x86: Properly handle __ehdr_start
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
2571583a 2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
04ef582a
L
69/* Only one of NOTRACK_PREFIX and SEG_PREFIX can be used at the same
70 time. */
71#define NOTRACK_PREFIX 6
72#define REX_PREFIX 7 /* must come last. */
73#define MAX_PREFIXES 8 /* max prefixes per opcode */
6305a203
L
74
75/* we define the syntax here (modulo base,index,scale syntax) */
76#define REGISTER_PREFIX '%'
77#define IMMEDIATE_PREFIX '$'
78#define ABSOLUTE_PREFIX '*'
79
80/* these are the instruction mnemonic suffixes in AT&T syntax or
81 memory operand size in Intel syntax. */
82#define WORD_MNEM_SUFFIX 'w'
83#define BYTE_MNEM_SUFFIX 'b'
84#define SHORT_MNEM_SUFFIX 's'
85#define LONG_MNEM_SUFFIX 'l'
86#define QWORD_MNEM_SUFFIX 'q'
87#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 88#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 89#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
90/* Intel Syntax. Use a non-ascii letter since since it never appears
91 in instructions. */
92#define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
94#define END_OF_INSN '\0'
95
96/*
97 'templates' is for grouping together 'template' structures for opcodes
98 of the same name. This is only used for storing the insns in the grand
99 ole hash table of insns.
100 The templates themselves start at START and range up to (but not including)
101 END.
102 */
103typedef struct
104{
d3ce72d0
NC
105 const insn_template *start;
106 const insn_template *end;
6305a203
L
107}
108templates;
109
110/* 386 operand encoding bytes: see 386 book for details of this. */
111typedef struct
112{
113 unsigned int regmem; /* codes register or memory operand */
114 unsigned int reg; /* codes register operand (or extended opcode) */
115 unsigned int mode; /* how to interpret regmem & reg */
116}
117modrm_byte;
118
119/* x86-64 extension prefix. */
120typedef int rex_byte;
121
6305a203
L
122/* 386 opcode byte to code indirect addressing. */
123typedef struct
124{
125 unsigned base;
126 unsigned index;
127 unsigned scale;
128}
129sib_byte;
130
6305a203
L
131/* x86 arch names, types and features */
132typedef struct
133{
134 const char *name; /* arch name */
8a2c8fef 135 unsigned int len; /* arch string length */
6305a203
L
136 enum processor_type type; /* arch type */
137 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 138 unsigned int skip; /* show_arch should skip this. */
6305a203
L
139}
140arch_entry;
141
293f5f65
L
142/* Used to turn off indicated flags. */
143typedef struct
144{
145 const char *name; /* arch name */
146 unsigned int len; /* arch string length */
147 i386_cpu_flags flags; /* cpu feature flags */
148}
149noarch_entry;
150
78f12dd3 151static void update_code_flag (int, int);
e3bb37b5
L
152static void set_code_flag (int);
153static void set_16bit_gcc_code_flag (int);
154static void set_intel_syntax (int);
1efbbeb4 155static void set_intel_mnemonic (int);
db51cc60 156static void set_allow_index_reg (int);
7bab8ab5 157static void set_check (int);
e3bb37b5 158static void set_cpu_arch (int);
6482c264 159#ifdef TE_PE
e3bb37b5 160static void pe_directive_secrel (int);
6482c264 161#endif
e3bb37b5
L
162static void signed_cons (int);
163static char *output_invalid (int c);
ee86248c
JB
164static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
165 const char *);
166static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
167 const char *);
a7619375 168static int i386_att_operand (char *);
e3bb37b5 169static int i386_intel_operand (char *, int);
ee86248c
JB
170static int i386_intel_simplify (expressionS *);
171static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
172static const reg_entry *parse_register (char *, char **);
173static char *parse_insn (char *, char *);
174static char *parse_operands (char *, const char *);
175static void swap_operands (void);
4d456e3d 176static void swap_2_operands (int, int);
e3bb37b5
L
177static void optimize_imm (void);
178static void optimize_disp (void);
83b16ac6 179static const insn_template *match_template (char);
e3bb37b5
L
180static int check_string (void);
181static int process_suffix (void);
182static int check_byte_reg (void);
183static int check_long_reg (void);
184static int check_qword_reg (void);
185static int check_word_reg (void);
186static int finalize_imm (void);
187static int process_operands (void);
188static const seg_entry *build_modrm_byte (void);
