TS
3422}
3423
3424/* Returns the offset for the entry at the INDEXth position
3425 in the GOT. */
3426
3427static bfd_vma
a8028dd0 3428mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3429 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3430{
a8028dd0 3431 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3432 asection *sgot;
3433 bfd_vma gp;
3434
a8028dd0 3435 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3436 BFD_ASSERT (htab != NULL);
3437
a8028dd0 3438 sgot = htab->sgot;
f4416af6 3439 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3440 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3441
91d6fa6a 3442 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3443}
3444
0a44bf69
RS
3445/* Create and return a local GOT entry for VALUE, which was calculated
3446 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3447 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3448 instead. */
b49e97c9 3449
b15e6682 3450static struct mips_got_entry *
0a44bf69 3451mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3452 bfd *ibfd, bfd_vma value,
5c18022e 3453 unsigned long r_symndx,
0f20cc35
DJ
3454 struct mips_elf_link_hash_entry *h,
3455 int r_type)
b49e97c9 3456{
b15e6682 3457 struct mips_got_entry entry, **loc;
f4416af6 3458 struct mips_got_info *g;
0a44bf69
RS
3459 struct mips_elf_link_hash_table *htab;
3460
3461 htab = mips_elf_hash_table (info);
4dfe6ac6 3462 BFD_ASSERT (htab != NULL);
b15e6682 3463
f4416af6
AO
3464 entry.abfd = NULL;
3465 entry.symndx = -1;
3466 entry.d.address = value;
0f20cc35 3467 entry.tls_type = 0;
f4416af6 3468
a8028dd0 3469 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3470 if (g == NULL)
3471 {
a8028dd0 3472 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3473 BFD_ASSERT (g != NULL);
3474 }
b15e6682 3475
020d7251
RS
3476 /* This function shouldn't be called for symbols that live in the global
3477 area of the GOT. */
3478 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35
DJ
3479 if (TLS_RELOC_P (r_type))
3480 {
3481 struct mips_got_entry *p;
3482
3483 entry.abfd = ibfd;
df58fc94 3484 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3485 {
3486 entry.tls_type = GOT_TLS_LDM;
3487 entry.symndx = 0;
3488 entry.d.addend = 0;
3489 }
3490 else if (h == NULL)
3491 {
3492 entry.symndx = r_symndx;
3493 entry.d.addend = 0;
3494 }
3495 else
3496 entry.d.h = h;
3497
3498 p = (struct mips_got_entry *)
3499 htab_find (g->got_entries, &entry);
3500
3501 BFD_ASSERT (p);
3502 return p;
3503 }
3504
b15e6682
AO
3505 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3506 INSERT);
3507 if (*loc)
3508 return *loc;
143d77c5 3509
b15e6682 3510 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3511 entry.tls_type = 0;
b15e6682
AO
3512
3513 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3514
3515 if (! *loc)
3516 return NULL;
143d77c5 3517
b15e6682
AO
3518 memcpy (*loc, &entry, sizeof entry);
3519
8275b357 3520 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3521 {
f4416af6 3522 (*loc)->gotidx = -1;
b49e97c9
TS
3523 /* We didn't allocate enough space in the GOT. */
3524 (*_bfd_error_handler)
3525 (_("not enough GOT space for local GOT entries"));
3526 bfd_set_error (bfd_error_bad_value);
b15e6682 3527 return NULL;
b49e97c9
TS
3528 }
3529
3530 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3531 (htab->sgot->contents + entry.gotidx));
b15e6682 3532
5c18022e 3533 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3534 if (htab->is_vxworks)
3535 {
3536 Elf_Internal_Rela outrel;
5c18022e 3537 asection *s;
91d6fa6a 3538 bfd_byte *rloc;
0a44bf69 3539 bfd_vma got_address;
0a44bf69
RS
3540
3541 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3542 got_address = (htab->sgot->output_section->vma
3543 + htab->sgot->output_offset
0a44bf69
RS
3544 + entry.gotidx);
3545
91d6fa6a 3546 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3547 outrel.r_offset = got_address;
5c18022e
RS
3548 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3549 outrel.r_addend = value;
91d6fa6a 3550 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3551 }
3552
b15e6682 3553 return *loc;
b49e97c9
TS
3554}
3555
d4596a51
RS
3556/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3557 The number might be exact or a worst-case estimate, depending on how
3558 much information is available to elf_backend_omit_section_dynsym at
3559 the current linking stage. */
3560
3561static bfd_size_type
3562count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3563{
3564 bfd_size_type count;
3565
3566 count = 0;
3567 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3568 {
3569 asection *p;
3570 const struct elf_backend_data *bed;
3571
3572 bed = get_elf_backend_data (output_bfd);
3573 for (p = output_bfd->sections; p ; p = p->next)
3574 if ((p->flags & SEC_EXCLUDE) == 0
3575 && (p->flags & SEC_ALLOC) != 0
3576 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3577 ++count;
3578 }
3579 return count;
3580}
3581
b49e97c9 3582/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3583 appear towards the end. */
b49e97c9 3584
b34976b6 3585static bfd_boolean
d4596a51 3586mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3587{
a8028dd0 3588 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3589 struct mips_elf_hash_sort_data hsd;
3590 struct mips_got_info *g;
b49e97c9 3591
d4596a51
RS
3592 if (elf_hash_table (info)->dynsymcount == 0)
3593 return TRUE;
3594
a8028dd0 3595 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3596 BFD_ASSERT (htab != NULL);
3597
a8028dd0 3598 g = htab->got_info;
d4596a51
RS
3599 if (g == NULL)
3600 return TRUE;
f4416af6 3601
b49e97c9 3602 hsd.low = NULL;
23cc69b6
RS
3603 hsd.max_unref_got_dynindx
3604 = hsd.min_got_dynindx
3605 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3606 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3607 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3608 elf_hash_table (info)),
3609 mips_elf_sort_hash_table_f,
3610 &hsd);
3611
3612 /* There should have been enough room in the symbol table to
44c410de 3613 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3614 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3615 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3616 == elf_hash_table (info)->dynsymcount);
3617 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3618 == g->global_gotno);
b49e97c9
TS
3619
3620 /* Now we know which dynamic symbol has the lowest dynamic symbol
3621 table index in the GOT. */
b49e97c9
TS
3622 g->global_gotsym = hsd.low;
3623
b34976b6 3624 return TRUE;
b49e97c9
TS
3625}
3626
3627/* If H needs a GOT entry, assign it the highest available dynamic
3628 index. Otherwise, assign it the lowest available dynamic
3629 index. */
3630
b34976b6 3631static bfd_boolean
9719ad41 3632mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3633{
9719ad41 3634 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3635
b49e97c9
TS
3636 /* Symbols without dynamic symbol table entries aren't interesting
3637 at all. */
3638 if (h->root.dynindx == -1)
b34976b6 3639 return TRUE;
b49e97c9 3640
634835ae 3641 switch (h->global_got_area)
f4416af6 3642 {
634835ae
RS
3643 case GGA_NONE:
3644 h->root.dynindx = hsd->max_non_got_dynindx++;
3645 break;
0f20cc35 3646
634835ae 3647 case GGA_NORMAL:
0f20cc35
DJ
3648 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3649
b49e97c9
TS
3650 h->root.dynindx = --hsd->min_got_dynindx;
3651 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3652 break;
3653
3654 case GGA_RELOC_ONLY:
3655 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3656
3657 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3658 hsd->low = (struct elf_link_hash_entry *) h;
3659 h->root.dynindx = hsd->max_unref_got_dynindx++;
3660 break;
b49e97c9
TS
3661 }
3662
b34976b6 3663 return TRUE;
b49e97c9
TS
3664}
3665
3666/* If H is a symbol that needs a global GOT entry, but has a dynamic
3667 symbol table index lower than any we've seen to date, record it for
6ccf4795
RS
3668 posterity. FOR_CALL is true if the caller is only interested in
3669 using the GOT entry for calls. */
b49e97c9 3670
b34976b6 3671static bfd_boolean
9719ad41
RS
3672mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3673 bfd *abfd, struct bfd_link_info *info,
6ccf4795 3674 bfd_boolean for_call,
0f20cc35 3675 unsigned char tls_flag)
b49e97c9 3676{
a8028dd0 3677 struct mips_elf_link_hash_table *htab;
634835ae 3678 struct mips_elf_link_hash_entry *hmips;
f4416af6 3679 struct mips_got_entry entry, **loc;
a8028dd0
RS
3680 struct mips_got_info *g;
3681
3682 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3683 BFD_ASSERT (htab != NULL);
3684
634835ae 3685 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3686 if (!for_call)
3687 hmips->got_only_for_calls = FALSE;
f4416af6 3688
b49e97c9
TS
3689 /* A global symbol in the GOT must also be in the dynamic symbol
3690 table. */
7c5fcef7
L
3691 if (h->dynindx == -1)
3692 {
3693 switch (ELF_ST_VISIBILITY (h->other))
3694 {
3695 case STV_INTERNAL:
3696 case STV_HIDDEN:
33bb52fb 3697 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3698 break;
3699 }
c152c796 3700 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3701 return FALSE;
7c5fcef7 3702 }
b49e97c9 3703
86324f90 3704 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3705 g = htab->got_info;
86324f90
EC
3706 BFD_ASSERT (g != NULL);
3707
f4416af6
AO
3708 entry.abfd = abfd;
3709 entry.symndx = -1;
3710 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3711 entry.tls_type = 0;
f4416af6
AO
3712
3713 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3714 INSERT);
3715
b49e97c9
TS
3716 /* If we've already marked this entry as needing GOT space, we don't
3717 need to do it again. */
f4416af6 3718 if (*loc)
0f20cc35
DJ
3719 {
3720 (*loc)->tls_type |= tls_flag;
3721 return TRUE;
3722 }
f4416af6
AO
3723
3724 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3725
3726 if (! *loc)
3727 return FALSE;
143d77c5 3728
f4416af6 3729 entry.gotidx = -1;
0f20cc35
DJ
3730 entry.tls_type = tls_flag;
3731
f4416af6
AO
3732 memcpy (*loc, &entry, sizeof entry);
3733
0f20cc35 3734 if (tls_flag == 0)
634835ae 3735 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3736
b34976b6 3737 return TRUE;
b49e97c9 3738}
f4416af6
AO
3739
3740/* Reserve space in G for a GOT entry containing the value of symbol
3741 SYMNDX in input bfd ABDF, plus ADDEND. */
3742
3743static bfd_boolean
9719ad41 3744mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3745 struct bfd_link_info *info,
0f20cc35 3746 unsigned char tls_flag)
f4416af6 3747{
a8028dd0
RS
3748 struct mips_elf_link_hash_table *htab;
3749 struct mips_got_info *g;
f4416af6
AO
3750 struct mips_got_entry entry, **loc;
3751
a8028dd0 3752 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3753 BFD_ASSERT (htab != NULL);
3754
a8028dd0
RS
3755 g = htab->got_info;
3756 BFD_ASSERT (g != NULL);
3757
f4416af6
AO
3758 entry.abfd = abfd;
3759 entry.symndx = symndx;
3760 entry.d.addend = addend;
0f20cc35 3761 entry.tls_type = tls_flag;
f4416af6
AO
3762 loc = (struct mips_got_entry **)
3763 htab_find_slot (g->got_entries, &entry, INSERT);
3764
3765 if (*loc)
0f20cc35
DJ
3766 {
3767 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3768 {
3769 g->tls_gotno += 2;
3770 (*loc)->tls_type |= tls_flag;
3771 }
3772 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3773 {
3774 g->tls_gotno += 1;
3775 (*loc)->tls_type |= tls_flag;
3776 }
3777 return TRUE;
3778 }
f4416af6 3779
0f20cc35
DJ
3780 if (tls_flag != 0)
3781 {
3782 entry.gotidx = -1;
3783 entry.tls_type = tls_flag;
3784 if (tls_flag == GOT_TLS_IE)
3785 g->tls_gotno += 1;
3786 else if (tls_flag == GOT_TLS_GD)
3787 g->tls_gotno += 2;
3788 else if (g->tls_ldm_offset == MINUS_ONE)
3789 {
3790 g->tls_ldm_offset = MINUS_TWO;
3791 g->tls_gotno += 2;
3792 }
3793 }
3794 else
3795 {
3796 entry.gotidx = g->local_gotno++;
3797 entry.tls_type = 0;
3798 }
f4416af6
AO
3799
3800 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3801
3802 if (! *loc)
3803 return FALSE;
143d77c5 3804
f4416af6
AO
3805 memcpy (*loc, &entry, sizeof entry);
3806
3807 return TRUE;
3808}
c224138d
RS
3809
3810/* Return the maximum number of GOT page entries required for RANGE. */
3811
3812static bfd_vma
3813mips_elf_pages_for_range (const struct mips_got_page_range *range)
3814{
3815 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3816}
3817
3a3b6725 3818/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3819 that ADDEND is the addend for that relocation.
3820
3821 This function creates an upper bound on the number of GOT slots
3822 required; no attempt is made to combine references to non-overridable
3823 global symbols across multiple input files. */
c224138d
RS
3824
3825static bfd_boolean
a8028dd0
RS
3826mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3827 long symndx, bfd_signed_vma addend)
c224138d 3828{
a8028dd0
RS
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_got_info *g;
c224138d
RS
3831 struct mips_got_page_entry lookup, *entry;
3832 struct mips_got_page_range **range_ptr, *range;
3833 bfd_vma old_pages, new_pages;
3834 void **loc;
3835
a8028dd0 3836 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3837 BFD_ASSERT (htab != NULL);
3838
a8028dd0
RS
3839 g = htab->got_info;
3840 BFD_ASSERT (g != NULL);
3841
c224138d
RS
3842 /* Find the mips_got_page_entry hash table entry for this symbol. */
3843 lookup.abfd = abfd;
3844 lookup.symndx = symndx;
3845 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3846 if (loc == NULL)
3847 return FALSE;
3848
3849 /* Create a mips_got_page_entry if this is the first time we've
3850 seen the symbol. */
3851 entry = (struct mips_got_page_entry *) *loc;
3852 if (!entry)
3853 {
3854 entry = bfd_alloc (abfd, sizeof (*entry));
3855 if (!entry)
3856 return FALSE;
3857
3858 entry->abfd = abfd;
3859 entry->symndx = symndx;
3860 entry->ranges = NULL;
3861 entry->num_pages = 0;
3862 *loc = entry;
3863 }
3864
3865 /* Skip over ranges whose maximum extent cannot share a page entry
3866 with ADDEND. */
3867 range_ptr = &entry->ranges;
3868 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3869 range_ptr = &(*range_ptr)->next;
3870
3871 /* If we scanned to the end of the list, or found a range whose
3872 minimum extent cannot share a page entry with ADDEND, create
3873 a new singleton range. */
3874 range = *range_ptr;
3875 if (!range || addend < range->min_addend - 0xffff)
3876 {
3877 range = bfd_alloc (abfd, sizeof (*range));
3878 if (!range)
3879 return FALSE;
3880
3881 range->next = *range_ptr;
3882 range->min_addend = addend;
3883 range->max_addend = addend;
3884
3885 *range_ptr = range;
3886 entry->num_pages++;
3887 g->page_gotno++;
3888 return TRUE;
3889 }
3890
3891 /* Remember how many pages the old range contributed. */
3892 old_pages = mips_elf_pages_for_range (range);
3893
3894 /* Update the ranges. */
3895 if (addend < range->min_addend)
3896 range->min_addend = addend;
3897 else if (addend > range->max_addend)
3898 {
3899 if (range->next && addend >= range->next->min_addend - 0xffff)
3900 {
3901 old_pages += mips_elf_pages_for_range (range->next);
3902 range->max_addend = range->next->max_addend;
3903 range->next = range->next->next;
3904 }
3905 else
3906 range->max_addend = addend;
3907 }
3908
3909 /* Record any change in the total estimate. */
3910 new_pages = mips_elf_pages_for_range (range);
3911 if (old_pages != new_pages)
3912 {
3913 entry->num_pages += new_pages - old_pages;
3914 g->page_gotno += new_pages - old_pages;
3915 }
3916
3917 return TRUE;
3918}
33bb52fb
RS
3919
3920/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3921
3922static void
3923mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3924 unsigned int n)
3925{
3926 asection *s;
3927 struct mips_elf_link_hash_table *htab;
3928
3929 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3930 BFD_ASSERT (htab != NULL);
3931
33bb52fb
RS
3932 s = mips_elf_rel_dyn_section (info, FALSE);
3933 BFD_ASSERT (s != NULL);
3934
3935 if (htab->is_vxworks)
3936 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3937 else
3938 {
3939 if (s->size == 0)
3940 {
3941 /* Make room for a null element. */
3942 s->size += MIPS_ELF_REL_SIZE (abfd);
3943 ++s->reloc_count;
3944 }
3945 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3946 }
3947}
3948\f
3949/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3950 if the GOT entry is for an indirect or warning symbol. */
3951
3952static int
3953mips_elf_check_recreate_got (void **entryp, void *data)
3954{
3955 struct mips_got_entry *entry;
3956 bfd_boolean *must_recreate;
3957
3958 entry = (struct mips_got_entry *) *entryp;
3959 must_recreate = (bfd_boolean *) data;
3960 if (entry->abfd != NULL && entry->symndx == -1)
3961 {
3962 struct mips_elf_link_hash_entry *h;
3963
3964 h = entry->d.h;
3965 if (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3967 {
3968 *must_recreate = TRUE;
3969 return 0;
3970 }
3971 }
3972 return 1;
3973}
3974
3975/* A htab_traverse callback for GOT entries. Add all entries to
3976 hash table *DATA, converting entries for indirect and warning
3977 symbols into entries for the target symbol. Set *DATA to null
3978 on error. */
3979
3980static int
3981mips_elf_recreate_got (void **entryp, void *data)
3982{
3983 htab_t *new_got;
3984 struct mips_got_entry *entry;
3985 void **slot;
3986
3987 new_got = (htab_t *) data;
3988 entry = (struct mips_got_entry *) *entryp;
3989 if (entry->abfd != NULL && entry->symndx == -1)
3990 {
3991 struct mips_elf_link_hash_entry *h;
3992
3993 h = entry->d.h;
3994 while (h->root.root.type == bfd_link_hash_indirect
3995 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3996 {
3997 BFD_ASSERT (h->global_got_area == GGA_NONE);
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3999 }
33bb52fb
RS
4000 entry->d.h = h;
4001 }
4002 slot = htab_find_slot (*new_got, entry, INSERT);
4003 if (slot == NULL)
4004 {
4005 *new_got = NULL;
4006 return 0;
4007 }
4008 if (*slot == NULL)
4009 *slot = entry;
4010 else
4011 free (entry);
4012 return 1;
4013}
4014
4015/* If any entries in G->got_entries are for indirect or warning symbols,
4016 replace them with entries for the target symbol. */
4017
4018static bfd_boolean
4019mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4020{
4021 bfd_boolean must_recreate;
4022 htab_t new_got;
4023
4024 must_recreate = FALSE;
4025 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4026 if (must_recreate)
4027 {
4028 new_got = htab_create (htab_size (g->got_entries),
4029 mips_elf_got_entry_hash,
4030 mips_elf_got_entry_eq, NULL);
4031 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4032 if (new_got == NULL)
4033 return FALSE;
4034
4035 /* Each entry in g->got_entries has either been copied to new_got
4036 or freed. Now delete the hash table itself. */
4037 htab_delete (g->got_entries);
4038 g->got_entries = new_got;
4039 }
4040 return TRUE;
4041}
4042
634835ae 4043/* A mips_elf_link_hash_traverse callback for which DATA points
020d7251
RS
4044 to the link_info structure. Count the number of type (3) entries
4045 in the master GOT. */
33bb52fb
RS
4046
4047static int
d4596a51 4048mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4049{
020d7251 4050 struct bfd_link_info *info;
6ccf4795 4051 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4052 struct mips_got_info *g;
4053
020d7251 4054 info = (struct bfd_link_info *) data;
6ccf4795
RS
4055 htab = mips_elf_hash_table (info);
4056 g = htab->got_info;
d4596a51 4057 if (h->global_got_area != GGA_NONE)
33bb52fb 4058 {
020d7251
RS
4059 /* Make a final decision about whether the symbol belongs in the
4060 local or global GOT. Symbols that bind locally can (and in the
4061 case of forced-local symbols, must) live in the local GOT.
4062 Those that are aren't in the dynamic symbol table must also
4063 live in the local GOT.
4064
4065 Note that the former condition does not always imply the
4066 latter: symbols do not bind locally if they are completely
4067 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4068 if (h->root.dynindx == -1
4069 || (h->got_only_for_calls
4070 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4071 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
d4596a51 4072 {
020d7251
RS
4073 /* The symbol belongs in the local GOT. We no longer need this
4074 entry if it was only used for relocations; those relocations
4075 will be against the null or section symbol instead of H. */
d4596a51
RS
4076 if (h->global_got_area != GGA_RELOC_ONLY)
4077 g->local_gotno++;
4078 h->global_got_area = GGA_NONE;
4079 }
6ccf4795
RS
4080 else if (htab->is_vxworks
4081 && h->got_only_for_calls
4082 && h->root.plt.offset != MINUS_ONE)
4083 /* On VxWorks, calls can refer directly to the .got.plt entry;
4084 they don't need entries in the regular GOT. .got.plt entries
4085 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4086 h->global_got_area = GGA_NONE;
d4596a51 4087 else
23cc69b6
RS
4088 {
4089 g->global_gotno++;
4090 if (h->global_got_area == GGA_RELOC_ONLY)
4091 g->reloc_only_gotno++;
4092 }
33bb52fb
RS
4093 }
4094 return 1;
4095}
f4416af6
AO
4096\f
4097/* Compute the hash value of the bfd in a bfd2got hash entry. */
4098
4099static hashval_t
9719ad41 4100mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
4101{
4102 const struct mips_elf_bfd2got_hash *entry
4103 = (struct mips_elf_bfd2got_hash *)entry_;
4104
4105 return entry->bfd->id;
4106}
4107
4108/* Check whether two hash entries have the same bfd. */
4109
4110static int
9719ad41 4111mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
4112{
4113 const struct mips_elf_bfd2got_hash *e1
4114 = (const struct mips_elf_bfd2got_hash *)entry1;
4115 const struct mips_elf_bfd2got_hash *e2
4116 = (const struct mips_elf_bfd2got_hash *)entry2;
4117
4118 return e1->bfd == e2->bfd;
4119}
4120
bad36eac 4121/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
4122 be the master GOT data. */
4123
4124static struct mips_got_info *
9719ad41 4125mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4126{
4127 struct mips_elf_bfd2got_hash e, *p;
4128
4129 if (! g->bfd2got)
4130 return g;
4131
4132 e.bfd = ibfd;
9719ad41 4133 p = htab_find (g->bfd2got, &e);
f4416af6
AO
4134 return p ? p->g : NULL;
4135}
4136
c224138d
RS
4137/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4138 Return NULL if an error occured. */
f4416af6 4139
c224138d
RS
4140static struct mips_got_info *
4141mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4142 bfd *input_bfd)
f4416af6 4143{
f4416af6 4144 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 4145 struct mips_got_info *g;
f4416af6 4146 void **bfdgotp;
143d77c5 4147
c224138d 4148 bfdgot_entry.bfd = input_bfd;
f4416af6 4149 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 4150 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 4151
c224138d 4152 if (bfdgot == NULL)
f4416af6 4153 {
c224138d
RS
4154 bfdgot = ((struct mips_elf_bfd2got_hash *)
4155 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 4156 if (bfdgot == NULL)
c224138d 4157 return NULL;
f4416af6
AO
4158
4159 *bfdgotp = bfdgot;
4160
c224138d
RS
4161 g = ((struct mips_got_info *)
4162 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 4163 if (g == NULL)
c224138d
RS
4164 return NULL;
4165
4166 bfdgot->bfd = input_bfd;
4167 bfdgot->g = g;
f4416af6
AO
4168
4169 g->global_gotsym = NULL;
4170 g->global_gotno = 0;
23cc69b6 4171 g->reloc_only_gotno = 0;
f4416af6 4172 g->local_gotno = 0;
c224138d 4173 g->page_gotno = 0;
f4416af6 4174 g->assigned_gotno = -1;
0f20cc35
DJ
4175 g->tls_gotno = 0;
4176 g->tls_assigned_gotno = 0;
4177 g->tls_ldm_offset = MINUS_ONE;
f4416af6 4178 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 4179 mips_elf_multi_got_entry_eq, NULL);
f4416af6 4180 if (g->got_entries == NULL)
c224138d
RS
4181 return NULL;
4182
4183 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4184 mips_got_page_entry_eq, NULL);
4185 if (g->got_page_entries == NULL)
4186 return NULL;
f4416af6
AO
4187
4188 g->bfd2got = NULL;
4189 g->next = NULL;
4190 }
4191
c224138d
RS
4192 return bfdgot->g;
4193}
4194
4195/* A htab_traverse callback for the entries in the master got.
4196 Create one separate got for each bfd that has entries in the global
4197 got, such that we can tell how many local and global entries each
4198 bfd requires. */
4199
4200static int
4201mips_elf_make_got_per_bfd (void **entryp, void *p)
4202{
4203 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4204 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4205 struct mips_got_info *g;
4206
4207 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4208 if (g == NULL)
4209 {
4210 arg->obfd = NULL;
4211 return 0;
4212 }
4213
f4416af6
AO
4214 /* Insert the GOT entry in the bfd's got entry hash table. */
4215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4216 if (*entryp != NULL)
4217 return 1;
143d77c5 4218
f4416af6
AO
4219 *entryp = entry;
4220
0f20cc35
DJ
4221 if (entry->tls_type)
4222 {
4223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4224 g->tls_gotno += 2;
4225 if (entry->tls_type & GOT_TLS_IE)
4226 g->tls_gotno += 1;
4227 }
020d7251 4228 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
f4416af6
AO
4229 ++g->local_gotno;
4230 else
4231 ++g->global_gotno;
4232
4233 return 1;
4234}
4235
c224138d
RS
4236/* A htab_traverse callback for the page entries in the master got.
4237 Associate each page entry with the bfd's got. */
4238
4239static int
4240mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4241{
4242 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4244 struct mips_got_info *g;
4245
4246 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4247 if (g == NULL)
4248 {
4249 arg->obfd = NULL;
4250 return 0;
4251 }
4252
4253 /* Insert the GOT entry in the bfd's got entry hash table. */
4254 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4255 if (*entryp != NULL)
4256 return 1;
4257
4258 *entryp = entry;
4259 g->page_gotno += entry->num_pages;
4260 return 1;
4261}
4262
4263/* Consider merging the got described by BFD2GOT with TO, using the
4264 information given by ARG. Return -1 if this would lead to overflow,
4265 1 if they were merged successfully, and 0 if a merge failed due to
4266 lack of memory. (These values are chosen so that nonnegative return
4267 values can be returned by a htab_traverse callback.) */
4268
4269static int
4270mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4271 struct mips_got_info *to,
4272 struct mips_elf_got_per_bfd_arg *arg)
4273{
4274 struct mips_got_info *from = bfd2got->g;
4275 unsigned int estimate;
4276
4277 /* Work out how many page entries we would need for the combined GOT. */
4278 estimate = arg->max_pages;
4279 if (estimate >= from->page_gotno + to->page_gotno)
4280 estimate = from->page_gotno + to->page_gotno;
4281
e2ece73c 4282 /* And conservatively estimate how many local and TLS entries
c224138d 4283 would be needed. */
e2ece73c
RS
4284 estimate += from->local_gotno + to->local_gotno;
4285 estimate += from->tls_gotno + to->tls_gotno;
4286
4287 /* If we're merging with the primary got, we will always have
4288 the full set of global entries. Otherwise estimate those
4289 conservatively as well. */
4290 if (to == arg->primary)
4291 estimate += arg->global_count;
4292 else
4293 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4294
4295 /* Bail out if the combined GOT might be too big. */
4296 if (estimate > arg->max_count)
4297 return -1;
4298
4299 /* Commit to the merge. Record that TO is now the bfd for this got. */
4300 bfd2got->g = to;
4301
4302 /* Transfer the bfd's got information from FROM to TO. */
4303 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4304 if (arg->obfd == NULL)
4305 return 0;
4306
4307 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4308 if (arg->obfd == NULL)
4309 return 0;
4310
4311 /* We don't have to worry about releasing memory of the actual
4312 got entries, since they're all in the master got_entries hash
4313 table anyway. */
4314 htab_delete (from->got_entries);
4315 htab_delete (from->got_page_entries);
4316 return 1;
4317}
4318
f4416af6
AO
4319/* Attempt to merge gots of different input bfds. Try to use as much
4320 as possible of the primary got, since it doesn't require explicit
4321 dynamic relocations, but don't use bfds that would reference global
4322 symbols out of the addressable range. Failing the primary got,
4323 attempt to merge with the current got, or finish the current got
4324 and then make make the new got current. */
4325
4326static int
9719ad41 4327mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4328{
4329 struct mips_elf_bfd2got_hash *bfd2got
4330 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4331 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4332 struct mips_got_info *g;
4333 unsigned int estimate;
4334 int result;
4335
4336 g = bfd2got->g;
4337
4338 /* Work out the number of page, local and TLS entries. */
4339 estimate = arg->max_pages;
4340 if (estimate > g->page_gotno)
4341 estimate = g->page_gotno;
4342 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4343
4344 /* We place TLS GOT entries after both locals and globals. The globals
4345 for the primary GOT may overflow the normal GOT size limit, so be
4346 sure not to merge a GOT which requires TLS with the primary GOT in that
4347 case. This doesn't affect non-primary GOTs. */
c224138d 4348 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4349
c224138d 4350 if (estimate <= arg->max_count)
f4416af6 4351 {
c224138d
RS
4352 /* If we don't have a primary GOT, use it as
4353 a starting point for the primary GOT. */
4354 if (!arg->primary)
4355 {
4356 arg->primary = bfd2got->g;
4357 return 1;
4358 }
f4416af6 4359
c224138d
RS
4360 /* Try merging with the primary GOT. */
4361 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4362 if (result >= 0)
4363 return result;
f4416af6 4364 }
c224138d 4365
f4416af6 4366 /* If we can merge with the last-created got, do it. */
c224138d 4367 if (arg->current)
f4416af6 4368 {
c224138d
RS
4369 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4370 if (result >= 0)
4371 return result;
f4416af6 4372 }
c224138d 4373
f4416af6
AO
4374 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4375 fits; if it turns out that it doesn't, we'll get relocation
4376 overflows anyway. */
c224138d
RS
4377 g->next = arg->current;
4378 arg->current = g;
0f20cc35
DJ
4379
4380 return 1;
4381}
4382
ead49a57
RS
4383/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4384 is null iff there is just a single GOT. */
0f20cc35
DJ
4385
4386static int
4387mips_elf_initialize_tls_index (void **entryp, void *p)
4388{
4389 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4390 struct mips_got_info *g = p;
ead49a57 4391 bfd_vma next_index;
cbf2cba4 4392 unsigned char tls_type;
0f20cc35
DJ
4393
4394 /* We're only interested in TLS symbols. */
4395 if (entry->tls_type == 0)
4396 return 1;
4397
ead49a57
RS
4398 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4399
4400 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4401 {
ead49a57
RS
4402 /* A type (3) got entry in the single-GOT case. We use the symbol's
4403 hash table entry to track its index. */
4404 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4405 return 1;
4406 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4407 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4408 tls_type = entry->d.h->tls_type;
ead49a57
RS
4409 }
4410 else
4411 {
4412 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4413 {
ead49a57
RS
4414 /* There are separate mips_got_entry objects for each input bfd
4415 that requires an LDM entry. Make sure that all LDM entries in
4416 a GOT resolve to the same index. */
4417 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4418 {
ead49a57 4419 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4420 return 1;
4421 }
ead49a57 4422 g->tls_ldm_offset = next_index;
0f20cc35 4423 }
ead49a57 4424 entry->gotidx = next_index;
cbf2cba4 4425 tls_type = entry->tls_type;
f4416af6
AO
4426 }
4427
ead49a57 4428 /* Account for the entries we've just allocated. */
cbf2cba4 4429 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4430 g->tls_assigned_gotno += 2;
cbf2cba4 4431 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4432 g->tls_assigned_gotno += 1;
4433
f4416af6
AO
4434 return 1;
4435}
4436
4437/* If passed a NULL mips_got_info in the argument, set the marker used
4438 to tell whether a global symbol needs a got entry (in the primary
4439 got) to the given VALUE.
4440
4441 If passed a pointer G to a mips_got_info in the argument (it must
4442 not be the primary GOT), compute the offset from the beginning of
4443 the (primary) GOT section to the entry in G corresponding to the
4444 global symbol. G's assigned_gotno must contain the index of the
4445 first available global GOT entry in G. VALUE must contain the size
4446 of a GOT entry in bytes. For each global GOT entry that requires a
4447 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4448 marked as not eligible for lazy resolution through a function
f4416af6
AO
4449 stub. */
4450static int
9719ad41 4451mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4452{
4453 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4454 struct mips_elf_set_global_got_offset_arg *arg
4455 = (struct mips_elf_set_global_got_offset_arg *)p;
4456 struct mips_got_info *g = arg->g;
4457
0f20cc35
DJ
4458 if (g && entry->tls_type != GOT_NORMAL)
4459 arg->needed_relocs +=
4460 mips_tls_got_relocs (arg->info, entry->tls_type,
4461 entry->symndx == -1 ? &entry->d.h->root : NULL);
4462
634835ae
RS
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4466 {
4467 if (g)
4468 {
4469 BFD_ASSERT (g->global_gotsym == NULL);
4470
4471 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4472 if (arg->info->shared
4473 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4474 && entry->d.h->root.def_dynamic
4475 && !entry->d.h->root.def_regular))
f4416af6
AO
4476 ++arg->needed_relocs;
4477 }
4478 else
634835ae 4479 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4480 }
4481
4482 return 1;
4483}
4484
33bb52fb
RS
4485/* A htab_traverse callback for GOT entries for which DATA is the
4486 bfd_link_info. Forbid any global symbols from having traditional
4487 lazy-binding stubs. */
4488
0626d451 4489static int
33bb52fb 4490mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4491{
33bb52fb
RS
4492 struct bfd_link_info *info;
4493 struct mips_elf_link_hash_table *htab;
4494 struct mips_got_entry *entry;
0626d451 4495
33bb52fb
RS
4496 entry = (struct mips_got_entry *) *entryp;
4497 info = (struct bfd_link_info *) data;
4498 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4499 BFD_ASSERT (htab != NULL);
4500
0626d451
RS
4501 if (entry->abfd != NULL
4502 && entry->symndx == -1
33bb52fb 4503 && entry->d.h->needs_lazy_stub)
f4416af6 4504 {
33bb52fb
RS
4505 entry->d.h->needs_lazy_stub = FALSE;
4506 htab->lazy_stub_count--;
f4416af6 4507 }
143d77c5 4508
f4416af6
AO
4509 return 1;
4510}
4511
f4416af6
AO
4512/* Return the offset of an input bfd IBFD's GOT from the beginning of
4513 the primary GOT. */
4514static bfd_vma
9719ad41 4515mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4516{
4517 if (g->bfd2got == NULL)
4518 return 0;
4519
4520 g = mips_elf_got_for_ibfd (g, ibfd);
4521 if (! g)
4522 return 0;
4523
4524 BFD_ASSERT (g->next);
4525
4526 g = g->next;
143d77c5 4527
0f20cc35
DJ
4528 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4529 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4530}
4531
4532/* Turn a single GOT that is too big for 16-bit addressing into
4533 a sequence of GOTs, each one 16-bit addressable. */
4534
4535static bfd_boolean
9719ad41 4536mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4537 asection *got, bfd_size_type pages)
f4416af6 4538{
a8028dd0 4539 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4540 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4541 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4542 struct mips_got_info *g, *gg;
33bb52fb
RS
4543 unsigned int assign, needed_relocs;
4544 bfd *dynobj;
f4416af6 4545
33bb52fb 4546 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4547 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4548 BFD_ASSERT (htab != NULL);
4549
a8028dd0 4550 g = htab->got_info;
f4416af6 4551 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4552 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4553 if (g->bfd2got == NULL)
4554 return FALSE;
4555
4556 got_per_bfd_arg.bfd2got = g->bfd2got;
4557 got_per_bfd_arg.obfd = abfd;
4558 got_per_bfd_arg.info = info;
4559
4560 /* Count how many GOT entries each input bfd requires, creating a
4561 map from bfd to got info while at that. */
f4416af6
AO
4562 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4563 if (got_per_bfd_arg.obfd == NULL)
4564 return FALSE;
4565
c224138d
RS
4566 /* Also count how many page entries each input bfd requires. */
4567 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4568 &got_per_bfd_arg);
4569 if (got_per_bfd_arg.obfd == NULL)
4570 return FALSE;
4571
f4416af6
AO
4572 got_per_bfd_arg.current = NULL;
4573 got_per_bfd_arg.primary = NULL;
0a44bf69 4574 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4575 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4576 - htab->reserved_gotno);
c224138d 4577 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4578 /* The number of globals that will be included in the primary GOT.
4579 See the calls to mips_elf_set_global_got_offset below for more
4580 information. */
4581 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4582
4583 /* Try to merge the GOTs of input bfds together, as long as they
4584 don't seem to exceed the maximum GOT size, choosing one of them
4585 to be the primary GOT. */
4586 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4587 if (got_per_bfd_arg.obfd == NULL)
4588 return FALSE;
4589
0f20cc35 4590 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4591 if (got_per_bfd_arg.primary == NULL)
4592 {
4593 g->next = (struct mips_got_info *)
4594 bfd_alloc (abfd, sizeof (struct mips_got_info));
4595 if (g->next == NULL)
4596 return FALSE;
4597
4598 g->next->global_gotsym = NULL;
4599 g->next->global_gotno = 0;
23cc69b6 4600 g->next->reloc_only_gotno = 0;
f4416af6 4601 g->next->local_gotno = 0;
c224138d 4602 g->next->page_gotno = 0;
0f20cc35 4603 g->next->tls_gotno = 0;
f4416af6 4604 g->next->assigned_gotno = 0;
0f20cc35
DJ
4605 g->next->tls_assigned_gotno = 0;
4606 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4607 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4608 mips_elf_multi_got_entry_eq,
9719ad41 4609 NULL);
f4416af6
AO
4610 if (g->next->got_entries == NULL)
4611 return FALSE;
c224138d
RS
4612 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4613 mips_got_page_entry_eq,
4614 NULL);
4615 if (g->next->got_page_entries == NULL)
4616 return FALSE;
f4416af6
AO
4617 g->next->bfd2got = NULL;
4618 }
4619 else
4620 g->next = got_per_bfd_arg.primary;
4621 g->next->next = got_per_bfd_arg.current;
4622
4623 /* GG is now the master GOT, and G is the primary GOT. */
4624 gg = g;
4625 g = g->next;
4626
4627 /* Map the output bfd to the primary got. That's what we're going
4628 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4629 didn't mark in check_relocs, and we want a quick way to find it.
4630 We can't just use gg->next because we're going to reverse the
4631 list. */
4632 {
4633 struct mips_elf_bfd2got_hash *bfdgot;
4634 void **bfdgotp;
143d77c5 4635
f4416af6
AO
4636 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4637 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4638
4639 if (bfdgot == NULL)
4640 return FALSE;
4641
4642 bfdgot->bfd = abfd;
4643 bfdgot->g = g;
4644 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4645
4646 BFD_ASSERT (*bfdgotp == NULL);
4647 *bfdgotp = bfdgot;
4648 }
4649
634835ae
RS
4650 /* Every symbol that is referenced in a dynamic relocation must be
4651 present in the primary GOT, so arrange for them to appear after
4652 those that are actually referenced. */
23cc69b6 4653 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4654 g->global_gotno = gg->global_gotno;
f4416af6 4655
f4416af6 4656 set_got_offset_arg.g = NULL;
634835ae 4657 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4658 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4659 &set_got_offset_arg);
634835ae 4660 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4661 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4662 &set_got_offset_arg);
f4416af6
AO
4663
4664 /* Now go through the GOTs assigning them offset ranges.
