MIPS/BFD: Fold the handling of input MIPS ABI flags together
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
b49e97c9 313 long min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 317 long max_unref_got_dynindx;
b49e97c9
TS
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
1bbce132
MR
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
b49e97c9
TS
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
861fb55a
DJ
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
b49e97c9
TS
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
b49e97c9
TS
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
b49e97c9
TS
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
7c5fcef7 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
1bbce132
MR
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
861fb55a 423
b49e97c9
TS
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
861fb55a 426
b49e97c9
TS
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
861fb55a 429
e6aea42d
MR
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 432 bfd_boolean use_rld_obj_head;
861fb55a 433
b4082c70
DD
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
861fb55a 436
b49e97c9 437 /* This is set if we see any mips16 stub sections. */
b34976b6 438 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
833794fc
MR
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
0a44bf69
RS
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
861fb55a 448
0e53d9da
AN
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
861fb55a 451
0a44bf69
RS
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
4e41d0d7 460 asection *sstubs;
a8028dd0 461 asection *sgot;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca
DD
915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 const char *name;
1584
df58fc94
RS
1585 if (ELF_ST_IS_MICROMIPS (h->root.other))
1586 value |= 1;
1587
861fb55a
DJ
1588 /* Create a new symbol. */
1589 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1590 bh = NULL;
1591 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1592 BSF_LOCAL, s, value, NULL,
1593 TRUE, FALSE, &bh))
1594 return FALSE;
1595
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
1601 return TRUE;
1602}
1603
738e5348
RS
1604/* We're about to redefine H. Create a symbol to represent H's
1605 current value and size, to help make the disassembly easier
1606 to read. */
1607
1608static bfd_boolean
1609mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 struct mips_elf_link_hash_entry *h,
1611 const char *prefix)
1612{
1613 struct bfd_link_hash_entry *bh;
1614 struct elf_link_hash_entry *elfh;
1615 const char *name;
1616 asection *s;
1617 bfd_vma value;
1618
1619 /* Read the symbol's value. */
1620 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1621 || h->root.root.type == bfd_link_hash_defweak);
1622 s = h->root.root.u.def.section;
1623 value = h->root.root.u.def.value;
1624
1625 /* Create a new symbol. */
1626 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1627 bh = NULL;
1628 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1629 BSF_LOCAL, s, value, NULL,
1630 TRUE, FALSE, &bh))
1631 return FALSE;
1632
1633 /* Make it local and copy the other attributes from H. */
1634 elfh = (struct elf_link_hash_entry *) bh;
1635 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1636 elfh->other = h->root.other;
1637 elfh->size = h->root.size;
1638 elfh->forced_local = 1;
1639 return TRUE;
1640}
1641
1642/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1643 function rather than to a hard-float stub. */
1644
1645static bfd_boolean
1646section_allows_mips16_refs_p (asection *section)
1647{
1648 const char *name;
1649
1650 name = bfd_get_section_name (section->owner, section);
1651 return (FN_STUB_P (name)
1652 || CALL_STUB_P (name)
1653 || CALL_FP_STUB_P (name)
1654 || strcmp (name, ".pdr") == 0);
1655}
1656
1657/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1658 stub section of some kind. Return the R_SYMNDX of the target
1659 function, or 0 if we can't decide which function that is. */
1660
1661static unsigned long
cb4437b8
MR
1662mips16_stub_symndx (const struct elf_backend_data *bed,
1663 asection *sec ATTRIBUTE_UNUSED,
502e814e 1664 const Elf_Internal_Rela *relocs,
738e5348
RS
1665 const Elf_Internal_Rela *relend)
1666{
cb4437b8 1667 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1668 const Elf_Internal_Rela *rel;
1669
cb4437b8
MR
1670 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1671 one in a compound relocation. */
1672 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1673 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1674 return ELF_R_SYM (sec->owner, rel->r_info);
1675
1676 /* Otherwise trust the first relocation, whatever its kind. This is
1677 the traditional behavior. */
1678 if (relocs < relend)
1679 return ELF_R_SYM (sec->owner, relocs->r_info);
1680
1681 return 0;
1682}
b49e97c9
TS
1683
1684/* Check the mips16 stubs for a particular symbol, and see if we can
1685 discard them. */
1686
861fb55a
DJ
1687static void
1688mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1689 struct mips_elf_link_hash_entry *h)
b49e97c9 1690{
738e5348
RS
1691 /* Dynamic symbols must use the standard call interface, in case other
1692 objects try to call them. */
1693 if (h->fn_stub != NULL
1694 && h->root.dynindx != -1)
1695 {
1696 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1697 h->need_fn_stub = TRUE;
1698 }
1699
b49e97c9
TS
1700 if (h->fn_stub != NULL
1701 && ! h->need_fn_stub)
1702 {
1703 /* We don't need the fn_stub; the only references to this symbol
1704 are 16 bit calls. Clobber the size to 0 to prevent it from
1705 being included in the link. */
eea6121a 1706 h->fn_stub->size = 0;
b49e97c9
TS
1707 h->fn_stub->flags &= ~SEC_RELOC;
1708 h->fn_stub->reloc_count = 0;
1709 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1710 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1711 }
1712
1713 if (h->call_stub != NULL
30c09090 1714 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1715 {
1716 /* We don't need the call_stub; this is a 16 bit function, so
1717 calls from other 16 bit functions are OK. Clobber the size
1718 to 0 to prevent it from being included in the link. */
eea6121a 1719 h->call_stub->size = 0;
b49e97c9
TS
1720 h->call_stub->flags &= ~SEC_RELOC;
1721 h->call_stub->reloc_count = 0;
1722 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1723 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1724 }
1725
1726 if (h->call_fp_stub != NULL
30c09090 1727 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1728 {
1729 /* We don't need the call_stub; this is a 16 bit function, so
1730 calls from other 16 bit functions are OK. Clobber the size
1731 to 0 to prevent it from being included in the link. */
eea6121a 1732 h->call_fp_stub->size = 0;
b49e97c9
TS
1733 h->call_fp_stub->flags &= ~SEC_RELOC;
1734 h->call_fp_stub->reloc_count = 0;
1735 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1736 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1737 }
861fb55a
DJ
1738}
1739
1740/* Hashtable callbacks for mips_elf_la25_stubs. */
1741
1742static hashval_t
1743mips_elf_la25_stub_hash (const void *entry_)
1744{
1745 const struct mips_elf_la25_stub *entry;
1746
1747 entry = (struct mips_elf_la25_stub *) entry_;
1748 return entry->h->root.root.u.def.section->id
1749 + entry->h->root.root.u.def.value;
1750}
1751
1752static int
1753mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1754{
1755 const struct mips_elf_la25_stub *entry1, *entry2;
1756
1757 entry1 = (struct mips_elf_la25_stub *) entry1_;
1758 entry2 = (struct mips_elf_la25_stub *) entry2_;
1759 return ((entry1->h->root.root.u.def.section
1760 == entry2->h->root.root.u.def.section)
1761 && (entry1->h->root.root.u.def.value
1762 == entry2->h->root.root.u.def.value));
1763}
1764
1765/* Called by the linker to set up the la25 stub-creation code. FN is
1766 the linker's implementation of add_stub_function. Return true on
1767 success. */
1768
1769bfd_boolean
1770_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1771 asection *(*fn) (const char *, asection *,
1772 asection *))
1773{
1774 struct mips_elf_link_hash_table *htab;
1775
1776 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1777 if (htab == NULL)
1778 return FALSE;
1779
861fb55a
DJ
1780 htab->add_stub_section = fn;
1781 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1782 mips_elf_la25_stub_eq, NULL);
1783 if (htab->la25_stubs == NULL)
1784 return FALSE;
1785
1786 return TRUE;
1787}
1788
1789/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1790 that it or its fn_stub might need $25 to be valid on entry.
1791 Note that MIPS16 functions set up $gp using PC-relative instructions,
1792 so they themselves never need $25 to be valid. Only non-MIPS16
1793 entry points are of interest here. */
861fb55a
DJ
1794
1795static bfd_boolean
1796mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1797{
1798 return ((h->root.root.type == bfd_link_hash_defined
1799 || h->root.root.type == bfd_link_hash_defweak)
1800 && h->root.def_regular
1801 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1802 && (!ELF_ST_IS_MIPS16 (h->root.other)
1803 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1804 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1805 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1806}
1807
8f0c309a
CLT
1808/* Set *SEC to the input section that contains the target of STUB.
1809 Return the offset of the target from the start of that section. */
1810
1811static bfd_vma
1812mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1813 asection **sec)
1814{
1815 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1816 {
1817 BFD_ASSERT (stub->h->need_fn_stub);
1818 *sec = stub->h->fn_stub;
1819 return 0;
1820 }
1821 else
1822 {
1823 *sec = stub->h->root.root.u.def.section;
1824 return stub->h->root.root.u.def.value;
1825 }
1826}
1827
861fb55a
DJ
1828/* STUB describes an la25 stub that we have decided to implement
1829 by inserting an LUI/ADDIU pair before the target function.
1830 Create the section and redirect the function symbol to it. */
1831
1832static bfd_boolean
1833mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1834 struct bfd_link_info *info)
1835{
1836 struct mips_elf_link_hash_table *htab;
1837 char *name;
1838 asection *s, *input_section;
1839 unsigned int align;
1840
1841 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1842 if (htab == NULL)
1843 return FALSE;
861fb55a
DJ
1844
1845 /* Create a unique name for the new section. */
1846 name = bfd_malloc (11 + sizeof (".text.stub."));
1847 if (name == NULL)
1848 return FALSE;
1849 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1850
1851 /* Create the section. */
8f0c309a 1852 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1853 s = htab->add_stub_section (name, input_section,
1854 input_section->output_section);
1855 if (s == NULL)
1856 return FALSE;
1857
1858 /* Make sure that any padding goes before the stub. */
1859 align = input_section->alignment_power;
1860 if (!bfd_set_section_alignment (s->owner, s, align))
1861 return FALSE;
1862 if (align > 3)
1863 s->size = (1 << align) - 8;
1864
1865 /* Create a symbol for the stub. */
1866 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1867 stub->stub_section = s;
1868 stub->offset = s->size;
1869
1870 /* Allocate room for it. */
1871 s->size += 8;
1872 return TRUE;
1873}
1874
1875/* STUB describes an la25 stub that we have decided to implement
1876 with a separate trampoline. Allocate room for it and redirect
1877 the function symbol to it. */
1878
1879static bfd_boolean
1880mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1881 struct bfd_link_info *info)
1882{
1883 struct mips_elf_link_hash_table *htab;
1884 asection *s;
1885
1886 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1887 if (htab == NULL)
1888 return FALSE;
861fb55a
DJ
1889
1890 /* Create a trampoline section, if we haven't already. */
1891 s = htab->strampoline;
1892 if (s == NULL)
1893 {
1894 asection *input_section = stub->h->root.root.u.def.section;
1895 s = htab->add_stub_section (".text", NULL,
1896 input_section->output_section);
1897 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1898 return FALSE;
1899 htab->strampoline = s;
1900 }
1901
1902 /* Create a symbol for the stub. */
1903 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1904 stub->stub_section = s;
1905 stub->offset = s->size;
1906
1907 /* Allocate room for it. */
1908 s->size += 16;
1909 return TRUE;
1910}
1911
1912/* H describes a symbol that needs an la25 stub. Make sure that an
1913 appropriate stub exists and point H at it. */
1914
1915static bfd_boolean
1916mips_elf_add_la25_stub (struct bfd_link_info *info,
1917 struct mips_elf_link_hash_entry *h)
1918{
1919 struct mips_elf_link_hash_table *htab;
1920 struct mips_elf_la25_stub search, *stub;
1921 bfd_boolean use_trampoline_p;
1922 asection *s;
1923 bfd_vma value;
1924 void **slot;
1925
861fb55a
DJ
1926 /* Describe the stub we want. */
1927 search.stub_section = NULL;
1928 search.offset = 0;
1929 search.h = h;
1930
1931 /* See if we've already created an equivalent stub. */
1932 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1933 if (htab == NULL)
1934 return FALSE;
1935
861fb55a
DJ
1936 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1937 if (slot == NULL)
1938 return FALSE;
1939
1940 stub = (struct mips_elf_la25_stub *) *slot;
1941 if (stub != NULL)
1942 {
1943 /* We can reuse the existing stub. */
1944 h->la25_stub = stub;
1945 return TRUE;
1946 }
1947
1948 /* Create a permanent copy of ENTRY and add it to the hash table. */
1949 stub = bfd_malloc (sizeof (search));
1950 if (stub == NULL)
1951 return FALSE;
1952 *stub = search;
1953 *slot = stub;
1954
8f0c309a
CLT
1955 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1956 of the section and if we would need no more than 2 nops. */
1957 value = mips_elf_get_la25_target (stub, &s);
1958 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1959
861fb55a
DJ
1960 h->la25_stub = stub;
1961 return (use_trampoline_p
1962 ? mips_elf_add_la25_trampoline (stub, info)
1963 : mips_elf_add_la25_intro (stub, info));
1964}
1965
1966/* A mips_elf_link_hash_traverse callback that is called before sizing
1967 sections. DATA points to a mips_htab_traverse_info structure. */
1968
1969static bfd_boolean
1970mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1971{
1972 struct mips_htab_traverse_info *hti;
1973
1974 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1975 if (!bfd_link_relocatable (hti->info))
861fb55a 1976 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1977
861fb55a
DJ
1978 if (mips_elf_local_pic_function_p (h))
1979 {
ba85c43e
NC
1980 /* PR 12845: If H is in a section that has been garbage
1981 collected it will have its output section set to *ABS*. */
1982 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1983 return TRUE;
1984
861fb55a
DJ
1985 /* H is a function that might need $25 to be valid on entry.
1986 If we're creating a non-PIC relocatable object, mark H as
1987 being PIC. If we're creating a non-relocatable object with
1988 non-PIC branches and jumps to H, make sure that H has an la25
1989 stub. */
0e1862bb 1990 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
1991 {
1992 if (!PIC_OBJECT_P (hti->output_bfd))
1993 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1994 }
1995 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1996 {
1997 hti->error = TRUE;
1998 return FALSE;
1999 }
2000 }
b34976b6 2001 return TRUE;
b49e97c9
TS
2002}
2003\f
d6f16593
MR
2004/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2005 Most mips16 instructions are 16 bits, but these instructions
2006 are 32 bits.
2007
2008 The format of these instructions is:
2009
2010 +--------------+--------------------------------+
2011 | JALX | X| Imm 20:16 | Imm 25:21 |
2012 +--------------+--------------------------------+
2013 | Immediate 15:0 |
2014 +-----------------------------------------------+
2015
2016 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2017 Note that the immediate value in the first word is swapped.
2018
2019 When producing a relocatable object file, R_MIPS16_26 is
2020 handled mostly like R_MIPS_26. In particular, the addend is
2021 stored as a straight 26-bit value in a 32-bit instruction.
2022 (gas makes life simpler for itself by never adjusting a
2023 R_MIPS16_26 reloc to be against a section, so the addend is
2024 always zero). However, the 32 bit instruction is stored as 2
2025 16-bit values, rather than a single 32-bit value. In a
2026 big-endian file, the result is the same; in a little-endian
2027 file, the two 16-bit halves of the 32 bit value are swapped.
2028 This is so that a disassembler can recognize the jal
2029 instruction.
2030
2031 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2032 instruction stored as two 16-bit values. The addend A is the
2033 contents of the targ26 field. The calculation is the same as
2034 R_MIPS_26. When storing the calculated value, reorder the
2035 immediate value as shown above, and don't forget to store the
2036 value as two 16-bit values.
2037
2038 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2039 defined as
2040
2041 big-endian:
2042 +--------+----------------------+
2043 | | |
2044 | | targ26-16 |
2045 |31 26|25 0|
2046 +--------+----------------------+
2047
2048 little-endian:
2049 +----------+------+-------------+
2050 | | | |
2051 | sub1 | | sub2 |
2052 |0 9|10 15|16 31|
2053 +----------+--------------------+
2054 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2055 ((sub1 << 16) | sub2)).
2056
2057 When producing a relocatable object file, the calculation is
2058 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2059 When producing a fully linked file, the calculation is
2060 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2062
738e5348
RS
2063 The table below lists the other MIPS16 instruction relocations.
2064 Each one is calculated in the same way as the non-MIPS16 relocation
2065 given on the right, but using the extended MIPS16 layout of 16-bit
2066 immediate fields:
2067
2068 R_MIPS16_GPREL R_MIPS_GPREL16
2069 R_MIPS16_GOT16 R_MIPS_GOT16
2070 R_MIPS16_CALL16 R_MIPS_CALL16
2071 R_MIPS16_HI16 R_MIPS_HI16
2072 R_MIPS16_LO16 R_MIPS_LO16
2073
2074 A typical instruction will have a format like this:
d6f16593
MR
2075
2076 +--------------+--------------------------------+
2077 | EXTEND | Imm 10:5 | Imm 15:11 |
2078 +--------------+--------------------------------+
2079 | Major | rx | ry | Imm 4:0 |
2080 +--------------+--------------------------------+
2081
2082 EXTEND is the five bit value 11110. Major is the instruction
2083 opcode.
2084
738e5348
RS
2085 All we need to do here is shuffle the bits appropriately.
2086 As above, the two 16-bit halves must be swapped on a
2087 little-endian system. */
2088
2089static inline bfd_boolean
2090mips16_reloc_p (int r_type)
2091{
2092 switch (r_type)
2093 {
2094 case R_MIPS16_26:
2095 case R_MIPS16_GPREL:
2096 case R_MIPS16_GOT16:
2097 case R_MIPS16_CALL16:
2098 case R_MIPS16_HI16:
2099 case R_MIPS16_LO16:
d0f13682
CLT
2100 case R_MIPS16_TLS_GD:
2101 case R_MIPS16_TLS_LDM:
2102 case R_MIPS16_TLS_DTPREL_HI16:
2103 case R_MIPS16_TLS_DTPREL_LO16:
2104 case R_MIPS16_TLS_GOTTPREL:
2105 case R_MIPS16_TLS_TPREL_HI16:
2106 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
2107 return TRUE;
2108
2109 default:
2110 return FALSE;
2111 }
2112}
2113
df58fc94
RS
2114/* Check if a microMIPS reloc. */
2115
2116static inline bfd_boolean
2117micromips_reloc_p (unsigned int r_type)
2118{
2119 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2120}
2121
2122/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2123 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2124 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2125
2126static inline bfd_boolean
2127micromips_reloc_shuffle_p (unsigned int r_type)
2128{
2129 return (micromips_reloc_p (r_type)
2130 && r_type != R_MICROMIPS_PC7_S1
2131 && r_type != R_MICROMIPS_PC10_S1);
2132}
2133
738e5348
RS
2134static inline bfd_boolean
2135got16_reloc_p (int r_type)
2136{
df58fc94
RS
2137 return (r_type == R_MIPS_GOT16
2138 || r_type == R_MIPS16_GOT16
2139 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2140}
2141
2142static inline bfd_boolean
2143call16_reloc_p (int r_type)
2144{
df58fc94
RS
2145 return (r_type == R_MIPS_CALL16
2146 || r_type == R_MIPS16_CALL16
2147 || r_type == R_MICROMIPS_CALL16);
2148}
2149
2150static inline bfd_boolean
2151got_disp_reloc_p (unsigned int r_type)
2152{
2153 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2154}
2155
2156static inline bfd_boolean
2157got_page_reloc_p (unsigned int r_type)
2158{
2159 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2160}
2161
df58fc94
RS
2162static inline bfd_boolean
2163got_lo16_reloc_p (unsigned int r_type)
2164{
2165 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2166}
2167
2168static inline bfd_boolean
2169call_hi16_reloc_p (unsigned int r_type)
2170{
2171 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2172}
2173
2174static inline bfd_boolean
2175call_lo16_reloc_p (unsigned int r_type)
2176{
2177 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2178}
2179
2180static inline bfd_boolean
2181hi16_reloc_p (int r_type)
2182{
df58fc94
RS
2183 return (r_type == R_MIPS_HI16
2184 || r_type == R_MIPS16_HI16
7361da2c
AB
2185 || r_type == R_MICROMIPS_HI16
2186 || r_type == R_MIPS_PCHI16);
738e5348 2187}
d6f16593 2188
738e5348
RS
2189static inline bfd_boolean
2190lo16_reloc_p (int r_type)
2191{
df58fc94
RS
2192 return (r_type == R_MIPS_LO16
2193 || r_type == R_MIPS16_LO16
7361da2c
AB
2194 || r_type == R_MICROMIPS_LO16
2195 || r_type == R_MIPS_PCLO16);
738e5348
RS
2196}
2197
2198static inline bfd_boolean
2199mips16_call_reloc_p (int r_type)
2200{
2201 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2202}
d6f16593 2203
38a7df63
CF
2204static inline bfd_boolean
2205jal_reloc_p (int r_type)
2206{
df58fc94
RS
2207 return (r_type == R_MIPS_26
2208 || r_type == R_MIPS16_26
2209 || r_type == R_MICROMIPS_26_S1);
2210}
2211
7361da2c
AB
2212static inline bfd_boolean
2213aligned_pcrel_reloc_p (int r_type)
2214{
2215 return (r_type == R_MIPS_PC18_S3
2216 || r_type == R_MIPS_PC19_S2);
2217}
2218
df58fc94
RS
2219static inline bfd_boolean
2220micromips_branch_reloc_p (int r_type)
2221{
2222 return (r_type == R_MICROMIPS_26_S1
2223 || r_type == R_MICROMIPS_PC16_S1
2224 || r_type == R_MICROMIPS_PC10_S1
2225 || r_type == R_MICROMIPS_PC7_S1);
2226}
2227
2228static inline bfd_boolean
2229tls_gd_reloc_p (unsigned int r_type)
2230{
d0f13682
CLT
2231 return (r_type == R_MIPS_TLS_GD
2232 || r_type == R_MIPS16_TLS_GD
2233 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2234}
2235
2236static inline bfd_boolean
2237tls_ldm_reloc_p (unsigned int r_type)
2238{
d0f13682
CLT
2239 return (r_type == R_MIPS_TLS_LDM
2240 || r_type == R_MIPS16_TLS_LDM
2241 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2242}
2243
2244static inline bfd_boolean
2245tls_gottprel_reloc_p (unsigned int r_type)
2246{
d0f13682
CLT
2247 return (r_type == R_MIPS_TLS_GOTTPREL
2248 || r_type == R_MIPS16_TLS_GOTTPREL
2249 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2250}
2251
d6f16593 2252void
df58fc94
RS
2253_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2254 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2255{
df58fc94 2256 bfd_vma first, second, val;
d6f16593 2257
df58fc94 2258 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2259 return;
2260
df58fc94
RS
2261 /* Pick up the first and second halfwords of the instruction. */
2262 first = bfd_get_16 (abfd, data);
2263 second = bfd_get_16 (abfd, data + 2);
2264 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2265 val = first << 16 | second;
2266 else if (r_type != R_MIPS16_26)
2267 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2268 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2269 else
df58fc94
RS
2270 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2271 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2272 bfd_put_32 (abfd, val, data);
2273}
2274
2275void
df58fc94
RS
2276_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2277 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2278{
df58fc94 2279 bfd_vma first, second, val;
d6f16593 2280
df58fc94 2281 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2282 return;
2283
2284 val = bfd_get_32 (abfd, data);
df58fc94 2285 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2286 {
df58fc94
RS
2287 second = val & 0xffff;
2288 first = val >> 16;
2289 }
2290 else if (r_type != R_MIPS16_26)
2291 {
2292 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2293 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2294 }
2295 else
2296 {
df58fc94
RS
2297 second = val & 0xffff;
2298 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2299 | ((val >> 21) & 0x1f);
d6f16593 2300 }
df58fc94
RS
2301 bfd_put_16 (abfd, second, data + 2);
2302 bfd_put_16 (abfd, first, data);
d6f16593
MR
2303}
2304
b49e97c9 2305bfd_reloc_status_type
9719ad41
RS
2306_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2307 arelent *reloc_entry, asection *input_section,
2308 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2309{
2310 bfd_vma relocation;
a7ebbfdf 2311 bfd_signed_vma val;
30ac9238 2312 bfd_reloc_status_type status;
b49e97c9
TS
2313
2314 if (bfd_is_com_section (symbol->section))
2315 relocation = 0;
2316 else
2317 relocation = symbol->value;
2318
2319 relocation += symbol->section->output_section->vma;
2320 relocation += symbol->section->output_offset;
2321
07515404 2322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2323 return bfd_reloc_outofrange;
2324
b49e97c9 2325 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2326 val = reloc_entry->addend;
2327
30ac9238 2328 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2329
b49e97c9 2330 /* Adjust val for the final section location and GP value. If we
1049f94e 2331 are producing relocatable output, we don't want to do this for
b49e97c9 2332 an external symbol. */
1049f94e 2333 if (! relocatable
b49e97c9
TS
2334 || (symbol->flags & BSF_SECTION_SYM) != 0)
2335 val += relocation - gp;
2336
a7ebbfdf
TS
2337 if (reloc_entry->howto->partial_inplace)
2338 {
30ac9238
RS
2339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2340 (bfd_byte *) data
2341 + reloc_entry->address);
2342 if (status != bfd_reloc_ok)
2343 return status;
a7ebbfdf
TS
2344 }
2345 else
2346 reloc_entry->addend = val;
b49e97c9 2347
1049f94e 2348 if (relocatable)
b49e97c9 2349 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2350
2351 return bfd_reloc_ok;
2352}
2353
2354/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2356 that contains the relocation field and DATA points to the start of
2357 INPUT_SECTION. */
2358
2359struct mips_hi16
2360{
2361 struct mips_hi16 *next;
2362 bfd_byte *data;
2363 asection *input_section;
2364 arelent rel;
2365};
2366
2367/* FIXME: This should not be a static variable. */
2368
2369static struct mips_hi16 *mips_hi16_list;
2370
2371/* A howto special_function for REL *HI16 relocations. We can only
2372 calculate the correct value once we've seen the partnering
2373 *LO16 relocation, so just save the information for later.
2374
2375 The ABI requires that the *LO16 immediately follow the *HI16.
2376 However, as a GNU extension, we permit an arbitrary number of
2377 *HI16s to be associated with a single *LO16. This significantly
2378 simplies the relocation handling in gcc. */
2379
2380bfd_reloc_status_type
2381_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2383 asection *input_section, bfd *output_bfd,
2384 char **error_message ATTRIBUTE_UNUSED)
2385{
2386 struct mips_hi16 *n;
2387
07515404 2388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2389 return bfd_reloc_outofrange;
2390
2391 n = bfd_malloc (sizeof *n);
2392 if (n == NULL)
2393 return bfd_reloc_outofrange;
2394
2395 n->next = mips_hi16_list;
2396 n->data = data;
2397 n->input_section = input_section;
2398 n->rel = *reloc_entry;
2399 mips_hi16_list = n;
2400
2401 if (output_bfd != NULL)
2402 reloc_entry->address += input_section->output_offset;
2403
2404 return bfd_reloc_ok;
2405}
2406
738e5348 2407/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2408 like any other 16-bit relocation when applied to global symbols, but is
2409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2410
2411bfd_reloc_status_type
2412_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2413 void *data, asection *input_section,
2414 bfd *output_bfd, char **error_message)
2415{
2416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2417 || bfd_is_und_section (bfd_get_section (symbol))
2418 || bfd_is_com_section (bfd_get_section (symbol)))
2419 /* The relocation is against a global symbol. */
2420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2421 input_section, output_bfd,
2422 error_message);
2423
2424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2425 input_section, output_bfd, error_message);
2426}
2427
2428/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2429 is a straightforward 16 bit inplace relocation, but we must deal with
2430 any partnering high-part relocations as well. */
2431
2432bfd_reloc_status_type
2433_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2434 void *data, asection *input_section,
2435 bfd *output_bfd, char **error_message)
2436{
2437 bfd_vma vallo;
d6f16593 2438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2439
07515404 2440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2441 return bfd_reloc_outofrange;
2442
df58fc94 2443 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2444 location);
df58fc94
RS
2445 vallo = bfd_get_32 (abfd, location);
2446 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2447 location);
d6f16593 2448
30ac9238
RS
2449 while (mips_hi16_list != NULL)
2450 {
2451 bfd_reloc_status_type ret;
2452 struct mips_hi16 *hi;
2453
2454 hi = mips_hi16_list;
2455
738e5348
RS
2456 /* R_MIPS*_GOT16 relocations are something of a special case. We
2457 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2458 relocation (with a rightshift of 16). However, since GOT16
2459 relocations can also be used with global symbols, their howto
2460 has a rightshift of 0. */
2461 if (hi->rel.howto->type == R_MIPS_GOT16)
2462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2463 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2464 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2465 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2467
2468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2469 carry or borrow will induce a change of +1 or -1 in the high part. */
2470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2471
30ac9238
RS
2472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2473 hi->input_section, output_bfd,
2474 error_message);
2475 if (ret != bfd_reloc_ok)
2476 return ret;
2477
2478 mips_hi16_list = hi->next;
2479 free (hi);
2480 }
2481
2482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2483 input_section, output_bfd,
2484 error_message);
2485}
2486
2487/* A generic howto special_function. This calculates and installs the
2488 relocation itself, thus avoiding the oft-discussed problems in
2489 bfd_perform_relocation and bfd_install_relocation. */
2490
2491bfd_reloc_status_type
2492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2494 asection *input_section, bfd *output_bfd,
2495 char **error_message ATTRIBUTE_UNUSED)
2496{
2497 bfd_signed_vma val;
2498 bfd_reloc_status_type status;
2499 bfd_boolean relocatable;
2500
2501 relocatable = (output_bfd != NULL);
2502
07515404 2503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2504 return bfd_reloc_outofrange;
2505
2506 /* Build up the field adjustment in VAL. */
2507 val = 0;
2508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2509 {
2510 /* Either we're calculating the final field value or we have a
2511 relocation against a section symbol. Add in the section's
2512 offset or address. */
2513 val += symbol->section->output_section->vma;
2514 val += symbol->section->output_offset;
2515 }
2516
2517 if (!relocatable)
2518 {
2519 /* We're calculating the final field value. Add in the symbol's value
2520 and, if pc-relative, subtract the address of the field itself. */
2521 val += symbol->value;
2522 if (reloc_entry->howto->pc_relative)
2523 {
2524 val -= input_section->output_section->vma;
2525 val -= input_section->output_offset;
2526 val -= reloc_entry->address;
2527 }
2528 }
2529
2530 /* VAL is now the final adjustment. If we're keeping this relocation
2531 in the output file, and if the relocation uses a separate addend,
2532 we just need to add VAL to that addend. Otherwise we need to add
2533 VAL to the relocation field itself. */
2534 if (relocatable && !reloc_entry->howto->partial_inplace)
2535 reloc_entry->addend += val;
2536 else
2537 {
d6f16593
MR
2538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2539
30ac9238
RS
2540 /* Add in the separate addend, if any. */
2541 val += reloc_entry->addend;
2542
2543 /* Add VAL to the relocation field. */
df58fc94
RS
2544 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2545 location);
30ac9238 2546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2547 location);
df58fc94
RS
2548 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2549 location);
d6f16593 2550
30ac9238
RS
2551 if (status != bfd_reloc_ok)
2552 return status;
2553 }
2554
2555 if (relocatable)
2556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2557
2558 return bfd_reloc_ok;
2559}
2560\f
2561/* Swap an entry in a .gptab section. Note that these routines rely
2562 on the equivalence of the two elements of the union. */
2563
2564static void
9719ad41
RS
2565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2566 Elf32_gptab *in)
b49e97c9
TS
2567{
2568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2570}
2571
2572static void
9719ad41
RS
2573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2574 Elf32_External_gptab *ex)
b49e97c9
TS
2575{
2576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2578}
2579
2580static void
9719ad41
RS
2581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2582 Elf32_External_compact_rel *ex)
b49e97c9
TS
2583{
2584 H_PUT_32 (abfd, in->id1, ex->id1);
2585 H_PUT_32 (abfd, in->num, ex->num);
2586 H_PUT_32 (abfd, in->id2, ex->id2);
2587 H_PUT_32 (abfd, in->offset, ex->offset);
2588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2590}
2591
2592static void
9719ad41
RS
2593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2594 Elf32_External_crinfo *ex)
b49e97c9
TS
2595{
2596 unsigned long l;
2597
2598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2602 H_PUT_32 (abfd, l, ex->info);
2603 H_PUT_32 (abfd, in->konst, ex->konst);
2604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2605}
b49e97c9
TS
2606\f
2607/* A .reginfo section holds a single Elf32_RegInfo structure. These
2608 routines swap this structure in and out. They are used outside of
2609 BFD, so they are globally visible. */
2610
2611void
9719ad41
RS
2612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2613 Elf32_RegInfo *in)
b49e97c9
TS
2614{
2615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2621}
2622
2623void
9719ad41
RS
2624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2625 Elf32_External_RegInfo *ex)
b49e97c9
TS
2626{
2627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2633}
2634
2635/* In the 64 bit ABI, the .MIPS.options section holds register
2636 information in an Elf64_Reginfo structure. These routines swap
2637 them in and out. They are globally visible because they are used
2638 outside of BFD. These routines are here so that gas can call them
2639 without worrying about whether the 64 bit ABI has been included. */
2640
2641void
9719ad41
RS
2642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2644{
2645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2652}
2653
2654void
9719ad41
RS
2655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2656 Elf64_External_RegInfo *ex)
b49e97c9
TS
2657{
2658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2665}
2666
2667/* Swap in an options header. */
2668
2669void
9719ad41
RS
2670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2671 Elf_Internal_Options *in)
b49e97c9
TS
2672{
2673 in->kind = H_GET_8 (abfd, ex->kind);
2674 in->size = H_GET_8 (abfd, ex->size);
2675 in->section = H_GET_16 (abfd, ex->section);
2676 in->info = H_GET_32 (abfd, ex->info);
2677}
2678
2679/* Swap out an options header. */
2680
2681void
9719ad41
RS
2682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2683 Elf_External_Options *ex)
b49e97c9
TS
2684{
2685 H_PUT_8 (abfd, in->kind, ex->kind);
2686 H_PUT_8 (abfd, in->size, ex->size);
2687 H_PUT_16 (abfd, in->section, ex->section);
2688 H_PUT_32 (abfd, in->info, ex->info);
2689}
351cdf24
MF
2690
2691/* Swap in an abiflags structure. */
2692
2693void
2694bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2695 const Elf_External_ABIFlags_v0 *ex,
2696 Elf_Internal_ABIFlags_v0 *in)
2697{
2698 in->version = H_GET_16 (abfd, ex->version);
2699 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2700 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2701 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2702 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2703 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2704 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2705 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2706 in->ases = H_GET_32 (abfd, ex->ases);
2707 in->flags1 = H_GET_32 (abfd, ex->flags1);
2708 in->flags2 = H_GET_32 (abfd, ex->flags2);
2709}
2710
2711/* Swap out an abiflags structure. */
2712
2713void
2714bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2715 const Elf_Internal_ABIFlags_v0 *in,
2716 Elf_External_ABIFlags_v0 *ex)
2717{
2718 H_PUT_16 (abfd, in->version, ex->version);
2719 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2720 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2721 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2722 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2723 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2724 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2725 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2726 H_PUT_32 (abfd, in->ases, ex->ases);
2727 H_PUT_32 (abfd, in->flags1, ex->flags1);
2728 H_PUT_32 (abfd, in->flags2, ex->flags2);
2729}
b49e97c9
TS
2730\f
2731/* This function is called via qsort() to sort the dynamic relocation
2732 entries by increasing r_symndx value. */
2733
2734static int
9719ad41 2735sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2736{
947216bf
AM
2737 Elf_Internal_Rela int_reloc1;
2738 Elf_Internal_Rela int_reloc2;
6870500c 2739 int diff;
b49e97c9 2740
947216bf
AM
2741 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2742 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2743
6870500c
RS
2744 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2745 if (diff != 0)
2746 return diff;
2747
2748 if (int_reloc1.r_offset < int_reloc2.r_offset)
2749 return -1;
2750 if (int_reloc1.r_offset > int_reloc2.r_offset)
2751 return 1;
2752 return 0;
b49e97c9
TS
2753}
2754
f4416af6
AO
2755/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2756
2757static int
7e3102a7
AM
2758sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2759 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2760{
7e3102a7 2761#ifdef BFD64
f4416af6
AO
2762 Elf_Internal_Rela int_reloc1[3];
2763 Elf_Internal_Rela int_reloc2[3];
2764
2765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2766 (reldyn_sorting_bfd, arg1, int_reloc1);
2767 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2768 (reldyn_sorting_bfd, arg2, int_reloc2);
2769
6870500c
RS
2770 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2771 return -1;
2772 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2773 return 1;
2774
2775 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2776 return -1;
2777 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2778 return 1;
2779 return 0;
7e3102a7
AM
2780#else
2781 abort ();
2782#endif
f4416af6
AO
2783}
2784
2785
b49e97c9
TS
2786/* This routine is used to write out ECOFF debugging external symbol
2787 information. It is called via mips_elf_link_hash_traverse. The
2788 ECOFF external symbol information must match the ELF external
2789 symbol information. Unfortunately, at this point we don't know
2790 whether a symbol is required by reloc information, so the two
2791 tables may wind up being different. We must sort out the external
2792 symbol information before we can set the final size of the .mdebug
2793 section, and we must set the size of the .mdebug section before we
2794 can relocate any sections, and we can't know which symbols are
2795 required by relocation until we relocate the sections.
2796 Fortunately, it is relatively unlikely that any symbol will be
2797 stripped but required by a reloc. In particular, it can not happen
2798 when generating a final executable. */
2799
b34976b6 2800static bfd_boolean
9719ad41 2801mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2802{
9719ad41 2803 struct extsym_info *einfo = data;
b34976b6 2804 bfd_boolean strip;
b49e97c9
TS
2805 asection *sec, *output_section;
2806
b49e97c9 2807 if (h->root.indx == -2)
b34976b6 2808 strip = FALSE;
f5385ebf 2809 else if ((h->root.def_dynamic
77cfaee6
AM
2810 || h->root.ref_dynamic
2811 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2812 && !h->root.def_regular
2813 && !h->root.ref_regular)
b34976b6 2814 strip = TRUE;
b49e97c9
TS
2815 else if (einfo->info->strip == strip_all
2816 || (einfo->info->strip == strip_some
2817 && bfd_hash_lookup (einfo->info->keep_hash,
2818 h->root.root.root.string,
b34976b6
AM
2819 FALSE, FALSE) == NULL))
2820 strip = TRUE;
b49e97c9 2821 else
b34976b6 2822 strip = FALSE;
b49e97c9
TS
2823
2824 if (strip)
b34976b6 2825 return TRUE;
b49e97c9
TS
2826
2827 if (h->esym.ifd == -2)
2828 {
2829 h->esym.jmptbl = 0;
2830 h->esym.cobol_main = 0;
2831 h->esym.weakext = 0;
2832 h->esym.reserved = 0;
2833 h->esym.ifd = ifdNil;
2834 h->esym.asym.value = 0;
2835 h->esym.asym.st = stGlobal;
2836
2837 if (h->root.root.type == bfd_link_hash_undefined
2838 || h->root.root.type == bfd_link_hash_undefweak)
2839 {
2840 const char *name;
2841
2842 /* Use undefined class. Also, set class and type for some
2843 special symbols. */
2844 name = h->root.root.root.string;
2845 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2846 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2847 {
2848 h->esym.asym.sc = scData;
2849 h->esym.asym.st = stLabel;
2850 h->esym.asym.value = 0;
2851 }
2852 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2853 {
2854 h->esym.asym.sc = scAbs;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value =
2857 mips_elf_hash_table (einfo->info)->procedure_count;
2858 }
4a14403c 2859 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2860 {
2861 h->esym.asym.sc = scAbs;
2862 h->esym.asym.st = stLabel;
2863 h->esym.asym.value = elf_gp (einfo->abfd);
2864 }
2865 else
2866 h->esym.asym.sc = scUndefined;
2867 }
2868 else if (h->root.root.type != bfd_link_hash_defined
2869 && h->root.root.type != bfd_link_hash_defweak)
2870 h->esym.asym.sc = scAbs;
2871 else
2872 {
2873 const char *name;
2874
2875 sec = h->root.root.u.def.section;
2876 output_section = sec->output_section;
2877
2878 /* When making a shared library and symbol h is the one from
2879 the another shared library, OUTPUT_SECTION may be null. */
2880 if (output_section == NULL)
2881 h->esym.asym.sc = scUndefined;
2882 else
2883 {
2884 name = bfd_section_name (output_section->owner, output_section);
2885
2886 if (strcmp (name, ".text") == 0)
2887 h->esym.asym.sc = scText;
2888 else if (strcmp (name, ".data") == 0)
2889 h->esym.asym.sc = scData;
2890 else if (strcmp (name, ".sdata") == 0)
2891 h->esym.asym.sc = scSData;
2892 else if (strcmp (name, ".rodata") == 0
2893 || strcmp (name, ".rdata") == 0)
2894 h->esym.asym.sc = scRData;
2895 else if (strcmp (name, ".bss") == 0)
2896 h->esym.asym.sc = scBss;
2897 else if (strcmp (name, ".sbss") == 0)
2898 h->esym.asym.sc = scSBss;
2899 else if (strcmp (name, ".init") == 0)
2900 h->esym.asym.sc = scInit;
2901 else if (strcmp (name, ".fini") == 0)
2902 h->esym.asym.sc = scFini;
2903 else
2904 h->esym.asym.sc = scAbs;
2905 }
2906 }
2907
2908 h->esym.asym.reserved = 0;
2909 h->esym.asym.index = indexNil;
2910 }
2911
2912 if (h->root.root.type == bfd_link_hash_common)
2913 h->esym.asym.value = h->root.root.u.c.size;
2914 else if (h->root.root.type == bfd_link_hash_defined
2915 || h->root.root.type == bfd_link_hash_defweak)
2916 {
2917 if (h->esym.asym.sc == scCommon)
2918 h->esym.asym.sc = scBss;
2919 else if (h->esym.asym.sc == scSCommon)
2920 h->esym.asym.sc = scSBss;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924 if (output_section != NULL)
2925 h->esym.asym.value = (h->root.root.u.def.value
2926 + sec->output_offset
2927 + output_section->vma);
2928 else
2929 h->esym.asym.value = 0;
2930 }
33bb52fb 2931 else
b49e97c9
TS
2932 {
2933 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2934
2935 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2936 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2937
33bb52fb 2938 if (hd->needs_lazy_stub)
b49e97c9 2939 {
1bbce132
MR
2940 BFD_ASSERT (hd->root.plt.plist != NULL);
2941 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2942 /* Set type and value for a symbol with a function stub. */
2943 h->esym.asym.st = stProc;
2944 sec = hd->root.root.u.def.section;
2945 if (sec == NULL)
2946 h->esym.asym.value = 0;
2947 else
2948 {
2949 output_section = sec->output_section;
2950 if (output_section != NULL)
1bbce132 2951 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2952 + sec->output_offset
2953 + output_section->vma);
2954 else
2955 h->esym.asym.value = 0;
2956 }
b49e97c9
TS
2957 }
2958 }
2959
2960 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2961 h->root.root.root.string,
2962 &h->esym))
2963 {
b34976b6
AM
2964 einfo->failed = TRUE;
2965 return FALSE;
b49e97c9
TS
2966 }
2967
b34976b6 2968 return TRUE;
b49e97c9
TS
2969}
2970
2971/* A comparison routine used to sort .gptab entries. */
2972
2973static int
9719ad41 2974gptab_compare (const void *p1, const void *p2)
b49e97c9 2975{
9719ad41
RS
2976 const Elf32_gptab *a1 = p1;
2977 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2978
2979 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2980}
2981\f
b15e6682 2982/* Functions to manage the got entry hash table. */
f4416af6
AO
2983
2984/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2985 hash number. */
2986
2987static INLINE hashval_t
9719ad41 2988mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2989{
2990#ifdef BFD64
2991 return addr + (addr >> 32);
2992#else
2993 return addr;
2994#endif
2995}
2996
f4416af6 2997static hashval_t
d9bf376d 2998mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2999{
3000 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3001
e641e783 3002 return (entry->symndx
9ab066b4
RS
3003 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3004 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3005 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3006 : entry->symndx >= 0 ? (entry->abfd->id
3007 + mips_elf_hash_bfd_vma (entry->d.addend))
3008 : entry->d.h->root.root.root.hash));
f4416af6
AO
3009}
3010
3011static int
3dff0dd1 3012mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3013{
3014 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3015 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3016
e641e783 3017 return (e1->symndx == e2->symndx
9ab066b4
RS
3018 && e1->tls_type == e2->tls_type
3019 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3020 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3021 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3022 && e1->d.addend == e2->d.addend)
3023 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3024}
c224138d 3025
13db6b44
RS
3026static hashval_t
3027mips_got_page_ref_hash (const void *ref_)
3028{
3029 const struct mips_got_page_ref *ref;
3030
3031 ref = (const struct mips_got_page_ref *) ref_;
3032 return ((ref->symndx >= 0
3033 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3034 : ref->u.h->root.root.root.hash)
3035 + mips_elf_hash_bfd_vma (ref->addend));
3036}
3037
3038static int
3039mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3040{
3041 const struct mips_got_page_ref *ref1, *ref2;
3042
3043 ref1 = (const struct mips_got_page_ref *) ref1_;
3044 ref2 = (const struct mips_got_page_ref *) ref2_;
3045 return (ref1->symndx == ref2->symndx
3046 && (ref1->symndx < 0
3047 ? ref1->u.h == ref2->u.h
3048 : ref1->u.abfd == ref2->u.abfd)
3049 && ref1->addend == ref2->addend);
3050}
3051
c224138d
RS
3052static hashval_t
3053mips_got_page_entry_hash (const void *entry_)
3054{
3055 const struct mips_got_page_entry *entry;
3056
3057 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3058 return entry->sec->id;
c224138d
RS
3059}
3060
3061static int
3062mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3063{
3064 const struct mips_got_page_entry *entry1, *entry2;
3065
3066 entry1 = (const struct mips_got_page_entry *) entry1_;
3067 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3068 return entry1->sec == entry2->sec;
c224138d 3069}
b15e6682 3070\f
3dff0dd1 3071/* Create and return a new mips_got_info structure. */
5334aa52
RS
3072
3073static struct mips_got_info *
3dff0dd1 3074mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3075{
3076 struct mips_got_info *g;
3077
3078 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3079 if (g == NULL)
3080 return NULL;
3081
3dff0dd1
RS
3082 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3083 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3084 if (g->got_entries == NULL)
3085 return NULL;
3086
13db6b44
RS
3087 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3088 mips_got_page_ref_eq, NULL);
3089 if (g->got_page_refs == NULL)
5334aa52
RS
3090 return NULL;
3091
3092 return g;
3093}
3094
ee227692
RS
3095/* Return the GOT info for input bfd ABFD, trying to create a new one if
3096 CREATE_P and if ABFD doesn't already have a GOT. */
3097
3098static struct mips_got_info *
3099mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3100{
3101 struct mips_elf_obj_tdata *tdata;
3102
3103 if (!is_mips_elf (abfd))
3104 return NULL;
3105
3106 tdata = mips_elf_tdata (abfd);
3107 if (!tdata->got && create_p)
3dff0dd1 3108 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3109 return tdata->got;
3110}
3111
d7206569
RS
3112/* Record that ABFD should use output GOT G. */
3113
3114static void
3115mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3116{
3117 struct mips_elf_obj_tdata *tdata;
3118
3119 BFD_ASSERT (is_mips_elf (abfd));
3120 tdata = mips_elf_tdata (abfd);
3121 if (tdata->got)
3122 {
3123 /* The GOT structure itself and the hash table entries are
3124 allocated to a bfd, but the hash tables aren't. */
3125 htab_delete (tdata->got->got_entries);
13db6b44
RS
3126 htab_delete (tdata->got->got_page_refs);
3127 if (tdata->got->got_page_entries)
3128 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3129 }
3130 tdata->got = g;
3131}
3132
0a44bf69
RS
3133/* Return the dynamic relocation section. If it doesn't exist, try to
3134 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3135 if creation fails. */
f4416af6
AO
3136
3137static asection *
0a44bf69 3138mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3139{
0a44bf69 3140 const char *dname;
f4416af6 3141 asection *sreloc;
0a44bf69 3142 bfd *dynobj;
f4416af6 3143
0a44bf69
RS
3144 dname = MIPS_ELF_REL_DYN_NAME (info);
3145 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3146 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3147 if (sreloc == NULL && create_p)
3148 {
3d4d4302
AM
3149 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3150 (SEC_ALLOC
3151 | SEC_LOAD
3152 | SEC_HAS_CONTENTS
3153 | SEC_IN_MEMORY
3154 | SEC_LINKER_CREATED
3155 | SEC_READONLY));
f4416af6 3156 if (sreloc == NULL
f4416af6 3157 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3158 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3159 return NULL;
3160 }
3161 return sreloc;
3162}
3163
e641e783
RS
3164/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3165
3166static int
3167mips_elf_reloc_tls_type (unsigned int r_type)
3168{
3169 if (tls_gd_reloc_p (r_type))
3170 return GOT_TLS_GD;
3171
3172 if (tls_ldm_reloc_p (r_type))
3173 return GOT_TLS_LDM;
3174
3175 if (tls_gottprel_reloc_p (r_type))
3176 return GOT_TLS_IE;
3177
9ab066b4 3178 return GOT_TLS_NONE;
e641e783
RS
3179}
3180
3181/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3182
3183static int
3184mips_tls_got_entries (unsigned int type)
3185{
3186 switch (type)
3187 {
3188 case GOT_TLS_GD:
3189 case GOT_TLS_LDM:
3190 return 2;
3191
3192 case GOT_TLS_IE:
3193 return 1;
3194
9ab066b4 3195 case GOT_TLS_NONE:
e641e783
RS
3196 return 0;
3197 }
3198 abort ();
3199}
3200
0f20cc35
DJ
3201/* Count the number of relocations needed for a TLS GOT entry, with
3202 access types from TLS_TYPE, and symbol H (or a local symbol if H
3203 is NULL). */
3204
3205static int
3206mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3207 struct elf_link_hash_entry *h)
3208{
3209 int indx = 0;
0f20cc35
DJ
3210 bfd_boolean need_relocs = FALSE;
3211 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3212
0e1862bb
L
3213 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3214 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3215 indx = h->dynindx;
3216
0e1862bb 3217 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3218 && (h == NULL
3219 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3220 || h->root.type != bfd_link_hash_undefweak))
3221 need_relocs = TRUE;
3222
3223 if (!need_relocs)
e641e783 3224 return 0;
0f20cc35 3225
9ab066b4 3226 switch (tls_type)
0f20cc35 3227 {
e641e783
RS
3228 case GOT_TLS_GD:
3229 return indx != 0 ? 2 : 1;
0f20cc35 3230
e641e783
RS
3231 case GOT_TLS_IE:
3232 return 1;
0f20cc35 3233
e641e783 3234 case GOT_TLS_LDM:
0e1862bb 3235 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3236
e641e783
RS
3237 default:
3238 return 0;
3239 }
0f20cc35
DJ
3240}
3241
ab361d49
RS
3242/* Add the number of GOT entries and TLS relocations required by ENTRY
3243 to G. */
0f20cc35 3244
ab361d49
RS
3245static void
3246mips_elf_count_got_entry (struct bfd_link_info *info,
3247 struct mips_got_info *g,
3248 struct mips_got_entry *entry)
0f20cc35 3249{
9ab066b4 3250 if (entry->tls_type)
ab361d49 3251 {
9ab066b4
RS
3252 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3253 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3254 entry->symndx < 0
3255 ? &entry->d.h->root : NULL);
3256 }
3257 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3258 g->local_gotno += 1;
3259 else
3260 g->global_gotno += 1;
0f20cc35
DJ
3261}
3262
0f20cc35
DJ
3263/* Output a simple dynamic relocation into SRELOC. */
3264
3265static void
3266mips_elf_output_dynamic_relocation (bfd *output_bfd,
3267 asection *sreloc,
861fb55a 3268 unsigned long reloc_index,
0f20cc35
DJ
3269 unsigned long indx,
3270 int r_type,
3271 bfd_vma offset)
3272{
3273 Elf_Internal_Rela rel[3];
3274
3275 memset (rel, 0, sizeof (rel));
3276
3277 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3278 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3279
3280 if (ABI_64_P (output_bfd))
3281 {
3282 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3283 (output_bfd, &rel[0],
3284 (sreloc->contents
861fb55a 3285 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3286 }
3287 else
3288 bfd_elf32_swap_reloc_out
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
861fb55a 3291 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3292}
3293
3294/* Initialize a set of TLS GOT entries for one symbol. */
3295
3296static void
9ab066b4
RS
3297mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3298 struct mips_got_entry *entry,
0f20cc35
DJ
3299 struct mips_elf_link_hash_entry *h,
3300 bfd_vma value)
3301{
23cc69b6 3302 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3303 int indx;
3304 asection *sreloc, *sgot;
9ab066b4 3305 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3306 bfd_boolean need_relocs = FALSE;
3307
23cc69b6 3308 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3309 if (htab == NULL)
3310 return;
3311
23cc69b6 3312 sgot = htab->sgot;
0f20cc35
DJ
3313
3314 indx = 0;
3315 if (h != NULL)
3316 {
3317 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3318
0e1862bb
L
3319 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3320 &h->root)
3321 && (!bfd_link_pic (info)
3322 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3323 indx = h->root.dynindx;
3324 }
3325
9ab066b4 3326 if (entry->tls_initialized)
0f20cc35
DJ
3327 return;
3328
0e1862bb 3329 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3330 && (h == NULL
3331 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3332 || h->root.type != bfd_link_hash_undefweak))
3333 need_relocs = TRUE;
3334
3335 /* MINUS_ONE means the symbol is not defined in this object. It may not
3336 be defined at all; assume that the value doesn't matter in that
3337 case. Otherwise complain if we would use the value. */
3338 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3339 || h->root.root.type == bfd_link_hash_undefweak);
3340
3341 /* Emit necessary relocations. */
0a44bf69 3342 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3343 got_offset = entry->gotidx;
0f20cc35 3344
9ab066b4 3345 switch (entry->tls_type)
0f20cc35 3346 {
e641e783
RS
3347 case GOT_TLS_GD:
3348 /* General Dynamic. */
3349 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3350
3351 if (need_relocs)
3352 {
3353 mips_elf_output_dynamic_relocation
861fb55a 3354 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3355 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3356 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3357
3358 if (indx)
3359 mips_elf_output_dynamic_relocation
861fb55a 3360 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3362 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3363 else
3364 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3365 sgot->contents + got_offset2);
0f20cc35
DJ
3366 }
3367 else
3368 {
3369 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3370 sgot->contents + got_offset);
0f20cc35 3371 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3372 sgot->contents + got_offset2);
0f20cc35 3373 }
e641e783 3374 break;
0f20cc35 3375
e641e783
RS
3376 case GOT_TLS_IE:
3377 /* Initial Exec model. */
0f20cc35
DJ
3378 if (need_relocs)
3379 {
3380 if (indx == 0)
3381 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3382 sgot->contents + got_offset);
0f20cc35
DJ
3383 else
3384 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3385 sgot->contents + got_offset);
0f20cc35
DJ
3386
3387 mips_elf_output_dynamic_relocation
861fb55a 3388 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3389 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3390 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3391 }
3392 else
3393 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3394 sgot->contents + got_offset);
3395 break;
0f20cc35 3396
e641e783 3397 case GOT_TLS_LDM:
0f20cc35
DJ
3398 /* The initial offset is zero, and the LD offsets will include the
3399 bias by DTP_OFFSET. */
3400 MIPS_ELF_PUT_WORD (abfd, 0,
3401 sgot->contents + got_offset
3402 + MIPS_ELF_GOT_SIZE (abfd));
3403
0e1862bb 3404 if (!bfd_link_pic (info))
0f20cc35
DJ
3405 MIPS_ELF_PUT_WORD (abfd, 1,
3406 sgot->contents + got_offset);
3407 else
3408 mips_elf_output_dynamic_relocation
861fb55a 3409 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3410 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3411 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3412 break;
3413
3414 default:
3415 abort ();
0f20cc35
DJ
3416 }
3417
9ab066b4 3418 entry->tls_initialized = TRUE;
e641e783 3419}
0f20cc35 3420
0a44bf69
RS
3421/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3422 for global symbol H. .got.plt comes before the GOT, so the offset
3423 will be negative. */
3424
3425static bfd_vma
3426mips_elf_gotplt_index (struct bfd_link_info *info,
3427 struct elf_link_hash_entry *h)
3428{
1bbce132 3429 bfd_vma got_address, got_value;
0a44bf69
RS
3430 struct mips_elf_link_hash_table *htab;
3431
3432 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3433 BFD_ASSERT (htab != NULL);
3434
1bbce132
MR
3435 BFD_ASSERT (h->plt.plist != NULL);
3436 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3437
3438 /* Calculate the address of the associated .got.plt entry. */
3439 got_address = (htab->sgotplt->output_section->vma
3440 + htab->sgotplt->output_offset
1bbce132
MR
3441 + (h->plt.plist->gotplt_index
3442 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3443
3444 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3445 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3446 + htab->root.hgot->root.u.def.section->output_offset
3447 + htab->root.hgot->root.u.def.value);
3448
3449 return got_address - got_value;
3450}
3451
5c18022e 3452/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3453 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3454 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3455 offset can be found. */
b49e97c9
TS
3456
3457static bfd_vma
9719ad41 3458mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3459 bfd_vma value, unsigned long r_symndx,
0f20cc35 3460 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3461{
a8028dd0 3462 struct mips_elf_link_hash_table *htab;
b15e6682 3463 struct mips_got_entry *entry;
b49e97c9 3464
a8028dd0 3465 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3466 BFD_ASSERT (htab != NULL);
3467
a8028dd0
RS
3468 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3469 r_symndx, h, r_type);
0f20cc35 3470 if (!entry)
b15e6682 3471 return MINUS_ONE;
0f20cc35 3472
e641e783 3473 if (entry->tls_type)
9ab066b4
RS
3474 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3475 return entry->gotidx;
b49e97c9
TS
3476}
3477
13fbec83 3478/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3479
3480static bfd_vma
13fbec83
RS
3481mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3482 struct elf_link_hash_entry *h)
3483{
3484 struct mips_elf_link_hash_table *htab;
3485 long global_got_dynindx;
3486 struct mips_got_info *g;
3487 bfd_vma got_index;
3488
3489 htab = mips_elf_hash_table (info);
3490 BFD_ASSERT (htab != NULL);
3491
3492 global_got_dynindx = 0;
3493 if (htab->global_gotsym != NULL)
3494 global_got_dynindx = htab->global_gotsym->dynindx;
3495
3496 /* Once we determine the global GOT entry with the lowest dynamic
3497 symbol table index, we must put all dynamic symbols with greater
3498 indices into the primary GOT. That makes it easy to calculate the
3499 GOT offset. */
3500 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3501 g = mips_elf_bfd_got (obfd, FALSE);
3502 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3503 * MIPS_ELF_GOT_SIZE (obfd));
3504 BFD_ASSERT (got_index < htab->sgot->size);
3505
3506 return got_index;
3507}
3508
3509/* Return the GOT index for the global symbol indicated by H, which is
3510 referenced by a relocation of type R_TYPE in IBFD. */
3511
3512static bfd_vma
3513mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3514 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3515{
a8028dd0 3516 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3517 struct mips_got_info *g;
3518 struct mips_got_entry lookup, *entry;
3519 bfd_vma gotidx;
b49e97c9 3520
