bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
ead49a57
RS
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
020d7251 57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
ead49a57
RS
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
f4416af6
AO
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
020d7251
RS
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
f4416af6
AO
101 struct mips_elf_link_hash_entry *h;
102 } d;
0f20cc35
DJ
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
b15e6682 111 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
b15e6682
AO
115};
116
c224138d
RS
117/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120struct mips_got_page_range
121{
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125};
126
127/* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129struct mips_got_page_entry
130{
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139};
140
f0abc2a1 141/* This structure is used to hold .got information when linking. */
b49e97c9
TS
142
143struct mips_got_info
144{
b49e97c9
TS
145 /* The number of global .got entries. */
146 unsigned int global_gotno;
23cc69b6
RS
147 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
148 unsigned int reloc_only_gotno;
0f20cc35
DJ
149 /* The number of .got slots used for TLS. */
150 unsigned int tls_gotno;
151 /* The first unused TLS .got entry. Used only during
152 mips_elf_initialize_tls_index. */
153 unsigned int tls_assigned_gotno;
c224138d 154 /* The number of local .got entries, eventually including page entries. */
b49e97c9 155 unsigned int local_gotno;
c224138d
RS
156 /* The maximum number of page entries needed. */
157 unsigned int page_gotno;
b49e97c9
TS
158 /* The number of local .got entries we have used. */
159 unsigned int assigned_gotno;
b15e6682
AO
160 /* A hash table holding members of the got. */
161 struct htab *got_entries;
c224138d
RS
162 /* A hash table of mips_got_page_entry structures. */
163 struct htab *got_page_entries;
f4416af6
AO
164 /* A hash table mapping input bfds to other mips_got_info. NULL
165 unless multi-got was necessary. */
166 struct htab *bfd2got;
167 /* In multi-got links, a pointer to the next got (err, rather, most
168 of the time, it points to the previous got). */
169 struct mips_got_info *next;
0f20cc35
DJ
170 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
171 for none, or MINUS_TWO for not yet assigned. This is needed
172 because a single-GOT link may have multiple hash table entries
173 for the LDM. It does not get initialized in multi-GOT mode. */
174 bfd_vma tls_ldm_offset;
f4416af6
AO
175};
176
177/* Map an input bfd to a got in a multi-got link. */
178
91d6fa6a
NC
179struct mips_elf_bfd2got_hash
180{
f4416af6
AO
181 bfd *bfd;
182 struct mips_got_info *g;
183};
184
185/* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188struct mips_elf_got_per_bfd_arg
189{
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
215/* Another structure used to pass arguments for got entries traversal. */
216
217struct mips_elf_set_global_got_offset_arg
218{
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
b49e97c9
TS
223};
224
0f20cc35
DJ
225/* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228struct mips_elf_count_tls_arg
229{
230 struct bfd_link_info *info;
231 unsigned int needed;
232};
233
f0abc2a1
AM
234struct _mips_elf_section_data
235{
236 struct bfd_elf_section_data elf;
237 union
238 {
f0abc2a1
AM
239 bfd_byte *tdata;
240 } u;
241};
242
243#define mips_elf_section_data(sec) \
68bfbfcc 244 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 245
d5eaccd7
RS
246#define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
4dfe6ac6 249 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 250
634835ae
RS
251/* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268#define GGA_NORMAL 0
269#define GGA_RELOC_ONLY 1
270#define GGA_NONE 2
271
861fb55a
DJ
272/* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299};
300
301/* Macros for populating a mips_elf_la25_stub. */
302
303#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
306#define LA25_LUI_MICROMIPS(VAL) \
307 (0x41b90000 | (VAL)) /* lui t9,VAL */
308#define LA25_J_MICROMIPS(VAL) \
309 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
310#define LA25_ADDIU_MICROMIPS(VAL) \
311 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 312
b49e97c9
TS
313/* This structure is passed to mips_elf_sort_hash_table_f when sorting
314 the dynamic symbols. */
315
316struct mips_elf_hash_sort_data
317{
318 /* The symbol in the global GOT with the lowest dynamic symbol table
319 index. */
320 struct elf_link_hash_entry *low;
0f20cc35
DJ
321 /* The least dynamic symbol table index corresponding to a non-TLS
322 symbol with a GOT entry. */
b49e97c9 323 long min_got_dynindx;
f4416af6
AO
324 /* The greatest dynamic symbol table index corresponding to a symbol
325 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 326 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 327 long max_unref_got_dynindx;
b49e97c9
TS
328 /* The greatest dynamic symbol table index not corresponding to a
329 symbol without a GOT entry. */
330 long max_non_got_dynindx;
331};
332
333/* The MIPS ELF linker needs additional information for each symbol in
334 the global hash table. */
335
336struct mips_elf_link_hash_entry
337{
338 struct elf_link_hash_entry root;
339
340 /* External symbol information. */
341 EXTR esym;
342
861fb55a
DJ
343 /* The la25 stub we have created for ths symbol, if any. */
344 struct mips_elf_la25_stub *la25_stub;
345
b49e97c9
TS
346 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
347 this symbol. */
348 unsigned int possibly_dynamic_relocs;
349
b49e97c9
TS
350 /* If there is a stub that 32 bit functions should use to call this
351 16 bit function, this points to the section containing the stub. */
352 asection *fn_stub;
353
b49e97c9
TS
354 /* If there is a stub that 16 bit functions should use to call this
355 32 bit function, this points to the section containing the stub. */
356 asection *call_stub;
357
358 /* This is like the call_stub field, but it is used if the function
359 being called returns a floating point value. */
360 asection *call_fp_stub;
7c5fcef7 361
0f20cc35
DJ
362#define GOT_NORMAL 0
363#define GOT_TLS_GD 1
364#define GOT_TLS_LDM 2
365#define GOT_TLS_IE 4
366#define GOT_TLS_OFFSET_DONE 0x40
367#define GOT_TLS_DONE 0x80
368 unsigned char tls_type;
71782a75 369
0f20cc35
DJ
370 /* This is only used in single-GOT mode; in multi-GOT mode there
371 is one mips_got_entry per GOT entry, so the offset is stored
372 there. In single-GOT mode there may be many mips_got_entry
373 structures all referring to the same GOT slot. It might be
374 possible to use root.got.offset instead, but that field is
375 overloaded already. */
376 bfd_vma tls_got_offset;
71782a75 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
413};
414
415/* MIPS ELF linker hash table. */
416
417struct mips_elf_link_hash_table
418{
419 struct elf_link_hash_table root;
861fb55a 420
b49e97c9
TS
421 /* The number of .rtproc entries. */
422 bfd_size_type procedure_count;
861fb55a 423
b49e97c9
TS
424 /* The size of the .compact_rel section (if SGI_COMPAT). */
425 bfd_size_type compact_rel_size;
861fb55a 426
e6aea42d
MR
427 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
428 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 429 bfd_boolean use_rld_obj_head;
861fb55a 430
b4082c70
DD
431 /* The __rld_map or __rld_obj_head symbol. */
432 struct elf_link_hash_entry *rld_symbol;
861fb55a 433
b49e97c9 434 /* This is set if we see any mips16 stub sections. */
b34976b6 435 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
436
437 /* True if we can generate copy relocs and PLTs. */
438 bfd_boolean use_plts_and_copy_relocs;
439
0a44bf69
RS
440 /* True if we're generating code for VxWorks. */
441 bfd_boolean is_vxworks;
861fb55a 442
0e53d9da
AN
443 /* True if we already reported the small-data section overflow. */
444 bfd_boolean small_data_overflow_reported;
861fb55a 445
0a44bf69
RS
446 /* Shortcuts to some dynamic sections, or NULL if they are not
447 being used. */
448 asection *srelbss;
449 asection *sdynbss;
450 asection *srelplt;
451 asection *srelplt2;
452 asection *sgotplt;
453 asection *splt;
4e41d0d7 454 asection *sstubs;
a8028dd0 455 asection *sgot;
861fb55a 456
a8028dd0
RS
457 /* The master GOT information. */
458 struct mips_got_info *got_info;
861fb55a 459
d222d210
RS
460 /* The global symbol in the GOT with the lowest index in the dynamic
461 symbol table. */
462 struct elf_link_hash_entry *global_gotsym;
463
861fb55a 464 /* The size of the PLT header in bytes. */
0a44bf69 465 bfd_vma plt_header_size;
861fb55a
DJ
466
467 /* The size of a PLT entry in bytes. */
0a44bf69 468 bfd_vma plt_entry_size;
861fb55a 469
33bb52fb
RS
470 /* The number of functions that need a lazy-binding stub. */
471 bfd_vma lazy_stub_count;
861fb55a 472
5108fc1b
RS
473 /* The size of a function stub entry in bytes. */
474 bfd_vma function_stub_size;
861fb55a
DJ
475
476 /* The number of reserved entries at the beginning of the GOT. */
477 unsigned int reserved_gotno;
478
479 /* The section used for mips_elf_la25_stub trampolines.
480 See the comment above that structure for details. */
481 asection *strampoline;
482
483 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
484 pairs. */
485 htab_t la25_stubs;
486
487 /* A function FN (NAME, IS, OS) that creates a new input section
488 called NAME and links it to output section OS. If IS is nonnull,
489 the new section should go immediately before it, otherwise it
490 should go at the (current) beginning of OS.
491
492 The function returns the new section on success, otherwise it
493 returns null. */
494 asection *(*add_stub_section) (const char *, asection *, asection *);
495};
496
4dfe6ac6
NC
497/* Get the MIPS ELF linker hash table from a link_info structure. */
498
499#define mips_elf_hash_table(p) \
500 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
501 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
502
861fb55a 503/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
504struct mips_htab_traverse_info
505{
861fb55a
DJ
506 /* The usual link-wide information. */
507 struct bfd_link_info *info;
508 bfd *output_bfd;
509
510 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
511 bfd_boolean error;
b49e97c9
TS
512};
513
6ae68ba3
MR
514/* MIPS ELF private object data. */
515
516struct mips_elf_obj_tdata
517{
518 /* Generic ELF private object data. */
519 struct elf_obj_tdata root;
520
521 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
522 bfd *abi_fp_bfd;
523};
524
525/* Get MIPS ELF private object data from BFD's tdata. */
526
527#define mips_elf_tdata(bfd) \
528 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
529
0f20cc35
DJ
530#define TLS_RELOC_P(r_type) \
531 (r_type == R_MIPS_TLS_DTPMOD32 \
532 || r_type == R_MIPS_TLS_DTPMOD64 \
533 || r_type == R_MIPS_TLS_DTPREL32 \
534 || r_type == R_MIPS_TLS_DTPREL64 \
535 || r_type == R_MIPS_TLS_GD \
536 || r_type == R_MIPS_TLS_LDM \
537 || r_type == R_MIPS_TLS_DTPREL_HI16 \
538 || r_type == R_MIPS_TLS_DTPREL_LO16 \
539 || r_type == R_MIPS_TLS_GOTTPREL \
540 || r_type == R_MIPS_TLS_TPREL32 \
541 || r_type == R_MIPS_TLS_TPREL64 \
542 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 543 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
544 || r_type == R_MIPS16_TLS_GD \
545 || r_type == R_MIPS16_TLS_LDM \
546 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
547 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
548 || r_type == R_MIPS16_TLS_GOTTPREL \
549 || r_type == R_MIPS16_TLS_TPREL_HI16 \
550 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
551 || r_type == R_MICROMIPS_TLS_GD \
552 || r_type == R_MICROMIPS_TLS_LDM \
553 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
554 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
555 || r_type == R_MICROMIPS_TLS_GOTTPREL \
556 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
557 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 558
b49e97c9
TS
559/* Structure used to pass information to mips_elf_output_extsym. */
560
561struct extsym_info
562{
9e4aeb93
RS
563 bfd *abfd;
564 struct bfd_link_info *info;
b49e97c9
TS
565 struct ecoff_debug_info *debug;
566 const struct ecoff_debug_swap *swap;
b34976b6 567 bfd_boolean failed;
b49e97c9
TS
568};
569
8dc1a139 570/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
571
572static const char * const mips_elf_dynsym_rtproc_names[] =
573{
574 "_procedure_table",
575 "_procedure_string_table",
576 "_procedure_table_size",
577 NULL
578};
579
580/* These structures are used to generate the .compact_rel section on
8dc1a139 581 IRIX5. */
b49e97c9
TS
582
583typedef struct
584{
585 unsigned long id1; /* Always one? */
586 unsigned long num; /* Number of compact relocation entries. */
587 unsigned long id2; /* Always two? */
588 unsigned long offset; /* The file offset of the first relocation. */
589 unsigned long reserved0; /* Zero? */
590 unsigned long reserved1; /* Zero? */
591} Elf32_compact_rel;
592
593typedef struct
594{
595 bfd_byte id1[4];
596 bfd_byte num[4];
597 bfd_byte id2[4];
598 bfd_byte offset[4];
599 bfd_byte reserved0[4];
600 bfd_byte reserved1[4];
601} Elf32_External_compact_rel;
602
603typedef struct
604{
605 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
606 unsigned int rtype : 4; /* Relocation types. See below. */
607 unsigned int dist2to : 8;
608 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
609 unsigned long konst; /* KONST field. See below. */
610 unsigned long vaddr; /* VADDR to be relocated. */
611} Elf32_crinfo;
612
613typedef struct
614{
615 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
616 unsigned int rtype : 4; /* Relocation types. See below. */
617 unsigned int dist2to : 8;
618 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
619 unsigned long konst; /* KONST field. See below. */
620} Elf32_crinfo2;
621
622typedef struct
623{
624 bfd_byte info[4];
625 bfd_byte konst[4];
626 bfd_byte vaddr[4];
627} Elf32_External_crinfo;
628
629typedef struct
630{
631 bfd_byte info[4];
632 bfd_byte konst[4];
633} Elf32_External_crinfo2;
634
635/* These are the constants used to swap the bitfields in a crinfo. */
636
637#define CRINFO_CTYPE (0x1)
638#define CRINFO_CTYPE_SH (31)
639#define CRINFO_RTYPE (0xf)
640#define CRINFO_RTYPE_SH (27)
641#define CRINFO_DIST2TO (0xff)
642#define CRINFO_DIST2TO_SH (19)
643#define CRINFO_RELVADDR (0x7ffff)
644#define CRINFO_RELVADDR_SH (0)
645
646/* A compact relocation info has long (3 words) or short (2 words)
647 formats. A short format doesn't have VADDR field and relvaddr
648 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
649#define CRF_MIPS_LONG 1
650#define CRF_MIPS_SHORT 0
651
652/* There are 4 types of compact relocation at least. The value KONST
653 has different meaning for each type:
654
655 (type) (konst)
656 CT_MIPS_REL32 Address in data
657 CT_MIPS_WORD Address in word (XXX)
658 CT_MIPS_GPHI_LO GP - vaddr
659 CT_MIPS_JMPAD Address to jump
660 */
661
662#define CRT_MIPS_REL32 0xa
663#define CRT_MIPS_WORD 0xb
664#define CRT_MIPS_GPHI_LO 0xc
665#define CRT_MIPS_JMPAD 0xd
666
667#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
668#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
669#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
670#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
671\f
672/* The structure of the runtime procedure descriptor created by the
673 loader for use by the static exception system. */
674
675typedef struct runtime_pdr {
ae9a127f
NC
676 bfd_vma adr; /* Memory address of start of procedure. */
677 long regmask; /* Save register mask. */
678 long regoffset; /* Save register offset. */
679 long fregmask; /* Save floating point register mask. */
680 long fregoffset; /* Save floating point register offset. */
681 long frameoffset; /* Frame size. */
682 short framereg; /* Frame pointer register. */
683 short pcreg; /* Offset or reg of return pc. */
684 long irpss; /* Index into the runtime string table. */
b49e97c9 685 long reserved;
ae9a127f 686 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
687} RPDR, *pRPDR;
688#define cbRPDR sizeof (RPDR)
689#define rpdNil ((pRPDR) 0)
690\f
b15e6682 691static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
692 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
693 struct mips_elf_link_hash_entry *, int);
b34976b6 694static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 695 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
696static bfd_vma mips_elf_high
697 (bfd_vma);
b34976b6 698static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
699 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
700 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
701 bfd_vma *, asection *);
9719ad41
RS
702static hashval_t mips_elf_got_entry_hash
703 (const void *);
f4416af6 704static bfd_vma mips_elf_adjust_gp
9719ad41 705 (bfd *, struct mips_got_info *, bfd *);
f4416af6 706static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 707 (struct mips_got_info *, bfd *);
f4416af6 708
b49e97c9
TS
709/* This will be used when we sort the dynamic relocation records. */
710static bfd *reldyn_sorting_bfd;
711
6d30f5b2
NC
712/* True if ABFD is for CPUs with load interlocking that include
713 non-MIPS1 CPUs and R3900. */
714#define LOAD_INTERLOCKS_P(abfd) \
715 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
716 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
717
cd8d5a82
CF
718/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
719 This should be safe for all architectures. We enable this predicate
720 for RM9000 for now. */
721#define JAL_TO_BAL_P(abfd) \
722 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
723
724/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
725 This should be safe for all architectures. We enable this predicate for
726 all CPUs. */
727#define JALR_TO_BAL_P(abfd) 1
728
38a7df63
CF
729/* True if ABFD is for CPUs that are faster if JR is converted to B.
730 This should be safe for all architectures. We enable this predicate for
731 all CPUs. */
732#define JR_TO_B_P(abfd) 1
733
861fb55a
DJ
734/* True if ABFD is a PIC object. */
735#define PIC_OBJECT_P(abfd) \
736 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
737
b49e97c9 738/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
739#define ABI_N32_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
741
4a14403c 742/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 743#define ABI_64_P(abfd) \
141ff970 744 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 745
4a14403c
TS
746/* Nonzero if ABFD is using NewABI conventions. */
747#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
748
749/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
750#define IRIX_COMPAT(abfd) \
751 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
752
b49e97c9
TS
753/* Whether we are trying to be compatible with IRIX at all. */
754#define SGI_COMPAT(abfd) \
755 (IRIX_COMPAT (abfd) != ict_none)
756
757/* The name of the options section. */
758#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 759 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 760
cc2e31b9
RS
761/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
762 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
763#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
764 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
765
943284cc
DJ
766/* Whether the section is readonly. */
767#define MIPS_ELF_READONLY_SECTION(sec) \
768 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
769 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
770
b49e97c9 771/* The name of the stub section. */
ca07892d 772#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
773
774/* The size of an external REL relocation. */
775#define MIPS_ELF_REL_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->sizeof_rel)
777
0a44bf69
RS
778/* The size of an external RELA relocation. */
779#define MIPS_ELF_RELA_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->sizeof_rela)
781
b49e97c9
TS
782/* The size of an external dynamic table entry. */
783#define MIPS_ELF_DYN_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_dyn)
785
786/* The size of a GOT entry. */
787#define MIPS_ELF_GOT_SIZE(abfd) \
788 (get_elf_backend_data (abfd)->s->arch_size / 8)
789
b4082c70
DD
790/* The size of the .rld_map section. */
791#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
792 (get_elf_backend_data (abfd)->s->arch_size / 8)
793
b49e97c9
TS
794/* The size of a symbol-table entry. */
795#define MIPS_ELF_SYM_SIZE(abfd) \
796 (get_elf_backend_data (abfd)->s->sizeof_sym)
797
798/* The default alignment for sections, as a power of two. */
799#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 800 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
801
802/* Get word-sized data. */
803#define MIPS_ELF_GET_WORD(abfd, ptr) \
804 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
805
806/* Put out word-sized data. */
807#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
808 (ABI_64_P (abfd) \
809 ? bfd_put_64 (abfd, val, ptr) \
810 : bfd_put_32 (abfd, val, ptr))
811
861fb55a
DJ
812/* The opcode for word-sized loads (LW or LD). */
813#define MIPS_ELF_LOAD_WORD(abfd) \
814 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
815
b49e97c9 816/* Add a dynamic symbol table-entry. */
9719ad41 817#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 818 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
819
820#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
821 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
822
0a44bf69
RS
823/* The name of the dynamic relocation section. */
824#define MIPS_ELF_REL_DYN_NAME(INFO) \
825 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
826
b49e97c9
TS
827/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
828 from smaller values. Start with zero, widen, *then* decrement. */
829#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 830#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 831
51e38d68
RS
832/* The value to write into got[1] for SVR4 targets, to identify it is
833 a GNU object. The dynamic linker can then use got[1] to store the
834 module pointer. */
835#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
836 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
837
f4416af6 838/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
839#define ELF_MIPS_GP_OFFSET(INFO) \
840 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
841
842/* The maximum size of the GOT for it to be addressable using 16-bit
843 offsets from $gp. */
0a44bf69 844#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 845
6a691779 846/* Instructions which appear in a stub. */
3d6746ca
DD
847#define STUB_LW(abfd) \
848 ((ABI_64_P (abfd) \
849 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
850 : 0x8f998010)) /* lw t9,0x8010(gp) */
851#define STUB_MOVE(abfd) \
852 ((ABI_64_P (abfd) \
853 ? 0x03e0782d /* daddu t7,ra */ \
854 : 0x03e07821)) /* addu t7,ra */
855#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
856#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
857#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
858#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
859#define STUB_LI16S(abfd, VAL) \
860 ((ABI_64_P (abfd) \
861 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
862 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
863
5108fc1b
RS
864#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
865#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
866
867/* The name of the dynamic interpreter. This is put in the .interp
868 section. */
869
870#define ELF_DYNAMIC_INTERPRETER(abfd) \
871 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
872 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
873 : "/usr/lib/libc.so.1")
874
875#ifdef BFD64
ee6423ed
AO
876#define MNAME(bfd,pre,pos) \
877 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
878#define ELF_R_SYM(bfd, i) \
879 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
880#define ELF_R_TYPE(bfd, i) \
881 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
882#define ELF_R_INFO(bfd, s, t) \
883 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
884#else
ee6423ed 885#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
886#define ELF_R_SYM(bfd, i) \
887 (ELF32_R_SYM (i))
888#define ELF_R_TYPE(bfd, i) \
889 (ELF32_R_TYPE (i))
890#define ELF_R_INFO(bfd, s, t) \
891 (ELF32_R_INFO (s, t))
892#endif
893\f
894 /* The mips16 compiler uses a couple of special sections to handle
895 floating point arguments.
896
897 Section names that look like .mips16.fn.FNNAME contain stubs that
898 copy floating point arguments from the fp regs to the gp regs and
899 then jump to FNNAME. If any 32 bit function calls FNNAME, the
900 call should be redirected to the stub instead. If no 32 bit
901 function calls FNNAME, the stub should be discarded. We need to
902 consider any reference to the function, not just a call, because
903 if the address of the function is taken we will need the stub,
904 since the address might be passed to a 32 bit function.
905
906 Section names that look like .mips16.call.FNNAME contain stubs
907 that copy floating point arguments from the gp regs to the fp
908 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
909 then any 16 bit function that calls FNNAME should be redirected
910 to the stub instead. If FNNAME is not a 32 bit function, the
911 stub should be discarded.
912
913 .mips16.call.fp.FNNAME sections are similar, but contain stubs
914 which call FNNAME and then copy the return value from the fp regs
915 to the gp regs. These stubs store the return value in $18 while
916 calling FNNAME; any function which might call one of these stubs
917 must arrange to save $18 around the call. (This case is not
918 needed for 32 bit functions that call 16 bit functions, because
919 16 bit functions always return floating point values in both
920 $f0/$f1 and $2/$3.)
921
922 Note that in all cases FNNAME might be defined statically.
923 Therefore, FNNAME is not used literally. Instead, the relocation
924 information will indicate which symbol the section is for.
925
926 We record any stubs that we find in the symbol table. */
927
928#define FN_STUB ".mips16.fn."
929#define CALL_STUB ".mips16.call."
930#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
931
932#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
933#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
934#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 935\f
861fb55a 936/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
937static const bfd_vma mips_o32_exec_plt0_entry[] =
938{
861fb55a
DJ
939 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
940 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
941 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
942 0x031cc023, /* subu $24, $24, $28 */
81f5d455 943 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
944 0x0018c082, /* srl $24, $24, 2 */
945 0x0320f809, /* jalr $25 */
946 0x2718fffe /* subu $24, $24, 2 */
947};
948
949/* The format of the first PLT entry in an N32 executable. Different
950 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
951static const bfd_vma mips_n32_exec_plt0_entry[] =
952{
861fb55a
DJ
953 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
954 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
955 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
956 0x030ec023, /* subu $24, $24, $14 */
81f5d455 957 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
958 0x0018c082, /* srl $24, $24, 2 */
959 0x0320f809, /* jalr $25 */
960 0x2718fffe /* subu $24, $24, 2 */
961};
962
963/* The format of the first PLT entry in an N64 executable. Different
964 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
965static const bfd_vma mips_n64_exec_plt0_entry[] =
966{
861fb55a
DJ
967 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
968 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
969 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
970 0x030ec023, /* subu $24, $24, $14 */
81f5d455 971 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
972 0x0018c0c2, /* srl $24, $24, 3 */
973 0x0320f809, /* jalr $25 */
974 0x2718fffe /* subu $24, $24, 2 */
975};
976
977/* The format of subsequent PLT entries. */
6d30f5b2
NC
978static const bfd_vma mips_exec_plt_entry[] =
979{
861fb55a
DJ
980 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
981 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
982 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
983 0x03200008 /* jr $25 */
984};
985
0a44bf69 986/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
987static const bfd_vma mips_vxworks_exec_plt0_entry[] =
988{
0a44bf69
RS
989 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
990 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
991 0x8f390008, /* lw t9, 8(t9) */
992 0x00000000, /* nop */
993 0x03200008, /* jr t9 */
994 0x00000000 /* nop */
995};
996
997/* The format of subsequent PLT entries. */
6d30f5b2
NC
998static const bfd_vma mips_vxworks_exec_plt_entry[] =
999{
0a44bf69
RS
1000 0x10000000, /* b .PLT_resolver */
1001 0x24180000, /* li t8, <pltindex> */
1002 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1003 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1004 0x8f390000, /* lw t9, 0(t9) */
1005 0x00000000, /* nop */
1006 0x03200008, /* jr t9 */
1007 0x00000000 /* nop */
1008};
1009
1010/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1011static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1012{
0a44bf69
RS
1013 0x8f990008, /* lw t9, 8(gp) */
1014 0x00000000, /* nop */
1015 0x03200008, /* jr t9 */
1016 0x00000000, /* nop */
1017 0x00000000, /* nop */
1018 0x00000000 /* nop */
1019};
1020
1021/* The format of subsequent PLT entries. */
6d30f5b2
NC
1022static const bfd_vma mips_vxworks_shared_plt_entry[] =
1023{
0a44bf69
RS
1024 0x10000000, /* b .PLT_resolver */
1025 0x24180000 /* li t8, <pltindex> */
1026};
1027\f
d21911ea
MR
1028/* microMIPS 32-bit opcode helper installer. */
1029
1030static void
1031bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1032{
1033 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1034 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1035}
1036
1037/* microMIPS 32-bit opcode helper retriever. */
1038
1039static bfd_vma
1040bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1041{
1042 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1043}
1044\f
b49e97c9
TS
1045/* Look up an entry in a MIPS ELF linker hash table. */
1046
1047#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1048 ((struct mips_elf_link_hash_entry *) \
1049 elf_link_hash_lookup (&(table)->root, (string), (create), \
1050 (copy), (follow)))
1051
1052/* Traverse a MIPS ELF linker hash table. */
1053
1054#define mips_elf_link_hash_traverse(table, func, info) \
1055 (elf_link_hash_traverse \
1056 (&(table)->root, \
9719ad41 1057 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1058 (info)))
1059
0f20cc35
DJ
1060/* Find the base offsets for thread-local storage in this object,
1061 for GD/LD and IE/LE respectively. */
1062
1063#define TP_OFFSET 0x7000
1064#define DTP_OFFSET 0x8000
1065
1066static bfd_vma
1067dtprel_base (struct bfd_link_info *info)
1068{
1069 /* If tls_sec is NULL, we should have signalled an error already. */
1070 if (elf_hash_table (info)->tls_sec == NULL)
1071 return 0;
1072 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1073}
1074
1075static bfd_vma
1076tprel_base (struct bfd_link_info *info)
1077{
1078 /* If tls_sec is NULL, we should have signalled an error already. */
1079 if (elf_hash_table (info)->tls_sec == NULL)
1080 return 0;
1081 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1082}
1083
b49e97c9
TS
1084/* Create an entry in a MIPS ELF linker hash table. */
1085
1086static struct bfd_hash_entry *
9719ad41
RS
1087mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1088 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1089{
1090 struct mips_elf_link_hash_entry *ret =
1091 (struct mips_elf_link_hash_entry *) entry;
1092
1093 /* Allocate the structure if it has not already been allocated by a
1094 subclass. */
9719ad41
RS
1095 if (ret == NULL)
1096 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1097 if (ret == NULL)
b49e97c9
TS
1098 return (struct bfd_hash_entry *) ret;
1099
1100 /* Call the allocation method of the superclass. */
1101 ret = ((struct mips_elf_link_hash_entry *)
1102 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1103 table, string));
9719ad41 1104 if (ret != NULL)
b49e97c9
TS
1105 {
1106 /* Set local fields. */
1107 memset (&ret->esym, 0, sizeof (EXTR));
1108 /* We use -2 as a marker to indicate that the information has
1109 not been set. -1 means there is no associated ifd. */
1110 ret->esym.ifd = -2;
861fb55a 1111 ret->la25_stub = 0;
b49e97c9 1112 ret->possibly_dynamic_relocs = 0;
b49e97c9 1113 ret->fn_stub = NULL;
b49e97c9
TS
1114 ret->call_stub = NULL;
1115 ret->call_fp_stub = NULL;
71782a75 1116 ret->tls_type = GOT_NORMAL;
634835ae 1117 ret->global_got_area = GGA_NONE;
6ccf4795 1118 ret->got_only_for_calls = TRUE;
71782a75 1119 ret->readonly_reloc = FALSE;
861fb55a 1120 ret->has_static_relocs = FALSE;
71782a75
RS
1121 ret->no_fn_stub = FALSE;
1122 ret->need_fn_stub = FALSE;
861fb55a 1123 ret->has_nonpic_branches = FALSE;
33bb52fb 1124 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1125 }
1126
1127 return (struct bfd_hash_entry *) ret;
1128}
f0abc2a1 1129
6ae68ba3
MR
1130/* Allocate MIPS ELF private object data. */
1131
1132bfd_boolean
1133_bfd_mips_elf_mkobject (bfd *abfd)
1134{
1135 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1136 MIPS_ELF_DATA);
1137}
1138
f0abc2a1 1139bfd_boolean
9719ad41 1140_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1141{
f592407e
AM
1142 if (!sec->used_by_bfd)
1143 {
1144 struct _mips_elf_section_data *sdata;
1145 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1146
f592407e
AM
1147 sdata = bfd_zalloc (abfd, amt);
1148 if (sdata == NULL)
1149 return FALSE;
1150 sec->used_by_bfd = sdata;
1151 }
f0abc2a1
AM
1152
1153 return _bfd_elf_new_section_hook (abfd, sec);
1154}
b49e97c9
TS
1155\f
1156/* Read ECOFF debugging information from a .mdebug section into a
1157 ecoff_debug_info structure. */
1158
b34976b6 1159bfd_boolean
9719ad41
RS
1160_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1161 struct ecoff_debug_info *debug)
b49e97c9
TS
1162{
1163 HDRR *symhdr;
1164 const struct ecoff_debug_swap *swap;
9719ad41 1165 char *ext_hdr;
b49e97c9
TS
1166
1167 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1168 memset (debug, 0, sizeof (*debug));
1169
9719ad41 1170 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1171 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1172 goto error_return;
1173
9719ad41 1174 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1175 swap->external_hdr_size))
b49e97c9
TS
1176 goto error_return;
1177
1178 symhdr = &debug->symbolic_header;
1179 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1180
1181 /* The symbolic header contains absolute file offsets and sizes to
1182 read. */
1183#define READ(ptr, offset, count, size, type) \
1184 if (symhdr->count == 0) \
1185 debug->ptr = NULL; \
1186 else \
1187 { \
1188 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1189 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1190 if (debug->ptr == NULL) \
1191 goto error_return; \
9719ad41 1192 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1193 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1194 goto error_return; \
1195 }
1196
1197 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1198 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1199 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1200 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1201 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1202 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1203 union aux_ext *);
1204 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1205 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1206 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1207 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1208 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1209#undef READ
1210
1211 debug->fdr = NULL;
b49e97c9 1212
b34976b6 1213 return TRUE;
b49e97c9
TS
1214
1215 error_return:
1216 if (ext_hdr != NULL)
1217 free (ext_hdr);
1218 if (debug->line != NULL)
1219 free (debug->line);
1220 if (debug->external_dnr != NULL)
1221 free (debug->external_dnr);
1222 if (debug->external_pdr != NULL)
1223 free (debug->external_pdr);
1224 if (debug->external_sym != NULL)
1225 free (debug->external_sym);
1226 if (debug->external_opt != NULL)
1227 free (debug->external_opt);
1228 if (debug->external_aux != NULL)
1229 free (debug->external_aux);
1230 if (debug->ss != NULL)
1231 free (debug->ss);
1232 if (debug->ssext != NULL)
1233 free (debug->ssext);
1234 if (debug->external_fdr != NULL)
1235 free (debug->external_fdr);
1236 if (debug->external_rfd != NULL)
1237 free (debug->external_rfd);
1238 if (debug->external_ext != NULL)
1239 free (debug->external_ext);
b34976b6 1240 return FALSE;
b49e97c9
TS
1241}
1242\f
1243/* Swap RPDR (runtime procedure table entry) for output. */
1244
1245static void
9719ad41 1246ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1247{
1248 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1249 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1250 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1251 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1252 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1253 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1254
1255 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1256 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1257
1258 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1259}
1260
1261/* Create a runtime procedure table from the .mdebug section. */
1262
b34976b6 1263static bfd_boolean
9719ad41
RS
1264mips_elf_create_procedure_table (void *handle, bfd *abfd,
1265 struct bfd_link_info *info, asection *s,
1266 struct ecoff_debug_info *debug)
b49e97c9
TS
1267{
1268 const struct ecoff_debug_swap *swap;
1269 HDRR *hdr = &debug->symbolic_header;
1270 RPDR *rpdr, *rp;
1271 struct rpdr_ext *erp;
9719ad41 1272 void *rtproc;
b49e97c9
TS
1273 struct pdr_ext *epdr;
1274 struct sym_ext *esym;
1275 char *ss, **sv;
1276 char *str;
1277 bfd_size_type size;
1278 bfd_size_type count;
1279 unsigned long sindex;
1280 unsigned long i;
1281 PDR pdr;
1282 SYMR sym;
1283 const char *no_name_func = _("static procedure (no name)");
1284
1285 epdr = NULL;
1286 rpdr = NULL;
1287 esym = NULL;
1288 ss = NULL;
1289 sv = NULL;
1290
1291 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1292
1293 sindex = strlen (no_name_func) + 1;
1294 count = hdr->ipdMax;
1295 if (count > 0)
1296 {
1297 size = swap->external_pdr_size;
1298
9719ad41 1299 epdr = bfd_malloc (size * count);
b49e97c9
TS
1300 if (epdr == NULL)
1301 goto error_return;
1302
9719ad41 1303 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1304 goto error_return;
1305
1306 size = sizeof (RPDR);
9719ad41 1307 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1308 if (rpdr == NULL)
1309 goto error_return;
1310
1311 size = sizeof (char *);
9719ad41 1312 sv = bfd_malloc (size * count);
b49e97c9
TS
1313 if (sv == NULL)
1314 goto error_return;
1315
1316 count = hdr->isymMax;
1317 size = swap->external_sym_size;
9719ad41 1318 esym = bfd_malloc (size * count);
b49e97c9
TS
1319 if (esym == NULL)
1320 goto error_return;
1321
9719ad41 1322 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1323 goto error_return;
1324
1325 count = hdr->issMax;
9719ad41 1326 ss = bfd_malloc (count);
b49e97c9
TS
1327 if (ss == NULL)
1328 goto error_return;
f075ee0c 1329 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1330 goto error_return;
1331
1332 count = hdr->ipdMax;
1333 for (i = 0; i < (unsigned long) count; i++, rp++)
1334 {
9719ad41
RS
1335 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1336 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1337 rp->adr = sym.value;
1338 rp->regmask = pdr.regmask;
1339 rp->regoffset = pdr.regoffset;
1340 rp->fregmask = pdr.fregmask;
1341 rp->fregoffset = pdr.fregoffset;
1342 rp->frameoffset = pdr.frameoffset;
1343 rp->framereg = pdr.framereg;
1344 rp->pcreg = pdr.pcreg;
1345 rp->irpss = sindex;
1346 sv[i] = ss + sym.iss;
1347 sindex += strlen (sv[i]) + 1;
1348 }
1349 }
1350
1351 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1352 size = BFD_ALIGN (size, 16);
9719ad41 1353 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1354 if (rtproc == NULL)
1355 {
1356 mips_elf_hash_table (info)->procedure_count = 0;
1357 goto error_return;
1358 }
1359
1360 mips_elf_hash_table (info)->procedure_count = count + 2;
1361
9719ad41 1362 erp = rtproc;
b49e97c9
TS
1363 memset (erp, 0, sizeof (struct rpdr_ext));
1364 erp++;
1365 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1366 strcpy (str, no_name_func);
1367 str += strlen (no_name_func) + 1;
1368 for (i = 0; i < count; i++)
1369 {
1370 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1371 strcpy (str, sv[i]);
1372 str += strlen (sv[i]) + 1;
1373 }
1374 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1375
1376 /* Set the size and contents of .rtproc section. */
eea6121a 1377 s->size = size;
9719ad41 1378 s->contents = rtproc;
b49e97c9
TS
1379
1380 /* Skip this section later on (I don't think this currently
1381 matters, but someday it might). */
8423293d 1382 s->map_head.link_order = NULL;
b49e97c9
TS
1383
1384 if (epdr != NULL)
1385 free (epdr);
1386 if (rpdr != NULL)
1387 free (rpdr);
1388 if (esym != NULL)
1389 free (esym);
1390 if (ss != NULL)
1391 free (ss);
1392 if (sv != NULL)
1393 free (sv);
1394
b34976b6 1395 return TRUE;
b49e97c9
TS
1396
1397 error_return:
1398 if (epdr != NULL)
1399 free (epdr);
1400 if (rpdr != NULL)
1401 free (rpdr);
1402 if (esym != NULL)
1403 free (esym);
1404 if (ss != NULL)
1405 free (ss);
1406 if (sv != NULL)
1407 free (sv);
b34976b6 1408 return FALSE;
b49e97c9 1409}
738e5348 1410\f
861fb55a
DJ
1411/* We're going to create a stub for H. Create a symbol for the stub's
1412 value and size, to help make the disassembly easier to read. */
1413
1414static bfd_boolean
1415mips_elf_create_stub_symbol (struct bfd_link_info *info,
1416 struct mips_elf_link_hash_entry *h,
1417 const char *prefix, asection *s, bfd_vma value,
1418 bfd_vma size)
1419{
1420 struct bfd_link_hash_entry *bh;
1421 struct elf_link_hash_entry *elfh;
1422 const char *name;
1423
df58fc94
RS
1424 if (ELF_ST_IS_MICROMIPS (h->root.other))
1425 value |= 1;
1426
861fb55a
DJ
1427 /* Create a new symbol. */
1428 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1429 bh = NULL;
1430 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1431 BSF_LOCAL, s, value, NULL,
1432 TRUE, FALSE, &bh))
1433 return FALSE;
1434
1435 /* Make it a local function. */
1436 elfh = (struct elf_link_hash_entry *) bh;
1437 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1438 elfh->size = size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441}
1442
738e5348
RS
1443/* We're about to redefine H. Create a symbol to represent H's
1444 current value and size, to help make the disassembly easier
1445 to read. */
1446
1447static bfd_boolean
1448mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1449 struct mips_elf_link_hash_entry *h,
1450 const char *prefix)
1451{
1452 struct bfd_link_hash_entry *bh;
1453 struct elf_link_hash_entry *elfh;
1454 const char *name;
1455 asection *s;
1456 bfd_vma value;
1457
1458 /* Read the symbol's value. */
1459 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1460 || h->root.root.type == bfd_link_hash_defweak);
1461 s = h->root.root.u.def.section;
1462 value = h->root.root.u.def.value;
1463
1464 /* Create a new symbol. */
1465 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1466 bh = NULL;
1467 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1468 BSF_LOCAL, s, value, NULL,
1469 TRUE, FALSE, &bh))
1470 return FALSE;
1471
1472 /* Make it local and copy the other attributes from H. */
1473 elfh = (struct elf_link_hash_entry *) bh;
1474 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1475 elfh->other = h->root.other;
1476 elfh->size = h->root.size;
1477 elfh->forced_local = 1;
1478 return TRUE;
1479}
1480
1481/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1482 function rather than to a hard-float stub. */
1483
1484static bfd_boolean
1485section_allows_mips16_refs_p (asection *section)
1486{
1487 const char *name;
1488
1489 name = bfd_get_section_name (section->owner, section);
1490 return (FN_STUB_P (name)
1491 || CALL_STUB_P (name)
1492 || CALL_FP_STUB_P (name)
1493 || strcmp (name, ".pdr") == 0);
1494}
1495
1496/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1497 stub section of some kind. Return the R_SYMNDX of the target
1498 function, or 0 if we can't decide which function that is. */
1499
1500static unsigned long
cb4437b8
MR
1501mips16_stub_symndx (const struct elf_backend_data *bed,
1502 asection *sec ATTRIBUTE_UNUSED,
502e814e 1503 const Elf_Internal_Rela *relocs,
738e5348
RS
1504 const Elf_Internal_Rela *relend)
1505{
cb4437b8 1506 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1507 const Elf_Internal_Rela *rel;
1508
cb4437b8
MR
1509 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1510 one in a compound relocation. */
1511 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1512 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1513 return ELF_R_SYM (sec->owner, rel->r_info);
1514
1515 /* Otherwise trust the first relocation, whatever its kind. This is
1516 the traditional behavior. */
1517 if (relocs < relend)
1518 return ELF_R_SYM (sec->owner, relocs->r_info);
1519
1520 return 0;
1521}
b49e97c9
TS
1522
1523/* Check the mips16 stubs for a particular symbol, and see if we can
1524 discard them. */
1525
861fb55a
DJ
1526static void
1527mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1528 struct mips_elf_link_hash_entry *h)
b49e97c9 1529{
738e5348
RS
1530 /* Dynamic symbols must use the standard call interface, in case other
1531 objects try to call them. */
1532 if (h->fn_stub != NULL
1533 && h->root.dynindx != -1)
1534 {
1535 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1536 h->need_fn_stub = TRUE;
1537 }
1538
b49e97c9
TS
1539 if (h->fn_stub != NULL
1540 && ! h->need_fn_stub)
1541 {
1542 /* We don't need the fn_stub; the only references to this symbol
1543 are 16 bit calls. Clobber the size to 0 to prevent it from
1544 being included in the link. */
eea6121a 1545 h->fn_stub->size = 0;
b49e97c9
TS
1546 h->fn_stub->flags &= ~SEC_RELOC;
1547 h->fn_stub->reloc_count = 0;
1548 h->fn_stub->flags |= SEC_EXCLUDE;
1549 }
1550
1551 if (h->call_stub != NULL
30c09090 1552 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1553 {
1554 /* We don't need the call_stub; this is a 16 bit function, so
1555 calls from other 16 bit functions are OK. Clobber the size
1556 to 0 to prevent it from being included in the link. */
eea6121a 1557 h->call_stub->size = 0;
b49e97c9
TS
1558 h->call_stub->flags &= ~SEC_RELOC;
1559 h->call_stub->reloc_count = 0;
1560 h->call_stub->flags |= SEC_EXCLUDE;
1561 }
1562
1563 if (h->call_fp_stub != NULL
30c09090 1564 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1565 {
1566 /* We don't need the call_stub; this is a 16 bit function, so
1567 calls from other 16 bit functions are OK. Clobber the size
1568 to 0 to prevent it from being included in the link. */
eea6121a 1569 h->call_fp_stub->size = 0;
b49e97c9
TS
1570 h->call_fp_stub->flags &= ~SEC_RELOC;
1571 h->call_fp_stub->reloc_count = 0;
1572 h->call_fp_stub->flags |= SEC_EXCLUDE;
1573 }
861fb55a
DJ
1574}
1575
1576/* Hashtable callbacks for mips_elf_la25_stubs. */
1577
1578static hashval_t
1579mips_elf_la25_stub_hash (const void *entry_)
1580{
1581 const struct mips_elf_la25_stub *entry;
1582
1583 entry = (struct mips_elf_la25_stub *) entry_;
1584 return entry->h->root.root.u.def.section->id
1585 + entry->h->root.root.u.def.value;
1586}
1587
1588static int
1589mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1590{
1591 const struct mips_elf_la25_stub *entry1, *entry2;
1592
1593 entry1 = (struct mips_elf_la25_stub *) entry1_;
1594 entry2 = (struct mips_elf_la25_stub *) entry2_;
1595 return ((entry1->h->root.root.u.def.section
1596 == entry2->h->root.root.u.def.section)
1597 && (entry1->h->root.root.u.def.value
1598 == entry2->h->root.root.u.def.value));
1599}
1600
1601/* Called by the linker to set up the la25 stub-creation code. FN is
1602 the linker's implementation of add_stub_function. Return true on
1603 success. */
1604
1605bfd_boolean
1606_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1607 asection *(*fn) (const char *, asection *,
1608 asection *))
1609{
1610 struct mips_elf_link_hash_table *htab;
1611
1612 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1613 if (htab == NULL)
1614 return FALSE;
1615
861fb55a
DJ
1616 htab->add_stub_section = fn;
1617 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1618 mips_elf_la25_stub_eq, NULL);
1619 if (htab->la25_stubs == NULL)
1620 return FALSE;
1621
1622 return TRUE;
1623}
1624
1625/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1626 that it or its fn_stub might need $25 to be valid on entry.
1627 Note that MIPS16 functions set up $gp using PC-relative instructions,
1628 so they themselves never need $25 to be valid. Only non-MIPS16
1629 entry points are of interest here. */
861fb55a
DJ
1630
1631static bfd_boolean
1632mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1633{
1634 return ((h->root.root.type == bfd_link_hash_defined
1635 || h->root.root.type == bfd_link_hash_defweak)
1636 && h->root.def_regular
1637 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1638 && (!ELF_ST_IS_MIPS16 (h->root.other)
1639 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1640 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1641 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1642}
1643
8f0c309a
CLT
1644/* Set *SEC to the input section that contains the target of STUB.
1645 Return the offset of the target from the start of that section. */
1646
1647static bfd_vma
1648mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1649 asection **sec)
1650{
1651 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1652 {
1653 BFD_ASSERT (stub->h->need_fn_stub);
1654 *sec = stub->h->fn_stub;
1655 return 0;
1656 }
1657 else
1658 {
1659 *sec = stub->h->root.root.u.def.section;
1660 return stub->h->root.root.u.def.value;
1661 }
1662}
1663
861fb55a
DJ
1664/* STUB describes an la25 stub that we have decided to implement
1665 by inserting an LUI/ADDIU pair before the target function.
1666 Create the section and redirect the function symbol to it. */
1667
1668static bfd_boolean
1669mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1670 struct bfd_link_info *info)
1671{
1672 struct mips_elf_link_hash_table *htab;
1673 char *name;
1674 asection *s, *input_section;
1675 unsigned int align;
1676
1677 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1678 if (htab == NULL)
1679 return FALSE;
861fb55a
DJ
1680
1681 /* Create a unique name for the new section. */
1682 name = bfd_malloc (11 + sizeof (".text.stub."));
1683 if (name == NULL)
1684 return FALSE;
1685 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1686
1687 /* Create the section. */
8f0c309a 1688 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1689 s = htab->add_stub_section (name, input_section,
1690 input_section->output_section);
1691 if (s == NULL)
1692 return FALSE;
1693
1694 /* Make sure that any padding goes before the stub. */
1695 align = input_section->alignment_power;
1696 if (!bfd_set_section_alignment (s->owner, s, align))
1697 return FALSE;
1698 if (align > 3)
1699 s->size = (1 << align) - 8;
1700
1701 /* Create a symbol for the stub. */
1702 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1703 stub->stub_section = s;
1704 stub->offset = s->size;
1705
1706 /* Allocate room for it. */
1707 s->size += 8;
1708 return TRUE;
1709}
1710
1711/* STUB describes an la25 stub that we have decided to implement
1712 with a separate trampoline. Allocate room for it and redirect
1713 the function symbol to it. */
1714
1715static bfd_boolean
1716mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1717 struct bfd_link_info *info)
1718{
1719 struct mips_elf_link_hash_table *htab;
1720 asection *s;
1721
1722 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1723 if (htab == NULL)
1724 return FALSE;
861fb55a
DJ
1725
1726 /* Create a trampoline section, if we haven't already. */
1727 s = htab->strampoline;
1728 if (s == NULL)
1729 {
1730 asection *input_section = stub->h->root.root.u.def.section;
1731 s = htab->add_stub_section (".text", NULL,
1732 input_section->output_section);
1733 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1734 return FALSE;
1735 htab->strampoline = s;
1736 }
1737
1738 /* Create a symbol for the stub. */
1739 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1740 stub->stub_section = s;
1741 stub->offset = s->size;
1742
1743 /* Allocate room for it. */
1744 s->size += 16;
1745 return TRUE;
1746}
1747
1748/* H describes a symbol that needs an la25 stub. Make sure that an
1749 appropriate stub exists and point H at it. */
1750
1751static bfd_boolean
1752mips_elf_add_la25_stub (struct bfd_link_info *info,
1753 struct mips_elf_link_hash_entry *h)
1754{
1755 struct mips_elf_link_hash_table *htab;
1756 struct mips_elf_la25_stub search, *stub;
1757 bfd_boolean use_trampoline_p;
1758 asection *s;
1759 bfd_vma value;
1760 void **slot;
1761
861fb55a
DJ
1762 /* Describe the stub we want. */
1763 search.stub_section = NULL;
1764 search.offset = 0;
1765 search.h = h;
1766
1767 /* See if we've already created an equivalent stub. */
1768 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1769 if (htab == NULL)
1770 return FALSE;
1771
861fb55a
DJ
1772 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1773 if (slot == NULL)
1774 return FALSE;
1775
1776 stub = (struct mips_elf_la25_stub *) *slot;
1777 if (stub != NULL)
1778 {
1779 /* We can reuse the existing stub. */
1780 h->la25_stub = stub;
1781 return TRUE;
1782 }
1783
1784 /* Create a permanent copy of ENTRY and add it to the hash table. */
1785 stub = bfd_malloc (sizeof (search));
1786 if (stub == NULL)
1787 return FALSE;
1788 *stub = search;
1789 *slot = stub;
1790
8f0c309a
CLT
1791 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1792 of the section and if we would need no more than 2 nops. */
1793 value = mips_elf_get_la25_target (stub, &s);
1794 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1795
861fb55a
DJ
1796 h->la25_stub = stub;
1797 return (use_trampoline_p
1798 ? mips_elf_add_la25_trampoline (stub, info)
1799 : mips_elf_add_la25_intro (stub, info));
1800}
1801
1802/* A mips_elf_link_hash_traverse callback that is called before sizing
1803 sections. DATA points to a mips_htab_traverse_info structure. */
1804
1805static bfd_boolean
1806mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1807{
1808 struct mips_htab_traverse_info *hti;
1809
1810 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1811 if (!hti->info->relocatable)
1812 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1813
861fb55a
DJ
1814 if (mips_elf_local_pic_function_p (h))
1815 {
ba85c43e
NC
1816 /* PR 12845: If H is in a section that has been garbage
1817 collected it will have its output section set to *ABS*. */
1818 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1819 return TRUE;
1820
861fb55a
DJ
1821 /* H is a function that might need $25 to be valid on entry.
1822 If we're creating a non-PIC relocatable object, mark H as
1823 being PIC. If we're creating a non-relocatable object with
1824 non-PIC branches and jumps to H, make sure that H has an la25
1825 stub. */
1826 if (hti->info->relocatable)
1827 {
1828 if (!PIC_OBJECT_P (hti->output_bfd))
1829 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1830 }
1831 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1832 {
1833 hti->error = TRUE;
1834 return FALSE;
1835 }
1836 }
b34976b6 1837 return TRUE;
b49e97c9
TS
1838}
1839\f
d6f16593
MR
1840/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1841 Most mips16 instructions are 16 bits, but these instructions
1842 are 32 bits.
1843
1844 The format of these instructions is:
1845
1846 +--------------+--------------------------------+
1847 | JALX | X| Imm 20:16 | Imm 25:21 |
1848 +--------------+--------------------------------+
1849 | Immediate 15:0 |
1850 +-----------------------------------------------+
1851
1852 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1853 Note that the immediate value in the first word is swapped.
1854
1855 When producing a relocatable object file, R_MIPS16_26 is
1856 handled mostly like R_MIPS_26. In particular, the addend is
1857 stored as a straight 26-bit value in a 32-bit instruction.
1858 (gas makes life simpler for itself by never adjusting a
1859 R_MIPS16_26 reloc to be against a section, so the addend is
1860 always zero). However, the 32 bit instruction is stored as 2
1861 16-bit values, rather than a single 32-bit value. In a
1862 big-endian file, the result is the same; in a little-endian
1863 file, the two 16-bit halves of the 32 bit value are swapped.
1864 This is so that a disassembler can recognize the jal
1865 instruction.
1866
1867 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1868 instruction stored as two 16-bit values. The addend A is the
1869 contents of the targ26 field. The calculation is the same as
1870 R_MIPS_26. When storing the calculated value, reorder the
1871 immediate value as shown above, and don't forget to store the
1872 value as two 16-bit values.
1873
1874 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1875 defined as
1876
1877 big-endian:
1878 +--------+----------------------+
1879 | | |
1880 | | targ26-16 |
1881 |31 26|25 0|
1882 +--------+----------------------+
1883
1884 little-endian:
1885 +----------+------+-------------+
1886 | | | |
1887 | sub1 | | sub2 |
1888 |0 9|10 15|16 31|
1889 +----------+--------------------+
1890 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1891 ((sub1 << 16) | sub2)).
1892
1893 When producing a relocatable object file, the calculation is
1894 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1895 When producing a fully linked file, the calculation is
1896 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1897 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1898
738e5348
RS
1899 The table below lists the other MIPS16 instruction relocations.
1900 Each one is calculated in the same way as the non-MIPS16 relocation
1901 given on the right, but using the extended MIPS16 layout of 16-bit
1902 immediate fields:
1903
1904 R_MIPS16_GPREL R_MIPS_GPREL16
1905 R_MIPS16_GOT16 R_MIPS_GOT16
1906 R_MIPS16_CALL16 R_MIPS_CALL16
1907 R_MIPS16_HI16 R_MIPS_HI16
1908 R_MIPS16_LO16 R_MIPS_LO16
1909
1910 A typical instruction will have a format like this:
d6f16593
MR
1911
1912 +--------------+--------------------------------+
1913 | EXTEND | Imm 10:5 | Imm 15:11 |
1914 +--------------+--------------------------------+
1915 | Major | rx | ry | Imm 4:0 |
1916 +--------------+--------------------------------+
1917
1918 EXTEND is the five bit value 11110. Major is the instruction
1919 opcode.
