*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
dbaa2011 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
ead49a57
RS
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
020d7251 57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
ead49a57
RS
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
f4416af6
AO
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
020d7251
RS
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
f4416af6
AO
101 struct mips_elf_link_hash_entry *h;
102 } d;
0f20cc35
DJ
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
b15e6682 111 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
b15e6682
AO
115};
116
c224138d
RS
117/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120struct mips_got_page_range
121{
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125};
126
127/* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129struct mips_got_page_entry
130{
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139};
140
f0abc2a1 141/* This structure is used to hold .got information when linking. */
b49e97c9
TS
142
143struct mips_got_info
144{
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
23cc69b6
RS
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
0f20cc35
DJ
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
c224138d 157 /* The number of local .got entries, eventually including page entries. */
b49e97c9 158 unsigned int local_gotno;
c224138d
RS
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
b49e97c9
TS
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
b15e6682
AO
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
c224138d
RS
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
f4416af6
AO
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
0f20cc35
DJ
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
f4416af6
AO
178};
179
180/* Map an input bfd to a got in a multi-got link. */
181
91d6fa6a
NC
182struct mips_elf_bfd2got_hash
183{
f4416af6
AO
184 bfd *bfd;
185 struct mips_got_info *g;
186};
187
188/* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191struct mips_elf_got_per_bfd_arg
192{
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
c224138d
RS
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
0f20cc35
DJ
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
f4416af6
AO
216};
217
218/* Another structure used to pass arguments for got entries traversal. */
219
220struct mips_elf_set_global_got_offset_arg
221{
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
b49e97c9
TS
226};
227
0f20cc35
DJ
228/* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231struct mips_elf_count_tls_arg
232{
233 struct bfd_link_info *info;
234 unsigned int needed;
235};
236
f0abc2a1
AM
237struct _mips_elf_section_data
238{
239 struct bfd_elf_section_data elf;
240 union
241 {
f0abc2a1
AM
242 bfd_byte *tdata;
243 } u;
244};
245
246#define mips_elf_section_data(sec) \
68bfbfcc 247 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 248
d5eaccd7
RS
249#define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
4dfe6ac6 252 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 253
634835ae
RS
254/* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271#define GGA_NORMAL 0
272#define GGA_RELOC_ONLY 1
273#define GGA_NONE 2
274
861fb55a
DJ
275/* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302};
303
304/* Macros for populating a mips_elf_la25_stub. */
305
306#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
df58fc94
RS
309#define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310#define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311#define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312#define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313#define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314#define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
861fb55a 315
b49e97c9
TS
316/* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319struct mips_elf_hash_sort_data
320{
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
0f20cc35
DJ
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
b49e97c9 326 long min_got_dynindx;
f4416af6
AO
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 329 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 330 long max_unref_got_dynindx;
b49e97c9
TS
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334};
335
336/* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339struct mips_elf_link_hash_entry
340{
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
861fb55a
DJ
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
b49e97c9
TS
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
b49e97c9
TS
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
b49e97c9
TS
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
7c5fcef7 364
0f20cc35
DJ
365#define GOT_NORMAL 0
366#define GOT_TLS_GD 1
367#define GOT_TLS_LDM 2
368#define GOT_TLS_IE 4
369#define GOT_TLS_OFFSET_DONE 0x40
370#define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
71782a75 372
0f20cc35
DJ
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
71782a75 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
423#if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427#endif
861fb55a 428
b49e97c9
TS
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
861fb55a 431
b49e97c9
TS
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
861fb55a 434
b49e97c9 435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 436 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 437 bfd_boolean use_rld_obj_head;
861fb55a 438
b4082c70
DD
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
861fb55a 441
b49e97c9 442 /* This is set if we see any mips16 stub sections. */
b34976b6 443 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
0a44bf69
RS
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
861fb55a 450
0e53d9da
AN
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
861fb55a 453
0a44bf69
RS
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
4e41d0d7 462 asection *sstubs;
a8028dd0 463 asection *sgot;
861fb55a 464
a8028dd0
RS
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
861fb55a
DJ
467
468 /* The size of the PLT header in bytes. */
0a44bf69 469 bfd_vma plt_header_size;
861fb55a
DJ
470
471 /* The size of a PLT entry in bytes. */
0a44bf69 472 bfd_vma plt_entry_size;
861fb55a 473
33bb52fb
RS
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
861fb55a 476
5108fc1b
RS
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
861fb55a
DJ
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499};
500
4dfe6ac6
NC
501/* Get the MIPS ELF linker hash table from a link_info structure. */
502
503#define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
861fb55a 507/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
508struct mips_htab_traverse_info
509{
861fb55a
DJ
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
b49e97c9
TS
516};
517
0f20cc35
DJ
518#define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 531 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 546
b49e97c9
TS
547/* Structure used to pass information to mips_elf_output_extsym. */
548
549struct extsym_info
550{
9e4aeb93
RS
551 bfd *abfd;
552 struct bfd_link_info *info;
b49e97c9
TS
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
b34976b6 555 bfd_boolean failed;
b49e97c9
TS
556};
557
8dc1a139 558/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
559
560static const char * const mips_elf_dynsym_rtproc_names[] =
561{
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566};
567
568/* These structures are used to generate the .compact_rel section on
8dc1a139 569 IRIX5. */
b49e97c9
TS
570
571typedef struct
572{
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579} Elf32_compact_rel;
580
581typedef struct
582{
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589} Elf32_External_compact_rel;
590
591typedef struct
592{
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599} Elf32_crinfo;
600
601typedef struct
602{
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608} Elf32_crinfo2;
609
610typedef struct
611{
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615} Elf32_External_crinfo;
616
617typedef struct
618{
619 bfd_byte info[4];
620 bfd_byte konst[4];
621} Elf32_External_crinfo2;
622
623/* These are the constants used to swap the bitfields in a crinfo. */
624
625#define CRINFO_CTYPE (0x1)
626#define CRINFO_CTYPE_SH (31)
627#define CRINFO_RTYPE (0xf)
628#define CRINFO_RTYPE_SH (27)
629#define CRINFO_DIST2TO (0xff)
630#define CRINFO_DIST2TO_SH (19)
631#define CRINFO_RELVADDR (0x7ffff)
632#define CRINFO_RELVADDR_SH (0)
633
634/* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637#define CRF_MIPS_LONG 1
638#define CRF_MIPS_SHORT 0
639
640/* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650#define CRT_MIPS_REL32 0xa
651#define CRT_MIPS_WORD 0xb
652#define CRT_MIPS_GPHI_LO 0xc
653#define CRT_MIPS_JMPAD 0xd
654
655#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659\f
660/* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663typedef struct runtime_pdr {
ae9a127f
NC
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
b49e97c9 673 long reserved;
ae9a127f 674 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
675} RPDR, *pRPDR;
676#define cbRPDR sizeof (RPDR)
677#define rpdNil ((pRPDR) 0)
678\f
b15e6682 679static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
b34976b6 682static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 683 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
684static bfd_vma mips_elf_high
685 (bfd_vma);
b34976b6 686static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
9719ad41
RS
690static hashval_t mips_elf_got_entry_hash
691 (const void *);
f4416af6 692static bfd_vma mips_elf_adjust_gp
9719ad41 693 (bfd *, struct mips_got_info *, bfd *);
f4416af6 694static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 695 (struct mips_got_info *, bfd *);
f4416af6 696
b49e97c9
TS
697/* This will be used when we sort the dynamic relocation records. */
698static bfd *reldyn_sorting_bfd;
699
6d30f5b2
NC
700/* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702#define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
cd8d5a82
CF
706/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709#define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715#define JALR_TO_BAL_P(abfd) 1
716
38a7df63
CF
717/* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720#define JR_TO_B_P(abfd) 1
721
861fb55a
DJ
722/* True if ABFD is a PIC object. */
723#define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
b49e97c9 726/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
727#define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
4a14403c 730/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 731#define ABI_64_P(abfd) \
141ff970 732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 733
4a14403c
TS
734/* Nonzero if ABFD is using NewABI conventions. */
735#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
738#define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
b49e97c9
TS
741/* Whether we are trying to be compatible with IRIX at all. */
742#define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745/* The name of the options section. */
746#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 748
cc2e31b9
RS
749/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
943284cc
DJ
754/* Whether the section is readonly. */
755#define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
b49e97c9 759/* The name of the stub section. */
ca07892d 760#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
761
762/* The size of an external REL relocation. */
763#define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
0a44bf69
RS
766/* The size of an external RELA relocation. */
767#define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
b49e97c9
TS
770/* The size of an external dynamic table entry. */
771#define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774/* The size of a GOT entry. */
775#define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
b4082c70
DD
778/* The size of the .rld_map section. */
779#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
b49e97c9
TS
782/* The size of a symbol-table entry. */
783#define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786/* The default alignment for sections, as a power of two. */
787#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 788 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
789
790/* Get word-sized data. */
791#define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794/* Put out word-sized data. */
795#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
861fb55a
DJ
800/* The opcode for word-sized loads (LW or LD). */
801#define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
b49e97c9 804/* Add a dynamic symbol table-entry. */
9719ad41 805#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 806 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
807
808#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
0a44bf69
RS
811/* The name of the dynamic relocation section. */
812#define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
b49e97c9
TS
815/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 818#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 819
51e38d68
RS
820/* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
f4416af6 826/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
827#define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
829
830/* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
0a44bf69 832#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 833
6a691779 834/* Instructions which appear in a stub. */
3d6746ca
DD
835#define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839#define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
845#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
847#define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
5108fc1b
RS
852#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
854
855/* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858#define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863#ifdef BFD64
ee6423ed
AO
864#define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
866#define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868#define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870#define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872#else
ee6423ed 873#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
874#define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876#define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878#define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880#endif
881\f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916#define FN_STUB ".mips16.fn."
917#define CALL_STUB ".mips16.call."
918#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
919
920#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 923\f
861fb55a 924/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
925static const bfd_vma mips_o32_exec_plt0_entry[] =
926{
861fb55a
DJ
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
81f5d455 931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935};
936
937/* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
939static const bfd_vma mips_n32_exec_plt0_entry[] =
940{
861fb55a
DJ
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
81f5d455 945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949};
950
951/* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
953static const bfd_vma mips_n64_exec_plt0_entry[] =
954{
861fb55a
DJ
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
81f5d455 959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963};
964
965/* The format of subsequent PLT entries. */
6d30f5b2
NC
966static const bfd_vma mips_exec_plt_entry[] =
967{
861fb55a
DJ
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972};
973
0a44bf69 974/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
975static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976{
0a44bf69
RS
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983};
984
985/* The format of subsequent PLT entries. */
6d30f5b2
NC
986static const bfd_vma mips_vxworks_exec_plt_entry[] =
987{
0a44bf69
RS
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996};
997
998/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
999static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000{
0a44bf69
RS
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007};
1008
1009/* The format of subsequent PLT entries. */
6d30f5b2
NC
1010static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011{
0a44bf69
RS
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014};
1015\f
b49e97c9
TS
1016/* Look up an entry in a MIPS ELF linker hash table. */
1017
1018#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023/* Traverse a MIPS ELF linker hash table. */
1024
1025#define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
9719ad41 1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1029 (info)))
1030
0f20cc35
DJ
1031/* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034#define TP_OFFSET 0x7000
1035#define DTP_OFFSET 0x8000
1036
1037static bfd_vma
1038dtprel_base (struct bfd_link_info *info)
1039{
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044}
1045
1046static bfd_vma
1047tprel_base (struct bfd_link_info *info)
1048{
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053}
1054
b49e97c9
TS
1055/* Create an entry in a MIPS ELF linker hash table. */
1056
1057static struct bfd_hash_entry *
9719ad41
RS
1058mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1060{
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
9719ad41
RS
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
b49e97c9
TS
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
9719ad41 1075 if (ret != NULL)
b49e97c9
TS
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
861fb55a 1082 ret->la25_stub = 0;
b49e97c9 1083 ret->possibly_dynamic_relocs = 0;
b49e97c9 1084 ret->fn_stub = NULL;
b49e97c9
TS
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
71782a75 1087 ret->tls_type = GOT_NORMAL;
634835ae 1088 ret->global_got_area = GGA_NONE;
6ccf4795 1089 ret->got_only_for_calls = TRUE;
71782a75 1090 ret->readonly_reloc = FALSE;
861fb55a 1091 ret->has_static_relocs = FALSE;
71782a75
RS
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
861fb55a 1094 ret->has_nonpic_branches = FALSE;
33bb52fb 1095 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099}
f0abc2a1
AM
1100
1101bfd_boolean
9719ad41 1102_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1103{
f592407e
AM
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1108
f592407e
AM
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
f0abc2a1
AM
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116}
b49e97c9
TS
1117\f
1118/* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
b34976b6 1121bfd_boolean
9719ad41
RS
1122_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
b49e97c9
TS
1124{
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
9719ad41 1127 char *ext_hdr;
b49e97c9
TS
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
9719ad41 1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
9719ad41 1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1137 swap->external_hdr_size))
b49e97c9
TS
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145#define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1151 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
9719ad41 1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1171#undef READ
1172
1173 debug->fdr = NULL;
b49e97c9 1174
b34976b6 1175 return TRUE;
b49e97c9
TS
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
b34976b6 1202 return FALSE;
b49e97c9
TS
1203}
1204\f
1205/* Swap RPDR (runtime procedure table entry) for output. */
1206
1207static void
9719ad41 1208ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1209{
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1221}
1222
1223/* Create a runtime procedure table from the .mdebug section. */
1224
b34976b6 1225static bfd_boolean
9719ad41
RS
1226mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
b49e97c9
TS
1229{
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
9719ad41 1234 void *rtproc;
b49e97c9
TS
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
9719ad41 1261 epdr = bfd_malloc (size * count);
b49e97c9
TS
1262 if (epdr == NULL)
1263 goto error_return;
1264
9719ad41 1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
9719ad41 1269 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
9719ad41 1274 sv = bfd_malloc (size * count);
b49e97c9
TS
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
9719ad41 1280 esym = bfd_malloc (size * count);
b49e97c9
TS
1281 if (esym == NULL)
1282 goto error_return;
1283
9719ad41 1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1285 goto error_return;
1286
1287 count = hdr->issMax;
9719ad41 1288 ss = bfd_malloc (count);
b49e97c9
TS
1289 if (ss == NULL)
1290 goto error_return;
f075ee0c 1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
9719ad41
RS
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
9719ad41 1315 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
9719ad41 1324 erp = rtproc;
b49e97c9
TS
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
eea6121a 1339 s->size = size;
9719ad41 1340 s->contents = rtproc;
b49e97c9
TS
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
8423293d 1344 s->map_head.link_order = NULL;
b49e97c9
TS
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
b34976b6 1357 return TRUE;
b49e97c9
TS
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
b34976b6 1370 return FALSE;
b49e97c9 1371}
738e5348 1372\f
861fb55a
DJ
1373/* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376static bfd_boolean
1377mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381{
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
df58fc94
RS
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
861fb55a
DJ
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403}
1404
738e5348
RS
1405/* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409static bfd_boolean
1410mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413{
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441}
1442
1443/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446static bfd_boolean
1447section_allows_mips16_refs_p (asection *section)
1448{
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456}
1457
1458/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462static unsigned long
cb4437b8
MR
1463mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
502e814e 1465 const Elf_Internal_Rela *relocs,
738e5348
RS
1466 const Elf_Internal_Rela *relend)
1467{
cb4437b8 1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1469 const Elf_Internal_Rela *rel;
1470
cb4437b8
MR
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483}
b49e97c9
TS
1484
1485/* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
861fb55a
DJ
1488static void
1489mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
b49e97c9 1491{
738e5348
RS
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
b49e97c9
TS
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
eea6121a 1507 h->fn_stub->size = 0;
b49e97c9
TS
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
30c09090 1514 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
eea6121a 1519 h->call_stub->size = 0;
b49e97c9
TS
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
30c09090 1526 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
eea6121a 1531 h->call_fp_stub->size = 0;
b49e97c9
TS
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
861fb55a
DJ
1536}
1537
1538/* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540static hashval_t
1541mips_elf_la25_stub_hash (const void *entry_)
1542{
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548}
1549
1550static int
1551mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552{
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561}
1562
1563/* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567bfd_boolean
1568_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571{
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1575 if (htab == NULL)
1576 return FALSE;
1577
861fb55a
DJ
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585}
1586
1587/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
861fb55a
DJ
1592
1593static bfd_boolean
1594mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595{
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604}
1605
8f0c309a
CLT
1606/* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609static bfd_vma
1610mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612{
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624}
1625
861fb55a
DJ
1626/* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630static bfd_boolean
1631mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633{
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1640 if (htab == NULL)
1641 return FALSE;
861fb55a
DJ
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
8f0c309a 1650 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671}
1672
1673/* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677static bfd_boolean
1678mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680{
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1685 if (htab == NULL)
1686 return FALSE;
861fb55a
DJ
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708}
1709
1710/* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713static bfd_boolean
1714mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716{
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
861fb55a
DJ
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1731 if (htab == NULL)
1732 return FALSE;
1733
861fb55a
DJ
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
8f0c309a
CLT
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
861fb55a
DJ
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762}
1763
1764/* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767static bfd_boolean
1768mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769{
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1775
861fb55a
DJ
1776 if (mips_elf_local_pic_function_p (h))
1777 {
ba85c43e
NC
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
861fb55a
DJ
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
b34976b6 1799 return TRUE;
b49e97c9
TS
1800}
1801\f
d6f16593
MR
1802/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
738e5348
RS
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
d6f16593
MR
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
738e5348
RS
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887static inline bfd_boolean
1888mips16_reloc_p (int r_type)
1889{
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
d0f13682
CLT
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910}
1911
df58fc94
RS
1912/* Check if a microMIPS reloc. */
1913
1914static inline bfd_boolean
1915micromips_reloc_p (unsigned int r_type)
1916{
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918}
1919
1920/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924static inline bfd_boolean
1925micromips_reloc_shuffle_p (unsigned int r_type)
1926{
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930}
1931
738e5348
RS
1932static inline bfd_boolean
1933got16_reloc_p (int r_type)
1934{
df58fc94
RS
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1938}
1939
1940static inline bfd_boolean
1941call16_reloc_p (int r_type)
1942{
df58fc94
RS
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946}
1947
1948static inline bfd_boolean
1949got_disp_reloc_p (unsigned int r_type)
1950{
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952}
1953
1954static inline bfd_boolean
1955got_page_reloc_p (unsigned int r_type)
1956{
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958}
1959
1960static inline bfd_boolean
1961got_ofst_reloc_p (unsigned int r_type)
1962{
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964}
1965
1966static inline bfd_boolean
1967got_hi16_reloc_p (unsigned int r_type)
1968{
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970}
1971
1972static inline bfd_boolean
1973got_lo16_reloc_p (unsigned int r_type)
1974{
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976}
1977
1978static inline bfd_boolean
1979call_hi16_reloc_p (unsigned int r_type)
1980{
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982}
1983
1984static inline bfd_boolean
1985call_lo16_reloc_p (unsigned int r_type)
1986{
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
1988}
1989
1990static inline bfd_boolean
1991hi16_reloc_p (int r_type)
1992{
df58fc94
RS
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
738e5348 1996}
d6f16593 1997
738e5348
RS
1998static inline bfd_boolean
1999lo16_reloc_p (int r_type)
2000{
df58fc94
RS
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2004}
2005
2006static inline bfd_boolean
2007mips16_call_reloc_p (int r_type)
2008{
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010}
d6f16593 2011
38a7df63
CF
2012static inline bfd_boolean
2013jal_reloc_p (int r_type)
2014{
df58fc94
RS
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018}
2019
2020static inline bfd_boolean
2021micromips_branch_reloc_p (int r_type)
2022{
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027}
2028
2029static inline bfd_boolean
2030tls_gd_reloc_p (unsigned int r_type)
2031{
d0f13682
CLT
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2035}
2036
2037static inline bfd_boolean
2038tls_ldm_reloc_p (unsigned int r_type)
2039{
d0f13682
CLT
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2043}
2044
2045static inline bfd_boolean
2046tls_gottprel_reloc_p (unsigned int r_type)
2047{
d0f13682
CLT
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2051}
2052
d6f16593 2053void
df58fc94
RS
2054_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2056{
df58fc94 2057 bfd_vma first, second, val;
d6f16593 2058
df58fc94 2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2060 return;
2061
df58fc94
RS
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2070 else
df58fc94
RS
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2073 bfd_put_32 (abfd, val, data);
2074}
2075
2076void
df58fc94
RS
2077_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2079{
df58fc94 2080 bfd_vma first, second, val;
d6f16593 2081
df58fc94 2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
df58fc94 2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2087 {
df58fc94
RS
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2095 }
2096 else
2097 {
df58fc94
RS
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
d6f16593 2101 }
df58fc94
RS
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
d6f16593
MR
2104}
2105
b49e97c9 2106bfd_reloc_status_type
9719ad41
RS
2107_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2110{
2111 bfd_vma relocation;
a7ebbfdf 2112 bfd_signed_vma val;
30ac9238 2113 bfd_reloc_status_type status;
b49e97c9
TS
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
07515404 2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2124 return bfd_reloc_outofrange;
2125
b49e97c9 2126 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2127 val = reloc_entry->addend;
2128
30ac9238 2129 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2130
b49e97c9 2131 /* Adjust val for the final section location and GP value. If we
1049f94e 2132 are producing relocatable output, we don't want to do this for
b49e97c9 2133 an external symbol. */
1049f94e 2134 if (! relocatable
b49e97c9
TS
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
a7ebbfdf
TS
2138 if (reloc_entry->howto->partial_inplace)
2139 {
30ac9238
RS
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
a7ebbfdf
TS
2145 }
2146 else
2147 reloc_entry->addend = val;
b49e97c9 2148
1049f94e 2149 if (relocatable)
b49e97c9 2150 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2151
2152 return bfd_reloc_ok;
2153}
2154
2155/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160struct mips_hi16
2161{
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166};
2167
2168/* FIXME: This should not be a static variable. */
2169
2170static struct mips_hi16 *mips_hi16_list;
2171
2172/* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181bfd_reloc_status_type
2182_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186{
2187 struct mips_hi16 *n;
2188
07515404 2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206}
2207
738e5348 2208/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212bfd_reloc_status_type
2213_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216{
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227}
2228
2229/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233bfd_reloc_status_type
2234_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237{
2238 bfd_vma vallo;
d6f16593 2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2240
07515404 2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2242 return bfd_reloc_outofrange;
2243
df58fc94 2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2245 location);
df58fc94
RS
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
d6f16593 2249
30ac9238
RS
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
738e5348
RS
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
30ac9238
RS
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286}
2287
2288/* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292bfd_reloc_status_type
2293_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297{
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
07515404 2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
d6f16593
MR
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
30ac9238
RS
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
df58fc94
RS
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
30ac9238 2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2348 location);
df58fc94
RS
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
d6f16593 2351
30ac9238
RS
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2358
2359 return bfd_reloc_ok;
2360}
2361\f
2362/* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365static void
9719ad41
RS
2366bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
b49e97c9
TS
2368{
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371}
2372
2373static void
9719ad41
RS
2374bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
b49e97c9
TS
2376{
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379}
2380
2381static void
9719ad41
RS
2382bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
b49e97c9
TS
2384{
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391}
2392
2393static void
9719ad41
RS
2394bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
b49e97c9
TS
2396{
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406}
b49e97c9
TS
2407\f
2408/* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412void
9719ad41
RS
2413bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
b49e97c9
TS
2415{
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422}
2423
2424void
9719ad41
RS
2425bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
b49e97c9
TS
2427{
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434}
2435
2436/* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442void
9719ad41
RS
2443bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2445{
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453}
2454
2455void
9719ad41
RS
2456bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
b49e97c9
TS
2458{
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466}
2467
2468/* Swap in an options header. */
2469
2470void
9719ad41
RS
2471bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
b49e97c9
TS
2473{
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478}
2479
2480/* Swap out an options header. */
2481
2482void
9719ad41
RS
2483bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
b49e97c9
TS
2485{
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490}
2491\f
2492/* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495static int
9719ad41 2496sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2497{
947216bf
AM
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
6870500c 2500 int diff;
b49e97c9 2501
947216bf
AM
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2504
6870500c
RS
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
b49e97c9
TS
2514}
2515
f4416af6
AO
2516/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518static int
7e3102a7
AM
2519sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2521{
7e3102a7 2522#ifdef BFD64
f4416af6
AO
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
6870500c
RS
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
7e3102a7
AM
2541#else
2542 abort ();
2543#endif
f4416af6
AO
2544}
2545
2546
b49e97c9
TS
2547/* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
b34976b6 2561static bfd_boolean
9719ad41 2562mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2563{
9719ad41 2564 struct extsym_info *einfo = data;
b34976b6 2565 bfd_boolean strip;
b49e97c9
TS
2566 asection *sec, *output_section;
2567
b49e97c9 2568 if (h->root.indx == -2)
b34976b6 2569 strip = FALSE;
f5385ebf 2570 else if ((h->root.def_dynamic
77cfaee6
AM
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
b34976b6 2575 strip = TRUE;
b49e97c9
TS
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
b34976b6
AM
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
b49e97c9 2582 else
b34976b6 2583 strip = FALSE;
b49e97c9
TS
2584
2585 if (strip)
b34976b6 2586 return TRUE;
b49e97c9
TS
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
4a14403c 2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
33bb52fb 2692 else
b49e97c9
TS
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2698
33bb52fb 2699 if (hd->needs_lazy_stub)
b49e97c9
TS
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
b49e97c9
TS
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
b34976b6
AM
2723 einfo->failed = TRUE;
2724 return FALSE;
b49e97c9
TS
2725 }
2726
b34976b6 2727 return TRUE;
b49e97c9
TS
2728}
2729
2730/* A comparison routine used to sort .gptab entries. */
2731
2732static int
9719ad41 2733gptab_compare (const void *p1, const void *p2)
b49e97c9 2734{
9719ad41
RS
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739}
2740\f
b15e6682 2741/* Functions to manage the got entry hash table. */
f4416af6
AO
2742
2743/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746static INLINE hashval_t
9719ad41 2747mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2748{
2749#ifdef BFD64
2750 return addr + (addr >> 32);
2751#else
2752 return addr;
2753#endif
2754}
2755
2756/* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
b15e6682 2760static hashval_t
9719ad41 2761mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2762{
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
38985a1c 2765 return entry->symndx
0f20cc35 2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
b15e6682
AO
2771}
2772
2773static int
9719ad41 2774mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2775{
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
0f20cc35
DJ
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
b15e6682 2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787}
2788
2789/* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794static hashval_t
9719ad41 2795mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2796{
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
0f20cc35
DJ
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2807 : entry->d.h->root.root.root.hash);
2808}
2809
2810static int
9719ad41 2811mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2812{
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
0f20cc35
DJ
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
f4416af6
AO
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
b15e6682 2829}
c224138d
RS
2830
2831static hashval_t
2832mips_got_page_entry_hash (const void *entry_)
2833{
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838}
2839
2840static int
2841mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842{
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848}
b15e6682 2849\f
0a44bf69
RS
2850/* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
f4416af6
AO
2853
2854static asection *
0a44bf69 2855mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2856{
0a44bf69 2857 const char *dname;
f4416af6 2858 asection *sreloc;
0a44bf69 2859 bfd *dynobj;
f4416af6 2860
0a44bf69
RS
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2863 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2864 if (sreloc == NULL && create_p)
2865 {
3d4d4302
AM
2866 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
f4416af6 2873 if (sreloc == NULL
f4416af6 2874 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2876 return NULL;
2877 }
2878 return sreloc;
2879}
2880
0f20cc35
DJ
2881/* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885static int
2886mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888{
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921}
2922
2923/* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926static int
2927mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928{
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936}
2937
2938/* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941static int
2942mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943{
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954}
2955
2956/* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959static int
2960mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961{
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969}
2970
2971/* Output a simple dynamic relocation into SRELOC. */
2972
2973static void
2974mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
861fb55a 2976 unsigned long reloc_index,
0f20cc35
DJ
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980{
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
861fb55a 2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
861fb55a 2999 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3000}
3001
3002/* Initialize a set of TLS GOT entries for one symbol. */
3003
3004static void
3005mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010{
23cc69b6 3011 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
0f20cc35
DJ
3015 bfd_boolean need_relocs = FALSE;
3016
23cc69b6 3017 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3018 if (htab == NULL)
3019 return;
3020
23cc69b6 3021 sgot = htab->sgot;
0f20cc35
DJ
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
0a44bf69 3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
861fb55a 3060 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
861fb55a 3066 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
861fb55a 3099 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
861fb55a 3121 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127}
3128
3129/* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134static bfd_vma
3135mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138{
df58fc94
RS
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
0f20cc35
DJ
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
df58fc94 3145 if (tls_gottprel_reloc_p (r_type))
0f20cc35
DJ
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
df58fc94 3154 if (tls_gd_reloc_p (r_type))
0f20cc35
DJ
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
df58fc94 3160 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167}
3168
0a44bf69
RS
3169/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173static bfd_vma
3174mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176{
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3181 BFD_ASSERT (htab != NULL);
3182
0a44bf69
RS
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
861fb55a
DJ
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
0a44bf69
RS
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203}
3204
5c18022e 3205/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
b49e97c9
TS
3209
3210static bfd_vma
9719ad41 3211mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3212 bfd_vma value, unsigned long r_symndx,
0f20cc35 3213 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3214{
a8028dd0 3215 struct mips_elf_link_hash_table *htab;
b15e6682 3216 struct mips_got_entry *entry;
b49e97c9 3217
a8028dd0 3218 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3219 BFD_ASSERT (htab != NULL);
3220
a8028dd0
RS
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
0f20cc35 3223 if (!entry)
b15e6682 3224 return MINUS_ONE;
0f20cc35
DJ
3225
3226 if (TLS_RELOC_P (r_type))
ead49a57 3227 {
a8028dd0 3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
0f20cc35
DJ
3237 else
3238 return entry->gotidx;
b49e97c9
TS
3239}
3240
3241/* Returns the GOT index for the global symbol indicated by H. */
3242
3243static bfd_vma
0f20cc35
DJ
3244mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
b49e97c9 3246{
a8028dd0 3247 struct mips_elf_link_hash_table *htab;
91d6fa6a 3248 bfd_vma got_index;
f4416af6 3249 struct mips_got_info *g, *gg;
d0c7ff07 3250 long global_got_dynindx = 0;
b49e97c9 3251
a8028dd0 3252 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3253 BFD_ASSERT (htab != NULL);
3254
a8028dd0 3255 gg = g = htab->got_info;
f4416af6
AO
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
143d77c5 3259
f4416af6
AO
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3263 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3268 e.tls_type = 0;
f4416af6 3269
9719ad41 3270 p = htab_find (g->got_entries, &e);
f4416af6
AO
3271
3272 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
f4416af6
AO
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 3294
0f20cc35
DJ
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
91d6fa6a
NC
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
0f20cc35
DJ
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3320 }
91d6fa6a 3321 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3322
91d6fa6a 3323 return got_index;
b49e97c9
TS
3324}
3325
5c18022e
RS
3326/* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3330 offset of the GOT entry from VALUE. */
b49e97c9
TS
3331
3332static bfd_vma
9719ad41 3333mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3334 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3335{
91d6fa6a 3336 bfd_vma page, got_index;
b15e6682 3337 struct mips_got_entry *entry;
b49e97c9 3338
0a44bf69 3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3342
b15e6682
AO
3343 if (!entry)
3344 return MINUS_ONE;
143d77c5 3345
91d6fa6a 3346 got_index = entry->gotidx;
b49e97c9
TS
3347
3348 if (offsetp)
f4416af6 3349 *offsetp = value - entry->d.address;
b49e97c9 3350
91d6fa6a 3351 return got_index;
b49e97c9
TS
3352}
3353
738e5348 3354/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
b49e97c9
TS
3357
3358static bfd_vma
9719ad41 3359mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3360 bfd_vma value, bfd_boolean external)
b49e97c9 3361{
b15e6682 3362 struct mips_got_entry *entry;
b49e97c9 3363
0a44bf69
RS
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3368 if (! external)
0a44bf69 3369 value = mips_elf_high (value) << 16;
b49e97c9 3370
738e5348
RS
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
a8028dd0
RS
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
b15e6682
AO
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
b49e97c9
TS
3380}
3381
3382/* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385static bfd_vma
a8028dd0 3386mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3387 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3388{
a8028dd0 3389 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3390 asection *sgot;
3391 bfd_vma gp;
3392
a8028dd0 3393 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3394 BFD_ASSERT (htab != NULL);
3395
a8028dd0 3396 sgot = htab->sgot;
f4416af6 3397 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3399
91d6fa6a 3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3401}
3402
0a44bf69
RS
3403/* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
b49e97c9 3407
b15e6682 3408static struct mips_got_entry *
0a44bf69 3409mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3410 bfd *ibfd, bfd_vma value,
5c18022e 3411 unsigned long r_symndx,
0f20cc35
DJ
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
b49e97c9 3414{
b15e6682 3415 struct mips_got_entry entry, **loc;
f4416af6 3416 struct mips_got_info *g;
0a44bf69
RS
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
4dfe6ac6 3420 BFD_ASSERT (htab != NULL);
b15e6682 3421
f4416af6
AO
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
0f20cc35 3425 entry.tls_type = 0;
f4416af6 3426
a8028dd0 3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3428 if (g == NULL)
3429 {
a8028dd0 3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3431 BFD_ASSERT (g != NULL);
3432 }
b15e6682 3433
020d7251
RS
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35
DJ
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
df58fc94 3442 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
b15e6682
AO
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
143d77c5 3467
b15e6682 3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3469 entry.tls_type = 0;
b15e6682
AO
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
143d77c5 3475
b15e6682
AO
3476 memcpy (*loc, &entry, sizeof entry);
3477
8275b357 3478 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3479 {
f4416af6 3480 (*loc)->gotidx = -1;
b49e97c9
TS
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
b15e6682 3485 return NULL;
b49e97c9
TS
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3489 (htab->sgot->contents + entry.gotidx));
b15e6682 3490
5c18022e 3491 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
5c18022e 3495 asection *s;
91d6fa6a 3496 bfd_byte *rloc;
0a44bf69 3497 bfd_vma got_address;
0a44bf69
RS
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
0a44bf69
RS
3502 + entry.gotidx);
3503
91d6fa6a 3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3505 outrel.r_offset = got_address;
5c18022e
RS
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
91d6fa6a 3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3509 }
3510
b15e6682 3511 return *loc;
b49e97c9
TS
3512}
3513
d4596a51
RS
3514/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519static bfd_size_type
3520count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521{
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538}
3539
b49e97c9 3540/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3541 appear towards the end. */
b49e97c9 3542
b34976b6 3543static bfd_boolean
d4596a51 3544mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3545{
a8028dd0 3546 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
b49e97c9 3549
d4596a51
RS
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
a8028dd0 3553 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3554 BFD_ASSERT (htab != NULL);
3555
a8028dd0 3556 g = htab->got_info;
d4596a51
RS
3557 if (g == NULL)
3558 return TRUE;
f4416af6 3559
b49e97c9 3560 hsd.low = NULL;
23cc69b6
RS
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
44c410de 3571 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
b49e97c9
TS
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
b49e97c9
TS
3580 g->global_gotsym = hsd.low;
3581
b34976b6 3582 return TRUE;
b49e97c9
TS
3583}
3584
3585/* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
b34976b6 3589static bfd_boolean
9719ad41 3590mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3591{
9719ad41 3592 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3593
b49e97c9
TS
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
b34976b6 3597 return TRUE;
b49e97c9 3598
634835ae 3599 switch (h->global_got_area)
f4416af6 3600 {
634835ae
RS
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
0f20cc35 3604
634835ae 3605 case GGA_NORMAL:
0f20cc35
DJ
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
b49e97c9
TS
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
b49e97c9
TS
3619 }
3620
b34976b6 3621 return TRUE;
b49e97c9
TS
3622}
3623
3624/* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
6ccf4795
RS
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
b49e97c9 3628
b34976b6 3629static bfd_boolean
9719ad41
RS
3630mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
6ccf4795 3632 bfd_boolean for_call,
0f20cc35 3633 unsigned char tls_flag)
b49e97c9 3634{
a8028dd0 3635 struct mips_elf_link_hash_table *htab;
634835ae 3636 struct mips_elf_link_hash_entry *hmips;
f4416af6 3637 struct mips_got_entry entry, **loc;
a8028dd0
RS
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3641 BFD_ASSERT (htab != NULL);
3642
634835ae 3643 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
f4416af6 3646
b49e97c9
TS
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
7c5fcef7
L
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
33bb52fb 3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3656 break;
3657 }
c152c796 3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3659 return FALSE;
7c5fcef7 3660 }
b49e97c9 3661
86324f90 3662 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3663 g = htab->got_info;
86324f90
EC
3664 BFD_ASSERT (g != NULL);
3665
f4416af6
AO
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3669 entry.tls_type = 0;
f4416af6
AO
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
b49e97c9
TS
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
f4416af6 3676 if (*loc)
0f20cc35
DJ
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
f4416af6
AO
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
143d77c5 3686
f4416af6 3687 entry.gotidx = -1;
0f20cc35
DJ
3688 entry.tls_type = tls_flag;
3689
f4416af6
AO
3690 memcpy (*loc, &entry, sizeof entry);
3691
0f20cc35 3692 if (tls_flag == 0)
634835ae 3693 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3694
b34976b6 3695 return TRUE;
b49e97c9 3696}
f4416af6
AO
3697
3698/* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701static bfd_boolean
9719ad41 3702mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3703 struct bfd_link_info *info,
0f20cc35 3704 unsigned char tls_flag)
f4416af6 3705{
a8028dd0
RS
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
f4416af6
AO
3708 struct mips_got_entry entry, **loc;
3709
a8028dd0 3710 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3711 BFD_ASSERT (htab != NULL);
3712
a8028dd0
RS
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
f4416af6
AO
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
0f20cc35 3719 entry.tls_type = tls_flag;
f4416af6
AO
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
0f20cc35
DJ
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
f4416af6 3737
0f20cc35
DJ
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
f4416af6
AO
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
143d77c5 3762
f4416af6
AO
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766}
c224138d
RS
3767
3768/* Return the maximum number of GOT page entries required for RANGE. */
3769
3770static bfd_vma
3771mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772{
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774}
3775
3a3b6725 3776/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
c224138d
RS
3782
3783static bfd_boolean
a8028dd0
RS
3784mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
c224138d 3786{
a8028dd0
RS
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
c224138d
RS
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
a8028dd0 3794 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3795 BFD_ASSERT (htab != NULL);
3796
a8028dd0
RS
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
c224138d
RS
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876}
33bb52fb
RS
3877
3878/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880static void
3881mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883{
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3888 BFD_ASSERT (htab != NULL);
3889
33bb52fb
RS
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905}
3906\f
3907/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910static int
3911mips_elf_check_recreate_got (void **entryp, void *data)
3912{
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931}
3932
3933/* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938static int
3939mips_elf_recreate_got (void **entryp, void *data)
3940{
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
33bb52fb
RS
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971}
3972
3973/* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976static bfd_boolean
3977mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978{
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999}
4000
634835ae 4001/* A mips_elf_link_hash_traverse callback for which DATA points
020d7251
RS
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
33bb52fb
RS
4004
4005static int
d4596a51 4006mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4007{
020d7251 4008 struct bfd_link_info *info;
6ccf4795 4009 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4010 struct mips_got_info *g;
4011
020d7251 4012 info = (struct bfd_link_info *) data;
6ccf4795
RS
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
d4596a51 4015 if (h->global_got_area != GGA_NONE)
33bb52fb 4016 {
020d7251
RS
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
d4596a51 4030 {
020d7251
RS
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
d4596a51
RS
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
6ccf4795
RS
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
d4596a51 4045 else
23cc69b6
RS
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
33bb52fb
RS
4051 }
4052 return 1;
4053}
f4416af6
AO
4054\f
4055/* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057static hashval_t
9719ad41 4058mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
4059{
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064}
4065
4066/* Check whether two hash entries have the same bfd. */
4067
4068static int
9719ad41 4069mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
4070{
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077}
4078
bad36eac 4079/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
4080 be the master GOT data. */
4081
4082static struct mips_got_info *
9719ad41 4083mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4084{
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
9719ad41 4091 p = htab_find (g->bfd2got, &e);
f4416af6
AO
4092 return p ? p->g : NULL;
4093}
4094
c224138d
RS
4095/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
f4416af6 4097
c224138d
RS
4098static struct mips_got_info *
4099mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
f4416af6 4101{
f4416af6 4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 4103 struct mips_got_info *g;
f4416af6 4104 void **bfdgotp;
143d77c5 4105
c224138d 4106 bfdgot_entry.bfd = input_bfd;
f4416af6 4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 4109
c224138d 4110 if (bfdgot == NULL)
f4416af6 4111 {
c224138d
RS
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 4114 if (bfdgot == NULL)
c224138d 4115 return NULL;
f4416af6
AO
4116
4117 *bfdgotp = bfdgot;
4118
c224138d
RS
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 4121 if (g == NULL)
c224138d
RS
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
f4416af6
AO
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
23cc69b6 4129 g->reloc_only_gotno = 0;
f4416af6 4130 g->local_gotno = 0;
c224138d 4131 g->page_gotno = 0;
f4416af6 4132 g->assigned_gotno = -1;
0f20cc35
DJ
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
f4416af6 4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 4137 mips_elf_multi_got_entry_eq, NULL);
f4416af6 4138 if (g->got_entries == NULL)
c224138d
RS
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
f4416af6
AO
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
c224138d
RS
4150 return bfdgot->g;
4151}
4152
4153/* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158static int
4159mips_elf_make_got_per_bfd (void **entryp, void *p)
4160{
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
f4416af6
AO
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
143d77c5 4176
f4416af6
AO
4177 *entryp = entry;
4178
0f20cc35
DJ
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
020d7251 4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
f4416af6
AO
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192}
4193
c224138d
RS
4194/* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197static int
4198mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199{
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219}
4220
4221/* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227static int
4228mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231{
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
e2ece73c 4240 /* And conservatively estimate how many local and TLS entries
c224138d 4241 would be needed. */
e2ece73c
RS
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275}
4276
f4416af6
AO
4277/* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284static int
9719ad41 4285mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4286{
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
c224138d 4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4307
c224138d 4308 if (estimate <= arg->max_count)
f4416af6 4309 {
c224138d
RS
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
f4416af6 4317
c224138d
RS
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
f4416af6 4322 }
c224138d 4323
f4416af6 4324 /* If we can merge with the last-created got, do it. */
c224138d 4325 if (arg->current)
f4416af6 4326 {
c224138d
RS
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
f4416af6 4330 }
c224138d 4331
f4416af6
AO
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
c224138d
RS
4335 g->next = arg->current;
4336 arg->current = g;
0f20cc35
DJ
4337
4338 return 1;
4339}
4340
ead49a57
RS
4341/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
0f20cc35
DJ
4343
4344static int
4345mips_elf_initialize_tls_index (void **entryp, void *p)
4346{
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
ead49a57 4349 bfd_vma next_index;
cbf2cba4 4350 unsigned char tls_type;
0f20cc35
DJ
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
ead49a57
RS
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4359 {
ead49a57
RS
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4366 tls_type = entry->d.h->tls_type;
ead49a57
RS
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4371 {
ead49a57
RS
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4376 {
ead49a57 4377 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4378 return 1;
4379 }
ead49a57 4380 g->tls_ldm_offset = next_index;
0f20cc35 4381 }
ead49a57 4382 entry->gotidx = next_index;
cbf2cba4 4383 tls_type = entry->tls_type;
f4416af6
AO
4384 }
4385
ead49a57 4386 /* Account for the entries we've just allocated. */
cbf2cba4 4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4388 g->tls_assigned_gotno += 2;
cbf2cba4 4389 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4390 g->tls_assigned_gotno += 1;
4391
f4416af6
AO
4392 return 1;
4393}
4394
4395/* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4406 marked as not eligible for lazy resolution through a function
f4416af6
AO
4407 stub. */
4408static int
9719ad41 4409mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4410{
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
0f20cc35
DJ
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
634835ae
RS
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
f4416af6
AO
4434 ++arg->needed_relocs;
4435 }
4436 else
634835ae 4437 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4438 }
4439
4440 return 1;
4441}
4442
33bb52fb
RS
4443/* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
0626d451 4447static int
33bb52fb 4448mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4449{
33bb52fb
RS
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
0626d451 4453
33bb52fb
RS
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4457 BFD_ASSERT (htab != NULL);
4458
0626d451
RS
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
33bb52fb 4461 && entry->d.h->needs_lazy_stub)
f4416af6 4462 {
33bb52fb
RS
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
f4416af6 4465 }
143d77c5 4466
f4416af6
AO
4467 return 1;
4468}
4469
f4416af6
AO
4470/* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472static bfd_vma
9719ad41 4473mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4474{
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
143d77c5 4485
0f20cc35
DJ
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4488}
4489
4490/* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493static bfd_boolean
9719ad41 4494mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4495 asection *got, bfd_size_type pages)
f4416af6 4496{
a8028dd0 4497 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4500 struct mips_got_info *g, *gg;
33bb52fb
RS
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
f4416af6 4503
33bb52fb 4504 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4505 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4506 BFD_ASSERT (htab != NULL);
4507
a8028dd0 4508 g = htab->got_info;
f4416af6 4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4510 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
f4416af6
AO
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
c224138d
RS
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
f4416af6
AO
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
0a44bf69 4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4533 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4534 - htab->reserved_gotno);
c224138d 4535 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
0f20cc35 4548 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
23cc69b6 4558 g->next->reloc_only_gotno = 0;
f4416af6 4559 g->next->local_gotno = 0;
c224138d 4560 g->next->page_gotno = 0;
0f20cc35 4561 g->next->tls_gotno = 0;
f4416af6 4562 g->next->assigned_gotno = 0;
0f20cc35
DJ
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
9719ad41 4567 NULL);
f4416af6
AO
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
c224138d
RS
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
f4416af6
AO
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
143d77c5 4593
f4416af6
AO
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
634835ae
RS
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
23cc69b6 4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4612 g->global_gotno = gg->global_gotno;
f4416af6 4613
f4416af6 4614 set_got_offset_arg.g = NULL;
634835ae 4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
634835ae 4618 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
f4416af6
AO
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
0f20cc35 4637 gg->tls_gotno = 0;
f4416af6
AO
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
861fb55a 4645 assign += htab->reserved_gotno;
f4416af6 4646 g->assigned_gotno = assign;
c224138d
RS
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
ead49a57
RS
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
0f20cc35
DJ
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4662
ead49a57 4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4664 g = gn;
0626d451 4665
33bb52fb
RS
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
0626d451 4668 if (g)
33bb52fb 4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4670 }
4671 while (g);
4672
eea6121a 4673 got->size = (gg->next->local_gotno
33bb52fb
RS
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
861fb55a 4702 + htab->reserved_gotno);
33bb52fb
RS
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
143d77c5 4709
f4416af6
AO
4710 return TRUE;
4711}
143d77c5 4712
b49e97c9
TS
4713\f
4714/* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717static const Elf_Internal_Rela *
9719ad41
RS
4718mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
b49e97c9 4721{
c000e262
TS
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
b49e97c9
TS
4724 while (relocation < relend)
4725 {
c000e262
TS
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
b49e97c9
TS
4734 return NULL;
4735}
4736
020d7251 4737/* Return whether an input relocation is against a local symbol. */
b49e97c9 4738
b34976b6 4739static bfd_boolean
9719ad41
RS
4740mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
020d7251 4742 asection **local_sections)
b49e97c9
TS
4743{
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
b34976b6 4753 return TRUE;
b49e97c9 4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4755 return TRUE;
b49e97c9 4756
b34976b6 4757 return FALSE;
b49e97c9
TS
4758}
4759\f
4760/* Sign-extend VALUE, which has the indicated number of BITS. */
4761
a7ebbfdf 4762bfd_vma
9719ad41 4763_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4764{
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770}
4771
4772/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4773 range expressible by a signed number with the indicated number of
b49e97c9
TS
4774 BITS. */
4775
b34976b6 4776static bfd_boolean
9719ad41 4777mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4778{
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
b34976b6 4783 return TRUE;
b49e97c9
TS
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
b34976b6 4786 return TRUE;
b49e97c9
TS
4787
4788 /* All is well. */
b34976b6 4789 return FALSE;
b49e97c9
TS
4790}
4791
4792/* Calculate the %high function. */
4793
4794static bfd_vma
9719ad41 4795mips_elf_high (bfd_vma value)
b49e97c9
TS
4796{
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798}
4799
4800/* Calculate the %higher function. */
4801
4802static bfd_vma
9719ad41 4803mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4804{
4805#ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807#else
4808 abort ();
c5ae1840 4809 return MINUS_ONE;
b49e97c9
TS
4810#endif
4811}
4812
4813/* Calculate the %highest function. */
4814
4815static bfd_vma
9719ad41 4816mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4817{
4818#ifdef BFD64
b15e6682 4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4820#else
4821 abort ();
c5ae1840 4822 return MINUS_ONE;
b49e97c9
TS
4823#endif
4824}
4825\f
4826/* Create the .compact_rel section. */
4827
b34976b6 4828static bfd_boolean
9719ad41
RS
4829mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4831{
4832 flagword flags;
4833 register asection *s;
4834
3d4d4302 4835 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
3d4d4302 4840 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4841 if (s == NULL
b49e97c9
TS
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4844 return FALSE;
b49e97c9 4845
eea6121a 4846 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4847 }
4848
b34976b6 4849 return TRUE;
b49e97c9
TS
4850}
4851
4852/* Create the .got section to hold the global offset table. */
4853
b34976b6 4854static bfd_boolean
23cc69b6 4855mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4856{
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
14a793b2 4860 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
0a44bf69
RS
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4dfe6ac6 4866 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4867
4868 /* This function may be called more than once. */
23cc69b6
RS
4869 if (htab->sgot)
4870 return TRUE;
b49e97c9
TS
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
72b4917c
TS
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
3496cb2a 4877 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 4878 if (s == NULL
72b4917c 4879 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4880 return FALSE;
a8028dd0 4881 htab->sgot = s;
b49e97c9
TS
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
14a793b2 4886 bh = NULL;
b49e97c9
TS
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4890 return FALSE;
14a793b2
AM
4891
4892 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4893 h->non_elf = 0;
4894 h->def_regular = 1;
b49e97c9 4895 h->type = STT_OBJECT;
d329bcd1 4896 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4897
4898 if (info->shared
c152c796 4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4900 return FALSE;
b49e97c9 4901
b49e97c9 4902 amt = sizeof (struct mips_got_info);
9719ad41 4903 g = bfd_alloc (abfd, amt);
b49e97c9 4904 if (g == NULL)
b34976b6 4905 return FALSE;
b49e97c9 4906 g->global_gotsym = NULL;
e3d54347 4907 g->global_gotno = 0;
23cc69b6 4908 g->reloc_only_gotno = 0;
0f20cc35 4909 g->tls_gotno = 0;
861fb55a 4910 g->local_gotno = 0;
c224138d 4911 g->page_gotno = 0;
861fb55a 4912 g->assigned_gotno = 0;
f4416af6
AO
4913 g->bfd2got = NULL;
4914 g->next = NULL;
0f20cc35 4915 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4917 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4918 if (g->got_entries == NULL)
4919 return FALSE;
c224138d
RS
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
a8028dd0 4924 htab->got_info = g;
f0abc2a1 4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
861fb55a
DJ
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4931 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4932 if (s == NULL)
4933 return FALSE;
4934 htab->sgotplt = s;
0a44bf69 4935
b34976b6 4936 return TRUE;
b49e97c9 4937}
b49e97c9 4938\f
0a44bf69
RS
4939/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4940 __GOTT_INDEX__ symbols. These symbols are only special for
4941 shared objects; they are not used in executables. */
4942
4943static bfd_boolean
4944is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4945{
4946 return (mips_elf_hash_table (info)->is_vxworks
4947 && info->shared
4948 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4949 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4950}
861fb55a
DJ
4951
4952/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4953 require an la25 stub. See also mips_elf_local_pic_function_p,
4954 which determines whether the destination function ever requires a
4955 stub. */
4956
4957static bfd_boolean
8f0c309a
CLT
4958mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4959 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4960{
4961 /* We specifically ignore branches and jumps from EF_PIC objects,
4962 where the onus is on the compiler or programmer to perform any
4963 necessary initialization of $25. Sometimes such initialization
4964 is unnecessary; for example, -mno-shared functions do not use
4965 the incoming value of $25, and may therefore be called directly. */
4966 if (PIC_OBJECT_P (input_bfd))
4967 return FALSE;
4968
4969 switch (r_type)
4970 {
4971 case R_MIPS_26:
4972 case R_MIPS_PC16:
df58fc94
RS
4973 case R_MICROMIPS_26_S1:
4974 case R_MICROMIPS_PC7_S1:
4975 case R_MICROMIPS_PC10_S1:
4976 case R_MICROMIPS_PC16_S1:
4977 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4978 return TRUE;
4979
8f0c309a
CLT
4980 case R_MIPS16_26:
4981 return !target_is_16_bit_code_p;
4982
861fb55a
DJ
4983 default:
4984 return FALSE;