a8028dd0 3521 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3522 BFD_ASSERT (htab != NULL);
3523
6c42ddb9
RS
3524 g = mips_elf_bfd_got (ibfd, FALSE);
3525 BFD_ASSERT (g);
f4416af6 3526
6c42ddb9
RS
3527 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3528 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3529 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3530
6c42ddb9
RS
3531 lookup.abfd = ibfd;
3532 lookup.symndx = -1;
3533 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3534 entry = htab_find (g->got_entries, &lookup);
3535 BFD_ASSERT (entry);
0f20cc35 3536
6c42ddb9
RS
3537 gotidx = entry->gotidx;
3538 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3539
6c42ddb9 3540 if (lookup.tls_type)
0f20cc35 3541 {
0f20cc35
DJ
3542 bfd_vma value = MINUS_ONE;
3543
3544 if ((h->root.type == bfd_link_hash_defined
3545 || h->root.type == bfd_link_hash_defweak)
3546 && h->root.u.def.section->output_section)
3547 value = (h->root.u.def.value
3548 + h->root.u.def.section->output_offset
3549 + h->root.u.def.section->output_section->vma);
3550
9ab066b4 3551 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3552 }
6c42ddb9 3553 return gotidx;
b49e97c9
TS
3554}
3555
5c18022e
RS
3556/* Find a GOT page entry that points to within 32KB of VALUE. These
3557 entries are supposed to be placed at small offsets in the GOT, i.e.,
3558 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3559 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3560 offset of the GOT entry from VALUE. */
b49e97c9
TS
3561
3562static bfd_vma
9719ad41 3563mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3564 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3565{
91d6fa6a 3566 bfd_vma page, got_index;
b15e6682 3567 struct mips_got_entry *entry;
b49e97c9 3568
0a44bf69 3569 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3570 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3571 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3572
b15e6682
AO
3573 if (!entry)
3574 return MINUS_ONE;
143d77c5 3575
91d6fa6a 3576 got_index = entry->gotidx;
b49e97c9
TS
3577
3578 if (offsetp)
f4416af6 3579 *offsetp = value - entry->d.address;
b49e97c9 3580
91d6fa6a 3581 return got_index;
b49e97c9
TS
3582}
3583
738e5348 3584/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3585 EXTERNAL is true if the relocation was originally against a global
3586 symbol that binds locally. */
b49e97c9
TS
3587
3588static bfd_vma
9719ad41 3589mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3590 bfd_vma value, bfd_boolean external)
b49e97c9 3591{
b15e6682 3592 struct mips_got_entry *entry;
b49e97c9 3593
0a44bf69
RS
3594 /* GOT16 relocations against local symbols are followed by a LO16
3595 relocation; those against global symbols are not. Thus if the
3596 symbol was originally local, the GOT16 relocation should load the
3597 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3598 if (! external)
0a44bf69 3599 value = mips_elf_high (value) << 16;
b49e97c9 3600
738e5348
RS
3601 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3602 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3603 same in all cases. */
a8028dd0
RS
3604 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3605 NULL, R_MIPS_GOT16);
b15e6682
AO
3606 if (entry)
3607 return entry->gotidx;
3608 else
3609 return MINUS_ONE;
b49e97c9
TS
3610}
3611
3612/* Returns the offset for the entry at the INDEXth position
3613 in the GOT. */
3614
3615static bfd_vma
a8028dd0 3616mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3617 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3618{
a8028dd0 3619 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3620 asection *sgot;
3621 bfd_vma gp;
3622
a8028dd0 3623 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3624 BFD_ASSERT (htab != NULL);
3625
a8028dd0 3626 sgot = htab->sgot;
f4416af6 3627 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3628 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3629
91d6fa6a 3630 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3631}
3632
0a44bf69
RS
3633/* Create and return a local GOT entry for VALUE, which was calculated
3634 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3635 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3636 instead. */
b49e97c9 3637
b15e6682 3638static struct mips_got_entry *
0a44bf69 3639mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3640 bfd *ibfd, bfd_vma value,
5c18022e 3641 unsigned long r_symndx,
0f20cc35
DJ
3642 struct mips_elf_link_hash_entry *h,
3643 int r_type)
b49e97c9 3644{
ebc53538
RS
3645 struct mips_got_entry lookup, *entry;
3646 void **loc;
f4416af6 3647 struct mips_got_info *g;
0a44bf69 3648 struct mips_elf_link_hash_table *htab;
6c42ddb9 3649 bfd_vma gotidx;
0a44bf69
RS
3650
3651 htab = mips_elf_hash_table (info);
4dfe6ac6 3652 BFD_ASSERT (htab != NULL);
b15e6682 3653
d7206569 3654 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3655 if (g == NULL)
3656 {
d7206569 3657 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3658 BFD_ASSERT (g != NULL);
3659 }
b15e6682 3660
020d7251
RS
3661 /* This function shouldn't be called for symbols that live in the global
3662 area of the GOT. */
3663 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3664
ebc53538
RS
3665 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3666 if (lookup.tls_type)
3667 {
3668 lookup.abfd = ibfd;
df58fc94 3669 if (tls_ldm_reloc_p (r_type))
0f20cc35 3670 {
ebc53538
RS
3671 lookup.symndx = 0;
3672 lookup.d.addend = 0;
0f20cc35
DJ
3673 }
3674 else if (h == NULL)
3675 {
ebc53538
RS
3676 lookup.symndx = r_symndx;
3677 lookup.d.addend = 0;
0f20cc35
DJ
3678 }
3679 else
ebc53538
RS
3680 {
3681 lookup.symndx = -1;
3682 lookup.d.h = h;
3683 }
0f20cc35 3684
ebc53538
RS
3685 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3686 BFD_ASSERT (entry);
0f20cc35 3687
6c42ddb9
RS
3688 gotidx = entry->gotidx;
3689 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3690
ebc53538 3691 return entry;
0f20cc35
DJ
3692 }
3693
ebc53538
RS
3694 lookup.abfd = NULL;
3695 lookup.symndx = -1;
3696 lookup.d.address = value;
3697 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3698 if (!loc)
b15e6682 3699 return NULL;
143d77c5 3700
ebc53538
RS
3701 entry = (struct mips_got_entry *) *loc;
3702 if (entry)
3703 return entry;
b15e6682 3704
cb22ccf4 3705 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3706 {
3707 /* We didn't allocate enough space in the GOT. */
3708 (*_bfd_error_handler)
3709 (_("not enough GOT space for local GOT entries"));
3710 bfd_set_error (bfd_error_bad_value);
b15e6682 3711 return NULL;
b49e97c9
TS
3712 }
3713
ebc53538
RS
3714 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3715 if (!entry)
3716 return NULL;
3717
cb22ccf4
KCY
3718 if (got16_reloc_p (r_type)
3719 || call16_reloc_p (r_type)
3720 || got_page_reloc_p (r_type)
3721 || got_disp_reloc_p (r_type))
3722 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3723 else
3724 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3725
ebc53538
RS
3726 *entry = lookup;
3727 *loc = entry;
3728
3729 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3730
5c18022e 3731 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3732 if (htab->is_vxworks)
3733 {
3734 Elf_Internal_Rela outrel;
5c18022e 3735 asection *s;
91d6fa6a 3736 bfd_byte *rloc;
0a44bf69 3737 bfd_vma got_address;
0a44bf69
RS
3738
3739 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3740 got_address = (htab->sgot->output_section->vma
3741 + htab->sgot->output_offset
ebc53538 3742 + entry->gotidx);
0a44bf69 3743
91d6fa6a 3744 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3745 outrel.r_offset = got_address;
5c18022e
RS
3746 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3747 outrel.r_addend = value;
91d6fa6a 3748 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3749 }
3750
ebc53538 3751 return entry;
b49e97c9
TS
3752}
3753
d4596a51
RS
3754/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3755 The number might be exact or a worst-case estimate, depending on how
3756 much information is available to elf_backend_omit_section_dynsym at
3757 the current linking stage. */
3758
3759static bfd_size_type
3760count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3761{
3762 bfd_size_type count;
3763
3764 count = 0;
0e1862bb
L
3765 if (bfd_link_pic (info)
3766 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3767 {
3768 asection *p;
3769 const struct elf_backend_data *bed;
3770
3771 bed = get_elf_backend_data (output_bfd);
3772 for (p = output_bfd->sections; p ; p = p->next)
3773 if ((p->flags & SEC_EXCLUDE) == 0
3774 && (p->flags & SEC_ALLOC) != 0
3775 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3776 ++count;
3777 }
3778 return count;
3779}
3780
b49e97c9 3781/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3782 appear towards the end. */
b49e97c9 3783
b34976b6 3784static bfd_boolean
d4596a51 3785mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3786{
a8028dd0 3787 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3788 struct mips_elf_hash_sort_data hsd;
3789 struct mips_got_info *g;
b49e97c9 3790
d4596a51
RS
3791 if (elf_hash_table (info)->dynsymcount == 0)
3792 return TRUE;
3793
a8028dd0 3794 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3795 BFD_ASSERT (htab != NULL);
3796
a8028dd0 3797 g = htab->got_info;
d4596a51
RS
3798 if (g == NULL)
3799 return TRUE;
f4416af6 3800
b49e97c9 3801 hsd.low = NULL;
23cc69b6
RS
3802 hsd.max_unref_got_dynindx
3803 = hsd.min_got_dynindx
3804 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3805 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3806 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3807 elf_hash_table (info)),
3808 mips_elf_sort_hash_table_f,
3809 &hsd);
3810
3811 /* There should have been enough room in the symbol table to
44c410de 3812 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3813 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3814 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3815 == elf_hash_table (info)->dynsymcount);
3816 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3817 == g->global_gotno);
b49e97c9
TS
3818
3819 /* Now we know which dynamic symbol has the lowest dynamic symbol
3820 table index in the GOT. */
d222d210 3821 htab->global_gotsym = hsd.low;
b49e97c9 3822
b34976b6 3823 return TRUE;
b49e97c9
TS
3824}
3825
3826/* If H needs a GOT entry, assign it the highest available dynamic
3827 index. Otherwise, assign it the lowest available dynamic
3828 index. */
3829
b34976b6 3830static bfd_boolean
9719ad41 3831mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3832{
9719ad41 3833 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3834
b49e97c9
TS
3835 /* Symbols without dynamic symbol table entries aren't interesting
3836 at all. */
3837 if (h->root.dynindx == -1)
b34976b6 3838 return TRUE;
b49e97c9 3839
634835ae 3840 switch (h->global_got_area)
f4416af6 3841 {
634835ae
RS
3842 case GGA_NONE:
3843 h->root.dynindx = hsd->max_non_got_dynindx++;
3844 break;
0f20cc35 3845
634835ae 3846 case GGA_NORMAL:
b49e97c9
TS
3847 h->root.dynindx = --hsd->min_got_dynindx;
3848 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3849 break;
3850
3851 case GGA_RELOC_ONLY:
634835ae
RS
3852 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3853 hsd->low = (struct elf_link_hash_entry *) h;
3854 h->root.dynindx = hsd->max_unref_got_dynindx++;
3855 break;
b49e97c9
TS
3856 }
3857
b34976b6 3858 return TRUE;
b49e97c9
TS
3859}
3860
ee227692
RS
3861/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3862 (which is owned by the caller and shouldn't be added to the
3863 hash table directly). */
3864
3865static bfd_boolean
3866mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3867 struct mips_got_entry *lookup)
3868{
3869 struct mips_elf_link_hash_table *htab;
3870 struct mips_got_entry *entry;
3871 struct mips_got_info *g;
3872 void **loc, **bfd_loc;
3873
3874 /* Make sure there's a slot for this entry in the master GOT. */
3875 htab = mips_elf_hash_table (info);
3876 g = htab->got_info;
3877 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3878 if (!loc)
3879 return FALSE;
3880
3881 /* Populate the entry if it isn't already. */
3882 entry = (struct mips_got_entry *) *loc;
3883 if (!entry)
3884 {
3885 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3886 if (!entry)
3887 return FALSE;
3888
9ab066b4 3889 lookup->tls_initialized = FALSE;
ee227692
RS
3890 lookup->gotidx = -1;
3891 *entry = *lookup;
3892 *loc = entry;
3893 }
3894
3895 /* Reuse the same GOT entry for the BFD's GOT. */
3896 g = mips_elf_bfd_got (abfd, TRUE);
3897 if (!g)
3898 return FALSE;
3899
3900 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3901 if (!bfd_loc)
3902 return FALSE;
3903
3904 if (!*bfd_loc)
3905 *bfd_loc = entry;
3906 return TRUE;
3907}
3908
e641e783
RS
3909/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3910 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3911 using the GOT entry for calls. */
b49e97c9 3912
b34976b6 3913static bfd_boolean
9719ad41
RS
3914mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3915 bfd *abfd, struct bfd_link_info *info,
e641e783 3916 bfd_boolean for_call, int r_type)
b49e97c9 3917{
a8028dd0 3918 struct mips_elf_link_hash_table *htab;
634835ae 3919 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3920 struct mips_got_entry entry;
3921 unsigned char tls_type;
a8028dd0
RS
3922
3923 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3924 BFD_ASSERT (htab != NULL);
3925
634835ae 3926 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3927 if (!for_call)
3928 hmips->got_only_for_calls = FALSE;
f4416af6 3929
b49e97c9
TS
3930 /* A global symbol in the GOT must also be in the dynamic symbol
3931 table. */
7c5fcef7
L
3932 if (h->dynindx == -1)
3933 {
3934 switch (ELF_ST_VISIBILITY (h->other))
3935 {
3936 case STV_INTERNAL:
3937 case STV_HIDDEN:
33bb52fb 3938 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3939 break;
3940 }
c152c796 3941 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3942 return FALSE;
7c5fcef7 3943 }
b49e97c9 3944
ee227692 3945 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3946 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3947 hmips->global_got_area = GGA_NORMAL;
86324f90 3948
f4416af6
AO
3949 entry.abfd = abfd;
3950 entry.symndx = -1;
3951 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3952 entry.tls_type = tls_type;
3953 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3954}
f4416af6 3955
e641e783
RS
3956/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3957 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3958
3959static bfd_boolean
9719ad41 3960mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3961 struct bfd_link_info *info, int r_type)
f4416af6 3962{
a8028dd0
RS
3963 struct mips_elf_link_hash_table *htab;
3964 struct mips_got_info *g;
ee227692 3965 struct mips_got_entry entry;
f4416af6 3966
a8028dd0 3967 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3968 BFD_ASSERT (htab != NULL);
3969
a8028dd0
RS
3970 g = htab->got_info;
3971 BFD_ASSERT (g != NULL);
3972
f4416af6
AO
3973 entry.abfd = abfd;
3974 entry.symndx = symndx;
3975 entry.d.addend = addend;
e641e783 3976 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3977 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3978}
c224138d 3979
13db6b44
RS
3980/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3981 H is the symbol's hash table entry, or null if SYMNDX is local
3982 to ABFD. */
c224138d
RS
3983
3984static bfd_boolean
13db6b44
RS
3985mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3986 long symndx, struct elf_link_hash_entry *h,
3987 bfd_signed_vma addend)
c224138d 3988{
a8028dd0 3989 struct mips_elf_link_hash_table *htab;
ee227692 3990 struct mips_got_info *g1, *g2;
13db6b44 3991 struct mips_got_page_ref lookup, *entry;
ee227692 3992 void **loc, **bfd_loc;
c224138d 3993
a8028dd0 3994 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3995 BFD_ASSERT (htab != NULL);
3996
ee227692
RS
3997 g1 = htab->got_info;
3998 BFD_ASSERT (g1 != NULL);
a8028dd0 3999
13db6b44
RS
4000 if (h)
4001 {
4002 lookup.symndx = -1;
4003 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4004 }
4005 else
4006 {
4007 lookup.symndx = symndx;
4008 lookup.u.abfd = abfd;
4009 }
4010 lookup.addend = addend;
4011 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4012 if (loc == NULL)
4013 return FALSE;
4014
13db6b44 4015 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4016 if (!entry)
4017 {
4018 entry = bfd_alloc (abfd, sizeof (*entry));
4019 if (!entry)
4020 return FALSE;
4021
13db6b44 4022 *entry = lookup;
c224138d
RS
4023 *loc = entry;
4024 }
4025
ee227692
RS
4026 /* Add the same entry to the BFD's GOT. */
4027 g2 = mips_elf_bfd_got (abfd, TRUE);
4028 if (!g2)
4029 return FALSE;
4030
13db6b44 4031 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4032 if (!bfd_loc)
4033 return FALSE;
4034
4035 if (!*bfd_loc)
4036 *bfd_loc = entry;
4037
c224138d
RS
4038 return TRUE;
4039}
33bb52fb
RS
4040
4041/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4042
4043static void
4044mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4045 unsigned int n)
4046{
4047 asection *s;
4048 struct mips_elf_link_hash_table *htab;
4049
4050 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4051 BFD_ASSERT (htab != NULL);
4052
33bb52fb
RS
4053 s = mips_elf_rel_dyn_section (info, FALSE);
4054 BFD_ASSERT (s != NULL);
4055
4056 if (htab->is_vxworks)
4057 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4058 else
4059 {
4060 if (s->size == 0)
4061 {
4062 /* Make room for a null element. */
4063 s->size += MIPS_ELF_REL_SIZE (abfd);
4064 ++s->reloc_count;
4065 }
4066 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4067 }
4068}
4069\f
476366af
RS
4070/* A htab_traverse callback for GOT entries, with DATA pointing to a
4071 mips_elf_traverse_got_arg structure. Count the number of GOT
4072 entries and TLS relocs. Set DATA->value to true if we need
4073 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4074
4075static int
4076mips_elf_check_recreate_got (void **entryp, void *data)
4077{
4078 struct mips_got_entry *entry;
476366af 4079 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4080
4081 entry = (struct mips_got_entry *) *entryp;
476366af 4082 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4083 if (entry->abfd != NULL && entry->symndx == -1)
4084 {
4085 struct mips_elf_link_hash_entry *h;
4086
4087 h = entry->d.h;
4088 if (h->root.root.type == bfd_link_hash_indirect
4089 || h->root.root.type == bfd_link_hash_warning)
4090 {
476366af 4091 arg->value = TRUE;
33bb52fb
RS
4092 return 0;
4093 }
4094 }
476366af 4095 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4096 return 1;
4097}
4098
476366af
RS
4099/* A htab_traverse callback for GOT entries, with DATA pointing to a
4100 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4101 converting entries for indirect and warning symbols into entries
4102 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4103
4104static int
4105mips_elf_recreate_got (void **entryp, void *data)
4106{
72e7511a 4107 struct mips_got_entry new_entry, *entry;
476366af 4108 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4109 void **slot;
4110
33bb52fb 4111 entry = (struct mips_got_entry *) *entryp;
476366af 4112 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4113 if (entry->abfd != NULL
4114 && entry->symndx == -1
4115 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4116 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4117 {
4118 struct mips_elf_link_hash_entry *h;
4119
72e7511a
RS
4120 new_entry = *entry;
4121 entry = &new_entry;
33bb52fb 4122 h = entry->d.h;
72e7511a 4123 do
634835ae
RS
4124 {
4125 BFD_ASSERT (h->global_got_area == GGA_NONE);
4126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4127 }
72e7511a
RS
4128 while (h->root.root.type == bfd_link_hash_indirect
4129 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4130 entry->d.h = h;
4131 }
476366af 4132 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4133 if (slot == NULL)
4134 {
476366af 4135 arg->g = NULL;
33bb52fb
RS
4136 return 0;
4137 }
4138 if (*slot == NULL)
72e7511a
RS
4139 {
4140 if (entry == &new_entry)
4141 {
4142 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4143 if (!entry)
4144 {
476366af 4145 arg->g = NULL;
72e7511a
RS
4146 return 0;
4147 }
4148 *entry = new_entry;
4149 }
4150 *slot = entry;
476366af 4151 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4152 }
33bb52fb
RS
4153 return 1;
4154}
4155
13db6b44
RS
4156/* Return the maximum number of GOT page entries required for RANGE. */
4157
4158static bfd_vma
4159mips_elf_pages_for_range (const struct mips_got_page_range *range)
4160{
4161 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4162}
4163
4164/* Record that G requires a page entry that can reach SEC + ADDEND. */
4165
4166static bfd_boolean
b75d42bc 4167mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4168 asection *sec, bfd_signed_vma addend)
4169{
b75d42bc 4170 struct mips_got_info *g = arg->g;
13db6b44
RS
4171 struct mips_got_page_entry lookup, *entry;
4172 struct mips_got_page_range **range_ptr, *range;
4173 bfd_vma old_pages, new_pages;
4174 void **loc;
4175
4176 /* Find the mips_got_page_entry hash table entry for this section. */
4177 lookup.sec = sec;
4178 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4179 if (loc == NULL)
4180 return FALSE;
4181
4182 /* Create a mips_got_page_entry if this is the first time we've
4183 seen the section. */
4184 entry = (struct mips_got_page_entry *) *loc;
4185 if (!entry)
4186 {
b75d42bc 4187 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4188 if (!entry)
4189 return FALSE;
4190
4191 entry->sec = sec;
4192 *loc = entry;
4193 }
4194
4195 /* Skip over ranges whose maximum extent cannot share a page entry
4196 with ADDEND. */
4197 range_ptr = &entry->ranges;
4198 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4199 range_ptr = &(*range_ptr)->next;
4200
4201 /* If we scanned to the end of the list, or found a range whose
4202 minimum extent cannot share a page entry with ADDEND, create
4203 a new singleton range. */
4204 range = *range_ptr;
4205 if (!range || addend < range->min_addend - 0xffff)
4206 {
b75d42bc 4207 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4208 if (!range)
4209 return FALSE;
4210
4211 range->next = *range_ptr;
4212 range->min_addend = addend;
4213 range->max_addend = addend;
4214
4215 *range_ptr = range;
4216 entry->num_pages++;
4217 g->page_gotno++;
4218 return TRUE;
4219 }
4220
4221 /* Remember how many pages the old range contributed. */
4222 old_pages = mips_elf_pages_for_range (range);
4223
4224 /* Update the ranges. */
4225 if (addend < range->min_addend)
4226 range->min_addend = addend;
4227 else if (addend > range->max_addend)
4228 {
4229 if (range->next && addend >= range->next->min_addend - 0xffff)
4230 {
4231 old_pages += mips_elf_pages_for_range (range->next);
4232 range->max_addend = range->next->max_addend;
4233 range->next = range->next->next;
4234 }
4235 else
4236 range->max_addend = addend;
4237 }
4238
4239 /* Record any change in the total estimate. */
4240 new_pages = mips_elf_pages_for_range (range);
4241 if (old_pages != new_pages)
4242 {
4243 entry->num_pages += new_pages - old_pages;
4244 g->page_gotno += new_pages - old_pages;
4245 }
4246
4247 return TRUE;
4248}
4249
4250/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4251 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4252 whether the page reference described by *REFP needs a GOT page entry,
4253 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4254
4255static bfd_boolean
4256mips_elf_resolve_got_page_ref (void **refp, void *data)
4257{
4258 struct mips_got_page_ref *ref;
4259 struct mips_elf_traverse_got_arg *arg;
4260 struct mips_elf_link_hash_table *htab;
4261 asection *sec;
4262 bfd_vma addend;
4263
4264 ref = (struct mips_got_page_ref *) *refp;
4265 arg = (struct mips_elf_traverse_got_arg *) data;
4266 htab = mips_elf_hash_table (arg->info);
4267
4268 if (ref->symndx < 0)
4269 {
4270 struct mips_elf_link_hash_entry *h;
4271
4272 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4273 h = ref->u.h;
4274 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4275 return 1;
4276
4277 /* Ignore undefined symbols; we'll issue an error later if
4278 appropriate. */
4279 if (!((h->root.root.type == bfd_link_hash_defined
4280 || h->root.root.type == bfd_link_hash_defweak)
4281 && h->root.root.u.def.section))
4282 return 1;
4283
4284 sec = h->root.root.u.def.section;
4285 addend = h->root.root.u.def.value + ref->addend;
4286 }
4287 else
4288 {
4289 Elf_Internal_Sym *isym;
4290
4291 /* Read in the symbol. */
4292 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4293 ref->symndx);
4294 if (isym == NULL)
4295 {
4296 arg->g = NULL;
4297 return 0;
4298 }
4299
4300 /* Get the associated input section. */
4301 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4302 if (sec == NULL)
4303 {
4304 arg->g = NULL;
4305 return 0;
4306 }
4307
4308 /* If this is a mergable section, work out the section and offset
4309 of the merged data. For section symbols, the addend specifies
4310 of the offset _of_ the first byte in the data, otherwise it
4311 specifies the offset _from_ the first byte. */
4312 if (sec->flags & SEC_MERGE)
4313 {
4314 void *secinfo;
4315
4316 secinfo = elf_section_data (sec)->sec_info;
4317 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4318 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4319 isym->st_value + ref->addend);
4320 else
4321 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4322 isym->st_value) + ref->addend;
4323 }
4324 else
4325 addend = isym->st_value + ref->addend;
4326 }
b75d42bc 4327 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4328 {
4329 arg->g = NULL;
4330 return 0;
4331 }
4332 return 1;
4333}
4334
33bb52fb 4335/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4336 replace them with entries for the target symbol. Convert g->got_page_refs
4337 into got_page_entry structures and estimate the number of page entries
4338 that they require. */
33bb52fb
RS
4339
4340static bfd_boolean
476366af
RS
4341mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4342 struct mips_got_info *g)
33bb52fb 4343{
476366af
RS
4344 struct mips_elf_traverse_got_arg tga;
4345 struct mips_got_info oldg;
4346
4347 oldg = *g;
33bb52fb 4348
476366af
RS
4349 tga.info = info;
4350 tga.g = g;
4351 tga.value = FALSE;
4352 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4353 if (tga.value)
33bb52fb 4354 {
476366af
RS
4355 *g = oldg;
4356 g->got_entries = htab_create (htab_size (oldg.got_entries),
4357 mips_elf_got_entry_hash,
4358 mips_elf_got_entry_eq, NULL);
4359 if (!g->got_entries)
33bb52fb
RS
4360 return FALSE;
4361
476366af
RS
4362 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4363 if (!tga.g)
4364 return FALSE;
4365
4366 htab_delete (oldg.got_entries);
33bb52fb 4367 }
13db6b44
RS
4368
4369 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4370 mips_got_page_entry_eq, NULL);
4371 if (g->got_page_entries == NULL)
4372 return FALSE;
4373
4374 tga.info = info;
4375 tga.g = g;
4376 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4377
33bb52fb
RS
4378 return TRUE;
4379}
4380
c5d6fa44
RS
4381/* Return true if a GOT entry for H should live in the local rather than
4382 global GOT area. */
4383
4384static bfd_boolean
4385mips_use_local_got_p (struct bfd_link_info *info,
4386 struct mips_elf_link_hash_entry *h)
4387{
4388 /* Symbols that aren't in the dynamic symbol table must live in the
4389 local GOT. This includes symbols that are completely undefined
4390 and which therefore don't bind locally. We'll report undefined
4391 symbols later if appropriate. */
4392 if (h->root.dynindx == -1)
4393 return TRUE;
4394
4395 /* Symbols that bind locally can (and in the case of forced-local
4396 symbols, must) live in the local GOT. */
4397 if (h->got_only_for_calls
4398 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4399 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4400 return TRUE;
4401
4402 /* If this is an executable that must provide a definition of the symbol,
4403 either though PLTs or copy relocations, then that address should go in
4404 the local rather than global GOT. */
0e1862bb 4405 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4406 return TRUE;
4407
4408 return FALSE;
4409}
4410
6c42ddb9
RS
4411/* A mips_elf_link_hash_traverse callback for which DATA points to the
4412 link_info structure. Decide whether the hash entry needs an entry in
4413 the global part of the primary GOT, setting global_got_area accordingly.
4414 Count the number of global symbols that are in the primary GOT only
4415 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4416
4417static int
d4596a51 4418mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4419{
020d7251 4420 struct bfd_link_info *info;
6ccf4795 4421 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4422 struct mips_got_info *g;
4423
020d7251 4424 info = (struct bfd_link_info *) data;
6ccf4795
RS
4425 htab = mips_elf_hash_table (info);
4426 g = htab->got_info;
d4596a51 4427 if (h->global_got_area != GGA_NONE)
33bb52fb 4428 {
020d7251 4429 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4430 local or global GOT. */
4431 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4432 /* The symbol belongs in the local GOT. We no longer need this
4433 entry if it was only used for relocations; those relocations
4434 will be against the null or section symbol instead of H. */
4435 h->global_got_area = GGA_NONE;
6ccf4795
RS
4436 else if (htab->is_vxworks
4437 && h->got_only_for_calls
1bbce132 4438 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4439 /* On VxWorks, calls can refer directly to the .got.plt entry;
4440 they don't need entries in the regular GOT. .got.plt entries
4441 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4442 h->global_got_area = GGA_NONE;
6c42ddb9 4443 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4444 {
6c42ddb9 4445 g->reloc_only_gotno++;
23cc69b6 4446 g->global_gotno++;
23cc69b6 4447 }
33bb52fb
RS
4448 }
4449 return 1;
4450}
f4416af6 4451\f
d7206569
RS
4452/* A htab_traverse callback for GOT entries. Add each one to the GOT
4453 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4454
4455static int
d7206569 4456mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4457{
d7206569
RS
4458 struct mips_got_entry *entry;
4459 struct mips_elf_traverse_got_arg *arg;
4460 void **slot;
f4416af6 4461
d7206569
RS
4462 entry = (struct mips_got_entry *) *entryp;
4463 arg = (struct mips_elf_traverse_got_arg *) data;
4464 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4465 if (!slot)
f4416af6 4466 {
d7206569
RS
4467 arg->g = NULL;
4468 return 0;
f4416af6 4469 }
d7206569 4470 if (!*slot)
c224138d 4471 {
d7206569
RS
4472 *slot = entry;
4473 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4474 }
f4416af6
AO
4475 return 1;
4476}
4477
d7206569
RS
4478/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4479 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4480
4481static int
d7206569 4482mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4483{
d7206569
RS
4484 struct mips_got_page_entry *entry;
4485 struct mips_elf_traverse_got_arg *arg;
4486 void **slot;
c224138d 4487
d7206569
RS
4488 entry = (struct mips_got_page_entry *) *entryp;
4489 arg = (struct mips_elf_traverse_got_arg *) data;
4490 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4491 if (!slot)
c224138d 4492 {
d7206569 4493 arg->g = NULL;
c224138d
RS
4494 return 0;
4495 }
d7206569
RS
4496 if (!*slot)
4497 {
4498 *slot = entry;
4499 arg->g->page_gotno += entry->num_pages;
4500 }
c224138d
RS
4501 return 1;
4502}
4503
d7206569
RS
4504/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4505 this would lead to overflow, 1 if they were merged successfully,
4506 and 0 if a merge failed due to lack of memory. (These values are chosen
4507 so that nonnegative return values can be returned by a htab_traverse
4508 callback.) */
c224138d
RS
4509
4510static int
d7206569 4511mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4512 struct mips_got_info *to,
4513 struct mips_elf_got_per_bfd_arg *arg)
4514{
d7206569 4515 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4516 unsigned int estimate;
4517
4518 /* Work out how many page entries we would need for the combined GOT. */
4519 estimate = arg->max_pages;
4520 if (estimate >= from->page_gotno + to->page_gotno)
4521 estimate = from->page_gotno + to->page_gotno;
4522
e2ece73c 4523 /* And conservatively estimate how many local and TLS entries
c224138d 4524 would be needed. */
e2ece73c
RS
4525 estimate += from->local_gotno + to->local_gotno;
4526 estimate += from->tls_gotno + to->tls_gotno;
4527
17214937
RS
4528 /* If we're merging with the primary got, any TLS relocations will
4529 come after the full set of global entries. Otherwise estimate those
e2ece73c 4530 conservatively as well. */
17214937 4531 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4532 estimate += arg->global_count;
4533 else
4534 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4535
4536 /* Bail out if the combined GOT might be too big. */
4537 if (estimate > arg->max_count)
4538 return -1;
4539
c224138d 4540 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4541 tga.info = arg->info;
4542 tga.g = to;
4543 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4544 if (!tga.g)
c224138d
RS
4545 return 0;
4546
d7206569
RS
4547 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4548 if (!tga.g)
c224138d
RS
4549 return 0;
4550
d7206569 4551 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4552 return 1;
4553}
4554
d7206569 4555/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4556 as possible of the primary got, since it doesn't require explicit
4557 dynamic relocations, but don't use bfds that would reference global
4558 symbols out of the addressable range. Failing the primary got,
4559 attempt to merge with the current got, or finish the current got
4560 and then make make the new got current. */
4561
d7206569
RS
4562static bfd_boolean
4563mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4564 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4565{
c224138d
RS
4566 unsigned int estimate;
4567 int result;
4568
476366af 4569 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4570 return FALSE;
4571
c224138d
RS
4572 /* Work out the number of page, local and TLS entries. */
4573 estimate = arg->max_pages;
4574 if (estimate > g->page_gotno)
4575 estimate = g->page_gotno;
4576 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4577
4578 /* We place TLS GOT entries after both locals and globals. The globals
4579 for the primary GOT may overflow the normal GOT size limit, so be
4580 sure not to merge a GOT which requires TLS with the primary GOT in that
4581 case. This doesn't affect non-primary GOTs. */
c224138d 4582 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4583
c224138d 4584 if (estimate <= arg->max_count)
f4416af6 4585 {
c224138d
RS
4586 /* If we don't have a primary GOT, use it as
4587 a starting point for the primary GOT. */
4588 if (!arg->primary)
4589 {
d7206569
RS
4590 arg->primary = g;
4591 return TRUE;
c224138d 4592 }
f4416af6 4593
c224138d 4594 /* Try merging with the primary GOT. */
d7206569 4595 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4596 if (result >= 0)
4597 return result;
f4416af6 4598 }
c224138d 4599
f4416af6 4600 /* If we can merge with the last-created got, do it. */
c224138d 4601 if (arg->current)
f4416af6 4602 {
d7206569 4603 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4604 if (result >= 0)
4605 return result;
f4416af6 4606 }
c224138d 4607
f4416af6
AO
4608 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4609 fits; if it turns out that it doesn't, we'll get relocation
4610 overflows anyway. */
c224138d
RS
4611 g->next = arg->current;
4612 arg->current = g;
0f20cc35 4613
d7206569 4614 return TRUE;
0f20cc35
DJ
4615}
4616
72e7511a
RS
4617/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4618 to GOTIDX, duplicating the entry if it has already been assigned
4619 an index in a different GOT. */
4620
4621static bfd_boolean
4622mips_elf_set_gotidx (void **entryp, long gotidx)
4623{
4624 struct mips_got_entry *entry;
4625
4626 entry = (struct mips_got_entry *) *entryp;
4627 if (entry->gotidx > 0)
4628 {
4629 struct mips_got_entry *new_entry;
4630
4631 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4632 if (!new_entry)
4633 return FALSE;
4634
4635 *new_entry = *entry;
4636 *entryp = new_entry;
4637 entry = new_entry;
4638 }
4639 entry->gotidx = gotidx;
4640 return TRUE;
4641}
4642
4643/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4644 mips_elf_traverse_got_arg in which DATA->value is the size of one
4645 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4646
4647static int
72e7511a 4648mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4649{
72e7511a
RS
4650 struct mips_got_entry *entry;
4651 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4652
4653 /* We're only interested in TLS symbols. */
72e7511a 4654 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4655 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4656 return 1;
4657
72e7511a 4658 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4659 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4660 {
6c42ddb9
RS
4661 arg->g = NULL;
4662 return 0;
f4416af6
AO
4663 }
4664
ead49a57 4665 /* Account for the entries we've just allocated. */
9ab066b4 4666 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4667 return 1;
4668}
4669
ab361d49
RS
4670/* A htab_traverse callback for GOT entries, where DATA points to a
4671 mips_elf_traverse_got_arg. Set the global_got_area of each global
4672 symbol to DATA->value. */
f4416af6 4673
f4416af6 4674static int
ab361d49 4675mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4676{
ab361d49
RS
4677 struct mips_got_entry *entry;
4678 struct mips_elf_traverse_got_arg *arg;
f4416af6 4679
ab361d49
RS
4680 entry = (struct mips_got_entry *) *entryp;
4681 arg = (struct mips_elf_traverse_got_arg *) data;
4682 if (entry->abfd != NULL
4683 && entry->symndx == -1
4684 && entry->d.h->global_got_area != GGA_NONE)
4685 entry->d.h->global_got_area = arg->value;
4686 return 1;
4687}
4688
4689/* A htab_traverse callback for secondary GOT entries, where DATA points
4690 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4691 and record the number of relocations they require. DATA->value is
72e7511a 4692 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4693
4694static int
4695mips_elf_set_global_gotidx (void **entryp, void *data)
4696{
4697 struct mips_got_entry *entry;
4698 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4699
ab361d49
RS
4700 entry = (struct mips_got_entry *) *entryp;
4701 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4702 if (entry->abfd != NULL
4703 && entry->symndx == -1
4704 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4705 {
cb22ccf4 4706 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4707 {
4708 arg->g = NULL;
4709 return 0;
4710 }
cb22ccf4 4711 arg->g->assigned_low_gotno += 1;
72e7511a 4712
0e1862bb 4713 if (bfd_link_pic (arg->info)
ab361d49
RS
4714 || (elf_hash_table (arg->info)->dynamic_sections_created
4715 && entry->d.h->root.def_dynamic
4716 && !entry->d.h->root.def_regular))
4717 arg->g->relocs += 1;
f4416af6
AO
4718 }
4719
4720 return 1;
4721}
4722
33bb52fb
RS
4723/* A htab_traverse callback for GOT entries for which DATA is the
4724 bfd_link_info. Forbid any global symbols from having traditional
4725 lazy-binding stubs. */
4726
0626d451 4727static int
33bb52fb 4728mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4729{
33bb52fb
RS
4730 struct bfd_link_info *info;
4731 struct mips_elf_link_hash_table *htab;
4732 struct mips_got_entry *entry;
0626d451 4733
33bb52fb
RS
4734 entry = (struct mips_got_entry *) *entryp;
4735 info = (struct bfd_link_info *) data;
4736 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4737 BFD_ASSERT (htab != NULL);
4738
0626d451
RS
4739 if (entry->abfd != NULL
4740 && entry->symndx == -1
33bb52fb 4741 && entry->d.h->needs_lazy_stub)
f4416af6 4742 {
33bb52fb
RS
4743 entry->d.h->needs_lazy_stub = FALSE;
4744 htab->lazy_stub_count--;
f4416af6 4745 }
143d77c5 4746
f4416af6
AO
4747 return 1;
4748}
4749
f4416af6
AO
4750/* Return the offset of an input bfd IBFD's GOT from the beginning of
4751 the primary GOT. */
4752static bfd_vma
9719ad41 4753mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4754{
d7206569 4755 if (!g->next)
f4416af6
AO
4756 return 0;
4757
d7206569 4758 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4759 if (! g)
4760 return 0;
4761
4762 BFD_ASSERT (g->next);
4763
4764 g = g->next;
143d77c5 4765
0f20cc35
DJ
4766 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4767 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4768}
4769
4770/* Turn a single GOT that is too big for 16-bit addressing into
4771 a sequence of GOTs, each one 16-bit addressable. */
4772
4773static bfd_boolean
9719ad41 4774mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4775 asection *got, bfd_size_type pages)
f4416af6 4776{
a8028dd0 4777 struct mips_elf_link_hash_table *htab;
f4416af6 4778 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4779 struct mips_elf_traverse_got_arg tga;
a8028dd0 4780 struct mips_got_info *g, *gg;
33bb52fb 4781 unsigned int assign, needed_relocs;
d7206569 4782 bfd *dynobj, *ibfd;
f4416af6 4783
33bb52fb 4784 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4786 BFD_ASSERT (htab != NULL);
4787
a8028dd0 4788 g = htab->got_info;
f4416af6 4789
f4416af6
AO
4790 got_per_bfd_arg.obfd = abfd;
4791 got_per_bfd_arg.info = info;
f4416af6
AO
4792 got_per_bfd_arg.current = NULL;
4793 got_per_bfd_arg.primary = NULL;
0a44bf69 4794 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4795 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4796 - htab->reserved_gotno);
c224138d 4797 got_per_bfd_arg.max_pages = pages;
0f20cc35 4798 /* The number of globals that will be included in the primary GOT.
ab361d49 4799 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4800 information. */
4801 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4802
4803 /* Try to merge the GOTs of input bfds together, as long as they
4804 don't seem to exceed the maximum GOT size, choosing one of them
4805 to be the primary GOT. */
c72f2fb2 4806 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4807 {
4808 gg = mips_elf_bfd_got (ibfd, FALSE);
4809 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4810 return FALSE;
4811 }
f4416af6 4812
0f20cc35 4813 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4814 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4815 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4816 else
4817 g->next = got_per_bfd_arg.primary;
4818 g->next->next = got_per_bfd_arg.current;
4819
4820 /* GG is now the master GOT, and G is the primary GOT. */
4821 gg = g;
4822 g = g->next;
4823
4824 /* Map the output bfd to the primary got. That's what we're going
4825 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4826 didn't mark in check_relocs, and we want a quick way to find it.
4827 We can't just use gg->next because we're going to reverse the
4828 list. */
d7206569 4829 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4830
634835ae
RS
4831 /* Every symbol that is referenced in a dynamic relocation must be
4832 present in the primary GOT, so arrange for them to appear after
4833 those that are actually referenced. */
23cc69b6 4834 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4835 g->global_gotno = gg->global_gotno;
f4416af6 4836
ab361d49
RS
4837 tga.info = info;
4838 tga.value = GGA_RELOC_ONLY;
4839 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4840 tga.value = GGA_NORMAL;
4841 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4842
4843 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4844 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4845 entries in each GOT. We can then compute the end of a GOT by
4846 adding local_gotno to global_gotno. We reverse the list and make
4847 it circular since then we'll be able to quickly compute the
4848 beginning of a GOT, by computing the end of its predecessor. To
4849 avoid special cases for the primary GOT, while still preserving
4850 assertions that are valid for both single- and multi-got links,
4851 we arrange for the main got struct to have the right number of
4852 global entries, but set its local_gotno such that the initial
4853 offset of the primary GOT is zero. Remember that the primary GOT
4854 will become the last item in the circular linked list, so it
4855 points back to the master GOT. */
4856 gg->local_gotno = -g->global_gotno;
4857 gg->global_gotno = g->global_gotno;
0f20cc35 4858 gg->tls_gotno = 0;
f4416af6
AO
4859 assign = 0;
4860 gg->next = gg;
4861
4862 do
4863 {
4864 struct mips_got_info *gn;
4865
861fb55a 4866 assign += htab->reserved_gotno;
cb22ccf4 4867 g->assigned_low_gotno = assign;
c224138d
RS
4868 g->local_gotno += assign;
4869 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4870 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4871 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4872
ead49a57
RS
4873 /* Take g out of the direct list, and push it onto the reversed
4874 list that gg points to. g->next is guaranteed to be nonnull after
4875 this operation, as required by mips_elf_initialize_tls_index. */
4876 gn = g->next;
4877 g->next = gg->next;
4878 gg->next = g;
4879
0f20cc35
DJ
4880 /* Set up any TLS entries. We always place the TLS entries after
4881 all non-TLS entries. */
4882 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4883 tga.g = g;
4884 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4885 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4886 if (!tga.g)
4887 return FALSE;
1fd20d70 4888 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4889
ead49a57 4890 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4891 g = gn;
0626d451 4892
33bb52fb
RS
4893 /* Forbid global symbols in every non-primary GOT from having
4894 lazy-binding stubs. */
0626d451 4895 if (g)
33bb52fb 4896 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4897 }
4898 while (g);
4899
59b08994 4900 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4901
4902 needed_relocs = 0;
33bb52fb
RS
4903 for (g = gg->next; g && g->next != gg; g = g->next)
4904 {
4905 unsigned int save_assign;
4906
ab361d49
RS
4907 /* Assign offsets to global GOT entries and count how many
4908 relocations they need. */
cb22ccf4
KCY
4909 save_assign = g->assigned_low_gotno;
4910 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4911 tga.info = info;
4912 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4913 tga.g = g;
4914 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4915 if (!tga.g)
4916 return FALSE;
cb22ccf4
KCY
4917 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4918 g->assigned_low_gotno = save_assign;
72e7511a 4919
0e1862bb 4920 if (bfd_link_pic (info))
33bb52fb 4921 {
cb22ccf4
KCY
4922 g->relocs += g->local_gotno - g->assigned_low_gotno;
4923 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4924 + g->next->global_gotno
4925 + g->next->tls_gotno
861fb55a 4926 + htab->reserved_gotno);
33bb52fb 4927 }
ab361d49 4928 needed_relocs += g->relocs;
33bb52fb 4929 }
ab361d49 4930 needed_relocs += g->relocs;
33bb52fb
RS
4931
4932 if (needed_relocs)
4933 mips_elf_allocate_dynamic_relocations (dynobj, info,
4934 needed_relocs);
143d77c5 4935
f4416af6
AO
4936 return TRUE;
4937}
143d77c5 4938
b49e97c9
TS
4939\f
4940/* Returns the first relocation of type r_type found, beginning with
4941 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4942
4943static const Elf_Internal_Rela *
9719ad41
RS
4944mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4945 const Elf_Internal_Rela *relocation,
4946 const Elf_Internal_Rela *relend)
b49e97c9 4947{
c000e262
TS
4948 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4949
b49e97c9
TS
4950 while (relocation < relend)
4951 {
c000e262
TS
4952 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4953 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4954 return relocation;
4955
4956 ++relocation;
4957 }
4958
4959 /* We didn't find it. */
b49e97c9
TS
4960 return NULL;
4961}
4962
020d7251 4963/* Return whether an input relocation is against a local symbol. */
b49e97c9 4964
b34976b6 4965static bfd_boolean
9719ad41
RS
4966mips_elf_local_relocation_p (bfd *input_bfd,
4967 const Elf_Internal_Rela *relocation,
020d7251 4968 asection **local_sections)
b49e97c9
TS
4969{
4970 unsigned long r_symndx;
4971 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4972 size_t extsymoff;
4973
4974 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4975 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4976 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4977
4978 if (r_symndx < extsymoff)
b34976b6 4979 return TRUE;
b49e97c9 4980 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4981 return TRUE;
b49e97c9 4982
b34976b6 4983 return FALSE;
b49e97c9
TS
4984}
4985\f
4986/* Sign-extend VALUE, which has the indicated number of BITS. */
4987
a7ebbfdf 4988bfd_vma
9719ad41 4989_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4990{
4991 if (value & ((bfd_vma) 1 << (bits - 1)))
4992 /* VALUE is negative. */
4993 value |= ((bfd_vma) - 1) << bits;
4994
4995 return value;
4996}
4997
4998/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4999 range expressible by a signed number with the indicated number of
b49e97c9
TS
5000 BITS. */
5001
b34976b6 5002static bfd_boolean
9719ad41 5003mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5004{
5005 bfd_signed_vma svalue = (bfd_signed_vma) value;
5006
5007 if (svalue > (1 << (bits - 1)) - 1)
5008 /* The value is too big. */
b34976b6 5009 return TRUE;
b49e97c9
TS
5010 else if (svalue < -(1 << (bits - 1)))
5011 /* The value is too small. */
b34976b6 5012 return TRUE;
b49e97c9
TS
5013
5014 /* All is well. */
b34976b6 5015 return FALSE;
b49e97c9
TS
5016}
5017
5018/* Calculate the %high function. */
5019
5020static bfd_vma
9719ad41 5021mips_elf_high (bfd_vma value)
b49e97c9
TS
5022{
5023 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5024}
5025
5026/* Calculate the %higher function. */
5027
5028static bfd_vma
9719ad41 5029mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5030{
5031#ifdef BFD64
5032 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5033#else
5034 abort ();
c5ae1840 5035 return MINUS_ONE;
b49e97c9
TS
5036#endif
5037}
5038
5039/* Calculate the %highest function. */
5040
5041static bfd_vma
9719ad41 5042mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5043{
5044#ifdef BFD64
b15e6682 5045 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5046#else
5047 abort ();
c5ae1840 5048 return MINUS_ONE;
b49e97c9
TS
5049#endif
5050}
5051\f
5052/* Create the .compact_rel section. */
5053
b34976b6 5054static bfd_boolean
9719ad41
RS
5055mips_elf_create_compact_rel_section
5056 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5057{
5058 flagword flags;
5059 register asection *s;
5060
3d4d4302 5061 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5062 {
5063 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5064 | SEC_READONLY);
5065
3d4d4302 5066 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5067 if (s == NULL
b49e97c9
TS
5068 || ! bfd_set_section_alignment (abfd, s,
5069 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5070 return FALSE;
b49e97c9 5071
eea6121a 5072 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5073 }
5074
b34976b6 5075 return TRUE;
b49e97c9
TS
5076}
5077
5078/* Create the .got section to hold the global offset table. */
5079
b34976b6 5080static bfd_boolean
23cc69b6 5081mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5082{
5083 flagword flags;
5084 register asection *s;
5085 struct elf_link_hash_entry *h;
14a793b2 5086 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5087 struct mips_elf_link_hash_table *htab;
5088
5089 htab = mips_elf_hash_table (info);
4dfe6ac6 5090 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5091
5092 /* This function may be called more than once. */
23cc69b6
RS
5093 if (htab->sgot)
5094 return TRUE;
b49e97c9
TS
5095
5096 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5097 | SEC_LINKER_CREATED);
5098
72b4917c
TS
5099 /* We have to use an alignment of 2**4 here because this is hardcoded
5100 in the function stub generation and in the linker script. */
87e0a731 5101 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5102 if (s == NULL
72b4917c 5103 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5104 return FALSE;
a8028dd0 5105 htab->sgot = s;
b49e97c9
TS
5106
5107 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5108 linker script because we don't want to define the symbol if we
5109 are not creating a global offset table. */
14a793b2 5110 bh = NULL;
b49e97c9
TS
5111 if (! (_bfd_generic_link_add_one_symbol
5112 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5113 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5114 return FALSE;
14a793b2
AM
5115
5116 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5117 h->non_elf = 0;
5118 h->def_regular = 1;
b49e97c9 5119 h->type = STT_OBJECT;
2f9efdfc 5120 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5121 elf_hash_table (info)->hgot = h;
b49e97c9 5122
0e1862bb 5123 if (bfd_link_pic (info)
c152c796 5124 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5125 return FALSE;
b49e97c9 5126
3dff0dd1 5127 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5128 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5129 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5130
861fb55a 5131 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5133 SEC_ALLOC | SEC_LOAD
5134 | SEC_HAS_CONTENTS
5135 | SEC_IN_MEMORY
5136 | SEC_LINKER_CREATED);
861fb55a
DJ
5137 if (s == NULL)
5138 return FALSE;
5139 htab->sgotplt = s;
0a44bf69 5140
b34976b6 5141 return TRUE;
b49e97c9 5142}
b49e97c9 5143\f
0a44bf69
RS
5144/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5145 __GOTT_INDEX__ symbols. These symbols are only special for
5146 shared objects; they are not used in executables. */
5147
5148static bfd_boolean
5149is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5150{
5151 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5152 && bfd_link_pic (info)
0a44bf69
RS
5153 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5154 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5155}
861fb55a
DJ
5156
5157/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5158 require an la25 stub. See also mips_elf_local_pic_function_p,
5159 which determines whether the destination function ever requires a
5160 stub. */
5161
5162static bfd_boolean
8f0c309a
CLT
5163mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5164 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5165{
5166 /* We specifically ignore branches and jumps from EF_PIC objects,
5167 where the onus is on the compiler or programmer to perform any
5168 necessary initialization of $25. Sometimes such initialization
5169 is unnecessary; for example, -mno-shared functions do not use
5170 the incoming value of $25, and may therefore be called directly. */
5171 if (PIC_OBJECT_P (input_bfd))
5172 return FALSE;
5173
5174 switch (r_type)
5175 {
5176 case R_MIPS_26:
5177 case R_MIPS_PC16:
7361da2c
AB
5178 case R_MIPS_PC21_S2:
5179 case R_MIPS_PC26_S2:
df58fc94
RS
5180 case R_MICROMIPS_26_S1:
5181 case R_MICROMIPS_PC7_S1:
5182 case R_MICROMIPS_PC10_S1:
5183 case R_MICROMIPS_PC16_S1:
5184 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5185 return TRUE;
5186
8f0c309a
CLT
5187 case R_MIPS16_26:
5188 return !target_is_16_bit_code_p;
5189
861fb55a
DJ
5190 default:
5191 return FALSE;
5192 }
5193}
0a44bf69 5194\f
b49e97c9
TS
5195/* Calculate the value produced by the RELOCATION (which comes from
5196 the INPUT_BFD). The ADDEND is the addend to use for this
5197 RELOCATION; RELOCATION->R_ADDEND is ignored.
5198
5199 The result of the relocation calculation is stored in VALUEP.
38a7df63 5200 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5201 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5202
5203 This function returns bfd_reloc_continue if the caller need take no
5204 further action regarding this relocation, bfd_reloc_notsupported if
5205 something goes dramatically wrong, bfd_reloc_overflow if an
5206 overflow occurs, and bfd_reloc_ok to indicate success. */
5207
5208static bfd_reloc_status_type
9719ad41
RS
5209mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5210 asection *input_section,
5211 struct bfd_link_info *info,
5212 const Elf_Internal_Rela *relocation,
5213 bfd_vma addend, reloc_howto_type *howto,
5214 Elf_Internal_Sym *local_syms,
5215 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5216 const char **namep,
5217 bfd_boolean *cross_mode_jump_p,
9719ad41 5218 bfd_boolean save_addend)
b49e97c9
TS
5219{
5220 /* The eventual value we will return. */
5221 bfd_vma value;
5222 /* The address of the symbol against which the relocation is
5223 occurring. */
5224 bfd_vma symbol = 0;
5225 /* The final GP value to be used for the relocatable, executable, or
5226 shared object file being produced. */
0a61c8c2 5227 bfd_vma gp;
b49e97c9
TS
5228 /* The place (section offset or address) of the storage unit being
5229 relocated. */
5230 bfd_vma p;
5231 /* The value of GP used to create the relocatable object. */
0a61c8c2 5232 bfd_vma gp0;
b49e97c9
TS
5233 /* The offset into the global offset table at which the address of
5234 the relocation entry symbol, adjusted by the addend, resides
5235 during execution. */
5236 bfd_vma g = MINUS_ONE;
5237 /* The section in which the symbol referenced by the relocation is
5238 located. */
5239 asection *sec = NULL;
5240 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5241 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5242 symbol. */
b34976b6
AM
5243 bfd_boolean local_p, was_local_p;
5244 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5245 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5246 /* TRUE if the symbol referred to by this relocation is
5247 "__gnu_local_gp". */
5248 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5249 Elf_Internal_Shdr *symtab_hdr;
5250 size_t extsymoff;
5251 unsigned long r_symndx;
5252 int r_type;
b34976b6 5253 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5254 relocation value. */
b34976b6
AM
5255 bfd_boolean overflowed_p;
5256 /* TRUE if this relocation refers to a MIPS16 function. */
5257 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5258 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5259 struct mips_elf_link_hash_table *htab;
5260 bfd *dynobj;
5261
5262 dynobj = elf_hash_table (info)->dynobj;
5263 htab = mips_elf_hash_table (info);
4dfe6ac6 5264 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5265
5266 /* Parse the relocation. */
5267 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5268 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5269 p = (input_section->output_section->vma
5270 + input_section->output_offset
5271 + relocation->r_offset);
5272
5273 /* Assume that there will be no overflow. */
b34976b6 5274 overflowed_p = FALSE;
b49e97c9
TS
5275
5276 /* Figure out whether or not the symbol is local, and get the offset
5277 used in the array of hash table entries. */
5278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5279 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5280 local_sections);
bce03d3d 5281 was_local_p = local_p;
b49e97c9
TS
5282 if (! elf_bad_symtab (input_bfd))
5283 extsymoff = symtab_hdr->sh_info;
5284 else
5285 {
5286 /* The symbol table does not follow the rule that local symbols
5287 must come before globals. */
5288 extsymoff = 0;
5289 }
5290
5291 /* Figure out the value of the symbol. */
5292 if (local_p)
5293 {
5294 Elf_Internal_Sym *sym;
5295
5296 sym = local_syms + r_symndx;
5297 sec = local_sections[r_symndx];
5298
5299 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5300 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5301 || (sec->flags & SEC_MERGE))
b49e97c9 5302 symbol += sym->st_value;
d4df96e6
L
5303 if ((sec->flags & SEC_MERGE)
5304 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5305 {
5306 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5307 addend -= symbol;
5308 addend += sec->output_section->vma + sec->output_offset;
5309 }
b49e97c9 5310
df58fc94
RS
5311 /* MIPS16/microMIPS text labels should be treated as odd. */
5312 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5313 ++symbol;
5314
5315 /* Record the name of this symbol, for our caller. */
5316 *namep = bfd_elf_string_from_elf_section (input_bfd,
5317 symtab_hdr->sh_link,
5318 sym->st_name);
5319 if (*namep == '\0')
5320 *namep = bfd_section_name (input_bfd, sec);
5321
30c09090 5322 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5323 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5324 }
5325 else
5326 {
560e09e9
NC
5327 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5328
b49e97c9
TS
5329 /* For global symbols we look up the symbol in the hash-table. */
5330 h = ((struct mips_elf_link_hash_entry *)
5331 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5332 /* Find the real hash-table entry for this symbol. */
5333 while (h->root.root.type == bfd_link_hash_indirect
5334 || h->root.root.type == bfd_link_hash_warning)
5335 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5336
5337 /* Record the name of this symbol, for our caller. */
5338 *namep = h->root.root.root.string;
5339
5340 /* See if this is the special _gp_disp symbol. Note that such a
5341 symbol must always be a global symbol. */
560e09e9 5342 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5343 && ! NEWABI_P (input_bfd))
5344 {
5345 /* Relocations against _gp_disp are permitted only with
5346 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5347 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5348 return bfd_reloc_notsupported;
5349
b34976b6 5350 gp_disp_p = TRUE;
b49e97c9 5351 }
bbe506e8
TS
5352 /* See if this is the special _gp symbol. Note that such a
5353 symbol must always be a global symbol. */
5354 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5355 gnu_local_gp_p = TRUE;
5356
5357
b49e97c9
TS
5358 /* If this symbol is defined, calculate its address. Note that
5359 _gp_disp is a magic symbol, always implicitly defined by the
5360 linker, so it's inappropriate to check to see whether or not
5361 its defined. */
5362 else if ((h->root.root.type == bfd_link_hash_defined
5363 || h->root.root.type == bfd_link_hash_defweak)
5364 && h->root.root.u.def.section)
5365 {
5366 sec = h->root.root.u.def.section;
5367 if (sec->output_section)
5368 symbol = (h->root.root.u.def.value
5369 + sec->output_section->vma
5370 + sec->output_offset);
5371 else
5372 symbol = h->root.root.u.def.value;
5373 }
5374 else if (h->root.root.type == bfd_link_hash_undefweak)
5375 /* We allow relocations against undefined weak symbols, giving
5376 it the value zero, so that you can undefined weak functions
5377 and check to see if they exist by looking at their
5378 addresses. */
5379 symbol = 0;
59c2e50f 5380 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5381 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5382 symbol = 0;
a4d0f181
TS
5383 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5384 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5385 {
5386 /* If this is a dynamic link, we should have created a
5387 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5388 in in _bfd_mips_elf_create_dynamic_sections.