1920
738e5348
RS
1921 All we need to do here is shuffle the bits appropriately.
1922 As above, the two 16-bit halves must be swapped on a
1923 little-endian system. */
1924
1925static inline bfd_boolean
1926mips16_reloc_p (int r_type)
1927{
1928 switch (r_type)
1929 {
1930 case R_MIPS16_26:
1931 case R_MIPS16_GPREL:
1932 case R_MIPS16_GOT16:
1933 case R_MIPS16_CALL16:
1934 case R_MIPS16_HI16:
1935 case R_MIPS16_LO16:
d0f13682
CLT
1936 case R_MIPS16_TLS_GD:
1937 case R_MIPS16_TLS_LDM:
1938 case R_MIPS16_TLS_DTPREL_HI16:
1939 case R_MIPS16_TLS_DTPREL_LO16:
1940 case R_MIPS16_TLS_GOTTPREL:
1941 case R_MIPS16_TLS_TPREL_HI16:
1942 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1943 return TRUE;
1944
1945 default:
1946 return FALSE;
1947 }
1948}
1949
df58fc94
RS
1950/* Check if a microMIPS reloc. */
1951
1952static inline bfd_boolean
1953micromips_reloc_p (unsigned int r_type)
1954{
1955 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1956}
1957
1958/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1959 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1960 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1961
1962static inline bfd_boolean
1963micromips_reloc_shuffle_p (unsigned int r_type)
1964{
1965 return (micromips_reloc_p (r_type)
1966 && r_type != R_MICROMIPS_PC7_S1
1967 && r_type != R_MICROMIPS_PC10_S1);
1968}
1969
738e5348
RS
1970static inline bfd_boolean
1971got16_reloc_p (int r_type)
1972{
df58fc94
RS
1973 return (r_type == R_MIPS_GOT16
1974 || r_type == R_MIPS16_GOT16
1975 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1976}
1977
1978static inline bfd_boolean
1979call16_reloc_p (int r_type)
1980{
df58fc94
RS
1981 return (r_type == R_MIPS_CALL16
1982 || r_type == R_MIPS16_CALL16
1983 || r_type == R_MICROMIPS_CALL16);
1984}
1985
1986static inline bfd_boolean
1987got_disp_reloc_p (unsigned int r_type)
1988{
1989 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1990}
1991
1992static inline bfd_boolean
1993got_page_reloc_p (unsigned int r_type)
1994{
1995 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1996}
1997
1998static inline bfd_boolean
1999got_ofst_reloc_p (unsigned int r_type)
2000{
2001 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2002}
2003
2004static inline bfd_boolean
2005got_hi16_reloc_p (unsigned int r_type)
2006{
2007 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2008}
2009
2010static inline bfd_boolean
2011got_lo16_reloc_p (unsigned int r_type)
2012{
2013 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2014}
2015
2016static inline bfd_boolean
2017call_hi16_reloc_p (unsigned int r_type)
2018{
2019 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2020}
2021
2022static inline bfd_boolean
2023call_lo16_reloc_p (unsigned int r_type)
2024{
2025 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2026}
2027
2028static inline bfd_boolean
2029hi16_reloc_p (int r_type)
2030{
df58fc94
RS
2031 return (r_type == R_MIPS_HI16
2032 || r_type == R_MIPS16_HI16
2033 || r_type == R_MICROMIPS_HI16);
738e5348 2034}
d6f16593 2035
738e5348
RS
2036static inline bfd_boolean
2037lo16_reloc_p (int r_type)
2038{
df58fc94
RS
2039 return (r_type == R_MIPS_LO16
2040 || r_type == R_MIPS16_LO16
2041 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2042}
2043
2044static inline bfd_boolean
2045mips16_call_reloc_p (int r_type)
2046{
2047 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2048}
d6f16593 2049
38a7df63
CF
2050static inline bfd_boolean
2051jal_reloc_p (int r_type)
2052{
df58fc94
RS
2053 return (r_type == R_MIPS_26
2054 || r_type == R_MIPS16_26
2055 || r_type == R_MICROMIPS_26_S1);
2056}
2057
2058static inline bfd_boolean
2059micromips_branch_reloc_p (int r_type)
2060{
2061 return (r_type == R_MICROMIPS_26_S1
2062 || r_type == R_MICROMIPS_PC16_S1
2063 || r_type == R_MICROMIPS_PC10_S1
2064 || r_type == R_MICROMIPS_PC7_S1);
2065}
2066
2067static inline bfd_boolean
2068tls_gd_reloc_p (unsigned int r_type)
2069{
d0f13682
CLT
2070 return (r_type == R_MIPS_TLS_GD
2071 || r_type == R_MIPS16_TLS_GD
2072 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2073}
2074
2075static inline bfd_boolean
2076tls_ldm_reloc_p (unsigned int r_type)
2077{
d0f13682
CLT
2078 return (r_type == R_MIPS_TLS_LDM
2079 || r_type == R_MIPS16_TLS_LDM
2080 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2081}
2082
2083static inline bfd_boolean
2084tls_gottprel_reloc_p (unsigned int r_type)
2085{
d0f13682
CLT
2086 return (r_type == R_MIPS_TLS_GOTTPREL
2087 || r_type == R_MIPS16_TLS_GOTTPREL
2088 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2089}
2090
d6f16593 2091void
df58fc94
RS
2092_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2093 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2094{
df58fc94 2095 bfd_vma first, second, val;
d6f16593 2096
df58fc94 2097 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2098 return;
2099
df58fc94
RS
2100 /* Pick up the first and second halfwords of the instruction. */
2101 first = bfd_get_16 (abfd, data);
2102 second = bfd_get_16 (abfd, data + 2);
2103 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2104 val = first << 16 | second;
2105 else if (r_type != R_MIPS16_26)
2106 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2107 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2108 else
df58fc94
RS
2109 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2110 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2111 bfd_put_32 (abfd, val, data);
2112}
2113
2114void
df58fc94
RS
2115_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2116 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2117{
df58fc94 2118 bfd_vma first, second, val;
d6f16593 2119
df58fc94 2120 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2121 return;
2122
2123 val = bfd_get_32 (abfd, data);
df58fc94 2124 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2125 {
df58fc94
RS
2126 second = val & 0xffff;
2127 first = val >> 16;
2128 }
2129 else if (r_type != R_MIPS16_26)
2130 {
2131 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2132 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2133 }
2134 else
2135 {
df58fc94
RS
2136 second = val & 0xffff;
2137 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2138 | ((val >> 21) & 0x1f);
d6f16593 2139 }
df58fc94
RS
2140 bfd_put_16 (abfd, second, data + 2);
2141 bfd_put_16 (abfd, first, data);
d6f16593
MR
2142}
2143
b49e97c9 2144bfd_reloc_status_type
9719ad41
RS
2145_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2146 arelent *reloc_entry, asection *input_section,
2147 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2148{
2149 bfd_vma relocation;
a7ebbfdf 2150 bfd_signed_vma val;
30ac9238 2151 bfd_reloc_status_type status;
b49e97c9
TS
2152
2153 if (bfd_is_com_section (symbol->section))
2154 relocation = 0;
2155 else
2156 relocation = symbol->value;
2157
2158 relocation += symbol->section->output_section->vma;
2159 relocation += symbol->section->output_offset;
2160
07515404 2161 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2162 return bfd_reloc_outofrange;
2163
b49e97c9 2164 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2165 val = reloc_entry->addend;
2166
30ac9238 2167 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2168
b49e97c9 2169 /* Adjust val for the final section location and GP value. If we
1049f94e 2170 are producing relocatable output, we don't want to do this for
b49e97c9 2171 an external symbol. */
1049f94e 2172 if (! relocatable
b49e97c9
TS
2173 || (symbol->flags & BSF_SECTION_SYM) != 0)
2174 val += relocation - gp;
2175
a7ebbfdf
TS
2176 if (reloc_entry->howto->partial_inplace)
2177 {
30ac9238
RS
2178 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2179 (bfd_byte *) data
2180 + reloc_entry->address);
2181 if (status != bfd_reloc_ok)
2182 return status;
a7ebbfdf
TS
2183 }
2184 else
2185 reloc_entry->addend = val;
b49e97c9 2186
1049f94e 2187 if (relocatable)
b49e97c9 2188 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2189
2190 return bfd_reloc_ok;
2191}
2192
2193/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2194 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2195 that contains the relocation field and DATA points to the start of
2196 INPUT_SECTION. */
2197
2198struct mips_hi16
2199{
2200 struct mips_hi16 *next;
2201 bfd_byte *data;
2202 asection *input_section;
2203 arelent rel;
2204};
2205
2206/* FIXME: This should not be a static variable. */
2207
2208static struct mips_hi16 *mips_hi16_list;
2209
2210/* A howto special_function for REL *HI16 relocations. We can only
2211 calculate the correct value once we've seen the partnering
2212 *LO16 relocation, so just save the information for later.
2213
2214 The ABI requires that the *LO16 immediately follow the *HI16.
2215 However, as a GNU extension, we permit an arbitrary number of
2216 *HI16s to be associated with a single *LO16. This significantly
2217 simplies the relocation handling in gcc. */
2218
2219bfd_reloc_status_type
2220_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2221 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2222 asection *input_section, bfd *output_bfd,
2223 char **error_message ATTRIBUTE_UNUSED)
2224{
2225 struct mips_hi16 *n;
2226
07515404 2227 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2228 return bfd_reloc_outofrange;
2229
2230 n = bfd_malloc (sizeof *n);
2231 if (n == NULL)
2232 return bfd_reloc_outofrange;
2233
2234 n->next = mips_hi16_list;
2235 n->data = data;
2236 n->input_section = input_section;
2237 n->rel = *reloc_entry;
2238 mips_hi16_list = n;
2239
2240 if (output_bfd != NULL)
2241 reloc_entry->address += input_section->output_offset;
2242
2243 return bfd_reloc_ok;
2244}
2245
738e5348 2246/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2247 like any other 16-bit relocation when applied to global symbols, but is
2248 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2249
2250bfd_reloc_status_type
2251_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254{
2255 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2256 || bfd_is_und_section (bfd_get_section (symbol))
2257 || bfd_is_com_section (bfd_get_section (symbol)))
2258 /* The relocation is against a global symbol. */
2259 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd,
2261 error_message);
2262
2263 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd, error_message);
2265}
2266
2267/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2268 is a straightforward 16 bit inplace relocation, but we must deal with
2269 any partnering high-part relocations as well. */
2270
2271bfd_reloc_status_type
2272_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2273 void *data, asection *input_section,
2274 bfd *output_bfd, char **error_message)
2275{
2276 bfd_vma vallo;
d6f16593 2277 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2278
07515404 2279 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2280 return bfd_reloc_outofrange;
2281
df58fc94 2282 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2283 location);
df58fc94
RS
2284 vallo = bfd_get_32 (abfd, location);
2285 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2286 location);
d6f16593 2287
30ac9238
RS
2288 while (mips_hi16_list != NULL)
2289 {
2290 bfd_reloc_status_type ret;
2291 struct mips_hi16 *hi;
2292
2293 hi = mips_hi16_list;
2294
738e5348
RS
2295 /* R_MIPS*_GOT16 relocations are something of a special case. We
2296 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2297 relocation (with a rightshift of 16). However, since GOT16
2298 relocations can also be used with global symbols, their howto
2299 has a rightshift of 0. */
2300 if (hi->rel.howto->type == R_MIPS_GOT16)
2301 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2302 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2303 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2304 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2305 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2306
2307 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2308 carry or borrow will induce a change of +1 or -1 in the high part. */
2309 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2310
30ac9238
RS
2311 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2312 hi->input_section, output_bfd,
2313 error_message);
2314 if (ret != bfd_reloc_ok)
2315 return ret;
2316
2317 mips_hi16_list = hi->next;
2318 free (hi);
2319 }
2320
2321 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2322 input_section, output_bfd,
2323 error_message);
2324}
2325
2326/* A generic howto special_function. This calculates and installs the
2327 relocation itself, thus avoiding the oft-discussed problems in
2328 bfd_perform_relocation and bfd_install_relocation. */
2329
2330bfd_reloc_status_type
2331_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2332 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2333 asection *input_section, bfd *output_bfd,
2334 char **error_message ATTRIBUTE_UNUSED)
2335{
2336 bfd_signed_vma val;
2337 bfd_reloc_status_type status;
2338 bfd_boolean relocatable;
2339
2340 relocatable = (output_bfd != NULL);
2341
07515404 2342 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2343 return bfd_reloc_outofrange;
2344
2345 /* Build up the field adjustment in VAL. */
2346 val = 0;
2347 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2348 {
2349 /* Either we're calculating the final field value or we have a
2350 relocation against a section symbol. Add in the section's
2351 offset or address. */
2352 val += symbol->section->output_section->vma;
2353 val += symbol->section->output_offset;
2354 }
2355
2356 if (!relocatable)
2357 {
2358 /* We're calculating the final field value. Add in the symbol's value
2359 and, if pc-relative, subtract the address of the field itself. */
2360 val += symbol->value;
2361 if (reloc_entry->howto->pc_relative)
2362 {
2363 val -= input_section->output_section->vma;
2364 val -= input_section->output_offset;
2365 val -= reloc_entry->address;
2366 }
2367 }
2368
2369 /* VAL is now the final adjustment. If we're keeping this relocation
2370 in the output file, and if the relocation uses a separate addend,
2371 we just need to add VAL to that addend. Otherwise we need to add
2372 VAL to the relocation field itself. */
2373 if (relocatable && !reloc_entry->howto->partial_inplace)
2374 reloc_entry->addend += val;
2375 else
2376 {
d6f16593
MR
2377 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2378
30ac9238
RS
2379 /* Add in the separate addend, if any. */
2380 val += reloc_entry->addend;
2381
2382 /* Add VAL to the relocation field. */
df58fc94
RS
2383 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2384 location);
30ac9238 2385 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2386 location);
df58fc94
RS
2387 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2388 location);
d6f16593 2389
30ac9238
RS
2390 if (status != bfd_reloc_ok)
2391 return status;
2392 }
2393
2394 if (relocatable)
2395 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2396
2397 return bfd_reloc_ok;
2398}
2399\f
2400/* Swap an entry in a .gptab section. Note that these routines rely
2401 on the equivalence of the two elements of the union. */
2402
2403static void
9719ad41
RS
2404bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2405 Elf32_gptab *in)
b49e97c9
TS
2406{
2407 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2408 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2409}
2410
2411static void
9719ad41
RS
2412bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2413 Elf32_External_gptab *ex)
b49e97c9
TS
2414{
2415 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2416 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2417}
2418
2419static void
9719ad41
RS
2420bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2421 Elf32_External_compact_rel *ex)
b49e97c9
TS
2422{
2423 H_PUT_32 (abfd, in->id1, ex->id1);
2424 H_PUT_32 (abfd, in->num, ex->num);
2425 H_PUT_32 (abfd, in->id2, ex->id2);
2426 H_PUT_32 (abfd, in->offset, ex->offset);
2427 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2428 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2429}
2430
2431static void
9719ad41
RS
2432bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2433 Elf32_External_crinfo *ex)
b49e97c9
TS
2434{
2435 unsigned long l;
2436
2437 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2438 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2439 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2440 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2441 H_PUT_32 (abfd, l, ex->info);
2442 H_PUT_32 (abfd, in->konst, ex->konst);
2443 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2444}
b49e97c9
TS
2445\f
2446/* A .reginfo section holds a single Elf32_RegInfo structure. These
2447 routines swap this structure in and out. They are used outside of
2448 BFD, so they are globally visible. */
2449
2450void
9719ad41
RS
2451bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2452 Elf32_RegInfo *in)
b49e97c9
TS
2453{
2454 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2455 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2456 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2457 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2458 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2459 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2460}
2461
2462void
9719ad41
RS
2463bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2464 Elf32_External_RegInfo *ex)
b49e97c9
TS
2465{
2466 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2467 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2468 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2469 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2470 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2471 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2472}
2473
2474/* In the 64 bit ABI, the .MIPS.options section holds register
2475 information in an Elf64_Reginfo structure. These routines swap
2476 them in and out. They are globally visible because they are used
2477 outside of BFD. These routines are here so that gas can call them
2478 without worrying about whether the 64 bit ABI has been included. */
2479
2480void
9719ad41
RS
2481bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2482 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2483{
2484 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2485 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2486 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2487 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2488 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2489 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2490 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2491}
2492
2493void
9719ad41
RS
2494bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2495 Elf64_External_RegInfo *ex)
b49e97c9
TS
2496{
2497 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2498 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2499 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2500 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2501 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2502 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2503 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2504}
2505
2506/* Swap in an options header. */
2507
2508void
9719ad41
RS
2509bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2510 Elf_Internal_Options *in)
b49e97c9
TS
2511{
2512 in->kind = H_GET_8 (abfd, ex->kind);
2513 in->size = H_GET_8 (abfd, ex->size);
2514 in->section = H_GET_16 (abfd, ex->section);
2515 in->info = H_GET_32 (abfd, ex->info);
2516}
2517
2518/* Swap out an options header. */
2519
2520void
9719ad41
RS
2521bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2522 Elf_External_Options *ex)
b49e97c9
TS
2523{
2524 H_PUT_8 (abfd, in->kind, ex->kind);
2525 H_PUT_8 (abfd, in->size, ex->size);
2526 H_PUT_16 (abfd, in->section, ex->section);
2527 H_PUT_32 (abfd, in->info, ex->info);
2528}
2529\f
2530/* This function is called via qsort() to sort the dynamic relocation
2531 entries by increasing r_symndx value. */
2532
2533static int
9719ad41 2534sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2535{
947216bf
AM
2536 Elf_Internal_Rela int_reloc1;
2537 Elf_Internal_Rela int_reloc2;
6870500c 2538 int diff;
b49e97c9 2539
947216bf
AM
2540 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2541 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2542
6870500c
RS
2543 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2544 if (diff != 0)
2545 return diff;
2546
2547 if (int_reloc1.r_offset < int_reloc2.r_offset)
2548 return -1;
2549 if (int_reloc1.r_offset > int_reloc2.r_offset)
2550 return 1;
2551 return 0;
b49e97c9
TS
2552}
2553
f4416af6
AO
2554/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2555
2556static int
7e3102a7
AM
2557sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2558 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2559{
7e3102a7 2560#ifdef BFD64
f4416af6
AO
2561 Elf_Internal_Rela int_reloc1[3];
2562 Elf_Internal_Rela int_reloc2[3];
2563
2564 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2565 (reldyn_sorting_bfd, arg1, int_reloc1);
2566 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2567 (reldyn_sorting_bfd, arg2, int_reloc2);
2568
6870500c
RS
2569 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2570 return -1;
2571 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2572 return 1;
2573
2574 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2575 return -1;
2576 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2577 return 1;
2578 return 0;
7e3102a7
AM
2579#else
2580 abort ();
2581#endif
f4416af6
AO
2582}
2583
2584
b49e97c9
TS
2585/* This routine is used to write out ECOFF debugging external symbol
2586 information. It is called via mips_elf_link_hash_traverse. The
2587 ECOFF external symbol information must match the ELF external
2588 symbol information. Unfortunately, at this point we don't know
2589 whether a symbol is required by reloc information, so the two
2590 tables may wind up being different. We must sort out the external
2591 symbol information before we can set the final size of the .mdebug
2592 section, and we must set the size of the .mdebug section before we
2593 can relocate any sections, and we can't know which symbols are
2594 required by relocation until we relocate the sections.
2595 Fortunately, it is relatively unlikely that any symbol will be
2596 stripped but required by a reloc. In particular, it can not happen
2597 when generating a final executable. */
2598
b34976b6 2599static bfd_boolean
9719ad41 2600mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2601{
9719ad41 2602 struct extsym_info *einfo = data;
b34976b6 2603 bfd_boolean strip;
b49e97c9
TS
2604 asection *sec, *output_section;
2605
b49e97c9 2606 if (h->root.indx == -2)
b34976b6 2607 strip = FALSE;
f5385ebf 2608 else if ((h->root.def_dynamic
77cfaee6
AM
2609 || h->root.ref_dynamic
2610 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2611 && !h->root.def_regular
2612 && !h->root.ref_regular)
b34976b6 2613 strip = TRUE;
b49e97c9
TS
2614 else if (einfo->info->strip == strip_all
2615 || (einfo->info->strip == strip_some
2616 && bfd_hash_lookup (einfo->info->keep_hash,
2617 h->root.root.root.string,
b34976b6
AM
2618 FALSE, FALSE) == NULL))
2619 strip = TRUE;
b49e97c9 2620 else
b34976b6 2621 strip = FALSE;
b49e97c9
TS
2622
2623 if (strip)
b34976b6 2624 return TRUE;
b49e97c9
TS
2625
2626 if (h->esym.ifd == -2)
2627 {
2628 h->esym.jmptbl = 0;
2629 h->esym.cobol_main = 0;
2630 h->esym.weakext = 0;
2631 h->esym.reserved = 0;
2632 h->esym.ifd = ifdNil;
2633 h->esym.asym.value = 0;
2634 h->esym.asym.st = stGlobal;
2635
2636 if (h->root.root.type == bfd_link_hash_undefined
2637 || h->root.root.type == bfd_link_hash_undefweak)
2638 {
2639 const char *name;
2640
2641 /* Use undefined class. Also, set class and type for some
2642 special symbols. */
2643 name = h->root.root.root.string;
2644 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2645 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2646 {
2647 h->esym.asym.sc = scData;
2648 h->esym.asym.st = stLabel;
2649 h->esym.asym.value = 0;
2650 }
2651 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2652 {
2653 h->esym.asym.sc = scAbs;
2654 h->esym.asym.st = stLabel;
2655 h->esym.asym.value =
2656 mips_elf_hash_table (einfo->info)->procedure_count;
2657 }
4a14403c 2658 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2659 {
2660 h->esym.asym.sc = scAbs;
2661 h->esym.asym.st = stLabel;
2662 h->esym.asym.value = elf_gp (einfo->abfd);
2663 }
2664 else
2665 h->esym.asym.sc = scUndefined;
2666 }
2667 else if (h->root.root.type != bfd_link_hash_defined
2668 && h->root.root.type != bfd_link_hash_defweak)
2669 h->esym.asym.sc = scAbs;
2670 else
2671 {
2672 const char *name;
2673
2674 sec = h->root.root.u.def.section;
2675 output_section = sec->output_section;
2676
2677 /* When making a shared library and symbol h is the one from
2678 the another shared library, OUTPUT_SECTION may be null. */
2679 if (output_section == NULL)
2680 h->esym.asym.sc = scUndefined;
2681 else
2682 {
2683 name = bfd_section_name (output_section->owner, output_section);
2684
2685 if (strcmp (name, ".text") == 0)
2686 h->esym.asym.sc = scText;
2687 else if (strcmp (name, ".data") == 0)
2688 h->esym.asym.sc = scData;
2689 else if (strcmp (name, ".sdata") == 0)
2690 h->esym.asym.sc = scSData;
2691 else if (strcmp (name, ".rodata") == 0
2692 || strcmp (name, ".rdata") == 0)
2693 h->esym.asym.sc = scRData;
2694 else if (strcmp (name, ".bss") == 0)
2695 h->esym.asym.sc = scBss;
2696 else if (strcmp (name, ".sbss") == 0)
2697 h->esym.asym.sc = scSBss;
2698 else if (strcmp (name, ".init") == 0)
2699 h->esym.asym.sc = scInit;
2700 else if (strcmp (name, ".fini") == 0)
2701 h->esym.asym.sc = scFini;
2702 else
2703 h->esym.asym.sc = scAbs;
2704 }
2705 }
2706
2707 h->esym.asym.reserved = 0;
2708 h->esym.asym.index = indexNil;
2709 }
2710
2711 if (h->root.root.type == bfd_link_hash_common)
2712 h->esym.asym.value = h->root.root.u.c.size;
2713 else if (h->root.root.type == bfd_link_hash_defined
2714 || h->root.root.type == bfd_link_hash_defweak)
2715 {
2716 if (h->esym.asym.sc == scCommon)
2717 h->esym.asym.sc = scBss;
2718 else if (h->esym.asym.sc == scSCommon)
2719 h->esym.asym.sc = scSBss;
2720
2721 sec = h->root.root.u.def.section;
2722 output_section = sec->output_section;
2723 if (output_section != NULL)
2724 h->esym.asym.value = (h->root.root.u.def.value
2725 + sec->output_offset
2726 + output_section->vma);
2727 else
2728 h->esym.asym.value = 0;
2729 }
33bb52fb 2730 else
b49e97c9
TS
2731 {
2732 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2733
2734 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2735 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2736
33bb52fb 2737 if (hd->needs_lazy_stub)
b49e97c9
TS
2738 {
2739 /* Set type and value for a symbol with a function stub. */
2740 h->esym.asym.st = stProc;
2741 sec = hd->root.root.u.def.section;
2742 if (sec == NULL)
2743 h->esym.asym.value = 0;
2744 else
2745 {
2746 output_section = sec->output_section;
2747 if (output_section != NULL)
2748 h->esym.asym.value = (hd->root.plt.offset
2749 + sec->output_offset
2750 + output_section->vma);
2751 else
2752 h->esym.asym.value = 0;
2753 }
b49e97c9
TS
2754 }
2755 }
2756
2757 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2758 h->root.root.root.string,
2759 &h->esym))
2760 {
b34976b6
AM
2761 einfo->failed = TRUE;
2762 return FALSE;
b49e97c9
TS
2763 }
2764
b34976b6 2765 return TRUE;
b49e97c9
TS
2766}
2767
2768/* A comparison routine used to sort .gptab entries. */
2769
2770static int
9719ad41 2771gptab_compare (const void *p1, const void *p2)
b49e97c9 2772{
9719ad41
RS
2773 const Elf32_gptab *a1 = p1;
2774 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2775
2776 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2777}
2778\f
b15e6682 2779/* Functions to manage the got entry hash table. */
f4416af6
AO
2780
2781/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2782 hash number. */
2783
2784static INLINE hashval_t
9719ad41 2785mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2786{
2787#ifdef BFD64
2788 return addr + (addr >> 32);
2789#else
2790 return addr;
2791#endif
2792}
2793
2794/* got_entries only match if they're identical, except for gotidx, so
2795 use all fields to compute the hash, and compare the appropriate
2796 union members. */
2797
b15e6682 2798static hashval_t
9719ad41 2799mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2800{
2801 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2802
38985a1c 2803 return entry->symndx
0f20cc35 2804 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2805 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2806 : entry->abfd->id
2807 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2808 : entry->d.h->root.root.root.hash));
b15e6682
AO
2809}
2810
2811static int
9719ad41 2812mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2813{
2814 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2815 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2816
0f20cc35
DJ
2817 /* An LDM entry can only match another LDM entry. */
2818 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2819 return 0;
2820
b15e6682 2821 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2822 && (! e1->abfd ? e1->d.address == e2->d.address
2823 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2824 : e1->d.h == e2->d.h);
2825}
2826
2827/* multi_got_entries are still a match in the case of global objects,
2828 even if the input bfd in which they're referenced differs, so the
2829 hash computation and compare functions are adjusted
2830 accordingly. */
2831
2832static hashval_t
9719ad41 2833mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2834{
2835 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2836
2837 return entry->symndx
2838 + (! entry->abfd
2839 ? mips_elf_hash_bfd_vma (entry->d.address)
2840 : entry->symndx >= 0
0f20cc35
DJ
2841 ? ((entry->tls_type & GOT_TLS_LDM)
2842 ? (GOT_TLS_LDM << 17)
2843 : (entry->abfd->id
2844 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2845 : entry->d.h->root.root.root.hash);
2846}
2847
2848static int
9719ad41 2849mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2850{
2851 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2852 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2853
0f20cc35
DJ
2854 /* Any two LDM entries match. */
2855 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2856 return 1;
2857
2858 /* Nothing else matches an LDM entry. */
2859 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2860 return 0;
2861
f4416af6
AO
2862 return e1->symndx == e2->symndx
2863 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2864 : e1->abfd == NULL || e2->abfd == NULL
2865 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2866 : e1->d.h == e2->d.h);
b15e6682 2867}
c224138d
RS
2868
2869static hashval_t
2870mips_got_page_entry_hash (const void *entry_)
2871{
2872 const struct mips_got_page_entry *entry;
2873
2874 entry = (const struct mips_got_page_entry *) entry_;
2875 return entry->abfd->id + entry->symndx;
2876}
2877
2878static int
2879mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2880{
2881 const struct mips_got_page_entry *entry1, *entry2;
2882
2883 entry1 = (const struct mips_got_page_entry *) entry1_;
2884 entry2 = (const struct mips_got_page_entry *) entry2_;
2885 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2886}
b15e6682 2887\f
0a44bf69
RS
2888/* Return the dynamic relocation section. If it doesn't exist, try to
2889 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2890 if creation fails. */
f4416af6
AO
2891
2892static asection *
0a44bf69 2893mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2894{
0a44bf69 2895 const char *dname;
f4416af6 2896 asection *sreloc;
0a44bf69 2897 bfd *dynobj;
f4416af6 2898
0a44bf69
RS
2899 dname = MIPS_ELF_REL_DYN_NAME (info);
2900 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2901 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2902 if (sreloc == NULL && create_p)
2903 {
3d4d4302
AM
2904 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2905 (SEC_ALLOC
2906 | SEC_LOAD
2907 | SEC_HAS_CONTENTS
2908 | SEC_IN_MEMORY
2909 | SEC_LINKER_CREATED
2910 | SEC_READONLY));
f4416af6 2911 if (sreloc == NULL
f4416af6 2912 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2913 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2914 return NULL;
2915 }
2916 return sreloc;
2917}
2918
0f20cc35
DJ
2919/* Count the number of relocations needed for a TLS GOT entry, with
2920 access types from TLS_TYPE, and symbol H (or a local symbol if H
2921 is NULL). */
2922
2923static int
2924mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2925 struct elf_link_hash_entry *h)
2926{
2927 int indx = 0;
2928 int ret = 0;
2929 bfd_boolean need_relocs = FALSE;
2930 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2931
2932 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2933 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2934 indx = h->dynindx;
2935
2936 if ((info->shared || indx != 0)
2937 && (h == NULL
2938 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2939 || h->root.type != bfd_link_hash_undefweak))
2940 need_relocs = TRUE;
2941
2942 if (!need_relocs)
2943 return FALSE;
2944
2945 if (tls_type & GOT_TLS_GD)
2946 {
2947 ret++;
2948 if (indx != 0)
2949 ret++;
2950 }
2951
2952 if (tls_type & GOT_TLS_IE)
2953 ret++;
2954
2955 if ((tls_type & GOT_TLS_LDM) && info->shared)
2956 ret++;
2957
2958 return ret;
2959}
2960
2961/* Count the number of TLS relocations required for the GOT entry in
2962 ARG1, if it describes a local symbol. */
2963
2964static int
2965mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2966{
2967 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2968 struct mips_elf_count_tls_arg *arg = arg2;
2969
2970 if (entry->abfd != NULL && entry->symndx != -1)
2971 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2972
2973 return 1;
2974}
2975
2976/* Count the number of TLS GOT entries required for the global (or
2977 forced-local) symbol in ARG1. */
2978
2979static int
2980mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2981{
2982 struct mips_elf_link_hash_entry *hm
2983 = (struct mips_elf_link_hash_entry *) arg1;
2984 struct mips_elf_count_tls_arg *arg = arg2;
2985
1fd20d70
RS
2986 if (hm->root.root.type == bfd_link_hash_indirect
2987 || hm->root.root.type == bfd_link_hash_warning)
2988 return 1;
2989
0f20cc35
DJ
2990 if (hm->tls_type & GOT_TLS_GD)
2991 arg->needed += 2;
2992 if (hm->tls_type & GOT_TLS_IE)
2993 arg->needed += 1;
2994
2995 return 1;
2996}
2997
2998/* Count the number of TLS relocations required for the global (or
2999 forced-local) symbol in ARG1. */
3000
3001static int
3002mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3003{
3004 struct mips_elf_link_hash_entry *hm
3005 = (struct mips_elf_link_hash_entry *) arg1;
3006 struct mips_elf_count_tls_arg *arg = arg2;
3007
1fd20d70
RS
3008 if (hm->root.root.type == bfd_link_hash_indirect
3009 || hm->root.root.type == bfd_link_hash_warning)
3010 return 1;
3011
0f20cc35
DJ
3012 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3013
3014 return 1;
3015}
3016
3017/* Output a simple dynamic relocation into SRELOC. */
3018
3019static void
3020mips_elf_output_dynamic_relocation (bfd *output_bfd,
3021 asection *sreloc,
861fb55a 3022 unsigned long reloc_index,
0f20cc35
DJ
3023 unsigned long indx,
3024 int r_type,
3025 bfd_vma offset)
3026{
3027 Elf_Internal_Rela rel[3];
3028
3029 memset (rel, 0, sizeof (rel));
3030
3031 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3032 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3033
3034 if (ABI_64_P (output_bfd))
3035 {
3036 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3037 (output_bfd, &rel[0],
3038 (sreloc->contents
861fb55a 3039 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3040 }
3041 else
3042 bfd_elf32_swap_reloc_out
3043 (output_bfd, &rel[0],
3044 (sreloc->contents
861fb55a 3045 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3046}
3047
3048/* Initialize a set of TLS GOT entries for one symbol. */
3049
3050static void
3051mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3052 unsigned char *tls_type_p,
3053 struct bfd_link_info *info,
3054 struct mips_elf_link_hash_entry *h,
3055 bfd_vma value)
3056{
23cc69b6 3057 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3058 int indx;
3059 asection *sreloc, *sgot;
3060 bfd_vma offset, offset2;
0f20cc35
DJ
3061 bfd_boolean need_relocs = FALSE;
3062
23cc69b6 3063 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3064 if (htab == NULL)
3065 return;
3066
23cc69b6 3067 sgot = htab->sgot;
0f20cc35
DJ
3068
3069 indx = 0;
3070 if (h != NULL)
3071 {
3072 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3073
3074 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3075 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3076 indx = h->root.dynindx;
3077 }
3078
3079 if (*tls_type_p & GOT_TLS_DONE)
3080 return;
3081
3082 if ((info->shared || indx != 0)
3083 && (h == NULL
3084 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3085 || h->root.type != bfd_link_hash_undefweak))
3086 need_relocs = TRUE;
3087
3088 /* MINUS_ONE means the symbol is not defined in this object. It may not
3089 be defined at all; assume that the value doesn't matter in that
3090 case. Otherwise complain if we would use the value. */
3091 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3092 || h->root.root.type == bfd_link_hash_undefweak);
3093
3094 /* Emit necessary relocations. */
0a44bf69 3095 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
3096
3097 /* General Dynamic. */
3098 if (*tls_type_p & GOT_TLS_GD)
3099 {
3100 offset = got_offset;
3101 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3102
3103 if (need_relocs)
3104 {
3105 mips_elf_output_dynamic_relocation
861fb55a 3106 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3107 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3108 sgot->output_offset + sgot->output_section->vma + offset);
3109
3110 if (indx)
3111 mips_elf_output_dynamic_relocation
861fb55a 3112 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3113 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3114 sgot->output_offset + sgot->output_section->vma + offset2);
3115 else
3116 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3117 sgot->contents + offset2);
3118 }
3119 else
3120 {
3121 MIPS_ELF_PUT_WORD (abfd, 1,
3122 sgot->contents + offset);
3123 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3124 sgot->contents + offset2);
3125 }
3126
3127 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3128 }
3129
3130 /* Initial Exec model. */
3131 if (*tls_type_p & GOT_TLS_IE)
3132 {
3133 offset = got_offset;
3134
3135 if (need_relocs)
3136 {
3137 if (indx == 0)
3138 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3139 sgot->contents + offset);
3140 else
3141 MIPS_ELF_PUT_WORD (abfd, 0,
3142 sgot->contents + offset);
3143
3144 mips_elf_output_dynamic_relocation
861fb55a 3145 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3146 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3147 sgot->output_offset + sgot->output_section->vma + offset);
3148 }
3149 else
3150 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3151 sgot->contents + offset);
3152 }
3153
3154 if (*tls_type_p & GOT_TLS_LDM)
3155 {
3156 /* The initial offset is zero, and the LD offsets will include the
3157 bias by DTP_OFFSET. */
3158 MIPS_ELF_PUT_WORD (abfd, 0,
3159 sgot->contents + got_offset
3160 + MIPS_ELF_GOT_SIZE (abfd));
3161
3162 if (!info->shared)
3163 MIPS_ELF_PUT_WORD (abfd, 1,
3164 sgot->contents + got_offset);
3165 else
3166 mips_elf_output_dynamic_relocation
861fb55a 3167 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3168 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3169 sgot->output_offset + sgot->output_section->vma + got_offset);
3170 }
3171
3172 *tls_type_p |= GOT_TLS_DONE;
3173}
3174
3175/* Return the GOT index to use for a relocation of type R_TYPE against
3176 a symbol accessed using TLS_TYPE models. The GOT entries for this
3177 symbol in this GOT start at GOT_INDEX. This function initializes the
3178 GOT entries and corresponding relocations. */
3179
3180static bfd_vma
3181mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3182 int r_type, struct bfd_link_info *info,
3183 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3184{
df58fc94
RS
3185 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3186 || tls_gd_reloc_p (r_type)
3187 || tls_ldm_reloc_p (r_type));
0f20cc35
DJ
3188
3189 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3190
df58fc94 3191 if (tls_gottprel_reloc_p (r_type))
0f20cc35
DJ
3192 {
3193 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3194 if (*tls_type & GOT_TLS_GD)
3195 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3196 else
3197 return got_index;
3198 }
3199
df58fc94 3200 if (tls_gd_reloc_p (r_type))
0f20cc35
DJ
3201 {
3202 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3203 return got_index;
3204 }
3205
df58fc94 3206 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3207 {
3208 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3209 return got_index;
3210 }
3211
3212 return got_index;
3213}
3214
0a44bf69
RS
3215/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3216 for global symbol H. .got.plt comes before the GOT, so the offset
3217 will be negative. */
3218
3219static bfd_vma
3220mips_elf_gotplt_index (struct bfd_link_info *info,
3221 struct elf_link_hash_entry *h)
3222{
3223 bfd_vma plt_index, got_address, got_value;
3224 struct mips_elf_link_hash_table *htab;
3225
3226 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3227 BFD_ASSERT (htab != NULL);
3228
0a44bf69
RS
3229 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3230
861fb55a
DJ
3231 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3232 section starts with reserved entries. */
3233 BFD_ASSERT (htab->is_vxworks);
3234
0a44bf69
RS
3235 /* Calculate the index of the symbol's PLT entry. */
3236 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3237
3238 /* Calculate the address of the associated .got.plt entry. */
3239 got_address = (htab->sgotplt->output_section->vma
3240 + htab->sgotplt->output_offset
3241 + plt_index * 4);
3242
3243 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3244 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3245 + htab->root.hgot->root.u.def.section->output_offset
3246 + htab->root.hgot->root.u.def.value);
3247
3248 return got_address - got_value;
3249}
3250
5c18022e 3251/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3252 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3253 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3254 offset can be found. */
b49e97c9
TS
3255
3256static bfd_vma
9719ad41 3257mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3258 bfd_vma value, unsigned long r_symndx,
0f20cc35 3259 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3260{
a8028dd0 3261 struct mips_elf_link_hash_table *htab;
b15e6682 3262 struct mips_got_entry *entry;
b49e97c9 3263
a8028dd0 3264 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3265 BFD_ASSERT (htab != NULL);
3266
a8028dd0
RS
3267 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3268 r_symndx, h, r_type);
0f20cc35 3269 if (!entry)
b15e6682 3270 return MINUS_ONE;
0f20cc35
DJ
3271
3272 if (TLS_RELOC_P (r_type))
ead49a57 3273 {
a8028dd0 3274 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3275 /* A type (3) entry in the single-GOT case. We use the symbol's
3276 hash table entry to track the index. */
3277 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3278 r_type, info, h, value);
3279 else
3280 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3281 r_type, info, h, value);
3282 }
0f20cc35
DJ
3283 else
3284 return entry->gotidx;
b49e97c9
TS
3285}
3286
3287/* Returns the GOT index for the global symbol indicated by H. */
3288
3289static bfd_vma
0f20cc35
DJ
3290mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3291 int r_type, struct bfd_link_info *info)
b49e97c9 3292{
a8028dd0 3293 struct mips_elf_link_hash_table *htab;
91d6fa6a 3294 bfd_vma got_index;
f4416af6 3295 struct mips_got_info *g, *gg;
d0c7ff07 3296 long global_got_dynindx = 0;
b49e97c9 3297
a8028dd0 3298 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3299 BFD_ASSERT (htab != NULL);
3300
a8028dd0 3301 gg = g = htab->got_info;
f4416af6
AO
3302 if (g->bfd2got && ibfd)
3303 {
3304 struct mips_got_entry e, *p;
143d77c5 3305
f4416af6
AO
3306 BFD_ASSERT (h->dynindx >= 0);
3307
3308 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3309 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3310 {
3311 e.abfd = ibfd;
3312 e.symndx = -1;
3313 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3314 e.tls_type = 0;
f4416af6 3315
9719ad41 3316 p = htab_find (g->got_entries, &e);
f4416af6
AO
3317
3318 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3319
3320 if (TLS_RELOC_P (r_type))
3321 {
3322 bfd_vma value = MINUS_ONE;
3323 if ((h->root.type == bfd_link_hash_defined
3324 || h->root.type == bfd_link_hash_defweak)
3325 && h->root.u.def.section->output_section)
3326 value = (h->root.u.def.value
3327 + h->root.u.def.section->output_offset
3328 + h->root.u.def.section->output_section->vma);
3329
3330 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3331 info, e.d.h, value);
3332 }
3333 else
3334 return p->gotidx;
f4416af6
AO
3335 }
3336 }
3337
d222d210
RS
3338 if (htab->global_gotsym != NULL)
3339 global_got_dynindx = htab->global_gotsym->dynindx;
b49e97c9 3340
0f20cc35
DJ
3341 if (TLS_RELOC_P (r_type))
3342 {
3343 struct mips_elf_link_hash_entry *hm
3344 = (struct mips_elf_link_hash_entry *) h;
3345 bfd_vma value = MINUS_ONE;
3346
3347 if ((h->root.type == bfd_link_hash_defined
3348 || h->root.type == bfd_link_hash_defweak)
3349 && h->root.u.def.section->output_section)
3350 value = (h->root.u.def.value
3351 + h->root.u.def.section->output_offset
3352 + h->root.u.def.section->output_section->vma);
3353
91d6fa6a
NC
3354 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3355 r_type, info, hm, value);
0f20cc35
DJ
3356 }
3357 else
3358 {
3359 /* Once we determine the global GOT entry with the lowest dynamic
3360 symbol table index, we must put all dynamic symbols with greater
3361 indices into the GOT. That makes it easy to calculate the GOT
3362 offset. */
3363 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3364 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3365 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3366 }
91d6fa6a 3367 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3368
91d6fa6a 3369 return got_index;
b49e97c9
TS
3370}
3371
5c18022e
RS
3372/* Find a GOT page entry that points to within 32KB of VALUE. These
3373 entries are supposed to be placed at small offsets in the GOT, i.e.,
3374 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3375 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3376 offset of the GOT entry from VALUE. */
b49e97c9
TS
3377
3378static bfd_vma
9719ad41 3379mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3380 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3381{
91d6fa6a 3382 bfd_vma page, got_index;
b15e6682 3383 struct mips_got_entry *entry;
b49e97c9 3384
0a44bf69 3385 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3386 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3387 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3388
b15e6682
AO
3389 if (!entry)
3390 return MINUS_ONE;
143d77c5 3391
91d6fa6a 3392 got_index = entry->gotidx;
b49e97c9
TS
3393
3394 if (offsetp)
f4416af6 3395 *offsetp = value - entry->d.address;
b49e97c9 3396
91d6fa6a 3397 return got_index;
b49e97c9
TS
3398}
3399
738e5348 3400/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3401 EXTERNAL is true if the relocation was originally against a global
3402 symbol that binds locally. */
b49e97c9
TS
3403
3404static bfd_vma
9719ad41 3405mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3406 bfd_vma value, bfd_boolean external)
b49e97c9 3407{
b15e6682 3408 struct mips_got_entry *entry;
b49e97c9 3409
0a44bf69
RS
3410 /* GOT16 relocations against local symbols are followed by a LO16
3411 relocation; those against global symbols are not. Thus if the
3412 symbol was originally local, the GOT16 relocation should load the
3413 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3414 if (! external)
0a44bf69 3415 value = mips_elf_high (value) << 16;
b49e97c9 3416
738e5348
RS
3417 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3418 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3419 same in all cases. */
a8028dd0
RS
3420 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3421 NULL, R_MIPS_GOT16);
b15e6682
AO
3422 if (entry)
3423 return entry->gotidx;
3424 else
3425 return MINUS_ONE;
b49e97c9
TS
3426}
3427
3428/* Returns the offset for the entry at the INDEXth position
3429 in the GOT. */
3430
3431static bfd_vma
a8028dd0 3432mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3433 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3434{
a8028dd0 3435 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3436 asection *sgot;
3437 bfd_vma gp;
3438
a8028dd0 3439 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3440 BFD_ASSERT (htab != NULL);
3441
a8028dd0 3442 sgot = htab->sgot;
f4416af6 3443 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3444 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3445
91d6fa6a 3446 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3447}
3448
0a44bf69
RS
3449/* Create and return a local GOT entry for VALUE, which was calculated
3450 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3451 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3452 instead. */
b49e97c9 3453
b15e6682 3454static struct mips_got_entry *
0a44bf69 3455mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3456 bfd *ibfd, bfd_vma value,
5c18022e 3457 unsigned long r_symndx,
0f20cc35
DJ
3458 struct mips_elf_link_hash_entry *h,
3459 int r_type)
b49e97c9 3460{
b15e6682 3461 struct mips_got_entry entry, **loc;
f4416af6 3462 struct mips_got_info *g;
0a44bf69
RS
3463 struct mips_elf_link_hash_table *htab;
3464
3465 htab = mips_elf_hash_table (info);
4dfe6ac6 3466 BFD_ASSERT (htab != NULL);
b15e6682 3467
f4416af6
AO
3468 entry.abfd = NULL;
3469 entry.symndx = -1;
3470 entry.d.address = value;
0f20cc35 3471 entry.tls_type = 0;
f4416af6 3472
a8028dd0 3473 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3474 if (g == NULL)
3475 {
a8028dd0 3476 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3477 BFD_ASSERT (g != NULL);
3478 }
b15e6682 3479
020d7251
RS
3480 /* This function shouldn't be called for symbols that live in the global
3481 area of the GOT. */
3482 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35
DJ
3483 if (TLS_RELOC_P (r_type))
3484 {
3485 struct mips_got_entry *p;
3486
3487 entry.abfd = ibfd;
df58fc94 3488 if (tls_ldm_reloc_p (r_type))
0f20cc35
DJ
3489 {
3490 entry.tls_type = GOT_TLS_LDM;
3491 entry.symndx = 0;
3492 entry.d.addend = 0;
3493 }
3494 else if (h == NULL)
3495 {
3496 entry.symndx = r_symndx;
3497 entry.d.addend = 0;
3498 }
3499 else
3500 entry.d.h = h;
3501
3502 p = (struct mips_got_entry *)
3503 htab_find (g->got_entries, &entry);
3504
3505 BFD_ASSERT (p);
3506 return p;
3507 }
3508
b15e6682
AO
3509 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3510 INSERT);
3511 if (*loc)
3512 return *loc;
143d77c5 3513
b15e6682 3514 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3515 entry.tls_type = 0;
b15e6682
AO
3516
3517 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3518
3519 if (! *loc)
3520 return NULL;
143d77c5 3521
b15e6682
AO
3522 memcpy (*loc, &entry, sizeof entry);
3523
8275b357 3524 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3525 {
f4416af6 3526 (*loc)->gotidx = -1;
b49e97c9
TS
3527 /* We didn't allocate enough space in the GOT. */
3528 (*_bfd_error_handler)
3529 (_("not enough GOT space for local GOT entries"));
3530 bfd_set_error (bfd_error_bad_value);
b15e6682 3531 return NULL;
b49e97c9
TS
3532 }
3533
3534 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3535 (htab->sgot->contents + entry.gotidx));
b15e6682 3536
5c18022e 3537 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3538 if (htab->is_vxworks)
3539 {
3540 Elf_Internal_Rela outrel;
5c18022e 3541 asection *s;
91d6fa6a 3542 bfd_byte *rloc;
0a44bf69 3543 bfd_vma got_address;
0a44bf69
RS
3544
3545 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3546 got_address = (htab->sgot->output_section->vma
3547 + htab->sgot->output_offset
0a44bf69
RS
3548 + entry.gotidx);
3549
91d6fa6a 3550 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3551 outrel.r_offset = got_address;
5c18022e
RS
3552 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3553 outrel.r_addend = value;
91d6fa6a 3554 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3555 }
3556
b15e6682 3557 return *loc;
b49e97c9
TS
3558}
3559
d4596a51
RS
3560/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3561 The number might be exact or a worst-case estimate, depending on how
3562 much information is available to elf_backend_omit_section_dynsym at
3563 the current linking stage. */
3564
3565static bfd_size_type
3566count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3567{
3568 bfd_size_type count;
3569
3570 count = 0;
3571 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3572 {
3573 asection *p;
3574 const struct elf_backend_data *bed;
3575
3576 bed = get_elf_backend_data (output_bfd);
3577 for (p = output_bfd->sections; p ; p = p->next)
3578 if ((p->flags & SEC_EXCLUDE) == 0
3579 && (p->flags & SEC_ALLOC) != 0
3580 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3581 ++count;
3582 }
3583 return count;
3584}
3585
b49e97c9 3586/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3587 appear towards the end. */
b49e97c9 3588
b34976b6 3589static bfd_boolean
d4596a51 3590mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3591{
a8028dd0 3592 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3593 struct mips_elf_hash_sort_data hsd;
3594 struct mips_got_info *g;
b49e97c9 3595
d4596a51
RS
3596 if (elf_hash_table (info)->dynsymcount == 0)
3597 return TRUE;
3598
a8028dd0 3599 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3600 BFD_ASSERT (htab != NULL);
3601
a8028dd0 3602 g = htab->got_info;
d4596a51
RS
3603 if (g == NULL)
3604 return TRUE;
f4416af6 3605
b49e97c9 3606 hsd.low = NULL;
23cc69b6
RS
3607 hsd.max_unref_got_dynindx
3608 = hsd.min_got_dynindx
3609 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3610 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3611 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3612 elf_hash_table (info)),
3613 mips_elf_sort_hash_table_f,
3614 &hsd);
3615
3616 /* There should have been enough room in the symbol table to
44c410de 3617 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3618 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3619 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3620 == elf_hash_table (info)->dynsymcount);
3621 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3622 == g->global_gotno);
b49e97c9
TS
3623
3624 /* Now we know which dynamic symbol has the lowest dynamic symbol
3625 table index in the GOT. */
d222d210 3626 htab->global_gotsym = hsd.low;
b49e97c9 3627
b34976b6 3628 return TRUE;
b49e97c9
TS
3629}
3630
3631/* If H needs a GOT entry, assign it the highest available dynamic
3632 index. Otherwise, assign it the lowest available dynamic
3633 index. */
3634
b34976b6 3635static bfd_boolean
9719ad41 3636mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3637{
9719ad41 3638 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3639
b49e97c9
TS
3640 /* Symbols without dynamic symbol table entries aren't interesting
3641 at all. */
3642 if (h->root.dynindx == -1)
b34976b6 3643 return TRUE;
b49e97c9 3644
634835ae 3645 switch (h->global_got_area)
f4416af6 3646 {
634835ae
RS
3647 case GGA_NONE:
3648 h->root.dynindx = hsd->max_non_got_dynindx++;
3649 break;
0f20cc35 3650
634835ae 3651 case GGA_NORMAL:
b49e97c9
TS
3652 h->root.dynindx = --hsd->min_got_dynindx;
3653 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3654 break;
3655
3656 case GGA_RELOC_ONLY:
634835ae
RS
3657 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3658 hsd->low = (struct elf_link_hash_entry *) h;
3659 h->root.dynindx = hsd->max_unref_got_dynindx++;
3660 break;
b49e97c9
TS
3661 }
3662
b34976b6 3663 return TRUE;
b49e97c9
TS
3664}
3665
3666/* If H is a symbol that needs a global GOT entry, but has a dynamic
3667 symbol table index lower than any we've seen to date, record it for
6ccf4795
RS
3668 posterity. FOR_CALL is true if the caller is only interested in
3669 using the GOT entry for calls. */
b49e97c9 3670
b34976b6 3671static bfd_boolean
9719ad41
RS
3672mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3673 bfd *abfd, struct bfd_link_info *info,
6ccf4795 3674 bfd_boolean for_call,
0f20cc35 3675 unsigned char tls_flag)
b49e97c9 3676{
a8028dd0 3677 struct mips_elf_link_hash_table *htab;
634835ae 3678 struct mips_elf_link_hash_entry *hmips;
f4416af6 3679 struct mips_got_entry entry, **loc;
a8028dd0
RS
3680 struct mips_got_info *g;
3681
3682 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3683 BFD_ASSERT (htab != NULL);
3684
634835ae 3685 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3686 if (!for_call)
3687 hmips->got_only_for_calls = FALSE;
f4416af6 3688
b49e97c9
TS
3689 /* A global symbol in the GOT must also be in the dynamic symbol
3690 table. */
7c5fcef7
L
3691 if (h->dynindx == -1)
3692 {
3693 switch (ELF_ST_VISIBILITY (h->other))
3694 {
3695 case STV_INTERNAL:
3696 case STV_HIDDEN:
33bb52fb 3697 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3698 break;
3699 }
c152c796 3700 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3701 return FALSE;
7c5fcef7 3702 }
b49e97c9 3703
86324f90 3704 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3705 g = htab->got_info;
86324f90
EC
3706 BFD_ASSERT (g != NULL);
3707
f4416af6
AO
3708 entry.abfd = abfd;
3709 entry.symndx = -1;
3710 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3711 entry.tls_type = 0;
f4416af6
AO
3712
3713 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3714 INSERT);
3715
b49e97c9
TS
3716 /* If we've already marked this entry as needing GOT space, we don't
3717 need to do it again. */
f4416af6 3718 if (*loc)
0f20cc35
DJ
3719 {
3720 (*loc)->tls_type |= tls_flag;
3721 return TRUE;
3722 }
f4416af6
AO
3723
3724 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3725
3726 if (! *loc)
3727 return FALSE;
143d77c5 3728
f4416af6 3729 entry.gotidx = -1;
0f20cc35
DJ
3730 entry.tls_type = tls_flag;
3731
f4416af6
AO
3732 memcpy (*loc, &entry, sizeof entry);
3733
0f20cc35 3734 if (tls_flag == 0)
634835ae 3735 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3736
b34976b6 3737 return TRUE;
b49e97c9 3738}
f4416af6
AO
3739
3740/* Reserve space in G for a GOT entry containing the value of symbol
3741 SYMNDX in input bfd ABDF, plus ADDEND. */
3742
3743static bfd_boolean
9719ad41 3744mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3745 struct bfd_link_info *info,
0f20cc35 3746 unsigned char tls_flag)
f4416af6 3747{
a8028dd0
RS
3748 struct mips_elf_link_hash_table *htab;
3749 struct mips_got_info *g;
f4416af6
AO
3750 struct mips_got_entry entry, **loc;
3751
a8028dd0 3752 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3753 BFD_ASSERT (htab != NULL);
3754
a8028dd0
RS
3755 g = htab->got_info;
3756 BFD_ASSERT (g != NULL);
3757
f4416af6
AO
3758 entry.abfd = abfd;
3759 entry.symndx = symndx;
3760 entry.d.addend = addend;
0f20cc35 3761 entry.tls_type = tls_flag;
f4416af6
AO
3762 loc = (struct mips_got_entry **)
3763 htab_find_slot (g->got_entries, &entry, INSERT);
3764
3765 if (*loc)
0f20cc35
DJ
3766 {
3767 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3768 {
3769 g->tls_gotno += 2;
3770 (*loc)->tls_type |= tls_flag;
3771 }
3772 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3773 {
3774 g->tls_gotno += 1;
3775 (*loc)->tls_type |= tls_flag;
3776 }
3777 return TRUE;
3778 }
f4416af6 3779
946c668d 3780 entry.gotidx = -1;
0f20cc35
DJ
3781 if (tls_flag != 0)
3782 {
0f20cc35
DJ
3783 entry.tls_type = tls_flag;
3784 if (tls_flag == GOT_TLS_IE)
3785 g->tls_gotno += 1;
3786 else if (tls_flag == GOT_TLS_GD)
3787 g->tls_gotno += 2;
3788 else if (g->tls_ldm_offset == MINUS_ONE)
3789 {
3790 g->tls_ldm_offset = MINUS_TWO;
3791 g->tls_gotno += 2;
3792 }
3793 }
3794 else
3795 {
946c668d 3796 g->local_gotno += 1;
0f20cc35
DJ
3797 entry.tls_type = 0;
3798 }
f4416af6
AO
3799
3800 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3801
3802 if (! *loc)
3803 return FALSE;
143d77c5 3804
f4416af6
AO
3805 memcpy (*loc, &entry, sizeof entry);
3806
3807 return TRUE;
3808}
c224138d
RS
3809
3810/* Return the maximum number of GOT page entries required for RANGE. */
3811
3812static bfd_vma
3813mips_elf_pages_for_range (const struct mips_got_page_range *range)
3814{
3815 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3816}
3817
3a3b6725 3818/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3819 that ADDEND is the addend for that relocation.