4985 }
4986}
0a44bf69 4987\f
b49e97c9
TS
4988/* Calculate the value produced by the RELOCATION (which comes from
4989 the INPUT_BFD). The ADDEND is the addend to use for this
4990 RELOCATION; RELOCATION->R_ADDEND is ignored.
4991
4992 The result of the relocation calculation is stored in VALUEP.
38a7df63 4993 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4994 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4995
4996 This function returns bfd_reloc_continue if the caller need take no
4997 further action regarding this relocation, bfd_reloc_notsupported if
4998 something goes dramatically wrong, bfd_reloc_overflow if an
4999 overflow occurs, and bfd_reloc_ok to indicate success. */
5000
5001static bfd_reloc_status_type
9719ad41
RS
5002mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5003 asection *input_section,
5004 struct bfd_link_info *info,
5005 const Elf_Internal_Rela *relocation,
5006 bfd_vma addend, reloc_howto_type *howto,
5007 Elf_Internal_Sym *local_syms,
5008 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5009 const char **namep,
5010 bfd_boolean *cross_mode_jump_p,
9719ad41 5011 bfd_boolean save_addend)
b49e97c9
TS
5012{
5013 /* The eventual value we will return. */
5014 bfd_vma value;
5015 /* The address of the symbol against which the relocation is
5016 occurring. */
5017 bfd_vma symbol = 0;
5018 /* The final GP value to be used for the relocatable, executable, or
5019 shared object file being produced. */
0a61c8c2 5020 bfd_vma gp;
b49e97c9
TS
5021 /* The place (section offset or address) of the storage unit being
5022 relocated. */
5023 bfd_vma p;
5024 /* The value of GP used to create the relocatable object. */
0a61c8c2 5025 bfd_vma gp0;
b49e97c9
TS
5026 /* The offset into the global offset table at which the address of
5027 the relocation entry symbol, adjusted by the addend, resides
5028 during execution. */
5029 bfd_vma g = MINUS_ONE;
5030 /* The section in which the symbol referenced by the relocation is
5031 located. */
5032 asection *sec = NULL;
5033 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5034 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5035 symbol. */
b34976b6
AM
5036 bfd_boolean local_p, was_local_p;
5037 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5038 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5039 /* TRUE if the symbol referred to by this relocation is
5040 "__gnu_local_gp". */
5041 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5042 Elf_Internal_Shdr *symtab_hdr;
5043 size_t extsymoff;
5044 unsigned long r_symndx;
5045 int r_type;
b34976b6 5046 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5047 relocation value. */
b34976b6
AM
5048 bfd_boolean overflowed_p;
5049 /* TRUE if this relocation refers to a MIPS16 function. */
5050 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5051 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5052 struct mips_elf_link_hash_table *htab;
5053 bfd *dynobj;
5054
5055 dynobj = elf_hash_table (info)->dynobj;
5056 htab = mips_elf_hash_table (info);
4dfe6ac6 5057 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5058
5059 /* Parse the relocation. */
5060 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5061 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5062 p = (input_section->output_section->vma
5063 + input_section->output_offset
5064 + relocation->r_offset);
5065
5066 /* Assume that there will be no overflow. */
b34976b6 5067 overflowed_p = FALSE;
b49e97c9
TS
5068
5069 /* Figure out whether or not the symbol is local, and get the offset
5070 used in the array of hash table entries. */
5071 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5072 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5073 local_sections);
bce03d3d 5074 was_local_p = local_p;
b49e97c9
TS
5075 if (! elf_bad_symtab (input_bfd))
5076 extsymoff = symtab_hdr->sh_info;
5077 else
5078 {
5079 /* The symbol table does not follow the rule that local symbols
5080 must come before globals. */
5081 extsymoff = 0;
5082 }
5083
5084 /* Figure out the value of the symbol. */
5085 if (local_p)
5086 {
5087 Elf_Internal_Sym *sym;
5088
5089 sym = local_syms + r_symndx;
5090 sec = local_sections[r_symndx];
5091
5092 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5093 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5094 || (sec->flags & SEC_MERGE))
b49e97c9 5095 symbol += sym->st_value;
d4df96e6
L
5096 if ((sec->flags & SEC_MERGE)
5097 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5098 {
5099 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5100 addend -= symbol;
5101 addend += sec->output_section->vma + sec->output_offset;
5102 }
b49e97c9 5103
df58fc94
RS
5104 /* MIPS16/microMIPS text labels should be treated as odd. */
5105 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5106 ++symbol;
5107
5108 /* Record the name of this symbol, for our caller. */
5109 *namep = bfd_elf_string_from_elf_section (input_bfd,
5110 symtab_hdr->sh_link,
5111 sym->st_name);
5112 if (*namep == '\0')
5113 *namep = bfd_section_name (input_bfd, sec);
5114
30c09090 5115 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5116 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5117 }
5118 else
5119 {
560e09e9
NC
5120 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5121
b49e97c9
TS
5122 /* For global symbols we look up the symbol in the hash-table. */
5123 h = ((struct mips_elf_link_hash_entry *)
5124 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5125 /* Find the real hash-table entry for this symbol. */
5126 while (h->root.root.type == bfd_link_hash_indirect
5127 || h->root.root.type == bfd_link_hash_warning)
5128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5129
5130 /* Record the name of this symbol, for our caller. */
5131 *namep = h->root.root.root.string;
5132
5133 /* See if this is the special _gp_disp symbol. Note that such a
5134 symbol must always be a global symbol. */
560e09e9 5135 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5136 && ! NEWABI_P (input_bfd))
5137 {
5138 /* Relocations against _gp_disp are permitted only with
5139 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5140 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5141 return bfd_reloc_notsupported;
5142
b34976b6 5143 gp_disp_p = TRUE;
b49e97c9 5144 }
bbe506e8
TS
5145 /* See if this is the special _gp symbol. Note that such a
5146 symbol must always be a global symbol. */
5147 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5148 gnu_local_gp_p = TRUE;
5149
5150
b49e97c9
TS
5151 /* If this symbol is defined, calculate its address. Note that
5152 _gp_disp is a magic symbol, always implicitly defined by the
5153 linker, so it's inappropriate to check to see whether or not
5154 its defined. */
5155 else if ((h->root.root.type == bfd_link_hash_defined
5156 || h->root.root.type == bfd_link_hash_defweak)
5157 && h->root.root.u.def.section)
5158 {
5159 sec = h->root.root.u.def.section;
5160 if (sec->output_section)
5161 symbol = (h->root.root.u.def.value
5162 + sec->output_section->vma
5163 + sec->output_offset);
5164 else
5165 symbol = h->root.root.u.def.value;
5166 }
5167 else if (h->root.root.type == bfd_link_hash_undefweak)
5168 /* We allow relocations against undefined weak symbols, giving
5169 it the value zero, so that you can undefined weak functions
5170 and check to see if they exist by looking at their
5171 addresses. */
5172 symbol = 0;
59c2e50f 5173 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5174 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5175 symbol = 0;
a4d0f181
TS
5176 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5177 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5178 {
5179 /* If this is a dynamic link, we should have created a
5180 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5181 in in _bfd_mips_elf_create_dynamic_sections.
5182 Otherwise, we should define the symbol with a value of 0.
5183 FIXME: It should probably get into the symbol table
5184 somehow as well. */
5185 BFD_ASSERT (! info->shared);
5186 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5187 symbol = 0;
5188 }
5e2b0d47
NC
5189 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5190 {
5191 /* This is an optional symbol - an Irix specific extension to the
5192 ELF spec. Ignore it for now.
5193 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5194 than simply ignoring them, but we do not handle this for now.
5195 For information see the "64-bit ELF Object File Specification"
5196 which is available from here:
5197 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5198 symbol = 0;
5199 }
e7e2196d
MR
5200 else if ((*info->callbacks->undefined_symbol)
5201 (info, h->root.root.root.string, input_bfd,
5202 input_section, relocation->r_offset,
5203 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5204 || ELF_ST_VISIBILITY (h->root.other)))
5205 {
5206 return bfd_reloc_undefined;
5207 }
b49e97c9
TS
5208 else
5209 {
e7e2196d 5210 return bfd_reloc_notsupported;
b49e97c9
TS
5211 }
5212
30c09090 5213 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5214 /* If the output section is the PLT section,
5215 then the target is not microMIPS. */
5216 target_is_micromips_code_p = (htab->splt != sec
5217 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5218 }
5219
738e5348
RS
5220 /* If this is a reference to a 16-bit function with a stub, we need
5221 to redirect the relocation to the stub unless:
5222
5223 (a) the relocation is for a MIPS16 JAL;
5224
5225 (b) the relocation is for a MIPS16 PIC call, and there are no
5226 non-MIPS16 uses of the GOT slot; or
5227
5228 (c) the section allows direct references to MIPS16 functions. */
5229 if (r_type != R_MIPS16_26
5230 && !info->relocatable
5231 && ((h != NULL
5232 && h->fn_stub != NULL
5233 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5234 || (local_p
5235 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5236 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5237 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5238 {
5239 /* This is a 32- or 64-bit call to a 16-bit function. We should
5240 have already noticed that we were going to need the
5241 stub. */
5242 if (local_p)
8f0c309a
CLT
5243 {
5244 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5245 value = 0;
5246 }
b49e97c9
TS
5247 else
5248 {
5249 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5250 if (h->la25_stub)
5251 {
5252 /* If a LA25 header for the stub itself exists, point to the
5253 prepended LUI/ADDIU sequence. */
5254 sec = h->la25_stub->stub_section;
5255 value = h->la25_stub->offset;
5256 }
5257 else
5258 {
5259 sec = h->fn_stub;
5260 value = 0;
5261 }
b49e97c9
TS
5262 }
5263
8f0c309a 5264 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5265 /* The target is 16-bit, but the stub isn't. */
5266 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5267 }
5268 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5269 need to redirect the call to the stub. Note that we specifically
5270 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5271 use an indirect stub instead. */
1049f94e 5272 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5273 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5274 || (local_p
5275 && elf_tdata (input_bfd)->local_call_stubs != NULL
5276 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5277 && !target_is_16_bit_code_p)
5278 {
b9d58d71
TS
5279 if (local_p)
5280 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5281 else
b49e97c9 5282 {
b9d58d71
TS
5283 /* If both call_stub and call_fp_stub are defined, we can figure
5284 out which one to use by checking which one appears in the input
5285 file. */
5286 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5287 {
b9d58d71
TS
5288 asection *o;
5289
5290 sec = NULL;
5291 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5292 {
b9d58d71
TS
5293 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5294 {
5295 sec = h->call_fp_stub;
5296 break;
5297 }
b49e97c9 5298 }
b9d58d71
TS
5299 if (sec == NULL)
5300 sec = h->call_stub;
b49e97c9 5301 }
b9d58d71 5302 else if (h->call_stub != NULL)
b49e97c9 5303 sec = h->call_stub;
b9d58d71
TS
5304 else
5305 sec = h->call_fp_stub;
5306 }
b49e97c9 5307
eea6121a 5308 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5309 symbol = sec->output_section->vma + sec->output_offset;
5310 }
861fb55a
DJ
5311 /* If this is a direct call to a PIC function, redirect to the
5312 non-PIC stub. */
5313 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5314 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5315 target_is_16_bit_code_p))
861fb55a
DJ
5316 symbol = (h->la25_stub->stub_section->output_section->vma
5317 + h->la25_stub->stub_section->output_offset
5318 + h->la25_stub->offset);
b49e97c9 5319
df58fc94
RS
5320 /* Make sure MIPS16 and microMIPS are not used together. */
5321 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5322 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5323 {
5324 (*_bfd_error_handler)
5325 (_("MIPS16 and microMIPS functions cannot call each other"));
5326 return bfd_reloc_notsupported;
5327 }
5328
b49e97c9 5329 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5330 mode change. However, we can ignore calls to undefined weak symbols,
5331 which should never be executed at runtime. This exception is important
5332 because the assembly writer may have "known" that any definition of the
5333 symbol would be 16-bit code, and that direct jumps were therefore
5334 acceptable. */
5335 *cross_mode_jump_p = (!info->relocatable
5336 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5337 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5338 || (r_type == R_MICROMIPS_26_S1
5339 && !target_is_micromips_code_p)
5340 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5341 && (target_is_16_bit_code_p
5342 || target_is_micromips_code_p))));
b49e97c9 5343
020d7251 5344 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
b49e97c9 5345
0a61c8c2
RS
5346 gp0 = _bfd_get_gp_value (input_bfd);
5347 gp = _bfd_get_gp_value (abfd);
23cc69b6 5348 if (htab->got_info)
a8028dd0 5349 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5350
5351 if (gnu_local_gp_p)
5352 symbol = gp;
5353
df58fc94
RS
5354 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5355 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5356 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5357 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5358 {
df58fc94
RS
5359 r_type = (micromips_reloc_p (r_type)
5360 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5361 addend = 0;
5362 }
5363
e77760d2 5364 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5365 to need it, get it now. */
b49e97c9
TS
5366 switch (r_type)
5367 {
738e5348
RS
5368 case R_MIPS16_CALL16:
5369 case R_MIPS16_GOT16:
b49e97c9
TS
5370 case R_MIPS_CALL16:
5371 case R_MIPS_GOT16:
5372 case R_MIPS_GOT_DISP:
5373 case R_MIPS_GOT_HI16:
5374 case R_MIPS_CALL_HI16:
5375 case R_MIPS_GOT_LO16:
5376 case R_MIPS_CALL_LO16:
df58fc94
RS
5377 case R_MICROMIPS_CALL16:
5378 case R_MICROMIPS_GOT16:
5379 case R_MICROMIPS_GOT_DISP:
5380 case R_MICROMIPS_GOT_HI16:
5381 case R_MICROMIPS_CALL_HI16:
5382 case R_MICROMIPS_GOT_LO16:
5383 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5384 case R_MIPS_TLS_GD:
5385 case R_MIPS_TLS_GOTTPREL:
5386 case R_MIPS_TLS_LDM:
d0f13682
CLT
5387 case R_MIPS16_TLS_GD:
5388 case R_MIPS16_TLS_GOTTPREL:
5389 case R_MIPS16_TLS_LDM:
df58fc94
RS
5390 case R_MICROMIPS_TLS_GD:
5391 case R_MICROMIPS_TLS_GOTTPREL:
5392 case R_MICROMIPS_TLS_LDM:
b49e97c9 5393 /* Find the index into the GOT where this value is located. */
df58fc94 5394 if (tls_ldm_reloc_p (r_type))
0f20cc35 5395 {
0a44bf69 5396 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5397 0, 0, NULL, r_type);
0f20cc35
DJ
5398 if (g == MINUS_ONE)
5399 return bfd_reloc_outofrange;
5400 }
5401 else if (!local_p)
b49e97c9 5402 {
0a44bf69
RS
5403 /* On VxWorks, CALL relocations should refer to the .got.plt
5404 entry, which is initialized to point at the PLT stub. */
5405 if (htab->is_vxworks
df58fc94
RS
5406 && (call_hi16_reloc_p (r_type)
5407 || call_lo16_reloc_p (r_type)
738e5348 5408 || call16_reloc_p (r_type)))
0a44bf69
RS
5409 {
5410 BFD_ASSERT (addend == 0);
5411 BFD_ASSERT (h->root.needs_plt);
5412 g = mips_elf_gotplt_index (info, &h->root);
5413 }
5414 else
b49e97c9 5415 {
020d7251 5416 BFD_ASSERT (addend == 0);
0a44bf69
RS
5417 g = mips_elf_global_got_index (dynobj, input_bfd,
5418 &h->root, r_type, info);
5419 if (h->tls_type == GOT_NORMAL
020d7251
RS
5420 && !elf_hash_table (info)->dynamic_sections_created)
5421 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5422 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5423 }
5424 }
0a44bf69 5425 else if (!htab->is_vxworks
738e5348 5426 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5427 /* The calculation below does not involve "g". */
b49e97c9
TS
5428 break;
5429 else
5430 {
5c18022e 5431 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5432 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5433 if (g == MINUS_ONE)
5434 return bfd_reloc_outofrange;
5435 }
5436
5437 /* Convert GOT indices to actual offsets. */
a8028dd0 5438 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5439 break;
b49e97c9
TS
5440 }
5441
0a44bf69
RS
5442 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5443 symbols are resolved by the loader. Add them to .rela.dyn. */
5444 if (h != NULL && is_gott_symbol (info, &h->root))
5445 {
5446 Elf_Internal_Rela outrel;
5447 bfd_byte *loc;
5448 asection *s;
5449
5450 s = mips_elf_rel_dyn_section (info, FALSE);
5451 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5452
5453 outrel.r_offset = (input_section->output_section->vma
5454 + input_section->output_offset
5455 + relocation->r_offset);
5456 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5457 outrel.r_addend = addend;
5458 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5459
5460 /* If we've written this relocation for a readonly section,
5461 we need to set DF_TEXTREL again, so that we do not delete the
5462 DT_TEXTREL tag. */
5463 if (MIPS_ELF_READONLY_SECTION (input_section))
5464 info->flags |= DF_TEXTREL;
5465
0a44bf69
RS
5466 *valuep = 0;
5467 return bfd_reloc_ok;
5468 }
5469
b49e97c9
TS
5470 /* Figure out what kind of relocation is being performed. */
5471 switch (r_type)
5472 {
5473 case R_MIPS_NONE:
5474 return bfd_reloc_continue;
5475
5476 case R_MIPS_16:
a7ebbfdf 5477 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5478 overflowed_p = mips_elf_overflow_p (value, 16);
5479 break;
5480
5481 case R_MIPS_32:
5482 case R_MIPS_REL32:
5483 case R_MIPS_64:
5484 if ((info->shared
861fb55a 5485 || (htab->root.dynamic_sections_created
b49e97c9 5486 && h != NULL
f5385ebf 5487 && h->root.def_dynamic
861fb55a
DJ
5488 && !h->root.def_regular
5489 && !h->has_static_relocs))
cf35638d 5490 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5491 && (h == NULL
5492 || h->root.root.type != bfd_link_hash_undefweak
5493 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5494 && (input_section->flags & SEC_ALLOC) != 0)
5495 {
861fb55a 5496 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5497 where the symbol will end up. So, we create a relocation
5498 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5499 linker. We must do the same for executable references to
5500 shared library symbols, unless we've decided to use copy
5501 relocs or PLTs instead. */
b49e97c9
TS
5502 value = addend;
5503 if (!mips_elf_create_dynamic_relocation (abfd,
5504 info,
5505 relocation,
5506 h,
5507 sec,
5508 symbol,
5509 &value,
5510 input_section))
5511 return bfd_reloc_undefined;
5512 }
5513 else
5514 {
5515 if (r_type != R_MIPS_REL32)
5516 value = symbol + addend;
5517 else
5518 value = addend;
5519 }
5520 value &= howto->dst_mask;
092dcd75
CD
5521 break;
5522
5523 case R_MIPS_PC32:
5524 value = symbol + addend - p;
5525 value &= howto->dst_mask;
b49e97c9
TS
5526 break;
5527
b49e97c9
TS
5528 case R_MIPS16_26:
5529 /* The calculation for R_MIPS16_26 is just the same as for an
5530 R_MIPS_26. It's only the storage of the relocated field into
5531 the output file that's different. That's handled in
5532 mips_elf_perform_relocation. So, we just fall through to the
5533 R_MIPS_26 case here. */
5534 case R_MIPS_26:
df58fc94
RS
5535 case R_MICROMIPS_26_S1:
5536 {
5537 unsigned int shift;
5538
5539 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5540 the correct ISA mode selector and bit 1 must be 0. */
5541 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5542 return bfd_reloc_outofrange;
5543
5544 /* Shift is 2, unusually, for microMIPS JALX. */
5545 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5546
5547 if (was_local_p)
5548 value = addend | ((p + 4) & (0xfc000000 << shift));
5549 else
5550 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5551 value = (value + symbol) >> shift;
5552 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5553 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5554 value &= howto->dst_mask;
5555 }
b49e97c9
TS
5556 break;
5557
0f20cc35 5558 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5559 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5560 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5561 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5562 & howto->dst_mask);
5563 break;
5564
5565 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5566 case R_MIPS_TLS_DTPREL32:
5567 case R_MIPS_TLS_DTPREL64:
d0f13682 5568 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5569 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5570 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5571 break;
5572
5573 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5574 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5575 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5576 value = (mips_elf_high (addend + symbol - tprel_base (info))
5577 & howto->dst_mask);
5578 break;
5579
5580 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5581 case R_MIPS_TLS_TPREL32:
5582 case R_MIPS_TLS_TPREL64:
5583 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5584 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5585 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5586 break;
5587
b49e97c9 5588 case R_MIPS_HI16:
d6f16593 5589 case R_MIPS16_HI16:
df58fc94 5590 case R_MICROMIPS_HI16:
b49e97c9
TS
5591 if (!gp_disp_p)
5592 {
5593 value = mips_elf_high (addend + symbol);
5594 value &= howto->dst_mask;
5595 }
5596 else
5597 {
d6f16593
MR
5598 /* For MIPS16 ABI code we generate this sequence
5599 0: li $v0,%hi(_gp_disp)
5600 4: addiupc $v1,%lo(_gp_disp)
5601 8: sll $v0,16
5602 12: addu $v0,$v1
5603 14: move $gp,$v0
5604 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5605 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5606 ADDIUPC clears the low two bits of the instruction address,
5607 so the base is ($t9 + 4) & ~3. */
d6f16593 5608 if (r_type == R_MIPS16_HI16)
888b9c01 5609 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5610 /* The microMIPS .cpload sequence uses the same assembly
5611 instructions as the traditional psABI version, but the
5612 incoming $t9 has the low bit set. */
5613 else if (r_type == R_MICROMIPS_HI16)
5614 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5615 else
5616 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5617 overflowed_p = mips_elf_overflow_p (value, 16);
5618 }
5619 break;
5620
5621 case R_MIPS_LO16:
d6f16593 5622 case R_MIPS16_LO16:
df58fc94
RS
5623 case R_MICROMIPS_LO16:
5624 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5625 if (!gp_disp_p)
5626 value = (symbol + addend) & howto->dst_mask;
5627 else
5628 {
d6f16593
MR
5629 /* See the comment for R_MIPS16_HI16 above for the reason
5630 for this conditional. */
5631 if (r_type == R_MIPS16_LO16)
888b9c01 5632 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5633 else if (r_type == R_MICROMIPS_LO16
5634 || r_type == R_MICROMIPS_HI0_LO16)
5635 value = addend + gp - p + 3;
d6f16593
MR
5636 else
5637 value = addend + gp - p + 4;
b49e97c9 5638 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5639 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5640 _gp_disp are normally generated from the .cpload
5641 pseudo-op. It generates code that normally looks like
5642 this:
5643
5644 lui $gp,%hi(_gp_disp)
5645 addiu $gp,$gp,%lo(_gp_disp)
5646 addu $gp,$gp,$t9
5647
5648 Here $t9 holds the address of the function being called,
5649 as required by the MIPS ELF ABI. The R_MIPS_LO16
5650 relocation can easily overflow in this situation, but the
5651 R_MIPS_HI16 relocation will handle the overflow.
5652 Therefore, we consider this a bug in the MIPS ABI, and do
5653 not check for overflow here. */
5654 }
5655 break;
5656
5657 case R_MIPS_LITERAL:
df58fc94 5658 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5659 /* Because we don't merge literal sections, we can handle this
5660 just like R_MIPS_GPREL16. In the long run, we should merge
5661 shared literals, and then we will need to additional work
5662 here. */
5663
5664 /* Fall through. */
5665
5666 case R_MIPS16_GPREL:
5667 /* The R_MIPS16_GPREL performs the same calculation as
5668 R_MIPS_GPREL16, but stores the relocated bits in a different
5669 order. We don't need to do anything special here; the
5670 differences are handled in mips_elf_perform_relocation. */
5671 case R_MIPS_GPREL16:
df58fc94
RS
5672 case R_MICROMIPS_GPREL7_S2:
5673 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5674 /* Only sign-extend the addend if it was extracted from the
5675 instruction. If the addend was separate, leave it alone,
5676 otherwise we may lose significant bits. */
5677 if (howto->partial_inplace)
a7ebbfdf 5678 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5679 value = symbol + addend - gp;
5680 /* If the symbol was local, any earlier relocatable links will
5681 have adjusted its addend with the gp offset, so compensate
5682 for that now. Don't do it for symbols forced local in this
5683 link, though, since they won't have had the gp offset applied
5684 to them before. */
5685 if (was_local_p)
5686 value += gp0;
b49e97c9
TS
5687 overflowed_p = mips_elf_overflow_p (value, 16);
5688 break;
5689
738e5348
RS
5690 case R_MIPS16_GOT16:
5691 case R_MIPS16_CALL16:
b49e97c9
TS
5692 case R_MIPS_GOT16:
5693 case R_MIPS_CALL16:
df58fc94
RS
5694 case R_MICROMIPS_GOT16:
5695 case R_MICROMIPS_CALL16:
0a44bf69 5696 /* VxWorks does not have separate local and global semantics for
738e5348 5697 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5698 if (!htab->is_vxworks && local_p)
b49e97c9 5699 {
5c18022e 5700 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5701 symbol + addend, !was_local_p);
b49e97c9
TS
5702 if (value == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 value
a8028dd0 5705 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5706 overflowed_p = mips_elf_overflow_p (value, 16);
5707 break;
5708 }
5709
5710 /* Fall through. */
5711
0f20cc35
DJ
5712 case R_MIPS_TLS_GD:
5713 case R_MIPS_TLS_GOTTPREL:
5714 case R_MIPS_TLS_LDM:
b49e97c9 5715 case R_MIPS_GOT_DISP:
d0f13682
CLT
5716 case R_MIPS16_TLS_GD:
5717 case R_MIPS16_TLS_GOTTPREL:
5718 case R_MIPS16_TLS_LDM:
df58fc94
RS
5719 case R_MICROMIPS_TLS_GD:
5720 case R_MICROMIPS_TLS_GOTTPREL:
5721 case R_MICROMIPS_TLS_LDM:
5722 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5723 value = g;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_GPREL32:
bce03d3d
AO
5728 value = (addend + symbol + gp0 - gp);
5729 if (!save_addend)
5730 value &= howto->dst_mask;
b49e97c9
TS
5731 break;
5732
5733 case R_MIPS_PC16:
bad36eac
DJ
5734 case R_MIPS_GNU_REL16_S2:
5735 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5736 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5737 value >>= howto->rightshift;
5738 value &= howto->dst_mask;
b49e97c9
TS
5739 break;
5740
df58fc94
RS
5741 case R_MICROMIPS_PC7_S1:
5742 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5743 overflowed_p = mips_elf_overflow_p (value, 8);
5744 value >>= howto->rightshift;
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MICROMIPS_PC10_S1:
5749 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5750 overflowed_p = mips_elf_overflow_p (value, 11);
5751 value >>= howto->rightshift;
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MICROMIPS_PC16_S1:
5756 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5757 overflowed_p = mips_elf_overflow_p (value, 17);
5758 value >>= howto->rightshift;
5759 value &= howto->dst_mask;
5760 break;
5761
5762 case R_MICROMIPS_PC23_S2:
5763 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5764 overflowed_p = mips_elf_overflow_p (value, 25);
5765 value >>= howto->rightshift;
5766 value &= howto->dst_mask;
5767 break;
5768
b49e97c9
TS
5769 case R_MIPS_GOT_HI16:
5770 case R_MIPS_CALL_HI16:
df58fc94
RS
5771 case R_MICROMIPS_GOT_HI16:
5772 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5773 /* We're allowed to handle these two relocations identically.
5774 The dynamic linker is allowed to handle the CALL relocations
5775 differently by creating a lazy evaluation stub. */
5776 value = g;
5777 value = mips_elf_high (value);
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_GOT_LO16:
5782 case R_MIPS_CALL_LO16:
df58fc94
RS
5783 case R_MICROMIPS_GOT_LO16:
5784 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5785 value = g & howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_GOT_PAGE:
df58fc94 5789 case R_MICROMIPS_GOT_PAGE:
5c18022e 5790 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5791 if (value == MINUS_ONE)
5792 return bfd_reloc_outofrange;
a8028dd0 5793 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5794 overflowed_p = mips_elf_overflow_p (value, 16);
5795 break;
5796
5797 case R_MIPS_GOT_OFST:
df58fc94 5798 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5799 if (local_p)
5c18022e 5800 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5801 else
5802 value = addend;
b49e97c9
TS
5803 overflowed_p = mips_elf_overflow_p (value, 16);
5804 break;
5805
5806 case R_MIPS_SUB:
df58fc94 5807 case R_MICROMIPS_SUB:
b49e97c9
TS
5808 value = symbol - addend;
5809 value &= howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_HIGHER:
df58fc94 5813 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5814 value = mips_elf_higher (addend + symbol);
5815 value &= howto->dst_mask;
5816 break;
5817
5818 case R_MIPS_HIGHEST:
df58fc94 5819 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5820 value = mips_elf_highest (addend + symbol);
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_SCN_DISP:
df58fc94 5825 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5826 value = symbol + addend - sec->output_offset;
5827 value &= howto->dst_mask;
5828 break;
5829
b49e97c9 5830 case R_MIPS_JALR:
df58fc94 5831 case R_MICROMIPS_JALR:
1367d393
ILT
5832 /* This relocation is only a hint. In some cases, we optimize
5833 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5834 when the symbol does not resolve locally. */
5835 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5836 return bfd_reloc_continue;
5837 value = symbol + addend;
5838 break;
b49e97c9 5839
1367d393 5840 case R_MIPS_PJUMP:
b49e97c9
TS
5841 case R_MIPS_GNU_VTINHERIT:
5842 case R_MIPS_GNU_VTENTRY:
5843 /* We don't do anything with these at present. */
5844 return bfd_reloc_continue;
5845
5846 default:
5847 /* An unrecognized relocation type. */
5848 return bfd_reloc_notsupported;
5849 }
5850
5851 /* Store the VALUE for our caller. */
5852 *valuep = value;
5853 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5854}
5855
5856/* Obtain the field relocated by RELOCATION. */
5857
5858static bfd_vma
9719ad41
RS
5859mips_elf_obtain_contents (reloc_howto_type *howto,
5860 const Elf_Internal_Rela *relocation,
5861 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5862{
5863 bfd_vma x;
5864 bfd_byte *location = contents + relocation->r_offset;
5865
5866 /* Obtain the bytes. */
5867 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5868
b49e97c9
TS
5869 return x;
5870}
5871
5872/* It has been determined that the result of the RELOCATION is the
5873 VALUE. Use HOWTO to place VALUE into the output file at the
5874 appropriate position. The SECTION is the section to which the
38a7df63
CF
5875 relocation applies.
5876 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5877 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5878
b34976b6 5879 Returns FALSE if anything goes wrong. */
b49e97c9 5880
b34976b6 5881static bfd_boolean
9719ad41
RS
5882mips_elf_perform_relocation (struct bfd_link_info *info,
5883 reloc_howto_type *howto,
5884 const Elf_Internal_Rela *relocation,
5885 bfd_vma value, bfd *input_bfd,
5886 asection *input_section, bfd_byte *contents,
38a7df63 5887 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5888{
5889 bfd_vma x;
5890 bfd_byte *location;
5891 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5892
5893 /* Figure out where the relocation is occurring. */
5894 location = contents + relocation->r_offset;
5895
df58fc94 5896 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5897
b49e97c9
TS
5898 /* Obtain the current value. */
5899 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5900
5901 /* Clear the field we are setting. */
5902 x &= ~howto->dst_mask;
5903
b49e97c9
TS
5904 /* Set the field. */
5905 x |= (value & howto->dst_mask);
5906
5907 /* If required, turn JAL into JALX. */
38a7df63 5908 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5909 {
b34976b6 5910 bfd_boolean ok;
b49e97c9
TS
5911 bfd_vma opcode = x >> 26;
5912 bfd_vma jalx_opcode;
5913
5914 /* Check to see if the opcode is already JAL or JALX. */
5915 if (r_type == R_MIPS16_26)
5916 {
5917 ok = ((opcode == 0x6) || (opcode == 0x7));
5918 jalx_opcode = 0x7;
5919 }
df58fc94
RS
5920 else if (r_type == R_MICROMIPS_26_S1)
5921 {
5922 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5923 jalx_opcode = 0x3c;
5924 }
b49e97c9
TS
5925 else
5926 {
5927 ok = ((opcode == 0x3) || (opcode == 0x1d));
5928 jalx_opcode = 0x1d;
5929 }
5930
5931 /* If the opcode is not JAL or JALX, there's a problem. */
5932 if (!ok)
5933 {
5934 (*_bfd_error_handler)
776167e8 5935 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
d003868e
AM
5936 input_bfd,
5937 input_section,
b49e97c9
TS
5938 (unsigned long) relocation->r_offset);
5939 bfd_set_error (bfd_error_bad_value);
b34976b6 5940 return FALSE;
b49e97c9
TS
5941 }
5942
5943 /* Make this the JALX opcode. */
5944 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5945 }
5946
38a7df63
CF
5947 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5948 range. */
cd8d5a82 5949 if (!info->relocatable
38a7df63 5950 && !cross_mode_jump_p
cd8d5a82
CF
5951 && ((JAL_TO_BAL_P (input_bfd)
5952 && r_type == R_MIPS_26
5953 && (x >> 26) == 0x3) /* jal addr */
5954 || (JALR_TO_BAL_P (input_bfd)
5955 && r_type == R_MIPS_JALR
38a7df63
CF
5956 && x == 0x0320f809) /* jalr t9 */
5957 || (JR_TO_B_P (input_bfd)
5958 && r_type == R_MIPS_JALR
5959 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5960 {
5961 bfd_vma addr;
5962 bfd_vma dest;
5963 bfd_signed_vma off;
5964
5965 addr = (input_section->output_section->vma
5966 + input_section->output_offset
5967 + relocation->r_offset
5968 + 4);
5969 if (r_type == R_MIPS_26)
5970 dest = (value << 2) | ((addr >> 28) << 28);
5971 else
5972 dest = value;
5973 off = dest - addr;
5974 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5975 {
5976 if (x == 0x03200008) /* jr t9 */
5977 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5978 else
5979 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5980 }
1367d393
ILT
5981 }
5982
b49e97c9
TS
5983 /* Put the value into the output. */
5984 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5985
df58fc94
RS
5986 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5987 location);
d6f16593 5988
b34976b6 5989 return TRUE;
b49e97c9 5990}
b49e97c9 5991\f
b49e97c9
TS
5992/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5993 is the original relocation, which is now being transformed into a
5994 dynamic relocation. The ADDENDP is adjusted if necessary; the
5995 caller should store the result in place of the original addend. */
5996
b34976b6 5997static bfd_boolean
9719ad41
RS
5998mips_elf_create_dynamic_relocation (bfd *output_bfd,
5999 struct bfd_link_info *info,
6000 const Elf_Internal_Rela *rel,
6001 struct mips_elf_link_hash_entry *h,
6002 asection *sec, bfd_vma symbol,
6003 bfd_vma *addendp, asection *input_section)
b49e97c9 6004{
947216bf 6005 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6006 asection *sreloc;
6007 bfd *dynobj;
6008 int r_type;
5d41f0b6
RS
6009 long indx;
6010 bfd_boolean defined_p;
0a44bf69 6011 struct mips_elf_link_hash_table *htab;
b49e97c9 6012
0a44bf69 6013 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6014 BFD_ASSERT (htab != NULL);
6015
b49e97c9
TS
6016 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6017 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6018 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6019 BFD_ASSERT (sreloc != NULL);
6020 BFD_ASSERT (sreloc->contents != NULL);
6021 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6022 < sreloc->size);
b49e97c9 6023
b49e97c9
TS
6024 outrel[0].r_offset =
6025 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6026 if (ABI_64_P (output_bfd))
6027 {
6028 outrel[1].r_offset =
6029 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6030 outrel[2].r_offset =
6031 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6032 }
b49e97c9 6033
c5ae1840 6034 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6035 /* The relocation field has been deleted. */
5d41f0b6
RS
6036 return TRUE;
6037
6038 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6039 {
6040 /* The relocation field has been converted into a relative value of
6041 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6042 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6043 *addendp += symbol;
5d41f0b6 6044 return TRUE;
0d591ff7 6045 }
b49e97c9 6046
5d41f0b6
RS
6047 /* We must now calculate the dynamic symbol table index to use
6048 in the relocation. */
d4a77f3f 6049 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6050 {
020d7251 6051 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6052 indx = h->root.dynindx;
6053 if (SGI_COMPAT (output_bfd))
6054 defined_p = h->root.def_regular;
6055 else
6056 /* ??? glibc's ld.so just adds the final GOT entry to the
6057 relocation field. It therefore treats relocs against
6058 defined symbols in the same way as relocs against
6059 undefined symbols. */
6060 defined_p = FALSE;
6061 }
b49e97c9
TS
6062 else
6063 {
5d41f0b6
RS
6064 if (sec != NULL && bfd_is_abs_section (sec))
6065 indx = 0;
6066 else if (sec == NULL || sec->owner == NULL)
fdd07405 6067 {
5d41f0b6
RS
6068 bfd_set_error (bfd_error_bad_value);
6069 return FALSE;
b49e97c9
TS
6070 }
6071 else
6072 {
5d41f0b6 6073 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6074 if (indx == 0)
6075 {
6076 asection *osec = htab->root.text_index_section;
6077 indx = elf_section_data (osec)->dynindx;
6078 }
5d41f0b6
RS
6079 if (indx == 0)
6080 abort ();
b49e97c9
TS
6081 }
6082
5d41f0b6
RS
6083 /* Instead of generating a relocation using the section
6084 symbol, we may as well make it a fully relative
6085 relocation. We want to avoid generating relocations to
6086 local symbols because we used to generate them
6087 incorrectly, without adding the original symbol value,
6088 which is mandated by the ABI for section symbols. In
6089 order to give dynamic loaders and applications time to
6090 phase out the incorrect use, we refrain from emitting
6091 section-relative relocations. It's not like they're
6092 useful, after all. This should be a bit more efficient
6093 as well. */
6094 /* ??? Although this behavior is compatible with glibc's ld.so,
6095 the ABI says that relocations against STN_UNDEF should have
6096 a symbol value of 0. Irix rld honors this, so relocations
6097 against STN_UNDEF have no effect. */
6098 if (!SGI_COMPAT (output_bfd))
6099 indx = 0;
6100 defined_p = TRUE;
b49e97c9
TS
6101 }
6102
5d41f0b6
RS
6103 /* If the relocation was previously an absolute relocation and
6104 this symbol will not be referred to by the relocation, we must
6105 adjust it by the value we give it in the dynamic symbol table.