189static void output_insn (void);
190static void output_imm (fragS *, offsetT);
191static void output_disp (fragS *, offsetT);
29b0f896 192#ifndef I386COFF
e3bb37b5 193static void s_bss (int);
252b5132 194#endif
17d4e2a2
L
195#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
196static void handle_large_common (int small ATTRIBUTE_UNUSED);
197#endif
252b5132 198
a847613f 199static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 200
43234a1e
L
201/* This struct describes rounding control and SAE in the instruction. */
202struct RC_Operation
203{
204 enum rc_type
205 {
206 rne = 0,
207 rd,
208 ru,
209 rz,
210 saeonly
211 } type;
212 int operand;
213};
214
215static struct RC_Operation rc_op;
216
217/* The struct describes masking, applied to OPERAND in the instruction.
218 MASK is a pointer to the corresponding mask register. ZEROING tells
219 whether merging or zeroing mask is used. */
220struct Mask_Operation
221{
222 const reg_entry *mask;
223 unsigned int zeroing;
224 /* The operand where this operation is associated. */
225 int operand;
226};
227
228static struct Mask_Operation mask_op;
229
230/* The struct describes broadcasting, applied to OPERAND. FACTOR is
231 broadcast factor. */
232struct Broadcast_Operation
233{
234 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
235 int type;
236
237 /* Index of broadcasted operand. */
238 int operand;
239};
240
241static struct Broadcast_Operation broadcast_op;
242
c0f3af97
L
243/* VEX prefix. */
244typedef struct
245{
43234a1e
L
246 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
247 unsigned char bytes[4];
c0f3af97
L
248 unsigned int length;
249 /* Destination or source register specifier. */
250 const reg_entry *register_specifier;
251} vex_prefix;
252
252b5132 253/* 'md_assemble ()' gathers together information and puts it into a
47926f60 254 i386_insn. */
252b5132 255
520dc8e8
AM
256union i386_op
257 {
258 expressionS *disps;
259 expressionS *imms;
260 const reg_entry *regs;
261 };
262
a65babc9
L
263enum i386_error
264 {
86e026a4 265 operand_size_mismatch,
a65babc9
L
266 operand_type_mismatch,
267 register_type_mismatch,
268 number_of_operands_mismatch,
269 invalid_instruction_suffix,
270 bad_imm4,
271 old_gcc_only,
272 unsupported_with_intel_mnemonic,
273 unsupported_syntax,
6c30d220
L
274 unsupported,
275 invalid_vsib_address,
7bab8ab5 276 invalid_vector_register_set,
43234a1e
L
277 unsupported_vector_index_register,
278 unsupported_broadcast,
279 broadcast_not_on_src_operand,
280 broadcast_needed,
281 unsupported_masking,
282 mask_not_on_destination,
283 no_default_mask,
284 unsupported_rc_sae,
285 rc_sae_operand_not_last_imm,
286 invalid_register_operand,
287 try_vector_disp8
a65babc9
L
288 };
289
252b5132
RH
290struct _i386_insn
291 {
47926f60 292 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 293 insn_template tm;
252b5132 294
7d5e4556
L
295 /* SUFFIX holds the instruction size suffix for byte, word, dword
296 or qword, if given. */
252b5132
RH
297 char suffix;
298
47926f60 299 /* OPERANDS gives the number of given operands. */
252b5132
RH
300 unsigned int operands;
301
302 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
303 of given register, displacement, memory operands and immediate
47926f60 304 operands. */
252b5132
RH
305 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
306
307 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 308 use OP[i] for the corresponding operand. */
40fb9820 309 i386_operand_type types[MAX_OPERANDS];
252b5132 310
520dc8e8
AM
311 /* Displacement expression, immediate expression, or register for each
312 operand. */
313 union i386_op op[MAX_OPERANDS];
252b5132 314
3e73aa7c
JH
315 /* Flags for operands. */
316 unsigned int flags[MAX_OPERANDS];
317#define Operand_PCrel 1
318
252b5132 319 /* Relocation type for operand */
f86103b7 320 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 321
252b5132
RH
322 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
323 the base index byte below. */
324 const reg_entry *base_reg;
325 const reg_entry *index_reg;
326 unsigned int log2_scale_factor;
327
328 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 329 explicit segment overrides are given. */
ce8a8b2f 330 const seg_entry *seg[2];
252b5132 331
8325cc63
JB
332 /* Copied first memory operand string, for re-checking. */
333 char *memop1_string;
334
252b5132
RH
335 /* PREFIX holds all the given prefix opcodes (usually null).