3820
3821 This function creates an upper bound on the number of GOT slots
3822 required; no attempt is made to combine references to non-overridable
3823 global symbols across multiple input files. */
c224138d
RS
3824
3825static bfd_boolean
a8028dd0
RS
3826mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3827 long symndx, bfd_signed_vma addend)
c224138d 3828{
a8028dd0
RS
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_got_info *g;
c224138d
RS
3831 struct mips_got_page_entry lookup, *entry;
3832 struct mips_got_page_range **range_ptr, *range;
3833 bfd_vma old_pages, new_pages;
3834 void **loc;
3835
a8028dd0 3836 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3837 BFD_ASSERT (htab != NULL);
3838
a8028dd0
RS
3839 g = htab->got_info;
3840 BFD_ASSERT (g != NULL);
3841
c224138d
RS
3842 /* Find the mips_got_page_entry hash table entry for this symbol. */
3843 lookup.abfd = abfd;
3844 lookup.symndx = symndx;
3845 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3846 if (loc == NULL)
3847 return FALSE;
3848
3849 /* Create a mips_got_page_entry if this is the first time we've
3850 seen the symbol. */
3851 entry = (struct mips_got_page_entry *) *loc;
3852 if (!entry)
3853 {
3854 entry = bfd_alloc (abfd, sizeof (*entry));
3855 if (!entry)
3856 return FALSE;
3857
3858 entry->abfd = abfd;
3859 entry->symndx = symndx;
3860 entry->ranges = NULL;
3861 entry->num_pages = 0;
3862 *loc = entry;
3863 }
3864
3865 /* Skip over ranges whose maximum extent cannot share a page entry
3866 with ADDEND. */
3867 range_ptr = &entry->ranges;
3868 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3869 range_ptr = &(*range_ptr)->next;
3870
3871 /* If we scanned to the end of the list, or found a range whose
3872 minimum extent cannot share a page entry with ADDEND, create
3873 a new singleton range. */
3874 range = *range_ptr;
3875 if (!range || addend < range->min_addend - 0xffff)
3876 {
3877 range = bfd_alloc (abfd, sizeof (*range));
3878 if (!range)
3879 return FALSE;
3880
3881 range->next = *range_ptr;
3882 range->min_addend = addend;
3883 range->max_addend = addend;
3884
3885 *range_ptr = range;
3886 entry->num_pages++;
3887 g->page_gotno++;
3888 return TRUE;
3889 }
3890
3891 /* Remember how many pages the old range contributed. */
3892 old_pages = mips_elf_pages_for_range (range);
3893
3894 /* Update the ranges. */
3895 if (addend < range->min_addend)
3896 range->min_addend = addend;
3897 else if (addend > range->max_addend)
3898 {
3899 if (range->next && addend >= range->next->min_addend - 0xffff)
3900 {
3901 old_pages += mips_elf_pages_for_range (range->next);
3902 range->max_addend = range->next->max_addend;
3903 range->next = range->next->next;
3904 }
3905 else
3906 range->max_addend = addend;
3907 }
3908
3909 /* Record any change in the total estimate. */
3910 new_pages = mips_elf_pages_for_range (range);
3911 if (old_pages != new_pages)
3912 {
3913 entry->num_pages += new_pages - old_pages;
3914 g->page_gotno += new_pages - old_pages;
3915 }
3916
3917 return TRUE;
3918}
33bb52fb
RS
3919
3920/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3921
3922static void
3923mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3924 unsigned int n)
3925{
3926 asection *s;
3927 struct mips_elf_link_hash_table *htab;
3928
3929 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3930 BFD_ASSERT (htab != NULL);
3931
33bb52fb
RS
3932 s = mips_elf_rel_dyn_section (info, FALSE);
3933 BFD_ASSERT (s != NULL);
3934
3935 if (htab->is_vxworks)
3936 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3937 else
3938 {
3939 if (s->size == 0)
3940 {
3941 /* Make room for a null element. */
3942 s->size += MIPS_ELF_REL_SIZE (abfd);
3943 ++s->reloc_count;
3944 }
3945 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3946 }
3947}
3948\f
3949/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3950 if the GOT entry is for an indirect or warning symbol. */
3951
3952static int
3953mips_elf_check_recreate_got (void **entryp, void *data)
3954{
3955 struct mips_got_entry *entry;
3956 bfd_boolean *must_recreate;
3957
3958 entry = (struct mips_got_entry *) *entryp;
3959 must_recreate = (bfd_boolean *) data;
3960 if (entry->abfd != NULL && entry->symndx == -1)
3961 {
3962 struct mips_elf_link_hash_entry *h;
3963
3964 h = entry->d.h;
3965 if (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3967 {
3968 *must_recreate = TRUE;
3969 return 0;
3970 }
3971 }
3972 return 1;
3973}
3974
3975/* A htab_traverse callback for GOT entries. Add all entries to
3976 hash table *DATA, converting entries for indirect and warning
3977 symbols into entries for the target symbol. Set *DATA to null
3978 on error. */
3979
3980static int
3981mips_elf_recreate_got (void **entryp, void *data)
3982{
3983 htab_t *new_got;
3984 struct mips_got_entry *entry;
3985 void **slot;
3986
3987 new_got = (htab_t *) data;
3988 entry = (struct mips_got_entry *) *entryp;
3989 if (entry->abfd != NULL && entry->symndx == -1)
3990 {
3991 struct mips_elf_link_hash_entry *h;
3992
3993 h = entry->d.h;
3994 while (h->root.root.type == bfd_link_hash_indirect
3995 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3996 {
3997 BFD_ASSERT (h->global_got_area == GGA_NONE);
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3999 }
33bb52fb
RS
4000 entry->d.h = h;
4001 }
4002 slot = htab_find_slot (*new_got, entry, INSERT);
4003 if (slot == NULL)
4004 {
4005 *new_got = NULL;
4006 return 0;
4007 }
4008 if (*slot == NULL)
4009 *slot = entry;
33bb52fb
RS
4010 return 1;
4011}
4012
4013/* If any entries in G->got_entries are for indirect or warning symbols,
4014 replace them with entries for the target symbol. */
4015
4016static bfd_boolean
4017mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4018{
4019 bfd_boolean must_recreate;
4020 htab_t new_got;
4021
4022 must_recreate = FALSE;
4023 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4024 if (must_recreate)
4025 {
4026 new_got = htab_create (htab_size (g->got_entries),
4027 mips_elf_got_entry_hash,
4028 mips_elf_got_entry_eq, NULL);
4029 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4030 if (new_got == NULL)
4031 return FALSE;
4032
33bb52fb
RS
4033 htab_delete (g->got_entries);
4034 g->got_entries = new_got;
4035 }
4036 return TRUE;
4037}
4038
634835ae 4039/* A mips_elf_link_hash_traverse callback for which DATA points
020d7251
RS
4040 to the link_info structure. Count the number of type (3) entries
4041 in the master GOT. */
33bb52fb
RS
4042
4043static int
d4596a51 4044mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4045{
020d7251 4046 struct bfd_link_info *info;
6ccf4795 4047 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4048 struct mips_got_info *g;
4049
020d7251 4050 info = (struct bfd_link_info *) data;
6ccf4795
RS
4051 htab = mips_elf_hash_table (info);
4052 g = htab->got_info;
d4596a51 4053 if (h->global_got_area != GGA_NONE)
33bb52fb 4054 {
020d7251
RS
4055 /* Make a final decision about whether the symbol belongs in the
4056 local or global GOT. Symbols that bind locally can (and in the
4057 case of forced-local symbols, must) live in the local GOT.
4058 Those that are aren't in the dynamic symbol table must also
4059 live in the local GOT.
4060
4061 Note that the former condition does not always imply the
4062 latter: symbols do not bind locally if they are completely
4063 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4064 if (h->root.dynindx == -1
4065 || (h->got_only_for_calls
4066 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4067 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
d4596a51 4068 {
020d7251
RS
4069 /* The symbol belongs in the local GOT. We no longer need this
4070 entry if it was only used for relocations; those relocations
4071 will be against the null or section symbol instead of H. */
d4596a51
RS
4072 if (h->global_got_area != GGA_RELOC_ONLY)
4073 g->local_gotno++;
4074 h->global_got_area = GGA_NONE;
4075 }
6ccf4795
RS
4076 else if (htab->is_vxworks
4077 && h->got_only_for_calls
4078 && h->root.plt.offset != MINUS_ONE)
4079 /* On VxWorks, calls can refer directly to the .got.plt entry;
4080 they don't need entries in the regular GOT. .got.plt entries
4081 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4082 h->global_got_area = GGA_NONE;
d4596a51 4083 else
23cc69b6
RS
4084 {
4085 g->global_gotno++;
4086 if (h->global_got_area == GGA_RELOC_ONLY)
4087 g->reloc_only_gotno++;
4088 }
33bb52fb
RS
4089 }
4090 return 1;
4091}
f4416af6
AO
4092\f
4093/* Compute the hash value of the bfd in a bfd2got hash entry. */
4094
4095static hashval_t
9719ad41 4096mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
4097{
4098 const struct mips_elf_bfd2got_hash *entry
4099 = (struct mips_elf_bfd2got_hash *)entry_;
4100
4101 return entry->bfd->id;
4102}
4103
4104/* Check whether two hash entries have the same bfd. */
4105
4106static int
9719ad41 4107mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
4108{
4109 const struct mips_elf_bfd2got_hash *e1
4110 = (const struct mips_elf_bfd2got_hash *)entry1;
4111 const struct mips_elf_bfd2got_hash *e2
4112 = (const struct mips_elf_bfd2got_hash *)entry2;
4113
4114 return e1->bfd == e2->bfd;
4115}
4116
bad36eac 4117/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
4118 be the master GOT data. */
4119
4120static struct mips_got_info *
9719ad41 4121mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4122{
4123 struct mips_elf_bfd2got_hash e, *p;
4124
4125 if (! g->bfd2got)
4126 return g;
4127
4128 e.bfd = ibfd;
9719ad41 4129 p = htab_find (g->bfd2got, &e);
f4416af6
AO
4130 return p ? p->g : NULL;
4131}
4132
c224138d
RS
4133/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4134 Return NULL if an error occured. */
f4416af6 4135
c224138d
RS
4136static struct mips_got_info *
4137mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4138 bfd *input_bfd)
f4416af6 4139{
f4416af6 4140 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 4141 struct mips_got_info *g;
f4416af6 4142 void **bfdgotp;
143d77c5 4143
c224138d 4144 bfdgot_entry.bfd = input_bfd;
f4416af6 4145 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 4146 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 4147
c224138d 4148 if (bfdgot == NULL)
f4416af6 4149 {
c224138d
RS
4150 bfdgot = ((struct mips_elf_bfd2got_hash *)
4151 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 4152 if (bfdgot == NULL)
c224138d 4153 return NULL;
f4416af6
AO
4154
4155 *bfdgotp = bfdgot;
4156
c224138d
RS
4157 g = ((struct mips_got_info *)
4158 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 4159 if (g == NULL)
c224138d
RS
4160 return NULL;
4161
4162 bfdgot->bfd = input_bfd;
4163 bfdgot->g = g;
f4416af6 4164
f4416af6 4165 g->global_gotno = 0;
23cc69b6 4166 g->reloc_only_gotno = 0;
f4416af6 4167 g->local_gotno = 0;
c224138d 4168 g->page_gotno = 0;
f4416af6 4169 g->assigned_gotno = -1;
0f20cc35
DJ
4170 g->tls_gotno = 0;
4171 g->tls_assigned_gotno = 0;
4172 g->tls_ldm_offset = MINUS_ONE;
f4416af6 4173 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 4174 mips_elf_multi_got_entry_eq, NULL);
f4416af6 4175 if (g->got_entries == NULL)
c224138d
RS
4176 return NULL;
4177
4178 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4179 mips_got_page_entry_eq, NULL);
4180 if (g->got_page_entries == NULL)
4181 return NULL;
f4416af6
AO
4182
4183 g->bfd2got = NULL;
4184 g->next = NULL;
4185 }
4186
c224138d
RS
4187 return bfdgot->g;
4188}
4189
4190/* A htab_traverse callback for the entries in the master got.
4191 Create one separate got for each bfd that has entries in the global
4192 got, such that we can tell how many local and global entries each
4193 bfd requires. */
4194
4195static int
4196mips_elf_make_got_per_bfd (void **entryp, void *p)
4197{
4198 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4199 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4200 struct mips_got_info *g;
4201
4202 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4203 if (g == NULL)
4204 {
4205 arg->obfd = NULL;
4206 return 0;
4207 }
4208
f4416af6
AO
4209 /* Insert the GOT entry in the bfd's got entry hash table. */
4210 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4211 if (*entryp != NULL)
4212 return 1;
143d77c5 4213
f4416af6
AO
4214 *entryp = entry;
4215
0f20cc35
DJ
4216 if (entry->tls_type)
4217 {
4218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4219 g->tls_gotno += 2;
4220 if (entry->tls_type & GOT_TLS_IE)
4221 g->tls_gotno += 1;
4222 }
020d7251 4223 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
f4416af6
AO
4224 ++g->local_gotno;
4225 else
4226 ++g->global_gotno;
4227
4228 return 1;
4229}
4230
c224138d
RS
4231/* A htab_traverse callback for the page entries in the master got.
4232 Associate each page entry with the bfd's got. */
4233
4234static int
4235mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4236{
4237 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4238 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4239 struct mips_got_info *g;
4240
4241 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4242 if (g == NULL)
4243 {
4244 arg->obfd = NULL;
4245 return 0;
4246 }
4247
4248 /* Insert the GOT entry in the bfd's got entry hash table. */
4249 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4250 if (*entryp != NULL)
4251 return 1;
4252
4253 *entryp = entry;
4254 g->page_gotno += entry->num_pages;
4255 return 1;
4256}
4257
4258/* Consider merging the got described by BFD2GOT with TO, using the
4259 information given by ARG. Return -1 if this would lead to overflow,
4260 1 if they were merged successfully, and 0 if a merge failed due to
4261 lack of memory. (These values are chosen so that nonnegative return
4262 values can be returned by a htab_traverse callback.) */
4263
4264static int
4265mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4266 struct mips_got_info *to,
4267 struct mips_elf_got_per_bfd_arg *arg)
4268{
4269 struct mips_got_info *from = bfd2got->g;
4270 unsigned int estimate;
4271
4272 /* Work out how many page entries we would need for the combined GOT. */
4273 estimate = arg->max_pages;
4274 if (estimate >= from->page_gotno + to->page_gotno)
4275 estimate = from->page_gotno + to->page_gotno;
4276
e2ece73c 4277 /* And conservatively estimate how many local and TLS entries
c224138d 4278 would be needed. */
e2ece73c
RS
4279 estimate += from->local_gotno + to->local_gotno;
4280 estimate += from->tls_gotno + to->tls_gotno;
4281
17214937
RS
4282 /* If we're merging with the primary got, any TLS relocations will
4283 come after the full set of global entries. Otherwise estimate those
e2ece73c 4284 conservatively as well. */
17214937 4285 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4286 estimate += arg->global_count;
4287 else
4288 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4289
4290 /* Bail out if the combined GOT might be too big. */
4291 if (estimate > arg->max_count)
4292 return -1;
4293
4294 /* Commit to the merge. Record that TO is now the bfd for this got. */
4295 bfd2got->g = to;
4296
4297 /* Transfer the bfd's got information from FROM to TO. */
4298 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4299 if (arg->obfd == NULL)
4300 return 0;
4301
4302 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4303 if (arg->obfd == NULL)
4304 return 0;
4305
4306 /* We don't have to worry about releasing memory of the actual
4307 got entries, since they're all in the master got_entries hash
4308 table anyway. */
4309 htab_delete (from->got_entries);
4310 htab_delete (from->got_page_entries);
4311 return 1;
4312}
4313
f4416af6
AO
4314/* Attempt to merge gots of different input bfds. Try to use as much
4315 as possible of the primary got, since it doesn't require explicit
4316 dynamic relocations, but don't use bfds that would reference global
4317 symbols out of the addressable range. Failing the primary got,
4318 attempt to merge with the current got, or finish the current got
4319 and then make make the new got current. */
4320
4321static int
9719ad41 4322mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4323{
4324 struct mips_elf_bfd2got_hash *bfd2got
4325 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4326 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4327 struct mips_got_info *g;
4328 unsigned int estimate;
4329 int result;
4330
4331 g = bfd2got->g;
4332
4333 /* Work out the number of page, local and TLS entries. */
4334 estimate = arg->max_pages;
4335 if (estimate > g->page_gotno)
4336 estimate = g->page_gotno;
4337 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4338
4339 /* We place TLS GOT entries after both locals and globals. The globals
4340 for the primary GOT may overflow the normal GOT size limit, so be
4341 sure not to merge a GOT which requires TLS with the primary GOT in that
4342 case. This doesn't affect non-primary GOTs. */
c224138d 4343 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4344
c224138d 4345 if (estimate <= arg->max_count)
f4416af6 4346 {
c224138d
RS
4347 /* If we don't have a primary GOT, use it as
4348 a starting point for the primary GOT. */
4349 if (!arg->primary)
4350 {
4351 arg->primary = bfd2got->g;
4352 return 1;
4353 }
f4416af6 4354
c224138d
RS
4355 /* Try merging with the primary GOT. */
4356 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4357 if (result >= 0)
4358 return result;
f4416af6 4359 }
c224138d 4360
f4416af6 4361 /* If we can merge with the last-created got, do it. */
c224138d 4362 if (arg->current)
f4416af6 4363 {
c224138d
RS
4364 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4365 if (result >= 0)
4366 return result;
f4416af6 4367 }
c224138d 4368
f4416af6
AO
4369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4370 fits; if it turns out that it doesn't, we'll get relocation
4371 overflows anyway. */
c224138d
RS
4372 g->next = arg->current;
4373 arg->current = g;
0f20cc35
DJ
4374
4375 return 1;
4376}
4377
ead49a57
RS
4378/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4379 is null iff there is just a single GOT. */
0f20cc35
DJ
4380
4381static int
4382mips_elf_initialize_tls_index (void **entryp, void *p)
4383{
4384 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4385 struct mips_got_info *g = p;
ead49a57 4386 bfd_vma next_index;
cbf2cba4 4387 unsigned char tls_type;
0f20cc35
DJ
4388
4389 /* We're only interested in TLS symbols. */
4390 if (entry->tls_type == 0)
4391 return 1;
4392
ead49a57
RS
4393 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4394
4395 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4396 {
ead49a57
RS
4397 /* A type (3) got entry in the single-GOT case. We use the symbol's
4398 hash table entry to track its index. */
4399 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4400 return 1;
4401 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4402 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4403 tls_type = entry->d.h->tls_type;
ead49a57
RS
4404 }
4405 else
4406 {
4407 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4408 {
ead49a57
RS
4409 /* There are separate mips_got_entry objects for each input bfd
4410 that requires an LDM entry. Make sure that all LDM entries in
4411 a GOT resolve to the same index. */
4412 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4413 {
ead49a57 4414 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4415 return 1;
4416 }
ead49a57 4417 g->tls_ldm_offset = next_index;
0f20cc35 4418 }
ead49a57 4419 entry->gotidx = next_index;
cbf2cba4 4420 tls_type = entry->tls_type;
f4416af6
AO
4421 }
4422
ead49a57 4423 /* Account for the entries we've just allocated. */
cbf2cba4 4424 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4425 g->tls_assigned_gotno += 2;
cbf2cba4 4426 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4427 g->tls_assigned_gotno += 1;
4428
f4416af6
AO
4429 return 1;
4430}
4431
4432/* If passed a NULL mips_got_info in the argument, set the marker used
4433 to tell whether a global symbol needs a got entry (in the primary
4434 got) to the given VALUE.
4435
4436 If passed a pointer G to a mips_got_info in the argument (it must
4437 not be the primary GOT), compute the offset from the beginning of
4438 the (primary) GOT section to the entry in G corresponding to the
4439 global symbol. G's assigned_gotno must contain the index of the
4440 first available global GOT entry in G. VALUE must contain the size
4441 of a GOT entry in bytes. For each global GOT entry that requires a
4442 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4443 marked as not eligible for lazy resolution through a function
f4416af6
AO
4444 stub. */
4445static int
9719ad41 4446mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4447{
4448 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4449 struct mips_elf_set_global_got_offset_arg *arg
4450 = (struct mips_elf_set_global_got_offset_arg *)p;
4451 struct mips_got_info *g = arg->g;
4452
0f20cc35
DJ
4453 if (g && entry->tls_type != GOT_NORMAL)
4454 arg->needed_relocs +=
4455 mips_tls_got_relocs (arg->info, entry->tls_type,
4456 entry->symndx == -1 ? &entry->d.h->root : NULL);
4457
634835ae
RS
4458 if (entry->abfd != NULL
4459 && entry->symndx == -1
4460 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4461 {
4462 if (g)
4463 {
f4416af6 4464 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4465 if (arg->info->shared
4466 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4467 && entry->d.h->root.def_dynamic
4468 && !entry->d.h->root.def_regular))
f4416af6
AO
4469 ++arg->needed_relocs;
4470 }
4471 else
634835ae 4472 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4473 }
4474
4475 return 1;
4476}
4477
33bb52fb
RS
4478/* A htab_traverse callback for GOT entries for which DATA is the
4479 bfd_link_info. Forbid any global symbols from having traditional
4480 lazy-binding stubs. */
4481
0626d451 4482static int
33bb52fb 4483mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4484{
33bb52fb
RS
4485 struct bfd_link_info *info;
4486 struct mips_elf_link_hash_table *htab;
4487 struct mips_got_entry *entry;
0626d451 4488
33bb52fb
RS
4489 entry = (struct mips_got_entry *) *entryp;
4490 info = (struct bfd_link_info *) data;
4491 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4492 BFD_ASSERT (htab != NULL);
4493
0626d451
RS
4494 if (entry->abfd != NULL
4495 && entry->symndx == -1
33bb52fb 4496 && entry->d.h->needs_lazy_stub)
f4416af6 4497 {
33bb52fb
RS
4498 entry->d.h->needs_lazy_stub = FALSE;
4499 htab->lazy_stub_count--;
f4416af6 4500 }
143d77c5 4501
f4416af6
AO
4502 return 1;
4503}
4504
f4416af6
AO
4505/* Return the offset of an input bfd IBFD's GOT from the beginning of
4506 the primary GOT. */
4507static bfd_vma
9719ad41 4508mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4509{
4510 if (g->bfd2got == NULL)
4511 return 0;
4512
4513 g = mips_elf_got_for_ibfd (g, ibfd);
4514 if (! g)
4515 return 0;
4516
4517 BFD_ASSERT (g->next);
4518
4519 g = g->next;
143d77c5 4520
0f20cc35
DJ
4521 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4522 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4523}
4524
4525/* Turn a single GOT that is too big for 16-bit addressing into
4526 a sequence of GOTs, each one 16-bit addressable. */
4527
4528static bfd_boolean
9719ad41 4529mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4530 asection *got, bfd_size_type pages)
f4416af6 4531{
a8028dd0 4532 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4533 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4534 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4535 struct mips_got_info *g, *gg;
33bb52fb
RS
4536 unsigned int assign, needed_relocs;
4537 bfd *dynobj;
f4416af6 4538
33bb52fb 4539 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4540 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4541 BFD_ASSERT (htab != NULL);
4542
a8028dd0 4543 g = htab->got_info;
f4416af6 4544 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4545 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4546 if (g->bfd2got == NULL)
4547 return FALSE;
4548
4549 got_per_bfd_arg.bfd2got = g->bfd2got;
4550 got_per_bfd_arg.obfd = abfd;
4551 got_per_bfd_arg.info = info;
4552
4553 /* Count how many GOT entries each input bfd requires, creating a
4554 map from bfd to got info while at that. */
f4416af6
AO
4555 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4556 if (got_per_bfd_arg.obfd == NULL)
4557 return FALSE;
4558
c224138d
RS
4559 /* Also count how many page entries each input bfd requires. */
4560 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4561 &got_per_bfd_arg);
4562 if (got_per_bfd_arg.obfd == NULL)
4563 return FALSE;
4564
f4416af6
AO
4565 got_per_bfd_arg.current = NULL;
4566 got_per_bfd_arg.primary = NULL;
0a44bf69 4567 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4568 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4569 - htab->reserved_gotno);
c224138d 4570 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4571 /* The number of globals that will be included in the primary GOT.
4572 See the calls to mips_elf_set_global_got_offset below for more
4573 information. */
4574 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4575
4576 /* Try to merge the GOTs of input bfds together, as long as they
4577 don't seem to exceed the maximum GOT size, choosing one of them
4578 to be the primary GOT. */
4579 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4580 if (got_per_bfd_arg.obfd == NULL)
4581 return FALSE;
4582
0f20cc35 4583 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4584 if (got_per_bfd_arg.primary == NULL)
4585 {
4586 g->next = (struct mips_got_info *)
4587 bfd_alloc (abfd, sizeof (struct mips_got_info));
4588 if (g->next == NULL)
4589 return FALSE;
4590
f4416af6 4591 g->next->global_gotno = 0;
23cc69b6 4592 g->next->reloc_only_gotno = 0;
f4416af6 4593 g->next->local_gotno = 0;
c224138d 4594 g->next->page_gotno = 0;
0f20cc35 4595 g->next->tls_gotno = 0;
f4416af6 4596 g->next->assigned_gotno = 0;
0f20cc35
DJ
4597 g->next->tls_assigned_gotno = 0;
4598 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4599 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4600 mips_elf_multi_got_entry_eq,
9719ad41 4601 NULL);
f4416af6
AO
4602 if (g->next->got_entries == NULL)
4603 return FALSE;
c224138d
RS
4604 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4605 mips_got_page_entry_eq,
4606 NULL);
4607 if (g->next->got_page_entries == NULL)
4608 return FALSE;
f4416af6
AO
4609 g->next->bfd2got = NULL;
4610 }
4611 else
4612 g->next = got_per_bfd_arg.primary;
4613 g->next->next = got_per_bfd_arg.current;
4614
4615 /* GG is now the master GOT, and G is the primary GOT. */
4616 gg = g;
4617 g = g->next;
4618
4619 /* Map the output bfd to the primary got. That's what we're going
4620 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4621 didn't mark in check_relocs, and we want a quick way to find it.
4622 We can't just use gg->next because we're going to reverse the
4623 list. */
4624 {
4625 struct mips_elf_bfd2got_hash *bfdgot;
4626 void **bfdgotp;
143d77c5 4627
f4416af6
AO
4628 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4629 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4630
4631 if (bfdgot == NULL)
4632 return FALSE;
4633
4634 bfdgot->bfd = abfd;
4635 bfdgot->g = g;
4636 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4637
4638 BFD_ASSERT (*bfdgotp == NULL);
4639 *bfdgotp = bfdgot;
4640 }
4641
634835ae
RS
4642 /* Every symbol that is referenced in a dynamic relocation must be
4643 present in the primary GOT, so arrange for them to appear after
4644 those that are actually referenced. */
23cc69b6 4645 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4646 g->global_gotno = gg->global_gotno;
f4416af6 4647
f4416af6 4648 set_got_offset_arg.g = NULL;
634835ae 4649 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4650 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4651 &set_got_offset_arg);
634835ae 4652 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4653 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4654 &set_got_offset_arg);
f4416af6
AO
4655
4656 /* Now go through the GOTs assigning them offset ranges.
4657 [assigned_gotno, local_gotno[ will be set to the range of local
4658 entries in each GOT. We can then compute the end of a GOT by
4659 adding local_gotno to global_gotno. We reverse the list and make
4660 it circular since then we'll be able to quickly compute the
4661 beginning of a GOT, by computing the end of its predecessor. To
4662 avoid special cases for the primary GOT, while still preserving
4663 assertions that are valid for both single- and multi-got links,
4664 we arrange for the main got struct to have the right number of
4665 global entries, but set its local_gotno such that the initial
4666 offset of the primary GOT is zero. Remember that the primary GOT
4667 will become the last item in the circular linked list, so it
4668 points back to the master GOT. */
4669 gg->local_gotno = -g->global_gotno;
4670 gg->global_gotno = g->global_gotno;
0f20cc35 4671 gg->tls_gotno = 0;
f4416af6
AO
4672 assign = 0;
4673 gg->next = gg;
4674
4675 do
4676 {
4677 struct mips_got_info *gn;
4678
861fb55a 4679 assign += htab->reserved_gotno;
f4416af6 4680 g->assigned_gotno = assign;
c224138d
RS
4681 g->local_gotno += assign;
4682 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4683 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4684
ead49a57
RS
4685 /* Take g out of the direct list, and push it onto the reversed
4686 list that gg points to. g->next is guaranteed to be nonnull after
4687 this operation, as required by mips_elf_initialize_tls_index. */
4688 gn = g->next;
4689 g->next = gg->next;
4690 gg->next = g;
4691
0f20cc35
DJ
4692 /* Set up any TLS entries. We always place the TLS entries after
4693 all non-TLS entries. */
4694 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4695 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70 4696 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4697
ead49a57 4698 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4699 g = gn;
0626d451 4700
33bb52fb
RS
4701 /* Forbid global symbols in every non-primary GOT from having
4702 lazy-binding stubs. */
0626d451 4703 if (g)
33bb52fb 4704 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4705 }
4706 while (g);
4707
59b08994 4708 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4709
4710 needed_relocs = 0;
4711 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4712 set_got_offset_arg.info = info;
4713 for (g = gg->next; g && g->next != gg; g = g->next)
4714 {
4715 unsigned int save_assign;
4716
4717 /* Assign offsets to global GOT entries. */
4718 save_assign = g->assigned_gotno;
4719 g->assigned_gotno = g->local_gotno;
4720 set_got_offset_arg.g = g;
4721 set_got_offset_arg.needed_relocs = 0;
4722 htab_traverse (g->got_entries,
4723 mips_elf_set_global_got_offset,
4724 &set_got_offset_arg);
4725 needed_relocs += set_got_offset_arg.needed_relocs;
4726 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4727
4728 g->assigned_gotno = save_assign;
4729 if (info->shared)
4730 {
4731 needed_relocs += g->local_gotno - g->assigned_gotno;
4732 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4733 + g->next->global_gotno
4734 + g->next->tls_gotno
861fb55a 4735 + htab->reserved_gotno);
33bb52fb
RS
4736 }
4737 }
4738
4739 if (needed_relocs)
4740 mips_elf_allocate_dynamic_relocations (dynobj, info,
4741 needed_relocs);
143d77c5 4742
f4416af6
AO
4743 return TRUE;
4744}
143d77c5 4745
b49e97c9
TS
4746\f
4747/* Returns the first relocation of type r_type found, beginning with
4748 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4749
4750static const Elf_Internal_Rela *
9719ad41
RS
4751mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4752 const Elf_Internal_Rela *relocation,
4753 const Elf_Internal_Rela *relend)
b49e97c9 4754{
c000e262
TS
4755 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4756
b49e97c9
TS
4757 while (relocation < relend)
4758 {
c000e262
TS
4759 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4760 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4761 return relocation;
4762
4763 ++relocation;
4764 }
4765
4766 /* We didn't find it. */
b49e97c9
TS
4767 return NULL;
4768}
4769
020d7251 4770/* Return whether an input relocation is against a local symbol. */
b49e97c9 4771
b34976b6 4772static bfd_boolean
9719ad41
RS
4773mips_elf_local_relocation_p (bfd *input_bfd,
4774 const Elf_Internal_Rela *relocation,
020d7251 4775 asection **local_sections)
b49e97c9
TS
4776{
4777 unsigned long r_symndx;
4778 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4779 size_t extsymoff;
4780
4781 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4782 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4783 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4784
4785 if (r_symndx < extsymoff)
b34976b6 4786 return TRUE;
b49e97c9 4787 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4788 return TRUE;
b49e97c9 4789
b34976b6 4790 return FALSE;
b49e97c9
TS
4791}
4792\f
4793/* Sign-extend VALUE, which has the indicated number of BITS. */
4794
a7ebbfdf 4795bfd_vma
9719ad41 4796_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4797{
4798 if (value & ((bfd_vma) 1 << (bits - 1)))
4799 /* VALUE is negative. */
4800 value |= ((bfd_vma) - 1) << bits;
4801
4802 return value;
4803}
4804
4805/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4806 range expressible by a signed number with the indicated number of
b49e97c9
TS
4807 BITS. */
4808
b34976b6 4809static bfd_boolean
9719ad41 4810mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4811{
4812 bfd_signed_vma svalue = (bfd_signed_vma) value;
4813
4814 if (svalue > (1 << (bits - 1)) - 1)
4815 /* The value is too big. */
b34976b6 4816 return TRUE;
b49e97c9
TS
4817 else if (svalue < -(1 << (bits - 1)))
4818 /* The value is too small. */
b34976b6 4819 return TRUE;
b49e97c9
TS
4820
4821 /* All is well. */
b34976b6 4822 return FALSE;
b49e97c9
TS
4823}
4824
4825/* Calculate the %high function. */
4826
4827static bfd_vma
9719ad41 4828mips_elf_high (bfd_vma value)
b49e97c9
TS
4829{
4830 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4831}
4832
4833/* Calculate the %higher function. */
4834
4835static bfd_vma
9719ad41 4836mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4837{
4838#ifdef BFD64
4839 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4840#else
4841 abort ();
c5ae1840 4842 return MINUS_ONE;
b49e97c9
TS
4843#endif
4844}
4845
4846/* Calculate the %highest function. */
4847
4848static bfd_vma
9719ad41 4849mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4850{
4851#ifdef BFD64
b15e6682 4852 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4853#else
4854 abort ();
c5ae1840 4855 return MINUS_ONE;
b49e97c9
TS
4856#endif
4857}
4858\f
4859/* Create the .compact_rel section. */
4860
b34976b6 4861static bfd_boolean
9719ad41
RS
4862mips_elf_create_compact_rel_section
4863 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4864{
4865 flagword flags;
4866 register asection *s;
4867
3d4d4302 4868 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4869 {
4870 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4871 | SEC_READONLY);
4872
3d4d4302 4873 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4874 if (s == NULL
b49e97c9
TS
4875 || ! bfd_set_section_alignment (abfd, s,
4876 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4877 return FALSE;
b49e97c9 4878
eea6121a 4879 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4880 }
4881
b34976b6 4882 return TRUE;
b49e97c9
TS
4883}
4884
4885/* Create the .got section to hold the global offset table. */
4886
b34976b6 4887static bfd_boolean
23cc69b6 4888mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4889{
4890 flagword flags;
4891 register asection *s;
4892 struct elf_link_hash_entry *h;
14a793b2 4893 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4894 struct mips_got_info *g;
4895 bfd_size_type amt;
0a44bf69
RS
4896 struct mips_elf_link_hash_table *htab;
4897
4898 htab = mips_elf_hash_table (info);
4dfe6ac6 4899 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4900
4901 /* This function may be called more than once. */
23cc69b6
RS
4902 if (htab->sgot)
4903 return TRUE;
b49e97c9
TS
4904
4905 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4906 | SEC_LINKER_CREATED);
4907
72b4917c
TS
4908 /* We have to use an alignment of 2**4 here because this is hardcoded
4909 in the function stub generation and in the linker script. */
87e0a731 4910 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4911 if (s == NULL
72b4917c 4912 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4913 return FALSE;
a8028dd0 4914 htab->sgot = s;
b49e97c9
TS
4915
4916 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4917 linker script because we don't want to define the symbol if we
4918 are not creating a global offset table. */
14a793b2 4919 bh = NULL;
b49e97c9
TS
4920 if (! (_bfd_generic_link_add_one_symbol
4921 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4922 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4923 return FALSE;
14a793b2
AM
4924
4925 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4926 h->non_elf = 0;
4927 h->def_regular = 1;
b49e97c9 4928 h->type = STT_OBJECT;
d329bcd1 4929 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4930
4931 if (info->shared
c152c796 4932 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4933 return FALSE;
b49e97c9 4934
b49e97c9 4935 amt = sizeof (struct mips_got_info);
9719ad41 4936 g = bfd_alloc (abfd, amt);
b49e97c9 4937 if (g == NULL)
b34976b6 4938 return FALSE;
e3d54347 4939 g->global_gotno = 0;
23cc69b6 4940 g->reloc_only_gotno = 0;
0f20cc35 4941 g->tls_gotno = 0;
861fb55a 4942 g->local_gotno = 0;
c224138d 4943 g->page_gotno = 0;
861fb55a 4944 g->assigned_gotno = 0;
f4416af6
AO
4945 g->bfd2got = NULL;
4946 g->next = NULL;
0f20cc35 4947 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4948 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4949 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4950 if (g->got_entries == NULL)
4951 return FALSE;
c224138d
RS
4952 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4953 mips_got_page_entry_eq, NULL);
4954 if (g->got_page_entries == NULL)
4955 return FALSE;
a8028dd0 4956 htab->got_info = g;
f0abc2a1 4957 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4958 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4959
861fb55a 4960 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4961 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4962 SEC_ALLOC | SEC_LOAD
4963 | SEC_HAS_CONTENTS
4964 | SEC_IN_MEMORY
4965 | SEC_LINKER_CREATED);
861fb55a
DJ
4966 if (s == NULL)
4967 return FALSE;
4968 htab->sgotplt = s;
0a44bf69 4969
b34976b6 4970 return TRUE;
b49e97c9 4971}
b49e97c9 4972\f
0a44bf69
RS
4973/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4974 __GOTT_INDEX__ symbols. These symbols are only special for
4975 shared objects; they are not used in executables. */
4976
4977static bfd_boolean
4978is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4979{
4980 return (mips_elf_hash_table (info)->is_vxworks
4981 && info->shared
4982 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4983 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4984}
861fb55a
DJ
4985
4986/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4987 require an la25 stub. See also mips_elf_local_pic_function_p,
4988 which determines whether the destination function ever requires a
4989 stub. */
4990
4991static bfd_boolean
8f0c309a
CLT
4992mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4993 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4994{
4995 /* We specifically ignore branches and jumps from EF_PIC objects,
4996 where the onus is on the compiler or programmer to perform any
4997 necessary initialization of $25. Sometimes such initialization
4998 is unnecessary; for example, -mno-shared functions do not use
4999 the incoming value of $25, and may therefore be called directly. */
5000 if (PIC_OBJECT_P (input_bfd))
5001 return FALSE;
5002
5003 switch (r_type)
5004 {
5005 case R_MIPS_26:
5006 case R_MIPS_PC16:
df58fc94
RS
5007 case R_MICROMIPS_26_S1:
5008 case R_MICROMIPS_PC7_S1:
5009 case R_MICROMIPS_PC10_S1:
5010 case R_MICROMIPS_PC16_S1:
5011 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5012 return TRUE;
5013
8f0c309a
CLT
5014 case R_MIPS16_26:
5015 return !target_is_16_bit_code_p;
5016
861fb55a
DJ
5017 default:
5018 return FALSE;
5019 }
5020}
0a44bf69 5021\f
b49e97c9
TS
5022/* Calculate the value produced by the RELOCATION (which comes from
5023 the INPUT_BFD). The ADDEND is the addend to use for this
5024 RELOCATION; RELOCATION->R_ADDEND is ignored.
5025
5026 The result of the relocation calculation is stored in VALUEP.
38a7df63 5027 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5028 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5029
5030 This function returns bfd_reloc_continue if the caller need take no
5031 further action regarding this relocation, bfd_reloc_notsupported if
5032 something goes dramatically wrong, bfd_reloc_overflow if an
5033 overflow occurs, and bfd_reloc_ok to indicate success. */
5034
5035static bfd_reloc_status_type
9719ad41
RS
5036mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5037 asection *input_section,
5038 struct bfd_link_info *info,
5039 const Elf_Internal_Rela *relocation,
5040 bfd_vma addend, reloc_howto_type *howto,
5041 Elf_Internal_Sym *local_syms,
5042 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5043 const char **namep,
5044 bfd_boolean *cross_mode_jump_p,
9719ad41 5045 bfd_boolean save_addend)
b49e97c9
TS
5046{
5047 /* The eventual value we will return. */
5048 bfd_vma value;
5049 /* The address of the symbol against which the relocation is
5050 occurring. */
5051 bfd_vma symbol = 0;
5052 /* The final GP value to be used for the relocatable, executable, or
5053 shared object file being produced. */
0a61c8c2 5054 bfd_vma gp;
b49e97c9
TS
5055 /* The place (section offset or address) of the storage unit being
5056 relocated. */
5057 bfd_vma p;
5058 /* The value of GP used to create the relocatable object. */
0a61c8c2 5059 bfd_vma gp0;
b49e97c9
TS
5060 /* The offset into the global offset table at which the address of
5061 the relocation entry symbol, adjusted by the addend, resides
5062 during execution. */
5063 bfd_vma g = MINUS_ONE;
5064 /* The section in which the symbol referenced by the relocation is
5065 located. */
5066 asection *sec = NULL;
5067 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5068 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5069 symbol. */
b34976b6
AM
5070 bfd_boolean local_p, was_local_p;
5071 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5072 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5073 /* TRUE if the symbol referred to by this relocation is
5074 "__gnu_local_gp". */
5075 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5076 Elf_Internal_Shdr *symtab_hdr;
5077 size_t extsymoff;
5078 unsigned long r_symndx;
5079 int r_type;
b34976b6 5080 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5081 relocation value. */
b34976b6
AM
5082 bfd_boolean overflowed_p;
5083 /* TRUE if this relocation refers to a MIPS16 function. */
5084 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5085 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5086 struct mips_elf_link_hash_table *htab;
5087 bfd *dynobj;
5088
5089 dynobj = elf_hash_table (info)->dynobj;
5090 htab = mips_elf_hash_table (info);
4dfe6ac6 5091 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5092
5093 /* Parse the relocation. */
5094 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5095 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5096 p = (input_section->output_section->vma
5097 + input_section->output_offset
5098 + relocation->r_offset);
5099
5100 /* Assume that there will be no overflow. */
b34976b6 5101 overflowed_p = FALSE;
b49e97c9
TS
5102
5103 /* Figure out whether or not the symbol is local, and get the offset
5104 used in the array of hash table entries. */
5105 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5106 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5107 local_sections);
bce03d3d 5108 was_local_p = local_p;
b49e97c9
TS
5109 if (! elf_bad_symtab (input_bfd))
5110 extsymoff = symtab_hdr->sh_info;
5111 else
5112 {
5113 /* The symbol table does not follow the rule that local symbols
5114 must come before globals. */
5115 extsymoff = 0;
5116 }
5117
5118 /* Figure out the value of the symbol. */
5119 if (local_p)
5120 {
5121 Elf_Internal_Sym *sym;
5122
5123 sym = local_syms + r_symndx;
5124 sec = local_sections[r_symndx];
5125
5126 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5127 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5128 || (sec->flags & SEC_MERGE))
b49e97c9 5129 symbol += sym->st_value;
d4df96e6
L
5130 if ((sec->flags & SEC_MERGE)
5131 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5132 {
5133 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5134 addend -= symbol;
5135 addend += sec->output_section->vma + sec->output_offset;
5136 }
b49e97c9 5137
df58fc94
RS
5138 /* MIPS16/microMIPS text labels should be treated as odd. */
5139 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5140 ++symbol;
5141
5142 /* Record the name of this symbol, for our caller. */
5143 *namep = bfd_elf_string_from_elf_section (input_bfd,
5144 symtab_hdr->sh_link,
5145 sym->st_name);
5146 if (*namep == '\0')
5147 *namep = bfd_section_name (input_bfd, sec);
5148
30c09090 5149 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5150 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5151 }
5152 else
5153 {
560e09e9
NC
5154 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5155
b49e97c9
TS
5156 /* For global symbols we look up the symbol in the hash-table. */
5157 h = ((struct mips_elf_link_hash_entry *)
5158 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5159 /* Find the real hash-table entry for this symbol. */
5160 while (h->root.root.type == bfd_link_hash_indirect
5161 || h->root.root.type == bfd_link_hash_warning)
5162 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5163
5164 /* Record the name of this symbol, for our caller. */
5165 *namep = h->root.root.root.string;
5166
5167 /* See if this is the special _gp_disp symbol. Note that such a
5168 symbol must always be a global symbol. */
560e09e9 5169 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5170 && ! NEWABI_P (input_bfd))
5171 {
5172 /* Relocations against _gp_disp are permitted only with
5173 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5174 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5175 return bfd_reloc_notsupported;
5176
b34976b6 5177 gp_disp_p = TRUE;
b49e97c9 5178 }
bbe506e8
TS
5179 /* See if this is the special _gp symbol. Note that such a
5180 symbol must always be a global symbol. */
5181 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5182 gnu_local_gp_p = TRUE;
5183
5184
b49e97c9
TS
5185 /* If this symbol is defined, calculate its address. Note that
5186 _gp_disp is a magic symbol, always implicitly defined by the
5187 linker, so it's inappropriate to check to see whether or not
5188 its defined. */
5189 else if ((h->root.root.type == bfd_link_hash_defined
5190 || h->root.root.type == bfd_link_hash_defweak)
5191 && h->root.root.u.def.section)
5192 {
5193 sec = h->root.root.u.def.section;
5194 if (sec->output_section)
5195 symbol = (h->root.root.u.def.value
5196 + sec->output_section->vma
5197 + sec->output_offset);
5198 else
5199 symbol = h->root.root.u.def.value;
5200 }
5201 else if (h->root.root.type == bfd_link_hash_undefweak)
5202 /* We allow relocations against undefined weak symbols, giving
5203 it the value zero, so that you can undefined weak functions
5204 and check to see if they exist by looking at their
5205 addresses. */
5206 symbol = 0;
59c2e50f 5207 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5208 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5209 symbol = 0;
a4d0f181
TS
5210 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5211 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5212 {
5213 /* If this is a dynamic link, we should have created a
5214 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5215 in in _bfd_mips_elf_create_dynamic_sections.
5216 Otherwise, we should define the symbol with a value of 0.
5217 FIXME: It should probably get into the symbol table
5218 somehow as well. */
5219 BFD_ASSERT (! info->shared);
5220 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5221 symbol = 0;
5222 }
5e2b0d47
NC
5223 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5224 {
5225 /* This is an optional symbol - an Irix specific extension to the
5226 ELF spec. Ignore it for now.
5227 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5228 than simply ignoring them, but we do not handle this for now.
5229 For information see the "64-bit ELF Object File Specification"
5230 which is available from here:
5231 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5232 symbol = 0;
5233 }
e7e2196d
MR
5234 else if ((*info->callbacks->undefined_symbol)
5235 (info, h->root.root.root.string, input_bfd,
5236 input_section, relocation->r_offset,
5237 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5238 || ELF_ST_VISIBILITY (h->root.other)))
5239 {
5240 return bfd_reloc_undefined;
5241 }
b49e97c9
TS
5242 else
5243 {
e7e2196d 5244 return bfd_reloc_notsupported;
b49e97c9
TS
5245 }
5246
30c09090 5247 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5248 /* If the output section is the PLT section,
5249 then the target is not microMIPS. */
5250 target_is_micromips_code_p = (htab->splt != sec
5251 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5252 }
5253
738e5348
RS
5254 /* If this is a reference to a 16-bit function with a stub, we need
5255 to redirect the relocation to the stub unless:
5256
5257 (a) the relocation is for a MIPS16 JAL;
5258
5259 (b) the relocation is for a MIPS16 PIC call, and there are no
5260 non-MIPS16 uses of the GOT slot; or
5261
5262 (c) the section allows direct references to MIPS16 functions. */
5263 if (r_type != R_MIPS16_26
5264 && !info->relocatable
5265 && ((h != NULL
5266 && h->fn_stub != NULL
5267 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5268 || (local_p
5269 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5270 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5271 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5272 {
5273 /* This is a 32- or 64-bit call to a 16-bit function. We should
5274 have already noticed that we were going to need the
5275 stub. */
5276 if (local_p)
8f0c309a
CLT
5277 {
5278 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5279 value = 0;
5280 }
b49e97c9
TS
5281 else
5282 {
5283 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5284 if (h->la25_stub)
5285 {
5286 /* If a LA25 header for the stub itself exists, point to the
5287 prepended LUI/ADDIU sequence. */
5288 sec = h->la25_stub->stub_section;
5289 value = h->la25_stub->offset;
5290 }
5291 else
5292 {
5293 sec = h->fn_stub;
5294 value = 0;
5295 }
b49e97c9
TS
5296 }
5297
8f0c309a 5298 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5299 /* The target is 16-bit, but the stub isn't. */
5300 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5301 }
5302 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5303 need to redirect the call to the stub. Note that we specifically
5304 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5305 use an indirect stub instead. */
1049f94e 5306 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5307 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5308 || (local_p
5309 && elf_tdata (input_bfd)->local_call_stubs != NULL
5310 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5311 && !target_is_16_bit_code_p)
5312 {
b9d58d71
TS
5313 if (local_p)
5314 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5315 else
b49e97c9 5316 {
b9d58d71
TS
5317 /* If both call_stub and call_fp_stub are defined, we can figure
5318 out which one to use by checking which one appears in the input
5319 file. */
5320 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5321 {
b9d58d71 5322 asection *o;
68ffbac6 5323
b9d58d71
TS
5324 sec = NULL;
5325 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5326 {
b9d58d71
TS
5327 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5328 {
5329 sec = h->call_fp_stub;
5330 break;
5331 }
b49e97c9 5332 }
b9d58d71
TS
5333 if (sec == NULL)
5334 sec = h->call_stub;
b49e97c9 5335 }
b9d58d71 5336 else if (h->call_stub != NULL)
b49e97c9 5337 sec = h->call_stub;
b9d58d71
TS
5338 else
5339 sec = h->call_fp_stub;
5340 }
b49e97c9 5341
eea6121a 5342 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5343 symbol = sec->output_section->vma + sec->output_offset;
5344 }
861fb55a
DJ
5345 /* If this is a direct call to a PIC function, redirect to the
5346 non-PIC stub. */
5347 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5348 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5349 target_is_16_bit_code_p))
861fb55a
DJ
5350 symbol = (h->la25_stub->stub_section->output_section->vma
5351 + h->la25_stub->stub_section->output_offset
5352 + h->la25_stub->offset);
b49e97c9 5353
df58fc94
RS
5354 /* Make sure MIPS16 and microMIPS are not used together. */
5355 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5356 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5357 {
5358 (*_bfd_error_handler)
5359 (_("MIPS16 and microMIPS functions cannot call each other"));
5360 return bfd_reloc_notsupported;
5361 }
5362
b49e97c9 5363 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5364 mode change. However, we can ignore calls to undefined weak symbols,
5365 which should never be executed at runtime. This exception is important
5366 because the assembly writer may have "known" that any definition of the
5367 symbol would be 16-bit code, and that direct jumps were therefore
5368 acceptable. */
5369 *cross_mode_jump_p = (!info->relocatable
5370 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5371 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5372 || (r_type == R_MICROMIPS_26_S1
5373 && !target_is_micromips_code_p)
5374 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5375 && (target_is_16_bit_code_p
5376 || target_is_micromips_code_p))));
b49e97c9 5377
9f1a453e
MR
5378 local_p = (h == NULL
5379 || (h->got_only_for_calls
5380 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5381 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5382
0a61c8c2
RS
5383 gp0 = _bfd_get_gp_value (input_bfd);
5384 gp = _bfd_get_gp_value (abfd);
23cc69b6 5385 if (htab->got_info)
a8028dd0 5386 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5387
5388 if (gnu_local_gp_p)
5389 symbol = gp;
5390
df58fc94
RS
5391 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5392 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5393 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5394 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5395 {
df58fc94
RS
5396 r_type = (micromips_reloc_p (r_type)
5397 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5398 addend = 0;
5399 }
5400
e77760d2 5401 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5402 to need it, get it now. */
b49e97c9
TS
5403 switch (r_type)
5404 {
738e5348
RS
5405 case R_MIPS16_CALL16:
5406 case R_MIPS16_GOT16:
b49e97c9
TS
5407 case R_MIPS_CALL16:
5408 case R_MIPS_GOT16:
5409 case R_MIPS_GOT_DISP:
5410 case R_MIPS_GOT_HI16:
5411 case R_MIPS_CALL_HI16:
5412 case R_MIPS_GOT_LO16:
5413 case R_MIPS_CALL_LO16:
df58fc94
RS
5414 case R_MICROMIPS_CALL16:
5415 case R_MICROMIPS_GOT16:
5416 case R_MICROMIPS_GOT_DISP:
5417 case R_MICROMIPS_GOT_HI16:
5418 case R_MICROMIPS_CALL_HI16:
5419 case R_MICROMIPS_GOT_LO16:
5420 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5421 case R_MIPS_TLS_GD:
5422 case R_MIPS_TLS_GOTTPREL:
5423 case R_MIPS_TLS_LDM:
d0f13682
CLT
5424 case R_MIPS16_TLS_GD:
5425 case R_MIPS16_TLS_GOTTPREL:
5426 case R_MIPS16_TLS_LDM:
df58fc94
RS
5427 case R_MICROMIPS_TLS_GD:
5428 case R_MICROMIPS_TLS_GOTTPREL:
5429 case R_MICROMIPS_TLS_LDM:
b49e97c9 5430 /* Find the index into the GOT where this value is located. */
df58fc94 5431 if (tls_ldm_reloc_p (r_type))
0f20cc35 5432 {
0a44bf69 5433 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5434 0, 0, NULL, r_type);
0f20cc35
DJ
5435 if (g == MINUS_ONE)
5436 return bfd_reloc_outofrange;
5437 }
5438 else if (!local_p)
b49e97c9 5439 {
0a44bf69
RS
5440 /* On VxWorks, CALL relocations should refer to the .got.plt
5441 entry, which is initialized to point at the PLT stub. */
5442 if (htab->is_vxworks
df58fc94
RS
5443 && (call_hi16_reloc_p (r_type)
5444 || call_lo16_reloc_p (r_type)
738e5348 5445 || call16_reloc_p (r_type)))
0a44bf69
RS
5446 {
5447 BFD_ASSERT (addend == 0);
5448 BFD_ASSERT (h->root.needs_plt);
5449 g = mips_elf_gotplt_index (info, &h->root);
5450 }
5451 else
b49e97c9 5452 {
020d7251 5453 BFD_ASSERT (addend == 0);
0a44bf69
RS
5454 g = mips_elf_global_got_index (dynobj, input_bfd,
5455 &h->root, r_type, info);
5456 if (h->tls_type == GOT_NORMAL
020d7251
RS
5457 && !elf_hash_table (info)->dynamic_sections_created)
5458 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5459 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5460 }
5461 }
0a44bf69 5462 else if (!htab->is_vxworks
738e5348 5463 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5464 /* The calculation below does not involve "g". */
b49e97c9
TS
5465 break;
5466 else
5467 {
5c18022e 5468 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5469 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5470 if (g == MINUS_ONE)
5471 return bfd_reloc_outofrange;
5472 }
5473
5474 /* Convert GOT indices to actual offsets. */
a8028dd0 5475 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5476 break;
b49e97c9
TS
5477 }
5478
0a44bf69
RS
5479 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5480 symbols are resolved by the loader. Add them to .rela.dyn. */
5481 if (h != NULL && is_gott_symbol (info, &h->root))
5482 {
5483 Elf_Internal_Rela outrel;
5484 bfd_byte *loc;
5485 asection *s;
5486
5487 s = mips_elf_rel_dyn_section (info, FALSE);
5488 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5489
5490 outrel.r_offset = (input_section->output_section->vma
5491 + input_section->output_offset
5492 + relocation->r_offset);
5493 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5494 outrel.r_addend = addend;
5495 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5496
5497 /* If we've written this relocation for a readonly section,
5498 we need to set DF_TEXTREL again, so that we do not delete the
5499 DT_TEXTREL tag. */
5500 if (MIPS_ELF_READONLY_SECTION (input_section))
5501 info->flags |= DF_TEXTREL;
5502
0a44bf69
RS
5503 *valuep = 0;
5504 return bfd_reloc_ok;
5505 }
5506
b49e97c9
TS
5507 /* Figure out what kind of relocation is being performed. */
5508 switch (r_type)
5509 {
5510 case R_MIPS_NONE:
5511 return bfd_reloc_continue;
5512
5513 case R_MIPS_16:
a7ebbfdf 5514 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5515 overflowed_p = mips_elf_overflow_p (value, 16);
5516 break;
5517
5518 case R_MIPS_32:
5519 case R_MIPS_REL32:
5520 case R_MIPS_64:
5521 if ((info->shared
861fb55a 5522 || (htab->root.dynamic_sections_created
b49e97c9 5523 && h != NULL
f5385ebf 5524 && h->root.def_dynamic
861fb55a
DJ
5525 && !h->root.def_regular
5526 && !h->has_static_relocs))
cf35638d 5527 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5528 && (h == NULL
5529 || h->root.root.type != bfd_link_hash_undefweak
5530 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5531 && (input_section->flags & SEC_ALLOC) != 0)
5532 {
861fb55a 5533 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5534 where the symbol will end up. So, we create a relocation
5535 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5536 linker. We must do the same for executable references to
5537 shared library symbols, unless we've decided to use copy
5538 relocs or PLTs instead. */
b49e97c9
TS
5539 value = addend;
5540 if (!mips_elf_create_dynamic_relocation (abfd,
5541 info,
5542 relocation,
5543 h,
5544 sec,
5545 symbol,
5546 &value,
5547 input_section))
5548 return bfd_reloc_undefined;
5549 }
5550 else
5551 {
5552 if (r_type != R_MIPS_REL32)
5553 value = symbol + addend;
5554 else
5555 value = addend;
5556 }
5557 value &= howto->dst_mask;
092dcd75
CD
5558 break;
5559
5560 case R_MIPS_PC32:
5561 value = symbol + addend - p;
5562 value &= howto->dst_mask;
b49e97c9
TS
5563 break;
5564
b49e97c9
TS
5565 case R_MIPS16_26:
5566 /* The calculation for R_MIPS16_26 is just the same as for an
5567 R_MIPS_26. It's only the storage of the relocated field into
5568 the output file that's different. That's handled in
5569 mips_elf_perform_relocation. So, we just fall through to the
5570 R_MIPS_26 case here. */
5571 case R_MIPS_26:
df58fc94
RS
5572 case R_MICROMIPS_26_S1:
5573 {
5574 unsigned int shift;
5575
5576 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5577 the correct ISA mode selector and bit 1 must be 0. */
5578 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5579 return bfd_reloc_outofrange;
5580
5581 /* Shift is 2, unusually, for microMIPS JALX. */
5582 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5583
5584 if (was_local_p)
5585 value = addend | ((p + 4) & (0xfc000000 << shift));
5586 else
5587 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5588 value = (value + symbol) >> shift;
5589 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5590 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5591 value &= howto->dst_mask;
5592 }
b49e97c9
TS
5593 break;
5594
0f20cc35 5595 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5596 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5597 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5598 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5599 & howto->dst_mask);
5600 break;
5601
5602 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5603 case R_MIPS_TLS_DTPREL32:
5604 case R_MIPS_TLS_DTPREL64:
d0f13682 5605 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5606 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5607 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5608 break;
5609
5610 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5611 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5612 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5613 value = (mips_elf_high (addend + symbol - tprel_base (info))
5614 & howto->dst_mask);
5615 break;
5616
5617 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5618 case R_MIPS_TLS_TPREL32:
5619 case R_MIPS_TLS_TPREL64:
5620 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5621 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5622 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5623 break;
5624
b49e97c9 5625 case R_MIPS_HI16:
d6f16593 5626 case R_MIPS16_HI16:
df58fc94 5627 case R_MICROMIPS_HI16:
b49e97c9
TS
5628 if (!gp_disp_p)
5629 {
5630 value = mips_elf_high (addend + symbol);
5631 value &= howto->dst_mask;
5632 }
5633 else
5634 {
d6f16593
MR
5635 /* For MIPS16 ABI code we generate this sequence
5636 0: li $v0,%hi(_gp_disp)
5637 4: addiupc $v1,%lo(_gp_disp)
5638 8: sll $v0,16
5639 12: addu $v0,$v1
5640 14: move $gp,$v0
5641 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5642 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5643 ADDIUPC clears the low two bits of the instruction address,
5644 so the base is ($t9 + 4) & ~3. */
d6f16593 5645 if (r_type == R_MIPS16_HI16)
888b9c01 5646 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5647 /* The microMIPS .cpload sequence uses the same assembly
5648 instructions as the traditional psABI version, but the
5649 incoming $t9 has the low bit set. */
5650 else if (r_type == R_MICROMIPS_HI16)
5651 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5652 else
5653 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5654 overflowed_p = mips_elf_overflow_p (value, 16);
5655 }
5656 break;
5657
5658 case R_MIPS_LO16:
d6f16593 5659 case R_MIPS16_LO16:
df58fc94
RS
5660 case R_MICROMIPS_LO16:
5661 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5662 if (!gp_disp_p)
5663 value = (symbol + addend) & howto->dst_mask;
5664 else
5665 {
d6f16593
MR
5666 /* See the comment for R_MIPS16_HI16 above for the reason
5667 for this conditional. */
5668 if (r_type == R_MIPS16_LO16)
888b9c01 5669 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5670 else if (r_type == R_MICROMIPS_LO16
5671 || r_type == R_MICROMIPS_HI0_LO16)
5672 value = addend + gp - p + 3;
d6f16593
MR
5673 else
5674 value = addend + gp - p + 4;
b49e97c9 5675 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5676 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5677 _gp_disp are normally generated from the .cpload
5678 pseudo-op. It generates code that normally looks like
5679 this:
5680
5681 lui $gp,%hi(_gp_disp)
5682 addiu $gp,$gp,%lo(_gp_disp)
5683 addu $gp,$gp,$t9
5684
5685 Here $t9 holds the address of the function being called,
5686 as required by the MIPS ELF ABI. The R_MIPS_LO16
5687 relocation can easily overflow in this situation, but the
5688 R_MIPS_HI16 relocation will handle the overflow.
5689 Therefore, we consider this a bug in the MIPS ABI, and do
5690 not check for overflow here. */
5691 }
5692 break;
5693
5694 case R_MIPS_LITERAL:
df58fc94 5695 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5696 /* Because we don't merge literal sections, we can handle this
5697 just like R_MIPS_GPREL16. In the long run, we should merge
5698 shared literals, and then we will need to additional work
5699 here. */
5700
5701 /* Fall through. */
5702
5703 case R_MIPS16_GPREL:
5704 /* The R_MIPS16_GPREL performs the same calculation as
5705 R_MIPS_GPREL16, but stores the relocated bits in a different
5706 order. We don't need to do anything special here; the
5707 differences are handled in mips_elf_perform_relocation. */
5708 case R_MIPS_GPREL16:
df58fc94
RS
5709 case R_MICROMIPS_GPREL7_S2:
5710 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5711 /* Only sign-extend the addend if it was extracted from the
5712 instruction. If the addend was separate, leave it alone,
5713 otherwise we may lose significant bits. */
5714 if (howto->partial_inplace)
a7ebbfdf 5715 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5716 value = symbol + addend - gp;
5717 /* If the symbol was local, any earlier relocatable links will
5718 have adjusted its addend with the gp offset, so compensate
5719 for that now. Don't do it for symbols forced local in this
5720 link, though, since they won't have had the gp offset applied
5721 to them before. */
5722 if (was_local_p)
5723 value += gp0;
b49e97c9
TS
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
738e5348
RS
5727 case R_MIPS16_GOT16:
5728 case R_MIPS16_CALL16:
b49e97c9
TS
5729 case R_MIPS_GOT16:
5730 case R_MIPS_CALL16:
df58fc94
RS
5731 case R_MICROMIPS_GOT16:
5732 case R_MICROMIPS_CALL16:
0a44bf69 5733 /* VxWorks does not have separate local and global semantics for
738e5348 5734 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5735 if (!htab->is_vxworks && local_p)
b49e97c9 5736 {
5c18022e 5737 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5738 symbol + addend, !was_local_p);
b49e97c9
TS
5739 if (value == MINUS_ONE)
5740 return bfd_reloc_outofrange;
5741 value
a8028dd0 5742 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5743 overflowed_p = mips_elf_overflow_p (value, 16);
5744 break;
5745 }
5746
5747 /* Fall through. */
5748
0f20cc35
DJ
5749 case R_MIPS_TLS_GD:
5750 case R_MIPS_TLS_GOTTPREL:
5751 case R_MIPS_TLS_LDM:
b49e97c9 5752 case R_MIPS_GOT_DISP:
d0f13682
CLT
5753 case R_MIPS16_TLS_GD:
5754 case R_MIPS16_TLS_GOTTPREL:
5755 case R_MIPS16_TLS_LDM:
df58fc94
RS
5756 case R_MICROMIPS_TLS_GD:
5757 case R_MICROMIPS_TLS_GOTTPREL:
5758 case R_MICROMIPS_TLS_LDM:
5759 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5760 value = g;
5761 overflowed_p = mips_elf_overflow_p (value, 16);
5762 break;
5763
5764 case R_MIPS_GPREL32:
bce03d3d
AO
5765 value = (addend + symbol + gp0 - gp);
5766 if (!save_addend)
5767 value &= howto->dst_mask;
b49e97c9
TS
5768 break;
5769
5770 case R_MIPS_PC16:
bad36eac
DJ
5771 case R_MIPS_GNU_REL16_S2:
5772 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5773 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5774 value >>= howto->rightshift;
5775 value &= howto->dst_mask;
b49e97c9
TS
5776 break;
5777
df58fc94
RS
5778 case R_MICROMIPS_PC7_S1:
5779 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5780 overflowed_p = mips_elf_overflow_p (value, 8);
5781 value >>= howto->rightshift;
5782 value &= howto->dst_mask;
5783 break;
5784
5785 case R_MICROMIPS_PC10_S1:
5786 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5787 overflowed_p = mips_elf_overflow_p (value, 11);
5788 value >>= howto->rightshift;
5789 value &= howto->dst_mask;
5790 break;
5791
5792 case R_MICROMIPS_PC16_S1:
5793 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5794 overflowed_p = mips_elf_overflow_p (value, 17);
5795 value >>= howto->rightshift;
5796 value &= howto->dst_mask;
5797 break;
5798
5799 case R_MICROMIPS_PC23_S2:
5800 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5801 overflowed_p = mips_elf_overflow_p (value, 25);
5802 value >>= howto->rightshift;
5803 value &= howto->dst_mask;
5804 break;
5805
b49e97c9
TS
5806 case R_MIPS_GOT_HI16:
5807 case R_MIPS_CALL_HI16:
df58fc94
RS
5808 case R_MICROMIPS_GOT_HI16:
5809 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5810 /* We're allowed to handle these two relocations identically.