4665 [assigned_gotno, local_gotno[ will be set to the range of local
4666 entries in each GOT. We can then compute the end of a GOT by
4667 adding local_gotno to global_gotno. We reverse the list and make
4668 it circular since then we'll be able to quickly compute the
4669 beginning of a GOT, by computing the end of its predecessor. To
4670 avoid special cases for the primary GOT, while still preserving
4671 assertions that are valid for both single- and multi-got links,
4672 we arrange for the main got struct to have the right number of
4673 global entries, but set its local_gotno such that the initial
4674 offset of the primary GOT is zero. Remember that the primary GOT
4675 will become the last item in the circular linked list, so it
4676 points back to the master GOT. */
4677 gg->local_gotno = -g->global_gotno;
4678 gg->global_gotno = g->global_gotno;
0f20cc35 4679 gg->tls_gotno = 0;
f4416af6
AO
4680 assign = 0;
4681 gg->next = gg;
4682
4683 do
4684 {
4685 struct mips_got_info *gn;
4686
861fb55a 4687 assign += htab->reserved_gotno;
f4416af6 4688 g->assigned_gotno = assign;
c224138d
RS
4689 g->local_gotno += assign;
4690 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4691 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4692
ead49a57
RS
4693 /* Take g out of the direct list, and push it onto the reversed
4694 list that gg points to. g->next is guaranteed to be nonnull after
4695 this operation, as required by mips_elf_initialize_tls_index. */
4696 gn = g->next;
4697 g->next = gg->next;
4698 gg->next = g;
4699
0f20cc35
DJ
4700 /* Set up any TLS entries. We always place the TLS entries after
4701 all non-TLS entries. */
4702 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4704
ead49a57 4705 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4706 g = gn;
0626d451 4707
33bb52fb
RS
4708 /* Forbid global symbols in every non-primary GOT from having
4709 lazy-binding stubs. */
0626d451 4710 if (g)
33bb52fb 4711 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4712 }
4713 while (g);
4714
eea6121a 4715 got->size = (gg->next->local_gotno
33bb52fb
RS
4716 + gg->next->global_gotno
4717 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4718
4719 needed_relocs = 0;
4720 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4721 set_got_offset_arg.info = info;
4722 for (g = gg->next; g && g->next != gg; g = g->next)
4723 {
4724 unsigned int save_assign;
4725
4726 /* Assign offsets to global GOT entries. */
4727 save_assign = g->assigned_gotno;
4728 g->assigned_gotno = g->local_gotno;
4729 set_got_offset_arg.g = g;
4730 set_got_offset_arg.needed_relocs = 0;
4731 htab_traverse (g->got_entries,
4732 mips_elf_set_global_got_offset,
4733 &set_got_offset_arg);
4734 needed_relocs += set_got_offset_arg.needed_relocs;
4735 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4736
4737 g->assigned_gotno = save_assign;
4738 if (info->shared)
4739 {
4740 needed_relocs += g->local_gotno - g->assigned_gotno;
4741 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4742 + g->next->global_gotno
4743 + g->next->tls_gotno
861fb55a 4744 + htab->reserved_gotno);
33bb52fb
RS
4745 }
4746 }
4747
4748 if (needed_relocs)
4749 mips_elf_allocate_dynamic_relocations (dynobj, info,
4750 needed_relocs);
143d77c5 4751
f4416af6
AO
4752 return TRUE;
4753}
143d77c5 4754
b49e97c9
TS
4755\f
4756/* Returns the first relocation of type r_type found, beginning with
4757 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4758
4759static const Elf_Internal_Rela *
9719ad41
RS
4760mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4761 const Elf_Internal_Rela *relocation,
4762 const Elf_Internal_Rela *relend)
b49e97c9 4763{
c000e262
TS
4764 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4765
b49e97c9
TS
4766 while (relocation < relend)
4767 {
c000e262
TS
4768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4769 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4770 return relocation;
4771
4772 ++relocation;
4773 }
4774
4775 /* We didn't find it. */
b49e97c9
TS
4776 return NULL;
4777}
4778
020d7251 4779/* Return whether an input relocation is against a local symbol. */
b49e97c9 4780
b34976b6 4781static bfd_boolean
9719ad41
RS
4782mips_elf_local_relocation_p (bfd *input_bfd,
4783 const Elf_Internal_Rela *relocation,
020d7251 4784 asection **local_sections)
b49e97c9
TS
4785{
4786 unsigned long r_symndx;
4787 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4788 size_t extsymoff;
4789
4790 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4792 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4793
4794 if (r_symndx < extsymoff)
b34976b6 4795 return TRUE;
b49e97c9 4796 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4797 return TRUE;
b49e97c9 4798
b34976b6 4799 return FALSE;
b49e97c9
TS
4800}
4801\f
4802/* Sign-extend VALUE, which has the indicated number of BITS. */
4803
a7ebbfdf 4804bfd_vma
9719ad41 4805_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4806{
4807 if (value & ((bfd_vma) 1 << (bits - 1)))
4808 /* VALUE is negative. */
4809 value |= ((bfd_vma) - 1) << bits;
4810
4811 return value;
4812}
4813
4814/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4815 range expressible by a signed number with the indicated number of
b49e97c9
TS
4816 BITS. */
4817
b34976b6 4818static bfd_boolean
9719ad41 4819mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4820{
4821 bfd_signed_vma svalue = (bfd_signed_vma) value;
4822
4823 if (svalue > (1 << (bits - 1)) - 1)
4824 /* The value is too big. */
b34976b6 4825 return TRUE;
b49e97c9
TS
4826 else if (svalue < -(1 << (bits - 1)))
4827 /* The value is too small. */
b34976b6 4828 return TRUE;
b49e97c9
TS
4829
4830 /* All is well. */
b34976b6 4831 return FALSE;
b49e97c9
TS
4832}
4833
4834/* Calculate the %high function. */
4835
4836static bfd_vma
9719ad41 4837mips_elf_high (bfd_vma value)
b49e97c9
TS
4838{
4839 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4840}
4841
4842/* Calculate the %higher function. */
4843
4844static bfd_vma
9719ad41 4845mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4846{
4847#ifdef BFD64
4848 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4849#else
4850 abort ();
c5ae1840 4851 return MINUS_ONE;
b49e97c9
TS
4852#endif
4853}
4854
4855/* Calculate the %highest function. */
4856
4857static bfd_vma
9719ad41 4858mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4859{
4860#ifdef BFD64
b15e6682 4861 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4862#else
4863 abort ();
c5ae1840 4864 return MINUS_ONE;
b49e97c9
TS
4865#endif
4866}
4867\f
4868/* Create the .compact_rel section. */
4869
b34976b6 4870static bfd_boolean
9719ad41
RS
4871mips_elf_create_compact_rel_section
4872 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4873{
4874 flagword flags;
4875 register asection *s;
4876
3d4d4302 4877 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4878 {
4879 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4880 | SEC_READONLY);
4881
3d4d4302 4882 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4883 if (s == NULL
b49e97c9
TS
4884 || ! bfd_set_section_alignment (abfd, s,
4885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4886 return FALSE;
b49e97c9 4887
eea6121a 4888 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4889 }
4890
b34976b6 4891 return TRUE;
b49e97c9
TS
4892}
4893
4894/* Create the .got section to hold the global offset table. */
4895
b34976b6 4896static bfd_boolean
23cc69b6 4897mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4898{
4899 flagword flags;
4900 register asection *s;
4901 struct elf_link_hash_entry *h;
14a793b2 4902 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4903 struct mips_got_info *g;
4904 bfd_size_type amt;
0a44bf69
RS
4905 struct mips_elf_link_hash_table *htab;
4906
4907 htab = mips_elf_hash_table (info);
4dfe6ac6 4908 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4909
4910 /* This function may be called more than once. */
23cc69b6
RS
4911 if (htab->sgot)
4912 return TRUE;
b49e97c9
TS
4913
4914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4915 | SEC_LINKER_CREATED);
4916
72b4917c
TS
4917 /* We have to use an alignment of 2**4 here because this is hardcoded
4918 in the function stub generation and in the linker script. */
87e0a731 4919 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4920 if (s == NULL
72b4917c 4921 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4922 return FALSE;
a8028dd0 4923 htab->sgot = s;
b49e97c9
TS
4924
4925 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4926 linker script because we don't want to define the symbol if we
4927 are not creating a global offset table. */
14a793b2 4928 bh = NULL;
b49e97c9
TS
4929 if (! (_bfd_generic_link_add_one_symbol
4930 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4931 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4932 return FALSE;
14a793b2
AM
4933
4934 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4935 h->non_elf = 0;
4936 h->def_regular = 1;
b49e97c9 4937 h->type = STT_OBJECT;
d329bcd1 4938 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4939
4940 if (info->shared
c152c796 4941 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4942 return FALSE;
b49e97c9 4943
b49e97c9 4944 amt = sizeof (struct mips_got_info);
9719ad41 4945 g = bfd_alloc (abfd, amt);
b49e97c9 4946 if (g == NULL)
b34976b6 4947 return FALSE;
b49e97c9 4948 g->global_gotsym = NULL;
e3d54347 4949 g->global_gotno = 0;
23cc69b6 4950 g->reloc_only_gotno = 0;
0f20cc35 4951 g->tls_gotno = 0;
861fb55a 4952 g->local_gotno = 0;
c224138d 4953 g->page_gotno = 0;
861fb55a 4954 g->assigned_gotno = 0;
f4416af6
AO
4955 g->bfd2got = NULL;
4956 g->next = NULL;
0f20cc35 4957 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4958 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4959 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4960 if (g->got_entries == NULL)
4961 return FALSE;
c224138d
RS
4962 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4963 mips_got_page_entry_eq, NULL);
4964 if (g->got_page_entries == NULL)
4965 return FALSE;
a8028dd0 4966 htab->got_info = g;
f0abc2a1 4967 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4968 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4969
861fb55a 4970 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4971 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4972 SEC_ALLOC | SEC_LOAD
4973 | SEC_HAS_CONTENTS
4974 | SEC_IN_MEMORY
4975 | SEC_LINKER_CREATED);
861fb55a
DJ
4976 if (s == NULL)
4977 return FALSE;
4978 htab->sgotplt = s;
0a44bf69 4979
b34976b6 4980 return TRUE;
b49e97c9 4981}
b49e97c9 4982\f
0a44bf69
RS
4983/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4984 __GOTT_INDEX__ symbols. These symbols are only special for
4985 shared objects; they are not used in executables. */
4986
4987static bfd_boolean
4988is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4989{
4990 return (mips_elf_hash_table (info)->is_vxworks
4991 && info->shared
4992 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4993 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4994}
861fb55a
DJ
4995
4996/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4997 require an la25 stub. See also mips_elf_local_pic_function_p,
4998 which determines whether the destination function ever requires a
4999 stub. */
5000
5001static bfd_boolean
8f0c309a
CLT
5002mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5003 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5004{
5005 /* We specifically ignore branches and jumps from EF_PIC objects,
5006 where the onus is on the compiler or programmer to perform any
5007 necessary initialization of $25. Sometimes such initialization
5008 is unnecessary; for example, -mno-shared functions do not use
5009 the incoming value of $25, and may therefore be called directly. */
5010 if (PIC_OBJECT_P (input_bfd))
5011 return FALSE;
5012
5013 switch (r_type)
5014 {
5015 case R_MIPS_26:
5016 case R_MIPS_PC16:
df58fc94
RS
5017 case R_MICROMIPS_26_S1:
5018 case R_MICROMIPS_PC7_S1:
5019 case R_MICROMIPS_PC10_S1:
5020 case R_MICROMIPS_PC16_S1:
5021 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5022 return TRUE;
5023
8f0c309a
CLT
5024 case R_MIPS16_26:
5025 return !target_is_16_bit_code_p;
5026
861fb55a
DJ
5027 default:
5028 return FALSE;
5029 }
5030}
0a44bf69 5031\f
b49e97c9
TS
5032/* Calculate the value produced by the RELOCATION (which comes from
5033 the INPUT_BFD). The ADDEND is the addend to use for this
5034 RELOCATION; RELOCATION->R_ADDEND is ignored.
5035
5036 The result of the relocation calculation is stored in VALUEP.
38a7df63 5037 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5038 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5039
5040 This function returns bfd_reloc_continue if the caller need take no
5041 further action regarding this relocation, bfd_reloc_notsupported if
5042 something goes dramatically wrong, bfd_reloc_overflow if an
5043 overflow occurs, and bfd_reloc_ok to indicate success. */
5044
5045static bfd_reloc_status_type
9719ad41
RS
5046mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5047 asection *input_section,
5048 struct bfd_link_info *info,
5049 const Elf_Internal_Rela *relocation,
5050 bfd_vma addend, reloc_howto_type *howto,
5051 Elf_Internal_Sym *local_syms,
5052 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5053 const char **namep,
5054 bfd_boolean *cross_mode_jump_p,
9719ad41 5055 bfd_boolean save_addend)
b49e97c9
TS
5056{
5057 /* The eventual value we will return. */
5058 bfd_vma value;
5059 /* The address of the symbol against which the relocation is
5060 occurring. */
5061 bfd_vma symbol = 0;
5062 /* The final GP value to be used for the relocatable, executable, or
5063 shared object file being produced. */
0a61c8c2 5064 bfd_vma gp;
b49e97c9
TS
5065 /* The place (section offset or address) of the storage unit being
5066 relocated. */
5067 bfd_vma p;
5068 /* The value of GP used to create the relocatable object. */
0a61c8c2 5069 bfd_vma gp0;
b49e97c9
TS
5070 /* The offset into the global offset table at which the address of
5071 the relocation entry symbol, adjusted by the addend, resides
5072 during execution. */
5073 bfd_vma g = MINUS_ONE;
5074 /* The section in which the symbol referenced by the relocation is
5075 located. */
5076 asection *sec = NULL;
5077 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5078 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5079 symbol. */
b34976b6
AM
5080 bfd_boolean local_p, was_local_p;
5081 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5082 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5083 /* TRUE if the symbol referred to by this relocation is
5084 "__gnu_local_gp". */
5085 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5086 Elf_Internal_Shdr *symtab_hdr;
5087 size_t extsymoff;
5088 unsigned long r_symndx;
5089 int r_type;
b34976b6 5090 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5091 relocation value. */
b34976b6
AM
5092 bfd_boolean overflowed_p;
5093 /* TRUE if this relocation refers to a MIPS16 function. */
5094 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5095 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5096 struct mips_elf_link_hash_table *htab;
5097 bfd *dynobj;
5098
5099 dynobj = elf_hash_table (info)->dynobj;
5100 htab = mips_elf_hash_table (info);
4dfe6ac6 5101 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5102
5103 /* Parse the relocation. */
5104 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5105 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5106 p = (input_section->output_section->vma
5107 + input_section->output_offset
5108 + relocation->r_offset);
5109
5110 /* Assume that there will be no overflow. */
b34976b6 5111 overflowed_p = FALSE;
b49e97c9
TS
5112
5113 /* Figure out whether or not the symbol is local, and get the offset
5114 used in the array of hash table entries. */
5115 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5116 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5117 local_sections);
bce03d3d 5118 was_local_p = local_p;
b49e97c9
TS
5119 if (! elf_bad_symtab (input_bfd))
5120 extsymoff = symtab_hdr->sh_info;
5121 else
5122 {
5123 /* The symbol table does not follow the rule that local symbols
5124 must come before globals. */
5125 extsymoff = 0;
5126 }
5127
5128 /* Figure out the value of the symbol. */
5129 if (local_p)
5130 {
5131 Elf_Internal_Sym *sym;
5132
5133 sym = local_syms + r_symndx;
5134 sec = local_sections[r_symndx];
5135
5136 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5137 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5138 || (sec->flags & SEC_MERGE))
b49e97c9 5139 symbol += sym->st_value;
d4df96e6
L
5140 if ((sec->flags & SEC_MERGE)
5141 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5142 {
5143 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5144 addend -= symbol;
5145 addend += sec->output_section->vma + sec->output_offset;
5146 }
b49e97c9 5147
df58fc94
RS
5148 /* MIPS16/microMIPS text labels should be treated as odd. */
5149 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5150 ++symbol;
5151
5152 /* Record the name of this symbol, for our caller. */
5153 *namep = bfd_elf_string_from_elf_section (input_bfd,
5154 symtab_hdr->sh_link,
5155 sym->st_name);
5156 if (*namep == '\0')
5157 *namep = bfd_section_name (input_bfd, sec);
5158
30c09090 5159 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5160 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5161 }
5162 else
5163 {
560e09e9
NC
5164 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5165
b49e97c9
TS
5166 /* For global symbols we look up the symbol in the hash-table. */
5167 h = ((struct mips_elf_link_hash_entry *)
5168 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5169 /* Find the real hash-table entry for this symbol. */
5170 while (h->root.root.type == bfd_link_hash_indirect
5171 || h->root.root.type == bfd_link_hash_warning)
5172 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5173
5174 /* Record the name of this symbol, for our caller. */
5175 *namep = h->root.root.root.string;
5176
5177 /* See if this is the special _gp_disp symbol. Note that such a
5178 symbol must always be a global symbol. */
560e09e9 5179 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5180 && ! NEWABI_P (input_bfd))
5181 {
5182 /* Relocations against _gp_disp are permitted only with
5183 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5184 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5185 return bfd_reloc_notsupported;
5186
b34976b6 5187 gp_disp_p = TRUE;
b49e97c9 5188 }
bbe506e8
TS
5189 /* See if this is the special _gp symbol. Note that such a
5190 symbol must always be a global symbol. */
5191 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5192 gnu_local_gp_p = TRUE;
5193
5194
b49e97c9
TS
5195 /* If this symbol is defined, calculate its address. Note that
5196 _gp_disp is a magic symbol, always implicitly defined by the
5197 linker, so it's inappropriate to check to see whether or not
5198 its defined. */
5199 else if ((h->root.root.type == bfd_link_hash_defined
5200 || h->root.root.type == bfd_link_hash_defweak)
5201 && h->root.root.u.def.section)
5202 {
5203 sec = h->root.root.u.def.section;
5204 if (sec->output_section)
5205 symbol = (h->root.root.u.def.value
5206 + sec->output_section->vma
5207 + sec->output_offset);
5208 else
5209 symbol = h->root.root.u.def.value;
5210 }
5211 else if (h->root.root.type == bfd_link_hash_undefweak)
5212 /* We allow relocations against undefined weak symbols, giving
5213 it the value zero, so that you can undefined weak functions
5214 and check to see if they exist by looking at their
5215 addresses. */
5216 symbol = 0;
59c2e50f 5217 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5218 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5219 symbol = 0;
a4d0f181
TS
5220 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5221 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5222 {
5223 /* If this is a dynamic link, we should have created a
5224 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5225 in in _bfd_mips_elf_create_dynamic_sections.
5226 Otherwise, we should define the symbol with a value of 0.
5227 FIXME: It should probably get into the symbol table
5228 somehow as well. */
5229 BFD_ASSERT (! info->shared);
5230 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5231 symbol = 0;
5232 }
5e2b0d47
NC
5233 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5234 {
5235 /* This is an optional symbol - an Irix specific extension to the
5236 ELF spec. Ignore it for now.
5237 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5238 than simply ignoring them, but we do not handle this for now.
5239 For information see the "64-bit ELF Object File Specification"
5240 which is available from here:
5241 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5242 symbol = 0;
5243 }
e7e2196d
MR
5244 else if ((*info->callbacks->undefined_symbol)
5245 (info, h->root.root.root.string, input_bfd,
5246 input_section, relocation->r_offset,
5247 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5248 || ELF_ST_VISIBILITY (h->root.other)))
5249 {
5250 return bfd_reloc_undefined;
5251 }
b49e97c9
TS
5252 else
5253 {
e7e2196d 5254 return bfd_reloc_notsupported;
b49e97c9
TS
5255 }
5256
30c09090 5257 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5258 /* If the output section is the PLT section,
5259 then the target is not microMIPS. */
5260 target_is_micromips_code_p = (htab->splt != sec
5261 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5262 }
5263
738e5348
RS
5264 /* If this is a reference to a 16-bit function with a stub, we need
5265 to redirect the relocation to the stub unless:
5266
5267 (a) the relocation is for a MIPS16 JAL;
5268
5269 (b) the relocation is for a MIPS16 PIC call, and there are no
5270 non-MIPS16 uses of the GOT slot; or
5271
5272 (c) the section allows direct references to MIPS16 functions. */
5273 if (r_type != R_MIPS16_26
5274 && !info->relocatable
5275 && ((h != NULL
5276 && h->fn_stub != NULL
5277 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5278 || (local_p
5279 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5280 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5281 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5282 {
5283 /* This is a 32- or 64-bit call to a 16-bit function. We should
5284 have already noticed that we were going to need the
5285 stub. */
5286 if (local_p)
8f0c309a
CLT
5287 {
5288 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5289 value = 0;
5290 }
b49e97c9
TS
5291 else
5292 {
5293 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5294 if (h->la25_stub)
5295 {
5296 /* If a LA25 header for the stub itself exists, point to the
5297 prepended LUI/ADDIU sequence. */
5298 sec = h->la25_stub->stub_section;
5299 value = h->la25_stub->offset;
5300 }
5301 else
5302 {
5303 sec = h->fn_stub;
5304 value = 0;
5305 }
b49e97c9
TS
5306 }
5307
8f0c309a 5308 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5309 /* The target is 16-bit, but the stub isn't. */
5310 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5311 }
5312 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5313 need to redirect the call to the stub. Note that we specifically
5314 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5315 use an indirect stub instead. */
1049f94e 5316 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5317 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5318 || (local_p
5319 && elf_tdata (input_bfd)->local_call_stubs != NULL
5320 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5321 && !target_is_16_bit_code_p)
5322 {
b9d58d71
TS
5323 if (local_p)
5324 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5325 else
b49e97c9 5326 {
b9d58d71
TS
5327 /* If both call_stub and call_fp_stub are defined, we can figure
5328 out which one to use by checking which one appears in the input
5329 file. */
5330 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5331 {
b9d58d71 5332 asection *o;
68ffbac6 5333
b9d58d71
TS
5334 sec = NULL;
5335 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5336 {
b9d58d71
TS
5337 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5338 {
5339 sec = h->call_fp_stub;
5340 break;
5341 }
b49e97c9 5342 }
b9d58d71
TS
5343 if (sec == NULL)
5344 sec = h->call_stub;
b49e97c9 5345 }
b9d58d71 5346 else if (h->call_stub != NULL)
b49e97c9 5347 sec = h->call_stub;
b9d58d71
TS
5348 else
5349 sec = h->call_fp_stub;
5350 }
b49e97c9 5351
eea6121a 5352 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5353 symbol = sec->output_section->vma + sec->output_offset;
5354 }
861fb55a
DJ
5355 /* If this is a direct call to a PIC function, redirect to the
5356 non-PIC stub. */
5357 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5358 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5359 target_is_16_bit_code_p))
861fb55a
DJ
5360 symbol = (h->la25_stub->stub_section->output_section->vma
5361 + h->la25_stub->stub_section->output_offset
5362 + h->la25_stub->offset);
b49e97c9 5363
df58fc94
RS
5364 /* Make sure MIPS16 and microMIPS are not used together. */
5365 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5366 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5367 {
5368 (*_bfd_error_handler)
5369 (_("MIPS16 and microMIPS functions cannot call each other"));
5370 return bfd_reloc_notsupported;
5371 }
5372
b49e97c9 5373 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5374 mode change. However, we can ignore calls to undefined weak symbols,
5375 which should never be executed at runtime. This exception is important
5376 because the assembly writer may have "known" that any definition of the
5377 symbol would be 16-bit code, and that direct jumps were therefore
5378 acceptable. */
5379 *cross_mode_jump_p = (!info->relocatable
5380 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5381 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5382 || (r_type == R_MICROMIPS_26_S1
5383 && !target_is_micromips_code_p)
5384 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5385 && (target_is_16_bit_code_p
5386 || target_is_micromips_code_p))));
b49e97c9 5387
9f1a453e
MR
5388 local_p = (h == NULL
5389 || (h->got_only_for_calls
5390 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5391 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5392
0a61c8c2
RS
5393 gp0 = _bfd_get_gp_value (input_bfd);
5394 gp = _bfd_get_gp_value (abfd);
23cc69b6 5395 if (htab->got_info)
a8028dd0 5396 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5397
5398 if (gnu_local_gp_p)
5399 symbol = gp;
5400
df58fc94
RS
5401 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5402 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5403 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5404 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5405 {
df58fc94
RS
5406 r_type = (micromips_reloc_p (r_type)
5407 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5408 addend = 0;
5409 }
5410
e77760d2 5411 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5412 to need it, get it now. */
b49e97c9
TS
5413 switch (r_type)
5414 {
738e5348
RS
5415 case R_MIPS16_CALL16:
5416 case R_MIPS16_GOT16:
b49e97c9
TS
5417 case R_MIPS_CALL16:
5418 case R_MIPS_GOT16:
5419 case R_MIPS_GOT_DISP:
5420 case R_MIPS_GOT_HI16:
5421 case R_MIPS_CALL_HI16:
5422 case R_MIPS_GOT_LO16:
5423 case R_MIPS_CALL_LO16:
df58fc94
RS
5424 case R_MICROMIPS_CALL16:
5425 case R_MICROMIPS_GOT16:
5426 case R_MICROMIPS_GOT_DISP:
5427 case R_MICROMIPS_GOT_HI16:
5428 case R_MICROMIPS_CALL_HI16:
5429 case R_MICROMIPS_GOT_LO16:
5430 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5431 case R_MIPS_TLS_GD:
5432 case R_MIPS_TLS_GOTTPREL:
5433 case R_MIPS_TLS_LDM:
d0f13682
CLT
5434 case R_MIPS16_TLS_GD:
5435 case R_MIPS16_TLS_GOTTPREL:
5436 case R_MIPS16_TLS_LDM:
df58fc94
RS
5437 case R_MICROMIPS_TLS_GD:
5438 case R_MICROMIPS_TLS_GOTTPREL:
5439 case R_MICROMIPS_TLS_LDM:
b49e97c9 5440 /* Find the index into the GOT where this value is located. */
df58fc94 5441 if (tls_ldm_reloc_p (r_type))
0f20cc35 5442 {
0a44bf69 5443 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5444 0, 0, NULL, r_type);
0f20cc35
DJ
5445 if (g == MINUS_ONE)
5446 return bfd_reloc_outofrange;
5447 }
5448 else if (!local_p)
b49e97c9 5449 {
0a44bf69
RS
5450 /* On VxWorks, CALL relocations should refer to the .got.plt
5451 entry, which is initialized to point at the PLT stub. */
5452 if (htab->is_vxworks
df58fc94
RS
5453 && (call_hi16_reloc_p (r_type)
5454 || call_lo16_reloc_p (r_type)
738e5348 5455 || call16_reloc_p (r_type)))
0a44bf69
RS
5456 {
5457 BFD_ASSERT (addend == 0);
5458 BFD_ASSERT (h->root.needs_plt);
5459 g = mips_elf_gotplt_index (info, &h->root);
5460 }
5461 else
b49e97c9 5462 {
020d7251 5463 BFD_ASSERT (addend == 0);
0a44bf69
RS
5464 g = mips_elf_global_got_index (dynobj, input_bfd,
5465 &h->root, r_type, info);
5466 if (h->tls_type == GOT_NORMAL
020d7251
RS
5467 && !elf_hash_table (info)->dynamic_sections_created)
5468 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5469 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5470 }
5471 }
0a44bf69 5472 else if (!htab->is_vxworks
738e5348 5473 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5474 /* The calculation below does not involve "g". */
b49e97c9
TS
5475 break;
5476 else
5477 {
5c18022e 5478 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5479 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5480 if (g == MINUS_ONE)
5481 return bfd_reloc_outofrange;
5482 }
5483
5484 /* Convert GOT indices to actual offsets. */
a8028dd0 5485 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5486 break;
b49e97c9
TS
5487 }
5488
0a44bf69
RS
5489 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5490 symbols are resolved by the loader. Add them to .rela.dyn. */
5491 if (h != NULL && is_gott_symbol (info, &h->root))
5492 {
5493 Elf_Internal_Rela outrel;
5494 bfd_byte *loc;
5495 asection *s;
5496
5497 s = mips_elf_rel_dyn_section (info, FALSE);
5498 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5499
5500 outrel.r_offset = (input_section->output_section->vma
5501 + input_section->output_offset
5502 + relocation->r_offset);
5503 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5504 outrel.r_addend = addend;
5505 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5506
5507 /* If we've written this relocation for a readonly section,
5508 we need to set DF_TEXTREL again, so that we do not delete the
5509 DT_TEXTREL tag. */
5510 if (MIPS_ELF_READONLY_SECTION (input_section))
5511 info->flags |= DF_TEXTREL;
5512
0a44bf69
RS
5513 *valuep = 0;
5514 return bfd_reloc_ok;
5515 }
5516
b49e97c9
TS
5517 /* Figure out what kind of relocation is being performed. */
5518 switch (r_type)
5519 {
5520 case R_MIPS_NONE:
5521 return bfd_reloc_continue;
5522
5523 case R_MIPS_16:
a7ebbfdf 5524 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5525 overflowed_p = mips_elf_overflow_p (value, 16);
5526 break;
5527
5528 case R_MIPS_32:
5529 case R_MIPS_REL32:
5530 case R_MIPS_64:
5531 if ((info->shared
861fb55a 5532 || (htab->root.dynamic_sections_created
b49e97c9 5533 && h != NULL
f5385ebf 5534 && h->root.def_dynamic
861fb55a
DJ
5535 && !h->root.def_regular
5536 && !h->has_static_relocs))
cf35638d 5537 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5538 && (h == NULL
5539 || h->root.root.type != bfd_link_hash_undefweak
5540 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5541 && (input_section->flags & SEC_ALLOC) != 0)
5542 {
861fb55a 5543 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5544 where the symbol will end up. So, we create a relocation
5545 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5546 linker. We must do the same for executable references to
5547 shared library symbols, unless we've decided to use copy
5548 relocs or PLTs instead. */
b49e97c9
TS
5549 value = addend;
5550 if (!mips_elf_create_dynamic_relocation (abfd,
5551 info,
5552 relocation,
5553 h,
5554 sec,
5555 symbol,
5556 &value,
5557 input_section))
5558 return bfd_reloc_undefined;
5559 }
5560 else
5561 {
5562 if (r_type != R_MIPS_REL32)
5563 value = symbol + addend;
5564 else
5565 value = addend;
5566 }
5567 value &= howto->dst_mask;
092dcd75
CD
5568 break;
5569
5570 case R_MIPS_PC32:
5571 value = symbol + addend - p;
5572 value &= howto->dst_mask;
b49e97c9
TS
5573 break;
5574
b49e97c9
TS
5575 case R_MIPS16_26:
5576 /* The calculation for R_MIPS16_26 is just the same as for an
5577 R_MIPS_26. It's only the storage of the relocated field into
5578 the output file that's different. That's handled in
5579 mips_elf_perform_relocation. So, we just fall through to the
5580 R_MIPS_26 case here. */
5581 case R_MIPS_26:
df58fc94
RS
5582 case R_MICROMIPS_26_S1:
5583 {
5584 unsigned int shift;
5585
5586 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5587 the correct ISA mode selector and bit 1 must be 0. */
5588 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5589 return bfd_reloc_outofrange;
5590
5591 /* Shift is 2, unusually, for microMIPS JALX. */
5592 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5593
5594 if (was_local_p)
5595 value = addend | ((p + 4) & (0xfc000000 << shift));
5596 else
5597 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5598 value = (value + symbol) >> shift;
5599 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5600 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5601 value &= howto->dst_mask;
5602 }
b49e97c9
TS
5603 break;
5604
0f20cc35 5605 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5606 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5607 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5608 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5609 & howto->dst_mask);
5610 break;
5611
5612 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5613 case R_MIPS_TLS_DTPREL32:
5614 case R_MIPS_TLS_DTPREL64:
d0f13682 5615 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5616 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5617 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5618 break;
5619
5620 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5621 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5622 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5623 value = (mips_elf_high (addend + symbol - tprel_base (info))
5624 & howto->dst_mask);
5625 break;
5626
5627 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5628 case R_MIPS_TLS_TPREL32:
5629 case R_MIPS_TLS_TPREL64:
5630 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5631 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5632 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5633 break;
5634
b49e97c9 5635 case R_MIPS_HI16:
d6f16593 5636 case R_MIPS16_HI16:
df58fc94 5637 case R_MICROMIPS_HI16:
b49e97c9
TS
5638 if (!gp_disp_p)
5639 {
5640 value = mips_elf_high (addend + symbol);
5641 value &= howto->dst_mask;
5642 }
5643 else
5644 {
d6f16593
MR
5645 /* For MIPS16 ABI code we generate this sequence
5646 0: li $v0,%hi(_gp_disp)
5647 4: addiupc $v1,%lo(_gp_disp)
5648 8: sll $v0,16
5649 12: addu $v0,$v1
5650 14: move $gp,$v0
5651 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5652 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5653 ADDIUPC clears the low two bits of the instruction address,
5654 so the base is ($t9 + 4) & ~3. */
d6f16593 5655 if (r_type == R_MIPS16_HI16)
888b9c01 5656 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5657 /* The microMIPS .cpload sequence uses the same assembly
5658 instructions as the traditional psABI version, but the
5659 incoming $t9 has the low bit set. */
5660 else if (r_type == R_MICROMIPS_HI16)
5661 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5662 else
5663 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5664 overflowed_p = mips_elf_overflow_p (value, 16);
5665 }
5666 break;
5667
5668 case R_MIPS_LO16:
d6f16593 5669 case R_MIPS16_LO16:
df58fc94
RS
5670 case R_MICROMIPS_LO16:
5671 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5672 if (!gp_disp_p)
5673 value = (symbol + addend) & howto->dst_mask;
5674 else
5675 {
d6f16593
MR
5676 /* See the comment for R_MIPS16_HI16 above for the reason
5677 for this conditional. */
5678 if (r_type == R_MIPS16_LO16)
888b9c01 5679 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5680 else if (r_type == R_MICROMIPS_LO16
5681 || r_type == R_MICROMIPS_HI0_LO16)
5682 value = addend + gp - p + 3;
d6f16593
MR
5683 else
5684 value = addend + gp - p + 4;
b49e97c9 5685 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5686 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5687 _gp_disp are normally generated from the .cpload
5688 pseudo-op. It generates code that normally looks like
5689 this:
5690
5691 lui $gp,%hi(_gp_disp)
5692 addiu $gp,$gp,%lo(_gp_disp)
5693 addu $gp,$gp,$t9
5694
5695 Here $t9 holds the address of the function being called,
5696 as required by the MIPS ELF ABI. The R_MIPS_LO16
5697 relocation can easily overflow in this situation, but the
5698 R_MIPS_HI16 relocation will handle the overflow.
5699 Therefore, we consider this a bug in the MIPS ABI, and do
5700 not check for overflow here. */
5701 }
5702 break;
5703
5704 case R_MIPS_LITERAL:
df58fc94 5705 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5706 /* Because we don't merge literal sections, we can handle this
5707 just like R_MIPS_GPREL16. In the long run, we should merge
5708 shared literals, and then we will need to additional work
5709 here. */
5710
5711 /* Fall through. */
5712
5713 case R_MIPS16_GPREL:
5714 /* The R_MIPS16_GPREL performs the same calculation as
5715 R_MIPS_GPREL16, but stores the relocated bits in a different
5716 order. We don't need to do anything special here; the
5717 differences are handled in mips_elf_perform_relocation. */
5718 case R_MIPS_GPREL16:
df58fc94
RS
5719 case R_MICROMIPS_GPREL7_S2:
5720 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5721 /* Only sign-extend the addend if it was extracted from the
5722 instruction. If the addend was separate, leave it alone,
5723 otherwise we may lose significant bits. */
5724 if (howto->partial_inplace)
a7ebbfdf 5725 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5726 value = symbol + addend - gp;
5727 /* If the symbol was local, any earlier relocatable links will
5728 have adjusted its addend with the gp offset, so compensate
5729 for that now. Don't do it for symbols forced local in this
5730 link, though, since they won't have had the gp offset applied
5731 to them before. */
5732 if (was_local_p)
5733 value += gp0;
b49e97c9
TS
5734 overflowed_p = mips_elf_overflow_p (value, 16);
5735 break;
5736
738e5348
RS
5737 case R_MIPS16_GOT16:
5738 case R_MIPS16_CALL16:
b49e97c9
TS
5739 case R_MIPS_GOT16:
5740 case R_MIPS_CALL16:
df58fc94
RS
5741 case R_MICROMIPS_GOT16:
5742 case R_MICROMIPS_CALL16:
0a44bf69 5743 /* VxWorks does not have separate local and global semantics for
738e5348 5744 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5745 if (!htab->is_vxworks && local_p)
b49e97c9 5746 {
5c18022e 5747 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5748 symbol + addend, !was_local_p);
b49e97c9
TS
5749 if (value == MINUS_ONE)
5750 return bfd_reloc_outofrange;
5751 value
a8028dd0 5752 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5753 overflowed_p = mips_elf_overflow_p (value, 16);
5754 break;
5755 }
5756
5757 /* Fall through. */
5758
0f20cc35
DJ
5759 case R_MIPS_TLS_GD:
5760 case R_MIPS_TLS_GOTTPREL:
5761 case R_MIPS_TLS_LDM:
b49e97c9 5762 case R_MIPS_GOT_DISP:
d0f13682
CLT
5763 case R_MIPS16_TLS_GD:
5764 case R_MIPS16_TLS_GOTTPREL:
5765 case R_MIPS16_TLS_LDM:
df58fc94
RS
5766 case R_MICROMIPS_TLS_GD:
5767 case R_MICROMIPS_TLS_GOTTPREL:
5768 case R_MICROMIPS_TLS_LDM:
5769 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5770 value = g;
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5772 break;
5773
5774 case R_MIPS_GPREL32:
bce03d3d
AO
5775 value = (addend + symbol + gp0 - gp);
5776 if (!save_addend)
5777 value &= howto->dst_mask;
b49e97c9
TS
5778 break;
5779
5780 case R_MIPS_PC16:
bad36eac
DJ
5781 case R_MIPS_GNU_REL16_S2:
5782 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5783 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5784 value >>= howto->rightshift;
5785 value &= howto->dst_mask;
b49e97c9
TS
5786 break;
5787
df58fc94
RS
5788 case R_MICROMIPS_PC7_S1:
5789 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5790 overflowed_p = mips_elf_overflow_p (value, 8);
5791 value >>= howto->rightshift;
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MICROMIPS_PC10_S1:
5796 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5797 overflowed_p = mips_elf_overflow_p (value, 11);
5798 value >>= howto->rightshift;
5799 value &= howto->dst_mask;
5800 break;
5801
5802 case R_MICROMIPS_PC16_S1:
5803 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5804 overflowed_p = mips_elf_overflow_p (value, 17);
5805 value >>= howto->rightshift;
5806 value &= howto->dst_mask;
5807 break;
5808
5809 case R_MICROMIPS_PC23_S2:
5810 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5811 overflowed_p = mips_elf_overflow_p (value, 25);
5812 value >>= howto->rightshift;
5813 value &= howto->dst_mask;
5814 break;
5815
b49e97c9
TS
5816 case R_MIPS_GOT_HI16:
5817 case R_MIPS_CALL_HI16:
df58fc94
RS
5818 case R_MICROMIPS_GOT_HI16:
5819 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5820 /* We're allowed to handle these two relocations identically.
5821 The dynamic linker is allowed to handle the CALL relocations
5822 differently by creating a lazy evaluation stub. */
5823 value = g;
5824 value = mips_elf_high (value);
5825 value &= howto->dst_mask;
5826 break;
5827
5828 case R_MIPS_GOT_LO16:
5829 case R_MIPS_CALL_LO16:
df58fc94
RS
5830 case R_MICROMIPS_GOT_LO16:
5831 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5832 value = g & howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_GOT_PAGE:
df58fc94 5836 case R_MICROMIPS_GOT_PAGE:
5c18022e 5837 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5838 if (value == MINUS_ONE)
5839 return bfd_reloc_outofrange;
a8028dd0 5840 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5841 overflowed_p = mips_elf_overflow_p (value, 16);
5842 break;
5843
5844 case R_MIPS_GOT_OFST:
df58fc94 5845 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5846 if (local_p)
5c18022e 5847 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5848 else
5849 value = addend;
b49e97c9
TS
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5851 break;
5852
5853 case R_MIPS_SUB:
df58fc94 5854 case R_MICROMIPS_SUB:
b49e97c9
TS
5855 value = symbol - addend;
5856 value &= howto->dst_mask;
5857 break;
5858
5859 case R_MIPS_HIGHER:
df58fc94 5860 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5861 value = mips_elf_higher (addend + symbol);
5862 value &= howto->dst_mask;
5863 break;
5864
5865 case R_MIPS_HIGHEST:
df58fc94 5866 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5867 value = mips_elf_highest (addend + symbol);
5868 value &= howto->dst_mask;
5869 break;
5870
5871 case R_MIPS_SCN_DISP:
df58fc94 5872 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5873 value = symbol + addend - sec->output_offset;
5874 value &= howto->dst_mask;
5875 break;
5876
b49e97c9 5877 case R_MIPS_JALR:
df58fc94 5878 case R_MICROMIPS_JALR:
1367d393
ILT
5879 /* This relocation is only a hint. In some cases, we optimize
5880 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5881 when the symbol does not resolve locally. */
5882 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5883 return bfd_reloc_continue;
5884 value = symbol + addend;
5885 break;
b49e97c9 5886
1367d393 5887 case R_MIPS_PJUMP:
b49e97c9
TS
5888 case R_MIPS_GNU_VTINHERIT:
5889 case R_MIPS_GNU_VTENTRY:
5890 /* We don't do anything with these at present. */
5891 return bfd_reloc_continue;
5892
5893 default:
5894 /* An unrecognized relocation type. */
5895 return bfd_reloc_notsupported;
5896 }
5897
5898 /* Store the VALUE for our caller. */
5899 *valuep = value;
5900 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5901}
5902
5903/* Obtain the field relocated by RELOCATION. */
5904
5905static bfd_vma
9719ad41
RS
5906mips_elf_obtain_contents (reloc_howto_type *howto,
5907 const Elf_Internal_Rela *relocation,
5908 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5909{
5910 bfd_vma x;
5911 bfd_byte *location = contents + relocation->r_offset;
5912
5913 /* Obtain the bytes. */
5914 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5915
b49e97c9
TS
5916 return x;
5917}
5918
5919/* It has been determined that the result of the RELOCATION is the
5920 VALUE. Use HOWTO to place VALUE into the output file at the
5921 appropriate position. The SECTION is the section to which the
68ffbac6 5922 relocation applies.
38a7df63 5923 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5924 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5925
b34976b6 5926 Returns FALSE if anything goes wrong. */
b49e97c9 5927
b34976b6 5928static bfd_boolean
9719ad41
RS
5929mips_elf_perform_relocation (struct bfd_link_info *info,
5930 reloc_howto_type *howto,
5931 const Elf_Internal_Rela *relocation,
5932 bfd_vma value, bfd *input_bfd,
5933 asection *input_section, bfd_byte *contents,
38a7df63 5934 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5935{
5936 bfd_vma x;
5937 bfd_byte *location;
5938 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5939
5940 /* Figure out where the relocation is occurring. */
5941 location = contents + relocation->r_offset;
5942
df58fc94 5943 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5944
b49e97c9
TS
5945 /* Obtain the current value. */
5946 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5947
5948 /* Clear the field we are setting. */
5949 x &= ~howto->dst_mask;
5950
b49e97c9
TS
5951 /* Set the field. */
5952 x |= (value & howto->dst_mask);
5953
5954 /* If required, turn JAL into JALX. */
38a7df63 5955 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5956 {
b34976b6 5957 bfd_boolean ok;
b49e97c9
TS
5958 bfd_vma opcode = x >> 26;
5959 bfd_vma jalx_opcode;
5960
5961 /* Check to see if the opcode is already JAL or JALX. */
5962 if (r_type == R_MIPS16_26)
5963 {
5964 ok = ((opcode == 0x6) || (opcode == 0x7));
5965 jalx_opcode = 0x7;
5966 }
df58fc94
RS
5967 else if (r_type == R_MICROMIPS_26_S1)
5968 {
5969 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5970 jalx_opcode = 0x3c;
5971 }
b49e97c9
TS
5972 else
5973 {
5974 ok = ((opcode == 0x3) || (opcode == 0x1d));
5975 jalx_opcode = 0x1d;
5976 }
5977
3bdf9505
MR
5978 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5979 convert J or JALS to JALX. */
b49e97c9
TS
5980 if (!ok)
5981 {
5982 (*_bfd_error_handler)
3bdf9505 5983 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5984 input_bfd,
5985 input_section,
b49e97c9
TS
5986 (unsigned long) relocation->r_offset);
5987 bfd_set_error (bfd_error_bad_value);
b34976b6 5988 return FALSE;
b49e97c9
TS
5989 }
5990
5991 /* Make this the JALX opcode. */
5992 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5993 }
5994
38a7df63
CF
5995 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5996 range. */
cd8d5a82 5997 if (!info->relocatable
38a7df63 5998 && !cross_mode_jump_p
cd8d5a82
CF
5999 && ((JAL_TO_BAL_P (input_bfd)
6000 && r_type == R_MIPS_26
6001 && (x >> 26) == 0x3) /* jal addr */
6002 || (JALR_TO_BAL_P (input_bfd)
6003 && r_type == R_MIPS_JALR
38a7df63
CF
6004 && x == 0x0320f809) /* jalr t9 */
6005 || (JR_TO_B_P (input_bfd)
6006 && r_type == R_MIPS_JALR
6007 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6008 {
6009 bfd_vma addr;
6010 bfd_vma dest;
6011 bfd_signed_vma off;
6012
6013 addr = (input_section->output_section->vma
6014 + input_section->output_offset
6015 + relocation->r_offset
6016 + 4);
6017 if (r_type == R_MIPS_26)
6018 dest = (value << 2) | ((addr >> 28) << 28);
6019 else
6020 dest = value;
6021 off = dest - addr;
6022 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6023 {
6024 if (x == 0x03200008) /* jr t9 */
6025 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6026 else
6027 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6028 }
1367d393
ILT
6029 }
6030
b49e97c9
TS
6031 /* Put the value into the output. */
6032 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 6033
df58fc94
RS
6034 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6035 location);
d6f16593 6036
b34976b6 6037 return TRUE;
b49e97c9 6038}
b49e97c9 6039\f
b49e97c9
TS
6040/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6041 is the original relocation, which is now being transformed into a
6042 dynamic relocation. The ADDENDP is adjusted if necessary; the
6043 caller should store the result in place of the original addend. */
6044
b34976b6 6045static bfd_boolean
9719ad41
RS
6046mips_elf_create_dynamic_relocation (bfd *output_bfd,
6047 struct bfd_link_info *info,
6048 const Elf_Internal_Rela *rel,
6049 struct mips_elf_link_hash_entry *h,
6050 asection *sec, bfd_vma symbol,
6051 bfd_vma *addendp, asection *input_section)
b49e97c9 6052{
947216bf 6053 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6054 asection *sreloc;
6055 bfd *dynobj;
6056 int r_type;
5d41f0b6
RS
6057 long indx;
6058 bfd_boolean defined_p;
0a44bf69 6059 struct mips_elf_link_hash_table *htab;
b49e97c9 6060
0a44bf69 6061 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6062 BFD_ASSERT (htab != NULL);
6063
b49e97c9
TS
6064 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6065 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6067 BFD_ASSERT (sreloc != NULL);
6068 BFD_ASSERT (sreloc->contents != NULL);
6069 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6070 < sreloc->size);
b49e97c9 6071
b49e97c9
TS
6072 outrel[0].r_offset =
6073 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6074 if (ABI_64_P (output_bfd))
6075 {
6076 outrel[1].r_offset =
6077 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6078 outrel[2].r_offset =
6079 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6080 }
b49e97c9 6081
c5ae1840 6082 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6083 /* The relocation field has been deleted. */
5d41f0b6
RS
6084 return TRUE;
6085
6086 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6087 {
6088 /* The relocation field has been converted into a relative value of
6089 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6090 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6091 *addendp += symbol;
5d41f0b6 6092 return TRUE;
0d591ff7 6093 }
b49e97c9 6094
5d41f0b6
RS
6095 /* We must now calculate the dynamic symbol table index to use
6096 in the relocation. */
d4a77f3f 6097 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6098 {
020d7251 6099 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6100 indx = h->root.dynindx;
6101 if (SGI_COMPAT (output_bfd))
6102 defined_p = h->root.def_regular;
6103 else
6104 /* ??? glibc's ld.so just adds the final GOT entry to the
6105 relocation field. It therefore treats relocs against
6106 defined symbols in the same way as relocs against
6107 undefined symbols. */
6108 defined_p = FALSE;
6109 }
b49e97c9
TS
6110 else
6111 {
5d41f0b6
RS
6112 if (sec != NULL && bfd_is_abs_section (sec))
6113 indx = 0;
6114 else if (sec == NULL || sec->owner == NULL)
fdd07405 6115 {
5d41f0b6
RS
6116 bfd_set_error (bfd_error_bad_value);
6117 return FALSE;
b49e97c9
TS
6118 }
6119 else
6120 {
5d41f0b6 6121 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6122 if (indx == 0)
6123 {
6124 asection *osec = htab->root.text_index_section;
6125 indx = elf_section_data (osec)->dynindx;
6126 }
5d41f0b6
RS
6127 if (indx == 0)
6128 abort ();
b49e97c9
TS
6129 }
6130
5d41f0b6
RS
6131 /* Instead of generating a relocation using the section
6132 symbol, we may as well make it a fully relative
6133 relocation. We want to avoid generating relocations to
6134 local symbols because we used to generate them
6135 incorrectly, without adding the original symbol value,
6136 which is mandated by the ABI for section symbols. In
6137 order to give dynamic loaders and applications time to
6138 phase out the incorrect use, we refrain from emitting
6139 section-relative relocations. It's not like they're
6140 useful, after all. This should be a bit more efficient
6141 as well. */
6142 /* ??? Although this behavior is compatible with glibc's ld.so,
6143 the ABI says that relocations against STN_UNDEF should have
6144 a symbol value of 0. Irix rld honors this, so relocations
6145 against STN_UNDEF have no effect. */
6146 if (!SGI_COMPAT (output_bfd))
6147 indx = 0;
6148 defined_p = TRUE;
b49e97c9
TS
6149 }
6150
5d41f0b6
RS
6151 /* If the relocation was previously an absolute relocation and
6152 this symbol will not be referred to by the relocation, we must
6153 adjust it by the value we give it in the dynamic symbol table.