336 PREFIXES is the number of prefix opcodes. */
337 unsigned int prefixes;
338 unsigned char prefix[MAX_PREFIXES];
339
340 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 341 addressing modes of this insn are encoded. */
252b5132 342 modrm_byte rm;
3e73aa7c 343 rex_byte rex;
43234a1e 344 rex_byte vrex;
252b5132 345 sib_byte sib;
c0f3af97 346 vex_prefix vex;
b6169b20 347
43234a1e
L
348 /* Masking attributes. */
349 struct Mask_Operation *mask;
350
351 /* Rounding control and SAE attributes. */
352 struct RC_Operation *rounding;
353
354 /* Broadcasting attributes. */
355 struct Broadcast_Operation *broadcast;
356
357 /* Compressed disp8*N attribute. */
358 unsigned int memshift;
359
86fa6981
L
360 /* Prefer load or store in encoding. */
361 enum
362 {
363 dir_encoding_default = 0,
364 dir_encoding_load,
365 dir_encoding_store
366 } dir_encoding;
891edac4 367
a501d77e
L
368 /* Prefer 8bit or 32bit displacement in encoding. */
369 enum
370 {
371 disp_encoding_default = 0,
372 disp_encoding_8bit,
373 disp_encoding_32bit
374 } disp_encoding;
f8a5c266 375
86fa6981
L
376 /* How to encode vector instructions. */
377 enum
378 {
379 vex_encoding_default = 0,
380 vex_encoding_vex2,
381 vex_encoding_vex3,
382 vex_encoding_evex
383 } vec_encoding;
384
d5de92cf
L
385 /* REP prefix. */
386 const char *rep_prefix;
387
165de32a
L
388 /* HLE prefix. */
389 const char *hle_prefix;
42164a71 390
7e8b059b
L
391 /* Have BND prefix. */
392 const char *bnd_prefix;
393
04ef582a
L
394 /* Have NOTRACK prefix. */
395 const char *notrack_prefix;
396
891edac4 397 /* Error message. */
a65babc9 398 enum i386_error error;
252b5132
RH
399 };
400
401typedef struct _i386_insn i386_insn;
402
43234a1e
L
403/* Link RC type with corresponding string, that'll be looked for in
404 asm. */
405struct RC_name
406{
407 enum rc_type type;
408 const char *name;
409 unsigned int len;
410};
411
412static const struct RC_name RC_NamesTable[] =
413{
414 { rne, STRING_COMMA_LEN ("rn-sae") },
415 { rd, STRING_COMMA_LEN ("rd-sae") },
416 { ru, STRING_COMMA_LEN ("ru-sae") },
417 { rz, STRING_COMMA_LEN ("rz-sae") },
418 { saeonly, STRING_COMMA_LEN ("sae") },
419};
420
252b5132
RH
421/* List of chars besides those in app.c:symbol_chars that can start an
422 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 423const char extra_symbol_chars[] = "*%-([{}"
252b5132 424#ifdef LEX_AT
32137342
NC
425 "@"
426#endif
427#ifdef LEX_QM
428 "?"