5389 Otherwise, we should define the symbol with a value of 0.
5390 FIXME: It should probably get into the symbol table
5391 somehow as well. */
0e1862bb 5392 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5393 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5394 symbol = 0;
5395 }
5e2b0d47
NC
5396 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5397 {
5398 /* This is an optional symbol - an Irix specific extension to the
5399 ELF spec. Ignore it for now.
5400 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5401 than simply ignoring them, but we do not handle this for now.
5402 For information see the "64-bit ELF Object File Specification"
5403 which is available from here:
5404 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5405 symbol = 0;
5406 }
e7e2196d
MR
5407 else if ((*info->callbacks->undefined_symbol)
5408 (info, h->root.root.root.string, input_bfd,
5409 input_section, relocation->r_offset,
5410 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5411 || ELF_ST_VISIBILITY (h->root.other)))
5412 {
5413 return bfd_reloc_undefined;
5414 }
b49e97c9
TS
5415 else
5416 {
e7e2196d 5417 return bfd_reloc_notsupported;
b49e97c9
TS
5418 }
5419
30c09090 5420 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5421 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5422 }
5423
738e5348
RS
5424 /* If this is a reference to a 16-bit function with a stub, we need
5425 to redirect the relocation to the stub unless:
5426
5427 (a) the relocation is for a MIPS16 JAL;
5428
5429 (b) the relocation is for a MIPS16 PIC call, and there are no
5430 non-MIPS16 uses of the GOT slot; or
5431
5432 (c) the section allows direct references to MIPS16 functions. */
5433 if (r_type != R_MIPS16_26
0e1862bb 5434 && !bfd_link_relocatable (info)
738e5348
RS
5435 && ((h != NULL
5436 && h->fn_stub != NULL
5437 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5438 || (local_p
698600e4
AM
5439 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5440 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5441 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5442 {
5443 /* This is a 32- or 64-bit call to a 16-bit function. We should
5444 have already noticed that we were going to need the
5445 stub. */
5446 if (local_p)
8f0c309a 5447 {
698600e4 5448 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5449 value = 0;
5450 }
b49e97c9
TS
5451 else
5452 {
5453 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5454 if (h->la25_stub)
5455 {
5456 /* If a LA25 header for the stub itself exists, point to the
5457 prepended LUI/ADDIU sequence. */
5458 sec = h->la25_stub->stub_section;
5459 value = h->la25_stub->offset;
5460 }
5461 else
5462 {
5463 sec = h->fn_stub;
5464 value = 0;
5465 }
b49e97c9
TS
5466 }
5467
8f0c309a 5468 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5469 /* The target is 16-bit, but the stub isn't. */
5470 target_is_16_bit_code_p = FALSE;
b49e97c9 5471 }
1bbce132
MR
5472 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5473 to a standard MIPS function, we need to redirect the call to the stub.
5474 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5475 indirect calls should use an indirect stub instead. */
0e1862bb 5476 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5477 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5478 || (local_p
698600e4
AM
5479 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5480 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5481 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5482 {
b9d58d71 5483 if (local_p)
698600e4 5484 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5485 else
b49e97c9 5486 {
b9d58d71
TS
5487 /* If both call_stub and call_fp_stub are defined, we can figure
5488 out which one to use by checking which one appears in the input
5489 file. */
5490 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5491 {
b9d58d71 5492 asection *o;
68ffbac6 5493
b9d58d71
TS
5494 sec = NULL;
5495 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5496 {
b9d58d71
TS
5497 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5498 {
5499 sec = h->call_fp_stub;
5500 break;
5501 }
b49e97c9 5502 }
b9d58d71
TS
5503 if (sec == NULL)
5504 sec = h->call_stub;
b49e97c9 5505 }
b9d58d71 5506 else if (h->call_stub != NULL)
b49e97c9 5507 sec = h->call_stub;
b9d58d71
TS
5508 else
5509 sec = h->call_fp_stub;
5510 }
b49e97c9 5511
eea6121a 5512 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5513 symbol = sec->output_section->vma + sec->output_offset;
5514 }
861fb55a
DJ
5515 /* If this is a direct call to a PIC function, redirect to the
5516 non-PIC stub. */
5517 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5518 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5519 target_is_16_bit_code_p))
861fb55a
DJ
5520 symbol = (h->la25_stub->stub_section->output_section->vma
5521 + h->la25_stub->stub_section->output_offset
5522 + h->la25_stub->offset);
1bbce132
MR
5523 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5524 entry is used if a standard PLT entry has also been made. In this
5525 case the symbol will have been set by mips_elf_set_plt_sym_value
5526 to point to the standard PLT entry, so redirect to the compressed
5527 one. */
5528 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
0e1862bb 5529 && !bfd_link_relocatable (info)
1bbce132
MR
5530 && h != NULL
5531 && h->use_plt_entry
5532 && h->root.plt.plist->comp_offset != MINUS_ONE
5533 && h->root.plt.plist->mips_offset != MINUS_ONE)
5534 {
5535 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5536
5537 sec = htab->splt;
5538 symbol = (sec->output_section->vma
5539 + sec->output_offset
5540 + htab->plt_header_size
5541 + htab->plt_mips_offset
5542 + h->root.plt.plist->comp_offset
5543 + 1);
5544
5545 target_is_16_bit_code_p = !micromips_p;
5546 target_is_micromips_code_p = micromips_p;
5547 }
b49e97c9 5548
df58fc94
RS
5549 /* Make sure MIPS16 and microMIPS are not used together. */
5550 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5551 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5552 {
5553 (*_bfd_error_handler)
5554 (_("MIPS16 and microMIPS functions cannot call each other"));
5555 return bfd_reloc_notsupported;
5556 }
5557
b49e97c9 5558 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5559 mode change. However, we can ignore calls to undefined weak symbols,
5560 which should never be executed at runtime. This exception is important
5561 because the assembly writer may have "known" that any definition of the
5562 symbol would be 16-bit code, and that direct jumps were therefore
5563 acceptable. */
0e1862bb 5564 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94
RS
5565 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5566 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5567 || (r_type == R_MICROMIPS_26_S1
5568 && !target_is_micromips_code_p)
5569 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5570 && (target_is_16_bit_code_p
5571 || target_is_micromips_code_p))));
b49e97c9 5572
c5d6fa44 5573 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5574
0a61c8c2
RS
5575 gp0 = _bfd_get_gp_value (input_bfd);
5576 gp = _bfd_get_gp_value (abfd);
23cc69b6 5577 if (htab->got_info)
a8028dd0 5578 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5579
5580 if (gnu_local_gp_p)
5581 symbol = gp;
5582
df58fc94
RS
5583 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5584 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5585 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5586 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5587 {
df58fc94
RS
5588 r_type = (micromips_reloc_p (r_type)
5589 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5590 addend = 0;
5591 }
5592
e77760d2 5593 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5594 to need it, get it now. */
b49e97c9
TS
5595 switch (r_type)
5596 {
738e5348
RS
5597 case R_MIPS16_CALL16:
5598 case R_MIPS16_GOT16:
b49e97c9
TS
5599 case R_MIPS_CALL16:
5600 case R_MIPS_GOT16:
5601 case R_MIPS_GOT_DISP:
5602 case R_MIPS_GOT_HI16:
5603 case R_MIPS_CALL_HI16:
5604 case R_MIPS_GOT_LO16:
5605 case R_MIPS_CALL_LO16:
df58fc94
RS
5606 case R_MICROMIPS_CALL16:
5607 case R_MICROMIPS_GOT16:
5608 case R_MICROMIPS_GOT_DISP:
5609 case R_MICROMIPS_GOT_HI16:
5610 case R_MICROMIPS_CALL_HI16:
5611 case R_MICROMIPS_GOT_LO16:
5612 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5613 case R_MIPS_TLS_GD:
5614 case R_MIPS_TLS_GOTTPREL:
5615 case R_MIPS_TLS_LDM:
d0f13682
CLT
5616 case R_MIPS16_TLS_GD:
5617 case R_MIPS16_TLS_GOTTPREL:
5618 case R_MIPS16_TLS_LDM:
df58fc94
RS
5619 case R_MICROMIPS_TLS_GD:
5620 case R_MICROMIPS_TLS_GOTTPREL:
5621 case R_MICROMIPS_TLS_LDM:
b49e97c9 5622 /* Find the index into the GOT where this value is located. */
df58fc94 5623 if (tls_ldm_reloc_p (r_type))
0f20cc35 5624 {
0a44bf69 5625 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5626 0, 0, NULL, r_type);
0f20cc35
DJ
5627 if (g == MINUS_ONE)
5628 return bfd_reloc_outofrange;
5629 }
5630 else if (!local_p)
b49e97c9 5631 {
0a44bf69
RS
5632 /* On VxWorks, CALL relocations should refer to the .got.plt
5633 entry, which is initialized to point at the PLT stub. */
5634 if (htab->is_vxworks
df58fc94
RS
5635 && (call_hi16_reloc_p (r_type)
5636 || call_lo16_reloc_p (r_type)
738e5348 5637 || call16_reloc_p (r_type)))
0a44bf69
RS
5638 {
5639 BFD_ASSERT (addend == 0);
5640 BFD_ASSERT (h->root.needs_plt);
5641 g = mips_elf_gotplt_index (info, &h->root);
5642 }
5643 else
b49e97c9 5644 {
020d7251 5645 BFD_ASSERT (addend == 0);
13fbec83
RS
5646 g = mips_elf_global_got_index (abfd, info, input_bfd,
5647 &h->root, r_type);
e641e783 5648 if (!TLS_RELOC_P (r_type)
020d7251
RS
5649 && !elf_hash_table (info)->dynamic_sections_created)
5650 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5651 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5652 }
5653 }
0a44bf69 5654 else if (!htab->is_vxworks
738e5348 5655 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5656 /* The calculation below does not involve "g". */
b49e97c9
TS
5657 break;
5658 else
5659 {
5c18022e 5660 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5661 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5662 if (g == MINUS_ONE)
5663 return bfd_reloc_outofrange;
5664 }
5665
5666 /* Convert GOT indices to actual offsets. */
a8028dd0 5667 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5668 break;
b49e97c9
TS
5669 }
5670
0a44bf69
RS
5671 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5672 symbols are resolved by the loader. Add them to .rela.dyn. */
5673 if (h != NULL && is_gott_symbol (info, &h->root))
5674 {
5675 Elf_Internal_Rela outrel;
5676 bfd_byte *loc;
5677 asection *s;
5678
5679 s = mips_elf_rel_dyn_section (info, FALSE);
5680 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5681
5682 outrel.r_offset = (input_section->output_section->vma
5683 + input_section->output_offset
5684 + relocation->r_offset);
5685 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5686 outrel.r_addend = addend;
5687 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5688
5689 /* If we've written this relocation for a readonly section,
5690 we need to set DF_TEXTREL again, so that we do not delete the
5691 DT_TEXTREL tag. */
5692 if (MIPS_ELF_READONLY_SECTION (input_section))
5693 info->flags |= DF_TEXTREL;
5694
0a44bf69
RS
5695 *valuep = 0;
5696 return bfd_reloc_ok;
5697 }
5698
b49e97c9
TS
5699 /* Figure out what kind of relocation is being performed. */
5700 switch (r_type)
5701 {
5702 case R_MIPS_NONE:
5703 return bfd_reloc_continue;
5704
5705 case R_MIPS_16:
c3eb94b4
MF
5706 if (howto->partial_inplace)
5707 addend = _bfd_mips_elf_sign_extend (addend, 16);
5708 value = symbol + addend;
b49e97c9
TS
5709 overflowed_p = mips_elf_overflow_p (value, 16);
5710 break;
5711
5712 case R_MIPS_32:
5713 case R_MIPS_REL32:
5714 case R_MIPS_64:
0e1862bb 5715 if ((bfd_link_pic (info)
861fb55a 5716 || (htab->root.dynamic_sections_created
b49e97c9 5717 && h != NULL
f5385ebf 5718 && h->root.def_dynamic
861fb55a
DJ
5719 && !h->root.def_regular
5720 && !h->has_static_relocs))
cf35638d 5721 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5722 && (h == NULL
5723 || h->root.root.type != bfd_link_hash_undefweak
5724 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5725 && (input_section->flags & SEC_ALLOC) != 0)
5726 {
861fb55a 5727 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5728 where the symbol will end up. So, we create a relocation
5729 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5730 linker. We must do the same for executable references to
5731 shared library symbols, unless we've decided to use copy
5732 relocs or PLTs instead. */
b49e97c9
TS
5733 value = addend;
5734 if (!mips_elf_create_dynamic_relocation (abfd,
5735 info,
5736 relocation,
5737 h,
5738 sec,
5739 symbol,
5740 &value,
5741 input_section))
5742 return bfd_reloc_undefined;
5743 }
5744 else
5745 {
5746 if (r_type != R_MIPS_REL32)
5747 value = symbol + addend;
5748 else
5749 value = addend;
5750 }
5751 value &= howto->dst_mask;
092dcd75
CD
5752 break;
5753
5754 case R_MIPS_PC32:
5755 value = symbol + addend - p;
5756 value &= howto->dst_mask;
b49e97c9
TS
5757 break;
5758
b49e97c9
TS
5759 case R_MIPS16_26:
5760 /* The calculation for R_MIPS16_26 is just the same as for an
5761 R_MIPS_26. It's only the storage of the relocated field into
5762 the output file that's different. That's handled in
5763 mips_elf_perform_relocation. So, we just fall through to the
5764 R_MIPS_26 case here. */
5765 case R_MIPS_26:
df58fc94
RS
5766 case R_MICROMIPS_26_S1:
5767 {
5768 unsigned int shift;
5769
5770 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5771 the correct ISA mode selector and bit 1 must be 0. */
5772 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5773 return bfd_reloc_outofrange;
5774
5775 /* Shift is 2, unusually, for microMIPS JALX. */
5776 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5777
5778 if (was_local_p)
5779 value = addend | ((p + 4) & (0xfc000000 << shift));
c3eb94b4 5780 else if (howto->partial_inplace)
df58fc94 5781 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5782 else
5783 value = addend;
df58fc94
RS
5784 value = (value + symbol) >> shift;
5785 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5786 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5787 value &= howto->dst_mask;
5788 }
b49e97c9
TS
5789 break;
5790
0f20cc35 5791 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5792 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5793 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5794 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5795 & howto->dst_mask);
5796 break;
5797
5798 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5799 case R_MIPS_TLS_DTPREL32:
5800 case R_MIPS_TLS_DTPREL64:
d0f13682 5801 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5802 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5803 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5804 break;
5805
5806 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5807 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5808 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5809 value = (mips_elf_high (addend + symbol - tprel_base (info))
5810 & howto->dst_mask);
5811 break;
5812
5813 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5814 case R_MIPS_TLS_TPREL32:
5815 case R_MIPS_TLS_TPREL64:
5816 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5817 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5818 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5819 break;
5820
b49e97c9 5821 case R_MIPS_HI16:
d6f16593 5822 case R_MIPS16_HI16:
df58fc94 5823 case R_MICROMIPS_HI16:
b49e97c9
TS
5824 if (!gp_disp_p)
5825 {
5826 value = mips_elf_high (addend + symbol);
5827 value &= howto->dst_mask;
5828 }
5829 else
5830 {
d6f16593
MR
5831 /* For MIPS16 ABI code we generate this sequence
5832 0: li $v0,%hi(_gp_disp)
5833 4: addiupc $v1,%lo(_gp_disp)
5834 8: sll $v0,16
5835 12: addu $v0,$v1
5836 14: move $gp,$v0
5837 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5838 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5839 ADDIUPC clears the low two bits of the instruction address,
5840 so the base is ($t9 + 4) & ~3. */
d6f16593 5841 if (r_type == R_MIPS16_HI16)
888b9c01 5842 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5843 /* The microMIPS .cpload sequence uses the same assembly
5844 instructions as the traditional psABI version, but the
5845 incoming $t9 has the low bit set. */
5846 else if (r_type == R_MICROMIPS_HI16)
5847 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5848 else
5849 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5851 }
5852 break;
5853
5854 case R_MIPS_LO16:
d6f16593 5855 case R_MIPS16_LO16:
df58fc94
RS
5856 case R_MICROMIPS_LO16:
5857 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5858 if (!gp_disp_p)
5859 value = (symbol + addend) & howto->dst_mask;
5860 else
5861 {
d6f16593
MR
5862 /* See the comment for R_MIPS16_HI16 above for the reason
5863 for this conditional. */
5864 if (r_type == R_MIPS16_LO16)
888b9c01 5865 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5866 else if (r_type == R_MICROMIPS_LO16
5867 || r_type == R_MICROMIPS_HI0_LO16)
5868 value = addend + gp - p + 3;
d6f16593
MR
5869 else
5870 value = addend + gp - p + 4;
b49e97c9 5871 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5872 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5873 _gp_disp are normally generated from the .cpload
5874 pseudo-op. It generates code that normally looks like
5875 this:
5876
5877 lui $gp,%hi(_gp_disp)
5878 addiu $gp,$gp,%lo(_gp_disp)
5879 addu $gp,$gp,$t9
5880
5881 Here $t9 holds the address of the function being called,
5882 as required by the MIPS ELF ABI. The R_MIPS_LO16
5883 relocation can easily overflow in this situation, but the
5884 R_MIPS_HI16 relocation will handle the overflow.
5885 Therefore, we consider this a bug in the MIPS ABI, and do
5886 not check for overflow here. */
5887 }
5888 break;
5889
5890 case R_MIPS_LITERAL:
df58fc94 5891 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5892 /* Because we don't merge literal sections, we can handle this
5893 just like R_MIPS_GPREL16. In the long run, we should merge
5894 shared literals, and then we will need to additional work
5895 here. */
5896
5897 /* Fall through. */
5898
5899 case R_MIPS16_GPREL:
5900 /* The R_MIPS16_GPREL performs the same calculation as
5901 R_MIPS_GPREL16, but stores the relocated bits in a different
5902 order. We don't need to do anything special here; the
5903 differences are handled in mips_elf_perform_relocation. */
5904 case R_MIPS_GPREL16:
df58fc94
RS
5905 case R_MICROMIPS_GPREL7_S2:
5906 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5907 /* Only sign-extend the addend if it was extracted from the
5908 instruction. If the addend was separate, leave it alone,
5909 otherwise we may lose significant bits. */
5910 if (howto->partial_inplace)
a7ebbfdf 5911 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5912 value = symbol + addend - gp;
5913 /* If the symbol was local, any earlier relocatable links will
5914 have adjusted its addend with the gp offset, so compensate
5915 for that now. Don't do it for symbols forced local in this
5916 link, though, since they won't have had the gp offset applied
5917 to them before. */
5918 if (was_local_p)
5919 value += gp0;
538baf8b
AB
5920 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5921 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
5922 break;
5923
738e5348
RS
5924 case R_MIPS16_GOT16:
5925 case R_MIPS16_CALL16:
b49e97c9
TS
5926 case R_MIPS_GOT16:
5927 case R_MIPS_CALL16:
df58fc94
RS
5928 case R_MICROMIPS_GOT16:
5929 case R_MICROMIPS_CALL16:
0a44bf69 5930 /* VxWorks does not have separate local and global semantics for
738e5348 5931 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5932 if (!htab->is_vxworks && local_p)
b49e97c9 5933 {
5c18022e 5934 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5935 symbol + addend, !was_local_p);
b49e97c9
TS
5936 if (value == MINUS_ONE)
5937 return bfd_reloc_outofrange;
5938 value
a8028dd0 5939 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5940 overflowed_p = mips_elf_overflow_p (value, 16);
5941 break;
5942 }
5943
5944 /* Fall through. */
5945
0f20cc35
DJ
5946 case R_MIPS_TLS_GD:
5947 case R_MIPS_TLS_GOTTPREL:
5948 case R_MIPS_TLS_LDM:
b49e97c9 5949 case R_MIPS_GOT_DISP:
d0f13682
CLT
5950 case R_MIPS16_TLS_GD:
5951 case R_MIPS16_TLS_GOTTPREL:
5952 case R_MIPS16_TLS_LDM:
df58fc94
RS
5953 case R_MICROMIPS_TLS_GD:
5954 case R_MICROMIPS_TLS_GOTTPREL:
5955 case R_MICROMIPS_TLS_LDM:
5956 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5957 value = g;
5958 overflowed_p = mips_elf_overflow_p (value, 16);
5959 break;
5960
5961 case R_MIPS_GPREL32:
bce03d3d
AO
5962 value = (addend + symbol + gp0 - gp);
5963 if (!save_addend)
5964 value &= howto->dst_mask;
b49e97c9
TS
5965 break;
5966
5967 case R_MIPS_PC16:
bad36eac 5968 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 18);
5971
5972 if ((symbol + addend) & 3)
5973 return bfd_reloc_outofrange;
5974
5975 value = symbol + addend - p;
538baf8b
AB
5976 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5977 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5978 value >>= howto->rightshift;
5979 value &= howto->dst_mask;
b49e97c9
TS
5980 break;
5981
7361da2c
AB
5982 case R_MIPS_PC21_S2:
5983 if (howto->partial_inplace)
5984 addend = _bfd_mips_elf_sign_extend (addend, 23);
5985
5986 if ((symbol + addend) & 3)
5987 return bfd_reloc_outofrange;
5988
5989 value = symbol + addend - p;
538baf8b
AB
5990 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5991 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
5992 value >>= howto->rightshift;
5993 value &= howto->dst_mask;
5994 break;
5995
5996 case R_MIPS_PC26_S2:
5997 if (howto->partial_inplace)
5998 addend = _bfd_mips_elf_sign_extend (addend, 28);
5999
6000 if ((symbol + addend) & 3)
6001 return bfd_reloc_outofrange;
6002
6003 value = symbol + addend - p;
538baf8b
AB
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6006 value >>= howto->rightshift;
6007 value &= howto->dst_mask;
6008 break;
6009
6010 case R_MIPS_PC18_S3:
6011 if (howto->partial_inplace)
6012 addend = _bfd_mips_elf_sign_extend (addend, 21);
6013
6014 if ((symbol + addend) & 7)
6015 return bfd_reloc_outofrange;
6016
6017 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6018 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6019 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6020 value >>= howto->rightshift;
6021 value &= howto->dst_mask;
6022 break;
6023
6024 case R_MIPS_PC19_S2:
6025 if (howto->partial_inplace)
6026 addend = _bfd_mips_elf_sign_extend (addend, 21);
6027
6028 if ((symbol + addend) & 3)
6029 return bfd_reloc_outofrange;
6030
6031 value = symbol + addend - p;
538baf8b
AB
6032 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6033 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6034 value >>= howto->rightshift;
6035 value &= howto->dst_mask;
6036 break;
6037
6038 case R_MIPS_PCHI16:
6039 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6040 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6041 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PCLO16:
6046 if (howto->partial_inplace)
6047 addend = _bfd_mips_elf_sign_extend (addend, 16);
6048 value = symbol + addend - p;
6049 value &= howto->dst_mask;
6050 break;
6051
df58fc94 6052 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 8);
6055 value = symbol + addend - p;
538baf8b
AB
6056 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6057 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6058 value >>= howto->rightshift;
6059 value &= howto->dst_mask;
6060 break;
6061
6062 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6063 if (howto->partial_inplace)
6064 addend = _bfd_mips_elf_sign_extend (addend, 11);
6065 value = symbol + addend - p;
538baf8b
AB
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6071
6072 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075 value = symbol + addend - p;
538baf8b
AB
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
6082 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 25);
6085 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6086 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6087 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6088 value >>= howto->rightshift;
6089 value &= howto->dst_mask;
6090 break;
6091
b49e97c9
TS
6092 case R_MIPS_GOT_HI16:
6093 case R_MIPS_CALL_HI16:
df58fc94
RS
6094 case R_MICROMIPS_GOT_HI16:
6095 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6096 /* We're allowed to handle these two relocations identically.
6097 The dynamic linker is allowed to handle the CALL relocations
6098 differently by creating a lazy evaluation stub. */
6099 value = g;
6100 value = mips_elf_high (value);
6101 value &= howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_GOT_LO16:
6105 case R_MIPS_CALL_LO16:
df58fc94
RS
6106 case R_MICROMIPS_GOT_LO16:
6107 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6108 value = g & howto->dst_mask;
6109 break;
6110
6111 case R_MIPS_GOT_PAGE:
df58fc94 6112 case R_MICROMIPS_GOT_PAGE:
5c18022e 6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6114 if (value == MINUS_ONE)
6115 return bfd_reloc_outofrange;
a8028dd0 6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6117 overflowed_p = mips_elf_overflow_p (value, 16);
6118 break;
6119
6120 case R_MIPS_GOT_OFST:
df58fc94 6121 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6122 if (local_p)
5c18022e 6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6124 else
6125 value = addend;
b49e97c9
TS
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6128
6129 case R_MIPS_SUB:
df58fc94 6130 case R_MICROMIPS_SUB:
b49e97c9
TS
6131 value = symbol - addend;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_HIGHER:
df58fc94 6136 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6137 value = mips_elf_higher (addend + symbol);
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHEST:
df58fc94 6142 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6143 value = mips_elf_highest (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_SCN_DISP:
df58fc94 6148 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6149 value = symbol + addend - sec->output_offset;
6150 value &= howto->dst_mask;
6151 break;
6152
b49e97c9 6153 case R_MIPS_JALR:
df58fc94 6154 case R_MICROMIPS_JALR:
1367d393
ILT
6155 /* This relocation is only a hint. In some cases, we optimize
6156 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6157 when the symbol does not resolve locally. */
6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6159 return bfd_reloc_continue;
6160 value = symbol + addend;
6161 break;
b49e97c9 6162
1367d393 6163 case R_MIPS_PJUMP:
b49e97c9
TS
6164 case R_MIPS_GNU_VTINHERIT:
6165 case R_MIPS_GNU_VTENTRY:
6166 /* We don't do anything with these at present. */
6167 return bfd_reloc_continue;
6168
6169 default:
6170 /* An unrecognized relocation type. */
6171 return bfd_reloc_notsupported;
6172 }
6173
6174 /* Store the VALUE for our caller. */
6175 *valuep = value;
6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6177}
6178
6179/* Obtain the field relocated by RELOCATION. */
6180
6181static bfd_vma
9719ad41
RS
6182mips_elf_obtain_contents (reloc_howto_type *howto,
6183 const Elf_Internal_Rela *relocation,
6184 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6185{
6346d5ca 6186 bfd_vma x = 0;
b49e97c9 6187 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6188 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6189
6190 /* Obtain the bytes. */
6346d5ca
AM
6191 if (size != 0)
6192 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6193
b49e97c9
TS
6194 return x;
6195}
6196
6197/* It has been determined that the result of the RELOCATION is the
6198 VALUE. Use HOWTO to place VALUE into the output file at the
6199 appropriate position. The SECTION is the section to which the
68ffbac6 6200 relocation applies.
38a7df63 6201 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6202 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6203
b34976b6 6204 Returns FALSE if anything goes wrong. */
b49e97c9 6205
b34976b6 6206static bfd_boolean
9719ad41
RS
6207mips_elf_perform_relocation (struct bfd_link_info *info,
6208 reloc_howto_type *howto,
6209 const Elf_Internal_Rela *relocation,
6210 bfd_vma value, bfd *input_bfd,
6211 asection *input_section, bfd_byte *contents,
38a7df63 6212 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6213{
6214 bfd_vma x;
6215 bfd_byte *location;
6216 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6217 unsigned int size;
b49e97c9
TS
6218
6219 /* Figure out where the relocation is occurring. */
6220 location = contents + relocation->r_offset;
6221
df58fc94 6222 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6223
b49e97c9
TS
6224 /* Obtain the current value. */
6225 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6226
6227 /* Clear the field we are setting. */
6228 x &= ~howto->dst_mask;
6229
b49e97c9
TS
6230 /* Set the field. */
6231 x |= (value & howto->dst_mask);
6232
6233 /* If required, turn JAL into JALX. */
38a7df63 6234 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6235 {
b34976b6 6236 bfd_boolean ok;
b49e97c9
TS
6237 bfd_vma opcode = x >> 26;
6238 bfd_vma jalx_opcode;
6239
6240 /* Check to see if the opcode is already JAL or JALX. */
6241 if (r_type == R_MIPS16_26)
6242 {
6243 ok = ((opcode == 0x6) || (opcode == 0x7));
6244 jalx_opcode = 0x7;
6245 }
df58fc94
RS
6246 else if (r_type == R_MICROMIPS_26_S1)
6247 {
6248 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6249 jalx_opcode = 0x3c;
6250 }
b49e97c9
TS
6251 else
6252 {
6253 ok = ((opcode == 0x3) || (opcode == 0x1d));
6254 jalx_opcode = 0x1d;
6255 }
6256
3bdf9505
MR
6257 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6258 convert J or JALS to JALX. */
b49e97c9
TS
6259 if (!ok)
6260 {
6261 (*_bfd_error_handler)
3bdf9505 6262 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
6263 input_bfd,
6264 input_section,
b49e97c9
TS
6265 (unsigned long) relocation->r_offset);
6266 bfd_set_error (bfd_error_bad_value);
b34976b6 6267 return FALSE;
b49e97c9
TS
6268 }
6269
6270 /* Make this the JALX opcode. */
6271 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6272 }
6273
38a7df63
CF
6274 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6275 range. */
0e1862bb 6276 if (!bfd_link_relocatable (info)
38a7df63 6277 && !cross_mode_jump_p
cd8d5a82
CF
6278 && ((JAL_TO_BAL_P (input_bfd)
6279 && r_type == R_MIPS_26
6280 && (x >> 26) == 0x3) /* jal addr */
6281 || (JALR_TO_BAL_P (input_bfd)
6282 && r_type == R_MIPS_JALR
38a7df63
CF
6283 && x == 0x0320f809) /* jalr t9 */
6284 || (JR_TO_B_P (input_bfd)
6285 && r_type == R_MIPS_JALR
6286 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6287 {
6288 bfd_vma addr;
6289 bfd_vma dest;
6290 bfd_signed_vma off;
6291
6292 addr = (input_section->output_section->vma
6293 + input_section->output_offset
6294 + relocation->r_offset
6295 + 4);
6296 if (r_type == R_MIPS_26)
6297 dest = (value << 2) | ((addr >> 28) << 28);
6298 else
6299 dest = value;
6300 off = dest - addr;
6301 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6302 {
6303 if (x == 0x03200008) /* jr t9 */
6304 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6305 else
6306 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6307 }
1367d393
ILT
6308 }
6309
b49e97c9 6310 /* Put the value into the output. */
6346d5ca
AM
6311 size = bfd_get_reloc_size (howto);
6312 if (size != 0)
6313 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6314
0e1862bb 6315 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6316 location);
d6f16593 6317
b34976b6 6318 return TRUE;
b49e97c9 6319}
b49e97c9 6320\f
b49e97c9
TS
6321/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6322 is the original relocation, which is now being transformed into a
6323 dynamic relocation. The ADDENDP is adjusted if necessary; the
6324 caller should store the result in place of the original addend. */
6325
b34976b6 6326static bfd_boolean
9719ad41
RS
6327mips_elf_create_dynamic_relocation (bfd *output_bfd,
6328 struct bfd_link_info *info,
6329 const Elf_Internal_Rela *rel,
6330 struct mips_elf_link_hash_entry *h,
6331 asection *sec, bfd_vma symbol,
6332 bfd_vma *addendp, asection *input_section)
b49e97c9 6333{
947216bf 6334 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6335 asection *sreloc;
6336 bfd *dynobj;
6337 int r_type;
5d41f0b6
RS
6338 long indx;
6339 bfd_boolean defined_p;
0a44bf69 6340 struct mips_elf_link_hash_table *htab;
b49e97c9 6341
0a44bf69 6342 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6343 BFD_ASSERT (htab != NULL);
6344
b49e97c9
TS
6345 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6346 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6347 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6348 BFD_ASSERT (sreloc != NULL);
6349 BFD_ASSERT (sreloc->contents != NULL);
6350 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6351 < sreloc->size);
b49e97c9 6352
b49e97c9
TS
6353 outrel[0].r_offset =
6354 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6355 if (ABI_64_P (output_bfd))
6356 {
6357 outrel[1].r_offset =
6358 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6359 outrel[2].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6361 }
b49e97c9 6362
c5ae1840 6363 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6364 /* The relocation field has been deleted. */
5d41f0b6
RS
6365 return TRUE;
6366
6367 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6368 {
6369 /* The relocation field has been converted into a relative value of
6370 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6371 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6372 *addendp += symbol;
5d41f0b6 6373 return TRUE;
0d591ff7 6374 }
b49e97c9 6375
5d41f0b6
RS
6376 /* We must now calculate the dynamic symbol table index to use
6377 in the relocation. */
d4a77f3f 6378 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6379 {
020d7251 6380 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6381 indx = h->root.dynindx;
6382 if (SGI_COMPAT (output_bfd))
6383 defined_p = h->root.def_regular;
6384 else
6385 /* ??? glibc's ld.so just adds the final GOT entry to the
6386 relocation field. It therefore treats relocs against
6387 defined symbols in the same way as relocs against
6388 undefined symbols. */
6389 defined_p = FALSE;
6390 }
b49e97c9
TS
6391 else
6392 {
5d41f0b6
RS
6393 if (sec != NULL && bfd_is_abs_section (sec))
6394 indx = 0;
6395 else if (sec == NULL || sec->owner == NULL)
fdd07405 6396 {
5d41f0b6
RS
6397 bfd_set_error (bfd_error_bad_value);
6398 return FALSE;
b49e97c9
TS
6399 }
6400 else
6401 {
5d41f0b6 6402 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6403 if (indx == 0)
6404 {
6405 asection *osec = htab->root.text_index_section;
6406 indx = elf_section_data (osec)->dynindx;
6407 }
5d41f0b6
RS
6408 if (indx == 0)
6409 abort ();
b49e97c9
TS
6410 }
6411
5d41f0b6
RS
6412 /* Instead of generating a relocation using the section
6413 symbol, we may as well make it a fully relative
6414 relocation. We want to avoid generating relocations to
6415 local symbols because we used to generate them
6416 incorrectly, without adding the original symbol value,
6417 which is mandated by the ABI for section symbols. In
6418 order to give dynamic loaders and applications time to
6419 phase out the incorrect use, we refrain from emitting
6420 section-relative relocations. It's not like they're
6421 useful, after all. This should be a bit more efficient
6422 as well. */
6423 /* ??? Although this behavior is compatible with glibc's ld.so,
6424 the ABI says that relocations against STN_UNDEF should have
6425 a symbol value of 0. Irix rld honors this, so relocations
6426 against STN_UNDEF have no effect. */
6427 if (!SGI_COMPAT (output_bfd))
6428 indx = 0;
6429 defined_p = TRUE;
b49e97c9
TS
6430 }
6431
5d41f0b6
RS
6432 /* If the relocation was previously an absolute relocation and
6433 this symbol will not be referred to by the relocation, we must
6434 adjust it by the value we give it in the dynamic symbol table.
6435 Otherwise leave the job up to the dynamic linker. */
6436 if (defined_p && r_type != R_MIPS_REL32)
6437 *addendp += symbol;
6438
0a44bf69
RS
6439 if (htab->is_vxworks)
6440 /* VxWorks uses non-relative relocations for this. */
6441 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6442 else
6443 /* The relocation is always an REL32 relocation because we don't
6444 know where the shared library will wind up at load-time. */
6445 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6446 R_MIPS_REL32);
6447
5d41f0b6
RS
6448 /* For strict adherence to the ABI specification, we should
6449 generate a R_MIPS_64 relocation record by itself before the
6450 _REL32/_64 record as well, such that the addend is read in as
6451 a 64-bit value (REL32 is a 32-bit relocation, after all).
6452 However, since none of the existing ELF64 MIPS dynamic
6453 loaders seems to care, we don't waste space with these
6454 artificial relocations. If this turns out to not be true,
6455 mips_elf_allocate_dynamic_relocation() should be tweaked so
6456 as to make room for a pair of dynamic relocations per
6457 invocation if ABI_64_P, and here we should generate an
6458 additional relocation record with R_MIPS_64 by itself for a
6459 NULL symbol before this relocation record. */
6460 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6461 ABI_64_P (output_bfd)
6462 ? R_MIPS_64
6463 : R_MIPS_NONE);
6464 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6465
6466 /* Adjust the output offset of the relocation to reference the
6467 correct location in the output file. */
6468 outrel[0].r_offset += (input_section->output_section->vma
6469 + input_section->output_offset);
6470 outrel[1].r_offset += (input_section->output_section->vma
6471 + input_section->output_offset);
6472 outrel[2].r_offset += (input_section->output_section->vma
6473 + input_section->output_offset);
6474
b49e97c9
TS
6475 /* Put the relocation back out. We have to use the special
6476 relocation outputter in the 64-bit case since the 64-bit
6477 relocation format is non-standard. */
6478 if (ABI_64_P (output_bfd))
6479 {
6480 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6481 (output_bfd, &outrel[0],
6482 (sreloc->contents
6483 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6484 }
0a44bf69
RS
6485 else if (htab->is_vxworks)
6486 {
6487 /* VxWorks uses RELA rather than REL dynamic relocations. */
6488 outrel[0].r_addend = *addendp;
6489 bfd_elf32_swap_reloca_out
6490 (output_bfd, &outrel[0],
6491 (sreloc->contents
6492 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6493 }
b49e97c9 6494 else
947216bf
AM
6495 bfd_elf32_swap_reloc_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6498
b49e97c9
TS
6499 /* We've now added another relocation. */
6500 ++sreloc->reloc_count;
6501
6502 /* Make sure the output section is writable. The dynamic linker
6503 will be writing to it. */
6504 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6505 |= SHF_WRITE;
6506
6507 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6508 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6509 {
3d4d4302 6510 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6511 bfd_byte *cr;
6512
6513 if (scpt)
6514 {
6515 Elf32_crinfo cptrel;
6516
6517 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6518 cptrel.vaddr = (rel->r_offset
6519 + input_section->output_section->vma
6520 + input_section->output_offset);
6521 if (r_type == R_MIPS_REL32)
6522 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6523 else
6524 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6525 mips_elf_set_cr_dist2to (cptrel, 0);
6526 cptrel.konst = *addendp;
6527
6528 cr = (scpt->contents
6529 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6530 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6531 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6532 ((Elf32_External_crinfo *) cr
6533 + scpt->reloc_count));
6534 ++scpt->reloc_count;
6535 }
6536 }
6537
943284cc
DJ
6538 /* If we've written this relocation for a readonly section,
6539 we need to set DF_TEXTREL again, so that we do not delete the
6540 DT_TEXTREL tag. */
6541 if (MIPS_ELF_READONLY_SECTION (input_section))
6542 info->flags |= DF_TEXTREL;
6543
b34976b6 6544 return TRUE;
b49e97c9
TS
6545}
6546\f
b49e97c9
TS
6547/* Return the MACH for a MIPS e_flags value. */
6548
6549unsigned long
9719ad41 6550_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6551{
6552 switch (flags & EF_MIPS_MACH)
6553 {
6554 case E_MIPS_MACH_3900:
6555 return bfd_mach_mips3900;
6556
6557 case E_MIPS_MACH_4010:
6558 return bfd_mach_mips4010;
6559
6560 case E_MIPS_MACH_4100:
6561 return bfd_mach_mips4100;
6562
6563 case E_MIPS_MACH_4111:
6564 return bfd_mach_mips4111;
6565
00707a0e
RS
6566 case E_MIPS_MACH_4120:
6567 return bfd_mach_mips4120;
6568
b49e97c9
TS
6569 case E_MIPS_MACH_4650:
6570 return bfd_mach_mips4650;
6571
00707a0e
RS
6572 case E_MIPS_MACH_5400:
6573 return bfd_mach_mips5400;
6574
6575 case E_MIPS_MACH_5500:
6576 return bfd_mach_mips5500;
6577
e407c74b
NC
6578 case E_MIPS_MACH_5900:
6579 return bfd_mach_mips5900;
6580
0d2e43ed
ILT
6581 case E_MIPS_MACH_9000:
6582 return bfd_mach_mips9000;
6583
b49e97c9
TS
6584 case E_MIPS_MACH_SB1:
6585 return bfd_mach_mips_sb1;
6586
350cc38d
MS
6587 case E_MIPS_MACH_LS2E:
6588 return bfd_mach_mips_loongson_2e;
6589
6590 case E_MIPS_MACH_LS2F:
6591 return bfd_mach_mips_loongson_2f;
6592
fd503541
NC
6593 case E_MIPS_MACH_LS3A:
6594 return bfd_mach_mips_loongson_3a;
6595
2c629856
N
6596 case E_MIPS_MACH_OCTEON3:
6597 return bfd_mach_mips_octeon3;
6598
432233b3
AP
6599 case E_MIPS_MACH_OCTEON2:
6600 return bfd_mach_mips_octeon2;
6601
6f179bd0
AN
6602 case E_MIPS_MACH_OCTEON:
6603 return bfd_mach_mips_octeon;
6604
52b6b6b9
JM
6605 case E_MIPS_MACH_XLR:
6606 return bfd_mach_mips_xlr;
6607
b49e97c9
TS
6608 default:
6609 switch (flags & EF_MIPS_ARCH)
6610 {
6611 default:
6612 case E_MIPS_ARCH_1:
6613 return bfd_mach_mips3000;
b49e97c9
TS
6614
6615 case E_MIPS_ARCH_2:
6616 return bfd_mach_mips6000;
b49e97c9
TS
6617
6618 case E_MIPS_ARCH_3:
6619 return bfd_mach_mips4000;
b49e97c9
TS
6620
6621 case E_MIPS_ARCH_4:
6622 return bfd_mach_mips8000;
b49e97c9
TS
6623
6624 case E_MIPS_ARCH_5:
6625 return bfd_mach_mips5;
b49e97c9
TS
6626
6627 case E_MIPS_ARCH_32:
6628 return bfd_mach_mipsisa32;
b49e97c9
TS
6629
6630 case E_MIPS_ARCH_64:
6631 return bfd_mach_mipsisa64;
af7ee8bf
CD
6632
6633 case E_MIPS_ARCH_32R2:
6634 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6635
6636 case E_MIPS_ARCH_64R2:
6637 return bfd_mach_mipsisa64r2;
7361da2c
AB
6638
6639 case E_MIPS_ARCH_32R6:
6640 return bfd_mach_mipsisa32r6;
6641
6642 case E_MIPS_ARCH_64R6:
6643 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6644 }
6645 }
6646
6647 return 0;
6648}
6649
6650/* Return printable name for ABI. */
6651
6652static INLINE char *
9719ad41 6653elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6654{
6655 flagword flags;
6656
6657 flags = elf_elfheader (abfd)->e_flags;
6658 switch (flags & EF_MIPS_ABI)
6659 {
6660 case 0:
6661 if (ABI_N32_P (abfd))
6662 return "N32";
6663 else if (ABI_64_P (abfd))
6664 return "64";
6665 else
6666 return "none";
6667 case E_MIPS_ABI_O32:
6668 return "O32";
6669 case E_MIPS_ABI_O64:
6670 return "O64";
6671 case E_MIPS_ABI_EABI32:
6672 return "EABI32";
6673 case E_MIPS_ABI_EABI64:
6674 return "EABI64";
6675 default:
6676 return "unknown abi";
6677 }
6678}
6679\f
6680/* MIPS ELF uses two common sections. One is the usual one, and the
6681 other is for small objects. All the small objects are kept
6682 together, and then referenced via the gp pointer, which yields
6683 faster assembler code. This is what we use for the small common
6684 section. This approach is copied from ecoff.c. */
6685static asection mips_elf_scom_section;
6686static asymbol mips_elf_scom_symbol;
6687static asymbol *mips_elf_scom_symbol_ptr;
6688
6689/* MIPS ELF also uses an acommon section, which represents an
6690 allocated common symbol which may be overridden by a
6691 definition in a shared library. */
6692static asection mips_elf_acom_section;
6693static asymbol mips_elf_acom_symbol;
6694static asymbol *mips_elf_acom_symbol_ptr;
6695
738e5348 6696/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6697
6698void
9719ad41 6699_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6700{
6701 elf_symbol_type *elfsym;
6702
738e5348 6703 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6704 elfsym = (elf_symbol_type *) asym;
6705 switch (elfsym->internal_elf_sym.st_shndx)
6706 {
6707 case SHN_MIPS_ACOMMON:
6708 /* This section is used in a dynamically linked executable file.
6709 It is an allocated common section. The dynamic linker can
6710 either resolve these symbols to something in a shared
6711 library, or it can just leave them here. For our purposes,
6712 we can consider these symbols to be in a new section. */
6713 if (mips_elf_acom_section.name == NULL)
6714 {
6715 /* Initialize the acommon section. */
6716 mips_elf_acom_section.name = ".acommon";
6717 mips_elf_acom_section.flags = SEC_ALLOC;
6718 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6719 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6720 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6721 mips_elf_acom_symbol.name = ".acommon";
6722 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6723 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6724 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6725 }
6726 asym->section = &mips_elf_acom_section;
6727 break;
6728
6729 case SHN_COMMON:
6730 /* Common symbols less than the GP size are automatically
6731 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6732 if (asym->value > elf_gp_size (abfd)
b59eed79 6733 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6734 || IRIX_COMPAT (abfd) == ict_irix6)
6735 break;
6736 /* Fall through. */
6737 case SHN_MIPS_SCOMMON:
6738 if (mips_elf_scom_section.name == NULL)
6739 {
6740 /* Initialize the small common section. */
6741 mips_elf_scom_section.name = ".scommon";
6742 mips_elf_scom_section.flags = SEC_IS_COMMON;
6743 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6744 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6745 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6746 mips_elf_scom_symbol.name = ".scommon";
6747 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6748 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6749 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6750 }
6751 asym->section = &mips_elf_scom_section;
6752 asym->value = elfsym->internal_elf_sym.st_size;
6753 break;
6754
6755 case SHN_MIPS_SUNDEFINED:
6756 asym->section = bfd_und_section_ptr;
6757 break;
6758
b49e97c9 6759 case SHN_MIPS_TEXT:
00b4930b
TS
6760 {
6761 asection *section = bfd_get_section_by_name (abfd, ".text");
6762
00b4930b
TS
6763 if (section != NULL)
6764 {
6765 asym->section = section;
6766 /* MIPS_TEXT is a bit special, the address is not an offset
6767 to the base of the .text section. So substract the section
6768 base address to make it an offset. */
6769 asym->value -= section->vma;
6770 }
6771 }
b49e97c9
TS
6772 break;
6773
6774 case SHN_MIPS_DATA:
00b4930b
TS
6775 {
6776 asection *section = bfd_get_section_by_name (abfd, ".data");
6777
00b4930b
TS
6778 if (section != NULL)
6779 {
6780 asym->section = section;
6781 /* MIPS_DATA is a bit special, the address is not an offset
6782 to the base of the .data section. So substract the section
6783 base address to make it an offset. */
6784 asym->value -= section->vma;
6785 }
6786 }
b49e97c9 6787 break;
b49e97c9 6788 }
738e5348 6789
df58fc94
RS
6790 /* If this is an odd-valued function symbol, assume it's a MIPS16
6791 or microMIPS one. */
738e5348
RS
6792 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6793 && (asym->value & 1) != 0)
6794 {
6795 asym->value--;
e8faf7d1 6796 if (MICROMIPS_P (abfd))
df58fc94
RS
6797 elfsym->internal_elf_sym.st_other
6798 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6799 else
6800 elfsym->internal_elf_sym.st_other
6801 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6802 }
b49e97c9
TS
6803}
6804\f
8c946ed5
RS
6805/* Implement elf_backend_eh_frame_address_size. This differs from
6806 the default in the way it handles EABI64.
6807
6808 EABI64 was originally specified as an LP64 ABI, and that is what
6809 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6810 historically accepted the combination of -mabi=eabi and -mlong32,
6811 and this ILP32 variation has become semi-official over time.
6812 Both forms use elf32 and have pointer-sized FDE addresses.
6813
6814 If an EABI object was generated by GCC 4.0 or above, it will have
6815 an empty .gcc_compiled_longXX section, where XX is the size of longs
6816 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6817 have no special marking to distinguish them from LP64 objects.
6818
6819 We don't want users of the official LP64 ABI to be punished for the
6820 existence of the ILP32 variant, but at the same time, we don't want
6821 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6822 We therefore take the following approach:
6823
6824 - If ABFD contains a .gcc_compiled_longXX section, use it to
6825 determine the pointer size.
6826
6827 - Otherwise check the type of the first relocation. Assume that
6828 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6829
6830 - Otherwise punt.
6831
6832 The second check is enough to detect LP64 objects generated by pre-4.0
6833 compilers because, in the kind of output generated by those compilers,
6834 the first relocation will be associated with either a CIE personality
6835 routine or an FDE start address. Furthermore, the compilers never
6836 used a special (non-pointer) encoding for this ABI.
6837
6838 Checking the relocation type should also be safe because there is no
6839 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6840 did so. */
6841
6842unsigned int
6843_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6844{
6845 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6846 return 8;
6847 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6848 {
6849 bfd_boolean long32_p, long64_p;
6850
6851 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6852 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6853 if (long32_p && long64_p)
6854 return 0;
6855 if (long32_p)
6856 return 4;
6857 if (long64_p)
6858 return 8;
6859
6860 if (sec->reloc_count > 0
6861 && elf_section_data (sec)->relocs != NULL
6862 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6863 == R_MIPS_64))
6864 return 8;
6865
6866 return 0;
6867 }
6868 return 4;
6869}
6870\f
174fd7f9
RS
6871/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6872 relocations against two unnamed section symbols to resolve to the
6873 same address. For example, if we have code like:
6874
6875 lw $4,%got_disp(.data)($gp)
6876 lw $25,%got_disp(.text)($gp)
6877 jalr $25
6878
6879 then the linker will resolve both relocations to .data and the program
6880 will jump there rather than to .text.
6881
6882 We can work around this problem by giving names to local section symbols.
6883 This is also what the MIPSpro tools do. */
6884
6885bfd_boolean
6886_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6887{
6888 return SGI_COMPAT (abfd);
6889}
6890\f
b49e97c9
TS
6891/* Work over a section just before writing it out. This routine is
6892 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6893 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6894 a better way. */
6895
b34976b6 6896bfd_boolean
9719ad41 6897_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6898{
6899 if (hdr->sh_type == SHT_MIPS_REGINFO
6900 && hdr->sh_size > 0)
6901 {
6902 bfd_byte buf[4];
6903
6904 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6905 BFD_ASSERT (hdr->contents == NULL);
6906
6907 if (bfd_seek (abfd,
6908 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6909 SEEK_SET) != 0)
b34976b6 6910 return FALSE;
b49e97c9 6911 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6912 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6913 return FALSE;
b49e97c9
TS
6914 }
6915
6916 if (hdr->sh_type == SHT_MIPS_OPTIONS
6917 && hdr->bfd_section != NULL
f0abc2a1
AM
6918 && mips_elf_section_data (hdr->bfd_section) != NULL
6919 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6920 {
6921 bfd_byte *contents, *l, *lend;
6922
f0abc2a1
AM
6923 /* We stored the section contents in the tdata field in the
6924 set_section_contents routine. We save the section contents
6925 so that we don't have to read them again.
b49e97c9
TS
6926 At this point we know that elf_gp is set, so we can look
6927 through the section contents to see if there is an
6928 ODK_REGINFO structure. */
6929
f0abc2a1 6930 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6931 l = contents;
6932 lend = contents + hdr->sh_size;
6933 while (l + sizeof (Elf_External_Options) <= lend)
6934 {
6935 Elf_Internal_Options intopt;
6936
6937 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6938 &intopt);
1bc8074d
MR
6939 if (intopt.size < sizeof (Elf_External_Options))
6940 {
6941 (*_bfd_error_handler)
6942 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6943 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6944 break;
6945 }
b49e97c9
TS
6946 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6947 {
6948 bfd_byte buf[8];
6949
6950 if (bfd_seek (abfd,
6951 (hdr->sh_offset
6952 + (l - contents)
6953 + sizeof (Elf_External_Options)
6954 + (sizeof (Elf64_External_RegInfo) - 8)),
6955 SEEK_SET) != 0)
b34976b6 6956 return FALSE;
b49e97c9 6957 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6958 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6959 return FALSE;
b49e97c9
TS
6960 }
6961 else if (intopt.kind == ODK_REGINFO)
6962 {
6963 bfd_byte buf[4];
6964
6965 if (bfd_seek (abfd,
6966 (hdr->sh_offset
6967 + (l - contents)
6968 + sizeof (Elf_External_Options)
6969 + (sizeof (Elf32_External_RegInfo) - 4)),
6970 SEEK_SET) != 0)
b34976b6 6971 return FALSE;
b49e97c9 6972 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6973 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6974 return FALSE;
b49e97c9
TS
6975 }
6976 l += intopt.size;
6977 }
6978 }
6979
6980 if (hdr->bfd_section != NULL)
6981 {
6982 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6983
2d0f9ad9
JM
6984 /* .sbss is not handled specially here because the GNU/Linux
6985 prelinker can convert .sbss from NOBITS to PROGBITS and
6986 changing it back to NOBITS breaks the binary. The entry in
6987 _bfd_mips_elf_special_sections will ensure the correct flags
6988 are set on .sbss if BFD creates it without reading it from an
6989 input file, and without special handling here the flags set
6990 on it in an input file will be followed. */
b49e97c9
TS
6991 if (strcmp (name, ".sdata") == 0
6992 || strcmp (name, ".lit8") == 0
6993 || strcmp (name, ".lit4") == 0)
fd6f9d17 6994 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 6995 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 6996 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 6997 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 6998 hdr->sh_flags = 0;
b49e97c9
TS
6999 else if (strcmp (name, ".rtproc") == 0)
7000 {
7001 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7002 {
7003 unsigned int adjust;
7004
7005 adjust = hdr->sh_size % hdr->sh_addralign;
7006 if (adjust != 0)
7007 hdr->sh_size += hdr->sh_addralign - adjust;
7008 }
7009 }
7010 }
7011
b34976b6 7012 return TRUE;
b49e97c9
TS
7013}
7014
7015/* Handle a MIPS specific section when reading an object file. This
7016 is called when elfcode.h finds a section with an unknown type.