5811 The dynamic linker is allowed to handle the CALL relocations
5812 differently by creating a lazy evaluation stub. */
5813 value = g;
5814 value = mips_elf_high (value);
5815 value &= howto->dst_mask;
5816 break;
5817
5818 case R_MIPS_GOT_LO16:
5819 case R_MIPS_CALL_LO16:
df58fc94
RS
5820 case R_MICROMIPS_GOT_LO16:
5821 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5822 value = g & howto->dst_mask;
5823 break;
5824
5825 case R_MIPS_GOT_PAGE:
df58fc94 5826 case R_MICROMIPS_GOT_PAGE:
5c18022e 5827 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5828 if (value == MINUS_ONE)
5829 return bfd_reloc_outofrange;
a8028dd0 5830 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5831 overflowed_p = mips_elf_overflow_p (value, 16);
5832 break;
5833
5834 case R_MIPS_GOT_OFST:
df58fc94 5835 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5836 if (local_p)
5c18022e 5837 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5838 else
5839 value = addend;
b49e97c9
TS
5840 overflowed_p = mips_elf_overflow_p (value, 16);
5841 break;
5842
5843 case R_MIPS_SUB:
df58fc94 5844 case R_MICROMIPS_SUB:
b49e97c9
TS
5845 value = symbol - addend;
5846 value &= howto->dst_mask;
5847 break;
5848
5849 case R_MIPS_HIGHER:
df58fc94 5850 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5851 value = mips_elf_higher (addend + symbol);
5852 value &= howto->dst_mask;
5853 break;
5854
5855 case R_MIPS_HIGHEST:
df58fc94 5856 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5857 value = mips_elf_highest (addend + symbol);
5858 value &= howto->dst_mask;
5859 break;
5860
5861 case R_MIPS_SCN_DISP:
df58fc94 5862 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5863 value = symbol + addend - sec->output_offset;
5864 value &= howto->dst_mask;
5865 break;
5866
b49e97c9 5867 case R_MIPS_JALR:
df58fc94 5868 case R_MICROMIPS_JALR:
1367d393
ILT
5869 /* This relocation is only a hint. In some cases, we optimize
5870 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5871 when the symbol does not resolve locally. */
5872 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5873 return bfd_reloc_continue;
5874 value = symbol + addend;
5875 break;
b49e97c9 5876
1367d393 5877 case R_MIPS_PJUMP:
b49e97c9
TS
5878 case R_MIPS_GNU_VTINHERIT:
5879 case R_MIPS_GNU_VTENTRY:
5880 /* We don't do anything with these at present. */
5881 return bfd_reloc_continue;
5882
5883 default:
5884 /* An unrecognized relocation type. */
5885 return bfd_reloc_notsupported;
5886 }
5887
5888 /* Store the VALUE for our caller. */
5889 *valuep = value;
5890 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5891}
5892
5893/* Obtain the field relocated by RELOCATION. */
5894
5895static bfd_vma
9719ad41
RS
5896mips_elf_obtain_contents (reloc_howto_type *howto,
5897 const Elf_Internal_Rela *relocation,
5898 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5899{
5900 bfd_vma x;
5901 bfd_byte *location = contents + relocation->r_offset;
5902
5903 /* Obtain the bytes. */
5904 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5905
b49e97c9
TS
5906 return x;
5907}
5908
5909/* It has been determined that the result of the RELOCATION is the
5910 VALUE. Use HOWTO to place VALUE into the output file at the
5911 appropriate position. The SECTION is the section to which the
68ffbac6 5912 relocation applies.
38a7df63 5913 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5914 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5915
b34976b6 5916 Returns FALSE if anything goes wrong. */
b49e97c9 5917
b34976b6 5918static bfd_boolean
9719ad41
RS
5919mips_elf_perform_relocation (struct bfd_link_info *info,
5920 reloc_howto_type *howto,
5921 const Elf_Internal_Rela *relocation,
5922 bfd_vma value, bfd *input_bfd,
5923 asection *input_section, bfd_byte *contents,
38a7df63 5924 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5925{
5926 bfd_vma x;
5927 bfd_byte *location;
5928 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5929
5930 /* Figure out where the relocation is occurring. */
5931 location = contents + relocation->r_offset;
5932
df58fc94 5933 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5934
b49e97c9
TS
5935 /* Obtain the current value. */
5936 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5937
5938 /* Clear the field we are setting. */
5939 x &= ~howto->dst_mask;
5940
b49e97c9
TS
5941 /* Set the field. */
5942 x |= (value & howto->dst_mask);
5943
5944 /* If required, turn JAL into JALX. */
38a7df63 5945 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5946 {
b34976b6 5947 bfd_boolean ok;
b49e97c9
TS
5948 bfd_vma opcode = x >> 26;
5949 bfd_vma jalx_opcode;
5950
5951 /* Check to see if the opcode is already JAL or JALX. */
5952 if (r_type == R_MIPS16_26)
5953 {
5954 ok = ((opcode == 0x6) || (opcode == 0x7));
5955 jalx_opcode = 0x7;
5956 }
df58fc94
RS
5957 else if (r_type == R_MICROMIPS_26_S1)
5958 {
5959 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5960 jalx_opcode = 0x3c;
5961 }
b49e97c9
TS
5962 else
5963 {
5964 ok = ((opcode == 0x3) || (opcode == 0x1d));
5965 jalx_opcode = 0x1d;
5966 }
5967
3bdf9505
MR
5968 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5969 convert J or JALS to JALX. */
b49e97c9
TS
5970 if (!ok)
5971 {
5972 (*_bfd_error_handler)
3bdf9505 5973 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5974 input_bfd,
5975 input_section,
b49e97c9
TS
5976 (unsigned long) relocation->r_offset);
5977 bfd_set_error (bfd_error_bad_value);
b34976b6 5978 return FALSE;
b49e97c9
TS
5979 }
5980
5981 /* Make this the JALX opcode. */
5982 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5983 }
5984
38a7df63
CF
5985 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5986 range. */
cd8d5a82 5987 if (!info->relocatable
38a7df63 5988 && !cross_mode_jump_p
cd8d5a82
CF
5989 && ((JAL_TO_BAL_P (input_bfd)
5990 && r_type == R_MIPS_26
5991 && (x >> 26) == 0x3) /* jal addr */
5992 || (JALR_TO_BAL_P (input_bfd)
5993 && r_type == R_MIPS_JALR
38a7df63
CF
5994 && x == 0x0320f809) /* jalr t9 */
5995 || (JR_TO_B_P (input_bfd)
5996 && r_type == R_MIPS_JALR
5997 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5998 {
5999 bfd_vma addr;
6000 bfd_vma dest;
6001 bfd_signed_vma off;
6002
6003 addr = (input_section->output_section->vma
6004 + input_section->output_offset
6005 + relocation->r_offset
6006 + 4);
6007 if (r_type == R_MIPS_26)
6008 dest = (value << 2) | ((addr >> 28) << 28);
6009 else
6010 dest = value;
6011 off = dest - addr;
6012 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6013 {
6014 if (x == 0x03200008) /* jr t9 */
6015 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6016 else
6017 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6018 }
1367d393
ILT
6019 }
6020
b49e97c9
TS
6021 /* Put the value into the output. */
6022 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 6023
df58fc94
RS
6024 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6025 location);
d6f16593 6026
b34976b6 6027 return TRUE;
b49e97c9 6028}
b49e97c9 6029\f
b49e97c9
TS
6030/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6031 is the original relocation, which is now being transformed into a
6032 dynamic relocation. The ADDENDP is adjusted if necessary; the
6033 caller should store the result in place of the original addend. */
6034
b34976b6 6035static bfd_boolean
9719ad41
RS
6036mips_elf_create_dynamic_relocation (bfd *output_bfd,
6037 struct bfd_link_info *info,
6038 const Elf_Internal_Rela *rel,
6039 struct mips_elf_link_hash_entry *h,
6040 asection *sec, bfd_vma symbol,
6041 bfd_vma *addendp, asection *input_section)
b49e97c9 6042{
947216bf 6043 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6044 asection *sreloc;
6045 bfd *dynobj;
6046 int r_type;
5d41f0b6
RS
6047 long indx;
6048 bfd_boolean defined_p;
0a44bf69 6049 struct mips_elf_link_hash_table *htab;
b49e97c9 6050
0a44bf69 6051 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6052 BFD_ASSERT (htab != NULL);
6053
b49e97c9
TS
6054 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6055 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6056 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6057 BFD_ASSERT (sreloc != NULL);
6058 BFD_ASSERT (sreloc->contents != NULL);
6059 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6060 < sreloc->size);
b49e97c9 6061
b49e97c9
TS
6062 outrel[0].r_offset =
6063 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6064 if (ABI_64_P (output_bfd))
6065 {
6066 outrel[1].r_offset =
6067 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6068 outrel[2].r_offset =
6069 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6070 }
b49e97c9 6071
c5ae1840 6072 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6073 /* The relocation field has been deleted. */
5d41f0b6
RS
6074 return TRUE;
6075
6076 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6077 {
6078 /* The relocation field has been converted into a relative value of
6079 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6080 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6081 *addendp += symbol;
5d41f0b6 6082 return TRUE;
0d591ff7 6083 }
b49e97c9 6084
5d41f0b6
RS
6085 /* We must now calculate the dynamic symbol table index to use
6086 in the relocation. */
d4a77f3f 6087 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6088 {
020d7251 6089 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6090 indx = h->root.dynindx;
6091 if (SGI_COMPAT (output_bfd))
6092 defined_p = h->root.def_regular;
6093 else
6094 /* ??? glibc's ld.so just adds the final GOT entry to the
6095 relocation field. It therefore treats relocs against
6096 defined symbols in the same way as relocs against
6097 undefined symbols. */
6098 defined_p = FALSE;
6099 }
b49e97c9
TS
6100 else
6101 {
5d41f0b6
RS
6102 if (sec != NULL && bfd_is_abs_section (sec))
6103 indx = 0;
6104 else if (sec == NULL || sec->owner == NULL)
fdd07405 6105 {
5d41f0b6
RS
6106 bfd_set_error (bfd_error_bad_value);
6107 return FALSE;
b49e97c9
TS
6108 }
6109 else
6110 {
5d41f0b6 6111 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6112 if (indx == 0)
6113 {
6114 asection *osec = htab->root.text_index_section;
6115 indx = elf_section_data (osec)->dynindx;
6116 }
5d41f0b6
RS
6117 if (indx == 0)
6118 abort ();
b49e97c9
TS
6119 }
6120
5d41f0b6
RS
6121 /* Instead of generating a relocation using the section
6122 symbol, we may as well make it a fully relative
6123 relocation. We want to avoid generating relocations to
6124 local symbols because we used to generate them
6125 incorrectly, without adding the original symbol value,
6126 which is mandated by the ABI for section symbols. In
6127 order to give dynamic loaders and applications time to
6128 phase out the incorrect use, we refrain from emitting
6129 section-relative relocations. It's not like they're
6130 useful, after all. This should be a bit more efficient
6131 as well. */
6132 /* ??? Although this behavior is compatible with glibc's ld.so,
6133 the ABI says that relocations against STN_UNDEF should have
6134 a symbol value of 0. Irix rld honors this, so relocations
6135 against STN_UNDEF have no effect. */
6136 if (!SGI_COMPAT (output_bfd))
6137 indx = 0;
6138 defined_p = TRUE;
b49e97c9
TS
6139 }
6140
5d41f0b6
RS
6141 /* If the relocation was previously an absolute relocation and
6142 this symbol will not be referred to by the relocation, we must
6143 adjust it by the value we give it in the dynamic symbol table.
6144 Otherwise leave the job up to the dynamic linker. */
6145 if (defined_p && r_type != R_MIPS_REL32)
6146 *addendp += symbol;
6147
0a44bf69
RS
6148 if (htab->is_vxworks)
6149 /* VxWorks uses non-relative relocations for this. */
6150 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6151 else
6152 /* The relocation is always an REL32 relocation because we don't
6153 know where the shared library will wind up at load-time. */
6154 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6155 R_MIPS_REL32);
6156
5d41f0b6
RS
6157 /* For strict adherence to the ABI specification, we should
6158 generate a R_MIPS_64 relocation record by itself before the
6159 _REL32/_64 record as well, such that the addend is read in as
6160 a 64-bit value (REL32 is a 32-bit relocation, after all).
6161 However, since none of the existing ELF64 MIPS dynamic
6162 loaders seems to care, we don't waste space with these
6163 artificial relocations. If this turns out to not be true,
6164 mips_elf_allocate_dynamic_relocation() should be tweaked so
6165 as to make room for a pair of dynamic relocations per
6166 invocation if ABI_64_P, and here we should generate an
6167 additional relocation record with R_MIPS_64 by itself for a
6168 NULL symbol before this relocation record. */
6169 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6170 ABI_64_P (output_bfd)
6171 ? R_MIPS_64
6172 : R_MIPS_NONE);
6173 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6174
6175 /* Adjust the output offset of the relocation to reference the
6176 correct location in the output file. */
6177 outrel[0].r_offset += (input_section->output_section->vma
6178 + input_section->output_offset);
6179 outrel[1].r_offset += (input_section->output_section->vma
6180 + input_section->output_offset);
6181 outrel[2].r_offset += (input_section->output_section->vma
6182 + input_section->output_offset);
6183
b49e97c9
TS
6184 /* Put the relocation back out. We have to use the special
6185 relocation outputter in the 64-bit case since the 64-bit
6186 relocation format is non-standard. */
6187 if (ABI_64_P (output_bfd))
6188 {
6189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6190 (output_bfd, &outrel[0],
6191 (sreloc->contents
6192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6193 }
0a44bf69
RS
6194 else if (htab->is_vxworks)
6195 {
6196 /* VxWorks uses RELA rather than REL dynamic relocations. */
6197 outrel[0].r_addend = *addendp;
6198 bfd_elf32_swap_reloca_out
6199 (output_bfd, &outrel[0],
6200 (sreloc->contents
6201 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6202 }
b49e97c9 6203 else
947216bf
AM
6204 bfd_elf32_swap_reloc_out
6205 (output_bfd, &outrel[0],
6206 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6207
b49e97c9
TS
6208 /* We've now added another relocation. */
6209 ++sreloc->reloc_count;
6210
6211 /* Make sure the output section is writable. The dynamic linker
6212 will be writing to it. */
6213 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6214 |= SHF_WRITE;
6215
6216 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6217 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6218 {
3d4d4302 6219 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6220 bfd_byte *cr;
6221
6222 if (scpt)
6223 {
6224 Elf32_crinfo cptrel;
6225
6226 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6227 cptrel.vaddr = (rel->r_offset
6228 + input_section->output_section->vma
6229 + input_section->output_offset);
6230 if (r_type == R_MIPS_REL32)
6231 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6232 else
6233 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6234 mips_elf_set_cr_dist2to (cptrel, 0);
6235 cptrel.konst = *addendp;
6236
6237 cr = (scpt->contents
6238 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6239 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6240 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6241 ((Elf32_External_crinfo *) cr
6242 + scpt->reloc_count));
6243 ++scpt->reloc_count;
6244 }
6245 }
6246
943284cc
DJ
6247 /* If we've written this relocation for a readonly section,
6248 we need to set DF_TEXTREL again, so that we do not delete the
6249 DT_TEXTREL tag. */
6250 if (MIPS_ELF_READONLY_SECTION (input_section))
6251 info->flags |= DF_TEXTREL;
6252
b34976b6 6253 return TRUE;
b49e97c9
TS
6254}
6255\f
b49e97c9
TS
6256/* Return the MACH for a MIPS e_flags value. */
6257
6258unsigned long
9719ad41 6259_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6260{
6261 switch (flags & EF_MIPS_MACH)
6262 {
6263 case E_MIPS_MACH_3900:
6264 return bfd_mach_mips3900;
6265
6266 case E_MIPS_MACH_4010:
6267 return bfd_mach_mips4010;
6268
6269 case E_MIPS_MACH_4100:
6270 return bfd_mach_mips4100;
6271
6272 case E_MIPS_MACH_4111:
6273 return bfd_mach_mips4111;
6274
00707a0e
RS
6275 case E_MIPS_MACH_4120:
6276 return bfd_mach_mips4120;
6277
b49e97c9
TS
6278 case E_MIPS_MACH_4650:
6279 return bfd_mach_mips4650;
6280
00707a0e
RS
6281 case E_MIPS_MACH_5400:
6282 return bfd_mach_mips5400;
6283
6284 case E_MIPS_MACH_5500:
6285 return bfd_mach_mips5500;
6286
e407c74b
NC
6287 case E_MIPS_MACH_5900:
6288 return bfd_mach_mips5900;
6289
0d2e43ed
ILT
6290 case E_MIPS_MACH_9000:
6291 return bfd_mach_mips9000;
6292
b49e97c9
TS
6293 case E_MIPS_MACH_SB1:
6294 return bfd_mach_mips_sb1;
6295
350cc38d
MS
6296 case E_MIPS_MACH_LS2E:
6297 return bfd_mach_mips_loongson_2e;
6298
6299 case E_MIPS_MACH_LS2F:
6300 return bfd_mach_mips_loongson_2f;
6301
fd503541
NC
6302 case E_MIPS_MACH_LS3A:
6303 return bfd_mach_mips_loongson_3a;
6304
432233b3
AP
6305 case E_MIPS_MACH_OCTEON2:
6306 return bfd_mach_mips_octeon2;
6307
6f179bd0
AN
6308 case E_MIPS_MACH_OCTEON:
6309 return bfd_mach_mips_octeon;
6310
52b6b6b9
JM
6311 case E_MIPS_MACH_XLR:
6312 return bfd_mach_mips_xlr;
6313
b49e97c9
TS
6314 default:
6315 switch (flags & EF_MIPS_ARCH)
6316 {
6317 default:
6318 case E_MIPS_ARCH_1:
6319 return bfd_mach_mips3000;
b49e97c9
TS
6320
6321 case E_MIPS_ARCH_2:
6322 return bfd_mach_mips6000;
b49e97c9
TS
6323
6324 case E_MIPS_ARCH_3:
6325 return bfd_mach_mips4000;
b49e97c9
TS
6326
6327 case E_MIPS_ARCH_4:
6328 return bfd_mach_mips8000;
b49e97c9
TS
6329
6330 case E_MIPS_ARCH_5:
6331 return bfd_mach_mips5;
b49e97c9
TS
6332
6333 case E_MIPS_ARCH_32:
6334 return bfd_mach_mipsisa32;
b49e97c9
TS
6335
6336 case E_MIPS_ARCH_64:
6337 return bfd_mach_mipsisa64;
af7ee8bf
CD
6338
6339 case E_MIPS_ARCH_32R2:
6340 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6341
6342 case E_MIPS_ARCH_64R2:
6343 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6344 }
6345 }
6346
6347 return 0;
6348}
6349
6350/* Return printable name for ABI. */
6351
6352static INLINE char *
9719ad41 6353elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6354{
6355 flagword flags;
6356
6357 flags = elf_elfheader (abfd)->e_flags;
6358 switch (flags & EF_MIPS_ABI)
6359 {
6360 case 0:
6361 if (ABI_N32_P (abfd))
6362 return "N32";
6363 else if (ABI_64_P (abfd))
6364 return "64";
6365 else
6366 return "none";
6367 case E_MIPS_ABI_O32:
6368 return "O32";
6369 case E_MIPS_ABI_O64:
6370 return "O64";
6371 case E_MIPS_ABI_EABI32:
6372 return "EABI32";
6373 case E_MIPS_ABI_EABI64:
6374 return "EABI64";
6375 default:
6376 return "unknown abi";
6377 }
6378}
6379\f
6380/* MIPS ELF uses two common sections. One is the usual one, and the
6381 other is for small objects. All the small objects are kept
6382 together, and then referenced via the gp pointer, which yields
6383 faster assembler code. This is what we use for the small common
6384 section. This approach is copied from ecoff.c. */
6385static asection mips_elf_scom_section;
6386static asymbol mips_elf_scom_symbol;
6387static asymbol *mips_elf_scom_symbol_ptr;
6388
6389/* MIPS ELF also uses an acommon section, which represents an
6390 allocated common symbol which may be overridden by a
6391 definition in a shared library. */
6392static asection mips_elf_acom_section;
6393static asymbol mips_elf_acom_symbol;
6394static asymbol *mips_elf_acom_symbol_ptr;
6395
738e5348 6396/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6397
6398void
9719ad41 6399_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6400{
6401 elf_symbol_type *elfsym;
6402
738e5348 6403 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6404 elfsym = (elf_symbol_type *) asym;
6405 switch (elfsym->internal_elf_sym.st_shndx)
6406 {
6407 case SHN_MIPS_ACOMMON:
6408 /* This section is used in a dynamically linked executable file.
6409 It is an allocated common section. The dynamic linker can
6410 either resolve these symbols to something in a shared
6411 library, or it can just leave them here. For our purposes,
6412 we can consider these symbols to be in a new section. */
6413 if (mips_elf_acom_section.name == NULL)
6414 {
6415 /* Initialize the acommon section. */
6416 mips_elf_acom_section.name = ".acommon";
6417 mips_elf_acom_section.flags = SEC_ALLOC;
6418 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6419 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6420 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6421 mips_elf_acom_symbol.name = ".acommon";
6422 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6423 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6424 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6425 }
6426 asym->section = &mips_elf_acom_section;
6427 break;
6428
6429 case SHN_COMMON:
6430 /* Common symbols less than the GP size are automatically
6431 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6432 if (asym->value > elf_gp_size (abfd)
b59eed79 6433 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6434 || IRIX_COMPAT (abfd) == ict_irix6)
6435 break;
6436 /* Fall through. */
6437 case SHN_MIPS_SCOMMON:
6438 if (mips_elf_scom_section.name == NULL)
6439 {
6440 /* Initialize the small common section. */
6441 mips_elf_scom_section.name = ".scommon";
6442 mips_elf_scom_section.flags = SEC_IS_COMMON;
6443 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6444 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6445 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6446 mips_elf_scom_symbol.name = ".scommon";
6447 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6448 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6449 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6450 }
6451 asym->section = &mips_elf_scom_section;
6452 asym->value = elfsym->internal_elf_sym.st_size;
6453 break;
6454
6455 case SHN_MIPS_SUNDEFINED:
6456 asym->section = bfd_und_section_ptr;
6457 break;
6458
b49e97c9 6459 case SHN_MIPS_TEXT:
00b4930b
TS
6460 {
6461 asection *section = bfd_get_section_by_name (abfd, ".text");
6462
00b4930b
TS
6463 if (section != NULL)
6464 {
6465 asym->section = section;
6466 /* MIPS_TEXT is a bit special, the address is not an offset
6467 to the base of the .text section. So substract the section
6468 base address to make it an offset. */
6469 asym->value -= section->vma;
6470 }
6471 }
b49e97c9
TS
6472 break;
6473
6474 case SHN_MIPS_DATA:
00b4930b
TS
6475 {
6476 asection *section = bfd_get_section_by_name (abfd, ".data");
6477
00b4930b
TS
6478 if (section != NULL)
6479 {
6480 asym->section = section;
6481 /* MIPS_DATA is a bit special, the address is not an offset
6482 to the base of the .data section. So substract the section
6483 base address to make it an offset. */
6484 asym->value -= section->vma;
6485 }
6486 }
b49e97c9 6487 break;
b49e97c9 6488 }
738e5348 6489
df58fc94
RS
6490 /* If this is an odd-valued function symbol, assume it's a MIPS16
6491 or microMIPS one. */
738e5348
RS
6492 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6493 && (asym->value & 1) != 0)
6494 {
6495 asym->value--;
df58fc94
RS
6496 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6497 elfsym->internal_elf_sym.st_other
6498 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6499 else
6500 elfsym->internal_elf_sym.st_other
6501 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6502 }
b49e97c9
TS
6503}
6504\f
8c946ed5
RS
6505/* Implement elf_backend_eh_frame_address_size. This differs from
6506 the default in the way it handles EABI64.
6507
6508 EABI64 was originally specified as an LP64 ABI, and that is what
6509 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6510 historically accepted the combination of -mabi=eabi and -mlong32,
6511 and this ILP32 variation has become semi-official over time.
6512 Both forms use elf32 and have pointer-sized FDE addresses.
6513
6514 If an EABI object was generated by GCC 4.0 or above, it will have
6515 an empty .gcc_compiled_longXX section, where XX is the size of longs
6516 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6517 have no special marking to distinguish them from LP64 objects.
6518
6519 We don't want users of the official LP64 ABI to be punished for the
6520 existence of the ILP32 variant, but at the same time, we don't want
6521 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6522 We therefore take the following approach:
6523
6524 - If ABFD contains a .gcc_compiled_longXX section, use it to
6525 determine the pointer size.
6526
6527 - Otherwise check the type of the first relocation. Assume that
6528 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6529
6530 - Otherwise punt.
6531
6532 The second check is enough to detect LP64 objects generated by pre-4.0
6533 compilers because, in the kind of output generated by those compilers,
6534 the first relocation will be associated with either a CIE personality
6535 routine or an FDE start address. Furthermore, the compilers never
6536 used a special (non-pointer) encoding for this ABI.
6537
6538 Checking the relocation type should also be safe because there is no
6539 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6540 did so. */
6541
6542unsigned int
6543_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6544{
6545 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6546 return 8;
6547 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6548 {
6549 bfd_boolean long32_p, long64_p;
6550
6551 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6552 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6553 if (long32_p && long64_p)
6554 return 0;
6555 if (long32_p)
6556 return 4;
6557 if (long64_p)
6558 return 8;
6559
6560 if (sec->reloc_count > 0
6561 && elf_section_data (sec)->relocs != NULL
6562 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6563 == R_MIPS_64))
6564 return 8;
6565
6566 return 0;
6567 }
6568 return 4;
6569}
6570\f
174fd7f9
RS
6571/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6572 relocations against two unnamed section symbols to resolve to the
6573 same address. For example, if we have code like:
6574
6575 lw $4,%got_disp(.data)($gp)
6576 lw $25,%got_disp(.text)($gp)
6577 jalr $25
6578
6579 then the linker will resolve both relocations to .data and the program
6580 will jump there rather than to .text.
6581
6582 We can work around this problem by giving names to local section symbols.
6583 This is also what the MIPSpro tools do. */
6584
6585bfd_boolean
6586_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6587{
6588 return SGI_COMPAT (abfd);
6589}
6590\f
b49e97c9
TS
6591/* Work over a section just before writing it out. This routine is
6592 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6593 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6594 a better way. */
6595
b34976b6 6596bfd_boolean
9719ad41 6597_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6598{
6599 if (hdr->sh_type == SHT_MIPS_REGINFO
6600 && hdr->sh_size > 0)
6601 {
6602 bfd_byte buf[4];
6603
6604 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6605 BFD_ASSERT (hdr->contents == NULL);
6606
6607 if (bfd_seek (abfd,
6608 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6609 SEEK_SET) != 0)
b34976b6 6610 return FALSE;
b49e97c9 6611 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6612 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6613 return FALSE;
b49e97c9
TS
6614 }
6615
6616 if (hdr->sh_type == SHT_MIPS_OPTIONS
6617 && hdr->bfd_section != NULL
f0abc2a1
AM
6618 && mips_elf_section_data (hdr->bfd_section) != NULL
6619 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6620 {
6621 bfd_byte *contents, *l, *lend;
6622
f0abc2a1
AM
6623 /* We stored the section contents in the tdata field in the
6624 set_section_contents routine. We save the section contents
6625 so that we don't have to read them again.
b49e97c9
TS
6626 At this point we know that elf_gp is set, so we can look
6627 through the section contents to see if there is an
6628 ODK_REGINFO structure. */
6629
f0abc2a1 6630 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6631 l = contents;
6632 lend = contents + hdr->sh_size;
6633 while (l + sizeof (Elf_External_Options) <= lend)
6634 {
6635 Elf_Internal_Options intopt;
6636
6637 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6638 &intopt);
1bc8074d
MR
6639 if (intopt.size < sizeof (Elf_External_Options))
6640 {
6641 (*_bfd_error_handler)
6642 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6643 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6644 break;
6645 }
b49e97c9
TS
6646 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6647 {
6648 bfd_byte buf[8];
6649
6650 if (bfd_seek (abfd,
6651 (hdr->sh_offset
6652 + (l - contents)
6653 + sizeof (Elf_External_Options)
6654 + (sizeof (Elf64_External_RegInfo) - 8)),
6655 SEEK_SET) != 0)
b34976b6 6656 return FALSE;
b49e97c9 6657 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6658 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6659 return FALSE;
b49e97c9
TS
6660 }
6661 else if (intopt.kind == ODK_REGINFO)
6662 {
6663 bfd_byte buf[4];
6664
6665 if (bfd_seek (abfd,
6666 (hdr->sh_offset
6667 + (l - contents)
6668 + sizeof (Elf_External_Options)
6669 + (sizeof (Elf32_External_RegInfo) - 4)),
6670 SEEK_SET) != 0)
b34976b6 6671 return FALSE;
b49e97c9 6672 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6673 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6674 return FALSE;
b49e97c9
TS
6675 }
6676 l += intopt.size;
6677 }
6678 }
6679
6680 if (hdr->bfd_section != NULL)
6681 {
6682 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6683
2d0f9ad9
JM
6684 /* .sbss is not handled specially here because the GNU/Linux
6685 prelinker can convert .sbss from NOBITS to PROGBITS and
6686 changing it back to NOBITS breaks the binary. The entry in
6687 _bfd_mips_elf_special_sections will ensure the correct flags
6688 are set on .sbss if BFD creates it without reading it from an
6689 input file, and without special handling here the flags set
6690 on it in an input file will be followed. */
b49e97c9
TS
6691 if (strcmp (name, ".sdata") == 0
6692 || strcmp (name, ".lit8") == 0
6693 || strcmp (name, ".lit4") == 0)
6694 {
6695 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6696 hdr->sh_type = SHT_PROGBITS;
6697 }
b49e97c9
TS
6698 else if (strcmp (name, ".srdata") == 0)
6699 {
6700 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6701 hdr->sh_type = SHT_PROGBITS;
6702 }
6703 else if (strcmp (name, ".compact_rel") == 0)
6704 {
6705 hdr->sh_flags = 0;
6706 hdr->sh_type = SHT_PROGBITS;
6707 }
6708 else if (strcmp (name, ".rtproc") == 0)
6709 {
6710 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6711 {
6712 unsigned int adjust;
6713
6714 adjust = hdr->sh_size % hdr->sh_addralign;
6715 if (adjust != 0)
6716 hdr->sh_size += hdr->sh_addralign - adjust;
6717 }
6718 }
6719 }
6720
b34976b6 6721 return TRUE;
b49e97c9
TS
6722}
6723
6724/* Handle a MIPS specific section when reading an object file. This
6725 is called when elfcode.h finds a section with an unknown type.
6726 This routine supports both the 32-bit and 64-bit ELF ABI.
6727
6728 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6729 how to. */
6730
b34976b6 6731bfd_boolean
6dc132d9
L
6732_bfd_mips_elf_section_from_shdr (bfd *abfd,
6733 Elf_Internal_Shdr *hdr,
6734 const char *name,
6735 int shindex)
b49e97c9
TS
6736{
6737 flagword flags = 0;
6738
6739 /* There ought to be a place to keep ELF backend specific flags, but
6740 at the moment there isn't one. We just keep track of the
6741 sections by their name, instead. Fortunately, the ABI gives
6742 suggested names for all the MIPS specific sections, so we will
6743 probably get away with this. */
6744 switch (hdr->sh_type)
6745 {
6746 case SHT_MIPS_LIBLIST:
6747 if (strcmp (name, ".liblist") != 0)
b34976b6 6748 return FALSE;
b49e97c9
TS
6749 break;
6750 case SHT_MIPS_MSYM:
6751 if (strcmp (name, ".msym") != 0)
b34976b6 6752 return FALSE;
b49e97c9
TS
6753 break;
6754 case SHT_MIPS_CONFLICT:
6755 if (strcmp (name, ".conflict") != 0)
b34976b6 6756 return FALSE;
b49e97c9
TS
6757 break;
6758 case SHT_MIPS_GPTAB:
0112cd26 6759 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6760 return FALSE;
b49e97c9
TS
6761 break;
6762 case SHT_MIPS_UCODE:
6763 if (strcmp (name, ".ucode") != 0)
b34976b6 6764 return FALSE;
b49e97c9
TS
6765 break;
6766 case SHT_MIPS_DEBUG:
6767 if (strcmp (name, ".mdebug") != 0)
b34976b6 6768 return FALSE;
b49e97c9
TS
6769 flags = SEC_DEBUGGING;
6770 break;
6771 case SHT_MIPS_REGINFO:
6772 if (strcmp (name, ".reginfo") != 0
6773 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6774 return FALSE;
b49e97c9
TS
6775 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6776 break;
6777 case SHT_MIPS_IFACE:
6778 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6779 return FALSE;
b49e97c9
TS
6780 break;
6781 case SHT_MIPS_CONTENT:
0112cd26 6782 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6783 return FALSE;
b49e97c9
TS
6784 break;
6785 case SHT_MIPS_OPTIONS:
cc2e31b9 6786 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6787 return FALSE;
b49e97c9
TS
6788 break;
6789 case SHT_MIPS_DWARF:
1b315056 6790 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6791 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6792 return FALSE;
b49e97c9
TS
6793 break;
6794 case SHT_MIPS_SYMBOL_LIB:
6795 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6796 return FALSE;
b49e97c9
TS
6797 break;
6798 case SHT_MIPS_EVENTS:
0112cd26
NC
6799 if (! CONST_STRNEQ (name, ".MIPS.events")
6800 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6801 return FALSE;
b49e97c9
TS
6802 break;
6803 default:
cc2e31b9 6804 break;
b49e97c9
TS
6805 }
6806
6dc132d9 6807 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6808 return FALSE;
b49e97c9
TS
6809
6810 if (flags)
6811 {
6812 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6813 (bfd_get_section_flags (abfd,
6814 hdr->bfd_section)
6815 | flags)))
b34976b6 6816 return FALSE;
b49e97c9
TS
6817 }
6818
6819 /* FIXME: We should record sh_info for a .gptab section. */
6820
6821 /* For a .reginfo section, set the gp value in the tdata information
6822 from the contents of this section. We need the gp value while
6823 processing relocs, so we just get it now. The .reginfo section
6824 is not used in the 64-bit MIPS ELF ABI. */
6825 if (hdr->sh_type == SHT_MIPS_REGINFO)
6826 {
6827 Elf32_External_RegInfo ext;
6828 Elf32_RegInfo s;
6829
9719ad41
RS
6830 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6831 &ext, 0, sizeof ext))
b34976b6 6832 return FALSE;
b49e97c9
TS
6833 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6834 elf_gp (abfd) = s.ri_gp_value;
6835 }
6836
6837 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6838 set the gp value based on what we find. We may see both
6839 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6840 they should agree. */
6841 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6842 {
6843 bfd_byte *contents, *l, *lend;
6844
9719ad41 6845 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6846 if (contents == NULL)
b34976b6 6847 return FALSE;
b49e97c9 6848 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6849 0, hdr->sh_size))
b49e97c9
TS
6850 {
6851 free (contents);
b34976b6 6852 return FALSE;
b49e97c9
TS
6853 }
6854 l = contents;
6855 lend = contents + hdr->sh_size;
6856 while (l + sizeof (Elf_External_Options) <= lend)
6857 {
6858 Elf_Internal_Options intopt;
6859
6860 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6861 &intopt);
1bc8074d
MR
6862 if (intopt.size < sizeof (Elf_External_Options))
6863 {
6864 (*_bfd_error_handler)
6865 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6866 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6867 break;
6868 }
b49e97c9
TS
6869 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6870 {
6871 Elf64_Internal_RegInfo intreg;
6872
6873 bfd_mips_elf64_swap_reginfo_in
6874 (abfd,
6875 ((Elf64_External_RegInfo *)
6876 (l + sizeof (Elf_External_Options))),
6877 &intreg);
6878 elf_gp (abfd) = intreg.ri_gp_value;
6879 }
6880 else if (intopt.kind == ODK_REGINFO)
6881 {
6882 Elf32_RegInfo intreg;
6883
6884 bfd_mips_elf32_swap_reginfo_in
6885 (abfd,
6886 ((Elf32_External_RegInfo *)
6887 (l + sizeof (Elf_External_Options))),
6888 &intreg);
6889 elf_gp (abfd) = intreg.ri_gp_value;
6890 }
6891 l += intopt.size;
6892 }
6893 free (contents);
6894 }
6895
b34976b6 6896 return TRUE;
b49e97c9
TS
6897}
6898
6899/* Set the correct type for a MIPS ELF section. We do this by the
6900 section name, which is a hack, but ought to work. This routine is
6901 used by both the 32-bit and the 64-bit ABI. */
6902
b34976b6 6903bfd_boolean
9719ad41 6904_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6905{
0414f35b 6906 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6907
6908 if (strcmp (name, ".liblist") == 0)
6909 {
6910 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6911 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6912 /* The sh_link field is set in final_write_processing. */
6913 }
6914 else if (strcmp (name, ".conflict") == 0)
6915 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6916 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6917 {
6918 hdr->sh_type = SHT_MIPS_GPTAB;
6919 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6920 /* The sh_info field is set in final_write_processing. */
6921 }
6922 else if (strcmp (name, ".ucode") == 0)
6923 hdr->sh_type = SHT_MIPS_UCODE;
6924 else if (strcmp (name, ".mdebug") == 0)
6925 {
6926 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6927 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6928 entsize of 0. FIXME: Does this matter? */
6929 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6930 hdr->sh_entsize = 0;
6931 else
6932 hdr->sh_entsize = 1;
6933 }
6934 else if (strcmp (name, ".reginfo") == 0)
6935 {
6936 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6937 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6938 entsize of 0x18. FIXME: Does this matter? */
6939 if (SGI_COMPAT (abfd))
6940 {
6941 if ((abfd->flags & DYNAMIC) != 0)
6942 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6943 else
6944 hdr->sh_entsize = 1;
6945 }
6946 else
6947 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6948 }
6949 else if (SGI_COMPAT (abfd)
6950 && (strcmp (name, ".hash") == 0
6951 || strcmp (name, ".dynamic") == 0
6952 || strcmp (name, ".dynstr") == 0))
6953 {
6954 if (SGI_COMPAT (abfd))
6955 hdr->sh_entsize = 0;
6956#if 0
8dc1a139 6957 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6958 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6959#endif
6960 }
6961 else if (strcmp (name, ".got") == 0
6962 || strcmp (name, ".srdata") == 0
6963 || strcmp (name, ".sdata") == 0
6964 || strcmp (name, ".sbss") == 0
6965 || strcmp (name, ".lit4") == 0
6966 || strcmp (name, ".lit8") == 0)
6967 hdr->sh_flags |= SHF_MIPS_GPREL;
6968 else if (strcmp (name, ".MIPS.interfaces") == 0)
6969 {
6970 hdr->sh_type = SHT_MIPS_IFACE;
6971 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6972 }
0112cd26 6973 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6974 {
6975 hdr->sh_type = SHT_MIPS_CONTENT;
6976 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6977 /* The sh_info field is set in final_write_processing. */
6978 }
cc2e31b9 6979 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6980 {
6981 hdr->sh_type = SHT_MIPS_OPTIONS;
6982 hdr->sh_entsize = 1;
6983 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6984 }
1b315056
CS
6985 else if (CONST_STRNEQ (name, ".debug_")
6986 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6987 {
6988 hdr->sh_type = SHT_MIPS_DWARF;
6989
6990 /* Irix facilities such as libexc expect a single .debug_frame
6991 per executable, the system ones have NOSTRIP set and the linker
6992 doesn't merge sections with different flags so ... */
6993 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6994 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6995 }
b49e97c9
TS
6996 else if (strcmp (name, ".MIPS.symlib") == 0)
6997 {
6998 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6999 /* The sh_link and sh_info fields are set in
7000 final_write_processing. */
7001 }
0112cd26
NC
7002 else if (CONST_STRNEQ (name, ".MIPS.events")
7003 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7004 {
7005 hdr->sh_type = SHT_MIPS_EVENTS;
7006 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7007 /* The sh_link field is set in final_write_processing. */
7008 }
7009 else if (strcmp (name, ".msym") == 0)
7010 {
7011 hdr->sh_type = SHT_MIPS_MSYM;
7012 hdr->sh_flags |= SHF_ALLOC;
7013 hdr->sh_entsize = 8;
7014 }
7015
7a79a000
TS
7016 /* The generic elf_fake_sections will set up REL_HDR using the default
7017 kind of relocations. We used to set up a second header for the
7018 non-default kind of relocations here, but only NewABI would use
7019 these, and the IRIX ld doesn't like resulting empty RELA sections.
7020 Thus we create those header only on demand now. */
b49e97c9 7021
b34976b6 7022 return TRUE;
b49e97c9
TS
7023}
7024
7025/* Given a BFD section, try to locate the corresponding ELF section
7026 index. This is used by both the 32-bit and the 64-bit ABI.
7027 Actually, it's not clear to me that the 64-bit ABI supports these,
7028 but for non-PIC objects we will certainly want support for at least
7029 the .scommon section. */
7030
b34976b6 7031bfd_boolean
9719ad41
RS
7032_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7033 asection *sec, int *retval)
b49e97c9
TS
7034{
7035 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7036 {
7037 *retval = SHN_MIPS_SCOMMON;
b34976b6 7038 return TRUE;
b49e97c9
TS
7039 }
7040 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7041 {
7042 *retval = SHN_MIPS_ACOMMON;
b34976b6 7043 return TRUE;
b49e97c9 7044 }
b34976b6 7045 return FALSE;
b49e97c9
TS
7046}
7047\f
7048/* Hook called by the linker routine which adds symbols from an object
7049 file. We must handle the special MIPS section numbers here. */
7050
b34976b6 7051bfd_boolean
9719ad41 7052_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7053 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7054 flagword *flagsp ATTRIBUTE_UNUSED,
7055 asection **secp, bfd_vma *valp)
b49e97c9
TS
7056{
7057 if (SGI_COMPAT (abfd)
7058 && (abfd->flags & DYNAMIC) != 0
7059 && strcmp (*namep, "_rld_new_interface") == 0)
7060 {
8dc1a139 7061 /* Skip IRIX5 rld entry name. */
b49e97c9 7062 *namep = NULL;
b34976b6 7063 return TRUE;
b49e97c9
TS
7064 }
7065
eedecc07
DD
7066 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7067 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7068 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7069 a magic symbol resolved by the linker, we ignore this bogus definition
7070 of _gp_disp. New ABI objects do not suffer from this problem so this
7071 is not done for them. */
7072 if (!NEWABI_P(abfd)
7073 && (sym->st_shndx == SHN_ABS)
7074 && (strcmp (*namep, "_gp_disp") == 0))
7075 {
7076 *namep = NULL;
7077 return TRUE;
7078 }
7079
b49e97c9
TS
7080 switch (sym->st_shndx)
7081 {
7082 case SHN_COMMON:
7083 /* Common symbols less than the GP size are automatically
7084 treated as SHN_MIPS_SCOMMON symbols. */
7085 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7086 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7087 || IRIX_COMPAT (abfd) == ict_irix6)
7088 break;
7089 /* Fall through. */
7090 case SHN_MIPS_SCOMMON:
7091 *secp = bfd_make_section_old_way (abfd, ".scommon");
7092 (*secp)->flags |= SEC_IS_COMMON;
7093 *valp = sym->st_size;
7094 break;
7095
7096 case SHN_MIPS_TEXT:
7097 /* This section is used in a shared object. */
7098 if (elf_tdata (abfd)->elf_text_section == NULL)
7099 {
7100 asymbol *elf_text_symbol;
7101 asection *elf_text_section;
7102 bfd_size_type amt = sizeof (asection);
7103
7104 elf_text_section = bfd_zalloc (abfd, amt);
7105 if (elf_text_section == NULL)
b34976b6 7106 return FALSE;
b49e97c9
TS
7107
7108 amt = sizeof (asymbol);
7109 elf_text_symbol = bfd_zalloc (abfd, amt);
7110 if (elf_text_symbol == NULL)
b34976b6 7111 return FALSE;
b49e97c9
TS
7112
7113 /* Initialize the section. */
7114
7115 elf_tdata (abfd)->elf_text_section = elf_text_section;
7116 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7117
7118 elf_text_section->symbol = elf_text_symbol;
7119 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7120
7121 elf_text_section->name = ".text";
7122 elf_text_section->flags = SEC_NO_FLAGS;
7123 elf_text_section->output_section = NULL;
7124 elf_text_section->owner = abfd;
7125 elf_text_symbol->name = ".text";
7126 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7127 elf_text_symbol->section = elf_text_section;
7128 }
7129 /* This code used to do *secp = bfd_und_section_ptr if
7130 info->shared. I don't know why, and that doesn't make sense,
7131 so I took it out. */
7132 *secp = elf_tdata (abfd)->elf_text_section;
7133 break;
7134
7135 case SHN_MIPS_ACOMMON:
7136 /* Fall through. XXX Can we treat this as allocated data? */
7137 case SHN_MIPS_DATA:
7138 /* This section is used in a shared object. */
7139 if (elf_tdata (abfd)->elf_data_section == NULL)
7140 {
7141 asymbol *elf_data_symbol;
7142 asection *elf_data_section;
7143 bfd_size_type amt = sizeof (asection);
7144
7145 elf_data_section = bfd_zalloc (abfd, amt);
7146 if (elf_data_section == NULL)
b34976b6 7147 return FALSE;
b49e97c9
TS
7148
7149 amt = sizeof (asymbol);
7150 elf_data_symbol = bfd_zalloc (abfd, amt);
7151 if (elf_data_symbol == NULL)
b34976b6 7152 return FALSE;
b49e97c9
TS
7153
7154 /* Initialize the section. */
7155
7156 elf_tdata (abfd)->elf_data_section = elf_data_section;
7157 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7158
7159 elf_data_section->symbol = elf_data_symbol;
7160 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7161
7162 elf_data_section->name = ".data";
7163 elf_data_section->flags = SEC_NO_FLAGS;
7164 elf_data_section->output_section = NULL;
7165 elf_data_section->owner = abfd;
7166 elf_data_symbol->name = ".data";
7167 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7168 elf_data_symbol->section = elf_data_section;
7169 }
7170 /* This code used to do *secp = bfd_und_section_ptr if
7171 info->shared. I don't know why, and that doesn't make sense,
7172 so I took it out. */
7173 *secp = elf_tdata (abfd)->elf_data_section;
7174 break;
7175
7176 case SHN_MIPS_SUNDEFINED:
7177 *secp = bfd_und_section_ptr;
7178 break;
7179 }
7180
7181 if (SGI_COMPAT (abfd)
7182 && ! info->shared
f13a99db 7183 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7184 && strcmp (*namep, "__rld_obj_head") == 0)
7185 {
7186 struct elf_link_hash_entry *h;
14a793b2 7187 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7188
7189 /* Mark __rld_obj_head as dynamic. */
14a793b2 7190 bh = NULL;
b49e97c9 7191 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7192 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7193 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7194 return FALSE;
14a793b2
AM
7195
7196 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7197 h->non_elf = 0;
7198 h->def_regular = 1;
b49e97c9
TS
7199 h->type = STT_OBJECT;
7200
c152c796 7201 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7202 return FALSE;
b49e97c9 7203
b34976b6 7204 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7205 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7206 }
7207
7208 /* If this is a mips16 text symbol, add 1 to the value to make it
7209 odd. This will cause something like .word SYM to come up with
7210 the right value when it is loaded into the PC. */
df58fc94 7211 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7212 ++*valp;
7213
b34976b6 7214 return TRUE;
b49e97c9
TS
7215}
7216
7217/* This hook function is called before the linker writes out a global
7218 symbol. We mark symbols as small common if appropriate. This is
7219 also where we undo the increment of the value for a mips16 symbol. */
7220
6e0b88f1 7221int
9719ad41
RS
7222_bfd_mips_elf_link_output_symbol_hook
7223 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7224 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7225 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7226{
7227 /* If we see a common symbol, which implies a relocatable link, then
7228 if a symbol was small common in an input file, mark it as small
7229 common in the output file. */
7230 if (sym->st_shndx == SHN_COMMON
7231 && strcmp (input_sec->name, ".scommon") == 0)
7232 sym->st_shndx = SHN_MIPS_SCOMMON;
7233
df58fc94 7234 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7235 sym->st_value &= ~1;
b49e97c9 7236
6e0b88f1 7237 return 1;
b49e97c9
TS
7238}
7239\f
7240/* Functions for the dynamic linker. */
7241
7242/* Create dynamic sections when linking against a dynamic object. */
7243
b34976b6 7244bfd_boolean
9719ad41 7245_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7246{
7247 struct elf_link_hash_entry *h;
14a793b2 7248 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7249 flagword flags;
7250 register asection *s;
7251 const char * const *namep;
0a44bf69 7252 struct mips_elf_link_hash_table *htab;
b49e97c9 7253
0a44bf69 7254 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7255 BFD_ASSERT (htab != NULL);
7256
b49e97c9
TS
7257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7258 | SEC_LINKER_CREATED | SEC_READONLY);
7259
0a44bf69
RS
7260 /* The psABI requires a read-only .dynamic section, but the VxWorks
7261 EABI doesn't. */
7262 if (!htab->is_vxworks)
b49e97c9 7263 {
3d4d4302 7264 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7265 if (s != NULL)
7266 {
7267 if (! bfd_set_section_flags (abfd, s, flags))
7268 return FALSE;
7269 }
b49e97c9
TS
7270 }
7271
7272 /* We need to create .got section. */
23cc69b6 7273 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7274 return FALSE;
7275
0a44bf69 7276 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7277 return FALSE;
b49e97c9 7278
b49e97c9 7279 /* Create .stub section. */
3d4d4302
AM
7280 s = bfd_make_section_anyway_with_flags (abfd,
7281 MIPS_ELF_STUB_SECTION_NAME (abfd),
7282 flags | SEC_CODE);
4e41d0d7
RS
7283 if (s == NULL
7284 || ! bfd_set_section_alignment (abfd, s,
7285 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7286 return FALSE;
7287 htab->sstubs = s;
b49e97c9 7288
e6aea42d 7289 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7290 && !info->shared
3d4d4302 7291 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7292 {
3d4d4302
AM
7293 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7294 flags &~ (flagword) SEC_READONLY);
b49e97c9 7295 if (s == NULL
b49e97c9
TS
7296 || ! bfd_set_section_alignment (abfd, s,
7297 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7298 return FALSE;
b49e97c9
TS
7299 }
7300
7301 /* On IRIX5, we adjust add some additional symbols and change the
7302 alignments of several sections. There is no ABI documentation
7303 indicating that this is necessary on IRIX6, nor any evidence that
7304 the linker takes such action. */
7305 if (IRIX_COMPAT (abfd) == ict_irix5)
7306 {
7307 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7308 {
14a793b2 7309 bh = NULL;
b49e97c9 7310 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7311 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7312 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7313 return FALSE;
14a793b2
AM
7314
7315 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7316 h->non_elf = 0;
7317 h->def_regular = 1;
b49e97c9
TS
7318 h->type = STT_SECTION;
7319
c152c796 7320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7321 return FALSE;
b49e97c9
TS
7322 }
7323
7324 /* We need to create a .compact_rel section. */
7325 if (SGI_COMPAT (abfd))
7326 {
7327 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7328 return FALSE;
b49e97c9
TS
7329 }
7330
44c410de 7331 /* Change alignments of some sections. */
3d4d4302 7332 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7333 if (s != NULL)
d80dcc6a 7334 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7335 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7336 if (s != NULL)
d80dcc6a 7337 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7338 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7339 if (s != NULL)
d80dcc6a 7340 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7341 /* ??? */
b49e97c9
TS
7342 s = bfd_get_section_by_name (abfd, ".reginfo");
7343 if (s != NULL)
d80dcc6a 7344 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7345 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7346 if (s != NULL)
d80dcc6a 7347 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7348 }
7349
7350 if (!info->shared)
7351 {
14a793b2
AM
7352 const char *name;
7353
7354 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7355 bh = NULL;
7356 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7357 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7358 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7359 return FALSE;
14a793b2
AM
7360
7361 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7362 h->non_elf = 0;
7363 h->def_regular = 1;
b49e97c9
TS
7364 h->type = STT_SECTION;
7365
c152c796 7366 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7367 return FALSE;
b49e97c9
TS
7368
7369 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7370 {
7371 /* __rld_map is a four byte word located in the .data section
7372 and is filled in by the rtld to contain a pointer to
7373 the _r_debug structure. Its symbol value will be set in
7374 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7375 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7376 BFD_ASSERT (s != NULL);
14a793b2 7377
0abfb97a
L
7378 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7379 bh = NULL;
7380 if (!(_bfd_generic_link_add_one_symbol
7381 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7382 get_elf_backend_data (abfd)->collect, &bh)))
7383 return FALSE;
b49e97c9 7384
0abfb97a
L
7385 h = (struct elf_link_hash_entry *) bh;
7386 h->non_elf = 0;
7387 h->def_regular = 1;
7388 h->type = STT_OBJECT;
7389
7390 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7391 return FALSE;
b4082c70 7392 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7393 }
7394 }
7395
861fb55a
DJ
7396 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7397 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7398 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7399 return FALSE;
7400
7401 /* Cache the sections created above. */
3d4d4302
AM
7402 htab->splt = bfd_get_linker_section (abfd, ".plt");
7403 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7404 if (htab->is_vxworks)
7405 {
3d4d4302
AM
7406 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7407 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7408 }
7409 else
3d4d4302 7410 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7411 if (!htab->sdynbss
7412 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7413 || !htab->srelplt
7414 || !htab->splt)
7415 abort ();
0a44bf69 7416
861fb55a
DJ
7417 if (htab->is_vxworks)
7418 {
0a44bf69
RS
7419 /* Do the usual VxWorks handling. */
7420 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7421 return FALSE;
7422
7423 /* Work out the PLT sizes. */
7424 if (info->shared)
7425 {
7426 htab->plt_header_size
7427 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7428 htab->plt_entry_size
7429 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7430 }
7431 else
7432 {
7433 htab->plt_header_size
7434 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7435 htab->plt_entry_size
7436 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7437 }
7438 }
861fb55a
DJ
7439 else if (!info->shared)
7440 {
7441 /* All variants of the plt0 entry are the same size. */
7442 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7443 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7444 }
0a44bf69 7445
b34976b6 7446 return TRUE;
b49e97c9
TS
7447}
7448\f
c224138d
RS
7449/* Return true if relocation REL against section SEC is a REL rather than
7450 RELA relocation. RELOCS is the first relocation in the section and
7451 ABFD is the bfd that contains SEC. */
7452
7453static bfd_boolean
7454mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7455 const Elf_Internal_Rela *relocs,
7456 const Elf_Internal_Rela *rel)
7457{
7458 Elf_Internal_Shdr *rel_hdr;
7459 const struct elf_backend_data *bed;
7460
d4730f92
BS
7461 /* To determine which flavor of relocation this is, we depend on the
7462 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7463 rel_hdr = elf_section_data (sec)->rel.hdr;
7464 if (rel_hdr == NULL)
7465 return FALSE;
c224138d 7466 bed = get_elf_backend_data (abfd);
d4730f92
BS
7467 return ((size_t) (rel - relocs)
7468 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7469}
7470
7471/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7472 HOWTO is the relocation's howto and CONTENTS points to the contents
7473 of the section that REL is against. */
7474
7475static bfd_vma
7476mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7477 reloc_howto_type *howto, bfd_byte *contents)
7478{
7479 bfd_byte *location;
7480 unsigned int r_type;
7481 bfd_vma addend;
7482
7483 r_type = ELF_R_TYPE (abfd, rel->r_info);
7484 location = contents + rel->r_offset;
7485
7486 /* Get the addend, which is stored in the input file. */
df58fc94 7487 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7488 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7489 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7490
7491 return addend & howto->src_mask;
7492}
7493
7494/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7495 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7496 and update *ADDEND with the final addend. Return true on success
7497 or false if the LO16 could not be found. RELEND is the exclusive
7498 upper bound on the relocations for REL's section. */
7499
7500static bfd_boolean
7501mips_elf_add_lo16_rel_addend (bfd *abfd,
7502 const Elf_Internal_Rela *rel,
7503 const Elf_Internal_Rela *relend,
7504 bfd_byte *contents, bfd_vma *addend)
7505{
7506 unsigned int r_type, lo16_type;
7507 const Elf_Internal_Rela *lo16_relocation;
7508 reloc_howto_type *lo16_howto;
7509 bfd_vma l;
7510
7511 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7512 if (mips16_reloc_p (r_type))
c224138d 7513 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7514 else if (micromips_reloc_p (r_type))
7515 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7516 else
7517 lo16_type = R_MIPS_LO16;
7518
7519 /* The combined value is the sum of the HI16 addend, left-shifted by
7520 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7521 code does a `lui' of the HI16 value, and then an `addiu' of the
7522 LO16 value.)
7523
7524 Scan ahead to find a matching LO16 relocation.
7525
7526 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7527 be immediately following. However, for the IRIX6 ABI, the next
7528 relocation may be a composed relocation consisting of several
7529 relocations for the same address. In that case, the R_MIPS_LO16
7530 relocation may occur as one of these. We permit a similar
7531 extension in general, as that is useful for GCC.