6154 Otherwise leave the job up to the dynamic linker. */
6155 if (defined_p && r_type != R_MIPS_REL32)
6156 *addendp += symbol;
6157
0a44bf69
RS
6158 if (htab->is_vxworks)
6159 /* VxWorks uses non-relative relocations for this. */
6160 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6161 else
6162 /* The relocation is always an REL32 relocation because we don't
6163 know where the shared library will wind up at load-time. */
6164 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6165 R_MIPS_REL32);
6166
5d41f0b6
RS
6167 /* For strict adherence to the ABI specification, we should
6168 generate a R_MIPS_64 relocation record by itself before the
6169 _REL32/_64 record as well, such that the addend is read in as
6170 a 64-bit value (REL32 is a 32-bit relocation, after all).
6171 However, since none of the existing ELF64 MIPS dynamic
6172 loaders seems to care, we don't waste space with these
6173 artificial relocations. If this turns out to not be true,
6174 mips_elf_allocate_dynamic_relocation() should be tweaked so
6175 as to make room for a pair of dynamic relocations per
6176 invocation if ABI_64_P, and here we should generate an
6177 additional relocation record with R_MIPS_64 by itself for a
6178 NULL symbol before this relocation record. */
6179 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6180 ABI_64_P (output_bfd)
6181 ? R_MIPS_64
6182 : R_MIPS_NONE);
6183 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6184
6185 /* Adjust the output offset of the relocation to reference the
6186 correct location in the output file. */
6187 outrel[0].r_offset += (input_section->output_section->vma
6188 + input_section->output_offset);
6189 outrel[1].r_offset += (input_section->output_section->vma
6190 + input_section->output_offset);
6191 outrel[2].r_offset += (input_section->output_section->vma
6192 + input_section->output_offset);
6193
b49e97c9
TS
6194 /* Put the relocation back out. We have to use the special
6195 relocation outputter in the 64-bit case since the 64-bit
6196 relocation format is non-standard. */
6197 if (ABI_64_P (output_bfd))
6198 {
6199 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6200 (output_bfd, &outrel[0],
6201 (sreloc->contents
6202 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6203 }
0a44bf69
RS
6204 else if (htab->is_vxworks)
6205 {
6206 /* VxWorks uses RELA rather than REL dynamic relocations. */
6207 outrel[0].r_addend = *addendp;
6208 bfd_elf32_swap_reloca_out
6209 (output_bfd, &outrel[0],
6210 (sreloc->contents
6211 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6212 }
b49e97c9 6213 else
947216bf
AM
6214 bfd_elf32_swap_reloc_out
6215 (output_bfd, &outrel[0],
6216 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6217
b49e97c9
TS
6218 /* We've now added another relocation. */
6219 ++sreloc->reloc_count;
6220
6221 /* Make sure the output section is writable. The dynamic linker
6222 will be writing to it. */
6223 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6224 |= SHF_WRITE;
6225
6226 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6227 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6228 {
3d4d4302 6229 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6230 bfd_byte *cr;
6231
6232 if (scpt)
6233 {
6234 Elf32_crinfo cptrel;
6235
6236 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6237 cptrel.vaddr = (rel->r_offset
6238 + input_section->output_section->vma
6239 + input_section->output_offset);
6240 if (r_type == R_MIPS_REL32)
6241 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6242 else
6243 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6244 mips_elf_set_cr_dist2to (cptrel, 0);
6245 cptrel.konst = *addendp;
6246
6247 cr = (scpt->contents
6248 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6249 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6250 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6251 ((Elf32_External_crinfo *) cr
6252 + scpt->reloc_count));
6253 ++scpt->reloc_count;
6254 }
6255 }
6256
943284cc
DJ
6257 /* If we've written this relocation for a readonly section,
6258 we need to set DF_TEXTREL again, so that we do not delete the
6259 DT_TEXTREL tag. */
6260 if (MIPS_ELF_READONLY_SECTION (input_section))
6261 info->flags |= DF_TEXTREL;
6262
b34976b6 6263 return TRUE;
b49e97c9
TS
6264}
6265\f
b49e97c9
TS
6266/* Return the MACH for a MIPS e_flags value. */
6267
6268unsigned long
9719ad41 6269_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6270{
6271 switch (flags & EF_MIPS_MACH)
6272 {
6273 case E_MIPS_MACH_3900:
6274 return bfd_mach_mips3900;
6275
6276 case E_MIPS_MACH_4010:
6277 return bfd_mach_mips4010;
6278
6279 case E_MIPS_MACH_4100:
6280 return bfd_mach_mips4100;
6281
6282 case E_MIPS_MACH_4111:
6283 return bfd_mach_mips4111;
6284
00707a0e
RS
6285 case E_MIPS_MACH_4120:
6286 return bfd_mach_mips4120;
6287
b49e97c9
TS
6288 case E_MIPS_MACH_4650:
6289 return bfd_mach_mips4650;
6290
00707a0e
RS
6291 case E_MIPS_MACH_5400:
6292 return bfd_mach_mips5400;
6293
6294 case E_MIPS_MACH_5500:
6295 return bfd_mach_mips5500;
6296
e407c74b
NC
6297 case E_MIPS_MACH_5900:
6298 return bfd_mach_mips5900;
6299
0d2e43ed
ILT
6300 case E_MIPS_MACH_9000:
6301 return bfd_mach_mips9000;
6302
b49e97c9
TS
6303 case E_MIPS_MACH_SB1:
6304 return bfd_mach_mips_sb1;
6305
350cc38d
MS
6306 case E_MIPS_MACH_LS2E:
6307 return bfd_mach_mips_loongson_2e;
6308
6309 case E_MIPS_MACH_LS2F:
6310 return bfd_mach_mips_loongson_2f;
6311
fd503541
NC
6312 case E_MIPS_MACH_LS3A:
6313 return bfd_mach_mips_loongson_3a;
6314
432233b3
AP
6315 case E_MIPS_MACH_OCTEON2:
6316 return bfd_mach_mips_octeon2;
6317
6f179bd0
AN
6318 case E_MIPS_MACH_OCTEON:
6319 return bfd_mach_mips_octeon;
6320
52b6b6b9
JM
6321 case E_MIPS_MACH_XLR:
6322 return bfd_mach_mips_xlr;
6323
b49e97c9
TS
6324 default:
6325 switch (flags & EF_MIPS_ARCH)
6326 {
6327 default:
6328 case E_MIPS_ARCH_1:
6329 return bfd_mach_mips3000;
b49e97c9
TS
6330
6331 case E_MIPS_ARCH_2:
6332 return bfd_mach_mips6000;
b49e97c9
TS
6333
6334 case E_MIPS_ARCH_3:
6335 return bfd_mach_mips4000;
b49e97c9
TS
6336
6337 case E_MIPS_ARCH_4:
6338 return bfd_mach_mips8000;
b49e97c9
TS
6339
6340 case E_MIPS_ARCH_5:
6341 return bfd_mach_mips5;
b49e97c9
TS
6342
6343 case E_MIPS_ARCH_32:
6344 return bfd_mach_mipsisa32;
b49e97c9
TS
6345
6346 case E_MIPS_ARCH_64:
6347 return bfd_mach_mipsisa64;
af7ee8bf
CD
6348
6349 case E_MIPS_ARCH_32R2:
6350 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6351
6352 case E_MIPS_ARCH_64R2:
6353 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6354 }
6355 }
6356
6357 return 0;
6358}
6359
6360/* Return printable name for ABI. */
6361
6362static INLINE char *
9719ad41 6363elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6364{
6365 flagword flags;
6366
6367 flags = elf_elfheader (abfd)->e_flags;
6368 switch (flags & EF_MIPS_ABI)
6369 {
6370 case 0:
6371 if (ABI_N32_P (abfd))
6372 return "N32";
6373 else if (ABI_64_P (abfd))
6374 return "64";
6375 else
6376 return "none";
6377 case E_MIPS_ABI_O32:
6378 return "O32";
6379 case E_MIPS_ABI_O64:
6380 return "O64";
6381 case E_MIPS_ABI_EABI32:
6382 return "EABI32";
6383 case E_MIPS_ABI_EABI64:
6384 return "EABI64";
6385 default:
6386 return "unknown abi";
6387 }
6388}
6389\f
6390/* MIPS ELF uses two common sections. One is the usual one, and the
6391 other is for small objects. All the small objects are kept
6392 together, and then referenced via the gp pointer, which yields
6393 faster assembler code. This is what we use for the small common
6394 section. This approach is copied from ecoff.c. */
6395static asection mips_elf_scom_section;
6396static asymbol mips_elf_scom_symbol;
6397static asymbol *mips_elf_scom_symbol_ptr;
6398
6399/* MIPS ELF also uses an acommon section, which represents an
6400 allocated common symbol which may be overridden by a
6401 definition in a shared library. */
6402static asection mips_elf_acom_section;
6403static asymbol mips_elf_acom_symbol;
6404static asymbol *mips_elf_acom_symbol_ptr;
6405
738e5348 6406/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6407
6408void
9719ad41 6409_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6410{
6411 elf_symbol_type *elfsym;
6412
738e5348 6413 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6414 elfsym = (elf_symbol_type *) asym;
6415 switch (elfsym->internal_elf_sym.st_shndx)
6416 {
6417 case SHN_MIPS_ACOMMON:
6418 /* This section is used in a dynamically linked executable file.
6419 It is an allocated common section. The dynamic linker can
6420 either resolve these symbols to something in a shared
6421 library, or it can just leave them here. For our purposes,
6422 we can consider these symbols to be in a new section. */
6423 if (mips_elf_acom_section.name == NULL)
6424 {
6425 /* Initialize the acommon section. */
6426 mips_elf_acom_section.name = ".acommon";
6427 mips_elf_acom_section.flags = SEC_ALLOC;
6428 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6429 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6430 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6431 mips_elf_acom_symbol.name = ".acommon";
6432 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6433 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6434 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6435 }
6436 asym->section = &mips_elf_acom_section;
6437 break;
6438
6439 case SHN_COMMON:
6440 /* Common symbols less than the GP size are automatically
6441 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6442 if (asym->value > elf_gp_size (abfd)
b59eed79 6443 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6444 || IRIX_COMPAT (abfd) == ict_irix6)
6445 break;
6446 /* Fall through. */
6447 case SHN_MIPS_SCOMMON:
6448 if (mips_elf_scom_section.name == NULL)
6449 {
6450 /* Initialize the small common section. */
6451 mips_elf_scom_section.name = ".scommon";
6452 mips_elf_scom_section.flags = SEC_IS_COMMON;
6453 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6454 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6455 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6456 mips_elf_scom_symbol.name = ".scommon";
6457 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6458 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6459 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6460 }
6461 asym->section = &mips_elf_scom_section;
6462 asym->value = elfsym->internal_elf_sym.st_size;
6463 break;
6464
6465 case SHN_MIPS_SUNDEFINED:
6466 asym->section = bfd_und_section_ptr;
6467 break;
6468
b49e97c9 6469 case SHN_MIPS_TEXT:
00b4930b
TS
6470 {
6471 asection *section = bfd_get_section_by_name (abfd, ".text");
6472
00b4930b
TS
6473 if (section != NULL)
6474 {
6475 asym->section = section;
6476 /* MIPS_TEXT is a bit special, the address is not an offset
6477 to the base of the .text section. So substract the section
6478 base address to make it an offset. */
6479 asym->value -= section->vma;
6480 }
6481 }
b49e97c9
TS
6482 break;
6483
6484 case SHN_MIPS_DATA:
00b4930b
TS
6485 {
6486 asection *section = bfd_get_section_by_name (abfd, ".data");
6487
00b4930b
TS
6488 if (section != NULL)
6489 {
6490 asym->section = section;
6491 /* MIPS_DATA is a bit special, the address is not an offset
6492 to the base of the .data section. So substract the section
6493 base address to make it an offset. */
6494 asym->value -= section->vma;
6495 }
6496 }
b49e97c9 6497 break;
b49e97c9 6498 }
738e5348 6499
df58fc94
RS
6500 /* If this is an odd-valued function symbol, assume it's a MIPS16
6501 or microMIPS one. */
738e5348
RS
6502 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6503 && (asym->value & 1) != 0)
6504 {
6505 asym->value--;
df58fc94
RS
6506 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6507 elfsym->internal_elf_sym.st_other
6508 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6509 else
6510 elfsym->internal_elf_sym.st_other
6511 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6512 }
b49e97c9
TS
6513}
6514\f
8c946ed5
RS
6515/* Implement elf_backend_eh_frame_address_size. This differs from
6516 the default in the way it handles EABI64.
6517
6518 EABI64 was originally specified as an LP64 ABI, and that is what
6519 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6520 historically accepted the combination of -mabi=eabi and -mlong32,
6521 and this ILP32 variation has become semi-official over time.
6522 Both forms use elf32 and have pointer-sized FDE addresses.
6523
6524 If an EABI object was generated by GCC 4.0 or above, it will have
6525 an empty .gcc_compiled_longXX section, where XX is the size of longs
6526 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6527 have no special marking to distinguish them from LP64 objects.
6528
6529 We don't want users of the official LP64 ABI to be punished for the
6530 existence of the ILP32 variant, but at the same time, we don't want
6531 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6532 We therefore take the following approach:
6533
6534 - If ABFD contains a .gcc_compiled_longXX section, use it to
6535 determine the pointer size.
6536
6537 - Otherwise check the type of the first relocation. Assume that
6538 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6539
6540 - Otherwise punt.
6541
6542 The second check is enough to detect LP64 objects generated by pre-4.0
6543 compilers because, in the kind of output generated by those compilers,
6544 the first relocation will be associated with either a CIE personality
6545 routine or an FDE start address. Furthermore, the compilers never
6546 used a special (non-pointer) encoding for this ABI.
6547
6548 Checking the relocation type should also be safe because there is no
6549 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6550 did so. */
6551
6552unsigned int
6553_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6554{
6555 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6556 return 8;
6557 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6558 {
6559 bfd_boolean long32_p, long64_p;
6560
6561 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6562 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6563 if (long32_p && long64_p)
6564 return 0;
6565 if (long32_p)
6566 return 4;
6567 if (long64_p)
6568 return 8;
6569
6570 if (sec->reloc_count > 0
6571 && elf_section_data (sec)->relocs != NULL
6572 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6573 == R_MIPS_64))
6574 return 8;
6575
6576 return 0;
6577 }
6578 return 4;
6579}
6580\f
174fd7f9
RS
6581/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6582 relocations against two unnamed section symbols to resolve to the
6583 same address. For example, if we have code like:
6584
6585 lw $4,%got_disp(.data)($gp)
6586 lw $25,%got_disp(.text)($gp)
6587 jalr $25
6588
6589 then the linker will resolve both relocations to .data and the program
6590 will jump there rather than to .text.
6591
6592 We can work around this problem by giving names to local section symbols.
6593 This is also what the MIPSpro tools do. */
6594
6595bfd_boolean
6596_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6597{
6598 return SGI_COMPAT (abfd);
6599}
6600\f
b49e97c9
TS
6601/* Work over a section just before writing it out. This routine is
6602 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6603 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6604 a better way. */
6605
b34976b6 6606bfd_boolean
9719ad41 6607_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6608{
6609 if (hdr->sh_type == SHT_MIPS_REGINFO
6610 && hdr->sh_size > 0)
6611 {
6612 bfd_byte buf[4];
6613
6614 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6615 BFD_ASSERT (hdr->contents == NULL);
6616
6617 if (bfd_seek (abfd,
6618 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6619 SEEK_SET) != 0)
b34976b6 6620 return FALSE;
b49e97c9 6621 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6622 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6623 return FALSE;
b49e97c9
TS
6624 }
6625
6626 if (hdr->sh_type == SHT_MIPS_OPTIONS
6627 && hdr->bfd_section != NULL
f0abc2a1
AM
6628 && mips_elf_section_data (hdr->bfd_section) != NULL
6629 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6630 {
6631 bfd_byte *contents, *l, *lend;
6632
f0abc2a1
AM
6633 /* We stored the section contents in the tdata field in the
6634 set_section_contents routine. We save the section contents
6635 so that we don't have to read them again.
b49e97c9
TS
6636 At this point we know that elf_gp is set, so we can look
6637 through the section contents to see if there is an
6638 ODK_REGINFO structure. */
6639
f0abc2a1 6640 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6641 l = contents;
6642 lend = contents + hdr->sh_size;
6643 while (l + sizeof (Elf_External_Options) <= lend)
6644 {
6645 Elf_Internal_Options intopt;
6646
6647 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6648 &intopt);
1bc8074d
MR
6649 if (intopt.size < sizeof (Elf_External_Options))
6650 {
6651 (*_bfd_error_handler)
6652 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6653 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6654 break;
6655 }
b49e97c9
TS
6656 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6657 {
6658 bfd_byte buf[8];
6659
6660 if (bfd_seek (abfd,
6661 (hdr->sh_offset
6662 + (l - contents)
6663 + sizeof (Elf_External_Options)
6664 + (sizeof (Elf64_External_RegInfo) - 8)),
6665 SEEK_SET) != 0)
b34976b6 6666 return FALSE;
b49e97c9 6667 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6668 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6669 return FALSE;
b49e97c9
TS
6670 }
6671 else if (intopt.kind == ODK_REGINFO)
6672 {
6673 bfd_byte buf[4];
6674
6675 if (bfd_seek (abfd,
6676 (hdr->sh_offset
6677 + (l - contents)
6678 + sizeof (Elf_External_Options)
6679 + (sizeof (Elf32_External_RegInfo) - 4)),
6680 SEEK_SET) != 0)
b34976b6 6681 return FALSE;
b49e97c9 6682 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6683 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6684 return FALSE;
b49e97c9
TS
6685 }
6686 l += intopt.size;
6687 }
6688 }
6689
6690 if (hdr->bfd_section != NULL)
6691 {
6692 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6693
2d0f9ad9
JM
6694 /* .sbss is not handled specially here because the GNU/Linux
6695 prelinker can convert .sbss from NOBITS to PROGBITS and
6696 changing it back to NOBITS breaks the binary. The entry in
6697 _bfd_mips_elf_special_sections will ensure the correct flags
6698 are set on .sbss if BFD creates it without reading it from an
6699 input file, and without special handling here the flags set
6700 on it in an input file will be followed. */
b49e97c9
TS
6701 if (strcmp (name, ".sdata") == 0
6702 || strcmp (name, ".lit8") == 0
6703 || strcmp (name, ".lit4") == 0)
6704 {
6705 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6706 hdr->sh_type = SHT_PROGBITS;
6707 }
b49e97c9
TS
6708 else if (strcmp (name, ".srdata") == 0)
6709 {
6710 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6711 hdr->sh_type = SHT_PROGBITS;
6712 }
6713 else if (strcmp (name, ".compact_rel") == 0)
6714 {
6715 hdr->sh_flags = 0;
6716 hdr->sh_type = SHT_PROGBITS;
6717 }
6718 else if (strcmp (name, ".rtproc") == 0)
6719 {
6720 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6721 {
6722 unsigned int adjust;
6723
6724 adjust = hdr->sh_size % hdr->sh_addralign;
6725 if (adjust != 0)
6726 hdr->sh_size += hdr->sh_addralign - adjust;
6727 }
6728 }
6729 }
6730
b34976b6 6731 return TRUE;
b49e97c9
TS
6732}
6733
6734/* Handle a MIPS specific section when reading an object file. This
6735 is called when elfcode.h finds a section with an unknown type.
6736 This routine supports both the 32-bit and 64-bit ELF ABI.
6737
6738 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6739 how to. */
6740
b34976b6 6741bfd_boolean
6dc132d9
L
6742_bfd_mips_elf_section_from_shdr (bfd *abfd,
6743 Elf_Internal_Shdr *hdr,
6744 const char *name,
6745 int shindex)
b49e97c9
TS
6746{
6747 flagword flags = 0;
6748
6749 /* There ought to be a place to keep ELF backend specific flags, but
6750 at the moment there isn't one. We just keep track of the
6751 sections by their name, instead. Fortunately, the ABI gives
6752 suggested names for all the MIPS specific sections, so we will
6753 probably get away with this. */
6754 switch (hdr->sh_type)
6755 {
6756 case SHT_MIPS_LIBLIST:
6757 if (strcmp (name, ".liblist") != 0)
b34976b6 6758 return FALSE;
b49e97c9
TS
6759 break;
6760 case SHT_MIPS_MSYM:
6761 if (strcmp (name, ".msym") != 0)
b34976b6 6762 return FALSE;
b49e97c9
TS
6763 break;
6764 case SHT_MIPS_CONFLICT:
6765 if (strcmp (name, ".conflict") != 0)
b34976b6 6766 return FALSE;
b49e97c9
TS
6767 break;
6768 case SHT_MIPS_GPTAB:
0112cd26 6769 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6770 return FALSE;
b49e97c9
TS
6771 break;
6772 case SHT_MIPS_UCODE:
6773 if (strcmp (name, ".ucode") != 0)
b34976b6 6774 return FALSE;
b49e97c9
TS
6775 break;
6776 case SHT_MIPS_DEBUG:
6777 if (strcmp (name, ".mdebug") != 0)
b34976b6 6778 return FALSE;
b49e97c9
TS
6779 flags = SEC_DEBUGGING;
6780 break;
6781 case SHT_MIPS_REGINFO:
6782 if (strcmp (name, ".reginfo") != 0
6783 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6784 return FALSE;
b49e97c9
TS
6785 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6786 break;
6787 case SHT_MIPS_IFACE:
6788 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6789 return FALSE;
b49e97c9
TS
6790 break;
6791 case SHT_MIPS_CONTENT:
0112cd26 6792 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6793 return FALSE;
b49e97c9
TS
6794 break;
6795 case SHT_MIPS_OPTIONS:
cc2e31b9 6796 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6797 return FALSE;
b49e97c9
TS
6798 break;
6799 case SHT_MIPS_DWARF:
1b315056 6800 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6801 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6802 return FALSE;
b49e97c9
TS
6803 break;
6804 case SHT_MIPS_SYMBOL_LIB:
6805 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6806 return FALSE;
b49e97c9
TS
6807 break;
6808 case SHT_MIPS_EVENTS:
0112cd26
NC
6809 if (! CONST_STRNEQ (name, ".MIPS.events")
6810 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6811 return FALSE;
b49e97c9
TS
6812 break;
6813 default:
cc2e31b9 6814 break;
b49e97c9
TS
6815 }
6816
6dc132d9 6817 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6818 return FALSE;
b49e97c9
TS
6819
6820 if (flags)
6821 {
6822 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6823 (bfd_get_section_flags (abfd,
6824 hdr->bfd_section)
6825 | flags)))
b34976b6 6826 return FALSE;
b49e97c9
TS
6827 }
6828
6829 /* FIXME: We should record sh_info for a .gptab section. */
6830
6831 /* For a .reginfo section, set the gp value in the tdata information
6832 from the contents of this section. We need the gp value while
6833 processing relocs, so we just get it now. The .reginfo section
6834 is not used in the 64-bit MIPS ELF ABI. */
6835 if (hdr->sh_type == SHT_MIPS_REGINFO)
6836 {
6837 Elf32_External_RegInfo ext;
6838 Elf32_RegInfo s;
6839
9719ad41
RS
6840 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6841 &ext, 0, sizeof ext))
b34976b6 6842 return FALSE;
b49e97c9
TS
6843 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6844 elf_gp (abfd) = s.ri_gp_value;
6845 }
6846
6847 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6848 set the gp value based on what we find. We may see both
6849 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6850 they should agree. */
6851 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6852 {
6853 bfd_byte *contents, *l, *lend;
6854
9719ad41 6855 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6856 if (contents == NULL)
b34976b6 6857 return FALSE;
b49e97c9 6858 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6859 0, hdr->sh_size))
b49e97c9
TS
6860 {
6861 free (contents);
b34976b6 6862 return FALSE;
b49e97c9
TS
6863 }
6864 l = contents;
6865 lend = contents + hdr->sh_size;
6866 while (l + sizeof (Elf_External_Options) <= lend)
6867 {
6868 Elf_Internal_Options intopt;
6869
6870 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6871 &intopt);
1bc8074d
MR
6872 if (intopt.size < sizeof (Elf_External_Options))
6873 {
6874 (*_bfd_error_handler)
6875 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6876 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6877 break;
6878 }
b49e97c9
TS
6879 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6880 {
6881 Elf64_Internal_RegInfo intreg;
6882
6883 bfd_mips_elf64_swap_reginfo_in
6884 (abfd,
6885 ((Elf64_External_RegInfo *)
6886 (l + sizeof (Elf_External_Options))),
6887 &intreg);
6888 elf_gp (abfd) = intreg.ri_gp_value;
6889 }
6890 else if (intopt.kind == ODK_REGINFO)
6891 {
6892 Elf32_RegInfo intreg;
6893
6894 bfd_mips_elf32_swap_reginfo_in
6895 (abfd,
6896 ((Elf32_External_RegInfo *)
6897 (l + sizeof (Elf_External_Options))),
6898 &intreg);
6899 elf_gp (abfd) = intreg.ri_gp_value;
6900 }
6901 l += intopt.size;
6902 }
6903 free (contents);
6904 }
6905
b34976b6 6906 return TRUE;
b49e97c9
TS
6907}
6908
6909/* Set the correct type for a MIPS ELF section. We do this by the
6910 section name, which is a hack, but ought to work. This routine is
6911 used by both the 32-bit and the 64-bit ABI. */
6912
b34976b6 6913bfd_boolean
9719ad41 6914_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6915{
0414f35b 6916 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6917
6918 if (strcmp (name, ".liblist") == 0)
6919 {
6920 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6921 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6922 /* The sh_link field is set in final_write_processing. */
6923 }
6924 else if (strcmp (name, ".conflict") == 0)
6925 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6926 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6927 {
6928 hdr->sh_type = SHT_MIPS_GPTAB;
6929 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6930 /* The sh_info field is set in final_write_processing. */
6931 }
6932 else if (strcmp (name, ".ucode") == 0)
6933 hdr->sh_type = SHT_MIPS_UCODE;
6934 else if (strcmp (name, ".mdebug") == 0)
6935 {
6936 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6937 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6938 entsize of 0. FIXME: Does this matter? */
6939 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6940 hdr->sh_entsize = 0;
6941 else
6942 hdr->sh_entsize = 1;
6943 }
6944 else if (strcmp (name, ".reginfo") == 0)
6945 {
6946 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6947 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6948 entsize of 0x18. FIXME: Does this matter? */
6949 if (SGI_COMPAT (abfd))
6950 {
6951 if ((abfd->flags & DYNAMIC) != 0)
6952 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6953 else
6954 hdr->sh_entsize = 1;
6955 }
6956 else
6957 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6958 }
6959 else if (SGI_COMPAT (abfd)
6960 && (strcmp (name, ".hash") == 0
6961 || strcmp (name, ".dynamic") == 0
6962 || strcmp (name, ".dynstr") == 0))
6963 {
6964 if (SGI_COMPAT (abfd))
6965 hdr->sh_entsize = 0;
6966#if 0
8dc1a139 6967 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6968 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6969#endif
6970 }
6971 else if (strcmp (name, ".got") == 0
6972 || strcmp (name, ".srdata") == 0
6973 || strcmp (name, ".sdata") == 0
6974 || strcmp (name, ".sbss") == 0
6975 || strcmp (name, ".lit4") == 0
6976 || strcmp (name, ".lit8") == 0)
6977 hdr->sh_flags |= SHF_MIPS_GPREL;
6978 else if (strcmp (name, ".MIPS.interfaces") == 0)
6979 {
6980 hdr->sh_type = SHT_MIPS_IFACE;
6981 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6982 }
0112cd26 6983 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6984 {
6985 hdr->sh_type = SHT_MIPS_CONTENT;
6986 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6987 /* The sh_info field is set in final_write_processing. */
6988 }
cc2e31b9 6989 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6990 {
6991 hdr->sh_type = SHT_MIPS_OPTIONS;
6992 hdr->sh_entsize = 1;
6993 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6994 }
1b315056
CS
6995 else if (CONST_STRNEQ (name, ".debug_")
6996 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6997 {
6998 hdr->sh_type = SHT_MIPS_DWARF;
6999
7000 /* Irix facilities such as libexc expect a single .debug_frame
7001 per executable, the system ones have NOSTRIP set and the linker
7002 doesn't merge sections with different flags so ... */
7003 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7004 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7005 }
b49e97c9
TS
7006 else if (strcmp (name, ".MIPS.symlib") == 0)
7007 {
7008 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7009 /* The sh_link and sh_info fields are set in
7010 final_write_processing. */
7011 }
0112cd26
NC
7012 else if (CONST_STRNEQ (name, ".MIPS.events")
7013 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7014 {
7015 hdr->sh_type = SHT_MIPS_EVENTS;
7016 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7017 /* The sh_link field is set in final_write_processing. */
7018 }
7019 else if (strcmp (name, ".msym") == 0)
7020 {
7021 hdr->sh_type = SHT_MIPS_MSYM;
7022 hdr->sh_flags |= SHF_ALLOC;
7023 hdr->sh_entsize = 8;
7024 }
7025
7a79a000
TS
7026 /* The generic elf_fake_sections will set up REL_HDR using the default
7027 kind of relocations. We used to set up a second header for the
7028 non-default kind of relocations here, but only NewABI would use
7029 these, and the IRIX ld doesn't like resulting empty RELA sections.
7030 Thus we create those header only on demand now. */
b49e97c9 7031
b34976b6 7032 return TRUE;
b49e97c9
TS
7033}
7034
7035/* Given a BFD section, try to locate the corresponding ELF section
7036 index. This is used by both the 32-bit and the 64-bit ABI.
7037 Actually, it's not clear to me that the 64-bit ABI supports these,
7038 but for non-PIC objects we will certainly want support for at least
7039 the .scommon section. */
7040
b34976b6 7041bfd_boolean
9719ad41
RS
7042_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7043 asection *sec, int *retval)
b49e97c9
TS
7044{
7045 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7046 {
7047 *retval = SHN_MIPS_SCOMMON;
b34976b6 7048 return TRUE;
b49e97c9
TS
7049 }
7050 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7051 {
7052 *retval = SHN_MIPS_ACOMMON;
b34976b6 7053 return TRUE;
b49e97c9 7054 }
b34976b6 7055 return FALSE;
b49e97c9
TS
7056}
7057\f
7058/* Hook called by the linker routine which adds symbols from an object
7059 file. We must handle the special MIPS section numbers here. */
7060
b34976b6 7061bfd_boolean
9719ad41 7062_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7063 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7064 flagword *flagsp ATTRIBUTE_UNUSED,
7065 asection **secp, bfd_vma *valp)
b49e97c9
TS
7066{
7067 if (SGI_COMPAT (abfd)
7068 && (abfd->flags & DYNAMIC) != 0
7069 && strcmp (*namep, "_rld_new_interface") == 0)
7070 {
8dc1a139 7071 /* Skip IRIX5 rld entry name. */
b49e97c9 7072 *namep = NULL;
b34976b6 7073 return TRUE;
b49e97c9
TS
7074 }
7075
eedecc07
DD
7076 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7077 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7078 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7079 a magic symbol resolved by the linker, we ignore this bogus definition
7080 of _gp_disp. New ABI objects do not suffer from this problem so this
7081 is not done for them. */
7082 if (!NEWABI_P(abfd)
7083 && (sym->st_shndx == SHN_ABS)
7084 && (strcmp (*namep, "_gp_disp") == 0))
7085 {
7086 *namep = NULL;
7087 return TRUE;
7088 }
7089
b49e97c9
TS
7090 switch (sym->st_shndx)
7091 {
7092 case SHN_COMMON:
7093 /* Common symbols less than the GP size are automatically
7094 treated as SHN_MIPS_SCOMMON symbols. */
7095 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7096 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7097 || IRIX_COMPAT (abfd) == ict_irix6)
7098 break;
7099 /* Fall through. */
7100 case SHN_MIPS_SCOMMON:
7101 *secp = bfd_make_section_old_way (abfd, ".scommon");
7102 (*secp)->flags |= SEC_IS_COMMON;
7103 *valp = sym->st_size;
7104 break;
7105
7106 case SHN_MIPS_TEXT:
7107 /* This section is used in a shared object. */
7108 if (elf_tdata (abfd)->elf_text_section == NULL)
7109 {
7110 asymbol *elf_text_symbol;
7111 asection *elf_text_section;
7112 bfd_size_type amt = sizeof (asection);
7113
7114 elf_text_section = bfd_zalloc (abfd, amt);
7115 if (elf_text_section == NULL)
b34976b6 7116 return FALSE;
b49e97c9
TS
7117
7118 amt = sizeof (asymbol);
7119 elf_text_symbol = bfd_zalloc (abfd, amt);
7120 if (elf_text_symbol == NULL)
b34976b6 7121 return FALSE;
b49e97c9
TS
7122
7123 /* Initialize the section. */
7124
7125 elf_tdata (abfd)->elf_text_section = elf_text_section;
7126 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7127
7128 elf_text_section->symbol = elf_text_symbol;
7129 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7130
7131 elf_text_section->name = ".text";
7132 elf_text_section->flags = SEC_NO_FLAGS;
7133 elf_text_section->output_section = NULL;
7134 elf_text_section->owner = abfd;
7135 elf_text_symbol->name = ".text";
7136 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7137 elf_text_symbol->section = elf_text_section;
7138 }
7139 /* This code used to do *secp = bfd_und_section_ptr if
7140 info->shared. I don't know why, and that doesn't make sense,
7141 so I took it out. */
7142 *secp = elf_tdata (abfd)->elf_text_section;
7143 break;
7144
7145 case SHN_MIPS_ACOMMON:
7146 /* Fall through. XXX Can we treat this as allocated data? */
7147 case SHN_MIPS_DATA:
7148 /* This section is used in a shared object. */
7149 if (elf_tdata (abfd)->elf_data_section == NULL)
7150 {
7151 asymbol *elf_data_symbol;
7152 asection *elf_data_section;
7153 bfd_size_type amt = sizeof (asection);
7154
7155 elf_data_section = bfd_zalloc (abfd, amt);
7156 if (elf_data_section == NULL)
b34976b6 7157 return FALSE;
b49e97c9
TS
7158
7159 amt = sizeof (asymbol);
7160 elf_data_symbol = bfd_zalloc (abfd, amt);
7161 if (elf_data_symbol == NULL)
b34976b6 7162 return FALSE;
b49e97c9
TS
7163
7164 /* Initialize the section. */
7165
7166 elf_tdata (abfd)->elf_data_section = elf_data_section;
7167 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7168
7169 elf_data_section->symbol = elf_data_symbol;
7170 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7171
7172 elf_data_section->name = ".data";
7173 elf_data_section->flags = SEC_NO_FLAGS;
7174 elf_data_section->output_section = NULL;
7175 elf_data_section->owner = abfd;
7176 elf_data_symbol->name = ".data";
7177 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7178 elf_data_symbol->section = elf_data_section;
7179 }
7180 /* This code used to do *secp = bfd_und_section_ptr if
7181 info->shared. I don't know why, and that doesn't make sense,
7182 so I took it out. */
7183 *secp = elf_tdata (abfd)->elf_data_section;
7184 break;
7185
7186 case SHN_MIPS_SUNDEFINED:
7187 *secp = bfd_und_section_ptr;
7188 break;
7189 }
7190
7191 if (SGI_COMPAT (abfd)
7192 && ! info->shared
f13a99db 7193 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7194 && strcmp (*namep, "__rld_obj_head") == 0)
7195 {
7196 struct elf_link_hash_entry *h;
14a793b2 7197 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7198
7199 /* Mark __rld_obj_head as dynamic. */
14a793b2 7200 bh = NULL;
b49e97c9 7201 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7202 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7203 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7204 return FALSE;
14a793b2
AM
7205
7206 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7207 h->non_elf = 0;
7208 h->def_regular = 1;
b49e97c9
TS
7209 h->type = STT_OBJECT;
7210
c152c796 7211 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7212 return FALSE;
b49e97c9 7213
b34976b6 7214 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7215 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7216 }
7217
7218 /* If this is a mips16 text symbol, add 1 to the value to make it
7219 odd. This will cause something like .word SYM to come up with
7220 the right value when it is loaded into the PC. */
df58fc94 7221 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7222 ++*valp;
7223
b34976b6 7224 return TRUE;
b49e97c9
TS
7225}
7226
7227/* This hook function is called before the linker writes out a global
7228 symbol. We mark symbols as small common if appropriate. This is
7229 also where we undo the increment of the value for a mips16 symbol. */
7230
6e0b88f1 7231int
9719ad41
RS
7232_bfd_mips_elf_link_output_symbol_hook
7233 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7234 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7235 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7236{
7237 /* If we see a common symbol, which implies a relocatable link, then
7238 if a symbol was small common in an input file, mark it as small
7239 common in the output file. */
7240 if (sym->st_shndx == SHN_COMMON
7241 && strcmp (input_sec->name, ".scommon") == 0)
7242 sym->st_shndx = SHN_MIPS_SCOMMON;
7243
df58fc94 7244 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7245 sym->st_value &= ~1;
b49e97c9 7246
6e0b88f1 7247 return 1;
b49e97c9
TS
7248}
7249\f
7250/* Functions for the dynamic linker. */
7251
7252/* Create dynamic sections when linking against a dynamic object. */
7253
b34976b6 7254bfd_boolean
9719ad41 7255_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7256{
7257 struct elf_link_hash_entry *h;
14a793b2 7258 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7259 flagword flags;
7260 register asection *s;
7261 const char * const *namep;
0a44bf69 7262 struct mips_elf_link_hash_table *htab;
b49e97c9 7263
0a44bf69 7264 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7265 BFD_ASSERT (htab != NULL);
7266
b49e97c9
TS
7267 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7268 | SEC_LINKER_CREATED | SEC_READONLY);
7269
0a44bf69
RS
7270 /* The psABI requires a read-only .dynamic section, but the VxWorks
7271 EABI doesn't. */
7272 if (!htab->is_vxworks)
b49e97c9 7273 {
3d4d4302 7274 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7275 if (s != NULL)
7276 {
7277 if (! bfd_set_section_flags (abfd, s, flags))
7278 return FALSE;
7279 }
b49e97c9
TS
7280 }
7281
7282 /* We need to create .got section. */
23cc69b6 7283 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7284 return FALSE;
7285
0a44bf69 7286 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7287 return FALSE;
b49e97c9 7288
b49e97c9 7289 /* Create .stub section. */
3d4d4302
AM
7290 s = bfd_make_section_anyway_with_flags (abfd,
7291 MIPS_ELF_STUB_SECTION_NAME (abfd),
7292 flags | SEC_CODE);
4e41d0d7
RS
7293 if (s == NULL
7294 || ! bfd_set_section_alignment (abfd, s,
7295 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7296 return FALSE;
7297 htab->sstubs = s;
b49e97c9 7298
e6aea42d 7299 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7300 && !info->shared
3d4d4302 7301 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7302 {
3d4d4302
AM
7303 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7304 flags &~ (flagword) SEC_READONLY);
b49e97c9 7305 if (s == NULL
b49e97c9
TS
7306 || ! bfd_set_section_alignment (abfd, s,
7307 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7308 return FALSE;
b49e97c9
TS
7309 }
7310
7311 /* On IRIX5, we adjust add some additional symbols and change the
7312 alignments of several sections. There is no ABI documentation
7313 indicating that this is necessary on IRIX6, nor any evidence that
7314 the linker takes such action. */
7315 if (IRIX_COMPAT (abfd) == ict_irix5)
7316 {
7317 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7318 {
14a793b2 7319 bh = NULL;
b49e97c9 7320 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7321 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7322 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7323 return FALSE;
14a793b2
AM
7324
7325 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7326 h->non_elf = 0;
7327 h->def_regular = 1;
b49e97c9
TS
7328 h->type = STT_SECTION;
7329
c152c796 7330 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7331 return FALSE;
b49e97c9
TS
7332 }
7333
7334 /* We need to create a .compact_rel section. */
7335 if (SGI_COMPAT (abfd))
7336 {
7337 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7338 return FALSE;
b49e97c9
TS
7339 }
7340
44c410de 7341 /* Change alignments of some sections. */
3d4d4302 7342 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7343 if (s != NULL)
d80dcc6a 7344 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7345 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7346 if (s != NULL)
d80dcc6a 7347 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7348 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7349 if (s != NULL)
d80dcc6a 7350 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7351 /* ??? */
b49e97c9
TS
7352 s = bfd_get_section_by_name (abfd, ".reginfo");
7353 if (s != NULL)
d80dcc6a 7354 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7355 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7356 if (s != NULL)
d80dcc6a 7357 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7358 }
7359
7360 if (!info->shared)
7361 {
14a793b2
AM
7362 const char *name;
7363
7364 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7365 bh = NULL;
7366 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7367 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7368 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7369 return FALSE;
14a793b2
AM
7370
7371 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7372 h->non_elf = 0;
7373 h->def_regular = 1;
b49e97c9
TS
7374 h->type = STT_SECTION;
7375
c152c796 7376 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7377 return FALSE;
b49e97c9
TS
7378
7379 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7380 {
7381 /* __rld_map is a four byte word located in the .data section
7382 and is filled in by the rtld to contain a pointer to
7383 the _r_debug structure. Its symbol value will be set in
7384 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7385 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7386 BFD_ASSERT (s != NULL);
14a793b2 7387
0abfb97a
L
7388 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7389 bh = NULL;
7390 if (!(_bfd_generic_link_add_one_symbol
7391 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7392 get_elf_backend_data (abfd)->collect, &bh)))
7393 return FALSE;
b49e97c9 7394
0abfb97a
L
7395 h = (struct elf_link_hash_entry *) bh;
7396 h->non_elf = 0;
7397 h->def_regular = 1;
7398 h->type = STT_OBJECT;
7399
7400 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7401 return FALSE;
b4082c70 7402 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7403 }
7404 }
7405
861fb55a
DJ
7406 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7407 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7408 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7409 return FALSE;
7410
7411 /* Cache the sections created above. */
3d4d4302
AM
7412 htab->splt = bfd_get_linker_section (abfd, ".plt");
7413 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7414 if (htab->is_vxworks)
7415 {
3d4d4302
AM
7416 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7417 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7418 }
7419 else
3d4d4302 7420 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7421 if (!htab->sdynbss
7422 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7423 || !htab->srelplt
7424 || !htab->splt)
7425 abort ();
0a44bf69 7426
861fb55a
DJ
7427 if (htab->is_vxworks)
7428 {
0a44bf69
RS
7429 /* Do the usual VxWorks handling. */
7430 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7431 return FALSE;
7432
7433 /* Work out the PLT sizes. */
7434 if (info->shared)
7435 {
7436 htab->plt_header_size
7437 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7438 htab->plt_entry_size
7439 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7440 }
7441 else
7442 {
7443 htab->plt_header_size
7444 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7445 htab->plt_entry_size
7446 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7447 }
7448 }
861fb55a
DJ
7449 else if (!info->shared)
7450 {
7451 /* All variants of the plt0 entry are the same size. */
7452 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7453 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7454 }
0a44bf69 7455
b34976b6 7456 return TRUE;
b49e97c9
TS
7457}
7458\f
c224138d
RS
7459/* Return true if relocation REL against section SEC is a REL rather than
7460 RELA relocation. RELOCS is the first relocation in the section and
7461 ABFD is the bfd that contains SEC. */
7462
7463static bfd_boolean
7464mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7465 const Elf_Internal_Rela *relocs,
7466 const Elf_Internal_Rela *rel)
7467{
7468 Elf_Internal_Shdr *rel_hdr;
7469 const struct elf_backend_data *bed;
7470
d4730f92
BS
7471 /* To determine which flavor of relocation this is, we depend on the
7472 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7473 rel_hdr = elf_section_data (sec)->rel.hdr;
7474 if (rel_hdr == NULL)
7475 return FALSE;
c224138d 7476 bed = get_elf_backend_data (abfd);
d4730f92
BS
7477 return ((size_t) (rel - relocs)
7478 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7479}
7480
7481/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7482 HOWTO is the relocation's howto and CONTENTS points to the contents
7483 of the section that REL is against. */
7484
7485static bfd_vma
7486mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7487 reloc_howto_type *howto, bfd_byte *contents)
7488{
7489 bfd_byte *location;
7490 unsigned int r_type;
7491 bfd_vma addend;
7492
7493 r_type = ELF_R_TYPE (abfd, rel->r_info);
7494 location = contents + rel->r_offset;
7495
7496 /* Get the addend, which is stored in the input file. */
df58fc94 7497 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7498 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7499 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7500
7501 return addend & howto->src_mask;
7502}
7503
7504/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7505 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7506 and update *ADDEND with the final addend. Return true on success
7507 or false if the LO16 could not be found. RELEND is the exclusive
7508 upper bound on the relocations for REL's section. */
7509
7510static bfd_boolean
7511mips_elf_add_lo16_rel_addend (bfd *abfd,
7512 const Elf_Internal_Rela *rel,
7513 const Elf_Internal_Rela *relend,
7514 bfd_byte *contents, bfd_vma *addend)
7515{
7516 unsigned int r_type, lo16_type;
7517 const Elf_Internal_Rela *lo16_relocation;
7518 reloc_howto_type *lo16_howto;
7519 bfd_vma l;
7520
7521 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7522 if (mips16_reloc_p (r_type))
c224138d 7523 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7524 else if (micromips_reloc_p (r_type))
7525 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7526 else
7527 lo16_type = R_MIPS_LO16;
7528
7529 /* The combined value is the sum of the HI16 addend, left-shifted by
7530 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7531 code does a `lui' of the HI16 value, and then an `addiu' of the
7532 LO16 value.)
7533
7534 Scan ahead to find a matching LO16 relocation.
7535
7536 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7537 be immediately following. However, for the IRIX6 ABI, the next
7538 relocation may be a composed relocation consisting of several
7539 relocations for the same address. In that case, the R_MIPS_LO16
7540 relocation may occur as one of these. We permit a similar
7541 extension in general, as that is useful for GCC.