6106 Otherwise leave the job up to the dynamic linker. */
6107 if (defined_p && r_type != R_MIPS_REL32)
6108 *addendp += symbol;
6109
0a44bf69
RS
6110 if (htab->is_vxworks)
6111 /* VxWorks uses non-relative relocations for this. */
6112 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6113 else
6114 /* The relocation is always an REL32 relocation because we don't
6115 know where the shared library will wind up at load-time. */
6116 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6117 R_MIPS_REL32);
6118
5d41f0b6
RS
6119 /* For strict adherence to the ABI specification, we should
6120 generate a R_MIPS_64 relocation record by itself before the
6121 _REL32/_64 record as well, such that the addend is read in as
6122 a 64-bit value (REL32 is a 32-bit relocation, after all).
6123 However, since none of the existing ELF64 MIPS dynamic
6124 loaders seems to care, we don't waste space with these
6125 artificial relocations. If this turns out to not be true,
6126 mips_elf_allocate_dynamic_relocation() should be tweaked so
6127 as to make room for a pair of dynamic relocations per
6128 invocation if ABI_64_P, and here we should generate an
6129 additional relocation record with R_MIPS_64 by itself for a
6130 NULL symbol before this relocation record. */
6131 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6132 ABI_64_P (output_bfd)
6133 ? R_MIPS_64
6134 : R_MIPS_NONE);
6135 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6136
6137 /* Adjust the output offset of the relocation to reference the
6138 correct location in the output file. */
6139 outrel[0].r_offset += (input_section->output_section->vma
6140 + input_section->output_offset);
6141 outrel[1].r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
6143 outrel[2].r_offset += (input_section->output_section->vma
6144 + input_section->output_offset);
6145
b49e97c9
TS
6146 /* Put the relocation back out. We have to use the special
6147 relocation outputter in the 64-bit case since the 64-bit
6148 relocation format is non-standard. */
6149 if (ABI_64_P (output_bfd))
6150 {
6151 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6152 (output_bfd, &outrel[0],
6153 (sreloc->contents
6154 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6155 }
0a44bf69
RS
6156 else if (htab->is_vxworks)
6157 {
6158 /* VxWorks uses RELA rather than REL dynamic relocations. */
6159 outrel[0].r_addend = *addendp;
6160 bfd_elf32_swap_reloca_out
6161 (output_bfd, &outrel[0],
6162 (sreloc->contents
6163 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6164 }
b49e97c9 6165 else
947216bf
AM
6166 bfd_elf32_swap_reloc_out
6167 (output_bfd, &outrel[0],
6168 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6169
b49e97c9
TS
6170 /* We've now added another relocation. */
6171 ++sreloc->reloc_count;
6172
6173 /* Make sure the output section is writable. The dynamic linker
6174 will be writing to it. */
6175 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6176 |= SHF_WRITE;
6177
6178 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6179 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6180 {
3d4d4302 6181 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6182 bfd_byte *cr;
6183
6184 if (scpt)
6185 {
6186 Elf32_crinfo cptrel;
6187
6188 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6189 cptrel.vaddr = (rel->r_offset
6190 + input_section->output_section->vma
6191 + input_section->output_offset);
6192 if (r_type == R_MIPS_REL32)
6193 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6194 else
6195 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6196 mips_elf_set_cr_dist2to (cptrel, 0);
6197 cptrel.konst = *addendp;
6198
6199 cr = (scpt->contents
6200 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6201 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6202 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6203 ((Elf32_External_crinfo *) cr
6204 + scpt->reloc_count));
6205 ++scpt->reloc_count;
6206 }
6207 }
6208
943284cc
DJ
6209 /* If we've written this relocation for a readonly section,
6210 we need to set DF_TEXTREL again, so that we do not delete the
6211 DT_TEXTREL tag. */
6212 if (MIPS_ELF_READONLY_SECTION (input_section))
6213 info->flags |= DF_TEXTREL;
6214
b34976b6 6215 return TRUE;
b49e97c9
TS
6216}
6217\f
b49e97c9
TS
6218/* Return the MACH for a MIPS e_flags value. */
6219
6220unsigned long
9719ad41 6221_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6222{
6223 switch (flags & EF_MIPS_MACH)
6224 {
6225 case E_MIPS_MACH_3900:
6226 return bfd_mach_mips3900;
6227
6228 case E_MIPS_MACH_4010:
6229 return bfd_mach_mips4010;
6230
6231 case E_MIPS_MACH_4100:
6232 return bfd_mach_mips4100;
6233
6234 case E_MIPS_MACH_4111:
6235 return bfd_mach_mips4111;
6236
00707a0e
RS
6237 case E_MIPS_MACH_4120:
6238 return bfd_mach_mips4120;
6239
b49e97c9
TS
6240 case E_MIPS_MACH_4650:
6241 return bfd_mach_mips4650;
6242
00707a0e
RS
6243 case E_MIPS_MACH_5400:
6244 return bfd_mach_mips5400;
6245
6246 case E_MIPS_MACH_5500:
6247 return bfd_mach_mips5500;
6248
0d2e43ed
ILT
6249 case E_MIPS_MACH_9000:
6250 return bfd_mach_mips9000;
6251
b49e97c9
TS
6252 case E_MIPS_MACH_SB1:
6253 return bfd_mach_mips_sb1;
6254
350cc38d
MS
6255 case E_MIPS_MACH_LS2E:
6256 return bfd_mach_mips_loongson_2e;
6257
6258 case E_MIPS_MACH_LS2F:
6259 return bfd_mach_mips_loongson_2f;
6260
fd503541
NC
6261 case E_MIPS_MACH_LS3A:
6262 return bfd_mach_mips_loongson_3a;
6263
432233b3
AP
6264 case E_MIPS_MACH_OCTEON2:
6265 return bfd_mach_mips_octeon2;
6266
6f179bd0
AN
6267 case E_MIPS_MACH_OCTEON:
6268 return bfd_mach_mips_octeon;
6269
52b6b6b9
JM
6270 case E_MIPS_MACH_XLR:
6271 return bfd_mach_mips_xlr;
6272
b49e97c9
TS
6273 default:
6274 switch (flags & EF_MIPS_ARCH)
6275 {
6276 default:
6277 case E_MIPS_ARCH_1:
6278 return bfd_mach_mips3000;
b49e97c9
TS
6279
6280 case E_MIPS_ARCH_2:
6281 return bfd_mach_mips6000;
b49e97c9
TS
6282
6283 case E_MIPS_ARCH_3:
6284 return bfd_mach_mips4000;
b49e97c9
TS
6285
6286 case E_MIPS_ARCH_4:
6287 return bfd_mach_mips8000;
b49e97c9
TS
6288
6289 case E_MIPS_ARCH_5:
6290 return bfd_mach_mips5;
b49e97c9
TS
6291
6292 case E_MIPS_ARCH_32:
6293 return bfd_mach_mipsisa32;
b49e97c9
TS
6294
6295 case E_MIPS_ARCH_64:
6296 return bfd_mach_mipsisa64;
af7ee8bf
CD
6297
6298 case E_MIPS_ARCH_32R2:
6299 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6300
6301 case E_MIPS_ARCH_64R2:
6302 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6303 }
6304 }
6305
6306 return 0;
6307}
6308
6309/* Return printable name for ABI. */
6310
6311static INLINE char *
9719ad41 6312elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6313{
6314 flagword flags;
6315
6316 flags = elf_elfheader (abfd)->e_flags;
6317 switch (flags & EF_MIPS_ABI)
6318 {
6319 case 0:
6320 if (ABI_N32_P (abfd))
6321 return "N32";
6322 else if (ABI_64_P (abfd))
6323 return "64";
6324 else
6325 return "none";
6326 case E_MIPS_ABI_O32:
6327 return "O32";
6328 case E_MIPS_ABI_O64:
6329 return "O64";
6330 case E_MIPS_ABI_EABI32:
6331 return "EABI32";
6332 case E_MIPS_ABI_EABI64:
6333 return "EABI64";
6334 default:
6335 return "unknown abi";
6336 }
6337}
6338\f
6339/* MIPS ELF uses two common sections. One is the usual one, and the
6340 other is for small objects. All the small objects are kept
6341 together, and then referenced via the gp pointer, which yields
6342 faster assembler code. This is what we use for the small common
6343 section. This approach is copied from ecoff.c. */
6344static asection mips_elf_scom_section;
6345static asymbol mips_elf_scom_symbol;
6346static asymbol *mips_elf_scom_symbol_ptr;
6347
6348/* MIPS ELF also uses an acommon section, which represents an
6349 allocated common symbol which may be overridden by a
6350 definition in a shared library. */
6351static asection mips_elf_acom_section;
6352static asymbol mips_elf_acom_symbol;
6353static asymbol *mips_elf_acom_symbol_ptr;
6354
738e5348 6355/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6356
6357void
9719ad41 6358_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6359{
6360 elf_symbol_type *elfsym;
6361
738e5348 6362 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6363 elfsym = (elf_symbol_type *) asym;
6364 switch (elfsym->internal_elf_sym.st_shndx)
6365 {
6366 case SHN_MIPS_ACOMMON:
6367 /* This section is used in a dynamically linked executable file.
6368 It is an allocated common section. The dynamic linker can
6369 either resolve these symbols to something in a shared
6370 library, or it can just leave them here. For our purposes,
6371 we can consider these symbols to be in a new section. */
6372 if (mips_elf_acom_section.name == NULL)
6373 {
6374 /* Initialize the acommon section. */
6375 mips_elf_acom_section.name = ".acommon";
6376 mips_elf_acom_section.flags = SEC_ALLOC;
6377 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6378 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6379 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6380 mips_elf_acom_symbol.name = ".acommon";
6381 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6383 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6384 }
6385 asym->section = &mips_elf_acom_section;
6386 break;
6387
6388 case SHN_COMMON:
6389 /* Common symbols less than the GP size are automatically
6390 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6391 if (asym->value > elf_gp_size (abfd)
b59eed79 6392 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6393 || IRIX_COMPAT (abfd) == ict_irix6)
6394 break;
6395 /* Fall through. */
6396 case SHN_MIPS_SCOMMON:
6397 if (mips_elf_scom_section.name == NULL)
6398 {
6399 /* Initialize the small common section. */
6400 mips_elf_scom_section.name = ".scommon";
6401 mips_elf_scom_section.flags = SEC_IS_COMMON;
6402 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6403 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6404 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6405 mips_elf_scom_symbol.name = ".scommon";
6406 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6407 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6408 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6409 }
6410 asym->section = &mips_elf_scom_section;
6411 asym->value = elfsym->internal_elf_sym.st_size;
6412 break;
6413
6414 case SHN_MIPS_SUNDEFINED:
6415 asym->section = bfd_und_section_ptr;
6416 break;
6417
b49e97c9 6418 case SHN_MIPS_TEXT:
00b4930b
TS
6419 {
6420 asection *section = bfd_get_section_by_name (abfd, ".text");
6421
00b4930b
TS
6422 if (section != NULL)
6423 {
6424 asym->section = section;
6425 /* MIPS_TEXT is a bit special, the address is not an offset
6426 to the base of the .text section. So substract the section
6427 base address to make it an offset. */
6428 asym->value -= section->vma;
6429 }
6430 }
b49e97c9
TS
6431 break;
6432
6433 case SHN_MIPS_DATA:
00b4930b
TS
6434 {
6435 asection *section = bfd_get_section_by_name (abfd, ".data");
6436
00b4930b
TS
6437 if (section != NULL)
6438 {
6439 asym->section = section;
6440 /* MIPS_DATA is a bit special, the address is not an offset
6441 to the base of the .data section. So substract the section
6442 base address to make it an offset. */
6443 asym->value -= section->vma;
6444 }
6445 }
b49e97c9 6446 break;
b49e97c9 6447 }
738e5348 6448
df58fc94
RS
6449 /* If this is an odd-valued function symbol, assume it's a MIPS16
6450 or microMIPS one. */
738e5348
RS
6451 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6452 && (asym->value & 1) != 0)
6453 {
6454 asym->value--;
df58fc94
RS
6455 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6456 elfsym->internal_elf_sym.st_other
6457 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6458 else
6459 elfsym->internal_elf_sym.st_other
6460 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6461 }
b49e97c9
TS
6462}
6463\f
8c946ed5
RS
6464/* Implement elf_backend_eh_frame_address_size. This differs from
6465 the default in the way it handles EABI64.
6466
6467 EABI64 was originally specified as an LP64 ABI, and that is what
6468 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6469 historically accepted the combination of -mabi=eabi and -mlong32,
6470 and this ILP32 variation has become semi-official over time.
6471 Both forms use elf32 and have pointer-sized FDE addresses.
6472
6473 If an EABI object was generated by GCC 4.0 or above, it will have
6474 an empty .gcc_compiled_longXX section, where XX is the size of longs
6475 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6476 have no special marking to distinguish them from LP64 objects.
6477
6478 We don't want users of the official LP64 ABI to be punished for the
6479 existence of the ILP32 variant, but at the same time, we don't want
6480 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6481 We therefore take the following approach:
6482
6483 - If ABFD contains a .gcc_compiled_longXX section, use it to
6484 determine the pointer size.
6485
6486 - Otherwise check the type of the first relocation. Assume that
6487 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6488
6489 - Otherwise punt.
6490
6491 The second check is enough to detect LP64 objects generated by pre-4.0
6492 compilers because, in the kind of output generated by those compilers,
6493 the first relocation will be associated with either a CIE personality
6494 routine or an FDE start address. Furthermore, the compilers never
6495 used a special (non-pointer) encoding for this ABI.
6496
6497 Checking the relocation type should also be safe because there is no
6498 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6499 did so. */
6500
6501unsigned int
6502_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6503{
6504 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6505 return 8;
6506 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6507 {
6508 bfd_boolean long32_p, long64_p;
6509
6510 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6511 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6512 if (long32_p && long64_p)
6513 return 0;
6514 if (long32_p)
6515 return 4;
6516 if (long64_p)
6517 return 8;
6518
6519 if (sec->reloc_count > 0
6520 && elf_section_data (sec)->relocs != NULL
6521 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6522 == R_MIPS_64))
6523 return 8;
6524
6525 return 0;
6526 }
6527 return 4;
6528}
6529\f
174fd7f9
RS
6530/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6531 relocations against two unnamed section symbols to resolve to the
6532 same address. For example, if we have code like:
6533
6534 lw $4,%got_disp(.data)($gp)
6535 lw $25,%got_disp(.text)($gp)
6536 jalr $25
6537
6538 then the linker will resolve both relocations to .data and the program
6539 will jump there rather than to .text.
6540
6541 We can work around this problem by giving names to local section symbols.
6542 This is also what the MIPSpro tools do. */
6543
6544bfd_boolean
6545_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6546{
6547 return SGI_COMPAT (abfd);
6548}
6549\f
b49e97c9
TS
6550/* Work over a section just before writing it out. This routine is
6551 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6552 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6553 a better way. */
6554
b34976b6 6555bfd_boolean
9719ad41 6556_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6557{
6558 if (hdr->sh_type == SHT_MIPS_REGINFO
6559 && hdr->sh_size > 0)
6560 {
6561 bfd_byte buf[4];
6562
6563 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6564 BFD_ASSERT (hdr->contents == NULL);
6565
6566 if (bfd_seek (abfd,
6567 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6568 SEEK_SET) != 0)
b34976b6 6569 return FALSE;
b49e97c9 6570 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6571 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6572 return FALSE;
b49e97c9
TS
6573 }
6574
6575 if (hdr->sh_type == SHT_MIPS_OPTIONS
6576 && hdr->bfd_section != NULL
f0abc2a1
AM
6577 && mips_elf_section_data (hdr->bfd_section) != NULL
6578 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6579 {
6580 bfd_byte *contents, *l, *lend;
6581
f0abc2a1
AM
6582 /* We stored the section contents in the tdata field in the
6583 set_section_contents routine. We save the section contents
6584 so that we don't have to read them again.
b49e97c9
TS
6585 At this point we know that elf_gp is set, so we can look
6586 through the section contents to see if there is an
6587 ODK_REGINFO structure. */
6588
f0abc2a1 6589 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6590 l = contents;
6591 lend = contents + hdr->sh_size;
6592 while (l + sizeof (Elf_External_Options) <= lend)
6593 {
6594 Elf_Internal_Options intopt;
6595
6596 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6597 &intopt);
1bc8074d
MR
6598 if (intopt.size < sizeof (Elf_External_Options))
6599 {
6600 (*_bfd_error_handler)
6601 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6602 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6603 break;
6604 }
b49e97c9
TS
6605 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6606 {
6607 bfd_byte buf[8];
6608
6609 if (bfd_seek (abfd,
6610 (hdr->sh_offset
6611 + (l - contents)
6612 + sizeof (Elf_External_Options)
6613 + (sizeof (Elf64_External_RegInfo) - 8)),
6614 SEEK_SET) != 0)
b34976b6 6615 return FALSE;
b49e97c9 6616 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6617 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6618 return FALSE;
b49e97c9
TS
6619 }
6620 else if (intopt.kind == ODK_REGINFO)
6621 {
6622 bfd_byte buf[4];
6623
6624 if (bfd_seek (abfd,
6625 (hdr->sh_offset
6626 + (l - contents)
6627 + sizeof (Elf_External_Options)
6628 + (sizeof (Elf32_External_RegInfo) - 4)),
6629 SEEK_SET) != 0)
b34976b6 6630 return FALSE;
b49e97c9 6631 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6632 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6633 return FALSE;
b49e97c9
TS
6634 }
6635 l += intopt.size;
6636 }
6637 }
6638
6639 if (hdr->bfd_section != NULL)
6640 {
6641 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6642
2d0f9ad9
JM
6643 /* .sbss is not handled specially here because the GNU/Linux
6644 prelinker can convert .sbss from NOBITS to PROGBITS and
6645 changing it back to NOBITS breaks the binary. The entry in
6646 _bfd_mips_elf_special_sections will ensure the correct flags
6647 are set on .sbss if BFD creates it without reading it from an
6648 input file, and without special handling here the flags set
6649 on it in an input file will be followed. */
b49e97c9
TS
6650 if (strcmp (name, ".sdata") == 0
6651 || strcmp (name, ".lit8") == 0
6652 || strcmp (name, ".lit4") == 0)
6653 {
6654 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6655 hdr->sh_type = SHT_PROGBITS;
6656 }
b49e97c9
TS
6657 else if (strcmp (name, ".srdata") == 0)
6658 {
6659 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6660 hdr->sh_type = SHT_PROGBITS;
6661 }
6662 else if (strcmp (name, ".compact_rel") == 0)
6663 {
6664 hdr->sh_flags = 0;
6665 hdr->sh_type = SHT_PROGBITS;
6666 }
6667 else if (strcmp (name, ".rtproc") == 0)
6668 {
6669 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6670 {
6671 unsigned int adjust;
6672
6673 adjust = hdr->sh_size % hdr->sh_addralign;
6674 if (adjust != 0)
6675 hdr->sh_size += hdr->sh_addralign - adjust;
6676 }
6677 }
6678 }
6679
b34976b6 6680 return TRUE;
b49e97c9
TS
6681}
6682
6683/* Handle a MIPS specific section when reading an object file. This
6684 is called when elfcode.h finds a section with an unknown type.
6685 This routine supports both the 32-bit and 64-bit ELF ABI.
6686
6687 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6688 how to. */
6689
b34976b6 6690bfd_boolean
6dc132d9
L
6691_bfd_mips_elf_section_from_shdr (bfd *abfd,
6692 Elf_Internal_Shdr *hdr,
6693 const char *name,
6694 int shindex)
b49e97c9
TS
6695{
6696 flagword flags = 0;
6697
6698 /* There ought to be a place to keep ELF backend specific flags, but
6699 at the moment there isn't one. We just keep track of the
6700 sections by their name, instead. Fortunately, the ABI gives
6701 suggested names for all the MIPS specific sections, so we will
6702 probably get away with this. */
6703 switch (hdr->sh_type)
6704 {
6705 case SHT_MIPS_LIBLIST:
6706 if (strcmp (name, ".liblist") != 0)
b34976b6 6707 return FALSE;
b49e97c9
TS
6708 break;
6709 case SHT_MIPS_MSYM:
6710 if (strcmp (name, ".msym") != 0)
b34976b6 6711 return FALSE;
b49e97c9
TS
6712 break;
6713 case SHT_MIPS_CONFLICT:
6714 if (strcmp (name, ".conflict") != 0)
b34976b6 6715 return FALSE;
b49e97c9
TS
6716 break;
6717 case SHT_MIPS_GPTAB:
0112cd26 6718 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6719 return FALSE;
b49e97c9
TS
6720 break;
6721 case SHT_MIPS_UCODE:
6722 if (strcmp (name, ".ucode") != 0)
b34976b6 6723 return FALSE;
b49e97c9
TS
6724 break;
6725 case SHT_MIPS_DEBUG:
6726 if (strcmp (name, ".mdebug") != 0)
b34976b6 6727 return FALSE;
b49e97c9
TS
6728 flags = SEC_DEBUGGING;
6729 break;
6730 case SHT_MIPS_REGINFO:
6731 if (strcmp (name, ".reginfo") != 0
6732 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6733 return FALSE;
b49e97c9
TS
6734 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6735 break;
6736 case SHT_MIPS_IFACE:
6737 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6738 return FALSE;
b49e97c9
TS
6739 break;
6740 case SHT_MIPS_CONTENT:
0112cd26 6741 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6742 return FALSE;
b49e97c9
TS
6743 break;
6744 case SHT_MIPS_OPTIONS:
cc2e31b9 6745 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6746 return FALSE;
b49e97c9
TS
6747 break;
6748 case SHT_MIPS_DWARF:
1b315056 6749 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6750 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6751 return FALSE;
b49e97c9
TS
6752 break;
6753 case SHT_MIPS_SYMBOL_LIB:
6754 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6755 return FALSE;
b49e97c9
TS
6756 break;
6757 case SHT_MIPS_EVENTS:
0112cd26
NC
6758 if (! CONST_STRNEQ (name, ".MIPS.events")
6759 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6760 return FALSE;
b49e97c9
TS
6761 break;
6762 default:
cc2e31b9 6763 break;
b49e97c9
TS
6764 }
6765
6dc132d9 6766 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6767 return FALSE;
b49e97c9
TS
6768
6769 if (flags)
6770 {
6771 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6772 (bfd_get_section_flags (abfd,
6773 hdr->bfd_section)
6774 | flags)))
b34976b6 6775 return FALSE;
b49e97c9
TS
6776 }
6777
6778 /* FIXME: We should record sh_info for a .gptab section. */
6779
6780 /* For a .reginfo section, set the gp value in the tdata information
6781 from the contents of this section. We need the gp value while
6782 processing relocs, so we just get it now. The .reginfo section
6783 is not used in the 64-bit MIPS ELF ABI. */
6784 if (hdr->sh_type == SHT_MIPS_REGINFO)
6785 {
6786 Elf32_External_RegInfo ext;
6787 Elf32_RegInfo s;
6788
9719ad41
RS
6789 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6790 &ext, 0, sizeof ext))
b34976b6 6791 return FALSE;
b49e97c9
TS
6792 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6793 elf_gp (abfd) = s.ri_gp_value;
6794 }
6795
6796 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6797 set the gp value based on what we find. We may see both
6798 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6799 they should agree. */
6800 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6801 {
6802 bfd_byte *contents, *l, *lend;
6803
9719ad41 6804 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6805 if (contents == NULL)
b34976b6 6806 return FALSE;
b49e97c9 6807 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6808 0, hdr->sh_size))
b49e97c9
TS
6809 {
6810 free (contents);
b34976b6 6811 return FALSE;
b49e97c9
TS
6812 }
6813 l = contents;
6814 lend = contents + hdr->sh_size;
6815 while (l + sizeof (Elf_External_Options) <= lend)
6816 {
6817 Elf_Internal_Options intopt;
6818
6819 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6820 &intopt);
1bc8074d
MR
6821 if (intopt.size < sizeof (Elf_External_Options))
6822 {
6823 (*_bfd_error_handler)
6824 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6825 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6826 break;
6827 }
b49e97c9
TS
6828 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6829 {
6830 Elf64_Internal_RegInfo intreg;
6831
6832 bfd_mips_elf64_swap_reginfo_in
6833 (abfd,
6834 ((Elf64_External_RegInfo *)
6835 (l + sizeof (Elf_External_Options))),
6836 &intreg);
6837 elf_gp (abfd) = intreg.ri_gp_value;
6838 }
6839 else if (intopt.kind == ODK_REGINFO)
6840 {
6841 Elf32_RegInfo intreg;
6842
6843 bfd_mips_elf32_swap_reginfo_in
6844 (abfd,
6845 ((Elf32_External_RegInfo *)
6846 (l + sizeof (Elf_External_Options))),
6847 &intreg);
6848 elf_gp (abfd) = intreg.ri_gp_value;
6849 }
6850 l += intopt.size;
6851 }
6852 free (contents);
6853 }
6854
b34976b6 6855 return TRUE;
b49e97c9
TS
6856}
6857
6858/* Set the correct type for a MIPS ELF section. We do this by the
6859 section name, which is a hack, but ought to work. This routine is
6860 used by both the 32-bit and the 64-bit ABI. */
6861
b34976b6 6862bfd_boolean
9719ad41 6863_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6864{
0414f35b 6865 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6866
6867 if (strcmp (name, ".liblist") == 0)
6868 {
6869 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6870 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6871 /* The sh_link field is set in final_write_processing. */
6872 }
6873 else if (strcmp (name, ".conflict") == 0)
6874 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6875 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6876 {
6877 hdr->sh_type = SHT_MIPS_GPTAB;
6878 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6879 /* The sh_info field is set in final_write_processing. */
6880 }
6881 else if (strcmp (name, ".ucode") == 0)
6882 hdr->sh_type = SHT_MIPS_UCODE;
6883 else if (strcmp (name, ".mdebug") == 0)
6884 {
6885 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6886 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6887 entsize of 0. FIXME: Does this matter? */
6888 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6889 hdr->sh_entsize = 0;
6890 else
6891 hdr->sh_entsize = 1;
6892 }
6893 else if (strcmp (name, ".reginfo") == 0)
6894 {
6895 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6896 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6897 entsize of 0x18. FIXME: Does this matter? */
6898 if (SGI_COMPAT (abfd))
6899 {
6900 if ((abfd->flags & DYNAMIC) != 0)
6901 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6902 else
6903 hdr->sh_entsize = 1;
6904 }
6905 else
6906 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6907 }
6908 else if (SGI_COMPAT (abfd)
6909 && (strcmp (name, ".hash") == 0
6910 || strcmp (name, ".dynamic") == 0
6911 || strcmp (name, ".dynstr") == 0))
6912 {
6913 if (SGI_COMPAT (abfd))
6914 hdr->sh_entsize = 0;
6915#if 0
8dc1a139 6916 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6917 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6918#endif
6919 }
6920 else if (strcmp (name, ".got") == 0
6921 || strcmp (name, ".srdata") == 0
6922 || strcmp (name, ".sdata") == 0
6923 || strcmp (name, ".sbss") == 0
6924 || strcmp (name, ".lit4") == 0
6925 || strcmp (name, ".lit8") == 0)
6926 hdr->sh_flags |= SHF_MIPS_GPREL;
6927 else if (strcmp (name, ".MIPS.interfaces") == 0)
6928 {
6929 hdr->sh_type = SHT_MIPS_IFACE;
6930 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6931 }
0112cd26 6932 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6933 {
6934 hdr->sh_type = SHT_MIPS_CONTENT;
6935 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6936 /* The sh_info field is set in final_write_processing. */
6937 }
cc2e31b9 6938 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6939 {
6940 hdr->sh_type = SHT_MIPS_OPTIONS;
6941 hdr->sh_entsize = 1;
6942 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6943 }
1b315056
CS
6944 else if (CONST_STRNEQ (name, ".debug_")
6945 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6946 {
6947 hdr->sh_type = SHT_MIPS_DWARF;
6948
6949 /* Irix facilities such as libexc expect a single .debug_frame
6950 per executable, the system ones have NOSTRIP set and the linker
6951 doesn't merge sections with different flags so ... */
6952 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6954 }
b49e97c9
TS
6955 else if (strcmp (name, ".MIPS.symlib") == 0)
6956 {
6957 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6958 /* The sh_link and sh_info fields are set in
6959 final_write_processing. */
6960 }
0112cd26
NC
6961 else if (CONST_STRNEQ (name, ".MIPS.events")
6962 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6963 {
6964 hdr->sh_type = SHT_MIPS_EVENTS;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6966 /* The sh_link field is set in final_write_processing. */
6967 }
6968 else if (strcmp (name, ".msym") == 0)
6969 {
6970 hdr->sh_type = SHT_MIPS_MSYM;
6971 hdr->sh_flags |= SHF_ALLOC;
6972 hdr->sh_entsize = 8;
6973 }
6974
7a79a000
TS
6975 /* The generic elf_fake_sections will set up REL_HDR using the default
6976 kind of relocations. We used to set up a second header for the
6977 non-default kind of relocations here, but only NewABI would use
6978 these, and the IRIX ld doesn't like resulting empty RELA sections.
6979 Thus we create those header only on demand now. */
b49e97c9 6980
b34976b6 6981 return TRUE;
b49e97c9
TS
6982}
6983
6984/* Given a BFD section, try to locate the corresponding ELF section
6985 index. This is used by both the 32-bit and the 64-bit ABI.
6986 Actually, it's not clear to me that the 64-bit ABI supports these,
6987 but for non-PIC objects we will certainly want support for at least
6988 the .scommon section. */
6989
b34976b6 6990bfd_boolean
9719ad41
RS
6991_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6992 asection *sec, int *retval)
b49e97c9
TS
6993{
6994 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6995 {
6996 *retval = SHN_MIPS_SCOMMON;
b34976b6 6997 return TRUE;
b49e97c9
TS
6998 }
6999 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7000 {
7001 *retval = SHN_MIPS_ACOMMON;
b34976b6 7002 return TRUE;
b49e97c9 7003 }
b34976b6 7004 return FALSE;
b49e97c9
TS
7005}
7006\f
7007/* Hook called by the linker routine which adds symbols from an object
7008 file. We must handle the special MIPS section numbers here. */
7009
b34976b6 7010bfd_boolean
9719ad41 7011_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7012 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7013 flagword *flagsp ATTRIBUTE_UNUSED,
7014 asection **secp, bfd_vma *valp)
b49e97c9
TS
7015{
7016 if (SGI_COMPAT (abfd)
7017 && (abfd->flags & DYNAMIC) != 0
7018 && strcmp (*namep, "_rld_new_interface") == 0)
7019 {
8dc1a139 7020 /* Skip IRIX5 rld entry name. */
b49e97c9 7021 *namep = NULL;
b34976b6 7022 return TRUE;
b49e97c9
TS
7023 }
7024
eedecc07
DD
7025 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7026 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7027 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7028 a magic symbol resolved by the linker, we ignore this bogus definition
7029 of _gp_disp. New ABI objects do not suffer from this problem so this
7030 is not done for them. */
7031 if (!NEWABI_P(abfd)
7032 && (sym->st_shndx == SHN_ABS)
7033 && (strcmp (*namep, "_gp_disp") == 0))
7034 {
7035 *namep = NULL;
7036 return TRUE;
7037 }
7038
b49e97c9
TS
7039 switch (sym->st_shndx)
7040 {
7041 case SHN_COMMON:
7042 /* Common symbols less than the GP size are automatically
7043 treated as SHN_MIPS_SCOMMON symbols. */
7044 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7045 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7046 || IRIX_COMPAT (abfd) == ict_irix6)
7047 break;
7048 /* Fall through. */
7049 case SHN_MIPS_SCOMMON:
7050 *secp = bfd_make_section_old_way (abfd, ".scommon");
7051 (*secp)->flags |= SEC_IS_COMMON;
7052 *valp = sym->st_size;
7053 break;
7054
7055 case SHN_MIPS_TEXT:
7056 /* This section is used in a shared object. */
7057 if (elf_tdata (abfd)->elf_text_section == NULL)
7058 {
7059 asymbol *elf_text_symbol;
7060 asection *elf_text_section;
7061 bfd_size_type amt = sizeof (asection);
7062
7063 elf_text_section = bfd_zalloc (abfd, amt);
7064 if (elf_text_section == NULL)
b34976b6 7065 return FALSE;
b49e97c9
TS
7066
7067 amt = sizeof (asymbol);
7068 elf_text_symbol = bfd_zalloc (abfd, amt);
7069 if (elf_text_symbol == NULL)
b34976b6 7070 return FALSE;
b49e97c9
TS
7071
7072 /* Initialize the section. */
7073
7074 elf_tdata (abfd)->elf_text_section = elf_text_section;
7075 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7076
7077 elf_text_section->symbol = elf_text_symbol;
7078 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7079
7080 elf_text_section->name = ".text";
7081 elf_text_section->flags = SEC_NO_FLAGS;
7082 elf_text_section->output_section = NULL;
7083 elf_text_section->owner = abfd;
7084 elf_text_symbol->name = ".text";
7085 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7086 elf_text_symbol->section = elf_text_section;
7087 }
7088 /* This code used to do *secp = bfd_und_section_ptr if
7089 info->shared. I don't know why, and that doesn't make sense,
7090 so I took it out. */
7091 *secp = elf_tdata (abfd)->elf_text_section;
7092 break;
7093
7094 case SHN_MIPS_ACOMMON:
7095 /* Fall through. XXX Can we treat this as allocated data? */
7096 case SHN_MIPS_DATA:
7097 /* This section is used in a shared object. */
7098 if (elf_tdata (abfd)->elf_data_section == NULL)
7099 {
7100 asymbol *elf_data_symbol;
7101 asection *elf_data_section;
7102 bfd_size_type amt = sizeof (asection);
7103
7104 elf_data_section = bfd_zalloc (abfd, amt);
7105 if (elf_data_section == NULL)
b34976b6 7106 return FALSE;
b49e97c9
TS
7107
7108 amt = sizeof (asymbol);
7109 elf_data_symbol = bfd_zalloc (abfd, amt);
7110 if (elf_data_symbol == NULL)
b34976b6 7111 return FALSE;
b49e97c9
TS
7112
7113 /* Initialize the section. */
7114
7115 elf_tdata (abfd)->elf_data_section = elf_data_section;
7116 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7117
7118 elf_data_section->symbol = elf_data_symbol;
7119 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7120
7121 elf_data_section->name = ".data";
7122 elf_data_section->flags = SEC_NO_FLAGS;
7123 elf_data_section->output_section = NULL;
7124 elf_data_section->owner = abfd;
7125 elf_data_symbol->name = ".data";
7126 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7127 elf_data_symbol->section = elf_data_section;
7128 }
7129 /* This code used to do *secp = bfd_und_section_ptr if
7130 info->shared. I don't know why, and that doesn't make sense,
7131 so I took it out. */
7132 *secp = elf_tdata (abfd)->elf_data_section;
7133 break;
7134
7135 case SHN_MIPS_SUNDEFINED:
7136 *secp = bfd_und_section_ptr;
7137 break;
7138 }
7139
7140 if (SGI_COMPAT (abfd)
7141 && ! info->shared
f13a99db 7142 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7143 && strcmp (*namep, "__rld_obj_head") == 0)
7144 {
7145 struct elf_link_hash_entry *h;
14a793b2 7146 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7147
7148 /* Mark __rld_obj_head as dynamic. */
14a793b2 7149 bh = NULL;
b49e97c9 7150 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7151 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7152 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7153 return FALSE;
14a793b2
AM
7154
7155 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7156 h->non_elf = 0;
7157 h->def_regular = 1;
b49e97c9
TS
7158 h->type = STT_OBJECT;
7159
c152c796 7160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7161 return FALSE;
b49e97c9 7162
b34976b6 7163 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7164 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7165 }
7166
7167 /* If this is a mips16 text symbol, add 1 to the value to make it
7168 odd. This will cause something like .word SYM to come up with
7169 the right value when it is loaded into the PC. */
df58fc94 7170 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7171 ++*valp;
7172
b34976b6 7173 return TRUE;
b49e97c9
TS
7174}
7175
7176/* This hook function is called before the linker writes out a global
7177 symbol. We mark symbols as small common if appropriate. This is
7178 also where we undo the increment of the value for a mips16 symbol. */
7179
6e0b88f1 7180int
9719ad41
RS
7181_bfd_mips_elf_link_output_symbol_hook
7182 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7183 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7184 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7185{
7186 /* If we see a common symbol, which implies a relocatable link, then
7187 if a symbol was small common in an input file, mark it as small
7188 common in the output file. */
7189 if (sym->st_shndx == SHN_COMMON
7190 && strcmp (input_sec->name, ".scommon") == 0)
7191 sym->st_shndx = SHN_MIPS_SCOMMON;
7192
df58fc94 7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7194 sym->st_value &= ~1;
b49e97c9 7195
6e0b88f1 7196 return 1;
b49e97c9
TS
7197}
7198\f
7199/* Functions for the dynamic linker. */
7200
7201/* Create dynamic sections when linking against a dynamic object. */
7202
b34976b6 7203bfd_boolean
9719ad41 7204_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7205{
7206 struct elf_link_hash_entry *h;
14a793b2 7207 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7208 flagword flags;
7209 register asection *s;
7210 const char * const *namep;
0a44bf69 7211 struct mips_elf_link_hash_table *htab;
b49e97c9 7212
0a44bf69 7213 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7214 BFD_ASSERT (htab != NULL);
7215
b49e97c9
TS
7216 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7217 | SEC_LINKER_CREATED | SEC_READONLY);
7218
0a44bf69
RS
7219 /* The psABI requires a read-only .dynamic section, but the VxWorks
7220 EABI doesn't. */
7221 if (!htab->is_vxworks)
b49e97c9 7222 {
3d4d4302 7223 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7224 if (s != NULL)
7225 {
7226 if (! bfd_set_section_flags (abfd, s, flags))
7227 return FALSE;
7228 }
b49e97c9
TS
7229 }
7230
7231 /* We need to create .got section. */
23cc69b6 7232 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7233 return FALSE;
7234
0a44bf69 7235 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7236 return FALSE;
b49e97c9 7237
b49e97c9 7238 /* Create .stub section. */
3d4d4302
AM
7239 s = bfd_make_section_anyway_with_flags (abfd,
7240 MIPS_ELF_STUB_SECTION_NAME (abfd),
7241 flags | SEC_CODE);
4e41d0d7
RS
7242 if (s == NULL
7243 || ! bfd_set_section_alignment (abfd, s,
7244 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7245 return FALSE;
7246 htab->sstubs = s;
b49e97c9
TS
7247
7248 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7249 && !info->shared
3d4d4302 7250 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7251 {
3d4d4302
AM
7252 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7253 flags &~ (flagword) SEC_READONLY);
b49e97c9 7254 if (s == NULL
b49e97c9
TS
7255 || ! bfd_set_section_alignment (abfd, s,
7256 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7257 return FALSE;
b49e97c9
TS
7258 }
7259
7260 /* On IRIX5, we adjust add some additional symbols and change the
7261 alignments of several sections. There is no ABI documentation
7262 indicating that this is necessary on IRIX6, nor any evidence that
7263 the linker takes such action. */
7264 if (IRIX_COMPAT (abfd) == ict_irix5)
7265 {
7266 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7267 {
14a793b2 7268 bh = NULL;
b49e97c9 7269 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7270 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7271 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7272 return FALSE;
14a793b2
AM
7273
7274 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7275 h->non_elf = 0;
7276 h->def_regular = 1;
b49e97c9
TS
7277 h->type = STT_SECTION;
7278
c152c796 7279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7280 return FALSE;
b49e97c9
TS
7281 }
7282
7283 /* We need to create a .compact_rel section. */
7284 if (SGI_COMPAT (abfd))
7285 {
7286 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7287 return FALSE;
b49e97c9
TS
7288 }
7289
44c410de 7290 /* Change alignments of some sections. */
3d4d4302 7291 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7292 if (s != NULL)
d80dcc6a 7293 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7294 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7295 if (s != NULL)
d80dcc6a 7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7297 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7298 if (s != NULL)
d80dcc6a 7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7300 /* ??? */
b49e97c9
TS
7301 s = bfd_get_section_by_name (abfd, ".reginfo");
7302 if (s != NULL)
d80dcc6a 7303 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7304 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7305 if (s != NULL)
d80dcc6a 7306 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7307 }
7308
7309 if (!info->shared)
7310 {
14a793b2
AM
7311 const char *name;
7312
7313 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7314 bh = NULL;
7315 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7316 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7317 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7318 return FALSE;
14a793b2
AM
7319
7320 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7321 h->non_elf = 0;
7322 h->def_regular = 1;
b49e97c9
TS
7323 h->type = STT_SECTION;
7324
c152c796 7325 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7326 return FALSE;
b49e97c9
TS
7327
7328 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7329 {
7330 /* __rld_map is a four byte word located in the .data section
7331 and is filled in by the rtld to contain a pointer to
7332 the _r_debug structure. Its symbol value will be set in
7333 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7334 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7335 BFD_ASSERT (s != NULL);
14a793b2 7336
0abfb97a
L
7337 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7338 bh = NULL;
7339 if (!(_bfd_generic_link_add_one_symbol
7340 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7341 get_elf_backend_data (abfd)->collect, &bh)))
7342 return FALSE;
b49e97c9 7343
0abfb97a
L
7344 h = (struct elf_link_hash_entry *) bh;
7345 h->non_elf = 0;
7346 h->def_regular = 1;
7347 h->type = STT_OBJECT;
7348
7349 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7350 return FALSE;
b4082c70 7351 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7352 }
7353 }
7354
861fb55a
DJ
7355 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7356 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7357 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7358 return FALSE;
7359
7360 /* Cache the sections created above. */
3d4d4302
AM
7361 htab->splt = bfd_get_linker_section (abfd, ".plt");
7362 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7363 if (htab->is_vxworks)
7364 {
3d4d4302
AM
7365 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7366 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7367 }
7368 else
3d4d4302 7369 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7370 if (!htab->sdynbss
7371 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7372 || !htab->srelplt
7373 || !htab->splt)
7374 abort ();
0a44bf69 7375
861fb55a
DJ
7376 if (htab->is_vxworks)
7377 {
0a44bf69
RS
7378 /* Do the usual VxWorks handling. */
7379 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7380 return FALSE;
7381
7382 /* Work out the PLT sizes. */
7383 if (info->shared)
7384 {
7385 htab->plt_header_size
7386 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7387 htab->plt_entry_size
7388 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7389 }
7390 else
7391 {
7392 htab->plt_header_size
7393 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7394 htab->plt_entry_size
7395 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7396 }
7397 }
861fb55a
DJ
7398 else if (!info->shared)
7399 {
7400 /* All variants of the plt0 entry are the same size. */
7401 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7402 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7403 }
0a44bf69 7404
b34976b6 7405 return TRUE;
b49e97c9
TS
7406}
7407\f
c224138d
RS
7408/* Return true if relocation REL against section SEC is a REL rather than
7409 RELA relocation. RELOCS is the first relocation in the section and
7410 ABFD is the bfd that contains SEC. */
7411
7412static bfd_boolean
7413mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7414 const Elf_Internal_Rela *relocs,
7415 const Elf_Internal_Rela *rel)
7416{
7417 Elf_Internal_Shdr *rel_hdr;
7418 const struct elf_backend_data *bed;
7419
d4730f92
BS
7420 /* To determine which flavor of relocation this is, we depend on the
7421 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7422 rel_hdr = elf_section_data (sec)->rel.hdr;
7423 if (rel_hdr == NULL)
7424 return FALSE;
c224138d 7425 bed = get_elf_backend_data (abfd);
d4730f92
BS
7426 return ((size_t) (rel - relocs)
7427 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7428}
7429
7430/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7431 HOWTO is the relocation's howto and CONTENTS points to the contents
7432 of the section that REL is against. */
7433
7434static bfd_vma
7435mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7436 reloc_howto_type *howto, bfd_byte *contents)
7437{
7438 bfd_byte *location;
7439 unsigned int r_type;
7440 bfd_vma addend;
7441
7442 r_type = ELF_R_TYPE (abfd, rel->r_info);
7443 location = contents + rel->r_offset;
7444
7445 /* Get the addend, which is stored in the input file. */
df58fc94 7446 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7447 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7448 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7449
7450 return addend & howto->src_mask;
7451}
7452
7453/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7454 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7455 and update *ADDEND with the final addend. Return true on success
7456 or false if the LO16 could not be found. RELEND is the exclusive
7457 upper bound on the relocations for REL's section. */
7458
7459static bfd_boolean
7460mips_elf_add_lo16_rel_addend (bfd *abfd,
7461 const Elf_Internal_Rela *rel,
7462 const Elf_Internal_Rela *relend,
7463 bfd_byte *contents, bfd_vma *addend)
7464{
7465 unsigned int r_type, lo16_type;
7466 const Elf_Internal_Rela *lo16_relocation;
7467 reloc_howto_type *lo16_howto;
7468 bfd_vma l;
7469
7470 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7471 if (mips16_reloc_p (r_type))
c224138d 7472 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7473 else if (micromips_reloc_p (r_type))
7474 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7475 else
7476 lo16_type = R_MIPS_LO16;
7477
7478 /* The combined value is the sum of the HI16 addend, left-shifted by
7479 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7480 code does a `lui' of the HI16 value, and then an `addiu' of the
7481 LO16 value.)
7482
7483 Scan ahead to find a matching LO16 relocation.
7484
7485 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7486 be immediately following. However, for the IRIX6 ABI, the next
7487 relocation may be a composed relocation consisting of several
7488 relocations for the same address. In that case, the R_MIPS_LO16
7489 relocation may occur as one of these. We permit a similar
7490 extension in general, as that is useful for GCC.