7017 This routine supports both the 32-bit and 64-bit ELF ABI.
7018
7019 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7020 how to. */
7021
b34976b6 7022bfd_boolean
6dc132d9
L
7023_bfd_mips_elf_section_from_shdr (bfd *abfd,
7024 Elf_Internal_Shdr *hdr,
7025 const char *name,
7026 int shindex)
b49e97c9
TS
7027{
7028 flagword flags = 0;
7029
7030 /* There ought to be a place to keep ELF backend specific flags, but
7031 at the moment there isn't one. We just keep track of the
7032 sections by their name, instead. Fortunately, the ABI gives
7033 suggested names for all the MIPS specific sections, so we will
7034 probably get away with this. */
7035 switch (hdr->sh_type)
7036 {
7037 case SHT_MIPS_LIBLIST:
7038 if (strcmp (name, ".liblist") != 0)
b34976b6 7039 return FALSE;
b49e97c9
TS
7040 break;
7041 case SHT_MIPS_MSYM:
7042 if (strcmp (name, ".msym") != 0)
b34976b6 7043 return FALSE;
b49e97c9
TS
7044 break;
7045 case SHT_MIPS_CONFLICT:
7046 if (strcmp (name, ".conflict") != 0)
b34976b6 7047 return FALSE;
b49e97c9
TS
7048 break;
7049 case SHT_MIPS_GPTAB:
0112cd26 7050 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7051 return FALSE;
b49e97c9
TS
7052 break;
7053 case SHT_MIPS_UCODE:
7054 if (strcmp (name, ".ucode") != 0)
b34976b6 7055 return FALSE;
b49e97c9
TS
7056 break;
7057 case SHT_MIPS_DEBUG:
7058 if (strcmp (name, ".mdebug") != 0)
b34976b6 7059 return FALSE;
b49e97c9
TS
7060 flags = SEC_DEBUGGING;
7061 break;
7062 case SHT_MIPS_REGINFO:
7063 if (strcmp (name, ".reginfo") != 0
7064 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7065 return FALSE;
b49e97c9
TS
7066 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7067 break;
7068 case SHT_MIPS_IFACE:
7069 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7070 return FALSE;
b49e97c9
TS
7071 break;
7072 case SHT_MIPS_CONTENT:
0112cd26 7073 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7074 return FALSE;
b49e97c9
TS
7075 break;
7076 case SHT_MIPS_OPTIONS:
cc2e31b9 7077 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7078 return FALSE;
b49e97c9 7079 break;
351cdf24
MF
7080 case SHT_MIPS_ABIFLAGS:
7081 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7082 return FALSE;
7083 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7084 break;
b49e97c9 7085 case SHT_MIPS_DWARF:
1b315056 7086 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7087 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7088 return FALSE;
b49e97c9
TS
7089 break;
7090 case SHT_MIPS_SYMBOL_LIB:
7091 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7092 return FALSE;
b49e97c9
TS
7093 break;
7094 case SHT_MIPS_EVENTS:
0112cd26
NC
7095 if (! CONST_STRNEQ (name, ".MIPS.events")
7096 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7097 return FALSE;
b49e97c9
TS
7098 break;
7099 default:
cc2e31b9 7100 break;
b49e97c9
TS
7101 }
7102
6dc132d9 7103 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7104 return FALSE;
b49e97c9
TS
7105
7106 if (flags)
7107 {
7108 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7109 (bfd_get_section_flags (abfd,
7110 hdr->bfd_section)
7111 | flags)))
b34976b6 7112 return FALSE;
b49e97c9
TS
7113 }
7114
351cdf24
MF
7115 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7116 {
7117 Elf_External_ABIFlags_v0 ext;
7118
7119 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7120 &ext, 0, sizeof ext))
7121 return FALSE;
7122 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7123 &mips_elf_tdata (abfd)->abiflags);
7124 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7125 return FALSE;
7126 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7127 }
7128
b49e97c9
TS
7129 /* FIXME: We should record sh_info for a .gptab section. */
7130
7131 /* For a .reginfo section, set the gp value in the tdata information
7132 from the contents of this section. We need the gp value while
7133 processing relocs, so we just get it now. The .reginfo section
7134 is not used in the 64-bit MIPS ELF ABI. */
7135 if (hdr->sh_type == SHT_MIPS_REGINFO)
7136 {
7137 Elf32_External_RegInfo ext;
7138 Elf32_RegInfo s;
7139
9719ad41
RS
7140 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7141 &ext, 0, sizeof ext))
b34976b6 7142 return FALSE;
b49e97c9
TS
7143 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7144 elf_gp (abfd) = s.ri_gp_value;
7145 }
7146
7147 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7148 set the gp value based on what we find. We may see both
7149 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7150 they should agree. */
7151 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7152 {
7153 bfd_byte *contents, *l, *lend;
7154
9719ad41 7155 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7156 if (contents == NULL)
b34976b6 7157 return FALSE;
b49e97c9 7158 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7159 0, hdr->sh_size))
b49e97c9
TS
7160 {
7161 free (contents);
b34976b6 7162 return FALSE;
b49e97c9
TS
7163 }
7164 l = contents;
7165 lend = contents + hdr->sh_size;
7166 while (l + sizeof (Elf_External_Options) <= lend)
7167 {
7168 Elf_Internal_Options intopt;
7169
7170 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7171 &intopt);
1bc8074d
MR
7172 if (intopt.size < sizeof (Elf_External_Options))
7173 {
7174 (*_bfd_error_handler)
7175 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7176 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7177 break;
7178 }
b49e97c9
TS
7179 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7180 {
7181 Elf64_Internal_RegInfo intreg;
7182
7183 bfd_mips_elf64_swap_reginfo_in
7184 (abfd,
7185 ((Elf64_External_RegInfo *)
7186 (l + sizeof (Elf_External_Options))),
7187 &intreg);
7188 elf_gp (abfd) = intreg.ri_gp_value;
7189 }
7190 else if (intopt.kind == ODK_REGINFO)
7191 {
7192 Elf32_RegInfo intreg;
7193
7194 bfd_mips_elf32_swap_reginfo_in
7195 (abfd,
7196 ((Elf32_External_RegInfo *)
7197 (l + sizeof (Elf_External_Options))),
7198 &intreg);
7199 elf_gp (abfd) = intreg.ri_gp_value;
7200 }
7201 l += intopt.size;
7202 }
7203 free (contents);
7204 }
7205
b34976b6 7206 return TRUE;
b49e97c9
TS
7207}
7208
7209/* Set the correct type for a MIPS ELF section. We do this by the
7210 section name, which is a hack, but ought to work. This routine is
7211 used by both the 32-bit and the 64-bit ABI. */
7212
b34976b6 7213bfd_boolean
9719ad41 7214_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7215{
0414f35b 7216 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7217
7218 if (strcmp (name, ".liblist") == 0)
7219 {
7220 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7221 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7222 /* The sh_link field is set in final_write_processing. */
7223 }
7224 else if (strcmp (name, ".conflict") == 0)
7225 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7226 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7227 {
7228 hdr->sh_type = SHT_MIPS_GPTAB;
7229 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7230 /* The sh_info field is set in final_write_processing. */
7231 }
7232 else if (strcmp (name, ".ucode") == 0)
7233 hdr->sh_type = SHT_MIPS_UCODE;
7234 else if (strcmp (name, ".mdebug") == 0)
7235 {
7236 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7237 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7238 entsize of 0. FIXME: Does this matter? */
7239 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7240 hdr->sh_entsize = 0;
7241 else
7242 hdr->sh_entsize = 1;
7243 }
7244 else if (strcmp (name, ".reginfo") == 0)
7245 {
7246 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7247 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7248 entsize of 0x18. FIXME: Does this matter? */
7249 if (SGI_COMPAT (abfd))
7250 {
7251 if ((abfd->flags & DYNAMIC) != 0)
7252 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7253 else
7254 hdr->sh_entsize = 1;
7255 }
7256 else
7257 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7258 }
7259 else if (SGI_COMPAT (abfd)
7260 && (strcmp (name, ".hash") == 0
7261 || strcmp (name, ".dynamic") == 0
7262 || strcmp (name, ".dynstr") == 0))
7263 {
7264 if (SGI_COMPAT (abfd))
7265 hdr->sh_entsize = 0;
7266#if 0
8dc1a139 7267 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7268 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7269#endif
7270 }
7271 else if (strcmp (name, ".got") == 0
7272 || strcmp (name, ".srdata") == 0
7273 || strcmp (name, ".sdata") == 0
7274 || strcmp (name, ".sbss") == 0
7275 || strcmp (name, ".lit4") == 0
7276 || strcmp (name, ".lit8") == 0)
7277 hdr->sh_flags |= SHF_MIPS_GPREL;
7278 else if (strcmp (name, ".MIPS.interfaces") == 0)
7279 {
7280 hdr->sh_type = SHT_MIPS_IFACE;
7281 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7282 }
0112cd26 7283 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7284 {
7285 hdr->sh_type = SHT_MIPS_CONTENT;
7286 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7287 /* The sh_info field is set in final_write_processing. */
7288 }
cc2e31b9 7289 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7290 {
7291 hdr->sh_type = SHT_MIPS_OPTIONS;
7292 hdr->sh_entsize = 1;
7293 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7294 }
351cdf24
MF
7295 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7296 {
7297 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7298 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7299 }
1b315056
CS
7300 else if (CONST_STRNEQ (name, ".debug_")
7301 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7302 {
7303 hdr->sh_type = SHT_MIPS_DWARF;
7304
7305 /* Irix facilities such as libexc expect a single .debug_frame
7306 per executable, the system ones have NOSTRIP set and the linker
7307 doesn't merge sections with different flags so ... */
7308 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7309 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7310 }
b49e97c9
TS
7311 else if (strcmp (name, ".MIPS.symlib") == 0)
7312 {
7313 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7314 /* The sh_link and sh_info fields are set in
7315 final_write_processing. */
7316 }
0112cd26
NC
7317 else if (CONST_STRNEQ (name, ".MIPS.events")
7318 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7319 {
7320 hdr->sh_type = SHT_MIPS_EVENTS;
7321 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7322 /* The sh_link field is set in final_write_processing. */
7323 }
7324 else if (strcmp (name, ".msym") == 0)
7325 {
7326 hdr->sh_type = SHT_MIPS_MSYM;
7327 hdr->sh_flags |= SHF_ALLOC;
7328 hdr->sh_entsize = 8;
7329 }
7330
7a79a000
TS
7331 /* The generic elf_fake_sections will set up REL_HDR using the default
7332 kind of relocations. We used to set up a second header for the
7333 non-default kind of relocations here, but only NewABI would use
7334 these, and the IRIX ld doesn't like resulting empty RELA sections.
7335 Thus we create those header only on demand now. */
b49e97c9 7336
b34976b6 7337 return TRUE;
b49e97c9
TS
7338}
7339
7340/* Given a BFD section, try to locate the corresponding ELF section
7341 index. This is used by both the 32-bit and the 64-bit ABI.
7342 Actually, it's not clear to me that the 64-bit ABI supports these,
7343 but for non-PIC objects we will certainly want support for at least
7344 the .scommon section. */
7345
b34976b6 7346bfd_boolean
9719ad41
RS
7347_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7348 asection *sec, int *retval)
b49e97c9
TS
7349{
7350 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7351 {
7352 *retval = SHN_MIPS_SCOMMON;
b34976b6 7353 return TRUE;
b49e97c9
TS
7354 }
7355 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7356 {
7357 *retval = SHN_MIPS_ACOMMON;
b34976b6 7358 return TRUE;
b49e97c9 7359 }
b34976b6 7360 return FALSE;
b49e97c9
TS
7361}
7362\f
7363/* Hook called by the linker routine which adds symbols from an object
7364 file. We must handle the special MIPS section numbers here. */
7365
b34976b6 7366bfd_boolean
9719ad41 7367_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7368 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7369 flagword *flagsp ATTRIBUTE_UNUSED,
7370 asection **secp, bfd_vma *valp)
b49e97c9
TS
7371{
7372 if (SGI_COMPAT (abfd)
7373 && (abfd->flags & DYNAMIC) != 0
7374 && strcmp (*namep, "_rld_new_interface") == 0)
7375 {
8dc1a139 7376 /* Skip IRIX5 rld entry name. */
b49e97c9 7377 *namep = NULL;
b34976b6 7378 return TRUE;
b49e97c9
TS
7379 }
7380
eedecc07
DD
7381 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7382 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7383 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7384 a magic symbol resolved by the linker, we ignore this bogus definition
7385 of _gp_disp. New ABI objects do not suffer from this problem so this
7386 is not done for them. */
7387 if (!NEWABI_P(abfd)
7388 && (sym->st_shndx == SHN_ABS)
7389 && (strcmp (*namep, "_gp_disp") == 0))
7390 {
7391 *namep = NULL;
7392 return TRUE;
7393 }
7394
b49e97c9
TS
7395 switch (sym->st_shndx)
7396 {
7397 case SHN_COMMON:
7398 /* Common symbols less than the GP size are automatically
7399 treated as SHN_MIPS_SCOMMON symbols. */
7400 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7401 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7402 || IRIX_COMPAT (abfd) == ict_irix6)
7403 break;
7404 /* Fall through. */
7405 case SHN_MIPS_SCOMMON:
7406 *secp = bfd_make_section_old_way (abfd, ".scommon");
7407 (*secp)->flags |= SEC_IS_COMMON;
7408 *valp = sym->st_size;
7409 break;
7410
7411 case SHN_MIPS_TEXT:
7412 /* This section is used in a shared object. */
698600e4 7413 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7414 {
7415 asymbol *elf_text_symbol;
7416 asection *elf_text_section;
7417 bfd_size_type amt = sizeof (asection);
7418
7419 elf_text_section = bfd_zalloc (abfd, amt);
7420 if (elf_text_section == NULL)
b34976b6 7421 return FALSE;
b49e97c9
TS
7422
7423 amt = sizeof (asymbol);
7424 elf_text_symbol = bfd_zalloc (abfd, amt);
7425 if (elf_text_symbol == NULL)
b34976b6 7426 return FALSE;
b49e97c9
TS
7427
7428 /* Initialize the section. */
7429
698600e4
AM
7430 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7431 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7432
7433 elf_text_section->symbol = elf_text_symbol;
698600e4 7434 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7435
7436 elf_text_section->name = ".text";
7437 elf_text_section->flags = SEC_NO_FLAGS;
7438 elf_text_section->output_section = NULL;
7439 elf_text_section->owner = abfd;
7440 elf_text_symbol->name = ".text";
7441 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7442 elf_text_symbol->section = elf_text_section;
7443 }
7444 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7445 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7446 so I took it out. */
698600e4 7447 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7448 break;
7449
7450 case SHN_MIPS_ACOMMON:
7451 /* Fall through. XXX Can we treat this as allocated data? */
7452 case SHN_MIPS_DATA:
7453 /* This section is used in a shared object. */
698600e4 7454 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7455 {
7456 asymbol *elf_data_symbol;
7457 asection *elf_data_section;
7458 bfd_size_type amt = sizeof (asection);
7459
7460 elf_data_section = bfd_zalloc (abfd, amt);
7461 if (elf_data_section == NULL)
b34976b6 7462 return FALSE;
b49e97c9
TS
7463
7464 amt = sizeof (asymbol);
7465 elf_data_symbol = bfd_zalloc (abfd, amt);
7466 if (elf_data_symbol == NULL)
b34976b6 7467 return FALSE;
b49e97c9
TS
7468
7469 /* Initialize the section. */
7470
698600e4
AM
7471 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7472 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7473
7474 elf_data_section->symbol = elf_data_symbol;
698600e4 7475 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7476
7477 elf_data_section->name = ".data";
7478 elf_data_section->flags = SEC_NO_FLAGS;
7479 elf_data_section->output_section = NULL;
7480 elf_data_section->owner = abfd;
7481 elf_data_symbol->name = ".data";
7482 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7483 elf_data_symbol->section = elf_data_section;
7484 }
7485 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7486 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7487 so I took it out. */
698600e4 7488 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7489 break;
7490
7491 case SHN_MIPS_SUNDEFINED:
7492 *secp = bfd_und_section_ptr;
7493 break;
7494 }
7495
7496 if (SGI_COMPAT (abfd)
0e1862bb 7497 && ! bfd_link_pic (info)
f13a99db 7498 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7499 && strcmp (*namep, "__rld_obj_head") == 0)
7500 {
7501 struct elf_link_hash_entry *h;
14a793b2 7502 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7503
7504 /* Mark __rld_obj_head as dynamic. */
14a793b2 7505 bh = NULL;
b49e97c9 7506 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7507 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7508 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7509 return FALSE;
14a793b2
AM
7510
7511 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7512 h->non_elf = 0;
7513 h->def_regular = 1;
b49e97c9
TS
7514 h->type = STT_OBJECT;
7515
c152c796 7516 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7517 return FALSE;
b49e97c9 7518
b34976b6 7519 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7520 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7521 }
7522
7523 /* If this is a mips16 text symbol, add 1 to the value to make it
7524 odd. This will cause something like .word SYM to come up with
7525 the right value when it is loaded into the PC. */
df58fc94 7526 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7527 ++*valp;
7528
b34976b6 7529 return TRUE;
b49e97c9
TS
7530}
7531
7532/* This hook function is called before the linker writes out a global
7533 symbol. We mark symbols as small common if appropriate. This is
7534 also where we undo the increment of the value for a mips16 symbol. */
7535
6e0b88f1 7536int
9719ad41
RS
7537_bfd_mips_elf_link_output_symbol_hook
7538 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7539 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7540 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7541{
7542 /* If we see a common symbol, which implies a relocatable link, then
7543 if a symbol was small common in an input file, mark it as small
7544 common in the output file. */
7545 if (sym->st_shndx == SHN_COMMON
7546 && strcmp (input_sec->name, ".scommon") == 0)
7547 sym->st_shndx = SHN_MIPS_SCOMMON;
7548
df58fc94 7549 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7550 sym->st_value &= ~1;
b49e97c9 7551
6e0b88f1 7552 return 1;
b49e97c9
TS
7553}
7554\f
7555/* Functions for the dynamic linker. */
7556
7557/* Create dynamic sections when linking against a dynamic object. */
7558
b34976b6 7559bfd_boolean
9719ad41 7560_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7561{
7562 struct elf_link_hash_entry *h;
14a793b2 7563 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7564 flagword flags;
7565 register asection *s;
7566 const char * const *namep;
0a44bf69 7567 struct mips_elf_link_hash_table *htab;
b49e97c9 7568
0a44bf69 7569 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7570 BFD_ASSERT (htab != NULL);
7571
b49e97c9
TS
7572 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7573 | SEC_LINKER_CREATED | SEC_READONLY);
7574
0a44bf69
RS
7575 /* The psABI requires a read-only .dynamic section, but the VxWorks
7576 EABI doesn't. */
7577 if (!htab->is_vxworks)
b49e97c9 7578 {
3d4d4302 7579 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7580 if (s != NULL)
7581 {
7582 if (! bfd_set_section_flags (abfd, s, flags))
7583 return FALSE;
7584 }
b49e97c9
TS
7585 }
7586
7587 /* We need to create .got section. */
23cc69b6 7588 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7589 return FALSE;
7590
0a44bf69 7591 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7592 return FALSE;
b49e97c9 7593
b49e97c9 7594 /* Create .stub section. */
3d4d4302
AM
7595 s = bfd_make_section_anyway_with_flags (abfd,
7596 MIPS_ELF_STUB_SECTION_NAME (abfd),
7597 flags | SEC_CODE);
4e41d0d7
RS
7598 if (s == NULL
7599 || ! bfd_set_section_alignment (abfd, s,
7600 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7601 return FALSE;
7602 htab->sstubs = s;
b49e97c9 7603
e6aea42d 7604 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7605 && bfd_link_executable (info)
3d4d4302 7606 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7607 {
3d4d4302
AM
7608 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7609 flags &~ (flagword) SEC_READONLY);
b49e97c9 7610 if (s == NULL
b49e97c9
TS
7611 || ! bfd_set_section_alignment (abfd, s,
7612 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7613 return FALSE;
b49e97c9
TS
7614 }
7615
7616 /* On IRIX5, we adjust add some additional symbols and change the
7617 alignments of several sections. There is no ABI documentation
7618 indicating that this is necessary on IRIX6, nor any evidence that
7619 the linker takes such action. */
7620 if (IRIX_COMPAT (abfd) == ict_irix5)
7621 {
7622 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7623 {
14a793b2 7624 bh = NULL;
b49e97c9 7625 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7626 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7627 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7628 return FALSE;
14a793b2
AM
7629
7630 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7631 h->non_elf = 0;
7632 h->def_regular = 1;
b49e97c9
TS
7633 h->type = STT_SECTION;
7634
c152c796 7635 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7636 return FALSE;
b49e97c9
TS
7637 }
7638
7639 /* We need to create a .compact_rel section. */
7640 if (SGI_COMPAT (abfd))
7641 {
7642 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7643 return FALSE;
b49e97c9
TS
7644 }
7645
44c410de 7646 /* Change alignments of some sections. */
3d4d4302 7647 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7648 if (s != NULL)
a253d456
NC
7649 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7650
3d4d4302 7651 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7652 if (s != NULL)
a253d456
NC
7653 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7654
3d4d4302 7655 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7656 if (s != NULL)
a253d456
NC
7657 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7658
3d4d4302 7659 /* ??? */
b49e97c9
TS
7660 s = bfd_get_section_by_name (abfd, ".reginfo");
7661 if (s != NULL)
a253d456
NC
7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7663
3d4d4302 7664 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7665 if (s != NULL)
a253d456 7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7667 }
7668
0e1862bb 7669 if (bfd_link_executable (info))
b49e97c9 7670 {
14a793b2
AM
7671 const char *name;
7672
7673 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7674 bh = NULL;
7675 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7676 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7677 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7678 return FALSE;
14a793b2
AM
7679
7680 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7681 h->non_elf = 0;
7682 h->def_regular = 1;
b49e97c9
TS
7683 h->type = STT_SECTION;
7684
c152c796 7685 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7686 return FALSE;
b49e97c9
TS
7687
7688 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7689 {
7690 /* __rld_map is a four byte word located in the .data section
7691 and is filled in by the rtld to contain a pointer to
7692 the _r_debug structure. Its symbol value will be set in
7693 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7694 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7695 BFD_ASSERT (s != NULL);
14a793b2 7696
0abfb97a
L
7697 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7698 bh = NULL;
7699 if (!(_bfd_generic_link_add_one_symbol
7700 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7701 get_elf_backend_data (abfd)->collect, &bh)))
7702 return FALSE;
b49e97c9 7703
0abfb97a
L
7704 h = (struct elf_link_hash_entry *) bh;
7705 h->non_elf = 0;
7706 h->def_regular = 1;
7707 h->type = STT_OBJECT;
7708
7709 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7710 return FALSE;
b4082c70 7711 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7712 }
7713 }
7714
861fb55a 7715 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7716 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7717 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7718 return FALSE;
7719
7720 /* Cache the sections created above. */
3d4d4302
AM
7721 htab->splt = bfd_get_linker_section (abfd, ".plt");
7722 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7723 if (htab->is_vxworks)
7724 {
3d4d4302
AM
7725 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7726 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7727 }
7728 else
3d4d4302 7729 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a 7730 if (!htab->sdynbss
0e1862bb 7731 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
861fb55a
DJ
7732 || !htab->srelplt
7733 || !htab->splt)
7734 abort ();
0a44bf69 7735
1bbce132
MR
7736 /* Do the usual VxWorks handling. */
7737 if (htab->is_vxworks
7738 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7739 return FALSE;
0a44bf69 7740
b34976b6 7741 return TRUE;
b49e97c9
TS
7742}
7743\f
c224138d
RS
7744/* Return true if relocation REL against section SEC is a REL rather than
7745 RELA relocation. RELOCS is the first relocation in the section and
7746 ABFD is the bfd that contains SEC. */
7747
7748static bfd_boolean
7749mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7750 const Elf_Internal_Rela *relocs,
7751 const Elf_Internal_Rela *rel)
7752{
7753 Elf_Internal_Shdr *rel_hdr;
7754 const struct elf_backend_data *bed;
7755
d4730f92
BS
7756 /* To determine which flavor of relocation this is, we depend on the
7757 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7758 rel_hdr = elf_section_data (sec)->rel.hdr;
7759 if (rel_hdr == NULL)
7760 return FALSE;
c224138d 7761 bed = get_elf_backend_data (abfd);
d4730f92
BS
7762 return ((size_t) (rel - relocs)
7763 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7764}
7765
7766/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7767 HOWTO is the relocation's howto and CONTENTS points to the contents
7768 of the section that REL is against. */
7769
7770static bfd_vma
7771mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7772 reloc_howto_type *howto, bfd_byte *contents)
7773{
7774 bfd_byte *location;
7775 unsigned int r_type;
7776 bfd_vma addend;
7777
7778 r_type = ELF_R_TYPE (abfd, rel->r_info);
7779 location = contents + rel->r_offset;
7780
7781 /* Get the addend, which is stored in the input file. */
df58fc94 7782 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7783 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7784 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7785
7786 return addend & howto->src_mask;
7787}
7788
7789/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7790 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7791 and update *ADDEND with the final addend. Return true on success
7792 or false if the LO16 could not be found. RELEND is the exclusive
7793 upper bound on the relocations for REL's section. */
7794
7795static bfd_boolean
7796mips_elf_add_lo16_rel_addend (bfd *abfd,
7797 const Elf_Internal_Rela *rel,
7798 const Elf_Internal_Rela *relend,
7799 bfd_byte *contents, bfd_vma *addend)
7800{
7801 unsigned int r_type, lo16_type;
7802 const Elf_Internal_Rela *lo16_relocation;
7803 reloc_howto_type *lo16_howto;
7804 bfd_vma l;
7805
7806 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7807 if (mips16_reloc_p (r_type))
c224138d 7808 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7809 else if (micromips_reloc_p (r_type))
7810 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7811 else if (r_type == R_MIPS_PCHI16)
7812 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7813 else
7814 lo16_type = R_MIPS_LO16;
7815
7816 /* The combined value is the sum of the HI16 addend, left-shifted by
7817 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7818 code does a `lui' of the HI16 value, and then an `addiu' of the
7819 LO16 value.)
7820
7821 Scan ahead to find a matching LO16 relocation.
7822
7823 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7824 be immediately following. However, for the IRIX6 ABI, the next
7825 relocation may be a composed relocation consisting of several
7826 relocations for the same address. In that case, the R_MIPS_LO16
7827 relocation may occur as one of these. We permit a similar
7828 extension in general, as that is useful for GCC.
7829
7830 In some cases GCC dead code elimination removes the LO16 but keeps
7831 the corresponding HI16. This is strictly speaking a violation of
7832 the ABI but not immediately harmful. */
7833 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7834 if (lo16_relocation == NULL)
7835 return FALSE;
7836
7837 /* Obtain the addend kept there. */
7838 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7839 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7840
7841 l <<= lo16_howto->rightshift;
7842 l = _bfd_mips_elf_sign_extend (l, 16);
7843
7844 *addend <<= 16;
7845 *addend += l;
7846 return TRUE;
7847}
7848
7849/* Try to read the contents of section SEC in bfd ABFD. Return true and
7850 store the contents in *CONTENTS on success. Assume that *CONTENTS
7851 already holds the contents if it is nonull on entry. */
7852
7853static bfd_boolean
7854mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7855{
7856 if (*contents)
7857 return TRUE;
7858
7859 /* Get cached copy if it exists. */
7860 if (elf_section_data (sec)->this_hdr.contents != NULL)
7861 {
7862 *contents = elf_section_data (sec)->this_hdr.contents;
7863 return TRUE;
7864 }
7865
7866 return bfd_malloc_and_get_section (abfd, sec, contents);
7867}
7868
1bbce132
MR
7869/* Make a new PLT record to keep internal data. */
7870
7871static struct plt_entry *
7872mips_elf_make_plt_record (bfd *abfd)
7873{
7874 struct plt_entry *entry;
7875
7876 entry = bfd_zalloc (abfd, sizeof (*entry));
7877 if (entry == NULL)
7878 return NULL;
7879
7880 entry->stub_offset = MINUS_ONE;
7881 entry->mips_offset = MINUS_ONE;
7882 entry->comp_offset = MINUS_ONE;
7883 entry->gotplt_index = MINUS_ONE;
7884 return entry;
7885}
7886
b49e97c9 7887/* Look through the relocs for a section during the first phase, and
1bbce132
MR
7888 allocate space in the global offset table and record the need for
7889 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 7890
b34976b6 7891bfd_boolean
9719ad41
RS
7892_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7893 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7894{
7895 const char *name;
7896 bfd *dynobj;
7897 Elf_Internal_Shdr *symtab_hdr;
7898 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7899 size_t extsymoff;
7900 const Elf_Internal_Rela *rel;
7901 const Elf_Internal_Rela *rel_end;
b49e97c9 7902 asection *sreloc;
9c5bfbb7 7903 const struct elf_backend_data *bed;
0a44bf69 7904 struct mips_elf_link_hash_table *htab;
c224138d
RS
7905 bfd_byte *contents;
7906 bfd_vma addend;
7907 reloc_howto_type *howto;
b49e97c9 7908
0e1862bb 7909 if (bfd_link_relocatable (info))
b34976b6 7910 return TRUE;
b49e97c9 7911
0a44bf69 7912 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7913 BFD_ASSERT (htab != NULL);
7914
b49e97c9
TS
7915 dynobj = elf_hash_table (info)->dynobj;
7916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7917 sym_hashes = elf_sym_hashes (abfd);
7918 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7919
738e5348
RS
7920 bed = get_elf_backend_data (abfd);
7921 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7922
b49e97c9
TS
7923 /* Check for the mips16 stub sections. */
7924
7925 name = bfd_get_section_name (abfd, sec);
b9d58d71 7926 if (FN_STUB_P (name))
b49e97c9
TS
7927 {
7928 unsigned long r_symndx;
7929
7930 /* Look at the relocation information to figure out which symbol
7931 this is for. */
7932
cb4437b8 7933 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7934 if (r_symndx == 0)
7935 {
7936 (*_bfd_error_handler)
7937 (_("%B: Warning: cannot determine the target function for"
7938 " stub section `%s'"),
7939 abfd, name);
7940 bfd_set_error (bfd_error_bad_value);
7941 return FALSE;
7942 }
b49e97c9
TS
7943
7944 if (r_symndx < extsymoff
7945 || sym_hashes[r_symndx - extsymoff] == NULL)
7946 {
7947 asection *o;
7948
7949 /* This stub is for a local symbol. This stub will only be
7950 needed if there is some relocation in this BFD, other
7951 than a 16 bit function call, which refers to this symbol. */
7952 for (o = abfd->sections; o != NULL; o = o->next)
7953 {
7954 Elf_Internal_Rela *sec_relocs;
7955 const Elf_Internal_Rela *r, *rend;
7956
7957 /* We can ignore stub sections when looking for relocs. */
7958 if ((o->flags & SEC_RELOC) == 0
7959 || o->reloc_count == 0
738e5348 7960 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7961 continue;
7962
45d6a902 7963 sec_relocs
9719ad41 7964 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7965 info->keep_memory);
b49e97c9 7966 if (sec_relocs == NULL)
b34976b6 7967 return FALSE;
b49e97c9
TS
7968
7969 rend = sec_relocs + o->reloc_count;
7970 for (r = sec_relocs; r < rend; r++)
7971 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7972 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7973 break;
7974
6cdc0ccc 7975 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7976 free (sec_relocs);
7977
7978 if (r < rend)
7979 break;
7980 }
7981
7982 if (o == NULL)
7983 {
7984 /* There is no non-call reloc for this stub, so we do
7985 not need it. Since this function is called before
7986 the linker maps input sections to output sections, we
7987 can easily discard it by setting the SEC_EXCLUDE
7988 flag. */
7989 sec->flags |= SEC_EXCLUDE;
b34976b6 7990 return TRUE;
b49e97c9
TS
7991 }
7992
7993 /* Record this stub in an array of local symbol stubs for
7994 this BFD. */
698600e4 7995 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
7996 {
7997 unsigned long symcount;
7998 asection **n;
7999 bfd_size_type amt;
8000
8001 if (elf_bad_symtab (abfd))
8002 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8003 else
8004 symcount = symtab_hdr->sh_info;
8005 amt = symcount * sizeof (asection *);
9719ad41 8006 n = bfd_zalloc (abfd, amt);
b49e97c9 8007 if (n == NULL)
b34976b6 8008 return FALSE;
698600e4 8009 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8010 }
8011
b9d58d71 8012 sec->flags |= SEC_KEEP;
698600e4 8013 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8014
8015 /* We don't need to set mips16_stubs_seen in this case.
8016 That flag is used to see whether we need to look through
8017 the global symbol table for stubs. We don't need to set
8018 it here, because we just have a local stub. */
8019 }
8020 else
8021 {
8022 struct mips_elf_link_hash_entry *h;
8023
8024 h = ((struct mips_elf_link_hash_entry *)
8025 sym_hashes[r_symndx - extsymoff]);
8026
973a3492
L
8027 while (h->root.root.type == bfd_link_hash_indirect
8028 || h->root.root.type == bfd_link_hash_warning)
8029 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8030
b49e97c9
TS
8031 /* H is the symbol this stub is for. */
8032
b9d58d71
TS
8033 /* If we already have an appropriate stub for this function, we
8034 don't need another one, so we can discard this one. Since
8035 this function is called before the linker maps input sections
8036 to output sections, we can easily discard it by setting the
8037 SEC_EXCLUDE flag. */
8038 if (h->fn_stub != NULL)
8039 {
8040 sec->flags |= SEC_EXCLUDE;
8041 return TRUE;
8042 }
8043
8044 sec->flags |= SEC_KEEP;
b49e97c9 8045 h->fn_stub = sec;
b34976b6 8046 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8047 }
8048 }
b9d58d71 8049 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8050 {
8051 unsigned long r_symndx;
8052 struct mips_elf_link_hash_entry *h;
8053 asection **loc;
8054
8055 /* Look at the relocation information to figure out which symbol
8056 this is for. */
8057
cb4437b8 8058 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8059 if (r_symndx == 0)
8060 {
8061 (*_bfd_error_handler)
8062 (_("%B: Warning: cannot determine the target function for"
8063 " stub section `%s'"),
8064 abfd, name);
8065 bfd_set_error (bfd_error_bad_value);
8066 return FALSE;
8067 }
b49e97c9
TS
8068
8069 if (r_symndx < extsymoff
8070 || sym_hashes[r_symndx - extsymoff] == NULL)
8071 {
b9d58d71 8072 asection *o;
b49e97c9 8073
b9d58d71
TS
8074 /* This stub is for a local symbol. This stub will only be
8075 needed if there is some relocation (R_MIPS16_26) in this BFD
8076 that refers to this symbol. */
8077 for (o = abfd->sections; o != NULL; o = o->next)
8078 {
8079 Elf_Internal_Rela *sec_relocs;
8080 const Elf_Internal_Rela *r, *rend;
8081
8082 /* We can ignore stub sections when looking for relocs. */
8083 if ((o->flags & SEC_RELOC) == 0
8084 || o->reloc_count == 0
738e5348 8085 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8086 continue;
8087
8088 sec_relocs
8089 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8090 info->keep_memory);
8091 if (sec_relocs == NULL)
8092 return FALSE;
8093
8094 rend = sec_relocs + o->reloc_count;
8095 for (r = sec_relocs; r < rend; r++)
8096 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8097 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8098 break;
8099
8100 if (elf_section_data (o)->relocs != sec_relocs)
8101 free (sec_relocs);
8102
8103 if (r < rend)
8104 break;
8105 }
8106
8107 if (o == NULL)
8108 {
8109 /* There is no non-call reloc for this stub, so we do
8110 not need it. Since this function is called before
8111 the linker maps input sections to output sections, we
8112 can easily discard it by setting the SEC_EXCLUDE
8113 flag. */
8114 sec->flags |= SEC_EXCLUDE;
8115 return TRUE;
8116 }
8117
8118 /* Record this stub in an array of local symbol call_stubs for
8119 this BFD. */
698600e4 8120 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8121 {
8122 unsigned long symcount;
8123 asection **n;
8124 bfd_size_type amt;
8125
8126 if (elf_bad_symtab (abfd))
8127 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8128 else
8129 symcount = symtab_hdr->sh_info;
8130 amt = symcount * sizeof (asection *);
8131 n = bfd_zalloc (abfd, amt);
8132 if (n == NULL)
8133 return FALSE;
698600e4 8134 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8135 }
b49e97c9 8136
b9d58d71 8137 sec->flags |= SEC_KEEP;
698600e4 8138 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8139
b9d58d71
TS
8140 /* We don't need to set mips16_stubs_seen in this case.
8141 That flag is used to see whether we need to look through
8142 the global symbol table for stubs. We don't need to set
8143 it here, because we just have a local stub. */
8144 }
b49e97c9 8145 else
b49e97c9 8146 {
b9d58d71
TS
8147 h = ((struct mips_elf_link_hash_entry *)
8148 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8149
b9d58d71 8150 /* H is the symbol this stub is for. */
68ffbac6 8151
b9d58d71
TS
8152 if (CALL_FP_STUB_P (name))
8153 loc = &h->call_fp_stub;
8154 else
8155 loc = &h->call_stub;
68ffbac6 8156
b9d58d71
TS
8157 /* If we already have an appropriate stub for this function, we
8158 don't need another one, so we can discard this one. Since
8159 this function is called before the linker maps input sections
8160 to output sections, we can easily discard it by setting the
8161 SEC_EXCLUDE flag. */
8162 if (*loc != NULL)
8163 {
8164 sec->flags |= SEC_EXCLUDE;
8165 return TRUE;
8166 }
b49e97c9 8167
b9d58d71
TS
8168 sec->flags |= SEC_KEEP;
8169 *loc = sec;
8170 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8171 }
b49e97c9
TS
8172 }
8173
b49e97c9 8174 sreloc = NULL;
c224138d 8175 contents = NULL;
b49e97c9
TS
8176 for (rel = relocs; rel < rel_end; ++rel)
8177 {
8178 unsigned long r_symndx;
8179 unsigned int r_type;
8180 struct elf_link_hash_entry *h;
861fb55a 8181 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8182 bfd_boolean call_reloc_p;
8183 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8184
8185 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8186 r_type = ELF_R_TYPE (abfd, rel->r_info);
8187
8188 if (r_symndx < extsymoff)
8189 h = NULL;
8190 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8191 {
8192 (*_bfd_error_handler)
d003868e
AM
8193 (_("%B: Malformed reloc detected for section %s"),
8194 abfd, name);
b49e97c9 8195 bfd_set_error (bfd_error_bad_value);
b34976b6 8196 return FALSE;
b49e97c9
TS
8197 }
8198 else
8199 {
8200 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8201 if (h != NULL)
8202 {
8203 while (h->root.type == bfd_link_hash_indirect
8204 || h->root.type == bfd_link_hash_warning)
8205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8206
8207 /* PR15323, ref flags aren't set for references in the
8208 same object. */
8209 h->root.non_ir_ref = 1;
8210 }
861fb55a 8211 }
b49e97c9 8212
861fb55a
DJ
8213 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8214 relocation into a dynamic one. */
8215 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8216
8217 /* Set CALL_RELOC_P to true if the relocation is for a call,
8218 and if pointer equality therefore doesn't matter. */
8219 call_reloc_p = FALSE;
8220
8221 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8222 into account when deciding how to define the symbol.
8223 Relocations in nonallocatable sections such as .pdr and
8224 .debug* should have no effect. */
8225 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8226
861fb55a
DJ
8227 switch (r_type)
8228 {
861fb55a
DJ
8229 case R_MIPS_CALL16:
8230 case R_MIPS_CALL_HI16:
8231 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8232 case R_MIPS16_CALL16:
8233 case R_MICROMIPS_CALL16:
8234 case R_MICROMIPS_CALL_HI16:
8235 case R_MICROMIPS_CALL_LO16:
8236 call_reloc_p = TRUE;
8237 /* Fall through. */
8238
8239 case R_MIPS_GOT16:
861fb55a
DJ
8240 case R_MIPS_GOT_HI16:
8241 case R_MIPS_GOT_LO16:
8242 case R_MIPS_GOT_PAGE:
8243 case R_MIPS_GOT_OFST:
8244 case R_MIPS_GOT_DISP:
8245 case R_MIPS_TLS_GOTTPREL:
8246 case R_MIPS_TLS_GD:
8247 case R_MIPS_TLS_LDM:
d0f13682 8248 case R_MIPS16_GOT16:
d0f13682
CLT
8249 case R_MIPS16_TLS_GOTTPREL:
8250 case R_MIPS16_TLS_GD:
8251 case R_MIPS16_TLS_LDM:
df58fc94 8252 case R_MICROMIPS_GOT16:
df58fc94
RS
8253 case R_MICROMIPS_GOT_HI16:
8254 case R_MICROMIPS_GOT_LO16:
8255 case R_MICROMIPS_GOT_PAGE:
8256 case R_MICROMIPS_GOT_OFST:
8257 case R_MICROMIPS_GOT_DISP:
8258 case R_MICROMIPS_TLS_GOTTPREL:
8259 case R_MICROMIPS_TLS_GD:
8260 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8261 if (dynobj == NULL)
8262 elf_hash_table (info)->dynobj = dynobj = abfd;
8263 if (!mips_elf_create_got_section (dynobj, info))
8264 return FALSE;
0e1862bb 8265 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8266 {
861fb55a
DJ
8267 (*_bfd_error_handler)
8268 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8269 abfd, (unsigned long) rel->r_offset);
8270 bfd_set_error (bfd_error_bad_value);
8271 return FALSE;
b49e97c9 8272 }
c5d6fa44 8273 can_make_dynamic_p = TRUE;
861fb55a 8274 break;
b49e97c9 8275
c5d6fa44 8276 case R_MIPS_NONE:
99da6b5f 8277 case R_MIPS_JALR:
df58fc94 8278 case R_MICROMIPS_JALR:
c5d6fa44
RS
8279 /* These relocations have empty fields and are purely there to
8280 provide link information. The symbol value doesn't matter. */
8281 constrain_symbol_p = FALSE;
8282 break;
8283
8284 case R_MIPS_GPREL16:
8285 case R_MIPS_GPREL32:
8286 case R_MIPS16_GPREL:
8287 case R_MICROMIPS_GPREL16:
8288 /* GP-relative relocations always resolve to a definition in a
8289 regular input file, ignoring the one-definition rule. This is
8290 important for the GP setup sequence in NewABI code, which
8291 always resolves to a local function even if other relocations
8292 against the symbol wouldn't. */
8293 constrain_symbol_p = FALSE;
99da6b5f
AN
8294 break;
8295
861fb55a
DJ
8296 case R_MIPS_32:
8297 case R_MIPS_REL32:
8298 case R_MIPS_64:
8299 /* In VxWorks executables, references to external symbols
8300 must be handled using copy relocs or PLT entries; it is not
8301 possible to convert this relocation into a dynamic one.
8302
8303 For executables that use PLTs and copy-relocs, we have a
8304 choice between converting the relocation into a dynamic
8305 one or using copy relocations or PLT entries. It is
8306 usually better to do the former, unless the relocation is
8307 against a read-only section. */
0e1862bb 8308 if ((bfd_link_pic (info)
861fb55a
DJ
8309 || (h != NULL
8310 && !htab->is_vxworks
8311 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8312 && !(!info->nocopyreloc
8313 && !PIC_OBJECT_P (abfd)
8314 && MIPS_ELF_READONLY_SECTION (sec))))
8315 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8316 {
861fb55a 8317 can_make_dynamic_p = TRUE;
b49e97c9
TS
8318 if (dynobj == NULL)
8319 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8320 }
c5d6fa44 8321 break;
b49e97c9 8322
861fb55a
DJ
8323 case R_MIPS_26:
8324 case R_MIPS_PC16:
7361da2c
AB
8325 case R_MIPS_PC21_S2:
8326 case R_MIPS_PC26_S2:
861fb55a 8327 case R_MIPS16_26:
df58fc94
RS
8328 case R_MICROMIPS_26_S1:
8329 case R_MICROMIPS_PC7_S1:
8330 case R_MICROMIPS_PC10_S1:
8331 case R_MICROMIPS_PC16_S1:
8332 case R_MICROMIPS_PC23_S2:
c5d6fa44 8333 call_reloc_p = TRUE;
861fb55a 8334 break;
b49e97c9
TS
8335 }
8336
0a44bf69
RS
8337 if (h)
8338 {
c5d6fa44
RS
8339 if (constrain_symbol_p)
8340 {
8341 if (!can_make_dynamic_p)
8342 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8343
8344 if (!call_reloc_p)
8345 h->pointer_equality_needed = 1;
8346
8347 /* We must not create a stub for a symbol that has
8348 relocations related to taking the function's address.
8349 This doesn't apply to VxWorks, where CALL relocs refer
8350 to a .got.plt entry instead of a normal .got entry. */
8351 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8352 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8353 }
8354
0a44bf69
RS
8355 /* Relocations against the special VxWorks __GOTT_BASE__ and
8356 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8357 room for them in .rela.dyn. */
8358 if (is_gott_symbol (info, h))
8359 {
8360 if (sreloc == NULL)
8361 {
8362 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8363 if (sreloc == NULL)
8364 return FALSE;
8365 }
8366 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8367 if (MIPS_ELF_READONLY_SECTION (sec))
8368 /* We tell the dynamic linker that there are
8369 relocations against the text segment. */
8370 info->flags |= DF_TEXTREL;
0a44bf69
RS
8371 }
8372 }
df58fc94
RS
8373 else if (call_lo16_reloc_p (r_type)
8374 || got_lo16_reloc_p (r_type)
8375 || got_disp_reloc_p (r_type)
738e5348 8376 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8377 {
8378 /* We may need a local GOT entry for this relocation. We
8379 don't count R_MIPS_GOT_PAGE because we can estimate the
8380 maximum number of pages needed by looking at the size of
738e5348
RS
8381 the segment. Similar comments apply to R_MIPS*_GOT16 and
8382 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8383 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8384 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8385 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8386 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8387 rel->r_addend, info, r_type))
f4416af6 8388 return FALSE;
b49e97c9
TS
8389 }
8390
8f0c309a
CLT
8391 if (h != NULL
8392 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8393 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8394 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8395
b49e97c9
TS
8396 switch (r_type)
8397 {
8398 case R_MIPS_CALL16:
738e5348 8399 case R_MIPS16_CALL16:
df58fc94 8400 case R_MICROMIPS_CALL16:
b49e97c9
TS
8401 if (h == NULL)
8402 {
8403 (*_bfd_error_handler)
d003868e
AM
8404 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8405 abfd, (unsigned long) rel->r_offset);
b49e97c9 8406 bfd_set_error (bfd_error_bad_value);
b34976b6 8407 return FALSE;
b49e97c9
TS
8408 }
8409 /* Fall through. */
8410
8411 case R_MIPS_CALL_HI16:
8412 case R_MIPS_CALL_LO16:
df58fc94
RS
8413 case R_MICROMIPS_CALL_HI16:
8414 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8415 if (h != NULL)
8416 {
6ccf4795
RS
8417 /* Make sure there is room in the regular GOT to hold the
8418 function's address. We may eliminate it in favour of
8419 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8420 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8421 r_type))
b34976b6 8422 return FALSE;
b49e97c9
TS
8423
8424 /* We need a stub, not a plt entry for the undefined
8425 function. But we record it as if it needs plt. See
c152c796 8426 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8427 h->needs_plt = 1;
b49e97c9
TS
8428 h->type = STT_FUNC;
8429 }
8430 break;
8431
0fdc1bf1 8432 case R_MIPS_GOT_PAGE:
df58fc94 8433 case R_MICROMIPS_GOT_PAGE:
738e5348 8434 case R_MIPS16_GOT16:
b49e97c9
TS
8435 case R_MIPS_GOT16:
8436 case R_MIPS_GOT_HI16:
8437 case R_MIPS_GOT_LO16:
df58fc94
RS
8438 case R_MICROMIPS_GOT16:
8439 case R_MICROMIPS_GOT_HI16:
8440 case R_MICROMIPS_GOT_LO16:
8441 if (!h || got_page_reloc_p (r_type))
c224138d 8442 {
3a3b6725
DJ
8443 /* This relocation needs (or may need, if h != NULL) a
8444 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8445 know for sure until we know whether the symbol is
8446 preemptible. */
c224138d
RS
8447 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8448 {
8449 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8450 return FALSE;
8451 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8452 addend = mips_elf_read_rel_addend (abfd, rel,
8453 howto, contents);
9684f078 8454 if (got16_reloc_p (r_type))
c224138d
RS
8455 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8456 contents, &addend);
8457 else
8458 addend <<= howto->rightshift;
8459 }
8460 else
8461 addend = rel->r_addend;
13db6b44
RS
8462 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8463 h, addend))
c224138d 8464 return FALSE;
13db6b44
RS
8465
8466 if (h)
8467 {
8468 struct mips_elf_link_hash_entry *hmips =
8469 (struct mips_elf_link_hash_entry *) h;
8470
8471 /* This symbol is definitely not overridable. */
8472 if (hmips->root.def_regular
0e1862bb 8473 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8474 && ! hmips->root.forced_local))
8475 h = NULL;
8476 }
c224138d 8477 }
13db6b44
RS
8478 /* If this is a global, overridable symbol, GOT_PAGE will
8479 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8480 /* Fall through. */
8481
b49e97c9 8482 case R_MIPS_GOT_DISP:
df58fc94 8483 case R_MICROMIPS_GOT_DISP:
6ccf4795 8484 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8485 FALSE, r_type))
b34976b6 8486 return FALSE;
b49e97c9
TS
8487 break;
8488
0f20cc35 8489 case R_MIPS_TLS_GOTTPREL:
d0f13682 8490 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8491 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8492 if (bfd_link_pic (info))
0f20cc35
DJ
8493 info->flags |= DF_STATIC_TLS;
8494 /* Fall through */
8495
8496 case R_MIPS_TLS_LDM:
d0f13682 8497 case R_MIPS16_TLS_LDM:
df58fc94
RS
8498 case R_MICROMIPS_TLS_LDM:
8499 if (tls_ldm_reloc_p (r_type))
0f20cc35 8500 {
cf35638d 8501 r_symndx = STN_UNDEF;
0f20cc35
DJ
8502 h = NULL;
8503 }
8504 /* Fall through */
8505
8506 case R_MIPS_TLS_GD:
d0f13682 8507 case R_MIPS16_TLS_GD:
df58fc94 8508 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8509 /* This symbol requires a global offset table entry, or two
8510 for TLS GD relocations. */
e641e783
RS
8511 if (h != NULL)
8512 {
8513 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8514 FALSE, r_type))
8515 return FALSE;
8516 }
8517 else
8518 {
8519 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8520 rel->r_addend,
8521 info, r_type))
8522 return FALSE;
8523 }
0f20cc35
DJ
8524 break;
8525
b49e97c9
TS
8526 case R_MIPS_32:
8527 case R_MIPS_REL32:
8528 case R_MIPS_64:
0a44bf69
RS
8529 /* In VxWorks executables, references to external symbols
8530 are handled using copy relocs or PLT stubs, so there's
8531 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8532 if (can_make_dynamic_p)
b49e97c9
TS
8533 {
8534 if (sreloc == NULL)
8535 {
0a44bf69 8536 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8537 if (sreloc == NULL)
f4416af6 8538 return FALSE;
b49e97c9 8539 }
0e1862bb 8540 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8541 {
8542 /* When creating a shared object, we must copy these
8543 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8544 relocs. Make room for this reloc in .rel(a).dyn. */
8545 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8546 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8547 /* We tell the dynamic linker that there are
8548 relocations against the text segment. */
8549 info->flags |= DF_TEXTREL;
8550 }
b49e97c9
TS
8551 else
8552 {
8553 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8554
9a59ad6b
DJ
8555 /* For a shared object, we must copy this relocation
8556 unless the symbol turns out to be undefined and
8557 weak with non-default visibility, in which case
8558 it will be left as zero.
8559
8560 We could elide R_MIPS_REL32 for locally binding symbols
8561 in shared libraries, but do not yet do so.
8562
8563 For an executable, we only need to copy this
8564 reloc if the symbol is defined in a dynamic
8565 object. */
b49e97c9
TS
8566 hmips = (struct mips_elf_link_hash_entry *) h;
8567 ++hmips->possibly_dynamic_relocs;
943284cc 8568 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8569 /* We need it to tell the dynamic linker if there
8570 are relocations against the text segment. */
8571 hmips->readonly_reloc = TRUE;
b49e97c9 8572 }
b49e97c9
TS
8573 }
8574
8575 if (SGI_COMPAT (abfd))
8576 mips_elf_hash_table (info)->compact_rel_size +=
8577 sizeof (Elf32_External_crinfo);
8578 break;
8579
8580 case R_MIPS_26:
8581 case R_MIPS_GPREL16:
8582 case R_MIPS_LITERAL:
8583 case R_MIPS_GPREL32:
df58fc94
RS
8584 case R_MICROMIPS_26_S1:
8585 case R_MICROMIPS_GPREL16:
8586 case R_MICROMIPS_LITERAL:
8587 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8588 if (SGI_COMPAT (abfd))
8589 mips_elf_hash_table (info)->compact_rel_size +=
8590 sizeof (Elf32_External_crinfo);
8591 break;
8592
8593 /* This relocation describes the C++ object vtable hierarchy.
8594 Reconstruct it for later use during GC. */
8595 case R_MIPS_GNU_VTINHERIT:
c152c796 8596 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8597 return FALSE;
b49e97c9
TS
8598 break;
8599
8600 /* This relocation describes which C++ vtable entries are actually
8601 used. Record for later use during GC. */
8602 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8603 BFD_ASSERT (h != NULL);
8604 if (h != NULL
8605 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8606 return FALSE;
b49e97c9
TS
8607 break;
8608
8609 default:
8610 break;
8611 }
8612
1bbce132
MR
8613 /* Record the need for a PLT entry. At this point we don't know
8614 yet if we are going to create a PLT in the first place, but
8615 we only record whether the relocation requires a standard MIPS
8616 or a compressed code entry anyway. If we don't make a PLT after
8617 all, then we'll just ignore these arrangements. Likewise if
8618 a PLT entry is not created because the symbol is satisfied
8619 locally. */
8620 if (h != NULL
8621 && jal_reloc_p (r_type)
8622 && !SYMBOL_CALLS_LOCAL (info, h))
8623 {
8624 if (h->plt.plist == NULL)
8625 h->plt.plist = mips_elf_make_plt_record (abfd);
8626 if (h->plt.plist == NULL)
8627 return FALSE;
8628
8629 if (r_type == R_MIPS_26)
8630 h->plt.plist->need_mips = TRUE;
8631 else
8632 h->plt.plist->need_comp = TRUE;
8633 }
8634
738e5348
RS
8635 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8636 if there is one. We only need to handle global symbols here;
8637 we decide whether to keep or delete stubs for local symbols
8638 when processing the stub's relocations. */
b49e97c9 8639 if (h != NULL
738e5348
RS
8640 && !mips16_call_reloc_p (r_type)
8641 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8642 {
8643 struct mips_elf_link_hash_entry *mh;
8644
8645 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8646 mh->need_fn_stub = TRUE;
b49e97c9 8647 }
861fb55a
DJ
8648
8649 /* Refuse some position-dependent relocations when creating a
8650 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8651 not PIC, but we can create dynamic relocations and the result
8652 will be fine. Also do not refuse R_MIPS_LO16, which can be
8653 combined with R_MIPS_GOT16. */
0e1862bb 8654 if (bfd_link_pic (info))
861fb55a
DJ
8655 {
8656 switch (r_type)
8657 {
8658 case R_MIPS16_HI16:
8659 case R_MIPS_HI16:
8660 case R_MIPS_HIGHER:
8661 case R_MIPS_HIGHEST:
df58fc94
RS
8662 case R_MICROMIPS_HI16:
8663 case R_MICROMIPS_HIGHER:
8664 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8665 /* Don't refuse a high part relocation if it's against
8666 no symbol (e.g. part of a compound relocation). */
cf35638d 8667 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8668 break;
8669
8670 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8671 and has a special meaning. */
8672 if (!NEWABI_P (abfd) && h != NULL
8673 && strcmp (h->root.root.string, "_gp_disp") == 0)
8674 break;
8675
0fc1eb3c
RS
8676 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8677 if (is_gott_symbol (info, h))
8678 break;
8679
861fb55a
DJ
8680 /* FALLTHROUGH */
8681
8682 case R_MIPS16_26:
8683 case R_MIPS_26:
df58fc94 8684 case R_MICROMIPS_26_S1:
861fb55a
DJ
8685 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8686 (*_bfd_error_handler)
8687 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8688 abfd, howto->name,
8689 (h) ? h->root.root.string : "a local symbol");
8690 bfd_set_error (bfd_error_bad_value);
8691 return FALSE;
8692 default:
8693 break;
8694 }
8695 }
b49e97c9
TS
8696 }
8697
b34976b6 8698 return TRUE;
b49e97c9
TS
8699}
8700\f
d0647110 8701bfd_boolean
9719ad41
RS
8702_bfd_mips_relax_section (bfd *abfd, asection *sec,
8703 struct bfd_link_info *link_info,
8704 bfd_boolean *again)
d0647110
AO
8705{
8706 Elf_Internal_Rela *internal_relocs;
8707 Elf_Internal_Rela *irel, *irelend;
8708 Elf_Internal_Shdr *symtab_hdr;
8709 bfd_byte *contents = NULL;
d0647110
AO
8710 size_t extsymoff;
8711 bfd_boolean changed_contents = FALSE;
8712 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8713 Elf_Internal_Sym *isymbuf = NULL;
8714
8715 /* We are not currently changing any sizes, so only one pass. */
8716 *again = FALSE;
8717
0e1862bb 8718 if (bfd_link_relocatable (link_info))
d0647110
AO
8719 return TRUE;
8720
9719ad41 8721 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8722 link_info->keep_memory);
d0647110
AO
8723 if (internal_relocs == NULL)
8724 return TRUE;
8725
8726 irelend = internal_relocs + sec->reloc_count
8727 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8728 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8729 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8730
8731 for (irel = internal_relocs; irel < irelend; irel++)
8732 {
8733 bfd_vma symval;
8734 bfd_signed_vma sym_offset;
8735 unsigned int r_type;
8736 unsigned long r_symndx;
8737 asection *sym_sec;
8738 unsigned long instruction;
8739
8740 /* Turn jalr into bgezal, and jr into beq, if they're marked
8741 with a JALR relocation, that indicate where they jump to.