252b5132 429#endif
32137342 430 ;
252b5132 431
29b0f896
AM
432#if (defined (TE_I386AIX) \
433 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 434 && !defined (TE_GNU) \
29b0f896 435 && !defined (TE_LINUX) \
8d63c93e
RM
436 && !defined (TE_NACL) \
437 && !defined (TE_NETWARE) \
29b0f896 438 && !defined (TE_FreeBSD) \
5b806d27 439 && !defined (TE_DragonFly) \
29b0f896 440 && !defined (TE_NetBSD)))
252b5132 441/* This array holds the chars that always start a comment. If the
b3b91714
AM
442 pre-processor is disabled, these aren't very useful. The option
443 --divide will remove '/' from this list. */
444const char *i386_comment_chars = "#/";
445#define SVR4_COMMENT_CHARS 1
252b5132 446#define PREFIX_SEPARATOR '\\'
252b5132 447
b3b91714
AM
448#else
449const char *i386_comment_chars = "#";
450#define PREFIX_SEPARATOR '/'
451#endif
452
252b5132
RH
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
455 .line and .file directives will appear in the pre-processed output.
456 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 457 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
458 #NO_APP at the beginning of its output.
459 Also note that comments started like this one will always work if
252b5132 460 '/' isn't otherwise defined. */
b3b91714 461const char line_comment_chars[] = "#/";
252b5132 462
63a0b638 463const char line_separator_chars[] = ";";
252b5132 464
ce8a8b2f
AM
465/* Chars that can be used to separate mant from exp in floating point
466 nums. */
252b5132
RH
467const char EXP_CHARS[] = "eE";
468
ce8a8b2f
AM
469/* Chars that mean this number is a floating point constant
470 As in 0f12.456
471 or 0d1.2345e12. */
252b5132
RH
472const char FLT_CHARS[] = "fFdDxX";
473
ce8a8b2f 474/* Tables for lexical analysis. */
252b5132
RH
475static char mnemonic_chars[256];
476static char register_chars[256];
477static char operand_chars[256];
478static char identifier_chars[256];
479static char digit_chars[256];
480
ce8a8b2f 481/* Lexical macros. */
252b5132
RH
482#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
483#define is_operand_char(x) (operand_chars[(unsigned char) x])
484#define is_register_char(x) (register_chars[(unsigned char) x])
485#define is_space_char(x) ((x) == ' ')
486#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
487#define is_digit_char(x) (digit_chars[(unsigned char) x])
488
0234cb7c 489/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
490static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
491
492/* md_assemble() always leaves the strings it's passed unaltered. To
493 effect this we maintain a stack of saved characters that we've smashed
494 with '\0's (indicating end of strings for various sub-fields of the
47926f60 495 assembler instruction). */
252b5132 496static char save_stack[32];
ce8a8b2f 497static char *save_stack_p;
252b5132
RH
498#define END_STRING_AND_SAVE(s) \
499 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
500#define RESTORE_END_STRING(s) \
501 do { *(s) = *--save_stack_p; } while (0)
502
47926f60 503/* The instruction we're assembling. */
252b5132
RH
504static i386_insn i;
505
506/* Possible templates for current insn. */
507static const templates *current_templates;
508
31b2323c
L
509/* Per instruction expressionS buffers: max displacements & immediates. */
510static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
511static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 512
47926f60 513/* Current operand we are working on. */
ee86248c 514static int this_operand = -1;
252b5132 515
3e73aa7c
JH
516/* We support four different modes. FLAG_CODE variable is used to distinguish
517 these. */
518
519enum flag_code {
520 CODE_32BIT,
521 CODE_16BIT,
522 CODE_64BIT };
523
524static enum flag_code flag_code;
4fa24527 525static unsigned int object_64bit;
862be3fb 526static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
527static int use_rela_relocations = 0;
528
7af8ed2d
NC
529#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
530 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
531 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
532
351f65ca
L
533/* The ELF ABI to use. */
534enum x86_elf_abi
535{
536 I386_ABI,
7f56bc95
L
537 X86_64_ABI,
538 X86_64_X32_ABI
351f65ca
L
539};
540
541static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 542#endif
351f65ca 543
167ad85b
TG
544#if defined (TE_PE) || defined (TE_PEP)
545/* Use big object file format. */