7491
7492 In some cases GCC dead code elimination removes the LO16 but keeps
7493 the corresponding HI16. This is strictly speaking a violation of
7494 the ABI but not immediately harmful. */
7495 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7496 if (lo16_relocation == NULL)
7497 return FALSE;
7498
7499 /* Obtain the addend kept there. */
7500 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7501 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7502
7503 l <<= lo16_howto->rightshift;
7504 l = _bfd_mips_elf_sign_extend (l, 16);
7505
7506 *addend <<= 16;
7507 *addend += l;
7508 return TRUE;
7509}
7510
7511/* Try to read the contents of section SEC in bfd ABFD. Return true and
7512 store the contents in *CONTENTS on success. Assume that *CONTENTS
7513 already holds the contents if it is nonull on entry. */
7514
7515static bfd_boolean
7516mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7517{
7518 if (*contents)
7519 return TRUE;
7520
7521 /* Get cached copy if it exists. */
7522 if (elf_section_data (sec)->this_hdr.contents != NULL)
7523 {
7524 *contents = elf_section_data (sec)->this_hdr.contents;
7525 return TRUE;
7526 }
7527
7528 return bfd_malloc_and_get_section (abfd, sec, contents);
7529}
7530
b49e97c9
TS
7531/* Look through the relocs for a section during the first phase, and
7532 allocate space in the global offset table. */
7533
b34976b6 7534bfd_boolean
9719ad41
RS
7535_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7536 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7537{
7538 const char *name;
7539 bfd *dynobj;
7540 Elf_Internal_Shdr *symtab_hdr;
7541 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7542 size_t extsymoff;
7543 const Elf_Internal_Rela *rel;
7544 const Elf_Internal_Rela *rel_end;
b49e97c9 7545 asection *sreloc;
9c5bfbb7 7546 const struct elf_backend_data *bed;
0a44bf69 7547 struct mips_elf_link_hash_table *htab;
c224138d
RS
7548 bfd_byte *contents;
7549 bfd_vma addend;
7550 reloc_howto_type *howto;
b49e97c9 7551
1049f94e 7552 if (info->relocatable)
b34976b6 7553 return TRUE;
b49e97c9 7554
0a44bf69 7555 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7556 BFD_ASSERT (htab != NULL);
7557
b49e97c9
TS
7558 dynobj = elf_hash_table (info)->dynobj;
7559 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7560 sym_hashes = elf_sym_hashes (abfd);
7561 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7562
738e5348
RS
7563 bed = get_elf_backend_data (abfd);
7564 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7565
b49e97c9
TS
7566 /* Check for the mips16 stub sections. */
7567
7568 name = bfd_get_section_name (abfd, sec);
b9d58d71 7569 if (FN_STUB_P (name))
b49e97c9
TS
7570 {
7571 unsigned long r_symndx;
7572
7573 /* Look at the relocation information to figure out which symbol
7574 this is for. */
7575
cb4437b8 7576 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7577 if (r_symndx == 0)
7578 {
7579 (*_bfd_error_handler)
7580 (_("%B: Warning: cannot determine the target function for"
7581 " stub section `%s'"),
7582 abfd, name);
7583 bfd_set_error (bfd_error_bad_value);
7584 return FALSE;
7585 }
b49e97c9
TS
7586
7587 if (r_symndx < extsymoff
7588 || sym_hashes[r_symndx - extsymoff] == NULL)
7589 {
7590 asection *o;
7591
7592 /* This stub is for a local symbol. This stub will only be
7593 needed if there is some relocation in this BFD, other
7594 than a 16 bit function call, which refers to this symbol. */
7595 for (o = abfd->sections; o != NULL; o = o->next)
7596 {
7597 Elf_Internal_Rela *sec_relocs;
7598 const Elf_Internal_Rela *r, *rend;
7599
7600 /* We can ignore stub sections when looking for relocs. */
7601 if ((o->flags & SEC_RELOC) == 0
7602 || o->reloc_count == 0
738e5348 7603 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7604 continue;
7605
45d6a902 7606 sec_relocs
9719ad41 7607 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7608 info->keep_memory);
b49e97c9 7609 if (sec_relocs == NULL)
b34976b6 7610 return FALSE;
b49e97c9
TS
7611
7612 rend = sec_relocs + o->reloc_count;
7613 for (r = sec_relocs; r < rend; r++)
7614 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7615 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7616 break;
7617
6cdc0ccc 7618 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7619 free (sec_relocs);
7620
7621 if (r < rend)
7622 break;
7623 }
7624
7625 if (o == NULL)
7626 {
7627 /* There is no non-call reloc for this stub, so we do
7628 not need it. Since this function is called before
7629 the linker maps input sections to output sections, we
7630 can easily discard it by setting the SEC_EXCLUDE
7631 flag. */
7632 sec->flags |= SEC_EXCLUDE;
b34976b6 7633 return TRUE;
b49e97c9
TS
7634 }
7635
7636 /* Record this stub in an array of local symbol stubs for
7637 this BFD. */
7638 if (elf_tdata (abfd)->local_stubs == NULL)
7639 {
7640 unsigned long symcount;
7641 asection **n;
7642 bfd_size_type amt;
7643
7644 if (elf_bad_symtab (abfd))
7645 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7646 else
7647 symcount = symtab_hdr->sh_info;
7648 amt = symcount * sizeof (asection *);
9719ad41 7649 n = bfd_zalloc (abfd, amt);
b49e97c9 7650 if (n == NULL)
b34976b6 7651 return FALSE;
b49e97c9
TS
7652 elf_tdata (abfd)->local_stubs = n;
7653 }
7654
b9d58d71 7655 sec->flags |= SEC_KEEP;
b49e97c9
TS
7656 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7657
7658 /* We don't need to set mips16_stubs_seen in this case.
7659 That flag is used to see whether we need to look through
7660 the global symbol table for stubs. We don't need to set
7661 it here, because we just have a local stub. */
7662 }
7663 else
7664 {
7665 struct mips_elf_link_hash_entry *h;
7666
7667 h = ((struct mips_elf_link_hash_entry *)
7668 sym_hashes[r_symndx - extsymoff]);
7669
973a3492
L
7670 while (h->root.root.type == bfd_link_hash_indirect
7671 || h->root.root.type == bfd_link_hash_warning)
7672 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7673
b49e97c9
TS
7674 /* H is the symbol this stub is for. */
7675
b9d58d71
TS
7676 /* If we already have an appropriate stub for this function, we
7677 don't need another one, so we can discard this one. Since
7678 this function is called before the linker maps input sections
7679 to output sections, we can easily discard it by setting the
7680 SEC_EXCLUDE flag. */
7681 if (h->fn_stub != NULL)
7682 {
7683 sec->flags |= SEC_EXCLUDE;
7684 return TRUE;
7685 }
7686
7687 sec->flags |= SEC_KEEP;
b49e97c9 7688 h->fn_stub = sec;
b34976b6 7689 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7690 }
7691 }
b9d58d71 7692 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7693 {
7694 unsigned long r_symndx;
7695 struct mips_elf_link_hash_entry *h;
7696 asection **loc;
7697
7698 /* Look at the relocation information to figure out which symbol
7699 this is for. */
7700
cb4437b8 7701 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7702 if (r_symndx == 0)
7703 {
7704 (*_bfd_error_handler)
7705 (_("%B: Warning: cannot determine the target function for"
7706 " stub section `%s'"),
7707 abfd, name);
7708 bfd_set_error (bfd_error_bad_value);
7709 return FALSE;
7710 }
b49e97c9
TS
7711
7712 if (r_symndx < extsymoff
7713 || sym_hashes[r_symndx - extsymoff] == NULL)
7714 {
b9d58d71 7715 asection *o;
b49e97c9 7716
b9d58d71
TS
7717 /* This stub is for a local symbol. This stub will only be
7718 needed if there is some relocation (R_MIPS16_26) in this BFD
7719 that refers to this symbol. */
7720 for (o = abfd->sections; o != NULL; o = o->next)
7721 {
7722 Elf_Internal_Rela *sec_relocs;
7723 const Elf_Internal_Rela *r, *rend;
7724
7725 /* We can ignore stub sections when looking for relocs. */
7726 if ((o->flags & SEC_RELOC) == 0
7727 || o->reloc_count == 0
738e5348 7728 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7729 continue;
7730
7731 sec_relocs
7732 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7733 info->keep_memory);
7734 if (sec_relocs == NULL)
7735 return FALSE;
7736
7737 rend = sec_relocs + o->reloc_count;
7738 for (r = sec_relocs; r < rend; r++)
7739 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7740 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7741 break;
7742
7743 if (elf_section_data (o)->relocs != sec_relocs)
7744 free (sec_relocs);
7745
7746 if (r < rend)
7747 break;
7748 }
7749
7750 if (o == NULL)
7751 {
7752 /* There is no non-call reloc for this stub, so we do
7753 not need it. Since this function is called before
7754 the linker maps input sections to output sections, we
7755 can easily discard it by setting the SEC_EXCLUDE
7756 flag. */
7757 sec->flags |= SEC_EXCLUDE;
7758 return TRUE;
7759 }
7760
7761 /* Record this stub in an array of local symbol call_stubs for
7762 this BFD. */
7763 if (elf_tdata (abfd)->local_call_stubs == NULL)
7764 {
7765 unsigned long symcount;
7766 asection **n;
7767 bfd_size_type amt;
7768
7769 if (elf_bad_symtab (abfd))
7770 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7771 else
7772 symcount = symtab_hdr->sh_info;
7773 amt = symcount * sizeof (asection *);
7774 n = bfd_zalloc (abfd, amt);
7775 if (n == NULL)
7776 return FALSE;
7777 elf_tdata (abfd)->local_call_stubs = n;
7778 }
b49e97c9 7779
b9d58d71
TS
7780 sec->flags |= SEC_KEEP;
7781 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7782
b9d58d71
TS
7783 /* We don't need to set mips16_stubs_seen in this case.
7784 That flag is used to see whether we need to look through
7785 the global symbol table for stubs. We don't need to set
7786 it here, because we just have a local stub. */
7787 }
b49e97c9 7788 else
b49e97c9 7789 {
b9d58d71
TS
7790 h = ((struct mips_elf_link_hash_entry *)
7791 sym_hashes[r_symndx - extsymoff]);
7792
7793 /* H is the symbol this stub is for. */
7794
7795 if (CALL_FP_STUB_P (name))
7796 loc = &h->call_fp_stub;
7797 else
7798 loc = &h->call_stub;
7799
7800 /* If we already have an appropriate stub for this function, we
7801 don't need another one, so we can discard this one. Since
7802 this function is called before the linker maps input sections
7803 to output sections, we can easily discard it by setting the
7804 SEC_EXCLUDE flag. */
7805 if (*loc != NULL)
7806 {
7807 sec->flags |= SEC_EXCLUDE;
7808 return TRUE;
7809 }
b49e97c9 7810
b9d58d71
TS
7811 sec->flags |= SEC_KEEP;
7812 *loc = sec;
7813 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7814 }
b49e97c9
TS
7815 }
7816
b49e97c9 7817 sreloc = NULL;
c224138d 7818 contents = NULL;
b49e97c9
TS
7819 for (rel = relocs; rel < rel_end; ++rel)
7820 {
7821 unsigned long r_symndx;
7822 unsigned int r_type;
7823 struct elf_link_hash_entry *h;
861fb55a 7824 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7825
7826 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7827 r_type = ELF_R_TYPE (abfd, rel->r_info);
7828
7829 if (r_symndx < extsymoff)
7830 h = NULL;
7831 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7832 {
7833 (*_bfd_error_handler)
d003868e
AM
7834 (_("%B: Malformed reloc detected for section %s"),
7835 abfd, name);
b49e97c9 7836 bfd_set_error (bfd_error_bad_value);
b34976b6 7837 return FALSE;
b49e97c9
TS
7838 }
7839 else
7840 {
7841 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7842 while (h != NULL
7843 && (h->root.type == bfd_link_hash_indirect
7844 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7846 }
b49e97c9 7847
861fb55a
DJ
7848 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7849 relocation into a dynamic one. */
7850 can_make_dynamic_p = FALSE;
7851 switch (r_type)
7852 {
861fb55a
DJ
7853 case R_MIPS_GOT16:
7854 case R_MIPS_CALL16:
7855 case R_MIPS_CALL_HI16:
7856 case R_MIPS_CALL_LO16:
7857 case R_MIPS_GOT_HI16:
7858 case R_MIPS_GOT_LO16:
7859 case R_MIPS_GOT_PAGE:
7860 case R_MIPS_GOT_OFST:
7861 case R_MIPS_GOT_DISP:
7862 case R_MIPS_TLS_GOTTPREL:
7863 case R_MIPS_TLS_GD:
7864 case R_MIPS_TLS_LDM:
d0f13682
CLT
7865 case R_MIPS16_GOT16:
7866 case R_MIPS16_CALL16:
7867 case R_MIPS16_TLS_GOTTPREL:
7868 case R_MIPS16_TLS_GD:
7869 case R_MIPS16_TLS_LDM:
df58fc94
RS
7870 case R_MICROMIPS_GOT16:
7871 case R_MICROMIPS_CALL16:
7872 case R_MICROMIPS_CALL_HI16:
7873 case R_MICROMIPS_CALL_LO16:
7874 case R_MICROMIPS_GOT_HI16:
7875 case R_MICROMIPS_GOT_LO16:
7876 case R_MICROMIPS_GOT_PAGE:
7877 case R_MICROMIPS_GOT_OFST:
7878 case R_MICROMIPS_GOT_DISP:
7879 case R_MICROMIPS_TLS_GOTTPREL:
7880 case R_MICROMIPS_TLS_GD:
7881 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7882 if (dynobj == NULL)
7883 elf_hash_table (info)->dynobj = dynobj = abfd;
7884 if (!mips_elf_create_got_section (dynobj, info))
7885 return FALSE;
7886 if (htab->is_vxworks && !info->shared)
b49e97c9 7887 {
861fb55a
DJ
7888 (*_bfd_error_handler)
7889 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7890 abfd, (unsigned long) rel->r_offset);
7891 bfd_set_error (bfd_error_bad_value);
7892 return FALSE;
b49e97c9 7893 }
861fb55a 7894 break;
b49e97c9 7895
99da6b5f
AN
7896 /* This is just a hint; it can safely be ignored. Don't set
7897 has_static_relocs for the corresponding symbol. */
7898 case R_MIPS_JALR:
df58fc94 7899 case R_MICROMIPS_JALR:
99da6b5f
AN
7900 break;
7901
861fb55a
DJ
7902 case R_MIPS_32:
7903 case R_MIPS_REL32:
7904 case R_MIPS_64:
7905 /* In VxWorks executables, references to external symbols
7906 must be handled using copy relocs or PLT entries; it is not
7907 possible to convert this relocation into a dynamic one.
7908
7909 For executables that use PLTs and copy-relocs, we have a
7910 choice between converting the relocation into a dynamic
7911 one or using copy relocations or PLT entries. It is
7912 usually better to do the former, unless the relocation is
7913 against a read-only section. */
7914 if ((info->shared
7915 || (h != NULL
7916 && !htab->is_vxworks
7917 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7918 && !(!info->nocopyreloc
7919 && !PIC_OBJECT_P (abfd)
7920 && MIPS_ELF_READONLY_SECTION (sec))))
7921 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7922 {
861fb55a 7923 can_make_dynamic_p = TRUE;
b49e97c9
TS
7924 if (dynobj == NULL)
7925 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7926 break;
861fb55a 7927 }
21d790b9
MR
7928 /* For sections that are not SEC_ALLOC a copy reloc would be
7929 output if possible (implying questionable semantics for
7930 read-only data objects) or otherwise the final link would
7931 fail as ld.so will not process them and could not therefore
7932 handle any outstanding dynamic relocations.
7933
7934 For such sections that are also SEC_DEBUGGING, we can avoid
7935 these problems by simply ignoring any relocs as these
7936 sections have a predefined use and we know it is safe to do
7937 so.
7938
7939 This is needed in cases such as a global symbol definition
7940 in a shared library causing a common symbol from an object
7941 file to be converted to an undefined reference. If that
7942 happens, then all the relocations against this symbol from
7943 SEC_DEBUGGING sections in the object file will resolve to
7944 nil. */
7945 if ((sec->flags & SEC_DEBUGGING) != 0)
7946 break;
861fb55a 7947 /* Fall through. */
b49e97c9 7948
861fb55a
DJ
7949 default:
7950 /* Most static relocations require pointer equality, except
7951 for branches. */
7952 if (h)
7953 h->pointer_equality_needed = TRUE;
7954 /* Fall through. */
b49e97c9 7955
861fb55a
DJ
7956 case R_MIPS_26:
7957 case R_MIPS_PC16:
7958 case R_MIPS16_26:
df58fc94
RS
7959 case R_MICROMIPS_26_S1:
7960 case R_MICROMIPS_PC7_S1:
7961 case R_MICROMIPS_PC10_S1:
7962 case R_MICROMIPS_PC16_S1:
7963 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7964 if (h)
7965 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7966 break;
b49e97c9
TS
7967 }
7968
0a44bf69
RS
7969 if (h)
7970 {
0a44bf69
RS
7971 /* Relocations against the special VxWorks __GOTT_BASE__ and
7972 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7973 room for them in .rela.dyn. */
7974 if (is_gott_symbol (info, h))
7975 {
7976 if (sreloc == NULL)
7977 {
7978 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7979 if (sreloc == NULL)
7980 return FALSE;
7981 }
7982 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7983 if (MIPS_ELF_READONLY_SECTION (sec))
7984 /* We tell the dynamic linker that there are
7985 relocations against the text segment. */
7986 info->flags |= DF_TEXTREL;
0a44bf69
RS
7987 }
7988 }
df58fc94
RS
7989 else if (call_lo16_reloc_p (r_type)
7990 || got_lo16_reloc_p (r_type)
7991 || got_disp_reloc_p (r_type)
738e5348 7992 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7993 {
7994 /* We may need a local GOT entry for this relocation. We
7995 don't count R_MIPS_GOT_PAGE because we can estimate the
7996 maximum number of pages needed by looking at the size of
738e5348
RS
7997 the segment. Similar comments apply to R_MIPS*_GOT16 and
7998 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7999 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8000 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8001 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
8002 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8003 rel->r_addend, info, 0))
f4416af6 8004 return FALSE;
b49e97c9
TS
8005 }
8006
8f0c309a
CLT
8007 if (h != NULL
8008 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8009 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8010 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8011
b49e97c9
TS
8012 switch (r_type)
8013 {
8014 case R_MIPS_CALL16:
738e5348 8015 case R_MIPS16_CALL16:
df58fc94 8016 case R_MICROMIPS_CALL16:
b49e97c9
TS
8017 if (h == NULL)
8018 {
8019 (*_bfd_error_handler)
d003868e
AM
8020 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8021 abfd, (unsigned long) rel->r_offset);
b49e97c9 8022 bfd_set_error (bfd_error_bad_value);
b34976b6 8023 return FALSE;
b49e97c9
TS
8024 }
8025 /* Fall through. */
8026
8027 case R_MIPS_CALL_HI16:
8028 case R_MIPS_CALL_LO16:
df58fc94
RS
8029 case R_MICROMIPS_CALL_HI16:
8030 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8031 if (h != NULL)
8032 {
6ccf4795
RS
8033 /* Make sure there is room in the regular GOT to hold the
8034 function's address. We may eliminate it in favour of
8035 a .got.plt entry later; see mips_elf_count_got_symbols. */
8036 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
b34976b6 8037 return FALSE;
b49e97c9
TS
8038
8039 /* We need a stub, not a plt entry for the undefined
8040 function. But we record it as if it needs plt. See
c152c796 8041 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8042 h->needs_plt = 1;
b49e97c9
TS
8043 h->type = STT_FUNC;
8044 }
8045 break;
8046
0fdc1bf1 8047 case R_MIPS_GOT_PAGE:
df58fc94 8048 case R_MICROMIPS_GOT_PAGE:
0fdc1bf1
AO
8049 /* If this is a global, overridable symbol, GOT_PAGE will
8050 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 8051 if (h)
0fdc1bf1
AO
8052 {
8053 struct mips_elf_link_hash_entry *hmips =
8054 (struct mips_elf_link_hash_entry *) h;
143d77c5 8055
3a3b6725 8056 /* This symbol is definitely not overridable. */
f5385ebf 8057 if (hmips->root.def_regular
0fdc1bf1 8058 && ! (info->shared && ! info->symbolic
f5385ebf 8059 && ! hmips->root.forced_local))
c224138d 8060 h = NULL;
0fdc1bf1
AO
8061 }
8062 /* Fall through. */
8063
738e5348 8064 case R_MIPS16_GOT16:
b49e97c9
TS
8065 case R_MIPS_GOT16:
8066 case R_MIPS_GOT_HI16:
8067 case R_MIPS_GOT_LO16:
df58fc94
RS
8068 case R_MICROMIPS_GOT16:
8069 case R_MICROMIPS_GOT_HI16:
8070 case R_MICROMIPS_GOT_LO16:
8071 if (!h || got_page_reloc_p (r_type))
c224138d 8072 {
3a3b6725
DJ
8073 /* This relocation needs (or may need, if h != NULL) a
8074 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8075 know for sure until we know whether the symbol is
8076 preemptible. */
c224138d
RS
8077 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8078 {
8079 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8080 return FALSE;
8081 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8082 addend = mips_elf_read_rel_addend (abfd, rel,
8083 howto, contents);
9684f078 8084 if (got16_reloc_p (r_type))
c224138d
RS
8085 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8086 contents, &addend);
8087 else
8088 addend <<= howto->rightshift;
8089 }
8090 else
8091 addend = rel->r_addend;
a8028dd0
RS
8092 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8093 addend))
c224138d 8094 return FALSE;
c224138d
RS
8095 }
8096 /* Fall through. */
8097
b49e97c9 8098 case R_MIPS_GOT_DISP:
df58fc94 8099 case R_MICROMIPS_GOT_DISP:
6ccf4795
RS
8100 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8101 FALSE, 0))
b34976b6 8102 return FALSE;
b49e97c9
TS
8103 break;
8104
0f20cc35 8105 case R_MIPS_TLS_GOTTPREL:
d0f13682 8106 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8107 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8108 if (info->shared)
8109 info->flags |= DF_STATIC_TLS;
8110 /* Fall through */
8111
8112 case R_MIPS_TLS_LDM:
d0f13682 8113 case R_MIPS16_TLS_LDM:
df58fc94
RS
8114 case R_MICROMIPS_TLS_LDM:
8115 if (tls_ldm_reloc_p (r_type))
0f20cc35 8116 {
cf35638d 8117 r_symndx = STN_UNDEF;
0f20cc35
DJ
8118 h = NULL;
8119 }
8120 /* Fall through */
8121
8122 case R_MIPS_TLS_GD:
d0f13682 8123 case R_MIPS16_TLS_GD:
df58fc94 8124 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8125 /* This symbol requires a global offset table entry, or two
8126 for TLS GD relocations. */
8127 {
df58fc94
RS
8128 unsigned char flag;
8129
8130 flag = (tls_gd_reloc_p (r_type)
8131 ? GOT_TLS_GD
8132 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
0f20cc35
DJ
8133 if (h != NULL)
8134 {
8135 struct mips_elf_link_hash_entry *hmips =
8136 (struct mips_elf_link_hash_entry *) h;
8137 hmips->tls_type |= flag;
8138
6ccf4795
RS
8139 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8140 FALSE, flag))
0f20cc35
DJ
8141 return FALSE;
8142 }
8143 else
8144 {
cf35638d 8145 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
0f20cc35 8146
a8028dd0
RS
8147 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8148 rel->r_addend,
8149 info, flag))
0f20cc35
DJ
8150 return FALSE;
8151 }
8152 }
8153 break;
8154
b49e97c9
TS
8155 case R_MIPS_32:
8156 case R_MIPS_REL32:
8157 case R_MIPS_64:
0a44bf69
RS
8158 /* In VxWorks executables, references to external symbols
8159 are handled using copy relocs or PLT stubs, so there's
8160 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8161 if (can_make_dynamic_p)
b49e97c9
TS
8162 {
8163 if (sreloc == NULL)
8164 {
0a44bf69 8165 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8166 if (sreloc == NULL)
f4416af6 8167 return FALSE;
b49e97c9 8168 }
9a59ad6b 8169 if (info->shared && h == NULL)
82f0cfbd
EC
8170 {
8171 /* When creating a shared object, we must copy these
8172 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8173 relocs. Make room for this reloc in .rel(a).dyn. */
8174 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8175 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8176 /* We tell the dynamic linker that there are
8177 relocations against the text segment. */
8178 info->flags |= DF_TEXTREL;
8179 }
b49e97c9
TS
8180 else
8181 {
8182 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8183
9a59ad6b
DJ
8184 /* For a shared object, we must copy this relocation
8185 unless the symbol turns out to be undefined and
8186 weak with non-default visibility, in which case
8187 it will be left as zero.
8188
8189 We could elide R_MIPS_REL32 for locally binding symbols
8190 in shared libraries, but do not yet do so.
8191
8192 For an executable, we only need to copy this
8193 reloc if the symbol is defined in a dynamic
8194 object. */
b49e97c9
TS
8195 hmips = (struct mips_elf_link_hash_entry *) h;
8196 ++hmips->possibly_dynamic_relocs;
943284cc 8197 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8198 /* We need it to tell the dynamic linker if there
8199 are relocations against the text segment. */
8200 hmips->readonly_reloc = TRUE;
b49e97c9 8201 }
b49e97c9
TS
8202 }
8203
8204 if (SGI_COMPAT (abfd))
8205 mips_elf_hash_table (info)->compact_rel_size +=
8206 sizeof (Elf32_External_crinfo);
8207 break;
8208
8209 case R_MIPS_26:
8210 case R_MIPS_GPREL16:
8211 case R_MIPS_LITERAL:
8212 case R_MIPS_GPREL32:
df58fc94
RS
8213 case R_MICROMIPS_26_S1:
8214 case R_MICROMIPS_GPREL16:
8215 case R_MICROMIPS_LITERAL:
8216 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8217 if (SGI_COMPAT (abfd))
8218 mips_elf_hash_table (info)->compact_rel_size +=
8219 sizeof (Elf32_External_crinfo);
8220 break;
8221
8222 /* This relocation describes the C++ object vtable hierarchy.
8223 Reconstruct it for later use during GC. */
8224 case R_MIPS_GNU_VTINHERIT:
c152c796 8225 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8226 return FALSE;
b49e97c9
TS
8227 break;
8228
8229 /* This relocation describes which C++ vtable entries are actually
8230 used. Record for later use during GC. */
8231 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8232 BFD_ASSERT (h != NULL);
8233 if (h != NULL
8234 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8235 return FALSE;
b49e97c9
TS
8236 break;
8237
8238 default:
8239 break;
8240 }
8241
8242 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8243 related to taking the function's address. This doesn't apply to
8244 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8245 a normal .got entry. */
8246 if (!htab->is_vxworks && h != NULL)
8247 switch (r_type)
8248 {
8249 default:
8250 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8251 break;
738e5348 8252 case R_MIPS16_CALL16:
0a44bf69
RS
8253 case R_MIPS_CALL16:
8254 case R_MIPS_CALL_HI16:
8255 case R_MIPS_CALL_LO16:
8256 case R_MIPS_JALR:
df58fc94
RS
8257 case R_MICROMIPS_CALL16:
8258 case R_MICROMIPS_CALL_HI16:
8259 case R_MICROMIPS_CALL_LO16:
8260 case R_MICROMIPS_JALR:
0a44bf69
RS
8261 break;
8262 }
b49e97c9 8263
738e5348
RS
8264 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8265 if there is one. We only need to handle global symbols here;
8266 we decide whether to keep or delete stubs for local symbols
8267 when processing the stub's relocations. */
b49e97c9 8268 if (h != NULL
738e5348
RS
8269 && !mips16_call_reloc_p (r_type)
8270 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8271 {
8272 struct mips_elf_link_hash_entry *mh;
8273
8274 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8275 mh->need_fn_stub = TRUE;
b49e97c9 8276 }
861fb55a
DJ
8277
8278 /* Refuse some position-dependent relocations when creating a
8279 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8280 not PIC, but we can create dynamic relocations and the result
8281 will be fine. Also do not refuse R_MIPS_LO16, which can be
8282 combined with R_MIPS_GOT16. */
8283 if (info->shared)
8284 {
8285 switch (r_type)
8286 {
8287 case R_MIPS16_HI16:
8288 case R_MIPS_HI16:
8289 case R_MIPS_HIGHER:
8290 case R_MIPS_HIGHEST:
df58fc94
RS
8291 case R_MICROMIPS_HI16:
8292 case R_MICROMIPS_HIGHER:
8293 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8294 /* Don't refuse a high part relocation if it's against
8295 no symbol (e.g. part of a compound relocation). */
cf35638d 8296 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8297 break;
8298
8299 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8300 and has a special meaning. */
8301 if (!NEWABI_P (abfd) && h != NULL
8302 && strcmp (h->root.root.string, "_gp_disp") == 0)
8303 break;
8304
0fc1eb3c
RS
8305 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8306 if (is_gott_symbol (info, h))
8307 break;
8308
861fb55a
DJ
8309 /* FALLTHROUGH */
8310
8311 case R_MIPS16_26:
8312 case R_MIPS_26:
df58fc94 8313 case R_MICROMIPS_26_S1:
861fb55a
DJ
8314 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8315 (*_bfd_error_handler)
8316 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8317 abfd, howto->name,
8318 (h) ? h->root.root.string : "a local symbol");
8319 bfd_set_error (bfd_error_bad_value);
8320 return FALSE;
8321 default:
8322 break;
8323 }
8324 }
b49e97c9
TS
8325 }
8326
b34976b6 8327 return TRUE;
b49e97c9
TS
8328}
8329\f
d0647110 8330bfd_boolean
9719ad41
RS
8331_bfd_mips_relax_section (bfd *abfd, asection *sec,
8332 struct bfd_link_info *link_info,
8333 bfd_boolean *again)
d0647110
AO
8334{
8335 Elf_Internal_Rela *internal_relocs;
8336 Elf_Internal_Rela *irel, *irelend;
8337 Elf_Internal_Shdr *symtab_hdr;
8338 bfd_byte *contents = NULL;
d0647110
AO
8339 size_t extsymoff;
8340 bfd_boolean changed_contents = FALSE;
8341 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8342 Elf_Internal_Sym *isymbuf = NULL;
8343
8344 /* We are not currently changing any sizes, so only one pass. */
8345 *again = FALSE;
8346
1049f94e 8347 if (link_info->relocatable)
d0647110
AO
8348 return TRUE;
8349
9719ad41 8350 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8351 link_info->keep_memory);
d0647110
AO
8352 if (internal_relocs == NULL)
8353 return TRUE;
8354
8355 irelend = internal_relocs + sec->reloc_count
8356 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8357 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8358 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8359
8360 for (irel = internal_relocs; irel < irelend; irel++)
8361 {
8362 bfd_vma symval;
8363 bfd_signed_vma sym_offset;
8364 unsigned int r_type;
8365 unsigned long r_symndx;
8366 asection *sym_sec;
8367 unsigned long instruction;
8368
8369 /* Turn jalr into bgezal, and jr into beq, if they're marked
8370 with a JALR relocation, that indicate where they jump to.
8371 This saves some pipeline bubbles. */
8372 r_type = ELF_R_TYPE (abfd, irel->r_info);
8373 if (r_type != R_MIPS_JALR)
8374 continue;
8375
8376 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8377 /* Compute the address of the jump target. */
8378 if (r_symndx >= extsymoff)
8379 {
8380 struct mips_elf_link_hash_entry *h
8381 = ((struct mips_elf_link_hash_entry *)
8382 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8383
8384 while (h->root.root.type == bfd_link_hash_indirect
8385 || h->root.root.type == bfd_link_hash_warning)
8386 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8387
d0647110
AO
8388 /* If a symbol is undefined, or if it may be overridden,
8389 skip it. */
8390 if (! ((h->root.root.type == bfd_link_hash_defined
8391 || h->root.root.type == bfd_link_hash_defweak)
8392 && h->root.root.u.def.section)
8393 || (link_info->shared && ! link_info->symbolic
f5385ebf 8394 && !h->root.forced_local))
d0647110
AO
8395 continue;
8396
8397 sym_sec = h->root.root.u.def.section;
8398 if (sym_sec->output_section)
8399 symval = (h->root.root.u.def.value
8400 + sym_sec->output_section->vma
8401 + sym_sec->output_offset);
8402 else
8403 symval = h->root.root.u.def.value;
8404 }
8405 else
8406 {
8407 Elf_Internal_Sym *isym;
8408
8409 /* Read this BFD's symbols if we haven't done so already. */
8410 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8411 {
8412 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8413 if (isymbuf == NULL)
8414 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8415 symtab_hdr->sh_info, 0,
8416 NULL, NULL, NULL);
8417 if (isymbuf == NULL)
8418 goto relax_return;
8419 }
8420
8421 isym = isymbuf + r_symndx;
8422 if (isym->st_shndx == SHN_UNDEF)
8423 continue;
8424 else if (isym->st_shndx == SHN_ABS)
8425 sym_sec = bfd_abs_section_ptr;
8426 else if (isym->st_shndx == SHN_COMMON)
8427 sym_sec = bfd_com_section_ptr;
8428 else
8429 sym_sec
8430 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8431 symval = isym->st_value
8432 + sym_sec->output_section->vma
8433 + sym_sec->output_offset;
8434 }
8435
8436 /* Compute branch offset, from delay slot of the jump to the
8437 branch target. */
8438 sym_offset = (symval + irel->r_addend)
8439 - (sec_start + irel->r_offset + 4);
8440
8441 /* Branch offset must be properly aligned. */
8442 if ((sym_offset & 3) != 0)
8443 continue;
8444
8445 sym_offset >>= 2;
8446
8447 /* Check that it's in range. */
8448 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8449 continue;
143d77c5 8450
d0647110 8451 /* Get the section contents if we haven't done so already. */
c224138d
RS
8452 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8453 goto relax_return;
d0647110
AO
8454
8455 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8456
8457 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8458 if ((instruction & 0xfc1fffff) == 0x0000f809)
8459 instruction = 0x04110000;
8460 /* If it was jr <reg>, turn it into b <target>. */
8461 else if ((instruction & 0xfc1fffff) == 0x00000008)
8462 instruction = 0x10000000;
8463 else
8464 continue;
8465
8466 instruction |= (sym_offset & 0xffff);
8467 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8468 changed_contents = TRUE;
8469 }
8470
8471 if (contents != NULL
8472 && elf_section_data (sec)->this_hdr.contents != contents)
8473 {
8474 if (!changed_contents && !link_info->keep_memory)
8475 free (contents);
8476 else
8477 {
8478 /* Cache the section contents for elf_link_input_bfd. */
8479 elf_section_data (sec)->this_hdr.contents = contents;
8480 }
8481 }
8482 return TRUE;
8483
143d77c5 8484 relax_return:
eea6121a
AM
8485 if (contents != NULL
8486 && elf_section_data (sec)->this_hdr.contents != contents)
8487 free (contents);
d0647110
AO
8488 return FALSE;
8489}
8490\f
9a59ad6b
DJ
8491/* Allocate space for global sym dynamic relocs. */
8492
8493static bfd_boolean
8494allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8495{
8496 struct bfd_link_info *info = inf;
8497 bfd *dynobj;
8498 struct mips_elf_link_hash_entry *hmips;
8499 struct mips_elf_link_hash_table *htab;
8500
8501 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8502 BFD_ASSERT (htab != NULL);
8503
9a59ad6b
DJ
8504 dynobj = elf_hash_table (info)->dynobj;
8505 hmips = (struct mips_elf_link_hash_entry *) h;
8506
8507 /* VxWorks executables are handled elsewhere; we only need to
8508 allocate relocations in shared objects. */
8509 if (htab->is_vxworks && !info->shared)
8510 return TRUE;
8511
7686d77d
AM
8512 /* Ignore indirect symbols. All relocations against such symbols
8513 will be redirected to the target symbol. */
8514 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8515 return TRUE;
8516
9a59ad6b
DJ
8517 /* If this symbol is defined in a dynamic object, or we are creating
8518 a shared library, we will need to copy any R_MIPS_32 or
8519 R_MIPS_REL32 relocs against it into the output file. */
8520 if (! info->relocatable
8521 && hmips->possibly_dynamic_relocs != 0
8522 && (h->root.type == bfd_link_hash_defweak
8523 || !h->def_regular
8524 || info->shared))
8525 {
8526 bfd_boolean do_copy = TRUE;
8527
8528 if (h->root.type == bfd_link_hash_undefweak)
8529 {
8530 /* Do not copy relocations for undefined weak symbols with
8531 non-default visibility. */
8532 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8533 do_copy = FALSE;
8534
8535 /* Make sure undefined weak symbols are output as a dynamic
8536 symbol in PIEs. */
8537 else if (h->dynindx == -1 && !h->forced_local)
8538 {
8539 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8540 return FALSE;
8541 }
8542 }
8543
8544 if (do_copy)
8545 {
aff469fa 8546 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8547 the SVR4 psABI requires it to have a dynamic symbol table
8548 index greater that DT_MIPS_GOTSYM if there are dynamic
8549 relocations against it.
8550
8551 VxWorks does not enforce the same mapping between the GOT
8552 and the symbol table, so the same requirement does not
8553 apply there. */
6ccf4795
RS
8554 if (!htab->is_vxworks)
8555 {
8556 if (hmips->global_got_area > GGA_RELOC_ONLY)
8557 hmips->global_got_area = GGA_RELOC_ONLY;
8558 hmips->got_only_for_calls = FALSE;
8559 }
aff469fa 8560
9a59ad6b
DJ
8561 mips_elf_allocate_dynamic_relocations
8562 (dynobj, info, hmips->possibly_dynamic_relocs);
8563 if (hmips->readonly_reloc)
8564 /* We tell the dynamic linker that there are relocations
8565 against the text segment. */
8566 info->flags |= DF_TEXTREL;
8567 }
8568 }
8569
8570 return TRUE;
8571}
8572
b49e97c9
TS
8573/* Adjust a symbol defined by a dynamic object and referenced by a
8574 regular object. The current definition is in some section of the
8575 dynamic object, but we're not including those sections. We have to
8576 change the definition to something the rest of the link can
8577 understand. */
8578
b34976b6 8579bfd_boolean
9719ad41
RS
8580_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8581 struct elf_link_hash_entry *h)
b49e97c9
TS
8582{
8583 bfd *dynobj;
8584 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8585 struct mips_elf_link_hash_table *htab;
b49e97c9 8586
5108fc1b 8587 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8588 BFD_ASSERT (htab != NULL);
8589
b49e97c9 8590 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8591 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8592
8593 /* Make sure we know what is going on here. */
8594 BFD_ASSERT (dynobj != NULL
f5385ebf 8595 && (h->needs_plt
f6e332e6 8596 || h->u.weakdef != NULL
f5385ebf
AM
8597 || (h->def_dynamic
8598 && h->ref_regular
8599 && !h->def_regular)));
b49e97c9 8600
b49e97c9 8601 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8602
861fb55a
DJ
8603 /* If there are call relocations against an externally-defined symbol,
8604 see whether we can create a MIPS lazy-binding stub for it. We can
8605 only do this if all references to the function are through call
8606 relocations, and in that case, the traditional lazy-binding stubs
8607 are much more efficient than PLT entries.
8608
8609 Traditional stubs are only available on SVR4 psABI-based systems;
8610 VxWorks always uses PLTs instead. */
8611 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8612 {
8613 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8614 return TRUE;
b49e97c9
TS
8615
8616 /* If this symbol is not defined in a regular file, then set
8617 the symbol to the stub location. This is required to make
8618 function pointers compare as equal between the normal
8619 executable and the shared library. */
f5385ebf 8620 if (!h->def_regular)
b49e97c9 8621 {
33bb52fb
RS
8622 hmips->needs_lazy_stub = TRUE;
8623 htab->lazy_stub_count++;
b34976b6 8624 return TRUE;
b49e97c9
TS
8625 }
8626 }
861fb55a
DJ
8627 /* As above, VxWorks requires PLT entries for externally-defined
8628 functions that are only accessed through call relocations.
b49e97c9 8629
861fb55a
DJ
8630 Both VxWorks and non-VxWorks targets also need PLT entries if there
8631 are static-only relocations against an externally-defined function.
8632 This can technically occur for shared libraries if there are
8633 branches to the symbol, although it is unlikely that this will be
8634 used in practice due to the short ranges involved. It can occur
8635 for any relative or absolute relocation in executables; in that
8636 case, the PLT entry becomes the function's canonical address. */
8637 else if (((h->needs_plt && !hmips->no_fn_stub)
8638 || (h->type == STT_FUNC && hmips->has_static_relocs))
8639 && htab->use_plts_and_copy_relocs
8640 && !SYMBOL_CALLS_LOCAL (info, h)
8641 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8642 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8643 {
861fb55a
DJ
8644 /* If this is the first symbol to need a PLT entry, allocate room
8645 for the header. */
8646 if (htab->splt->size == 0)
8647 {
8648 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8649
861fb55a
DJ
8650 /* If we're using the PLT additions to the psABI, each PLT
8651 entry is 16 bytes and the PLT0 entry is 32 bytes.