8742 This saves some pipeline bubbles. */
8743 r_type = ELF_R_TYPE (abfd, irel->r_info);
8744 if (r_type != R_MIPS_JALR)
8745 continue;
8746
8747 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8748 /* Compute the address of the jump target. */
8749 if (r_symndx >= extsymoff)
8750 {
8751 struct mips_elf_link_hash_entry *h
8752 = ((struct mips_elf_link_hash_entry *)
8753 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8754
8755 while (h->root.root.type == bfd_link_hash_indirect
8756 || h->root.root.type == bfd_link_hash_warning)
8757 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8758
d0647110
AO
8759 /* If a symbol is undefined, or if it may be overridden,
8760 skip it. */
8761 if (! ((h->root.root.type == bfd_link_hash_defined
8762 || h->root.root.type == bfd_link_hash_defweak)
8763 && h->root.root.u.def.section)
0e1862bb 8764 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8765 && !h->root.forced_local))
d0647110
AO
8766 continue;
8767
8768 sym_sec = h->root.root.u.def.section;
8769 if (sym_sec->output_section)
8770 symval = (h->root.root.u.def.value
8771 + sym_sec->output_section->vma
8772 + sym_sec->output_offset);
8773 else
8774 symval = h->root.root.u.def.value;
8775 }
8776 else
8777 {
8778 Elf_Internal_Sym *isym;
8779
8780 /* Read this BFD's symbols if we haven't done so already. */
8781 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8782 {
8783 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8784 if (isymbuf == NULL)
8785 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8786 symtab_hdr->sh_info, 0,
8787 NULL, NULL, NULL);
8788 if (isymbuf == NULL)
8789 goto relax_return;
8790 }
8791
8792 isym = isymbuf + r_symndx;
8793 if (isym->st_shndx == SHN_UNDEF)
8794 continue;
8795 else if (isym->st_shndx == SHN_ABS)
8796 sym_sec = bfd_abs_section_ptr;
8797 else if (isym->st_shndx == SHN_COMMON)
8798 sym_sec = bfd_com_section_ptr;
8799 else
8800 sym_sec
8801 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8802 symval = isym->st_value
8803 + sym_sec->output_section->vma
8804 + sym_sec->output_offset;
8805 }
8806
8807 /* Compute branch offset, from delay slot of the jump to the
8808 branch target. */
8809 sym_offset = (symval + irel->r_addend)
8810 - (sec_start + irel->r_offset + 4);
8811
8812 /* Branch offset must be properly aligned. */
8813 if ((sym_offset & 3) != 0)
8814 continue;
8815
8816 sym_offset >>= 2;
8817
8818 /* Check that it's in range. */
8819 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8820 continue;
143d77c5 8821
d0647110 8822 /* Get the section contents if we haven't done so already. */
c224138d
RS
8823 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8824 goto relax_return;
d0647110
AO
8825
8826 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8827
8828 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8829 if ((instruction & 0xfc1fffff) == 0x0000f809)
8830 instruction = 0x04110000;
8831 /* If it was jr <reg>, turn it into b <target>. */
8832 else if ((instruction & 0xfc1fffff) == 0x00000008)
8833 instruction = 0x10000000;
8834 else
8835 continue;
8836
8837 instruction |= (sym_offset & 0xffff);
8838 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8839 changed_contents = TRUE;
8840 }
8841
8842 if (contents != NULL
8843 && elf_section_data (sec)->this_hdr.contents != contents)
8844 {
8845 if (!changed_contents && !link_info->keep_memory)
8846 free (contents);
8847 else
8848 {
8849 /* Cache the section contents for elf_link_input_bfd. */
8850 elf_section_data (sec)->this_hdr.contents = contents;
8851 }
8852 }
8853 return TRUE;
8854
143d77c5 8855 relax_return:
eea6121a
AM
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 free (contents);
d0647110
AO
8859 return FALSE;
8860}
8861\f
9a59ad6b
DJ
8862/* Allocate space for global sym dynamic relocs. */
8863
8864static bfd_boolean
8865allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8866{
8867 struct bfd_link_info *info = inf;
8868 bfd *dynobj;
8869 struct mips_elf_link_hash_entry *hmips;
8870 struct mips_elf_link_hash_table *htab;
8871
8872 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8873 BFD_ASSERT (htab != NULL);
8874
9a59ad6b
DJ
8875 dynobj = elf_hash_table (info)->dynobj;
8876 hmips = (struct mips_elf_link_hash_entry *) h;
8877
8878 /* VxWorks executables are handled elsewhere; we only need to
8879 allocate relocations in shared objects. */
0e1862bb 8880 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8881 return TRUE;
8882
7686d77d
AM
8883 /* Ignore indirect symbols. All relocations against such symbols
8884 will be redirected to the target symbol. */
8885 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8886 return TRUE;
8887
9a59ad6b
DJ
8888 /* If this symbol is defined in a dynamic object, or we are creating
8889 a shared library, we will need to copy any R_MIPS_32 or
8890 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8891 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8892 && hmips->possibly_dynamic_relocs != 0
8893 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8894 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8895 || bfd_link_pic (info)))
9a59ad6b
DJ
8896 {
8897 bfd_boolean do_copy = TRUE;
8898
8899 if (h->root.type == bfd_link_hash_undefweak)
8900 {
8901 /* Do not copy relocations for undefined weak symbols with
8902 non-default visibility. */
8903 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8904 do_copy = FALSE;
8905
8906 /* Make sure undefined weak symbols are output as a dynamic
8907 symbol in PIEs. */
8908 else if (h->dynindx == -1 && !h->forced_local)
8909 {
8910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8911 return FALSE;
8912 }
8913 }
8914
8915 if (do_copy)
8916 {
aff469fa 8917 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8918 the SVR4 psABI requires it to have a dynamic symbol table
8919 index greater that DT_MIPS_GOTSYM if there are dynamic
8920 relocations against it.
8921
8922 VxWorks does not enforce the same mapping between the GOT
8923 and the symbol table, so the same requirement does not
8924 apply there. */
6ccf4795
RS
8925 if (!htab->is_vxworks)
8926 {
8927 if (hmips->global_got_area > GGA_RELOC_ONLY)
8928 hmips->global_got_area = GGA_RELOC_ONLY;
8929 hmips->got_only_for_calls = FALSE;
8930 }
aff469fa 8931
9a59ad6b
DJ
8932 mips_elf_allocate_dynamic_relocations
8933 (dynobj, info, hmips->possibly_dynamic_relocs);
8934 if (hmips->readonly_reloc)
8935 /* We tell the dynamic linker that there are relocations
8936 against the text segment. */
8937 info->flags |= DF_TEXTREL;
8938 }
8939 }
8940
8941 return TRUE;
8942}
8943
b49e97c9
TS
8944/* Adjust a symbol defined by a dynamic object and referenced by a
8945 regular object. The current definition is in some section of the
8946 dynamic object, but we're not including those sections. We have to
8947 change the definition to something the rest of the link can
8948 understand. */
8949
b34976b6 8950bfd_boolean
9719ad41
RS
8951_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8952 struct elf_link_hash_entry *h)
b49e97c9
TS
8953{
8954 bfd *dynobj;
8955 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8956 struct mips_elf_link_hash_table *htab;
b49e97c9 8957
5108fc1b 8958 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8959 BFD_ASSERT (htab != NULL);
8960
b49e97c9 8961 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8962 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8963
8964 /* Make sure we know what is going on here. */
8965 BFD_ASSERT (dynobj != NULL
f5385ebf 8966 && (h->needs_plt
f6e332e6 8967 || h->u.weakdef != NULL
f5385ebf
AM
8968 || (h->def_dynamic
8969 && h->ref_regular
8970 && !h->def_regular)));
b49e97c9 8971
b49e97c9 8972 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8973
861fb55a
DJ
8974 /* If there are call relocations against an externally-defined symbol,
8975 see whether we can create a MIPS lazy-binding stub for it. We can
8976 only do this if all references to the function are through call
8977 relocations, and in that case, the traditional lazy-binding stubs
8978 are much more efficient than PLT entries.
8979
8980 Traditional stubs are only available on SVR4 psABI-based systems;
8981 VxWorks always uses PLTs instead. */
8982 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8983 {
8984 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8985 return TRUE;
b49e97c9
TS
8986
8987 /* If this symbol is not defined in a regular file, then set
8988 the symbol to the stub location. This is required to make
8989 function pointers compare as equal between the normal
8990 executable and the shared library. */
f5385ebf 8991 if (!h->def_regular)
b49e97c9 8992 {
33bb52fb
RS
8993 hmips->needs_lazy_stub = TRUE;
8994 htab->lazy_stub_count++;
b34976b6 8995 return TRUE;
b49e97c9
TS
8996 }
8997 }
861fb55a
DJ
8998 /* As above, VxWorks requires PLT entries for externally-defined
8999 functions that are only accessed through call relocations.
b49e97c9 9000
861fb55a
DJ
9001 Both VxWorks and non-VxWorks targets also need PLT entries if there
9002 are static-only relocations against an externally-defined function.
9003 This can technically occur for shared libraries if there are
9004 branches to the symbol, although it is unlikely that this will be
9005 used in practice due to the short ranges involved. It can occur
9006 for any relative or absolute relocation in executables; in that
9007 case, the PLT entry becomes the function's canonical address. */
9008 else if (((h->needs_plt && !hmips->no_fn_stub)
9009 || (h->type == STT_FUNC && hmips->has_static_relocs))
9010 && htab->use_plts_and_copy_relocs
9011 && !SYMBOL_CALLS_LOCAL (info, h)
9012 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9013 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9014 {
1bbce132
MR
9015 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9016 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9017
9018 /* If this is the first symbol to need a PLT entry, then make some
9019 basic setup. Also work out PLT entry sizes. We'll need them
9020 for PLT offset calculations. */
9021 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a
DJ
9022 {
9023 BFD_ASSERT (htab->sgotplt->size == 0);
1bbce132 9024 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9025
861fb55a
DJ
9026 /* If we're using the PLT additions to the psABI, each PLT
9027 entry is 16 bytes and the PLT0 entry is 32 bytes.
9028 Encourage better cache usage by aligning. We do this
9029 lazily to avoid pessimizing traditional objects. */
9030 if (!htab->is_vxworks
9031 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9032 return FALSE;
0a44bf69 9033
861fb55a
DJ
9034 /* Make sure that .got.plt is word-aligned. We do this lazily
9035 for the same reason as above. */
9036 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9037 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9038 return FALSE;
0a44bf69 9039
861fb55a
DJ
9040 /* On non-VxWorks targets, the first two entries in .got.plt
9041 are reserved. */
9042 if (!htab->is_vxworks)
1bbce132
MR
9043 htab->plt_got_index
9044 += (get_elf_backend_data (dynobj)->got_header_size
9045 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9046
861fb55a
DJ
9047 /* On VxWorks, also allocate room for the header's
9048 .rela.plt.unloaded entries. */
0e1862bb 9049 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9050 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9051
9052 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9053 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9054 htab->plt_mips_entry_size
9055 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9056 else if (htab->is_vxworks)
9057 htab->plt_mips_entry_size
9058 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9059 else if (newabi_p)
9060 htab->plt_mips_entry_size
9061 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9062 else if (!micromips_p)
1bbce132
MR
9063 {
9064 htab->plt_mips_entry_size
9065 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9066 htab->plt_comp_entry_size
833794fc
MR
9067 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9068 }
9069 else if (htab->insn32)
9070 {
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9073 htab->plt_comp_entry_size
9074 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9075 }
9076 else
9077 {
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
833794fc 9081 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9082 }
0a44bf69
RS
9083 }
9084
1bbce132
MR
9085 if (h->plt.plist == NULL)
9086 h->plt.plist = mips_elf_make_plt_record (dynobj);
9087 if (h->plt.plist == NULL)
9088 return FALSE;
9089
9090 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9091 n32 or n64, so always use a standard entry there.
9092
9093 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9094 all MIPS16 calls will go via that stub, and there is no benefit
9095 to having a MIPS16 entry. And in the case of call_stub a
9096 standard entry actually has to be used as the stub ends with a J
9097 instruction. */
9098 if (newabi_p
9099 || htab->is_vxworks
9100 || hmips->call_stub
9101 || hmips->call_fp_stub)
9102 {
9103 h->plt.plist->need_mips = TRUE;
9104 h->plt.plist->need_comp = FALSE;
9105 }
9106
9107 /* Otherwise, if there are no direct calls to the function, we
9108 have a free choice of whether to use standard or compressed
9109 entries. Prefer microMIPS entries if the object is known to
9110 contain microMIPS code, so that it becomes possible to create
9111 pure microMIPS binaries. Prefer standard entries otherwise,
9112 because MIPS16 ones are no smaller and are usually slower. */
9113 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9114 {
9115 if (micromips_p)
9116 h->plt.plist->need_comp = TRUE;
9117 else
9118 h->plt.plist->need_mips = TRUE;
9119 }
9120
9121 if (h->plt.plist->need_mips)
9122 {
9123 h->plt.plist->mips_offset = htab->plt_mips_offset;
9124 htab->plt_mips_offset += htab->plt_mips_entry_size;
9125 }
9126 if (h->plt.plist->need_comp)
9127 {
9128 h->plt.plist->comp_offset = htab->plt_comp_offset;
9129 htab->plt_comp_offset += htab->plt_comp_entry_size;
9130 }
9131
9132 /* Reserve the corresponding .got.plt entry now too. */
9133 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9134
9135 /* If the output file has no definition of the symbol, set the
861fb55a 9136 symbol's value to the address of the stub. */
0e1862bb 9137 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9138 hmips->use_plt_entry = TRUE;
0a44bf69 9139
1bbce132 9140 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
861fb55a
DJ
9141 htab->srelplt->size += (htab->is_vxworks
9142 ? MIPS_ELF_RELA_SIZE (dynobj)
9143 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9144
9145 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9146 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9147 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9148
861fb55a
DJ
9149 /* All relocations against this symbol that could have been made
9150 dynamic will now refer to the PLT entry instead. */
9151 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9152
0a44bf69
RS
9153 return TRUE;
9154 }
9155
9156 /* If this is a weak symbol, and there is a real definition, the
9157 processor independent code will have arranged for us to see the
9158 real definition first, and we can just use the same value. */
9159 if (h->u.weakdef != NULL)
9160 {
9161 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9162 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9163 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9164 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9165 return TRUE;
9166 }
9167
861fb55a
DJ
9168 /* Otherwise, there is nothing further to do for symbols defined
9169 in regular objects. */
9170 if (h->def_regular)
0a44bf69
RS
9171 return TRUE;
9172
861fb55a
DJ
9173 /* There's also nothing more to do if we'll convert all relocations
9174 against this symbol into dynamic relocations. */
9175 if (!hmips->has_static_relocs)
9176 return TRUE;
9177
9178 /* We're now relying on copy relocations. Complain if we have
9179 some that we can't convert. */
0e1862bb 9180 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a
DJ
9181 {
9182 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9183 "dynamic symbol %s"),
9184 h->root.root.string);
9185 bfd_set_error (bfd_error_bad_value);
9186 return FALSE;
9187 }
9188
0a44bf69
RS
9189 /* We must allocate the symbol in our .dynbss section, which will
9190 become part of the .bss section of the executable. There will be
9191 an entry for this symbol in the .dynsym section. The dynamic
9192 object will contain position independent code, so all references
9193 from the dynamic object to this symbol will go through the global
9194 offset table. The dynamic linker will use the .dynsym entry to
9195 determine the address it must put in the global offset table, so
9196 both the dynamic object and the regular object will refer to the
9197 same memory location for the variable. */
9198
9199 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9200 {
861fb55a
DJ
9201 if (htab->is_vxworks)
9202 htab->srelbss->size += sizeof (Elf32_External_Rela);
9203 else
9204 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9205 h->needs_copy = 1;
9206 }
9207
861fb55a
DJ
9208 /* All relocations against this symbol that could have been made
9209 dynamic will now refer to the local copy instead. */
9210 hmips->possibly_dynamic_relocs = 0;
9211
6cabe1ea 9212 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
0a44bf69 9213}
b49e97c9
TS
9214\f
9215/* This function is called after all the input files have been read,
9216 and the input sections have been assigned to output sections. We
9217 check for any mips16 stub sections that we can discard. */
9218
b34976b6 9219bfd_boolean
9719ad41
RS
9220_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9221 struct bfd_link_info *info)
b49e97c9 9222{
351cdf24 9223 asection *sect;
0a44bf69 9224 struct mips_elf_link_hash_table *htab;
861fb55a 9225 struct mips_htab_traverse_info hti;
0a44bf69
RS
9226
9227 htab = mips_elf_hash_table (info);
4dfe6ac6 9228 BFD_ASSERT (htab != NULL);
f4416af6 9229
b49e97c9 9230 /* The .reginfo section has a fixed size. */
351cdf24
MF
9231 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9232 if (sect != NULL)
9233 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9234
9235 /* The .MIPS.abiflags section has a fixed size. */
9236 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9237 if (sect != NULL)
9238 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9239
861fb55a
DJ
9240 hti.info = info;
9241 hti.output_bfd = output_bfd;
9242 hti.error = FALSE;
9243 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9244 mips_elf_check_symbols, &hti);
9245 if (hti.error)
9246 return FALSE;
f4416af6 9247
33bb52fb
RS
9248 return TRUE;
9249}
9250
9251/* If the link uses a GOT, lay it out and work out its size. */
9252
9253static bfd_boolean
9254mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9255{
9256 bfd *dynobj;
9257 asection *s;
9258 struct mips_got_info *g;
33bb52fb
RS
9259 bfd_size_type loadable_size = 0;
9260 bfd_size_type page_gotno;
d7206569 9261 bfd *ibfd;
ab361d49 9262 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9263 struct mips_elf_link_hash_table *htab;
9264
9265 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9266 BFD_ASSERT (htab != NULL);
9267
a8028dd0 9268 s = htab->sgot;
f4416af6 9269 if (s == NULL)
b34976b6 9270 return TRUE;
b49e97c9 9271
33bb52fb 9272 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9273 g = htab->got_info;
9274
861fb55a
DJ
9275 /* Allocate room for the reserved entries. VxWorks always reserves
9276 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9277 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9278 if (htab->is_vxworks)
9279 htab->reserved_gotno = 3;
9280 else
9281 htab->reserved_gotno = 2;
9282 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9283 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9284
6c42ddb9
RS
9285 /* Decide which symbols need to go in the global part of the GOT and
9286 count the number of reloc-only GOT symbols. */
020d7251 9287 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9288
13db6b44
RS
9289 if (!mips_elf_resolve_final_got_entries (info, g))
9290 return FALSE;
9291
33bb52fb
RS
9292 /* Calculate the total loadable size of the output. That
9293 will give us the maximum number of GOT_PAGE entries
9294 required. */
c72f2fb2 9295 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9296 {
9297 asection *subsection;
5108fc1b 9298
d7206569 9299 for (subsection = ibfd->sections;
33bb52fb
RS
9300 subsection;
9301 subsection = subsection->next)
9302 {
9303 if ((subsection->flags & SEC_ALLOC) == 0)
9304 continue;
9305 loadable_size += ((subsection->size + 0xf)
9306 &~ (bfd_size_type) 0xf);
9307 }
9308 }
f4416af6 9309
0a44bf69 9310 if (htab->is_vxworks)
738e5348 9311 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9312 relocations against local symbols evaluate to "G", and the EABI does
9313 not include R_MIPS_GOT_PAGE. */
c224138d 9314 page_gotno = 0;
0a44bf69
RS
9315 else
9316 /* Assume there are two loadable segments consisting of contiguous
9317 sections. Is 5 enough? */
c224138d
RS
9318 page_gotno = (loadable_size >> 16) + 5;
9319
13db6b44 9320 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9321 conservative. */
9322 if (page_gotno > g->page_gotno)
9323 page_gotno = g->page_gotno;
f4416af6 9324
c224138d 9325 g->local_gotno += page_gotno;
cb22ccf4 9326 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9327
ab361d49
RS
9328 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9329 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9330 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9331
0a44bf69
RS
9332 /* VxWorks does not support multiple GOTs. It initializes $gp to
9333 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9334 dynamic loader. */
57093f5e 9335 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9336 {
a8028dd0 9337 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9338 return FALSE;
9339 }
9340 else
9341 {
d7206569
RS
9342 /* Record that all bfds use G. This also has the effect of freeing
9343 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9344 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9345 if (mips_elf_bfd_got (ibfd, FALSE))
9346 mips_elf_replace_bfd_got (ibfd, g);
9347 mips_elf_replace_bfd_got (output_bfd, g);
9348
33bb52fb 9349 /* Set up TLS entries. */
0f20cc35 9350 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9351 tga.info = info;
9352 tga.g = g;
9353 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9354 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9355 if (!tga.g)
9356 return FALSE;
1fd20d70
RS
9357 BFD_ASSERT (g->tls_assigned_gotno
9358 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9359
57093f5e 9360 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9361 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9362 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9363
33bb52fb 9364 /* Allocate room for the TLS relocations. */
ab361d49
RS
9365 if (g->relocs)
9366 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9367 }
b49e97c9 9368
b34976b6 9369 return TRUE;
b49e97c9
TS
9370}
9371
33bb52fb
RS
9372/* Estimate the size of the .MIPS.stubs section. */
9373
9374static void
9375mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9376{
9377 struct mips_elf_link_hash_table *htab;
9378 bfd_size_type dynsymcount;
9379
9380 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9381 BFD_ASSERT (htab != NULL);
9382
33bb52fb
RS
9383 if (htab->lazy_stub_count == 0)
9384 return;
9385
9386 /* IRIX rld assumes that a function stub isn't at the end of the .text
9387 section, so add a dummy entry to the end. */
9388 htab->lazy_stub_count++;
9389
9390 /* Get a worst-case estimate of the number of dynamic symbols needed.
9391 At this point, dynsymcount does not account for section symbols
9392 and count_section_dynsyms may overestimate the number that will
9393 be needed. */
9394 dynsymcount = (elf_hash_table (info)->dynsymcount
9395 + count_section_dynsyms (output_bfd, info));
9396
1bbce132
MR
9397 /* Determine the size of one stub entry. There's no disadvantage
9398 from using microMIPS code here, so for the sake of pure-microMIPS
9399 binaries we prefer it whenever there's any microMIPS code in
9400 output produced at all. This has a benefit of stubs being
833794fc
MR
9401 shorter by 4 bytes each too, unless in the insn32 mode. */
9402 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9403 htab->function_stub_size = (dynsymcount > 0x10000
9404 ? MIPS_FUNCTION_STUB_BIG_SIZE
9405 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9406 else if (htab->insn32)
9407 htab->function_stub_size = (dynsymcount > 0x10000
9408 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9409 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9410 else
9411 htab->function_stub_size = (dynsymcount > 0x10000
9412 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9413 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9414
9415 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9416}
9417
1bbce132
MR
9418/* A mips_elf_link_hash_traverse callback for which DATA points to a
9419 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9420 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9421
9422static bfd_boolean
af924177 9423mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9424{
1bbce132 9425 struct mips_htab_traverse_info *hti = data;
33bb52fb 9426 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9427 struct bfd_link_info *info;
9428 bfd *output_bfd;
9429
9430 info = hti->info;
9431 output_bfd = hti->output_bfd;
9432 htab = mips_elf_hash_table (info);
9433 BFD_ASSERT (htab != NULL);
33bb52fb 9434
33bb52fb
RS
9435 if (h->needs_lazy_stub)
9436 {
1bbce132
MR
9437 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9438 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9439 bfd_vma isa_bit = micromips_p;
9440
9441 BFD_ASSERT (htab->root.dynobj != NULL);
9442 if (h->root.plt.plist == NULL)
9443 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9444 if (h->root.plt.plist == NULL)
9445 {
9446 hti->error = TRUE;
9447 return FALSE;
9448 }
33bb52fb 9449 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9450 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9451 h->root.plt.plist->stub_offset = htab->sstubs->size;
9452 h->root.other = other;
33bb52fb
RS
9453 htab->sstubs->size += htab->function_stub_size;
9454 }
9455 return TRUE;
9456}
9457
9458/* Allocate offsets in the stubs section to each symbol that needs one.
9459 Set the final size of the .MIPS.stub section. */
9460
1bbce132 9461static bfd_boolean
33bb52fb
RS
9462mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9463{
1bbce132
MR
9464 bfd *output_bfd = info->output_bfd;
9465 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9466 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9467 bfd_vma isa_bit = micromips_p;
33bb52fb 9468 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9469 struct mips_htab_traverse_info hti;
9470 struct elf_link_hash_entry *h;
9471 bfd *dynobj;
33bb52fb
RS
9472
9473 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9474 BFD_ASSERT (htab != NULL);
9475
33bb52fb 9476 if (htab->lazy_stub_count == 0)
1bbce132 9477 return TRUE;
33bb52fb
RS
9478
9479 htab->sstubs->size = 0;
1bbce132
MR
9480 hti.info = info;
9481 hti.output_bfd = output_bfd;
9482 hti.error = FALSE;
9483 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9484 if (hti.error)
9485 return FALSE;
33bb52fb
RS
9486 htab->sstubs->size += htab->function_stub_size;
9487 BFD_ASSERT (htab->sstubs->size
9488 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9489
9490 dynobj = elf_hash_table (info)->dynobj;
9491 BFD_ASSERT (dynobj != NULL);
9492 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9493 if (h == NULL)
9494 return FALSE;
9495 h->root.u.def.value = isa_bit;
9496 h->other = other;
9497 h->type = STT_FUNC;
9498
9499 return TRUE;
9500}
9501
9502/* A mips_elf_link_hash_traverse callback for which DATA points to a
9503 bfd_link_info. If H uses the address of a PLT entry as the value
9504 of the symbol, then set the entry in the symbol table now. Prefer
9505 a standard MIPS PLT entry. */
9506
9507static bfd_boolean
9508mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9509{
9510 struct bfd_link_info *info = data;
9511 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9512 struct mips_elf_link_hash_table *htab;
9513 unsigned int other;
9514 bfd_vma isa_bit;
9515 bfd_vma val;
9516
9517 htab = mips_elf_hash_table (info);
9518 BFD_ASSERT (htab != NULL);
9519
9520 if (h->use_plt_entry)
9521 {
9522 BFD_ASSERT (h->root.plt.plist != NULL);
9523 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9524 || h->root.plt.plist->comp_offset != MINUS_ONE);
9525
9526 val = htab->plt_header_size;
9527 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9528 {
9529 isa_bit = 0;
9530 val += h->root.plt.plist->mips_offset;
9531 other = 0;
9532 }
9533 else
9534 {
9535 isa_bit = 1;
9536 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9537 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9538 }
9539 val += isa_bit;
9540 /* For VxWorks, point at the PLT load stub rather than the lazy
9541 resolution stub; this stub will become the canonical function
9542 address. */
9543 if (htab->is_vxworks)
9544 val += 8;
9545
9546 h->root.root.u.def.section = htab->splt;
9547 h->root.root.u.def.value = val;
9548 h->root.other = other;
9549 }
9550
9551 return TRUE;
33bb52fb
RS
9552}
9553
b49e97c9
TS
9554/* Set the sizes of the dynamic sections. */
9555
b34976b6 9556bfd_boolean
9719ad41
RS
9557_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9558 struct bfd_link_info *info)
b49e97c9
TS
9559{
9560 bfd *dynobj;
861fb55a 9561 asection *s, *sreldyn;
b34976b6 9562 bfd_boolean reltext;
0a44bf69 9563 struct mips_elf_link_hash_table *htab;
b49e97c9 9564
0a44bf69 9565 htab = mips_elf_hash_table (info);
4dfe6ac6 9566 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9567 dynobj = elf_hash_table (info)->dynobj;
9568 BFD_ASSERT (dynobj != NULL);
9569
9570 if (elf_hash_table (info)->dynamic_sections_created)
9571 {
9572 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9573 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9574 {
3d4d4302 9575 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9576 BFD_ASSERT (s != NULL);
eea6121a 9577 s->size
b49e97c9
TS
9578 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9579 s->contents
9580 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9581 }
861fb55a 9582
1bbce132
MR
9583 /* Figure out the size of the PLT header if we know that we
9584 are using it. For the sake of cache alignment always use
9585 a standard header whenever any standard entries are present
9586 even if microMIPS entries are present as well. This also
9587 lets the microMIPS header rely on the value of $v0 only set
9588 by microMIPS entries, for a small size reduction.
9589
9590 Set symbol table entry values for symbols that use the
9591 address of their PLT entry now that we can calculate it.
9592
9593 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9594 haven't already in _bfd_elf_create_dynamic_sections. */
9595 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9596 {
1bbce132
MR
9597 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9598 && !htab->plt_mips_offset);
9599 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9600 bfd_vma isa_bit = micromips_p;
861fb55a 9601 struct elf_link_hash_entry *h;
1bbce132 9602 bfd_vma size;
861fb55a
DJ
9603
9604 BFD_ASSERT (htab->use_plts_and_copy_relocs);
1bbce132
MR
9605 BFD_ASSERT (htab->sgotplt->size == 0);
9606 BFD_ASSERT (htab->splt->size == 0);
9607
0e1862bb 9608 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9609 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9610 else if (htab->is_vxworks)
9611 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9612 else if (ABI_64_P (output_bfd))
9613 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9614 else if (ABI_N32_P (output_bfd))
9615 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9616 else if (!micromips_p)
9617 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9618 else if (htab->insn32)
9619 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9620 else
9621 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9622
1bbce132
MR
9623 htab->plt_header_is_comp = micromips_p;
9624 htab->plt_header_size = size;
9625 htab->splt->size = (size
9626 + htab->plt_mips_offset
9627 + htab->plt_comp_offset);
9628 htab->sgotplt->size = (htab->plt_got_index
9629 * MIPS_ELF_GOT_SIZE (dynobj));
9630
9631 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9632
9633 if (htab->root.hplt == NULL)
9634 {
9635 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9636 "_PROCEDURE_LINKAGE_TABLE_");
9637 htab->root.hplt = h;
9638 if (h == NULL)
9639 return FALSE;
9640 }
9641
9642 h = htab->root.hplt;
9643 h->root.u.def.value = isa_bit;
9644 h->other = other;
861fb55a
DJ
9645 h->type = STT_FUNC;
9646 }
9647 }
4e41d0d7 9648
9a59ad6b 9649 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9650 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9651
33bb52fb
RS
9652 mips_elf_estimate_stub_size (output_bfd, info);
9653
9654 if (!mips_elf_lay_out_got (output_bfd, info))
9655 return FALSE;
9656
9657 mips_elf_lay_out_lazy_stubs (info);
9658
b49e97c9
TS
9659 /* The check_relocs and adjust_dynamic_symbol entry points have
9660 determined the sizes of the various dynamic sections. Allocate
9661 memory for them. */
b34976b6 9662 reltext = FALSE;
b49e97c9
TS
9663 for (s = dynobj->sections; s != NULL; s = s->next)
9664 {
9665 const char *name;
b49e97c9
TS
9666
9667 /* It's OK to base decisions on the section name, because none
9668 of the dynobj section names depend upon the input files. */
9669 name = bfd_get_section_name (dynobj, s);
9670
9671 if ((s->flags & SEC_LINKER_CREATED) == 0)
9672 continue;
9673
0112cd26 9674 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9675 {
c456f082 9676 if (s->size != 0)
b49e97c9
TS
9677 {
9678 const char *outname;
9679 asection *target;
9680
9681 /* If this relocation section applies to a read only
9682 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9683 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9684 assert a DT_TEXTREL entry rather than testing whether
9685 there exists a relocation to a read only section or
9686 not. */
9687 outname = bfd_get_section_name (output_bfd,
9688 s->output_section);
9689 target = bfd_get_section_by_name (output_bfd, outname + 4);
9690 if ((target != NULL
9691 && (target->flags & SEC_READONLY) != 0
9692 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9693 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9694 reltext = TRUE;
b49e97c9
TS
9695
9696 /* We use the reloc_count field as a counter if we need
9697 to copy relocs into the output file. */
0a44bf69 9698 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9699 s->reloc_count = 0;
f4416af6
AO
9700
9701 /* If combreloc is enabled, elf_link_sort_relocs() will
9702 sort relocations, but in a different way than we do,
9703 and before we're done creating relocations. Also, it
9704 will move them around between input sections'
9705 relocation's contents, so our sorting would be
9706 broken, so don't let it run. */
9707 info->combreloc = 0;
b49e97c9
TS
9708 }
9709 }
0e1862bb 9710 else if (bfd_link_executable (info)
b49e97c9 9711 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9712 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9713 {
5108fc1b 9714 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9715 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9716 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9717 }
9718 else if (SGI_COMPAT (output_bfd)
0112cd26 9719 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9720 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9721 else if (s == htab->splt)
9722 {
9723 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9724 room for an extra nop to fill the delay slot. This is
9725 for CPUs without load interlocking. */
9726 if (! LOAD_INTERLOCKS_P (output_bfd)
9727 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9728 s->size += 4;
9729 }
0112cd26 9730 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9731 && s != htab->sgot
0a44bf69 9732 && s != htab->sgotplt
861fb55a
DJ
9733 && s != htab->sstubs
9734 && s != htab->sdynbss)
b49e97c9
TS
9735 {
9736 /* It's not one of our sections, so don't allocate space. */
9737 continue;
9738 }
9739
c456f082 9740 if (s->size == 0)
b49e97c9 9741 {
8423293d 9742 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9743 continue;
9744 }
9745
c456f082
AM
9746 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9747 continue;
9748
b49e97c9 9749 /* Allocate memory for the section contents. */
eea6121a 9750 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9751 if (s->contents == NULL)
b49e97c9
TS
9752 {
9753 bfd_set_error (bfd_error_no_memory);
b34976b6 9754 return FALSE;
b49e97c9
TS
9755 }
9756 }
9757
9758 if (elf_hash_table (info)->dynamic_sections_created)
9759 {
9760 /* Add some entries to the .dynamic section. We fill in the
9761 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9762 must add the entries now so that we get the correct size for
5750dcec 9763 the .dynamic section. */
af5978fb
RS
9764
9765 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9766 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9767 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9768 may only look at the first one they see. */
0e1862bb 9769 if (!bfd_link_pic (info)
af5978fb
RS
9770 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9771 return FALSE;
b49e97c9 9772
0e1862bb 9773 if (bfd_link_executable (info)
a5499fa4
MF
9774 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9775 return FALSE;
9776
5750dcec
DJ
9777 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9778 used by the debugger. */
0e1862bb 9779 if (bfd_link_executable (info)
5750dcec
DJ
9780 && !SGI_COMPAT (output_bfd)
9781 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9782 return FALSE;
9783
0a44bf69 9784 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9785 info->flags |= DF_TEXTREL;
9786
9787 if ((info->flags & DF_TEXTREL) != 0)
9788 {
9789 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9790 return FALSE;
943284cc
DJ
9791
9792 /* Clear the DF_TEXTREL flag. It will be set again if we
9793 write out an actual text relocation; we may not, because
9794 at this point we do not know whether e.g. any .eh_frame
9795 absolute relocations have been converted to PC-relative. */
9796 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9797 }
9798
9799 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9800 return FALSE;
b49e97c9 9801
861fb55a 9802 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9803 if (htab->is_vxworks)
b49e97c9 9804 {
0a44bf69
RS
9805 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9806 use any of the DT_MIPS_* tags. */
861fb55a 9807 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9808 {
9809 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9810 return FALSE;
b49e97c9 9811
0a44bf69
RS
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9813 return FALSE;
b49e97c9 9814
0a44bf69
RS
9815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9816 return FALSE;
9817 }
b49e97c9 9818 }
0a44bf69
RS
9819 else
9820 {
861fb55a 9821 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9824 return FALSE;
b49e97c9 9825
0a44bf69
RS
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9827 return FALSE;
b49e97c9 9828
0a44bf69
RS
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9830 return FALSE;
9831 }
b49e97c9 9832
0a44bf69
RS
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9834 return FALSE;
b49e97c9 9835
0a44bf69
RS
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9837 return FALSE;
b49e97c9 9838
0a44bf69
RS
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9840 return FALSE;
b49e97c9 9841
0a44bf69
RS
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9843 return FALSE;
b49e97c9 9844
0a44bf69
RS
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9846 return FALSE;
b49e97c9 9847
0a44bf69
RS
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9849 return FALSE;
b49e97c9 9850
0a44bf69
RS
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9852 return FALSE;
9853
9854 if (IRIX_COMPAT (dynobj) == ict_irix5
9855 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9856 return FALSE;
9857
9858 if (IRIX_COMPAT (dynobj) == ict_irix6
9859 && (bfd_get_section_by_name
af0edeb8 9860 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9861 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9862 return FALSE;
9863 }
861fb55a
DJ
9864 if (htab->splt->size > 0)
9865 {
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9867 return FALSE;
9868
9869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9870 return FALSE;
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9873 return FALSE;
9874
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9876 return FALSE;
9877 }
7a2b07ff
NS
9878 if (htab->is_vxworks
9879 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9880 return FALSE;
b49e97c9
TS
9881 }
9882
b34976b6 9883 return TRUE;
b49e97c9
TS
9884}
9885\f
81d43bff
RS
9886/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9887 Adjust its R_ADDEND field so that it is correct for the output file.
9888 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9889 and sections respectively; both use symbol indexes. */
9890
9891static void
9892mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9893 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9894 asection **local_sections, Elf_Internal_Rela *rel)
9895{
9896 unsigned int r_type, r_symndx;
9897 Elf_Internal_Sym *sym;
9898 asection *sec;
9899
020d7251 9900 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9901 {
9902 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9903 if (gprel16_reloc_p (r_type)
81d43bff 9904 || r_type == R_MIPS_GPREL32
df58fc94 9905 || literal_reloc_p (r_type))
81d43bff
RS
9906 {
9907 rel->r_addend += _bfd_get_gp_value (input_bfd);
9908 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9909 }
9910
9911 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9912 sym = local_syms + r_symndx;
9913
9914 /* Adjust REL's addend to account for section merging. */
0e1862bb 9915 if (!bfd_link_relocatable (info))
81d43bff
RS
9916 {
9917 sec = local_sections[r_symndx];
9918 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9919 }
9920
9921 /* This would normally be done by the rela_normal code in elflink.c. */
9922 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9923 rel->r_addend += local_sections[r_symndx]->output_offset;
9924 }
9925}
9926
545fd46b
MR
9927/* Handle relocations against symbols from removed linkonce sections,
9928 or sections discarded by a linker script. We use this wrapper around
9929 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9930 on 64-bit ELF targets. In this case for any relocation handled, which
9931 always be the first in a triplet, the remaining two have to be processed
9932 together with the first, even if they are R_MIPS_NONE. It is the symbol
9933 index referred by the first reloc that applies to all the three and the
9934 remaining two never refer to an object symbol. And it is the final
9935 relocation (the last non-null one) that determines the output field of
9936 the whole relocation so retrieve the corresponding howto structure for
9937 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9938
9939 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9940 and therefore requires to be pasted in a loop. It also defines a block
9941 and does not protect any of its arguments, hence the extra brackets. */
9942
9943static void
9944mips_reloc_against_discarded_section (bfd *output_bfd,
9945 struct bfd_link_info *info,
9946 bfd *input_bfd, asection *input_section,
9947 Elf_Internal_Rela **rel,
9948 const Elf_Internal_Rela **relend,
9949 bfd_boolean rel_reloc,
9950 reloc_howto_type *howto,
9951 bfd_byte *contents)
9952{
9953 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9954 int count = bed->s->int_rels_per_ext_rel;
9955 unsigned int r_type;
9956 int i;
9957
9958 for (i = count - 1; i > 0; i--)
9959 {
9960 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9961 if (r_type != R_MIPS_NONE)
9962 {
9963 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9964 break;
9965 }
9966 }
9967 do
9968 {
9969 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9970 (*rel), count, (*relend),
9971 howto, i, contents);
9972 }
9973 while (0);
9974}
9975
b49e97c9
TS
9976/* Relocate a MIPS ELF section. */
9977
b34976b6 9978bfd_boolean
9719ad41
RS
9979_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9980 bfd *input_bfd, asection *input_section,
9981 bfd_byte *contents, Elf_Internal_Rela *relocs,
9982 Elf_Internal_Sym *local_syms,
9983 asection **local_sections)
b49e97c9
TS
9984{
9985 Elf_Internal_Rela *rel;
9986 const Elf_Internal_Rela *relend;
9987 bfd_vma addend = 0;
b34976b6 9988 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9989 const struct elf_backend_data *bed;
b49e97c9
TS
9990
9991 bed = get_elf_backend_data (output_bfd);
9992 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9993 for (rel = relocs; rel < relend; ++rel)
9994 {
9995 const char *name;
c9adbffe 9996 bfd_vma value = 0;
b49e97c9 9997 reloc_howto_type *howto;
ad3d9127 9998 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 9999 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10000 REL relocation. */
b34976b6 10001 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10002 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10003 const char *msg;
ab96bf03
AM
10004 unsigned long r_symndx;
10005 asection *sec;
749b8d9d
L
10006 Elf_Internal_Shdr *symtab_hdr;
10007 struct elf_link_hash_entry *h;
d4730f92 10008 bfd_boolean rel_reloc;
b49e97c9 10009
d4730f92
BS
10010 rel_reloc = (NEWABI_P (input_bfd)
10011 && mips_elf_rel_relocation_p (input_bfd, input_section,
10012 relocs, rel));
b49e97c9 10013 /* Find the relocation howto for this relocation. */
d4730f92 10014 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10015
10016 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10018 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10019 {
10020 sec = local_sections[r_symndx];
10021 h = NULL;
10022 }
ab96bf03
AM
10023 else
10024 {
ab96bf03 10025 unsigned long extsymoff;
ab96bf03 10026
ab96bf03
AM
10027 extsymoff = 0;
10028 if (!elf_bad_symtab (input_bfd))
10029 extsymoff = symtab_hdr->sh_info;
10030 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10031 while (h->root.type == bfd_link_hash_indirect
10032 || h->root.type == bfd_link_hash_warning)
10033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10034
10035 sec = NULL;
10036 if (h->root.type == bfd_link_hash_defined
10037 || h->root.type == bfd_link_hash_defweak)
10038 sec = h->root.u.def.section;
10039 }
10040
dbaa2011 10041 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10042 {
10043 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10044 input_section, &rel, &relend,
10045 rel_reloc, howto, contents);
10046 continue;
10047 }
ab96bf03 10048
4a14403c 10049 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10050 {
10051 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10052 64-bit code, but make sure all their addresses are in the
10053 lowermost or uppermost 32-bit section of the 64-bit address
10054 space. Thus, when they use an R_MIPS_64 they mean what is
10055 usually meant by R_MIPS_32, with the exception that the
10056 stored value is sign-extended to 64 bits. */
b34976b6 10057 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10058
10059 /* On big-endian systems, we need to lie about the position
10060 of the reloc. */
10061 if (bfd_big_endian (input_bfd))
10062 rel->r_offset += 4;
10063 }
b49e97c9
TS
10064
10065 if (!use_saved_addend_p)
10066 {
b49e97c9
TS
10067 /* If these relocations were originally of the REL variety,
10068 we must pull the addend out of the field that will be
10069 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10070 RELA relocation. */
10071 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10072 relocs, rel))
b49e97c9 10073 {
b34976b6 10074 rela_relocation_p = FALSE;
c224138d
RS
10075 addend = mips_elf_read_rel_addend (input_bfd, rel,
10076 howto, contents);
738e5348
RS
10077 if (hi16_reloc_p (r_type)
10078 || (got16_reloc_p (r_type)
b49e97c9 10079 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10080 local_sections)))
b49e97c9 10081 {
c224138d
RS
10082 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10083 contents, &addend))
749b8d9d 10084 {
749b8d9d
L
10085 if (h)
10086 name = h->root.root.string;
10087 else
10088 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10089 local_syms + r_symndx,
10090 sec);
10091 (*_bfd_error_handler)
10092 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10093 input_bfd, input_section, name, howto->name,
10094 rel->r_offset);
749b8d9d 10095 }
b49e97c9 10096 }
30ac9238
RS
10097 else
10098 addend <<= howto->rightshift;
b49e97c9
TS
10099 }
10100 else
10101 addend = rel->r_addend;
81d43bff
RS
10102 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10103 local_syms, local_sections, rel);
b49e97c9
TS
10104 }
10105
0e1862bb 10106 if (bfd_link_relocatable (info))
b49e97c9 10107 {
4a14403c 10108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10109 && bfd_big_endian (input_bfd))
10110 rel->r_offset -= 4;
10111
81d43bff 10112 if (!rela_relocation_p && rel->r_addend)
5a659663 10113 {
81d43bff 10114 addend += rel->r_addend;
738e5348 10115 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10116 addend = mips_elf_high (addend);
10117 else if (r_type == R_MIPS_HIGHER)
10118 addend = mips_elf_higher (addend);
10119 else if (r_type == R_MIPS_HIGHEST)
10120 addend = mips_elf_highest (addend);
30ac9238
RS
10121 else
10122 addend >>= howto->rightshift;
b49e97c9 10123
30ac9238
RS
10124 /* We use the source mask, rather than the destination
10125 mask because the place to which we are writing will be
10126 source of the addend in the final link. */
b49e97c9
TS
10127 addend &= howto->src_mask;
10128
5a659663 10129 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10130 /* See the comment above about using R_MIPS_64 in the 32-bit
10131 ABI. Here, we need to update the addend. It would be
10132 possible to get away with just using the R_MIPS_32 reloc
10133 but for endianness. */
10134 {
10135 bfd_vma sign_bits;
10136 bfd_vma low_bits;
10137 bfd_vma high_bits;
10138
10139 if (addend & ((bfd_vma) 1 << 31))
10140#ifdef BFD64
10141 sign_bits = ((bfd_vma) 1 << 32) - 1;
10142#else
10143 sign_bits = -1;
10144#endif
10145 else
10146 sign_bits = 0;
10147
10148 /* If we don't know that we have a 64-bit type,
10149 do two separate stores. */
10150 if (bfd_big_endian (input_bfd))
10151 {
10152 /* Store the sign-bits (which are most significant)
10153 first. */
10154 low_bits = sign_bits;
10155 high_bits = addend;
10156 }
10157 else
10158 {
10159 low_bits = addend;
10160 high_bits = sign_bits;
10161 }
10162 bfd_put_32 (input_bfd, low_bits,
10163 contents + rel->r_offset);
10164 bfd_put_32 (input_bfd, high_bits,
10165 contents + rel->r_offset + 4);
10166 continue;
10167 }
10168
10169 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10170 input_bfd, input_section,
b34976b6
AM
10171 contents, FALSE))
10172 return FALSE;
b49e97c9
TS
10173 }
10174
10175 /* Go on to the next relocation. */
10176 continue;
10177 }
10178
10179 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10180 relocations for the same offset. In that case we are
10181 supposed to treat the output of each relocation as the addend
10182 for the next. */
10183 if (rel + 1 < relend
10184 && rel->r_offset == rel[1].r_offset
10185 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10186 use_saved_addend_p = TRUE;
b49e97c9 10187 else
b34976b6 10188 use_saved_addend_p = FALSE;
b49e97c9
TS
10189
10190 /* Figure out what value we are supposed to relocate. */
10191 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10192 input_section, info, rel,
10193 addend, howto, local_syms,
10194 local_sections, &value,
38a7df63 10195 &name, &cross_mode_jump_p,
bce03d3d 10196 use_saved_addend_p))
b49e97c9
TS
10197 {
10198 case bfd_reloc_continue:
10199 /* There's nothing to do. */
10200 continue;
10201
10202 case bfd_reloc_undefined:
10203 /* mips_elf_calculate_relocation already called the
10204 undefined_symbol callback. There's no real point in
10205 trying to perform the relocation at this point, so we
10206 just skip ahead to the next relocation. */
10207 continue;
10208
10209 case bfd_reloc_notsupported:
10210 msg = _("internal error: unsupported relocation error");
10211 info->callbacks->warning
10212 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10213 return FALSE;
b49e97c9
TS
10214
10215 case bfd_reloc_overflow:
10216 if (use_saved_addend_p)
10217 /* Ignore overflow until we reach the last relocation for
10218 a given location. */
10219 ;
10220 else
10221 {
0e53d9da
AN
10222 struct mips_elf_link_hash_table *htab;
10223
10224 htab = mips_elf_hash_table (info);
4dfe6ac6 10225 BFD_ASSERT (htab != NULL);
b49e97c9 10226 BFD_ASSERT (name != NULL);
0e53d9da 10227 if (!htab->small_data_overflow_reported
9684f078 10228 && (gprel16_reloc_p (howto->type)
df58fc94 10229 || literal_reloc_p (howto->type)))
0e53d9da 10230 {
91d6fa6a
NC
10231 msg = _("small-data section exceeds 64KB;"
10232 " lower small-data size limit (see option -G)");
0e53d9da
AN
10233
10234 htab->small_data_overflow_reported = TRUE;
10235 (*info->callbacks->einfo) ("%P: %s\n", msg);
10236 }
b49e97c9 10237 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 10238 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 10239 input_bfd, input_section, rel->r_offset)))
b34976b6 10240 return FALSE;
b49e97c9
TS
10241 }
10242 break;
10243
10244 case bfd_reloc_ok:
10245 break;
10246
df58fc94
RS
10247 case bfd_reloc_outofrange:
10248 if (jal_reloc_p (howto->type))
10249 {
10250 msg = _("JALX to a non-word-aligned address");
10251 info->callbacks->warning
10252 (info, msg, name, input_bfd, input_section, rel->r_offset);
10253 return FALSE;
10254 }
7361da2c
AB
10255 if (aligned_pcrel_reloc_p (howto->type))
10256 {
10257 msg = _("PC-relative load from unaligned address");
10258 info->callbacks->warning
10259 (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 return FALSE;
10261 }
df58fc94
RS
10262 /* Fall through. */
10263
b49e97c9
TS
10264 default:
10265 abort ();
10266 break;
10267 }
10268
10269 /* If we've got another relocation for the address, keep going
10270 until we reach the last one. */
10271 if (use_saved_addend_p)
10272 {
10273 addend = value;
10274 continue;
10275 }
10276
4a14403c 10277 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10278 /* See the comment above about using R_MIPS_64 in the 32-bit
10279 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10280 that calculated the right value. Now, however, we
10281 sign-extend the 32-bit result to 64-bits, and store it as a
10282 64-bit value. We are especially generous here in that we
10283 go to extreme lengths to support this usage on systems with
10284 only a 32-bit VMA. */
10285 {
10286 bfd_vma sign_bits;
10287 bfd_vma low_bits;
10288 bfd_vma high_bits;
10289
10290 if (value & ((bfd_vma) 1 << 31))
10291#ifdef BFD64
10292 sign_bits = ((bfd_vma) 1 << 32) - 1;
10293#else
10294 sign_bits = -1;
10295#endif
10296 else
10297 sign_bits = 0;
10298
10299 /* If we don't know that we have a 64-bit type,
10300 do two separate stores. */
10301 if (bfd_big_endian (input_bfd))
10302 {
10303 /* Undo what we did above. */
10304 rel->r_offset -= 4;
10305 /* Store the sign-bits (which are most significant)
10306 first. */
10307 low_bits = sign_bits;
10308 high_bits = value;
10309 }
10310 else
10311 {
10312 low_bits = value;
10313 high_bits = sign_bits;
10314 }
10315 bfd_put_32 (input_bfd, low_bits,
10316 contents + rel->r_offset);
10317 bfd_put_32 (input_bfd, high_bits,
10318 contents + rel->r_offset + 4);
10319 continue;
10320 }
10321
10322 /* Actually perform the relocation. */
10323 if (! mips_elf_perform_relocation (info, howto, rel, value,
10324 input_bfd, input_section,
38a7df63 10325 contents, cross_mode_jump_p))
b34976b6 10326 return FALSE;
b49e97c9
TS
10327 }
10328
b34976b6 10329 return TRUE;
b49e97c9
TS
10330}
10331\f
861fb55a
DJ
10332/* A function that iterates over each entry in la25_stubs and fills
10333 in the code for each one. DATA points to a mips_htab_traverse_info. */
10334
10335static int
10336mips_elf_create_la25_stub (void **slot, void *data)
10337{
10338 struct mips_htab_traverse_info *hti;
10339 struct mips_elf_link_hash_table *htab;
10340 struct mips_elf_la25_stub *stub;
10341 asection *s;
10342 bfd_byte *loc;
10343 bfd_vma offset, target, target_high, target_low;
10344
10345 stub = (struct mips_elf_la25_stub *) *slot;
10346 hti = (struct mips_htab_traverse_info *) data;
10347 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10348 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10349
10350 /* Create the section contents, if we haven't already. */
10351 s = stub->stub_section;
10352 loc = s->contents;
10353 if (loc == NULL)
10354 {
10355 loc = bfd_malloc (s->size);
10356 if (loc == NULL)
10357 {
10358 hti->error = TRUE;
10359 return FALSE;
10360 }
10361 s->contents = loc;
10362 }
10363
10364 /* Work out where in the section this stub should go. */
10365 offset = stub->offset;
10366
10367 /* Work out the target address. */
8f0c309a
CLT
10368 target = mips_elf_get_la25_target (stub, &s);
10369 target += s->output_section->vma + s->output_offset;
10370
861fb55a
DJ
10371 target_high = ((target + 0x8000) >> 16) & 0xffff;
10372 target_low = (target & 0xffff);
10373
10374 if (stub->stub_section != htab->strampoline)
10375 {
df58fc94 10376 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10377 of the section and write the two instructions at the end. */
10378 memset (loc, 0, offset);
10379 loc += offset;
df58fc94
RS
10380 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10381 {
d21911ea
MR
10382 bfd_put_micromips_32 (hti->output_bfd,
10383 LA25_LUI_MICROMIPS (target_high),
10384 loc);
10385 bfd_put_micromips_32 (hti->output_bfd,
10386 LA25_ADDIU_MICROMIPS (target_low),
10387 loc + 4);
df58fc94
RS
10388 }
10389 else
10390 {
10391 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10392 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10393 }
861fb55a
DJ
10394 }
10395 else
10396 {
10397 /* This is trampoline. */
10398 loc += offset;
df58fc94
RS
10399 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10400 {
d21911ea
MR
10401 bfd_put_micromips_32 (hti->output_bfd,
10402 LA25_LUI_MICROMIPS (target_high), loc);
10403 bfd_put_micromips_32 (hti->output_bfd,
10404 LA25_J_MICROMIPS (target), loc + 4);
10405 bfd_put_micromips_32 (hti->output_bfd,
10406 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10407 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10408 }
10409 else
10410 {
10411 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10412 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10413 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10414 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10415 }
861fb55a
DJ
10416 }
10417 return TRUE;
10418}
10419
b49e97c9
TS
10420/* If NAME is one of the special IRIX6 symbols defined by the linker,
10421 adjust it appropriately now. */
10422
10423static void
9719ad41
RS
10424mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10425 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10426{
10427 /* The linker script takes care of providing names and values for
10428 these, but we must place them into the right sections. */
10429 static const char* const text_section_symbols[] = {
10430 "_ftext",
10431 "_etext",
10432 "__dso_displacement",
10433 "__elf_header",
10434 "__program_header_table",
10435 NULL
10436 };
10437
10438 static const char* const data_section_symbols[] = {
10439 "_fdata",
10440 "_edata",
10441 "_end",
10442 "_fbss",
10443 NULL
10444 };
10445
10446 const char* const *p;
10447 int i;
10448
10449 for (i = 0; i < 2; ++i)
10450 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10451 *p;
10452 ++p)
10453 if (strcmp (*p, name) == 0)
10454 {
10455 /* All of these symbols are given type STT_SECTION by the
10456 IRIX6 linker. */
10457 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10458 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10459
10460 /* The IRIX linker puts these symbols in special sections. */
10461 if (i == 0)
10462 sym->st_shndx = SHN_MIPS_TEXT;
10463 else
10464 sym->st_shndx = SHN_MIPS_DATA;
10465
10466 break;
10467 }
10468}
10469
10470/* Finish up dynamic symbol handling. We set the contents of various
10471 dynamic sections here. */
10472
b34976b6 10473bfd_boolean
9719ad41
RS
10474_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10475 struct bfd_link_info *info,
10476 struct elf_link_hash_entry *h,
10477 Elf_Internal_Sym *sym)
b49e97c9
TS
10478{
10479 bfd *dynobj;
b49e97c9 10480 asection *sgot;
f4416af6 10481 struct mips_got_info *g, *gg;
b49e97c9 10482 const char *name;
3d6746ca 10483 int idx;
5108fc1b 10484 struct mips_elf_link_hash_table *htab;
738e5348 10485 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10486
5108fc1b 10487 htab = mips_elf_hash_table (info);