7542
7543 In some cases GCC dead code elimination removes the LO16 but keeps
7544 the corresponding HI16. This is strictly speaking a violation of
7545 the ABI but not immediately harmful. */
7546 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7547 if (lo16_relocation == NULL)
7548 return FALSE;
7549
7550 /* Obtain the addend kept there. */
7551 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7552 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7553
7554 l <<= lo16_howto->rightshift;
7555 l = _bfd_mips_elf_sign_extend (l, 16);
7556
7557 *addend <<= 16;
7558 *addend += l;
7559 return TRUE;
7560}
7561
7562/* Try to read the contents of section SEC in bfd ABFD. Return true and
7563 store the contents in *CONTENTS on success. Assume that *CONTENTS
7564 already holds the contents if it is nonull on entry. */
7565
7566static bfd_boolean
7567mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7568{
7569 if (*contents)
7570 return TRUE;
7571
7572 /* Get cached copy if it exists. */
7573 if (elf_section_data (sec)->this_hdr.contents != NULL)
7574 {
7575 *contents = elf_section_data (sec)->this_hdr.contents;
7576 return TRUE;
7577 }
7578
7579 return bfd_malloc_and_get_section (abfd, sec, contents);
7580}
7581
b49e97c9
TS
7582/* Look through the relocs for a section during the first phase, and
7583 allocate space in the global offset table. */
7584
b34976b6 7585bfd_boolean
9719ad41
RS
7586_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7587 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7588{
7589 const char *name;
7590 bfd *dynobj;
7591 Elf_Internal_Shdr *symtab_hdr;
7592 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7593 size_t extsymoff;
7594 const Elf_Internal_Rela *rel;
7595 const Elf_Internal_Rela *rel_end;
b49e97c9 7596 asection *sreloc;
9c5bfbb7 7597 const struct elf_backend_data *bed;
0a44bf69 7598 struct mips_elf_link_hash_table *htab;
c224138d
RS
7599 bfd_byte *contents;
7600 bfd_vma addend;
7601 reloc_howto_type *howto;
b49e97c9 7602
1049f94e 7603 if (info->relocatable)
b34976b6 7604 return TRUE;
b49e97c9 7605
0a44bf69 7606 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7607 BFD_ASSERT (htab != NULL);
7608
b49e97c9
TS
7609 dynobj = elf_hash_table (info)->dynobj;
7610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7611 sym_hashes = elf_sym_hashes (abfd);
7612 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7613
738e5348
RS
7614 bed = get_elf_backend_data (abfd);
7615 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7616
b49e97c9
TS
7617 /* Check for the mips16 stub sections. */
7618
7619 name = bfd_get_section_name (abfd, sec);
b9d58d71 7620 if (FN_STUB_P (name))
b49e97c9
TS
7621 {
7622 unsigned long r_symndx;
7623
7624 /* Look at the relocation information to figure out which symbol
7625 this is for. */
7626
cb4437b8 7627 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7628 if (r_symndx == 0)
7629 {
7630 (*_bfd_error_handler)
7631 (_("%B: Warning: cannot determine the target function for"
7632 " stub section `%s'"),
7633 abfd, name);
7634 bfd_set_error (bfd_error_bad_value);
7635 return FALSE;
7636 }
b49e97c9
TS
7637
7638 if (r_symndx < extsymoff
7639 || sym_hashes[r_symndx - extsymoff] == NULL)
7640 {
7641 asection *o;
7642
7643 /* This stub is for a local symbol. This stub will only be
7644 needed if there is some relocation in this BFD, other
7645 than a 16 bit function call, which refers to this symbol. */
7646 for (o = abfd->sections; o != NULL; o = o->next)
7647 {
7648 Elf_Internal_Rela *sec_relocs;
7649 const Elf_Internal_Rela *r, *rend;
7650
7651 /* We can ignore stub sections when looking for relocs. */
7652 if ((o->flags & SEC_RELOC) == 0
7653 || o->reloc_count == 0
738e5348 7654 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7655 continue;
7656
45d6a902 7657 sec_relocs
9719ad41 7658 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7659 info->keep_memory);
b49e97c9 7660 if (sec_relocs == NULL)
b34976b6 7661 return FALSE;
b49e97c9
TS
7662
7663 rend = sec_relocs + o->reloc_count;
7664 for (r = sec_relocs; r < rend; r++)
7665 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7666 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7667 break;
7668
6cdc0ccc 7669 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7670 free (sec_relocs);
7671
7672 if (r < rend)
7673 break;
7674 }
7675
7676 if (o == NULL)
7677 {
7678 /* There is no non-call reloc for this stub, so we do
7679 not need it. Since this function is called before
7680 the linker maps input sections to output sections, we
7681 can easily discard it by setting the SEC_EXCLUDE
7682 flag. */
7683 sec->flags |= SEC_EXCLUDE;
b34976b6 7684 return TRUE;
b49e97c9
TS
7685 }
7686
7687 /* Record this stub in an array of local symbol stubs for
7688 this BFD. */
7689 if (elf_tdata (abfd)->local_stubs == NULL)
7690 {
7691 unsigned long symcount;
7692 asection **n;
7693 bfd_size_type amt;
7694
7695 if (elf_bad_symtab (abfd))
7696 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7697 else
7698 symcount = symtab_hdr->sh_info;
7699 amt = symcount * sizeof (asection *);
9719ad41 7700 n = bfd_zalloc (abfd, amt);
b49e97c9 7701 if (n == NULL)
b34976b6 7702 return FALSE;
b49e97c9
TS
7703 elf_tdata (abfd)->local_stubs = n;
7704 }
7705
b9d58d71 7706 sec->flags |= SEC_KEEP;
b49e97c9
TS
7707 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7708
7709 /* We don't need to set mips16_stubs_seen in this case.
7710 That flag is used to see whether we need to look through
7711 the global symbol table for stubs. We don't need to set
7712 it here, because we just have a local stub. */
7713 }
7714 else
7715 {
7716 struct mips_elf_link_hash_entry *h;
7717
7718 h = ((struct mips_elf_link_hash_entry *)
7719 sym_hashes[r_symndx - extsymoff]);
7720
973a3492
L
7721 while (h->root.root.type == bfd_link_hash_indirect
7722 || h->root.root.type == bfd_link_hash_warning)
7723 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7724
b49e97c9
TS
7725 /* H is the symbol this stub is for. */
7726
b9d58d71
TS
7727 /* If we already have an appropriate stub for this function, we
7728 don't need another one, so we can discard this one. Since
7729 this function is called before the linker maps input sections
7730 to output sections, we can easily discard it by setting the
7731 SEC_EXCLUDE flag. */
7732 if (h->fn_stub != NULL)
7733 {
7734 sec->flags |= SEC_EXCLUDE;
7735 return TRUE;
7736 }
7737
7738 sec->flags |= SEC_KEEP;
b49e97c9 7739 h->fn_stub = sec;
b34976b6 7740 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7741 }
7742 }
b9d58d71 7743 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7744 {
7745 unsigned long r_symndx;
7746 struct mips_elf_link_hash_entry *h;
7747 asection **loc;
7748
7749 /* Look at the relocation information to figure out which symbol
7750 this is for. */
7751
cb4437b8 7752 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7753 if (r_symndx == 0)
7754 {
7755 (*_bfd_error_handler)
7756 (_("%B: Warning: cannot determine the target function for"
7757 " stub section `%s'"),
7758 abfd, name);
7759 bfd_set_error (bfd_error_bad_value);
7760 return FALSE;
7761 }
b49e97c9
TS
7762
7763 if (r_symndx < extsymoff
7764 || sym_hashes[r_symndx - extsymoff] == NULL)
7765 {
b9d58d71 7766 asection *o;
b49e97c9 7767
b9d58d71
TS
7768 /* This stub is for a local symbol. This stub will only be
7769 needed if there is some relocation (R_MIPS16_26) in this BFD
7770 that refers to this symbol. */
7771 for (o = abfd->sections; o != NULL; o = o->next)
7772 {
7773 Elf_Internal_Rela *sec_relocs;
7774 const Elf_Internal_Rela *r, *rend;
7775
7776 /* We can ignore stub sections when looking for relocs. */
7777 if ((o->flags & SEC_RELOC) == 0
7778 || o->reloc_count == 0
738e5348 7779 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7780 continue;
7781
7782 sec_relocs
7783 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7784 info->keep_memory);
7785 if (sec_relocs == NULL)
7786 return FALSE;
7787
7788 rend = sec_relocs + o->reloc_count;
7789 for (r = sec_relocs; r < rend; r++)
7790 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7791 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7792 break;
7793
7794 if (elf_section_data (o)->relocs != sec_relocs)
7795 free (sec_relocs);
7796
7797 if (r < rend)
7798 break;
7799 }
7800
7801 if (o == NULL)
7802 {
7803 /* There is no non-call reloc for this stub, so we do
7804 not need it. Since this function is called before
7805 the linker maps input sections to output sections, we
7806 can easily discard it by setting the SEC_EXCLUDE
7807 flag. */
7808 sec->flags |= SEC_EXCLUDE;
7809 return TRUE;
7810 }
7811
7812 /* Record this stub in an array of local symbol call_stubs for
7813 this BFD. */
7814 if (elf_tdata (abfd)->local_call_stubs == NULL)
7815 {
7816 unsigned long symcount;
7817 asection **n;
7818 bfd_size_type amt;
7819
7820 if (elf_bad_symtab (abfd))
7821 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7822 else
7823 symcount = symtab_hdr->sh_info;
7824 amt = symcount * sizeof (asection *);
7825 n = bfd_zalloc (abfd, amt);
7826 if (n == NULL)
7827 return FALSE;
7828 elf_tdata (abfd)->local_call_stubs = n;
7829 }
b49e97c9 7830
b9d58d71
TS
7831 sec->flags |= SEC_KEEP;
7832 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7833
b9d58d71
TS
7834 /* We don't need to set mips16_stubs_seen in this case.
7835 That flag is used to see whether we need to look through
7836 the global symbol table for stubs. We don't need to set
7837 it here, because we just have a local stub. */
7838 }
b49e97c9 7839 else
b49e97c9 7840 {
b9d58d71
TS
7841 h = ((struct mips_elf_link_hash_entry *)
7842 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7843
b9d58d71 7844 /* H is the symbol this stub is for. */
68ffbac6 7845
b9d58d71
TS
7846 if (CALL_FP_STUB_P (name))
7847 loc = &h->call_fp_stub;
7848 else
7849 loc = &h->call_stub;
68ffbac6 7850
b9d58d71
TS
7851 /* If we already have an appropriate stub for this function, we
7852 don't need another one, so we can discard this one. Since
7853 this function is called before the linker maps input sections
7854 to output sections, we can easily discard it by setting the
7855 SEC_EXCLUDE flag. */
7856 if (*loc != NULL)
7857 {
7858 sec->flags |= SEC_EXCLUDE;
7859 return TRUE;
7860 }
b49e97c9 7861
b9d58d71
TS
7862 sec->flags |= SEC_KEEP;
7863 *loc = sec;
7864 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7865 }
b49e97c9
TS
7866 }
7867
b49e97c9 7868 sreloc = NULL;
c224138d 7869 contents = NULL;
b49e97c9
TS
7870 for (rel = relocs; rel < rel_end; ++rel)
7871 {
7872 unsigned long r_symndx;
7873 unsigned int r_type;
7874 struct elf_link_hash_entry *h;
861fb55a 7875 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7876
7877 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7878 r_type = ELF_R_TYPE (abfd, rel->r_info);
7879
7880 if (r_symndx < extsymoff)
7881 h = NULL;
7882 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7883 {
7884 (*_bfd_error_handler)
d003868e
AM
7885 (_("%B: Malformed reloc detected for section %s"),
7886 abfd, name);
b49e97c9 7887 bfd_set_error (bfd_error_bad_value);
b34976b6 7888 return FALSE;
b49e97c9
TS
7889 }
7890 else
7891 {
7892 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7893 while (h != NULL
7894 && (h->root.type == bfd_link_hash_indirect
7895 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7897 }
b49e97c9 7898
861fb55a
DJ
7899 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7900 relocation into a dynamic one. */
7901 can_make_dynamic_p = FALSE;
7902 switch (r_type)
7903 {
861fb55a
DJ
7904 case R_MIPS_GOT16:
7905 case R_MIPS_CALL16:
7906 case R_MIPS_CALL_HI16:
7907 case R_MIPS_CALL_LO16:
7908 case R_MIPS_GOT_HI16:
7909 case R_MIPS_GOT_LO16:
7910 case R_MIPS_GOT_PAGE:
7911 case R_MIPS_GOT_OFST:
7912 case R_MIPS_GOT_DISP:
7913 case R_MIPS_TLS_GOTTPREL:
7914 case R_MIPS_TLS_GD:
7915 case R_MIPS_TLS_LDM:
d0f13682
CLT
7916 case R_MIPS16_GOT16:
7917 case R_MIPS16_CALL16:
7918 case R_MIPS16_TLS_GOTTPREL:
7919 case R_MIPS16_TLS_GD:
7920 case R_MIPS16_TLS_LDM:
df58fc94
RS
7921 case R_MICROMIPS_GOT16:
7922 case R_MICROMIPS_CALL16:
7923 case R_MICROMIPS_CALL_HI16:
7924 case R_MICROMIPS_CALL_LO16:
7925 case R_MICROMIPS_GOT_HI16:
7926 case R_MICROMIPS_GOT_LO16:
7927 case R_MICROMIPS_GOT_PAGE:
7928 case R_MICROMIPS_GOT_OFST:
7929 case R_MICROMIPS_GOT_DISP:
7930 case R_MICROMIPS_TLS_GOTTPREL:
7931 case R_MICROMIPS_TLS_GD:
7932 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7933 if (dynobj == NULL)
7934 elf_hash_table (info)->dynobj = dynobj = abfd;
7935 if (!mips_elf_create_got_section (dynobj, info))
7936 return FALSE;
7937 if (htab->is_vxworks && !info->shared)
b49e97c9 7938 {
861fb55a
DJ
7939 (*_bfd_error_handler)
7940 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7941 abfd, (unsigned long) rel->r_offset);
7942 bfd_set_error (bfd_error_bad_value);
7943 return FALSE;
b49e97c9 7944 }
861fb55a 7945 break;
b49e97c9 7946
99da6b5f
AN
7947 /* This is just a hint; it can safely be ignored. Don't set
7948 has_static_relocs for the corresponding symbol. */
7949 case R_MIPS_JALR:
df58fc94 7950 case R_MICROMIPS_JALR:
99da6b5f
AN
7951 break;
7952
861fb55a
DJ
7953 case R_MIPS_32:
7954 case R_MIPS_REL32:
7955 case R_MIPS_64:
7956 /* In VxWorks executables, references to external symbols
7957 must be handled using copy relocs or PLT entries; it is not
7958 possible to convert this relocation into a dynamic one.
7959
7960 For executables that use PLTs and copy-relocs, we have a
7961 choice between converting the relocation into a dynamic
7962 one or using copy relocations or PLT entries. It is
7963 usually better to do the former, unless the relocation is
7964 against a read-only section. */
7965 if ((info->shared
7966 || (h != NULL
7967 && !htab->is_vxworks
7968 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7969 && !(!info->nocopyreloc
7970 && !PIC_OBJECT_P (abfd)
7971 && MIPS_ELF_READONLY_SECTION (sec))))
7972 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7973 {
861fb55a 7974 can_make_dynamic_p = TRUE;
b49e97c9
TS
7975 if (dynobj == NULL)
7976 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7977 break;
861fb55a 7978 }
21d790b9
MR
7979 /* For sections that are not SEC_ALLOC a copy reloc would be
7980 output if possible (implying questionable semantics for
7981 read-only data objects) or otherwise the final link would
7982 fail as ld.so will not process them and could not therefore
7983 handle any outstanding dynamic relocations.
7984
7985 For such sections that are also SEC_DEBUGGING, we can avoid
7986 these problems by simply ignoring any relocs as these
7987 sections have a predefined use and we know it is safe to do
7988 so.
7989
7990 This is needed in cases such as a global symbol definition
7991 in a shared library causing a common symbol from an object
7992 file to be converted to an undefined reference. If that
7993 happens, then all the relocations against this symbol from
7994 SEC_DEBUGGING sections in the object file will resolve to
7995 nil. */
7996 if ((sec->flags & SEC_DEBUGGING) != 0)
7997 break;
861fb55a 7998 /* Fall through. */
b49e97c9 7999
861fb55a
DJ
8000 default:
8001 /* Most static relocations require pointer equality, except
8002 for branches. */
8003 if (h)
8004 h->pointer_equality_needed = TRUE;
8005 /* Fall through. */
b49e97c9 8006
861fb55a
DJ
8007 case R_MIPS_26:
8008 case R_MIPS_PC16:
8009 case R_MIPS16_26:
df58fc94
RS
8010 case R_MICROMIPS_26_S1:
8011 case R_MICROMIPS_PC7_S1:
8012 case R_MICROMIPS_PC10_S1:
8013 case R_MICROMIPS_PC16_S1:
8014 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
8015 if (h)
8016 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8017 break;
b49e97c9
TS
8018 }
8019
0a44bf69
RS
8020 if (h)
8021 {
0a44bf69
RS
8022 /* Relocations against the special VxWorks __GOTT_BASE__ and
8023 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8024 room for them in .rela.dyn. */
8025 if (is_gott_symbol (info, h))
8026 {
8027 if (sreloc == NULL)
8028 {
8029 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8030 if (sreloc == NULL)
8031 return FALSE;
8032 }
8033 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8034 if (MIPS_ELF_READONLY_SECTION (sec))
8035 /* We tell the dynamic linker that there are
8036 relocations against the text segment. */
8037 info->flags |= DF_TEXTREL;
0a44bf69
RS
8038 }
8039 }
df58fc94
RS
8040 else if (call_lo16_reloc_p (r_type)
8041 || got_lo16_reloc_p (r_type)
8042 || got_disp_reloc_p (r_type)
738e5348 8043 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8044 {
8045 /* We may need a local GOT entry for this relocation. We
8046 don't count R_MIPS_GOT_PAGE because we can estimate the
8047 maximum number of pages needed by looking at the size of
738e5348
RS
8048 the segment. Similar comments apply to R_MIPS*_GOT16 and
8049 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8050 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8051 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8052 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
8053 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8054 rel->r_addend, info, 0))
f4416af6 8055 return FALSE;
b49e97c9
TS
8056 }
8057
8f0c309a
CLT
8058 if (h != NULL
8059 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8060 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8061 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8062
b49e97c9
TS
8063 switch (r_type)
8064 {
8065 case R_MIPS_CALL16:
738e5348 8066 case R_MIPS16_CALL16:
df58fc94 8067 case R_MICROMIPS_CALL16:
b49e97c9
TS
8068 if (h == NULL)
8069 {
8070 (*_bfd_error_handler)
d003868e
AM
8071 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8072 abfd, (unsigned long) rel->r_offset);
b49e97c9 8073 bfd_set_error (bfd_error_bad_value);
b34976b6 8074 return FALSE;
b49e97c9
TS
8075 }
8076 /* Fall through. */
8077
8078 case R_MIPS_CALL_HI16:
8079 case R_MIPS_CALL_LO16:
df58fc94
RS
8080 case R_MICROMIPS_CALL_HI16:
8081 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8082 if (h != NULL)
8083 {
6ccf4795
RS
8084 /* Make sure there is room in the regular GOT to hold the
8085 function's address. We may eliminate it in favour of
8086 a .got.plt entry later; see mips_elf_count_got_symbols. */
8087 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
b34976b6 8088 return FALSE;
b49e97c9
TS
8089
8090 /* We need a stub, not a plt entry for the undefined
8091 function. But we record it as if it needs plt. See
c152c796 8092 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8093 h->needs_plt = 1;
b49e97c9
TS
8094 h->type = STT_FUNC;
8095 }
8096 break;
8097
0fdc1bf1 8098 case R_MIPS_GOT_PAGE:
df58fc94 8099 case R_MICROMIPS_GOT_PAGE:
0fdc1bf1
AO
8100 /* If this is a global, overridable symbol, GOT_PAGE will
8101 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 8102 if (h)
0fdc1bf1
AO
8103 {
8104 struct mips_elf_link_hash_entry *hmips =
8105 (struct mips_elf_link_hash_entry *) h;
143d77c5 8106
3a3b6725 8107 /* This symbol is definitely not overridable. */
f5385ebf 8108 if (hmips->root.def_regular
0fdc1bf1 8109 && ! (info->shared && ! info->symbolic
f5385ebf 8110 && ! hmips->root.forced_local))
c224138d 8111 h = NULL;
0fdc1bf1
AO
8112 }
8113 /* Fall through. */
8114
738e5348 8115 case R_MIPS16_GOT16:
b49e97c9
TS
8116 case R_MIPS_GOT16:
8117 case R_MIPS_GOT_HI16:
8118 case R_MIPS_GOT_LO16:
df58fc94
RS
8119 case R_MICROMIPS_GOT16:
8120 case R_MICROMIPS_GOT_HI16:
8121 case R_MICROMIPS_GOT_LO16:
8122 if (!h || got_page_reloc_p (r_type))
c224138d 8123 {
3a3b6725
DJ
8124 /* This relocation needs (or may need, if h != NULL) a
8125 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8126 know for sure until we know whether the symbol is
8127 preemptible. */
c224138d
RS
8128 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8129 {
8130 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8131 return FALSE;
8132 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8133 addend = mips_elf_read_rel_addend (abfd, rel,
8134 howto, contents);
9684f078 8135 if (got16_reloc_p (r_type))
c224138d
RS
8136 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8137 contents, &addend);
8138 else
8139 addend <<= howto->rightshift;
8140 }
8141 else
8142 addend = rel->r_addend;
a8028dd0
RS
8143 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8144 addend))
c224138d 8145 return FALSE;
c224138d
RS
8146 }
8147 /* Fall through. */
8148
b49e97c9 8149 case R_MIPS_GOT_DISP:
df58fc94 8150 case R_MICROMIPS_GOT_DISP:
6ccf4795
RS
8151 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8152 FALSE, 0))
b34976b6 8153 return FALSE;
b49e97c9
TS
8154 break;
8155
0f20cc35 8156 case R_MIPS_TLS_GOTTPREL:
d0f13682 8157 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8158 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8159 if (info->shared)
8160 info->flags |= DF_STATIC_TLS;
8161 /* Fall through */
8162
8163 case R_MIPS_TLS_LDM:
d0f13682 8164 case R_MIPS16_TLS_LDM:
df58fc94
RS
8165 case R_MICROMIPS_TLS_LDM:
8166 if (tls_ldm_reloc_p (r_type))
0f20cc35 8167 {
cf35638d 8168 r_symndx = STN_UNDEF;
0f20cc35
DJ
8169 h = NULL;
8170 }
8171 /* Fall through */
8172
8173 case R_MIPS_TLS_GD:
d0f13682 8174 case R_MIPS16_TLS_GD:
df58fc94 8175 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8176 /* This symbol requires a global offset table entry, or two
8177 for TLS GD relocations. */
8178 {
df58fc94
RS
8179 unsigned char flag;
8180
8181 flag = (tls_gd_reloc_p (r_type)
8182 ? GOT_TLS_GD
8183 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
0f20cc35
DJ
8184 if (h != NULL)
8185 {
8186 struct mips_elf_link_hash_entry *hmips =
8187 (struct mips_elf_link_hash_entry *) h;
8188 hmips->tls_type |= flag;
8189
6ccf4795
RS
8190 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8191 FALSE, flag))
0f20cc35
DJ
8192 return FALSE;
8193 }
8194 else
8195 {
cf35638d 8196 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
0f20cc35 8197
a8028dd0
RS
8198 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8199 rel->r_addend,
8200 info, flag))
0f20cc35
DJ
8201 return FALSE;
8202 }
8203 }
8204 break;
8205
b49e97c9
TS
8206 case R_MIPS_32:
8207 case R_MIPS_REL32:
8208 case R_MIPS_64:
0a44bf69
RS
8209 /* In VxWorks executables, references to external symbols
8210 are handled using copy relocs or PLT stubs, so there's
8211 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8212 if (can_make_dynamic_p)
b49e97c9
TS
8213 {
8214 if (sreloc == NULL)
8215 {
0a44bf69 8216 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8217 if (sreloc == NULL)
f4416af6 8218 return FALSE;
b49e97c9 8219 }
9a59ad6b 8220 if (info->shared && h == NULL)
82f0cfbd
EC
8221 {
8222 /* When creating a shared object, we must copy these
8223 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8224 relocs. Make room for this reloc in .rel(a).dyn. */
8225 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8226 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8227 /* We tell the dynamic linker that there are
8228 relocations against the text segment. */
8229 info->flags |= DF_TEXTREL;
8230 }
b49e97c9
TS
8231 else
8232 {
8233 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8234
9a59ad6b
DJ
8235 /* For a shared object, we must copy this relocation
8236 unless the symbol turns out to be undefined and
8237 weak with non-default visibility, in which case
8238 it will be left as zero.
8239
8240 We could elide R_MIPS_REL32 for locally binding symbols
8241 in shared libraries, but do not yet do so.
8242
8243 For an executable, we only need to copy this
8244 reloc if the symbol is defined in a dynamic
8245 object. */
b49e97c9
TS
8246 hmips = (struct mips_elf_link_hash_entry *) h;
8247 ++hmips->possibly_dynamic_relocs;
943284cc 8248 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8249 /* We need it to tell the dynamic linker if there
8250 are relocations against the text segment. */
8251 hmips->readonly_reloc = TRUE;
b49e97c9 8252 }
b49e97c9
TS
8253 }
8254
8255 if (SGI_COMPAT (abfd))
8256 mips_elf_hash_table (info)->compact_rel_size +=
8257 sizeof (Elf32_External_crinfo);
8258 break;
8259
8260 case R_MIPS_26:
8261 case R_MIPS_GPREL16:
8262 case R_MIPS_LITERAL:
8263 case R_MIPS_GPREL32:
df58fc94
RS
8264 case R_MICROMIPS_26_S1:
8265 case R_MICROMIPS_GPREL16:
8266 case R_MICROMIPS_LITERAL:
8267 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8268 if (SGI_COMPAT (abfd))
8269 mips_elf_hash_table (info)->compact_rel_size +=
8270 sizeof (Elf32_External_crinfo);
8271 break;
8272
8273 /* This relocation describes the C++ object vtable hierarchy.
8274 Reconstruct it for later use during GC. */
8275 case R_MIPS_GNU_VTINHERIT:
c152c796 8276 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8277 return FALSE;
b49e97c9
TS
8278 break;
8279
8280 /* This relocation describes which C++ vtable entries are actually
8281 used. Record for later use during GC. */
8282 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8283 BFD_ASSERT (h != NULL);
8284 if (h != NULL
8285 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8286 return FALSE;
b49e97c9
TS
8287 break;
8288
8289 default:
8290 break;
8291 }
8292
8293 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8294 related to taking the function's address. This doesn't apply to
8295 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8296 a normal .got entry. */
8297 if (!htab->is_vxworks && h != NULL)
8298 switch (r_type)
8299 {
8300 default:
8301 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8302 break;
738e5348 8303 case R_MIPS16_CALL16:
0a44bf69
RS
8304 case R_MIPS_CALL16:
8305 case R_MIPS_CALL_HI16:
8306 case R_MIPS_CALL_LO16:
8307 case R_MIPS_JALR:
df58fc94
RS
8308 case R_MICROMIPS_CALL16:
8309 case R_MICROMIPS_CALL_HI16:
8310 case R_MICROMIPS_CALL_LO16:
8311 case R_MICROMIPS_JALR:
0a44bf69
RS
8312 break;
8313 }
b49e97c9 8314
738e5348
RS
8315 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8316 if there is one. We only need to handle global symbols here;
8317 we decide whether to keep or delete stubs for local symbols
8318 when processing the stub's relocations. */
b49e97c9 8319 if (h != NULL
738e5348
RS
8320 && !mips16_call_reloc_p (r_type)
8321 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8322 {
8323 struct mips_elf_link_hash_entry *mh;
8324
8325 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8326 mh->need_fn_stub = TRUE;
b49e97c9 8327 }
861fb55a
DJ
8328
8329 /* Refuse some position-dependent relocations when creating a
8330 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8331 not PIC, but we can create dynamic relocations and the result
8332 will be fine. Also do not refuse R_MIPS_LO16, which can be
8333 combined with R_MIPS_GOT16. */
8334 if (info->shared)
8335 {
8336 switch (r_type)
8337 {
8338 case R_MIPS16_HI16:
8339 case R_MIPS_HI16:
8340 case R_MIPS_HIGHER:
8341 case R_MIPS_HIGHEST:
df58fc94
RS
8342 case R_MICROMIPS_HI16:
8343 case R_MICROMIPS_HIGHER:
8344 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8345 /* Don't refuse a high part relocation if it's against
8346 no symbol (e.g. part of a compound relocation). */
cf35638d 8347 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8348 break;
8349
8350 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8351 and has a special meaning. */
8352 if (!NEWABI_P (abfd) && h != NULL
8353 && strcmp (h->root.root.string, "_gp_disp") == 0)
8354 break;
8355
0fc1eb3c
RS
8356 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8357 if (is_gott_symbol (info, h))
8358 break;
8359
861fb55a
DJ
8360 /* FALLTHROUGH */
8361
8362 case R_MIPS16_26:
8363 case R_MIPS_26:
df58fc94 8364 case R_MICROMIPS_26_S1:
861fb55a
DJ
8365 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8366 (*_bfd_error_handler)
8367 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8368 abfd, howto->name,
8369 (h) ? h->root.root.string : "a local symbol");
8370 bfd_set_error (bfd_error_bad_value);
8371 return FALSE;
8372 default:
8373 break;
8374 }
8375 }
b49e97c9
TS
8376 }
8377
b34976b6 8378 return TRUE;
b49e97c9
TS
8379}
8380\f
d0647110 8381bfd_boolean
9719ad41
RS
8382_bfd_mips_relax_section (bfd *abfd, asection *sec,
8383 struct bfd_link_info *link_info,
8384 bfd_boolean *again)
d0647110
AO
8385{
8386 Elf_Internal_Rela *internal_relocs;
8387 Elf_Internal_Rela *irel, *irelend;
8388 Elf_Internal_Shdr *symtab_hdr;
8389 bfd_byte *contents = NULL;
d0647110
AO
8390 size_t extsymoff;
8391 bfd_boolean changed_contents = FALSE;
8392 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8393 Elf_Internal_Sym *isymbuf = NULL;
8394
8395 /* We are not currently changing any sizes, so only one pass. */
8396 *again = FALSE;
8397
1049f94e 8398 if (link_info->relocatable)
d0647110
AO
8399 return TRUE;
8400
9719ad41 8401 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8402 link_info->keep_memory);
d0647110
AO
8403 if (internal_relocs == NULL)
8404 return TRUE;
8405
8406 irelend = internal_relocs + sec->reloc_count
8407 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8409 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8410
8411 for (irel = internal_relocs; irel < irelend; irel++)
8412 {
8413 bfd_vma symval;
8414 bfd_signed_vma sym_offset;
8415 unsigned int r_type;
8416 unsigned long r_symndx;
8417 asection *sym_sec;
8418 unsigned long instruction;
8419
8420 /* Turn jalr into bgezal, and jr into beq, if they're marked
8421 with a JALR relocation, that indicate where they jump to.
8422 This saves some pipeline bubbles. */
8423 r_type = ELF_R_TYPE (abfd, irel->r_info);
8424 if (r_type != R_MIPS_JALR)
8425 continue;
8426
8427 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8428 /* Compute the address of the jump target. */
8429 if (r_symndx >= extsymoff)
8430 {
8431 struct mips_elf_link_hash_entry *h
8432 = ((struct mips_elf_link_hash_entry *)
8433 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8434
8435 while (h->root.root.type == bfd_link_hash_indirect
8436 || h->root.root.type == bfd_link_hash_warning)
8437 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8438
d0647110
AO
8439 /* If a symbol is undefined, or if it may be overridden,
8440 skip it. */
8441 if (! ((h->root.root.type == bfd_link_hash_defined
8442 || h->root.root.type == bfd_link_hash_defweak)
8443 && h->root.root.u.def.section)
8444 || (link_info->shared && ! link_info->symbolic
f5385ebf 8445 && !h->root.forced_local))
d0647110
AO
8446 continue;
8447
8448 sym_sec = h->root.root.u.def.section;
8449 if (sym_sec->output_section)
8450 symval = (h->root.root.u.def.value
8451 + sym_sec->output_section->vma
8452 + sym_sec->output_offset);
8453 else
8454 symval = h->root.root.u.def.value;
8455 }
8456 else
8457 {
8458 Elf_Internal_Sym *isym;
8459
8460 /* Read this BFD's symbols if we haven't done so already. */
8461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8462 {
8463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8464 if (isymbuf == NULL)
8465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8466 symtab_hdr->sh_info, 0,
8467 NULL, NULL, NULL);
8468 if (isymbuf == NULL)
8469 goto relax_return;
8470 }
8471
8472 isym = isymbuf + r_symndx;
8473 if (isym->st_shndx == SHN_UNDEF)
8474 continue;
8475 else if (isym->st_shndx == SHN_ABS)
8476 sym_sec = bfd_abs_section_ptr;
8477 else if (isym->st_shndx == SHN_COMMON)
8478 sym_sec = bfd_com_section_ptr;
8479 else
8480 sym_sec
8481 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8482 symval = isym->st_value
8483 + sym_sec->output_section->vma
8484 + sym_sec->output_offset;
8485 }
8486
8487 /* Compute branch offset, from delay slot of the jump to the
8488 branch target. */
8489 sym_offset = (symval + irel->r_addend)
8490 - (sec_start + irel->r_offset + 4);
8491
8492 /* Branch offset must be properly aligned. */
8493 if ((sym_offset & 3) != 0)
8494 continue;
8495
8496 sym_offset >>= 2;
8497
8498 /* Check that it's in range. */
8499 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8500 continue;
143d77c5 8501
d0647110 8502 /* Get the section contents if we haven't done so already. */
c224138d
RS
8503 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8504 goto relax_return;
d0647110
AO
8505
8506 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8507
8508 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8509 if ((instruction & 0xfc1fffff) == 0x0000f809)
8510 instruction = 0x04110000;
8511 /* If it was jr <reg>, turn it into b <target>. */
8512 else if ((instruction & 0xfc1fffff) == 0x00000008)
8513 instruction = 0x10000000;
8514 else
8515 continue;
8516
8517 instruction |= (sym_offset & 0xffff);
8518 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8519 changed_contents = TRUE;
8520 }
8521
8522 if (contents != NULL
8523 && elf_section_data (sec)->this_hdr.contents != contents)
8524 {
8525 if (!changed_contents && !link_info->keep_memory)
8526 free (contents);
8527 else
8528 {
8529 /* Cache the section contents for elf_link_input_bfd. */
8530 elf_section_data (sec)->this_hdr.contents = contents;
8531 }
8532 }
8533 return TRUE;
8534
143d77c5 8535 relax_return:
eea6121a
AM
8536 if (contents != NULL
8537 && elf_section_data (sec)->this_hdr.contents != contents)
8538 free (contents);
d0647110
AO
8539 return FALSE;
8540}
8541\f
9a59ad6b
DJ
8542/* Allocate space for global sym dynamic relocs. */
8543
8544static bfd_boolean
8545allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8546{
8547 struct bfd_link_info *info = inf;
8548 bfd *dynobj;
8549 struct mips_elf_link_hash_entry *hmips;
8550 struct mips_elf_link_hash_table *htab;
8551
8552 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8553 BFD_ASSERT (htab != NULL);
8554
9a59ad6b
DJ
8555 dynobj = elf_hash_table (info)->dynobj;
8556 hmips = (struct mips_elf_link_hash_entry *) h;
8557
8558 /* VxWorks executables are handled elsewhere; we only need to
8559 allocate relocations in shared objects. */
8560 if (htab->is_vxworks && !info->shared)
8561 return TRUE;
8562
7686d77d
AM
8563 /* Ignore indirect symbols. All relocations against such symbols
8564 will be redirected to the target symbol. */
8565 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8566 return TRUE;
8567
9a59ad6b
DJ
8568 /* If this symbol is defined in a dynamic object, or we are creating
8569 a shared library, we will need to copy any R_MIPS_32 or
8570 R_MIPS_REL32 relocs against it into the output file. */
8571 if (! info->relocatable
8572 && hmips->possibly_dynamic_relocs != 0
8573 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8574 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8575 || info->shared))
8576 {
8577 bfd_boolean do_copy = TRUE;
8578
8579 if (h->root.type == bfd_link_hash_undefweak)
8580 {
8581 /* Do not copy relocations for undefined weak symbols with
8582 non-default visibility. */
8583 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8584 do_copy = FALSE;
8585
8586 /* Make sure undefined weak symbols are output as a dynamic
8587 symbol in PIEs. */
8588 else if (h->dynindx == -1 && !h->forced_local)
8589 {
8590 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8591 return FALSE;
8592 }
8593 }
8594
8595 if (do_copy)
8596 {
aff469fa 8597 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8598 the SVR4 psABI requires it to have a dynamic symbol table
8599 index greater that DT_MIPS_GOTSYM if there are dynamic
8600 relocations against it.
8601
8602 VxWorks does not enforce the same mapping between the GOT
8603 and the symbol table, so the same requirement does not
8604 apply there. */
6ccf4795
RS
8605 if (!htab->is_vxworks)
8606 {
8607 if (hmips->global_got_area > GGA_RELOC_ONLY)
8608 hmips->global_got_area = GGA_RELOC_ONLY;
8609 hmips->got_only_for_calls = FALSE;
8610 }
aff469fa 8611
9a59ad6b
DJ
8612 mips_elf_allocate_dynamic_relocations
8613 (dynobj, info, hmips->possibly_dynamic_relocs);
8614 if (hmips->readonly_reloc)
8615 /* We tell the dynamic linker that there are relocations
8616 against the text segment. */
8617 info->flags |= DF_TEXTREL;
8618 }
8619 }
8620
8621 return TRUE;
8622}
8623
b49e97c9
TS
8624/* Adjust a symbol defined by a dynamic object and referenced by a
8625 regular object. The current definition is in some section of the
8626 dynamic object, but we're not including those sections. We have to
8627 change the definition to something the rest of the link can
8628 understand. */
8629
b34976b6 8630bfd_boolean
9719ad41
RS
8631_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8632 struct elf_link_hash_entry *h)
b49e97c9
TS
8633{
8634 bfd *dynobj;
8635 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8636 struct mips_elf_link_hash_table *htab;
b49e97c9 8637
5108fc1b 8638 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8639 BFD_ASSERT (htab != NULL);
8640
b49e97c9 8641 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8642 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8643
8644 /* Make sure we know what is going on here. */
8645 BFD_ASSERT (dynobj != NULL
f5385ebf 8646 && (h->needs_plt
f6e332e6 8647 || h->u.weakdef != NULL
f5385ebf
AM
8648 || (h->def_dynamic
8649 && h->ref_regular
8650 && !h->def_regular)));
b49e97c9 8651
b49e97c9 8652 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8653
861fb55a
DJ
8654 /* If there are call relocations against an externally-defined symbol,
8655 see whether we can create a MIPS lazy-binding stub for it. We can
8656 only do this if all references to the function are through call
8657 relocations, and in that case, the traditional lazy-binding stubs
8658 are much more efficient than PLT entries.
8659
8660 Traditional stubs are only available on SVR4 psABI-based systems;
8661 VxWorks always uses PLTs instead. */
8662 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8663 {
8664 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8665 return TRUE;
b49e97c9
TS
8666
8667 /* If this symbol is not defined in a regular file, then set
8668 the symbol to the stub location. This is required to make
8669 function pointers compare as equal between the normal
8670 executable and the shared library. */
f5385ebf 8671 if (!h->def_regular)
b49e97c9 8672 {
33bb52fb
RS
8673 hmips->needs_lazy_stub = TRUE;
8674 htab->lazy_stub_count++;
b34976b6 8675 return TRUE;
b49e97c9
TS
8676 }
8677 }
861fb55a
DJ
8678 /* As above, VxWorks requires PLT entries for externally-defined
8679 functions that are only accessed through call relocations.
b49e97c9 8680
861fb55a
DJ
8681 Both VxWorks and non-VxWorks targets also need PLT entries if there
8682 are static-only relocations against an externally-defined function.
8683 This can technically occur for shared libraries if there are
8684 branches to the symbol, although it is unlikely that this will be
8685 used in practice due to the short ranges involved. It can occur
8686 for any relative or absolute relocation in executables; in that
8687 case, the PLT entry becomes the function's canonical address. */
8688 else if (((h->needs_plt && !hmips->no_fn_stub)
8689 || (h->type == STT_FUNC && hmips->has_static_relocs))
8690 && htab->use_plts_and_copy_relocs
8691 && !SYMBOL_CALLS_LOCAL (info, h)
8692 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8693 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8694 {
861fb55a
DJ
8695 /* If this is the first symbol to need a PLT entry, allocate room
8696 for the header. */
8697 if (htab->splt->size == 0)
8698 {
8699 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8700
861fb55a
DJ
8701 /* If we're using the PLT additions to the psABI, each PLT
8702 entry is 16 bytes and the PLT0 entry is 32 bytes.