546static int use_big_obj = 0;
547#endif
548
8dcea932
L
549#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
550/* 1 if generating code for a shared library. */
551static int shared = 0;
552#endif
553
47926f60
KH
554/* 1 for intel syntax,
555 0 if att syntax. */
556static int intel_syntax = 0;
252b5132 557
e89c5eaa
L
558/* 1 for Intel64 ISA,
559 0 if AMD64 ISA. */
560static int intel64;
561
1efbbeb4
L
562/* 1 for intel mnemonic,
563 0 if att mnemonic. */
564static int intel_mnemonic = !SYSV386_COMPAT;
565
5209009a 566/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
567static int old_gcc = OLDGCC_COMPAT;
568
a60de03c
JB
569/* 1 if pseudo registers are permitted. */
570static int allow_pseudo_reg = 0;
571
47926f60
KH
572/* 1 if register prefix % not required. */
573static int allow_naked_reg = 0;
252b5132 574
33eaf5de 575/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
576 instructions supporting it, even if this prefix wasn't specified
577 explicitly. */
578static int add_bnd_prefix = 0;
579
ba104c83 580/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
581static int allow_index_reg = 0;
582
d022bddd
IT
583/* 1 if the assembler should ignore LOCK prefix, even if it was
584 specified explicitly. */
585static int omit_lock_prefix = 0;
586
e4e00185
AS
587/* 1 if the assembler should encode lfence, mfence, and sfence as
588 "lock addl $0, (%{re}sp)". */
589static int avoid_fence = 0;
590
0cb4071e
L
591/* 1 if the assembler should generate relax relocations. */
592
593static int generate_relax_relocations
594 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
595
7bab8ab5 596static enum check_kind
daf50ae7 597 {
7bab8ab5
JB
598 check_none = 0,
599 check_warning,
600 check_error
daf50ae7 601 }
7bab8ab5 602sse_check, operand_check = check_warning;
daf50ae7 603
2ca3ace5
L
604/* Register prefix used for error message. */
605static const char *register_prefix = "%";
606
47926f60
KH
607/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
608 leave, push, and pop instructions so that gcc has the same stack
609 frame as in 32 bit mode. */
610static char stackop_size = '\0';
eecb386c 611
12b55ccc
L
612/* Non-zero to optimize code alignment. */
613int optimize_align_code = 1;
614
47926f60
KH
615/* Non-zero to quieten some warnings. */
616static int quiet_warnings = 0;
a38cf1db 617
47926f60
KH
618/* CPU name. */
619static const char *cpu_arch_name = NULL;
6305a203 620static char *cpu_sub_arch_name = NULL;
a38cf1db 621
47926f60 622/* CPU feature flags. */
40fb9820
L
623static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
624
ccc9c027
L
625/* If we have selected a cpu we are generating instructions for. */
626static int cpu_arch_tune_set = 0;
627
9103f4f4 628/* Cpu we are generating instructions for. */
fbf3f584 629enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
630
631/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 632static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 633
ccc9c027 634/* CPU instruction set architecture used. */
fbf3f584 635enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 636
9103f4f4 637/* CPU feature flags of instruction set architecture used. */
fbf3f584 638i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 639
fddf5b5b
AM
640/* If set, conditional jumps are not automatically promoted to handle
641 larger than a byte offset. */
642static unsigned int no_cond_jump_promotion = 0;
643
c0f3af97
L
644/* Encode SSE instructions with VEX prefix. */
645static unsigned int sse2avx;
646
539f890d
L
647/* Encode scalar AVX instructions with specific vector length. */
648static enum
649 {
650 vex128 = 0,
651 vex256
652 } avxscalar;
653
43234a1e
L
654/* Encode scalar EVEX LIG instructions with specific vector length. */
655static enum
656 {
657 evexl128 = 0,
658 evexl256,
659 evexl512
660 } evexlig;
661
662/* Encode EVEX WIG instructions with specific evex.w. */
663static enum
664 {
665 evexw0 = 0,
666 evexw1
667 } evexwig;
668
d3d3c6db
IT
669/* Value to encode in EVEX RC bits, for SAE-only instructions. */
670static enum rc_type evexrcig = rne;
671
29b0f896 672/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 673static symbolS *GOT_symbol;
29b0f896 674
a4447b93
RH
675/* The dwarf2 return column, adjusted for 32 or 64 bit. */
676unsigned int x86_dwarf2_return_column;
677
678/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
679int x86_cie_data_alignment;
680
252b5132 681/* Interface to relax_segment.