7532
7533 In some cases GCC dead code elimination removes the LO16 but keeps
7534 the corresponding HI16. This is strictly speaking a violation of
7535 the ABI but not immediately harmful. */
7536 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7537 if (lo16_relocation == NULL)
7538 return FALSE;
7539
7540 /* Obtain the addend kept there. */
7541 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7542 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7543
7544 l <<= lo16_howto->rightshift;
7545 l = _bfd_mips_elf_sign_extend (l, 16);
7546
7547 *addend <<= 16;
7548 *addend += l;
7549 return TRUE;
7550}
7551
7552/* Try to read the contents of section SEC in bfd ABFD. Return true and
7553 store the contents in *CONTENTS on success. Assume that *CONTENTS
7554 already holds the contents if it is nonull on entry. */
7555
7556static bfd_boolean
7557mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7558{
7559 if (*contents)
7560 return TRUE;
7561
7562 /* Get cached copy if it exists. */
7563 if (elf_section_data (sec)->this_hdr.contents != NULL)
7564 {
7565 *contents = elf_section_data (sec)->this_hdr.contents;
7566 return TRUE;
7567 }
7568
7569 return bfd_malloc_and_get_section (abfd, sec, contents);
7570}
7571
b49e97c9
TS
7572/* Look through the relocs for a section during the first phase, and
7573 allocate space in the global offset table. */
7574
b34976b6 7575bfd_boolean
9719ad41
RS
7576_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7577 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7578{
7579 const char *name;
7580 bfd *dynobj;
7581 Elf_Internal_Shdr *symtab_hdr;
7582 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7583 size_t extsymoff;
7584 const Elf_Internal_Rela *rel;
7585 const Elf_Internal_Rela *rel_end;
b49e97c9 7586 asection *sreloc;
9c5bfbb7 7587 const struct elf_backend_data *bed;
0a44bf69 7588 struct mips_elf_link_hash_table *htab;
c224138d
RS
7589 bfd_byte *contents;
7590 bfd_vma addend;
7591 reloc_howto_type *howto;
b49e97c9 7592
1049f94e 7593 if (info->relocatable)
b34976b6 7594 return TRUE;
b49e97c9 7595
0a44bf69 7596 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7597 BFD_ASSERT (htab != NULL);
7598
b49e97c9
TS
7599 dynobj = elf_hash_table (info)->dynobj;
7600 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7601 sym_hashes = elf_sym_hashes (abfd);
7602 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7603
738e5348
RS
7604 bed = get_elf_backend_data (abfd);
7605 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7606
b49e97c9
TS
7607 /* Check for the mips16 stub sections. */
7608
7609 name = bfd_get_section_name (abfd, sec);
b9d58d71 7610 if (FN_STUB_P (name))
b49e97c9
TS
7611 {
7612 unsigned long r_symndx;
7613
7614 /* Look at the relocation information to figure out which symbol
7615 this is for. */
7616
cb4437b8 7617 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7618 if (r_symndx == 0)
7619 {
7620 (*_bfd_error_handler)
7621 (_("%B: Warning: cannot determine the target function for"
7622 " stub section `%s'"),
7623 abfd, name);
7624 bfd_set_error (bfd_error_bad_value);
7625 return FALSE;
7626 }
b49e97c9
TS
7627
7628 if (r_symndx < extsymoff
7629 || sym_hashes[r_symndx - extsymoff] == NULL)
7630 {
7631 asection *o;
7632
7633 /* This stub is for a local symbol. This stub will only be
7634 needed if there is some relocation in this BFD, other
7635 than a 16 bit function call, which refers to this symbol. */
7636 for (o = abfd->sections; o != NULL; o = o->next)
7637 {
7638 Elf_Internal_Rela *sec_relocs;
7639 const Elf_Internal_Rela *r, *rend;
7640
7641 /* We can ignore stub sections when looking for relocs. */
7642 if ((o->flags & SEC_RELOC) == 0
7643 || o->reloc_count == 0
738e5348 7644 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7645 continue;
7646
45d6a902 7647 sec_relocs
9719ad41 7648 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7649 info->keep_memory);
b49e97c9 7650 if (sec_relocs == NULL)
b34976b6 7651 return FALSE;
b49e97c9
TS
7652
7653 rend = sec_relocs + o->reloc_count;
7654 for (r = sec_relocs; r < rend; r++)
7655 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7656 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7657 break;
7658
6cdc0ccc 7659 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7660 free (sec_relocs);
7661
7662 if (r < rend)
7663 break;
7664 }
7665
7666 if (o == NULL)
7667 {
7668 /* There is no non-call reloc for this stub, so we do
7669 not need it. Since this function is called before
7670 the linker maps input sections to output sections, we
7671 can easily discard it by setting the SEC_EXCLUDE
7672 flag. */
7673 sec->flags |= SEC_EXCLUDE;
b34976b6 7674 return TRUE;
b49e97c9
TS
7675 }
7676
7677 /* Record this stub in an array of local symbol stubs for
7678 this BFD. */
7679 if (elf_tdata (abfd)->local_stubs == NULL)
7680 {
7681 unsigned long symcount;
7682 asection **n;
7683 bfd_size_type amt;
7684
7685 if (elf_bad_symtab (abfd))
7686 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7687 else
7688 symcount = symtab_hdr->sh_info;
7689 amt = symcount * sizeof (asection *);
9719ad41 7690 n = bfd_zalloc (abfd, amt);
b49e97c9 7691 if (n == NULL)
b34976b6 7692 return FALSE;
b49e97c9
TS
7693 elf_tdata (abfd)->local_stubs = n;
7694 }
7695
b9d58d71 7696 sec->flags |= SEC_KEEP;
b49e97c9
TS
7697 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7698
7699 /* We don't need to set mips16_stubs_seen in this case.
7700 That flag is used to see whether we need to look through
7701 the global symbol table for stubs. We don't need to set
7702 it here, because we just have a local stub. */
7703 }
7704 else
7705 {
7706 struct mips_elf_link_hash_entry *h;
7707
7708 h = ((struct mips_elf_link_hash_entry *)
7709 sym_hashes[r_symndx - extsymoff]);
7710
973a3492
L
7711 while (h->root.root.type == bfd_link_hash_indirect
7712 || h->root.root.type == bfd_link_hash_warning)
7713 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7714
b49e97c9
TS
7715 /* H is the symbol this stub is for. */
7716
b9d58d71
TS
7717 /* If we already have an appropriate stub for this function, we
7718 don't need another one, so we can discard this one. Since
7719 this function is called before the linker maps input sections
7720 to output sections, we can easily discard it by setting the
7721 SEC_EXCLUDE flag. */
7722 if (h->fn_stub != NULL)
7723 {
7724 sec->flags |= SEC_EXCLUDE;
7725 return TRUE;
7726 }
7727
7728 sec->flags |= SEC_KEEP;
b49e97c9 7729 h->fn_stub = sec;
b34976b6 7730 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7731 }
7732 }
b9d58d71 7733 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7734 {
7735 unsigned long r_symndx;
7736 struct mips_elf_link_hash_entry *h;
7737 asection **loc;
7738
7739 /* Look at the relocation information to figure out which symbol
7740 this is for. */
7741
cb4437b8 7742 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7743 if (r_symndx == 0)
7744 {
7745 (*_bfd_error_handler)
7746 (_("%B: Warning: cannot determine the target function for"
7747 " stub section `%s'"),
7748 abfd, name);
7749 bfd_set_error (bfd_error_bad_value);
7750 return FALSE;
7751 }
b49e97c9
TS
7752
7753 if (r_symndx < extsymoff
7754 || sym_hashes[r_symndx - extsymoff] == NULL)
7755 {
b9d58d71 7756 asection *o;
b49e97c9 7757
b9d58d71
TS
7758 /* This stub is for a local symbol. This stub will only be
7759 needed if there is some relocation (R_MIPS16_26) in this BFD
7760 that refers to this symbol. */
7761 for (o = abfd->sections; o != NULL; o = o->next)
7762 {
7763 Elf_Internal_Rela *sec_relocs;
7764 const Elf_Internal_Rela *r, *rend;
7765
7766 /* We can ignore stub sections when looking for relocs. */
7767 if ((o->flags & SEC_RELOC) == 0
7768 || o->reloc_count == 0
738e5348 7769 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7770 continue;
7771
7772 sec_relocs
7773 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7774 info->keep_memory);
7775 if (sec_relocs == NULL)
7776 return FALSE;
7777
7778 rend = sec_relocs + o->reloc_count;
7779 for (r = sec_relocs; r < rend; r++)
7780 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7781 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7782 break;
7783
7784 if (elf_section_data (o)->relocs != sec_relocs)
7785 free (sec_relocs);
7786
7787 if (r < rend)
7788 break;
7789 }
7790
7791 if (o == NULL)
7792 {
7793 /* There is no non-call reloc for this stub, so we do
7794 not need it. Since this function is called before
7795 the linker maps input sections to output sections, we
7796 can easily discard it by setting the SEC_EXCLUDE
7797 flag. */
7798 sec->flags |= SEC_EXCLUDE;
7799 return TRUE;
7800 }
7801
7802 /* Record this stub in an array of local symbol call_stubs for
7803 this BFD. */
7804 if (elf_tdata (abfd)->local_call_stubs == NULL)
7805 {
7806 unsigned long symcount;
7807 asection **n;
7808 bfd_size_type amt;
7809
7810 if (elf_bad_symtab (abfd))
7811 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7812 else
7813 symcount = symtab_hdr->sh_info;
7814 amt = symcount * sizeof (asection *);
7815 n = bfd_zalloc (abfd, amt);
7816 if (n == NULL)
7817 return FALSE;
7818 elf_tdata (abfd)->local_call_stubs = n;
7819 }
b49e97c9 7820
b9d58d71
TS
7821 sec->flags |= SEC_KEEP;
7822 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7823
b9d58d71
TS
7824 /* We don't need to set mips16_stubs_seen in this case.
7825 That flag is used to see whether we need to look through
7826 the global symbol table for stubs. We don't need to set
7827 it here, because we just have a local stub. */
7828 }
b49e97c9 7829 else
b49e97c9 7830 {
b9d58d71
TS
7831 h = ((struct mips_elf_link_hash_entry *)
7832 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7833
b9d58d71 7834 /* H is the symbol this stub is for. */
68ffbac6 7835
b9d58d71
TS
7836 if (CALL_FP_STUB_P (name))
7837 loc = &h->call_fp_stub;
7838 else
7839 loc = &h->call_stub;
68ffbac6 7840
b9d58d71
TS
7841 /* If we already have an appropriate stub for this function, we
7842 don't need another one, so we can discard this one. Since
7843 this function is called before the linker maps input sections
7844 to output sections, we can easily discard it by setting the
7845 SEC_EXCLUDE flag. */
7846 if (*loc != NULL)
7847 {
7848 sec->flags |= SEC_EXCLUDE;
7849 return TRUE;
7850 }
b49e97c9 7851
b9d58d71
TS
7852 sec->flags |= SEC_KEEP;
7853 *loc = sec;
7854 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7855 }
b49e97c9
TS
7856 }
7857
b49e97c9 7858 sreloc = NULL;
c224138d 7859 contents = NULL;
b49e97c9
TS
7860 for (rel = relocs; rel < rel_end; ++rel)
7861 {
7862 unsigned long r_symndx;
7863 unsigned int r_type;
7864 struct elf_link_hash_entry *h;
861fb55a 7865 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7866
7867 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7868 r_type = ELF_R_TYPE (abfd, rel->r_info);
7869
7870 if (r_symndx < extsymoff)
7871 h = NULL;
7872 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7873 {
7874 (*_bfd_error_handler)
d003868e
AM
7875 (_("%B: Malformed reloc detected for section %s"),
7876 abfd, name);
b49e97c9 7877 bfd_set_error (bfd_error_bad_value);
b34976b6 7878 return FALSE;
b49e97c9
TS
7879 }
7880 else
7881 {
7882 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7883 while (h != NULL
7884 && (h->root.type == bfd_link_hash_indirect
7885 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7886 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7887 }
b49e97c9 7888
861fb55a
DJ
7889 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7890 relocation into a dynamic one. */
7891 can_make_dynamic_p = FALSE;
7892 switch (r_type)
7893 {
861fb55a
DJ
7894 case R_MIPS_GOT16:
7895 case R_MIPS_CALL16:
7896 case R_MIPS_CALL_HI16:
7897 case R_MIPS_CALL_LO16:
7898 case R_MIPS_GOT_HI16:
7899 case R_MIPS_GOT_LO16:
7900 case R_MIPS_GOT_PAGE:
7901 case R_MIPS_GOT_OFST:
7902 case R_MIPS_GOT_DISP:
7903 case R_MIPS_TLS_GOTTPREL:
7904 case R_MIPS_TLS_GD:
7905 case R_MIPS_TLS_LDM:
d0f13682
CLT
7906 case R_MIPS16_GOT16:
7907 case R_MIPS16_CALL16:
7908 case R_MIPS16_TLS_GOTTPREL:
7909 case R_MIPS16_TLS_GD:
7910 case R_MIPS16_TLS_LDM:
df58fc94
RS
7911 case R_MICROMIPS_GOT16:
7912 case R_MICROMIPS_CALL16:
7913 case R_MICROMIPS_CALL_HI16:
7914 case R_MICROMIPS_CALL_LO16:
7915 case R_MICROMIPS_GOT_HI16:
7916 case R_MICROMIPS_GOT_LO16:
7917 case R_MICROMIPS_GOT_PAGE:
7918 case R_MICROMIPS_GOT_OFST:
7919 case R_MICROMIPS_GOT_DISP:
7920 case R_MICROMIPS_TLS_GOTTPREL:
7921 case R_MICROMIPS_TLS_GD:
7922 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7923 if (dynobj == NULL)
7924 elf_hash_table (info)->dynobj = dynobj = abfd;
7925 if (!mips_elf_create_got_section (dynobj, info))
7926 return FALSE;
7927 if (htab->is_vxworks && !info->shared)
b49e97c9 7928 {
861fb55a
DJ
7929 (*_bfd_error_handler)
7930 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7931 abfd, (unsigned long) rel->r_offset);
7932 bfd_set_error (bfd_error_bad_value);
7933 return FALSE;
b49e97c9 7934 }
861fb55a 7935 break;
b49e97c9 7936
99da6b5f
AN
7937 /* This is just a hint; it can safely be ignored. Don't set
7938 has_static_relocs for the corresponding symbol. */
7939 case R_MIPS_JALR:
df58fc94 7940 case R_MICROMIPS_JALR:
99da6b5f
AN
7941 break;
7942
861fb55a
DJ
7943 case R_MIPS_32:
7944 case R_MIPS_REL32:
7945 case R_MIPS_64:
7946 /* In VxWorks executables, references to external symbols
7947 must be handled using copy relocs or PLT entries; it is not
7948 possible to convert this relocation into a dynamic one.
7949
7950 For executables that use PLTs and copy-relocs, we have a
7951 choice between converting the relocation into a dynamic
7952 one or using copy relocations or PLT entries. It is
7953 usually better to do the former, unless the relocation is
7954 against a read-only section. */
7955 if ((info->shared
7956 || (h != NULL
7957 && !htab->is_vxworks
7958 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7959 && !(!info->nocopyreloc
7960 && !PIC_OBJECT_P (abfd)
7961 && MIPS_ELF_READONLY_SECTION (sec))))
7962 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7963 {
861fb55a 7964 can_make_dynamic_p = TRUE;
b49e97c9
TS
7965 if (dynobj == NULL)
7966 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7967 break;
861fb55a 7968 }
21d790b9
MR
7969 /* For sections that are not SEC_ALLOC a copy reloc would be
7970 output if possible (implying questionable semantics for
7971 read-only data objects) or otherwise the final link would
7972 fail as ld.so will not process them and could not therefore
7973 handle any outstanding dynamic relocations.
7974
7975 For such sections that are also SEC_DEBUGGING, we can avoid
7976 these problems by simply ignoring any relocs as these
7977 sections have a predefined use and we know it is safe to do
7978 so.
7979
7980 This is needed in cases such as a global symbol definition
7981 in a shared library causing a common symbol from an object
7982 file to be converted to an undefined reference. If that
7983 happens, then all the relocations against this symbol from
7984 SEC_DEBUGGING sections in the object file will resolve to
7985 nil. */
7986 if ((sec->flags & SEC_DEBUGGING) != 0)
7987 break;
861fb55a 7988 /* Fall through. */
b49e97c9 7989
861fb55a
DJ
7990 default:
7991 /* Most static relocations require pointer equality, except
7992 for branches. */
7993 if (h)
7994 h->pointer_equality_needed = TRUE;
7995 /* Fall through. */
b49e97c9 7996
861fb55a
DJ
7997 case R_MIPS_26:
7998 case R_MIPS_PC16:
7999 case R_MIPS16_26:
df58fc94
RS
8000 case R_MICROMIPS_26_S1:
8001 case R_MICROMIPS_PC7_S1:
8002 case R_MICROMIPS_PC10_S1:
8003 case R_MICROMIPS_PC16_S1:
8004 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
8005 if (h)
8006 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8007 break;
b49e97c9
TS
8008 }
8009
0a44bf69
RS
8010 if (h)
8011 {
0a44bf69
RS
8012 /* Relocations against the special VxWorks __GOTT_BASE__ and
8013 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8014 room for them in .rela.dyn. */
8015 if (is_gott_symbol (info, h))
8016 {
8017 if (sreloc == NULL)
8018 {
8019 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8020 if (sreloc == NULL)
8021 return FALSE;
8022 }
8023 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8024 if (MIPS_ELF_READONLY_SECTION (sec))
8025 /* We tell the dynamic linker that there are
8026 relocations against the text segment. */
8027 info->flags |= DF_TEXTREL;
0a44bf69
RS
8028 }
8029 }
df58fc94
RS
8030 else if (call_lo16_reloc_p (r_type)
8031 || got_lo16_reloc_p (r_type)
8032 || got_disp_reloc_p (r_type)
738e5348 8033 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8034 {
8035 /* We may need a local GOT entry for this relocation. We
8036 don't count R_MIPS_GOT_PAGE because we can estimate the
8037 maximum number of pages needed by looking at the size of
738e5348
RS
8038 the segment. Similar comments apply to R_MIPS*_GOT16 and
8039 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8040 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8041 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8042 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
8043 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8044 rel->r_addend, info, 0))
f4416af6 8045 return FALSE;
b49e97c9
TS
8046 }
8047
8f0c309a
CLT
8048 if (h != NULL
8049 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8050 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8051 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8052
b49e97c9
TS
8053 switch (r_type)
8054 {
8055 case R_MIPS_CALL16:
738e5348 8056 case R_MIPS16_CALL16:
df58fc94 8057 case R_MICROMIPS_CALL16:
b49e97c9
TS
8058 if (h == NULL)
8059 {
8060 (*_bfd_error_handler)
d003868e
AM
8061 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8062 abfd, (unsigned long) rel->r_offset);
b49e97c9 8063 bfd_set_error (bfd_error_bad_value);
b34976b6 8064 return FALSE;
b49e97c9
TS
8065 }
8066 /* Fall through. */
8067
8068 case R_MIPS_CALL_HI16:
8069 case R_MIPS_CALL_LO16:
df58fc94
RS
8070 case R_MICROMIPS_CALL_HI16:
8071 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8072 if (h != NULL)
8073 {
6ccf4795
RS
8074 /* Make sure there is room in the regular GOT to hold the
8075 function's address. We may eliminate it in favour of
8076 a .got.plt entry later; see mips_elf_count_got_symbols. */
8077 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
b34976b6 8078 return FALSE;
b49e97c9
TS
8079
8080 /* We need a stub, not a plt entry for the undefined
8081 function. But we record it as if it needs plt. See
c152c796 8082 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8083 h->needs_plt = 1;
b49e97c9
TS
8084 h->type = STT_FUNC;
8085 }
8086 break;
8087
0fdc1bf1 8088 case R_MIPS_GOT_PAGE:
df58fc94 8089 case R_MICROMIPS_GOT_PAGE:
0fdc1bf1
AO
8090 /* If this is a global, overridable symbol, GOT_PAGE will
8091 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 8092 if (h)
0fdc1bf1
AO
8093 {
8094 struct mips_elf_link_hash_entry *hmips =
8095 (struct mips_elf_link_hash_entry *) h;
143d77c5 8096
3a3b6725 8097 /* This symbol is definitely not overridable. */
f5385ebf 8098 if (hmips->root.def_regular
0fdc1bf1 8099 && ! (info->shared && ! info->symbolic
f5385ebf 8100 && ! hmips->root.forced_local))
c224138d 8101 h = NULL;
0fdc1bf1
AO
8102 }
8103 /* Fall through. */
8104
738e5348 8105 case R_MIPS16_GOT16:
b49e97c9
TS
8106 case R_MIPS_GOT16:
8107 case R_MIPS_GOT_HI16:
8108 case R_MIPS_GOT_LO16:
df58fc94
RS
8109 case R_MICROMIPS_GOT16:
8110 case R_MICROMIPS_GOT_HI16:
8111 case R_MICROMIPS_GOT_LO16:
8112 if (!h || got_page_reloc_p (r_type))
c224138d 8113 {
3a3b6725
DJ
8114 /* This relocation needs (or may need, if h != NULL) a
8115 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8116 know for sure until we know whether the symbol is
8117 preemptible. */
c224138d
RS
8118 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8119 {
8120 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8121 return FALSE;
8122 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8123 addend = mips_elf_read_rel_addend (abfd, rel,
8124 howto, contents);
9684f078 8125 if (got16_reloc_p (r_type))
c224138d
RS
8126 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8127 contents, &addend);
8128 else
8129 addend <<= howto->rightshift;
8130 }
8131 else
8132 addend = rel->r_addend;
a8028dd0
RS
8133 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8134 addend))
c224138d 8135 return FALSE;
c224138d
RS
8136 }
8137 /* Fall through. */
8138
b49e97c9 8139 case R_MIPS_GOT_DISP:
df58fc94 8140 case R_MICROMIPS_GOT_DISP:
6ccf4795
RS
8141 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8142 FALSE, 0))
b34976b6 8143 return FALSE;
b49e97c9
TS
8144 break;
8145
0f20cc35 8146 case R_MIPS_TLS_GOTTPREL:
d0f13682 8147 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8148 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8149 if (info->shared)
8150 info->flags |= DF_STATIC_TLS;
8151 /* Fall through */
8152
8153 case R_MIPS_TLS_LDM:
d0f13682 8154 case R_MIPS16_TLS_LDM:
df58fc94
RS
8155 case R_MICROMIPS_TLS_LDM:
8156 if (tls_ldm_reloc_p (r_type))
0f20cc35 8157 {
cf35638d 8158 r_symndx = STN_UNDEF;
0f20cc35
DJ
8159 h = NULL;
8160 }
8161 /* Fall through */
8162
8163 case R_MIPS_TLS_GD:
d0f13682 8164 case R_MIPS16_TLS_GD:
df58fc94 8165 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8166 /* This symbol requires a global offset table entry, or two
8167 for TLS GD relocations. */
8168 {
df58fc94
RS
8169 unsigned char flag;
8170
8171 flag = (tls_gd_reloc_p (r_type)
8172 ? GOT_TLS_GD
8173 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
0f20cc35
DJ
8174 if (h != NULL)
8175 {
8176 struct mips_elf_link_hash_entry *hmips =
8177 (struct mips_elf_link_hash_entry *) h;
8178 hmips->tls_type |= flag;
8179
6ccf4795
RS
8180 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8181 FALSE, flag))
0f20cc35
DJ
8182 return FALSE;
8183 }
8184 else
8185 {
cf35638d 8186 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
0f20cc35 8187
a8028dd0
RS
8188 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8189 rel->r_addend,
8190 info, flag))
0f20cc35
DJ
8191 return FALSE;
8192 }
8193 }
8194 break;
8195
b49e97c9
TS
8196 case R_MIPS_32:
8197 case R_MIPS_REL32:
8198 case R_MIPS_64:
0a44bf69
RS
8199 /* In VxWorks executables, references to external symbols
8200 are handled using copy relocs or PLT stubs, so there's
8201 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8202 if (can_make_dynamic_p)
b49e97c9
TS
8203 {
8204 if (sreloc == NULL)
8205 {
0a44bf69 8206 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8207 if (sreloc == NULL)
f4416af6 8208 return FALSE;
b49e97c9 8209 }
9a59ad6b 8210 if (info->shared && h == NULL)
82f0cfbd
EC
8211 {
8212 /* When creating a shared object, we must copy these
8213 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8214 relocs. Make room for this reloc in .rel(a).dyn. */
8215 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8216 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8217 /* We tell the dynamic linker that there are
8218 relocations against the text segment. */
8219 info->flags |= DF_TEXTREL;
8220 }
b49e97c9
TS
8221 else
8222 {
8223 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8224
9a59ad6b
DJ
8225 /* For a shared object, we must copy this relocation
8226 unless the symbol turns out to be undefined and
8227 weak with non-default visibility, in which case
8228 it will be left as zero.
8229
8230 We could elide R_MIPS_REL32 for locally binding symbols
8231 in shared libraries, but do not yet do so.
8232
8233 For an executable, we only need to copy this
8234 reloc if the symbol is defined in a dynamic
8235 object. */
b49e97c9
TS
8236 hmips = (struct mips_elf_link_hash_entry *) h;
8237 ++hmips->possibly_dynamic_relocs;
943284cc 8238 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8239 /* We need it to tell the dynamic linker if there
8240 are relocations against the text segment. */
8241 hmips->readonly_reloc = TRUE;
b49e97c9 8242 }
b49e97c9
TS
8243 }
8244
8245 if (SGI_COMPAT (abfd))
8246 mips_elf_hash_table (info)->compact_rel_size +=
8247 sizeof (Elf32_External_crinfo);
8248 break;
8249
8250 case R_MIPS_26:
8251 case R_MIPS_GPREL16:
8252 case R_MIPS_LITERAL:
8253 case R_MIPS_GPREL32:
df58fc94
RS
8254 case R_MICROMIPS_26_S1:
8255 case R_MICROMIPS_GPREL16:
8256 case R_MICROMIPS_LITERAL:
8257 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8258 if (SGI_COMPAT (abfd))
8259 mips_elf_hash_table (info)->compact_rel_size +=
8260 sizeof (Elf32_External_crinfo);
8261 break;
8262
8263 /* This relocation describes the C++ object vtable hierarchy.
8264 Reconstruct it for later use during GC. */
8265 case R_MIPS_GNU_VTINHERIT:
c152c796 8266 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8267 return FALSE;
b49e97c9
TS
8268 break;
8269
8270 /* This relocation describes which C++ vtable entries are actually
8271 used. Record for later use during GC. */
8272 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8273 BFD_ASSERT (h != NULL);
8274 if (h != NULL
8275 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8276 return FALSE;
b49e97c9
TS
8277 break;
8278
8279 default:
8280 break;
8281 }
8282
8283 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8284 related to taking the function's address. This doesn't apply to
8285 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8286 a normal .got entry. */
8287 if (!htab->is_vxworks && h != NULL)
8288 switch (r_type)
8289 {
8290 default:
8291 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8292 break;
738e5348 8293 case R_MIPS16_CALL16:
0a44bf69
RS
8294 case R_MIPS_CALL16:
8295 case R_MIPS_CALL_HI16:
8296 case R_MIPS_CALL_LO16:
8297 case R_MIPS_JALR:
df58fc94
RS
8298 case R_MICROMIPS_CALL16:
8299 case R_MICROMIPS_CALL_HI16:
8300 case R_MICROMIPS_CALL_LO16:
8301 case R_MICROMIPS_JALR:
0a44bf69
RS
8302 break;
8303 }
b49e97c9 8304
738e5348
RS
8305 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8306 if there is one. We only need to handle global symbols here;
8307 we decide whether to keep or delete stubs for local symbols
8308 when processing the stub's relocations. */
b49e97c9 8309 if (h != NULL
738e5348
RS
8310 && !mips16_call_reloc_p (r_type)
8311 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8312 {
8313 struct mips_elf_link_hash_entry *mh;
8314
8315 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8316 mh->need_fn_stub = TRUE;
b49e97c9 8317 }
861fb55a
DJ
8318
8319 /* Refuse some position-dependent relocations when creating a
8320 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8321 not PIC, but we can create dynamic relocations and the result
8322 will be fine. Also do not refuse R_MIPS_LO16, which can be
8323 combined with R_MIPS_GOT16. */
8324 if (info->shared)
8325 {
8326 switch (r_type)
8327 {
8328 case R_MIPS16_HI16:
8329 case R_MIPS_HI16:
8330 case R_MIPS_HIGHER:
8331 case R_MIPS_HIGHEST:
df58fc94
RS
8332 case R_MICROMIPS_HI16:
8333 case R_MICROMIPS_HIGHER:
8334 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8335 /* Don't refuse a high part relocation if it's against
8336 no symbol (e.g. part of a compound relocation). */
cf35638d 8337 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8338 break;
8339
8340 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8341 and has a special meaning. */
8342 if (!NEWABI_P (abfd) && h != NULL
8343 && strcmp (h->root.root.string, "_gp_disp") == 0)
8344 break;
8345
0fc1eb3c
RS
8346 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8347 if (is_gott_symbol (info, h))
8348 break;
8349
861fb55a
DJ
8350 /* FALLTHROUGH */
8351
8352 case R_MIPS16_26:
8353 case R_MIPS_26:
df58fc94 8354 case R_MICROMIPS_26_S1:
861fb55a
DJ
8355 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8356 (*_bfd_error_handler)
8357 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8358 abfd, howto->name,
8359 (h) ? h->root.root.string : "a local symbol");
8360 bfd_set_error (bfd_error_bad_value);
8361 return FALSE;
8362 default:
8363 break;
8364 }
8365 }
b49e97c9
TS
8366 }
8367
b34976b6 8368 return TRUE;
b49e97c9
TS
8369}
8370\f
d0647110 8371bfd_boolean
9719ad41
RS
8372_bfd_mips_relax_section (bfd *abfd, asection *sec,
8373 struct bfd_link_info *link_info,
8374 bfd_boolean *again)
d0647110
AO
8375{
8376 Elf_Internal_Rela *internal_relocs;
8377 Elf_Internal_Rela *irel, *irelend;
8378 Elf_Internal_Shdr *symtab_hdr;
8379 bfd_byte *contents = NULL;
d0647110
AO
8380 size_t extsymoff;
8381 bfd_boolean changed_contents = FALSE;
8382 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8383 Elf_Internal_Sym *isymbuf = NULL;
8384
8385 /* We are not currently changing any sizes, so only one pass. */
8386 *again = FALSE;
8387
1049f94e 8388 if (link_info->relocatable)
d0647110
AO
8389 return TRUE;
8390
9719ad41 8391 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8392 link_info->keep_memory);
d0647110
AO
8393 if (internal_relocs == NULL)
8394 return TRUE;
8395
8396 irelend = internal_relocs + sec->reloc_count
8397 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8398 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8399 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8400
8401 for (irel = internal_relocs; irel < irelend; irel++)
8402 {
8403 bfd_vma symval;
8404 bfd_signed_vma sym_offset;
8405 unsigned int r_type;
8406 unsigned long r_symndx;
8407 asection *sym_sec;
8408 unsigned long instruction;
8409
8410 /* Turn jalr into bgezal, and jr into beq, if they're marked
8411 with a JALR relocation, that indicate where they jump to.
8412 This saves some pipeline bubbles. */
8413 r_type = ELF_R_TYPE (abfd, irel->r_info);
8414 if (r_type != R_MIPS_JALR)
8415 continue;
8416
8417 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8418 /* Compute the address of the jump target. */
8419 if (r_symndx >= extsymoff)
8420 {
8421 struct mips_elf_link_hash_entry *h
8422 = ((struct mips_elf_link_hash_entry *)
8423 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8424
8425 while (h->root.root.type == bfd_link_hash_indirect
8426 || h->root.root.type == bfd_link_hash_warning)
8427 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8428
d0647110
AO
8429 /* If a symbol is undefined, or if it may be overridden,
8430 skip it. */
8431 if (! ((h->root.root.type == bfd_link_hash_defined
8432 || h->root.root.type == bfd_link_hash_defweak)
8433 && h->root.root.u.def.section)
8434 || (link_info->shared && ! link_info->symbolic
f5385ebf 8435 && !h->root.forced_local))
d0647110
AO
8436 continue;
8437
8438 sym_sec = h->root.root.u.def.section;
8439 if (sym_sec->output_section)
8440 symval = (h->root.root.u.def.value
8441 + sym_sec->output_section->vma
8442 + sym_sec->output_offset);
8443 else
8444 symval = h->root.root.u.def.value;
8445 }
8446 else
8447 {
8448 Elf_Internal_Sym *isym;
8449
8450 /* Read this BFD's symbols if we haven't done so already. */
8451 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8452 {
8453 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8454 if (isymbuf == NULL)
8455 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8456 symtab_hdr->sh_info, 0,
8457 NULL, NULL, NULL);
8458 if (isymbuf == NULL)
8459 goto relax_return;
8460 }
8461
8462 isym = isymbuf + r_symndx;
8463 if (isym->st_shndx == SHN_UNDEF)
8464 continue;
8465 else if (isym->st_shndx == SHN_ABS)
8466 sym_sec = bfd_abs_section_ptr;
8467 else if (isym->st_shndx == SHN_COMMON)
8468 sym_sec = bfd_com_section_ptr;
8469 else
8470 sym_sec
8471 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8472 symval = isym->st_value
8473 + sym_sec->output_section->vma
8474 + sym_sec->output_offset;
8475 }
8476
8477 /* Compute branch offset, from delay slot of the jump to the
8478 branch target. */
8479 sym_offset = (symval + irel->r_addend)
8480 - (sec_start + irel->r_offset + 4);
8481
8482 /* Branch offset must be properly aligned. */
8483 if ((sym_offset & 3) != 0)
8484 continue;
8485
8486 sym_offset >>= 2;
8487
8488 /* Check that it's in range. */
8489 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8490 continue;
143d77c5 8491
d0647110 8492 /* Get the section contents if we haven't done so already. */
c224138d
RS
8493 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8494 goto relax_return;
d0647110
AO
8495
8496 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8497
8498 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8499 if ((instruction & 0xfc1fffff) == 0x0000f809)
8500 instruction = 0x04110000;
8501 /* If it was jr <reg>, turn it into b <target>. */
8502 else if ((instruction & 0xfc1fffff) == 0x00000008)
8503 instruction = 0x10000000;
8504 else
8505 continue;
8506
8507 instruction |= (sym_offset & 0xffff);
8508 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8509 changed_contents = TRUE;
8510 }
8511
8512 if (contents != NULL
8513 && elf_section_data (sec)->this_hdr.contents != contents)
8514 {
8515 if (!changed_contents && !link_info->keep_memory)
8516 free (contents);
8517 else
8518 {
8519 /* Cache the section contents for elf_link_input_bfd. */
8520 elf_section_data (sec)->this_hdr.contents = contents;
8521 }
8522 }
8523 return TRUE;
8524
143d77c5 8525 relax_return:
eea6121a
AM
8526 if (contents != NULL
8527 && elf_section_data (sec)->this_hdr.contents != contents)
8528 free (contents);
d0647110
AO
8529 return FALSE;
8530}
8531\f
9a59ad6b
DJ
8532/* Allocate space for global sym dynamic relocs. */
8533
8534static bfd_boolean
8535allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8536{
8537 struct bfd_link_info *info = inf;
8538 bfd *dynobj;
8539 struct mips_elf_link_hash_entry *hmips;
8540 struct mips_elf_link_hash_table *htab;
8541
8542 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8543 BFD_ASSERT (htab != NULL);
8544
9a59ad6b
DJ
8545 dynobj = elf_hash_table (info)->dynobj;
8546 hmips = (struct mips_elf_link_hash_entry *) h;
8547
8548 /* VxWorks executables are handled elsewhere; we only need to
8549 allocate relocations in shared objects. */
8550 if (htab->is_vxworks && !info->shared)
8551 return TRUE;
8552
7686d77d
AM
8553 /* Ignore indirect symbols. All relocations against such symbols
8554 will be redirected to the target symbol. */
8555 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8556 return TRUE;
8557
9a59ad6b
DJ
8558 /* If this symbol is defined in a dynamic object, or we are creating
8559 a shared library, we will need to copy any R_MIPS_32 or
8560 R_MIPS_REL32 relocs against it into the output file. */
8561 if (! info->relocatable
8562 && hmips->possibly_dynamic_relocs != 0
8563 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8564 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8565 || info->shared))
8566 {
8567 bfd_boolean do_copy = TRUE;
8568
8569 if (h->root.type == bfd_link_hash_undefweak)
8570 {
8571 /* Do not copy relocations for undefined weak symbols with
8572 non-default visibility. */
8573 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8574 do_copy = FALSE;
8575
8576 /* Make sure undefined weak symbols are output as a dynamic
8577 symbol in PIEs. */
8578 else if (h->dynindx == -1 && !h->forced_local)
8579 {
8580 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8581 return FALSE;
8582 }
8583 }
8584
8585 if (do_copy)
8586 {
aff469fa 8587 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8588 the SVR4 psABI requires it to have a dynamic symbol table
8589 index greater that DT_MIPS_GOTSYM if there are dynamic
8590 relocations against it.
8591
8592 VxWorks does not enforce the same mapping between the GOT
8593 and the symbol table, so the same requirement does not
8594 apply there. */
6ccf4795
RS
8595 if (!htab->is_vxworks)
8596 {
8597 if (hmips->global_got_area > GGA_RELOC_ONLY)
8598 hmips->global_got_area = GGA_RELOC_ONLY;
8599 hmips->got_only_for_calls = FALSE;
8600 }
aff469fa 8601
9a59ad6b
DJ
8602 mips_elf_allocate_dynamic_relocations
8603 (dynobj, info, hmips->possibly_dynamic_relocs);
8604 if (hmips->readonly_reloc)
8605 /* We tell the dynamic linker that there are relocations
8606 against the text segment. */
8607 info->flags |= DF_TEXTREL;
8608 }
8609 }
8610
8611 return TRUE;
8612}
8613
b49e97c9
TS
8614/* Adjust a symbol defined by a dynamic object and referenced by a
8615 regular object. The current definition is in some section of the
8616 dynamic object, but we're not including those sections. We have to
8617 change the definition to something the rest of the link can
8618 understand. */
8619
b34976b6 8620bfd_boolean
9719ad41
RS
8621_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8622 struct elf_link_hash_entry *h)
b49e97c9
TS
8623{
8624 bfd *dynobj;
8625 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8626 struct mips_elf_link_hash_table *htab;
b49e97c9 8627
5108fc1b 8628 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8629 BFD_ASSERT (htab != NULL);
8630
b49e97c9 8631 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8632 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8633
8634 /* Make sure we know what is going on here. */
8635 BFD_ASSERT (dynobj != NULL
f5385ebf 8636 && (h->needs_plt
f6e332e6 8637 || h->u.weakdef != NULL
f5385ebf
AM
8638 || (h->def_dynamic
8639 && h->ref_regular
8640 && !h->def_regular)));
b49e97c9 8641
b49e97c9 8642 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8643
861fb55a
DJ
8644 /* If there are call relocations against an externally-defined symbol,
8645 see whether we can create a MIPS lazy-binding stub for it. We can
8646 only do this if all references to the function are through call
8647 relocations, and in that case, the traditional lazy-binding stubs
8648 are much more efficient than PLT entries.
8649
8650 Traditional stubs are only available on SVR4 psABI-based systems;
8651 VxWorks always uses PLTs instead. */
8652 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8653 {
8654 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8655 return TRUE;
b49e97c9
TS
8656
8657 /* If this symbol is not defined in a regular file, then set
8658 the symbol to the stub location. This is required to make
8659 function pointers compare as equal between the normal
8660 executable and the shared library. */
f5385ebf 8661 if (!h->def_regular)
b49e97c9 8662 {
33bb52fb
RS
8663 hmips->needs_lazy_stub = TRUE;
8664 htab->lazy_stub_count++;
b34976b6 8665 return TRUE;
b49e97c9
TS
8666 }
8667 }
861fb55a
DJ
8668 /* As above, VxWorks requires PLT entries for externally-defined
8669 functions that are only accessed through call relocations.
b49e97c9 8670
861fb55a
DJ
8671 Both VxWorks and non-VxWorks targets also need PLT entries if there
8672 are static-only relocations against an externally-defined function.
8673 This can technically occur for shared libraries if there are
8674 branches to the symbol, although it is unlikely that this will be
8675 used in practice due to the short ranges involved. It can occur
8676 for any relative or absolute relocation in executables; in that
8677 case, the PLT entry becomes the function's canonical address. */
8678 else if (((h->needs_plt && !hmips->no_fn_stub)
8679 || (h->type == STT_FUNC && hmips->has_static_relocs))
8680 && htab->use_plts_and_copy_relocs
8681 && !SYMBOL_CALLS_LOCAL (info, h)
8682 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8683 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8684 {
861fb55a
DJ
8685 /* If this is the first symbol to need a PLT entry, allocate room
8686 for the header. */
8687 if (htab->splt->size == 0)
8688 {
8689 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8690
861fb55a
DJ
8691 /* If we're using the PLT additions to the psABI, each PLT
8692 entry is 16 bytes and the PLT0 entry is 32 bytes.
8693 Encourage better cache usage by aligning. We do this
8694 lazily to avoid pessimizing traditional objects. */
8695 if (!htab->is_vxworks
8696 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8697 return FALSE;
0a44bf69 8698
861fb55a
DJ
8699 /* Make sure that .got.plt is word-aligned. We do this lazily
8700 for the same reason as above. */
8701 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8702 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8703 return FALSE;
0a44bf69 8704
861fb55a 8705 htab->splt->size += htab->plt_header_size;
0a44bf69 8706
861fb55a
DJ
8707 /* On non-VxWorks targets, the first two entries in .got.plt
8708 are reserved. */
8709 if (!htab->is_vxworks)
a44acb1e
MR
8710 htab->sgotplt->size
8711 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8712
861fb55a
DJ
8713 /* On VxWorks, also allocate room for the header's
8714 .rela.plt.unloaded entries. */
8715 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8716 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8717 }
8718
8719 /* Assign the next .plt entry to this symbol. */
8720 h->plt.offset = htab->splt->size;
8721 htab->splt->size += htab->plt_entry_size;
8722
8723 /* If the output file has no definition of the symbol, set the
861fb55a 8724 symbol's value to the address of the stub. */
131eb6b7 8725 if (!info->shared && !h->def_regular)
0a44bf69
RS
8726 {
8727 h->root.u.def.section = htab->splt;
8728 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8729 /* For VxWorks, point at the PLT load stub rather than the
8730 lazy resolution stub; this stub will become the canonical
8731 function address. */
8732 if (htab->is_vxworks)
8733 h->root.u.def.value += 8;
0a44bf69
RS
8734 }
8735
861fb55a
DJ
8736 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8737 relocation. */
8738 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8739 htab->srelplt->size += (htab->is_vxworks
8740 ? MIPS_ELF_RELA_SIZE (dynobj)
8741 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8742
8743 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8744 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8745 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8746
861fb55a
DJ
8747 /* All relocations against this symbol that could have been made
8748 dynamic will now refer to the PLT entry instead. */
8749 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8750
0a44bf69
RS
8751 return TRUE;
8752 }
8753
8754 /* If this is a weak symbol, and there is a real definition, the
8755 processor independent code will have arranged for us to see the
8756 real definition first, and we can just use the same value. */
8757 if (h->u.weakdef != NULL)
8758 {
8759 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8760 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8761 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8762 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8763 return TRUE;
8764 }
8765
861fb55a
DJ
8766 /* Otherwise, there is nothing further to do for symbols defined
8767 in regular objects. */
8768 if (h->def_regular)
0a44bf69
RS
8769 return TRUE;
8770
861fb55a
DJ
8771 /* There's also nothing more to do if we'll convert all relocations
8772 against this symbol into dynamic relocations. */
8773 if (!hmips->has_static_relocs)
8774 return TRUE;
8775
8776 /* We're now relying on copy relocations. Complain if we have
8777 some that we can't convert. */
8778 if (!htab->use_plts_and_copy_relocs || info->shared)
8779 {
8780 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8781 "dynamic symbol %s"),
8782 h->root.root.string);
8783 bfd_set_error (bfd_error_bad_value);
8784 return FALSE;
8785 }
8786
0a44bf69
RS
8787 /* We must allocate the symbol in our .dynbss section, which will
8788 become part of the .bss section of the executable. There will be
8789 an entry for this symbol in the .dynsym section. The dynamic
8790 object will contain position independent code, so all references
8791 from the dynamic object to this symbol will go through the global
8792 offset table. The dynamic linker will use the .dynsym entry to
8793 determine the address it must put in the global offset table, so
8794 both the dynamic object and the regular object will refer to the
8795 same memory location for the variable. */
8796
8797 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8798 {
861fb55a
DJ
8799 if (htab->is_vxworks)
8800 htab->srelbss->size += sizeof (Elf32_External_Rela);
8801 else
8802 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8803 h->needs_copy = 1;
8804 }
8805
861fb55a
DJ
8806 /* All relocations against this symbol that could have been made
8807 dynamic will now refer to the local copy instead. */
8808 hmips->possibly_dynamic_relocs = 0;
8809
027297b7 8810 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8811}
b49e97c9
TS
8812\f
8813/* This function is called after all the input files have been read,
8814 and the input sections have been assigned to output sections. We
8815 check for any mips16 stub sections that we can discard. */
8816
b34976b6 8817bfd_boolean
9719ad41
RS
8818_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8819 struct bfd_link_info *info)
b49e97c9
TS
8820{
8821 asection *ri;
0a44bf69 8822 struct mips_elf_link_hash_table *htab;
861fb55a 8823 struct mips_htab_traverse_info hti;
0a44bf69
RS
8824
8825 htab = mips_elf_hash_table (info);
4dfe6ac6 8826 BFD_ASSERT (htab != NULL);
f4416af6 8827
b49e97c9
TS
8828 /* The .reginfo section has a fixed size. */
8829 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8830 if (ri != NULL)
9719ad41 8831 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8832
861fb55a
DJ
8833 hti.info = info;
8834 hti.output_bfd = output_bfd;
8835 hti.error = FALSE;
8836 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8837 mips_elf_check_symbols, &hti);
8838 if (hti.error)
8839 return FALSE;
f4416af6 8840
33bb52fb
RS
8841 return TRUE;
8842}
8843
8844/* If the link uses a GOT, lay it out and work out its size. */
8845
8846static bfd_boolean
8847mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8848{
8849 bfd *dynobj;
8850 asection *s;
8851 struct mips_got_info *g;
33bb52fb
RS
8852 bfd_size_type loadable_size = 0;
8853 bfd_size_type page_gotno;
8854 bfd *sub;
8855 struct mips_elf_count_tls_arg count_tls_arg;
8856 struct mips_elf_link_hash_table *htab;
8857
8858 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8859 BFD_ASSERT (htab != NULL);
8860
a8028dd0 8861 s = htab->sgot;
f4416af6 8862 if (s == NULL)
b34976b6 8863 return TRUE;
b49e97c9 8864
33bb52fb 8865 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8866 g = htab->got_info;
8867
861fb55a
DJ
8868 /* Allocate room for the reserved entries. VxWorks always reserves
8869 3 entries; other objects only reserve 2 entries. */
8870 BFD_ASSERT (g->assigned_gotno == 0);
8871 if (htab->is_vxworks)
8872 htab->reserved_gotno = 3;
8873 else
8874 htab->reserved_gotno = 2;
8875 g->local_gotno += htab->reserved_gotno;
8876 g->assigned_gotno = htab->reserved_gotno;
8877
33bb52fb
RS
8878 /* Replace entries for indirect and warning symbols with entries for
8879 the target symbol. */
8880 if (!mips_elf_resolve_final_got_entries (g))
8881 return FALSE;
f4416af6 8882
d4596a51 8883 /* Count the number of GOT symbols. */
020d7251 8884 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8885
33bb52fb
RS
8886 /* Calculate the total loadable size of the output. That
8887 will give us the maximum number of GOT_PAGE entries
8888 required. */
8889 for (sub = info->input_bfds; sub; sub = sub->link_next)
8890 {
8891 asection *subsection;
5108fc1b 8892
33bb52fb
RS
8893 for (subsection = sub->sections;
8894 subsection;
8895 subsection = subsection->next)
8896 {
8897 if ((subsection->flags & SEC_ALLOC) == 0)
8898 continue;
8899 loadable_size += ((subsection->size + 0xf)
8900 &~ (bfd_size_type) 0xf);
8901 }
8902 }
f4416af6 8903
0a44bf69 8904 if (htab->is_vxworks)
738e5348 8905 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8906 relocations against local symbols evaluate to "G", and the EABI does
8907 not include R_MIPS_GOT_PAGE. */
c224138d 8908 page_gotno = 0;
0a44bf69
RS
8909 else
8910 /* Assume there are two loadable segments consisting of contiguous
8911 sections. Is 5 enough? */
c224138d
RS
8912 page_gotno = (loadable_size >> 16) + 5;
8913
8914 /* Choose the smaller of the two estimates; both are intended to be
8915 conservative. */
8916 if (page_gotno > g->page_gotno)
8917 page_gotno = g->page_gotno;
f4416af6 8918
c224138d 8919 g->local_gotno += page_gotno;
eea6121a 8920 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8921 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8922
0f20cc35
DJ
8923 /* We need to calculate tls_gotno for global symbols at this point
8924 instead of building it up earlier, to avoid doublecounting
8925 entries for one global symbol from multiple input files. */
8926 count_tls_arg.info = info;
8927 count_tls_arg.needed = 0;
8928 elf_link_hash_traverse (elf_hash_table (info),
8929 mips_elf_count_global_tls_entries,
8930 &count_tls_arg);
8931 g->tls_gotno += count_tls_arg.needed;
8932 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8933
0a44bf69
RS
8934 /* VxWorks does not support multiple GOTs. It initializes $gp to
8935 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8936 dynamic loader. */
33bb52fb
RS
8937 if (htab->is_vxworks)
8938 {
8939 /* VxWorks executables do not need a GOT. */
8940 if (info->shared)
8941 {
8942 /* Each VxWorks GOT entry needs an explicit relocation. */
8943 unsigned int count;
8944
861fb55a 8945 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8946 if (count)
8947 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8948 }
8949 }
8950 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8951 {
a8028dd0 8952 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8953 return FALSE;
8954 }
8955 else
8956 {
33bb52fb
RS
8957 struct mips_elf_count_tls_arg arg;
8958
8959 /* Set up TLS entries. */
0f20cc35
DJ
8960 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8961 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70
RS
8962 BFD_ASSERT (g->tls_assigned_gotno
8963 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb
RS
8964
8965 /* Allocate room for the TLS relocations. */
8966 arg.info = info;
8967 arg.needed = 0;
8968 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8969 elf_link_hash_traverse (elf_hash_table (info),
8970 mips_elf_count_global_tls_relocs,
8971 &arg);
8972 if (arg.needed)
8973 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8974 }
b49e97c9 8975
b34976b6 8976 return TRUE;
b49e97c9
TS
8977}
8978
33bb52fb
RS
8979/* Estimate the size of the .MIPS.stubs section. */
8980
8981static void
8982mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8983{
8984 struct mips_elf_link_hash_table *htab;
8985 bfd_size_type dynsymcount;
8986
8987 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8988 BFD_ASSERT (htab != NULL);
8989
33bb52fb
RS
8990 if (htab->lazy_stub_count == 0)
8991 return;
8992
8993 /* IRIX rld assumes that a function stub isn't at the end of the .text
8994 section, so add a dummy entry to the end. */
8995 htab->lazy_stub_count++;
8996
8997 /* Get a worst-case estimate of the number of dynamic symbols needed.