8652 Encourage better cache usage by aligning. We do this
8653 lazily to avoid pessimizing traditional objects. */
8654 if (!htab->is_vxworks
8655 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8656 return FALSE;
0a44bf69 8657
861fb55a
DJ
8658 /* Make sure that .got.plt is word-aligned. We do this lazily
8659 for the same reason as above. */
8660 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8661 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8662 return FALSE;
0a44bf69 8663
861fb55a 8664 htab->splt->size += htab->plt_header_size;
0a44bf69 8665
861fb55a
DJ
8666 /* On non-VxWorks targets, the first two entries in .got.plt
8667 are reserved. */
8668 if (!htab->is_vxworks)
a44acb1e
MR
8669 htab->sgotplt->size
8670 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8671
861fb55a
DJ
8672 /* On VxWorks, also allocate room for the header's
8673 .rela.plt.unloaded entries. */
8674 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8675 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8676 }
8677
8678 /* Assign the next .plt entry to this symbol. */
8679 h->plt.offset = htab->splt->size;
8680 htab->splt->size += htab->plt_entry_size;
8681
8682 /* If the output file has no definition of the symbol, set the
861fb55a 8683 symbol's value to the address of the stub. */
131eb6b7 8684 if (!info->shared && !h->def_regular)
0a44bf69
RS
8685 {
8686 h->root.u.def.section = htab->splt;
8687 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8688 /* For VxWorks, point at the PLT load stub rather than the
8689 lazy resolution stub; this stub will become the canonical
8690 function address. */
8691 if (htab->is_vxworks)
8692 h->root.u.def.value += 8;
0a44bf69
RS
8693 }
8694
861fb55a
DJ
8695 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8696 relocation. */
8697 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8698 htab->srelplt->size += (htab->is_vxworks
8699 ? MIPS_ELF_RELA_SIZE (dynobj)
8700 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8701
8702 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8703 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8704 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8705
861fb55a
DJ
8706 /* All relocations against this symbol that could have been made
8707 dynamic will now refer to the PLT entry instead. */
8708 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8709
0a44bf69
RS
8710 return TRUE;
8711 }
8712
8713 /* If this is a weak symbol, and there is a real definition, the
8714 processor independent code will have arranged for us to see the
8715 real definition first, and we can just use the same value. */
8716 if (h->u.weakdef != NULL)
8717 {
8718 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8719 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8720 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8721 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8722 return TRUE;
8723 }
8724
861fb55a
DJ
8725 /* Otherwise, there is nothing further to do for symbols defined
8726 in regular objects. */
8727 if (h->def_regular)
0a44bf69
RS
8728 return TRUE;
8729
861fb55a
DJ
8730 /* There's also nothing more to do if we'll convert all relocations
8731 against this symbol into dynamic relocations. */
8732 if (!hmips->has_static_relocs)
8733 return TRUE;
8734
8735 /* We're now relying on copy relocations. Complain if we have
8736 some that we can't convert. */
8737 if (!htab->use_plts_and_copy_relocs || info->shared)
8738 {
8739 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8740 "dynamic symbol %s"),
8741 h->root.root.string);
8742 bfd_set_error (bfd_error_bad_value);
8743 return FALSE;
8744 }
8745
0a44bf69
RS
8746 /* We must allocate the symbol in our .dynbss section, which will
8747 become part of the .bss section of the executable. There will be
8748 an entry for this symbol in the .dynsym section. The dynamic
8749 object will contain position independent code, so all references
8750 from the dynamic object to this symbol will go through the global
8751 offset table. The dynamic linker will use the .dynsym entry to
8752 determine the address it must put in the global offset table, so
8753 both the dynamic object and the regular object will refer to the
8754 same memory location for the variable. */
8755
8756 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8757 {
861fb55a
DJ
8758 if (htab->is_vxworks)
8759 htab->srelbss->size += sizeof (Elf32_External_Rela);
8760 else
8761 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8762 h->needs_copy = 1;
8763 }
8764
861fb55a
DJ
8765 /* All relocations against this symbol that could have been made
8766 dynamic will now refer to the local copy instead. */
8767 hmips->possibly_dynamic_relocs = 0;
8768
027297b7 8769 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8770}
b49e97c9
TS
8771\f
8772/* This function is called after all the input files have been read,
8773 and the input sections have been assigned to output sections. We
8774 check for any mips16 stub sections that we can discard. */
8775
b34976b6 8776bfd_boolean
9719ad41
RS
8777_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8778 struct bfd_link_info *info)
b49e97c9
TS
8779{
8780 asection *ri;
0a44bf69 8781 struct mips_elf_link_hash_table *htab;
861fb55a 8782 struct mips_htab_traverse_info hti;
0a44bf69
RS
8783
8784 htab = mips_elf_hash_table (info);
4dfe6ac6 8785 BFD_ASSERT (htab != NULL);
f4416af6 8786
b49e97c9
TS
8787 /* The .reginfo section has a fixed size. */
8788 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8789 if (ri != NULL)
9719ad41 8790 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8791
861fb55a
DJ
8792 hti.info = info;
8793 hti.output_bfd = output_bfd;
8794 hti.error = FALSE;
8795 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8796 mips_elf_check_symbols, &hti);
8797 if (hti.error)
8798 return FALSE;
f4416af6 8799
33bb52fb
RS
8800 return TRUE;
8801}
8802
8803/* If the link uses a GOT, lay it out and work out its size. */
8804
8805static bfd_boolean
8806mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8807{
8808 bfd *dynobj;
8809 asection *s;
8810 struct mips_got_info *g;
33bb52fb
RS
8811 bfd_size_type loadable_size = 0;
8812 bfd_size_type page_gotno;
8813 bfd *sub;
8814 struct mips_elf_count_tls_arg count_tls_arg;
8815 struct mips_elf_link_hash_table *htab;
8816
8817 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8818 BFD_ASSERT (htab != NULL);
8819
a8028dd0 8820 s = htab->sgot;
f4416af6 8821 if (s == NULL)
b34976b6 8822 return TRUE;
b49e97c9 8823
33bb52fb 8824 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8825 g = htab->got_info;
8826
861fb55a
DJ
8827 /* Allocate room for the reserved entries. VxWorks always reserves
8828 3 entries; other objects only reserve 2 entries. */
8829 BFD_ASSERT (g->assigned_gotno == 0);
8830 if (htab->is_vxworks)
8831 htab->reserved_gotno = 3;
8832 else
8833 htab->reserved_gotno = 2;
8834 g->local_gotno += htab->reserved_gotno;
8835 g->assigned_gotno = htab->reserved_gotno;
8836
33bb52fb
RS
8837 /* Replace entries for indirect and warning symbols with entries for
8838 the target symbol. */
8839 if (!mips_elf_resolve_final_got_entries (g))
8840 return FALSE;
f4416af6 8841
d4596a51 8842 /* Count the number of GOT symbols. */
020d7251 8843 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8844
33bb52fb
RS
8845 /* Calculate the total loadable size of the output. That
8846 will give us the maximum number of GOT_PAGE entries
8847 required. */
8848 for (sub = info->input_bfds; sub; sub = sub->link_next)
8849 {
8850 asection *subsection;
5108fc1b 8851
33bb52fb
RS
8852 for (subsection = sub->sections;
8853 subsection;
8854 subsection = subsection->next)
8855 {
8856 if ((subsection->flags & SEC_ALLOC) == 0)
8857 continue;
8858 loadable_size += ((subsection->size + 0xf)
8859 &~ (bfd_size_type) 0xf);
8860 }
8861 }
f4416af6 8862
0a44bf69 8863 if (htab->is_vxworks)
738e5348 8864 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8865 relocations against local symbols evaluate to "G", and the EABI does
8866 not include R_MIPS_GOT_PAGE. */
c224138d 8867 page_gotno = 0;
0a44bf69
RS
8868 else
8869 /* Assume there are two loadable segments consisting of contiguous
8870 sections. Is 5 enough? */
c224138d
RS
8871 page_gotno = (loadable_size >> 16) + 5;
8872
8873 /* Choose the smaller of the two estimates; both are intended to be
8874 conservative. */
8875 if (page_gotno > g->page_gotno)
8876 page_gotno = g->page_gotno;
f4416af6 8877
c224138d 8878 g->local_gotno += page_gotno;
eea6121a 8879 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8880 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8881
0f20cc35
DJ
8882 /* We need to calculate tls_gotno for global symbols at this point
8883 instead of building it up earlier, to avoid doublecounting
8884 entries for one global symbol from multiple input files. */
8885 count_tls_arg.info = info;
8886 count_tls_arg.needed = 0;
8887 elf_link_hash_traverse (elf_hash_table (info),
8888 mips_elf_count_global_tls_entries,
8889 &count_tls_arg);
8890 g->tls_gotno += count_tls_arg.needed;
8891 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8892
0a44bf69
RS
8893 /* VxWorks does not support multiple GOTs. It initializes $gp to
8894 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8895 dynamic loader. */
33bb52fb
RS
8896 if (htab->is_vxworks)
8897 {
8898 /* VxWorks executables do not need a GOT. */
8899 if (info->shared)
8900 {
8901 /* Each VxWorks GOT entry needs an explicit relocation. */
8902 unsigned int count;
8903
861fb55a 8904 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8905 if (count)
8906 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8907 }
8908 }
8909 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8910 {
a8028dd0 8911 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8912 return FALSE;
8913 }
8914 else
8915 {
33bb52fb
RS
8916 struct mips_elf_count_tls_arg arg;
8917
8918 /* Set up TLS entries. */
0f20cc35
DJ
8919 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8920 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
8921
8922 /* Allocate room for the TLS relocations. */
8923 arg.info = info;
8924 arg.needed = 0;
8925 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8926 elf_link_hash_traverse (elf_hash_table (info),
8927 mips_elf_count_global_tls_relocs,
8928 &arg);
8929 if (arg.needed)
8930 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8931 }
b49e97c9 8932
b34976b6 8933 return TRUE;
b49e97c9
TS
8934}
8935
33bb52fb
RS
8936/* Estimate the size of the .MIPS.stubs section. */
8937
8938static void
8939mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8940{
8941 struct mips_elf_link_hash_table *htab;
8942 bfd_size_type dynsymcount;
8943
8944 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8945 BFD_ASSERT (htab != NULL);
8946
33bb52fb
RS
8947 if (htab->lazy_stub_count == 0)
8948 return;
8949
8950 /* IRIX rld assumes that a function stub isn't at the end of the .text
8951 section, so add a dummy entry to the end. */
8952 htab->lazy_stub_count++;
8953
8954 /* Get a worst-case estimate of the number of dynamic symbols needed.
8955 At this point, dynsymcount does not account for section symbols
8956 and count_section_dynsyms may overestimate the number that will
8957 be needed. */
8958 dynsymcount = (elf_hash_table (info)->dynsymcount
8959 + count_section_dynsyms (output_bfd, info));
8960
8961 /* Determine the size of one stub entry. */
8962 htab->function_stub_size = (dynsymcount > 0x10000
8963 ? MIPS_FUNCTION_STUB_BIG_SIZE
8964 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8965
8966 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8967}
8968
8969/* A mips_elf_link_hash_traverse callback for which DATA points to the
8970 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8971 allocate an entry in the stubs section. */
8972
8973static bfd_boolean
8974mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8975{
8976 struct mips_elf_link_hash_table *htab;
8977
8978 htab = (struct mips_elf_link_hash_table *) data;
8979 if (h->needs_lazy_stub)
8980 {
8981 h->root.root.u.def.section = htab->sstubs;
8982 h->root.root.u.def.value = htab->sstubs->size;
8983 h->root.plt.offset = htab->sstubs->size;
8984 htab->sstubs->size += htab->function_stub_size;
8985 }
8986 return TRUE;
8987}
8988
8989/* Allocate offsets in the stubs section to each symbol that needs one.
8990 Set the final size of the .MIPS.stub section. */
8991
8992static void
8993mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8994{
8995 struct mips_elf_link_hash_table *htab;
8996
8997 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8998 BFD_ASSERT (htab != NULL);
8999
33bb52fb
RS
9000 if (htab->lazy_stub_count == 0)
9001 return;
9002
9003 htab->sstubs->size = 0;
4dfe6ac6 9004 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
9005 htab->sstubs->size += htab->function_stub_size;
9006 BFD_ASSERT (htab->sstubs->size
9007 == htab->lazy_stub_count * htab->function_stub_size);
9008}
9009
b49e97c9
TS
9010/* Set the sizes of the dynamic sections. */
9011
b34976b6 9012bfd_boolean
9719ad41
RS
9013_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9014 struct bfd_link_info *info)
b49e97c9
TS
9015{
9016 bfd *dynobj;
861fb55a 9017 asection *s, *sreldyn;
b34976b6 9018 bfd_boolean reltext;
0a44bf69 9019 struct mips_elf_link_hash_table *htab;
b49e97c9 9020
0a44bf69 9021 htab = mips_elf_hash_table (info);
4dfe6ac6 9022 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9023 dynobj = elf_hash_table (info)->dynobj;
9024 BFD_ASSERT (dynobj != NULL);
9025
9026 if (elf_hash_table (info)->dynamic_sections_created)
9027 {
9028 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 9029 if (info->executable)
b49e97c9 9030 {
3d4d4302 9031 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9032 BFD_ASSERT (s != NULL);
eea6121a 9033 s->size
b49e97c9
TS
9034 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9035 s->contents
9036 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9037 }
861fb55a
DJ
9038
9039 /* Create a symbol for the PLT, if we know that we are using it. */
9040 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9041 {
9042 struct elf_link_hash_entry *h;
9043
9044 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9045
9046 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9047 "_PROCEDURE_LINKAGE_TABLE_");
9048 htab->root.hplt = h;
9049 if (h == NULL)
9050 return FALSE;
9051 h->type = STT_FUNC;
9052 }
9053 }
4e41d0d7 9054
9a59ad6b
DJ
9055 /* Allocate space for global sym dynamic relocs. */
9056 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
9057
33bb52fb
RS
9058 mips_elf_estimate_stub_size (output_bfd, info);
9059
9060 if (!mips_elf_lay_out_got (output_bfd, info))
9061 return FALSE;
9062
9063 mips_elf_lay_out_lazy_stubs (info);
9064
b49e97c9
TS
9065 /* The check_relocs and adjust_dynamic_symbol entry points have
9066 determined the sizes of the various dynamic sections. Allocate
9067 memory for them. */
b34976b6 9068 reltext = FALSE;
b49e97c9
TS
9069 for (s = dynobj->sections; s != NULL; s = s->next)
9070 {
9071 const char *name;
b49e97c9
TS
9072
9073 /* It's OK to base decisions on the section name, because none
9074 of the dynobj section names depend upon the input files. */
9075 name = bfd_get_section_name (dynobj, s);
9076
9077 if ((s->flags & SEC_LINKER_CREATED) == 0)
9078 continue;
9079
0112cd26 9080 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9081 {
c456f082 9082 if (s->size != 0)
b49e97c9
TS
9083 {
9084 const char *outname;
9085 asection *target;
9086
9087 /* If this relocation section applies to a read only
9088 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9089 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9090 assert a DT_TEXTREL entry rather than testing whether
9091 there exists a relocation to a read only section or
9092 not. */
9093 outname = bfd_get_section_name (output_bfd,
9094 s->output_section);
9095 target = bfd_get_section_by_name (output_bfd, outname + 4);
9096 if ((target != NULL
9097 && (target->flags & SEC_READONLY) != 0
9098 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9099 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9100 reltext = TRUE;
b49e97c9
TS
9101
9102 /* We use the reloc_count field as a counter if we need
9103 to copy relocs into the output file. */
0a44bf69 9104 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9105 s->reloc_count = 0;
f4416af6
AO
9106
9107 /* If combreloc is enabled, elf_link_sort_relocs() will
9108 sort relocations, but in a different way than we do,
9109 and before we're done creating relocations. Also, it
9110 will move them around between input sections'
9111 relocation's contents, so our sorting would be
9112 broken, so don't let it run. */
9113 info->combreloc = 0;
b49e97c9
TS
9114 }
9115 }
b49e97c9
TS
9116 else if (! info->shared
9117 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9118 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9119 {
5108fc1b 9120 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9121 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9122 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9123 }
9124 else if (SGI_COMPAT (output_bfd)
0112cd26 9125 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9126 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9127 else if (s == htab->splt)
9128 {
9129 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9130 room for an extra nop to fill the delay slot. This is
9131 for CPUs without load interlocking. */
9132 if (! LOAD_INTERLOCKS_P (output_bfd)
9133 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9134 s->size += 4;
9135 }
0112cd26 9136 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9137 && s != htab->sgot
0a44bf69 9138 && s != htab->sgotplt
861fb55a
DJ
9139 && s != htab->sstubs
9140 && s != htab->sdynbss)
b49e97c9
TS
9141 {
9142 /* It's not one of our sections, so don't allocate space. */
9143 continue;
9144 }
9145
c456f082 9146 if (s->size == 0)
b49e97c9 9147 {
8423293d 9148 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9149 continue;
9150 }
9151
c456f082
AM
9152 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9153 continue;
9154
b49e97c9 9155 /* Allocate memory for the section contents. */
eea6121a 9156 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9157 if (s->contents == NULL)
b49e97c9
TS
9158 {
9159 bfd_set_error (bfd_error_no_memory);
b34976b6 9160 return FALSE;
b49e97c9
TS
9161 }
9162 }
9163
9164 if (elf_hash_table (info)->dynamic_sections_created)
9165 {
9166 /* Add some entries to the .dynamic section. We fill in the
9167 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9168 must add the entries now so that we get the correct size for
5750dcec 9169 the .dynamic section. */
af5978fb
RS
9170
9171 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
9172 DT_MIPS_RLD_MAP entry. This must come first because glibc
9173 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9174 looks at the first one it sees. */
af5978fb
RS
9175 if (!info->shared
9176 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9177 return FALSE;
b49e97c9 9178
5750dcec
DJ
9179 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9180 used by the debugger. */
9181 if (info->executable
9182 && !SGI_COMPAT (output_bfd)
9183 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9184 return FALSE;
9185
0a44bf69 9186 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9187 info->flags |= DF_TEXTREL;
9188
9189 if ((info->flags & DF_TEXTREL) != 0)
9190 {
9191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9192 return FALSE;
943284cc
DJ
9193
9194 /* Clear the DF_TEXTREL flag. It will be set again if we
9195 write out an actual text relocation; we may not, because
9196 at this point we do not know whether e.g. any .eh_frame
9197 absolute relocations have been converted to PC-relative. */
9198 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9199 }
9200
9201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9202 return FALSE;
b49e97c9 9203
861fb55a 9204 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9205 if (htab->is_vxworks)
b49e97c9 9206 {
0a44bf69
RS
9207 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9208 use any of the DT_MIPS_* tags. */
861fb55a 9209 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9210 {
9211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9212 return FALSE;
b49e97c9 9213
0a44bf69
RS
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9215 return FALSE;
b49e97c9 9216
0a44bf69
RS
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9218 return FALSE;
9219 }
b49e97c9 9220 }
0a44bf69
RS
9221 else
9222 {
861fb55a 9223 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9224 {
9225 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9226 return FALSE;
b49e97c9 9227
0a44bf69
RS
9228 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9229 return FALSE;
b49e97c9 9230
0a44bf69
RS
9231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9232 return FALSE;
9233 }
b49e97c9 9234
0a44bf69
RS
9235 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9236 return FALSE;
b49e97c9 9237
0a44bf69
RS
9238 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9239 return FALSE;
b49e97c9 9240
0a44bf69
RS
9241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9242 return FALSE;
b49e97c9 9243
0a44bf69
RS
9244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9245 return FALSE;
b49e97c9 9246
0a44bf69
RS
9247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9248 return FALSE;
b49e97c9 9249
0a44bf69
RS
9250 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9251 return FALSE;
b49e97c9 9252
0a44bf69
RS
9253 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9254 return FALSE;
9255
9256 if (IRIX_COMPAT (dynobj) == ict_irix5
9257 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9258 return FALSE;
9259
9260 if (IRIX_COMPAT (dynobj) == ict_irix6
9261 && (bfd_get_section_by_name
9262 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9263 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9264 return FALSE;
9265 }
861fb55a
DJ
9266 if (htab->splt->size > 0)
9267 {
9268 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9269 return FALSE;
9270
9271 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9272 return FALSE;
9273
9274 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9275 return FALSE;
9276
9277 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9278 return FALSE;
9279 }
7a2b07ff
NS
9280 if (htab->is_vxworks
9281 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9282 return FALSE;
b49e97c9
TS
9283 }
9284
b34976b6 9285 return TRUE;
b49e97c9
TS
9286}
9287\f
81d43bff
RS
9288/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9289 Adjust its R_ADDEND field so that it is correct for the output file.
9290 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9291 and sections respectively; both use symbol indexes. */
9292
9293static void
9294mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9295 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9296 asection **local_sections, Elf_Internal_Rela *rel)
9297{
9298 unsigned int r_type, r_symndx;
9299 Elf_Internal_Sym *sym;
9300 asection *sec;
9301
020d7251 9302 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9303 {
9304 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9305 if (gprel16_reloc_p (r_type)
81d43bff 9306 || r_type == R_MIPS_GPREL32
df58fc94 9307 || literal_reloc_p (r_type))
81d43bff
RS
9308 {
9309 rel->r_addend += _bfd_get_gp_value (input_bfd);
9310 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9311 }
9312
9313 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9314 sym = local_syms + r_symndx;
9315
9316 /* Adjust REL's addend to account for section merging. */
9317 if (!info->relocatable)
9318 {
9319 sec = local_sections[r_symndx];
9320 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9321 }
9322
9323 /* This would normally be done by the rela_normal code in elflink.c. */
9324 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9325 rel->r_addend += local_sections[r_symndx]->output_offset;
9326 }
9327}
9328
545fd46b
MR
9329/* Handle relocations against symbols from removed linkonce sections,
9330 or sections discarded by a linker script. We use this wrapper around
9331 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9332 on 64-bit ELF targets. In this case for any relocation handled, which
9333 always be the first in a triplet, the remaining two have to be processed
9334 together with the first, even if they are R_MIPS_NONE. It is the symbol
9335 index referred by the first reloc that applies to all the three and the
9336 remaining two never refer to an object symbol. And it is the final
9337 relocation (the last non-null one) that determines the output field of
9338 the whole relocation so retrieve the corresponding howto structure for
9339 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9340
9341 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9342 and therefore requires to be pasted in a loop. It also defines a block
9343 and does not protect any of its arguments, hence the extra brackets. */
9344
9345static void
9346mips_reloc_against_discarded_section (bfd *output_bfd,
9347 struct bfd_link_info *info,
9348 bfd *input_bfd, asection *input_section,
9349 Elf_Internal_Rela **rel,
9350 const Elf_Internal_Rela **relend,
9351 bfd_boolean rel_reloc,
9352 reloc_howto_type *howto,
9353 bfd_byte *contents)
9354{
9355 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9356 int count = bed->s->int_rels_per_ext_rel;
9357 unsigned int r_type;
9358 int i;
9359
9360 for (i = count - 1; i > 0; i--)
9361 {
9362 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9363 if (r_type != R_MIPS_NONE)
9364 {
9365 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9366 break;
9367 }
9368 }
9369 do
9370 {
9371 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9372 (*rel), count, (*relend),
9373 howto, i, contents);
9374 }
9375 while (0);
9376}
9377
b49e97c9
TS
9378/* Relocate a MIPS ELF section. */
9379
b34976b6 9380bfd_boolean
9719ad41
RS
9381_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9382 bfd *input_bfd, asection *input_section,
9383 bfd_byte *contents, Elf_Internal_Rela *relocs,
9384 Elf_Internal_Sym *local_syms,
9385 asection **local_sections)
b49e97c9
TS
9386{
9387 Elf_Internal_Rela *rel;
9388 const Elf_Internal_Rela *relend;
9389 bfd_vma addend = 0;
b34976b6 9390 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9391 const struct elf_backend_data *bed;
b49e97c9
TS
9392
9393 bed = get_elf_backend_data (output_bfd);
9394 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9395 for (rel = relocs; rel < relend; ++rel)
9396 {
9397 const char *name;
c9adbffe 9398 bfd_vma value = 0;
b49e97c9 9399 reloc_howto_type *howto;
38a7df63 9400 bfd_boolean cross_mode_jump_p;
b34976b6 9401 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9402 REL relocation. */
b34976b6 9403 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9404 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9405 const char *msg;
ab96bf03
AM
9406 unsigned long r_symndx;
9407 asection *sec;
749b8d9d
L
9408 Elf_Internal_Shdr *symtab_hdr;
9409 struct elf_link_hash_entry *h;
d4730f92 9410 bfd_boolean rel_reloc;
b49e97c9 9411
d4730f92
BS
9412 rel_reloc = (NEWABI_P (input_bfd)
9413 && mips_elf_rel_relocation_p (input_bfd, input_section,
9414 relocs, rel));
b49e97c9 9415 /* Find the relocation howto for this relocation. */
d4730f92 9416 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9417
9418 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9419 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9420 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9421 {
9422 sec = local_sections[r_symndx];
9423 h = NULL;
9424 }
ab96bf03
AM
9425 else
9426 {
ab96bf03 9427 unsigned long extsymoff;
ab96bf03 9428
ab96bf03
AM
9429 extsymoff = 0;
9430 if (!elf_bad_symtab (input_bfd))
9431 extsymoff = symtab_hdr->sh_info;
9432 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9433 while (h->root.type == bfd_link_hash_indirect
9434 || h->root.type == bfd_link_hash_warning)
9435 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9436
9437 sec = NULL;
9438 if (h->root.type == bfd_link_hash_defined
9439 || h->root.type == bfd_link_hash_defweak)
9440 sec = h->root.u.def.section;
9441 }
9442
dbaa2011 9443 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9444 {
9445 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9446 input_section, &rel, &relend,
9447 rel_reloc, howto, contents);
9448 continue;
9449 }
ab96bf03 9450
4a14403c 9451 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9452 {
9453 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9454 64-bit code, but make sure all their addresses are in the
9455 lowermost or uppermost 32-bit section of the 64-bit address
9456 space. Thus, when they use an R_MIPS_64 they mean what is
9457 usually meant by R_MIPS_32, with the exception that the
9458 stored value is sign-extended to 64 bits. */
b34976b6 9459 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9460
9461 /* On big-endian systems, we need to lie about the position
9462 of the reloc. */
9463 if (bfd_big_endian (input_bfd))
9464 rel->r_offset += 4;
9465 }
b49e97c9
TS
9466
9467 if (!use_saved_addend_p)
9468 {
b49e97c9
TS
9469 /* If these relocations were originally of the REL variety,
9470 we must pull the addend out of the field that will be
9471 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9472 RELA relocation. */
9473 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9474 relocs, rel))
b49e97c9 9475 {
b34976b6 9476 rela_relocation_p = FALSE;
c224138d
RS
9477 addend = mips_elf_read_rel_addend (input_bfd, rel,
9478 howto, contents);
738e5348
RS
9479 if (hi16_reloc_p (r_type)
9480 || (got16_reloc_p (r_type)
b49e97c9 9481 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9482 local_sections)))
b49e97c9 9483 {
c224138d
RS
9484 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9485 contents, &addend))
749b8d9d 9486 {
749b8d9d
L
9487 if (h)
9488 name = h->root.root.string;
9489 else
9490 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9491 local_syms + r_symndx,
9492 sec);
9493 (*_bfd_error_handler)
9494 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9495 input_bfd, input_section, name, howto->name,
9496 rel->r_offset);
749b8d9d 9497 }
b49e97c9 9498 }
30ac9238
RS
9499 else
9500 addend <<= howto->rightshift;
b49e97c9
TS
9501 }
9502 else
9503 addend = rel->r_addend;
81d43bff
RS
9504 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9505 local_syms, local_sections, rel);
b49e97c9
TS
9506 }
9507
1049f94e 9508 if (info->relocatable)
b49e97c9 9509 {
4a14403c 9510 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9511 && bfd_big_endian (input_bfd))
9512 rel->r_offset -= 4;
9513
81d43bff 9514 if (!rela_relocation_p && rel->r_addend)
5a659663 9515 {
81d43bff 9516 addend += rel->r_addend;
738e5348 9517 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9518 addend = mips_elf_high (addend);
9519 else if (r_type == R_MIPS_HIGHER)
9520 addend = mips_elf_higher (addend);
9521 else if (r_type == R_MIPS_HIGHEST)
9522 addend = mips_elf_highest (addend);
30ac9238
RS
9523 else
9524 addend >>= howto->rightshift;
b49e97c9 9525
30ac9238
RS
9526 /* We use the source mask, rather than the destination
9527 mask because the place to which we are writing will be
9528 source of the addend in the final link. */
b49e97c9
TS
9529 addend &= howto->src_mask;
9530
5a659663 9531 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9532 /* See the comment above about using R_MIPS_64 in the 32-bit
9533 ABI. Here, we need to update the addend. It would be
9534 possible to get away with just using the R_MIPS_32 reloc
9535 but for endianness. */
9536 {
9537 bfd_vma sign_bits;
9538 bfd_vma low_bits;
9539 bfd_vma high_bits;
9540
9541 if (addend & ((bfd_vma) 1 << 31))
9542#ifdef BFD64
9543 sign_bits = ((bfd_vma) 1 << 32) - 1;
9544#else
9545 sign_bits = -1;
9546#endif
9547 else
9548 sign_bits = 0;
9549
9550 /* If we don't know that we have a 64-bit type,
9551 do two separate stores. */
9552 if (bfd_big_endian (input_bfd))
9553 {
9554 /* Store the sign-bits (which are most significant)
9555 first. */
9556 low_bits = sign_bits;
9557 high_bits = addend;
9558 }
9559 else
9560 {
9561 low_bits = addend;
9562 high_bits = sign_bits;
9563 }
9564 bfd_put_32 (input_bfd, low_bits,
9565 contents + rel->r_offset);
9566 bfd_put_32 (input_bfd, high_bits,
9567 contents + rel->r_offset + 4);
9568 continue;
9569 }
9570
9571 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9572 input_bfd, input_section,
b34976b6
AM
9573 contents, FALSE))
9574 return FALSE;
b49e97c9
TS
9575 }
9576
9577 /* Go on to the next relocation. */
9578 continue;
9579 }
9580
9581 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9582 relocations for the same offset. In that case we are
9583 supposed to treat the output of each relocation as the addend
9584 for the next. */
9585 if (rel + 1 < relend
9586 && rel->r_offset == rel[1].r_offset
9587 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9588 use_saved_addend_p = TRUE;
b49e97c9 9589 else
b34976b6 9590 use_saved_addend_p = FALSE;
b49e97c9
TS
9591
9592 /* Figure out what value we are supposed to relocate. */
9593 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9594 input_section, info, rel,
9595 addend, howto, local_syms,
9596 local_sections, &value,
38a7df63 9597 &name, &cross_mode_jump_p,
bce03d3d 9598 use_saved_addend_p))
b49e97c9
TS
9599 {
9600 case bfd_reloc_continue:
9601 /* There's nothing to do. */
9602 continue;
9603
9604 case bfd_reloc_undefined:
9605 /* mips_elf_calculate_relocation already called the
9606 undefined_symbol callback. There's no real point in
9607 trying to perform the relocation at this point, so we
9608 just skip ahead to the next relocation. */
9609 continue;
9610
9611 case bfd_reloc_notsupported:
9612 msg = _("internal error: unsupported relocation error");
9613 info->callbacks->warning
9614 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9615 return FALSE;
b49e97c9
TS
9616
9617 case bfd_reloc_overflow:
9618 if (use_saved_addend_p)
9619 /* Ignore overflow until we reach the last relocation for
9620 a given location. */
9621 ;
9622 else
9623 {
0e53d9da
AN
9624 struct mips_elf_link_hash_table *htab;
9625
9626 htab = mips_elf_hash_table (info);
4dfe6ac6 9627 BFD_ASSERT (htab != NULL);
b49e97c9 9628 BFD_ASSERT (name != NULL);
0e53d9da 9629 if (!htab->small_data_overflow_reported
9684f078 9630 && (gprel16_reloc_p (howto->type)
df58fc94 9631 || literal_reloc_p (howto->type)))
0e53d9da 9632 {
91d6fa6a
NC
9633 msg = _("small-data section exceeds 64KB;"
9634 " lower small-data size limit (see option -G)");
0e53d9da
AN
9635
9636 htab->small_data_overflow_reported = TRUE;
9637 (*info->callbacks->einfo) ("%P: %s\n", msg);
9638 }
b49e97c9 9639 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9640 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9641 input_bfd, input_section, rel->r_offset)))
b34976b6 9642 return FALSE;
b49e97c9
TS
9643 }
9644 break;
9645
9646 case bfd_reloc_ok:
9647 break;
9648
df58fc94
RS
9649 case bfd_reloc_outofrange:
9650 if (jal_reloc_p (howto->type))
9651 {
9652 msg = _("JALX to a non-word-aligned address");
9653 info->callbacks->warning
9654 (info, msg, name, input_bfd, input_section, rel->r_offset);
9655 return FALSE;
9656 }
9657 /* Fall through. */
9658
b49e97c9
TS
9659 default:
9660 abort ();
9661 break;
9662 }
9663
9664 /* If we've got another relocation for the address, keep going
9665 until we reach the last one. */
9666 if (use_saved_addend_p)
9667 {
9668 addend = value;
9669 continue;
9670 }
9671
4a14403c 9672 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9673 /* See the comment above about using R_MIPS_64 in the 32-bit
9674 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9675 that calculated the right value. Now, however, we
9676 sign-extend the 32-bit result to 64-bits, and store it as a
9677 64-bit value. We are especially generous here in that we
9678 go to extreme lengths to support this usage on systems with
9679 only a 32-bit VMA. */
9680 {
9681 bfd_vma sign_bits;
9682 bfd_vma low_bits;
9683 bfd_vma high_bits;
9684
9685 if (value & ((bfd_vma) 1 << 31))
9686#ifdef BFD64
9687 sign_bits = ((bfd_vma) 1 << 32) - 1;
9688#else
9689 sign_bits = -1;
9690#endif
9691 else
9692 sign_bits = 0;
9693
9694 /* If we don't know that we have a 64-bit type,
9695 do two separate stores. */
9696 if (bfd_big_endian (input_bfd))
9697 {
9698 /* Undo what we did above. */
9699 rel->r_offset -= 4;
9700 /* Store the sign-bits (which are most significant)
9701 first. */
9702 low_bits = sign_bits;
9703 high_bits = value;
9704 }
9705 else
9706 {
9707 low_bits = value;
9708 high_bits = sign_bits;
9709 }
9710 bfd_put_32 (input_bfd, low_bits,
9711 contents + rel->r_offset);
9712 bfd_put_32 (input_bfd, high_bits,
9713 contents + rel->r_offset + 4);
9714 continue;
9715 }
9716
9717 /* Actually perform the relocation. */
9718 if (! mips_elf_perform_relocation (info, howto, rel, value,
9719 input_bfd, input_section,
38a7df63 9720 contents, cross_mode_jump_p))
b34976b6 9721 return FALSE;
b49e97c9
TS
9722 }
9723
b34976b6 9724 return TRUE;
b49e97c9
TS
9725}
9726\f
861fb55a
DJ
9727/* A function that iterates over each entry in la25_stubs and fills
9728 in the code for each one. DATA points to a mips_htab_traverse_info. */
9729
9730static int
9731mips_elf_create_la25_stub (void **slot, void *data)
9732{
9733 struct mips_htab_traverse_info *hti;
9734 struct mips_elf_link_hash_table *htab;
9735 struct mips_elf_la25_stub *stub;
9736 asection *s;
9737 bfd_byte *loc;
9738 bfd_vma offset, target, target_high, target_low;
9739
9740 stub = (struct mips_elf_la25_stub *) *slot;
9741 hti = (struct mips_htab_traverse_info *) data;
9742 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9743 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9744
9745 /* Create the section contents, if we haven't already. */
9746 s = stub->stub_section;
9747 loc = s->contents;
9748 if (loc == NULL)
9749 {
9750 loc = bfd_malloc (s->size);
9751 if (loc == NULL)
9752 {
9753 hti->error = TRUE;
9754 return FALSE;
9755 }
9756 s->contents = loc;
9757 }
9758
9759 /* Work out where in the section this stub should go. */
9760 offset = stub->offset;
9761
9762 /* Work out the target address. */
8f0c309a
CLT
9763 target = mips_elf_get_la25_target (stub, &s);
9764 target += s->output_section->vma + s->output_offset;
9765
861fb55a
DJ
9766 target_high = ((target + 0x8000) >> 16) & 0xffff;
9767 target_low = (target & 0xffff);
9768
9769 if (stub->stub_section != htab->strampoline)
9770 {
df58fc94 9771 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9772 of the section and write the two instructions at the end. */
9773 memset (loc, 0, offset);
9774 loc += offset;
df58fc94
RS
9775 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9776 {
9777 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9778 loc);
9779 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9780 loc + 2);
9781 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9782 loc + 4);
9783 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9784 loc + 6);
9785 }
9786 else
9787 {
9788 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9789 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9790 }
861fb55a
DJ
9791 }
9792 else
9793 {
9794 /* This is trampoline. */
9795 loc += offset;
df58fc94
RS
9796 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9797 {
9798 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9799 loc);
9800 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9801 loc + 2);
9802 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9803 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9804 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9805 loc + 8);
9806 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9807 loc + 10);
9808 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9809 }
9810 else
9811 {
9812 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9813 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9814 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9815 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9816 }
861fb55a
DJ
9817 }
9818 return TRUE;
9819}
9820
b49e97c9
TS
9821/* If NAME is one of the special IRIX6 symbols defined by the linker,
9822 adjust it appropriately now. */
9823
9824static void
9719ad41
RS
9825mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9826 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9827{
9828 /* The linker script takes care of providing names and values for
9829 these, but we must place them into the right sections. */
9830 static const char* const text_section_symbols[] = {
9831 "_ftext",
9832 "_etext",
9833 "__dso_displacement",
9834 "__elf_header",
9835 "__program_header_table",
9836 NULL
9837 };
9838
9839 static const char* const data_section_symbols[] = {
9840 "_fdata",
9841 "_edata",
9842 "_end",
9843 "_fbss",
9844 NULL
9845 };
9846
9847 const char* const *p;
9848 int i;
9849
9850 for (i = 0; i < 2; ++i)
9851 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9852 *p;
9853 ++p)
9854 if (strcmp (*p, name) == 0)
9855 {
9856 /* All of these symbols are given type STT_SECTION by the
9857 IRIX6 linker. */
9858 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9859 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9860
9861 /* The IRIX linker puts these symbols in special sections. */
9862 if (i == 0)
9863 sym->st_shndx = SHN_MIPS_TEXT;
9864 else
9865 sym->st_shndx = SHN_MIPS_DATA;
9866
9867 break;
9868 }
9869}
9870
9871/* Finish up dynamic symbol handling. We set the contents of various
9872 dynamic sections here. */
9873
b34976b6 9874bfd_boolean
9719ad41
RS
9875_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9876 struct bfd_link_info *info,
9877 struct elf_link_hash_entry *h,
9878 Elf_Internal_Sym *sym)
b49e97c9
TS
9879{
9880 bfd *dynobj;
b49e97c9 9881 asection *sgot;
f4416af6 9882 struct mips_got_info *g, *gg;
b49e97c9 9883 const char *name;
3d6746ca 9884 int idx;
5108fc1b 9885 struct mips_elf_link_hash_table *htab;
738e5348 9886 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9887
5108fc1b 9888 htab = mips_elf_hash_table (info);
4dfe6ac6 9889 BFD_ASSERT (htab != NULL);
b49e97c9 9890 dynobj = elf_hash_table (info)->dynobj;
738e5348 9891 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9892
861fb55a
DJ
9893 BFD_ASSERT (!htab->is_vxworks);
9894
9895 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9896 {
9897 /* We've decided to create a PLT entry for this symbol. */
9898 bfd_byte *loc;
9899 bfd_vma header_address, plt_index, got_address;
9900 bfd_vma got_address_high, got_address_low, load;
9901 const bfd_vma *plt_entry;
9902
9903 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9904 BFD_ASSERT (h->dynindx != -1);
9905 BFD_ASSERT (htab->splt != NULL);
9906 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9907 BFD_ASSERT (!h->def_regular);
9908
9909 /* Calculate the address of the PLT header. */
9910 header_address = (htab->splt->output_section->vma
9911 + htab->splt->output_offset);
9912
9913 /* Calculate the index of the entry. */
9914 plt_index = ((h->plt.offset - htab->plt_header_size)
9915 / htab->plt_entry_size);
9916
9917 /* Calculate the address of the .got.plt entry. */
9918 got_address = (htab->sgotplt->output_section->vma
9919 + htab->sgotplt->output_offset
9920 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9921 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9922 got_address_low = got_address & 0xffff;
9923
9924 /* Initially point the .got.plt entry at the PLT header. */
9925 loc = (htab->sgotplt->contents
9926 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9927 if (ABI_64_P (output_bfd))
9928 bfd_put_64 (output_bfd, header_address, loc);
9929 else
9930 bfd_put_32 (output_bfd, header_address, loc);
9931
9932 /* Find out where the .plt entry should go. */
9933 loc = htab->splt->contents + h->plt.offset;
9934
9935 /* Pick the load opcode. */
9936 load = MIPS_ELF_LOAD_WORD (output_bfd);
9937
9938 /* Fill in the PLT entry itself. */
9939 plt_entry = mips_exec_plt_entry;
9940 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9941 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9942
9943 if (! LOAD_INTERLOCKS_P (output_bfd))
9944 {
9945 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9946 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9947 }
9948 else
9949 {
9950 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9951 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9952 }
861fb55a
DJ
9953
9954 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9955 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9956 plt_index, h->dynindx,
9957 R_MIPS_JUMP_SLOT, got_address);
9958
9959 /* We distinguish between PLT entries and lazy-binding stubs by
9960 giving the former an st_other value of STO_MIPS_PLT. Set the
9961 flag and leave the value if there are any relocations in the
9962 binary where pointer equality matters. */
9963 sym->st_shndx = SHN_UNDEF;
9964 if (h->pointer_equality_needed)
9965 sym->st_other = STO_MIPS_PLT;
9966 else
9967 sym->st_value = 0;
9968 }
9969 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9970 {
861fb55a 9971 /* We've decided to create a lazy-binding stub. */
5108fc1b 9972 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9973
9974 /* This symbol has a stub. Set it up. */
9975
9976 BFD_ASSERT (h->dynindx != -1);
9977
5108fc1b
RS
9978 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9979 || (h->dynindx <= 0xffff));
3d6746ca
DD
9980
9981 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9982 sign extension at runtime in the stub, resulting in a negative
9983 index value. */
9984 if (h->dynindx & ~0x7fffffff)
b34976b6 9985 return FALSE;
b49e97c9
TS
9986
9987 /* Fill the stub. */
3d6746ca
DD
9988 idx = 0;
9989 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9990 idx += 4;
9991 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9992 idx += 4;
5108fc1b 9993 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9994 {
5108fc1b 9995 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9996 stub + idx);
9997 idx += 4;
9998 }
9999 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10000 idx += 4;
b49e97c9 10001
3d6746ca
DD
10002 /* If a large stub is not required and sign extension is not a