4dfe6ac6 10488 BFD_ASSERT (htab != NULL);
b49e97c9 10489 dynobj = elf_hash_table (info)->dynobj;
738e5348 10490 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10491
861fb55a
DJ
10492 BFD_ASSERT (!htab->is_vxworks);
10493
1bbce132
MR
10494 if (h->plt.plist != NULL
10495 && (h->plt.plist->mips_offset != MINUS_ONE
10496 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10497 {
10498 /* We've decided to create a PLT entry for this symbol. */
10499 bfd_byte *loc;
1bbce132 10500 bfd_vma header_address, got_address;
861fb55a 10501 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10502 bfd_vma got_index;
10503 bfd_vma isa_bit;
10504
10505 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10506
10507 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10508 BFD_ASSERT (h->dynindx != -1);
10509 BFD_ASSERT (htab->splt != NULL);
1bbce132 10510 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10511 BFD_ASSERT (!h->def_regular);
10512
10513 /* Calculate the address of the PLT header. */
1bbce132 10514 isa_bit = htab->plt_header_is_comp;
861fb55a 10515 header_address = (htab->splt->output_section->vma
1bbce132 10516 + htab->splt->output_offset + isa_bit);
861fb55a
DJ
10517
10518 /* Calculate the address of the .got.plt entry. */
10519 got_address = (htab->sgotplt->output_section->vma
10520 + htab->sgotplt->output_offset
1bbce132
MR
10521 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10522
861fb55a
DJ
10523 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10524 got_address_low = got_address & 0xffff;
10525
10526 /* Initially point the .got.plt entry at the PLT header. */
1bbce132 10527 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10528 if (ABI_64_P (output_bfd))
10529 bfd_put_64 (output_bfd, header_address, loc);
10530 else
10531 bfd_put_32 (output_bfd, header_address, loc);
10532
1bbce132
MR
10533 /* Now handle the PLT itself. First the standard entry (the order
10534 does not matter, we just have to pick one). */
10535 if (h->plt.plist->mips_offset != MINUS_ONE)
10536 {
10537 const bfd_vma *plt_entry;
10538 bfd_vma plt_offset;
861fb55a 10539
1bbce132 10540 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10541
1bbce132 10542 BFD_ASSERT (plt_offset <= htab->splt->size);
6d30f5b2 10543
1bbce132
MR
10544 /* Find out where the .plt entry should go. */
10545 loc = htab->splt->contents + plt_offset;
10546
10547 /* Pick the load opcode. */
10548 load = MIPS_ELF_LOAD_WORD (output_bfd);
10549
10550 /* Fill in the PLT entry itself. */
7361da2c
AB
10551
10552 if (MIPSR6_P (output_bfd))
10553 plt_entry = mipsr6_exec_plt_entry;
10554 else
10555 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10556 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10557 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10558 loc + 4);
10559
10560 if (! LOAD_INTERLOCKS_P (output_bfd))
10561 {
10562 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10563 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10564 }
10565 else
10566 {
10567 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10568 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10569 loc + 12);
10570 }
6d30f5b2 10571 }
1bbce132
MR
10572
10573 /* Now the compressed entry. They come after any standard ones. */
10574 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10575 {
1bbce132
MR
10576 bfd_vma plt_offset;
10577
10578 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10579 + h->plt.plist->comp_offset);
10580
10581 BFD_ASSERT (plt_offset <= htab->splt->size);
10582
10583 /* Find out where the .plt entry should go. */
10584 loc = htab->splt->contents + plt_offset;
10585
10586 /* Fill in the PLT entry itself. */
833794fc
MR
10587 if (!MICROMIPS_P (output_bfd))
10588 {
10589 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10590
10591 bfd_put_16 (output_bfd, plt_entry[0], loc);
10592 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10593 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10594 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10595 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10596 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10597 bfd_put_32 (output_bfd, got_address, loc + 12);
10598 }
10599 else if (htab->insn32)
10600 {
10601 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10602
10603 bfd_put_16 (output_bfd, plt_entry[0], loc);
10604 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10605 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10606 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10607 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10608 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10609 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10610 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10611 }
10612 else
1bbce132
MR
10613 {
10614 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10615 bfd_signed_vma gotpc_offset;
10616 bfd_vma loc_address;
10617
10618 BFD_ASSERT (got_address % 4 == 0);
10619
10620 loc_address = (htab->splt->output_section->vma
10621 + htab->splt->output_offset + plt_offset);
10622 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10623
10624 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10625 if (gotpc_offset + 0x1000000 >= 0x2000000)
10626 {
10627 (*_bfd_error_handler)
10628 (_("%B: `%A' offset of %ld from `%A' "
10629 "beyond the range of ADDIUPC"),
10630 output_bfd,
10631 htab->sgotplt->output_section,
10632 htab->splt->output_section,
10633 (long) gotpc_offset);
10634 bfd_set_error (bfd_error_no_error);
10635 return FALSE;
10636 }
10637 bfd_put_16 (output_bfd,
10638 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10639 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10640 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10641 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10642 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10643 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10644 }
6d30f5b2 10645 }
861fb55a
DJ
10646
10647 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10648 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
1bbce132 10649 got_index - 2, h->dynindx,
861fb55a
DJ
10650 R_MIPS_JUMP_SLOT, got_address);
10651
10652 /* We distinguish between PLT entries and lazy-binding stubs by
10653 giving the former an st_other value of STO_MIPS_PLT. Set the
10654 flag and leave the value if there are any relocations in the
10655 binary where pointer equality matters. */
10656 sym->st_shndx = SHN_UNDEF;
10657 if (h->pointer_equality_needed)
1bbce132 10658 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10659 else
1bbce132
MR
10660 {
10661 sym->st_value = 0;
10662 sym->st_other = 0;
10663 }
861fb55a 10664 }
1bbce132
MR
10665
10666 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10667 {
861fb55a 10668 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10669 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10671 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10672 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10673 bfd_vma isa_bit = micromips_p;
10674 bfd_vma stub_big_size;
10675
833794fc 10676 if (!micromips_p)
1bbce132 10677 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10678 else if (htab->insn32)
10679 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10680 else
10681 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10682
10683 /* This symbol has a stub. Set it up. */
10684
10685 BFD_ASSERT (h->dynindx != -1);
10686
1bbce132 10687 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10688
10689 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10690 sign extension at runtime in the stub, resulting in a negative
10691 index value. */
10692 if (h->dynindx & ~0x7fffffff)
b34976b6 10693 return FALSE;
b49e97c9
TS
10694
10695 /* Fill the stub. */
1bbce132
MR
10696 if (micromips_p)
10697 {
10698 idx = 0;
10699 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10700 stub + idx);
10701 idx += 4;
833794fc
MR
10702 if (htab->insn32)
10703 {
10704 bfd_put_micromips_32 (output_bfd,
40fc1451 10705 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10706 idx += 4;
10707 }
10708 else
10709 {
10710 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10711 idx += 2;
10712 }
1bbce132
MR
10713 if (stub_size == stub_big_size)
10714 {
10715 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10716
10717 bfd_put_micromips_32 (output_bfd,
10718 STUB_LUI_MICROMIPS (dynindx_hi),
10719 stub + idx);
10720 idx += 4;
10721 }
833794fc
MR
10722 if (htab->insn32)
10723 {
10724 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10725 stub + idx);
10726 idx += 4;
10727 }
10728 else
10729 {
10730 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10731 idx += 2;
10732 }
1bbce132
MR
10733
10734 /* If a large stub is not required and sign extension is not a
10735 problem, then use legacy code in the stub. */
10736 if (stub_size == stub_big_size)
10737 bfd_put_micromips_32 (output_bfd,
10738 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10739 stub + idx);
10740 else if (h->dynindx & ~0x7fff)
10741 bfd_put_micromips_32 (output_bfd,
10742 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10743 stub + idx);
10744 else
10745 bfd_put_micromips_32 (output_bfd,
10746 STUB_LI16S_MICROMIPS (output_bfd,
10747 h->dynindx),
10748 stub + idx);
10749 }
3d6746ca 10750 else
1bbce132
MR
10751 {
10752 idx = 0;
10753 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10754 idx += 4;
40fc1451 10755 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10756 idx += 4;
10757 if (stub_size == stub_big_size)
10758 {
10759 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10760 stub + idx);
10761 idx += 4;
10762 }
10763 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10764 idx += 4;
10765
10766 /* If a large stub is not required and sign extension is not a
10767 problem, then use legacy code in the stub. */
10768 if (stub_size == stub_big_size)
10769 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10770 stub + idx);
10771 else if (h->dynindx & ~0x7fff)
10772 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10773 stub + idx);
10774 else
10775 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10776 stub + idx);
10777 }
5108fc1b 10778
1bbce132
MR
10779 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10780 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10781 stub, stub_size);
b49e97c9 10782
1bbce132 10783 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10784 only for the referenced symbol. */
10785 sym->st_shndx = SHN_UNDEF;
10786
10787 /* The run-time linker uses the st_value field of the symbol
10788 to reset the global offset table entry for this external
10789 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10790 sym->st_value = (htab->sstubs->output_section->vma
10791 + htab->sstubs->output_offset
1bbce132
MR
10792 + h->plt.plist->stub_offset
10793 + isa_bit);
10794 sym->st_other = other;
b49e97c9
TS
10795 }
10796
738e5348
RS
10797 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10798 refer to the stub, since only the stub uses the standard calling
10799 conventions. */
10800 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10801 {
10802 BFD_ASSERT (hmips->need_fn_stub);
10803 sym->st_value = (hmips->fn_stub->output_section->vma
10804 + hmips->fn_stub->output_offset);
10805 sym->st_size = hmips->fn_stub->size;
10806 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10807 }
10808
b49e97c9 10809 BFD_ASSERT (h->dynindx != -1
f5385ebf 10810 || h->forced_local);
b49e97c9 10811
23cc69b6 10812 sgot = htab->sgot;
a8028dd0 10813 g = htab->got_info;
b49e97c9
TS
10814 BFD_ASSERT (g != NULL);
10815
10816 /* Run through the global symbol table, creating GOT entries for all
10817 the symbols that need them. */
020d7251 10818 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10819 {
10820 bfd_vma offset;
10821 bfd_vma value;
10822
6eaa6adc 10823 value = sym->st_value;
13fbec83 10824 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10825 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10826 }
10827
e641e783 10828 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10829 {
10830 struct mips_got_entry e, *p;
0626d451 10831 bfd_vma entry;
f4416af6 10832 bfd_vma offset;
f4416af6
AO
10833
10834 gg = g;
10835
10836 e.abfd = output_bfd;
10837 e.symndx = -1;
738e5348 10838 e.d.h = hmips;
9ab066b4 10839 e.tls_type = GOT_TLS_NONE;
143d77c5 10840
f4416af6
AO
10841 for (g = g->next; g->next != gg; g = g->next)
10842 {
10843 if (g->got_entries
10844 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10845 &e)))
10846 {
10847 offset = p->gotidx;
6c42ddb9 10848 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0e1862bb 10849 if (bfd_link_pic (info)
0626d451
RS
10850 || (elf_hash_table (info)->dynamic_sections_created
10851 && p->d.h != NULL
f5385ebf
AM
10852 && p->d.h->root.def_dynamic
10853 && !p->d.h->root.def_regular))
0626d451
RS
10854 {
10855 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10856 the various compatibility problems, it's easier to mock
10857 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10858 mips_elf_create_dynamic_relocation to calculate the
10859 appropriate addend. */
10860 Elf_Internal_Rela rel[3];
10861
10862 memset (rel, 0, sizeof (rel));
10863 if (ABI_64_P (output_bfd))
10864 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10865 else
10866 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10867 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10868
10869 entry = 0;
10870 if (! (mips_elf_create_dynamic_relocation
10871 (output_bfd, info, rel,
10872 e.d.h, NULL, sym->st_value, &entry, sgot)))
10873 return FALSE;
10874 }
10875 else
10876 entry = sym->st_value;
10877 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10878 }
10879 }
10880 }
10881
b49e97c9
TS
10882 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10883 name = h->root.root.string;
9637f6ef 10884 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10885 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10886 sym->st_shndx = SHN_ABS;
10887 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10888 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10889 {
10890 sym->st_shndx = SHN_ABS;
10891 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10892 sym->st_value = 1;
10893 }
4a14403c 10894 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10895 {
10896 sym->st_shndx = SHN_ABS;
10897 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10898 sym->st_value = elf_gp (output_bfd);
10899 }
10900 else if (SGI_COMPAT (output_bfd))
10901 {
10902 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10903 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10904 {
10905 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10906 sym->st_other = STO_PROTECTED;
10907 sym->st_value = 0;
10908 sym->st_shndx = SHN_MIPS_DATA;
10909 }
10910 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10911 {
10912 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10913 sym->st_other = STO_PROTECTED;
10914 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10915 sym->st_shndx = SHN_ABS;
10916 }
10917 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10918 {
10919 if (h->type == STT_FUNC)
10920 sym->st_shndx = SHN_MIPS_TEXT;
10921 else if (h->type == STT_OBJECT)
10922 sym->st_shndx = SHN_MIPS_DATA;
10923 }
10924 }
10925
861fb55a
DJ
10926 /* Emit a copy reloc, if needed. */
10927 if (h->needs_copy)
10928 {
10929 asection *s;
10930 bfd_vma symval;
10931
10932 BFD_ASSERT (h->dynindx != -1);
10933 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10934
10935 s = mips_elf_rel_dyn_section (info, FALSE);
10936 symval = (h->root.u.def.section->output_section->vma
10937 + h->root.u.def.section->output_offset
10938 + h->root.u.def.value);
10939 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10940 h->dynindx, R_MIPS_COPY, symval);
10941 }
10942
b49e97c9
TS
10943 /* Handle the IRIX6-specific symbols. */
10944 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10945 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10946
cbf8d970
MR
10947 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10948 to treat compressed symbols like any other. */
30c09090 10949 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10950 {
10951 BFD_ASSERT (sym->st_value & 1);
10952 sym->st_other -= STO_MIPS16;
10953 }
cbf8d970
MR
10954 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10955 {
10956 BFD_ASSERT (sym->st_value & 1);
10957 sym->st_other -= STO_MICROMIPS;
10958 }
b49e97c9 10959
b34976b6 10960 return TRUE;
b49e97c9
TS
10961}
10962
0a44bf69
RS
10963/* Likewise, for VxWorks. */
10964
10965bfd_boolean
10966_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10967 struct bfd_link_info *info,
10968 struct elf_link_hash_entry *h,
10969 Elf_Internal_Sym *sym)
10970{
10971 bfd *dynobj;
10972 asection *sgot;
10973 struct mips_got_info *g;
10974 struct mips_elf_link_hash_table *htab;
020d7251 10975 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10976
10977 htab = mips_elf_hash_table (info);
4dfe6ac6 10978 BFD_ASSERT (htab != NULL);
0a44bf69 10979 dynobj = elf_hash_table (info)->dynobj;
020d7251 10980 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 10981
1bbce132 10982 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 10983 {
6d79d2ed 10984 bfd_byte *loc;
1bbce132 10985 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
10986 Elf_Internal_Rela rel;
10987 static const bfd_vma *plt_entry;
1bbce132
MR
10988 bfd_vma gotplt_index;
10989 bfd_vma plt_offset;
10990
10991 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10992 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
10993
10994 BFD_ASSERT (h->dynindx != -1);
10995 BFD_ASSERT (htab->splt != NULL);
1bbce132
MR
10996 BFD_ASSERT (gotplt_index != MINUS_ONE);
10997 BFD_ASSERT (plt_offset <= htab->splt->size);
0a44bf69
RS
10998
10999 /* Calculate the address of the .plt entry. */
11000 plt_address = (htab->splt->output_section->vma
11001 + htab->splt->output_offset
1bbce132 11002 + plt_offset);
0a44bf69
RS
11003
11004 /* Calculate the address of the .got.plt entry. */
11005 got_address = (htab->sgotplt->output_section->vma
11006 + htab->sgotplt->output_offset
1bbce132 11007 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11008
11009 /* Calculate the offset of the .got.plt entry from
11010 _GLOBAL_OFFSET_TABLE_. */
11011 got_offset = mips_elf_gotplt_index (info, h);
11012
11013 /* Calculate the offset for the branch at the start of the PLT
11014 entry. The branch jumps to the beginning of .plt. */
1bbce132 11015 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11016
11017 /* Fill in the initial value of the .got.plt entry. */
11018 bfd_put_32 (output_bfd, plt_address,
1bbce132
MR
11019 (htab->sgotplt->contents
11020 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11021
11022 /* Find out where the .plt entry should go. */
1bbce132 11023 loc = htab->splt->contents + plt_offset;
0a44bf69 11024
0e1862bb 11025 if (bfd_link_pic (info))
0a44bf69
RS
11026 {
11027 plt_entry = mips_vxworks_shared_plt_entry;
11028 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11029 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11030 }
11031 else
11032 {
11033 bfd_vma got_address_high, got_address_low;
11034
11035 plt_entry = mips_vxworks_exec_plt_entry;
11036 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11037 got_address_low = got_address & 0xffff;
11038
11039 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11040 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11041 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11042 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11043 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11044 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11045 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11046 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11047
11048 loc = (htab->srelplt2->contents
1bbce132 11049 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11050
11051 /* Emit a relocation for the .got.plt entry. */
11052 rel.r_offset = got_address;
11053 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11054 rel.r_addend = plt_offset;
0a44bf69
RS
11055 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11056
11057 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11058 loc += sizeof (Elf32_External_Rela);
11059 rel.r_offset = plt_address + 8;
11060 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11061 rel.r_addend = got_offset;
11062 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11063
11064 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11065 loc += sizeof (Elf32_External_Rela);
11066 rel.r_offset += 4;
11067 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11068 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11069 }
11070
11071 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
1bbce132
MR
11072 loc = (htab->srelplt->contents
11073 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11074 rel.r_offset = got_address;
11075 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11076 rel.r_addend = 0;
11077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11078
11079 if (!h->def_regular)
11080 sym->st_shndx = SHN_UNDEF;
11081 }
11082
11083 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11084
23cc69b6 11085 sgot = htab->sgot;
a8028dd0 11086 g = htab->got_info;
0a44bf69
RS
11087 BFD_ASSERT (g != NULL);
11088
11089 /* See if this symbol has an entry in the GOT. */
020d7251 11090 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11091 {
11092 bfd_vma offset;
11093 Elf_Internal_Rela outrel;
11094 bfd_byte *loc;
11095 asection *s;
11096
11097 /* Install the symbol value in the GOT. */
13fbec83 11098 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11099 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11100
11101 /* Add a dynamic relocation for it. */
11102 s = mips_elf_rel_dyn_section (info, FALSE);
11103 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11104 outrel.r_offset = (sgot->output_section->vma
11105 + sgot->output_offset
11106 + offset);
11107 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11108 outrel.r_addend = 0;
11109 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11110 }
11111
11112 /* Emit a copy reloc, if needed. */
11113 if (h->needs_copy)
11114 {
11115 Elf_Internal_Rela rel;
11116
11117 BFD_ASSERT (h->dynindx != -1);
11118
11119 rel.r_offset = (h->root.u.def.section->output_section->vma
11120 + h->root.u.def.section->output_offset
11121 + h->root.u.def.value);
11122 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11123 rel.r_addend = 0;
11124 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11125 htab->srelbss->contents
11126 + (htab->srelbss->reloc_count
11127 * sizeof (Elf32_External_Rela)));
11128 ++htab->srelbss->reloc_count;
11129 }
11130
df58fc94
RS
11131 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11132 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11133 sym->st_value &= ~1;
11134
11135 return TRUE;
11136}
11137
861fb55a
DJ
11138/* Write out a plt0 entry to the beginning of .plt. */
11139
1bbce132 11140static bfd_boolean
861fb55a
DJ
11141mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11142{
11143 bfd_byte *loc;
11144 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11145 static const bfd_vma *plt_entry;
11146 struct mips_elf_link_hash_table *htab;
11147
11148 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11149 BFD_ASSERT (htab != NULL);
11150
861fb55a
DJ
11151 if (ABI_64_P (output_bfd))
11152 plt_entry = mips_n64_exec_plt0_entry;
11153 else if (ABI_N32_P (output_bfd))
11154 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11155 else if (!htab->plt_header_is_comp)
861fb55a 11156 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11157 else if (htab->insn32)
11158 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11159 else
11160 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11161
11162 /* Calculate the value of .got.plt. */
11163 gotplt_value = (htab->sgotplt->output_section->vma
11164 + htab->sgotplt->output_offset);
11165 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11166 gotplt_value_low = gotplt_value & 0xffff;
11167
11168 /* The PLT sequence is not safe for N64 if .got.plt's address can
11169 not be loaded in two instructions. */
11170 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11171 || ~(gotplt_value | 0x7fffffff) == 0);
11172
11173 /* Install the PLT header. */
11174 loc = htab->splt->contents;
1bbce132
MR
11175 if (plt_entry == micromips_o32_exec_plt0_entry)
11176 {
11177 bfd_vma gotpc_offset;
11178 bfd_vma loc_address;
11179 size_t i;
11180
11181 BFD_ASSERT (gotplt_value % 4 == 0);
11182
11183 loc_address = (htab->splt->output_section->vma
11184 + htab->splt->output_offset);
11185 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11186
11187 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11188 if (gotpc_offset + 0x1000000 >= 0x2000000)
11189 {
11190 (*_bfd_error_handler)
11191 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11192 output_bfd,
11193 htab->sgotplt->output_section,
11194 htab->splt->output_section,
11195 (long) gotpc_offset);
11196 bfd_set_error (bfd_error_no_error);
11197 return FALSE;
11198 }
11199 bfd_put_16 (output_bfd,
11200 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11201 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11202 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11203 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11204 }
833794fc
MR
11205 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11206 {
11207 size_t i;
11208
11209 bfd_put_16 (output_bfd, plt_entry[0], loc);
11210 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11211 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11212 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11213 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11214 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11215 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11216 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11217 }
1bbce132
MR
11218 else
11219 {
11220 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11221 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11222 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11223 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11224 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11225 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11226 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11227 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11228 }
11229
11230 return TRUE;
861fb55a
DJ
11231}
11232
0a44bf69
RS
11233/* Install the PLT header for a VxWorks executable and finalize the
11234 contents of .rela.plt.unloaded. */
11235
11236static void
11237mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11238{
11239 Elf_Internal_Rela rela;
11240 bfd_byte *loc;
11241 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11242 static const bfd_vma *plt_entry;
11243 struct mips_elf_link_hash_table *htab;
11244
11245 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11246 BFD_ASSERT (htab != NULL);
11247
0a44bf69
RS
11248 plt_entry = mips_vxworks_exec_plt0_entry;
11249
11250 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11251 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11252 + htab->root.hgot->root.u.def.section->output_offset
11253 + htab->root.hgot->root.u.def.value);
11254
11255 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11256 got_value_low = got_value & 0xffff;
11257
11258 /* Calculate the address of the PLT header. */
11259 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11260
11261 /* Install the PLT header. */
11262 loc = htab->splt->contents;
11263 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11264 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11265 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11266 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11267 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11268 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11269
11270 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11271 loc = htab->srelplt2->contents;
11272 rela.r_offset = plt_address;
11273 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11274 rela.r_addend = 0;
11275 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11276 loc += sizeof (Elf32_External_Rela);
11277
11278 /* Output the relocation for the following addiu of
11279 %lo(_GLOBAL_OFFSET_TABLE_). */
11280 rela.r_offset += 4;
11281 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11282 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11283 loc += sizeof (Elf32_External_Rela);
11284
11285 /* Fix up the remaining relocations. They may have the wrong
11286 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11287 in which symbols were output. */
11288 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11289 {
11290 Elf_Internal_Rela rel;
11291
11292 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11293 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11294 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11295 loc += sizeof (Elf32_External_Rela);
11296
11297 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11298 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11299 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11300 loc += sizeof (Elf32_External_Rela);
11301
11302 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11303 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11304 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11305 loc += sizeof (Elf32_External_Rela);
11306 }
11307}
11308
11309/* Install the PLT header for a VxWorks shared library. */
11310
11311static void
11312mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11313{
11314 unsigned int i;
11315 struct mips_elf_link_hash_table *htab;
11316
11317 htab = mips_elf_hash_table (info);
4dfe6ac6 11318 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11319
11320 /* We just need to copy the entry byte-by-byte. */
11321 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11322 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11323 htab->splt->contents + i * 4);
11324}
11325
b49e97c9
TS
11326/* Finish up the dynamic sections. */
11327
b34976b6 11328bfd_boolean
9719ad41
RS
11329_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11330 struct bfd_link_info *info)
b49e97c9
TS
11331{
11332 bfd *dynobj;
11333 asection *sdyn;
11334 asection *sgot;
f4416af6 11335 struct mips_got_info *gg, *g;
0a44bf69 11336 struct mips_elf_link_hash_table *htab;
b49e97c9 11337
0a44bf69 11338 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11339 BFD_ASSERT (htab != NULL);
11340
b49e97c9
TS
11341 dynobj = elf_hash_table (info)->dynobj;
11342
3d4d4302 11343 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11344
23cc69b6
RS
11345 sgot = htab->sgot;
11346 gg = htab->got_info;
b49e97c9
TS
11347
11348 if (elf_hash_table (info)->dynamic_sections_created)
11349 {
11350 bfd_byte *b;
943284cc 11351 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11352
11353 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11354 BFD_ASSERT (gg != NULL);
11355
d7206569 11356 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11357 BFD_ASSERT (g != NULL);
11358
11359 for (b = sdyn->contents;
eea6121a 11360 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11361 b += MIPS_ELF_DYN_SIZE (dynobj))
11362 {
11363 Elf_Internal_Dyn dyn;
11364 const char *name;
11365 size_t elemsize;
11366 asection *s;
b34976b6 11367 bfd_boolean swap_out_p;
b49e97c9
TS
11368
11369 /* Read in the current dynamic entry. */
11370 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11371
11372 /* Assume that we're going to modify it and write it out. */
b34976b6 11373 swap_out_p = TRUE;
b49e97c9
TS
11374
11375 switch (dyn.d_tag)
11376 {
11377 case DT_RELENT:
b49e97c9
TS
11378 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11379 break;
11380
0a44bf69
RS
11381 case DT_RELAENT:
11382 BFD_ASSERT (htab->is_vxworks);
11383 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11384 break;
11385
b49e97c9
TS
11386 case DT_STRSZ:
11387 /* Rewrite DT_STRSZ. */
11388 dyn.d_un.d_val =
11389 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11390 break;
11391
11392 case DT_PLTGOT:
861fb55a
DJ
11393 s = htab->sgot;
11394 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11395 break;
11396
11397 case DT_MIPS_PLTGOT:
11398 s = htab->sgotplt;
11399 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11400 break;
11401
11402 case DT_MIPS_RLD_VERSION:
11403 dyn.d_un.d_val = 1; /* XXX */
11404 break;
11405
11406 case DT_MIPS_FLAGS:
11407 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11408 break;
11409
b49e97c9 11410 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11411 {
11412 time_t t;
11413 time (&t);
11414 dyn.d_un.d_val = t;
11415 }
b49e97c9
TS
11416 break;
11417
11418 case DT_MIPS_ICHECKSUM:
11419 /* XXX FIXME: */
b34976b6 11420 swap_out_p = FALSE;
b49e97c9
TS
11421 break;
11422
11423 case DT_MIPS_IVERSION:
11424 /* XXX FIXME: */
b34976b6 11425 swap_out_p = FALSE;
b49e97c9
TS
11426 break;
11427
11428 case DT_MIPS_BASE_ADDRESS:
11429 s = output_bfd->sections;
11430 BFD_ASSERT (s != NULL);
11431 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11432 break;
11433
11434 case DT_MIPS_LOCAL_GOTNO:
11435 dyn.d_un.d_val = g->local_gotno;
11436 break;
11437
11438 case DT_MIPS_UNREFEXTNO:
11439 /* The index into the dynamic symbol table which is the
11440 entry of the first external symbol that is not
11441 referenced within the same object. */
11442 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11443 break;
11444
11445 case DT_MIPS_GOTSYM:
d222d210 11446 if (htab->global_gotsym)
b49e97c9 11447 {
d222d210 11448 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11449 break;
11450 }
11451 /* In case if we don't have global got symbols we default
11452 to setting DT_MIPS_GOTSYM to the same value as
11453 DT_MIPS_SYMTABNO, so we just fall through. */
11454
11455 case DT_MIPS_SYMTABNO:
11456 name = ".dynsym";
11457 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11458 s = bfd_get_section_by_name (output_bfd, name);
b49e97c9 11459
131e2f8e
MF
11460 if (s != NULL)
11461 dyn.d_un.d_val = s->size / elemsize;
11462 else
11463 dyn.d_un.d_val = 0;
b49e97c9
TS
11464 break;
11465
11466 case DT_MIPS_HIPAGENO:
861fb55a 11467 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11468 break;
11469
11470 case DT_MIPS_RLD_MAP:
b4082c70
DD
11471 {
11472 struct elf_link_hash_entry *h;
11473 h = mips_elf_hash_table (info)->rld_symbol;
11474 if (!h)
11475 {
11476 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11477 swap_out_p = FALSE;
11478 break;
11479 }
11480 s = h->root.u.def.section;
a5499fa4
MF
11481
11482 /* The MIPS_RLD_MAP tag stores the absolute address of the
11483 debug pointer. */
b4082c70
DD
11484 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11485 + h->root.u.def.value);
11486 }
b49e97c9
TS
11487 break;
11488
a5499fa4
MF
11489 case DT_MIPS_RLD_MAP_REL:
11490 {
11491 struct elf_link_hash_entry *h;
11492 bfd_vma dt_addr, rld_addr;
11493 h = mips_elf_hash_table (info)->rld_symbol;
11494 if (!h)
11495 {
11496 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11497 swap_out_p = FALSE;
11498 break;
11499 }
11500 s = h->root.u.def.section;
11501
11502 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11503 pointer, relative to the address of the tag. */
11504 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11505 + (b - sdyn->contents));
a5499fa4
MF
11506 rld_addr = (s->output_section->vma + s->output_offset
11507 + h->root.u.def.value);
11508 dyn.d_un.d_ptr = rld_addr - dt_addr;
11509 }
11510 break;
11511
b49e97c9
TS
11512 case DT_MIPS_OPTIONS:
11513 s = (bfd_get_section_by_name
11514 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11515 dyn.d_un.d_ptr = s->vma;
11516 break;
11517
0a44bf69
RS
11518 case DT_RELASZ:
11519 BFD_ASSERT (htab->is_vxworks);
11520 /* The count does not include the JUMP_SLOT relocations. */
11521 if (htab->srelplt)
11522 dyn.d_un.d_val -= htab->srelplt->size;
11523 break;
11524
11525 case DT_PLTREL:
861fb55a
DJ
11526 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11527 if (htab->is_vxworks)
11528 dyn.d_un.d_val = DT_RELA;
11529 else
11530 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11531 break;
11532
11533 case DT_PLTRELSZ:
861fb55a 11534 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
11535 dyn.d_un.d_val = htab->srelplt->size;
11536 break;
11537
11538 case DT_JMPREL:
861fb55a
DJ
11539 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11540 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
11541 + htab->srelplt->output_offset);
11542 break;
11543
943284cc
DJ
11544 case DT_TEXTREL:
11545 /* If we didn't need any text relocations after all, delete
11546 the dynamic tag. */
11547 if (!(info->flags & DF_TEXTREL))
11548 {
11549 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11550 swap_out_p = FALSE;
11551 }
11552 break;
11553
11554 case DT_FLAGS:
11555 /* If we didn't need any text relocations after all, clear
11556 DF_TEXTREL from DT_FLAGS. */
11557 if (!(info->flags & DF_TEXTREL))
11558 dyn.d_un.d_val &= ~DF_TEXTREL;
11559 else
11560 swap_out_p = FALSE;
11561 break;
11562
b49e97c9 11563 default:
b34976b6 11564 swap_out_p = FALSE;
7a2b07ff
NS
11565 if (htab->is_vxworks
11566 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11567 swap_out_p = TRUE;
b49e97c9
TS
11568 break;
11569 }
11570
943284cc 11571 if (swap_out_p || dyn_skipped)
b49e97c9 11572 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11573 (dynobj, &dyn, b - dyn_skipped);
11574
11575 if (dyn_to_skip)
11576 {
11577 dyn_skipped += dyn_to_skip;
11578 dyn_to_skip = 0;
11579 }
b49e97c9 11580 }
943284cc
DJ
11581
11582 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11583 if (dyn_skipped > 0)
11584 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11585 }
11586
b55fd4d4
DJ
11587 if (sgot != NULL && sgot->size > 0
11588 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11589 {
0a44bf69
RS
11590 if (htab->is_vxworks)
11591 {
11592 /* The first entry of the global offset table points to the
11593 ".dynamic" section. The second is initialized by the
11594 loader and contains the shared library identifier.
11595 The third is also initialized by the loader and points
11596 to the lazy resolution stub. */
11597 MIPS_ELF_PUT_WORD (output_bfd,
11598 sdyn->output_offset + sdyn->output_section->vma,
11599 sgot->contents);
11600 MIPS_ELF_PUT_WORD (output_bfd, 0,
11601 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11602 MIPS_ELF_PUT_WORD (output_bfd, 0,
11603 sgot->contents
11604 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11605 }
11606 else
11607 {
11608 /* The first entry of the global offset table will be filled at
11609 runtime. The second entry will be used by some runtime loaders.
11610 This isn't the case of IRIX rld. */
11611 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11612 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11613 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11614 }
b49e97c9 11615
54938e2a
TS
11616 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11617 = MIPS_ELF_GOT_SIZE (output_bfd);
11618 }
b49e97c9 11619
f4416af6
AO
11620 /* Generate dynamic relocations for the non-primary gots. */
11621 if (gg != NULL && gg->next)
11622 {
11623 Elf_Internal_Rela rel[3];
11624 bfd_vma addend = 0;
11625
11626 memset (rel, 0, sizeof (rel));
11627 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11628
11629 for (g = gg->next; g->next != gg; g = g->next)
11630 {
91d6fa6a 11631 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11632 + g->next->tls_gotno;
f4416af6 11633
9719ad41 11634 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11635 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11636 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11637 sgot->contents
91d6fa6a 11638 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11639
0e1862bb 11640 if (! bfd_link_pic (info))
f4416af6
AO
11641 continue;
11642
cb22ccf4 11643 for (; got_index < g->local_gotno; got_index++)
f4416af6 11644 {
cb22ccf4
KCY
11645 if (got_index >= g->assigned_low_gotno
11646 && got_index <= g->assigned_high_gotno)
11647 continue;
11648
f4416af6 11649 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11650 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11651 if (!(mips_elf_create_dynamic_relocation
11652 (output_bfd, info, rel, NULL,
11653 bfd_abs_section_ptr,
11654 0, &addend, sgot)))
11655 return FALSE;
11656 BFD_ASSERT (addend == 0);
11657 }
11658 }
11659 }
11660
3133ddbf
DJ
11661 /* The generation of dynamic relocations for the non-primary gots
11662 adds more dynamic relocations. We cannot count them until
11663 here. */
11664
11665 if (elf_hash_table (info)->dynamic_sections_created)
11666 {
11667 bfd_byte *b;
11668 bfd_boolean swap_out_p;
11669
11670 BFD_ASSERT (sdyn != NULL);
11671
11672 for (b = sdyn->contents;
11673 b < sdyn->contents + sdyn->size;
11674 b += MIPS_ELF_DYN_SIZE (dynobj))
11675 {
11676 Elf_Internal_Dyn dyn;
11677 asection *s;
11678
11679 /* Read in the current dynamic entry. */
11680 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11681
11682 /* Assume that we're going to modify it and write it out. */
11683 swap_out_p = TRUE;
11684
11685 switch (dyn.d_tag)
11686 {
11687 case DT_RELSZ:
11688 /* Reduce DT_RELSZ to account for any relocations we
11689 decided not to make. This is for the n64 irix rld,
11690 which doesn't seem to apply any relocations if there
11691 are trailing null entries. */
0a44bf69 11692 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11693 dyn.d_un.d_val = (s->reloc_count
11694 * (ABI_64_P (output_bfd)
11695 ? sizeof (Elf64_Mips_External_Rel)
11696 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11697 /* Adjust the section size too. Tools like the prelinker
11698 can reasonably expect the values to the same. */
11699 elf_section_data (s->output_section)->this_hdr.sh_size
11700 = dyn.d_un.d_val;
3133ddbf
DJ
11701 break;
11702
11703 default:
11704 swap_out_p = FALSE;
11705 break;
11706 }
11707
11708 if (swap_out_p)
11709 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11710 (dynobj, &dyn, b);
11711 }
11712 }
11713
b49e97c9 11714 {
b49e97c9
TS
11715 asection *s;
11716 Elf32_compact_rel cpt;
11717
b49e97c9
TS
11718 if (SGI_COMPAT (output_bfd))
11719 {
11720 /* Write .compact_rel section out. */
3d4d4302 11721 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11722 if (s != NULL)
11723 {
11724 cpt.id1 = 1;
11725 cpt.num = s->reloc_count;
11726 cpt.id2 = 2;
11727 cpt.offset = (s->output_section->filepos
11728 + sizeof (Elf32_External_compact_rel));
11729 cpt.reserved0 = 0;
11730 cpt.reserved1 = 0;
11731 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11732 ((Elf32_External_compact_rel *)
11733 s->contents));
11734
11735 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11736 if (htab->sstubs != NULL)
b49e97c9
TS
11737 {
11738 file_ptr dummy_offset;
11739
4e41d0d7
RS
11740 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11741 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11742 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11743 htab->function_stub_size);
b49e97c9
TS
11744 }
11745 }
11746 }
11747
0a44bf69
RS
11748 /* The psABI says that the dynamic relocations must be sorted in
11749 increasing order of r_symndx. The VxWorks EABI doesn't require
11750 this, and because the code below handles REL rather than RELA
11751 relocations, using it for VxWorks would be outright harmful. */
11752 if (!htab->is_vxworks)
b49e97c9 11753 {
0a44bf69
RS
11754 s = mips_elf_rel_dyn_section (info, FALSE);
11755 if (s != NULL
11756 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11757 {
11758 reldyn_sorting_bfd = output_bfd;
b49e97c9 11759
0a44bf69
RS
11760 if (ABI_64_P (output_bfd))
11761 qsort ((Elf64_External_Rel *) s->contents + 1,
11762 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11763 sort_dynamic_relocs_64);
11764 else
11765 qsort ((Elf32_External_Rel *) s->contents + 1,
11766 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11767 sort_dynamic_relocs);
11768 }
b49e97c9 11769 }
b49e97c9
TS
11770 }
11771
861fb55a 11772 if (htab->splt && htab->splt->size > 0)
0a44bf69 11773 {
861fb55a
DJ
11774 if (htab->is_vxworks)
11775 {
0e1862bb 11776 if (bfd_link_pic (info))
861fb55a
DJ
11777 mips_vxworks_finish_shared_plt (output_bfd, info);
11778 else
11779 mips_vxworks_finish_exec_plt (output_bfd, info);
11780 }
0a44bf69 11781 else
861fb55a 11782 {
0e1862bb 11783 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11784 if (!mips_finish_exec_plt (output_bfd, info))
11785 return FALSE;
861fb55a 11786 }
0a44bf69 11787 }
b34976b6 11788 return TRUE;
b49e97c9
TS
11789}
11790
b49e97c9 11791
64543e1a
RS
11792/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11793
11794static void
9719ad41 11795mips_set_isa_flags (bfd *abfd)
b49e97c9 11796{
64543e1a 11797 flagword val;
b49e97c9
TS
11798
11799 switch (bfd_get_mach (abfd))
11800 {
11801 default:
11802 case bfd_mach_mips3000:
11803 val = E_MIPS_ARCH_1;
11804 break;
11805
11806 case bfd_mach_mips3900:
11807 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11808 break;
11809
11810 case bfd_mach_mips6000:
11811 val = E_MIPS_ARCH_2;
11812 break;
11813
11814 case bfd_mach_mips4000:
11815 case bfd_mach_mips4300:
11816 case bfd_mach_mips4400:
11817 case bfd_mach_mips4600:
11818 val = E_MIPS_ARCH_3;
11819 break;
11820
11821 case bfd_mach_mips4010:
11822 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11823 break;
11824
11825 case bfd_mach_mips4100:
11826 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11827 break;
11828
11829 case bfd_mach_mips4111:
11830 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11831 break;
11832
00707a0e
RS
11833 case bfd_mach_mips4120:
11834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11835 break;
11836
b49e97c9
TS
11837 case bfd_mach_mips4650:
11838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11839 break;
11840
00707a0e
RS
11841 case bfd_mach_mips5400:
11842 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11843 break;
11844
11845 case bfd_mach_mips5500:
11846 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11847 break;
11848
e407c74b
NC
11849 case bfd_mach_mips5900:
11850 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11851 break;
11852
0d2e43ed
ILT
11853 case bfd_mach_mips9000:
11854 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11855 break;
11856
b49e97c9 11857 case bfd_mach_mips5000:
5a7ea749 11858 case bfd_mach_mips7000:
b49e97c9
TS
11859 case bfd_mach_mips8000:
11860 case bfd_mach_mips10000:
11861 case bfd_mach_mips12000:
3aa3176b
TS
11862 case bfd_mach_mips14000:
11863 case bfd_mach_mips16000:
b49e97c9
TS
11864 val = E_MIPS_ARCH_4;
11865 break;
11866
11867 case bfd_mach_mips5:
11868 val = E_MIPS_ARCH_5;
11869 break;
11870
350cc38d
MS
11871 case bfd_mach_mips_loongson_2e:
11872 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11873 break;
11874
11875 case bfd_mach_mips_loongson_2f:
11876 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11877 break;
11878
b49e97c9
TS
11879 case bfd_mach_mips_sb1:
11880 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11881 break;
11882
d051516a 11883 case bfd_mach_mips_loongson_3a:
4ba154f5 11884 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11885 break;
11886
6f179bd0 11887 case bfd_mach_mips_octeon:
dd6a37e7 11888 case bfd_mach_mips_octeonp:
6f179bd0
AN
11889 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11890 break;
11891
2c629856
N
11892 case bfd_mach_mips_octeon3:
11893 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11894 break;
11895
52b6b6b9
JM
11896 case bfd_mach_mips_xlr:
11897 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11898 break;
11899
432233b3
AP
11900 case bfd_mach_mips_octeon2:
11901 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11902 break;
11903
b49e97c9
TS
11904 case bfd_mach_mipsisa32:
11905 val = E_MIPS_ARCH_32;
11906 break;
11907
11908 case bfd_mach_mipsisa64:
11909 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11910 break;
11911
11912 case bfd_mach_mipsisa32r2:
ae52f483
AB
11913 case bfd_mach_mipsisa32r3:
11914 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11915 val = E_MIPS_ARCH_32R2;
11916 break;
5f74bc13
CD
11917
11918 case bfd_mach_mipsisa64r2:
ae52f483
AB
11919 case bfd_mach_mipsisa64r3:
11920 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11921 val = E_MIPS_ARCH_64R2;
11922 break;
7361da2c
AB
11923
11924 case bfd_mach_mipsisa32r6:
11925 val = E_MIPS_ARCH_32R6;
11926 break;
11927
11928 case bfd_mach_mipsisa64r6:
11929 val = E_MIPS_ARCH_64R6;
11930 break;
b49e97c9 11931 }
b49e97c9
TS
11932 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11933 elf_elfheader (abfd)->e_flags |= val;
11934
64543e1a
RS
11935}
11936
11937
28dbcedc
AM
11938/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11939 Don't do so for code sections. We want to keep ordering of HI16/LO16
11940 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11941 relocs to be sorted. */
11942
11943bfd_boolean
11944_bfd_mips_elf_sort_relocs_p (asection *sec)
11945{
11946 return (sec->flags & SEC_CODE) == 0;
11947}
11948
11949
64543e1a
RS
11950/* The final processing done just before writing out a MIPS ELF object
11951 file. This gets the MIPS architecture right based on the machine
11952 number. This is used by both the 32-bit and the 64-bit ABI. */
11953
11954void
9719ad41
RS
11955_bfd_mips_elf_final_write_processing (bfd *abfd,
11956 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11957{
11958 unsigned int i;
11959 Elf_Internal_Shdr **hdrpp;
11960 const char *name;
11961 asection *sec;
11962
11963 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11964 is nonzero. This is for compatibility with old objects, which used
11965 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11966 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11967 mips_set_isa_flags (abfd);
11968
b49e97c9
TS
11969 /* Set the sh_info field for .gptab sections and other appropriate
11970 info for each special section. */
11971 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11972 i < elf_numsections (abfd);
11973 i++, hdrpp++)
11974 {
11975 switch ((*hdrpp)->sh_type)
11976 {
11977 case SHT_MIPS_MSYM:
11978 case SHT_MIPS_LIBLIST:
11979 sec = bfd_get_section_by_name (abfd, ".dynstr");
11980 if (sec != NULL)
11981 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11982 break;
11983
11984 case SHT_MIPS_GPTAB:
11985 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11986 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11987 BFD_ASSERT (name != NULL
0112cd26 11988 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11989 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11990 BFD_ASSERT (sec != NULL);
11991 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11992 break;
11993
11994 case SHT_MIPS_CONTENT:
11995 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11996 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11997 BFD_ASSERT (name != NULL
0112cd26 11998 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11999 sec = bfd_get_section_by_name (abfd,
12000 name + sizeof ".MIPS.content" - 1);
12001 BFD_ASSERT (sec != NULL);
12002 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12003 break;
12004
12005 case SHT_MIPS_SYMBOL_LIB:
12006 sec = bfd_get_section_by_name (abfd, ".dynsym");
12007 if (sec != NULL)
12008 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12009 sec = bfd_get_section_by_name (abfd, ".liblist");
12010 if (sec != NULL)
12011 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12012 break;
12013
12014 case SHT_MIPS_EVENTS:
12015 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12016 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12017 BFD_ASSERT (name != NULL);
0112cd26 12018 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12019 sec = bfd_get_section_by_name (abfd,
12020 name + sizeof ".MIPS.events" - 1);
12021 else
12022 {
0112cd26 12023 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12024 sec = bfd_get_section_by_name (abfd,
12025 (name
12026 + sizeof ".MIPS.post_rel" - 1));
12027 }
12028 BFD_ASSERT (sec != NULL);
12029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12030 break;
12031
12032 }
12033 }
12034}
12035\f
8dc1a139 12036/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12037 segments. */
12038
12039int
a6b96beb
AM
12040_bfd_mips_elf_additional_program_headers (bfd *abfd,
12041 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12042{
12043 asection *s;
12044 int ret = 0;
12045
12046 /* See if we need a PT_MIPS_REGINFO segment. */
12047 s = bfd_get_section_by_name (abfd, ".reginfo");
12048 if (s && (s->flags & SEC_LOAD))
12049 ++ret;
12050
351cdf24
MF
12051 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12052 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12053 ++ret;
12054
b49e97c9
TS
12055 /* See if we need a PT_MIPS_OPTIONS segment. */
12056 if (IRIX_COMPAT (abfd) == ict_irix6
12057 && bfd_get_section_by_name (abfd,
12058 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12059 ++ret;
12060
12061 /* See if we need a PT_MIPS_RTPROC segment. */
12062 if (IRIX_COMPAT (abfd) == ict_irix5
12063 && bfd_get_section_by_name (abfd, ".dynamic")
12064 && bfd_get_section_by_name (abfd, ".mdebug"))
12065 ++ret;
12066
98c904a8
RS
12067 /* Allocate a PT_NULL header in dynamic objects. See
12068 _bfd_mips_elf_modify_segment_map for details. */
12069 if (!SGI_COMPAT (abfd)
12070 && bfd_get_section_by_name (abfd, ".dynamic"))
12071 ++ret;
12072
b49e97c9
TS
12073 return ret;
12074}
12075
8dc1a139 12076/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12077
b34976b6 12078bfd_boolean
9719ad41 12079_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12080 struct bfd_link_info *info)
b49e97c9
TS
12081{
12082 asection *s;
12083 struct elf_segment_map *m, **pm;
12084 bfd_size_type amt;
12085
12086 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12087 segment. */
12088 s = bfd_get_section_by_name (abfd, ".reginfo");
12089 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12090 {
12bd6957 12091 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12092 if (m->p_type == PT_MIPS_REGINFO)
12093 break;
12094 if (m == NULL)
12095 {
12096 amt = sizeof *m;
9719ad41 12097 m = bfd_zalloc (abfd, amt);
b49e97c9 12098 if (m == NULL)
b34976b6 12099 return FALSE;
b49e97c9
TS
12100
12101 m->p_type = PT_MIPS_REGINFO;
12102 m->count = 1;
12103 m->sections[0] = s;
12104
12105 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12106 pm = &elf_seg_map (abfd);
b49e97c9
TS
12107 while (*pm != NULL
12108 && ((*pm)->p_type == PT_PHDR
12109 || (*pm)->p_type == PT_INTERP))
12110 pm = &(*pm)->next;
12111
12112 m->next = *pm;
12113 *pm = m;
12114 }
12115 }
12116
351cdf24
MF
12117 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12118 segment. */
12119 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12120 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12121 {
12122 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12123 if (m->p_type == PT_MIPS_ABIFLAGS)
12124 break;
12125 if (m == NULL)
12126 {
12127 amt = sizeof *m;
12128 m = bfd_zalloc (abfd, amt);
12129 if (m == NULL)
12130 return FALSE;
12131
12132 m->p_type = PT_MIPS_ABIFLAGS;
12133 m->count = 1;
12134 m->sections[0] = s;
12135
12136 /* We want to put it after the PHDR and INTERP segments. */
12137 pm = &elf_seg_map (abfd);
12138 while (*pm != NULL
12139 && ((*pm)->p_type == PT_PHDR
12140 || (*pm)->p_type == PT_INTERP))
12141 pm = &(*pm)->next;
12142
12143 m->next = *pm;
12144 *pm = m;
12145 }
12146 }
12147
b49e97c9
TS
12148 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12149 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12150 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12151 table. */
c1fd6598
AO
12152 if (NEWABI_P (abfd)
12153 /* On non-IRIX6 new abi, we'll have already created a segment
12154 for this section, so don't create another. I'm not sure this
12155 is not also the case for IRIX 6, but I can't test it right
12156 now. */
12157 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12158 {
12159 for (s = abfd->sections; s; s = s->next)
12160 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12161 break;
12162
12163 if (s)
12164 {
12165 struct elf_segment_map *options_segment;
12166
12bd6957 12167 pm = &elf_seg_map (abfd);
98a8deaf
RS
12168 while (*pm != NULL
12169 && ((*pm)->p_type == PT_PHDR
12170 || (*pm)->p_type == PT_INTERP))
12171 pm = &(*pm)->next;
b49e97c9 12172
8ded5a0f
AM
12173 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12174 {
12175 amt = sizeof (struct elf_segment_map);
12176 options_segment = bfd_zalloc (abfd, amt);
12177 options_segment->next = *pm;
12178 options_segment->p_type = PT_MIPS_OPTIONS;
12179 options_segment->p_flags = PF_R;
12180 options_segment->p_flags_valid = TRUE;
12181 options_segment->count = 1;
12182 options_segment->sections[0] = s;
12183 *pm = options_segment;
12184 }
b49e97c9
TS
12185 }
12186 }
12187 else
12188 {
12189 if (IRIX_COMPAT (abfd) == ict_irix5)
12190 {
12191 /* If there are .dynamic and .mdebug sections, we make a room
12192 for the RTPROC header. FIXME: Rewrite without section names. */
12193 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12194 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12195 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12196 {
12bd6957 12197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12198 if (m->p_type == PT_MIPS_RTPROC)
12199 break;
12200 if (m == NULL)
12201 {
12202 amt = sizeof *m;
9719ad41 12203 m = bfd_zalloc (abfd, amt);
b49e97c9 12204 if (m == NULL)
b34976b6 12205 return FALSE;
b49e97c9
TS
12206
12207 m->p_type = PT_MIPS_RTPROC;
12208
12209 s = bfd_get_section_by_name (abfd, ".rtproc");
12210 if (s == NULL)
12211 {
12212 m->count = 0;
12213 m->p_flags = 0;
12214 m->p_flags_valid = 1;
12215 }
12216 else
12217 {
12218 m->count = 1;
12219 m->sections[0] = s;
12220 }
12221
12222 /* We want to put it after the DYNAMIC segment. */
12bd6957 12223 pm = &elf_seg_map (abfd);
b49e97c9
TS
12224 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12225 pm = &(*pm)->next;
12226 if (*pm != NULL)
12227 pm = &(*pm)->next;
12228
12229 m->next = *pm;
12230 *pm = m;
12231 }
12232 }
12233 }
8dc1a139 12234 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12235 .dynstr, .dynsym, and .hash sections, and everything in
12236 between. */
12bd6957 12237 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12238 pm = &(*pm)->next)
12239 if ((*pm)->p_type == PT_DYNAMIC)
12240 break;
12241 m = *pm;
f6f62d6f
RS
12242 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12243 glibc's dynamic linker has traditionally derived the number of
12244 tags from the p_filesz field, and sometimes allocates stack
12245 arrays of that size. An overly-big PT_DYNAMIC segment can
12246 be actively harmful in such cases. Making PT_DYNAMIC contain
12247 other sections can also make life hard for the prelinker,
12248 which might move one of the other sections to a different
12249 PT_LOAD segment. */
12250 if (SGI_COMPAT (abfd)
12251 && m != NULL
12252 && m->count == 1
12253 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12254 {
12255 static const char *sec_names[] =
12256 {
12257 ".dynamic", ".dynstr", ".dynsym", ".hash"
12258 };
12259 bfd_vma low, high;
12260 unsigned int i, c;
12261 struct elf_segment_map *n;
12262
792b4a53 12263 low = ~(bfd_vma) 0;
b49e97c9
TS
12264 high = 0;
12265 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12266 {
12267 s = bfd_get_section_by_name (abfd, sec_names[i]);
12268 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12269 {
12270 bfd_size_type sz;
12271
12272 if (low > s->vma)
12273 low = s->vma;
eea6121a 12274 sz = s->size;
b49e97c9
TS
12275 if (high < s->vma + sz)
12276 high = s->vma + sz;
12277 }
12278 }
12279
12280 c = 0;
12281 for (s = abfd->sections; s != NULL; s = s->next)
12282 if ((s->flags & SEC_LOAD) != 0
12283 && s->vma >= low
eea6121a 12284 && s->vma + s->size <= high)
b49e97c9
TS
12285 ++c;
12286
12287 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12288 n = bfd_zalloc (abfd, amt);
b49e97c9 12289 if (n == NULL)
b34976b6 12290 return FALSE;
b49e97c9
TS
12291 *n = *m;
12292 n->count = c;
12293
12294 i = 0;
12295 for (s = abfd->sections; s != NULL; s = s->next)
12296 {
12297 if ((s->flags & SEC_LOAD) != 0
12298 && s->vma >= low
eea6121a 12299 && s->vma + s->size <= high)
b49e97c9
TS
12300 {
12301 n->sections[i] = s;
12302 ++i;
12303 }
12304 }
12305
12306 *pm = n;
12307 }
12308 }
12309
98c904a8
RS
12310 /* Allocate a spare program header in dynamic objects so that tools
12311 like the prelinker can add an extra PT_LOAD entry.
12312
12313 If the prelinker needs to make room for a new PT_LOAD entry, its
12314 standard procedure is to move the first (read-only) sections into
12315 the new (writable) segment. However, the MIPS ABI requires
12316 .dynamic to be in a read-only segment, and the section will often
12317 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12318
12319 Although the prelinker could in principle move .dynamic to a
12320 writable segment, it seems better to allocate a spare program
12321 header instead, and avoid the need to move any sections.
12322 There is a long tradition of allocating spare dynamic tags,
12323 so allocating a spare program header seems like a natural
7c8b76cc
JM
12324 extension.