8998 At this point, dynsymcount does not account for section symbols
8999 and count_section_dynsyms may overestimate the number that will
9000 be needed. */
9001 dynsymcount = (elf_hash_table (info)->dynsymcount
9002 + count_section_dynsyms (output_bfd, info));
9003
9004 /* Determine the size of one stub entry. */
9005 htab->function_stub_size = (dynsymcount > 0x10000
9006 ? MIPS_FUNCTION_STUB_BIG_SIZE
9007 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9008
9009 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9010}
9011
9012/* A mips_elf_link_hash_traverse callback for which DATA points to the
9013 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9014 allocate an entry in the stubs section. */
9015
9016static bfd_boolean
9017mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9018{
9019 struct mips_elf_link_hash_table *htab;
9020
9021 htab = (struct mips_elf_link_hash_table *) data;
9022 if (h->needs_lazy_stub)
9023 {
9024 h->root.root.u.def.section = htab->sstubs;
9025 h->root.root.u.def.value = htab->sstubs->size;
9026 h->root.plt.offset = htab->sstubs->size;
9027 htab->sstubs->size += htab->function_stub_size;
9028 }
9029 return TRUE;
9030}
9031
9032/* Allocate offsets in the stubs section to each symbol that needs one.
9033 Set the final size of the .MIPS.stub section. */
9034
9035static void
9036mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9037{
9038 struct mips_elf_link_hash_table *htab;
9039
9040 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9041 BFD_ASSERT (htab != NULL);
9042
33bb52fb
RS
9043 if (htab->lazy_stub_count == 0)
9044 return;
9045
9046 htab->sstubs->size = 0;
4dfe6ac6 9047 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
9048 htab->sstubs->size += htab->function_stub_size;
9049 BFD_ASSERT (htab->sstubs->size
9050 == htab->lazy_stub_count * htab->function_stub_size);
9051}
9052
b49e97c9
TS
9053/* Set the sizes of the dynamic sections. */
9054
b34976b6 9055bfd_boolean
9719ad41
RS
9056_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9057 struct bfd_link_info *info)
b49e97c9
TS
9058{
9059 bfd *dynobj;
861fb55a 9060 asection *s, *sreldyn;
b34976b6 9061 bfd_boolean reltext;
0a44bf69 9062 struct mips_elf_link_hash_table *htab;
b49e97c9 9063
0a44bf69 9064 htab = mips_elf_hash_table (info);
4dfe6ac6 9065 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9066 dynobj = elf_hash_table (info)->dynobj;
9067 BFD_ASSERT (dynobj != NULL);
9068
9069 if (elf_hash_table (info)->dynamic_sections_created)
9070 {
9071 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 9072 if (info->executable)
b49e97c9 9073 {
3d4d4302 9074 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9075 BFD_ASSERT (s != NULL);
eea6121a 9076 s->size
b49e97c9
TS
9077 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9078 s->contents
9079 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9080 }
861fb55a
DJ
9081
9082 /* Create a symbol for the PLT, if we know that we are using it. */
9083 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9084 {
9085 struct elf_link_hash_entry *h;
9086
9087 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9088
9089 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9090 "_PROCEDURE_LINKAGE_TABLE_");
9091 htab->root.hplt = h;
9092 if (h == NULL)
9093 return FALSE;
9094 h->type = STT_FUNC;
9095 }
9096 }
4e41d0d7 9097
9a59ad6b 9098 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9099 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9100
33bb52fb
RS
9101 mips_elf_estimate_stub_size (output_bfd, info);
9102
9103 if (!mips_elf_lay_out_got (output_bfd, info))
9104 return FALSE;
9105
9106 mips_elf_lay_out_lazy_stubs (info);
9107
b49e97c9
TS
9108 /* The check_relocs and adjust_dynamic_symbol entry points have
9109 determined the sizes of the various dynamic sections. Allocate
9110 memory for them. */
b34976b6 9111 reltext = FALSE;
b49e97c9
TS
9112 for (s = dynobj->sections; s != NULL; s = s->next)
9113 {
9114 const char *name;
b49e97c9
TS
9115
9116 /* It's OK to base decisions on the section name, because none
9117 of the dynobj section names depend upon the input files. */
9118 name = bfd_get_section_name (dynobj, s);
9119
9120 if ((s->flags & SEC_LINKER_CREATED) == 0)
9121 continue;
9122
0112cd26 9123 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9124 {
c456f082 9125 if (s->size != 0)
b49e97c9
TS
9126 {
9127 const char *outname;
9128 asection *target;
9129
9130 /* If this relocation section applies to a read only
9131 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9132 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9133 assert a DT_TEXTREL entry rather than testing whether
9134 there exists a relocation to a read only section or
9135 not. */
9136 outname = bfd_get_section_name (output_bfd,
9137 s->output_section);
9138 target = bfd_get_section_by_name (output_bfd, outname + 4);
9139 if ((target != NULL
9140 && (target->flags & SEC_READONLY) != 0
9141 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9142 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9143 reltext = TRUE;
b49e97c9
TS
9144
9145 /* We use the reloc_count field as a counter if we need
9146 to copy relocs into the output file. */
0a44bf69 9147 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9148 s->reloc_count = 0;
f4416af6
AO
9149
9150 /* If combreloc is enabled, elf_link_sort_relocs() will
9151 sort relocations, but in a different way than we do,
9152 and before we're done creating relocations. Also, it
9153 will move them around between input sections'
9154 relocation's contents, so our sorting would be
9155 broken, so don't let it run. */
9156 info->combreloc = 0;
b49e97c9
TS
9157 }
9158 }
b49e97c9
TS
9159 else if (! info->shared
9160 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9161 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9162 {
5108fc1b 9163 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9164 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9165 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9166 }
9167 else if (SGI_COMPAT (output_bfd)
0112cd26 9168 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9169 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9170 else if (s == htab->splt)
9171 {
9172 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9173 room for an extra nop to fill the delay slot. This is
9174 for CPUs without load interlocking. */
9175 if (! LOAD_INTERLOCKS_P (output_bfd)
9176 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9177 s->size += 4;
9178 }
0112cd26 9179 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9180 && s != htab->sgot
0a44bf69 9181 && s != htab->sgotplt
861fb55a
DJ
9182 && s != htab->sstubs
9183 && s != htab->sdynbss)
b49e97c9
TS
9184 {
9185 /* It's not one of our sections, so don't allocate space. */
9186 continue;
9187 }
9188
c456f082 9189 if (s->size == 0)
b49e97c9 9190 {
8423293d 9191 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9192 continue;
9193 }
9194
c456f082
AM
9195 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9196 continue;
9197
b49e97c9 9198 /* Allocate memory for the section contents. */
eea6121a 9199 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9200 if (s->contents == NULL)
b49e97c9
TS
9201 {
9202 bfd_set_error (bfd_error_no_memory);
b34976b6 9203 return FALSE;
b49e97c9
TS
9204 }
9205 }
9206
9207 if (elf_hash_table (info)->dynamic_sections_created)
9208 {
9209 /* Add some entries to the .dynamic section. We fill in the
9210 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9211 must add the entries now so that we get the correct size for
5750dcec 9212 the .dynamic section. */
af5978fb
RS
9213
9214 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9215 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9216 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9217 may only look at the first one they see. */
af5978fb
RS
9218 if (!info->shared
9219 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9220 return FALSE;
b49e97c9 9221
5750dcec
DJ
9222 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9223 used by the debugger. */
9224 if (info->executable
9225 && !SGI_COMPAT (output_bfd)
9226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9227 return FALSE;
9228
0a44bf69 9229 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9230 info->flags |= DF_TEXTREL;
9231
9232 if ((info->flags & DF_TEXTREL) != 0)
9233 {
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9235 return FALSE;
943284cc
DJ
9236
9237 /* Clear the DF_TEXTREL flag. It will be set again if we
9238 write out an actual text relocation; we may not, because
9239 at this point we do not know whether e.g. any .eh_frame
9240 absolute relocations have been converted to PC-relative. */
9241 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9242 }
9243
9244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9245 return FALSE;
b49e97c9 9246
861fb55a 9247 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9248 if (htab->is_vxworks)
b49e97c9 9249 {
0a44bf69
RS
9250 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9251 use any of the DT_MIPS_* tags. */
861fb55a 9252 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9253 {
9254 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9255 return FALSE;
b49e97c9 9256
0a44bf69
RS
9257 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9258 return FALSE;
b49e97c9 9259
0a44bf69
RS
9260 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9261 return FALSE;
9262 }
b49e97c9 9263 }
0a44bf69
RS
9264 else
9265 {
861fb55a 9266 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9267 {
9268 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9269 return FALSE;
b49e97c9 9270
0a44bf69
RS
9271 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9272 return FALSE;
b49e97c9 9273
0a44bf69
RS
9274 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9275 return FALSE;
9276 }
b49e97c9 9277
0a44bf69
RS
9278 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9279 return FALSE;
b49e97c9 9280
0a44bf69
RS
9281 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9282 return FALSE;
b49e97c9 9283
0a44bf69
RS
9284 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9285 return FALSE;
b49e97c9 9286
0a44bf69
RS
9287 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9288 return FALSE;
b49e97c9 9289
0a44bf69
RS
9290 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9291 return FALSE;
b49e97c9 9292
0a44bf69
RS
9293 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9294 return FALSE;
b49e97c9 9295
0a44bf69
RS
9296 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9297 return FALSE;
9298
9299 if (IRIX_COMPAT (dynobj) == ict_irix5
9300 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9301 return FALSE;
9302
9303 if (IRIX_COMPAT (dynobj) == ict_irix6
9304 && (bfd_get_section_by_name
af0edeb8 9305 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9306 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9307 return FALSE;
9308 }
861fb55a
DJ
9309 if (htab->splt->size > 0)
9310 {
9311 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9312 return FALSE;
9313
9314 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9315 return FALSE;
9316
9317 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9318 return FALSE;
9319
9320 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9321 return FALSE;
9322 }
7a2b07ff
NS
9323 if (htab->is_vxworks
9324 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9325 return FALSE;
b49e97c9
TS
9326 }
9327
b34976b6 9328 return TRUE;
b49e97c9
TS
9329}
9330\f
81d43bff
RS
9331/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9332 Adjust its R_ADDEND field so that it is correct for the output file.
9333 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9334 and sections respectively; both use symbol indexes. */
9335
9336static void
9337mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9338 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9339 asection **local_sections, Elf_Internal_Rela *rel)
9340{
9341 unsigned int r_type, r_symndx;
9342 Elf_Internal_Sym *sym;
9343 asection *sec;
9344
020d7251 9345 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9346 {
9347 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9348 if (gprel16_reloc_p (r_type)
81d43bff 9349 || r_type == R_MIPS_GPREL32
df58fc94 9350 || literal_reloc_p (r_type))
81d43bff
RS
9351 {
9352 rel->r_addend += _bfd_get_gp_value (input_bfd);
9353 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9354 }
9355
9356 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9357 sym = local_syms + r_symndx;
9358
9359 /* Adjust REL's addend to account for section merging. */
9360 if (!info->relocatable)
9361 {
9362 sec = local_sections[r_symndx];
9363 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9364 }
9365
9366 /* This would normally be done by the rela_normal code in elflink.c. */
9367 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9368 rel->r_addend += local_sections[r_symndx]->output_offset;
9369 }
9370}
9371
545fd46b
MR
9372/* Handle relocations against symbols from removed linkonce sections,
9373 or sections discarded by a linker script. We use this wrapper around
9374 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9375 on 64-bit ELF targets. In this case for any relocation handled, which
9376 always be the first in a triplet, the remaining two have to be processed
9377 together with the first, even if they are R_MIPS_NONE. It is the symbol
9378 index referred by the first reloc that applies to all the three and the
9379 remaining two never refer to an object symbol. And it is the final
9380 relocation (the last non-null one) that determines the output field of
9381 the whole relocation so retrieve the corresponding howto structure for
9382 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9383
9384 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9385 and therefore requires to be pasted in a loop. It also defines a block
9386 and does not protect any of its arguments, hence the extra brackets. */
9387
9388static void
9389mips_reloc_against_discarded_section (bfd *output_bfd,
9390 struct bfd_link_info *info,
9391 bfd *input_bfd, asection *input_section,
9392 Elf_Internal_Rela **rel,
9393 const Elf_Internal_Rela **relend,
9394 bfd_boolean rel_reloc,
9395 reloc_howto_type *howto,
9396 bfd_byte *contents)
9397{
9398 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9399 int count = bed->s->int_rels_per_ext_rel;
9400 unsigned int r_type;
9401 int i;
9402
9403 for (i = count - 1; i > 0; i--)
9404 {
9405 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9406 if (r_type != R_MIPS_NONE)
9407 {
9408 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9409 break;
9410 }
9411 }
9412 do
9413 {
9414 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9415 (*rel), count, (*relend),
9416 howto, i, contents);
9417 }
9418 while (0);
9419}
9420
b49e97c9
TS
9421/* Relocate a MIPS ELF section. */
9422
b34976b6 9423bfd_boolean
9719ad41
RS
9424_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9425 bfd *input_bfd, asection *input_section,
9426 bfd_byte *contents, Elf_Internal_Rela *relocs,
9427 Elf_Internal_Sym *local_syms,
9428 asection **local_sections)
b49e97c9
TS
9429{
9430 Elf_Internal_Rela *rel;
9431 const Elf_Internal_Rela *relend;
9432 bfd_vma addend = 0;
b34976b6 9433 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9434 const struct elf_backend_data *bed;
b49e97c9
TS
9435
9436 bed = get_elf_backend_data (output_bfd);
9437 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9438 for (rel = relocs; rel < relend; ++rel)
9439 {
9440 const char *name;
c9adbffe 9441 bfd_vma value = 0;
b49e97c9 9442 reloc_howto_type *howto;
38a7df63 9443 bfd_boolean cross_mode_jump_p;
b34976b6 9444 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9445 REL relocation. */
b34976b6 9446 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9447 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9448 const char *msg;
ab96bf03
AM
9449 unsigned long r_symndx;
9450 asection *sec;
749b8d9d
L
9451 Elf_Internal_Shdr *symtab_hdr;
9452 struct elf_link_hash_entry *h;
d4730f92 9453 bfd_boolean rel_reloc;
b49e97c9 9454
d4730f92
BS
9455 rel_reloc = (NEWABI_P (input_bfd)
9456 && mips_elf_rel_relocation_p (input_bfd, input_section,
9457 relocs, rel));
b49e97c9 9458 /* Find the relocation howto for this relocation. */
d4730f92 9459 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9460
9461 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9462 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9463 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9464 {
9465 sec = local_sections[r_symndx];
9466 h = NULL;
9467 }
ab96bf03
AM
9468 else
9469 {
ab96bf03 9470 unsigned long extsymoff;
ab96bf03 9471
ab96bf03
AM
9472 extsymoff = 0;
9473 if (!elf_bad_symtab (input_bfd))
9474 extsymoff = symtab_hdr->sh_info;
9475 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9476 while (h->root.type == bfd_link_hash_indirect
9477 || h->root.type == bfd_link_hash_warning)
9478 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9479
9480 sec = NULL;
9481 if (h->root.type == bfd_link_hash_defined
9482 || h->root.type == bfd_link_hash_defweak)
9483 sec = h->root.u.def.section;
9484 }
9485
dbaa2011 9486 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9487 {
9488 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9489 input_section, &rel, &relend,
9490 rel_reloc, howto, contents);
9491 continue;
9492 }
ab96bf03 9493
4a14403c 9494 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9495 {
9496 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9497 64-bit code, but make sure all their addresses are in the
9498 lowermost or uppermost 32-bit section of the 64-bit address
9499 space. Thus, when they use an R_MIPS_64 they mean what is
9500 usually meant by R_MIPS_32, with the exception that the
9501 stored value is sign-extended to 64 bits. */
b34976b6 9502 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9503
9504 /* On big-endian systems, we need to lie about the position
9505 of the reloc. */
9506 if (bfd_big_endian (input_bfd))
9507 rel->r_offset += 4;
9508 }
b49e97c9
TS
9509
9510 if (!use_saved_addend_p)
9511 {
b49e97c9
TS
9512 /* If these relocations were originally of the REL variety,
9513 we must pull the addend out of the field that will be
9514 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9515 RELA relocation. */
9516 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9517 relocs, rel))
b49e97c9 9518 {
b34976b6 9519 rela_relocation_p = FALSE;
c224138d
RS
9520 addend = mips_elf_read_rel_addend (input_bfd, rel,
9521 howto, contents);
738e5348
RS
9522 if (hi16_reloc_p (r_type)
9523 || (got16_reloc_p (r_type)
b49e97c9 9524 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9525 local_sections)))
b49e97c9 9526 {
c224138d
RS
9527 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9528 contents, &addend))
749b8d9d 9529 {
749b8d9d
L
9530 if (h)
9531 name = h->root.root.string;
9532 else
9533 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9534 local_syms + r_symndx,
9535 sec);
9536 (*_bfd_error_handler)
9537 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9538 input_bfd, input_section, name, howto->name,
9539 rel->r_offset);
749b8d9d 9540 }
b49e97c9 9541 }
30ac9238
RS
9542 else
9543 addend <<= howto->rightshift;
b49e97c9
TS
9544 }
9545 else
9546 addend = rel->r_addend;
81d43bff
RS
9547 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9548 local_syms, local_sections, rel);
b49e97c9
TS
9549 }
9550
1049f94e 9551 if (info->relocatable)
b49e97c9 9552 {
4a14403c 9553 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9554 && bfd_big_endian (input_bfd))
9555 rel->r_offset -= 4;
9556
81d43bff 9557 if (!rela_relocation_p && rel->r_addend)
5a659663 9558 {
81d43bff 9559 addend += rel->r_addend;
738e5348 9560 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9561 addend = mips_elf_high (addend);
9562 else if (r_type == R_MIPS_HIGHER)
9563 addend = mips_elf_higher (addend);
9564 else if (r_type == R_MIPS_HIGHEST)
9565 addend = mips_elf_highest (addend);
30ac9238
RS
9566 else
9567 addend >>= howto->rightshift;
b49e97c9 9568
30ac9238
RS
9569 /* We use the source mask, rather than the destination
9570 mask because the place to which we are writing will be
9571 source of the addend in the final link. */
b49e97c9
TS
9572 addend &= howto->src_mask;
9573
5a659663 9574 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9575 /* See the comment above about using R_MIPS_64 in the 32-bit
9576 ABI. Here, we need to update the addend. It would be
9577 possible to get away with just using the R_MIPS_32 reloc
9578 but for endianness. */
9579 {
9580 bfd_vma sign_bits;
9581 bfd_vma low_bits;
9582 bfd_vma high_bits;
9583
9584 if (addend & ((bfd_vma) 1 << 31))
9585#ifdef BFD64
9586 sign_bits = ((bfd_vma) 1 << 32) - 1;
9587#else
9588 sign_bits = -1;
9589#endif
9590 else
9591 sign_bits = 0;
9592
9593 /* If we don't know that we have a 64-bit type,
9594 do two separate stores. */
9595 if (bfd_big_endian (input_bfd))
9596 {
9597 /* Store the sign-bits (which are most significant)
9598 first. */
9599 low_bits = sign_bits;
9600 high_bits = addend;
9601 }
9602 else
9603 {
9604 low_bits = addend;
9605 high_bits = sign_bits;
9606 }
9607 bfd_put_32 (input_bfd, low_bits,
9608 contents + rel->r_offset);
9609 bfd_put_32 (input_bfd, high_bits,
9610 contents + rel->r_offset + 4);
9611 continue;
9612 }
9613
9614 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9615 input_bfd, input_section,
b34976b6
AM
9616 contents, FALSE))
9617 return FALSE;
b49e97c9
TS
9618 }
9619
9620 /* Go on to the next relocation. */
9621 continue;
9622 }
9623
9624 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9625 relocations for the same offset. In that case we are
9626 supposed to treat the output of each relocation as the addend
9627 for the next. */
9628 if (rel + 1 < relend
9629 && rel->r_offset == rel[1].r_offset
9630 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9631 use_saved_addend_p = TRUE;
b49e97c9 9632 else
b34976b6 9633 use_saved_addend_p = FALSE;
b49e97c9
TS
9634
9635 /* Figure out what value we are supposed to relocate. */
9636 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9637 input_section, info, rel,
9638 addend, howto, local_syms,
9639 local_sections, &value,
38a7df63 9640 &name, &cross_mode_jump_p,
bce03d3d 9641 use_saved_addend_p))
b49e97c9
TS
9642 {
9643 case bfd_reloc_continue:
9644 /* There's nothing to do. */
9645 continue;
9646
9647 case bfd_reloc_undefined:
9648 /* mips_elf_calculate_relocation already called the
9649 undefined_symbol callback. There's no real point in
9650 trying to perform the relocation at this point, so we
9651 just skip ahead to the next relocation. */
9652 continue;
9653
9654 case bfd_reloc_notsupported:
9655 msg = _("internal error: unsupported relocation error");
9656 info->callbacks->warning
9657 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9658 return FALSE;
b49e97c9
TS
9659
9660 case bfd_reloc_overflow:
9661 if (use_saved_addend_p)
9662 /* Ignore overflow until we reach the last relocation for
9663 a given location. */
9664 ;
9665 else
9666 {
0e53d9da
AN
9667 struct mips_elf_link_hash_table *htab;
9668
9669 htab = mips_elf_hash_table (info);
4dfe6ac6 9670 BFD_ASSERT (htab != NULL);
b49e97c9 9671 BFD_ASSERT (name != NULL);
0e53d9da 9672 if (!htab->small_data_overflow_reported
9684f078 9673 && (gprel16_reloc_p (howto->type)
df58fc94 9674 || literal_reloc_p (howto->type)))
0e53d9da 9675 {
91d6fa6a
NC
9676 msg = _("small-data section exceeds 64KB;"
9677 " lower small-data size limit (see option -G)");
0e53d9da
AN
9678
9679 htab->small_data_overflow_reported = TRUE;
9680 (*info->callbacks->einfo) ("%P: %s\n", msg);
9681 }
b49e97c9 9682 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9683 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9684 input_bfd, input_section, rel->r_offset)))
b34976b6 9685 return FALSE;
b49e97c9
TS
9686 }
9687 break;
9688
9689 case bfd_reloc_ok:
9690 break;
9691
df58fc94
RS
9692 case bfd_reloc_outofrange:
9693 if (jal_reloc_p (howto->type))
9694 {
9695 msg = _("JALX to a non-word-aligned address");
9696 info->callbacks->warning
9697 (info, msg, name, input_bfd, input_section, rel->r_offset);
9698 return FALSE;
9699 }
9700 /* Fall through. */
9701
b49e97c9
TS
9702 default:
9703 abort ();
9704 break;
9705 }
9706
9707 /* If we've got another relocation for the address, keep going
9708 until we reach the last one. */
9709 if (use_saved_addend_p)
9710 {
9711 addend = value;
9712 continue;
9713 }
9714
4a14403c 9715 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9716 /* See the comment above about using R_MIPS_64 in the 32-bit
9717 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9718 that calculated the right value. Now, however, we
9719 sign-extend the 32-bit result to 64-bits, and store it as a
9720 64-bit value. We are especially generous here in that we
9721 go to extreme lengths to support this usage on systems with
9722 only a 32-bit VMA. */
9723 {
9724 bfd_vma sign_bits;
9725 bfd_vma low_bits;
9726 bfd_vma high_bits;
9727
9728 if (value & ((bfd_vma) 1 << 31))
9729#ifdef BFD64
9730 sign_bits = ((bfd_vma) 1 << 32) - 1;
9731#else
9732 sign_bits = -1;
9733#endif
9734 else
9735 sign_bits = 0;
9736
9737 /* If we don't know that we have a 64-bit type,
9738 do two separate stores. */
9739 if (bfd_big_endian (input_bfd))
9740 {
9741 /* Undo what we did above. */
9742 rel->r_offset -= 4;
9743 /* Store the sign-bits (which are most significant)
9744 first. */
9745 low_bits = sign_bits;
9746 high_bits = value;
9747 }
9748 else
9749 {
9750 low_bits = value;
9751 high_bits = sign_bits;
9752 }
9753 bfd_put_32 (input_bfd, low_bits,
9754 contents + rel->r_offset);
9755 bfd_put_32 (input_bfd, high_bits,
9756 contents + rel->r_offset + 4);
9757 continue;
9758 }
9759
9760 /* Actually perform the relocation. */
9761 if (! mips_elf_perform_relocation (info, howto, rel, value,
9762 input_bfd, input_section,
38a7df63 9763 contents, cross_mode_jump_p))
b34976b6 9764 return FALSE;
b49e97c9
TS
9765 }
9766
b34976b6 9767 return TRUE;
b49e97c9
TS
9768}
9769\f
861fb55a
DJ
9770/* A function that iterates over each entry in la25_stubs and fills
9771 in the code for each one. DATA points to a mips_htab_traverse_info. */
9772
9773static int
9774mips_elf_create_la25_stub (void **slot, void *data)
9775{
9776 struct mips_htab_traverse_info *hti;
9777 struct mips_elf_link_hash_table *htab;
9778 struct mips_elf_la25_stub *stub;
9779 asection *s;
9780 bfd_byte *loc;
9781 bfd_vma offset, target, target_high, target_low;
9782
9783 stub = (struct mips_elf_la25_stub *) *slot;
9784 hti = (struct mips_htab_traverse_info *) data;
9785 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9786 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9787
9788 /* Create the section contents, if we haven't already. */
9789 s = stub->stub_section;
9790 loc = s->contents;
9791 if (loc == NULL)
9792 {
9793 loc = bfd_malloc (s->size);
9794 if (loc == NULL)
9795 {
9796 hti->error = TRUE;
9797 return FALSE;
9798 }
9799 s->contents = loc;
9800 }
9801
9802 /* Work out where in the section this stub should go. */
9803 offset = stub->offset;
9804
9805 /* Work out the target address. */
8f0c309a
CLT
9806 target = mips_elf_get_la25_target (stub, &s);
9807 target += s->output_section->vma + s->output_offset;
9808
861fb55a
DJ
9809 target_high = ((target + 0x8000) >> 16) & 0xffff;
9810 target_low = (target & 0xffff);
9811
9812 if (stub->stub_section != htab->strampoline)
9813 {
df58fc94 9814 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9815 of the section and write the two instructions at the end. */
9816 memset (loc, 0, offset);
9817 loc += offset;
df58fc94
RS
9818 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9819 {
d21911ea
MR
9820 bfd_put_micromips_32 (hti->output_bfd,
9821 LA25_LUI_MICROMIPS (target_high),
9822 loc);
9823 bfd_put_micromips_32 (hti->output_bfd,
9824 LA25_ADDIU_MICROMIPS (target_low),
9825 loc + 4);
df58fc94
RS
9826 }
9827 else
9828 {
9829 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9830 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9831 }
861fb55a
DJ
9832 }
9833 else
9834 {
9835 /* This is trampoline. */
9836 loc += offset;
df58fc94
RS
9837 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9838 {
d21911ea
MR
9839 bfd_put_micromips_32 (hti->output_bfd,
9840 LA25_LUI_MICROMIPS (target_high), loc);
9841 bfd_put_micromips_32 (hti->output_bfd,
9842 LA25_J_MICROMIPS (target), loc + 4);
9843 bfd_put_micromips_32 (hti->output_bfd,
9844 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9845 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9846 }
9847 else
9848 {
9849 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9850 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9851 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9852 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9853 }
861fb55a
DJ
9854 }
9855 return TRUE;
9856}
9857
b49e97c9
TS
9858/* If NAME is one of the special IRIX6 symbols defined by the linker,
9859 adjust it appropriately now. */
9860
9861static void
9719ad41
RS
9862mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9863 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9864{
9865 /* The linker script takes care of providing names and values for
9866 these, but we must place them into the right sections. */
9867 static const char* const text_section_symbols[] = {
9868 "_ftext",
9869 "_etext",
9870 "__dso_displacement",
9871 "__elf_header",
9872 "__program_header_table",
9873 NULL
9874 };
9875
9876 static const char* const data_section_symbols[] = {
9877 "_fdata",
9878 "_edata",
9879 "_end",
9880 "_fbss",
9881 NULL
9882 };
9883
9884 const char* const *p;
9885 int i;
9886
9887 for (i = 0; i < 2; ++i)
9888 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9889 *p;
9890 ++p)
9891 if (strcmp (*p, name) == 0)
9892 {
9893 /* All of these symbols are given type STT_SECTION by the
9894 IRIX6 linker. */
9895 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9896 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9897
9898 /* The IRIX linker puts these symbols in special sections. */
9899 if (i == 0)
9900 sym->st_shndx = SHN_MIPS_TEXT;
9901 else
9902 sym->st_shndx = SHN_MIPS_DATA;
9903
9904 break;
9905 }
9906}
9907
9908/* Finish up dynamic symbol handling. We set the contents of various
9909 dynamic sections here. */
9910
b34976b6 9911bfd_boolean
9719ad41
RS
9912_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9913 struct bfd_link_info *info,
9914 struct elf_link_hash_entry *h,
9915 Elf_Internal_Sym *sym)
b49e97c9
TS
9916{
9917 bfd *dynobj;
b49e97c9 9918 asection *sgot;
f4416af6 9919 struct mips_got_info *g, *gg;
b49e97c9 9920 const char *name;
3d6746ca 9921 int idx;
5108fc1b 9922 struct mips_elf_link_hash_table *htab;
738e5348 9923 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9924
5108fc1b 9925 htab = mips_elf_hash_table (info);
4dfe6ac6 9926 BFD_ASSERT (htab != NULL);
b49e97c9 9927 dynobj = elf_hash_table (info)->dynobj;
738e5348 9928 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9929
861fb55a
DJ
9930 BFD_ASSERT (!htab->is_vxworks);
9931
9932 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9933 {
9934 /* We've decided to create a PLT entry for this symbol. */
9935 bfd_byte *loc;
9936 bfd_vma header_address, plt_index, got_address;
9937 bfd_vma got_address_high, got_address_low, load;
9938 const bfd_vma *plt_entry;
9939
9940 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9941 BFD_ASSERT (h->dynindx != -1);
9942 BFD_ASSERT (htab->splt != NULL);
9943 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9944 BFD_ASSERT (!h->def_regular);
9945
9946 /* Calculate the address of the PLT header. */
9947 header_address = (htab->splt->output_section->vma
9948 + htab->splt->output_offset);
9949
9950 /* Calculate the index of the entry. */
9951 plt_index = ((h->plt.offset - htab->plt_header_size)
9952 / htab->plt_entry_size);
9953
9954 /* Calculate the address of the .got.plt entry. */
9955 got_address = (htab->sgotplt->output_section->vma
9956 + htab->sgotplt->output_offset
9957 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9958 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9959 got_address_low = got_address & 0xffff;
9960
9961 /* Initially point the .got.plt entry at the PLT header. */
9962 loc = (htab->sgotplt->contents
9963 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9964 if (ABI_64_P (output_bfd))
9965 bfd_put_64 (output_bfd, header_address, loc);
9966 else
9967 bfd_put_32 (output_bfd, header_address, loc);
9968
9969 /* Find out where the .plt entry should go. */
9970 loc = htab->splt->contents + h->plt.offset;
9971
9972 /* Pick the load opcode. */
9973 load = MIPS_ELF_LOAD_WORD (output_bfd);
9974
9975 /* Fill in the PLT entry itself. */
9976 plt_entry = mips_exec_plt_entry;
9977 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9978 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9979
9980 if (! LOAD_INTERLOCKS_P (output_bfd))
9981 {
9982 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9983 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9984 }
9985 else
9986 {
9987 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9988 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9989 }
861fb55a
DJ
9990
9991 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9992 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9993 plt_index, h->dynindx,
9994 R_MIPS_JUMP_SLOT, got_address);
9995
9996 /* We distinguish between PLT entries and lazy-binding stubs by
9997 giving the former an st_other value of STO_MIPS_PLT. Set the
9998 flag and leave the value if there are any relocations in the
9999 binary where pointer equality matters. */
10000 sym->st_shndx = SHN_UNDEF;
10001 if (h->pointer_equality_needed)
10002 sym->st_other = STO_MIPS_PLT;
10003 else
10004 sym->st_value = 0;
10005 }
10006 else if (h->plt.offset != MINUS_ONE)
b49e97c9 10007 {
861fb55a 10008 /* We've decided to create a lazy-binding stub. */
5108fc1b 10009 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
10010
10011 /* This symbol has a stub. Set it up. */
10012
10013 BFD_ASSERT (h->dynindx != -1);
10014
5108fc1b
RS
10015 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10016 || (h->dynindx <= 0xffff));
3d6746ca
DD
10017
10018 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10019 sign extension at runtime in the stub, resulting in a negative
10020 index value. */
10021 if (h->dynindx & ~0x7fffffff)
b34976b6 10022 return FALSE;
b49e97c9
TS
10023
10024 /* Fill the stub. */
3d6746ca
DD
10025 idx = 0;
10026 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10027 idx += 4;
10028 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10029 idx += 4;
5108fc1b 10030 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 10031 {
5108fc1b 10032 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
10033 stub + idx);
10034 idx += 4;
10035 }
10036 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10037 idx += 4;
b49e97c9 10038
3d6746ca
DD
10039 /* If a large stub is not required and sign extension is not a
10040 problem, then use legacy code in the stub. */
5108fc1b
RS
10041 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10042 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10043 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
10044 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10045 else
5108fc1b
RS
10046 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10047 stub + idx);
10048
4e41d0d7
RS
10049 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10050 memcpy (htab->sstubs->contents + h->plt.offset,
10051 stub, htab->function_stub_size);
b49e97c9
TS
10052
10053 /* Mark the symbol as undefined. plt.offset != -1 occurs
10054 only for the referenced symbol. */
10055 sym->st_shndx = SHN_UNDEF;
10056
10057 /* The run-time linker uses the st_value field of the symbol
10058 to reset the global offset table entry for this external
10059 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10060 sym->st_value = (htab->sstubs->output_section->vma
10061 + htab->sstubs->output_offset
c5ae1840 10062 + h->plt.offset);
b49e97c9
TS
10063 }
10064
738e5348
RS
10065 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10066 refer to the stub, since only the stub uses the standard calling
10067 conventions. */
10068 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10069 {
10070 BFD_ASSERT (hmips->need_fn_stub);
10071 sym->st_value = (hmips->fn_stub->output_section->vma
10072 + hmips->fn_stub->output_offset);
10073 sym->st_size = hmips->fn_stub->size;
10074 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10075 }
10076
b49e97c9 10077 BFD_ASSERT (h->dynindx != -1
f5385ebf 10078 || h->forced_local);
b49e97c9 10079
23cc69b6 10080 sgot = htab->sgot;
a8028dd0 10081 g = htab->got_info;
b49e97c9
TS
10082 BFD_ASSERT (g != NULL);
10083
10084 /* Run through the global symbol table, creating GOT entries for all
10085 the symbols that need them. */
020d7251 10086 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10087 {
10088 bfd_vma offset;
10089 bfd_vma value;
10090
6eaa6adc 10091 value = sym->st_value;
738e5348
RS
10092 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10093 R_MIPS_GOT16, info);
b49e97c9
TS
10094 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10095 }
10096
020d7251 10097 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
f4416af6
AO
10098 {
10099 struct mips_got_entry e, *p;
0626d451 10100 bfd_vma entry;
f4416af6 10101 bfd_vma offset;
f4416af6
AO
10102
10103 gg = g;
10104
10105 e.abfd = output_bfd;
10106 e.symndx = -1;
738e5348 10107 e.d.h = hmips;
0f20cc35 10108 e.tls_type = 0;
143d77c5 10109
f4416af6
AO
10110 for (g = g->next; g->next != gg; g = g->next)
10111 {
10112 if (g->got_entries
10113 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10114 &e)))
10115 {
10116 offset = p->gotidx;
0626d451
RS
10117 if (info->shared
10118 || (elf_hash_table (info)->dynamic_sections_created
10119 && p->d.h != NULL
f5385ebf
AM
10120 && p->d.h->root.def_dynamic
10121 && !p->d.h->root.def_regular))
0626d451
RS
10122 {
10123 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10124 the various compatibility problems, it's easier to mock
10125 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10126 mips_elf_create_dynamic_relocation to calculate the
10127 appropriate addend. */
10128 Elf_Internal_Rela rel[3];
10129
10130 memset (rel, 0, sizeof (rel));
10131 if (ABI_64_P (output_bfd))
10132 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10133 else
10134 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10135 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10136
10137 entry = 0;
10138 if (! (mips_elf_create_dynamic_relocation
10139 (output_bfd, info, rel,
10140 e.d.h, NULL, sym->st_value, &entry, sgot)))
10141 return FALSE;
10142 }
10143 else
10144 entry = sym->st_value;
10145 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10146 }
10147 }
10148 }
10149
b49e97c9
TS
10150 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10151 name = h->root.root.string;
9637f6ef 10152 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10153 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10154 sym->st_shndx = SHN_ABS;
10155 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10156 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10157 {
10158 sym->st_shndx = SHN_ABS;
10159 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10160 sym->st_value = 1;
10161 }
4a14403c 10162 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10163 {
10164 sym->st_shndx = SHN_ABS;
10165 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10166 sym->st_value = elf_gp (output_bfd);
10167 }
10168 else if (SGI_COMPAT (output_bfd))
10169 {
10170 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10171 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10172 {
10173 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10174 sym->st_other = STO_PROTECTED;
10175 sym->st_value = 0;
10176 sym->st_shndx = SHN_MIPS_DATA;
10177 }
10178 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10179 {
10180 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10181 sym->st_other = STO_PROTECTED;
10182 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10183 sym->st_shndx = SHN_ABS;
10184 }
10185 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10186 {
10187 if (h->type == STT_FUNC)
10188 sym->st_shndx = SHN_MIPS_TEXT;
10189 else if (h->type == STT_OBJECT)
10190 sym->st_shndx = SHN_MIPS_DATA;
10191 }
10192 }
10193
861fb55a
DJ
10194 /* Emit a copy reloc, if needed. */
10195 if (h->needs_copy)
10196 {
10197 asection *s;
10198 bfd_vma symval;
10199
10200 BFD_ASSERT (h->dynindx != -1);
10201 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10202
10203 s = mips_elf_rel_dyn_section (info, FALSE);
10204 symval = (h->root.u.def.section->output_section->vma
10205 + h->root.u.def.section->output_offset
10206 + h->root.u.def.value);
10207 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10208 h->dynindx, R_MIPS_COPY, symval);
10209 }
10210
b49e97c9
TS
10211 /* Handle the IRIX6-specific symbols. */
10212 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10213 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10214
738e5348
RS
10215 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10216 treat MIPS16 symbols like any other. */
30c09090 10217 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10218 {
10219 BFD_ASSERT (sym->st_value & 1);
10220 sym->st_other -= STO_MIPS16;
10221 }
b49e97c9 10222
b34976b6 10223 return TRUE;
b49e97c9
TS
10224}
10225
0a44bf69
RS
10226/* Likewise, for VxWorks. */
10227
10228bfd_boolean
10229_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10230 struct bfd_link_info *info,
10231 struct elf_link_hash_entry *h,
10232 Elf_Internal_Sym *sym)
10233{
10234 bfd *dynobj;
10235 asection *sgot;
10236 struct mips_got_info *g;
10237 struct mips_elf_link_hash_table *htab;
020d7251 10238 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10239
10240 htab = mips_elf_hash_table (info);
4dfe6ac6 10241 BFD_ASSERT (htab != NULL);
0a44bf69 10242 dynobj = elf_hash_table (info)->dynobj;
020d7251 10243 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10244
10245 if (h->plt.offset != (bfd_vma) -1)
10246 {
6d79d2ed 10247 bfd_byte *loc;
0a44bf69
RS
10248 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10249 Elf_Internal_Rela rel;
10250 static const bfd_vma *plt_entry;
10251
10252 BFD_ASSERT (h->dynindx != -1);
10253 BFD_ASSERT (htab->splt != NULL);
10254 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10255
10256 /* Calculate the address of the .plt entry. */
10257 plt_address = (htab->splt->output_section->vma
10258 + htab->splt->output_offset
10259 + h->plt.offset);
10260
10261 /* Calculate the index of the entry. */
10262 plt_index = ((h->plt.offset - htab->plt_header_size)
10263 / htab->plt_entry_size);
10264
10265 /* Calculate the address of the .got.plt entry. */
10266 got_address = (htab->sgotplt->output_section->vma
10267 + htab->sgotplt->output_offset
10268 + plt_index * 4);
10269
10270 /* Calculate the offset of the .got.plt entry from
10271 _GLOBAL_OFFSET_TABLE_. */
10272 got_offset = mips_elf_gotplt_index (info, h);
10273
10274 /* Calculate the offset for the branch at the start of the PLT
10275 entry. The branch jumps to the beginning of .plt. */
10276 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10277
10278 /* Fill in the initial value of the .got.plt entry. */
10279 bfd_put_32 (output_bfd, plt_address,
10280 htab->sgotplt->contents + plt_index * 4);
10281
10282 /* Find out where the .plt entry should go. */
10283 loc = htab->splt->contents + h->plt.offset;
10284
10285 if (info->shared)
10286 {
10287 plt_entry = mips_vxworks_shared_plt_entry;
10288 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10289 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10290 }
10291 else
10292 {
10293 bfd_vma got_address_high, got_address_low;
10294
10295 plt_entry = mips_vxworks_exec_plt_entry;
10296 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10297 got_address_low = got_address & 0xffff;
10298
10299 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10300 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10301 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10302 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10303 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10304 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10305 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10306 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10307
10308 loc = (htab->srelplt2->contents
10309 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10310
10311 /* Emit a relocation for the .got.plt entry. */
10312 rel.r_offset = got_address;
10313 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10314 rel.r_addend = h->plt.offset;
10315 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10316
10317 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10318 loc += sizeof (Elf32_External_Rela);
10319 rel.r_offset = plt_address + 8;
10320 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10321 rel.r_addend = got_offset;
10322 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10323
10324 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10325 loc += sizeof (Elf32_External_Rela);
10326 rel.r_offset += 4;
10327 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10328 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10329 }
10330
10331 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10332 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10333 rel.r_offset = got_address;
10334 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10335 rel.r_addend = 0;
10336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10337
10338 if (!h->def_regular)
10339 sym->st_shndx = SHN_UNDEF;
10340 }
10341
10342 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10343
23cc69b6 10344 sgot = htab->sgot;
a8028dd0 10345 g = htab->got_info;
0a44bf69
RS
10346 BFD_ASSERT (g != NULL);
10347
10348 /* See if this symbol has an entry in the GOT. */
020d7251 10349 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10350 {
10351 bfd_vma offset;
10352 Elf_Internal_Rela outrel;
10353 bfd_byte *loc;
10354 asection *s;
10355
10356 /* Install the symbol value in the GOT. */
10357 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10358 R_MIPS_GOT16, info);
10359 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10360
10361 /* Add a dynamic relocation for it. */
10362 s = mips_elf_rel_dyn_section (info, FALSE);
10363 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10364 outrel.r_offset = (sgot->output_section->vma
10365 + sgot->output_offset
10366 + offset);
10367 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10368 outrel.r_addend = 0;
10369 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10370 }
10371
10372 /* Emit a copy reloc, if needed. */
10373 if (h->needs_copy)
10374 {
10375 Elf_Internal_Rela rel;
10376
10377 BFD_ASSERT (h->dynindx != -1);
10378
10379 rel.r_offset = (h->root.u.def.section->output_section->vma
10380 + h->root.u.def.section->output_offset
10381 + h->root.u.def.value);
10382 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10383 rel.r_addend = 0;
10384 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10385 htab->srelbss->contents
10386 + (htab->srelbss->reloc_count
10387 * sizeof (Elf32_External_Rela)));
10388 ++htab->srelbss->reloc_count;
10389 }
10390
df58fc94
RS
10391 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10392 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10393 sym->st_value &= ~1;
10394
10395 return TRUE;
10396}
10397
861fb55a
DJ
10398/* Write out a plt0 entry to the beginning of .plt. */
10399
10400static void
10401mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10402{
10403 bfd_byte *loc;
10404 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10405 static const bfd_vma *plt_entry;
10406 struct mips_elf_link_hash_table *htab;
10407
10408 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10409 BFD_ASSERT (htab != NULL);
10410
861fb55a
DJ
10411 if (ABI_64_P (output_bfd))
10412 plt_entry = mips_n64_exec_plt0_entry;
10413 else if (ABI_N32_P (output_bfd))
10414 plt_entry = mips_n32_exec_plt0_entry;
10415 else
10416 plt_entry = mips_o32_exec_plt0_entry;
10417
10418 /* Calculate the value of .got.plt. */
10419 gotplt_value = (htab->sgotplt->output_section->vma
10420 + htab->sgotplt->output_offset);
10421 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10422 gotplt_value_low = gotplt_value & 0xffff;
10423
10424 /* The PLT sequence is not safe for N64 if .got.plt's address can
10425 not be loaded in two instructions. */
10426 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10427 || ~(gotplt_value | 0x7fffffff) == 0);
10428
10429 /* Install the PLT header. */
10430 loc = htab->splt->contents;
10431 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10432 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10433 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10434 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10435 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10436 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10437 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10438 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10439}
10440
0a44bf69
RS
10441/* Install the PLT header for a VxWorks executable and finalize the
10442 contents of .rela.plt.unloaded. */
10443
10444static void
10445mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10446{
10447 Elf_Internal_Rela rela;
10448 bfd_byte *loc;
10449 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10450 static const bfd_vma *plt_entry;
10451 struct mips_elf_link_hash_table *htab;
10452
10453 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10454 BFD_ASSERT (htab != NULL);
10455
0a44bf69
RS
10456 plt_entry = mips_vxworks_exec_plt0_entry;
10457
10458 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10459 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10460 + htab->root.hgot->root.u.def.section->output_offset
10461 + htab->root.hgot->root.u.def.value);
10462
10463 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10464 got_value_low = got_value & 0xffff;
10465
10466 /* Calculate the address of the PLT header. */
10467 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10468
10469 /* Install the PLT header. */
10470 loc = htab->splt->contents;
10471 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10472 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10473 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10474 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10475 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10476 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10477
10478 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10479 loc = htab->srelplt2->contents;
10480 rela.r_offset = plt_address;
10481 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10482 rela.r_addend = 0;
10483 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10484 loc += sizeof (Elf32_External_Rela);
10485
10486 /* Output the relocation for the following addiu of
10487 %lo(_GLOBAL_OFFSET_TABLE_). */
10488 rela.r_offset += 4;
10489 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10490 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10491 loc += sizeof (Elf32_External_Rela);
10492
10493 /* Fix up the remaining relocations. They may have the wrong
10494 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10495 in which symbols were output. */
10496 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10497 {
10498 Elf_Internal_Rela rel;
10499
10500 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10501 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10503 loc += sizeof (Elf32_External_Rela);
10504
10505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10506 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10508 loc += sizeof (Elf32_External_Rela);
10509
10510 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10513 loc += sizeof (Elf32_External_Rela);
10514 }
10515}
10516
10517/* Install the PLT header for a VxWorks shared library. */
10518
10519static void
10520mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10521{
10522 unsigned int i;
10523 struct mips_elf_link_hash_table *htab;
10524
10525 htab = mips_elf_hash_table (info);
4dfe6ac6 10526 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10527
10528 /* We just need to copy the entry byte-by-byte. */
10529 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10530 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10531 htab->splt->contents + i * 4);
10532}
10533
b49e97c9
TS
10534/* Finish up the dynamic sections. */
10535
b34976b6 10536bfd_boolean
9719ad41
RS
10537_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10538 struct bfd_link_info *info)
b49e97c9
TS
10539{
10540 bfd *dynobj;
10541 asection *sdyn;
10542 asection *sgot;
f4416af6 10543 struct mips_got_info *gg, *g;
0a44bf69 10544 struct mips_elf_link_hash_table *htab;
b49e97c9 10545
0a44bf69 10546 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10547 BFD_ASSERT (htab != NULL);
10548
b49e97c9
TS
10549 dynobj = elf_hash_table (info)->dynobj;
10550
3d4d4302 10551 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10552
23cc69b6
RS
10553 sgot = htab->sgot;
10554 gg = htab->got_info;
b49e97c9
TS
10555
10556 if (elf_hash_table (info)->dynamic_sections_created)
10557 {
10558 bfd_byte *b;
943284cc 10559 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10560
10561 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10562 BFD_ASSERT (gg != NULL);
10563
10564 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10565 BFD_ASSERT (g != NULL);
10566
10567 for (b = sdyn->contents;
eea6121a 10568 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10569 b += MIPS_ELF_DYN_SIZE (dynobj))
10570 {
10571 Elf_Internal_Dyn dyn;
10572 const char *name;
10573 size_t elemsize;
10574 asection *s;
b34976b6 10575 bfd_boolean swap_out_p;
b49e97c9
TS
10576
10577 /* Read in the current dynamic entry. */
10578 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10579
10580 /* Assume that we're going to modify it and write it out. */
b34976b6 10581 swap_out_p = TRUE;
b49e97c9
TS
10582
10583 switch (dyn.d_tag)
10584 {
10585 case DT_RELENT:
b49e97c9
TS
10586 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10587 break;
10588
0a44bf69
RS
10589 case DT_RELAENT:
10590 BFD_ASSERT (htab->is_vxworks);
10591 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10592 break;
10593
b49e97c9
TS
10594 case DT_STRSZ:
10595 /* Rewrite DT_STRSZ. */
10596 dyn.d_un.d_val =
10597 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10598 break;
10599
10600 case DT_PLTGOT:
861fb55a
DJ
10601 s = htab->sgot;
10602 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10603 break;
10604
10605 case DT_MIPS_PLTGOT:
10606 s = htab->sgotplt;
10607 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10608 break;
10609
10610 case DT_MIPS_RLD_VERSION:
10611 dyn.d_un.d_val = 1; /* XXX */
10612 break;
10613
10614 case DT_MIPS_FLAGS:
10615 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10616 break;
10617
b49e97c9 10618 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10619 {
10620 time_t t;
10621 time (&t);
10622 dyn.d_un.d_val = t;
10623 }
b49e97c9
TS
10624 break;
10625
10626 case DT_MIPS_ICHECKSUM:
10627 /* XXX FIXME: */
b34976b6 10628 swap_out_p = FALSE;
b49e97c9
TS
10629 break;
10630
10631 case DT_MIPS_IVERSION:
10632 /* XXX FIXME: */
b34976b6 10633 swap_out_p = FALSE;
b49e97c9
TS
10634 break;
10635
10636 case DT_MIPS_BASE_ADDRESS:
10637 s = output_bfd->sections;
10638 BFD_ASSERT (s != NULL);
10639 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10640 break;
10641
10642 case DT_MIPS_LOCAL_GOTNO:
10643 dyn.d_un.d_val = g->local_gotno;
10644 break;
10645
10646 case DT_MIPS_UNREFEXTNO:
10647 /* The index into the dynamic symbol table which is the
10648 entry of the first external symbol that is not
10649 referenced within the same object. */
10650 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10651 break;
10652
10653 case DT_MIPS_GOTSYM:
d222d210 10654 if (htab->global_gotsym)
b49e97c9 10655 {
d222d210 10656 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10657 break;
10658 }
10659 /* In case if we don't have global got symbols we default
10660 to setting DT_MIPS_GOTSYM to the same value as
10661 DT_MIPS_SYMTABNO, so we just fall through. */
10662
10663 case DT_MIPS_SYMTABNO:
10664 name = ".dynsym";
10665 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10666 s = bfd_get_section_by_name (output_bfd, name);
10667 BFD_ASSERT (s != NULL);
10668
eea6121a 10669 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10670 break;
10671
10672 case DT_MIPS_HIPAGENO:
861fb55a 10673 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10674 break;
10675
10676 case DT_MIPS_RLD_MAP:
b4082c70
DD
10677 {
10678 struct elf_link_hash_entry *h;
10679 h = mips_elf_hash_table (info)->rld_symbol;
10680 if (!h)
10681 {
10682 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10683 swap_out_p = FALSE;
10684 break;
10685 }
10686 s = h->root.u.def.section;
10687 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10688 + h->root.u.def.value);
10689 }
b49e97c9
TS
10690 break;
10691
10692 case DT_MIPS_OPTIONS:
10693 s = (bfd_get_section_by_name
10694 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10695 dyn.d_un.d_ptr = s->vma;
10696 break;
10697
0a44bf69
RS
10698 case DT_RELASZ:
10699 BFD_ASSERT (htab->is_vxworks);
10700 /* The count does not include the JUMP_SLOT relocations. */
10701 if (htab->srelplt)
10702 dyn.d_un.d_val -= htab->srelplt->size;
10703 break;
10704
10705 case DT_PLTREL:
861fb55a
DJ
10706 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10707 if (htab->is_vxworks)
10708 dyn.d_un.d_val = DT_RELA;
10709 else
10710 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10711 break;
10712
10713 case DT_PLTRELSZ:
861fb55a 10714 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10715 dyn.d_un.d_val = htab->srelplt->size;
10716 break;
10717
10718 case DT_JMPREL:
861fb55a
DJ
10719 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10720 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10721 + htab->srelplt->output_offset);
10722 break;
10723
943284cc
DJ
10724 case DT_TEXTREL:
10725 /* If we didn't need any text relocations after all, delete
10726 the dynamic tag. */
10727 if (!(info->flags & DF_TEXTREL))
10728 {
10729 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10730 swap_out_p = FALSE;
10731 }
10732 break;
10733
10734 case DT_FLAGS:
10735 /* If we didn't need any text relocations after all, clear
10736 DF_TEXTREL from DT_FLAGS. */
10737 if (!(info->flags & DF_TEXTREL))
10738 dyn.d_un.d_val &= ~DF_TEXTREL;
10739 else
10740 swap_out_p = FALSE;
10741 break;
10742
b49e97c9 10743 default:
b34976b6 10744 swap_out_p = FALSE;
7a2b07ff
NS
10745 if (htab->is_vxworks
10746 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10747 swap_out_p = TRUE;
b49e97c9
TS
10748 break;
10749 }
10750
943284cc 10751 if (swap_out_p || dyn_skipped)
b49e97c9 10752 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10753 (dynobj, &dyn, b - dyn_skipped);
10754
10755 if (dyn_to_skip)
10756 {
10757 dyn_skipped += dyn_to_skip;
10758 dyn_to_skip = 0;
10759 }
b49e97c9 10760 }
943284cc
DJ
10761
10762 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10763 if (dyn_skipped > 0)
10764 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10765 }
10766
b55fd4d4
DJ
10767 if (sgot != NULL && sgot->size > 0
10768 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10769 {
0a44bf69
RS
10770 if (htab->is_vxworks)
10771 {
10772 /* The first entry of the global offset table points to the
10773 ".dynamic" section. The second is initialized by the
10774 loader and contains the shared library identifier.