8703 Encourage better cache usage by aligning. We do this
8704 lazily to avoid pessimizing traditional objects. */
8705 if (!htab->is_vxworks
8706 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8707 return FALSE;
0a44bf69 8708
861fb55a
DJ
8709 /* Make sure that .got.plt is word-aligned. We do this lazily
8710 for the same reason as above. */
8711 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8712 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8713 return FALSE;
0a44bf69 8714
861fb55a 8715 htab->splt->size += htab->plt_header_size;
0a44bf69 8716
861fb55a
DJ
8717 /* On non-VxWorks targets, the first two entries in .got.plt
8718 are reserved. */
8719 if (!htab->is_vxworks)
a44acb1e
MR
8720 htab->sgotplt->size
8721 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8722
861fb55a
DJ
8723 /* On VxWorks, also allocate room for the header's
8724 .rela.plt.unloaded entries. */
8725 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8726 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8727 }
8728
8729 /* Assign the next .plt entry to this symbol. */
8730 h->plt.offset = htab->splt->size;
8731 htab->splt->size += htab->plt_entry_size;
8732
8733 /* If the output file has no definition of the symbol, set the
861fb55a 8734 symbol's value to the address of the stub. */
131eb6b7 8735 if (!info->shared && !h->def_regular)
0a44bf69
RS
8736 {
8737 h->root.u.def.section = htab->splt;
8738 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8739 /* For VxWorks, point at the PLT load stub rather than the
8740 lazy resolution stub; this stub will become the canonical
8741 function address. */
8742 if (htab->is_vxworks)
8743 h->root.u.def.value += 8;
0a44bf69
RS
8744 }
8745
861fb55a
DJ
8746 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8747 relocation. */
8748 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8749 htab->srelplt->size += (htab->is_vxworks
8750 ? MIPS_ELF_RELA_SIZE (dynobj)
8751 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8752
8753 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8754 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8755 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8756
861fb55a
DJ
8757 /* All relocations against this symbol that could have been made
8758 dynamic will now refer to the PLT entry instead. */
8759 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8760
0a44bf69
RS
8761 return TRUE;
8762 }
8763
8764 /* If this is a weak symbol, and there is a real definition, the
8765 processor independent code will have arranged for us to see the
8766 real definition first, and we can just use the same value. */
8767 if (h->u.weakdef != NULL)
8768 {
8769 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8770 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8771 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8772 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8773 return TRUE;
8774 }
8775
861fb55a
DJ
8776 /* Otherwise, there is nothing further to do for symbols defined
8777 in regular objects. */
8778 if (h->def_regular)
0a44bf69
RS
8779 return TRUE;
8780
861fb55a
DJ
8781 /* There's also nothing more to do if we'll convert all relocations
8782 against this symbol into dynamic relocations. */
8783 if (!hmips->has_static_relocs)
8784 return TRUE;
8785
8786 /* We're now relying on copy relocations. Complain if we have
8787 some that we can't convert. */
8788 if (!htab->use_plts_and_copy_relocs || info->shared)
8789 {
8790 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8791 "dynamic symbol %s"),
8792 h->root.root.string);
8793 bfd_set_error (bfd_error_bad_value);
8794 return FALSE;
8795 }
8796
0a44bf69
RS
8797 /* We must allocate the symbol in our .dynbss section, which will
8798 become part of the .bss section of the executable. There will be
8799 an entry for this symbol in the .dynsym section. The dynamic
8800 object will contain position independent code, so all references
8801 from the dynamic object to this symbol will go through the global
8802 offset table. The dynamic linker will use the .dynsym entry to
8803 determine the address it must put in the global offset table, so
8804 both the dynamic object and the regular object will refer to the
8805 same memory location for the variable. */
8806
8807 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8808 {
861fb55a
DJ
8809 if (htab->is_vxworks)
8810 htab->srelbss->size += sizeof (Elf32_External_Rela);
8811 else
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8813 h->needs_copy = 1;
8814 }
8815
861fb55a
DJ
8816 /* All relocations against this symbol that could have been made
8817 dynamic will now refer to the local copy instead. */
8818 hmips->possibly_dynamic_relocs = 0;
8819
027297b7 8820 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8821}
b49e97c9
TS
8822\f
8823/* This function is called after all the input files have been read,
8824 and the input sections have been assigned to output sections. We
8825 check for any mips16 stub sections that we can discard. */
8826
b34976b6 8827bfd_boolean
9719ad41
RS
8828_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8829 struct bfd_link_info *info)
b49e97c9
TS
8830{
8831 asection *ri;
0a44bf69 8832 struct mips_elf_link_hash_table *htab;
861fb55a 8833 struct mips_htab_traverse_info hti;
0a44bf69
RS
8834
8835 htab = mips_elf_hash_table (info);
4dfe6ac6 8836 BFD_ASSERT (htab != NULL);
f4416af6 8837
b49e97c9
TS
8838 /* The .reginfo section has a fixed size. */
8839 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8840 if (ri != NULL)
9719ad41 8841 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8842
861fb55a
DJ
8843 hti.info = info;
8844 hti.output_bfd = output_bfd;
8845 hti.error = FALSE;
8846 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8847 mips_elf_check_symbols, &hti);
8848 if (hti.error)
8849 return FALSE;
f4416af6 8850
33bb52fb
RS
8851 return TRUE;
8852}
8853
8854/* If the link uses a GOT, lay it out and work out its size. */
8855
8856static bfd_boolean
8857mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8858{
8859 bfd *dynobj;
8860 asection *s;
8861 struct mips_got_info *g;
33bb52fb
RS
8862 bfd_size_type loadable_size = 0;
8863 bfd_size_type page_gotno;
8864 bfd *sub;
8865 struct mips_elf_count_tls_arg count_tls_arg;
8866 struct mips_elf_link_hash_table *htab;
8867
8868 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8869 BFD_ASSERT (htab != NULL);
8870
a8028dd0 8871 s = htab->sgot;
f4416af6 8872 if (s == NULL)
b34976b6 8873 return TRUE;
b49e97c9 8874
33bb52fb 8875 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8876 g = htab->got_info;
8877
861fb55a
DJ
8878 /* Allocate room for the reserved entries. VxWorks always reserves
8879 3 entries; other objects only reserve 2 entries. */
8880 BFD_ASSERT (g->assigned_gotno == 0);
8881 if (htab->is_vxworks)
8882 htab->reserved_gotno = 3;
8883 else
8884 htab->reserved_gotno = 2;
8885 g->local_gotno += htab->reserved_gotno;
8886 g->assigned_gotno = htab->reserved_gotno;
8887
33bb52fb
RS
8888 /* Replace entries for indirect and warning symbols with entries for
8889 the target symbol. */
8890 if (!mips_elf_resolve_final_got_entries (g))
8891 return FALSE;
f4416af6 8892
d4596a51 8893 /* Count the number of GOT symbols. */
020d7251 8894 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8895
33bb52fb
RS
8896 /* Calculate the total loadable size of the output. That
8897 will give us the maximum number of GOT_PAGE entries
8898 required. */
8899 for (sub = info->input_bfds; sub; sub = sub->link_next)
8900 {
8901 asection *subsection;
5108fc1b 8902
33bb52fb
RS
8903 for (subsection = sub->sections;
8904 subsection;
8905 subsection = subsection->next)
8906 {
8907 if ((subsection->flags & SEC_ALLOC) == 0)
8908 continue;
8909 loadable_size += ((subsection->size + 0xf)
8910 &~ (bfd_size_type) 0xf);
8911 }
8912 }
f4416af6 8913
0a44bf69 8914 if (htab->is_vxworks)
738e5348 8915 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8916 relocations against local symbols evaluate to "G", and the EABI does
8917 not include R_MIPS_GOT_PAGE. */
c224138d 8918 page_gotno = 0;
0a44bf69
RS
8919 else
8920 /* Assume there are two loadable segments consisting of contiguous
8921 sections. Is 5 enough? */
c224138d
RS
8922 page_gotno = (loadable_size >> 16) + 5;
8923
8924 /* Choose the smaller of the two estimates; both are intended to be
8925 conservative. */
8926 if (page_gotno > g->page_gotno)
8927 page_gotno = g->page_gotno;
f4416af6 8928
c224138d 8929 g->local_gotno += page_gotno;
eea6121a 8930 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8931 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8932
0f20cc35
DJ
8933 /* We need to calculate tls_gotno for global symbols at this point
8934 instead of building it up earlier, to avoid doublecounting
8935 entries for one global symbol from multiple input files. */
8936 count_tls_arg.info = info;
8937 count_tls_arg.needed = 0;
8938 elf_link_hash_traverse (elf_hash_table (info),
8939 mips_elf_count_global_tls_entries,
8940 &count_tls_arg);
8941 g->tls_gotno += count_tls_arg.needed;
8942 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8943
0a44bf69
RS
8944 /* VxWorks does not support multiple GOTs. It initializes $gp to
8945 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8946 dynamic loader. */
33bb52fb
RS
8947 if (htab->is_vxworks)
8948 {
8949 /* VxWorks executables do not need a GOT. */
8950 if (info->shared)
8951 {
8952 /* Each VxWorks GOT entry needs an explicit relocation. */
8953 unsigned int count;
8954
861fb55a 8955 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8956 if (count)
8957 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8958 }
8959 }
8960 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8961 {
a8028dd0 8962 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8963 return FALSE;
8964 }
8965 else
8966 {
33bb52fb
RS
8967 struct mips_elf_count_tls_arg arg;
8968
8969 /* Set up TLS entries. */
0f20cc35
DJ
8970 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8971 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
8972
8973 /* Allocate room for the TLS relocations. */
8974 arg.info = info;
8975 arg.needed = 0;
8976 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8977 elf_link_hash_traverse (elf_hash_table (info),
8978 mips_elf_count_global_tls_relocs,
8979 &arg);
8980 if (arg.needed)
8981 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8982 }
b49e97c9 8983
b34976b6 8984 return TRUE;
b49e97c9
TS
8985}
8986
33bb52fb
RS
8987/* Estimate the size of the .MIPS.stubs section. */
8988
8989static void
8990mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8991{
8992 struct mips_elf_link_hash_table *htab;
8993 bfd_size_type dynsymcount;
8994
8995 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8996 BFD_ASSERT (htab != NULL);
8997
33bb52fb
RS
8998 if (htab->lazy_stub_count == 0)
8999 return;
9000
9001 /* IRIX rld assumes that a function stub isn't at the end of the .text
9002 section, so add a dummy entry to the end. */
9003 htab->lazy_stub_count++;
9004
9005 /* Get a worst-case estimate of the number of dynamic symbols needed.
9006 At this point, dynsymcount does not account for section symbols
9007 and count_section_dynsyms may overestimate the number that will
9008 be needed. */
9009 dynsymcount = (elf_hash_table (info)->dynsymcount
9010 + count_section_dynsyms (output_bfd, info));
9011
9012 /* Determine the size of one stub entry. */
9013 htab->function_stub_size = (dynsymcount > 0x10000
9014 ? MIPS_FUNCTION_STUB_BIG_SIZE
9015 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9016
9017 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9018}
9019
9020/* A mips_elf_link_hash_traverse callback for which DATA points to the
9021 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9022 allocate an entry in the stubs section. */
9023
9024static bfd_boolean
9025mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9026{
9027 struct mips_elf_link_hash_table *htab;
9028
9029 htab = (struct mips_elf_link_hash_table *) data;
9030 if (h->needs_lazy_stub)
9031 {
9032 h->root.root.u.def.section = htab->sstubs;
9033 h->root.root.u.def.value = htab->sstubs->size;
9034 h->root.plt.offset = htab->sstubs->size;
9035 htab->sstubs->size += htab->function_stub_size;
9036 }
9037 return TRUE;
9038}
9039
9040/* Allocate offsets in the stubs section to each symbol that needs one.
9041 Set the final size of the .MIPS.stub section. */
9042
9043static void
9044mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9045{
9046 struct mips_elf_link_hash_table *htab;
9047
9048 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9049 BFD_ASSERT (htab != NULL);
9050
33bb52fb
RS
9051 if (htab->lazy_stub_count == 0)
9052 return;
9053
9054 htab->sstubs->size = 0;
4dfe6ac6 9055 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
9056 htab->sstubs->size += htab->function_stub_size;
9057 BFD_ASSERT (htab->sstubs->size
9058 == htab->lazy_stub_count * htab->function_stub_size);
9059}
9060
b49e97c9
TS
9061/* Set the sizes of the dynamic sections. */
9062
b34976b6 9063bfd_boolean
9719ad41
RS
9064_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9065 struct bfd_link_info *info)
b49e97c9
TS
9066{
9067 bfd *dynobj;
861fb55a 9068 asection *s, *sreldyn;
b34976b6 9069 bfd_boolean reltext;
0a44bf69 9070 struct mips_elf_link_hash_table *htab;
b49e97c9 9071
0a44bf69 9072 htab = mips_elf_hash_table (info);
4dfe6ac6 9073 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9074 dynobj = elf_hash_table (info)->dynobj;
9075 BFD_ASSERT (dynobj != NULL);
9076
9077 if (elf_hash_table (info)->dynamic_sections_created)
9078 {
9079 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 9080 if (info->executable)
b49e97c9 9081 {
3d4d4302 9082 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9083 BFD_ASSERT (s != NULL);
eea6121a 9084 s->size
b49e97c9
TS
9085 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9086 s->contents
9087 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9088 }
861fb55a
DJ
9089
9090 /* Create a symbol for the PLT, if we know that we are using it. */
9091 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9092 {
9093 struct elf_link_hash_entry *h;
9094
9095 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9096
9097 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9098 "_PROCEDURE_LINKAGE_TABLE_");
9099 htab->root.hplt = h;
9100 if (h == NULL)
9101 return FALSE;
9102 h->type = STT_FUNC;
9103 }
9104 }
4e41d0d7 9105
9a59ad6b 9106 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9107 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9108
33bb52fb
RS
9109 mips_elf_estimate_stub_size (output_bfd, info);
9110
9111 if (!mips_elf_lay_out_got (output_bfd, info))
9112 return FALSE;
9113
9114 mips_elf_lay_out_lazy_stubs (info);
9115
b49e97c9
TS
9116 /* The check_relocs and adjust_dynamic_symbol entry points have
9117 determined the sizes of the various dynamic sections. Allocate
9118 memory for them. */
b34976b6 9119 reltext = FALSE;
b49e97c9
TS
9120 for (s = dynobj->sections; s != NULL; s = s->next)
9121 {
9122 const char *name;
b49e97c9
TS
9123
9124 /* It's OK to base decisions on the section name, because none
9125 of the dynobj section names depend upon the input files. */
9126 name = bfd_get_section_name (dynobj, s);
9127
9128 if ((s->flags & SEC_LINKER_CREATED) == 0)
9129 continue;
9130
0112cd26 9131 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9132 {
c456f082 9133 if (s->size != 0)
b49e97c9
TS
9134 {
9135 const char *outname;
9136 asection *target;
9137
9138 /* If this relocation section applies to a read only
9139 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9140 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9141 assert a DT_TEXTREL entry rather than testing whether
9142 there exists a relocation to a read only section or
9143 not. */
9144 outname = bfd_get_section_name (output_bfd,
9145 s->output_section);
9146 target = bfd_get_section_by_name (output_bfd, outname + 4);
9147 if ((target != NULL
9148 && (target->flags & SEC_READONLY) != 0
9149 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9150 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9151 reltext = TRUE;
b49e97c9
TS
9152
9153 /* We use the reloc_count field as a counter if we need
9154 to copy relocs into the output file. */
0a44bf69 9155 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9156 s->reloc_count = 0;
f4416af6
AO
9157
9158 /* If combreloc is enabled, elf_link_sort_relocs() will
9159 sort relocations, but in a different way than we do,
9160 and before we're done creating relocations. Also, it
9161 will move them around between input sections'
9162 relocation's contents, so our sorting would be
9163 broken, so don't let it run. */
9164 info->combreloc = 0;
b49e97c9
TS
9165 }
9166 }
b49e97c9
TS
9167 else if (! info->shared
9168 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9169 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9170 {
5108fc1b 9171 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9172 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9173 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9174 }
9175 else if (SGI_COMPAT (output_bfd)
0112cd26 9176 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9177 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9178 else if (s == htab->splt)
9179 {
9180 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9181 room for an extra nop to fill the delay slot. This is
9182 for CPUs without load interlocking. */
9183 if (! LOAD_INTERLOCKS_P (output_bfd)
9184 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9185 s->size += 4;
9186 }
0112cd26 9187 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9188 && s != htab->sgot
0a44bf69 9189 && s != htab->sgotplt
861fb55a
DJ
9190 && s != htab->sstubs
9191 && s != htab->sdynbss)
b49e97c9
TS
9192 {
9193 /* It's not one of our sections, so don't allocate space. */
9194 continue;
9195 }
9196
c456f082 9197 if (s->size == 0)
b49e97c9 9198 {
8423293d 9199 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9200 continue;
9201 }
9202
c456f082
AM
9203 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9204 continue;
9205
b49e97c9 9206 /* Allocate memory for the section contents. */
eea6121a 9207 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9208 if (s->contents == NULL)
b49e97c9
TS
9209 {
9210 bfd_set_error (bfd_error_no_memory);
b34976b6 9211 return FALSE;
b49e97c9
TS
9212 }
9213 }
9214
9215 if (elf_hash_table (info)->dynamic_sections_created)
9216 {
9217 /* Add some entries to the .dynamic section. We fill in the
9218 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9219 must add the entries now so that we get the correct size for
5750dcec 9220 the .dynamic section. */
af5978fb
RS
9221
9222 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9223 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9224 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9225 may only look at the first one they see. */
af5978fb
RS
9226 if (!info->shared
9227 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9228 return FALSE;
b49e97c9 9229
5750dcec
DJ
9230 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9231 used by the debugger. */
9232 if (info->executable
9233 && !SGI_COMPAT (output_bfd)
9234 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9235 return FALSE;
9236
0a44bf69 9237 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9238 info->flags |= DF_TEXTREL;
9239
9240 if ((info->flags & DF_TEXTREL) != 0)
9241 {
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9243 return FALSE;
943284cc
DJ
9244
9245 /* Clear the DF_TEXTREL flag. It will be set again if we
9246 write out an actual text relocation; we may not, because
9247 at this point we do not know whether e.g. any .eh_frame
9248 absolute relocations have been converted to PC-relative. */
9249 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9250 }
9251
9252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9253 return FALSE;
b49e97c9 9254
861fb55a 9255 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9256 if (htab->is_vxworks)
b49e97c9 9257 {
0a44bf69
RS
9258 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9259 use any of the DT_MIPS_* tags. */
861fb55a 9260 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9261 {
9262 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9263 return FALSE;
b49e97c9 9264
0a44bf69
RS
9265 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9266 return FALSE;
b49e97c9 9267
0a44bf69
RS
9268 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9269 return FALSE;
9270 }
b49e97c9 9271 }
0a44bf69
RS
9272 else
9273 {
861fb55a 9274 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9275 {
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9277 return FALSE;
b49e97c9 9278
0a44bf69
RS
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9280 return FALSE;
b49e97c9 9281
0a44bf69
RS
9282 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9283 return FALSE;
9284 }
b49e97c9 9285
0a44bf69
RS
9286 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9287 return FALSE;
b49e97c9 9288
0a44bf69
RS
9289 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9290 return FALSE;
b49e97c9 9291
0a44bf69
RS
9292 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9293 return FALSE;
b49e97c9 9294
0a44bf69
RS
9295 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9296 return FALSE;
b49e97c9 9297
0a44bf69
RS
9298 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9299 return FALSE;
b49e97c9 9300
0a44bf69
RS
9301 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9302 return FALSE;
b49e97c9 9303
0a44bf69
RS
9304 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9305 return FALSE;
9306
9307 if (IRIX_COMPAT (dynobj) == ict_irix5
9308 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9309 return FALSE;
9310
9311 if (IRIX_COMPAT (dynobj) == ict_irix6
9312 && (bfd_get_section_by_name
af0edeb8 9313 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9314 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9315 return FALSE;
9316 }
861fb55a
DJ
9317 if (htab->splt->size > 0)
9318 {
9319 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9320 return FALSE;
9321
9322 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9323 return FALSE;
9324
9325 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9326 return FALSE;
9327
9328 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9329 return FALSE;
9330 }
7a2b07ff
NS
9331 if (htab->is_vxworks
9332 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9333 return FALSE;
b49e97c9
TS
9334 }
9335
b34976b6 9336 return TRUE;
b49e97c9
TS
9337}
9338\f
81d43bff
RS
9339/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9340 Adjust its R_ADDEND field so that it is correct for the output file.
9341 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9342 and sections respectively; both use symbol indexes. */
9343
9344static void
9345mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9346 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9347 asection **local_sections, Elf_Internal_Rela *rel)
9348{
9349 unsigned int r_type, r_symndx;
9350 Elf_Internal_Sym *sym;
9351 asection *sec;
9352
020d7251 9353 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9354 {
9355 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9356 if (gprel16_reloc_p (r_type)
81d43bff 9357 || r_type == R_MIPS_GPREL32
df58fc94 9358 || literal_reloc_p (r_type))
81d43bff
RS
9359 {
9360 rel->r_addend += _bfd_get_gp_value (input_bfd);
9361 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9362 }
9363
9364 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9365 sym = local_syms + r_symndx;
9366
9367 /* Adjust REL's addend to account for section merging. */
9368 if (!info->relocatable)
9369 {
9370 sec = local_sections[r_symndx];
9371 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9372 }
9373
9374 /* This would normally be done by the rela_normal code in elflink.c. */
9375 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9376 rel->r_addend += local_sections[r_symndx]->output_offset;
9377 }
9378}
9379
545fd46b
MR
9380/* Handle relocations against symbols from removed linkonce sections,
9381 or sections discarded by a linker script. We use this wrapper around
9382 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9383 on 64-bit ELF targets. In this case for any relocation handled, which
9384 always be the first in a triplet, the remaining two have to be processed
9385 together with the first, even if they are R_MIPS_NONE. It is the symbol
9386 index referred by the first reloc that applies to all the three and the
9387 remaining two never refer to an object symbol. And it is the final
9388 relocation (the last non-null one) that determines the output field of
9389 the whole relocation so retrieve the corresponding howto structure for
9390 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9391
9392 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9393 and therefore requires to be pasted in a loop. It also defines a block
9394 and does not protect any of its arguments, hence the extra brackets. */
9395
9396static void
9397mips_reloc_against_discarded_section (bfd *output_bfd,
9398 struct bfd_link_info *info,
9399 bfd *input_bfd, asection *input_section,
9400 Elf_Internal_Rela **rel,
9401 const Elf_Internal_Rela **relend,
9402 bfd_boolean rel_reloc,
9403 reloc_howto_type *howto,
9404 bfd_byte *contents)
9405{
9406 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9407 int count = bed->s->int_rels_per_ext_rel;
9408 unsigned int r_type;
9409 int i;
9410
9411 for (i = count - 1; i > 0; i--)
9412 {
9413 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9414 if (r_type != R_MIPS_NONE)
9415 {
9416 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9417 break;
9418 }
9419 }
9420 do
9421 {
9422 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9423 (*rel), count, (*relend),
9424 howto, i, contents);
9425 }
9426 while (0);
9427}
9428
b49e97c9
TS
9429/* Relocate a MIPS ELF section. */
9430
b34976b6 9431bfd_boolean
9719ad41
RS
9432_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9433 bfd *input_bfd, asection *input_section,
9434 bfd_byte *contents, Elf_Internal_Rela *relocs,
9435 Elf_Internal_Sym *local_syms,
9436 asection **local_sections)
b49e97c9
TS
9437{
9438 Elf_Internal_Rela *rel;
9439 const Elf_Internal_Rela *relend;
9440 bfd_vma addend = 0;
b34976b6 9441 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9442 const struct elf_backend_data *bed;
b49e97c9
TS
9443
9444 bed = get_elf_backend_data (output_bfd);
9445 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9446 for (rel = relocs; rel < relend; ++rel)
9447 {
9448 const char *name;
c9adbffe 9449 bfd_vma value = 0;
b49e97c9 9450 reloc_howto_type *howto;
38a7df63 9451 bfd_boolean cross_mode_jump_p;
b34976b6 9452 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9453 REL relocation. */
b34976b6 9454 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9455 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9456 const char *msg;
ab96bf03
AM
9457 unsigned long r_symndx;
9458 asection *sec;
749b8d9d
L
9459 Elf_Internal_Shdr *symtab_hdr;
9460 struct elf_link_hash_entry *h;
d4730f92 9461 bfd_boolean rel_reloc;
b49e97c9 9462
d4730f92
BS
9463 rel_reloc = (NEWABI_P (input_bfd)
9464 && mips_elf_rel_relocation_p (input_bfd, input_section,
9465 relocs, rel));
b49e97c9 9466 /* Find the relocation howto for this relocation. */
d4730f92 9467 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9468
9469 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9471 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9472 {
9473 sec = local_sections[r_symndx];
9474 h = NULL;
9475 }
ab96bf03
AM
9476 else
9477 {
ab96bf03 9478 unsigned long extsymoff;
ab96bf03 9479
ab96bf03
AM
9480 extsymoff = 0;
9481 if (!elf_bad_symtab (input_bfd))
9482 extsymoff = symtab_hdr->sh_info;
9483 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9484 while (h->root.type == bfd_link_hash_indirect
9485 || h->root.type == bfd_link_hash_warning)
9486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9487
9488 sec = NULL;
9489 if (h->root.type == bfd_link_hash_defined
9490 || h->root.type == bfd_link_hash_defweak)
9491 sec = h->root.u.def.section;
9492 }
9493
dbaa2011 9494 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9495 {
9496 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9497 input_section, &rel, &relend,
9498 rel_reloc, howto, contents);
9499 continue;
9500 }
ab96bf03 9501
4a14403c 9502 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9503 {
9504 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9505 64-bit code, but make sure all their addresses are in the
9506 lowermost or uppermost 32-bit section of the 64-bit address
9507 space. Thus, when they use an R_MIPS_64 they mean what is
9508 usually meant by R_MIPS_32, with the exception that the
9509 stored value is sign-extended to 64 bits. */
b34976b6 9510 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9511
9512 /* On big-endian systems, we need to lie about the position
9513 of the reloc. */
9514 if (bfd_big_endian (input_bfd))
9515 rel->r_offset += 4;
9516 }
b49e97c9
TS
9517
9518 if (!use_saved_addend_p)
9519 {
b49e97c9
TS
9520 /* If these relocations were originally of the REL variety,
9521 we must pull the addend out of the field that will be
9522 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9523 RELA relocation. */
9524 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9525 relocs, rel))
b49e97c9 9526 {
b34976b6 9527 rela_relocation_p = FALSE;
c224138d
RS
9528 addend = mips_elf_read_rel_addend (input_bfd, rel,
9529 howto, contents);
738e5348
RS
9530 if (hi16_reloc_p (r_type)
9531 || (got16_reloc_p (r_type)
b49e97c9 9532 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9533 local_sections)))
b49e97c9 9534 {
c224138d
RS
9535 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9536 contents, &addend))
749b8d9d 9537 {
749b8d9d
L
9538 if (h)
9539 name = h->root.root.string;
9540 else
9541 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9542 local_syms + r_symndx,
9543 sec);
9544 (*_bfd_error_handler)
9545 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9546 input_bfd, input_section, name, howto->name,
9547 rel->r_offset);
749b8d9d 9548 }
b49e97c9 9549 }
30ac9238
RS
9550 else
9551 addend <<= howto->rightshift;
b49e97c9
TS
9552 }
9553 else
9554 addend = rel->r_addend;
81d43bff
RS
9555 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9556 local_syms, local_sections, rel);
b49e97c9
TS
9557 }
9558
1049f94e 9559 if (info->relocatable)
b49e97c9 9560 {
4a14403c 9561 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9562 && bfd_big_endian (input_bfd))
9563 rel->r_offset -= 4;
9564
81d43bff 9565 if (!rela_relocation_p && rel->r_addend)
5a659663 9566 {
81d43bff 9567 addend += rel->r_addend;
738e5348 9568 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9569 addend = mips_elf_high (addend);
9570 else if (r_type == R_MIPS_HIGHER)
9571 addend = mips_elf_higher (addend);
9572 else if (r_type == R_MIPS_HIGHEST)
9573 addend = mips_elf_highest (addend);
30ac9238
RS
9574 else
9575 addend >>= howto->rightshift;
b49e97c9 9576
30ac9238
RS
9577 /* We use the source mask, rather than the destination
9578 mask because the place to which we are writing will be
9579 source of the addend in the final link. */
b49e97c9
TS
9580 addend &= howto->src_mask;
9581
5a659663 9582 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9583 /* See the comment above about using R_MIPS_64 in the 32-bit
9584 ABI. Here, we need to update the addend. It would be
9585 possible to get away with just using the R_MIPS_32 reloc
9586 but for endianness. */
9587 {
9588 bfd_vma sign_bits;
9589 bfd_vma low_bits;
9590 bfd_vma high_bits;
9591
9592 if (addend & ((bfd_vma) 1 << 31))
9593#ifdef BFD64
9594 sign_bits = ((bfd_vma) 1 << 32) - 1;
9595#else
9596 sign_bits = -1;
9597#endif
9598 else
9599 sign_bits = 0;
9600
9601 /* If we don't know that we have a 64-bit type,
9602 do two separate stores. */
9603 if (bfd_big_endian (input_bfd))
9604 {
9605 /* Store the sign-bits (which are most significant)
9606 first. */
9607 low_bits = sign_bits;
9608 high_bits = addend;
9609 }
9610 else
9611 {
9612 low_bits = addend;
9613 high_bits = sign_bits;
9614 }
9615 bfd_put_32 (input_bfd, low_bits,
9616 contents + rel->r_offset);
9617 bfd_put_32 (input_bfd, high_bits,
9618 contents + rel->r_offset + 4);
9619 continue;
9620 }
9621
9622 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9623 input_bfd, input_section,
b34976b6
AM
9624 contents, FALSE))
9625 return FALSE;
b49e97c9
TS
9626 }
9627
9628 /* Go on to the next relocation. */
9629 continue;
9630 }
9631
9632 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9633 relocations for the same offset. In that case we are
9634 supposed to treat the output of each relocation as the addend
9635 for the next. */
9636 if (rel + 1 < relend
9637 && rel->r_offset == rel[1].r_offset
9638 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9639 use_saved_addend_p = TRUE;
b49e97c9 9640 else
b34976b6 9641 use_saved_addend_p = FALSE;
b49e97c9
TS
9642
9643 /* Figure out what value we are supposed to relocate. */
9644 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9645 input_section, info, rel,
9646 addend, howto, local_syms,
9647 local_sections, &value,
38a7df63 9648 &name, &cross_mode_jump_p,
bce03d3d 9649 use_saved_addend_p))
b49e97c9
TS
9650 {
9651 case bfd_reloc_continue:
9652 /* There's nothing to do. */
9653 continue;
9654
9655 case bfd_reloc_undefined:
9656 /* mips_elf_calculate_relocation already called the
9657 undefined_symbol callback. There's no real point in
9658 trying to perform the relocation at this point, so we
9659 just skip ahead to the next relocation. */
9660 continue;
9661
9662 case bfd_reloc_notsupported:
9663 msg = _("internal error: unsupported relocation error");
9664 info->callbacks->warning
9665 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9666 return FALSE;
b49e97c9
TS
9667
9668 case bfd_reloc_overflow:
9669 if (use_saved_addend_p)
9670 /* Ignore overflow until we reach the last relocation for
9671 a given location. */
9672 ;
9673 else
9674 {
0e53d9da
AN
9675 struct mips_elf_link_hash_table *htab;
9676
9677 htab = mips_elf_hash_table (info);
4dfe6ac6 9678 BFD_ASSERT (htab != NULL);
b49e97c9 9679 BFD_ASSERT (name != NULL);
0e53d9da 9680 if (!htab->small_data_overflow_reported
9684f078 9681 && (gprel16_reloc_p (howto->type)
df58fc94 9682 || literal_reloc_p (howto->type)))
0e53d9da 9683 {
91d6fa6a
NC
9684 msg = _("small-data section exceeds 64KB;"
9685 " lower small-data size limit (see option -G)");
0e53d9da
AN
9686
9687 htab->small_data_overflow_reported = TRUE;
9688 (*info->callbacks->einfo) ("%P: %s\n", msg);
9689 }
b49e97c9 9690 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9691 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9692 input_bfd, input_section, rel->r_offset)))
b34976b6 9693 return FALSE;
b49e97c9
TS
9694 }
9695 break;
9696
9697 case bfd_reloc_ok:
9698 break;
9699
df58fc94
RS
9700 case bfd_reloc_outofrange:
9701 if (jal_reloc_p (howto->type))
9702 {
9703 msg = _("JALX to a non-word-aligned address");
9704 info->callbacks->warning
9705 (info, msg, name, input_bfd, input_section, rel->r_offset);
9706 return FALSE;
9707 }
9708 /* Fall through. */
9709
b49e97c9
TS
9710 default:
9711 abort ();
9712 break;
9713 }
9714
9715 /* If we've got another relocation for the address, keep going
9716 until we reach the last one. */
9717 if (use_saved_addend_p)
9718 {
9719 addend = value;
9720 continue;
9721 }
9722
4a14403c 9723 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9724 /* See the comment above about using R_MIPS_64 in the 32-bit
9725 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9726 that calculated the right value. Now, however, we
9727 sign-extend the 32-bit result to 64-bits, and store it as a
9728 64-bit value. We are especially generous here in that we
9729 go to extreme lengths to support this usage on systems with
9730 only a 32-bit VMA. */
9731 {
9732 bfd_vma sign_bits;
9733 bfd_vma low_bits;
9734 bfd_vma high_bits;
9735
9736 if (value & ((bfd_vma) 1 << 31))
9737#ifdef BFD64
9738 sign_bits = ((bfd_vma) 1 << 32) - 1;
9739#else
9740 sign_bits = -1;
9741#endif
9742 else
9743 sign_bits = 0;
9744
9745 /* If we don't know that we have a 64-bit type,
9746 do two separate stores. */
9747 if (bfd_big_endian (input_bfd))
9748 {
9749 /* Undo what we did above. */
9750 rel->r_offset -= 4;
9751 /* Store the sign-bits (which are most significant)
9752 first. */
9753 low_bits = sign_bits;
9754 high_bits = value;
9755 }
9756 else
9757 {
9758 low_bits = value;
9759 high_bits = sign_bits;
9760 }
9761 bfd_put_32 (input_bfd, low_bits,
9762 contents + rel->r_offset);
9763 bfd_put_32 (input_bfd, high_bits,
9764 contents + rel->r_offset + 4);
9765 continue;
9766 }
9767
9768 /* Actually perform the relocation. */
9769 if (! mips_elf_perform_relocation (info, howto, rel, value,
9770 input_bfd, input_section,
38a7df63 9771 contents, cross_mode_jump_p))
b34976b6 9772 return FALSE;
b49e97c9
TS
9773 }
9774
b34976b6 9775 return TRUE;
b49e97c9
TS
9776}
9777\f
861fb55a
DJ
9778/* A function that iterates over each entry in la25_stubs and fills
9779 in the code for each one. DATA points to a mips_htab_traverse_info. */
9780
9781static int
9782mips_elf_create_la25_stub (void **slot, void *data)
9783{
9784 struct mips_htab_traverse_info *hti;
9785 struct mips_elf_link_hash_table *htab;
9786 struct mips_elf_la25_stub *stub;
9787 asection *s;
9788 bfd_byte *loc;
9789 bfd_vma offset, target, target_high, target_low;
9790
9791 stub = (struct mips_elf_la25_stub *) *slot;
9792 hti = (struct mips_htab_traverse_info *) data;
9793 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9794 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9795
9796 /* Create the section contents, if we haven't already. */
9797 s = stub->stub_section;
9798 loc = s->contents;
9799 if (loc == NULL)
9800 {
9801 loc = bfd_malloc (s->size);
9802 if (loc == NULL)
9803 {
9804 hti->error = TRUE;
9805 return FALSE;
9806 }
9807 s->contents = loc;
9808 }
9809
9810 /* Work out where in the section this stub should go. */
9811 offset = stub->offset;
9812
9813 /* Work out the target address. */
8f0c309a
CLT
9814 target = mips_elf_get_la25_target (stub, &s);
9815 target += s->output_section->vma + s->output_offset;
9816
861fb55a
DJ
9817 target_high = ((target + 0x8000) >> 16) & 0xffff;
9818 target_low = (target & 0xffff);
9819
9820 if (stub->stub_section != htab->strampoline)
9821 {
df58fc94 9822 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9823 of the section and write the two instructions at the end. */
9824 memset (loc, 0, offset);
9825 loc += offset;
df58fc94
RS
9826 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9827 {
d21911ea
MR
9828 bfd_put_micromips_32 (hti->output_bfd,
9829 LA25_LUI_MICROMIPS (target_high),
9830 loc);
9831 bfd_put_micromips_32 (hti->output_bfd,
9832 LA25_ADDIU_MICROMIPS (target_low),
9833 loc + 4);
df58fc94
RS
9834 }
9835 else
9836 {
9837 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9838 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9839 }
861fb55a
DJ
9840 }
9841 else
9842 {
9843 /* This is trampoline. */
9844 loc += offset;
df58fc94
RS
9845 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9846 {
d21911ea
MR
9847 bfd_put_micromips_32 (hti->output_bfd,
9848 LA25_LUI_MICROMIPS (target_high), loc);
9849 bfd_put_micromips_32 (hti->output_bfd,
9850 LA25_J_MICROMIPS (target), loc + 4);
9851 bfd_put_micromips_32 (hti->output_bfd,
9852 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9853 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9854 }
9855 else
9856 {
9857 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9858 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9859 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9860 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9861 }
861fb55a
DJ
9862 }
9863 return TRUE;
9864}
9865
b49e97c9
TS
9866/* If NAME is one of the special IRIX6 symbols defined by the linker,
9867 adjust it appropriately now. */
9868
9869static void
9719ad41
RS
9870mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9871 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9872{
9873 /* The linker script takes care of providing names and values for
9874 these, but we must place them into the right sections. */
9875 static const char* const text_section_symbols[] = {
9876 "_ftext",
9877 "_etext",
9878 "__dso_displacement",
9879 "__elf_header",
9880 "__program_header_table",
9881 NULL
9882 };
9883
9884 static const char* const data_section_symbols[] = {
9885 "_fdata",
9886 "_edata",
9887 "_end",
9888 "_fbss",
9889 NULL
9890 };
9891
9892 const char* const *p;
9893 int i;
9894
9895 for (i = 0; i < 2; ++i)
9896 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9897 *p;
9898 ++p)
9899 if (strcmp (*p, name) == 0)
9900 {
9901 /* All of these symbols are given type STT_SECTION by the
9902 IRIX6 linker. */
9903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9904 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9905
9906 /* The IRIX linker puts these symbols in special sections. */
9907 if (i == 0)
9908 sym->st_shndx = SHN_MIPS_TEXT;
9909 else
9910 sym->st_shndx = SHN_MIPS_DATA;
9911
9912 break;
9913 }
9914}
9915
9916/* Finish up dynamic symbol handling. We set the contents of various
9917 dynamic sections here. */
9918
b34976b6 9919bfd_boolean
9719ad41
RS
9920_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9921 struct bfd_link_info *info,
9922 struct elf_link_hash_entry *h,
9923 Elf_Internal_Sym *sym)
b49e97c9
TS
9924{
9925 bfd *dynobj;
b49e97c9 9926 asection *sgot;
f4416af6 9927 struct mips_got_info *g, *gg;
b49e97c9 9928 const char *name;
3d6746ca 9929 int idx;
5108fc1b 9930 struct mips_elf_link_hash_table *htab;
738e5348 9931 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9932
5108fc1b 9933 htab = mips_elf_hash_table (info);
4dfe6ac6 9934 BFD_ASSERT (htab != NULL);
b49e97c9 9935 dynobj = elf_hash_table (info)->dynobj;
738e5348 9936 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9937
861fb55a
DJ
9938 BFD_ASSERT (!htab->is_vxworks);
9939
9940 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9941 {
9942 /* We've decided to create a PLT entry for this symbol. */
9943 bfd_byte *loc;
9944 bfd_vma header_address, plt_index, got_address;
9945 bfd_vma got_address_high, got_address_low, load;
9946 const bfd_vma *plt_entry;
9947
9948 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9949 BFD_ASSERT (h->dynindx != -1);
9950 BFD_ASSERT (htab->splt != NULL);
9951 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9952 BFD_ASSERT (!h->def_regular);
9953
9954 /* Calculate the address of the PLT header. */
9955 header_address = (htab->splt->output_section->vma
9956 + htab->splt->output_offset);
9957
9958 /* Calculate the index of the entry. */
9959 plt_index = ((h->plt.offset - htab->plt_header_size)
9960 / htab->plt_entry_size);
9961
9962 /* Calculate the address of the .got.plt entry. */
9963 got_address = (htab->sgotplt->output_section->vma
9964 + htab->sgotplt->output_offset
9965 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9966 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9967 got_address_low = got_address & 0xffff;
9968
9969 /* Initially point the .got.plt entry at the PLT header. */
9970 loc = (htab->sgotplt->contents
9971 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9972 if (ABI_64_P (output_bfd))
9973 bfd_put_64 (output_bfd, header_address, loc);
9974 else
9975 bfd_put_32 (output_bfd, header_address, loc);
9976
9977 /* Find out where the .plt entry should go. */
9978 loc = htab->splt->contents + h->plt.offset;
9979
9980 /* Pick the load opcode. */
9981 load = MIPS_ELF_LOAD_WORD (output_bfd);
9982
9983 /* Fill in the PLT entry itself. */
9984 plt_entry = mips_exec_plt_entry;
9985 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9986 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9987
9988 if (! LOAD_INTERLOCKS_P (output_bfd))
9989 {
9990 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9991 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9992 }
9993 else
9994 {
9995 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9996 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9997 }
861fb55a
DJ
9998
9999 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10000 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10001 plt_index, h->dynindx,
10002 R_MIPS_JUMP_SLOT, got_address);
10003
10004 /* We distinguish between PLT entries and lazy-binding stubs by
10005 giving the former an st_other value of STO_MIPS_PLT. Set the
10006 flag and leave the value if there are any relocations in the
10007 binary where pointer equality matters. */
10008 sym->st_shndx = SHN_UNDEF;
10009 if (h->pointer_equality_needed)
10010 sym->st_other = STO_MIPS_PLT;
10011 else
10012 sym->st_value = 0;
10013 }
10014 else if (h->plt.offset != MINUS_ONE)
b49e97c9 10015 {
861fb55a 10016 /* We've decided to create a lazy-binding stub. */
5108fc1b 10017 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
10018
10019 /* This symbol has a stub. Set it up. */
10020
10021 BFD_ASSERT (h->dynindx != -1);
10022
5108fc1b
RS
10023 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10024 || (h->dynindx <= 0xffff));
3d6746ca
DD
10025
10026 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10027 sign extension at runtime in the stub, resulting in a negative
10028 index value. */
10029 if (h->dynindx & ~0x7fffffff)
b34976b6 10030 return FALSE;
b49e97c9
TS
10031
10032 /* Fill the stub. */
3d6746ca
DD
10033 idx = 0;
10034 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10035 idx += 4;
10036 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10037 idx += 4;
5108fc1b 10038 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 10039 {
5108fc1b 10040 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
10041 stub + idx);
10042 idx += 4;
10043 }
10044 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10045 idx += 4;
b49e97c9 10046
3d6746ca
DD
10047 /* If a large stub is not required and sign extension is not a
10048 problem, then use legacy code in the stub. */
5108fc1b
RS