12325
12326 If INFO is NULL, we may be copying an already prelinked binary
12327 with objcopy or strip, so do not add this header. */
12328 if (info != NULL
12329 && !SGI_COMPAT (abfd)
98c904a8
RS
12330 && bfd_get_section_by_name (abfd, ".dynamic"))
12331 {
12bd6957 12332 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12333 if ((*pm)->p_type == PT_NULL)
12334 break;
12335 if (*pm == NULL)
12336 {
12337 m = bfd_zalloc (abfd, sizeof (*m));
12338 if (m == NULL)
12339 return FALSE;
12340
12341 m->p_type = PT_NULL;
12342 *pm = m;
12343 }
12344 }
12345
b34976b6 12346 return TRUE;
b49e97c9
TS
12347}
12348\f
12349/* Return the section that should be marked against GC for a given
12350 relocation. */
12351
12352asection *
9719ad41 12353_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12354 struct bfd_link_info *info,
9719ad41
RS
12355 Elf_Internal_Rela *rel,
12356 struct elf_link_hash_entry *h,
12357 Elf_Internal_Sym *sym)
b49e97c9
TS
12358{
12359 /* ??? Do mips16 stub sections need to be handled special? */
12360
12361 if (h != NULL)
07adf181
AM
12362 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12363 {
12364 case R_MIPS_GNU_VTINHERIT:
12365 case R_MIPS_GNU_VTENTRY:
12366 return NULL;
12367 }
b49e97c9 12368
07adf181 12369 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12370}
12371
12372/* Update the got entry reference counts for the section being removed. */
12373
b34976b6 12374bfd_boolean
9719ad41
RS
12375_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12376 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12377 asection *sec ATTRIBUTE_UNUSED,
12378 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12379{
12380#if 0
12381 Elf_Internal_Shdr *symtab_hdr;
12382 struct elf_link_hash_entry **sym_hashes;
12383 bfd_signed_vma *local_got_refcounts;
12384 const Elf_Internal_Rela *rel, *relend;
12385 unsigned long r_symndx;
12386 struct elf_link_hash_entry *h;
12387
0e1862bb 12388 if (bfd_link_relocatable (info))
7dda2462
TG
12389 return TRUE;
12390
b49e97c9
TS
12391 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12392 sym_hashes = elf_sym_hashes (abfd);
12393 local_got_refcounts = elf_local_got_refcounts (abfd);
12394
12395 relend = relocs + sec->reloc_count;
12396 for (rel = relocs; rel < relend; rel++)
12397 switch (ELF_R_TYPE (abfd, rel->r_info))
12398 {
738e5348
RS
12399 case R_MIPS16_GOT16:
12400 case R_MIPS16_CALL16:
b49e97c9
TS
12401 case R_MIPS_GOT16:
12402 case R_MIPS_CALL16:
12403 case R_MIPS_CALL_HI16:
12404 case R_MIPS_CALL_LO16:
12405 case R_MIPS_GOT_HI16:
12406 case R_MIPS_GOT_LO16:
4a14403c
TS
12407 case R_MIPS_GOT_DISP:
12408 case R_MIPS_GOT_PAGE:
12409 case R_MIPS_GOT_OFST:
df58fc94
RS
12410 case R_MICROMIPS_GOT16:
12411 case R_MICROMIPS_CALL16:
12412 case R_MICROMIPS_CALL_HI16:
12413 case R_MICROMIPS_CALL_LO16:
12414 case R_MICROMIPS_GOT_HI16:
12415 case R_MICROMIPS_GOT_LO16:
12416 case R_MICROMIPS_GOT_DISP:
12417 case R_MICROMIPS_GOT_PAGE:
12418 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12419 /* ??? It would seem that the existing MIPS code does no sort
12420 of reference counting or whatnot on its GOT and PLT entries,
12421 so it is not possible to garbage collect them at this time. */
12422 break;
12423
12424 default:
12425 break;
12426 }
12427#endif
12428
b34976b6 12429 return TRUE;
b49e97c9 12430}
351cdf24
MF
12431
12432/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12433
12434bfd_boolean
12435_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12436 elf_gc_mark_hook_fn gc_mark_hook)
12437{
12438 bfd *sub;
12439
12440 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12441
12442 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12443 {
12444 asection *o;
12445
12446 if (! is_mips_elf (sub))
12447 continue;
12448
12449 for (o = sub->sections; o != NULL; o = o->next)
12450 if (!o->gc_mark
12451 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12452 (bfd_get_section_name (sub, o)))
12453 {
12454 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12455 return FALSE;
12456 }
12457 }
12458
12459 return TRUE;
12460}
b49e97c9
TS
12461\f
12462/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12463 hiding the old indirect symbol. Process additional relocation
12464 information. Also called for weakdefs, in which case we just let
12465 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12466
12467void
fcfa13d2 12468_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12469 struct elf_link_hash_entry *dir,
12470 struct elf_link_hash_entry *ind)
b49e97c9
TS
12471{
12472 struct mips_elf_link_hash_entry *dirmips, *indmips;
12473
fcfa13d2 12474 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12475
861fb55a
DJ
12476 dirmips = (struct mips_elf_link_hash_entry *) dir;
12477 indmips = (struct mips_elf_link_hash_entry *) ind;
12478 /* Any absolute non-dynamic relocations against an indirect or weak
12479 definition will be against the target symbol. */
12480 if (indmips->has_static_relocs)
12481 dirmips->has_static_relocs = TRUE;
12482
b49e97c9
TS
12483 if (ind->root.type != bfd_link_hash_indirect)
12484 return;
12485
b49e97c9
TS
12486 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12487 if (indmips->readonly_reloc)
b34976b6 12488 dirmips->readonly_reloc = TRUE;
b49e97c9 12489 if (indmips->no_fn_stub)
b34976b6 12490 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12491 if (indmips->fn_stub)
12492 {
12493 dirmips->fn_stub = indmips->fn_stub;
12494 indmips->fn_stub = NULL;
12495 }
12496 if (indmips->need_fn_stub)
12497 {
12498 dirmips->need_fn_stub = TRUE;
12499 indmips->need_fn_stub = FALSE;
12500 }
12501 if (indmips->call_stub)
12502 {
12503 dirmips->call_stub = indmips->call_stub;
12504 indmips->call_stub = NULL;
12505 }
12506 if (indmips->call_fp_stub)
12507 {
12508 dirmips->call_fp_stub = indmips->call_fp_stub;
12509 indmips->call_fp_stub = NULL;
12510 }
634835ae
RS
12511 if (indmips->global_got_area < dirmips->global_got_area)
12512 dirmips->global_got_area = indmips->global_got_area;
12513 if (indmips->global_got_area < GGA_NONE)
12514 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12515 if (indmips->has_nonpic_branches)
12516 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12517}
b49e97c9 12518\f
d01414a5
TS
12519#define PDR_SIZE 32
12520
b34976b6 12521bfd_boolean
9719ad41
RS
12522_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12523 struct bfd_link_info *info)
d01414a5
TS
12524{
12525 asection *o;
b34976b6 12526 bfd_boolean ret = FALSE;
d01414a5
TS
12527 unsigned char *tdata;
12528 size_t i, skip;
12529
12530 o = bfd_get_section_by_name (abfd, ".pdr");
12531 if (! o)
b34976b6 12532 return FALSE;
eea6121a 12533 if (o->size == 0)
b34976b6 12534 return FALSE;
eea6121a 12535 if (o->size % PDR_SIZE != 0)
b34976b6 12536 return FALSE;
d01414a5
TS
12537 if (o->output_section != NULL
12538 && bfd_is_abs_section (o->output_section))
b34976b6 12539 return FALSE;
d01414a5 12540
eea6121a 12541 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12542 if (! tdata)
b34976b6 12543 return FALSE;
d01414a5 12544
9719ad41 12545 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12546 info->keep_memory);
d01414a5
TS
12547 if (!cookie->rels)
12548 {
12549 free (tdata);
b34976b6 12550 return FALSE;
d01414a5
TS
12551 }
12552
12553 cookie->rel = cookie->rels;
12554 cookie->relend = cookie->rels + o->reloc_count;
12555
eea6121a 12556 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12557 {
c152c796 12558 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12559 {
12560 tdata[i] = 1;
12561 skip ++;
12562 }
12563 }
12564
12565 if (skip != 0)
12566 {
f0abc2a1 12567 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12568 if (o->rawsize == 0)
12569 o->rawsize = o->size;
eea6121a 12570 o->size -= skip * PDR_SIZE;
b34976b6 12571 ret = TRUE;
d01414a5
TS
12572 }
12573 else
12574 free (tdata);
12575
12576 if (! info->keep_memory)
12577 free (cookie->rels);
12578
12579 return ret;
12580}
12581
b34976b6 12582bfd_boolean
9719ad41 12583_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12584{
12585 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12586 return TRUE;
12587 return FALSE;
53bfd6b4 12588}
d01414a5 12589
b34976b6 12590bfd_boolean
c7b8f16e
JB
12591_bfd_mips_elf_write_section (bfd *output_bfd,
12592 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12593 asection *sec, bfd_byte *contents)
d01414a5
TS
12594{
12595 bfd_byte *to, *from, *end;
12596 int i;
12597
12598 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12599 return FALSE;
d01414a5 12600
f0abc2a1 12601 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12602 return FALSE;
d01414a5
TS
12603
12604 to = contents;
eea6121a 12605 end = contents + sec->size;
d01414a5
TS
12606 for (from = contents, i = 0;
12607 from < end;
12608 from += PDR_SIZE, i++)
12609 {
f0abc2a1 12610 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12611 continue;
12612 if (to != from)
12613 memcpy (to, from, PDR_SIZE);
12614 to += PDR_SIZE;
12615 }
12616 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12617 sec->output_offset, sec->size);
b34976b6 12618 return TRUE;
d01414a5 12619}
53bfd6b4 12620\f
df58fc94
RS
12621/* microMIPS code retains local labels for linker relaxation. Omit them
12622 from output by default for clarity. */
12623
12624bfd_boolean
12625_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12626{
12627 return _bfd_elf_is_local_label_name (abfd, sym->name);
12628}
12629
b49e97c9
TS
12630/* MIPS ELF uses a special find_nearest_line routine in order the
12631 handle the ECOFF debugging information. */
12632
12633struct mips_elf_find_line
12634{
12635 struct ecoff_debug_info d;
12636 struct ecoff_find_line i;
12637};
12638
b34976b6 12639bfd_boolean
fb167eb2
AM
12640_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12641 asection *section, bfd_vma offset,
9719ad41
RS
12642 const char **filename_ptr,
12643 const char **functionname_ptr,
fb167eb2
AM
12644 unsigned int *line_ptr,
12645 unsigned int *discriminator_ptr)
b49e97c9
TS
12646{
12647 asection *msec;
12648
fb167eb2 12649 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12650 filename_ptr, functionname_ptr,
fb167eb2
AM
12651 line_ptr, discriminator_ptr,
12652 dwarf_debug_sections,
12653 ABI_64_P (abfd) ? 8 : 0,
12654 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12655 return TRUE;
b49e97c9 12656
fb167eb2 12657 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12658 filename_ptr, functionname_ptr,
fb167eb2 12659 line_ptr))
b34976b6 12660 return TRUE;
b49e97c9
TS
12661
12662 msec = bfd_get_section_by_name (abfd, ".mdebug");
12663 if (msec != NULL)
12664 {
12665 flagword origflags;
12666 struct mips_elf_find_line *fi;
12667 const struct ecoff_debug_swap * const swap =
12668 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12669
12670 /* If we are called during a link, mips_elf_final_link may have
12671 cleared the SEC_HAS_CONTENTS field. We force it back on here
12672 if appropriate (which it normally will be). */
12673 origflags = msec->flags;
12674 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12675 msec->flags |= SEC_HAS_CONTENTS;
12676
698600e4 12677 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12678 if (fi == NULL)
12679 {
12680 bfd_size_type external_fdr_size;
12681 char *fraw_src;
12682 char *fraw_end;
12683 struct fdr *fdr_ptr;
12684 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12685
9719ad41 12686 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12687 if (fi == NULL)
12688 {
12689 msec->flags = origflags;
b34976b6 12690 return FALSE;
b49e97c9
TS
12691 }
12692
12693 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12694 {
12695 msec->flags = origflags;
b34976b6 12696 return FALSE;
b49e97c9
TS
12697 }
12698
12699 /* Swap in the FDR information. */
12700 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12701 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12702 if (fi->d.fdr == NULL)
12703 {
12704 msec->flags = origflags;
b34976b6 12705 return FALSE;
b49e97c9
TS
12706 }
12707 external_fdr_size = swap->external_fdr_size;
12708 fdr_ptr = fi->d.fdr;
12709 fraw_src = (char *) fi->d.external_fdr;
12710 fraw_end = (fraw_src
12711 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12712 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12713 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12714
698600e4 12715 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12716
12717 /* Note that we don't bother to ever free this information.
12718 find_nearest_line is either called all the time, as in
12719 objdump -l, so the information should be saved, or it is
12720 rarely called, as in ld error messages, so the memory
12721 wasted is unimportant. Still, it would probably be a
12722 good idea for free_cached_info to throw it away. */
12723 }
12724
12725 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12726 &fi->i, filename_ptr, functionname_ptr,
12727 line_ptr))
12728 {
12729 msec->flags = origflags;
b34976b6 12730 return TRUE;
b49e97c9
TS
12731 }
12732
12733 msec->flags = origflags;
12734 }
12735
12736 /* Fall back on the generic ELF find_nearest_line routine. */
12737
fb167eb2 12738 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12739 filename_ptr, functionname_ptr,
fb167eb2 12740 line_ptr, discriminator_ptr);
b49e97c9 12741}
4ab527b0
FF
12742
12743bfd_boolean
12744_bfd_mips_elf_find_inliner_info (bfd *abfd,
12745 const char **filename_ptr,
12746 const char **functionname_ptr,
12747 unsigned int *line_ptr)
12748{
12749 bfd_boolean found;
12750 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12751 functionname_ptr, line_ptr,
12752 & elf_tdata (abfd)->dwarf2_find_line_info);
12753 return found;
12754}
12755
b49e97c9
TS
12756\f
12757/* When are writing out the .options or .MIPS.options section,
12758 remember the bytes we are writing out, so that we can install the
12759 GP value in the section_processing routine. */
12760
b34976b6 12761bfd_boolean
9719ad41
RS
12762_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12763 const void *location,
12764 file_ptr offset, bfd_size_type count)
b49e97c9 12765{
cc2e31b9 12766 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12767 {
12768 bfd_byte *c;
12769
12770 if (elf_section_data (section) == NULL)
12771 {
12772 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12773 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12774 if (elf_section_data (section) == NULL)
b34976b6 12775 return FALSE;
b49e97c9 12776 }
f0abc2a1 12777 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12778 if (c == NULL)
12779 {
eea6121a 12780 c = bfd_zalloc (abfd, section->size);
b49e97c9 12781 if (c == NULL)
b34976b6 12782 return FALSE;
f0abc2a1 12783 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12784 }
12785
9719ad41 12786 memcpy (c + offset, location, count);
b49e97c9
TS
12787 }
12788
12789 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12790 count);
12791}
12792
12793/* This is almost identical to bfd_generic_get_... except that some
12794 MIPS relocations need to be handled specially. Sigh. */
12795
12796bfd_byte *
9719ad41
RS
12797_bfd_elf_mips_get_relocated_section_contents
12798 (bfd *abfd,
12799 struct bfd_link_info *link_info,
12800 struct bfd_link_order *link_order,
12801 bfd_byte *data,
12802 bfd_boolean relocatable,
12803 asymbol **symbols)
b49e97c9
TS
12804{
12805 /* Get enough memory to hold the stuff */
12806 bfd *input_bfd = link_order->u.indirect.section->owner;
12807 asection *input_section = link_order->u.indirect.section;
eea6121a 12808 bfd_size_type sz;
b49e97c9
TS
12809
12810 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12811 arelent **reloc_vector = NULL;
12812 long reloc_count;
12813
12814 if (reloc_size < 0)
12815 goto error_return;
12816
9719ad41 12817 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12818 if (reloc_vector == NULL && reloc_size != 0)
12819 goto error_return;
12820
12821 /* read in the section */
eea6121a
AM
12822 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12823 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12824 goto error_return;
12825
b49e97c9
TS
12826 reloc_count = bfd_canonicalize_reloc (input_bfd,
12827 input_section,
12828 reloc_vector,
12829 symbols);
12830 if (reloc_count < 0)
12831 goto error_return;
12832
12833 if (reloc_count > 0)
12834 {
12835 arelent **parent;
12836 /* for mips */
12837 int gp_found;
12838 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12839
12840 {
12841 struct bfd_hash_entry *h;
12842 struct bfd_link_hash_entry *lh;
12843 /* Skip all this stuff if we aren't mixing formats. */
12844 if (abfd && input_bfd
12845 && abfd->xvec == input_bfd->xvec)
12846 lh = 0;
12847 else
12848 {
b34976b6 12849 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12850 lh = (struct bfd_link_hash_entry *) h;
12851 }
12852 lookup:
12853 if (lh)
12854 {
12855 switch (lh->type)
12856 {
12857 case bfd_link_hash_undefined:
12858 case bfd_link_hash_undefweak:
12859 case bfd_link_hash_common:
12860 gp_found = 0;
12861 break;
12862 case bfd_link_hash_defined:
12863 case bfd_link_hash_defweak:
12864 gp_found = 1;
12865 gp = lh->u.def.value;
12866 break;
12867 case bfd_link_hash_indirect:
12868 case bfd_link_hash_warning:
12869 lh = lh->u.i.link;
12870 /* @@FIXME ignoring warning for now */
12871 goto lookup;
12872 case bfd_link_hash_new:
12873 default:
12874 abort ();
12875 }
12876 }
12877 else
12878 gp_found = 0;
12879 }
12880 /* end mips */
9719ad41 12881 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12882 {
9719ad41 12883 char *error_message = NULL;
b49e97c9
TS
12884 bfd_reloc_status_type r;
12885
12886 /* Specific to MIPS: Deal with relocation types that require
12887 knowing the gp of the output bfd. */
12888 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12889
8236346f
EC
12890 /* If we've managed to find the gp and have a special
12891 function for the relocation then go ahead, else default
12892 to the generic handling. */
12893 if (gp_found
12894 && (*parent)->howto->special_function
12895 == _bfd_mips_elf32_gprel16_reloc)
12896 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12897 input_section, relocatable,
12898 data, gp);
12899 else
86324f90 12900 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12901 input_section,
12902 relocatable ? abfd : NULL,
12903 &error_message);
b49e97c9 12904
1049f94e 12905 if (relocatable)
b49e97c9
TS
12906 {
12907 asection *os = input_section->output_section;
12908
12909 /* A partial link, so keep the relocs */
12910 os->orelocation[os->reloc_count] = *parent;
12911 os->reloc_count++;
12912 }
12913
12914 if (r != bfd_reloc_ok)
12915 {
12916 switch (r)
12917 {
12918 case bfd_reloc_undefined:
12919 if (!((*link_info->callbacks->undefined_symbol)
12920 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 12921 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
12922 goto error_return;
12923 break;
12924 case bfd_reloc_dangerous:
9719ad41 12925 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
12926 if (!((*link_info->callbacks->reloc_dangerous)
12927 (link_info, error_message, input_bfd, input_section,
12928 (*parent)->address)))
12929 goto error_return;
12930 break;
12931 case bfd_reloc_overflow:
12932 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
12933 (link_info, NULL,
12934 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
12935 (*parent)->howto->name, (*parent)->addend,
12936 input_bfd, input_section, (*parent)->address)))
12937 goto error_return;
12938 break;
12939 case bfd_reloc_outofrange:
12940 default:
12941 abort ();
12942 break;
12943 }
12944
12945 }
12946 }
12947 }
12948 if (reloc_vector != NULL)
12949 free (reloc_vector);
12950 return data;
12951
12952error_return:
12953 if (reloc_vector != NULL)
12954 free (reloc_vector);
12955 return NULL;
12956}
12957\f
df58fc94
RS
12958static bfd_boolean
12959mips_elf_relax_delete_bytes (bfd *abfd,
12960 asection *sec, bfd_vma addr, int count)
12961{
12962 Elf_Internal_Shdr *symtab_hdr;
12963 unsigned int sec_shndx;
12964 bfd_byte *contents;
12965 Elf_Internal_Rela *irel, *irelend;
12966 Elf_Internal_Sym *isym;
12967 Elf_Internal_Sym *isymend;
12968 struct elf_link_hash_entry **sym_hashes;
12969 struct elf_link_hash_entry **end_hashes;
12970 struct elf_link_hash_entry **start_hashes;
12971 unsigned int symcount;
12972
12973 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12974 contents = elf_section_data (sec)->this_hdr.contents;
12975
12976 irel = elf_section_data (sec)->relocs;
12977 irelend = irel + sec->reloc_count;
12978
12979 /* Actually delete the bytes. */
12980 memmove (contents + addr, contents + addr + count,
12981 (size_t) (sec->size - addr - count));
12982 sec->size -= count;
12983
12984 /* Adjust all the relocs. */
12985 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12986 {
12987 /* Get the new reloc address. */
12988 if (irel->r_offset > addr)
12989 irel->r_offset -= count;
12990 }
12991
12992 BFD_ASSERT (addr % 2 == 0);
12993 BFD_ASSERT (count % 2 == 0);
12994
12995 /* Adjust the local symbols defined in this section. */
12996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12997 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12998 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12999 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13000 isym->st_value -= count;
13001
13002 /* Now adjust the global symbols defined in this section. */
13003 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13004 - symtab_hdr->sh_info);
13005 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13006 end_hashes = sym_hashes + symcount;
13007
13008 for (; sym_hashes < end_hashes; sym_hashes++)
13009 {
13010 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13011
13012 if ((sym_hash->root.type == bfd_link_hash_defined
13013 || sym_hash->root.type == bfd_link_hash_defweak)
13014 && sym_hash->root.u.def.section == sec)
13015 {
2309ddf2 13016 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13017
df58fc94
RS
13018 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13019 value &= MINUS_TWO;
13020 if (value > addr)
13021 sym_hash->root.u.def.value -= count;
13022 }
13023 }
13024
13025 return TRUE;
13026}
13027
13028
13029/* Opcodes needed for microMIPS relaxation as found in
13030 opcodes/micromips-opc.c. */
13031
13032struct opcode_descriptor {
13033 unsigned long match;
13034 unsigned long mask;
13035};
13036
13037/* The $ra register aka $31. */
13038
13039#define RA 31
13040
13041/* 32-bit instruction format register fields. */
13042
13043#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13044#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13045
13046/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13047
13048#define OP16_VALID_REG(r) \
13049 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13050
13051
13052/* 32-bit and 16-bit branches. */
13053
13054static const struct opcode_descriptor b_insns_32[] = {
13055 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13056 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13057 { 0, 0 } /* End marker for find_match(). */
13058};
13059
13060static const struct opcode_descriptor bc_insn_32 =
13061 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13062
13063static const struct opcode_descriptor bz_insn_32 =
13064 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13065
13066static const struct opcode_descriptor bzal_insn_32 =
13067 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13068
13069static const struct opcode_descriptor beq_insn_32 =
13070 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13071
13072static const struct opcode_descriptor b_insn_16 =
13073 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13074
13075static const struct opcode_descriptor bz_insn_16 =
c088dedf 13076 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13077
13078
13079/* 32-bit and 16-bit branch EQ and NE zero. */
13080
13081/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13082 eq and second the ne. This convention is used when replacing a
13083 32-bit BEQ/BNE with the 16-bit version. */
13084
13085#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13086
13087static const struct opcode_descriptor bz_rs_insns_32[] = {
13088 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13089 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13090 { 0, 0 } /* End marker for find_match(). */
13091};
13092
13093static const struct opcode_descriptor bz_rt_insns_32[] = {
13094 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13095 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13096 { 0, 0 } /* End marker for find_match(). */
13097};
13098
13099static const struct opcode_descriptor bzc_insns_32[] = {
13100 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13101 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13102 { 0, 0 } /* End marker for find_match(). */
13103};
13104
13105static const struct opcode_descriptor bz_insns_16[] = {
13106 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13107 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13108 { 0, 0 } /* End marker for find_match(). */
13109};
13110
13111/* Switch between a 5-bit register index and its 3-bit shorthand. */
13112
13113#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13114#define BZ16_REG_FIELD(r) \
13115 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13116
13117
13118/* 32-bit instructions with a delay slot. */
13119
13120static const struct opcode_descriptor jal_insn_32_bd16 =
13121 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13122
13123static const struct opcode_descriptor jal_insn_32_bd32 =
13124 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13125
13126static const struct opcode_descriptor jal_x_insn_32_bd32 =
13127 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13128
13129static const struct opcode_descriptor j_insn_32 =
13130 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13131
13132static const struct opcode_descriptor jalr_insn_32 =
13133 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13134
13135/* This table can be compacted, because no opcode replacement is made. */
13136
13137static const struct opcode_descriptor ds_insns_32_bd16[] = {
13138 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13139
13140 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13141 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13142
13143 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13144 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13145 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13146 { 0, 0 } /* End marker for find_match(). */
13147};
13148
13149/* This table can be compacted, because no opcode replacement is made. */
13150
13151static const struct opcode_descriptor ds_insns_32_bd32[] = {
13152 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13153
13154 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13155 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13156 { 0, 0 } /* End marker for find_match(). */
13157};
13158
13159
13160/* 16-bit instructions with a delay slot. */
13161
13162static const struct opcode_descriptor jalr_insn_16_bd16 =
13163 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13164
13165static const struct opcode_descriptor jalr_insn_16_bd32 =
13166 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13167
13168static const struct opcode_descriptor jr_insn_16 =
13169 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13170
13171#define JR16_REG(opcode) ((opcode) & 0x1f)
13172
13173/* This table can be compacted, because no opcode replacement is made. */
13174
13175static const struct opcode_descriptor ds_insns_16_bd16[] = {
13176 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13177
13178 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13179 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13180 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13181 { 0, 0 } /* End marker for find_match(). */
13182};
13183
13184
13185/* LUI instruction. */
13186
13187static const struct opcode_descriptor lui_insn =
13188 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13189
13190
13191/* ADDIU instruction. */
13192
13193static const struct opcode_descriptor addiu_insn =
13194 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13195
13196static const struct opcode_descriptor addiupc_insn =
13197 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13198
13199#define ADDIUPC_REG_FIELD(r) \
13200 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13201
13202
13203/* Relaxable instructions in a JAL delay slot: MOVE. */
13204
13205/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13206 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13207#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13208#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13209
13210#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13211#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13212
13213static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13214 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13215 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13216 { 0, 0 } /* End marker for find_match(). */
13217};
13218
13219static const struct opcode_descriptor move_insn_16 =
13220 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13221
13222
13223/* NOP instructions. */
13224
13225static const struct opcode_descriptor nop_insn_32 =
13226 { /* "nop", "", */ 0x00000000, 0xffffffff };
13227
13228static const struct opcode_descriptor nop_insn_16 =
13229 { /* "nop", "", */ 0x0c00, 0xffff };
13230
13231
13232/* Instruction match support. */
13233
13234#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13235
13236static int
13237find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13238{
13239 unsigned long indx;
13240
13241 for (indx = 0; insn[indx].mask != 0; indx++)
13242 if (MATCH (opcode, insn[indx]))
13243 return indx;
13244
13245 return -1;
13246}
13247
13248
13249/* Branch and delay slot decoding support. */
13250
13251/* If PTR points to what *might* be a 16-bit branch or jump, then
13252 return the minimum length of its delay slot, otherwise return 0.
13253 Non-zero results are not definitive as we might be checking against
13254 the second half of another instruction. */
13255
13256static int
13257check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13258{
13259 unsigned long opcode;
13260 int bdsize;
13261
13262 opcode = bfd_get_16 (abfd, ptr);
13263 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13264 /* 16-bit branch/jump with a 32-bit delay slot. */
13265 bdsize = 4;
13266 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13267 || find_match (opcode, ds_insns_16_bd16) >= 0)
13268 /* 16-bit branch/jump with a 16-bit delay slot. */
13269 bdsize = 2;
13270 else
13271 /* No delay slot. */
13272 bdsize = 0;
13273
13274 return bdsize;
13275}
13276
13277/* If PTR points to what *might* be a 32-bit branch or jump, then
13278 return the minimum length of its delay slot, otherwise return 0.
13279 Non-zero results are not definitive as we might be checking against
13280 the second half of another instruction. */
13281
13282static int
13283check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13284{
13285 unsigned long opcode;
13286 int bdsize;
13287
d21911ea 13288 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13289 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13290 /* 32-bit branch/jump with a 32-bit delay slot. */
13291 bdsize = 4;
13292 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13293 /* 32-bit branch/jump with a 16-bit delay slot. */
13294 bdsize = 2;
13295 else
13296 /* No delay slot. */
13297 bdsize = 0;
13298
13299 return bdsize;
13300}
13301
13302/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13303 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13304
13305static bfd_boolean
13306check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13307{
13308 unsigned long opcode;
13309
13310 opcode = bfd_get_16 (abfd, ptr);
13311 if (MATCH (opcode, b_insn_16)
13312 /* B16 */
13313 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13314 /* JR16 */
13315 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13316 /* BEQZ16, BNEZ16 */
13317 || (MATCH (opcode, jalr_insn_16_bd32)
13318 /* JALR16 */
13319 && reg != JR16_REG (opcode) && reg != RA))
13320 return TRUE;
13321
13322 return FALSE;
13323}
13324
13325/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13326 then return TRUE, otherwise FALSE. */
13327
f41e5fcc 13328static bfd_boolean
df58fc94
RS
13329check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13330{
13331 unsigned long opcode;
13332
d21911ea 13333 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13334 if (MATCH (opcode, j_insn_32)
13335 /* J */
13336 || MATCH (opcode, bc_insn_32)
13337 /* BC1F, BC1T, BC2F, BC2T */
13338 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13339 /* JAL, JALX */
13340 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13341 /* BGEZ, BGTZ, BLEZ, BLTZ */
13342 || (MATCH (opcode, bzal_insn_32)
13343 /* BGEZAL, BLTZAL */
13344 && reg != OP32_SREG (opcode) && reg != RA)
13345 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13346 /* JALR, JALR.HB, BEQ, BNE */
13347 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13348 return TRUE;
13349
13350 return FALSE;
13351}
13352
80cab405
MR
13353/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13354 IRELEND) at OFFSET indicate that there must be a compact branch there,
13355 then return TRUE, otherwise FALSE. */
df58fc94
RS
13356
13357static bfd_boolean
80cab405
MR
13358check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13359 const Elf_Internal_Rela *internal_relocs,
13360 const Elf_Internal_Rela *irelend)
df58fc94 13361{
80cab405
MR
13362 const Elf_Internal_Rela *irel;
13363 unsigned long opcode;
13364
d21911ea 13365 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13366 if (find_match (opcode, bzc_insns_32) < 0)
13367 return FALSE;
df58fc94
RS
13368
13369 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13370 if (irel->r_offset == offset
13371 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13372 return TRUE;
13373
df58fc94
RS
13374 return FALSE;
13375}
80cab405
MR
13376
13377/* Bitsize checking. */
13378#define IS_BITSIZE(val, N) \
13379 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13380 - (1ULL << ((N) - 1))) == (val))
13381
df58fc94
RS
13382\f
13383bfd_boolean
13384_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13385 struct bfd_link_info *link_info,
13386 bfd_boolean *again)
13387{
833794fc 13388 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13389 Elf_Internal_Shdr *symtab_hdr;
13390 Elf_Internal_Rela *internal_relocs;
13391 Elf_Internal_Rela *irel, *irelend;
13392 bfd_byte *contents = NULL;
13393 Elf_Internal_Sym *isymbuf = NULL;
13394
13395 /* Assume nothing changes. */
13396 *again = FALSE;
13397
13398 /* We don't have to do anything for a relocatable link, if
13399 this section does not have relocs, or if this is not a
13400 code section. */
13401
0e1862bb 13402 if (bfd_link_relocatable (link_info)
df58fc94
RS
13403 || (sec->flags & SEC_RELOC) == 0
13404 || sec->reloc_count == 0
13405 || (sec->flags & SEC_CODE) == 0)
13406 return TRUE;
13407
13408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13409
13410 /* Get a copy of the native relocations. */
13411 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13412 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13413 link_info->keep_memory));
13414 if (internal_relocs == NULL)
13415 goto error_return;
13416
13417 /* Walk through them looking for relaxing opportunities. */
13418 irelend = internal_relocs + sec->reloc_count;
13419 for (irel = internal_relocs; irel < irelend; irel++)
13420 {
13421 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13422 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13423 bfd_boolean target_is_micromips_code_p;
13424 unsigned long opcode;
13425 bfd_vma symval;
13426 bfd_vma pcrval;
2309ddf2 13427 bfd_byte *ptr;
df58fc94
RS
13428 int fndopc;
13429
13430 /* The number of bytes to delete for relaxation and from where
13431 to delete these bytes starting at irel->r_offset. */
13432 int delcnt = 0;
13433 int deloff = 0;
13434
13435 /* If this isn't something that can be relaxed, then ignore
13436 this reloc. */
13437 if (r_type != R_MICROMIPS_HI16
13438 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13439 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13440 continue;
13441
13442 /* Get the section contents if we haven't done so already. */
13443 if (contents == NULL)
13444 {
13445 /* Get cached copy if it exists. */
13446 if (elf_section_data (sec)->this_hdr.contents != NULL)
13447 contents = elf_section_data (sec)->this_hdr.contents;
13448 /* Go get them off disk. */
13449 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13450 goto error_return;
13451 }
2309ddf2 13452 ptr = contents + irel->r_offset;
df58fc94
RS
13453
13454 /* Read this BFD's local symbols if we haven't done so already. */
13455 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13456 {
13457 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13458 if (isymbuf == NULL)
13459 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13460 symtab_hdr->sh_info, 0,
13461 NULL, NULL, NULL);
13462 if (isymbuf == NULL)
13463 goto error_return;
13464 }
13465
13466 /* Get the value of the symbol referred to by the reloc. */
13467 if (r_symndx < symtab_hdr->sh_info)
13468 {
13469 /* A local symbol. */
13470 Elf_Internal_Sym *isym;
13471 asection *sym_sec;
13472
13473 isym = isymbuf + r_symndx;
13474 if (isym->st_shndx == SHN_UNDEF)
13475 sym_sec = bfd_und_section_ptr;
13476 else if (isym->st_shndx == SHN_ABS)
13477 sym_sec = bfd_abs_section_ptr;
13478 else if (isym->st_shndx == SHN_COMMON)
13479 sym_sec = bfd_com_section_ptr;
13480 else
13481 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13482 symval = (isym->st_value
13483 + sym_sec->output_section->vma
13484 + sym_sec->output_offset);
13485 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13486 }
13487 else
13488 {
13489 unsigned long indx;
13490 struct elf_link_hash_entry *h;
13491
13492 /* An external symbol. */
13493 indx = r_symndx - symtab_hdr->sh_info;
13494 h = elf_sym_hashes (abfd)[indx];
13495 BFD_ASSERT (h != NULL);
13496
13497 if (h->root.type != bfd_link_hash_defined
13498 && h->root.type != bfd_link_hash_defweak)
13499 /* This appears to be a reference to an undefined
13500 symbol. Just ignore it -- it will be caught by the
13501 regular reloc processing. */
13502 continue;
13503
13504 symval = (h->root.u.def.value
13505 + h->root.u.def.section->output_section->vma
13506 + h->root.u.def.section->output_offset);
13507 target_is_micromips_code_p = (!h->needs_plt
13508 && ELF_ST_IS_MICROMIPS (h->other));
13509 }
13510
13511
13512 /* For simplicity of coding, we are going to modify the
13513 section contents, the section relocs, and the BFD symbol
13514 table. We must tell the rest of the code not to free up this
13515 information. It would be possible to instead create a table
13516 of changes which have to be made, as is done in coff-mips.c;
13517 that would be more work, but would require less memory when
13518 the linker is run. */
13519
13520 /* Only 32-bit instructions relaxed. */
13521 if (irel->r_offset + 4 > sec->size)
13522 continue;
13523
d21911ea 13524 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13525
13526 /* This is the pc-relative distance from the instruction the
13527 relocation is applied to, to the symbol referred. */
13528 pcrval = (symval
13529 - (sec->output_section->vma + sec->output_offset)
13530 - irel->r_offset);
13531
13532 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13533 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13534 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13535
13536 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13537
13538 where pcrval has first to be adjusted to apply against the LO16
13539 location (we make the adjustment later on, when we have figured
13540 out the offset). */
13541 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13542 {
80cab405 13543 bfd_boolean bzc = FALSE;
df58fc94
RS
13544 unsigned long nextopc;
13545 unsigned long reg;
13546 bfd_vma offset;
13547
13548 /* Give up if the previous reloc was a HI16 against this symbol
13549 too. */
13550 if (irel > internal_relocs
13551 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13552 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13553 continue;
13554
13555 /* Or if the next reloc is not a LO16 against this symbol. */
13556 if (irel + 1 >= irelend
13557 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13558 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13559 continue;
13560
13561 /* Or if the second next reloc is a LO16 against this symbol too. */
13562 if (irel + 2 >= irelend
13563 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13564 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13565 continue;
13566
80cab405
MR
13567 /* See if the LUI instruction *might* be in a branch delay slot.
13568 We check whether what looks like a 16-bit branch or jump is
13569 actually an immediate argument to a compact branch, and let
13570 it through if so. */
df58fc94 13571 if (irel->r_offset >= 2
2309ddf2 13572 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13573 && !(irel->r_offset >= 4
80cab405
MR
13574 && (bzc = check_relocated_bzc (abfd,
13575 ptr - 4, irel->r_offset - 4,
13576 internal_relocs, irelend))))
df58fc94
RS
13577 continue;
13578 if (irel->r_offset >= 4
80cab405 13579 && !bzc
2309ddf2 13580 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13581 continue;
13582
13583 reg = OP32_SREG (opcode);
13584
13585 /* We only relax adjacent instructions or ones separated with
13586 a branch or jump that has a delay slot. The branch or jump
13587 must not fiddle with the register used to hold the address.
13588 Subtract 4 for the LUI itself. */
13589 offset = irel[1].r_offset - irel[0].r_offset;
13590 switch (offset - 4)
13591 {
13592 case 0:
13593 break;
13594 case 2:
2309ddf2 13595 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13596 break;
13597 continue;
13598 case 4:
2309ddf2 13599 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13600 break;
13601 continue;
13602 default:
13603 continue;
13604 }
13605
d21911ea 13606 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13607
13608 /* Give up unless the same register is used with both
13609 relocations. */
13610 if (OP32_SREG (nextopc) != reg)
13611 continue;
13612
13613 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13614 and rounding up to take masking of the two LSBs into account. */
13615 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13616
13617 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13618 if (IS_BITSIZE (symval, 16))
13619 {
13620 /* Fix the relocation's type. */
13621 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13622
13623 /* Instructions using R_MICROMIPS_LO16 have the base or
13624 source register in bits 20:16. This register becomes $0
13625 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13626 nextopc &= ~0x001f0000;
13627 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13628 contents + irel[1].r_offset);
13629 }
13630
13631 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13632 We add 4 to take LUI deletion into account while checking
13633 the PC-relative distance. */
13634 else if (symval % 4 == 0
13635 && IS_BITSIZE (pcrval + 4, 25)
13636 && MATCH (nextopc, addiu_insn)
13637 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13638 && OP16_VALID_REG (OP32_TREG (nextopc)))
13639 {
13640 /* Fix the relocation's type. */
13641 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13642
13643 /* Replace ADDIU with the ADDIUPC version. */
13644 nextopc = (addiupc_insn.match
13645 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13646
d21911ea
MR
13647 bfd_put_micromips_32 (abfd, nextopc,
13648 contents + irel[1].r_offset);
df58fc94
RS
13649 }
13650
13651 /* Can't do anything, give up, sigh... */
13652 else
13653 continue;
13654
13655 /* Fix the relocation's type. */
13656 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13657
13658 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13659 delcnt = 4;
13660 deloff = 0;
13661 }
13662
13663 /* Compact branch relaxation -- due to the multitude of macros
13664 employed by the compiler/assembler, compact branches are not
13665 always generated. Obviously, this can/will be fixed elsewhere,
13666 but there is no drawback in double checking it here. */
13667 else if (r_type == R_MICROMIPS_PC16_S1
13668 && irel->r_offset + 5 < sec->size
13669 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13670 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13671 && ((!insn32
13672 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13673 nop_insn_16) ? 2 : 0))
13674 || (irel->r_offset + 7 < sec->size
13675 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13676 ptr + 4),
13677 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13678 {
13679 unsigned long reg;
13680
13681 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13682
13683 /* Replace BEQZ/BNEZ with the compact version. */
13684 opcode = (bzc_insns_32[fndopc].match
13685 | BZC32_REG_FIELD (reg)
13686 | (opcode & 0xffff)); /* Addend value. */
13687
d21911ea 13688 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13689
833794fc
MR
13690 /* Delete the delay slot NOP: two or four bytes from
13691 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13692 deloff = 4;
13693 }
13694
13695 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13696 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13697 else if (!insn32
13698 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13699 && IS_BITSIZE (pcrval - 2, 11)
13700 && find_match (opcode, b_insns_32) >= 0)
13701 {
13702 /* Fix the relocation's type. */
13703 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13704
a8685210 13705 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13706 bfd_put_16 (abfd,
13707 (b_insn_16.match
13708 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13709 ptr);
df58fc94
RS
13710
13711 /* Delete 2 bytes from irel->r_offset + 2. */
13712 delcnt = 2;
13713 deloff = 2;
13714 }
13715
13716 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13717 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13718 else if (!insn32
13719 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13720 && IS_BITSIZE (pcrval - 2, 8)
13721 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13722 && OP16_VALID_REG (OP32_SREG (opcode)))
13723 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13724 && OP16_VALID_REG (OP32_TREG (opcode)))))
13725 {
13726 unsigned long reg;
13727
13728 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13729
13730 /* Fix the relocation's type. */
13731 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13732
a8685210 13733 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13734 bfd_put_16 (abfd,
13735 (bz_insns_16[fndopc].match
13736 | BZ16_REG_FIELD (reg)
13737 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13738 ptr);
df58fc94
RS
13739
13740 /* Delete 2 bytes from irel->r_offset + 2. */
13741 delcnt = 2;
13742 deloff = 2;
13743 }
13744
13745 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13746 else if (!insn32
13747 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13748 && target_is_micromips_code_p
13749 && irel->r_offset + 7 < sec->size
13750 && MATCH (opcode, jal_insn_32_bd32))
13751 {
13752 unsigned long n32opc;
13753 bfd_boolean relaxed = FALSE;
13754
d21911ea 13755 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13756
13757 if (MATCH (n32opc, nop_insn_32))
13758 {
13759 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13760 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13761
13762 relaxed = TRUE;
13763 }
13764 else if (find_match (n32opc, move_insns_32) >= 0)
13765 {
13766 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13767 bfd_put_16 (abfd,
13768 (move_insn_16.match
13769 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13770 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13771 ptr + 4);
df58fc94
RS
13772
13773 relaxed = TRUE;
13774 }
13775 /* Other 32-bit instructions relaxable to 16-bit
13776 instructions will be handled here later. */
13777
13778 if (relaxed)
13779 {
13780 /* JAL with 32-bit delay slot that is changed to a JALS
13781 with 16-bit delay slot. */
d21911ea 13782 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13783
13784 /* Delete 2 bytes from irel->r_offset + 6. */
13785 delcnt = 2;
13786 deloff = 6;
13787 }
13788 }
13789
13790 if (delcnt != 0)
13791 {
13792 /* Note that we've changed the relocs, section contents, etc. */
13793 elf_section_data (sec)->relocs = internal_relocs;
13794 elf_section_data (sec)->this_hdr.contents = contents;
13795 symtab_hdr->contents = (unsigned char *) isymbuf;
13796
13797 /* Delete bytes depending on the delcnt and deloff. */
13798 if (!mips_elf_relax_delete_bytes (abfd, sec,
13799 irel->r_offset + deloff, delcnt))
13800 goto error_return;
13801
13802 /* That will change things, so we should relax again.
13803 Note that this is not required, and it may be slow. */
13804 *again = TRUE;
13805 }
13806 }
13807
13808 if (isymbuf != NULL
13809 && symtab_hdr->contents != (unsigned char *) isymbuf)
13810 {
13811 if (! link_info->keep_memory)
13812 free (isymbuf);
13813 else
13814 {
13815 /* Cache the symbols for elf_link_input_bfd. */
13816 symtab_hdr->contents = (unsigned char *) isymbuf;
13817 }
13818 }
13819
13820 if (contents != NULL
13821 && elf_section_data (sec)->this_hdr.contents != contents)
13822 {
13823 if (! link_info->keep_memory)
13824 free (contents);
13825 else
13826 {
13827 /* Cache the section contents for elf_link_input_bfd. */
13828 elf_section_data (sec)->this_hdr.contents = contents;
13829 }
13830 }
13831
13832 if (internal_relocs != NULL
13833 && elf_section_data (sec)->relocs != internal_relocs)
13834 free (internal_relocs);
13835
13836 return TRUE;
13837
13838 error_return:
13839 if (isymbuf != NULL
13840 && symtab_hdr->contents != (unsigned char *) isymbuf)
13841 free (isymbuf);
13842 if (contents != NULL
13843 && elf_section_data (sec)->this_hdr.contents != contents)
13844 free (contents);
13845 if (internal_relocs != NULL
13846 && elf_section_data (sec)->relocs != internal_relocs)
13847 free (internal_relocs);
13848
13849 return FALSE;
13850}
13851\f
b49e97c9
TS
13852/* Create a MIPS ELF linker hash table. */
13853
13854struct bfd_link_hash_table *
9719ad41 13855_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13856{
13857 struct mips_elf_link_hash_table *ret;
13858 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13859
7bf52ea2 13860 ret = bfd_zmalloc (amt);
9719ad41 13861 if (ret == NULL)
b49e97c9
TS
13862 return NULL;
13863
66eb6687
AM
13864 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13865 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13866 sizeof (struct mips_elf_link_hash_entry),
13867 MIPS_ELF_DATA))
b49e97c9 13868 {
e2d34d7d 13869 free (ret);
b49e97c9
TS
13870 return NULL;
13871 }
1bbce132
MR
13872 ret->root.init_plt_refcount.plist = NULL;
13873 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13874
b49e97c9
TS
13875 return &ret->root.root;
13876}
0a44bf69
RS
13877
13878/* Likewise, but indicate that the target is VxWorks. */
13879
13880struct bfd_link_hash_table *
13881_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13882{
13883 struct bfd_link_hash_table *ret;
13884
13885 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13886 if (ret)
13887 {
13888 struct mips_elf_link_hash_table *htab;
13889
13890 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13891 htab->use_plts_and_copy_relocs = TRUE;
13892 htab->is_vxworks = TRUE;
0a44bf69
RS
13893 }
13894 return ret;
13895}
861fb55a
DJ
13896
13897/* A function that the linker calls if we are allowed to use PLTs
13898 and copy relocs. */
13899
13900void
13901_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13902{
13903 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13904}
833794fc
MR
13905
13906/* A function that the linker calls to select between all or only
13907 32-bit microMIPS instructions. */
13908
13909void
13910_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13911{
13912 mips_elf_hash_table (info)->insn32 = on;
13913}
b49e97c9 13914\f
c97c330b
MF
13915/* Structure for saying that BFD machine EXTENSION extends BASE. */
13916
13917struct mips_mach_extension
13918{
13919 unsigned long extension, base;
13920};
13921
13922
13923/* An array describing how BFD machines relate to one another. The entries
13924 are ordered topologically with MIPS I extensions listed last. */
13925
13926static const struct mips_mach_extension mips_mach_extensions[] =
13927{
13928 /* MIPS64r2 extensions. */
13929 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13930 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13931 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13932 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13933 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13934
13935 /* MIPS64 extensions. */
13936 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13937 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13938 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13939
13940 /* MIPS V extensions. */
13941 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13942
13943 /* R10000 extensions. */
13944 { bfd_mach_mips12000, bfd_mach_mips10000 },
13945 { bfd_mach_mips14000, bfd_mach_mips10000 },
13946 { bfd_mach_mips16000, bfd_mach_mips10000 },
13947
13948 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13949 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13950 better to allow vr5400 and vr5500 code to be merged anyway, since
13951 many libraries will just use the core ISA. Perhaps we could add
13952 some sort of ASE flag if this ever proves a problem. */
13953 { bfd_mach_mips5500, bfd_mach_mips5400 },
13954 { bfd_mach_mips5400, bfd_mach_mips5000 },
13955
13956 /* MIPS IV extensions. */
13957 { bfd_mach_mips5, bfd_mach_mips8000 },
13958 { bfd_mach_mips10000, bfd_mach_mips8000 },
13959 { bfd_mach_mips5000, bfd_mach_mips8000 },
13960 { bfd_mach_mips7000, bfd_mach_mips8000 },
13961 { bfd_mach_mips9000, bfd_mach_mips8000 },
13962
13963 /* VR4100 extensions. */
13964 { bfd_mach_mips4120, bfd_mach_mips4100 },
13965 { bfd_mach_mips4111, bfd_mach_mips4100 },
13966
13967 /* MIPS III extensions. */
13968 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13969 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13970 { bfd_mach_mips8000, bfd_mach_mips4000 },
13971 { bfd_mach_mips4650, bfd_mach_mips4000 },
13972 { bfd_mach_mips4600, bfd_mach_mips4000 },
13973 { bfd_mach_mips4400, bfd_mach_mips4000 },
13974 { bfd_mach_mips4300, bfd_mach_mips4000 },
13975 { bfd_mach_mips4100, bfd_mach_mips4000 },
13976 { bfd_mach_mips4010, bfd_mach_mips4000 },
13977 { bfd_mach_mips5900, bfd_mach_mips4000 },
13978
13979 /* MIPS32 extensions. */
13980 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13981
13982 /* MIPS II extensions. */
13983 { bfd_mach_mips4000, bfd_mach_mips6000 },
13984 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13985
13986 /* MIPS I extensions. */
13987 { bfd_mach_mips6000, bfd_mach_mips3000 },
13988 { bfd_mach_mips3900, bfd_mach_mips3000 }
13989};
13990
13991/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13992
13993static bfd_boolean
13994mips_mach_extends_p (unsigned long base, unsigned long extension)
13995{
13996 size_t i;
13997
13998 if (extension == base)
13999 return TRUE;
14000
14001 if (base == bfd_mach_mipsisa32
14002 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14003 return TRUE;
14004
14005 if (base == bfd_mach_mipsisa32r2
14006 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14007 return TRUE;
14008
14009 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14010 if (extension == mips_mach_extensions[i].extension)
14011 {
14012 extension = mips_mach_extensions[i].base;
14013 if (extension == base)
14014 return TRUE;
14015 }
14016
14017 return FALSE;
14018}
14019
14020/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14021
14022static unsigned long
14023bfd_mips_isa_ext_mach (unsigned int isa_ext)
14024{
14025 switch (isa_ext)
14026 {
14027 case AFL_EXT_3900: return bfd_mach_mips3900;
14028 case AFL_EXT_4010: return bfd_mach_mips4010;
14029 case AFL_EXT_4100: return bfd_mach_mips4100;
14030 case AFL_EXT_4111: return bfd_mach_mips4111;
14031 case AFL_EXT_4120: return bfd_mach_mips4120;
14032 case AFL_EXT_4650: return bfd_mach_mips4650;
14033 case AFL_EXT_5400: return bfd_mach_mips5400;
14034 case AFL_EXT_5500: return bfd_mach_mips5500;
14035 case AFL_EXT_5900: return bfd_mach_mips5900;
14036 case AFL_EXT_10000: return bfd_mach_mips10000;
14037 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14038 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14039 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14040 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14041 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14042 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14043 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14044 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14045 default: return bfd_mach_mips3000;
14046 }
14047}
14048
351cdf24
MF
14049/* Return the .MIPS.abiflags value representing each ISA Extension. */
14050
14051unsigned int
14052bfd_mips_isa_ext (bfd *abfd)
14053{
14054 switch (bfd_get_mach (abfd))
14055 {
c97c330b
MF
14056 case bfd_mach_mips3900: return AFL_EXT_3900;
14057 case bfd_mach_mips4010: return AFL_EXT_4010;
14058 case bfd_mach_mips4100: return AFL_EXT_4100;
14059 case bfd_mach_mips4111: return AFL_EXT_4111;
14060 case bfd_mach_mips4120: return AFL_EXT_4120;
14061 case bfd_mach_mips4650: return AFL_EXT_4650;
14062 case bfd_mach_mips5400: return AFL_EXT_5400;
14063 case bfd_mach_mips5500: return AFL_EXT_5500;
14064 case bfd_mach_mips5900: return AFL_EXT_5900;
14065 case bfd_mach_mips10000: return AFL_EXT_10000;
14066 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14067 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14068 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14069 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14070 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14071 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14072 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14073 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14074 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14075 default: return 0;
14076 }
14077}
14078
14079/* Encode ISA level and revision as a single value. */
14080#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14081
14082/* Decode a single value into level and revision. */
14083#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14084#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14085
14086/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14087
14088static void
14089update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14090{
c97c330b 14091 int new_isa = 0;
351cdf24
MF
14092 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14093 {
c97c330b
MF
14094 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14095 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14096 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14097 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14098 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14099 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14100 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14101 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14102 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14103 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14104 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24
MF
14105 default:
14106 (*_bfd_error_handler)
14107 (_("%B: Unknown architecture %s"),
14108 abfd, bfd_printable_name (abfd));
14109 }
14110
c97c330b
MF
14111 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14112 {
14113 abiflags->isa_level = ISA_LEVEL (new_isa);
14114 abiflags->isa_rev = ISA_REV (new_isa);
14115 }
14116
14117 /* Update the isa_ext if ABFD describes a further extension. */
14118 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14119 bfd_get_mach (abfd)))
14120 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14121}
14122
14123/* Return true if the given ELF header flags describe a 32-bit binary. */
14124
14125static bfd_boolean
14126mips_32bit_flags_p (flagword flags)
14127{
14128 return ((flags & EF_MIPS_32BITMODE) != 0
14129 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14130 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14131 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14132 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14133 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14134 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14135 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14136}
14137
14138/* Infer the content of the ABI flags based on the elf header. */
14139
14140static void
14141infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14142{
14143 obj_attribute *in_attr;
14144
14145 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14146 update_mips_abiflags_isa (abfd, abiflags);
14147
14148 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14149 abiflags->gpr_size = AFL_REG_32;
14150 else
14151 abiflags->gpr_size = AFL_REG_64;
14152
14153 abiflags->cpr1_size = AFL_REG_NONE;
14154
14155 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14156 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14157
14158 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14159 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14160 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14161 && abiflags->gpr_size == AFL_REG_32))
14162 abiflags->cpr1_size = AFL_REG_32;
14163 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14164 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14165 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14166 abiflags->cpr1_size = AFL_REG_64;
14167
14168 abiflags->cpr2_size = AFL_REG_NONE;
14169
14170 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14171 abiflags->ases |= AFL_ASE_MDMX;
14172 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14173 abiflags->ases |= AFL_ASE_MIPS16;
14174 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14175 abiflags->ases |= AFL_ASE_MICROMIPS;
14176
14177 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14178 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14179 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14180 && abiflags->isa_level >= 32
14181 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14182 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14183}
14184
b49e97c9
TS
14185/* We need to use a special link routine to handle the .reginfo and
14186 the .mdebug sections. We need to merge all instances of these
14187 sections together, not write them all out sequentially. */
14188
b34976b6 14189bfd_boolean
9719ad41 14190_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14191{
b49e97c9
TS
14192 asection *o;
14193 struct bfd_link_order *p;
14194 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14195 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14196 Elf32_RegInfo reginfo;
14197 struct ecoff_debug_info debug;
861fb55a 14198 struct mips_htab_traverse_info hti;
7a2a6943
NC
14199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14200 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14201 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14202 void *mdebug_handle = NULL;
b49e97c9
TS
14203 asection *s;
14204 EXTR esym;
14205 unsigned int i;
14206 bfd_size_type amt;
0a44bf69 14207 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14208
14209 static const char * const secname[] =
14210 {
14211 ".text", ".init", ".fini", ".data",
14212 ".rodata", ".sdata", ".sbss", ".bss"
14213 };
14214 static const int sc[] =
14215 {
14216 scText, scInit, scFini, scData,
14217 scRData, scSData, scSBss, scBss
14218 };
14219
d4596a51
RS
14220 /* Sort the dynamic symbols so that those with GOT entries come after
14221 those without. */
0a44bf69 14222 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14223 BFD_ASSERT (htab != NULL);
14224
d4596a51
RS
14225 if (!mips_elf_sort_hash_table (abfd, info))
14226 return FALSE;
b49e97c9 14227
861fb55a
DJ
14228 /* Create any scheduled LA25 stubs. */
14229 hti.info = info;
14230 hti.output_bfd = abfd;
14231 hti.error = FALSE;
14232 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14233 if (hti.error)
14234 return FALSE;
14235
b49e97c9
TS
14236 /* Get a value for the GP register. */
14237 if (elf_gp (abfd) == 0)
14238 {
14239 struct bfd_link_hash_entry *h;
14240
b34976b6 14241 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14242 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14243 elf_gp (abfd) = (h->u.def.value
14244 + h->u.def.section->output_section->vma
14245 + h->u.def.section->output_offset);
0a44bf69
RS
14246 else if (htab->is_vxworks
14247 && (h = bfd_link_hash_lookup (info->hash,
14248 "_GLOBAL_OFFSET_TABLE_",
14249 FALSE, FALSE, TRUE))
14250 && h->type == bfd_link_hash_defined)
14251 elf_gp (abfd) = (h->u.def.section->output_section->vma
14252 + h->u.def.section->output_offset
14253 + h->u.def.value);
0e1862bb 14254 else if (bfd_link_relocatable (info))
b49e97c9
TS
14255 {
14256 bfd_vma lo = MINUS_ONE;
14257
14258 /* Find the GP-relative section with the lowest offset. */
9719ad41 14259 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14260 if (o->vma < lo
14261 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14262 lo = o->vma;
14263
14264 /* And calculate GP relative to that. */
0a44bf69 14265 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14266 }
14267 else
14268 {
14269 /* If the relocate_section function needs to do a reloc
14270 involving the GP value, it should make a reloc_dangerous
14271 callback to warn that GP is not defined. */
14272 }
14273 }
14274
14275 /* Go through the sections and collect the .reginfo and .mdebug
14276 information. */
351cdf24 14277 abiflags_sec = NULL;
b49e97c9
TS
14278 reginfo_sec = NULL;
14279 mdebug_sec = NULL;
14280 gptab_data_sec = NULL;
14281 gptab_bss_sec = NULL;
9719ad41 14282 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14283 {
351cdf24
MF
14284 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14285 {
14286 /* We have found the .MIPS.abiflags section in the output file.
14287 Look through all the link_orders comprising it and remove them.
14288 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14289 for (p = o->map_head.link_order; p != NULL; p = p->next)
14290 {
14291 asection *input_section;
14292
14293 if (p->type != bfd_indirect_link_order)
14294 {
14295 if (p->type == bfd_data_link_order)
14296 continue;
14297 abort ();
14298 }
14299
14300 input_section = p->u.indirect.section;
14301
14302 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14303 elf_link_input_bfd ignores this section. */
14304 input_section->flags &= ~SEC_HAS_CONTENTS;
14305 }
14306
14307 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14308 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14309
14310 /* Skip this section later on (I don't think this currently
14311 matters, but someday it might). */
14312 o->map_head.link_order = NULL;
14313
14314 abiflags_sec = o;
14315 }
14316
b49e97c9
TS
14317 if (strcmp (o->name, ".reginfo") == 0)
14318 {
14319 memset (&reginfo, 0, sizeof reginfo);
14320
14321 /* We have found the .reginfo section in the output file.