10003 problem, then use legacy code in the stub. */
5108fc1b
RS
10004 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10005 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10006 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
10007 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10008 else
5108fc1b
RS
10009 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10010 stub + idx);
10011
4e41d0d7
RS
10012 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10013 memcpy (htab->sstubs->contents + h->plt.offset,
10014 stub, htab->function_stub_size);
b49e97c9
TS
10015
10016 /* Mark the symbol as undefined. plt.offset != -1 occurs
10017 only for the referenced symbol. */
10018 sym->st_shndx = SHN_UNDEF;
10019
10020 /* The run-time linker uses the st_value field of the symbol
10021 to reset the global offset table entry for this external
10022 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10023 sym->st_value = (htab->sstubs->output_section->vma
10024 + htab->sstubs->output_offset
c5ae1840 10025 + h->plt.offset);
b49e97c9
TS
10026 }
10027
738e5348
RS
10028 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10029 refer to the stub, since only the stub uses the standard calling
10030 conventions. */
10031 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10032 {
10033 BFD_ASSERT (hmips->need_fn_stub);
10034 sym->st_value = (hmips->fn_stub->output_section->vma
10035 + hmips->fn_stub->output_offset);
10036 sym->st_size = hmips->fn_stub->size;
10037 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10038 }
10039
b49e97c9 10040 BFD_ASSERT (h->dynindx != -1
f5385ebf 10041 || h->forced_local);
b49e97c9 10042
23cc69b6 10043 sgot = htab->sgot;
a8028dd0 10044 g = htab->got_info;
b49e97c9
TS
10045 BFD_ASSERT (g != NULL);
10046
10047 /* Run through the global symbol table, creating GOT entries for all
10048 the symbols that need them. */
020d7251 10049 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10050 {
10051 bfd_vma offset;
10052 bfd_vma value;
10053
6eaa6adc 10054 value = sym->st_value;
738e5348
RS
10055 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10056 R_MIPS_GOT16, info);
b49e97c9
TS
10057 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10058 }
10059
020d7251 10060 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
f4416af6
AO
10061 {
10062 struct mips_got_entry e, *p;
0626d451 10063 bfd_vma entry;
f4416af6 10064 bfd_vma offset;
f4416af6
AO
10065
10066 gg = g;
10067
10068 e.abfd = output_bfd;
10069 e.symndx = -1;
738e5348 10070 e.d.h = hmips;
0f20cc35 10071 e.tls_type = 0;
143d77c5 10072
f4416af6
AO
10073 for (g = g->next; g->next != gg; g = g->next)
10074 {
10075 if (g->got_entries
10076 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10077 &e)))
10078 {
10079 offset = p->gotidx;
0626d451
RS
10080 if (info->shared
10081 || (elf_hash_table (info)->dynamic_sections_created
10082 && p->d.h != NULL
f5385ebf
AM
10083 && p->d.h->root.def_dynamic
10084 && !p->d.h->root.def_regular))
0626d451
RS
10085 {
10086 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10087 the various compatibility problems, it's easier to mock
10088 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10089 mips_elf_create_dynamic_relocation to calculate the
10090 appropriate addend. */
10091 Elf_Internal_Rela rel[3];
10092
10093 memset (rel, 0, sizeof (rel));
10094 if (ABI_64_P (output_bfd))
10095 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10096 else
10097 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10098 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10099
10100 entry = 0;
10101 if (! (mips_elf_create_dynamic_relocation
10102 (output_bfd, info, rel,
10103 e.d.h, NULL, sym->st_value, &entry, sgot)))
10104 return FALSE;
10105 }
10106 else
10107 entry = sym->st_value;
10108 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10109 }
10110 }
10111 }
10112
b49e97c9
TS
10113 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10114 name = h->root.root.string;
10115 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 10116 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10117 sym->st_shndx = SHN_ABS;
10118 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10119 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10120 {
10121 sym->st_shndx = SHN_ABS;
10122 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10123 sym->st_value = 1;
10124 }
4a14403c 10125 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10126 {
10127 sym->st_shndx = SHN_ABS;
10128 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10129 sym->st_value = elf_gp (output_bfd);
10130 }
10131 else if (SGI_COMPAT (output_bfd))
10132 {
10133 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10134 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10135 {
10136 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10137 sym->st_other = STO_PROTECTED;
10138 sym->st_value = 0;
10139 sym->st_shndx = SHN_MIPS_DATA;
10140 }
10141 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10142 {
10143 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10144 sym->st_other = STO_PROTECTED;
10145 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10146 sym->st_shndx = SHN_ABS;
10147 }
10148 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10149 {
10150 if (h->type == STT_FUNC)
10151 sym->st_shndx = SHN_MIPS_TEXT;
10152 else if (h->type == STT_OBJECT)
10153 sym->st_shndx = SHN_MIPS_DATA;
10154 }
10155 }
10156
861fb55a
DJ
10157 /* Emit a copy reloc, if needed. */
10158 if (h->needs_copy)
10159 {
10160 asection *s;
10161 bfd_vma symval;
10162
10163 BFD_ASSERT (h->dynindx != -1);
10164 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10165
10166 s = mips_elf_rel_dyn_section (info, FALSE);
10167 symval = (h->root.u.def.section->output_section->vma
10168 + h->root.u.def.section->output_offset
10169 + h->root.u.def.value);
10170 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10171 h->dynindx, R_MIPS_COPY, symval);
10172 }
10173
b49e97c9
TS
10174 /* Handle the IRIX6-specific symbols. */
10175 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10176 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10177
738e5348
RS
10178 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10179 treat MIPS16 symbols like any other. */
30c09090 10180 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10181 {
10182 BFD_ASSERT (sym->st_value & 1);
10183 sym->st_other -= STO_MIPS16;
10184 }
b49e97c9 10185
b34976b6 10186 return TRUE;
b49e97c9
TS
10187}
10188
0a44bf69
RS
10189/* Likewise, for VxWorks. */
10190
10191bfd_boolean
10192_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10193 struct bfd_link_info *info,
10194 struct elf_link_hash_entry *h,
10195 Elf_Internal_Sym *sym)
10196{
10197 bfd *dynobj;
10198 asection *sgot;
10199 struct mips_got_info *g;
10200 struct mips_elf_link_hash_table *htab;
020d7251 10201 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10202
10203 htab = mips_elf_hash_table (info);
4dfe6ac6 10204 BFD_ASSERT (htab != NULL);
0a44bf69 10205 dynobj = elf_hash_table (info)->dynobj;
020d7251 10206 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10207
10208 if (h->plt.offset != (bfd_vma) -1)
10209 {
6d79d2ed 10210 bfd_byte *loc;
0a44bf69
RS
10211 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10212 Elf_Internal_Rela rel;
10213 static const bfd_vma *plt_entry;
10214
10215 BFD_ASSERT (h->dynindx != -1);
10216 BFD_ASSERT (htab->splt != NULL);
10217 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10218
10219 /* Calculate the address of the .plt entry. */
10220 plt_address = (htab->splt->output_section->vma
10221 + htab->splt->output_offset
10222 + h->plt.offset);
10223
10224 /* Calculate the index of the entry. */
10225 plt_index = ((h->plt.offset - htab->plt_header_size)
10226 / htab->plt_entry_size);
10227
10228 /* Calculate the address of the .got.plt entry. */
10229 got_address = (htab->sgotplt->output_section->vma
10230 + htab->sgotplt->output_offset
10231 + plt_index * 4);
10232
10233 /* Calculate the offset of the .got.plt entry from
10234 _GLOBAL_OFFSET_TABLE_. */
10235 got_offset = mips_elf_gotplt_index (info, h);
10236
10237 /* Calculate the offset for the branch at the start of the PLT
10238 entry. The branch jumps to the beginning of .plt. */
10239 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10240
10241 /* Fill in the initial value of the .got.plt entry. */
10242 bfd_put_32 (output_bfd, plt_address,
10243 htab->sgotplt->contents + plt_index * 4);
10244
10245 /* Find out where the .plt entry should go. */
10246 loc = htab->splt->contents + h->plt.offset;
10247
10248 if (info->shared)
10249 {
10250 plt_entry = mips_vxworks_shared_plt_entry;
10251 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10252 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10253 }
10254 else
10255 {
10256 bfd_vma got_address_high, got_address_low;
10257
10258 plt_entry = mips_vxworks_exec_plt_entry;
10259 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10260 got_address_low = got_address & 0xffff;
10261
10262 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10263 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10264 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10265 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10266 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10267 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10268 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10269 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10270
10271 loc = (htab->srelplt2->contents
10272 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10273
10274 /* Emit a relocation for the .got.plt entry. */
10275 rel.r_offset = got_address;
10276 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10277 rel.r_addend = h->plt.offset;
10278 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10279
10280 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10281 loc += sizeof (Elf32_External_Rela);
10282 rel.r_offset = plt_address + 8;
10283 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10284 rel.r_addend = got_offset;
10285 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10286
10287 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10288 loc += sizeof (Elf32_External_Rela);
10289 rel.r_offset += 4;
10290 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10291 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10292 }
10293
10294 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10295 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10296 rel.r_offset = got_address;
10297 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10298 rel.r_addend = 0;
10299 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10300
10301 if (!h->def_regular)
10302 sym->st_shndx = SHN_UNDEF;
10303 }
10304
10305 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10306
23cc69b6 10307 sgot = htab->sgot;
a8028dd0 10308 g = htab->got_info;
0a44bf69
RS
10309 BFD_ASSERT (g != NULL);
10310
10311 /* See if this symbol has an entry in the GOT. */
020d7251 10312 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10313 {
10314 bfd_vma offset;
10315 Elf_Internal_Rela outrel;
10316 bfd_byte *loc;
10317 asection *s;
10318
10319 /* Install the symbol value in the GOT. */
10320 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10321 R_MIPS_GOT16, info);
10322 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10323
10324 /* Add a dynamic relocation for it. */
10325 s = mips_elf_rel_dyn_section (info, FALSE);
10326 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10327 outrel.r_offset = (sgot->output_section->vma
10328 + sgot->output_offset
10329 + offset);
10330 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10331 outrel.r_addend = 0;
10332 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10333 }
10334
10335 /* Emit a copy reloc, if needed. */
10336 if (h->needs_copy)
10337 {
10338 Elf_Internal_Rela rel;
10339
10340 BFD_ASSERT (h->dynindx != -1);
10341
10342 rel.r_offset = (h->root.u.def.section->output_section->vma
10343 + h->root.u.def.section->output_offset
10344 + h->root.u.def.value);
10345 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10346 rel.r_addend = 0;
10347 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10348 htab->srelbss->contents
10349 + (htab->srelbss->reloc_count
10350 * sizeof (Elf32_External_Rela)));
10351 ++htab->srelbss->reloc_count;
10352 }
10353
df58fc94
RS
10354 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10355 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10356 sym->st_value &= ~1;
10357
10358 return TRUE;
10359}
10360
861fb55a
DJ
10361/* Write out a plt0 entry to the beginning of .plt. */
10362
10363static void
10364mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10365{
10366 bfd_byte *loc;
10367 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10368 static const bfd_vma *plt_entry;
10369 struct mips_elf_link_hash_table *htab;
10370
10371 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10372 BFD_ASSERT (htab != NULL);
10373
861fb55a
DJ
10374 if (ABI_64_P (output_bfd))
10375 plt_entry = mips_n64_exec_plt0_entry;
10376 else if (ABI_N32_P (output_bfd))
10377 plt_entry = mips_n32_exec_plt0_entry;
10378 else
10379 plt_entry = mips_o32_exec_plt0_entry;
10380
10381 /* Calculate the value of .got.plt. */
10382 gotplt_value = (htab->sgotplt->output_section->vma
10383 + htab->sgotplt->output_offset);
10384 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10385 gotplt_value_low = gotplt_value & 0xffff;
10386
10387 /* The PLT sequence is not safe for N64 if .got.plt's address can
10388 not be loaded in two instructions. */
10389 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10390 || ~(gotplt_value | 0x7fffffff) == 0);
10391
10392 /* Install the PLT header. */
10393 loc = htab->splt->contents;
10394 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10395 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10396 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10397 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10398 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10399 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10400 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10401 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10402}
10403
0a44bf69
RS
10404/* Install the PLT header for a VxWorks executable and finalize the
10405 contents of .rela.plt.unloaded. */
10406
10407static void
10408mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10409{
10410 Elf_Internal_Rela rela;
10411 bfd_byte *loc;
10412 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10413 static const bfd_vma *plt_entry;
10414 struct mips_elf_link_hash_table *htab;
10415
10416 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10417 BFD_ASSERT (htab != NULL);
10418
0a44bf69
RS
10419 plt_entry = mips_vxworks_exec_plt0_entry;
10420
10421 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10422 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10423 + htab->root.hgot->root.u.def.section->output_offset
10424 + htab->root.hgot->root.u.def.value);
10425
10426 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10427 got_value_low = got_value & 0xffff;
10428
10429 /* Calculate the address of the PLT header. */
10430 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10431
10432 /* Install the PLT header. */
10433 loc = htab->splt->contents;
10434 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10435 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10436 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10437 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10438 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10439 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10440
10441 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10442 loc = htab->srelplt2->contents;
10443 rela.r_offset = plt_address;
10444 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10445 rela.r_addend = 0;
10446 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10447 loc += sizeof (Elf32_External_Rela);
10448
10449 /* Output the relocation for the following addiu of
10450 %lo(_GLOBAL_OFFSET_TABLE_). */
10451 rela.r_offset += 4;
10452 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10453 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10454 loc += sizeof (Elf32_External_Rela);
10455
10456 /* Fix up the remaining relocations. They may have the wrong
10457 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10458 in which symbols were output. */
10459 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10460 {
10461 Elf_Internal_Rela rel;
10462
10463 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10464 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10465 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10466 loc += sizeof (Elf32_External_Rela);
10467
10468 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10469 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10470 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10471 loc += sizeof (Elf32_External_Rela);
10472
10473 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10475 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10476 loc += sizeof (Elf32_External_Rela);
10477 }
10478}
10479
10480/* Install the PLT header for a VxWorks shared library. */
10481
10482static void
10483mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10484{
10485 unsigned int i;
10486 struct mips_elf_link_hash_table *htab;
10487
10488 htab = mips_elf_hash_table (info);
4dfe6ac6 10489 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10490
10491 /* We just need to copy the entry byte-by-byte. */
10492 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10493 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10494 htab->splt->contents + i * 4);
10495}
10496
b49e97c9
TS
10497/* Finish up the dynamic sections. */
10498
b34976b6 10499bfd_boolean
9719ad41
RS
10500_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10501 struct bfd_link_info *info)
b49e97c9
TS
10502{
10503 bfd *dynobj;
10504 asection *sdyn;
10505 asection *sgot;
f4416af6 10506 struct mips_got_info *gg, *g;
0a44bf69 10507 struct mips_elf_link_hash_table *htab;
b49e97c9 10508
0a44bf69 10509 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10510 BFD_ASSERT (htab != NULL);
10511
b49e97c9
TS
10512 dynobj = elf_hash_table (info)->dynobj;
10513
3d4d4302 10514 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10515
23cc69b6
RS
10516 sgot = htab->sgot;
10517 gg = htab->got_info;
b49e97c9
TS
10518
10519 if (elf_hash_table (info)->dynamic_sections_created)
10520 {
10521 bfd_byte *b;
943284cc 10522 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10523
10524 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10525 BFD_ASSERT (gg != NULL);
10526
10527 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10528 BFD_ASSERT (g != NULL);
10529
10530 for (b = sdyn->contents;
eea6121a 10531 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10532 b += MIPS_ELF_DYN_SIZE (dynobj))
10533 {
10534 Elf_Internal_Dyn dyn;
10535 const char *name;
10536 size_t elemsize;
10537 asection *s;
b34976b6 10538 bfd_boolean swap_out_p;
b49e97c9
TS
10539
10540 /* Read in the current dynamic entry. */
10541 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10542
10543 /* Assume that we're going to modify it and write it out. */
b34976b6 10544 swap_out_p = TRUE;
b49e97c9
TS
10545
10546 switch (dyn.d_tag)
10547 {
10548 case DT_RELENT:
b49e97c9
TS
10549 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10550 break;
10551
0a44bf69
RS
10552 case DT_RELAENT:
10553 BFD_ASSERT (htab->is_vxworks);
10554 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10555 break;
10556
b49e97c9
TS
10557 case DT_STRSZ:
10558 /* Rewrite DT_STRSZ. */
10559 dyn.d_un.d_val =
10560 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10561 break;
10562
10563 case DT_PLTGOT:
861fb55a
DJ
10564 s = htab->sgot;
10565 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10566 break;
10567
10568 case DT_MIPS_PLTGOT:
10569 s = htab->sgotplt;
10570 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10571 break;
10572
10573 case DT_MIPS_RLD_VERSION:
10574 dyn.d_un.d_val = 1; /* XXX */
10575 break;
10576
10577 case DT_MIPS_FLAGS:
10578 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10579 break;
10580
b49e97c9 10581 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10582 {
10583 time_t t;
10584 time (&t);
10585 dyn.d_un.d_val = t;
10586 }
b49e97c9
TS
10587 break;
10588
10589 case DT_MIPS_ICHECKSUM:
10590 /* XXX FIXME: */
b34976b6 10591 swap_out_p = FALSE;
b49e97c9
TS
10592 break;
10593
10594 case DT_MIPS_IVERSION:
10595 /* XXX FIXME: */
b34976b6 10596 swap_out_p = FALSE;
b49e97c9
TS
10597 break;
10598
10599 case DT_MIPS_BASE_ADDRESS:
10600 s = output_bfd->sections;
10601 BFD_ASSERT (s != NULL);
10602 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10603 break;
10604
10605 case DT_MIPS_LOCAL_GOTNO:
10606 dyn.d_un.d_val = g->local_gotno;
10607 break;
10608
10609 case DT_MIPS_UNREFEXTNO:
10610 /* The index into the dynamic symbol table which is the
10611 entry of the first external symbol that is not
10612 referenced within the same object. */
10613 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10614 break;
10615
10616 case DT_MIPS_GOTSYM:
f4416af6 10617 if (gg->global_gotsym)
b49e97c9 10618 {
f4416af6 10619 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
10620 break;
10621 }
10622 /* In case if we don't have global got symbols we default
10623 to setting DT_MIPS_GOTSYM to the same value as
10624 DT_MIPS_SYMTABNO, so we just fall through. */
10625
10626 case DT_MIPS_SYMTABNO:
10627 name = ".dynsym";
10628 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10629 s = bfd_get_section_by_name (output_bfd, name);
10630 BFD_ASSERT (s != NULL);
10631
eea6121a 10632 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10633 break;
10634
10635 case DT_MIPS_HIPAGENO:
861fb55a 10636 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10637 break;
10638
10639 case DT_MIPS_RLD_MAP:
b4082c70
DD
10640 {
10641 struct elf_link_hash_entry *h;
10642 h = mips_elf_hash_table (info)->rld_symbol;
10643 if (!h)
10644 {
10645 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10646 swap_out_p = FALSE;
10647 break;
10648 }
10649 s = h->root.u.def.section;
10650 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10651 + h->root.u.def.value);
10652 }
b49e97c9
TS
10653 break;
10654
10655 case DT_MIPS_OPTIONS:
10656 s = (bfd_get_section_by_name
10657 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10658 dyn.d_un.d_ptr = s->vma;
10659 break;
10660
0a44bf69
RS
10661 case DT_RELASZ:
10662 BFD_ASSERT (htab->is_vxworks);
10663 /* The count does not include the JUMP_SLOT relocations. */
10664 if (htab->srelplt)
10665 dyn.d_un.d_val -= htab->srelplt->size;
10666 break;
10667
10668 case DT_PLTREL:
861fb55a
DJ
10669 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10670 if (htab->is_vxworks)
10671 dyn.d_un.d_val = DT_RELA;
10672 else
10673 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10674 break;
10675
10676 case DT_PLTRELSZ:
861fb55a 10677 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10678 dyn.d_un.d_val = htab->srelplt->size;
10679 break;
10680
10681 case DT_JMPREL:
861fb55a
DJ
10682 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10683 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10684 + htab->srelplt->output_offset);
10685 break;
10686
943284cc
DJ
10687 case DT_TEXTREL:
10688 /* If we didn't need any text relocations after all, delete
10689 the dynamic tag. */
10690 if (!(info->flags & DF_TEXTREL))
10691 {
10692 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10693 swap_out_p = FALSE;
10694 }
10695 break;
10696
10697 case DT_FLAGS:
10698 /* If we didn't need any text relocations after all, clear
10699 DF_TEXTREL from DT_FLAGS. */
10700 if (!(info->flags & DF_TEXTREL))
10701 dyn.d_un.d_val &= ~DF_TEXTREL;
10702 else
10703 swap_out_p = FALSE;
10704 break;
10705
b49e97c9 10706 default:
b34976b6 10707 swap_out_p = FALSE;
7a2b07ff
NS
10708 if (htab->is_vxworks
10709 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10710 swap_out_p = TRUE;
b49e97c9
TS
10711 break;
10712 }
10713
943284cc 10714 if (swap_out_p || dyn_skipped)
b49e97c9 10715 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10716 (dynobj, &dyn, b - dyn_skipped);
10717
10718 if (dyn_to_skip)
10719 {
10720 dyn_skipped += dyn_to_skip;
10721 dyn_to_skip = 0;
10722 }
b49e97c9 10723 }
943284cc
DJ
10724
10725 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10726 if (dyn_skipped > 0)
10727 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10728 }
10729
b55fd4d4
DJ
10730 if (sgot != NULL && sgot->size > 0
10731 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10732 {
0a44bf69
RS
10733 if (htab->is_vxworks)
10734 {
10735 /* The first entry of the global offset table points to the
10736 ".dynamic" section. The second is initialized by the
10737 loader and contains the shared library identifier.
10738 The third is also initialized by the loader and points
10739 to the lazy resolution stub. */
10740 MIPS_ELF_PUT_WORD (output_bfd,
10741 sdyn->output_offset + sdyn->output_section->vma,
10742 sgot->contents);
10743 MIPS_ELF_PUT_WORD (output_bfd, 0,
10744 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10745 MIPS_ELF_PUT_WORD (output_bfd, 0,
10746 sgot->contents
10747 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10748 }
10749 else
10750 {
10751 /* The first entry of the global offset table will be filled at
10752 runtime. The second entry will be used by some runtime loaders.
10753 This isn't the case of IRIX rld. */
10754 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10755 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10756 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10757 }
b49e97c9 10758
54938e2a
TS
10759 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10760 = MIPS_ELF_GOT_SIZE (output_bfd);
10761 }
b49e97c9 10762
f4416af6
AO
10763 /* Generate dynamic relocations for the non-primary gots. */
10764 if (gg != NULL && gg->next)
10765 {
10766 Elf_Internal_Rela rel[3];
10767 bfd_vma addend = 0;
10768
10769 memset (rel, 0, sizeof (rel));
10770 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10771
10772 for (g = gg->next; g->next != gg; g = g->next)
10773 {
91d6fa6a 10774 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10775 + g->next->tls_gotno;
f4416af6 10776
9719ad41 10777 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10778 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10779 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10780 sgot->contents
91d6fa6a 10781 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10782
10783 if (! info->shared)
10784 continue;
10785
91d6fa6a 10786 while (got_index < g->assigned_gotno)
f4416af6
AO
10787 {
10788 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10789 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10790 if (!(mips_elf_create_dynamic_relocation
10791 (output_bfd, info, rel, NULL,
10792 bfd_abs_section_ptr,
10793 0, &addend, sgot)))
10794 return FALSE;
10795 BFD_ASSERT (addend == 0);
10796 }
10797 }
10798 }
10799
3133ddbf
DJ
10800 /* The generation of dynamic relocations for the non-primary gots
10801 adds more dynamic relocations. We cannot count them until
10802 here. */
10803
10804 if (elf_hash_table (info)->dynamic_sections_created)
10805 {
10806 bfd_byte *b;
10807 bfd_boolean swap_out_p;
10808
10809 BFD_ASSERT (sdyn != NULL);
10810
10811 for (b = sdyn->contents;
10812 b < sdyn->contents + sdyn->size;
10813 b += MIPS_ELF_DYN_SIZE (dynobj))
10814 {
10815 Elf_Internal_Dyn dyn;
10816 asection *s;
10817
10818 /* Read in the current dynamic entry. */
10819 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10820
10821 /* Assume that we're going to modify it and write it out. */
10822 swap_out_p = TRUE;
10823
10824 switch (dyn.d_tag)
10825 {
10826 case DT_RELSZ:
10827 /* Reduce DT_RELSZ to account for any relocations we
10828 decided not to make. This is for the n64 irix rld,
10829 which doesn't seem to apply any relocations if there
10830 are trailing null entries. */
0a44bf69 10831 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10832 dyn.d_un.d_val = (s->reloc_count
10833 * (ABI_64_P (output_bfd)
10834 ? sizeof (Elf64_Mips_External_Rel)
10835 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10836 /* Adjust the section size too. Tools like the prelinker
10837 can reasonably expect the values to the same. */
10838 elf_section_data (s->output_section)->this_hdr.sh_size
10839 = dyn.d_un.d_val;
3133ddbf
DJ
10840 break;
10841
10842 default:
10843 swap_out_p = FALSE;
10844 break;
10845 }
10846
10847 if (swap_out_p)
10848 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10849 (dynobj, &dyn, b);
10850 }
10851 }
10852
b49e97c9 10853 {
b49e97c9
TS
10854 asection *s;
10855 Elf32_compact_rel cpt;
10856
b49e97c9
TS
10857 if (SGI_COMPAT (output_bfd))
10858 {
10859 /* Write .compact_rel section out. */
3d4d4302 10860 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10861 if (s != NULL)
10862 {
10863 cpt.id1 = 1;
10864 cpt.num = s->reloc_count;
10865 cpt.id2 = 2;
10866 cpt.offset = (s->output_section->filepos
10867 + sizeof (Elf32_External_compact_rel));
10868 cpt.reserved0 = 0;
10869 cpt.reserved1 = 0;
10870 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10871 ((Elf32_External_compact_rel *)
10872 s->contents));
10873
10874 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10875 if (htab->sstubs != NULL)
b49e97c9
TS
10876 {
10877 file_ptr dummy_offset;
10878
4e41d0d7
RS
10879 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10880 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10881 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10882 htab->function_stub_size);
b49e97c9
TS
10883 }
10884 }
10885 }
10886
0a44bf69
RS
10887 /* The psABI says that the dynamic relocations must be sorted in
10888 increasing order of r_symndx. The VxWorks EABI doesn't require
10889 this, and because the code below handles REL rather than RELA
10890 relocations, using it for VxWorks would be outright harmful. */
10891 if (!htab->is_vxworks)
b49e97c9 10892 {
0a44bf69
RS
10893 s = mips_elf_rel_dyn_section (info, FALSE);
10894 if (s != NULL
10895 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10896 {
10897 reldyn_sorting_bfd = output_bfd;
b49e97c9 10898
0a44bf69
RS
10899 if (ABI_64_P (output_bfd))
10900 qsort ((Elf64_External_Rel *) s->contents + 1,
10901 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10902 sort_dynamic_relocs_64);
10903 else
10904 qsort ((Elf32_External_Rel *) s->contents + 1,
10905 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10906 sort_dynamic_relocs);
10907 }
b49e97c9 10908 }
b49e97c9
TS
10909 }
10910
861fb55a 10911 if (htab->splt && htab->splt->size > 0)
0a44bf69 10912 {
861fb55a
DJ
10913 if (htab->is_vxworks)
10914 {
10915 if (info->shared)
10916 mips_vxworks_finish_shared_plt (output_bfd, info);
10917 else
10918 mips_vxworks_finish_exec_plt (output_bfd, info);
10919 }
0a44bf69 10920 else
861fb55a
DJ
10921 {
10922 BFD_ASSERT (!info->shared);
10923 mips_finish_exec_plt (output_bfd, info);
10924 }
0a44bf69 10925 }
b34976b6 10926 return TRUE;
b49e97c9
TS
10927}
10928
b49e97c9 10929
64543e1a
RS
10930/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10931
10932static void
9719ad41 10933mips_set_isa_flags (bfd *abfd)
b49e97c9 10934{
64543e1a 10935 flagword val;
b49e97c9
TS
10936
10937 switch (bfd_get_mach (abfd))
10938 {
10939 default:
10940 case bfd_mach_mips3000:
10941 val = E_MIPS_ARCH_1;
10942 break;
10943
10944 case bfd_mach_mips3900:
10945 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10946 break;
10947
10948 case bfd_mach_mips6000:
10949 val = E_MIPS_ARCH_2;
10950 break;
10951
10952 case bfd_mach_mips4000:
10953 case bfd_mach_mips4300:
10954 case bfd_mach_mips4400:
10955 case bfd_mach_mips4600:
10956 val = E_MIPS_ARCH_3;
10957 break;
10958
10959 case bfd_mach_mips4010:
10960 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10961 break;
10962
10963 case bfd_mach_mips4100:
10964 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10965 break;
10966
10967 case bfd_mach_mips4111:
10968 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10969 break;
10970
00707a0e
RS
10971 case bfd_mach_mips4120:
10972 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10973 break;
10974
b49e97c9
TS
10975 case bfd_mach_mips4650:
10976 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10977 break;
10978
00707a0e
RS
10979 case bfd_mach_mips5400:
10980 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10981 break;
10982
10983 case bfd_mach_mips5500:
10984 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10985 break;
10986
0d2e43ed
ILT
10987 case bfd_mach_mips9000:
10988 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10989 break;
10990
b49e97c9 10991 case bfd_mach_mips5000:
5a7ea749 10992 case bfd_mach_mips7000:
b49e97c9
TS
10993 case bfd_mach_mips8000:
10994 case bfd_mach_mips10000:
10995 case bfd_mach_mips12000:
3aa3176b
TS
10996 case bfd_mach_mips14000:
10997 case bfd_mach_mips16000:
b49e97c9
TS
10998 val = E_MIPS_ARCH_4;
10999 break;
11000
11001 case bfd_mach_mips5:
11002 val = E_MIPS_ARCH_5;
11003 break;
11004
350cc38d
MS
11005 case bfd_mach_mips_loongson_2e:
11006 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11007 break;
11008
11009 case bfd_mach_mips_loongson_2f:
11010 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11011 break;
11012
b49e97c9
TS
11013 case bfd_mach_mips_sb1:
11014 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11015 break;
11016
d051516a
NC
11017 case bfd_mach_mips_loongson_3a:
11018 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11019 break;
11020
6f179bd0 11021 case bfd_mach_mips_octeon:
dd6a37e7 11022 case bfd_mach_mips_octeonp:
6f179bd0
AN
11023 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11024 break;
11025
52b6b6b9
JM
11026 case bfd_mach_mips_xlr:
11027 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11028 break;
11029
432233b3
AP
11030 case bfd_mach_mips_octeon2:
11031 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11032 break;
11033
b49e97c9
TS
11034 case bfd_mach_mipsisa32:
11035 val = E_MIPS_ARCH_32;
11036 break;
11037
11038 case bfd_mach_mipsisa64:
11039 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11040 break;
11041
11042 case bfd_mach_mipsisa32r2:
11043 val = E_MIPS_ARCH_32R2;
11044 break;
5f74bc13
CD
11045
11046 case bfd_mach_mipsisa64r2:
11047 val = E_MIPS_ARCH_64R2;
11048 break;
b49e97c9 11049 }
b49e97c9
TS
11050 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11051 elf_elfheader (abfd)->e_flags |= val;
11052
64543e1a
RS
11053}
11054
11055
11056/* The final processing done just before writing out a MIPS ELF object
11057 file. This gets the MIPS architecture right based on the machine
11058 number. This is used by both the 32-bit and the 64-bit ABI. */
11059
11060void
9719ad41
RS
11061_bfd_mips_elf_final_write_processing (bfd *abfd,
11062 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11063{
11064 unsigned int i;
11065 Elf_Internal_Shdr **hdrpp;
11066 const char *name;
11067 asection *sec;
11068
11069 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11070 is nonzero. This is for compatibility with old objects, which used
11071 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11072 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11073 mips_set_isa_flags (abfd);
11074
b49e97c9
TS
11075 /* Set the sh_info field for .gptab sections and other appropriate
11076 info for each special section. */
11077 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11078 i < elf_numsections (abfd);
11079 i++, hdrpp++)
11080 {
11081 switch ((*hdrpp)->sh_type)
11082 {
11083 case SHT_MIPS_MSYM:
11084 case SHT_MIPS_LIBLIST:
11085 sec = bfd_get_section_by_name (abfd, ".dynstr");
11086 if (sec != NULL)
11087 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11088 break;
11089
11090 case SHT_MIPS_GPTAB:
11091 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11092 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11093 BFD_ASSERT (name != NULL
0112cd26 11094 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11095 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11096 BFD_ASSERT (sec != NULL);
11097 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11098 break;
11099
11100 case SHT_MIPS_CONTENT:
11101 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11102 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11103 BFD_ASSERT (name != NULL
0112cd26 11104 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11105 sec = bfd_get_section_by_name (abfd,
11106 name + sizeof ".MIPS.content" - 1);
11107 BFD_ASSERT (sec != NULL);
11108 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11109 break;
11110
11111 case SHT_MIPS_SYMBOL_LIB:
11112 sec = bfd_get_section_by_name (abfd, ".dynsym");
11113 if (sec != NULL)
11114 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11115 sec = bfd_get_section_by_name (abfd, ".liblist");
11116 if (sec != NULL)
11117 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11118 break;
11119
11120 case SHT_MIPS_EVENTS:
11121 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11122 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11123 BFD_ASSERT (name != NULL);
0112cd26 11124 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11125 sec = bfd_get_section_by_name (abfd,
11126 name + sizeof ".MIPS.events" - 1);
11127 else
11128 {
0112cd26 11129 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11130 sec = bfd_get_section_by_name (abfd,
11131 (name
11132 + sizeof ".MIPS.post_rel" - 1));
11133 }
11134 BFD_ASSERT (sec != NULL);
11135 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11136 break;
11137
11138 }
11139 }
11140}
11141\f
8dc1a139 11142/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11143 segments. */
11144
11145int
a6b96beb
AM
11146_bfd_mips_elf_additional_program_headers (bfd *abfd,
11147 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11148{
11149 asection *s;
11150 int ret = 0;
11151
11152 /* See if we need a PT_MIPS_REGINFO segment. */
11153 s = bfd_get_section_by_name (abfd, ".reginfo");
11154 if (s && (s->flags & SEC_LOAD))
11155 ++ret;
11156
11157 /* See if we need a PT_MIPS_OPTIONS segment. */
11158 if (IRIX_COMPAT (abfd) == ict_irix6
11159 && bfd_get_section_by_name (abfd,
11160 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11161 ++ret;
11162
11163 /* See if we need a PT_MIPS_RTPROC segment. */
11164 if (IRIX_COMPAT (abfd) == ict_irix5
11165 && bfd_get_section_by_name (abfd, ".dynamic")
11166 && bfd_get_section_by_name (abfd, ".mdebug"))
11167 ++ret;
11168
98c904a8
RS
11169 /* Allocate a PT_NULL header in dynamic objects. See
11170 _bfd_mips_elf_modify_segment_map for details. */
11171 if (!SGI_COMPAT (abfd)
11172 && bfd_get_section_by_name (abfd, ".dynamic"))
11173 ++ret;
11174
b49e97c9
TS
11175 return ret;
11176}
11177
8dc1a139 11178/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11179
b34976b6 11180bfd_boolean
9719ad41 11181_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11182 struct bfd_link_info *info)
b49e97c9
TS
11183{
11184 asection *s;
11185 struct elf_segment_map *m, **pm;
11186 bfd_size_type amt;
11187
11188 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11189 segment. */
11190 s = bfd_get_section_by_name (abfd, ".reginfo");
11191 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11192 {
11193 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11194 if (m->p_type == PT_MIPS_REGINFO)
11195 break;
11196 if (m == NULL)
11197 {
11198 amt = sizeof *m;
9719ad41 11199 m = bfd_zalloc (abfd, amt);
b49e97c9 11200 if (m == NULL)
b34976b6 11201 return FALSE;
b49e97c9
TS
11202
11203 m->p_type = PT_MIPS_REGINFO;
11204 m->count = 1;
11205 m->sections[0] = s;
11206
11207 /* We want to put it after the PHDR and INTERP segments. */
11208 pm = &elf_tdata (abfd)->segment_map;
11209 while (*pm != NULL
11210 && ((*pm)->p_type == PT_PHDR
11211 || (*pm)->p_type == PT_INTERP))
11212 pm = &(*pm)->next;
11213
11214 m->next = *pm;
11215 *pm = m;
11216 }
11217 }
11218
11219 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11220 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11221 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11222 table. */
c1fd6598
AO
11223 if (NEWABI_P (abfd)
11224 /* On non-IRIX6 new abi, we'll have already created a segment
11225 for this section, so don't create another. I'm not sure this
11226 is not also the case for IRIX 6, but I can't test it right
11227 now. */
11228 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11229 {
11230 for (s = abfd->sections; s; s = s->next)
11231 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11232 break;
11233
11234 if (s)
11235 {
11236 struct elf_segment_map *options_segment;
11237
98a8deaf
RS
11238 pm = &elf_tdata (abfd)->segment_map;
11239 while (*pm != NULL
11240 && ((*pm)->p_type == PT_PHDR
11241 || (*pm)->p_type == PT_INTERP))
11242 pm = &(*pm)->next;
b49e97c9 11243
8ded5a0f
AM
11244 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11245 {
11246 amt = sizeof (struct elf_segment_map);
11247 options_segment = bfd_zalloc (abfd, amt);
11248 options_segment->next = *pm;
11249 options_segment->p_type = PT_MIPS_OPTIONS;
11250 options_segment->p_flags = PF_R;
11251 options_segment->p_flags_valid = TRUE;
11252 options_segment->count = 1;
11253 options_segment->sections[0] = s;
11254 *pm = options_segment;
11255 }
b49e97c9
TS
11256 }
11257 }
11258 else
11259 {
11260 if (IRIX_COMPAT (abfd) == ict_irix5)
11261 {
11262 /* If there are .dynamic and .mdebug sections, we make a room
11263 for the RTPROC header. FIXME: Rewrite without section names. */
11264 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11265 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11266 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11267 {
11268 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11269 if (m->p_type == PT_MIPS_RTPROC)
11270 break;
11271 if (m == NULL)
11272 {
11273 amt = sizeof *m;
9719ad41 11274 m = bfd_zalloc (abfd, amt);
b49e97c9 11275 if (m == NULL)
b34976b6 11276 return FALSE;
b49e97c9
TS
11277
11278 m->p_type = PT_MIPS_RTPROC;
11279
11280 s = bfd_get_section_by_name (abfd, ".rtproc");
11281 if (s == NULL)
11282 {
11283 m->count = 0;
11284 m->p_flags = 0;
11285 m->p_flags_valid = 1;
11286 }
11287 else
11288 {
11289 m->count = 1;
11290 m->sections[0] = s;
11291 }
11292
11293 /* We want to put it after the DYNAMIC segment. */
11294 pm = &elf_tdata (abfd)->segment_map;
11295 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11296 pm = &(*pm)->next;
11297 if (*pm != NULL)
11298 pm = &(*pm)->next;
11299
11300 m->next = *pm;
11301 *pm = m;
11302 }
11303 }
11304 }
8dc1a139 11305 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11306 .dynstr, .dynsym, and .hash sections, and everything in
11307 between. */
11308 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11309 pm = &(*pm)->next)
11310 if ((*pm)->p_type == PT_DYNAMIC)
11311 break;
11312 m = *pm;
11313 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11314 {
11315 /* For a normal mips executable the permissions for the PT_DYNAMIC
11316 segment are read, write and execute. We do that here since
11317 the code in elf.c sets only the read permission. This matters
11318 sometimes for the dynamic linker. */
11319 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11320 {
11321 m->p_flags = PF_R | PF_W | PF_X;
11322 m->p_flags_valid = 1;
11323 }
11324 }
f6f62d6f
RS
11325 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11326 glibc's dynamic linker has traditionally derived the number of
11327 tags from the p_filesz field, and sometimes allocates stack
11328 arrays of that size. An overly-big PT_DYNAMIC segment can
11329 be actively harmful in such cases. Making PT_DYNAMIC contain
11330 other sections can also make life hard for the prelinker,
11331 which might move one of the other sections to a different
11332 PT_LOAD segment. */
11333 if (SGI_COMPAT (abfd)
11334 && m != NULL
11335 && m->count == 1
11336 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11337 {
11338 static const char *sec_names[] =
11339 {
11340 ".dynamic", ".dynstr", ".dynsym", ".hash"
11341 };
11342 bfd_vma low, high;
11343 unsigned int i, c;
11344 struct elf_segment_map *n;
11345
792b4a53 11346 low = ~(bfd_vma) 0;
b49e97c9
TS
11347 high = 0;
11348 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11349 {
11350 s = bfd_get_section_by_name (abfd, sec_names[i]);
11351 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11352 {
11353 bfd_size_type sz;
11354
11355 if (low > s->vma)
11356 low = s->vma;
eea6121a 11357 sz = s->size;
b49e97c9
TS
11358 if (high < s->vma + sz)
11359 high = s->vma + sz;
11360 }
11361 }
11362
11363 c = 0;
11364 for (s = abfd->sections; s != NULL; s = s->next)
11365 if ((s->flags & SEC_LOAD) != 0
11366 && s->vma >= low
eea6121a 11367 && s->vma + s->size <= high)
b49e97c9
TS
11368 ++c;
11369
11370 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11371 n = bfd_zalloc (abfd, amt);
b49e97c9 11372 if (n == NULL)
b34976b6 11373 return FALSE;
b49e97c9
TS
11374 *n = *m;
11375 n->count = c;
11376
11377 i = 0;
11378 for (s = abfd->sections; s != NULL; s = s->next)
11379 {
11380 if ((s->flags & SEC_LOAD) != 0
11381 && s->vma >= low
eea6121a 11382 && s->vma + s->size <= high)
b49e97c9
TS
11383 {
11384 n->sections[i] = s;
11385 ++i;
11386 }
11387 }
11388
11389 *pm = n;
11390 }
11391 }
11392
98c904a8
RS
11393 /* Allocate a spare program header in dynamic objects so that tools
11394 like the prelinker can add an extra PT_LOAD entry.
11395
11396 If the prelinker needs to make room for a new PT_LOAD entry, its
11397 standard procedure is to move the first (read-only) sections into
11398 the new (writable) segment. However, the MIPS ABI requires
11399 .dynamic to be in a read-only segment, and the section will often
11400 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11401
11402 Although the prelinker could in principle move .dynamic to a
11403 writable segment, it seems better to allocate a spare program
11404 header instead, and avoid the need to move any sections.
11405 There is a long tradition of allocating spare dynamic tags,
11406 so allocating a spare program header seems like a natural
7c8b76cc
JM
11407 extension.