10049 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10050 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10051 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
10052 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10053 else
5108fc1b
RS
10054 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10055 stub + idx);
10056
4e41d0d7
RS
10057 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10058 memcpy (htab->sstubs->contents + h->plt.offset,
10059 stub, htab->function_stub_size);
b49e97c9
TS
10060
10061 /* Mark the symbol as undefined. plt.offset != -1 occurs
10062 only for the referenced symbol. */
10063 sym->st_shndx = SHN_UNDEF;
10064
10065 /* The run-time linker uses the st_value field of the symbol
10066 to reset the global offset table entry for this external
10067 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10068 sym->st_value = (htab->sstubs->output_section->vma
10069 + htab->sstubs->output_offset
c5ae1840 10070 + h->plt.offset);
b49e97c9
TS
10071 }
10072
738e5348
RS
10073 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10074 refer to the stub, since only the stub uses the standard calling
10075 conventions. */
10076 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10077 {
10078 BFD_ASSERT (hmips->need_fn_stub);
10079 sym->st_value = (hmips->fn_stub->output_section->vma
10080 + hmips->fn_stub->output_offset);
10081 sym->st_size = hmips->fn_stub->size;
10082 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10083 }
10084
b49e97c9 10085 BFD_ASSERT (h->dynindx != -1
f5385ebf 10086 || h->forced_local);
b49e97c9 10087
23cc69b6 10088 sgot = htab->sgot;
a8028dd0 10089 g = htab->got_info;
b49e97c9
TS
10090 BFD_ASSERT (g != NULL);
10091
10092 /* Run through the global symbol table, creating GOT entries for all
10093 the symbols that need them. */
020d7251 10094 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10095 {
10096 bfd_vma offset;
10097 bfd_vma value;
10098
6eaa6adc 10099 value = sym->st_value;
738e5348
RS
10100 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10101 R_MIPS_GOT16, info);
b49e97c9
TS
10102 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10103 }
10104
020d7251 10105 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
f4416af6
AO
10106 {
10107 struct mips_got_entry e, *p;
0626d451 10108 bfd_vma entry;
f4416af6 10109 bfd_vma offset;
f4416af6
AO
10110
10111 gg = g;
10112
10113 e.abfd = output_bfd;
10114 e.symndx = -1;
738e5348 10115 e.d.h = hmips;
0f20cc35 10116 e.tls_type = 0;
143d77c5 10117
f4416af6
AO
10118 for (g = g->next; g->next != gg; g = g->next)
10119 {
10120 if (g->got_entries
10121 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10122 &e)))
10123 {
10124 offset = p->gotidx;
0626d451
RS
10125 if (info->shared
10126 || (elf_hash_table (info)->dynamic_sections_created
10127 && p->d.h != NULL
f5385ebf
AM
10128 && p->d.h->root.def_dynamic
10129 && !p->d.h->root.def_regular))
0626d451
RS
10130 {
10131 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10132 the various compatibility problems, it's easier to mock
10133 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10134 mips_elf_create_dynamic_relocation to calculate the
10135 appropriate addend. */
10136 Elf_Internal_Rela rel[3];
10137
10138 memset (rel, 0, sizeof (rel));
10139 if (ABI_64_P (output_bfd))
10140 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10141 else
10142 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10143 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10144
10145 entry = 0;
10146 if (! (mips_elf_create_dynamic_relocation
10147 (output_bfd, info, rel,
10148 e.d.h, NULL, sym->st_value, &entry, sgot)))
10149 return FALSE;
10150 }
10151 else
10152 entry = sym->st_value;
10153 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10154 }
10155 }
10156 }
10157
b49e97c9
TS
10158 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10159 name = h->root.root.string;
9637f6ef 10160 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10161 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10162 sym->st_shndx = SHN_ABS;
10163 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10164 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10165 {
10166 sym->st_shndx = SHN_ABS;
10167 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10168 sym->st_value = 1;
10169 }
4a14403c 10170 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10171 {
10172 sym->st_shndx = SHN_ABS;
10173 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10174 sym->st_value = elf_gp (output_bfd);
10175 }
10176 else if (SGI_COMPAT (output_bfd))
10177 {
10178 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10179 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10180 {
10181 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10182 sym->st_other = STO_PROTECTED;
10183 sym->st_value = 0;
10184 sym->st_shndx = SHN_MIPS_DATA;
10185 }
10186 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10187 {
10188 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10189 sym->st_other = STO_PROTECTED;
10190 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10191 sym->st_shndx = SHN_ABS;
10192 }
10193 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10194 {
10195 if (h->type == STT_FUNC)
10196 sym->st_shndx = SHN_MIPS_TEXT;
10197 else if (h->type == STT_OBJECT)
10198 sym->st_shndx = SHN_MIPS_DATA;
10199 }
10200 }
10201
861fb55a
DJ
10202 /* Emit a copy reloc, if needed. */
10203 if (h->needs_copy)
10204 {
10205 asection *s;
10206 bfd_vma symval;
10207
10208 BFD_ASSERT (h->dynindx != -1);
10209 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10210
10211 s = mips_elf_rel_dyn_section (info, FALSE);
10212 symval = (h->root.u.def.section->output_section->vma
10213 + h->root.u.def.section->output_offset
10214 + h->root.u.def.value);
10215 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10216 h->dynindx, R_MIPS_COPY, symval);
10217 }
10218
b49e97c9
TS
10219 /* Handle the IRIX6-specific symbols. */
10220 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10221 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10222
738e5348
RS
10223 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10224 treat MIPS16 symbols like any other. */
30c09090 10225 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10226 {
10227 BFD_ASSERT (sym->st_value & 1);
10228 sym->st_other -= STO_MIPS16;
10229 }
b49e97c9 10230
b34976b6 10231 return TRUE;
b49e97c9
TS
10232}
10233
0a44bf69
RS
10234/* Likewise, for VxWorks. */
10235
10236bfd_boolean
10237_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10238 struct bfd_link_info *info,
10239 struct elf_link_hash_entry *h,
10240 Elf_Internal_Sym *sym)
10241{
10242 bfd *dynobj;
10243 asection *sgot;
10244 struct mips_got_info *g;
10245 struct mips_elf_link_hash_table *htab;
020d7251 10246 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10247
10248 htab = mips_elf_hash_table (info);
4dfe6ac6 10249 BFD_ASSERT (htab != NULL);
0a44bf69 10250 dynobj = elf_hash_table (info)->dynobj;
020d7251 10251 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10252
10253 if (h->plt.offset != (bfd_vma) -1)
10254 {
6d79d2ed 10255 bfd_byte *loc;
0a44bf69
RS
10256 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10257 Elf_Internal_Rela rel;
10258 static const bfd_vma *plt_entry;
10259
10260 BFD_ASSERT (h->dynindx != -1);
10261 BFD_ASSERT (htab->splt != NULL);
10262 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10263
10264 /* Calculate the address of the .plt entry. */
10265 plt_address = (htab->splt->output_section->vma
10266 + htab->splt->output_offset
10267 + h->plt.offset);
10268
10269 /* Calculate the index of the entry. */
10270 plt_index = ((h->plt.offset - htab->plt_header_size)
10271 / htab->plt_entry_size);
10272
10273 /* Calculate the address of the .got.plt entry. */
10274 got_address = (htab->sgotplt->output_section->vma
10275 + htab->sgotplt->output_offset
10276 + plt_index * 4);
10277
10278 /* Calculate the offset of the .got.plt entry from
10279 _GLOBAL_OFFSET_TABLE_. */
10280 got_offset = mips_elf_gotplt_index (info, h);
10281
10282 /* Calculate the offset for the branch at the start of the PLT
10283 entry. The branch jumps to the beginning of .plt. */
10284 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10285
10286 /* Fill in the initial value of the .got.plt entry. */
10287 bfd_put_32 (output_bfd, plt_address,
10288 htab->sgotplt->contents + plt_index * 4);
10289
10290 /* Find out where the .plt entry should go. */
10291 loc = htab->splt->contents + h->plt.offset;
10292
10293 if (info->shared)
10294 {
10295 plt_entry = mips_vxworks_shared_plt_entry;
10296 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10297 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10298 }
10299 else
10300 {
10301 bfd_vma got_address_high, got_address_low;
10302
10303 plt_entry = mips_vxworks_exec_plt_entry;
10304 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10305 got_address_low = got_address & 0xffff;
10306
10307 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10308 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10309 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10310 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10311 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10312 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10313 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10314 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10315
10316 loc = (htab->srelplt2->contents
10317 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10318
10319 /* Emit a relocation for the .got.plt entry. */
10320 rel.r_offset = got_address;
10321 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10322 rel.r_addend = h->plt.offset;
10323 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10324
10325 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10326 loc += sizeof (Elf32_External_Rela);
10327 rel.r_offset = plt_address + 8;
10328 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10329 rel.r_addend = got_offset;
10330 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10331
10332 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10333 loc += sizeof (Elf32_External_Rela);
10334 rel.r_offset += 4;
10335 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10337 }
10338
10339 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10340 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10341 rel.r_offset = got_address;
10342 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10343 rel.r_addend = 0;
10344 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10345
10346 if (!h->def_regular)
10347 sym->st_shndx = SHN_UNDEF;
10348 }
10349
10350 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10351
23cc69b6 10352 sgot = htab->sgot;
a8028dd0 10353 g = htab->got_info;
0a44bf69
RS
10354 BFD_ASSERT (g != NULL);
10355
10356 /* See if this symbol has an entry in the GOT. */
020d7251 10357 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10358 {
10359 bfd_vma offset;
10360 Elf_Internal_Rela outrel;
10361 bfd_byte *loc;
10362 asection *s;
10363
10364 /* Install the symbol value in the GOT. */
10365 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10366 R_MIPS_GOT16, info);
10367 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10368
10369 /* Add a dynamic relocation for it. */
10370 s = mips_elf_rel_dyn_section (info, FALSE);
10371 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10372 outrel.r_offset = (sgot->output_section->vma
10373 + sgot->output_offset
10374 + offset);
10375 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10376 outrel.r_addend = 0;
10377 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10378 }
10379
10380 /* Emit a copy reloc, if needed. */
10381 if (h->needs_copy)
10382 {
10383 Elf_Internal_Rela rel;
10384
10385 BFD_ASSERT (h->dynindx != -1);
10386
10387 rel.r_offset = (h->root.u.def.section->output_section->vma
10388 + h->root.u.def.section->output_offset
10389 + h->root.u.def.value);
10390 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10391 rel.r_addend = 0;
10392 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10393 htab->srelbss->contents
10394 + (htab->srelbss->reloc_count
10395 * sizeof (Elf32_External_Rela)));
10396 ++htab->srelbss->reloc_count;
10397 }
10398
df58fc94
RS
10399 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10400 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10401 sym->st_value &= ~1;
10402
10403 return TRUE;
10404}
10405
861fb55a
DJ
10406/* Write out a plt0 entry to the beginning of .plt. */
10407
10408static void
10409mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10410{
10411 bfd_byte *loc;
10412 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10413 static const bfd_vma *plt_entry;
10414 struct mips_elf_link_hash_table *htab;
10415
10416 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10417 BFD_ASSERT (htab != NULL);
10418
861fb55a
DJ
10419 if (ABI_64_P (output_bfd))
10420 plt_entry = mips_n64_exec_plt0_entry;
10421 else if (ABI_N32_P (output_bfd))
10422 plt_entry = mips_n32_exec_plt0_entry;
10423 else
10424 plt_entry = mips_o32_exec_plt0_entry;
10425
10426 /* Calculate the value of .got.plt. */
10427 gotplt_value = (htab->sgotplt->output_section->vma
10428 + htab->sgotplt->output_offset);
10429 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10430 gotplt_value_low = gotplt_value & 0xffff;
10431
10432 /* The PLT sequence is not safe for N64 if .got.plt's address can
10433 not be loaded in two instructions. */
10434 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10435 || ~(gotplt_value | 0x7fffffff) == 0);
10436
10437 /* Install the PLT header. */
10438 loc = htab->splt->contents;
10439 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10440 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10441 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10442 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10443 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10444 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10445 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10446 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10447}
10448
0a44bf69
RS
10449/* Install the PLT header for a VxWorks executable and finalize the
10450 contents of .rela.plt.unloaded. */
10451
10452static void
10453mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10454{
10455 Elf_Internal_Rela rela;
10456 bfd_byte *loc;
10457 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10458 static const bfd_vma *plt_entry;
10459 struct mips_elf_link_hash_table *htab;
10460
10461 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10462 BFD_ASSERT (htab != NULL);
10463
0a44bf69
RS
10464 plt_entry = mips_vxworks_exec_plt0_entry;
10465
10466 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10467 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10468 + htab->root.hgot->root.u.def.section->output_offset
10469 + htab->root.hgot->root.u.def.value);
10470
10471 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10472 got_value_low = got_value & 0xffff;
10473
10474 /* Calculate the address of the PLT header. */
10475 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10476
10477 /* Install the PLT header. */
10478 loc = htab->splt->contents;
10479 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10480 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10481 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10482 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10483 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10484 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10485
10486 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10487 loc = htab->srelplt2->contents;
10488 rela.r_offset = plt_address;
10489 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10490 rela.r_addend = 0;
10491 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10492 loc += sizeof (Elf32_External_Rela);
10493
10494 /* Output the relocation for the following addiu of
10495 %lo(_GLOBAL_OFFSET_TABLE_). */
10496 rela.r_offset += 4;
10497 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10498 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10499 loc += sizeof (Elf32_External_Rela);
10500
10501 /* Fix up the remaining relocations. They may have the wrong
10502 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10503 in which symbols were output. */
10504 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10505 {
10506 Elf_Internal_Rela rel;
10507
10508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10509 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10511 loc += sizeof (Elf32_External_Rela);
10512
10513 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10514 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10515 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10516 loc += sizeof (Elf32_External_Rela);
10517
10518 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10519 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10520 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10521 loc += sizeof (Elf32_External_Rela);
10522 }
10523}
10524
10525/* Install the PLT header for a VxWorks shared library. */
10526
10527static void
10528mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10529{
10530 unsigned int i;
10531 struct mips_elf_link_hash_table *htab;
10532
10533 htab = mips_elf_hash_table (info);
4dfe6ac6 10534 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10535
10536 /* We just need to copy the entry byte-by-byte. */
10537 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10538 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10539 htab->splt->contents + i * 4);
10540}
10541
b49e97c9
TS
10542/* Finish up the dynamic sections. */
10543
b34976b6 10544bfd_boolean
9719ad41
RS
10545_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10546 struct bfd_link_info *info)
b49e97c9
TS
10547{
10548 bfd *dynobj;
10549 asection *sdyn;
10550 asection *sgot;
f4416af6 10551 struct mips_got_info *gg, *g;
0a44bf69 10552 struct mips_elf_link_hash_table *htab;
b49e97c9 10553
0a44bf69 10554 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10555 BFD_ASSERT (htab != NULL);
10556
b49e97c9
TS
10557 dynobj = elf_hash_table (info)->dynobj;
10558
3d4d4302 10559 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10560
23cc69b6
RS
10561 sgot = htab->sgot;
10562 gg = htab->got_info;
b49e97c9
TS
10563
10564 if (elf_hash_table (info)->dynamic_sections_created)
10565 {
10566 bfd_byte *b;
943284cc 10567 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10568
10569 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10570 BFD_ASSERT (gg != NULL);
10571
10572 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10573 BFD_ASSERT (g != NULL);
10574
10575 for (b = sdyn->contents;
eea6121a 10576 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10577 b += MIPS_ELF_DYN_SIZE (dynobj))
10578 {
10579 Elf_Internal_Dyn dyn;
10580 const char *name;
10581 size_t elemsize;
10582 asection *s;
b34976b6 10583 bfd_boolean swap_out_p;
b49e97c9
TS
10584
10585 /* Read in the current dynamic entry. */
10586 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10587
10588 /* Assume that we're going to modify it and write it out. */
b34976b6 10589 swap_out_p = TRUE;
b49e97c9
TS
10590
10591 switch (dyn.d_tag)
10592 {
10593 case DT_RELENT:
b49e97c9
TS
10594 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10595 break;
10596
0a44bf69
RS
10597 case DT_RELAENT:
10598 BFD_ASSERT (htab->is_vxworks);
10599 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10600 break;
10601
b49e97c9
TS
10602 case DT_STRSZ:
10603 /* Rewrite DT_STRSZ. */
10604 dyn.d_un.d_val =
10605 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10606 break;
10607
10608 case DT_PLTGOT:
861fb55a
DJ
10609 s = htab->sgot;
10610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10611 break;
10612
10613 case DT_MIPS_PLTGOT:
10614 s = htab->sgotplt;
10615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10616 break;
10617
10618 case DT_MIPS_RLD_VERSION:
10619 dyn.d_un.d_val = 1; /* XXX */
10620 break;
10621
10622 case DT_MIPS_FLAGS:
10623 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10624 break;
10625
b49e97c9 10626 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10627 {
10628 time_t t;
10629 time (&t);
10630 dyn.d_un.d_val = t;
10631 }
b49e97c9
TS
10632 break;
10633
10634 case DT_MIPS_ICHECKSUM:
10635 /* XXX FIXME: */
b34976b6 10636 swap_out_p = FALSE;
b49e97c9
TS
10637 break;
10638
10639 case DT_MIPS_IVERSION:
10640 /* XXX FIXME: */
b34976b6 10641 swap_out_p = FALSE;
b49e97c9
TS
10642 break;
10643
10644 case DT_MIPS_BASE_ADDRESS:
10645 s = output_bfd->sections;
10646 BFD_ASSERT (s != NULL);
10647 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10648 break;
10649
10650 case DT_MIPS_LOCAL_GOTNO:
10651 dyn.d_un.d_val = g->local_gotno;
10652 break;
10653
10654 case DT_MIPS_UNREFEXTNO:
10655 /* The index into the dynamic symbol table which is the
10656 entry of the first external symbol that is not
10657 referenced within the same object. */
10658 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10659 break;
10660
10661 case DT_MIPS_GOTSYM:
f4416af6 10662 if (gg->global_gotsym)
b49e97c9 10663 {
f4416af6 10664 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
10665 break;
10666 }
10667 /* In case if we don't have global got symbols we default
10668 to setting DT_MIPS_GOTSYM to the same value as
10669 DT_MIPS_SYMTABNO, so we just fall through. */
10670
10671 case DT_MIPS_SYMTABNO:
10672 name = ".dynsym";
10673 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10674 s = bfd_get_section_by_name (output_bfd, name);
10675 BFD_ASSERT (s != NULL);
10676
eea6121a 10677 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10678 break;
10679
10680 case DT_MIPS_HIPAGENO:
861fb55a 10681 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10682 break;
10683
10684 case DT_MIPS_RLD_MAP:
b4082c70
DD
10685 {
10686 struct elf_link_hash_entry *h;
10687 h = mips_elf_hash_table (info)->rld_symbol;
10688 if (!h)
10689 {
10690 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10691 swap_out_p = FALSE;
10692 break;
10693 }
10694 s = h->root.u.def.section;
10695 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10696 + h->root.u.def.value);
10697 }
b49e97c9
TS
10698 break;
10699
10700 case DT_MIPS_OPTIONS:
10701 s = (bfd_get_section_by_name
10702 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10703 dyn.d_un.d_ptr = s->vma;
10704 break;
10705
0a44bf69
RS
10706 case DT_RELASZ:
10707 BFD_ASSERT (htab->is_vxworks);
10708 /* The count does not include the JUMP_SLOT relocations. */
10709 if (htab->srelplt)
10710 dyn.d_un.d_val -= htab->srelplt->size;
10711 break;
10712
10713 case DT_PLTREL:
861fb55a
DJ
10714 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10715 if (htab->is_vxworks)
10716 dyn.d_un.d_val = DT_RELA;
10717 else
10718 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10719 break;
10720
10721 case DT_PLTRELSZ:
861fb55a 10722 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10723 dyn.d_un.d_val = htab->srelplt->size;
10724 break;
10725
10726 case DT_JMPREL:
861fb55a
DJ
10727 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10728 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10729 + htab->srelplt->output_offset);
10730 break;
10731
943284cc
DJ
10732 case DT_TEXTREL:
10733 /* If we didn't need any text relocations after all, delete
10734 the dynamic tag. */
10735 if (!(info->flags & DF_TEXTREL))
10736 {
10737 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10738 swap_out_p = FALSE;
10739 }
10740 break;
10741
10742 case DT_FLAGS:
10743 /* If we didn't need any text relocations after all, clear
10744 DF_TEXTREL from DT_FLAGS. */
10745 if (!(info->flags & DF_TEXTREL))
10746 dyn.d_un.d_val &= ~DF_TEXTREL;
10747 else
10748 swap_out_p = FALSE;
10749 break;
10750
b49e97c9 10751 default:
b34976b6 10752 swap_out_p = FALSE;
7a2b07ff
NS
10753 if (htab->is_vxworks
10754 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10755 swap_out_p = TRUE;
b49e97c9
TS
10756 break;
10757 }
10758
943284cc 10759 if (swap_out_p || dyn_skipped)
b49e97c9 10760 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10761 (dynobj, &dyn, b - dyn_skipped);
10762
10763 if (dyn_to_skip)
10764 {
10765 dyn_skipped += dyn_to_skip;
10766 dyn_to_skip = 0;
10767 }
b49e97c9 10768 }
943284cc
DJ
10769
10770 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10771 if (dyn_skipped > 0)
10772 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10773 }
10774
b55fd4d4
DJ
10775 if (sgot != NULL && sgot->size > 0
10776 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10777 {
0a44bf69
RS
10778 if (htab->is_vxworks)
10779 {
10780 /* The first entry of the global offset table points to the
10781 ".dynamic" section. The second is initialized by the
10782 loader and contains the shared library identifier.
10783 The third is also initialized by the loader and points
10784 to the lazy resolution stub. */
10785 MIPS_ELF_PUT_WORD (output_bfd,
10786 sdyn->output_offset + sdyn->output_section->vma,
10787 sgot->contents);
10788 MIPS_ELF_PUT_WORD (output_bfd, 0,
10789 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10790 MIPS_ELF_PUT_WORD (output_bfd, 0,
10791 sgot->contents
10792 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10793 }
10794 else
10795 {
10796 /* The first entry of the global offset table will be filled at
10797 runtime. The second entry will be used by some runtime loaders.
10798 This isn't the case of IRIX rld. */
10799 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10800 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10801 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10802 }
b49e97c9 10803
54938e2a
TS
10804 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10805 = MIPS_ELF_GOT_SIZE (output_bfd);
10806 }
b49e97c9 10807
f4416af6
AO
10808 /* Generate dynamic relocations for the non-primary gots. */
10809 if (gg != NULL && gg->next)
10810 {
10811 Elf_Internal_Rela rel[3];
10812 bfd_vma addend = 0;
10813
10814 memset (rel, 0, sizeof (rel));
10815 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10816
10817 for (g = gg->next; g->next != gg; g = g->next)
10818 {
91d6fa6a 10819 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10820 + g->next->tls_gotno;
f4416af6 10821
9719ad41 10822 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10823 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10824 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10825 sgot->contents
91d6fa6a 10826 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10827
10828 if (! info->shared)
10829 continue;
10830
91d6fa6a 10831 while (got_index < g->assigned_gotno)
f4416af6
AO
10832 {
10833 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10834 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10835 if (!(mips_elf_create_dynamic_relocation
10836 (output_bfd, info, rel, NULL,
10837 bfd_abs_section_ptr,
10838 0, &addend, sgot)))
10839 return FALSE;
10840 BFD_ASSERT (addend == 0);
10841 }
10842 }
10843 }
10844
3133ddbf
DJ
10845 /* The generation of dynamic relocations for the non-primary gots
10846 adds more dynamic relocations. We cannot count them until
10847 here. */
10848
10849 if (elf_hash_table (info)->dynamic_sections_created)
10850 {
10851 bfd_byte *b;
10852 bfd_boolean swap_out_p;
10853
10854 BFD_ASSERT (sdyn != NULL);
10855
10856 for (b = sdyn->contents;
10857 b < sdyn->contents + sdyn->size;
10858 b += MIPS_ELF_DYN_SIZE (dynobj))
10859 {
10860 Elf_Internal_Dyn dyn;
10861 asection *s;
10862
10863 /* Read in the current dynamic entry. */
10864 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10865
10866 /* Assume that we're going to modify it and write it out. */
10867 swap_out_p = TRUE;
10868
10869 switch (dyn.d_tag)
10870 {
10871 case DT_RELSZ:
10872 /* Reduce DT_RELSZ to account for any relocations we
10873 decided not to make. This is for the n64 irix rld,
10874 which doesn't seem to apply any relocations if there
10875 are trailing null entries. */
0a44bf69 10876 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10877 dyn.d_un.d_val = (s->reloc_count
10878 * (ABI_64_P (output_bfd)
10879 ? sizeof (Elf64_Mips_External_Rel)
10880 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10881 /* Adjust the section size too. Tools like the prelinker
10882 can reasonably expect the values to the same. */
10883 elf_section_data (s->output_section)->this_hdr.sh_size
10884 = dyn.d_un.d_val;
3133ddbf
DJ
10885 break;
10886
10887 default:
10888 swap_out_p = FALSE;
10889 break;
10890 }
10891
10892 if (swap_out_p)
10893 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10894 (dynobj, &dyn, b);
10895 }
10896 }
10897
b49e97c9 10898 {
b49e97c9
TS
10899 asection *s;
10900 Elf32_compact_rel cpt;
10901
b49e97c9
TS
10902 if (SGI_COMPAT (output_bfd))
10903 {
10904 /* Write .compact_rel section out. */
3d4d4302 10905 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10906 if (s != NULL)
10907 {
10908 cpt.id1 = 1;
10909 cpt.num = s->reloc_count;
10910 cpt.id2 = 2;
10911 cpt.offset = (s->output_section->filepos
10912 + sizeof (Elf32_External_compact_rel));
10913 cpt.reserved0 = 0;
10914 cpt.reserved1 = 0;
10915 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10916 ((Elf32_External_compact_rel *)
10917 s->contents));
10918
10919 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10920 if (htab->sstubs != NULL)
b49e97c9
TS
10921 {
10922 file_ptr dummy_offset;
10923
4e41d0d7
RS
10924 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10925 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10926 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10927 htab->function_stub_size);
b49e97c9
TS
10928 }
10929 }
10930 }
10931
0a44bf69
RS
10932 /* The psABI says that the dynamic relocations must be sorted in
10933 increasing order of r_symndx. The VxWorks EABI doesn't require
10934 this, and because the code below handles REL rather than RELA
10935 relocations, using it for VxWorks would be outright harmful. */
10936 if (!htab->is_vxworks)
b49e97c9 10937 {
0a44bf69
RS
10938 s = mips_elf_rel_dyn_section (info, FALSE);
10939 if (s != NULL
10940 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10941 {
10942 reldyn_sorting_bfd = output_bfd;
b49e97c9 10943
0a44bf69
RS
10944 if (ABI_64_P (output_bfd))
10945 qsort ((Elf64_External_Rel *) s->contents + 1,
10946 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10947 sort_dynamic_relocs_64);
10948 else
10949 qsort ((Elf32_External_Rel *) s->contents + 1,
10950 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10951 sort_dynamic_relocs);
10952 }
b49e97c9 10953 }
b49e97c9
TS
10954 }
10955
861fb55a 10956 if (htab->splt && htab->splt->size > 0)
0a44bf69 10957 {
861fb55a
DJ
10958 if (htab->is_vxworks)
10959 {
10960 if (info->shared)
10961 mips_vxworks_finish_shared_plt (output_bfd, info);
10962 else
10963 mips_vxworks_finish_exec_plt (output_bfd, info);
10964 }
0a44bf69 10965 else
861fb55a
DJ
10966 {
10967 BFD_ASSERT (!info->shared);
10968 mips_finish_exec_plt (output_bfd, info);
10969 }
0a44bf69 10970 }
b34976b6 10971 return TRUE;
b49e97c9
TS
10972}
10973
b49e97c9 10974
64543e1a
RS
10975/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10976
10977static void
9719ad41 10978mips_set_isa_flags (bfd *abfd)
b49e97c9 10979{
64543e1a 10980 flagword val;
b49e97c9
TS
10981
10982 switch (bfd_get_mach (abfd))
10983 {
10984 default:
10985 case bfd_mach_mips3000:
10986 val = E_MIPS_ARCH_1;
10987 break;
10988
10989 case bfd_mach_mips3900:
10990 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10991 break;
10992
10993 case bfd_mach_mips6000:
10994 val = E_MIPS_ARCH_2;
10995 break;
10996
10997 case bfd_mach_mips4000:
10998 case bfd_mach_mips4300:
10999 case bfd_mach_mips4400:
11000 case bfd_mach_mips4600:
11001 val = E_MIPS_ARCH_3;
11002 break;
11003
11004 case bfd_mach_mips4010:
11005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11006 break;
11007
11008 case bfd_mach_mips4100:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11010 break;
11011
11012 case bfd_mach_mips4111:
11013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11014 break;
11015
00707a0e
RS
11016 case bfd_mach_mips4120:
11017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11018 break;
11019
b49e97c9
TS
11020 case bfd_mach_mips4650:
11021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11022 break;
11023
00707a0e
RS
11024 case bfd_mach_mips5400:
11025 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11026 break;
11027
11028 case bfd_mach_mips5500:
11029 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11030 break;
11031
e407c74b
NC
11032 case bfd_mach_mips5900:
11033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11034 break;
11035
0d2e43ed
ILT
11036 case bfd_mach_mips9000:
11037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11038 break;
11039
b49e97c9 11040 case bfd_mach_mips5000:
5a7ea749 11041 case bfd_mach_mips7000:
b49e97c9
TS
11042 case bfd_mach_mips8000:
11043 case bfd_mach_mips10000:
11044 case bfd_mach_mips12000:
3aa3176b
TS
11045 case bfd_mach_mips14000:
11046 case bfd_mach_mips16000:
b49e97c9
TS
11047 val = E_MIPS_ARCH_4;
11048 break;
11049
11050 case bfd_mach_mips5:
11051 val = E_MIPS_ARCH_5;
11052 break;
11053
350cc38d
MS
11054 case bfd_mach_mips_loongson_2e:
11055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11056 break;
11057
11058 case bfd_mach_mips_loongson_2f:
11059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11060 break;
11061
b49e97c9
TS
11062 case bfd_mach_mips_sb1:
11063 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11064 break;
11065
d051516a
NC
11066 case bfd_mach_mips_loongson_3a:
11067 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11068 break;
11069
6f179bd0 11070 case bfd_mach_mips_octeon:
dd6a37e7 11071 case bfd_mach_mips_octeonp:
6f179bd0
AN
11072 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11073 break;
11074
52b6b6b9
JM
11075 case bfd_mach_mips_xlr:
11076 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11077 break;
11078
432233b3
AP
11079 case bfd_mach_mips_octeon2:
11080 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11081 break;
11082
b49e97c9
TS
11083 case bfd_mach_mipsisa32:
11084 val = E_MIPS_ARCH_32;
11085 break;
11086
11087 case bfd_mach_mipsisa64:
11088 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11089 break;
11090
11091 case bfd_mach_mipsisa32r2:
11092 val = E_MIPS_ARCH_32R2;
11093 break;
5f74bc13
CD
11094
11095 case bfd_mach_mipsisa64r2:
11096 val = E_MIPS_ARCH_64R2;
11097 break;
b49e97c9 11098 }
b49e97c9
TS
11099 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11100 elf_elfheader (abfd)->e_flags |= val;
11101
64543e1a
RS
11102}
11103
11104
11105/* The final processing done just before writing out a MIPS ELF object
11106 file. This gets the MIPS architecture right based on the machine
11107 number. This is used by both the 32-bit and the 64-bit ABI. */
11108
11109void
9719ad41
RS
11110_bfd_mips_elf_final_write_processing (bfd *abfd,
11111 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11112{
11113 unsigned int i;
11114 Elf_Internal_Shdr **hdrpp;
11115 const char *name;
11116 asection *sec;
11117
11118 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11119 is nonzero. This is for compatibility with old objects, which used
11120 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11121 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11122 mips_set_isa_flags (abfd);
11123
b49e97c9
TS
11124 /* Set the sh_info field for .gptab sections and other appropriate
11125 info for each special section. */
11126 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11127 i < elf_numsections (abfd);
11128 i++, hdrpp++)
11129 {
11130 switch ((*hdrpp)->sh_type)
11131 {
11132 case SHT_MIPS_MSYM:
11133 case SHT_MIPS_LIBLIST:
11134 sec = bfd_get_section_by_name (abfd, ".dynstr");
11135 if (sec != NULL)
11136 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11137 break;
11138
11139 case SHT_MIPS_GPTAB:
11140 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11141 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11142 BFD_ASSERT (name != NULL
0112cd26 11143 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11144 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11145 BFD_ASSERT (sec != NULL);
11146 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11147 break;
11148
11149 case SHT_MIPS_CONTENT:
11150 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11151 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11152 BFD_ASSERT (name != NULL
0112cd26 11153 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11154 sec = bfd_get_section_by_name (abfd,
11155 name + sizeof ".MIPS.content" - 1);
11156 BFD_ASSERT (sec != NULL);
11157 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11158 break;
11159
11160 case SHT_MIPS_SYMBOL_LIB:
11161 sec = bfd_get_section_by_name (abfd, ".dynsym");
11162 if (sec != NULL)
11163 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11164 sec = bfd_get_section_by_name (abfd, ".liblist");
11165 if (sec != NULL)
11166 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11167 break;
11168
11169 case SHT_MIPS_EVENTS:
11170 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11171 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11172 BFD_ASSERT (name != NULL);
0112cd26 11173 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11174 sec = bfd_get_section_by_name (abfd,
11175 name + sizeof ".MIPS.events" - 1);
11176 else
11177 {
0112cd26 11178 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11179 sec = bfd_get_section_by_name (abfd,
11180 (name
11181 + sizeof ".MIPS.post_rel" - 1));
11182 }
11183 BFD_ASSERT (sec != NULL);
11184 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11185 break;
11186
11187 }
11188 }
11189}
11190\f
8dc1a139 11191/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11192 segments. */
11193
11194int
a6b96beb
AM
11195_bfd_mips_elf_additional_program_headers (bfd *abfd,
11196 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11197{
11198 asection *s;
11199 int ret = 0;
11200
11201 /* See if we need a PT_MIPS_REGINFO segment. */
11202 s = bfd_get_section_by_name (abfd, ".reginfo");
11203 if (s && (s->flags & SEC_LOAD))
11204 ++ret;
11205
11206 /* See if we need a PT_MIPS_OPTIONS segment. */
11207 if (IRIX_COMPAT (abfd) == ict_irix6
11208 && bfd_get_section_by_name (abfd,
11209 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11210 ++ret;
11211
11212 /* See if we need a PT_MIPS_RTPROC segment. */
11213 if (IRIX_COMPAT (abfd) == ict_irix5
11214 && bfd_get_section_by_name (abfd, ".dynamic")
11215 && bfd_get_section_by_name (abfd, ".mdebug"))
11216 ++ret;
11217
98c904a8
RS
11218 /* Allocate a PT_NULL header in dynamic objects. See
11219 _bfd_mips_elf_modify_segment_map for details. */
11220 if (!SGI_COMPAT (abfd)
11221 && bfd_get_section_by_name (abfd, ".dynamic"))
11222 ++ret;
11223
b49e97c9
TS
11224 return ret;
11225}
11226
8dc1a139 11227/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11228
b34976b6 11229bfd_boolean
9719ad41 11230_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11231 struct bfd_link_info *info)
b49e97c9
TS
11232{
11233 asection *s;
11234 struct elf_segment_map *m, **pm;
11235 bfd_size_type amt;
11236
11237 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11238 segment. */
11239 s = bfd_get_section_by_name (abfd, ".reginfo");
11240 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11241 {
11242 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11243 if (m->p_type == PT_MIPS_REGINFO)
11244 break;
11245 if (m == NULL)
11246 {
11247 amt = sizeof *m;
9719ad41 11248 m = bfd_zalloc (abfd, amt);
b49e97c9 11249 if (m == NULL)
b34976b6 11250 return FALSE;
b49e97c9
TS
11251
11252 m->p_type = PT_MIPS_REGINFO;
11253 m->count = 1;
11254 m->sections[0] = s;
11255
11256 /* We want to put it after the PHDR and INTERP segments. */
11257 pm = &elf_tdata (abfd)->segment_map;
11258 while (*pm != NULL
11259 && ((*pm)->p_type == PT_PHDR
11260 || (*pm)->p_type == PT_INTERP))
11261 pm = &(*pm)->next;
11262
11263 m->next = *pm;
11264 *pm = m;
11265 }
11266 }
11267
11268 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11269 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11270 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11271 table. */
c1fd6598
AO
11272 if (NEWABI_P (abfd)
11273 /* On non-IRIX6 new abi, we'll have already created a segment
11274 for this section, so don't create another. I'm not sure this
11275 is not also the case for IRIX 6, but I can't test it right
11276 now. */
11277 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11278 {
11279 for (s = abfd->sections; s; s = s->next)
11280 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11281 break;
11282
11283 if (s)
11284 {
11285 struct elf_segment_map *options_segment;
11286
98a8deaf
RS
11287 pm = &elf_tdata (abfd)->segment_map;
11288 while (*pm != NULL
11289 && ((*pm)->p_type == PT_PHDR
11290 || (*pm)->p_type == PT_INTERP))
11291 pm = &(*pm)->next;
b49e97c9 11292
8ded5a0f
AM
11293 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11294 {
11295 amt = sizeof (struct elf_segment_map);
11296 options_segment = bfd_zalloc (abfd, amt);
11297 options_segment->next = *pm;
11298 options_segment->p_type = PT_MIPS_OPTIONS;
11299 options_segment->p_flags = PF_R;
11300 options_segment->p_flags_valid = TRUE;
11301 options_segment->count = 1;
11302 options_segment->sections[0] = s;
11303 *pm = options_segment;
11304 }
b49e97c9
TS
11305 }
11306 }
11307 else
11308 {
11309 if (IRIX_COMPAT (abfd) == ict_irix5)
11310 {
11311 /* If there are .dynamic and .mdebug sections, we make a room
11312 for the RTPROC header. FIXME: Rewrite without section names. */
11313 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11314 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11315 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11316 {
11317 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11318 if (m->p_type == PT_MIPS_RTPROC)
11319 break;
11320 if (m == NULL)
11321 {
11322 amt = sizeof *m;
9719ad41 11323 m = bfd_zalloc (abfd, amt);
b49e97c9 11324 if (m == NULL)
b34976b6 11325 return FALSE;
b49e97c9
TS
11326
11327 m->p_type = PT_MIPS_RTPROC;
11328
11329 s = bfd_get_section_by_name (abfd, ".rtproc");
11330 if (s == NULL)
11331 {
11332 m->count = 0;
11333 m->p_flags = 0;
11334 m->p_flags_valid = 1;
11335 }
11336 else
11337 {
11338 m->count = 1;
11339 m->sections[0] = s;
11340 }
11341
11342 /* We want to put it after the DYNAMIC segment. */
11343 pm = &elf_tdata (abfd)->segment_map;
11344 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11345 pm = &(*pm)->next;
11346 if (*pm != NULL)
11347 pm = &(*pm)->next;
11348
11349 m->next = *pm;
11350 *pm = m;
11351 }
11352 }
11353 }
8dc1a139 11354 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11355 .dynstr, .dynsym, and .hash sections, and everything in
11356 between. */
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11358 pm = &(*pm)->next)
11359 if ((*pm)->p_type == PT_DYNAMIC)
11360 break;
11361 m = *pm;
11362 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11363 {
11364 /* For a normal mips executable the permissions for the PT_DYNAMIC
11365 segment are read, write and execute. We do that here since
11366 the code in elf.c sets only the read permission. This matters
11367 sometimes for the dynamic linker. */
11368 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11369 {
11370 m->p_flags = PF_R | PF_W | PF_X;
11371 m->p_flags_valid = 1;
11372 }
11373 }
f6f62d6f
RS
11374 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11375 glibc's dynamic linker has traditionally derived the number of
11376 tags from the p_filesz field, and sometimes allocates stack
11377 arrays of that size. An overly-big PT_DYNAMIC segment can
11378 be actively harmful in such cases. Making PT_DYNAMIC contain
11379 other sections can also make life hard for the prelinker,
11380 which might move one of the other sections to a different
11381 PT_LOAD segment. */
11382 if (SGI_COMPAT (abfd)
11383 && m != NULL
11384 && m->count == 1
11385 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11386 {
11387 static const char *sec_names[] =
11388 {
11389 ".dynamic", ".dynstr", ".dynsym", ".hash"
11390 };
11391 bfd_vma low, high;
11392 unsigned int i, c;
11393 struct elf_segment_map *n;
11394
792b4a53 11395 low = ~(bfd_vma) 0;
b49e97c9
TS
11396 high = 0;
11397 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11398 {
11399 s = bfd_get_section_by_name (abfd, sec_names[i]);
11400 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11401 {
11402 bfd_size_type sz;
11403
11404 if (low > s->vma)
11405 low = s->vma;
eea6121a 11406 sz = s->size;
b49e97c9
TS
11407 if (high < s->vma + sz)
11408 high = s->vma + sz;
11409 }
11410 }
11411
11412 c = 0;
11413 for (s = abfd->sections; s != NULL; s = s->next)
11414 if ((s->flags & SEC_LOAD) != 0
11415 && s->vma >= low
eea6121a 11416 && s->vma + s->size <= high)
b49e97c9
TS
11417 ++c;
11418
11419 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11420 n = bfd_zalloc (abfd, amt);
b49e97c9 11421 if (n == NULL)
b34976b6 11422 return FALSE;
b49e97c9
TS
11423 *n = *m;
11424 n->count = c;
11425
11426 i = 0;
11427 for (s = abfd->sections; s != NULL; s = s->next)
11428 {
11429 if ((s->flags & SEC_LOAD) != 0
11430 && s->vma >= low
eea6121a 11431 && s->vma + s->size <= high)
b49e97c9
TS
11432 {
11433 n->sections[i] = s;
11434 ++i;
11435 }
11436 }
11437
11438 *pm = n;
11439 }
11440 }
11441
98c904a8
RS
11442 /* Allocate a spare program header in dynamic objects so that tools
11443 like the prelinker can add an extra PT_LOAD entry.
11444
11445 If the prelinker needs to make room for a new PT_LOAD entry, its
11446 standard procedure is to move the first (read-only) sections into
11447 the new (writable) segment. However, the MIPS ABI requires
11448 .dynamic to be in a read-only segment, and the section will often
11449 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11450
11451 Although the prelinker could in principle move .dynamic to a
11452 writable segment, it seems better to allocate a spare program
11453 header instead, and avoid the need to move any sections.
11454 There is a long tradition of allocating spare dynamic tags,
11455 so allocating a spare program header seems like a natural
7c8b76cc
JM
11456 extension.