14322 Look through all the link_orders comprising it and merge
14323 the information together. */
8423293d 14324 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14325 {
14326 asection *input_section;
14327 bfd *input_bfd;
14328 Elf32_External_RegInfo ext;
14329 Elf32_RegInfo sub;
14330
14331 if (p->type != bfd_indirect_link_order)
14332 {
14333 if (p->type == bfd_data_link_order)
14334 continue;
14335 abort ();
14336 }
14337
14338 input_section = p->u.indirect.section;
14339 input_bfd = input_section->owner;
14340
b49e97c9 14341 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14342 &ext, 0, sizeof ext))
b34976b6 14343 return FALSE;
b49e97c9
TS
14344
14345 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14346
14347 reginfo.ri_gprmask |= sub.ri_gprmask;
14348 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14349 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14350 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14351 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14352
14353 /* ri_gp_value is set by the function
14354 mips_elf32_section_processing when the section is
14355 finally written out. */
14356
14357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14358 elf_link_input_bfd ignores this section. */
14359 input_section->flags &= ~SEC_HAS_CONTENTS;
14360 }
14361
14362 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14363 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14364
14365 /* Skip this section later on (I don't think this currently
14366 matters, but someday it might). */
8423293d 14367 o->map_head.link_order = NULL;
b49e97c9
TS
14368
14369 reginfo_sec = o;
14370 }
14371
14372 if (strcmp (o->name, ".mdebug") == 0)
14373 {
14374 struct extsym_info einfo;
14375 bfd_vma last;
14376
14377 /* We have found the .mdebug section in the output file.
14378 Look through all the link_orders comprising it and merge
14379 the information together. */
14380 symhdr->magic = swap->sym_magic;
14381 /* FIXME: What should the version stamp be? */
14382 symhdr->vstamp = 0;
14383 symhdr->ilineMax = 0;
14384 symhdr->cbLine = 0;
14385 symhdr->idnMax = 0;
14386 symhdr->ipdMax = 0;
14387 symhdr->isymMax = 0;
14388 symhdr->ioptMax = 0;
14389 symhdr->iauxMax = 0;
14390 symhdr->issMax = 0;
14391 symhdr->issExtMax = 0;
14392 symhdr->ifdMax = 0;
14393 symhdr->crfd = 0;
14394 symhdr->iextMax = 0;
14395
14396 /* We accumulate the debugging information itself in the
14397 debug_info structure. */
14398 debug.line = NULL;
14399 debug.external_dnr = NULL;
14400 debug.external_pdr = NULL;
14401 debug.external_sym = NULL;
14402 debug.external_opt = NULL;
14403 debug.external_aux = NULL;
14404 debug.ss = NULL;
14405 debug.ssext = debug.ssext_end = NULL;
14406 debug.external_fdr = NULL;
14407 debug.external_rfd = NULL;
14408 debug.external_ext = debug.external_ext_end = NULL;
14409
14410 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14411 if (mdebug_handle == NULL)
b34976b6 14412 return FALSE;
b49e97c9
TS
14413
14414 esym.jmptbl = 0;
14415 esym.cobol_main = 0;
14416 esym.weakext = 0;
14417 esym.reserved = 0;
14418 esym.ifd = ifdNil;
14419 esym.asym.iss = issNil;
14420 esym.asym.st = stLocal;
14421 esym.asym.reserved = 0;
14422 esym.asym.index = indexNil;
14423 last = 0;
14424 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14425 {
14426 esym.asym.sc = sc[i];
14427 s = bfd_get_section_by_name (abfd, secname[i]);
14428 if (s != NULL)
14429 {
14430 esym.asym.value = s->vma;
eea6121a 14431 last = s->vma + s->size;
b49e97c9
TS
14432 }
14433 else
14434 esym.asym.value = last;
14435 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14436 secname[i], &esym))
b34976b6 14437 return FALSE;
b49e97c9
TS
14438 }
14439
8423293d 14440 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14441 {
14442 asection *input_section;
14443 bfd *input_bfd;
14444 const struct ecoff_debug_swap *input_swap;
14445 struct ecoff_debug_info input_debug;
14446 char *eraw_src;
14447 char *eraw_end;
14448
14449 if (p->type != bfd_indirect_link_order)
14450 {
14451 if (p->type == bfd_data_link_order)
14452 continue;
14453 abort ();
14454 }
14455
14456 input_section = p->u.indirect.section;
14457 input_bfd = input_section->owner;
14458
d5eaccd7 14459 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14460 {
14461 /* I don't know what a non MIPS ELF bfd would be
14462 doing with a .mdebug section, but I don't really
14463 want to deal with it. */
14464 continue;
14465 }
14466
14467 input_swap = (get_elf_backend_data (input_bfd)
14468 ->elf_backend_ecoff_debug_swap);
14469
eea6121a 14470 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14471
14472 /* The ECOFF linking code expects that we have already
14473 read in the debugging information and set up an
14474 ecoff_debug_info structure, so we do that now. */
14475 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14476 &input_debug))
b34976b6 14477 return FALSE;
b49e97c9
TS
14478
14479 if (! (bfd_ecoff_debug_accumulate
14480 (mdebug_handle, abfd, &debug, swap, input_bfd,
14481 &input_debug, input_swap, info)))
b34976b6 14482 return FALSE;
b49e97c9
TS
14483
14484 /* Loop through the external symbols. For each one with
14485 interesting information, try to find the symbol in
14486 the linker global hash table and save the information
14487 for the output external symbols. */
14488 eraw_src = input_debug.external_ext;
14489 eraw_end = (eraw_src
14490 + (input_debug.symbolic_header.iextMax
14491 * input_swap->external_ext_size));
14492 for (;
14493 eraw_src < eraw_end;
14494 eraw_src += input_swap->external_ext_size)
14495 {
14496 EXTR ext;
14497 const char *name;
14498 struct mips_elf_link_hash_entry *h;
14499
9719ad41 14500 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14501 if (ext.asym.sc == scNil
14502 || ext.asym.sc == scUndefined
14503 || ext.asym.sc == scSUndefined)
14504 continue;
14505
14506 name = input_debug.ssext + ext.asym.iss;
14507 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14508 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14509 if (h == NULL || h->esym.ifd != -2)
14510 continue;
14511
14512 if (ext.ifd != -1)
14513 {
14514 BFD_ASSERT (ext.ifd
14515 < input_debug.symbolic_header.ifdMax);
14516 ext.ifd = input_debug.ifdmap[ext.ifd];
14517 }
14518
14519 h->esym = ext;
14520 }
14521
14522 /* Free up the information we just read. */
14523 free (input_debug.line);
14524 free (input_debug.external_dnr);
14525 free (input_debug.external_pdr);
14526 free (input_debug.external_sym);
14527 free (input_debug.external_opt);
14528 free (input_debug.external_aux);
14529 free (input_debug.ss);
14530 free (input_debug.ssext);
14531 free (input_debug.external_fdr);
14532 free (input_debug.external_rfd);
14533 free (input_debug.external_ext);
14534
14535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14536 elf_link_input_bfd ignores this section. */
14537 input_section->flags &= ~SEC_HAS_CONTENTS;
14538 }
14539
0e1862bb 14540 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14541 {
14542 /* Create .rtproc section. */
87e0a731 14543 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14544 if (rtproc_sec == NULL)
14545 {
14546 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14547 | SEC_LINKER_CREATED | SEC_READONLY);
14548
87e0a731
AM
14549 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14550 ".rtproc",
14551 flags);
b49e97c9 14552 if (rtproc_sec == NULL
b49e97c9 14553 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14554 return FALSE;
b49e97c9
TS
14555 }
14556
14557 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14558 info, rtproc_sec,
14559 &debug))
b34976b6 14560 return FALSE;
b49e97c9
TS
14561 }
14562
14563 /* Build the external symbol information. */
14564 einfo.abfd = abfd;
14565 einfo.info = info;
14566 einfo.debug = &debug;
14567 einfo.swap = swap;
b34976b6 14568 einfo.failed = FALSE;
b49e97c9 14569 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14570 mips_elf_output_extsym, &einfo);
b49e97c9 14571 if (einfo.failed)
b34976b6 14572 return FALSE;
b49e97c9
TS
14573
14574 /* Set the size of the .mdebug section. */
eea6121a 14575 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14576
14577 /* Skip this section later on (I don't think this currently
14578 matters, but someday it might). */
8423293d 14579 o->map_head.link_order = NULL;
b49e97c9
TS
14580
14581 mdebug_sec = o;
14582 }
14583
0112cd26 14584 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14585 {
14586 const char *subname;
14587 unsigned int c;
14588 Elf32_gptab *tab;
14589 Elf32_External_gptab *ext_tab;
14590 unsigned int j;
14591
14592 /* The .gptab.sdata and .gptab.sbss sections hold
14593 information describing how the small data area would
14594 change depending upon the -G switch. These sections
14595 not used in executables files. */
0e1862bb 14596 if (! bfd_link_relocatable (info))
b49e97c9 14597 {
8423293d 14598 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14599 {
14600 asection *input_section;
14601
14602 if (p->type != bfd_indirect_link_order)
14603 {
14604 if (p->type == bfd_data_link_order)
14605 continue;
14606 abort ();
14607 }
14608
14609 input_section = p->u.indirect.section;
14610
14611 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14612 elf_link_input_bfd ignores this section. */
14613 input_section->flags &= ~SEC_HAS_CONTENTS;
14614 }
14615
14616 /* Skip this section later on (I don't think this
14617 currently matters, but someday it might). */
8423293d 14618 o->map_head.link_order = NULL;
b49e97c9
TS
14619
14620 /* Really remove the section. */
5daa8fe7 14621 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14622 --abfd->section_count;
14623
14624 continue;
14625 }
14626
14627 /* There is one gptab for initialized data, and one for
14628 uninitialized data. */
14629 if (strcmp (o->name, ".gptab.sdata") == 0)
14630 gptab_data_sec = o;
14631 else if (strcmp (o->name, ".gptab.sbss") == 0)
14632 gptab_bss_sec = o;
14633 else
14634 {
14635 (*_bfd_error_handler)
14636 (_("%s: illegal section name `%s'"),
14637 bfd_get_filename (abfd), o->name);
14638 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14639 return FALSE;
b49e97c9
TS
14640 }
14641
14642 /* The linker script always combines .gptab.data and
14643 .gptab.sdata into .gptab.sdata, and likewise for
14644 .gptab.bss and .gptab.sbss. It is possible that there is
14645 no .sdata or .sbss section in the output file, in which
14646 case we must change the name of the output section. */
14647 subname = o->name + sizeof ".gptab" - 1;
14648 if (bfd_get_section_by_name (abfd, subname) == NULL)
14649 {
14650 if (o == gptab_data_sec)
14651 o->name = ".gptab.data";
14652 else
14653 o->name = ".gptab.bss";
14654 subname = o->name + sizeof ".gptab" - 1;
14655 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14656 }
14657
14658 /* Set up the first entry. */
14659 c = 1;
14660 amt = c * sizeof (Elf32_gptab);
9719ad41 14661 tab = bfd_malloc (amt);
b49e97c9 14662 if (tab == NULL)
b34976b6 14663 return FALSE;
b49e97c9
TS
14664 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14665 tab[0].gt_header.gt_unused = 0;
14666
14667 /* Combine the input sections. */
8423293d 14668 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14669 {
14670 asection *input_section;
14671 bfd *input_bfd;
14672 bfd_size_type size;
14673 unsigned long last;
14674 bfd_size_type gpentry;
14675
14676 if (p->type != bfd_indirect_link_order)
14677 {
14678 if (p->type == bfd_data_link_order)
14679 continue;
14680 abort ();
14681 }
14682
14683 input_section = p->u.indirect.section;
14684 input_bfd = input_section->owner;
14685
14686 /* Combine the gptab entries for this input section one
14687 by one. We know that the input gptab entries are
14688 sorted by ascending -G value. */
eea6121a 14689 size = input_section->size;
b49e97c9
TS
14690 last = 0;
14691 for (gpentry = sizeof (Elf32_External_gptab);
14692 gpentry < size;
14693 gpentry += sizeof (Elf32_External_gptab))
14694 {
14695 Elf32_External_gptab ext_gptab;
14696 Elf32_gptab int_gptab;
14697 unsigned long val;
14698 unsigned long add;
b34976b6 14699 bfd_boolean exact;
b49e97c9
TS
14700 unsigned int look;
14701
14702 if (! (bfd_get_section_contents
9719ad41
RS
14703 (input_bfd, input_section, &ext_gptab, gpentry,
14704 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14705 {
14706 free (tab);
b34976b6 14707 return FALSE;
b49e97c9
TS
14708 }
14709
14710 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14711 &int_gptab);
14712 val = int_gptab.gt_entry.gt_g_value;
14713 add = int_gptab.gt_entry.gt_bytes - last;
14714
b34976b6 14715 exact = FALSE;
b49e97c9
TS
14716 for (look = 1; look < c; look++)
14717 {
14718 if (tab[look].gt_entry.gt_g_value >= val)
14719 tab[look].gt_entry.gt_bytes += add;
14720
14721 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14722 exact = TRUE;
b49e97c9
TS
14723 }
14724
14725 if (! exact)
14726 {
14727 Elf32_gptab *new_tab;
14728 unsigned int max;
14729
14730 /* We need a new table entry. */
14731 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14732 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14733 if (new_tab == NULL)
14734 {
14735 free (tab);
b34976b6 14736 return FALSE;
b49e97c9
TS
14737 }
14738 tab = new_tab;
14739 tab[c].gt_entry.gt_g_value = val;
14740 tab[c].gt_entry.gt_bytes = add;
14741
14742 /* Merge in the size for the next smallest -G
14743 value, since that will be implied by this new
14744 value. */
14745 max = 0;
14746 for (look = 1; look < c; look++)
14747 {
14748 if (tab[look].gt_entry.gt_g_value < val
14749 && (max == 0
14750 || (tab[look].gt_entry.gt_g_value
14751 > tab[max].gt_entry.gt_g_value)))
14752 max = look;
14753 }
14754 if (max != 0)
14755 tab[c].gt_entry.gt_bytes +=
14756 tab[max].gt_entry.gt_bytes;
14757
14758 ++c;
14759 }
14760
14761 last = int_gptab.gt_entry.gt_bytes;
14762 }
14763
14764 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14765 elf_link_input_bfd ignores this section. */
14766 input_section->flags &= ~SEC_HAS_CONTENTS;
14767 }
14768
14769 /* The table must be sorted by -G value. */
14770 if (c > 2)
14771 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14772
14773 /* Swap out the table. */
14774 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14775 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14776 if (ext_tab == NULL)
14777 {
14778 free (tab);
b34976b6 14779 return FALSE;
b49e97c9
TS
14780 }
14781
14782 for (j = 0; j < c; j++)
14783 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14784 free (tab);
14785
eea6121a 14786 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14787 o->contents = (bfd_byte *) ext_tab;
14788
14789 /* Skip this section later on (I don't think this currently
14790 matters, but someday it might). */
8423293d 14791 o->map_head.link_order = NULL;
b49e97c9
TS
14792 }
14793 }
14794
14795 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14796 if (!bfd_elf_final_link (abfd, info))
b34976b6 14797 return FALSE;
b49e97c9
TS
14798
14799 /* Now write out the computed sections. */
14800
351cdf24
MF
14801 if (abiflags_sec != NULL)
14802 {
14803 Elf_External_ABIFlags_v0 ext;
14804 Elf_Internal_ABIFlags_v0 *abiflags;
14805
14806 abiflags = &mips_elf_tdata (abfd)->abiflags;
14807
14808 /* Set up the abiflags if no valid input sections were found. */
14809 if (!mips_elf_tdata (abfd)->abiflags_valid)
14810 {
14811 infer_mips_abiflags (abfd, abiflags);
14812 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14813 }
14814 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14815 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14816 return FALSE;
14817 }
14818
9719ad41 14819 if (reginfo_sec != NULL)
b49e97c9
TS
14820 {
14821 Elf32_External_RegInfo ext;
14822
14823 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14824 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14825 return FALSE;
b49e97c9
TS
14826 }
14827
9719ad41 14828 if (mdebug_sec != NULL)
b49e97c9
TS
14829 {
14830 BFD_ASSERT (abfd->output_has_begun);
14831 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14832 swap, info,
14833 mdebug_sec->filepos))
b34976b6 14834 return FALSE;
b49e97c9
TS
14835
14836 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14837 }
14838
9719ad41 14839 if (gptab_data_sec != NULL)
b49e97c9
TS
14840 {
14841 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14842 gptab_data_sec->contents,
eea6121a 14843 0, gptab_data_sec->size))
b34976b6 14844 return FALSE;
b49e97c9
TS
14845 }
14846
9719ad41 14847 if (gptab_bss_sec != NULL)
b49e97c9
TS
14848 {
14849 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14850 gptab_bss_sec->contents,
eea6121a 14851 0, gptab_bss_sec->size))
b34976b6 14852 return FALSE;
b49e97c9
TS
14853 }
14854
14855 if (SGI_COMPAT (abfd))
14856 {
14857 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14858 if (rtproc_sec != NULL)
14859 {
14860 if (! bfd_set_section_contents (abfd, rtproc_sec,
14861 rtproc_sec->contents,
eea6121a 14862 0, rtproc_sec->size))
b34976b6 14863 return FALSE;
b49e97c9
TS
14864 }
14865 }
14866
b34976b6 14867 return TRUE;
b49e97c9
TS
14868}
14869\f
2cf19d5c
JM
14870/* Merge object attributes from IBFD into OBFD. Raise an error if
14871 there are conflicting attributes. */
14872static bfd_boolean
14873mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14874{
14875 obj_attribute *in_attr;
14876 obj_attribute *out_attr;
6ae68ba3 14877 bfd *abi_fp_bfd;
b60bf9be 14878 bfd *abi_msa_bfd;
6ae68ba3
MR
14879
14880 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14881 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 14882 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 14883 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 14884
b60bf9be
CF
14885 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14886 if (!abi_msa_bfd
14887 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14888 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14889
2cf19d5c
JM
14890 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14891 {
14892 /* This is the first object. Copy the attributes. */
14893 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14894
14895 /* Use the Tag_null value to indicate the attributes have been
14896 initialized. */
14897 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14898
14899 return TRUE;
14900 }
14901
14902 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14903 non-conflicting ones. */
2cf19d5c
JM
14904 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14905 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14906 {
757a636f 14907 int out_fp, in_fp;
6ae68ba3 14908
757a636f
RS
14909 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14910 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14911 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14912 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14913 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
14914 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14915 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14916 || in_fp == Val_GNU_MIPS_ABI_FP_64
14917 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14918 {
14919 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14920 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14921 }
14922 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14923 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14924 || out_fp == Val_GNU_MIPS_ABI_FP_64
14925 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14926 /* Keep the current setting. */;
14927 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14928 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14929 {
14930 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14931 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14932 }
14933 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14934 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14935 /* Keep the current setting. */;
757a636f
RS
14936 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14937 {
14938 const char *out_string, *in_string;
6ae68ba3 14939
757a636f
RS
14940 out_string = _bfd_mips_fp_abi_string (out_fp);
14941 in_string = _bfd_mips_fp_abi_string (in_fp);
14942 /* First warn about cases involving unrecognised ABIs. */
14943 if (!out_string && !in_string)
14944 _bfd_error_handler
14945 (_("Warning: %B uses unknown floating point ABI %d "
14946 "(set by %B), %B uses unknown floating point ABI %d"),
14947 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14948 else if (!out_string)
14949 _bfd_error_handler
14950 (_("Warning: %B uses unknown floating point ABI %d "
14951 "(set by %B), %B uses %s"),
14952 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14953 else if (!in_string)
14954 _bfd_error_handler
14955 (_("Warning: %B uses %s (set by %B), "
14956 "%B uses unknown floating point ABI %d"),
14957 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14958 else
14959 {
14960 /* If one of the bfds is soft-float, the other must be
14961 hard-float. The exact choice of hard-float ABI isn't
14962 really relevant to the error message. */
14963 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14964 out_string = "-mhard-float";
14965 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14966 in_string = "-mhard-float";
14967 _bfd_error_handler
14968 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14969 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14970 }
14971 }
2cf19d5c
JM
14972 }
14973
b60bf9be
CF
14974 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14975 non-conflicting ones. */
14976 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14977 {
14978 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14979 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14980 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14981 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14982 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14983 {
14984 case Val_GNU_MIPS_ABI_MSA_128:
14985 _bfd_error_handler
14986 (_("Warning: %B uses %s (set by %B), "
14987 "%B uses unknown MSA ABI %d"),
14988 obfd, abi_msa_bfd, ibfd,
14989 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14990 break;
14991
14992 default:
14993 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14994 {
14995 case Val_GNU_MIPS_ABI_MSA_128:
14996 _bfd_error_handler
14997 (_("Warning: %B uses unknown MSA ABI %d "
14998 "(set by %B), %B uses %s"),
14999 obfd, abi_msa_bfd, ibfd,
15000 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15001 break;
15002
15003 default:
15004 _bfd_error_handler
15005 (_("Warning: %B uses unknown MSA ABI %d "
15006 "(set by %B), %B uses unknown MSA ABI %d"),
15007 obfd, abi_msa_bfd, ibfd,
15008 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15009 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15010 break;
15011 }
15012 }
15013 }
15014
2cf19d5c
JM
15015 /* Merge Tag_compatibility attributes and any common GNU ones. */
15016 _bfd_elf_merge_object_attributes (ibfd, obfd);
15017
15018 return TRUE;
15019}
15020
b49e97c9
TS
15021/* Merge backend specific data from an object file to the output
15022 object file when linking. */
15023
b34976b6 15024bfd_boolean
9719ad41 15025_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9 15026{
cf8502c1
MR
15027 struct mips_elf_obj_tdata *out_tdata;
15028 struct mips_elf_obj_tdata *in_tdata;
b49e97c9
TS
15029 flagword old_flags;
15030 flagword new_flags;
b34976b6
AM
15031 bfd_boolean ok;
15032 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15033 asection *sec;
351cdf24 15034 obj_attribute *out_attr;
b49e97c9 15035
58238693 15036 /* Check if we have the same endianness. */
82e51918 15037 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
15038 {
15039 (*_bfd_error_handler)
d003868e
AM
15040 (_("%B: endianness incompatible with that of the selected emulation"),
15041 ibfd);
aa701218
AO
15042 return FALSE;
15043 }
b49e97c9 15044
d5eaccd7 15045 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15046 return TRUE;
b49e97c9 15047
cf8502c1
MR
15048 in_tdata = mips_elf_tdata (ibfd);
15049 out_tdata = mips_elf_tdata (obfd);
15050
aa701218
AO
15051 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15052 {
15053 (*_bfd_error_handler)
d003868e
AM
15054 (_("%B: ABI is incompatible with that of the selected emulation"),
15055 ibfd);
aa701218
AO
15056 return FALSE;
15057 }
15058
23ba6f18
MR
15059 /* Check to see if the input BFD actually contains any sections. If not,
15060 then it has no attributes, and its flags may not have been initialized
15061 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15062 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15063 {
15064 /* Ignore synthetic sections and empty .text, .data and .bss sections
15065 which are automatically generated by gas. Also ignore fake
15066 (s)common sections, since merely defining a common symbol does
15067 not affect compatibility. */
15068 if ((sec->flags & SEC_IS_COMMON) == 0
15069 && strcmp (sec->name, ".reginfo")
15070 && strcmp (sec->name, ".mdebug")
15071 && (sec->size != 0
15072 || (strcmp (sec->name, ".text")
15073 && strcmp (sec->name, ".data")
15074 && strcmp (sec->name, ".bss"))))
15075 {
15076 null_input_bfd = FALSE;
15077 break;
15078 }
15079 }
15080 if (null_input_bfd)
15081 return TRUE;
15082
28d45e28 15083 /* Populate abiflags using existing information. */
23ba6f18
MR
15084 if (in_tdata->abiflags_valid)
15085 {
15086 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15087 Elf_Internal_ABIFlags_v0 in_abiflags;
15088 Elf_Internal_ABIFlags_v0 abiflags;
15089
15090 /* Set up the FP ABI attribute from the abiflags if it is not already
15091 set. */
23ba6f18
MR
15092 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15093 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15094
351cdf24 15095 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15096 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15097
15098 /* It is not possible to infer the correct ISA revision
15099 for R3 or R5 so drop down to R2 for the checks. */
15100 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15101 in_abiflags.isa_rev = 2;
15102
c97c330b
MF
15103 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15104 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
351cdf24
MF
15105 (*_bfd_error_handler)
15106 (_("%B: warning: Inconsistent ISA between e_flags and "
15107 ".MIPS.abiflags"), ibfd);
15108 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15109 && in_abiflags.fp_abi != abiflags.fp_abi)
15110 (*_bfd_error_handler)
dcb1c796 15111 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15112 ".MIPS.abiflags"), ibfd);
15113 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15114 (*_bfd_error_handler)
15115 (_("%B: warning: Inconsistent ASEs between e_flags and "
15116 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15117 /* The isa_ext is allowed to be an extension of what can be inferred
15118 from e_flags. */
15119 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15120 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
351cdf24
MF
15121 (*_bfd_error_handler)
15122 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15123 ".MIPS.abiflags"), ibfd);
15124 if (in_abiflags.flags2 != 0)
15125 (*_bfd_error_handler)
15126 (_("%B: warning: Unexpected flag in the flags2 field of "
15127 ".MIPS.abiflags (0x%lx)"), ibfd,
15128 (unsigned long) in_abiflags.flags2);
15129 }
28d45e28
MR
15130 else
15131 {
15132 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15133 in_tdata->abiflags_valid = TRUE;
15134 }
15135
15136 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15137 return FALSE;
351cdf24 15138
cf8502c1 15139 if (!out_tdata->abiflags_valid)
351cdf24
MF
15140 {
15141 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15142 out_tdata->abiflags = in_tdata->abiflags;
15143 out_tdata->abiflags_valid = TRUE;
351cdf24 15144 }
b49e97c9
TS
15145
15146 if (! elf_flags_init (obfd))
15147 {
b34976b6 15148 elf_flags_init (obfd) = TRUE;
351cdf24 15149 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15150 elf_elfheader (obfd)->e_ident[EI_CLASS]
15151 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15152
15153 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15154 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15155 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15156 bfd_get_mach (ibfd))))
b49e97c9
TS
15157 {
15158 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15159 bfd_get_mach (ibfd)))
b34976b6 15160 return FALSE;
351cdf24
MF
15161
15162 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15163 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15164 }
15165
b34976b6 15166 return TRUE;
b49e97c9
TS
15167 }
15168
351cdf24
MF
15169 /* Update the output abiflags fp_abi using the computed fp_abi. */
15170 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
cf8502c1 15171 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
351cdf24
MF
15172
15173#define max(a,b) ((a) > (b) ? (a) : (b))
15174 /* Merge abiflags. */
cf8502c1
MR
15175 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15176 in_tdata->abiflags.isa_level);
15177 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15178 in_tdata->abiflags.isa_rev);
15179 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15180 in_tdata->abiflags.gpr_size);
15181 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15182 in_tdata->abiflags.cpr1_size);
15183 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15184 in_tdata->abiflags.cpr2_size);
351cdf24 15185#undef max
cf8502c1
MR
15186 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15187 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
351cdf24
MF
15188
15189 new_flags = elf_elfheader (ibfd)->e_flags;
15190 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15191 old_flags = elf_elfheader (obfd)->e_flags;
15192
b49e97c9
TS
15193 /* Check flag compatibility. */
15194
15195 new_flags &= ~EF_MIPS_NOREORDER;
15196 old_flags &= ~EF_MIPS_NOREORDER;
15197
f4416af6
AO
15198 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15199 doesn't seem to matter. */
15200 new_flags &= ~EF_MIPS_XGOT;
15201 old_flags &= ~EF_MIPS_XGOT;
15202
98a8deaf
RS
15203 /* MIPSpro generates ucode info in n64 objects. Again, we should
15204 just be able to ignore this. */
15205 new_flags &= ~EF_MIPS_UCODE;
15206 old_flags &= ~EF_MIPS_UCODE;
15207
861fb55a
DJ
15208 /* DSOs should only be linked with CPIC code. */
15209 if ((ibfd->flags & DYNAMIC) != 0)
15210 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 15211
b49e97c9 15212 if (new_flags == old_flags)
b34976b6 15213 return TRUE;
b49e97c9 15214
b34976b6 15215 ok = TRUE;
b49e97c9 15216
143d77c5
EC
15217 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15218 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 15219 {
b49e97c9 15220 (*_bfd_error_handler)
861fb55a 15221 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 15222 ibfd);
143d77c5 15223 ok = TRUE;
b49e97c9
TS
15224 }
15225
143d77c5
EC
15226 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15227 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15228 if (! (new_flags & EF_MIPS_PIC))
15229 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15230
15231 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15232 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 15233
64543e1a
RS
15234 /* Compare the ISAs. */
15235 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 15236 {
64543e1a 15237 (*_bfd_error_handler)
d003868e
AM
15238 (_("%B: linking 32-bit code with 64-bit code"),
15239 ibfd);
64543e1a
RS
15240 ok = FALSE;
15241 }
15242 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15243 {
15244 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15245 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 15246 {
64543e1a
RS
15247 /* Copy the architecture info from IBFD to OBFD. Also copy
15248 the 32-bit flag (if set) so that we continue to recognise
15249 OBFD as a 32-bit binary. */
15250 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15251 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15252 elf_elfheader (obfd)->e_flags
15253 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15254
351cdf24 15255 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
cf8502c1 15256 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
351cdf24 15257
64543e1a
RS
15258 /* Copy across the ABI flags if OBFD doesn't use them
15259 and if that was what caused us to treat IBFD as 32-bit. */
15260 if ((old_flags & EF_MIPS_ABI) == 0
15261 && mips_32bit_flags_p (new_flags)
15262 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15263 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
15264 }
15265 else
15266 {
64543e1a 15267 /* The ISAs aren't compatible. */
b49e97c9 15268 (*_bfd_error_handler)
d003868e
AM
15269 (_("%B: linking %s module with previous %s modules"),
15270 ibfd,
64543e1a
RS
15271 bfd_printable_name (ibfd),
15272 bfd_printable_name (obfd));
b34976b6 15273 ok = FALSE;
b49e97c9 15274 }
b49e97c9
TS
15275 }
15276
64543e1a
RS
15277 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15278 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15279
15280 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
15281 does set EI_CLASS differently from any 32-bit ABI. */
15282 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15283 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15284 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15285 {
15286 /* Only error if both are set (to different values). */
15287 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15288 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15289 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15290 {
15291 (*_bfd_error_handler)
d003868e
AM
15292 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15293 ibfd,
b49e97c9
TS
15294 elf_mips_abi_name (ibfd),
15295 elf_mips_abi_name (obfd));
b34976b6 15296 ok = FALSE;
b49e97c9
TS
15297 }
15298 new_flags &= ~EF_MIPS_ABI;
15299 old_flags &= ~EF_MIPS_ABI;
15300 }
15301
df58fc94
RS
15302 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15303 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
15304 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15305 {
df58fc94
RS
15306 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15307 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15308 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15309 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15310 int micro_mis = old_m16 && new_micro;
15311 int m16_mis = old_micro && new_m16;
15312
15313 if (m16_mis || micro_mis)
15314 {
15315 (*_bfd_error_handler)
15316 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15317 ibfd,
15318 m16_mis ? "MIPS16" : "microMIPS",
15319 m16_mis ? "microMIPS" : "MIPS16");
15320 ok = FALSE;
15321 }
15322
fb39dac1
RS
15323 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15324
15325 new_flags &= ~ EF_MIPS_ARCH_ASE;
15326 old_flags &= ~ EF_MIPS_ARCH_ASE;
15327 }
15328
ba92f887
MR
15329 /* Compare NaN encodings. */
15330 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15331 {
15332 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15333 ibfd,
15334 (new_flags & EF_MIPS_NAN2008
15335 ? "-mnan=2008" : "-mnan=legacy"),
15336 (old_flags & EF_MIPS_NAN2008
15337 ? "-mnan=2008" : "-mnan=legacy"));
15338 ok = FALSE;
15339 new_flags &= ~EF_MIPS_NAN2008;
15340 old_flags &= ~EF_MIPS_NAN2008;
15341 }
15342
351cdf24
MF
15343 /* Compare FP64 state. */
15344 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15345 {
15346 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15347 ibfd,
15348 (new_flags & EF_MIPS_FP64
15349 ? "-mfp64" : "-mfp32"),
15350 (old_flags & EF_MIPS_FP64
15351 ? "-mfp64" : "-mfp32"));
15352 ok = FALSE;
15353 new_flags &= ~EF_MIPS_FP64;
15354 old_flags &= ~EF_MIPS_FP64;
15355 }
15356
b49e97c9
TS
15357 /* Warn about any other mismatches */
15358 if (new_flags != old_flags)
15359 {
15360 (*_bfd_error_handler)
d003868e
AM
15361 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15362 ibfd, (unsigned long) new_flags,
b49e97c9 15363 (unsigned long) old_flags);
b34976b6 15364 ok = FALSE;
b49e97c9
TS
15365 }
15366
15367 if (! ok)
15368 {
15369 bfd_set_error (bfd_error_bad_value);
b34976b6 15370 return FALSE;
b49e97c9
TS
15371 }
15372
b34976b6 15373 return TRUE;
b49e97c9
TS
15374}
15375
15376/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15377
b34976b6 15378bfd_boolean
9719ad41 15379_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15380{
15381 BFD_ASSERT (!elf_flags_init (abfd)
15382 || elf_elfheader (abfd)->e_flags == flags);
15383
15384 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15385 elf_flags_init (abfd) = TRUE;
15386 return TRUE;
b49e97c9
TS
15387}
15388
ad9563d6
CM
15389char *
15390_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15391{
15392 switch (dtag)
15393 {
15394 default: return "";
15395 case DT_MIPS_RLD_VERSION:
15396 return "MIPS_RLD_VERSION";
15397 case DT_MIPS_TIME_STAMP:
15398 return "MIPS_TIME_STAMP";
15399 case DT_MIPS_ICHECKSUM:
15400 return "MIPS_ICHECKSUM";
15401 case DT_MIPS_IVERSION:
15402 return "MIPS_IVERSION";
15403 case DT_MIPS_FLAGS:
15404 return "MIPS_FLAGS";
15405 case DT_MIPS_BASE_ADDRESS:
15406 return "MIPS_BASE_ADDRESS";
15407 case DT_MIPS_MSYM:
15408 return "MIPS_MSYM";
15409 case DT_MIPS_CONFLICT:
15410 return "MIPS_CONFLICT";
15411 case DT_MIPS_LIBLIST:
15412 return "MIPS_LIBLIST";
15413 case DT_MIPS_LOCAL_GOTNO:
15414 return "MIPS_LOCAL_GOTNO";
15415 case DT_MIPS_CONFLICTNO:
15416 return "MIPS_CONFLICTNO";
15417 case DT_MIPS_LIBLISTNO:
15418 return "MIPS_LIBLISTNO";
15419 case DT_MIPS_SYMTABNO:
15420 return "MIPS_SYMTABNO";
15421 case DT_MIPS_UNREFEXTNO:
15422 return "MIPS_UNREFEXTNO";
15423 case DT_MIPS_GOTSYM:
15424 return "MIPS_GOTSYM";
15425 case DT_MIPS_HIPAGENO:
15426 return "MIPS_HIPAGENO";
15427 case DT_MIPS_RLD_MAP:
15428 return "MIPS_RLD_MAP";
a5499fa4
MF
15429 case DT_MIPS_RLD_MAP_REL:
15430 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15431 case DT_MIPS_DELTA_CLASS:
15432 return "MIPS_DELTA_CLASS";
15433 case DT_MIPS_DELTA_CLASS_NO:
15434 return "MIPS_DELTA_CLASS_NO";
15435 case DT_MIPS_DELTA_INSTANCE:
15436 return "MIPS_DELTA_INSTANCE";
15437 case DT_MIPS_DELTA_INSTANCE_NO:
15438 return "MIPS_DELTA_INSTANCE_NO";
15439 case DT_MIPS_DELTA_RELOC:
15440 return "MIPS_DELTA_RELOC";
15441 case DT_MIPS_DELTA_RELOC_NO:
15442 return "MIPS_DELTA_RELOC_NO";
15443 case DT_MIPS_DELTA_SYM:
15444 return "MIPS_DELTA_SYM";
15445 case DT_MIPS_DELTA_SYM_NO:
15446 return "MIPS_DELTA_SYM_NO";
15447 case DT_MIPS_DELTA_CLASSSYM:
15448 return "MIPS_DELTA_CLASSSYM";
15449 case DT_MIPS_DELTA_CLASSSYM_NO:
15450 return "MIPS_DELTA_CLASSSYM_NO";
15451 case DT_MIPS_CXX_FLAGS:
15452 return "MIPS_CXX_FLAGS";
15453 case DT_MIPS_PIXIE_INIT:
15454 return "MIPS_PIXIE_INIT";
15455 case DT_MIPS_SYMBOL_LIB:
15456 return "MIPS_SYMBOL_LIB";
15457 case DT_MIPS_LOCALPAGE_GOTIDX:
15458 return "MIPS_LOCALPAGE_GOTIDX";
15459 case DT_MIPS_LOCAL_GOTIDX:
15460 return "MIPS_LOCAL_GOTIDX";
15461 case DT_MIPS_HIDDEN_GOTIDX:
15462 return "MIPS_HIDDEN_GOTIDX";
15463 case DT_MIPS_PROTECTED_GOTIDX:
15464 return "MIPS_PROTECTED_GOT_IDX";
15465 case DT_MIPS_OPTIONS:
15466 return "MIPS_OPTIONS";
15467 case DT_MIPS_INTERFACE:
15468 return "MIPS_INTERFACE";
15469 case DT_MIPS_DYNSTR_ALIGN:
15470 return "DT_MIPS_DYNSTR_ALIGN";
15471 case DT_MIPS_INTERFACE_SIZE:
15472 return "DT_MIPS_INTERFACE_SIZE";
15473 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15474 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15475 case DT_MIPS_PERF_SUFFIX:
15476 return "DT_MIPS_PERF_SUFFIX";
15477 case DT_MIPS_COMPACT_SIZE:
15478 return "DT_MIPS_COMPACT_SIZE";
15479 case DT_MIPS_GP_VALUE:
15480 return "DT_MIPS_GP_VALUE";
15481 case DT_MIPS_AUX_DYNAMIC:
15482 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15483 case DT_MIPS_PLTGOT:
15484 return "DT_MIPS_PLTGOT";
15485 case DT_MIPS_RWPLT:
15486 return "DT_MIPS_RWPLT";
ad9563d6
CM
15487 }
15488}
15489
757a636f
RS
15490/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15491 not known. */
15492
15493const char *
15494_bfd_mips_fp_abi_string (int fp)
15495{
15496 switch (fp)
15497 {
15498 /* These strings aren't translated because they're simply
15499 option lists. */
15500 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15501 return "-mdouble-float";
15502
15503 case Val_GNU_MIPS_ABI_FP_SINGLE:
15504 return "-msingle-float";
15505
15506 case Val_GNU_MIPS_ABI_FP_SOFT:
15507 return "-msoft-float";
15508
351cdf24
MF
15509 case Val_GNU_MIPS_ABI_FP_OLD_64:
15510 return _("-mips32r2 -mfp64 (12 callee-saved)");
15511
15512 case Val_GNU_MIPS_ABI_FP_XX:
15513 return "-mfpxx";
15514
757a636f 15515 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15516 return "-mgp32 -mfp64";
15517
15518 case Val_GNU_MIPS_ABI_FP_64A:
15519 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15520
15521 default:
15522 return 0;
15523 }
15524}
15525
351cdf24
MF
15526static void
15527print_mips_ases (FILE *file, unsigned int mask)
15528{
15529 if (mask & AFL_ASE_DSP)
15530 fputs ("\n\tDSP ASE", file);
15531 if (mask & AFL_ASE_DSPR2)
15532 fputs ("\n\tDSP R2 ASE", file);
15533 if (mask & AFL_ASE_EVA)
15534 fputs ("\n\tEnhanced VA Scheme", file);
15535 if (mask & AFL_ASE_MCU)
15536 fputs ("\n\tMCU (MicroController) ASE", file);
15537 if (mask & AFL_ASE_MDMX)
15538 fputs ("\n\tMDMX ASE", file);
15539 if (mask & AFL_ASE_MIPS3D)
15540 fputs ("\n\tMIPS-3D ASE", file);
15541 if (mask & AFL_ASE_MT)
15542 fputs ("\n\tMT ASE", file);
15543 if (mask & AFL_ASE_SMARTMIPS)
15544 fputs ("\n\tSmartMIPS ASE", file);
15545 if (mask & AFL_ASE_VIRT)
15546 fputs ("\n\tVZ ASE", file);
15547 if (mask & AFL_ASE_MSA)
15548 fputs ("\n\tMSA ASE", file);
15549 if (mask & AFL_ASE_MIPS16)
15550 fputs ("\n\tMIPS16 ASE", file);
15551 if (mask & AFL_ASE_MICROMIPS)
15552 fputs ("\n\tMICROMIPS ASE", file);
15553 if (mask & AFL_ASE_XPA)
15554 fputs ("\n\tXPA ASE", file);
15555 if (mask == 0)
15556 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15557 else if ((mask & ~AFL_ASE_MASK) != 0)
15558 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15559}
15560
15561static void
15562print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15563{
15564 switch (isa_ext)
15565 {
15566 case 0:
15567 fputs (_("None"), file);
15568 break;
15569 case AFL_EXT_XLR:
15570 fputs ("RMI XLR", file);
15571 break;
2c629856
N
15572 case AFL_EXT_OCTEON3:
15573 fputs ("Cavium Networks Octeon3", file);
15574 break;
351cdf24
MF
15575 case AFL_EXT_OCTEON2:
15576 fputs ("Cavium Networks Octeon2", file);
15577 break;
15578 case AFL_EXT_OCTEONP:
15579 fputs ("Cavium Networks OcteonP", file);
15580 break;
15581 case AFL_EXT_LOONGSON_3A:
15582 fputs ("Loongson 3A", file);
15583 break;
15584 case AFL_EXT_OCTEON:
15585 fputs ("Cavium Networks Octeon", file);
15586 break;
15587 case AFL_EXT_5900:
15588 fputs ("Toshiba R5900", file);
15589 break;
15590 case AFL_EXT_4650:
15591 fputs ("MIPS R4650", file);
15592 break;
15593 case AFL_EXT_4010:
15594 fputs ("LSI R4010", file);
15595 break;
15596 case AFL_EXT_4100:
15597 fputs ("NEC VR4100", file);
15598 break;
15599 case AFL_EXT_3900:
15600 fputs ("Toshiba R3900", file);
15601 break;
15602 case AFL_EXT_10000:
15603 fputs ("MIPS R10000", file);
15604 break;
15605 case AFL_EXT_SB1:
15606 fputs ("Broadcom SB-1", file);
15607 break;
15608 case AFL_EXT_4111:
15609 fputs ("NEC VR4111/VR4181", file);
15610 break;
15611 case AFL_EXT_4120:
15612 fputs ("NEC VR4120", file);
15613 break;
15614 case AFL_EXT_5400:
15615 fputs ("NEC VR5400", file);
15616 break;
15617 case AFL_EXT_5500:
15618 fputs ("NEC VR5500", file);
15619 break;
15620 case AFL_EXT_LOONGSON_2E:
15621 fputs ("ST Microelectronics Loongson 2E", file);
15622 break;
15623 case AFL_EXT_LOONGSON_2F:
15624 fputs ("ST Microelectronics Loongson 2F", file);
15625 break;
15626 default:
00ac7aa0 15627 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15628 break;
15629 }
15630}
15631
15632static void
15633print_mips_fp_abi_value (FILE *file, int val)
15634{
15635 switch (val)
15636 {
15637 case Val_GNU_MIPS_ABI_FP_ANY:
15638 fprintf (file, _("Hard or soft float\n"));
15639 break;
15640 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15641 fprintf (file, _("Hard float (double precision)\n"));
15642 break;
15643 case Val_GNU_MIPS_ABI_FP_SINGLE:
15644 fprintf (file, _("Hard float (single precision)\n"));
15645 break;
15646 case Val_GNU_MIPS_ABI_FP_SOFT:
15647 fprintf (file, _("Soft float\n"));
15648 break;
15649 case Val_GNU_MIPS_ABI_FP_OLD_64:
15650 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15651 break;
15652 case Val_GNU_MIPS_ABI_FP_XX:
15653 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15654 break;
15655 case Val_GNU_MIPS_ABI_FP_64:
15656 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15657 break;
15658 case Val_GNU_MIPS_ABI_FP_64A:
15659 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15660 break;
15661 default:
15662 fprintf (file, "??? (%d)\n", val);
15663 break;
15664 }
15665}
15666
15667static int
15668get_mips_reg_size (int reg_size)
15669{
15670 return (reg_size == AFL_REG_NONE) ? 0
15671 : (reg_size == AFL_REG_32) ? 32
15672 : (reg_size == AFL_REG_64) ? 64
15673 : (reg_size == AFL_REG_128) ? 128
15674 : -1;
15675}
15676
b34976b6 15677bfd_boolean
9719ad41 15678_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15679{
9719ad41 15680 FILE *file = ptr;
b49e97c9
TS
15681
15682 BFD_ASSERT (abfd != NULL && ptr != NULL);
15683
15684 /* Print normal ELF private data. */
15685 _bfd_elf_print_private_bfd_data (abfd, ptr);
15686
15687 /* xgettext:c-format */
15688 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15689
15690 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15691 fprintf (file, _(" [abi=O32]"));
15692 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15693 fprintf (file, _(" [abi=O64]"));
15694 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15695 fprintf (file, _(" [abi=EABI32]"));
15696 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15697 fprintf (file, _(" [abi=EABI64]"));
15698 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15699 fprintf (file, _(" [abi unknown]"));
15700 else if (ABI_N32_P (abfd))
15701 fprintf (file, _(" [abi=N32]"));
15702 else if (ABI_64_P (abfd))
15703 fprintf (file, _(" [abi=64]"));
15704 else
15705 fprintf (file, _(" [no abi set]"));
15706
15707 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15708 fprintf (file, " [mips1]");
b49e97c9 15709 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15710 fprintf (file, " [mips2]");
b49e97c9 15711 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15712 fprintf (file, " [mips3]");
b49e97c9 15713 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15714 fprintf (file, " [mips4]");
b49e97c9 15715 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15716 fprintf (file, " [mips5]");
b49e97c9 15717 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15718 fprintf (file, " [mips32]");
b49e97c9 15719 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15720 fprintf (file, " [mips64]");
af7ee8bf 15721 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15722 fprintf (file, " [mips32r2]");
5f74bc13 15723 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15724 fprintf (file, " [mips64r2]");
7361da2c
AB
15725 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15726 fprintf (file, " [mips32r6]");
15727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15728 fprintf (file, " [mips64r6]");
b49e97c9
TS
15729 else
15730 fprintf (file, _(" [unknown ISA]"));
15731
40d32fc6 15732 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15733 fprintf (file, " [mdmx]");
40d32fc6
CD
15734
15735 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15736 fprintf (file, " [mips16]");
40d32fc6 15737
df58fc94
RS
15738 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15739 fprintf (file, " [micromips]");
15740
ba92f887
MR
15741 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15742 fprintf (file, " [nan2008]");
15743
5baf5e34 15744 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15745 fprintf (file, " [old fp64]");
5baf5e34 15746
b49e97c9 15747 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15748 fprintf (file, " [32bitmode]");
b49e97c9
TS
15749 else
15750 fprintf (file, _(" [not 32bitmode]"));
15751
c0e3f241 15752 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15753 fprintf (file, " [noreorder]");
c0e3f241
CD
15754
15755 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15756 fprintf (file, " [PIC]");
c0e3f241
CD
15757
15758 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15759 fprintf (file, " [CPIC]");
c0e3f241
CD
15760
15761 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15762 fprintf (file, " [XGOT]");
c0e3f241
CD
15763
15764 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15765 fprintf (file, " [UCODE]");
c0e3f241 15766
b49e97c9
TS
15767 fputc ('\n', file);
15768
351cdf24
MF
15769 if (mips_elf_tdata (abfd)->abiflags_valid)
15770 {
15771 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15772 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15773 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15774 if (abiflags->isa_rev > 1)
15775 fprintf (file, "r%d", abiflags->isa_rev);
15776 fprintf (file, "\nGPR size: %d",
15777 get_mips_reg_size (abiflags->gpr_size));
15778 fprintf (file, "\nCPR1 size: %d",
15779 get_mips_reg_size (abiflags->cpr1_size));
15780 fprintf (file, "\nCPR2 size: %d",
15781 get_mips_reg_size (abiflags->cpr2_size));
15782 fputs ("\nFP ABI: ", file);
15783 print_mips_fp_abi_value (file, abiflags->fp_abi);
15784 fputs ("ISA Extension: ", file);
15785 print_mips_isa_ext (file, abiflags->isa_ext);
15786 fputs ("\nASEs:", file);
15787 print_mips_ases (file, abiflags->ases);
15788 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15789 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15790 fputc ('\n', file);
15791 }
15792
b34976b6 15793 return TRUE;
b49e97c9 15794}
2f89ff8d 15795
b35d266b 15796const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15797{
0112cd26
NC
15798 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15799 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15800 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15801 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15802 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15803 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15804 { NULL, 0, 0, 0, 0 }
2f89ff8d 15805};
5e2b0d47 15806
8992f0d7
TS
15807/* Merge non visibility st_other attributes. Ensure that the
15808 STO_OPTIONAL flag is copied into h->other, even if this is not a
15809 definiton of the symbol. */
5e2b0d47
NC
15810void
15811_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15812 const Elf_Internal_Sym *isym,
15813 bfd_boolean definition,
15814 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15815{
8992f0d7
TS
15816 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15817 {
15818 unsigned char other;
15819
15820 other = (definition ? isym->st_other : h->other);
15821 other &= ~ELF_ST_VISIBILITY (-1);
15822 h->other = other | ELF_ST_VISIBILITY (h->other);
15823 }
15824
15825 if (!definition
5e2b0d47
NC
15826 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15827 h->other |= STO_OPTIONAL;
15828}
12ac1cf5
NC
15829
15830/* Decide whether an undefined symbol is special and can be ignored.
15831 This is the case for OPTIONAL symbols on IRIX. */
15832bfd_boolean
15833_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15834{
15835 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15836}
e0764319
NC
15837
15838bfd_boolean
15839_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15840{
15841 return (sym->st_shndx == SHN_COMMON
15842 || sym->st_shndx == SHN_MIPS_ACOMMON
15843 || sym->st_shndx == SHN_MIPS_SCOMMON);
15844}
861fb55a
DJ
15845
15846/* Return address for Ith PLT stub in section PLT, for relocation REL
15847 or (bfd_vma) -1 if it should not be included. */
15848
15849bfd_vma
15850_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15851 const arelent *rel ATTRIBUTE_UNUSED)
15852{
15853 return (plt->vma
15854 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15855 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15856}
15857
1bbce132
MR
15858/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15859 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15860 and .got.plt and also the slots may be of a different size each we walk
15861 the PLT manually fetching instructions and matching them against known
15862 patterns. To make things easier standard MIPS slots, if any, always come
15863 first. As we don't create proper ELF symbols we use the UDATA.I member
15864 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15865 with the ST_OTHER member of the ELF symbol. */
15866
15867long
15868_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15869 long symcount ATTRIBUTE_UNUSED,
15870 asymbol **syms ATTRIBUTE_UNUSED,
15871 long dynsymcount, asymbol **dynsyms,
15872 asymbol **ret)
15873{
15874 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15875 static const char microsuffix[] = "@micromipsplt";
15876 static const char m16suffix[] = "@mips16plt";
15877 static const char mipssuffix[] = "@plt";
15878
15879 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15881 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15882 Elf_Internal_Shdr *hdr;
15883 bfd_byte *plt_data;
15884 bfd_vma plt_offset;
15885 unsigned int other;
15886 bfd_vma entry_size;
15887 bfd_vma plt0_size;
15888 asection *relplt;
15889 bfd_vma opcode;
15890 asection *plt;
15891 asymbol *send;
15892 size_t size;
15893 char *names;
15894 long counti;
15895 arelent *p;
15896 asymbol *s;
15897 char *nend;
15898 long count;
15899 long pi;
15900 long i;
15901 long n;
15902
15903 *ret = NULL;
15904
15905 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15906 return 0;
15907
15908 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15909 if (relplt == NULL)
15910 return 0;
15911
15912 hdr = &elf_section_data (relplt)->this_hdr;
15913 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15914 return 0;
15915
15916 plt = bfd_get_section_by_name (abfd, ".plt");
15917 if (plt == NULL)
15918 return 0;
15919
15920 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15921 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15922 return -1;
15923 p = relplt->relocation;
15924
15925 /* Calculating the exact amount of space required for symbols would
15926 require two passes over the PLT, so just pessimise assuming two
15927 PLT slots per relocation. */
15928 count = relplt->size / hdr->sh_entsize;
15929 counti = count * bed->s->int_rels_per_ext_rel;
15930 size = 2 * count * sizeof (asymbol);
15931 size += count * (sizeof (mipssuffix) +
15932 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15933 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15934 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15935
15936 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15937 size += sizeof (asymbol) + sizeof (pltname);
15938
15939 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15940 return -1;
15941
15942 if (plt->size < 16)
15943 return -1;
15944
15945 s = *ret = bfd_malloc (size);
15946 if (s == NULL)
15947 return -1;
15948 send = s + 2 * count + 1;
15949
15950 names = (char *) send;
15951 nend = (char *) s + size;
15952 n = 0;
15953
15954 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15955 if (opcode == 0x3302fffe)
15956 {
15957 if (!micromips_p)
15958 return -1;
15959 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15960 other = STO_MICROMIPS;
15961 }
833794fc
MR
15962 else if (opcode == 0x0398c1d0)
15963 {
15964 if (!micromips_p)
15965 return -1;
15966 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15967 other = STO_MICROMIPS;
15968 }
1bbce132
MR
15969 else
15970 {
15971 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15972 other = 0;
15973 }
15974
15975 s->the_bfd = abfd;
15976 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15977 s->section = plt;
15978 s->value = 0;
15979 s->name = names;
15980 s->udata.i = other;
15981 memcpy (names, pltname, sizeof (pltname));
15982 names += sizeof (pltname);
15983 ++s, ++n;
15984
15985 pi = 0;
15986 for (plt_offset = plt0_size;
15987 plt_offset + 8 <= plt->size && s < send;
15988 plt_offset += entry_size)
15989 {
15990 bfd_vma gotplt_addr;
15991 const char *suffix;
15992 bfd_vma gotplt_hi;
15993 bfd_vma gotplt_lo;
15994 size_t suffixlen;
15995
15996 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15997
15998 /* Check if the second word matches the expected MIPS16 instruction. */
15999 if (opcode == 0x651aeb00)
16000 {
16001 if (micromips_p)
16002 return -1;
16003 /* Truncated table??? */
16004 if (plt_offset + 16 > plt->size)
16005 break;
16006 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16007 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16008 suffixlen = sizeof (m16suffix);
16009 suffix = m16suffix;
16010 other = STO_MIPS16;
16011 }
833794fc 16012 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16013 else if (opcode == 0xff220000)
16014 {
16015 if (!micromips_p)
16016 return -1;
16017 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16018 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16019 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16020 gotplt_lo <<= 2;
16021 gotplt_addr = gotplt_hi + gotplt_lo;
16022 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16023 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16024 suffixlen = sizeof (microsuffix);
16025 suffix = microsuffix;
16026 other = STO_MICROMIPS;
16027 }
833794fc
MR
16028 /* Likewise the expected microMIPS instruction (insn32 mode). */
16029 else if ((opcode & 0xffff0000) == 0xff2f0000)
16030 {
16031 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16032 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16033 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16034 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16035 gotplt_addr = gotplt_hi + gotplt_lo;
16036 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16037 suffixlen = sizeof (microsuffix);
16038 suffix = microsuffix;
16039 other = STO_MICROMIPS;
16040 }
1bbce132
MR
16041 /* Otherwise assume standard MIPS code. */
16042 else
16043 {
16044 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16045 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16046 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16047 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16048 gotplt_addr = gotplt_hi + gotplt_lo;
16049 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16050 suffixlen = sizeof (mipssuffix);
16051 suffix = mipssuffix;
16052 other = 0;
16053 }
16054 /* Truncated table??? */
16055 if (plt_offset + entry_size > plt->size)
16056 break;
16057
16058 for (i = 0;
16059 i < count && p[pi].address != gotplt_addr;
16060 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16061
16062 if (i < count)
16063 {
16064 size_t namelen;
16065 size_t len;
16066
16067 *s = **p[pi].sym_ptr_ptr;
16068 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16069 we are defining a symbol, ensure one of them is set. */
16070 if ((s->flags & BSF_LOCAL) == 0)
16071 s->flags |= BSF_GLOBAL;
16072 s->flags |= BSF_SYNTHETIC;
16073 s->section = plt;
16074 s->value = plt_offset;
16075 s->name = names;
16076 s->udata.i = other;
16077
16078 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16079 namelen = len + suffixlen;
16080 if (names + namelen > nend)
16081 break;
16082
16083 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16084 names += len;
16085 memcpy (names, suffix, suffixlen);
16086 names += suffixlen;
16087
16088 ++s, ++n;
16089 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16090 }
16091 }
16092
16093 free (plt_data);
16094
16095 return n;
16096}
16097
861fb55a
DJ
16098void
16099_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16100{
16101 struct mips_elf_link_hash_table *htab;
16102 Elf_Internal_Ehdr *i_ehdrp;
16103
16104 i_ehdrp = elf_elfheader (abfd);
16105 if (link_info)
16106 {
16107 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16108 BFD_ASSERT (htab != NULL);
16109
861fb55a
DJ
16110 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16111 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16112 }
0af03126
L
16113
16114 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16115
16116 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16117 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16118 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16119}
2f0c68f2
CM
16120
16121int
16122_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16123{
16124 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16125}
16126
16127/* Return the opcode for can't unwind. */
16128
16129int
16130_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16131{
16132 return COMPACT_EH_CANT_UNWIND_OPCODE;
16133}
This page took 2.345841 seconds and 4 git commands to generate.