fddf5b5b
AM
682 There are 3 major relax states for 386 jump insns because the
683 different types of jumps add different sizes to frags when we're
684 figuring out what sort of jump to choose to reach a given label. */
252b5132 685
47926f60 686/* Types. */
93c2a809
AM
687#define UNCOND_JUMP 0
688#define COND_JUMP 1
689#define COND_JUMP86 2
fddf5b5b 690
47926f60 691/* Sizes. */
252b5132
RH
692#define CODE16 1
693#define SMALL 0
29b0f896 694#define SMALL16 (SMALL | CODE16)
252b5132 695#define BIG 2
29b0f896 696#define BIG16 (BIG | CODE16)
252b5132
RH
697
698#ifndef INLINE
699#ifdef __GNUC__
700#define INLINE __inline__
701#else
702#define INLINE
703#endif
704#endif
705
fddf5b5b
AM
706#define ENCODE_RELAX_STATE(type, size) \
707 ((relax_substateT) (((type) << 2) | (size)))
708#define TYPE_FROM_RELAX_STATE(s) \
709 ((s) >> 2)
710#define DISP_SIZE_FROM_RELAX_STATE(s) \
711 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
712
713/* This table is used by relax_frag to promote short jumps to long
714 ones where necessary. SMALL (short) jumps may be promoted to BIG
715 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
716 don't allow a short jump in a 32 bit code segment to be promoted to
717 a 16 bit offset jump because it's slower (requires data size
718 prefix), and doesn't work, unless the destination is in the bottom
719 64k of the code segment (The top 16 bits of eip are zeroed). */
720
721const relax_typeS md_relax_table[] =
722{
24eab124
AM
723 /* The fields are:
724 1) most positive reach of this state,
725 2) most negative reach of this state,
93c2a809 726 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 727 4) which index into the table to try if we can't fit into this one. */
252b5132 728
fddf5b5b 729 /* UNCOND_JUMP states. */
93c2a809
AM
730 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
731 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
732 /* dword jmp adds 4 bytes to frag:
733 0 extra opcode bytes, 4 displacement bytes. */
252b5132 734 {0, 0, 4, 0},
93c2a809
AM
735 /* word jmp adds 2 byte2 to frag:
736 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
737 {0, 0, 2, 0},
738
93c2a809
AM
739 /* COND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
742 /* dword conditionals adds 5 bytes to frag:
743 1 extra opcode byte, 4 displacement bytes. */
744 {0, 0, 5, 0},
fddf5b5b 745 /* word conditionals add 3 bytes to frag:
93c2a809
AM
746 1 extra opcode byte, 2 displacement bytes. */
747 {0, 0, 3, 0},
748
749 /* COND_JUMP86 states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 4 bytes to frag:
756 1 displacement byte and a 3 byte long branch insn. */
757 {0, 0, 4, 0}
252b5132
RH
758};
759
9103f4f4
L
760static const arch_entry cpu_arch[] =
761{
89507696
JB
762 /* Do not replace the first two entries - i386_target_format()
763 relies on them being there in this order. */
8a2c8fef 764 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 765 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 766 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 767 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 768 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 769 CPU_NONE_FLAGS, 0 },
8a2c8fef 770 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 771 CPU_I186_FLAGS, 0 },
8a2c8fef 772 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 773 CPU_I286_FLAGS, 0 },
8a2c8fef 774 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 775 CPU_I386_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 777 CPU_I486_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 779 CPU_I586_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 781 CPU_I686_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 783 CPU_I586_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 785 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 787 CPU_P2_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 789 CPU_P3_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 791 CPU_P4_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 793 CPU_CORE_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 795 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 797 CPU_CORE_FLAGS, 1 },
8a2c8fef 798 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 799 CPU_CORE_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 801 CPU_CORE2_FLAGS, 1 },
8a2c8fef 802 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 803 CPU_CORE2_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 805 CPU_COREI7_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 807 CPU_L1OM_FLAGS, 0 },
7a9068fe 808 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 809 CPU_K1OM_FLAGS, 0 },
81486035 810 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 811 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 813 CPU_K6_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 815 CPU_K6_2_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 817 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 819 CPU_K8_FLAGS, 1 },