11457
11458 If INFO is NULL, we may be copying an already prelinked binary
11459 with objcopy or strip, so do not add this header. */
11460 if (info != NULL
11461 && !SGI_COMPAT (abfd)
98c904a8
RS
11462 && bfd_get_section_by_name (abfd, ".dynamic"))
11463 {
11464 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11465 if ((*pm)->p_type == PT_NULL)
11466 break;
11467 if (*pm == NULL)
11468 {
11469 m = bfd_zalloc (abfd, sizeof (*m));
11470 if (m == NULL)
11471 return FALSE;
11472
11473 m->p_type = PT_NULL;
11474 *pm = m;
11475 }
11476 }
11477
b34976b6 11478 return TRUE;
b49e97c9
TS
11479}
11480\f
11481/* Return the section that should be marked against GC for a given
11482 relocation. */
11483
11484asection *
9719ad41 11485_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11486 struct bfd_link_info *info,
9719ad41
RS
11487 Elf_Internal_Rela *rel,
11488 struct elf_link_hash_entry *h,
11489 Elf_Internal_Sym *sym)
b49e97c9
TS
11490{
11491 /* ??? Do mips16 stub sections need to be handled special? */
11492
11493 if (h != NULL)
07adf181
AM
11494 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11495 {
11496 case R_MIPS_GNU_VTINHERIT:
11497 case R_MIPS_GNU_VTENTRY:
11498 return NULL;
11499 }
b49e97c9 11500
07adf181 11501 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11502}
11503
11504/* Update the got entry reference counts for the section being removed. */
11505
b34976b6 11506bfd_boolean
9719ad41
RS
11507_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11508 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11509 asection *sec ATTRIBUTE_UNUSED,
11510 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11511{
11512#if 0
11513 Elf_Internal_Shdr *symtab_hdr;
11514 struct elf_link_hash_entry **sym_hashes;
11515 bfd_signed_vma *local_got_refcounts;
11516 const Elf_Internal_Rela *rel, *relend;
11517 unsigned long r_symndx;
11518 struct elf_link_hash_entry *h;
11519
7dda2462
TG
11520 if (info->relocatable)
11521 return TRUE;
11522
b49e97c9
TS
11523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11524 sym_hashes = elf_sym_hashes (abfd);
11525 local_got_refcounts = elf_local_got_refcounts (abfd);
11526
11527 relend = relocs + sec->reloc_count;
11528 for (rel = relocs; rel < relend; rel++)
11529 switch (ELF_R_TYPE (abfd, rel->r_info))
11530 {
738e5348
RS
11531 case R_MIPS16_GOT16:
11532 case R_MIPS16_CALL16:
b49e97c9
TS
11533 case R_MIPS_GOT16:
11534 case R_MIPS_CALL16:
11535 case R_MIPS_CALL_HI16:
11536 case R_MIPS_CALL_LO16:
11537 case R_MIPS_GOT_HI16:
11538 case R_MIPS_GOT_LO16:
4a14403c
TS
11539 case R_MIPS_GOT_DISP:
11540 case R_MIPS_GOT_PAGE:
11541 case R_MIPS_GOT_OFST:
df58fc94
RS
11542 case R_MICROMIPS_GOT16:
11543 case R_MICROMIPS_CALL16:
11544 case R_MICROMIPS_CALL_HI16:
11545 case R_MICROMIPS_CALL_LO16:
11546 case R_MICROMIPS_GOT_HI16:
11547 case R_MICROMIPS_GOT_LO16:
11548 case R_MICROMIPS_GOT_DISP:
11549 case R_MICROMIPS_GOT_PAGE:
11550 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11551 /* ??? It would seem that the existing MIPS code does no sort
11552 of reference counting or whatnot on its GOT and PLT entries,
11553 so it is not possible to garbage collect them at this time. */
11554 break;
11555
11556 default:
11557 break;
11558 }
11559#endif
11560
b34976b6 11561 return TRUE;
b49e97c9
TS
11562}
11563\f
11564/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11565 hiding the old indirect symbol. Process additional relocation
11566 information. Also called for weakdefs, in which case we just let
11567 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11568
11569void
fcfa13d2 11570_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11571 struct elf_link_hash_entry *dir,
11572 struct elf_link_hash_entry *ind)
b49e97c9
TS
11573{
11574 struct mips_elf_link_hash_entry *dirmips, *indmips;
11575
fcfa13d2 11576 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11577
861fb55a
DJ
11578 dirmips = (struct mips_elf_link_hash_entry *) dir;
11579 indmips = (struct mips_elf_link_hash_entry *) ind;
11580 /* Any absolute non-dynamic relocations against an indirect or weak
11581 definition will be against the target symbol. */
11582 if (indmips->has_static_relocs)
11583 dirmips->has_static_relocs = TRUE;
11584
b49e97c9
TS
11585 if (ind->root.type != bfd_link_hash_indirect)
11586 return;
11587
b49e97c9
TS
11588 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11589 if (indmips->readonly_reloc)
b34976b6 11590 dirmips->readonly_reloc = TRUE;
b49e97c9 11591 if (indmips->no_fn_stub)
b34976b6 11592 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11593 if (indmips->fn_stub)
11594 {
11595 dirmips->fn_stub = indmips->fn_stub;
11596 indmips->fn_stub = NULL;
11597 }
11598 if (indmips->need_fn_stub)
11599 {
11600 dirmips->need_fn_stub = TRUE;
11601 indmips->need_fn_stub = FALSE;
11602 }
11603 if (indmips->call_stub)
11604 {
11605 dirmips->call_stub = indmips->call_stub;
11606 indmips->call_stub = NULL;
11607 }
11608 if (indmips->call_fp_stub)
11609 {
11610 dirmips->call_fp_stub = indmips->call_fp_stub;
11611 indmips->call_fp_stub = NULL;
11612 }
634835ae
RS
11613 if (indmips->global_got_area < dirmips->global_got_area)
11614 dirmips->global_got_area = indmips->global_got_area;
11615 if (indmips->global_got_area < GGA_NONE)
11616 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11617 if (indmips->has_nonpic_branches)
11618 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11619
11620 if (dirmips->tls_type == 0)
11621 dirmips->tls_type = indmips->tls_type;
b49e97c9 11622}
b49e97c9 11623\f
d01414a5
TS
11624#define PDR_SIZE 32
11625
b34976b6 11626bfd_boolean
9719ad41
RS
11627_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11628 struct bfd_link_info *info)
d01414a5
TS
11629{
11630 asection *o;
b34976b6 11631 bfd_boolean ret = FALSE;
d01414a5
TS
11632 unsigned char *tdata;
11633 size_t i, skip;
11634
11635 o = bfd_get_section_by_name (abfd, ".pdr");
11636 if (! o)
b34976b6 11637 return FALSE;
eea6121a 11638 if (o->size == 0)
b34976b6 11639 return FALSE;
eea6121a 11640 if (o->size % PDR_SIZE != 0)
b34976b6 11641 return FALSE;
d01414a5
TS
11642 if (o->output_section != NULL
11643 && bfd_is_abs_section (o->output_section))
b34976b6 11644 return FALSE;
d01414a5 11645
eea6121a 11646 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11647 if (! tdata)
b34976b6 11648 return FALSE;
d01414a5 11649
9719ad41 11650 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11651 info->keep_memory);
d01414a5
TS
11652 if (!cookie->rels)
11653 {
11654 free (tdata);
b34976b6 11655 return FALSE;
d01414a5
TS
11656 }
11657
11658 cookie->rel = cookie->rels;
11659 cookie->relend = cookie->rels + o->reloc_count;
11660
eea6121a 11661 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11662 {
c152c796 11663 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11664 {
11665 tdata[i] = 1;
11666 skip ++;
11667 }
11668 }
11669
11670 if (skip != 0)
11671 {
f0abc2a1 11672 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11673 o->size -= skip * PDR_SIZE;
b34976b6 11674 ret = TRUE;
d01414a5
TS
11675 }
11676 else
11677 free (tdata);
11678
11679 if (! info->keep_memory)
11680 free (cookie->rels);
11681
11682 return ret;
11683}
11684
b34976b6 11685bfd_boolean
9719ad41 11686_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11687{
11688 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11689 return TRUE;
11690 return FALSE;
53bfd6b4 11691}
d01414a5 11692
b34976b6 11693bfd_boolean
c7b8f16e
JB
11694_bfd_mips_elf_write_section (bfd *output_bfd,
11695 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11696 asection *sec, bfd_byte *contents)
d01414a5
TS
11697{
11698 bfd_byte *to, *from, *end;
11699 int i;
11700
11701 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11702 return FALSE;
d01414a5 11703
f0abc2a1 11704 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11705 return FALSE;
d01414a5
TS
11706
11707 to = contents;
eea6121a 11708 end = contents + sec->size;
d01414a5
TS
11709 for (from = contents, i = 0;
11710 from < end;
11711 from += PDR_SIZE, i++)
11712 {
f0abc2a1 11713 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11714 continue;
11715 if (to != from)
11716 memcpy (to, from, PDR_SIZE);
11717 to += PDR_SIZE;
11718 }
11719 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11720 sec->output_offset, sec->size);
b34976b6 11721 return TRUE;
d01414a5 11722}
53bfd6b4 11723\f
df58fc94
RS
11724/* microMIPS code retains local labels for linker relaxation. Omit them
11725 from output by default for clarity. */
11726
11727bfd_boolean
11728_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11729{
11730 return _bfd_elf_is_local_label_name (abfd, sym->name);
11731}
11732
b49e97c9
TS
11733/* MIPS ELF uses a special find_nearest_line routine in order the
11734 handle the ECOFF debugging information. */
11735
11736struct mips_elf_find_line
11737{
11738 struct ecoff_debug_info d;
11739 struct ecoff_find_line i;
11740};
11741
b34976b6 11742bfd_boolean
9719ad41
RS
11743_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11744 asymbol **symbols, bfd_vma offset,
11745 const char **filename_ptr,
11746 const char **functionname_ptr,
11747 unsigned int *line_ptr)
b49e97c9
TS
11748{
11749 asection *msec;
11750
11751 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11752 filename_ptr, functionname_ptr,
11753 line_ptr))
b34976b6 11754 return TRUE;
b49e97c9 11755
fc28f9aa
TG
11756 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11757 section, symbols, offset,
b49e97c9 11758 filename_ptr, functionname_ptr,
9b8d1a36 11759 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11760 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11761 return TRUE;
b49e97c9
TS
11762
11763 msec = bfd_get_section_by_name (abfd, ".mdebug");
11764 if (msec != NULL)
11765 {
11766 flagword origflags;
11767 struct mips_elf_find_line *fi;
11768 const struct ecoff_debug_swap * const swap =
11769 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11770
11771 /* If we are called during a link, mips_elf_final_link may have
11772 cleared the SEC_HAS_CONTENTS field. We force it back on here
11773 if appropriate (which it normally will be). */
11774 origflags = msec->flags;
11775 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11776 msec->flags |= SEC_HAS_CONTENTS;
11777
11778 fi = elf_tdata (abfd)->find_line_info;
11779 if (fi == NULL)
11780 {
11781 bfd_size_type external_fdr_size;
11782 char *fraw_src;
11783 char *fraw_end;
11784 struct fdr *fdr_ptr;
11785 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11786
9719ad41 11787 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11788 if (fi == NULL)
11789 {
11790 msec->flags = origflags;
b34976b6 11791 return FALSE;
b49e97c9
TS
11792 }
11793
11794 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11795 {
11796 msec->flags = origflags;
b34976b6 11797 return FALSE;
b49e97c9
TS
11798 }
11799
11800 /* Swap in the FDR information. */
11801 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11802 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11803 if (fi->d.fdr == NULL)
11804 {
11805 msec->flags = origflags;
b34976b6 11806 return FALSE;
b49e97c9
TS
11807 }
11808 external_fdr_size = swap->external_fdr_size;
11809 fdr_ptr = fi->d.fdr;
11810 fraw_src = (char *) fi->d.external_fdr;
11811 fraw_end = (fraw_src
11812 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11813 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11814 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11815
11816 elf_tdata (abfd)->find_line_info = fi;
11817
11818 /* Note that we don't bother to ever free this information.
11819 find_nearest_line is either called all the time, as in
11820 objdump -l, so the information should be saved, or it is
11821 rarely called, as in ld error messages, so the memory
11822 wasted is unimportant. Still, it would probably be a
11823 good idea for free_cached_info to throw it away. */
11824 }
11825
11826 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11827 &fi->i, filename_ptr, functionname_ptr,
11828 line_ptr))
11829 {
11830 msec->flags = origflags;
b34976b6 11831 return TRUE;
b49e97c9
TS
11832 }
11833
11834 msec->flags = origflags;
11835 }
11836
11837 /* Fall back on the generic ELF find_nearest_line routine. */
11838
11839 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11840 filename_ptr, functionname_ptr,
11841 line_ptr);
11842}
4ab527b0
FF
11843
11844bfd_boolean
11845_bfd_mips_elf_find_inliner_info (bfd *abfd,
11846 const char **filename_ptr,
11847 const char **functionname_ptr,
11848 unsigned int *line_ptr)
11849{
11850 bfd_boolean found;
11851 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11852 functionname_ptr, line_ptr,
11853 & elf_tdata (abfd)->dwarf2_find_line_info);
11854 return found;
11855}
11856
b49e97c9
TS
11857\f
11858/* When are writing out the .options or .MIPS.options section,
11859 remember the bytes we are writing out, so that we can install the
11860 GP value in the section_processing routine. */
11861
b34976b6 11862bfd_boolean
9719ad41
RS
11863_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11864 const void *location,
11865 file_ptr offset, bfd_size_type count)
b49e97c9 11866{
cc2e31b9 11867 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11868 {
11869 bfd_byte *c;
11870
11871 if (elf_section_data (section) == NULL)
11872 {
11873 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11874 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11875 if (elf_section_data (section) == NULL)
b34976b6 11876 return FALSE;
b49e97c9 11877 }
f0abc2a1 11878 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11879 if (c == NULL)
11880 {
eea6121a 11881 c = bfd_zalloc (abfd, section->size);
b49e97c9 11882 if (c == NULL)
b34976b6 11883 return FALSE;
f0abc2a1 11884 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11885 }
11886
9719ad41 11887 memcpy (c + offset, location, count);
b49e97c9
TS
11888 }
11889
11890 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11891 count);
11892}
11893
11894/* This is almost identical to bfd_generic_get_... except that some
11895 MIPS relocations need to be handled specially. Sigh. */
11896
11897bfd_byte *
9719ad41
RS
11898_bfd_elf_mips_get_relocated_section_contents
11899 (bfd *abfd,
11900 struct bfd_link_info *link_info,
11901 struct bfd_link_order *link_order,
11902 bfd_byte *data,
11903 bfd_boolean relocatable,
11904 asymbol **symbols)
b49e97c9
TS
11905{
11906 /* Get enough memory to hold the stuff */
11907 bfd *input_bfd = link_order->u.indirect.section->owner;
11908 asection *input_section = link_order->u.indirect.section;
eea6121a 11909 bfd_size_type sz;
b49e97c9
TS
11910
11911 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11912 arelent **reloc_vector = NULL;
11913 long reloc_count;
11914
11915 if (reloc_size < 0)
11916 goto error_return;
11917
9719ad41 11918 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11919 if (reloc_vector == NULL && reloc_size != 0)
11920 goto error_return;
11921
11922 /* read in the section */
eea6121a
AM
11923 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11924 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11925 goto error_return;
11926
b49e97c9
TS
11927 reloc_count = bfd_canonicalize_reloc (input_bfd,
11928 input_section,
11929 reloc_vector,
11930 symbols);
11931 if (reloc_count < 0)
11932 goto error_return;
11933
11934 if (reloc_count > 0)
11935 {
11936 arelent **parent;
11937 /* for mips */
11938 int gp_found;
11939 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11940
11941 {
11942 struct bfd_hash_entry *h;
11943 struct bfd_link_hash_entry *lh;
11944 /* Skip all this stuff if we aren't mixing formats. */
11945 if (abfd && input_bfd
11946 && abfd->xvec == input_bfd->xvec)
11947 lh = 0;
11948 else
11949 {
b34976b6 11950 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11951 lh = (struct bfd_link_hash_entry *) h;
11952 }
11953 lookup:
11954 if (lh)
11955 {
11956 switch (lh->type)
11957 {
11958 case bfd_link_hash_undefined:
11959 case bfd_link_hash_undefweak:
11960 case bfd_link_hash_common:
11961 gp_found = 0;
11962 break;
11963 case bfd_link_hash_defined:
11964 case bfd_link_hash_defweak:
11965 gp_found = 1;
11966 gp = lh->u.def.value;
11967 break;
11968 case bfd_link_hash_indirect:
11969 case bfd_link_hash_warning:
11970 lh = lh->u.i.link;
11971 /* @@FIXME ignoring warning for now */
11972 goto lookup;
11973 case bfd_link_hash_new:
11974 default:
11975 abort ();
11976 }
11977 }
11978 else
11979 gp_found = 0;
11980 }
11981 /* end mips */
9719ad41 11982 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11983 {
9719ad41 11984 char *error_message = NULL;
b49e97c9
TS
11985 bfd_reloc_status_type r;
11986
11987 /* Specific to MIPS: Deal with relocation types that require
11988 knowing the gp of the output bfd. */
11989 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11990
8236346f
EC
11991 /* If we've managed to find the gp and have a special
11992 function for the relocation then go ahead, else default
11993 to the generic handling. */
11994 if (gp_found
11995 && (*parent)->howto->special_function
11996 == _bfd_mips_elf32_gprel16_reloc)
11997 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11998 input_section, relocatable,
11999 data, gp);
12000 else
86324f90 12001 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12002 input_section,
12003 relocatable ? abfd : NULL,
12004 &error_message);
b49e97c9 12005
1049f94e 12006 if (relocatable)
b49e97c9
TS
12007 {
12008 asection *os = input_section->output_section;
12009
12010 /* A partial link, so keep the relocs */
12011 os->orelocation[os->reloc_count] = *parent;
12012 os->reloc_count++;
12013 }
12014
12015 if (r != bfd_reloc_ok)
12016 {
12017 switch (r)
12018 {
12019 case bfd_reloc_undefined:
12020 if (!((*link_info->callbacks->undefined_symbol)
12021 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 12022 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
12023 goto error_return;
12024 break;
12025 case bfd_reloc_dangerous:
9719ad41 12026 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
12027 if (!((*link_info->callbacks->reloc_dangerous)
12028 (link_info, error_message, input_bfd, input_section,
12029 (*parent)->address)))
12030 goto error_return;
12031 break;
12032 case bfd_reloc_overflow:
12033 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
12034 (link_info, NULL,
12035 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
12036 (*parent)->howto->name, (*parent)->addend,
12037 input_bfd, input_section, (*parent)->address)))
12038 goto error_return;
12039 break;
12040 case bfd_reloc_outofrange:
12041 default:
12042 abort ();
12043 break;
12044 }
12045
12046 }
12047 }
12048 }
12049 if (reloc_vector != NULL)
12050 free (reloc_vector);
12051 return data;
12052
12053error_return:
12054 if (reloc_vector != NULL)
12055 free (reloc_vector);
12056 return NULL;
12057}
12058\f
df58fc94
RS
12059static bfd_boolean
12060mips_elf_relax_delete_bytes (bfd *abfd,
12061 asection *sec, bfd_vma addr, int count)
12062{
12063 Elf_Internal_Shdr *symtab_hdr;
12064 unsigned int sec_shndx;
12065 bfd_byte *contents;
12066 Elf_Internal_Rela *irel, *irelend;
12067 Elf_Internal_Sym *isym;
12068 Elf_Internal_Sym *isymend;
12069 struct elf_link_hash_entry **sym_hashes;
12070 struct elf_link_hash_entry **end_hashes;
12071 struct elf_link_hash_entry **start_hashes;
12072 unsigned int symcount;
12073
12074 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12075 contents = elf_section_data (sec)->this_hdr.contents;
12076
12077 irel = elf_section_data (sec)->relocs;
12078 irelend = irel + sec->reloc_count;
12079
12080 /* Actually delete the bytes. */
12081 memmove (contents + addr, contents + addr + count,
12082 (size_t) (sec->size - addr - count));
12083 sec->size -= count;
12084
12085 /* Adjust all the relocs. */
12086 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12087 {
12088 /* Get the new reloc address. */
12089 if (irel->r_offset > addr)
12090 irel->r_offset -= count;
12091 }
12092
12093 BFD_ASSERT (addr % 2 == 0);
12094 BFD_ASSERT (count % 2 == 0);
12095
12096 /* Adjust the local symbols defined in this section. */
12097 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12098 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12099 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12100 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12101 isym->st_value -= count;
12102
12103 /* Now adjust the global symbols defined in this section. */
12104 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12105 - symtab_hdr->sh_info);
12106 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12107 end_hashes = sym_hashes + symcount;
12108
12109 for (; sym_hashes < end_hashes; sym_hashes++)
12110 {
12111 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12112
12113 if ((sym_hash->root.type == bfd_link_hash_defined
12114 || sym_hash->root.type == bfd_link_hash_defweak)
12115 && sym_hash->root.u.def.section == sec)
12116 {
2309ddf2 12117 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12118
df58fc94
RS
12119 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12120 value &= MINUS_TWO;
12121 if (value > addr)
12122 sym_hash->root.u.def.value -= count;
12123 }
12124 }
12125
12126 return TRUE;
12127}
12128
12129
12130/* Opcodes needed for microMIPS relaxation as found in
12131 opcodes/micromips-opc.c. */
12132
12133struct opcode_descriptor {
12134 unsigned long match;
12135 unsigned long mask;
12136};
12137
12138/* The $ra register aka $31. */
12139
12140#define RA 31
12141
12142/* 32-bit instruction format register fields. */
12143
12144#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12145#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12146
12147/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12148
12149#define OP16_VALID_REG(r) \
12150 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12151
12152
12153/* 32-bit and 16-bit branches. */
12154
12155static const struct opcode_descriptor b_insns_32[] = {
12156 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12157 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12158 { 0, 0 } /* End marker for find_match(). */
12159};
12160
12161static const struct opcode_descriptor bc_insn_32 =
12162 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12163
12164static const struct opcode_descriptor bz_insn_32 =
12165 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12166
12167static const struct opcode_descriptor bzal_insn_32 =
12168 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12169
12170static const struct opcode_descriptor beq_insn_32 =
12171 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12172
12173static const struct opcode_descriptor b_insn_16 =
12174 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12175
12176static const struct opcode_descriptor bz_insn_16 =
c088dedf 12177 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12178
12179
12180/* 32-bit and 16-bit branch EQ and NE zero. */
12181
12182/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12183 eq and second the ne. This convention is used when replacing a
12184 32-bit BEQ/BNE with the 16-bit version. */
12185
12186#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12187
12188static const struct opcode_descriptor bz_rs_insns_32[] = {
12189 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12190 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12191 { 0, 0 } /* End marker for find_match(). */
12192};
12193
12194static const struct opcode_descriptor bz_rt_insns_32[] = {
12195 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12196 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12197 { 0, 0 } /* End marker for find_match(). */
12198};
12199
12200static const struct opcode_descriptor bzc_insns_32[] = {
12201 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12202 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12203 { 0, 0 } /* End marker for find_match(). */
12204};
12205
12206static const struct opcode_descriptor bz_insns_16[] = {
12207 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12208 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12209 { 0, 0 } /* End marker for find_match(). */
12210};
12211
12212/* Switch between a 5-bit register index and its 3-bit shorthand. */
12213
12214#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12215#define BZ16_REG_FIELD(r) \
12216 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12217
12218
12219/* 32-bit instructions with a delay slot. */
12220
12221static const struct opcode_descriptor jal_insn_32_bd16 =
12222 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12223
12224static const struct opcode_descriptor jal_insn_32_bd32 =
12225 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12226
12227static const struct opcode_descriptor jal_x_insn_32_bd32 =
12228 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12229
12230static const struct opcode_descriptor j_insn_32 =
12231 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12232
12233static const struct opcode_descriptor jalr_insn_32 =
12234 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12235
12236/* This table can be compacted, because no opcode replacement is made. */
12237
12238static const struct opcode_descriptor ds_insns_32_bd16[] = {
12239 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12240
12241 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12242 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12243
12244 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12245 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12246 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12247 { 0, 0 } /* End marker for find_match(). */
12248};
12249
12250/* This table can be compacted, because no opcode replacement is made. */
12251
12252static const struct opcode_descriptor ds_insns_32_bd32[] = {
12253 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12254
12255 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12256 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12257 { 0, 0 } /* End marker for find_match(). */
12258};
12259
12260
12261/* 16-bit instructions with a delay slot. */
12262
12263static const struct opcode_descriptor jalr_insn_16_bd16 =
12264 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12265
12266static const struct opcode_descriptor jalr_insn_16_bd32 =
12267 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12268
12269static const struct opcode_descriptor jr_insn_16 =
12270 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12271
12272#define JR16_REG(opcode) ((opcode) & 0x1f)
12273
12274/* This table can be compacted, because no opcode replacement is made. */
12275
12276static const struct opcode_descriptor ds_insns_16_bd16[] = {
12277 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12278
12279 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12280 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12281 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12282 { 0, 0 } /* End marker for find_match(). */
12283};
12284
12285
12286/* LUI instruction. */
12287
12288static const struct opcode_descriptor lui_insn =
12289 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12290
12291
12292/* ADDIU instruction. */
12293
12294static const struct opcode_descriptor addiu_insn =
12295 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12296
12297static const struct opcode_descriptor addiupc_insn =
12298 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12299
12300#define ADDIUPC_REG_FIELD(r) \
12301 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12302
12303
12304/* Relaxable instructions in a JAL delay slot: MOVE. */
12305
12306/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12307 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12308#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12309#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12310
12311#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12312#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12313
12314static const struct opcode_descriptor move_insns_32[] = {
12315 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12316 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12317 { 0, 0 } /* End marker for find_match(). */
12318};
12319
12320static const struct opcode_descriptor move_insn_16 =
12321 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12322
12323
12324/* NOP instructions. */
12325
12326static const struct opcode_descriptor nop_insn_32 =
12327 { /* "nop", "", */ 0x00000000, 0xffffffff };
12328
12329static const struct opcode_descriptor nop_insn_16 =
12330 { /* "nop", "", */ 0x0c00, 0xffff };
12331
12332
12333/* Instruction match support. */
12334
12335#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12336
12337static int
12338find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12339{
12340 unsigned long indx;
12341
12342 for (indx = 0; insn[indx].mask != 0; indx++)
12343 if (MATCH (opcode, insn[indx]))
12344 return indx;
12345
12346 return -1;
12347}
12348
12349
12350/* Branch and delay slot decoding support. */
12351
12352/* If PTR points to what *might* be a 16-bit branch or jump, then
12353 return the minimum length of its delay slot, otherwise return 0.
12354 Non-zero results are not definitive as we might be checking against
12355 the second half of another instruction. */
12356
12357static int
12358check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12359{
12360 unsigned long opcode;
12361 int bdsize;
12362
12363 opcode = bfd_get_16 (abfd, ptr);
12364 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12365 /* 16-bit branch/jump with a 32-bit delay slot. */
12366 bdsize = 4;
12367 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12368 || find_match (opcode, ds_insns_16_bd16) >= 0)
12369 /* 16-bit branch/jump with a 16-bit delay slot. */
12370 bdsize = 2;
12371 else
12372 /* No delay slot. */
12373 bdsize = 0;
12374
12375 return bdsize;
12376}
12377
12378/* If PTR points to what *might* be a 32-bit branch or jump, then
12379 return the minimum length of its delay slot, otherwise return 0.
12380 Non-zero results are not definitive as we might be checking against
12381 the second half of another instruction. */
12382
12383static int
12384check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12385{
12386 unsigned long opcode;
12387 int bdsize;
12388
d21911ea 12389 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12390 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12391 /* 32-bit branch/jump with a 32-bit delay slot. */
12392 bdsize = 4;
12393 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12394 /* 32-bit branch/jump with a 16-bit delay slot. */
12395 bdsize = 2;
12396 else
12397 /* No delay slot. */
12398 bdsize = 0;
12399
12400 return bdsize;
12401}
12402
12403/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12404 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12405
12406static bfd_boolean
12407check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12408{
12409 unsigned long opcode;
12410
12411 opcode = bfd_get_16 (abfd, ptr);
12412 if (MATCH (opcode, b_insn_16)
12413 /* B16 */
12414 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12415 /* JR16 */
12416 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12417 /* BEQZ16, BNEZ16 */
12418 || (MATCH (opcode, jalr_insn_16_bd32)
12419 /* JALR16 */
12420 && reg != JR16_REG (opcode) && reg != RA))
12421 return TRUE;
12422
12423 return FALSE;
12424}
12425
12426/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12427 then return TRUE, otherwise FALSE. */
12428
f41e5fcc 12429static bfd_boolean
df58fc94
RS
12430check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12431{
12432 unsigned long opcode;
12433
d21911ea 12434 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12435 if (MATCH (opcode, j_insn_32)
12436 /* J */
12437 || MATCH (opcode, bc_insn_32)
12438 /* BC1F, BC1T, BC2F, BC2T */
12439 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12440 /* JAL, JALX */
12441 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12442 /* BGEZ, BGTZ, BLEZ, BLTZ */
12443 || (MATCH (opcode, bzal_insn_32)
12444 /* BGEZAL, BLTZAL */
12445 && reg != OP32_SREG (opcode) && reg != RA)
12446 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12447 /* JALR, JALR.HB, BEQ, BNE */
12448 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12449 return TRUE;
12450
12451 return FALSE;
12452}
12453
80cab405
MR
12454/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12455 IRELEND) at OFFSET indicate that there must be a compact branch there,
12456 then return TRUE, otherwise FALSE. */
df58fc94
RS
12457
12458static bfd_boolean
80cab405
MR
12459check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12460 const Elf_Internal_Rela *internal_relocs,
12461 const Elf_Internal_Rela *irelend)
df58fc94 12462{
80cab405
MR
12463 const Elf_Internal_Rela *irel;
12464 unsigned long opcode;
12465
d21911ea 12466 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12467 if (find_match (opcode, bzc_insns_32) < 0)
12468 return FALSE;
df58fc94
RS
12469
12470 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12471 if (irel->r_offset == offset
12472 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12473 return TRUE;
12474
df58fc94
RS
12475 return FALSE;
12476}
80cab405
MR
12477
12478/* Bitsize checking. */
12479#define IS_BITSIZE(val, N) \
12480 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12481 - (1ULL << ((N) - 1))) == (val))
12482
df58fc94
RS
12483\f
12484bfd_boolean
12485_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12486 struct bfd_link_info *link_info,
12487 bfd_boolean *again)
12488{
12489 Elf_Internal_Shdr *symtab_hdr;
12490 Elf_Internal_Rela *internal_relocs;
12491 Elf_Internal_Rela *irel, *irelend;
12492 bfd_byte *contents = NULL;
12493 Elf_Internal_Sym *isymbuf = NULL;
12494
12495 /* Assume nothing changes. */
12496 *again = FALSE;
12497
12498 /* We don't have to do anything for a relocatable link, if
12499 this section does not have relocs, or if this is not a
12500 code section. */
12501
12502 if (link_info->relocatable
12503 || (sec->flags & SEC_RELOC) == 0
12504 || sec->reloc_count == 0
12505 || (sec->flags & SEC_CODE) == 0)
12506 return TRUE;
12507
12508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12509
12510 /* Get a copy of the native relocations. */
12511 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12512 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12513 link_info->keep_memory));
12514 if (internal_relocs == NULL)
12515 goto error_return;
12516
12517 /* Walk through them looking for relaxing opportunities. */
12518 irelend = internal_relocs + sec->reloc_count;
12519 for (irel = internal_relocs; irel < irelend; irel++)
12520 {
12521 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12522 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12523 bfd_boolean target_is_micromips_code_p;
12524 unsigned long opcode;
12525 bfd_vma symval;
12526 bfd_vma pcrval;
2309ddf2 12527 bfd_byte *ptr;
df58fc94
RS
12528 int fndopc;
12529
12530 /* The number of bytes to delete for relaxation and from where
12531 to delete these bytes starting at irel->r_offset. */
12532 int delcnt = 0;
12533 int deloff = 0;
12534
12535 /* If this isn't something that can be relaxed, then ignore
12536 this reloc. */
12537 if (r_type != R_MICROMIPS_HI16
12538 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12539 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12540 continue;
12541
12542 /* Get the section contents if we haven't done so already. */
12543 if (contents == NULL)
12544 {
12545 /* Get cached copy if it exists. */
12546 if (elf_section_data (sec)->this_hdr.contents != NULL)
12547 contents = elf_section_data (sec)->this_hdr.contents;
12548 /* Go get them off disk. */
12549 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12550 goto error_return;
12551 }
2309ddf2 12552 ptr = contents + irel->r_offset;
df58fc94
RS
12553
12554 /* Read this BFD's local symbols if we haven't done so already. */
12555 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12556 {
12557 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12558 if (isymbuf == NULL)
12559 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12560 symtab_hdr->sh_info, 0,
12561 NULL, NULL, NULL);
12562 if (isymbuf == NULL)
12563 goto error_return;
12564 }
12565
12566 /* Get the value of the symbol referred to by the reloc. */
12567 if (r_symndx < symtab_hdr->sh_info)
12568 {
12569 /* A local symbol. */
12570 Elf_Internal_Sym *isym;
12571 asection *sym_sec;
12572
12573 isym = isymbuf + r_symndx;
12574 if (isym->st_shndx == SHN_UNDEF)
12575 sym_sec = bfd_und_section_ptr;
12576 else if (isym->st_shndx == SHN_ABS)
12577 sym_sec = bfd_abs_section_ptr;
12578 else if (isym->st_shndx == SHN_COMMON)
12579 sym_sec = bfd_com_section_ptr;
12580 else
12581 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12582 symval = (isym->st_value
12583 + sym_sec->output_section->vma
12584 + sym_sec->output_offset);
12585 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12586 }
12587 else
12588 {
12589 unsigned long indx;
12590 struct elf_link_hash_entry *h;
12591
12592 /* An external symbol. */
12593 indx = r_symndx - symtab_hdr->sh_info;
12594 h = elf_sym_hashes (abfd)[indx];
12595 BFD_ASSERT (h != NULL);
12596
12597 if (h->root.type != bfd_link_hash_defined
12598 && h->root.type != bfd_link_hash_defweak)
12599 /* This appears to be a reference to an undefined
12600 symbol. Just ignore it -- it will be caught by the
12601 regular reloc processing. */
12602 continue;
12603
12604 symval = (h->root.u.def.value
12605 + h->root.u.def.section->output_section->vma
12606 + h->root.u.def.section->output_offset);
12607 target_is_micromips_code_p = (!h->needs_plt
12608 && ELF_ST_IS_MICROMIPS (h->other));
12609 }
12610
12611
12612 /* For simplicity of coding, we are going to modify the
12613 section contents, the section relocs, and the BFD symbol
12614 table. We must tell the rest of the code not to free up this
12615 information. It would be possible to instead create a table
12616 of changes which have to be made, as is done in coff-mips.c;
12617 that would be more work, but would require less memory when
12618 the linker is run. */
12619
12620 /* Only 32-bit instructions relaxed. */
12621 if (irel->r_offset + 4 > sec->size)
12622 continue;
12623
d21911ea 12624 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12625
12626 /* This is the pc-relative distance from the instruction the
12627 relocation is applied to, to the symbol referred. */
12628 pcrval = (symval
12629 - (sec->output_section->vma + sec->output_offset)
12630 - irel->r_offset);
12631
12632 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12633 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12634 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12635
12636 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12637
12638 where pcrval has first to be adjusted to apply against the LO16
12639 location (we make the adjustment later on, when we have figured
12640 out the offset). */
12641 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12642 {
80cab405 12643 bfd_boolean bzc = FALSE;
df58fc94
RS
12644 unsigned long nextopc;
12645 unsigned long reg;
12646 bfd_vma offset;
12647
12648 /* Give up if the previous reloc was a HI16 against this symbol
12649 too. */
12650 if (irel > internal_relocs
12651 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12652 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12653 continue;
12654
12655 /* Or if the next reloc is not a LO16 against this symbol. */
12656 if (irel + 1 >= irelend
12657 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12658 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12659 continue;
12660
12661 /* Or if the second next reloc is a LO16 against this symbol too. */
12662 if (irel + 2 >= irelend
12663 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12664 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12665 continue;
12666
80cab405
MR
12667 /* See if the LUI instruction *might* be in a branch delay slot.
12668 We check whether what looks like a 16-bit branch or jump is
12669 actually an immediate argument to a compact branch, and let
12670 it through if so. */
df58fc94 12671 if (irel->r_offset >= 2
2309ddf2 12672 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12673 && !(irel->r_offset >= 4
80cab405
MR
12674 && (bzc = check_relocated_bzc (abfd,
12675 ptr - 4, irel->r_offset - 4,
12676 internal_relocs, irelend))))
df58fc94
RS
12677 continue;
12678 if (irel->r_offset >= 4
80cab405 12679 && !bzc
2309ddf2 12680 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12681 continue;
12682
12683 reg = OP32_SREG (opcode);
12684
12685 /* We only relax adjacent instructions or ones separated with
12686 a branch or jump that has a delay slot. The branch or jump
12687 must not fiddle with the register used to hold the address.
12688 Subtract 4 for the LUI itself. */
12689 offset = irel[1].r_offset - irel[0].r_offset;
12690 switch (offset - 4)
12691 {
12692 case 0:
12693 break;
12694 case 2:
2309ddf2 12695 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12696 break;
12697 continue;
12698 case 4:
2309ddf2 12699 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12700 break;
12701 continue;
12702 default:
12703 continue;
12704 }
12705
d21911ea 12706 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12707
12708 /* Give up unless the same register is used with both
12709 relocations. */
12710 if (OP32_SREG (nextopc) != reg)
12711 continue;
12712
12713 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12714 and rounding up to take masking of the two LSBs into account. */
12715 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12716
12717 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12718 if (IS_BITSIZE (symval, 16))
12719 {
12720 /* Fix the relocation's type. */
12721 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12722
12723 /* Instructions using R_MICROMIPS_LO16 have the base or
12724 source register in bits 20:16. This register becomes $0
12725 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12726 nextopc &= ~0x001f0000;
12727 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12728 contents + irel[1].r_offset);
12729 }
12730
12731 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12732 We add 4 to take LUI deletion into account while checking
12733 the PC-relative distance. */
12734 else if (symval % 4 == 0
12735 && IS_BITSIZE (pcrval + 4, 25)
12736 && MATCH (nextopc, addiu_insn)
12737 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12738 && OP16_VALID_REG (OP32_TREG (nextopc)))
12739 {
12740 /* Fix the relocation's type. */
12741 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12742
12743 /* Replace ADDIU with the ADDIUPC version. */
12744 nextopc = (addiupc_insn.match
12745 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12746
d21911ea
MR
12747 bfd_put_micromips_32 (abfd, nextopc,
12748 contents + irel[1].r_offset);
df58fc94
RS
12749 }
12750
12751 /* Can't do anything, give up, sigh... */
12752 else
12753 continue;
12754
12755 /* Fix the relocation's type. */
12756 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12757
12758 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12759 delcnt = 4;
12760 deloff = 0;
12761 }
12762
12763 /* Compact branch relaxation -- due to the multitude of macros
12764 employed by the compiler/assembler, compact branches are not
12765 always generated. Obviously, this can/will be fixed elsewhere,
12766 but there is no drawback in double checking it here. */
12767 else if (r_type == R_MICROMIPS_PC16_S1
12768 && irel->r_offset + 5 < sec->size
12769 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12770 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12771 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12772 {
12773 unsigned long reg;
12774
12775 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12776
12777 /* Replace BEQZ/BNEZ with the compact version. */
12778 opcode = (bzc_insns_32[fndopc].match
12779 | BZC32_REG_FIELD (reg)
12780 | (opcode & 0xffff)); /* Addend value. */
12781
d21911ea 12782 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12783
12784 /* Delete the 16-bit delay slot NOP: two bytes from
12785 irel->offset + 4. */
12786 delcnt = 2;
12787 deloff = 4;
12788 }
12789
12790 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12791 to check the distance from the next instruction, so subtract 2. */
12792 else if (r_type == R_MICROMIPS_PC16_S1
12793 && IS_BITSIZE (pcrval - 2, 11)
12794 && find_match (opcode, b_insns_32) >= 0)
12795 {
12796 /* Fix the relocation's type. */
12797 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12798
a8685210 12799 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12800 bfd_put_16 (abfd,
12801 (b_insn_16.match
12802 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12803 ptr);
df58fc94
RS
12804
12805 /* Delete 2 bytes from irel->r_offset + 2. */
12806 delcnt = 2;
12807 deloff = 2;
12808 }
12809
12810 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12811 to check the distance from the next instruction, so subtract 2. */
12812 else if (r_type == R_MICROMIPS_PC16_S1
12813 && IS_BITSIZE (pcrval - 2, 8)
12814 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12815 && OP16_VALID_REG (OP32_SREG (opcode)))
12816 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12817 && OP16_VALID_REG (OP32_TREG (opcode)))))
12818 {
12819 unsigned long reg;
12820
12821 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12822
12823 /* Fix the relocation's type. */
12824 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12825
a8685210 12826 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12827 bfd_put_16 (abfd,
12828 (bz_insns_16[fndopc].match
12829 | BZ16_REG_FIELD (reg)
12830 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12831 ptr);
df58fc94
RS
12832
12833 /* Delete 2 bytes from irel->r_offset + 2. */
12834 delcnt = 2;
12835 deloff = 2;
12836 }
12837
12838 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12839 else if (r_type == R_MICROMIPS_26_S1
12840 && target_is_micromips_code_p
12841 && irel->r_offset + 7 < sec->size
12842 && MATCH (opcode, jal_insn_32_bd32))
12843 {
12844 unsigned long n32opc;
12845 bfd_boolean relaxed = FALSE;
12846
d21911ea 12847 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12848
12849 if (MATCH (n32opc, nop_insn_32))
12850 {
12851 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12852 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12853
12854 relaxed = TRUE;
12855 }
12856 else if (find_match (n32opc, move_insns_32) >= 0)
12857 {
12858 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12859 bfd_put_16 (abfd,
12860 (move_insn_16.match
12861 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12862 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12863 ptr + 4);
df58fc94
RS
12864
12865 relaxed = TRUE;
12866 }
12867 /* Other 32-bit instructions relaxable to 16-bit
12868 instructions will be handled here later. */
12869
12870 if (relaxed)
12871 {
12872 /* JAL with 32-bit delay slot that is changed to a JALS
12873 with 16-bit delay slot. */
d21911ea 12874 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12875
12876 /* Delete 2 bytes from irel->r_offset + 6. */
12877 delcnt = 2;
12878 deloff = 6;
12879 }
12880 }
12881
12882 if (delcnt != 0)
12883 {
12884 /* Note that we've changed the relocs, section contents, etc. */
12885 elf_section_data (sec)->relocs = internal_relocs;
12886 elf_section_data (sec)->this_hdr.contents = contents;
12887 symtab_hdr->contents = (unsigned char *) isymbuf;
12888
12889 /* Delete bytes depending on the delcnt and deloff. */
12890 if (!mips_elf_relax_delete_bytes (abfd, sec,
12891 irel->r_offset + deloff, delcnt))
12892 goto error_return;
12893
12894 /* That will change things, so we should relax again.
12895 Note that this is not required, and it may be slow. */
12896 *again = TRUE;
12897 }
12898 }
12899
12900 if (isymbuf != NULL
12901 && symtab_hdr->contents != (unsigned char *) isymbuf)
12902 {
12903 if (! link_info->keep_memory)
12904 free (isymbuf);
12905 else
12906 {
12907 /* Cache the symbols for elf_link_input_bfd. */
12908 symtab_hdr->contents = (unsigned char *) isymbuf;
12909 }
12910 }
12911
12912 if (contents != NULL
12913 && elf_section_data (sec)->this_hdr.contents != contents)
12914 {
12915 if (! link_info->keep_memory)
12916 free (contents);
12917 else
12918 {
12919 /* Cache the section contents for elf_link_input_bfd. */
12920 elf_section_data (sec)->this_hdr.contents = contents;
12921 }
12922 }
12923
12924 if (internal_relocs != NULL
12925 && elf_section_data (sec)->relocs != internal_relocs)
12926 free (internal_relocs);
12927
12928 return TRUE;
12929
12930 error_return:
12931 if (isymbuf != NULL
12932 && symtab_hdr->contents != (unsigned char *) isymbuf)
12933 free (isymbuf);
12934 if (contents != NULL
12935 && elf_section_data (sec)->this_hdr.contents != contents)
12936 free (contents);
12937 if (internal_relocs != NULL
12938 && elf_section_data (sec)->relocs != internal_relocs)
12939 free (internal_relocs);
12940
12941 return FALSE;
12942}
12943\f
b49e97c9
TS
12944/* Create a MIPS ELF linker hash table. */
12945
12946struct bfd_link_hash_table *
9719ad41 12947_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12948{
12949 struct mips_elf_link_hash_table *ret;
12950 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12951
9719ad41
RS
12952 ret = bfd_malloc (amt);
12953 if (ret == NULL)
b49e97c9
TS
12954 return NULL;
12955
66eb6687
AM
12956 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12957 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12958 sizeof (struct mips_elf_link_hash_entry),
12959 MIPS_ELF_DATA))
b49e97c9 12960 {
e2d34d7d 12961 free (ret);
b49e97c9
TS
12962 return NULL;
12963 }
12964
12965#if 0
12966 /* We no longer use this. */
12967 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12968 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12969#endif
12970 ret->procedure_count = 0;
12971 ret->compact_rel_size = 0;
b34976b6 12972 ret->use_rld_obj_head = FALSE;
b4082c70 12973 ret->rld_symbol = NULL;
b34976b6 12974 ret->mips16_stubs_seen = FALSE;
861fb55a 12975 ret->use_plts_and_copy_relocs = FALSE;
0a44bf69 12976 ret->is_vxworks = FALSE;
0e53d9da 12977 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
12978 ret->srelbss = NULL;
12979 ret->sdynbss = NULL;
12980 ret->srelplt = NULL;
12981 ret->srelplt2 = NULL;
12982 ret->sgotplt = NULL;
12983 ret->splt = NULL;
4e41d0d7 12984 ret->sstubs = NULL;
a8028dd0
RS
12985 ret->sgot = NULL;
12986 ret->got_info = NULL;
0a44bf69
RS
12987 ret->plt_header_size = 0;
12988 ret->plt_entry_size = 0;
33bb52fb 12989 ret->lazy_stub_count = 0;
5108fc1b 12990 ret->function_stub_size = 0;
861fb55a
DJ
12991 ret->strampoline = NULL;
12992 ret->la25_stubs = NULL;
12993 ret->add_stub_section = NULL;
b49e97c9
TS
12994
12995 return &ret->root.root;
12996}
0a44bf69
RS
12997
12998/* Likewise, but indicate that the target is VxWorks. */
12999
13000struct bfd_link_hash_table *
13001_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13002{
13003 struct bfd_link_hash_table *ret;
13004
13005 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13006 if (ret)
13007 {
13008 struct mips_elf_link_hash_table *htab;
13009
13010 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13011 htab->use_plts_and_copy_relocs = TRUE;
13012 htab->is_vxworks = TRUE;
0a44bf69
RS
13013 }
13014 return ret;
13015}
861fb55a
DJ
13016
13017/* A function that the linker calls if we are allowed to use PLTs
13018 and copy relocs. */
13019
13020void
13021_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13022{
13023 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13024}
b49e97c9
TS
13025\f
13026/* We need to use a special link routine to handle the .reginfo and
13027 the .mdebug sections. We need to merge all instances of these
13028 sections together, not write them all out sequentially. */
13029
b34976b6 13030bfd_boolean
9719ad41 13031_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 13032{
b49e97c9
TS
13033 asection *o;
13034 struct bfd_link_order *p;
13035 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13036 asection *rtproc_sec;
13037 Elf32_RegInfo reginfo;
13038 struct ecoff_debug_info debug;
861fb55a 13039 struct mips_htab_traverse_info hti;
7a2a6943
NC
13040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13041 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 13042 HDRR *symhdr = &debug.symbolic_header;
9719ad41 13043 void *mdebug_handle = NULL;
b49e97c9
TS
13044 asection *s;
13045 EXTR esym;
13046 unsigned int i;
13047 bfd_size_type amt;
0a44bf69 13048 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
13049
13050 static const char * const secname[] =
13051 {
13052 ".text", ".init", ".fini", ".data",
13053 ".rodata", ".sdata", ".sbss", ".bss"
13054 };
13055 static const int sc[] =
13056 {
13057 scText, scInit, scFini, scData,
13058 scRData, scSData, scSBss, scBss
13059 };
13060
d4596a51
RS
13061 /* Sort the dynamic symbols so that those with GOT entries come after
13062 those without. */
0a44bf69 13063 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
13064 BFD_ASSERT (htab != NULL);
13065
d4596a51
RS
13066 if (!mips_elf_sort_hash_table (abfd, info))
13067 return FALSE;
b49e97c9 13068
861fb55a
DJ
13069 /* Create any scheduled LA25 stubs. */
13070 hti.info = info;
13071 hti.output_bfd = abfd;
13072 hti.error = FALSE;
13073 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13074 if (hti.error)
13075 return FALSE;
13076
b49e97c9
TS
13077 /* Get a value for the GP register. */
13078 if (elf_gp (abfd) == 0)
13079 {
13080 struct bfd_link_hash_entry *h;
13081
b34976b6 13082 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 13083 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
13084 elf_gp (abfd) = (h->u.def.value
13085 + h->u.def.section->output_section->vma
13086 + h->u.def.section->output_offset);
0a44bf69
RS
13087 else if (htab->is_vxworks
13088 && (h = bfd_link_hash_lookup (info->hash,
13089 "_GLOBAL_OFFSET_TABLE_",
13090 FALSE, FALSE, TRUE))
13091 && h->type == bfd_link_hash_defined)
13092 elf_gp (abfd) = (h->u.def.section->output_section->vma
13093 + h->u.def.section->output_offset
13094 + h->u.def.value);
1049f94e 13095 else if (info->relocatable)
b49e97c9
TS
13096 {
13097 bfd_vma lo = MINUS_ONE;
13098
13099 /* Find the GP-relative section with the lowest offset. */
9719ad41 13100 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13101 if (o->vma < lo
13102 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13103 lo = o->vma;
13104
13105 /* And calculate GP relative to that. */
0a44bf69 13106 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
13107 }
13108 else
13109 {
13110 /* If the relocate_section function needs to do a reloc
13111 involving the GP value, it should make a reloc_dangerous
13112 callback to warn that GP is not defined. */
13113 }
13114 }
13115
13116 /* Go through the sections and collect the .reginfo and .mdebug
13117 information. */
13118 reginfo_sec = NULL;
13119 mdebug_sec = NULL;
13120 gptab_data_sec = NULL;
13121 gptab_bss_sec = NULL;
9719ad41 13122 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13123 {
13124 if (strcmp (o->name, ".reginfo") == 0)
13125 {
13126 memset (&reginfo, 0, sizeof reginfo);
13127
13128 /* We have found the .reginfo section in the output file.