10775 The third is also initialized by the loader and points
10776 to the lazy resolution stub. */
10777 MIPS_ELF_PUT_WORD (output_bfd,
10778 sdyn->output_offset + sdyn->output_section->vma,
10779 sgot->contents);
10780 MIPS_ELF_PUT_WORD (output_bfd, 0,
10781 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10782 MIPS_ELF_PUT_WORD (output_bfd, 0,
10783 sgot->contents
10784 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10785 }
10786 else
10787 {
10788 /* The first entry of the global offset table will be filled at
10789 runtime. The second entry will be used by some runtime loaders.
10790 This isn't the case of IRIX rld. */
10791 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10792 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10793 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10794 }
b49e97c9 10795
54938e2a
TS
10796 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10797 = MIPS_ELF_GOT_SIZE (output_bfd);
10798 }
b49e97c9 10799
f4416af6
AO
10800 /* Generate dynamic relocations for the non-primary gots. */
10801 if (gg != NULL && gg->next)
10802 {
10803 Elf_Internal_Rela rel[3];
10804 bfd_vma addend = 0;
10805
10806 memset (rel, 0, sizeof (rel));
10807 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10808
10809 for (g = gg->next; g->next != gg; g = g->next)
10810 {
91d6fa6a 10811 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10812 + g->next->tls_gotno;
f4416af6 10813
9719ad41 10814 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10815 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10816 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10817 sgot->contents
91d6fa6a 10818 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10819
10820 if (! info->shared)
10821 continue;
10822
91d6fa6a 10823 while (got_index < g->assigned_gotno)
f4416af6
AO
10824 {
10825 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10826 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10827 if (!(mips_elf_create_dynamic_relocation
10828 (output_bfd, info, rel, NULL,
10829 bfd_abs_section_ptr,
10830 0, &addend, sgot)))
10831 return FALSE;
10832 BFD_ASSERT (addend == 0);
10833 }
10834 }
10835 }
10836
3133ddbf
DJ
10837 /* The generation of dynamic relocations for the non-primary gots
10838 adds more dynamic relocations. We cannot count them until
10839 here. */
10840
10841 if (elf_hash_table (info)->dynamic_sections_created)
10842 {
10843 bfd_byte *b;
10844 bfd_boolean swap_out_p;
10845
10846 BFD_ASSERT (sdyn != NULL);
10847
10848 for (b = sdyn->contents;
10849 b < sdyn->contents + sdyn->size;
10850 b += MIPS_ELF_DYN_SIZE (dynobj))
10851 {
10852 Elf_Internal_Dyn dyn;
10853 asection *s;
10854
10855 /* Read in the current dynamic entry. */
10856 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10857
10858 /* Assume that we're going to modify it and write it out. */
10859 swap_out_p = TRUE;
10860
10861 switch (dyn.d_tag)
10862 {
10863 case DT_RELSZ:
10864 /* Reduce DT_RELSZ to account for any relocations we
10865 decided not to make. This is for the n64 irix rld,
10866 which doesn't seem to apply any relocations if there
10867 are trailing null entries. */
0a44bf69 10868 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10869 dyn.d_un.d_val = (s->reloc_count
10870 * (ABI_64_P (output_bfd)
10871 ? sizeof (Elf64_Mips_External_Rel)
10872 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10873 /* Adjust the section size too. Tools like the prelinker
10874 can reasonably expect the values to the same. */
10875 elf_section_data (s->output_section)->this_hdr.sh_size
10876 = dyn.d_un.d_val;
3133ddbf
DJ
10877 break;
10878
10879 default:
10880 swap_out_p = FALSE;
10881 break;
10882 }
10883
10884 if (swap_out_p)
10885 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10886 (dynobj, &dyn, b);
10887 }
10888 }
10889
b49e97c9 10890 {
b49e97c9
TS
10891 asection *s;
10892 Elf32_compact_rel cpt;
10893
b49e97c9
TS
10894 if (SGI_COMPAT (output_bfd))
10895 {
10896 /* Write .compact_rel section out. */
3d4d4302 10897 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10898 if (s != NULL)
10899 {
10900 cpt.id1 = 1;
10901 cpt.num = s->reloc_count;
10902 cpt.id2 = 2;
10903 cpt.offset = (s->output_section->filepos
10904 + sizeof (Elf32_External_compact_rel));
10905 cpt.reserved0 = 0;
10906 cpt.reserved1 = 0;
10907 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10908 ((Elf32_External_compact_rel *)
10909 s->contents));
10910
10911 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10912 if (htab->sstubs != NULL)
b49e97c9
TS
10913 {
10914 file_ptr dummy_offset;
10915
4e41d0d7
RS
10916 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10917 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10918 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10919 htab->function_stub_size);
b49e97c9
TS
10920 }
10921 }
10922 }
10923
0a44bf69
RS
10924 /* The psABI says that the dynamic relocations must be sorted in
10925 increasing order of r_symndx. The VxWorks EABI doesn't require
10926 this, and because the code below handles REL rather than RELA
10927 relocations, using it for VxWorks would be outright harmful. */
10928 if (!htab->is_vxworks)
b49e97c9 10929 {
0a44bf69
RS
10930 s = mips_elf_rel_dyn_section (info, FALSE);
10931 if (s != NULL
10932 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10933 {
10934 reldyn_sorting_bfd = output_bfd;
b49e97c9 10935
0a44bf69
RS
10936 if (ABI_64_P (output_bfd))
10937 qsort ((Elf64_External_Rel *) s->contents + 1,
10938 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10939 sort_dynamic_relocs_64);
10940 else
10941 qsort ((Elf32_External_Rel *) s->contents + 1,
10942 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10943 sort_dynamic_relocs);
10944 }
b49e97c9 10945 }
b49e97c9
TS
10946 }
10947
861fb55a 10948 if (htab->splt && htab->splt->size > 0)
0a44bf69 10949 {
861fb55a
DJ
10950 if (htab->is_vxworks)
10951 {
10952 if (info->shared)
10953 mips_vxworks_finish_shared_plt (output_bfd, info);
10954 else
10955 mips_vxworks_finish_exec_plt (output_bfd, info);
10956 }
0a44bf69 10957 else
861fb55a
DJ
10958 {
10959 BFD_ASSERT (!info->shared);
10960 mips_finish_exec_plt (output_bfd, info);
10961 }
0a44bf69 10962 }
b34976b6 10963 return TRUE;
b49e97c9
TS
10964}
10965
b49e97c9 10966
64543e1a
RS
10967/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10968
10969static void
9719ad41 10970mips_set_isa_flags (bfd *abfd)
b49e97c9 10971{
64543e1a 10972 flagword val;
b49e97c9
TS
10973
10974 switch (bfd_get_mach (abfd))
10975 {
10976 default:
10977 case bfd_mach_mips3000:
10978 val = E_MIPS_ARCH_1;
10979 break;
10980
10981 case bfd_mach_mips3900:
10982 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10983 break;
10984
10985 case bfd_mach_mips6000:
10986 val = E_MIPS_ARCH_2;
10987 break;
10988
10989 case bfd_mach_mips4000:
10990 case bfd_mach_mips4300:
10991 case bfd_mach_mips4400:
10992 case bfd_mach_mips4600:
10993 val = E_MIPS_ARCH_3;
10994 break;
10995
10996 case bfd_mach_mips4010:
10997 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10998 break;
10999
11000 case bfd_mach_mips4100:
11001 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11002 break;
11003
11004 case bfd_mach_mips4111:
11005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11006 break;
11007
00707a0e
RS
11008 case bfd_mach_mips4120:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11010 break;
11011
b49e97c9
TS
11012 case bfd_mach_mips4650:
11013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11014 break;
11015
00707a0e
RS
11016 case bfd_mach_mips5400:
11017 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11018 break;
11019
11020 case bfd_mach_mips5500:
11021 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11022 break;
11023
e407c74b
NC
11024 case bfd_mach_mips5900:
11025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11026 break;
11027
0d2e43ed
ILT
11028 case bfd_mach_mips9000:
11029 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11030 break;
11031
b49e97c9 11032 case bfd_mach_mips5000:
5a7ea749 11033 case bfd_mach_mips7000:
b49e97c9
TS
11034 case bfd_mach_mips8000:
11035 case bfd_mach_mips10000:
11036 case bfd_mach_mips12000:
3aa3176b
TS
11037 case bfd_mach_mips14000:
11038 case bfd_mach_mips16000:
b49e97c9
TS
11039 val = E_MIPS_ARCH_4;
11040 break;
11041
11042 case bfd_mach_mips5:
11043 val = E_MIPS_ARCH_5;
11044 break;
11045
350cc38d
MS
11046 case bfd_mach_mips_loongson_2e:
11047 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11048 break;
11049
11050 case bfd_mach_mips_loongson_2f:
11051 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11052 break;
11053
b49e97c9
TS
11054 case bfd_mach_mips_sb1:
11055 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11056 break;
11057
d051516a
NC
11058 case bfd_mach_mips_loongson_3a:
11059 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11060 break;
11061
6f179bd0 11062 case bfd_mach_mips_octeon:
dd6a37e7 11063 case bfd_mach_mips_octeonp:
6f179bd0
AN
11064 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11065 break;
11066
52b6b6b9
JM
11067 case bfd_mach_mips_xlr:
11068 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11069 break;
11070
432233b3
AP
11071 case bfd_mach_mips_octeon2:
11072 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11073 break;
11074
b49e97c9
TS
11075 case bfd_mach_mipsisa32:
11076 val = E_MIPS_ARCH_32;
11077 break;
11078
11079 case bfd_mach_mipsisa64:
11080 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11081 break;
11082
11083 case bfd_mach_mipsisa32r2:
11084 val = E_MIPS_ARCH_32R2;
11085 break;
5f74bc13
CD
11086
11087 case bfd_mach_mipsisa64r2:
11088 val = E_MIPS_ARCH_64R2;
11089 break;
b49e97c9 11090 }
b49e97c9
TS
11091 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11092 elf_elfheader (abfd)->e_flags |= val;
11093
64543e1a
RS
11094}
11095
11096
11097/* The final processing done just before writing out a MIPS ELF object
11098 file. This gets the MIPS architecture right based on the machine
11099 number. This is used by both the 32-bit and the 64-bit ABI. */
11100
11101void
9719ad41
RS
11102_bfd_mips_elf_final_write_processing (bfd *abfd,
11103 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11104{
11105 unsigned int i;
11106 Elf_Internal_Shdr **hdrpp;
11107 const char *name;
11108 asection *sec;
11109
11110 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11111 is nonzero. This is for compatibility with old objects, which used
11112 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11113 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11114 mips_set_isa_flags (abfd);
11115
b49e97c9
TS
11116 /* Set the sh_info field for .gptab sections and other appropriate
11117 info for each special section. */
11118 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11119 i < elf_numsections (abfd);
11120 i++, hdrpp++)
11121 {
11122 switch ((*hdrpp)->sh_type)
11123 {
11124 case SHT_MIPS_MSYM:
11125 case SHT_MIPS_LIBLIST:
11126 sec = bfd_get_section_by_name (abfd, ".dynstr");
11127 if (sec != NULL)
11128 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11129 break;
11130
11131 case SHT_MIPS_GPTAB:
11132 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11133 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11134 BFD_ASSERT (name != NULL
0112cd26 11135 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11136 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11137 BFD_ASSERT (sec != NULL);
11138 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11139 break;
11140
11141 case SHT_MIPS_CONTENT:
11142 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11143 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11144 BFD_ASSERT (name != NULL
0112cd26 11145 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11146 sec = bfd_get_section_by_name (abfd,
11147 name + sizeof ".MIPS.content" - 1);
11148 BFD_ASSERT (sec != NULL);
11149 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11150 break;
11151
11152 case SHT_MIPS_SYMBOL_LIB:
11153 sec = bfd_get_section_by_name (abfd, ".dynsym");
11154 if (sec != NULL)
11155 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11156 sec = bfd_get_section_by_name (abfd, ".liblist");
11157 if (sec != NULL)
11158 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11159 break;
11160
11161 case SHT_MIPS_EVENTS:
11162 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11163 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11164 BFD_ASSERT (name != NULL);
0112cd26 11165 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11166 sec = bfd_get_section_by_name (abfd,
11167 name + sizeof ".MIPS.events" - 1);
11168 else
11169 {
0112cd26 11170 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11171 sec = bfd_get_section_by_name (abfd,
11172 (name
11173 + sizeof ".MIPS.post_rel" - 1));
11174 }
11175 BFD_ASSERT (sec != NULL);
11176 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11177 break;
11178
11179 }
11180 }
11181}
11182\f
8dc1a139 11183/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11184 segments. */
11185
11186int
a6b96beb
AM
11187_bfd_mips_elf_additional_program_headers (bfd *abfd,
11188 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11189{
11190 asection *s;
11191 int ret = 0;
11192
11193 /* See if we need a PT_MIPS_REGINFO segment. */
11194 s = bfd_get_section_by_name (abfd, ".reginfo");
11195 if (s && (s->flags & SEC_LOAD))
11196 ++ret;
11197
11198 /* See if we need a PT_MIPS_OPTIONS segment. */
11199 if (IRIX_COMPAT (abfd) == ict_irix6
11200 && bfd_get_section_by_name (abfd,
11201 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11202 ++ret;
11203
11204 /* See if we need a PT_MIPS_RTPROC segment. */
11205 if (IRIX_COMPAT (abfd) == ict_irix5
11206 && bfd_get_section_by_name (abfd, ".dynamic")
11207 && bfd_get_section_by_name (abfd, ".mdebug"))
11208 ++ret;
11209
98c904a8
RS
11210 /* Allocate a PT_NULL header in dynamic objects. See
11211 _bfd_mips_elf_modify_segment_map for details. */
11212 if (!SGI_COMPAT (abfd)
11213 && bfd_get_section_by_name (abfd, ".dynamic"))
11214 ++ret;
11215
b49e97c9
TS
11216 return ret;
11217}
11218
8dc1a139 11219/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11220
b34976b6 11221bfd_boolean
9719ad41 11222_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11223 struct bfd_link_info *info)
b49e97c9
TS
11224{
11225 asection *s;
11226 struct elf_segment_map *m, **pm;
11227 bfd_size_type amt;
11228
11229 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11230 segment. */
11231 s = bfd_get_section_by_name (abfd, ".reginfo");
11232 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11233 {
11234 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11235 if (m->p_type == PT_MIPS_REGINFO)
11236 break;
11237 if (m == NULL)
11238 {
11239 amt = sizeof *m;
9719ad41 11240 m = bfd_zalloc (abfd, amt);
b49e97c9 11241 if (m == NULL)
b34976b6 11242 return FALSE;
b49e97c9
TS
11243
11244 m->p_type = PT_MIPS_REGINFO;
11245 m->count = 1;
11246 m->sections[0] = s;
11247
11248 /* We want to put it after the PHDR and INTERP segments. */
11249 pm = &elf_tdata (abfd)->segment_map;
11250 while (*pm != NULL
11251 && ((*pm)->p_type == PT_PHDR
11252 || (*pm)->p_type == PT_INTERP))
11253 pm = &(*pm)->next;
11254
11255 m->next = *pm;
11256 *pm = m;
11257 }
11258 }
11259
11260 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11261 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11262 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11263 table. */
c1fd6598
AO
11264 if (NEWABI_P (abfd)
11265 /* On non-IRIX6 new abi, we'll have already created a segment
11266 for this section, so don't create another. I'm not sure this
11267 is not also the case for IRIX 6, but I can't test it right
11268 now. */
11269 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11270 {
11271 for (s = abfd->sections; s; s = s->next)
11272 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11273 break;
11274
11275 if (s)
11276 {
11277 struct elf_segment_map *options_segment;
11278
98a8deaf
RS
11279 pm = &elf_tdata (abfd)->segment_map;
11280 while (*pm != NULL
11281 && ((*pm)->p_type == PT_PHDR
11282 || (*pm)->p_type == PT_INTERP))
11283 pm = &(*pm)->next;
b49e97c9 11284
8ded5a0f
AM
11285 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11286 {
11287 amt = sizeof (struct elf_segment_map);
11288 options_segment = bfd_zalloc (abfd, amt);
11289 options_segment->next = *pm;
11290 options_segment->p_type = PT_MIPS_OPTIONS;
11291 options_segment->p_flags = PF_R;
11292 options_segment->p_flags_valid = TRUE;
11293 options_segment->count = 1;
11294 options_segment->sections[0] = s;
11295 *pm = options_segment;
11296 }
b49e97c9
TS
11297 }
11298 }
11299 else
11300 {
11301 if (IRIX_COMPAT (abfd) == ict_irix5)
11302 {
11303 /* If there are .dynamic and .mdebug sections, we make a room
11304 for the RTPROC header. FIXME: Rewrite without section names. */
11305 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11306 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11307 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11308 {
11309 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11310 if (m->p_type == PT_MIPS_RTPROC)
11311 break;
11312 if (m == NULL)
11313 {
11314 amt = sizeof *m;
9719ad41 11315 m = bfd_zalloc (abfd, amt);
b49e97c9 11316 if (m == NULL)
b34976b6 11317 return FALSE;
b49e97c9
TS
11318
11319 m->p_type = PT_MIPS_RTPROC;
11320
11321 s = bfd_get_section_by_name (abfd, ".rtproc");
11322 if (s == NULL)
11323 {
11324 m->count = 0;
11325 m->p_flags = 0;
11326 m->p_flags_valid = 1;
11327 }
11328 else
11329 {
11330 m->count = 1;
11331 m->sections[0] = s;
11332 }
11333
11334 /* We want to put it after the DYNAMIC segment. */
11335 pm = &elf_tdata (abfd)->segment_map;
11336 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11337 pm = &(*pm)->next;
11338 if (*pm != NULL)
11339 pm = &(*pm)->next;
11340
11341 m->next = *pm;
11342 *pm = m;
11343 }
11344 }
11345 }
8dc1a139 11346 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11347 .dynstr, .dynsym, and .hash sections, and everything in
11348 between. */
11349 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11350 pm = &(*pm)->next)
11351 if ((*pm)->p_type == PT_DYNAMIC)
11352 break;
11353 m = *pm;
11354 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11355 {
11356 /* For a normal mips executable the permissions for the PT_DYNAMIC
11357 segment are read, write and execute. We do that here since
11358 the code in elf.c sets only the read permission. This matters
11359 sometimes for the dynamic linker. */
11360 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11361 {
11362 m->p_flags = PF_R | PF_W | PF_X;
11363 m->p_flags_valid = 1;
11364 }
11365 }
f6f62d6f
RS
11366 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11367 glibc's dynamic linker has traditionally derived the number of
11368 tags from the p_filesz field, and sometimes allocates stack
11369 arrays of that size. An overly-big PT_DYNAMIC segment can
11370 be actively harmful in such cases. Making PT_DYNAMIC contain
11371 other sections can also make life hard for the prelinker,
11372 which might move one of the other sections to a different
11373 PT_LOAD segment. */
11374 if (SGI_COMPAT (abfd)
11375 && m != NULL
11376 && m->count == 1
11377 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11378 {
11379 static const char *sec_names[] =
11380 {
11381 ".dynamic", ".dynstr", ".dynsym", ".hash"
11382 };
11383 bfd_vma low, high;
11384 unsigned int i, c;
11385 struct elf_segment_map *n;
11386
792b4a53 11387 low = ~(bfd_vma) 0;
b49e97c9
TS
11388 high = 0;
11389 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11390 {
11391 s = bfd_get_section_by_name (abfd, sec_names[i]);
11392 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11393 {
11394 bfd_size_type sz;
11395
11396 if (low > s->vma)
11397 low = s->vma;
eea6121a 11398 sz = s->size;
b49e97c9
TS
11399 if (high < s->vma + sz)
11400 high = s->vma + sz;
11401 }
11402 }
11403
11404 c = 0;
11405 for (s = abfd->sections; s != NULL; s = s->next)
11406 if ((s->flags & SEC_LOAD) != 0
11407 && s->vma >= low
eea6121a 11408 && s->vma + s->size <= high)
b49e97c9
TS
11409 ++c;
11410
11411 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11412 n = bfd_zalloc (abfd, amt);
b49e97c9 11413 if (n == NULL)
b34976b6 11414 return FALSE;
b49e97c9
TS
11415 *n = *m;
11416 n->count = c;
11417
11418 i = 0;
11419 for (s = abfd->sections; s != NULL; s = s->next)
11420 {
11421 if ((s->flags & SEC_LOAD) != 0
11422 && s->vma >= low
eea6121a 11423 && s->vma + s->size <= high)
b49e97c9
TS
11424 {
11425 n->sections[i] = s;
11426 ++i;
11427 }
11428 }
11429
11430 *pm = n;
11431 }
11432 }
11433
98c904a8
RS
11434 /* Allocate a spare program header in dynamic objects so that tools
11435 like the prelinker can add an extra PT_LOAD entry.
11436
11437 If the prelinker needs to make room for a new PT_LOAD entry, its
11438 standard procedure is to move the first (read-only) sections into
11439 the new (writable) segment. However, the MIPS ABI requires
11440 .dynamic to be in a read-only segment, and the section will often
11441 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11442
11443 Although the prelinker could in principle move .dynamic to a
11444 writable segment, it seems better to allocate a spare program
11445 header instead, and avoid the need to move any sections.
11446 There is a long tradition of allocating spare dynamic tags,
11447 so allocating a spare program header seems like a natural
7c8b76cc
JM
11448 extension.
11449
11450 If INFO is NULL, we may be copying an already prelinked binary
11451 with objcopy or strip, so do not add this header. */
11452 if (info != NULL
11453 && !SGI_COMPAT (abfd)
98c904a8
RS
11454 && bfd_get_section_by_name (abfd, ".dynamic"))
11455 {
11456 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11457 if ((*pm)->p_type == PT_NULL)
11458 break;
11459 if (*pm == NULL)
11460 {
11461 m = bfd_zalloc (abfd, sizeof (*m));
11462 if (m == NULL)
11463 return FALSE;
11464
11465 m->p_type = PT_NULL;
11466 *pm = m;
11467 }
11468 }
11469
b34976b6 11470 return TRUE;
b49e97c9
TS
11471}
11472\f
11473/* Return the section that should be marked against GC for a given
11474 relocation. */
11475
11476asection *
9719ad41 11477_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11478 struct bfd_link_info *info,
9719ad41
RS
11479 Elf_Internal_Rela *rel,
11480 struct elf_link_hash_entry *h,
11481 Elf_Internal_Sym *sym)
b49e97c9
TS
11482{
11483 /* ??? Do mips16 stub sections need to be handled special? */
11484
11485 if (h != NULL)
07adf181
AM
11486 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11487 {
11488 case R_MIPS_GNU_VTINHERIT:
11489 case R_MIPS_GNU_VTENTRY:
11490 return NULL;
11491 }
b49e97c9 11492
07adf181 11493 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11494}
11495
11496/* Update the got entry reference counts for the section being removed. */
11497
b34976b6 11498bfd_boolean
9719ad41
RS
11499_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11500 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11501 asection *sec ATTRIBUTE_UNUSED,
11502 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11503{
11504#if 0
11505 Elf_Internal_Shdr *symtab_hdr;
11506 struct elf_link_hash_entry **sym_hashes;
11507 bfd_signed_vma *local_got_refcounts;
11508 const Elf_Internal_Rela *rel, *relend;
11509 unsigned long r_symndx;
11510 struct elf_link_hash_entry *h;
11511
7dda2462
TG
11512 if (info->relocatable)
11513 return TRUE;
11514
b49e97c9
TS
11515 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11516 sym_hashes = elf_sym_hashes (abfd);
11517 local_got_refcounts = elf_local_got_refcounts (abfd);
11518
11519 relend = relocs + sec->reloc_count;
11520 for (rel = relocs; rel < relend; rel++)
11521 switch (ELF_R_TYPE (abfd, rel->r_info))
11522 {
738e5348
RS
11523 case R_MIPS16_GOT16:
11524 case R_MIPS16_CALL16:
b49e97c9
TS
11525 case R_MIPS_GOT16:
11526 case R_MIPS_CALL16:
11527 case R_MIPS_CALL_HI16:
11528 case R_MIPS_CALL_LO16:
11529 case R_MIPS_GOT_HI16:
11530 case R_MIPS_GOT_LO16:
4a14403c
TS
11531 case R_MIPS_GOT_DISP:
11532 case R_MIPS_GOT_PAGE:
11533 case R_MIPS_GOT_OFST:
df58fc94
RS
11534 case R_MICROMIPS_GOT16:
11535 case R_MICROMIPS_CALL16:
11536 case R_MICROMIPS_CALL_HI16:
11537 case R_MICROMIPS_CALL_LO16:
11538 case R_MICROMIPS_GOT_HI16:
11539 case R_MICROMIPS_GOT_LO16:
11540 case R_MICROMIPS_GOT_DISP:
11541 case R_MICROMIPS_GOT_PAGE:
11542 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11543 /* ??? It would seem that the existing MIPS code does no sort
11544 of reference counting or whatnot on its GOT and PLT entries,
11545 so it is not possible to garbage collect them at this time. */
11546 break;
11547
11548 default:
11549 break;
11550 }
11551#endif
11552
b34976b6 11553 return TRUE;
b49e97c9
TS
11554}
11555\f
11556/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11557 hiding the old indirect symbol. Process additional relocation
11558 information. Also called for weakdefs, in which case we just let
11559 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11560
11561void
fcfa13d2 11562_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11563 struct elf_link_hash_entry *dir,
11564 struct elf_link_hash_entry *ind)
b49e97c9
TS
11565{
11566 struct mips_elf_link_hash_entry *dirmips, *indmips;
11567
fcfa13d2 11568 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11569
861fb55a
DJ
11570 dirmips = (struct mips_elf_link_hash_entry *) dir;
11571 indmips = (struct mips_elf_link_hash_entry *) ind;
11572 /* Any absolute non-dynamic relocations against an indirect or weak
11573 definition will be against the target symbol. */
11574 if (indmips->has_static_relocs)
11575 dirmips->has_static_relocs = TRUE;
11576
b49e97c9
TS
11577 if (ind->root.type != bfd_link_hash_indirect)
11578 return;
11579
b49e97c9
TS
11580 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11581 if (indmips->readonly_reloc)
b34976b6 11582 dirmips->readonly_reloc = TRUE;
b49e97c9 11583 if (indmips->no_fn_stub)
b34976b6 11584 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11585 if (indmips->fn_stub)
11586 {
11587 dirmips->fn_stub = indmips->fn_stub;
11588 indmips->fn_stub = NULL;
11589 }
11590 if (indmips->need_fn_stub)
11591 {
11592 dirmips->need_fn_stub = TRUE;
11593 indmips->need_fn_stub = FALSE;
11594 }
11595 if (indmips->call_stub)
11596 {
11597 dirmips->call_stub = indmips->call_stub;
11598 indmips->call_stub = NULL;
11599 }
11600 if (indmips->call_fp_stub)
11601 {
11602 dirmips->call_fp_stub = indmips->call_fp_stub;
11603 indmips->call_fp_stub = NULL;
11604 }
634835ae
RS
11605 if (indmips->global_got_area < dirmips->global_got_area)
11606 dirmips->global_got_area = indmips->global_got_area;
11607 if (indmips->global_got_area < GGA_NONE)
11608 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11609 if (indmips->has_nonpic_branches)
11610 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11611
11612 if (dirmips->tls_type == 0)
11613 dirmips->tls_type = indmips->tls_type;
b49e97c9 11614}
b49e97c9 11615\f
d01414a5
TS
11616#define PDR_SIZE 32
11617
b34976b6 11618bfd_boolean
9719ad41
RS
11619_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11620 struct bfd_link_info *info)
d01414a5
TS
11621{
11622 asection *o;
b34976b6 11623 bfd_boolean ret = FALSE;
d01414a5
TS
11624 unsigned char *tdata;
11625 size_t i, skip;
11626
11627 o = bfd_get_section_by_name (abfd, ".pdr");
11628 if (! o)
b34976b6 11629 return FALSE;
eea6121a 11630 if (o->size == 0)
b34976b6 11631 return FALSE;
eea6121a 11632 if (o->size % PDR_SIZE != 0)
b34976b6 11633 return FALSE;
d01414a5
TS
11634 if (o->output_section != NULL
11635 && bfd_is_abs_section (o->output_section))
b34976b6 11636 return FALSE;
d01414a5 11637
eea6121a 11638 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11639 if (! tdata)
b34976b6 11640 return FALSE;
d01414a5 11641
9719ad41 11642 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11643 info->keep_memory);
d01414a5
TS
11644 if (!cookie->rels)
11645 {
11646 free (tdata);
b34976b6 11647 return FALSE;
d01414a5
TS
11648 }
11649
11650 cookie->rel = cookie->rels;
11651 cookie->relend = cookie->rels + o->reloc_count;
11652
eea6121a 11653 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11654 {
c152c796 11655 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11656 {
11657 tdata[i] = 1;
11658 skip ++;
11659 }
11660 }
11661
11662 if (skip != 0)
11663 {
f0abc2a1 11664 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11665 o->size -= skip * PDR_SIZE;
b34976b6 11666 ret = TRUE;
d01414a5
TS
11667 }
11668 else
11669 free (tdata);
11670
11671 if (! info->keep_memory)
11672 free (cookie->rels);
11673
11674 return ret;
11675}
11676
b34976b6 11677bfd_boolean
9719ad41 11678_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11679{
11680 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11681 return TRUE;
11682 return FALSE;
53bfd6b4 11683}
d01414a5 11684
b34976b6 11685bfd_boolean
c7b8f16e
JB
11686_bfd_mips_elf_write_section (bfd *output_bfd,
11687 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11688 asection *sec, bfd_byte *contents)
d01414a5
TS
11689{
11690 bfd_byte *to, *from, *end;
11691 int i;
11692
11693 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11694 return FALSE;
d01414a5 11695
f0abc2a1 11696 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11697 return FALSE;
d01414a5
TS
11698
11699 to = contents;
eea6121a 11700 end = contents + sec->size;
d01414a5
TS
11701 for (from = contents, i = 0;
11702 from < end;
11703 from += PDR_SIZE, i++)
11704 {
f0abc2a1 11705 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11706 continue;
11707 if (to != from)
11708 memcpy (to, from, PDR_SIZE);
11709 to += PDR_SIZE;
11710 }
11711 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11712 sec->output_offset, sec->size);
b34976b6 11713 return TRUE;
d01414a5 11714}
53bfd6b4 11715\f
df58fc94
RS
11716/* microMIPS code retains local labels for linker relaxation. Omit them
11717 from output by default for clarity. */
11718
11719bfd_boolean
11720_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11721{
11722 return _bfd_elf_is_local_label_name (abfd, sym->name);
11723}
11724
b49e97c9
TS
11725/* MIPS ELF uses a special find_nearest_line routine in order the
11726 handle the ECOFF debugging information. */
11727
11728struct mips_elf_find_line
11729{
11730 struct ecoff_debug_info d;
11731 struct ecoff_find_line i;
11732};
11733
b34976b6 11734bfd_boolean
9719ad41
RS
11735_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11736 asymbol **symbols, bfd_vma offset,
11737 const char **filename_ptr,
11738 const char **functionname_ptr,
11739 unsigned int *line_ptr)
b49e97c9
TS
11740{
11741 asection *msec;
11742
11743 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11744 filename_ptr, functionname_ptr,
11745 line_ptr))
b34976b6 11746 return TRUE;
b49e97c9 11747
fc28f9aa
TG
11748 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11749 section, symbols, offset,
b49e97c9 11750 filename_ptr, functionname_ptr,
9b8d1a36 11751 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11752 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11753 return TRUE;
b49e97c9
TS
11754
11755 msec = bfd_get_section_by_name (abfd, ".mdebug");
11756 if (msec != NULL)
11757 {
11758 flagword origflags;
11759 struct mips_elf_find_line *fi;
11760 const struct ecoff_debug_swap * const swap =
11761 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11762
11763 /* If we are called during a link, mips_elf_final_link may have
11764 cleared the SEC_HAS_CONTENTS field. We force it back on here
11765 if appropriate (which it normally will be). */
11766 origflags = msec->flags;
11767 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11768 msec->flags |= SEC_HAS_CONTENTS;
11769
11770 fi = elf_tdata (abfd)->find_line_info;
11771 if (fi == NULL)
11772 {
11773 bfd_size_type external_fdr_size;
11774 char *fraw_src;
11775 char *fraw_end;
11776 struct fdr *fdr_ptr;
11777 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11778
9719ad41 11779 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11780 if (fi == NULL)
11781 {
11782 msec->flags = origflags;
b34976b6 11783 return FALSE;
b49e97c9
TS
11784 }
11785
11786 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11787 {
11788 msec->flags = origflags;
b34976b6 11789 return FALSE;
b49e97c9
TS
11790 }
11791
11792 /* Swap in the FDR information. */
11793 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11794 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11795 if (fi->d.fdr == NULL)
11796 {
11797 msec->flags = origflags;
b34976b6 11798 return FALSE;
b49e97c9
TS
11799 }
11800 external_fdr_size = swap->external_fdr_size;
11801 fdr_ptr = fi->d.fdr;
11802 fraw_src = (char *) fi->d.external_fdr;
11803 fraw_end = (fraw_src
11804 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11805 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11806 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11807
11808 elf_tdata (abfd)->find_line_info = fi;
11809
11810 /* Note that we don't bother to ever free this information.
11811 find_nearest_line is either called all the time, as in
11812 objdump -l, so the information should be saved, or it is
11813 rarely called, as in ld error messages, so the memory
11814 wasted is unimportant. Still, it would probably be a
11815 good idea for free_cached_info to throw it away. */
11816 }
11817
11818 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11819 &fi->i, filename_ptr, functionname_ptr,
11820 line_ptr))
11821 {
11822 msec->flags = origflags;
b34976b6 11823 return TRUE;
b49e97c9
TS
11824 }
11825
11826 msec->flags = origflags;
11827 }
11828
11829 /* Fall back on the generic ELF find_nearest_line routine. */
11830
11831 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11832 filename_ptr, functionname_ptr,
11833 line_ptr);
11834}
4ab527b0
FF
11835
11836bfd_boolean
11837_bfd_mips_elf_find_inliner_info (bfd *abfd,
11838 const char **filename_ptr,
11839 const char **functionname_ptr,
11840 unsigned int *line_ptr)
11841{
11842 bfd_boolean found;
11843 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11844 functionname_ptr, line_ptr,
11845 & elf_tdata (abfd)->dwarf2_find_line_info);
11846 return found;
11847}
11848
b49e97c9
TS
11849\f
11850/* When are writing out the .options or .MIPS.options section,
11851 remember the bytes we are writing out, so that we can install the
11852 GP value in the section_processing routine. */
11853
b34976b6 11854bfd_boolean
9719ad41
RS
11855_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11856 const void *location,
11857 file_ptr offset, bfd_size_type count)
b49e97c9 11858{
cc2e31b9 11859 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11860 {
11861 bfd_byte *c;
11862
11863 if (elf_section_data (section) == NULL)
11864 {
11865 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11866 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11867 if (elf_section_data (section) == NULL)
b34976b6 11868 return FALSE;
b49e97c9 11869 }
f0abc2a1 11870 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11871 if (c == NULL)
11872 {
eea6121a 11873 c = bfd_zalloc (abfd, section->size);
b49e97c9 11874 if (c == NULL)
b34976b6 11875 return FALSE;
f0abc2a1 11876 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11877 }
11878
9719ad41 11879 memcpy (c + offset, location, count);
b49e97c9
TS
11880 }
11881
11882 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11883 count);
11884}
11885
11886/* This is almost identical to bfd_generic_get_... except that some
11887 MIPS relocations need to be handled specially. Sigh. */
11888
11889bfd_byte *
9719ad41
RS
11890_bfd_elf_mips_get_relocated_section_contents
11891 (bfd *abfd,
11892 struct bfd_link_info *link_info,
11893 struct bfd_link_order *link_order,
11894 bfd_byte *data,
11895 bfd_boolean relocatable,
11896 asymbol **symbols)
b49e97c9
TS
11897{
11898 /* Get enough memory to hold the stuff */
11899 bfd *input_bfd = link_order->u.indirect.section->owner;
11900 asection *input_section = link_order->u.indirect.section;
eea6121a 11901 bfd_size_type sz;
b49e97c9
TS
11902
11903 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11904 arelent **reloc_vector = NULL;
11905 long reloc_count;
11906
11907 if (reloc_size < 0)
11908 goto error_return;
11909
9719ad41 11910 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11911 if (reloc_vector == NULL && reloc_size != 0)
11912 goto error_return;
11913
11914 /* read in the section */
eea6121a
AM
11915 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11916 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11917 goto error_return;
11918
b49e97c9
TS
11919 reloc_count = bfd_canonicalize_reloc (input_bfd,
11920 input_section,
11921 reloc_vector,
11922 symbols);
11923 if (reloc_count < 0)
11924 goto error_return;
11925
11926 if (reloc_count > 0)
11927 {
11928 arelent **parent;
11929 /* for mips */
11930 int gp_found;
11931 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11932
11933 {
11934 struct bfd_hash_entry *h;
11935 struct bfd_link_hash_entry *lh;
11936 /* Skip all this stuff if we aren't mixing formats. */
11937 if (abfd && input_bfd
11938 && abfd->xvec == input_bfd->xvec)
11939 lh = 0;
11940 else
11941 {
b34976b6 11942 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11943 lh = (struct bfd_link_hash_entry *) h;
11944 }
11945 lookup:
11946 if (lh)
11947 {
11948 switch (lh->type)
11949 {
11950 case bfd_link_hash_undefined:
11951 case bfd_link_hash_undefweak:
11952 case bfd_link_hash_common:
11953 gp_found = 0;
11954 break;
11955 case bfd_link_hash_defined:
11956 case bfd_link_hash_defweak:
11957 gp_found = 1;
11958 gp = lh->u.def.value;
11959 break;
11960 case bfd_link_hash_indirect:
11961 case bfd_link_hash_warning:
11962 lh = lh->u.i.link;
11963 /* @@FIXME ignoring warning for now */
11964 goto lookup;
11965 case bfd_link_hash_new:
11966 default:
11967 abort ();
11968 }
11969 }
11970 else
11971 gp_found = 0;
11972 }
11973 /* end mips */
9719ad41 11974 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11975 {
9719ad41 11976 char *error_message = NULL;
b49e97c9
TS
11977 bfd_reloc_status_type r;
11978
11979 /* Specific to MIPS: Deal with relocation types that require
11980 knowing the gp of the output bfd. */
11981 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11982
8236346f
EC
11983 /* If we've managed to find the gp and have a special
11984 function for the relocation then go ahead, else default
11985 to the generic handling. */
11986 if (gp_found
11987 && (*parent)->howto->special_function
11988 == _bfd_mips_elf32_gprel16_reloc)
11989 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11990 input_section, relocatable,
11991 data, gp);
11992 else
86324f90 11993 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11994 input_section,
11995 relocatable ? abfd : NULL,
11996 &error_message);
b49e97c9 11997
1049f94e 11998 if (relocatable)
b49e97c9
TS
11999 {
12000 asection *os = input_section->output_section;
12001
12002 /* A partial link, so keep the relocs */
12003 os->orelocation[os->reloc_count] = *parent;
12004 os->reloc_count++;
12005 }
12006
12007 if (r != bfd_reloc_ok)
12008 {
12009 switch (r)
12010 {
12011 case bfd_reloc_undefined:
12012 if (!((*link_info->callbacks->undefined_symbol)
12013 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 12014 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
12015 goto error_return;
12016 break;
12017 case bfd_reloc_dangerous:
9719ad41 12018 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
12019 if (!((*link_info->callbacks->reloc_dangerous)
12020 (link_info, error_message, input_bfd, input_section,
12021 (*parent)->address)))
12022 goto error_return;
12023 break;
12024 case bfd_reloc_overflow:
12025 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
12026 (link_info, NULL,
12027 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
12028 (*parent)->howto->name, (*parent)->addend,
12029 input_bfd, input_section, (*parent)->address)))
12030 goto error_return;
12031 break;
12032 case bfd_reloc_outofrange:
12033 default:
12034 abort ();
12035 break;
12036 }
12037
12038 }
12039 }
12040 }
12041 if (reloc_vector != NULL)
12042 free (reloc_vector);
12043 return data;
12044
12045error_return:
12046 if (reloc_vector != NULL)
12047 free (reloc_vector);
12048 return NULL;
12049}
12050\f
df58fc94
RS
12051static bfd_boolean
12052mips_elf_relax_delete_bytes (bfd *abfd,
12053 asection *sec, bfd_vma addr, int count)
12054{
12055 Elf_Internal_Shdr *symtab_hdr;
12056 unsigned int sec_shndx;
12057 bfd_byte *contents;
12058 Elf_Internal_Rela *irel, *irelend;
12059 Elf_Internal_Sym *isym;
12060 Elf_Internal_Sym *isymend;
12061 struct elf_link_hash_entry **sym_hashes;
12062 struct elf_link_hash_entry **end_hashes;
12063 struct elf_link_hash_entry **start_hashes;
12064 unsigned int symcount;
12065
12066 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12067 contents = elf_section_data (sec)->this_hdr.contents;
12068
12069 irel = elf_section_data (sec)->relocs;
12070 irelend = irel + sec->reloc_count;
12071
12072 /* Actually delete the bytes. */
12073 memmove (contents + addr, contents + addr + count,
12074 (size_t) (sec->size - addr - count));
12075 sec->size -= count;
12076
12077 /* Adjust all the relocs. */
12078 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12079 {
12080 /* Get the new reloc address. */
12081 if (irel->r_offset > addr)
12082 irel->r_offset -= count;
12083 }
12084
12085 BFD_ASSERT (addr % 2 == 0);
12086 BFD_ASSERT (count % 2 == 0);
12087
12088 /* Adjust the local symbols defined in this section. */
12089 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12090 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12091 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12092 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12093 isym->st_value -= count;
12094
12095 /* Now adjust the global symbols defined in this section. */
12096 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12097 - symtab_hdr->sh_info);
12098 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12099 end_hashes = sym_hashes + symcount;
12100
12101 for (; sym_hashes < end_hashes; sym_hashes++)
12102 {
12103 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12104
12105 if ((sym_hash->root.type == bfd_link_hash_defined
12106 || sym_hash->root.type == bfd_link_hash_defweak)
12107 && sym_hash->root.u.def.section == sec)
12108 {
2309ddf2 12109 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12110
df58fc94
RS
12111 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12112 value &= MINUS_TWO;
12113 if (value > addr)
12114 sym_hash->root.u.def.value -= count;
12115 }
12116 }
12117
12118 return TRUE;
12119}
12120
12121
12122/* Opcodes needed for microMIPS relaxation as found in
12123 opcodes/micromips-opc.c. */
12124
12125struct opcode_descriptor {
12126 unsigned long match;
12127 unsigned long mask;
12128};
12129
12130/* The $ra register aka $31. */
12131
12132#define RA 31
12133
12134/* 32-bit instruction format register fields. */
12135
12136#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12137#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12138
12139/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12140
12141#define OP16_VALID_REG(r) \
12142 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12143
12144
12145/* 32-bit and 16-bit branches. */
12146
12147static const struct opcode_descriptor b_insns_32[] = {
12148 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12149 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12150 { 0, 0 } /* End marker for find_match(). */
12151};
12152
12153static const struct opcode_descriptor bc_insn_32 =
12154 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12155
12156static const struct opcode_descriptor bz_insn_32 =
12157 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12158
12159static const struct opcode_descriptor bzal_insn_32 =
12160 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12161
12162static const struct opcode_descriptor beq_insn_32 =
12163 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12164
12165static const struct opcode_descriptor b_insn_16 =
12166 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12167
12168static const struct opcode_descriptor bz_insn_16 =
c088dedf 12169 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12170
12171
12172/* 32-bit and 16-bit branch EQ and NE zero. */
12173
12174/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12175 eq and second the ne. This convention is used when replacing a
12176 32-bit BEQ/BNE with the 16-bit version. */
12177
12178#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12179
12180static const struct opcode_descriptor bz_rs_insns_32[] = {
12181 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12182 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12183 { 0, 0 } /* End marker for find_match(). */
12184};
12185
12186static const struct opcode_descriptor bz_rt_insns_32[] = {
12187 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12188 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12189 { 0, 0 } /* End marker for find_match(). */
12190};
12191
12192static const struct opcode_descriptor bzc_insns_32[] = {
12193 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12194 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12195 { 0, 0 } /* End marker for find_match(). */
12196};
12197
12198static const struct opcode_descriptor bz_insns_16[] = {
12199 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12200 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12201 { 0, 0 } /* End marker for find_match(). */
12202};
12203
12204/* Switch between a 5-bit register index and its 3-bit shorthand. */
12205
12206#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12207#define BZ16_REG_FIELD(r) \
12208 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12209
12210
12211/* 32-bit instructions with a delay slot. */
12212
12213static const struct opcode_descriptor jal_insn_32_bd16 =
12214 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12215
12216static const struct opcode_descriptor jal_insn_32_bd32 =
12217 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12218
12219static const struct opcode_descriptor jal_x_insn_32_bd32 =
12220 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12221
12222static const struct opcode_descriptor j_insn_32 =
12223 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12224
12225static const struct opcode_descriptor jalr_insn_32 =
12226 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12227
12228/* This table can be compacted, because no opcode replacement is made. */
12229
12230static const struct opcode_descriptor ds_insns_32_bd16[] = {
12231 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12232
12233 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12234 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12235
12236 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12237 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12238 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12239 { 0, 0 } /* End marker for find_match(). */
12240};
12241
12242/* This table can be compacted, because no opcode replacement is made. */
12243
12244static const struct opcode_descriptor ds_insns_32_bd32[] = {
12245 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12246
12247 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12248 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12249 { 0, 0 } /* End marker for find_match(). */
12250};
12251
12252
12253/* 16-bit instructions with a delay slot. */
12254
12255static const struct opcode_descriptor jalr_insn_16_bd16 =
12256 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12257
12258static const struct opcode_descriptor jalr_insn_16_bd32 =
12259 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12260
12261static const struct opcode_descriptor jr_insn_16 =
12262 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12263
12264#define JR16_REG(opcode) ((opcode) & 0x1f)
12265
12266/* This table can be compacted, because no opcode replacement is made. */
12267
12268static const struct opcode_descriptor ds_insns_16_bd16[] = {
12269 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12270
12271 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12272 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12273 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12274 { 0, 0 } /* End marker for find_match(). */
12275};
12276
12277
12278/* LUI instruction. */
12279
12280static const struct opcode_descriptor lui_insn =
12281 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12282
12283
12284/* ADDIU instruction. */
12285
12286static const struct opcode_descriptor addiu_insn =
12287 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12288
12289static const struct opcode_descriptor addiupc_insn =
12290 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12291
12292#define ADDIUPC_REG_FIELD(r) \
12293 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12294
12295
12296/* Relaxable instructions in a JAL delay slot: MOVE. */
12297
12298/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12299 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12300#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12301#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12302
12303#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12304#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12305
12306static const struct opcode_descriptor move_insns_32[] = {
12307 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12308 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12309 { 0, 0 } /* End marker for find_match(). */
12310};
12311
12312static const struct opcode_descriptor move_insn_16 =
12313 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12314
12315
12316/* NOP instructions. */
12317
12318static const struct opcode_descriptor nop_insn_32 =
12319 { /* "nop", "", */ 0x00000000, 0xffffffff };
12320
12321static const struct opcode_descriptor nop_insn_16 =
12322 { /* "nop", "", */ 0x0c00, 0xffff };
12323
12324
12325/* Instruction match support. */
12326
12327#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12328
12329static int
12330find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12331{
12332 unsigned long indx;
12333
12334 for (indx = 0; insn[indx].mask != 0; indx++)
12335 if (MATCH (opcode, insn[indx]))
12336 return indx;
12337
12338 return -1;
12339}
12340
12341
12342/* Branch and delay slot decoding support. */
12343
12344/* If PTR points to what *might* be a 16-bit branch or jump, then
12345 return the minimum length of its delay slot, otherwise return 0.
12346 Non-zero results are not definitive as we might be checking against
12347 the second half of another instruction. */
12348
12349static int
12350check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12351{
12352 unsigned long opcode;
12353 int bdsize;
12354
12355 opcode = bfd_get_16 (abfd, ptr);
12356 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12357 /* 16-bit branch/jump with a 32-bit delay slot. */
12358 bdsize = 4;
12359 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12360 || find_match (opcode, ds_insns_16_bd16) >= 0)
12361 /* 16-bit branch/jump with a 16-bit delay slot. */
12362 bdsize = 2;
12363 else
12364 /* No delay slot. */
12365 bdsize = 0;
12366
12367 return bdsize;
12368}
12369
12370/* If PTR points to what *might* be a 32-bit branch or jump, then
12371 return the minimum length of its delay slot, otherwise return 0.
12372 Non-zero results are not definitive as we might be checking against
12373 the second half of another instruction. */
12374
12375static int
12376check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12377{
12378 unsigned long opcode;
12379 int bdsize;
12380
d21911ea 12381 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12382 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12383 /* 32-bit branch/jump with a 32-bit delay slot. */
12384 bdsize = 4;
12385 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12386 /* 32-bit branch/jump with a 16-bit delay slot. */
12387 bdsize = 2;
12388 else
12389 /* No delay slot. */
12390 bdsize = 0;
12391
12392 return bdsize;
12393}
12394
12395/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12396 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12397
12398static bfd_boolean
12399check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12400{
12401 unsigned long opcode;
12402
12403 opcode = bfd_get_16 (abfd, ptr);
12404 if (MATCH (opcode, b_insn_16)
12405 /* B16 */
12406 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12407 /* JR16 */
12408 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12409 /* BEQZ16, BNEZ16 */
12410 || (MATCH (opcode, jalr_insn_16_bd32)
12411 /* JALR16 */
12412 && reg != JR16_REG (opcode) && reg != RA))
12413 return TRUE;
12414
12415 return FALSE;
12416}
12417
12418/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12419 then return TRUE, otherwise FALSE. */
12420
f41e5fcc 12421static bfd_boolean
df58fc94
RS
12422check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12423{
12424 unsigned long opcode;
12425
d21911ea 12426 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12427 if (MATCH (opcode, j_insn_32)
12428 /* J */
12429 || MATCH (opcode, bc_insn_32)
12430 /* BC1F, BC1T, BC2F, BC2T */
12431 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12432 /* JAL, JALX */
12433 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12434 /* BGEZ, BGTZ, BLEZ, BLTZ */
12435 || (MATCH (opcode, bzal_insn_32)
12436 /* BGEZAL, BLTZAL */
12437 && reg != OP32_SREG (opcode) && reg != RA)
12438 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12439 /* JALR, JALR.HB, BEQ, BNE */
12440 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12441 return TRUE;
12442
12443 return FALSE;
12444}
12445
80cab405
MR
12446/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12447 IRELEND) at OFFSET indicate that there must be a compact branch there,
12448 then return TRUE, otherwise FALSE. */
df58fc94
RS
12449
12450static bfd_boolean
80cab405
MR
12451check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12452 const Elf_Internal_Rela *internal_relocs,
12453 const Elf_Internal_Rela *irelend)
df58fc94 12454{
80cab405
MR
12455 const Elf_Internal_Rela *irel;
12456 unsigned long opcode;
12457
d21911ea 12458 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12459 if (find_match (opcode, bzc_insns_32) < 0)
12460 return FALSE;
df58fc94
RS
12461
12462 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12463 if (irel->r_offset == offset
12464 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12465 return TRUE;
12466
df58fc94
RS
12467 return FALSE;
12468}
80cab405
MR
12469
12470/* Bitsize checking. */
12471#define IS_BITSIZE(val, N) \
12472 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12473 - (1ULL << ((N) - 1))) == (val))
12474
df58fc94
RS
12475\f
12476bfd_boolean
12477_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12478 struct bfd_link_info *link_info,
12479 bfd_boolean *again)
12480{
12481 Elf_Internal_Shdr *symtab_hdr;
12482 Elf_Internal_Rela *internal_relocs;
12483 Elf_Internal_Rela *irel, *irelend;
12484 bfd_byte *contents = NULL;
12485 Elf_Internal_Sym *isymbuf = NULL;
12486
12487 /* Assume nothing changes. */
12488 *again = FALSE;
12489
12490 /* We don't have to do anything for a relocatable link, if
12491 this section does not have relocs, or if this is not a
12492 code section. */
12493
12494 if (link_info->relocatable
12495 || (sec->flags & SEC_RELOC) == 0
12496 || sec->reloc_count == 0
12497 || (sec->flags & SEC_CODE) == 0)
12498 return TRUE;
12499
12500 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12501
12502 /* Get a copy of the native relocations. */
12503 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12504 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12505 link_info->keep_memory));
12506 if (internal_relocs == NULL)
12507 goto error_return;
12508
12509 /* Walk through them looking for relaxing opportunities. */
12510 irelend = internal_relocs + sec->reloc_count;
12511 for (irel = internal_relocs; irel < irelend; irel++)
12512 {
12513 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12514 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12515 bfd_boolean target_is_micromips_code_p;
12516 unsigned long opcode;
12517 bfd_vma symval;
12518 bfd_vma pcrval;
2309ddf2 12519 bfd_byte *ptr;
df58fc94
RS
12520 int fndopc;
12521
12522 /* The number of bytes to delete for relaxation and from where
12523 to delete these bytes starting at irel->r_offset. */
12524 int delcnt = 0;
12525 int deloff = 0;
12526
12527 /* If this isn't something that can be relaxed, then ignore
12528 this reloc. */
12529 if (r_type != R_MICROMIPS_HI16
12530 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12531 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12532 continue;
12533
12534 /* Get the section contents if we haven't done so already. */
12535 if (contents == NULL)
12536 {
12537 /* Get cached copy if it exists. */
12538 if (elf_section_data (sec)->this_hdr.contents != NULL)
12539 contents = elf_section_data (sec)->this_hdr.contents;
12540 /* Go get them off disk. */
12541 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12542 goto error_return;
12543 }
2309ddf2 12544 ptr = contents + irel->r_offset;
df58fc94
RS
12545
12546 /* Read this BFD's local symbols if we haven't done so already. */
12547 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12548 {
12549 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12550 if (isymbuf == NULL)
12551 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12552 symtab_hdr->sh_info, 0,
12553 NULL, NULL, NULL);
12554 if (isymbuf == NULL)
12555 goto error_return;
12556 }
12557
12558 /* Get the value of the symbol referred to by the reloc. */
12559 if (r_symndx < symtab_hdr->sh_info)
12560 {
12561 /* A local symbol. */
12562 Elf_Internal_Sym *isym;
12563 asection *sym_sec;
12564
12565 isym = isymbuf + r_symndx;
12566 if (isym->st_shndx == SHN_UNDEF)
12567 sym_sec = bfd_und_section_ptr;
12568 else if (isym->st_shndx == SHN_ABS)
12569 sym_sec = bfd_abs_section_ptr;
12570 else if (isym->st_shndx == SHN_COMMON)
12571 sym_sec = bfd_com_section_ptr;
12572 else
12573 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12574 symval = (isym->st_value
12575 + sym_sec->output_section->vma
12576 + sym_sec->output_offset);
12577 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12578 }
12579 else
12580 {
12581 unsigned long indx;
12582 struct elf_link_hash_entry *h;
12583
12584 /* An external symbol. */
12585 indx = r_symndx - symtab_hdr->sh_info;
12586 h = elf_sym_hashes (abfd)[indx];
12587 BFD_ASSERT (h != NULL);
12588
12589 if (h->root.type != bfd_link_hash_defined
12590 && h->root.type != bfd_link_hash_defweak)
12591 /* This appears to be a reference to an undefined
12592 symbol. Just ignore it -- it will be caught by the
12593 regular reloc processing. */
12594 continue;
12595
12596 symval = (h->root.u.def.value
12597 + h->root.u.def.section->output_section->vma
12598 + h->root.u.def.section->output_offset);
12599 target_is_micromips_code_p = (!h->needs_plt
12600 && ELF_ST_IS_MICROMIPS (h->other));
12601 }
12602
12603
12604 /* For simplicity of coding, we are going to modify the
12605 section contents, the section relocs, and the BFD symbol
12606 table. We must tell the rest of the code not to free up this
12607 information. It would be possible to instead create a table
12608 of changes which have to be made, as is done in coff-mips.c;
12609 that would be more work, but would require less memory when
12610 the linker is run. */
12611
12612 /* Only 32-bit instructions relaxed. */
12613 if (irel->r_offset + 4 > sec->size)
12614 continue;
12615
d21911ea 12616 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12617
12618 /* This is the pc-relative distance from the instruction the
12619 relocation is applied to, to the symbol referred. */
12620 pcrval = (symval
12621 - (sec->output_section->vma + sec->output_offset)
12622 - irel->r_offset);
12623
12624 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12625 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12626 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12627
12628 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12629
12630 where pcrval has first to be adjusted to apply against the LO16
12631 location (we make the adjustment later on, when we have figured
12632 out the offset). */
12633 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12634 {
80cab405 12635 bfd_boolean bzc = FALSE;
df58fc94
RS
12636 unsigned long nextopc;
12637 unsigned long reg;
12638 bfd_vma offset;
12639
12640 /* Give up if the previous reloc was a HI16 against this symbol
12641 too. */
12642 if (irel > internal_relocs
12643 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12644 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12645 continue;
12646
12647 /* Or if the next reloc is not a LO16 against this symbol. */
12648 if (irel + 1 >= irelend
12649 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12650 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12651 continue;
12652
12653 /* Or if the second next reloc is a LO16 against this symbol too. */
12654 if (irel + 2 >= irelend
12655 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12656 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12657 continue;
12658
80cab405
MR
12659 /* See if the LUI instruction *might* be in a branch delay slot.