11408
11409 If INFO is NULL, we may be copying an already prelinked binary
11410 with objcopy or strip, so do not add this header. */
11411 if (info != NULL
11412 && !SGI_COMPAT (abfd)
98c904a8
RS
11413 && bfd_get_section_by_name (abfd, ".dynamic"))
11414 {
11415 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11416 if ((*pm)->p_type == PT_NULL)
11417 break;
11418 if (*pm == NULL)
11419 {
11420 m = bfd_zalloc (abfd, sizeof (*m));
11421 if (m == NULL)
11422 return FALSE;
11423
11424 m->p_type = PT_NULL;
11425 *pm = m;
11426 }
11427 }
11428
b34976b6 11429 return TRUE;
b49e97c9
TS
11430}
11431\f
11432/* Return the section that should be marked against GC for a given
11433 relocation. */
11434
11435asection *
9719ad41 11436_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11437 struct bfd_link_info *info,
9719ad41
RS
11438 Elf_Internal_Rela *rel,
11439 struct elf_link_hash_entry *h,
11440 Elf_Internal_Sym *sym)
b49e97c9
TS
11441{
11442 /* ??? Do mips16 stub sections need to be handled special? */
11443
11444 if (h != NULL)
07adf181
AM
11445 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11446 {
11447 case R_MIPS_GNU_VTINHERIT:
11448 case R_MIPS_GNU_VTENTRY:
11449 return NULL;
11450 }
b49e97c9 11451
07adf181 11452 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11453}
11454
11455/* Update the got entry reference counts for the section being removed. */
11456
b34976b6 11457bfd_boolean
9719ad41
RS
11458_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11459 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11460 asection *sec ATTRIBUTE_UNUSED,
11461 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11462{
11463#if 0
11464 Elf_Internal_Shdr *symtab_hdr;
11465 struct elf_link_hash_entry **sym_hashes;
11466 bfd_signed_vma *local_got_refcounts;
11467 const Elf_Internal_Rela *rel, *relend;
11468 unsigned long r_symndx;
11469 struct elf_link_hash_entry *h;
11470
7dda2462
TG
11471 if (info->relocatable)
11472 return TRUE;
11473
b49e97c9
TS
11474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11475 sym_hashes = elf_sym_hashes (abfd);
11476 local_got_refcounts = elf_local_got_refcounts (abfd);
11477
11478 relend = relocs + sec->reloc_count;
11479 for (rel = relocs; rel < relend; rel++)
11480 switch (ELF_R_TYPE (abfd, rel->r_info))
11481 {
738e5348
RS
11482 case R_MIPS16_GOT16:
11483 case R_MIPS16_CALL16:
b49e97c9
TS
11484 case R_MIPS_GOT16:
11485 case R_MIPS_CALL16:
11486 case R_MIPS_CALL_HI16:
11487 case R_MIPS_CALL_LO16:
11488 case R_MIPS_GOT_HI16:
11489 case R_MIPS_GOT_LO16:
4a14403c
TS
11490 case R_MIPS_GOT_DISP:
11491 case R_MIPS_GOT_PAGE:
11492 case R_MIPS_GOT_OFST:
df58fc94
RS
11493 case R_MICROMIPS_GOT16:
11494 case R_MICROMIPS_CALL16:
11495 case R_MICROMIPS_CALL_HI16:
11496 case R_MICROMIPS_CALL_LO16:
11497 case R_MICROMIPS_GOT_HI16:
11498 case R_MICROMIPS_GOT_LO16:
11499 case R_MICROMIPS_GOT_DISP:
11500 case R_MICROMIPS_GOT_PAGE:
11501 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11502 /* ??? It would seem that the existing MIPS code does no sort
11503 of reference counting or whatnot on its GOT and PLT entries,
11504 so it is not possible to garbage collect them at this time. */
11505 break;
11506
11507 default:
11508 break;
11509 }
11510#endif
11511
b34976b6 11512 return TRUE;
b49e97c9
TS
11513}
11514\f
11515/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11516 hiding the old indirect symbol. Process additional relocation
11517 information. Also called for weakdefs, in which case we just let
11518 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11519
11520void
fcfa13d2 11521_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11522 struct elf_link_hash_entry *dir,
11523 struct elf_link_hash_entry *ind)
b49e97c9
TS
11524{
11525 struct mips_elf_link_hash_entry *dirmips, *indmips;
11526
fcfa13d2 11527 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11528
861fb55a
DJ
11529 dirmips = (struct mips_elf_link_hash_entry *) dir;
11530 indmips = (struct mips_elf_link_hash_entry *) ind;
11531 /* Any absolute non-dynamic relocations against an indirect or weak
11532 definition will be against the target symbol. */
11533 if (indmips->has_static_relocs)
11534 dirmips->has_static_relocs = TRUE;
11535
b49e97c9
TS
11536 if (ind->root.type != bfd_link_hash_indirect)
11537 return;
11538
b49e97c9
TS
11539 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11540 if (indmips->readonly_reloc)
b34976b6 11541 dirmips->readonly_reloc = TRUE;
b49e97c9 11542 if (indmips->no_fn_stub)
b34976b6 11543 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11544 if (indmips->fn_stub)
11545 {
11546 dirmips->fn_stub = indmips->fn_stub;
11547 indmips->fn_stub = NULL;
11548 }
11549 if (indmips->need_fn_stub)
11550 {
11551 dirmips->need_fn_stub = TRUE;
11552 indmips->need_fn_stub = FALSE;
11553 }
11554 if (indmips->call_stub)
11555 {
11556 dirmips->call_stub = indmips->call_stub;
11557 indmips->call_stub = NULL;
11558 }
11559 if (indmips->call_fp_stub)
11560 {
11561 dirmips->call_fp_stub = indmips->call_fp_stub;
11562 indmips->call_fp_stub = NULL;
11563 }
634835ae
RS
11564 if (indmips->global_got_area < dirmips->global_got_area)
11565 dirmips->global_got_area = indmips->global_got_area;
11566 if (indmips->global_got_area < GGA_NONE)
11567 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11568 if (indmips->has_nonpic_branches)
11569 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11570
11571 if (dirmips->tls_type == 0)
11572 dirmips->tls_type = indmips->tls_type;
b49e97c9 11573}
b49e97c9 11574\f
d01414a5
TS
11575#define PDR_SIZE 32
11576
b34976b6 11577bfd_boolean
9719ad41
RS
11578_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11579 struct bfd_link_info *info)
d01414a5
TS
11580{
11581 asection *o;
b34976b6 11582 bfd_boolean ret = FALSE;
d01414a5
TS
11583 unsigned char *tdata;
11584 size_t i, skip;
11585
11586 o = bfd_get_section_by_name (abfd, ".pdr");
11587 if (! o)
b34976b6 11588 return FALSE;
eea6121a 11589 if (o->size == 0)
b34976b6 11590 return FALSE;
eea6121a 11591 if (o->size % PDR_SIZE != 0)
b34976b6 11592 return FALSE;
d01414a5
TS
11593 if (o->output_section != NULL
11594 && bfd_is_abs_section (o->output_section))
b34976b6 11595 return FALSE;
d01414a5 11596
eea6121a 11597 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11598 if (! tdata)
b34976b6 11599 return FALSE;
d01414a5 11600
9719ad41 11601 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11602 info->keep_memory);
d01414a5
TS
11603 if (!cookie->rels)
11604 {
11605 free (tdata);
b34976b6 11606 return FALSE;
d01414a5
TS
11607 }
11608
11609 cookie->rel = cookie->rels;
11610 cookie->relend = cookie->rels + o->reloc_count;
11611
eea6121a 11612 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11613 {
c152c796 11614 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11615 {
11616 tdata[i] = 1;
11617 skip ++;
11618 }
11619 }
11620
11621 if (skip != 0)
11622 {
f0abc2a1 11623 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11624 o->size -= skip * PDR_SIZE;
b34976b6 11625 ret = TRUE;
d01414a5
TS
11626 }
11627 else
11628 free (tdata);
11629
11630 if (! info->keep_memory)
11631 free (cookie->rels);
11632
11633 return ret;
11634}
11635
b34976b6 11636bfd_boolean
9719ad41 11637_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11638{
11639 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11640 return TRUE;
11641 return FALSE;
53bfd6b4 11642}
d01414a5 11643
b34976b6 11644bfd_boolean
c7b8f16e
JB
11645_bfd_mips_elf_write_section (bfd *output_bfd,
11646 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11647 asection *sec, bfd_byte *contents)
d01414a5
TS
11648{
11649 bfd_byte *to, *from, *end;
11650 int i;
11651
11652 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11653 return FALSE;
d01414a5 11654
f0abc2a1 11655 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11656 return FALSE;
d01414a5
TS
11657
11658 to = contents;
eea6121a 11659 end = contents + sec->size;
d01414a5
TS
11660 for (from = contents, i = 0;
11661 from < end;
11662 from += PDR_SIZE, i++)
11663 {
f0abc2a1 11664 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11665 continue;
11666 if (to != from)
11667 memcpy (to, from, PDR_SIZE);
11668 to += PDR_SIZE;
11669 }
11670 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11671 sec->output_offset, sec->size);
b34976b6 11672 return TRUE;
d01414a5 11673}
53bfd6b4 11674\f
df58fc94
RS
11675/* microMIPS code retains local labels for linker relaxation. Omit them
11676 from output by default for clarity. */
11677
11678bfd_boolean
11679_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11680{
11681 return _bfd_elf_is_local_label_name (abfd, sym->name);
11682}
11683
b49e97c9
TS
11684/* MIPS ELF uses a special find_nearest_line routine in order the
11685 handle the ECOFF debugging information. */
11686
11687struct mips_elf_find_line
11688{
11689 struct ecoff_debug_info d;
11690 struct ecoff_find_line i;
11691};
11692
b34976b6 11693bfd_boolean
9719ad41
RS
11694_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11695 asymbol **symbols, bfd_vma offset,
11696 const char **filename_ptr,
11697 const char **functionname_ptr,
11698 unsigned int *line_ptr)
b49e97c9
TS
11699{
11700 asection *msec;
11701
11702 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11703 filename_ptr, functionname_ptr,
11704 line_ptr))
b34976b6 11705 return TRUE;
b49e97c9 11706
fc28f9aa
TG
11707 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11708 section, symbols, offset,
b49e97c9 11709 filename_ptr, functionname_ptr,
9719ad41 11710 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11711 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11712 return TRUE;
b49e97c9
TS
11713
11714 msec = bfd_get_section_by_name (abfd, ".mdebug");
11715 if (msec != NULL)
11716 {
11717 flagword origflags;
11718 struct mips_elf_find_line *fi;
11719 const struct ecoff_debug_swap * const swap =
11720 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11721
11722 /* If we are called during a link, mips_elf_final_link may have
11723 cleared the SEC_HAS_CONTENTS field. We force it back on here
11724 if appropriate (which it normally will be). */
11725 origflags = msec->flags;
11726 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11727 msec->flags |= SEC_HAS_CONTENTS;
11728
11729 fi = elf_tdata (abfd)->find_line_info;
11730 if (fi == NULL)
11731 {
11732 bfd_size_type external_fdr_size;
11733 char *fraw_src;
11734 char *fraw_end;
11735 struct fdr *fdr_ptr;
11736 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11737
9719ad41 11738 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11739 if (fi == NULL)
11740 {
11741 msec->flags = origflags;
b34976b6 11742 return FALSE;
b49e97c9
TS
11743 }
11744
11745 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11746 {
11747 msec->flags = origflags;
b34976b6 11748 return FALSE;
b49e97c9
TS
11749 }
11750
11751 /* Swap in the FDR information. */
11752 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11753 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11754 if (fi->d.fdr == NULL)
11755 {
11756 msec->flags = origflags;
b34976b6 11757 return FALSE;
b49e97c9
TS
11758 }
11759 external_fdr_size = swap->external_fdr_size;
11760 fdr_ptr = fi->d.fdr;
11761 fraw_src = (char *) fi->d.external_fdr;
11762 fraw_end = (fraw_src
11763 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11764 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11765 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11766
11767 elf_tdata (abfd)->find_line_info = fi;
11768
11769 /* Note that we don't bother to ever free this information.
11770 find_nearest_line is either called all the time, as in
11771 objdump -l, so the information should be saved, or it is
11772 rarely called, as in ld error messages, so the memory
11773 wasted is unimportant. Still, it would probably be a
11774 good idea for free_cached_info to throw it away. */
11775 }
11776
11777 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11778 &fi->i, filename_ptr, functionname_ptr,
11779 line_ptr))
11780 {
11781 msec->flags = origflags;
b34976b6 11782 return TRUE;
b49e97c9
TS
11783 }
11784
11785 msec->flags = origflags;
11786 }
11787
11788 /* Fall back on the generic ELF find_nearest_line routine. */
11789
11790 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11791 filename_ptr, functionname_ptr,
11792 line_ptr);
11793}
4ab527b0
FF
11794
11795bfd_boolean
11796_bfd_mips_elf_find_inliner_info (bfd *abfd,
11797 const char **filename_ptr,
11798 const char **functionname_ptr,
11799 unsigned int *line_ptr)
11800{
11801 bfd_boolean found;
11802 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11803 functionname_ptr, line_ptr,
11804 & elf_tdata (abfd)->dwarf2_find_line_info);
11805 return found;
11806}
11807
b49e97c9
TS
11808\f
11809/* When are writing out the .options or .MIPS.options section,
11810 remember the bytes we are writing out, so that we can install the
11811 GP value in the section_processing routine. */
11812
b34976b6 11813bfd_boolean
9719ad41
RS
11814_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11815 const void *location,
11816 file_ptr offset, bfd_size_type count)
b49e97c9 11817{
cc2e31b9 11818 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11819 {
11820 bfd_byte *c;
11821
11822 if (elf_section_data (section) == NULL)
11823 {
11824 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11825 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11826 if (elf_section_data (section) == NULL)
b34976b6 11827 return FALSE;
b49e97c9 11828 }
f0abc2a1 11829 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11830 if (c == NULL)
11831 {
eea6121a 11832 c = bfd_zalloc (abfd, section->size);
b49e97c9 11833 if (c == NULL)
b34976b6 11834 return FALSE;
f0abc2a1 11835 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11836 }
11837
9719ad41 11838 memcpy (c + offset, location, count);
b49e97c9
TS
11839 }
11840
11841 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11842 count);
11843}
11844
11845/* This is almost identical to bfd_generic_get_... except that some
11846 MIPS relocations need to be handled specially. Sigh. */
11847
11848bfd_byte *
9719ad41
RS
11849_bfd_elf_mips_get_relocated_section_contents
11850 (bfd *abfd,
11851 struct bfd_link_info *link_info,
11852 struct bfd_link_order *link_order,
11853 bfd_byte *data,
11854 bfd_boolean relocatable,
11855 asymbol **symbols)
b49e97c9
TS
11856{
11857 /* Get enough memory to hold the stuff */
11858 bfd *input_bfd = link_order->u.indirect.section->owner;
11859 asection *input_section = link_order->u.indirect.section;
eea6121a 11860 bfd_size_type sz;
b49e97c9
TS
11861
11862 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11863 arelent **reloc_vector = NULL;
11864 long reloc_count;
11865
11866 if (reloc_size < 0)
11867 goto error_return;
11868
9719ad41 11869 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11870 if (reloc_vector == NULL && reloc_size != 0)
11871 goto error_return;
11872
11873 /* read in the section */
eea6121a
AM
11874 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11875 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11876 goto error_return;
11877
b49e97c9
TS
11878 reloc_count = bfd_canonicalize_reloc (input_bfd,
11879 input_section,
11880 reloc_vector,
11881 symbols);
11882 if (reloc_count < 0)
11883 goto error_return;
11884
11885 if (reloc_count > 0)
11886 {
11887 arelent **parent;
11888 /* for mips */
11889 int gp_found;
11890 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11891
11892 {
11893 struct bfd_hash_entry *h;
11894 struct bfd_link_hash_entry *lh;
11895 /* Skip all this stuff if we aren't mixing formats. */
11896 if (abfd && input_bfd
11897 && abfd->xvec == input_bfd->xvec)
11898 lh = 0;
11899 else
11900 {
b34976b6 11901 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11902 lh = (struct bfd_link_hash_entry *) h;
11903 }
11904 lookup:
11905 if (lh)
11906 {
11907 switch (lh->type)
11908 {
11909 case bfd_link_hash_undefined:
11910 case bfd_link_hash_undefweak:
11911 case bfd_link_hash_common:
11912 gp_found = 0;
11913 break;
11914 case bfd_link_hash_defined:
11915 case bfd_link_hash_defweak:
11916 gp_found = 1;
11917 gp = lh->u.def.value;
11918 break;
11919 case bfd_link_hash_indirect:
11920 case bfd_link_hash_warning:
11921 lh = lh->u.i.link;
11922 /* @@FIXME ignoring warning for now */
11923 goto lookup;
11924 case bfd_link_hash_new:
11925 default:
11926 abort ();
11927 }
11928 }
11929 else
11930 gp_found = 0;
11931 }
11932 /* end mips */
9719ad41 11933 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11934 {
9719ad41 11935 char *error_message = NULL;
b49e97c9
TS
11936 bfd_reloc_status_type r;
11937
11938 /* Specific to MIPS: Deal with relocation types that require
11939 knowing the gp of the output bfd. */
11940 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11941
8236346f
EC
11942 /* If we've managed to find the gp and have a special
11943 function for the relocation then go ahead, else default
11944 to the generic handling. */
11945 if (gp_found
11946 && (*parent)->howto->special_function
11947 == _bfd_mips_elf32_gprel16_reloc)
11948 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11949 input_section, relocatable,
11950 data, gp);
11951 else
86324f90 11952 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11953 input_section,
11954 relocatable ? abfd : NULL,
11955 &error_message);
b49e97c9 11956
1049f94e 11957 if (relocatable)
b49e97c9
TS
11958 {
11959 asection *os = input_section->output_section;
11960
11961 /* A partial link, so keep the relocs */
11962 os->orelocation[os->reloc_count] = *parent;
11963 os->reloc_count++;
11964 }
11965
11966 if (r != bfd_reloc_ok)
11967 {
11968 switch (r)
11969 {
11970 case bfd_reloc_undefined:
11971 if (!((*link_info->callbacks->undefined_symbol)
11972 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11973 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11974 goto error_return;
11975 break;
11976 case bfd_reloc_dangerous:
9719ad41 11977 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11978 if (!((*link_info->callbacks->reloc_dangerous)
11979 (link_info, error_message, input_bfd, input_section,
11980 (*parent)->address)))
11981 goto error_return;
11982 break;
11983 case bfd_reloc_overflow:
11984 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11985 (link_info, NULL,
11986 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11987 (*parent)->howto->name, (*parent)->addend,
11988 input_bfd, input_section, (*parent)->address)))
11989 goto error_return;
11990 break;
11991 case bfd_reloc_outofrange:
11992 default:
11993 abort ();
11994 break;
11995 }
11996
11997 }
11998 }
11999 }
12000 if (reloc_vector != NULL)
12001 free (reloc_vector);
12002 return data;
12003
12004error_return:
12005 if (reloc_vector != NULL)
12006 free (reloc_vector);
12007 return NULL;
12008}
12009\f
df58fc94
RS
12010static bfd_boolean
12011mips_elf_relax_delete_bytes (bfd *abfd,
12012 asection *sec, bfd_vma addr, int count)
12013{
12014 Elf_Internal_Shdr *symtab_hdr;
12015 unsigned int sec_shndx;
12016 bfd_byte *contents;
12017 Elf_Internal_Rela *irel, *irelend;
12018 Elf_Internal_Sym *isym;
12019 Elf_Internal_Sym *isymend;
12020 struct elf_link_hash_entry **sym_hashes;
12021 struct elf_link_hash_entry **end_hashes;
12022 struct elf_link_hash_entry **start_hashes;
12023 unsigned int symcount;
12024
12025 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12026 contents = elf_section_data (sec)->this_hdr.contents;
12027
12028 irel = elf_section_data (sec)->relocs;
12029 irelend = irel + sec->reloc_count;
12030
12031 /* Actually delete the bytes. */
12032 memmove (contents + addr, contents + addr + count,
12033 (size_t) (sec->size - addr - count));
12034 sec->size -= count;
12035
12036 /* Adjust all the relocs. */
12037 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12038 {
12039 /* Get the new reloc address. */
12040 if (irel->r_offset > addr)
12041 irel->r_offset -= count;
12042 }
12043
12044 BFD_ASSERT (addr % 2 == 0);
12045 BFD_ASSERT (count % 2 == 0);
12046
12047 /* Adjust the local symbols defined in this section. */
12048 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12049 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12050 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12051 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12052 isym->st_value -= count;
12053
12054 /* Now adjust the global symbols defined in this section. */
12055 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12056 - symtab_hdr->sh_info);
12057 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12058 end_hashes = sym_hashes + symcount;
12059
12060 for (; sym_hashes < end_hashes; sym_hashes++)
12061 {
12062 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12063
12064 if ((sym_hash->root.type == bfd_link_hash_defined
12065 || sym_hash->root.type == bfd_link_hash_defweak)
12066 && sym_hash->root.u.def.section == sec)
12067 {
2309ddf2 12068 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12069
df58fc94
RS
12070 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12071 value &= MINUS_TWO;
12072 if (value > addr)
12073 sym_hash->root.u.def.value -= count;
12074 }
12075 }
12076
12077 return TRUE;
12078}
12079
12080
12081/* Opcodes needed for microMIPS relaxation as found in
12082 opcodes/micromips-opc.c. */
12083
12084struct opcode_descriptor {
12085 unsigned long match;
12086 unsigned long mask;
12087};
12088
12089/* The $ra register aka $31. */
12090
12091#define RA 31
12092
12093/* 32-bit instruction format register fields. */
12094
12095#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12096#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12097
12098/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12099
12100#define OP16_VALID_REG(r) \
12101 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12102
12103
12104/* 32-bit and 16-bit branches. */
12105
12106static const struct opcode_descriptor b_insns_32[] = {
12107 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12108 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12109 { 0, 0 } /* End marker for find_match(). */
12110};
12111
12112static const struct opcode_descriptor bc_insn_32 =
12113 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12114
12115static const struct opcode_descriptor bz_insn_32 =
12116 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12117
12118static const struct opcode_descriptor bzal_insn_32 =
12119 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12120
12121static const struct opcode_descriptor beq_insn_32 =
12122 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12123
12124static const struct opcode_descriptor b_insn_16 =
12125 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12126
12127static const struct opcode_descriptor bz_insn_16 =
c088dedf 12128 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12129
12130
12131/* 32-bit and 16-bit branch EQ and NE zero. */
12132
12133/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12134 eq and second the ne. This convention is used when replacing a
12135 32-bit BEQ/BNE with the 16-bit version. */
12136
12137#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12138
12139static const struct opcode_descriptor bz_rs_insns_32[] = {
12140 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12141 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12142 { 0, 0 } /* End marker for find_match(). */
12143};
12144
12145static const struct opcode_descriptor bz_rt_insns_32[] = {
12146 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12147 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12148 { 0, 0 } /* End marker for find_match(). */
12149};
12150
12151static const struct opcode_descriptor bzc_insns_32[] = {
12152 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12153 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12154 { 0, 0 } /* End marker for find_match(). */
12155};
12156
12157static const struct opcode_descriptor bz_insns_16[] = {
12158 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12159 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12160 { 0, 0 } /* End marker for find_match(). */
12161};
12162
12163/* Switch between a 5-bit register index and its 3-bit shorthand. */
12164
12165#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12166#define BZ16_REG_FIELD(r) \
12167 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12168
12169
12170/* 32-bit instructions with a delay slot. */
12171
12172static const struct opcode_descriptor jal_insn_32_bd16 =
12173 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12174
12175static const struct opcode_descriptor jal_insn_32_bd32 =
12176 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12177
12178static const struct opcode_descriptor jal_x_insn_32_bd32 =
12179 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12180
12181static const struct opcode_descriptor j_insn_32 =
12182 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12183
12184static const struct opcode_descriptor jalr_insn_32 =
12185 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12186
12187/* This table can be compacted, because no opcode replacement is made. */
12188
12189static const struct opcode_descriptor ds_insns_32_bd16[] = {
12190 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12191
12192 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12193 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12194
12195 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12196 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12197 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12198 { 0, 0 } /* End marker for find_match(). */
12199};
12200
12201/* This table can be compacted, because no opcode replacement is made. */
12202
12203static const struct opcode_descriptor ds_insns_32_bd32[] = {
12204 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12205
12206 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12207 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12208 { 0, 0 } /* End marker for find_match(). */
12209};
12210
12211
12212/* 16-bit instructions with a delay slot. */
12213
12214static const struct opcode_descriptor jalr_insn_16_bd16 =
12215 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12216
12217static const struct opcode_descriptor jalr_insn_16_bd32 =
12218 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12219
12220static const struct opcode_descriptor jr_insn_16 =
12221 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12222
12223#define JR16_REG(opcode) ((opcode) & 0x1f)
12224
12225/* This table can be compacted, because no opcode replacement is made. */
12226
12227static const struct opcode_descriptor ds_insns_16_bd16[] = {
12228 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12229
12230 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12231 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12232 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12233 { 0, 0 } /* End marker for find_match(). */
12234};
12235
12236
12237/* LUI instruction. */
12238
12239static const struct opcode_descriptor lui_insn =
12240 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12241
12242
12243/* ADDIU instruction. */
12244
12245static const struct opcode_descriptor addiu_insn =
12246 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12247
12248static const struct opcode_descriptor addiupc_insn =
12249 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12250
12251#define ADDIUPC_REG_FIELD(r) \
12252 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12253
12254
12255/* Relaxable instructions in a JAL delay slot: MOVE. */
12256
12257/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12258 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12259#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12260#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12261
12262#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12263#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12264
12265static const struct opcode_descriptor move_insns_32[] = {
12266 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12267 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12268 { 0, 0 } /* End marker for find_match(). */
12269};
12270
12271static const struct opcode_descriptor move_insn_16 =
12272 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12273
12274
12275/* NOP instructions. */
12276
12277static const struct opcode_descriptor nop_insn_32 =
12278 { /* "nop", "", */ 0x00000000, 0xffffffff };
12279
12280static const struct opcode_descriptor nop_insn_16 =
12281 { /* "nop", "", */ 0x0c00, 0xffff };
12282
12283
12284/* Instruction match support. */
12285
12286#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12287
12288static int
12289find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12290{
12291 unsigned long indx;
12292
12293 for (indx = 0; insn[indx].mask != 0; indx++)
12294 if (MATCH (opcode, insn[indx]))
12295 return indx;
12296
12297 return -1;
12298}
12299
12300
12301/* Branch and delay slot decoding support. */
12302
12303/* If PTR points to what *might* be a 16-bit branch or jump, then
12304 return the minimum length of its delay slot, otherwise return 0.
12305 Non-zero results are not definitive as we might be checking against
12306 the second half of another instruction. */
12307
12308static int
12309check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12310{
12311 unsigned long opcode;
12312 int bdsize;
12313
12314 opcode = bfd_get_16 (abfd, ptr);
12315 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12316 /* 16-bit branch/jump with a 32-bit delay slot. */
12317 bdsize = 4;
12318 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12319 || find_match (opcode, ds_insns_16_bd16) >= 0)
12320 /* 16-bit branch/jump with a 16-bit delay slot. */
12321 bdsize = 2;
12322 else
12323 /* No delay slot. */
12324 bdsize = 0;
12325
12326 return bdsize;
12327}
12328
12329/* If PTR points to what *might* be a 32-bit branch or jump, then
12330 return the minimum length of its delay slot, otherwise return 0.
12331 Non-zero results are not definitive as we might be checking against
12332 the second half of another instruction. */
12333
12334static int
12335check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12336{
12337 unsigned long opcode;
12338 int bdsize;
12339
12340 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12341 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12342 /* 32-bit branch/jump with a 32-bit delay slot. */
12343 bdsize = 4;
12344 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12345 /* 32-bit branch/jump with a 16-bit delay slot. */
12346 bdsize = 2;
12347 else
12348 /* No delay slot. */
12349 bdsize = 0;
12350
12351 return bdsize;
12352}
12353
12354/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12355 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12356
12357static bfd_boolean
12358check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12359{
12360 unsigned long opcode;
12361
12362 opcode = bfd_get_16 (abfd, ptr);
12363 if (MATCH (opcode, b_insn_16)
12364 /* B16 */
12365 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12366 /* JR16 */
12367 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12368 /* BEQZ16, BNEZ16 */
12369 || (MATCH (opcode, jalr_insn_16_bd32)
12370 /* JALR16 */
12371 && reg != JR16_REG (opcode) && reg != RA))
12372 return TRUE;
12373
12374 return FALSE;
12375}
12376
12377/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12378 then return TRUE, otherwise FALSE. */
12379
f41e5fcc 12380static bfd_boolean
df58fc94
RS
12381check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12382{
12383 unsigned long opcode;
12384
12385 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12386 if (MATCH (opcode, j_insn_32)
12387 /* J */
12388 || MATCH (opcode, bc_insn_32)
12389 /* BC1F, BC1T, BC2F, BC2T */
12390 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12391 /* JAL, JALX */
12392 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12393 /* BGEZ, BGTZ, BLEZ, BLTZ */
12394 || (MATCH (opcode, bzal_insn_32)
12395 /* BGEZAL, BLTZAL */
12396 && reg != OP32_SREG (opcode) && reg != RA)
12397 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12398 /* JALR, JALR.HB, BEQ, BNE */
12399 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12400 return TRUE;
12401
12402 return FALSE;
12403}
12404
80cab405
MR
12405/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12406 IRELEND) at OFFSET indicate that there must be a compact branch there,
12407 then return TRUE, otherwise FALSE. */
df58fc94
RS
12408
12409static bfd_boolean
80cab405
MR
12410check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12411 const Elf_Internal_Rela *internal_relocs,
12412 const Elf_Internal_Rela *irelend)
df58fc94 12413{
80cab405
MR
12414 const Elf_Internal_Rela *irel;
12415 unsigned long opcode;
12416
12417 opcode = bfd_get_16 (abfd, ptr);
12418 opcode <<= 16;
12419 opcode |= bfd_get_16 (abfd, ptr + 2);
12420 if (find_match (opcode, bzc_insns_32) < 0)
12421 return FALSE;
df58fc94
RS
12422
12423 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12424 if (irel->r_offset == offset
12425 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12426 return TRUE;
12427
df58fc94
RS
12428 return FALSE;
12429}
80cab405
MR
12430
12431/* Bitsize checking. */
12432#define IS_BITSIZE(val, N) \
12433 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12434 - (1ULL << ((N) - 1))) == (val))
12435
df58fc94
RS
12436\f
12437bfd_boolean
12438_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12439 struct bfd_link_info *link_info,
12440 bfd_boolean *again)
12441{
12442 Elf_Internal_Shdr *symtab_hdr;
12443 Elf_Internal_Rela *internal_relocs;
12444 Elf_Internal_Rela *irel, *irelend;
12445 bfd_byte *contents = NULL;
12446 Elf_Internal_Sym *isymbuf = NULL;
12447
12448 /* Assume nothing changes. */
12449 *again = FALSE;
12450
12451 /* We don't have to do anything for a relocatable link, if
12452 this section does not have relocs, or if this is not a
12453 code section. */
12454
12455 if (link_info->relocatable
12456 || (sec->flags & SEC_RELOC) == 0
12457 || sec->reloc_count == 0
12458 || (sec->flags & SEC_CODE) == 0)
12459 return TRUE;
12460
12461 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12462
12463 /* Get a copy of the native relocations. */
12464 internal_relocs = (_bfd_elf_link_read_relocs
12465 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12466 link_info->keep_memory));
12467 if (internal_relocs == NULL)
12468 goto error_return;
12469
12470 /* Walk through them looking for relaxing opportunities. */
12471 irelend = internal_relocs + sec->reloc_count;
12472 for (irel = internal_relocs; irel < irelend; irel++)
12473 {
12474 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12475 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12476 bfd_boolean target_is_micromips_code_p;
12477 unsigned long opcode;
12478 bfd_vma symval;
12479 bfd_vma pcrval;
2309ddf2 12480 bfd_byte *ptr;
df58fc94
RS
12481 int fndopc;
12482
12483 /* The number of bytes to delete for relaxation and from where
12484 to delete these bytes starting at irel->r_offset. */
12485 int delcnt = 0;
12486 int deloff = 0;
12487
12488 /* If this isn't something that can be relaxed, then ignore
12489 this reloc. */
12490 if (r_type != R_MICROMIPS_HI16
12491 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12492 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12493 continue;
12494
12495 /* Get the section contents if we haven't done so already. */
12496 if (contents == NULL)
12497 {
12498 /* Get cached copy if it exists. */
12499 if (elf_section_data (sec)->this_hdr.contents != NULL)
12500 contents = elf_section_data (sec)->this_hdr.contents;
12501 /* Go get them off disk. */
12502 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12503 goto error_return;
12504 }
2309ddf2 12505 ptr = contents + irel->r_offset;
df58fc94
RS
12506
12507 /* Read this BFD's local symbols if we haven't done so already. */
12508 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12509 {
12510 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12511 if (isymbuf == NULL)
12512 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12513 symtab_hdr->sh_info, 0,
12514 NULL, NULL, NULL);
12515 if (isymbuf == NULL)
12516 goto error_return;
12517 }
12518
12519 /* Get the value of the symbol referred to by the reloc. */
12520 if (r_symndx < symtab_hdr->sh_info)
12521 {
12522 /* A local symbol. */
12523 Elf_Internal_Sym *isym;
12524 asection *sym_sec;
12525
12526 isym = isymbuf + r_symndx;
12527 if (isym->st_shndx == SHN_UNDEF)
12528 sym_sec = bfd_und_section_ptr;
12529 else if (isym->st_shndx == SHN_ABS)
12530 sym_sec = bfd_abs_section_ptr;
12531 else if (isym->st_shndx == SHN_COMMON)
12532 sym_sec = bfd_com_section_ptr;
12533 else
12534 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12535 symval = (isym->st_value
12536 + sym_sec->output_section->vma
12537 + sym_sec->output_offset);
12538 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12539 }
12540 else
12541 {
12542 unsigned long indx;
12543 struct elf_link_hash_entry *h;
12544
12545 /* An external symbol. */
12546 indx = r_symndx - symtab_hdr->sh_info;
12547 h = elf_sym_hashes (abfd)[indx];
12548 BFD_ASSERT (h != NULL);
12549
12550 if (h->root.type != bfd_link_hash_defined
12551 && h->root.type != bfd_link_hash_defweak)
12552 /* This appears to be a reference to an undefined
12553 symbol. Just ignore it -- it will be caught by the
12554 regular reloc processing. */
12555 continue;
12556
12557 symval = (h->root.u.def.value
12558 + h->root.u.def.section->output_section->vma
12559 + h->root.u.def.section->output_offset);
12560 target_is_micromips_code_p = (!h->needs_plt
12561 && ELF_ST_IS_MICROMIPS (h->other));
12562 }
12563
12564
12565 /* For simplicity of coding, we are going to modify the
12566 section contents, the section relocs, and the BFD symbol
12567 table. We must tell the rest of the code not to free up this
12568 information. It would be possible to instead create a table
12569 of changes which have to be made, as is done in coff-mips.c;
12570 that would be more work, but would require less memory when
12571 the linker is run. */
12572
12573 /* Only 32-bit instructions relaxed. */
12574 if (irel->r_offset + 4 > sec->size)
12575 continue;
12576
2309ddf2
MR
12577 opcode = bfd_get_16 (abfd, ptr ) << 16;
12578 opcode |= bfd_get_16 (abfd, ptr + 2);
df58fc94
RS
12579
12580 /* This is the pc-relative distance from the instruction the
12581 relocation is applied to, to the symbol referred. */
12582 pcrval = (symval
12583 - (sec->output_section->vma + sec->output_offset)
12584 - irel->r_offset);
12585
12586 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12587 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12588 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12589
12590 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12591
12592 where pcrval has first to be adjusted to apply against the LO16
12593 location (we make the adjustment later on, when we have figured
12594 out the offset). */
12595 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12596 {
80cab405 12597 bfd_boolean bzc = FALSE;
df58fc94
RS
12598 unsigned long nextopc;
12599 unsigned long reg;
12600 bfd_vma offset;
12601
12602 /* Give up if the previous reloc was a HI16 against this symbol
12603 too. */
12604 if (irel > internal_relocs
12605 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12606 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12607 continue;
12608
12609 /* Or if the next reloc is not a LO16 against this symbol. */
12610 if (irel + 1 >= irelend
12611 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12612 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12613 continue;
12614
12615 /* Or if the second next reloc is a LO16 against this symbol too. */
12616 if (irel + 2 >= irelend
12617 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12618 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12619 continue;
12620
80cab405
MR
12621 /* See if the LUI instruction *might* be in a branch delay slot.
12622 We check whether what looks like a 16-bit branch or jump is
12623 actually an immediate argument to a compact branch, and let
12624 it through if so. */
df58fc94 12625 if (irel->r_offset >= 2
2309ddf2 12626 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12627 && !(irel->r_offset >= 4
80cab405
MR
12628 && (bzc = check_relocated_bzc (abfd,
12629 ptr - 4, irel->r_offset - 4,
12630 internal_relocs, irelend))))
df58fc94
RS
12631 continue;
12632 if (irel->r_offset >= 4
80cab405 12633 && !bzc
2309ddf2 12634 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12635 continue;
12636
12637 reg = OP32_SREG (opcode);
12638
12639 /* We only relax adjacent instructions or ones separated with
12640 a branch or jump that has a delay slot. The branch or jump
12641 must not fiddle with the register used to hold the address.
12642 Subtract 4 for the LUI itself. */
12643 offset = irel[1].r_offset - irel[0].r_offset;
12644 switch (offset - 4)
12645 {
12646 case 0:
12647 break;
12648 case 2:
2309ddf2 12649 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12650 break;
12651 continue;
12652 case 4:
2309ddf2 12653 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12654 break;
12655 continue;
12656 default:
12657 continue;
12658 }
12659
12660 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12661 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12662
12663 /* Give up unless the same register is used with both
12664 relocations. */
12665 if (OP32_SREG (nextopc) != reg)
12666 continue;
12667
12668 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12669 and rounding up to take masking of the two LSBs into account. */
12670 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12671
12672 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12673 if (IS_BITSIZE (symval, 16))
12674 {
12675 /* Fix the relocation's type. */
12676 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12677
12678 /* Instructions using R_MICROMIPS_LO16 have the base or
12679 source register in bits 20:16. This register becomes $0
12680 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12681 nextopc &= ~0x001f0000;
12682 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12683 contents + irel[1].r_offset);
12684 }
12685
12686 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12687 We add 4 to take LUI deletion into account while checking
12688 the PC-relative distance. */
12689 else if (symval % 4 == 0
12690 && IS_BITSIZE (pcrval + 4, 25)
12691 && MATCH (nextopc, addiu_insn)
12692 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12693 && OP16_VALID_REG (OP32_TREG (nextopc)))
12694 {
12695 /* Fix the relocation's type. */
12696 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12697
12698 /* Replace ADDIU with the ADDIUPC version. */
12699 nextopc = (addiupc_insn.match
12700 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12701
12702 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12703 contents + irel[1].r_offset);
12704 bfd_put_16 (abfd, nextopc & 0xffff,
12705 contents + irel[1].r_offset + 2);
12706 }
12707
12708 /* Can't do anything, give up, sigh... */
12709 else
12710 continue;
12711
12712 /* Fix the relocation's type. */
12713 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12714
12715 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12716 delcnt = 4;
12717 deloff = 0;
12718 }
12719
12720 /* Compact branch relaxation -- due to the multitude of macros
12721 employed by the compiler/assembler, compact branches are not
12722 always generated. Obviously, this can/will be fixed elsewhere,
12723 but there is no drawback in double checking it here. */
12724 else if (r_type == R_MICROMIPS_PC16_S1
12725 && irel->r_offset + 5 < sec->size
12726 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12727 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12728 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12729 {
12730 unsigned long reg;
12731
12732 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12733
12734 /* Replace BEQZ/BNEZ with the compact version. */
12735 opcode = (bzc_insns_32[fndopc].match
12736 | BZC32_REG_FIELD (reg)
12737 | (opcode & 0xffff)); /* Addend value. */
12738
2309ddf2
MR
12739 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12740 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
df58fc94
RS
12741
12742 /* Delete the 16-bit delay slot NOP: two bytes from
12743 irel->offset + 4. */
12744 delcnt = 2;
12745 deloff = 4;
12746 }
12747
12748 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12749 to check the distance from the next instruction, so subtract 2. */
12750 else if (r_type == R_MICROMIPS_PC16_S1
12751 && IS_BITSIZE (pcrval - 2, 11)
12752 && find_match (opcode, b_insns_32) >= 0)
12753 {
12754 /* Fix the relocation's type. */
12755 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12756
12757 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12758 bfd_put_16 (abfd,
12759 (b_insn_16.match
12760 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12761 ptr);
df58fc94
RS
12762
12763 /* Delete 2 bytes from irel->r_offset + 2. */
12764 delcnt = 2;
12765 deloff = 2;
12766 }
12767
12768 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12769 to check the distance from the next instruction, so subtract 2. */
12770 else if (r_type == R_MICROMIPS_PC16_S1
12771 && IS_BITSIZE (pcrval - 2, 8)
12772 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12773 && OP16_VALID_REG (OP32_SREG (opcode)))
12774 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12775 && OP16_VALID_REG (OP32_TREG (opcode)))))
12776 {
12777 unsigned long reg;
12778
12779 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12780
12781 /* Fix the relocation's type. */
12782 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12783
12784 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12785 bfd_put_16 (abfd,
12786 (bz_insns_16[fndopc].match
12787 | BZ16_REG_FIELD (reg)
12788 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12789 ptr);
df58fc94
RS
12790
12791 /* Delete 2 bytes from irel->r_offset + 2. */
12792 delcnt = 2;
12793 deloff = 2;
12794 }
12795
12796 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12797 else if (r_type == R_MICROMIPS_26_S1
12798 && target_is_micromips_code_p
12799 && irel->r_offset + 7 < sec->size
12800 && MATCH (opcode, jal_insn_32_bd32))
12801 {
12802 unsigned long n32opc;
12803 bfd_boolean relaxed = FALSE;
12804
2309ddf2
MR
12805 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12806 n32opc |= bfd_get_16 (abfd, ptr + 6);
df58fc94
RS
12807
12808 if (MATCH (n32opc, nop_insn_32))
12809 {
12810 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12811 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12812
12813 relaxed = TRUE;
12814 }
12815 else if (find_match (n32opc, move_insns_32) >= 0)
12816 {
12817 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12818 bfd_put_16 (abfd,
12819 (move_insn_16.match
12820 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12821 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12822 ptr + 4);
df58fc94
RS
12823
12824 relaxed = TRUE;
12825 }
12826 /* Other 32-bit instructions relaxable to 16-bit
12827 instructions will be handled here later. */
12828
12829 if (relaxed)
12830 {
12831 /* JAL with 32-bit delay slot that is changed to a JALS
12832 with 16-bit delay slot. */
12833 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
2309ddf2 12834 ptr);
df58fc94 12835 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
2309ddf2 12836 ptr + 2);
df58fc94
RS
12837
12838 /* Delete 2 bytes from irel->r_offset + 6. */
12839 delcnt = 2;
12840 deloff = 6;
12841 }
12842 }
12843
12844 if (delcnt != 0)
12845 {
12846 /* Note that we've changed the relocs, section contents, etc. */
12847 elf_section_data (sec)->relocs = internal_relocs;
12848 elf_section_data (sec)->this_hdr.contents = contents;
12849 symtab_hdr->contents = (unsigned char *) isymbuf;
12850
12851 /* Delete bytes depending on the delcnt and deloff. */
12852 if (!mips_elf_relax_delete_bytes (abfd, sec,
12853 irel->r_offset + deloff, delcnt))
12854 goto error_return;
12855
12856 /* That will change things, so we should relax again.
12857 Note that this is not required, and it may be slow. */
12858 *again = TRUE;
12859 }
12860 }
12861
12862 if (isymbuf != NULL
12863 && symtab_hdr->contents != (unsigned char *) isymbuf)
12864 {
12865 if (! link_info->keep_memory)
12866 free (isymbuf);
12867 else
12868 {
12869 /* Cache the symbols for elf_link_input_bfd. */
12870 symtab_hdr->contents = (unsigned char *) isymbuf;
12871 }
12872 }
12873
12874 if (contents != NULL
12875 && elf_section_data (sec)->this_hdr.contents != contents)
12876 {
12877 if (! link_info->keep_memory)
12878 free (contents);
12879 else
12880 {
12881 /* Cache the section contents for elf_link_input_bfd. */
12882 elf_section_data (sec)->this_hdr.contents = contents;
12883 }
12884 }
12885
12886 if (internal_relocs != NULL
12887 && elf_section_data (sec)->relocs != internal_relocs)
12888 free (internal_relocs);
12889
12890 return TRUE;
12891
12892 error_return:
12893 if (isymbuf != NULL
12894 && symtab_hdr->contents != (unsigned char *) isymbuf)
12895 free (isymbuf);
12896 if (contents != NULL
12897 && elf_section_data (sec)->this_hdr.contents != contents)
12898 free (contents);
12899 if (internal_relocs != NULL
12900 && elf_section_data (sec)->relocs != internal_relocs)
12901 free (internal_relocs);
12902
12903 return FALSE;
12904}
12905\f
b49e97c9
TS
12906/* Create a MIPS ELF linker hash table. */
12907
12908struct bfd_link_hash_table *
9719ad41 12909_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12910{
12911 struct mips_elf_link_hash_table *ret;
12912 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12913
9719ad41
RS
12914 ret = bfd_malloc (amt);
12915 if (ret == NULL)
b49e97c9
TS
12916 return NULL;
12917
66eb6687
AM
12918 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12919 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12920 sizeof (struct mips_elf_link_hash_entry),
12921 MIPS_ELF_DATA))
b49e97c9 12922 {
e2d34d7d 12923 free (ret);
b49e97c9
TS
12924 return NULL;
12925 }
12926
12927#if 0
12928 /* We no longer use this. */
12929 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12930 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12931#endif
12932 ret->procedure_count = 0;
12933 ret->compact_rel_size = 0;
b34976b6 12934 ret->use_rld_obj_head = FALSE;
b4082c70 12935 ret->rld_symbol = NULL;
b34976b6 12936 ret->mips16_stubs_seen = FALSE;
861fb55a 12937 ret->use_plts_and_copy_relocs = FALSE;
0a44bf69 12938 ret->is_vxworks = FALSE;
0e53d9da 12939 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
12940 ret->srelbss = NULL;
12941 ret->sdynbss = NULL;
12942 ret->srelplt = NULL;
12943 ret->srelplt2 = NULL;
12944 ret->sgotplt = NULL;
12945 ret->splt = NULL;
4e41d0d7 12946 ret->sstubs = NULL;
a8028dd0
RS
12947 ret->sgot = NULL;
12948 ret->got_info = NULL;
0a44bf69
RS
12949 ret->plt_header_size = 0;
12950 ret->plt_entry_size = 0;
33bb52fb 12951 ret->lazy_stub_count = 0;
5108fc1b 12952 ret->function_stub_size = 0;
861fb55a
DJ
12953 ret->strampoline = NULL;
12954 ret->la25_stubs = NULL;
12955 ret->add_stub_section = NULL;
b49e97c9
TS
12956
12957 return &ret->root.root;
12958}
0a44bf69
RS
12959
12960/* Likewise, but indicate that the target is VxWorks. */
12961
12962struct bfd_link_hash_table *
12963_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12964{
12965 struct bfd_link_hash_table *ret;
12966
12967 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12968 if (ret)
12969 {
12970 struct mips_elf_link_hash_table *htab;
12971
12972 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12973 htab->use_plts_and_copy_relocs = TRUE;
12974 htab->is_vxworks = TRUE;
0a44bf69
RS
12975 }
12976 return ret;
12977}
861fb55a
DJ
12978
12979/* A function that the linker calls if we are allowed to use PLTs
12980 and copy relocs. */
12981
12982void
12983_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12984{
12985 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12986}
b49e97c9
TS
12987\f
12988/* We need to use a special link routine to handle the .reginfo and
12989 the .mdebug sections. We need to merge all instances of these
12990 sections together, not write them all out sequentially. */
12991
b34976b6 12992bfd_boolean
9719ad41 12993_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12994{
b49e97c9
TS
12995 asection *o;
12996 struct bfd_link_order *p;
12997 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12998 asection *rtproc_sec;
12999 Elf32_RegInfo reginfo;
13000 struct ecoff_debug_info debug;
861fb55a 13001 struct mips_htab_traverse_info hti;
7a2a6943
NC
13002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13003 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 13004 HDRR *symhdr = &debug.symbolic_header;
9719ad41 13005 void *mdebug_handle = NULL;
b49e97c9
TS
13006 asection *s;
13007 EXTR esym;
13008 unsigned int i;
13009 bfd_size_type amt;
0a44bf69 13010 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
13011
13012 static const char * const secname[] =
13013 {
13014 ".text", ".init", ".fini", ".data",
13015 ".rodata", ".sdata", ".sbss", ".bss"
13016 };
13017 static const int sc[] =
13018 {
13019 scText, scInit, scFini, scData,
13020 scRData, scSData, scSBss, scBss
13021 };
13022
d4596a51
RS
13023 /* Sort the dynamic symbols so that those with GOT entries come after
13024 those without. */
0a44bf69 13025 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
13026 BFD_ASSERT (htab != NULL);
13027
d4596a51
RS
13028 if (!mips_elf_sort_hash_table (abfd, info))
13029 return FALSE;
b49e97c9 13030
861fb55a
DJ
13031 /* Create any scheduled LA25 stubs. */
13032 hti.info = info;
13033 hti.output_bfd = abfd;
13034 hti.error = FALSE;
13035 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13036 if (hti.error)
13037 return FALSE;
13038
b49e97c9
TS
13039 /* Get a value for the GP register. */
13040 if (elf_gp (abfd) == 0)
13041 {
13042 struct bfd_link_hash_entry *h;
13043
b34976b6 13044 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 13045 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
13046 elf_gp (abfd) = (h->u.def.value
13047 + h->u.def.section->output_section->vma
13048 + h->u.def.section->output_offset);
0a44bf69
RS
13049 else if (htab->is_vxworks
13050 && (h = bfd_link_hash_lookup (info->hash,
13051 "_GLOBAL_OFFSET_TABLE_",
13052 FALSE, FALSE, TRUE))
13053 && h->type == bfd_link_hash_defined)
13054 elf_gp (abfd) = (h->u.def.section->output_section->vma
13055 + h->u.def.section->output_offset
13056 + h->u.def.value);
1049f94e 13057 else if (info->relocatable)
b49e97c9
TS
13058 {
13059 bfd_vma lo = MINUS_ONE;
13060
13061 /* Find the GP-relative section with the lowest offset. */
9719ad41 13062 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13063 if (o->vma < lo
13064 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13065 lo = o->vma;
13066
13067 /* And calculate GP relative to that. */
0a44bf69 13068 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
13069 }
13070 else
13071 {
13072 /* If the relocate_section function needs to do a reloc
13073 involving the GP value, it should make a reloc_dangerous
13074 callback to warn that GP is not defined. */
13075 }
13076 }
13077
13078 /* Go through the sections and collect the .reginfo and .mdebug
13079 information. */
13080 reginfo_sec = NULL;
13081 mdebug_sec = NULL;
13082 gptab_data_sec = NULL;
13083 gptab_bss_sec = NULL;
9719ad41 13084 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13085 {
13086 if (strcmp (o->name, ".reginfo") == 0)
13087 {
13088 memset (&reginfo, 0, sizeof reginfo);
13089
13090 /* We have found the .reginfo section in the output file.