13129 Look through all the link_orders comprising it and merge
13130 the information together. */
8423293d 13131 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13132 {
13133 asection *input_section;
13134 bfd *input_bfd;
13135 Elf32_External_RegInfo ext;
13136 Elf32_RegInfo sub;
13137
13138 if (p->type != bfd_indirect_link_order)
13139 {
13140 if (p->type == bfd_data_link_order)
13141 continue;
13142 abort ();
13143 }
13144
13145 input_section = p->u.indirect.section;
13146 input_bfd = input_section->owner;
13147
b49e97c9 13148 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13149 &ext, 0, sizeof ext))
b34976b6 13150 return FALSE;
b49e97c9
TS
13151
13152 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13153
13154 reginfo.ri_gprmask |= sub.ri_gprmask;
13155 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13156 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13157 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13158 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13159
13160 /* ri_gp_value is set by the function
13161 mips_elf32_section_processing when the section is
13162 finally written out. */
13163
13164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13165 elf_link_input_bfd ignores this section. */
13166 input_section->flags &= ~SEC_HAS_CONTENTS;
13167 }
13168
13169 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13170 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13171
13172 /* Skip this section later on (I don't think this currently
13173 matters, but someday it might). */
8423293d 13174 o->map_head.link_order = NULL;
b49e97c9
TS
13175
13176 reginfo_sec = o;
13177 }
13178
13179 if (strcmp (o->name, ".mdebug") == 0)
13180 {
13181 struct extsym_info einfo;
13182 bfd_vma last;
13183
13184 /* We have found the .mdebug section in the output file.
13185 Look through all the link_orders comprising it and merge
13186 the information together. */
13187 symhdr->magic = swap->sym_magic;
13188 /* FIXME: What should the version stamp be? */
13189 symhdr->vstamp = 0;
13190 symhdr->ilineMax = 0;
13191 symhdr->cbLine = 0;
13192 symhdr->idnMax = 0;
13193 symhdr->ipdMax = 0;
13194 symhdr->isymMax = 0;
13195 symhdr->ioptMax = 0;
13196 symhdr->iauxMax = 0;
13197 symhdr->issMax = 0;
13198 symhdr->issExtMax = 0;
13199 symhdr->ifdMax = 0;
13200 symhdr->crfd = 0;
13201 symhdr->iextMax = 0;
13202
13203 /* We accumulate the debugging information itself in the
13204 debug_info structure. */
13205 debug.line = NULL;
13206 debug.external_dnr = NULL;
13207 debug.external_pdr = NULL;
13208 debug.external_sym = NULL;
13209 debug.external_opt = NULL;
13210 debug.external_aux = NULL;
13211 debug.ss = NULL;
13212 debug.ssext = debug.ssext_end = NULL;
13213 debug.external_fdr = NULL;
13214 debug.external_rfd = NULL;
13215 debug.external_ext = debug.external_ext_end = NULL;
13216
13217 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13218 if (mdebug_handle == NULL)
b34976b6 13219 return FALSE;
b49e97c9
TS
13220
13221 esym.jmptbl = 0;
13222 esym.cobol_main = 0;
13223 esym.weakext = 0;
13224 esym.reserved = 0;
13225 esym.ifd = ifdNil;
13226 esym.asym.iss = issNil;
13227 esym.asym.st = stLocal;
13228 esym.asym.reserved = 0;
13229 esym.asym.index = indexNil;
13230 last = 0;
13231 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13232 {
13233 esym.asym.sc = sc[i];
13234 s = bfd_get_section_by_name (abfd, secname[i]);
13235 if (s != NULL)
13236 {
13237 esym.asym.value = s->vma;
eea6121a 13238 last = s->vma + s->size;
b49e97c9
TS
13239 }
13240 else
13241 esym.asym.value = last;
13242 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13243 secname[i], &esym))
b34976b6 13244 return FALSE;
b49e97c9
TS
13245 }
13246
8423293d 13247 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13248 {
13249 asection *input_section;
13250 bfd *input_bfd;
13251 const struct ecoff_debug_swap *input_swap;
13252 struct ecoff_debug_info input_debug;
13253 char *eraw_src;
13254 char *eraw_end;
13255
13256 if (p->type != bfd_indirect_link_order)
13257 {
13258 if (p->type == bfd_data_link_order)
13259 continue;
13260 abort ();
13261 }
13262
13263 input_section = p->u.indirect.section;
13264 input_bfd = input_section->owner;
13265
d5eaccd7 13266 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13267 {
13268 /* I don't know what a non MIPS ELF bfd would be
13269 doing with a .mdebug section, but I don't really
13270 want to deal with it. */
13271 continue;
13272 }
13273
13274 input_swap = (get_elf_backend_data (input_bfd)
13275 ->elf_backend_ecoff_debug_swap);
13276
eea6121a 13277 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13278
13279 /* The ECOFF linking code expects that we have already
13280 read in the debugging information and set up an
13281 ecoff_debug_info structure, so we do that now. */
13282 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13283 &input_debug))
b34976b6 13284 return FALSE;
b49e97c9
TS
13285
13286 if (! (bfd_ecoff_debug_accumulate
13287 (mdebug_handle, abfd, &debug, swap, input_bfd,
13288 &input_debug, input_swap, info)))
b34976b6 13289 return FALSE;
b49e97c9
TS
13290
13291 /* Loop through the external symbols. For each one with
13292 interesting information, try to find the symbol in
13293 the linker global hash table and save the information
13294 for the output external symbols. */
13295 eraw_src = input_debug.external_ext;
13296 eraw_end = (eraw_src
13297 + (input_debug.symbolic_header.iextMax
13298 * input_swap->external_ext_size));
13299 for (;
13300 eraw_src < eraw_end;
13301 eraw_src += input_swap->external_ext_size)
13302 {
13303 EXTR ext;
13304 const char *name;
13305 struct mips_elf_link_hash_entry *h;
13306
9719ad41 13307 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13308 if (ext.asym.sc == scNil
13309 || ext.asym.sc == scUndefined
13310 || ext.asym.sc == scSUndefined)
13311 continue;
13312
13313 name = input_debug.ssext + ext.asym.iss;
13314 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13315 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13316 if (h == NULL || h->esym.ifd != -2)
13317 continue;
13318
13319 if (ext.ifd != -1)
13320 {
13321 BFD_ASSERT (ext.ifd
13322 < input_debug.symbolic_header.ifdMax);
13323 ext.ifd = input_debug.ifdmap[ext.ifd];
13324 }
13325
13326 h->esym = ext;
13327 }
13328
13329 /* Free up the information we just read. */
13330 free (input_debug.line);
13331 free (input_debug.external_dnr);
13332 free (input_debug.external_pdr);
13333 free (input_debug.external_sym);
13334 free (input_debug.external_opt);
13335 free (input_debug.external_aux);
13336 free (input_debug.ss);
13337 free (input_debug.ssext);
13338 free (input_debug.external_fdr);
13339 free (input_debug.external_rfd);
13340 free (input_debug.external_ext);
13341
13342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13343 elf_link_input_bfd ignores this section. */
13344 input_section->flags &= ~SEC_HAS_CONTENTS;
13345 }
13346
13347 if (SGI_COMPAT (abfd) && info->shared)
13348 {
13349 /* Create .rtproc section. */
87e0a731 13350 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13351 if (rtproc_sec == NULL)
13352 {
13353 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13354 | SEC_LINKER_CREATED | SEC_READONLY);
13355
87e0a731
AM
13356 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13357 ".rtproc",
13358 flags);
b49e97c9 13359 if (rtproc_sec == NULL
b49e97c9 13360 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13361 return FALSE;
b49e97c9
TS
13362 }
13363
13364 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13365 info, rtproc_sec,
13366 &debug))
b34976b6 13367 return FALSE;
b49e97c9
TS
13368 }
13369
13370 /* Build the external symbol information. */
13371 einfo.abfd = abfd;
13372 einfo.info = info;
13373 einfo.debug = &debug;
13374 einfo.swap = swap;
b34976b6 13375 einfo.failed = FALSE;
b49e97c9 13376 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13377 mips_elf_output_extsym, &einfo);
b49e97c9 13378 if (einfo.failed)
b34976b6 13379 return FALSE;
b49e97c9
TS
13380
13381 /* Set the size of the .mdebug section. */
eea6121a 13382 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13383
13384 /* Skip this section later on (I don't think this currently
13385 matters, but someday it might). */
8423293d 13386 o->map_head.link_order = NULL;
b49e97c9
TS
13387
13388 mdebug_sec = o;
13389 }
13390
0112cd26 13391 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13392 {
13393 const char *subname;
13394 unsigned int c;
13395 Elf32_gptab *tab;
13396 Elf32_External_gptab *ext_tab;
13397 unsigned int j;
13398
13399 /* The .gptab.sdata and .gptab.sbss sections hold
13400 information describing how the small data area would
13401 change depending upon the -G switch. These sections
13402 not used in executables files. */
1049f94e 13403 if (! info->relocatable)
b49e97c9 13404 {
8423293d 13405 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13406 {
13407 asection *input_section;
13408
13409 if (p->type != bfd_indirect_link_order)
13410 {
13411 if (p->type == bfd_data_link_order)
13412 continue;
13413 abort ();
13414 }
13415
13416 input_section = p->u.indirect.section;
13417
13418 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13419 elf_link_input_bfd ignores this section. */
13420 input_section->flags &= ~SEC_HAS_CONTENTS;
13421 }
13422
13423 /* Skip this section later on (I don't think this
13424 currently matters, but someday it might). */
8423293d 13425 o->map_head.link_order = NULL;
b49e97c9
TS
13426
13427 /* Really remove the section. */
5daa8fe7 13428 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13429 --abfd->section_count;
13430
13431 continue;
13432 }
13433
13434 /* There is one gptab for initialized data, and one for
13435 uninitialized data. */
13436 if (strcmp (o->name, ".gptab.sdata") == 0)
13437 gptab_data_sec = o;
13438 else if (strcmp (o->name, ".gptab.sbss") == 0)
13439 gptab_bss_sec = o;
13440 else
13441 {
13442 (*_bfd_error_handler)
13443 (_("%s: illegal section name `%s'"),
13444 bfd_get_filename (abfd), o->name);
13445 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13446 return FALSE;
b49e97c9
TS
13447 }
13448
13449 /* The linker script always combines .gptab.data and
13450 .gptab.sdata into .gptab.sdata, and likewise for
13451 .gptab.bss and .gptab.sbss. It is possible that there is
13452 no .sdata or .sbss section in the output file, in which
13453 case we must change the name of the output section. */
13454 subname = o->name + sizeof ".gptab" - 1;
13455 if (bfd_get_section_by_name (abfd, subname) == NULL)
13456 {
13457 if (o == gptab_data_sec)
13458 o->name = ".gptab.data";
13459 else
13460 o->name = ".gptab.bss";
13461 subname = o->name + sizeof ".gptab" - 1;
13462 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13463 }
13464
13465 /* Set up the first entry. */
13466 c = 1;
13467 amt = c * sizeof (Elf32_gptab);
9719ad41 13468 tab = bfd_malloc (amt);
b49e97c9 13469 if (tab == NULL)
b34976b6 13470 return FALSE;
b49e97c9
TS
13471 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13472 tab[0].gt_header.gt_unused = 0;
13473
13474 /* Combine the input sections. */
8423293d 13475 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13476 {
13477 asection *input_section;
13478 bfd *input_bfd;
13479 bfd_size_type size;
13480 unsigned long last;
13481 bfd_size_type gpentry;
13482
13483 if (p->type != bfd_indirect_link_order)
13484 {
13485 if (p->type == bfd_data_link_order)
13486 continue;
13487 abort ();
13488 }
13489
13490 input_section = p->u.indirect.section;
13491 input_bfd = input_section->owner;
13492
13493 /* Combine the gptab entries for this input section one
13494 by one. We know that the input gptab entries are
13495 sorted by ascending -G value. */
eea6121a 13496 size = input_section->size;
b49e97c9
TS
13497 last = 0;
13498 for (gpentry = sizeof (Elf32_External_gptab);
13499 gpentry < size;
13500 gpentry += sizeof (Elf32_External_gptab))
13501 {
13502 Elf32_External_gptab ext_gptab;
13503 Elf32_gptab int_gptab;
13504 unsigned long val;
13505 unsigned long add;
b34976b6 13506 bfd_boolean exact;
b49e97c9
TS
13507 unsigned int look;
13508
13509 if (! (bfd_get_section_contents
9719ad41
RS
13510 (input_bfd, input_section, &ext_gptab, gpentry,
13511 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13512 {
13513 free (tab);
b34976b6 13514 return FALSE;
b49e97c9
TS
13515 }
13516
13517 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13518 &int_gptab);
13519 val = int_gptab.gt_entry.gt_g_value;
13520 add = int_gptab.gt_entry.gt_bytes - last;
13521
b34976b6 13522 exact = FALSE;
b49e97c9
TS
13523 for (look = 1; look < c; look++)
13524 {
13525 if (tab[look].gt_entry.gt_g_value >= val)
13526 tab[look].gt_entry.gt_bytes += add;
13527
13528 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13529 exact = TRUE;
b49e97c9
TS
13530 }
13531
13532 if (! exact)
13533 {
13534 Elf32_gptab *new_tab;
13535 unsigned int max;
13536
13537 /* We need a new table entry. */
13538 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13539 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13540 if (new_tab == NULL)
13541 {
13542 free (tab);
b34976b6 13543 return FALSE;
b49e97c9
TS
13544 }
13545 tab = new_tab;
13546 tab[c].gt_entry.gt_g_value = val;
13547 tab[c].gt_entry.gt_bytes = add;
13548
13549 /* Merge in the size for the next smallest -G
13550 value, since that will be implied by this new
13551 value. */
13552 max = 0;
13553 for (look = 1; look < c; look++)
13554 {
13555 if (tab[look].gt_entry.gt_g_value < val
13556 && (max == 0
13557 || (tab[look].gt_entry.gt_g_value
13558 > tab[max].gt_entry.gt_g_value)))
13559 max = look;
13560 }
13561 if (max != 0)
13562 tab[c].gt_entry.gt_bytes +=
13563 tab[max].gt_entry.gt_bytes;
13564
13565 ++c;
13566 }
13567
13568 last = int_gptab.gt_entry.gt_bytes;
13569 }
13570
13571 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13572 elf_link_input_bfd ignores this section. */
13573 input_section->flags &= ~SEC_HAS_CONTENTS;
13574 }
13575
13576 /* The table must be sorted by -G value. */
13577 if (c > 2)
13578 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13579
13580 /* Swap out the table. */
13581 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13582 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13583 if (ext_tab == NULL)
13584 {
13585 free (tab);
b34976b6 13586 return FALSE;
b49e97c9
TS
13587 }
13588
13589 for (j = 0; j < c; j++)
13590 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13591 free (tab);
13592
eea6121a 13593 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13594 o->contents = (bfd_byte *) ext_tab;
13595
13596 /* Skip this section later on (I don't think this currently
13597 matters, but someday it might). */
8423293d 13598 o->map_head.link_order = NULL;
b49e97c9
TS
13599 }
13600 }
13601
13602 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13603 if (!bfd_elf_final_link (abfd, info))
b34976b6 13604 return FALSE;
b49e97c9
TS
13605
13606 /* Now write out the computed sections. */
13607
9719ad41 13608 if (reginfo_sec != NULL)
b49e97c9
TS
13609 {
13610 Elf32_External_RegInfo ext;
13611
13612 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13613 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13614 return FALSE;
b49e97c9
TS
13615 }
13616
9719ad41 13617 if (mdebug_sec != NULL)
b49e97c9
TS
13618 {
13619 BFD_ASSERT (abfd->output_has_begun);
13620 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13621 swap, info,
13622 mdebug_sec->filepos))
b34976b6 13623 return FALSE;
b49e97c9
TS
13624
13625 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13626 }
13627
9719ad41 13628 if (gptab_data_sec != NULL)
b49e97c9
TS
13629 {
13630 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13631 gptab_data_sec->contents,
eea6121a 13632 0, gptab_data_sec->size))
b34976b6 13633 return FALSE;
b49e97c9
TS
13634 }
13635
9719ad41 13636 if (gptab_bss_sec != NULL)
b49e97c9
TS
13637 {
13638 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13639 gptab_bss_sec->contents,
eea6121a 13640 0, gptab_bss_sec->size))
b34976b6 13641 return FALSE;
b49e97c9
TS
13642 }
13643
13644 if (SGI_COMPAT (abfd))
13645 {
13646 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13647 if (rtproc_sec != NULL)
13648 {
13649 if (! bfd_set_section_contents (abfd, rtproc_sec,
13650 rtproc_sec->contents,
eea6121a 13651 0, rtproc_sec->size))
b34976b6 13652 return FALSE;
b49e97c9
TS
13653 }
13654 }
13655
b34976b6 13656 return TRUE;
b49e97c9
TS
13657}
13658\f
64543e1a
RS
13659/* Structure for saying that BFD machine EXTENSION extends BASE. */
13660
13661struct mips_mach_extension {
13662 unsigned long extension, base;
13663};
13664
13665
13666/* An array describing how BFD machines relate to one another. The entries
13667 are ordered topologically with MIPS I extensions listed last. */
13668
13669static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13670 /* MIPS64r2 extensions. */
432233b3 13671 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13672 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13673 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13674
64543e1a 13675 /* MIPS64 extensions. */
5f74bc13 13676 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13677 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13678 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13679 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13680
13681 /* MIPS V extensions. */
13682 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13683
13684 /* R10000 extensions. */
13685 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13686 { bfd_mach_mips14000, bfd_mach_mips10000 },
13687 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13688
13689 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13690 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13691 better to allow vr5400 and vr5500 code to be merged anyway, since
13692 many libraries will just use the core ISA. Perhaps we could add
13693 some sort of ASE flag if this ever proves a problem. */
13694 { bfd_mach_mips5500, bfd_mach_mips5400 },
13695 { bfd_mach_mips5400, bfd_mach_mips5000 },
13696
13697 /* MIPS IV extensions. */
13698 { bfd_mach_mips5, bfd_mach_mips8000 },
13699 { bfd_mach_mips10000, bfd_mach_mips8000 },
13700 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13701 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13702 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13703
13704 /* VR4100 extensions. */
13705 { bfd_mach_mips4120, bfd_mach_mips4100 },
13706 { bfd_mach_mips4111, bfd_mach_mips4100 },
13707
13708 /* MIPS III extensions. */
350cc38d
MS
13709 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13710 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13711 { bfd_mach_mips8000, bfd_mach_mips4000 },
13712 { bfd_mach_mips4650, bfd_mach_mips4000 },
13713 { bfd_mach_mips4600, bfd_mach_mips4000 },
13714 { bfd_mach_mips4400, bfd_mach_mips4000 },
13715 { bfd_mach_mips4300, bfd_mach_mips4000 },
13716 { bfd_mach_mips4100, bfd_mach_mips4000 },
13717 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13718 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13719
13720 /* MIPS32 extensions. */
13721 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13722
13723 /* MIPS II extensions. */
13724 { bfd_mach_mips4000, bfd_mach_mips6000 },
13725 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13726
13727 /* MIPS I extensions. */
13728 { bfd_mach_mips6000, bfd_mach_mips3000 },
13729 { bfd_mach_mips3900, bfd_mach_mips3000 }
13730};
13731
13732
13733/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13734
13735static bfd_boolean
9719ad41 13736mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13737{
13738 size_t i;
13739
c5211a54
RS
13740 if (extension == base)
13741 return TRUE;
13742
13743 if (base == bfd_mach_mipsisa32
13744 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13745 return TRUE;
13746
13747 if (base == bfd_mach_mipsisa32r2
13748 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13749 return TRUE;
13750
13751 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13752 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13753 {
13754 extension = mips_mach_extensions[i].base;
13755 if (extension == base)
13756 return TRUE;
13757 }
64543e1a 13758
c5211a54 13759 return FALSE;
64543e1a
RS
13760}
13761
13762
13763/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13764
b34976b6 13765static bfd_boolean
9719ad41 13766mips_32bit_flags_p (flagword flags)
00707a0e 13767{
64543e1a
RS
13768 return ((flags & EF_MIPS_32BITMODE) != 0
13769 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13770 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13771 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13772 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13773 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13774 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13775}
13776
64543e1a 13777
2cf19d5c
JM
13778/* Merge object attributes from IBFD into OBFD. Raise an error if
13779 there are conflicting attributes. */
13780static bfd_boolean
13781mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13782{
13783 obj_attribute *in_attr;
13784 obj_attribute *out_attr;
6ae68ba3
MR
13785 bfd *abi_fp_bfd;
13786
13787 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13788 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13789 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13790 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13791
13792 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13793 {
13794 /* This is the first object. Copy the attributes. */
13795 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13796
13797 /* Use the Tag_null value to indicate the attributes have been
13798 initialized. */
13799 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13800
13801 return TRUE;
13802 }
13803
13804 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13805 non-conflicting ones. */
2cf19d5c
JM
13806 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13807 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13808 {
13809 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13810 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13811 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13812 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13813 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13814 {
13815 case 1:
13816 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13817 {
13818 case 2:
13819 _bfd_error_handler
6ae68ba3
MR
13820 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13821 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13822 break;
2cf19d5c
JM
13823
13824 case 3:
13825 _bfd_error_handler
6ae68ba3
MR
13826 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13828 break;
13829
42554f6a
TS
13830 case 4:
13831 _bfd_error_handler
6ae68ba3
MR
13832 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13835 break;
13836
2cf19d5c 13837 default:
6ae68ba3
MR
13838 _bfd_error_handler
13839 (_("Warning: %B uses %s (set by %B), "
13840 "%B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13843 break;
2cf19d5c
JM
13844 }
13845 break;
13846
13847 case 2:
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13849 {
13850 case 1:
13851 _bfd_error_handler
6ae68ba3
MR
13852 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13853 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13854 break;
2cf19d5c
JM
13855
13856 case 3:
13857 _bfd_error_handler
6ae68ba3
MR
13858 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13859 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13860 break;
13861
42554f6a
TS
13862 case 4:
13863 _bfd_error_handler
6ae68ba3
MR
13864 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13865 obfd, abi_fp_bfd, ibfd,
13866 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13867 break;
13868
2cf19d5c 13869 default:
6ae68ba3
MR
13870 _bfd_error_handler
13871 (_("Warning: %B uses %s (set by %B), "
13872 "%B uses unknown floating point ABI %d"),
13873 obfd, abi_fp_bfd, ibfd,
13874 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13875 break;
2cf19d5c
JM
13876 }
13877 break;
13878
13879 case 3:
13880 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13881 {
13882 case 1:
13883 case 2:
42554f6a 13884 case 4:
2cf19d5c 13885 _bfd_error_handler
6ae68ba3
MR
13886 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13887 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13888 break;
13889
13890 default:
6ae68ba3
MR
13891 _bfd_error_handler
13892 (_("Warning: %B uses %s (set by %B), "
13893 "%B uses unknown floating point ABI %d"),
13894 obfd, abi_fp_bfd, ibfd,
13895 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13896 break;
2cf19d5c
JM
13897 }
13898 break;
13899
42554f6a
TS
13900 case 4:
13901 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13902 {
13903 case 1:
13904 _bfd_error_handler
6ae68ba3
MR
13905 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13906 obfd, abi_fp_bfd, ibfd,
13907 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13908 break;
13909
13910 case 2:
13911 _bfd_error_handler
6ae68ba3
MR
13912 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13913 obfd, abi_fp_bfd, ibfd,
13914 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13915 break;
13916
13917 case 3:
13918 _bfd_error_handler
6ae68ba3
MR
13919 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13920 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13921 break;
13922
13923 default:
6ae68ba3
MR
13924 _bfd_error_handler
13925 (_("Warning: %B uses %s (set by %B), "
13926 "%B uses unknown floating point ABI %d"),
13927 obfd, abi_fp_bfd, ibfd,
13928 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13929 break;
42554f6a
TS
13930 }
13931 break;
13932
2cf19d5c 13933 default:
6ae68ba3
MR
13934 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13935 {
13936 case 1:
13937 _bfd_error_handler
13938 (_("Warning: %B uses unknown floating point ABI %d "
13939 "(set by %B), %B uses %s"),
13940 obfd, abi_fp_bfd, ibfd,
13941 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13942 break;
13943
13944 case 2:
13945 _bfd_error_handler
13946 (_("Warning: %B uses unknown floating point ABI %d "
13947 "(set by %B), %B uses %s"),
13948 obfd, abi_fp_bfd, ibfd,
13949 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13950 break;
13951
13952 case 3:
13953 _bfd_error_handler
13954 (_("Warning: %B uses unknown floating point ABI %d "
13955 "(set by %B), %B uses %s"),
13956 obfd, abi_fp_bfd, ibfd,
13957 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13958 break;
13959
13960 case 4:
13961 _bfd_error_handler
13962 (_("Warning: %B uses unknown floating point ABI %d "
13963 "(set by %B), %B uses %s"),
13964 obfd, abi_fp_bfd, ibfd,
13965 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13966 break;
13967
13968 default:
13969 _bfd_error_handler
13970 (_("Warning: %B uses unknown floating point ABI %d "
13971 "(set by %B), %B uses unknown floating point ABI %d"),
13972 obfd, abi_fp_bfd, ibfd,
13973 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13974 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13975 break;
13976 }
13977 break;
2cf19d5c
JM
13978 }
13979 }
13980
13981 /* Merge Tag_compatibility attributes and any common GNU ones. */
13982 _bfd_elf_merge_object_attributes (ibfd, obfd);
13983
13984 return TRUE;
13985}
13986
b49e97c9
TS
13987/* Merge backend specific data from an object file to the output
13988 object file when linking. */
13989
b34976b6 13990bfd_boolean
9719ad41 13991_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13992{
13993 flagword old_flags;
13994 flagword new_flags;
b34976b6
AM
13995 bfd_boolean ok;
13996 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13997 asection *sec;
13998
58238693 13999 /* Check if we have the same endianness. */
82e51918 14000 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
14001 {
14002 (*_bfd_error_handler)
d003868e
AM
14003 (_("%B: endianness incompatible with that of the selected emulation"),
14004 ibfd);
aa701218
AO
14005 return FALSE;
14006 }
b49e97c9 14007
d5eaccd7 14008 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 14009 return TRUE;
b49e97c9 14010
aa701218
AO
14011 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14012 {
14013 (*_bfd_error_handler)
d003868e
AM
14014 (_("%B: ABI is incompatible with that of the selected emulation"),
14015 ibfd);
aa701218
AO
14016 return FALSE;
14017 }
14018
2cf19d5c
JM
14019 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14020 return FALSE;
14021
b49e97c9
TS
14022 new_flags = elf_elfheader (ibfd)->e_flags;
14023 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14024 old_flags = elf_elfheader (obfd)->e_flags;
14025
14026 if (! elf_flags_init (obfd))
14027 {
b34976b6 14028 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
14029 elf_elfheader (obfd)->e_flags = new_flags;
14030 elf_elfheader (obfd)->e_ident[EI_CLASS]
14031 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14032
14033 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 14034 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 14035 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 14036 bfd_get_mach (ibfd))))
b49e97c9
TS
14037 {
14038 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14039 bfd_get_mach (ibfd)))
b34976b6 14040 return FALSE;
b49e97c9
TS
14041 }
14042
b34976b6 14043 return TRUE;
b49e97c9
TS
14044 }
14045
14046 /* Check flag compatibility. */
14047
14048 new_flags &= ~EF_MIPS_NOREORDER;
14049 old_flags &= ~EF_MIPS_NOREORDER;
14050
f4416af6
AO
14051 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14052 doesn't seem to matter. */
14053 new_flags &= ~EF_MIPS_XGOT;
14054 old_flags &= ~EF_MIPS_XGOT;
14055
98a8deaf
RS
14056 /* MIPSpro generates ucode info in n64 objects. Again, we should
14057 just be able to ignore this. */
14058 new_flags &= ~EF_MIPS_UCODE;
14059 old_flags &= ~EF_MIPS_UCODE;
14060
861fb55a
DJ
14061 /* DSOs should only be linked with CPIC code. */
14062 if ((ibfd->flags & DYNAMIC) != 0)
14063 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 14064
b49e97c9 14065 if (new_flags == old_flags)
b34976b6 14066 return TRUE;
b49e97c9
TS
14067
14068 /* Check to see if the input BFD actually contains any sections.
14069 If not, its flags may not have been initialised either, but it cannot
14070 actually cause any incompatibility. */
14071 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14072 {
14073 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
14074 which are automatically generated by gas. Also ignore fake
14075 (s)common sections, since merely defining a common symbol does
14076 not affect compatibility. */
14077 if ((sec->flags & SEC_IS_COMMON) == 0
14078 && strcmp (sec->name, ".reginfo")
b49e97c9 14079 && strcmp (sec->name, ".mdebug")
eea6121a 14080 && (sec->size != 0
d13d89fa
NS
14081 || (strcmp (sec->name, ".text")
14082 && strcmp (sec->name, ".data")
14083 && strcmp (sec->name, ".bss"))))
b49e97c9 14084 {
b34976b6 14085 null_input_bfd = FALSE;
b49e97c9
TS
14086 break;
14087 }
14088 }
14089 if (null_input_bfd)
b34976b6 14090 return TRUE;
b49e97c9 14091
b34976b6 14092 ok = TRUE;
b49e97c9 14093
143d77c5
EC
14094 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14095 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 14096 {
b49e97c9 14097 (*_bfd_error_handler)
861fb55a 14098 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 14099 ibfd);
143d77c5 14100 ok = TRUE;
b49e97c9
TS
14101 }
14102
143d77c5
EC
14103 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14104 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14105 if (! (new_flags & EF_MIPS_PIC))
14106 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14107
14108 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14109 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 14110
64543e1a
RS
14111 /* Compare the ISAs. */
14112 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 14113 {
64543e1a 14114 (*_bfd_error_handler)
d003868e
AM
14115 (_("%B: linking 32-bit code with 64-bit code"),
14116 ibfd);
64543e1a
RS
14117 ok = FALSE;
14118 }
14119 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14120 {
14121 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14122 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 14123 {
64543e1a
RS
14124 /* Copy the architecture info from IBFD to OBFD. Also copy
14125 the 32-bit flag (if set) so that we continue to recognise
14126 OBFD as a 32-bit binary. */
14127 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14128 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14129 elf_elfheader (obfd)->e_flags
14130 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14131
14132 /* Copy across the ABI flags if OBFD doesn't use them
14133 and if that was what caused us to treat IBFD as 32-bit. */
14134 if ((old_flags & EF_MIPS_ABI) == 0
14135 && mips_32bit_flags_p (new_flags)
14136 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14137 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14138 }
14139 else
14140 {
64543e1a 14141 /* The ISAs aren't compatible. */
b49e97c9 14142 (*_bfd_error_handler)
d003868e
AM
14143 (_("%B: linking %s module with previous %s modules"),
14144 ibfd,
64543e1a
RS
14145 bfd_printable_name (ibfd),
14146 bfd_printable_name (obfd));
b34976b6 14147 ok = FALSE;
b49e97c9 14148 }
b49e97c9
TS
14149 }
14150
64543e1a
RS
14151 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14152 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14153
14154 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14155 does set EI_CLASS differently from any 32-bit ABI. */
14156 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14159 {
14160 /* Only error if both are set (to different values). */
14161 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14162 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14163 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14164 {
14165 (*_bfd_error_handler)
d003868e
AM
14166 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14167 ibfd,
b49e97c9
TS
14168 elf_mips_abi_name (ibfd),
14169 elf_mips_abi_name (obfd));
b34976b6 14170 ok = FALSE;
b49e97c9
TS
14171 }
14172 new_flags &= ~EF_MIPS_ABI;
14173 old_flags &= ~EF_MIPS_ABI;
14174 }
14175
df58fc94
RS
14176 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14177 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14178 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14179 {
df58fc94
RS
14180 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14181 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14182 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14183 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14184 int micro_mis = old_m16 && new_micro;
14185 int m16_mis = old_micro && new_m16;
14186
14187 if (m16_mis || micro_mis)
14188 {
14189 (*_bfd_error_handler)
14190 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14191 ibfd,
14192 m16_mis ? "MIPS16" : "microMIPS",
14193 m16_mis ? "microMIPS" : "MIPS16");
14194 ok = FALSE;
14195 }
14196
fb39dac1
RS
14197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14198
14199 new_flags &= ~ EF_MIPS_ARCH_ASE;
14200 old_flags &= ~ EF_MIPS_ARCH_ASE;
14201 }
14202
b49e97c9
TS
14203 /* Warn about any other mismatches */
14204 if (new_flags != old_flags)
14205 {
14206 (*_bfd_error_handler)
d003868e
AM
14207 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14208 ibfd, (unsigned long) new_flags,
b49e97c9 14209 (unsigned long) old_flags);
b34976b6 14210 ok = FALSE;
b49e97c9
TS
14211 }
14212
14213 if (! ok)
14214 {
14215 bfd_set_error (bfd_error_bad_value);
b34976b6 14216 return FALSE;
b49e97c9
TS
14217 }
14218
b34976b6 14219 return TRUE;
b49e97c9
TS
14220}
14221
14222/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14223
b34976b6 14224bfd_boolean
9719ad41 14225_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14226{
14227 BFD_ASSERT (!elf_flags_init (abfd)
14228 || elf_elfheader (abfd)->e_flags == flags);
14229
14230 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14231 elf_flags_init (abfd) = TRUE;
14232 return TRUE;
b49e97c9
TS
14233}
14234
ad9563d6
CM
14235char *
14236_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14237{
14238 switch (dtag)
14239 {
14240 default: return "";
14241 case DT_MIPS_RLD_VERSION:
14242 return "MIPS_RLD_VERSION";
14243 case DT_MIPS_TIME_STAMP:
14244 return "MIPS_TIME_STAMP";
14245 case DT_MIPS_ICHECKSUM:
14246 return "MIPS_ICHECKSUM";
14247 case DT_MIPS_IVERSION:
14248 return "MIPS_IVERSION";
14249 case DT_MIPS_FLAGS:
14250 return "MIPS_FLAGS";
14251 case DT_MIPS_BASE_ADDRESS:
14252 return "MIPS_BASE_ADDRESS";
14253 case DT_MIPS_MSYM:
14254 return "MIPS_MSYM";
14255 case DT_MIPS_CONFLICT:
14256 return "MIPS_CONFLICT";
14257 case DT_MIPS_LIBLIST:
14258 return "MIPS_LIBLIST";
14259 case DT_MIPS_LOCAL_GOTNO:
14260 return "MIPS_LOCAL_GOTNO";
14261 case DT_MIPS_CONFLICTNO:
14262 return "MIPS_CONFLICTNO";
14263 case DT_MIPS_LIBLISTNO:
14264 return "MIPS_LIBLISTNO";
14265 case DT_MIPS_SYMTABNO:
14266 return "MIPS_SYMTABNO";
14267 case DT_MIPS_UNREFEXTNO:
14268 return "MIPS_UNREFEXTNO";
14269 case DT_MIPS_GOTSYM:
14270 return "MIPS_GOTSYM";
14271 case DT_MIPS_HIPAGENO:
14272 return "MIPS_HIPAGENO";
14273 case DT_MIPS_RLD_MAP:
14274 return "MIPS_RLD_MAP";
14275 case DT_MIPS_DELTA_CLASS:
14276 return "MIPS_DELTA_CLASS";
14277 case DT_MIPS_DELTA_CLASS_NO:
14278 return "MIPS_DELTA_CLASS_NO";
14279 case DT_MIPS_DELTA_INSTANCE:
14280 return "MIPS_DELTA_INSTANCE";
14281 case DT_MIPS_DELTA_INSTANCE_NO:
14282 return "MIPS_DELTA_INSTANCE_NO";
14283 case DT_MIPS_DELTA_RELOC:
14284 return "MIPS_DELTA_RELOC";
14285 case DT_MIPS_DELTA_RELOC_NO:
14286 return "MIPS_DELTA_RELOC_NO";
14287 case DT_MIPS_DELTA_SYM:
14288 return "MIPS_DELTA_SYM";
14289 case DT_MIPS_DELTA_SYM_NO:
14290 return "MIPS_DELTA_SYM_NO";
14291 case DT_MIPS_DELTA_CLASSSYM:
14292 return "MIPS_DELTA_CLASSSYM";
14293 case DT_MIPS_DELTA_CLASSSYM_NO:
14294 return "MIPS_DELTA_CLASSSYM_NO";
14295 case DT_MIPS_CXX_FLAGS:
14296 return "MIPS_CXX_FLAGS";
14297 case DT_MIPS_PIXIE_INIT:
14298 return "MIPS_PIXIE_INIT";
14299 case DT_MIPS_SYMBOL_LIB:
14300 return "MIPS_SYMBOL_LIB";
14301 case DT_MIPS_LOCALPAGE_GOTIDX:
14302 return "MIPS_LOCALPAGE_GOTIDX";
14303 case DT_MIPS_LOCAL_GOTIDX:
14304 return "MIPS_LOCAL_GOTIDX";
14305 case DT_MIPS_HIDDEN_GOTIDX:
14306 return "MIPS_HIDDEN_GOTIDX";
14307 case DT_MIPS_PROTECTED_GOTIDX:
14308 return "MIPS_PROTECTED_GOT_IDX";
14309 case DT_MIPS_OPTIONS:
14310 return "MIPS_OPTIONS";
14311 case DT_MIPS_INTERFACE:
14312 return "MIPS_INTERFACE";
14313 case DT_MIPS_DYNSTR_ALIGN:
14314 return "DT_MIPS_DYNSTR_ALIGN";
14315 case DT_MIPS_INTERFACE_SIZE:
14316 return "DT_MIPS_INTERFACE_SIZE";
14317 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14318 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14319 case DT_MIPS_PERF_SUFFIX:
14320 return "DT_MIPS_PERF_SUFFIX";
14321 case DT_MIPS_COMPACT_SIZE:
14322 return "DT_MIPS_COMPACT_SIZE";
14323 case DT_MIPS_GP_VALUE:
14324 return "DT_MIPS_GP_VALUE";
14325 case DT_MIPS_AUX_DYNAMIC:
14326 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14327 case DT_MIPS_PLTGOT:
14328 return "DT_MIPS_PLTGOT";
14329 case DT_MIPS_RWPLT:
14330 return "DT_MIPS_RWPLT";
ad9563d6
CM
14331 }
14332}
14333
b34976b6 14334bfd_boolean
9719ad41 14335_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14336{
9719ad41 14337 FILE *file = ptr;
b49e97c9
TS
14338
14339 BFD_ASSERT (abfd != NULL && ptr != NULL);
14340
14341 /* Print normal ELF private data. */
14342 _bfd_elf_print_private_bfd_data (abfd, ptr);
14343
14344 /* xgettext:c-format */
14345 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14346
14347 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14348 fprintf (file, _(" [abi=O32]"));
14349 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14350 fprintf (file, _(" [abi=O64]"));
14351 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14352 fprintf (file, _(" [abi=EABI32]"));
14353 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14354 fprintf (file, _(" [abi=EABI64]"));
14355 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14356 fprintf (file, _(" [abi unknown]"));
14357 else if (ABI_N32_P (abfd))
14358 fprintf (file, _(" [abi=N32]"));
14359 else if (ABI_64_P (abfd))
14360 fprintf (file, _(" [abi=64]"));
14361 else
14362 fprintf (file, _(" [no abi set]"));
14363
14364 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14365 fprintf (file, " [mips1]");
b49e97c9 14366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14367 fprintf (file, " [mips2]");
b49e97c9 14368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14369 fprintf (file, " [mips3]");
b49e97c9 14370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14371 fprintf (file, " [mips4]");
b49e97c9 14372 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14373 fprintf (file, " [mips5]");
b49e97c9 14374 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14375 fprintf (file, " [mips32]");
b49e97c9 14376 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14377 fprintf (file, " [mips64]");
af7ee8bf 14378 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14379 fprintf (file, " [mips32r2]");
5f74bc13 14380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14381 fprintf (file, " [mips64r2]");
b49e97c9
TS
14382 else
14383 fprintf (file, _(" [unknown ISA]"));
14384
40d32fc6 14385 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14386 fprintf (file, " [mdmx]");
40d32fc6
CD
14387
14388 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14389 fprintf (file, " [mips16]");
40d32fc6 14390
df58fc94
RS
14391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14392 fprintf (file, " [micromips]");
14393
b49e97c9 14394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14395 fprintf (file, " [32bitmode]");
b49e97c9
TS
14396 else
14397 fprintf (file, _(" [not 32bitmode]"));
14398
c0e3f241 14399 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14400 fprintf (file, " [noreorder]");
c0e3f241
CD
14401
14402 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14403 fprintf (file, " [PIC]");
c0e3f241
CD
14404
14405 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14406 fprintf (file, " [CPIC]");
c0e3f241
CD
14407
14408 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14409 fprintf (file, " [XGOT]");
c0e3f241
CD
14410
14411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14412 fprintf (file, " [UCODE]");
c0e3f241 14413
b49e97c9
TS
14414 fputc ('\n', file);
14415
b34976b6 14416 return TRUE;
b49e97c9 14417}
2f89ff8d 14418
b35d266b 14419const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14420{
0112cd26
NC
14421 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14422 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14423 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14424 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14425 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14426 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14427 { NULL, 0, 0, 0, 0 }
2f89ff8d 14428};
5e2b0d47 14429
8992f0d7
TS
14430/* Merge non visibility st_other attributes. Ensure that the
14431 STO_OPTIONAL flag is copied into h->other, even if this is not a
14432 definiton of the symbol. */
5e2b0d47
NC
14433void
14434_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14435 const Elf_Internal_Sym *isym,
14436 bfd_boolean definition,
14437 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14438{
8992f0d7
TS
14439 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14440 {
14441 unsigned char other;
14442
14443 other = (definition ? isym->st_other : h->other);
14444 other &= ~ELF_ST_VISIBILITY (-1);
14445 h->other = other | ELF_ST_VISIBILITY (h->other);
14446 }
14447
14448 if (!definition
5e2b0d47
NC
14449 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14450 h->other |= STO_OPTIONAL;
14451}
12ac1cf5
NC
14452
14453/* Decide whether an undefined symbol is special and can be ignored.
14454 This is the case for OPTIONAL symbols on IRIX. */
14455bfd_boolean
14456_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14457{
14458 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14459}
e0764319
NC
14460
14461bfd_boolean
14462_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14463{
14464 return (sym->st_shndx == SHN_COMMON
14465 || sym->st_shndx == SHN_MIPS_ACOMMON
14466 || sym->st_shndx == SHN_MIPS_SCOMMON);
14467}
861fb55a
DJ
14468
14469/* Return address for Ith PLT stub in section PLT, for relocation REL
14470 or (bfd_vma) -1 if it should not be included. */
14471
14472bfd_vma
14473_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14474 const arelent *rel ATTRIBUTE_UNUSED)
14475{
14476 return (plt->vma
14477 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14478 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14479}
14480
14481void
14482_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14483{
14484 struct mips_elf_link_hash_table *htab;
14485 Elf_Internal_Ehdr *i_ehdrp;
14486
14487 i_ehdrp = elf_elfheader (abfd);
14488 if (link_info)
14489 {
14490 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14491 BFD_ASSERT (htab != NULL);
14492
861fb55a
DJ
14493 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14494 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14495 }
14496}
This page took 1.561417 seconds and 4 git commands to generate.