8a2c8fef 820 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 821 CPU_K8_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 823 CPU_K8_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 825 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 826 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 827 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 828 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 829 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 830 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 831 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 832 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 833 CPU_BDVER4_FLAGS, 0 },
029f3522 834 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 835 CPU_ZNVER1_FLAGS, 0 },
7b458c12 836 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 837 CPU_BTVER1_FLAGS, 0 },
7b458c12 838 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 839 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 841 CPU_8087_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 843 CPU_287_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 845 CPU_387_FLAGS, 0 },
1848e567
L
846 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
847 CPU_687_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 849 CPU_MMX_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 851 CPU_SSE_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_SSE2_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_SSE3_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_AVX_FLAGS, 0 },
6c30d220 866 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_AVX2_FLAGS, 0 },
43234a1e 868 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_AVX512F_FLAGS, 0 },
43234a1e 870 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_AVX512CD_FLAGS, 0 },
43234a1e 872 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_AVX512ER_FLAGS, 0 },
43234a1e 874 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 876 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 878 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 880 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_VMX_FLAGS, 0 },
8729a6f6 884 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 886 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_SMX_FLAGS, 0 },
8a2c8fef 888 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 890 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 892 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_AES_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 902 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 904 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 906 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_F16C_FLAGS, 0 },
6c30d220 908 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_BMI2_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_FMA_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_FMA4_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_XOP_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_LWP_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_MOVBE_FLAGS, 0 },
60aa667e 920 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_CX16_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_EPT_FLAGS, 0 },
6c30d220 924 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_LZCNT_FLAGS, 0 },
42164a71 926 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_HLE_FLAGS, 0 },
42164a71 928 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_RTM_FLAGS, 0 },
6c30d220 930 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_CLFLUSH_FLAGS, 0 },
22109423 934 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_NOP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 938 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SVME_FLAGS, 1 },
8a2c8fef 948 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_SVME_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_ABM_FLAGS, 0 },
87973e9f 954 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_BMI_FLAGS, 0 },
2a2a0f38 956 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_TBM_FLAGS, 0 },
e2e1fcde 958 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_ADX_FLAGS, 0 },
e2e1fcde 960 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 962 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_PRFCHW_FLAGS, 0 },
5c111e37 964 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SMAP_FLAGS, 0 },
7e8b059b 966 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_MPX_FLAGS, 0 },
a0046408 968 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_SHA_FLAGS, 0 },
963f3586 970 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 972 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 974 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_SE1_FLAGS, 0 },
c5e7287a 976 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 978 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 980 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
982 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
983 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
984 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
985 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