13091 Look through all the link_orders comprising it and merge
13092 the information together. */
8423293d 13093 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13094 {
13095 asection *input_section;
13096 bfd *input_bfd;
13097 Elf32_External_RegInfo ext;
13098 Elf32_RegInfo sub;
13099
13100 if (p->type != bfd_indirect_link_order)
13101 {
13102 if (p->type == bfd_data_link_order)
13103 continue;
13104 abort ();
13105 }
13106
13107 input_section = p->u.indirect.section;
13108 input_bfd = input_section->owner;
13109
b49e97c9 13110 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13111 &ext, 0, sizeof ext))
b34976b6 13112 return FALSE;
b49e97c9
TS
13113
13114 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13115
13116 reginfo.ri_gprmask |= sub.ri_gprmask;
13117 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13118 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13119 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13120 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13121
13122 /* ri_gp_value is set by the function
13123 mips_elf32_section_processing when the section is
13124 finally written out. */
13125
13126 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13127 elf_link_input_bfd ignores this section. */
13128 input_section->flags &= ~SEC_HAS_CONTENTS;
13129 }
13130
13131 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13132 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13133
13134 /* Skip this section later on (I don't think this currently
13135 matters, but someday it might). */
8423293d 13136 o->map_head.link_order = NULL;
b49e97c9
TS
13137
13138 reginfo_sec = o;
13139 }
13140
13141 if (strcmp (o->name, ".mdebug") == 0)
13142 {
13143 struct extsym_info einfo;
13144 bfd_vma last;
13145
13146 /* We have found the .mdebug section in the output file.
13147 Look through all the link_orders comprising it and merge
13148 the information together. */
13149 symhdr->magic = swap->sym_magic;
13150 /* FIXME: What should the version stamp be? */
13151 symhdr->vstamp = 0;
13152 symhdr->ilineMax = 0;
13153 symhdr->cbLine = 0;
13154 symhdr->idnMax = 0;
13155 symhdr->ipdMax = 0;
13156 symhdr->isymMax = 0;
13157 symhdr->ioptMax = 0;
13158 symhdr->iauxMax = 0;
13159 symhdr->issMax = 0;
13160 symhdr->issExtMax = 0;
13161 symhdr->ifdMax = 0;
13162 symhdr->crfd = 0;
13163 symhdr->iextMax = 0;
13164
13165 /* We accumulate the debugging information itself in the
13166 debug_info structure. */
13167 debug.line = NULL;
13168 debug.external_dnr = NULL;
13169 debug.external_pdr = NULL;
13170 debug.external_sym = NULL;
13171 debug.external_opt = NULL;
13172 debug.external_aux = NULL;
13173 debug.ss = NULL;
13174 debug.ssext = debug.ssext_end = NULL;
13175 debug.external_fdr = NULL;
13176 debug.external_rfd = NULL;
13177 debug.external_ext = debug.external_ext_end = NULL;
13178
13179 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13180 if (mdebug_handle == NULL)
b34976b6 13181 return FALSE;
b49e97c9
TS
13182
13183 esym.jmptbl = 0;
13184 esym.cobol_main = 0;
13185 esym.weakext = 0;
13186 esym.reserved = 0;
13187 esym.ifd = ifdNil;
13188 esym.asym.iss = issNil;
13189 esym.asym.st = stLocal;
13190 esym.asym.reserved = 0;
13191 esym.asym.index = indexNil;
13192 last = 0;
13193 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13194 {
13195 esym.asym.sc = sc[i];
13196 s = bfd_get_section_by_name (abfd, secname[i]);
13197 if (s != NULL)
13198 {
13199 esym.asym.value = s->vma;
eea6121a 13200 last = s->vma + s->size;
b49e97c9
TS
13201 }
13202 else
13203 esym.asym.value = last;
13204 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13205 secname[i], &esym))
b34976b6 13206 return FALSE;
b49e97c9
TS
13207 }
13208
8423293d 13209 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13210 {
13211 asection *input_section;
13212 bfd *input_bfd;
13213 const struct ecoff_debug_swap *input_swap;
13214 struct ecoff_debug_info input_debug;
13215 char *eraw_src;
13216 char *eraw_end;
13217
13218 if (p->type != bfd_indirect_link_order)
13219 {
13220 if (p->type == bfd_data_link_order)
13221 continue;
13222 abort ();
13223 }
13224
13225 input_section = p->u.indirect.section;
13226 input_bfd = input_section->owner;
13227
d5eaccd7 13228 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13229 {
13230 /* I don't know what a non MIPS ELF bfd would be
13231 doing with a .mdebug section, but I don't really
13232 want to deal with it. */
13233 continue;
13234 }
13235
13236 input_swap = (get_elf_backend_data (input_bfd)
13237 ->elf_backend_ecoff_debug_swap);
13238
eea6121a 13239 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13240
13241 /* The ECOFF linking code expects that we have already
13242 read in the debugging information and set up an
13243 ecoff_debug_info structure, so we do that now. */
13244 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13245 &input_debug))
b34976b6 13246 return FALSE;
b49e97c9
TS
13247
13248 if (! (bfd_ecoff_debug_accumulate
13249 (mdebug_handle, abfd, &debug, swap, input_bfd,
13250 &input_debug, input_swap, info)))
b34976b6 13251 return FALSE;
b49e97c9
TS
13252
13253 /* Loop through the external symbols. For each one with
13254 interesting information, try to find the symbol in
13255 the linker global hash table and save the information
13256 for the output external symbols. */
13257 eraw_src = input_debug.external_ext;
13258 eraw_end = (eraw_src
13259 + (input_debug.symbolic_header.iextMax
13260 * input_swap->external_ext_size));
13261 for (;
13262 eraw_src < eraw_end;
13263 eraw_src += input_swap->external_ext_size)
13264 {
13265 EXTR ext;
13266 const char *name;
13267 struct mips_elf_link_hash_entry *h;
13268
9719ad41 13269 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13270 if (ext.asym.sc == scNil
13271 || ext.asym.sc == scUndefined
13272 || ext.asym.sc == scSUndefined)
13273 continue;
13274
13275 name = input_debug.ssext + ext.asym.iss;
13276 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13277 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13278 if (h == NULL || h->esym.ifd != -2)
13279 continue;
13280
13281 if (ext.ifd != -1)
13282 {
13283 BFD_ASSERT (ext.ifd
13284 < input_debug.symbolic_header.ifdMax);
13285 ext.ifd = input_debug.ifdmap[ext.ifd];
13286 }
13287
13288 h->esym = ext;
13289 }
13290
13291 /* Free up the information we just read. */
13292 free (input_debug.line);
13293 free (input_debug.external_dnr);
13294 free (input_debug.external_pdr);
13295 free (input_debug.external_sym);
13296 free (input_debug.external_opt);
13297 free (input_debug.external_aux);
13298 free (input_debug.ss);
13299 free (input_debug.ssext);
13300 free (input_debug.external_fdr);
13301 free (input_debug.external_rfd);
13302 free (input_debug.external_ext);
13303
13304 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13305 elf_link_input_bfd ignores this section. */
13306 input_section->flags &= ~SEC_HAS_CONTENTS;
13307 }
13308
13309 if (SGI_COMPAT (abfd) && info->shared)
13310 {
13311 /* Create .rtproc section. */
13312 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13313 if (rtproc_sec == NULL)
13314 {
13315 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13316 | SEC_LINKER_CREATED | SEC_READONLY);
13317
3496cb2a
L
13318 rtproc_sec = bfd_make_section_with_flags (abfd,
13319 ".rtproc",
13320 flags);
b49e97c9 13321 if (rtproc_sec == NULL
b49e97c9 13322 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13323 return FALSE;
b49e97c9
TS
13324 }
13325
13326 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13327 info, rtproc_sec,
13328 &debug))
b34976b6 13329 return FALSE;
b49e97c9
TS
13330 }
13331
13332 /* Build the external symbol information. */
13333 einfo.abfd = abfd;
13334 einfo.info = info;
13335 einfo.debug = &debug;
13336 einfo.swap = swap;
b34976b6 13337 einfo.failed = FALSE;
b49e97c9 13338 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13339 mips_elf_output_extsym, &einfo);
b49e97c9 13340 if (einfo.failed)
b34976b6 13341 return FALSE;
b49e97c9
TS
13342
13343 /* Set the size of the .mdebug section. */
eea6121a 13344 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13345
13346 /* Skip this section later on (I don't think this currently
13347 matters, but someday it might). */
8423293d 13348 o->map_head.link_order = NULL;
b49e97c9
TS
13349
13350 mdebug_sec = o;
13351 }
13352
0112cd26 13353 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13354 {
13355 const char *subname;
13356 unsigned int c;
13357 Elf32_gptab *tab;
13358 Elf32_External_gptab *ext_tab;
13359 unsigned int j;
13360
13361 /* The .gptab.sdata and .gptab.sbss sections hold
13362 information describing how the small data area would
13363 change depending upon the -G switch. These sections
13364 not used in executables files. */
1049f94e 13365 if (! info->relocatable)
b49e97c9 13366 {
8423293d 13367 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13368 {
13369 asection *input_section;
13370
13371 if (p->type != bfd_indirect_link_order)
13372 {
13373 if (p->type == bfd_data_link_order)
13374 continue;
13375 abort ();
13376 }
13377
13378 input_section = p->u.indirect.section;
13379
13380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13381 elf_link_input_bfd ignores this section. */
13382 input_section->flags &= ~SEC_HAS_CONTENTS;
13383 }
13384
13385 /* Skip this section later on (I don't think this
13386 currently matters, but someday it might). */
8423293d 13387 o->map_head.link_order = NULL;
b49e97c9
TS
13388
13389 /* Really remove the section. */
5daa8fe7 13390 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13391 --abfd->section_count;
13392
13393 continue;
13394 }
13395
13396 /* There is one gptab for initialized data, and one for
13397 uninitialized data. */
13398 if (strcmp (o->name, ".gptab.sdata") == 0)
13399 gptab_data_sec = o;
13400 else if (strcmp (o->name, ".gptab.sbss") == 0)
13401 gptab_bss_sec = o;
13402 else
13403 {
13404 (*_bfd_error_handler)
13405 (_("%s: illegal section name `%s'"),
13406 bfd_get_filename (abfd), o->name);
13407 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13408 return FALSE;
b49e97c9
TS
13409 }
13410
13411 /* The linker script always combines .gptab.data and
13412 .gptab.sdata into .gptab.sdata, and likewise for
13413 .gptab.bss and .gptab.sbss. It is possible that there is
13414 no .sdata or .sbss section in the output file, in which
13415 case we must change the name of the output section. */
13416 subname = o->name + sizeof ".gptab" - 1;
13417 if (bfd_get_section_by_name (abfd, subname) == NULL)
13418 {
13419 if (o == gptab_data_sec)
13420 o->name = ".gptab.data";
13421 else
13422 o->name = ".gptab.bss";
13423 subname = o->name + sizeof ".gptab" - 1;
13424 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13425 }
13426
13427 /* Set up the first entry. */
13428 c = 1;
13429 amt = c * sizeof (Elf32_gptab);
9719ad41 13430 tab = bfd_malloc (amt);
b49e97c9 13431 if (tab == NULL)
b34976b6 13432 return FALSE;
b49e97c9
TS
13433 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13434 tab[0].gt_header.gt_unused = 0;
13435
13436 /* Combine the input sections. */
8423293d 13437 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13438 {
13439 asection *input_section;
13440 bfd *input_bfd;
13441 bfd_size_type size;
13442 unsigned long last;
13443 bfd_size_type gpentry;
13444
13445 if (p->type != bfd_indirect_link_order)
13446 {
13447 if (p->type == bfd_data_link_order)
13448 continue;
13449 abort ();
13450 }
13451
13452 input_section = p->u.indirect.section;
13453 input_bfd = input_section->owner;
13454
13455 /* Combine the gptab entries for this input section one
13456 by one. We know that the input gptab entries are
13457 sorted by ascending -G value. */
eea6121a 13458 size = input_section->size;
b49e97c9
TS
13459 last = 0;
13460 for (gpentry = sizeof (Elf32_External_gptab);
13461 gpentry < size;
13462 gpentry += sizeof (Elf32_External_gptab))
13463 {
13464 Elf32_External_gptab ext_gptab;
13465 Elf32_gptab int_gptab;
13466 unsigned long val;
13467 unsigned long add;
b34976b6 13468 bfd_boolean exact;
b49e97c9
TS
13469 unsigned int look;
13470
13471 if (! (bfd_get_section_contents
9719ad41
RS
13472 (input_bfd, input_section, &ext_gptab, gpentry,
13473 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13474 {
13475 free (tab);
b34976b6 13476 return FALSE;
b49e97c9
TS
13477 }
13478
13479 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13480 &int_gptab);
13481 val = int_gptab.gt_entry.gt_g_value;
13482 add = int_gptab.gt_entry.gt_bytes - last;
13483
b34976b6 13484 exact = FALSE;
b49e97c9
TS
13485 for (look = 1; look < c; look++)
13486 {
13487 if (tab[look].gt_entry.gt_g_value >= val)
13488 tab[look].gt_entry.gt_bytes += add;
13489
13490 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13491 exact = TRUE;
b49e97c9
TS
13492 }
13493
13494 if (! exact)
13495 {
13496 Elf32_gptab *new_tab;
13497 unsigned int max;
13498
13499 /* We need a new table entry. */
13500 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13501 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13502 if (new_tab == NULL)
13503 {
13504 free (tab);
b34976b6 13505 return FALSE;
b49e97c9
TS
13506 }
13507 tab = new_tab;
13508 tab[c].gt_entry.gt_g_value = val;
13509 tab[c].gt_entry.gt_bytes = add;
13510
13511 /* Merge in the size for the next smallest -G
13512 value, since that will be implied by this new
13513 value. */
13514 max = 0;
13515 for (look = 1; look < c; look++)
13516 {
13517 if (tab[look].gt_entry.gt_g_value < val
13518 && (max == 0
13519 || (tab[look].gt_entry.gt_g_value
13520 > tab[max].gt_entry.gt_g_value)))
13521 max = look;
13522 }
13523 if (max != 0)
13524 tab[c].gt_entry.gt_bytes +=
13525 tab[max].gt_entry.gt_bytes;
13526
13527 ++c;
13528 }
13529
13530 last = int_gptab.gt_entry.gt_bytes;
13531 }
13532
13533 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13534 elf_link_input_bfd ignores this section. */
13535 input_section->flags &= ~SEC_HAS_CONTENTS;
13536 }
13537
13538 /* The table must be sorted by -G value. */
13539 if (c > 2)
13540 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13541
13542 /* Swap out the table. */
13543 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13544 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13545 if (ext_tab == NULL)
13546 {
13547 free (tab);
b34976b6 13548 return FALSE;
b49e97c9
TS
13549 }
13550
13551 for (j = 0; j < c; j++)
13552 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13553 free (tab);
13554
eea6121a 13555 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13556 o->contents = (bfd_byte *) ext_tab;
13557
13558 /* Skip this section later on (I don't think this currently
13559 matters, but someday it might). */
8423293d 13560 o->map_head.link_order = NULL;
b49e97c9
TS
13561 }
13562 }
13563
13564 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13565 if (!bfd_elf_final_link (abfd, info))
b34976b6 13566 return FALSE;
b49e97c9
TS
13567
13568 /* Now write out the computed sections. */
13569
9719ad41 13570 if (reginfo_sec != NULL)
b49e97c9
TS
13571 {
13572 Elf32_External_RegInfo ext;
13573
13574 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13575 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13576 return FALSE;
b49e97c9
TS
13577 }
13578
9719ad41 13579 if (mdebug_sec != NULL)
b49e97c9
TS
13580 {
13581 BFD_ASSERT (abfd->output_has_begun);
13582 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13583 swap, info,
13584 mdebug_sec->filepos))
b34976b6 13585 return FALSE;
b49e97c9
TS
13586
13587 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13588 }
13589
9719ad41 13590 if (gptab_data_sec != NULL)
b49e97c9
TS
13591 {
13592 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13593 gptab_data_sec->contents,
eea6121a 13594 0, gptab_data_sec->size))
b34976b6 13595 return FALSE;
b49e97c9
TS
13596 }
13597
9719ad41 13598 if (gptab_bss_sec != NULL)
b49e97c9
TS
13599 {
13600 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13601 gptab_bss_sec->contents,
eea6121a 13602 0, gptab_bss_sec->size))
b34976b6 13603 return FALSE;
b49e97c9
TS
13604 }
13605
13606 if (SGI_COMPAT (abfd))
13607 {
13608 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13609 if (rtproc_sec != NULL)
13610 {
13611 if (! bfd_set_section_contents (abfd, rtproc_sec,
13612 rtproc_sec->contents,
eea6121a 13613 0, rtproc_sec->size))
b34976b6 13614 return FALSE;
b49e97c9
TS
13615 }
13616 }
13617
b34976b6 13618 return TRUE;
b49e97c9
TS
13619}
13620\f
64543e1a
RS
13621/* Structure for saying that BFD machine EXTENSION extends BASE. */
13622
13623struct mips_mach_extension {
13624 unsigned long extension, base;
13625};
13626
13627
13628/* An array describing how BFD machines relate to one another. The entries
13629 are ordered topologically with MIPS I extensions listed last. */
13630
13631static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13632 /* MIPS64r2 extensions. */
432233b3 13633 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13634 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13635 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13636
64543e1a 13637 /* MIPS64 extensions. */
5f74bc13 13638 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13639 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13640 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13641 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13642
13643 /* MIPS V extensions. */
13644 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13645
13646 /* R10000 extensions. */
13647 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13648 { bfd_mach_mips14000, bfd_mach_mips10000 },
13649 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13650
13651 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13652 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13653 better to allow vr5400 and vr5500 code to be merged anyway, since
13654 many libraries will just use the core ISA. Perhaps we could add
13655 some sort of ASE flag if this ever proves a problem. */
13656 { bfd_mach_mips5500, bfd_mach_mips5400 },
13657 { bfd_mach_mips5400, bfd_mach_mips5000 },
13658
13659 /* MIPS IV extensions. */
13660 { bfd_mach_mips5, bfd_mach_mips8000 },
13661 { bfd_mach_mips10000, bfd_mach_mips8000 },
13662 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13663 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13664 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13665
13666 /* VR4100 extensions. */
13667 { bfd_mach_mips4120, bfd_mach_mips4100 },
13668 { bfd_mach_mips4111, bfd_mach_mips4100 },
13669
13670 /* MIPS III extensions. */
350cc38d
MS
13671 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13672 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13673 { bfd_mach_mips8000, bfd_mach_mips4000 },
13674 { bfd_mach_mips4650, bfd_mach_mips4000 },
13675 { bfd_mach_mips4600, bfd_mach_mips4000 },
13676 { bfd_mach_mips4400, bfd_mach_mips4000 },
13677 { bfd_mach_mips4300, bfd_mach_mips4000 },
13678 { bfd_mach_mips4100, bfd_mach_mips4000 },
13679 { bfd_mach_mips4010, bfd_mach_mips4000 },
13680
13681 /* MIPS32 extensions. */
13682 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13683
13684 /* MIPS II extensions. */
13685 { bfd_mach_mips4000, bfd_mach_mips6000 },
13686 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13687
13688 /* MIPS I extensions. */
13689 { bfd_mach_mips6000, bfd_mach_mips3000 },
13690 { bfd_mach_mips3900, bfd_mach_mips3000 }
13691};
13692
13693
13694/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13695
13696static bfd_boolean
9719ad41 13697mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13698{
13699 size_t i;
13700
c5211a54
RS
13701 if (extension == base)
13702 return TRUE;
13703
13704 if (base == bfd_mach_mipsisa32
13705 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13706 return TRUE;
13707
13708 if (base == bfd_mach_mipsisa32r2
13709 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13710 return TRUE;
13711
13712 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13713 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13714 {
13715 extension = mips_mach_extensions[i].base;
13716 if (extension == base)
13717 return TRUE;
13718 }
64543e1a 13719
c5211a54 13720 return FALSE;
64543e1a
RS
13721}
13722
13723
13724/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13725
b34976b6 13726static bfd_boolean
9719ad41 13727mips_32bit_flags_p (flagword flags)
00707a0e 13728{
64543e1a
RS
13729 return ((flags & EF_MIPS_32BITMODE) != 0
13730 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13731 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13732 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13733 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13734 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13735 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13736}
13737
64543e1a 13738
2cf19d5c
JM
13739/* Merge object attributes from IBFD into OBFD. Raise an error if
13740 there are conflicting attributes. */
13741static bfd_boolean
13742mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13743{
13744 obj_attribute *in_attr;
13745 obj_attribute *out_attr;
13746
13747 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13748 {
13749 /* This is the first object. Copy the attributes. */
13750 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13751
13752 /* Use the Tag_null value to indicate the attributes have been
13753 initialized. */
13754 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13755
13756 return TRUE;
13757 }
13758
13759 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13760 non-conflicting ones. */
13761 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13762 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13763 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13764 {
13765 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13766 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13767 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13768 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13769 ;
42554f6a 13770 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
13771 _bfd_error_handler
13772 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13773 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 13774 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
13775 _bfd_error_handler
13776 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13777 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13778 else
13779 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13780 {
13781 case 1:
13782 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13783 {
13784 case 2:
13785 _bfd_error_handler
13786 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13787 obfd, ibfd);
51a0dd31 13788 break;
2cf19d5c
JM
13789
13790 case 3:
13791 _bfd_error_handler
13792 (_("Warning: %B uses hard float, %B uses soft float"),
13793 obfd, ibfd);
13794 break;
13795
42554f6a
TS
13796 case 4:
13797 _bfd_error_handler
13798 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13799 obfd, ibfd);
13800 break;
13801
2cf19d5c
JM
13802 default:
13803 abort ();
13804 }
13805 break;
13806
13807 case 2:
13808 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13809 {
13810 case 1:
13811 _bfd_error_handler
13812 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13813 ibfd, obfd);
51a0dd31 13814 break;
2cf19d5c
JM
13815
13816 case 3:
13817 _bfd_error_handler
13818 (_("Warning: %B uses hard float, %B uses soft float"),
13819 obfd, ibfd);
13820 break;
13821
42554f6a
TS
13822 case 4:
13823 _bfd_error_handler
13824 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13825 obfd, ibfd);
13826 break;
13827
2cf19d5c
JM
13828 default:
13829 abort ();
13830 }
13831 break;
13832
13833 case 3:
13834 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13835 {
13836 case 1:
13837 case 2:
42554f6a 13838 case 4:
2cf19d5c
JM
13839 _bfd_error_handler
13840 (_("Warning: %B uses hard float, %B uses soft float"),
13841 ibfd, obfd);
13842 break;
13843
13844 default:
13845 abort ();
13846 }
13847 break;
13848
42554f6a
TS
13849 case 4:
13850 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13851 {
13852 case 1:
13853 _bfd_error_handler
13854 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13855 ibfd, obfd);
13856 break;
13857
13858 case 2:
13859 _bfd_error_handler
13860 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13861 ibfd, obfd);
13862 break;
13863
13864 case 3:
13865 _bfd_error_handler
13866 (_("Warning: %B uses hard float, %B uses soft float"),
13867 obfd, ibfd);
13868 break;
13869
13870 default:
13871 abort ();
13872 }
13873 break;
13874
2cf19d5c
JM
13875 default:
13876 abort ();
13877 }
13878 }
13879
13880 /* Merge Tag_compatibility attributes and any common GNU ones. */
13881 _bfd_elf_merge_object_attributes (ibfd, obfd);
13882
13883 return TRUE;
13884}
13885
b49e97c9
TS
13886/* Merge backend specific data from an object file to the output
13887 object file when linking. */
13888
b34976b6 13889bfd_boolean
9719ad41 13890_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13891{
13892 flagword old_flags;
13893 flagword new_flags;
b34976b6
AM
13894 bfd_boolean ok;
13895 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13896 asection *sec;
13897
58238693 13898 /* Check if we have the same endianness. */
82e51918 13899 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13900 {
13901 (*_bfd_error_handler)
d003868e
AM
13902 (_("%B: endianness incompatible with that of the selected emulation"),
13903 ibfd);
aa701218
AO
13904 return FALSE;
13905 }
b49e97c9 13906
d5eaccd7 13907 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13908 return TRUE;
b49e97c9 13909
aa701218
AO
13910 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13911 {
13912 (*_bfd_error_handler)
d003868e
AM
13913 (_("%B: ABI is incompatible with that of the selected emulation"),
13914 ibfd);
aa701218
AO
13915 return FALSE;
13916 }
13917
2cf19d5c
JM
13918 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13919 return FALSE;
13920
b49e97c9
TS
13921 new_flags = elf_elfheader (ibfd)->e_flags;
13922 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13923 old_flags = elf_elfheader (obfd)->e_flags;
13924
13925 if (! elf_flags_init (obfd))
13926 {
b34976b6 13927 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13928 elf_elfheader (obfd)->e_flags = new_flags;
13929 elf_elfheader (obfd)->e_ident[EI_CLASS]
13930 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13931
13932 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
13933 && (bfd_get_arch_info (obfd)->the_default
13934 || mips_mach_extends_p (bfd_get_mach (obfd),
13935 bfd_get_mach (ibfd))))
b49e97c9
TS
13936 {
13937 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13938 bfd_get_mach (ibfd)))
b34976b6 13939 return FALSE;
b49e97c9
TS
13940 }
13941
b34976b6 13942 return TRUE;
b49e97c9
TS
13943 }
13944
13945 /* Check flag compatibility. */
13946
13947 new_flags &= ~EF_MIPS_NOREORDER;
13948 old_flags &= ~EF_MIPS_NOREORDER;
13949
f4416af6
AO
13950 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13951 doesn't seem to matter. */
13952 new_flags &= ~EF_MIPS_XGOT;
13953 old_flags &= ~EF_MIPS_XGOT;
13954
98a8deaf
RS
13955 /* MIPSpro generates ucode info in n64 objects. Again, we should
13956 just be able to ignore this. */
13957 new_flags &= ~EF_MIPS_UCODE;
13958 old_flags &= ~EF_MIPS_UCODE;
13959
861fb55a
DJ
13960 /* DSOs should only be linked with CPIC code. */
13961 if ((ibfd->flags & DYNAMIC) != 0)
13962 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13963
b49e97c9 13964 if (new_flags == old_flags)
b34976b6 13965 return TRUE;
b49e97c9
TS
13966
13967 /* Check to see if the input BFD actually contains any sections.
13968 If not, its flags may not have been initialised either, but it cannot
13969 actually cause any incompatibility. */
13970 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13971 {
13972 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13973 which are automatically generated by gas. Also ignore fake
13974 (s)common sections, since merely defining a common symbol does
13975 not affect compatibility. */
13976 if ((sec->flags & SEC_IS_COMMON) == 0
13977 && strcmp (sec->name, ".reginfo")
b49e97c9 13978 && strcmp (sec->name, ".mdebug")
eea6121a 13979 && (sec->size != 0
d13d89fa
NS
13980 || (strcmp (sec->name, ".text")
13981 && strcmp (sec->name, ".data")
13982 && strcmp (sec->name, ".bss"))))
b49e97c9 13983 {
b34976b6 13984 null_input_bfd = FALSE;
b49e97c9
TS
13985 break;
13986 }
13987 }
13988 if (null_input_bfd)
b34976b6 13989 return TRUE;
b49e97c9 13990
b34976b6 13991 ok = TRUE;
b49e97c9 13992
143d77c5
EC
13993 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13994 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13995 {
b49e97c9 13996 (*_bfd_error_handler)
861fb55a 13997 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13998 ibfd);
143d77c5 13999 ok = TRUE;
b49e97c9
TS
14000 }
14001
143d77c5
EC
14002 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14003 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14004 if (! (new_flags & EF_MIPS_PIC))
14005 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14006
14007 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14008 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 14009
64543e1a
RS
14010 /* Compare the ISAs. */
14011 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 14012 {
64543e1a 14013 (*_bfd_error_handler)
d003868e
AM
14014 (_("%B: linking 32-bit code with 64-bit code"),
14015 ibfd);
64543e1a
RS
14016 ok = FALSE;
14017 }
14018 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14019 {
14020 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14021 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 14022 {
64543e1a
RS
14023 /* Copy the architecture info from IBFD to OBFD. Also copy
14024 the 32-bit flag (if set) so that we continue to recognise
14025 OBFD as a 32-bit binary. */
14026 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14027 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14028 elf_elfheader (obfd)->e_flags
14029 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14030
14031 /* Copy across the ABI flags if OBFD doesn't use them
14032 and if that was what caused us to treat IBFD as 32-bit. */
14033 if ((old_flags & EF_MIPS_ABI) == 0
14034 && mips_32bit_flags_p (new_flags)
14035 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14036 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14037 }
14038 else
14039 {
64543e1a 14040 /* The ISAs aren't compatible. */
b49e97c9 14041 (*_bfd_error_handler)
d003868e
AM
14042 (_("%B: linking %s module with previous %s modules"),
14043 ibfd,
64543e1a
RS
14044 bfd_printable_name (ibfd),
14045 bfd_printable_name (obfd));
b34976b6 14046 ok = FALSE;
b49e97c9 14047 }
b49e97c9
TS
14048 }
14049
64543e1a
RS
14050 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14051 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14052
14053 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14054 does set EI_CLASS differently from any 32-bit ABI. */
14055 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14056 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14057 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14058 {
14059 /* Only error if both are set (to different values). */
14060 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14061 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14062 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14063 {
14064 (*_bfd_error_handler)
d003868e
AM
14065 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14066 ibfd,
b49e97c9
TS
14067 elf_mips_abi_name (ibfd),
14068 elf_mips_abi_name (obfd));
b34976b6 14069 ok = FALSE;
b49e97c9
TS
14070 }
14071 new_flags &= ~EF_MIPS_ABI;
14072 old_flags &= ~EF_MIPS_ABI;
14073 }
14074
df58fc94
RS
14075 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14076 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14077 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14078 {
df58fc94
RS
14079 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14080 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14081 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14082 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14083 int micro_mis = old_m16 && new_micro;
14084 int m16_mis = old_micro && new_m16;
14085
14086 if (m16_mis || micro_mis)
14087 {
14088 (*_bfd_error_handler)
14089 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14090 ibfd,
14091 m16_mis ? "MIPS16" : "microMIPS",
14092 m16_mis ? "microMIPS" : "MIPS16");
14093 ok = FALSE;
14094 }
14095
fb39dac1
RS
14096 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14097
14098 new_flags &= ~ EF_MIPS_ARCH_ASE;
14099 old_flags &= ~ EF_MIPS_ARCH_ASE;
14100 }
14101
b49e97c9
TS
14102 /* Warn about any other mismatches */
14103 if (new_flags != old_flags)
14104 {
14105 (*_bfd_error_handler)
d003868e
AM
14106 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14107 ibfd, (unsigned long) new_flags,
b49e97c9 14108 (unsigned long) old_flags);
b34976b6 14109 ok = FALSE;
b49e97c9
TS
14110 }
14111
14112 if (! ok)
14113 {
14114 bfd_set_error (bfd_error_bad_value);
b34976b6 14115 return FALSE;
b49e97c9
TS
14116 }
14117
b34976b6 14118 return TRUE;
b49e97c9
TS
14119}
14120
14121/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14122
b34976b6 14123bfd_boolean
9719ad41 14124_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14125{
14126 BFD_ASSERT (!elf_flags_init (abfd)
14127 || elf_elfheader (abfd)->e_flags == flags);
14128
14129 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14130 elf_flags_init (abfd) = TRUE;
14131 return TRUE;
b49e97c9
TS
14132}
14133
ad9563d6
CM
14134char *
14135_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14136{
14137 switch (dtag)
14138 {
14139 default: return "";
14140 case DT_MIPS_RLD_VERSION:
14141 return "MIPS_RLD_VERSION";
14142 case DT_MIPS_TIME_STAMP:
14143 return "MIPS_TIME_STAMP";
14144 case DT_MIPS_ICHECKSUM:
14145 return "MIPS_ICHECKSUM";
14146 case DT_MIPS_IVERSION:
14147 return "MIPS_IVERSION";
14148 case DT_MIPS_FLAGS:
14149 return "MIPS_FLAGS";
14150 case DT_MIPS_BASE_ADDRESS:
14151 return "MIPS_BASE_ADDRESS";
14152 case DT_MIPS_MSYM:
14153 return "MIPS_MSYM";
14154 case DT_MIPS_CONFLICT:
14155 return "MIPS_CONFLICT";
14156 case DT_MIPS_LIBLIST:
14157 return "MIPS_LIBLIST";
14158 case DT_MIPS_LOCAL_GOTNO:
14159 return "MIPS_LOCAL_GOTNO";
14160 case DT_MIPS_CONFLICTNO:
14161 return "MIPS_CONFLICTNO";
14162 case DT_MIPS_LIBLISTNO:
14163 return "MIPS_LIBLISTNO";
14164 case DT_MIPS_SYMTABNO:
14165 return "MIPS_SYMTABNO";
14166 case DT_MIPS_UNREFEXTNO:
14167 return "MIPS_UNREFEXTNO";
14168 case DT_MIPS_GOTSYM:
14169 return "MIPS_GOTSYM";
14170 case DT_MIPS_HIPAGENO:
14171 return "MIPS_HIPAGENO";
14172 case DT_MIPS_RLD_MAP:
14173 return "MIPS_RLD_MAP";
14174 case DT_MIPS_DELTA_CLASS:
14175 return "MIPS_DELTA_CLASS";
14176 case DT_MIPS_DELTA_CLASS_NO:
14177 return "MIPS_DELTA_CLASS_NO";
14178 case DT_MIPS_DELTA_INSTANCE:
14179 return "MIPS_DELTA_INSTANCE";
14180 case DT_MIPS_DELTA_INSTANCE_NO:
14181 return "MIPS_DELTA_INSTANCE_NO";
14182 case DT_MIPS_DELTA_RELOC:
14183 return "MIPS_DELTA_RELOC";
14184 case DT_MIPS_DELTA_RELOC_NO:
14185 return "MIPS_DELTA_RELOC_NO";
14186 case DT_MIPS_DELTA_SYM:
14187 return "MIPS_DELTA_SYM";
14188 case DT_MIPS_DELTA_SYM_NO:
14189 return "MIPS_DELTA_SYM_NO";
14190 case DT_MIPS_DELTA_CLASSSYM:
14191 return "MIPS_DELTA_CLASSSYM";
14192 case DT_MIPS_DELTA_CLASSSYM_NO:
14193 return "MIPS_DELTA_CLASSSYM_NO";
14194 case DT_MIPS_CXX_FLAGS:
14195 return "MIPS_CXX_FLAGS";
14196 case DT_MIPS_PIXIE_INIT:
14197 return "MIPS_PIXIE_INIT";
14198 case DT_MIPS_SYMBOL_LIB:
14199 return "MIPS_SYMBOL_LIB";
14200 case DT_MIPS_LOCALPAGE_GOTIDX:
14201 return "MIPS_LOCALPAGE_GOTIDX";
14202 case DT_MIPS_LOCAL_GOTIDX:
14203 return "MIPS_LOCAL_GOTIDX";
14204 case DT_MIPS_HIDDEN_GOTIDX:
14205 return "MIPS_HIDDEN_GOTIDX";
14206 case DT_MIPS_PROTECTED_GOTIDX:
14207 return "MIPS_PROTECTED_GOT_IDX";
14208 case DT_MIPS_OPTIONS:
14209 return "MIPS_OPTIONS";
14210 case DT_MIPS_INTERFACE:
14211 return "MIPS_INTERFACE";
14212 case DT_MIPS_DYNSTR_ALIGN:
14213 return "DT_MIPS_DYNSTR_ALIGN";
14214 case DT_MIPS_INTERFACE_SIZE:
14215 return "DT_MIPS_INTERFACE_SIZE";
14216 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14217 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14218 case DT_MIPS_PERF_SUFFIX:
14219 return "DT_MIPS_PERF_SUFFIX";
14220 case DT_MIPS_COMPACT_SIZE:
14221 return "DT_MIPS_COMPACT_SIZE";
14222 case DT_MIPS_GP_VALUE:
14223 return "DT_MIPS_GP_VALUE";
14224 case DT_MIPS_AUX_DYNAMIC:
14225 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14226 case DT_MIPS_PLTGOT:
14227 return "DT_MIPS_PLTGOT";
14228 case DT_MIPS_RWPLT:
14229 return "DT_MIPS_RWPLT";
ad9563d6
CM
14230 }
14231}
14232
b34976b6 14233bfd_boolean
9719ad41 14234_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14235{
9719ad41 14236 FILE *file = ptr;
b49e97c9
TS
14237
14238 BFD_ASSERT (abfd != NULL && ptr != NULL);
14239
14240 /* Print normal ELF private data. */
14241 _bfd_elf_print_private_bfd_data (abfd, ptr);
14242
14243 /* xgettext:c-format */
14244 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14245
14246 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14247 fprintf (file, _(" [abi=O32]"));
14248 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14249 fprintf (file, _(" [abi=O64]"));
14250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14251 fprintf (file, _(" [abi=EABI32]"));
14252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14253 fprintf (file, _(" [abi=EABI64]"));
14254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14255 fprintf (file, _(" [abi unknown]"));
14256 else if (ABI_N32_P (abfd))
14257 fprintf (file, _(" [abi=N32]"));
14258 else if (ABI_64_P (abfd))
14259 fprintf (file, _(" [abi=64]"));
14260 else
14261 fprintf (file, _(" [no abi set]"));
14262
14263 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14264 fprintf (file, " [mips1]");
b49e97c9 14265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14266 fprintf (file, " [mips2]");
b49e97c9 14267 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14268 fprintf (file, " [mips3]");
b49e97c9 14269 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14270 fprintf (file, " [mips4]");
b49e97c9 14271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14272 fprintf (file, " [mips5]");
b49e97c9 14273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14274 fprintf (file, " [mips32]");
b49e97c9 14275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14276 fprintf (file, " [mips64]");
af7ee8bf 14277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14278 fprintf (file, " [mips32r2]");
5f74bc13 14279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14280 fprintf (file, " [mips64r2]");
b49e97c9
TS
14281 else
14282 fprintf (file, _(" [unknown ISA]"));
14283
40d32fc6 14284 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14285 fprintf (file, " [mdmx]");
40d32fc6
CD
14286
14287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14288 fprintf (file, " [mips16]");
40d32fc6 14289
df58fc94
RS
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14291 fprintf (file, " [micromips]");
14292
b49e97c9 14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14294 fprintf (file, " [32bitmode]");
b49e97c9
TS
14295 else
14296 fprintf (file, _(" [not 32bitmode]"));
14297
c0e3f241 14298 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14299 fprintf (file, " [noreorder]");
c0e3f241
CD
14300
14301 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14302 fprintf (file, " [PIC]");
c0e3f241
CD
14303
14304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14305 fprintf (file, " [CPIC]");
c0e3f241
CD
14306
14307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14308 fprintf (file, " [XGOT]");
c0e3f241
CD
14309
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14311 fprintf (file, " [UCODE]");
c0e3f241 14312
b49e97c9
TS
14313 fputc ('\n', file);
14314
b34976b6 14315 return TRUE;
b49e97c9 14316}
2f89ff8d 14317
b35d266b 14318const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14319{
0112cd26
NC
14320 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14321 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14322 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14323 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14324 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14325 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14326 { NULL, 0, 0, 0, 0 }
2f89ff8d 14327};
5e2b0d47 14328
8992f0d7
TS
14329/* Merge non visibility st_other attributes. Ensure that the
14330 STO_OPTIONAL flag is copied into h->other, even if this is not a
14331 definiton of the symbol. */
5e2b0d47
NC
14332void
14333_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14334 const Elf_Internal_Sym *isym,
14335 bfd_boolean definition,
14336 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14337{
8992f0d7
TS
14338 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14339 {
14340 unsigned char other;
14341
14342 other = (definition ? isym->st_other : h->other);
14343 other &= ~ELF_ST_VISIBILITY (-1);
14344 h->other = other | ELF_ST_VISIBILITY (h->other);
14345 }
14346
14347 if (!definition
5e2b0d47
NC
14348 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14349 h->other |= STO_OPTIONAL;
14350}
12ac1cf5
NC
14351
14352/* Decide whether an undefined symbol is special and can be ignored.
14353 This is the case for OPTIONAL symbols on IRIX. */
14354bfd_boolean
14355_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14356{
14357 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14358}
e0764319
NC
14359
14360bfd_boolean
14361_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14362{
14363 return (sym->st_shndx == SHN_COMMON
14364 || sym->st_shndx == SHN_MIPS_ACOMMON
14365 || sym->st_shndx == SHN_MIPS_SCOMMON);
14366}
861fb55a
DJ
14367
14368/* Return address for Ith PLT stub in section PLT, for relocation REL
14369 or (bfd_vma) -1 if it should not be included. */
14370
14371bfd_vma
14372_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14373 const arelent *rel ATTRIBUTE_UNUSED)
14374{
14375 return (plt->vma
14376 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14377 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14378}
14379
14380void
14381_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14382{
14383 struct mips_elf_link_hash_table *htab;
14384 Elf_Internal_Ehdr *i_ehdrp;
14385
14386 i_ehdrp = elf_elfheader (abfd);
14387 if (link_info)
14388 {
14389 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14390 BFD_ASSERT (htab != NULL);
14391
861fb55a
DJ
14392 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14393 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14394 }
14395}
This page took 1.585095 seconds and 4 git commands to generate.