12660 We check whether what looks like a 16-bit branch or jump is
12661 actually an immediate argument to a compact branch, and let
12662 it through if so. */
df58fc94 12663 if (irel->r_offset >= 2
2309ddf2 12664 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12665 && !(irel->r_offset >= 4
80cab405
MR
12666 && (bzc = check_relocated_bzc (abfd,
12667 ptr - 4, irel->r_offset - 4,
12668 internal_relocs, irelend))))
df58fc94
RS
12669 continue;
12670 if (irel->r_offset >= 4
80cab405 12671 && !bzc
2309ddf2 12672 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12673 continue;
12674
12675 reg = OP32_SREG (opcode);
12676
12677 /* We only relax adjacent instructions or ones separated with
12678 a branch or jump that has a delay slot. The branch or jump
12679 must not fiddle with the register used to hold the address.
12680 Subtract 4 for the LUI itself. */
12681 offset = irel[1].r_offset - irel[0].r_offset;
12682 switch (offset - 4)
12683 {
12684 case 0:
12685 break;
12686 case 2:
2309ddf2 12687 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12688 break;
12689 continue;
12690 case 4:
2309ddf2 12691 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12692 break;
12693 continue;
12694 default:
12695 continue;
12696 }
12697
d21911ea 12698 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12699
12700 /* Give up unless the same register is used with both
12701 relocations. */
12702 if (OP32_SREG (nextopc) != reg)
12703 continue;
12704
12705 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12706 and rounding up to take masking of the two LSBs into account. */
12707 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12708
12709 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12710 if (IS_BITSIZE (symval, 16))
12711 {
12712 /* Fix the relocation's type. */
12713 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12714
12715 /* Instructions using R_MICROMIPS_LO16 have the base or
12716 source register in bits 20:16. This register becomes $0
12717 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12718 nextopc &= ~0x001f0000;
12719 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12720 contents + irel[1].r_offset);
12721 }
12722
12723 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12724 We add 4 to take LUI deletion into account while checking
12725 the PC-relative distance. */
12726 else if (symval % 4 == 0
12727 && IS_BITSIZE (pcrval + 4, 25)
12728 && MATCH (nextopc, addiu_insn)
12729 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12730 && OP16_VALID_REG (OP32_TREG (nextopc)))
12731 {
12732 /* Fix the relocation's type. */
12733 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12734
12735 /* Replace ADDIU with the ADDIUPC version. */
12736 nextopc = (addiupc_insn.match
12737 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12738
d21911ea
MR
12739 bfd_put_micromips_32 (abfd, nextopc,
12740 contents + irel[1].r_offset);
df58fc94
RS
12741 }
12742
12743 /* Can't do anything, give up, sigh... */
12744 else
12745 continue;
12746
12747 /* Fix the relocation's type. */
12748 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12749
12750 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12751 delcnt = 4;
12752 deloff = 0;
12753 }
12754
12755 /* Compact branch relaxation -- due to the multitude of macros
12756 employed by the compiler/assembler, compact branches are not
12757 always generated. Obviously, this can/will be fixed elsewhere,
12758 but there is no drawback in double checking it here. */
12759 else if (r_type == R_MICROMIPS_PC16_S1
12760 && irel->r_offset + 5 < sec->size
12761 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12762 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12763 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12764 {
12765 unsigned long reg;
12766
12767 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12768
12769 /* Replace BEQZ/BNEZ with the compact version. */
12770 opcode = (bzc_insns_32[fndopc].match
12771 | BZC32_REG_FIELD (reg)
12772 | (opcode & 0xffff)); /* Addend value. */
12773
d21911ea 12774 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12775
12776 /* Delete the 16-bit delay slot NOP: two bytes from
12777 irel->offset + 4. */
12778 delcnt = 2;
12779 deloff = 4;
12780 }
12781
12782 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12783 to check the distance from the next instruction, so subtract 2. */
12784 else if (r_type == R_MICROMIPS_PC16_S1
12785 && IS_BITSIZE (pcrval - 2, 11)
12786 && find_match (opcode, b_insns_32) >= 0)
12787 {
12788 /* Fix the relocation's type. */
12789 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12790
a8685210 12791 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12792 bfd_put_16 (abfd,
12793 (b_insn_16.match
12794 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12795 ptr);
df58fc94
RS
12796
12797 /* Delete 2 bytes from irel->r_offset + 2. */
12798 delcnt = 2;
12799 deloff = 2;
12800 }
12801
12802 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12803 to check the distance from the next instruction, so subtract 2. */
12804 else if (r_type == R_MICROMIPS_PC16_S1
12805 && IS_BITSIZE (pcrval - 2, 8)
12806 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12807 && OP16_VALID_REG (OP32_SREG (opcode)))
12808 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12809 && OP16_VALID_REG (OP32_TREG (opcode)))))
12810 {
12811 unsigned long reg;
12812
12813 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12814
12815 /* Fix the relocation's type. */
12816 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12817
a8685210 12818 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12819 bfd_put_16 (abfd,
12820 (bz_insns_16[fndopc].match
12821 | BZ16_REG_FIELD (reg)
12822 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12823 ptr);
df58fc94
RS
12824
12825 /* Delete 2 bytes from irel->r_offset + 2. */
12826 delcnt = 2;
12827 deloff = 2;
12828 }
12829
12830 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12831 else if (r_type == R_MICROMIPS_26_S1
12832 && target_is_micromips_code_p
12833 && irel->r_offset + 7 < sec->size
12834 && MATCH (opcode, jal_insn_32_bd32))
12835 {
12836 unsigned long n32opc;
12837 bfd_boolean relaxed = FALSE;
12838
d21911ea 12839 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12840
12841 if (MATCH (n32opc, nop_insn_32))
12842 {
12843 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12844 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12845
12846 relaxed = TRUE;
12847 }
12848 else if (find_match (n32opc, move_insns_32) >= 0)
12849 {
12850 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12851 bfd_put_16 (abfd,
12852 (move_insn_16.match
12853 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12854 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12855 ptr + 4);
df58fc94
RS
12856
12857 relaxed = TRUE;
12858 }
12859 /* Other 32-bit instructions relaxable to 16-bit
12860 instructions will be handled here later. */
12861
12862 if (relaxed)
12863 {
12864 /* JAL with 32-bit delay slot that is changed to a JALS
12865 with 16-bit delay slot. */
d21911ea 12866 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12867
12868 /* Delete 2 bytes from irel->r_offset + 6. */
12869 delcnt = 2;
12870 deloff = 6;
12871 }
12872 }
12873
12874 if (delcnt != 0)
12875 {
12876 /* Note that we've changed the relocs, section contents, etc. */
12877 elf_section_data (sec)->relocs = internal_relocs;
12878 elf_section_data (sec)->this_hdr.contents = contents;
12879 symtab_hdr->contents = (unsigned char *) isymbuf;
12880
12881 /* Delete bytes depending on the delcnt and deloff. */
12882 if (!mips_elf_relax_delete_bytes (abfd, sec,
12883 irel->r_offset + deloff, delcnt))
12884 goto error_return;
12885
12886 /* That will change things, so we should relax again.
12887 Note that this is not required, and it may be slow. */
12888 *again = TRUE;
12889 }
12890 }
12891
12892 if (isymbuf != NULL
12893 && symtab_hdr->contents != (unsigned char *) isymbuf)
12894 {
12895 if (! link_info->keep_memory)
12896 free (isymbuf);
12897 else
12898 {
12899 /* Cache the symbols for elf_link_input_bfd. */
12900 symtab_hdr->contents = (unsigned char *) isymbuf;
12901 }
12902 }
12903
12904 if (contents != NULL
12905 && elf_section_data (sec)->this_hdr.contents != contents)
12906 {
12907 if (! link_info->keep_memory)
12908 free (contents);
12909 else
12910 {
12911 /* Cache the section contents for elf_link_input_bfd. */
12912 elf_section_data (sec)->this_hdr.contents = contents;
12913 }
12914 }
12915
12916 if (internal_relocs != NULL
12917 && elf_section_data (sec)->relocs != internal_relocs)
12918 free (internal_relocs);
12919
12920 return TRUE;
12921
12922 error_return:
12923 if (isymbuf != NULL
12924 && symtab_hdr->contents != (unsigned char *) isymbuf)
12925 free (isymbuf);
12926 if (contents != NULL
12927 && elf_section_data (sec)->this_hdr.contents != contents)
12928 free (contents);
12929 if (internal_relocs != NULL
12930 && elf_section_data (sec)->relocs != internal_relocs)
12931 free (internal_relocs);
12932
12933 return FALSE;
12934}
12935\f
b49e97c9
TS
12936/* Create a MIPS ELF linker hash table. */
12937
12938struct bfd_link_hash_table *
9719ad41 12939_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12940{
12941 struct mips_elf_link_hash_table *ret;
12942 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12943
7bf52ea2 12944 ret = bfd_zmalloc (amt);
9719ad41 12945 if (ret == NULL)
b49e97c9
TS
12946 return NULL;
12947
66eb6687
AM
12948 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12949 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12950 sizeof (struct mips_elf_link_hash_entry),
12951 MIPS_ELF_DATA))
b49e97c9 12952 {
e2d34d7d 12953 free (ret);
b49e97c9
TS
12954 return NULL;
12955 }
12956
b49e97c9
TS
12957 return &ret->root.root;
12958}
0a44bf69
RS
12959
12960/* Likewise, but indicate that the target is VxWorks. */
12961
12962struct bfd_link_hash_table *
12963_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12964{
12965 struct bfd_link_hash_table *ret;
12966
12967 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12968 if (ret)
12969 {
12970 struct mips_elf_link_hash_table *htab;
12971
12972 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12973 htab->use_plts_and_copy_relocs = TRUE;
12974 htab->is_vxworks = TRUE;
0a44bf69
RS
12975 }
12976 return ret;
12977}
861fb55a
DJ
12978
12979/* A function that the linker calls if we are allowed to use PLTs
12980 and copy relocs. */
12981
12982void
12983_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12984{
12985 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12986}
b49e97c9
TS
12987\f
12988/* We need to use a special link routine to handle the .reginfo and
12989 the .mdebug sections. We need to merge all instances of these
12990 sections together, not write them all out sequentially. */
12991
b34976b6 12992bfd_boolean
9719ad41 12993_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12994{
b49e97c9
TS
12995 asection *o;
12996 struct bfd_link_order *p;
12997 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12998 asection *rtproc_sec;
12999 Elf32_RegInfo reginfo;
13000 struct ecoff_debug_info debug;
861fb55a 13001 struct mips_htab_traverse_info hti;
7a2a6943
NC
13002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13003 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 13004 HDRR *symhdr = &debug.symbolic_header;
9719ad41 13005 void *mdebug_handle = NULL;
b49e97c9
TS
13006 asection *s;
13007 EXTR esym;
13008 unsigned int i;
13009 bfd_size_type amt;
0a44bf69 13010 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
13011
13012 static const char * const secname[] =
13013 {
13014 ".text", ".init", ".fini", ".data",
13015 ".rodata", ".sdata", ".sbss", ".bss"
13016 };
13017 static const int sc[] =
13018 {
13019 scText, scInit, scFini, scData,
13020 scRData, scSData, scSBss, scBss
13021 };
13022
d4596a51
RS
13023 /* Sort the dynamic symbols so that those with GOT entries come after
13024 those without. */
0a44bf69 13025 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
13026 BFD_ASSERT (htab != NULL);
13027
d4596a51
RS
13028 if (!mips_elf_sort_hash_table (abfd, info))
13029 return FALSE;
b49e97c9 13030
861fb55a
DJ
13031 /* Create any scheduled LA25 stubs. */
13032 hti.info = info;
13033 hti.output_bfd = abfd;
13034 hti.error = FALSE;
13035 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13036 if (hti.error)
13037 return FALSE;
13038
b49e97c9
TS
13039 /* Get a value for the GP register. */
13040 if (elf_gp (abfd) == 0)
13041 {
13042 struct bfd_link_hash_entry *h;
13043
b34976b6 13044 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 13045 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
13046 elf_gp (abfd) = (h->u.def.value
13047 + h->u.def.section->output_section->vma
13048 + h->u.def.section->output_offset);
0a44bf69
RS
13049 else if (htab->is_vxworks
13050 && (h = bfd_link_hash_lookup (info->hash,
13051 "_GLOBAL_OFFSET_TABLE_",
13052 FALSE, FALSE, TRUE))
13053 && h->type == bfd_link_hash_defined)
13054 elf_gp (abfd) = (h->u.def.section->output_section->vma
13055 + h->u.def.section->output_offset
13056 + h->u.def.value);
1049f94e 13057 else if (info->relocatable)
b49e97c9
TS
13058 {
13059 bfd_vma lo = MINUS_ONE;
13060
13061 /* Find the GP-relative section with the lowest offset. */
9719ad41 13062 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13063 if (o->vma < lo
13064 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13065 lo = o->vma;
13066
13067 /* And calculate GP relative to that. */
0a44bf69 13068 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
13069 }
13070 else
13071 {
13072 /* If the relocate_section function needs to do a reloc
13073 involving the GP value, it should make a reloc_dangerous
13074 callback to warn that GP is not defined. */
13075 }
13076 }
13077
13078 /* Go through the sections and collect the .reginfo and .mdebug
13079 information. */
13080 reginfo_sec = NULL;
13081 mdebug_sec = NULL;
13082 gptab_data_sec = NULL;
13083 gptab_bss_sec = NULL;
9719ad41 13084 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13085 {
13086 if (strcmp (o->name, ".reginfo") == 0)
13087 {
13088 memset (&reginfo, 0, sizeof reginfo);
13089
13090 /* We have found the .reginfo section in the output file.
13091 Look through all the link_orders comprising it and merge
13092 the information together. */
8423293d 13093 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13094 {
13095 asection *input_section;
13096 bfd *input_bfd;
13097 Elf32_External_RegInfo ext;
13098 Elf32_RegInfo sub;
13099
13100 if (p->type != bfd_indirect_link_order)
13101 {
13102 if (p->type == bfd_data_link_order)
13103 continue;
13104 abort ();
13105 }
13106
13107 input_section = p->u.indirect.section;
13108 input_bfd = input_section->owner;
13109
b49e97c9 13110 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13111 &ext, 0, sizeof ext))
b34976b6 13112 return FALSE;
b49e97c9
TS
13113
13114 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13115
13116 reginfo.ri_gprmask |= sub.ri_gprmask;
13117 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13118 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13119 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13120 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13121
13122 /* ri_gp_value is set by the function
13123 mips_elf32_section_processing when the section is
13124 finally written out. */
13125
13126 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13127 elf_link_input_bfd ignores this section. */
13128 input_section->flags &= ~SEC_HAS_CONTENTS;
13129 }
13130
13131 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13132 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13133
13134 /* Skip this section later on (I don't think this currently
13135 matters, but someday it might). */
8423293d 13136 o->map_head.link_order = NULL;
b49e97c9
TS
13137
13138 reginfo_sec = o;
13139 }
13140
13141 if (strcmp (o->name, ".mdebug") == 0)
13142 {
13143 struct extsym_info einfo;
13144 bfd_vma last;
13145
13146 /* We have found the .mdebug section in the output file.
13147 Look through all the link_orders comprising it and merge
13148 the information together. */
13149 symhdr->magic = swap->sym_magic;
13150 /* FIXME: What should the version stamp be? */
13151 symhdr->vstamp = 0;
13152 symhdr->ilineMax = 0;
13153 symhdr->cbLine = 0;
13154 symhdr->idnMax = 0;
13155 symhdr->ipdMax = 0;
13156 symhdr->isymMax = 0;
13157 symhdr->ioptMax = 0;
13158 symhdr->iauxMax = 0;
13159 symhdr->issMax = 0;
13160 symhdr->issExtMax = 0;
13161 symhdr->ifdMax = 0;
13162 symhdr->crfd = 0;
13163 symhdr->iextMax = 0;
13164
13165 /* We accumulate the debugging information itself in the
13166 debug_info structure. */
13167 debug.line = NULL;
13168 debug.external_dnr = NULL;
13169 debug.external_pdr = NULL;
13170 debug.external_sym = NULL;
13171 debug.external_opt = NULL;
13172 debug.external_aux = NULL;
13173 debug.ss = NULL;
13174 debug.ssext = debug.ssext_end = NULL;
13175 debug.external_fdr = NULL;
13176 debug.external_rfd = NULL;
13177 debug.external_ext = debug.external_ext_end = NULL;
13178
13179 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13180 if (mdebug_handle == NULL)
b34976b6 13181 return FALSE;
b49e97c9
TS
13182
13183 esym.jmptbl = 0;
13184 esym.cobol_main = 0;
13185 esym.weakext = 0;
13186 esym.reserved = 0;
13187 esym.ifd = ifdNil;
13188 esym.asym.iss = issNil;
13189 esym.asym.st = stLocal;
13190 esym.asym.reserved = 0;
13191 esym.asym.index = indexNil;
13192 last = 0;
13193 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13194 {
13195 esym.asym.sc = sc[i];
13196 s = bfd_get_section_by_name (abfd, secname[i]);
13197 if (s != NULL)
13198 {
13199 esym.asym.value = s->vma;
eea6121a 13200 last = s->vma + s->size;
b49e97c9
TS
13201 }
13202 else
13203 esym.asym.value = last;
13204 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13205 secname[i], &esym))
b34976b6 13206 return FALSE;
b49e97c9
TS
13207 }
13208
8423293d 13209 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13210 {
13211 asection *input_section;
13212 bfd *input_bfd;
13213 const struct ecoff_debug_swap *input_swap;
13214 struct ecoff_debug_info input_debug;
13215 char *eraw_src;
13216 char *eraw_end;
13217
13218 if (p->type != bfd_indirect_link_order)
13219 {
13220 if (p->type == bfd_data_link_order)
13221 continue;
13222 abort ();
13223 }
13224
13225 input_section = p->u.indirect.section;
13226 input_bfd = input_section->owner;
13227
d5eaccd7 13228 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13229 {
13230 /* I don't know what a non MIPS ELF bfd would be
13231 doing with a .mdebug section, but I don't really
13232 want to deal with it. */
13233 continue;
13234 }
13235
13236 input_swap = (get_elf_backend_data (input_bfd)
13237 ->elf_backend_ecoff_debug_swap);
13238
eea6121a 13239 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13240
13241 /* The ECOFF linking code expects that we have already
13242 read in the debugging information and set up an
13243 ecoff_debug_info structure, so we do that now. */
13244 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13245 &input_debug))
b34976b6 13246 return FALSE;
b49e97c9
TS
13247
13248 if (! (bfd_ecoff_debug_accumulate
13249 (mdebug_handle, abfd, &debug, swap, input_bfd,
13250 &input_debug, input_swap, info)))
b34976b6 13251 return FALSE;
b49e97c9
TS
13252
13253 /* Loop through the external symbols. For each one with
13254 interesting information, try to find the symbol in
13255 the linker global hash table and save the information
13256 for the output external symbols. */
13257 eraw_src = input_debug.external_ext;
13258 eraw_end = (eraw_src
13259 + (input_debug.symbolic_header.iextMax
13260 * input_swap->external_ext_size));
13261 for (;
13262 eraw_src < eraw_end;
13263 eraw_src += input_swap->external_ext_size)
13264 {
13265 EXTR ext;
13266 const char *name;
13267 struct mips_elf_link_hash_entry *h;
13268
9719ad41 13269 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13270 if (ext.asym.sc == scNil
13271 || ext.asym.sc == scUndefined
13272 || ext.asym.sc == scSUndefined)
13273 continue;
13274
13275 name = input_debug.ssext + ext.asym.iss;
13276 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13277 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13278 if (h == NULL || h->esym.ifd != -2)
13279 continue;
13280
13281 if (ext.ifd != -1)
13282 {
13283 BFD_ASSERT (ext.ifd
13284 < input_debug.symbolic_header.ifdMax);
13285 ext.ifd = input_debug.ifdmap[ext.ifd];
13286 }
13287
13288 h->esym = ext;
13289 }
13290
13291 /* Free up the information we just read. */
13292 free (input_debug.line);
13293 free (input_debug.external_dnr);
13294 free (input_debug.external_pdr);
13295 free (input_debug.external_sym);
13296 free (input_debug.external_opt);
13297 free (input_debug.external_aux);
13298 free (input_debug.ss);
13299 free (input_debug.ssext);
13300 free (input_debug.external_fdr);
13301 free (input_debug.external_rfd);
13302 free (input_debug.external_ext);
13303
13304 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13305 elf_link_input_bfd ignores this section. */
13306 input_section->flags &= ~SEC_HAS_CONTENTS;
13307 }
13308
13309 if (SGI_COMPAT (abfd) && info->shared)
13310 {
13311 /* Create .rtproc section. */
87e0a731 13312 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13313 if (rtproc_sec == NULL)
13314 {
13315 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13316 | SEC_LINKER_CREATED | SEC_READONLY);
13317
87e0a731
AM
13318 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13319 ".rtproc",
13320 flags);
b49e97c9 13321 if (rtproc_sec == NULL
b49e97c9 13322 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13323 return FALSE;
b49e97c9
TS
13324 }
13325
13326 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13327 info, rtproc_sec,
13328 &debug))
b34976b6 13329 return FALSE;
b49e97c9
TS
13330 }
13331
13332 /* Build the external symbol information. */
13333 einfo.abfd = abfd;
13334 einfo.info = info;
13335 einfo.debug = &debug;
13336 einfo.swap = swap;
b34976b6 13337 einfo.failed = FALSE;
b49e97c9 13338 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13339 mips_elf_output_extsym, &einfo);
b49e97c9 13340 if (einfo.failed)
b34976b6 13341 return FALSE;
b49e97c9
TS
13342
13343 /* Set the size of the .mdebug section. */
eea6121a 13344 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13345
13346 /* Skip this section later on (I don't think this currently
13347 matters, but someday it might). */
8423293d 13348 o->map_head.link_order = NULL;
b49e97c9
TS
13349
13350 mdebug_sec = o;
13351 }
13352
0112cd26 13353 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13354 {
13355 const char *subname;
13356 unsigned int c;
13357 Elf32_gptab *tab;
13358 Elf32_External_gptab *ext_tab;
13359 unsigned int j;
13360
13361 /* The .gptab.sdata and .gptab.sbss sections hold
13362 information describing how the small data area would
13363 change depending upon the -G switch. These sections
13364 not used in executables files. */
1049f94e 13365 if (! info->relocatable)
b49e97c9 13366 {
8423293d 13367 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13368 {
13369 asection *input_section;
13370
13371 if (p->type != bfd_indirect_link_order)
13372 {
13373 if (p->type == bfd_data_link_order)
13374 continue;
13375 abort ();
13376 }
13377
13378 input_section = p->u.indirect.section;
13379
13380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13381 elf_link_input_bfd ignores this section. */
13382 input_section->flags &= ~SEC_HAS_CONTENTS;
13383 }
13384
13385 /* Skip this section later on (I don't think this
13386 currently matters, but someday it might). */
8423293d 13387 o->map_head.link_order = NULL;
b49e97c9
TS
13388
13389 /* Really remove the section. */
5daa8fe7 13390 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13391 --abfd->section_count;
13392
13393 continue;
13394 }
13395
13396 /* There is one gptab for initialized data, and one for
13397 uninitialized data. */
13398 if (strcmp (o->name, ".gptab.sdata") == 0)
13399 gptab_data_sec = o;
13400 else if (strcmp (o->name, ".gptab.sbss") == 0)
13401 gptab_bss_sec = o;
13402 else
13403 {
13404 (*_bfd_error_handler)
13405 (_("%s: illegal section name `%s'"),
13406 bfd_get_filename (abfd), o->name);
13407 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13408 return FALSE;
b49e97c9
TS
13409 }
13410
13411 /* The linker script always combines .gptab.data and
13412 .gptab.sdata into .gptab.sdata, and likewise for
13413 .gptab.bss and .gptab.sbss. It is possible that there is
13414 no .sdata or .sbss section in the output file, in which
13415 case we must change the name of the output section. */
13416 subname = o->name + sizeof ".gptab" - 1;
13417 if (bfd_get_section_by_name (abfd, subname) == NULL)
13418 {
13419 if (o == gptab_data_sec)
13420 o->name = ".gptab.data";
13421 else
13422 o->name = ".gptab.bss";
13423 subname = o->name + sizeof ".gptab" - 1;
13424 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13425 }
13426
13427 /* Set up the first entry. */
13428 c = 1;
13429 amt = c * sizeof (Elf32_gptab);
9719ad41 13430 tab = bfd_malloc (amt);
b49e97c9 13431 if (tab == NULL)
b34976b6 13432 return FALSE;
b49e97c9
TS
13433 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13434 tab[0].gt_header.gt_unused = 0;
13435
13436 /* Combine the input sections. */
8423293d 13437 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13438 {
13439 asection *input_section;
13440 bfd *input_bfd;
13441 bfd_size_type size;
13442 unsigned long last;
13443 bfd_size_type gpentry;
13444
13445 if (p->type != bfd_indirect_link_order)
13446 {
13447 if (p->type == bfd_data_link_order)
13448 continue;
13449 abort ();
13450 }
13451
13452 input_section = p->u.indirect.section;
13453 input_bfd = input_section->owner;
13454
13455 /* Combine the gptab entries for this input section one
13456 by one. We know that the input gptab entries are
13457 sorted by ascending -G value. */
eea6121a 13458 size = input_section->size;
b49e97c9
TS
13459 last = 0;
13460 for (gpentry = sizeof (Elf32_External_gptab);
13461 gpentry < size;
13462 gpentry += sizeof (Elf32_External_gptab))
13463 {
13464 Elf32_External_gptab ext_gptab;
13465 Elf32_gptab int_gptab;
13466 unsigned long val;
13467 unsigned long add;
b34976b6 13468 bfd_boolean exact;
b49e97c9
TS
13469 unsigned int look;
13470
13471 if (! (bfd_get_section_contents
9719ad41
RS
13472 (input_bfd, input_section, &ext_gptab, gpentry,
13473 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13474 {
13475 free (tab);
b34976b6 13476 return FALSE;
b49e97c9
TS
13477 }
13478
13479 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13480 &int_gptab);
13481 val = int_gptab.gt_entry.gt_g_value;
13482 add = int_gptab.gt_entry.gt_bytes - last;
13483
b34976b6 13484 exact = FALSE;
b49e97c9
TS
13485 for (look = 1; look < c; look++)
13486 {
13487 if (tab[look].gt_entry.gt_g_value >= val)
13488 tab[look].gt_entry.gt_bytes += add;
13489
13490 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13491 exact = TRUE;
b49e97c9
TS
13492 }
13493
13494 if (! exact)
13495 {
13496 Elf32_gptab *new_tab;
13497 unsigned int max;
13498
13499 /* We need a new table entry. */
13500 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13501 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13502 if (new_tab == NULL)
13503 {
13504 free (tab);
b34976b6 13505 return FALSE;
b49e97c9
TS
13506 }
13507 tab = new_tab;
13508 tab[c].gt_entry.gt_g_value = val;
13509 tab[c].gt_entry.gt_bytes = add;
13510
13511 /* Merge in the size for the next smallest -G
13512 value, since that will be implied by this new
13513 value. */
13514 max = 0;
13515 for (look = 1; look < c; look++)
13516 {
13517 if (tab[look].gt_entry.gt_g_value < val
13518 && (max == 0
13519 || (tab[look].gt_entry.gt_g_value
13520 > tab[max].gt_entry.gt_g_value)))
13521 max = look;
13522 }
13523 if (max != 0)
13524 tab[c].gt_entry.gt_bytes +=
13525 tab[max].gt_entry.gt_bytes;
13526
13527 ++c;
13528 }
13529
13530 last = int_gptab.gt_entry.gt_bytes;
13531 }
13532
13533 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13534 elf_link_input_bfd ignores this section. */
13535 input_section->flags &= ~SEC_HAS_CONTENTS;
13536 }
13537
13538 /* The table must be sorted by -G value. */
13539 if (c > 2)
13540 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13541
13542 /* Swap out the table. */
13543 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13544 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13545 if (ext_tab == NULL)
13546 {
13547 free (tab);
b34976b6 13548 return FALSE;
b49e97c9
TS
13549 }
13550
13551 for (j = 0; j < c; j++)
13552 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13553 free (tab);
13554
eea6121a 13555 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13556 o->contents = (bfd_byte *) ext_tab;
13557
13558 /* Skip this section later on (I don't think this currently
13559 matters, but someday it might). */
8423293d 13560 o->map_head.link_order = NULL;
b49e97c9
TS
13561 }
13562 }
13563
13564 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13565 if (!bfd_elf_final_link (abfd, info))
b34976b6 13566 return FALSE;
b49e97c9
TS
13567
13568 /* Now write out the computed sections. */
13569
9719ad41 13570 if (reginfo_sec != NULL)
b49e97c9
TS
13571 {
13572 Elf32_External_RegInfo ext;
13573
13574 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13575 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13576 return FALSE;
b49e97c9
TS
13577 }
13578
9719ad41 13579 if (mdebug_sec != NULL)
b49e97c9
TS
13580 {
13581 BFD_ASSERT (abfd->output_has_begun);
13582 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13583 swap, info,
13584 mdebug_sec->filepos))
b34976b6 13585 return FALSE;
b49e97c9
TS
13586
13587 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13588 }
13589
9719ad41 13590 if (gptab_data_sec != NULL)
b49e97c9
TS
13591 {
13592 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13593 gptab_data_sec->contents,
eea6121a 13594 0, gptab_data_sec->size))
b34976b6 13595 return FALSE;
b49e97c9
TS
13596 }
13597
9719ad41 13598 if (gptab_bss_sec != NULL)
b49e97c9
TS
13599 {
13600 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13601 gptab_bss_sec->contents,
eea6121a 13602 0, gptab_bss_sec->size))
b34976b6 13603 return FALSE;
b49e97c9
TS
13604 }
13605
13606 if (SGI_COMPAT (abfd))
13607 {
13608 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13609 if (rtproc_sec != NULL)
13610 {
13611 if (! bfd_set_section_contents (abfd, rtproc_sec,
13612 rtproc_sec->contents,
eea6121a 13613 0, rtproc_sec->size))
b34976b6 13614 return FALSE;
b49e97c9
TS
13615 }
13616 }
13617
b34976b6 13618 return TRUE;
b49e97c9
TS
13619}
13620\f
64543e1a
RS
13621/* Structure for saying that BFD machine EXTENSION extends BASE. */
13622
13623struct mips_mach_extension {
13624 unsigned long extension, base;
13625};
13626
13627
13628/* An array describing how BFD machines relate to one another. The entries
13629 are ordered topologically with MIPS I extensions listed last. */
13630
13631static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13632 /* MIPS64r2 extensions. */
432233b3 13633 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13634 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13635 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13636
64543e1a 13637 /* MIPS64 extensions. */
5f74bc13 13638 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13639 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13640 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13641 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13642
13643 /* MIPS V extensions. */
13644 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13645
13646 /* R10000 extensions. */
13647 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13648 { bfd_mach_mips14000, bfd_mach_mips10000 },
13649 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13650
13651 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13652 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13653 better to allow vr5400 and vr5500 code to be merged anyway, since
13654 many libraries will just use the core ISA. Perhaps we could add
13655 some sort of ASE flag if this ever proves a problem. */
13656 { bfd_mach_mips5500, bfd_mach_mips5400 },
13657 { bfd_mach_mips5400, bfd_mach_mips5000 },
13658
13659 /* MIPS IV extensions. */
13660 { bfd_mach_mips5, bfd_mach_mips8000 },
13661 { bfd_mach_mips10000, bfd_mach_mips8000 },
13662 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13663 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13664 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13665
13666 /* VR4100 extensions. */
13667 { bfd_mach_mips4120, bfd_mach_mips4100 },
13668 { bfd_mach_mips4111, bfd_mach_mips4100 },
13669
13670 /* MIPS III extensions. */
350cc38d
MS
13671 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13672 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13673 { bfd_mach_mips8000, bfd_mach_mips4000 },
13674 { bfd_mach_mips4650, bfd_mach_mips4000 },
13675 { bfd_mach_mips4600, bfd_mach_mips4000 },
13676 { bfd_mach_mips4400, bfd_mach_mips4000 },
13677 { bfd_mach_mips4300, bfd_mach_mips4000 },
13678 { bfd_mach_mips4100, bfd_mach_mips4000 },
13679 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13680 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13681
13682 /* MIPS32 extensions. */
13683 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13684
13685 /* MIPS II extensions. */
13686 { bfd_mach_mips4000, bfd_mach_mips6000 },
13687 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13688
13689 /* MIPS I extensions. */
13690 { bfd_mach_mips6000, bfd_mach_mips3000 },
13691 { bfd_mach_mips3900, bfd_mach_mips3000 }
13692};
13693
13694
13695/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13696
13697static bfd_boolean
9719ad41 13698mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13699{
13700 size_t i;
13701
c5211a54
RS
13702 if (extension == base)
13703 return TRUE;
13704
13705 if (base == bfd_mach_mipsisa32
13706 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13707 return TRUE;
13708
13709 if (base == bfd_mach_mipsisa32r2
13710 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13711 return TRUE;
13712
13713 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13714 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13715 {
13716 extension = mips_mach_extensions[i].base;
13717 if (extension == base)
13718 return TRUE;
13719 }
64543e1a 13720
c5211a54 13721 return FALSE;
64543e1a
RS
13722}
13723
13724
13725/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13726
b34976b6 13727static bfd_boolean
9719ad41 13728mips_32bit_flags_p (flagword flags)
00707a0e 13729{
64543e1a
RS
13730 return ((flags & EF_MIPS_32BITMODE) != 0
13731 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13732 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13733 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13734 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13735 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13736 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13737}
13738
64543e1a 13739
2cf19d5c
JM
13740/* Merge object attributes from IBFD into OBFD. Raise an error if
13741 there are conflicting attributes. */
13742static bfd_boolean
13743mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13744{
13745 obj_attribute *in_attr;
13746 obj_attribute *out_attr;
6ae68ba3
MR
13747 bfd *abi_fp_bfd;
13748
13749 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13750 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13751 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13752 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13753
13754 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13755 {
13756 /* This is the first object. Copy the attributes. */
13757 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13758
13759 /* Use the Tag_null value to indicate the attributes have been
13760 initialized. */
13761 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13762
13763 return TRUE;
13764 }
13765
13766 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13767 non-conflicting ones. */
2cf19d5c
JM
13768 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13769 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13770 {
13771 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13772 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13773 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13774 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13775 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13776 {
13777 case 1:
13778 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13779 {
13780 case 2:
13781 _bfd_error_handler
6ae68ba3
MR
13782 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13783 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13784 break;
2cf19d5c
JM
13785
13786 case 3:
13787 _bfd_error_handler
6ae68ba3
MR
13788 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13789 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13790 break;
13791
42554f6a
TS
13792 case 4:
13793 _bfd_error_handler
6ae68ba3
MR
13794 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13795 obfd, abi_fp_bfd, ibfd,
13796 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13797 break;
13798
2cf19d5c 13799 default:
6ae68ba3
MR
13800 _bfd_error_handler
13801 (_("Warning: %B uses %s (set by %B), "
13802 "%B uses unknown floating point ABI %d"),
13803 obfd, abi_fp_bfd, ibfd,
13804 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13805 break;
2cf19d5c
JM
13806 }
13807 break;
13808
13809 case 2:
13810 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13811 {
13812 case 1:
13813 _bfd_error_handler
6ae68ba3
MR
13814 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13815 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13816 break;
2cf19d5c
JM
13817
13818 case 3:
13819 _bfd_error_handler
6ae68ba3
MR
13820 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13821 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13822 break;
13823
42554f6a
TS
13824 case 4:
13825 _bfd_error_handler
6ae68ba3
MR
13826 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd,
13828 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13829 break;
13830
2cf19d5c 13831 default:
6ae68ba3
MR
13832 _bfd_error_handler
13833 (_("Warning: %B uses %s (set by %B), "
13834 "%B uses unknown floating point ABI %d"),
13835 obfd, abi_fp_bfd, ibfd,
13836 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13837 break;
2cf19d5c
JM
13838 }
13839 break;
13840
13841 case 3:
13842 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13843 {
13844 case 1:
13845 case 2:
42554f6a 13846 case 4:
2cf19d5c 13847 _bfd_error_handler
6ae68ba3
MR
13848 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13849 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13850 break;
13851
13852 default:
6ae68ba3
MR
13853 _bfd_error_handler
13854 (_("Warning: %B uses %s (set by %B), "
13855 "%B uses unknown floating point ABI %d"),
13856 obfd, abi_fp_bfd, ibfd,
13857 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13858 break;
2cf19d5c
JM
13859 }
13860 break;
13861
42554f6a
TS
13862 case 4:
13863 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13864 {
13865 case 1:
13866 _bfd_error_handler
6ae68ba3
MR
13867 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13868 obfd, abi_fp_bfd, ibfd,
13869 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13870 break;
13871
13872 case 2:
13873 _bfd_error_handler
6ae68ba3
MR
13874 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13875 obfd, abi_fp_bfd, ibfd,
13876 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13877 break;
13878
13879 case 3:
13880 _bfd_error_handler
6ae68ba3
MR
13881 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13882 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13883 break;
13884
13885 default:
6ae68ba3
MR
13886 _bfd_error_handler
13887 (_("Warning: %B uses %s (set by %B), "
13888 "%B uses unknown floating point ABI %d"),
13889 obfd, abi_fp_bfd, ibfd,
13890 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13891 break;
42554f6a
TS
13892 }
13893 break;
13894
2cf19d5c 13895 default:
6ae68ba3
MR
13896 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13897 {
13898 case 1:
13899 _bfd_error_handler
13900 (_("Warning: %B uses unknown floating point ABI %d "
13901 "(set by %B), %B uses %s"),
13902 obfd, abi_fp_bfd, ibfd,
13903 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13904 break;
13905
13906 case 2:
13907 _bfd_error_handler
13908 (_("Warning: %B uses unknown floating point ABI %d "
13909 "(set by %B), %B uses %s"),
13910 obfd, abi_fp_bfd, ibfd,
13911 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13912 break;
13913
13914 case 3:
13915 _bfd_error_handler
13916 (_("Warning: %B uses unknown floating point ABI %d "
13917 "(set by %B), %B uses %s"),
13918 obfd, abi_fp_bfd, ibfd,
13919 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13920 break;
13921
13922 case 4:
13923 _bfd_error_handler
13924 (_("Warning: %B uses unknown floating point ABI %d "
13925 "(set by %B), %B uses %s"),
13926 obfd, abi_fp_bfd, ibfd,
13927 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13928 break;
13929
13930 default:
13931 _bfd_error_handler
13932 (_("Warning: %B uses unknown floating point ABI %d "
13933 "(set by %B), %B uses unknown floating point ABI %d"),
13934 obfd, abi_fp_bfd, ibfd,
13935 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13936 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13937 break;
13938 }
13939 break;
2cf19d5c
JM
13940 }
13941 }
13942
13943 /* Merge Tag_compatibility attributes and any common GNU ones. */
13944 _bfd_elf_merge_object_attributes (ibfd, obfd);
13945
13946 return TRUE;
13947}
13948
b49e97c9
TS
13949/* Merge backend specific data from an object file to the output
13950 object file when linking. */
13951
b34976b6 13952bfd_boolean
9719ad41 13953_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13954{
13955 flagword old_flags;
13956 flagword new_flags;
b34976b6
AM
13957 bfd_boolean ok;
13958 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13959 asection *sec;
13960
58238693 13961 /* Check if we have the same endianness. */
82e51918 13962 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13963 {
13964 (*_bfd_error_handler)
d003868e
AM
13965 (_("%B: endianness incompatible with that of the selected emulation"),
13966 ibfd);
aa701218
AO
13967 return FALSE;
13968 }
b49e97c9 13969
d5eaccd7 13970 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13971 return TRUE;
b49e97c9 13972
aa701218
AO
13973 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13974 {
13975 (*_bfd_error_handler)
d003868e
AM
13976 (_("%B: ABI is incompatible with that of the selected emulation"),
13977 ibfd);
aa701218
AO
13978 return FALSE;
13979 }
13980
2cf19d5c
JM
13981 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13982 return FALSE;
13983
b49e97c9
TS
13984 new_flags = elf_elfheader (ibfd)->e_flags;
13985 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13986 old_flags = elf_elfheader (obfd)->e_flags;
13987
13988 if (! elf_flags_init (obfd))
13989 {
b34976b6 13990 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13991 elf_elfheader (obfd)->e_flags = new_flags;
13992 elf_elfheader (obfd)->e_ident[EI_CLASS]
13993 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13994
13995 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13996 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13997 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13998 bfd_get_mach (ibfd))))
b49e97c9
TS
13999 {
14000 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14001 bfd_get_mach (ibfd)))
b34976b6 14002 return FALSE;
b49e97c9
TS
14003 }
14004
b34976b6 14005 return TRUE;
b49e97c9
TS
14006 }
14007
14008 /* Check flag compatibility. */
14009
14010 new_flags &= ~EF_MIPS_NOREORDER;
14011 old_flags &= ~EF_MIPS_NOREORDER;
14012
f4416af6
AO
14013 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14014 doesn't seem to matter. */
14015 new_flags &= ~EF_MIPS_XGOT;
14016 old_flags &= ~EF_MIPS_XGOT;
14017
98a8deaf
RS
14018 /* MIPSpro generates ucode info in n64 objects. Again, we should
14019 just be able to ignore this. */
14020 new_flags &= ~EF_MIPS_UCODE;
14021 old_flags &= ~EF_MIPS_UCODE;
14022
861fb55a
DJ
14023 /* DSOs should only be linked with CPIC code. */
14024 if ((ibfd->flags & DYNAMIC) != 0)
14025 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 14026
b49e97c9 14027 if (new_flags == old_flags)
b34976b6 14028 return TRUE;
b49e97c9
TS
14029
14030 /* Check to see if the input BFD actually contains any sections.
14031 If not, its flags may not have been initialised either, but it cannot
14032 actually cause any incompatibility. */
14033 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14034 {
14035 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
14036 which are automatically generated by gas. Also ignore fake
14037 (s)common sections, since merely defining a common symbol does
14038 not affect compatibility. */
14039 if ((sec->flags & SEC_IS_COMMON) == 0
14040 && strcmp (sec->name, ".reginfo")
b49e97c9 14041 && strcmp (sec->name, ".mdebug")
eea6121a 14042 && (sec->size != 0
d13d89fa
NS
14043 || (strcmp (sec->name, ".text")
14044 && strcmp (sec->name, ".data")
14045 && strcmp (sec->name, ".bss"))))
b49e97c9 14046 {
b34976b6 14047 null_input_bfd = FALSE;
b49e97c9
TS
14048 break;
14049 }
14050 }
14051 if (null_input_bfd)
b34976b6 14052 return TRUE;
b49e97c9 14053
b34976b6 14054 ok = TRUE;
b49e97c9 14055
143d77c5
EC
14056 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14057 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 14058 {
b49e97c9 14059 (*_bfd_error_handler)
861fb55a 14060 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 14061 ibfd);
143d77c5 14062 ok = TRUE;
b49e97c9
TS
14063 }
14064
143d77c5
EC
14065 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14066 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14067 if (! (new_flags & EF_MIPS_PIC))
14068 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14069
14070 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14071 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 14072
64543e1a
RS
14073 /* Compare the ISAs. */
14074 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 14075 {
64543e1a 14076 (*_bfd_error_handler)
d003868e
AM
14077 (_("%B: linking 32-bit code with 64-bit code"),
14078 ibfd);
64543e1a
RS
14079 ok = FALSE;
14080 }
14081 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14082 {
14083 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14084 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 14085 {
64543e1a
RS
14086 /* Copy the architecture info from IBFD to OBFD. Also copy
14087 the 32-bit flag (if set) so that we continue to recognise
14088 OBFD as a 32-bit binary. */
14089 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14090 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14091 elf_elfheader (obfd)->e_flags
14092 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14093
14094 /* Copy across the ABI flags if OBFD doesn't use them
14095 and if that was what caused us to treat IBFD as 32-bit. */
14096 if ((old_flags & EF_MIPS_ABI) == 0
14097 && mips_32bit_flags_p (new_flags)
14098 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14099 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14100 }
14101 else
14102 {
64543e1a 14103 /* The ISAs aren't compatible. */
b49e97c9 14104 (*_bfd_error_handler)
d003868e
AM
14105 (_("%B: linking %s module with previous %s modules"),
14106 ibfd,
64543e1a
RS
14107 bfd_printable_name (ibfd),
14108 bfd_printable_name (obfd));
b34976b6 14109 ok = FALSE;
b49e97c9 14110 }
b49e97c9
TS
14111 }
14112
64543e1a
RS
14113 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14114 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14115
14116 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14117 does set EI_CLASS differently from any 32-bit ABI. */
14118 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14119 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14120 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14121 {
14122 /* Only error if both are set (to different values). */
14123 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14124 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14125 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14126 {
14127 (*_bfd_error_handler)
d003868e
AM
14128 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14129 ibfd,
b49e97c9
TS
14130 elf_mips_abi_name (ibfd),
14131 elf_mips_abi_name (obfd));
b34976b6 14132 ok = FALSE;
b49e97c9
TS
14133 }
14134 new_flags &= ~EF_MIPS_ABI;
14135 old_flags &= ~EF_MIPS_ABI;
14136 }
14137
df58fc94
RS
14138 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14139 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14140 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14141 {
df58fc94
RS
14142 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14143 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14144 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14145 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14146 int micro_mis = old_m16 && new_micro;
14147 int m16_mis = old_micro && new_m16;
14148
14149 if (m16_mis || micro_mis)
14150 {
14151 (*_bfd_error_handler)
14152 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14153 ibfd,
14154 m16_mis ? "MIPS16" : "microMIPS",
14155 m16_mis ? "microMIPS" : "MIPS16");
14156 ok = FALSE;
14157 }
14158
fb39dac1
RS
14159 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14160
14161 new_flags &= ~ EF_MIPS_ARCH_ASE;
14162 old_flags &= ~ EF_MIPS_ARCH_ASE;
14163 }
14164
b49e97c9
TS
14165 /* Warn about any other mismatches */
14166 if (new_flags != old_flags)
14167 {
14168 (*_bfd_error_handler)
d003868e
AM
14169 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14170 ibfd, (unsigned long) new_flags,
b49e97c9 14171 (unsigned long) old_flags);
b34976b6 14172 ok = FALSE;
b49e97c9
TS
14173 }
14174
14175 if (! ok)
14176 {
14177 bfd_set_error (bfd_error_bad_value);
b34976b6 14178 return FALSE;
b49e97c9
TS
14179 }
14180
b34976b6 14181 return TRUE;
b49e97c9
TS
14182}
14183
14184/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14185
b34976b6 14186bfd_boolean
9719ad41 14187_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14188{
14189 BFD_ASSERT (!elf_flags_init (abfd)
14190 || elf_elfheader (abfd)->e_flags == flags);
14191
14192 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14193 elf_flags_init (abfd) = TRUE;
14194 return TRUE;
b49e97c9
TS
14195}
14196
ad9563d6
CM
14197char *
14198_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14199{
14200 switch (dtag)
14201 {
14202 default: return "";
14203 case DT_MIPS_RLD_VERSION:
14204 return "MIPS_RLD_VERSION";
14205 case DT_MIPS_TIME_STAMP:
14206 return "MIPS_TIME_STAMP";
14207 case DT_MIPS_ICHECKSUM:
14208 return "MIPS_ICHECKSUM";
14209 case DT_MIPS_IVERSION:
14210 return "MIPS_IVERSION";
14211 case DT_MIPS_FLAGS:
14212 return "MIPS_FLAGS";
14213 case DT_MIPS_BASE_ADDRESS:
14214 return "MIPS_BASE_ADDRESS";
14215 case DT_MIPS_MSYM:
14216 return "MIPS_MSYM";
14217 case DT_MIPS_CONFLICT:
14218 return "MIPS_CONFLICT";
14219 case DT_MIPS_LIBLIST:
14220 return "MIPS_LIBLIST";
14221 case DT_MIPS_LOCAL_GOTNO:
14222 return "MIPS_LOCAL_GOTNO";
14223 case DT_MIPS_CONFLICTNO:
14224 return "MIPS_CONFLICTNO";
14225 case DT_MIPS_LIBLISTNO:
14226 return "MIPS_LIBLISTNO";
14227 case DT_MIPS_SYMTABNO:
14228 return "MIPS_SYMTABNO";
14229 case DT_MIPS_UNREFEXTNO:
14230 return "MIPS_UNREFEXTNO";
14231 case DT_MIPS_GOTSYM:
14232 return "MIPS_GOTSYM";
14233 case DT_MIPS_HIPAGENO:
14234 return "MIPS_HIPAGENO";
14235 case DT_MIPS_RLD_MAP:
14236 return "MIPS_RLD_MAP";
14237 case DT_MIPS_DELTA_CLASS:
14238 return "MIPS_DELTA_CLASS";
14239 case DT_MIPS_DELTA_CLASS_NO:
14240 return "MIPS_DELTA_CLASS_NO";
14241 case DT_MIPS_DELTA_INSTANCE:
14242 return "MIPS_DELTA_INSTANCE";
14243 case DT_MIPS_DELTA_INSTANCE_NO:
14244 return "MIPS_DELTA_INSTANCE_NO";
14245 case DT_MIPS_DELTA_RELOC:
14246 return "MIPS_DELTA_RELOC";
14247 case DT_MIPS_DELTA_RELOC_NO:
14248 return "MIPS_DELTA_RELOC_NO";
14249 case DT_MIPS_DELTA_SYM:
14250 return "MIPS_DELTA_SYM";
14251 case DT_MIPS_DELTA_SYM_NO:
14252 return "MIPS_DELTA_SYM_NO";
14253 case DT_MIPS_DELTA_CLASSSYM:
14254 return "MIPS_DELTA_CLASSSYM";
14255 case DT_MIPS_DELTA_CLASSSYM_NO:
14256 return "MIPS_DELTA_CLASSSYM_NO";
14257 case DT_MIPS_CXX_FLAGS:
14258 return "MIPS_CXX_FLAGS";
14259 case DT_MIPS_PIXIE_INIT:
14260 return "MIPS_PIXIE_INIT";
14261 case DT_MIPS_SYMBOL_LIB:
14262 return "MIPS_SYMBOL_LIB";
14263 case DT_MIPS_LOCALPAGE_GOTIDX:
14264 return "MIPS_LOCALPAGE_GOTIDX";
14265 case DT_MIPS_LOCAL_GOTIDX:
14266 return "MIPS_LOCAL_GOTIDX";
14267 case DT_MIPS_HIDDEN_GOTIDX:
14268 return "MIPS_HIDDEN_GOTIDX";
14269 case DT_MIPS_PROTECTED_GOTIDX:
14270 return "MIPS_PROTECTED_GOT_IDX";
14271 case DT_MIPS_OPTIONS:
14272 return "MIPS_OPTIONS";
14273 case DT_MIPS_INTERFACE:
14274 return "MIPS_INTERFACE";
14275 case DT_MIPS_DYNSTR_ALIGN:
14276 return "DT_MIPS_DYNSTR_ALIGN";
14277 case DT_MIPS_INTERFACE_SIZE:
14278 return "DT_MIPS_INTERFACE_SIZE";
14279 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14280 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14281 case DT_MIPS_PERF_SUFFIX:
14282 return "DT_MIPS_PERF_SUFFIX";
14283 case DT_MIPS_COMPACT_SIZE:
14284 return "DT_MIPS_COMPACT_SIZE";
14285 case DT_MIPS_GP_VALUE:
14286 return "DT_MIPS_GP_VALUE";
14287 case DT_MIPS_AUX_DYNAMIC:
14288 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14289 case DT_MIPS_PLTGOT:
14290 return "DT_MIPS_PLTGOT";
14291 case DT_MIPS_RWPLT:
14292 return "DT_MIPS_RWPLT";
ad9563d6
CM
14293 }
14294}
14295
b34976b6 14296bfd_boolean
9719ad41 14297_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14298{
9719ad41 14299 FILE *file = ptr;
b49e97c9
TS
14300
14301 BFD_ASSERT (abfd != NULL && ptr != NULL);
14302
14303 /* Print normal ELF private data. */
14304 _bfd_elf_print_private_bfd_data (abfd, ptr);
14305
14306 /* xgettext:c-format */
14307 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14308
14309 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14310 fprintf (file, _(" [abi=O32]"));
14311 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14312 fprintf (file, _(" [abi=O64]"));
14313 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14314 fprintf (file, _(" [abi=EABI32]"));
14315 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14316 fprintf (file, _(" [abi=EABI64]"));
14317 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14318 fprintf (file, _(" [abi unknown]"));
14319 else if (ABI_N32_P (abfd))
14320 fprintf (file, _(" [abi=N32]"));
14321 else if (ABI_64_P (abfd))
14322 fprintf (file, _(" [abi=64]"));
14323 else
14324 fprintf (file, _(" [no abi set]"));
14325
14326 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14327 fprintf (file, " [mips1]");
b49e97c9 14328 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14329 fprintf (file, " [mips2]");
b49e97c9 14330 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14331 fprintf (file, " [mips3]");
b49e97c9 14332 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14333 fprintf (file, " [mips4]");
b49e97c9 14334 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14335 fprintf (file, " [mips5]");
b49e97c9 14336 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14337 fprintf (file, " [mips32]");
b49e97c9 14338 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14339 fprintf (file, " [mips64]");
af7ee8bf 14340 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14341 fprintf (file, " [mips32r2]");
5f74bc13 14342 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14343 fprintf (file, " [mips64r2]");
b49e97c9
TS
14344 else
14345 fprintf (file, _(" [unknown ISA]"));
14346
40d32fc6 14347 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14348 fprintf (file, " [mdmx]");
40d32fc6
CD
14349
14350 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14351 fprintf (file, " [mips16]");
40d32fc6 14352
df58fc94
RS
14353 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14354 fprintf (file, " [micromips]");
14355
b49e97c9 14356 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14357 fprintf (file, " [32bitmode]");
b49e97c9
TS
14358 else
14359 fprintf (file, _(" [not 32bitmode]"));
14360
c0e3f241 14361 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14362 fprintf (file, " [noreorder]");
c0e3f241
CD
14363
14364 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14365 fprintf (file, " [PIC]");
c0e3f241
CD
14366
14367 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14368 fprintf (file, " [CPIC]");
c0e3f241
CD
14369
14370 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14371 fprintf (file, " [XGOT]");
c0e3f241
CD
14372
14373 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14374 fprintf (file, " [UCODE]");
c0e3f241 14375
b49e97c9
TS
14376 fputc ('\n', file);
14377
b34976b6 14378 return TRUE;
b49e97c9 14379}
2f89ff8d 14380
b35d266b 14381const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14382{
0112cd26
NC
14383 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14384 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14385 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14386 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14387 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14388 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14389 { NULL, 0, 0, 0, 0 }
2f89ff8d 14390};
5e2b0d47 14391
8992f0d7
TS
14392/* Merge non visibility st_other attributes. Ensure that the
14393 STO_OPTIONAL flag is copied into h->other, even if this is not a
14394 definiton of the symbol. */
5e2b0d47
NC
14395void
14396_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14397 const Elf_Internal_Sym *isym,
14398 bfd_boolean definition,
14399 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14400{
8992f0d7
TS
14401 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14402 {
14403 unsigned char other;
14404
14405 other = (definition ? isym->st_other : h->other);
14406 other &= ~ELF_ST_VISIBILITY (-1);
14407 h->other = other | ELF_ST_VISIBILITY (h->other);
14408 }
14409
14410 if (!definition
5e2b0d47
NC
14411 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14412 h->other |= STO_OPTIONAL;
14413}
12ac1cf5
NC
14414
14415/* Decide whether an undefined symbol is special and can be ignored.
14416 This is the case for OPTIONAL symbols on IRIX. */
14417bfd_boolean
14418_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14419{
14420 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14421}
e0764319
NC
14422
14423bfd_boolean
14424_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14425{
14426 return (sym->st_shndx == SHN_COMMON
14427 || sym->st_shndx == SHN_MIPS_ACOMMON
14428 || sym->st_shndx == SHN_MIPS_SCOMMON);
14429}
861fb55a
DJ
14430
14431/* Return address for Ith PLT stub in section PLT, for relocation REL
14432 or (bfd_vma) -1 if it should not be included. */
14433
14434bfd_vma
14435_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14436 const arelent *rel ATTRIBUTE_UNUSED)
14437{
14438 return (plt->vma
14439 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14440 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14441}
14442
14443void
14444_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14445{
14446 struct mips_elf_link_hash_table *htab;
14447 Elf_Internal_Ehdr *i_ehdrp;
14448
14449 i_ehdrp = elf_elfheader (abfd);
14450 if (link_info)
14451 {
14452 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14453 BFD_ASSERT (htab != NULL);
14454
861fb55a
DJ
14455 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14456 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14457 }
14458}
This page took 3.047254 seconds and 4 git commands to generate.