986 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
987 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
029f3522 988 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLZERO_FLAGS, 0 },
9916071f 990 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_MWAITX_FLAGS, 0 },
8eab4136 992 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_OSPKE_FLAGS, 0 },
8bc52696 994 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_RDPID_FLAGS, 0 },
6b40c462
L
996 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
997 CPU_PTWRITE_FLAGS, 0 },
603555e5
L
998 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
999 CPU_CET_FLAGS, 0 },
293f5f65
L
1000};
1001
1002static const noarch_entry cpu_noarch[] =
1003{
1004 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1005 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1006 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1007 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1008 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1009 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1010 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1011 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1012 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1013 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1014 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1015 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1016 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1017 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1018 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1019 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1020 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1021 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1022 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1023 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1024 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1025 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1026 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1027 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1028 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1029 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
e413e4e9
AM
1030};
1031
704209c0 1032#ifdef I386COFF
a6c24e68
NC
1033/* Like s_lcomm_internal in gas/read.c but the alignment string
1034 is allowed to be optional. */
1035
1036static symbolS *
1037pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1038{
1039 addressT align = 0;
1040
1041 SKIP_WHITESPACE ();
1042
7ab9ffdd 1043 if (needs_align
a6c24e68
NC
1044 && *input_line_pointer == ',')
1045 {
1046 align = parse_align (needs_align - 1);
7ab9ffdd 1047
a6c24e68
NC
1048 if (align == (addressT) -1)
1049 return NULL;
1050 }
1051 else
1052 {
1053 if (size >= 8)
1054 align = 3;
1055 else if (size >= 4)
1056 align = 2;
1057 else if (size >= 2)
1058 align = 1;
1059 else
1060 align = 0;
1061 }
1062
1063 bss_alloc (symbolP, size, align);
1064 return symbolP;
1065}
1066
704209c0 1067static void
a6c24e68
NC
1068pe_lcomm (int needs_align)
1069{
1070 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1071}
704209c0 1072#endif
a6c24e68 1073
29b0f896
AM
1074const pseudo_typeS md_pseudo_table[] =
1075{
1076#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1077 {"align", s_align_bytes, 0},
1078#else
1079 {"align", s_align_ptwo, 0},
1080#endif
1081 {"arch", set_cpu_arch, 0},
1082#ifndef I386COFF
1083 {"bss", s_bss, 0},
a6c24e68
NC
1084#else
1085 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1086#endif
1087 {"ffloat", float_cons, 'f'},
1088 {"dfloat", float_cons, 'd'},
1089 {"tfloat", float_cons, 'x'},
1090 {"value", cons, 2},
d182319b 1091 {"slong", signed_cons, 4},
29b0f896
AM
1092 {"noopt", s_ignore, 0},
1093 {"optim", s_ignore, 0},
1094 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1095 {"code16", set_code_flag, CODE_16BIT},
1096 {"code32", set_code_flag, CODE_32BIT},
1097 {"code64", set_code_flag, CODE_64BIT},
1098 {"intel_syntax", set_intel_syntax, 1},
1099 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1100 {"intel_mnemonic", set_intel_mnemonic, 1},
1101 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1102 {"allow_index_reg", set_allow_index_reg, 1},
1103 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1104 {"sse_check", set_check, 0},
1105 {"operand_check", set_check, 1},
3b22753a
L
1106#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1107 {"largecomm", handle_large_common, 0},
07a53e5c 1108#else
e3bb37b5 1109 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
1110 {"loc", dwarf2_directive_loc, 0},
1111 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1112#endif
6482c264
NC
1113#ifdef TE_PE
1114 {"secrel32", pe_directive_secrel, 0},
1115#endif
29b0f896
AM
1116 {0, 0, 0}
1117};
1118
1119/* For interface with expression (). */
1120extern char *input_line_pointer;
1121
1122/* Hash table for instruction mnemonic lookup. */
1123static struct hash_control *op_hash;
1124
1125/* Hash table for register lookup. */
1126static struct hash_control *reg_hash;
1127\f
252b5132 1128void
e3bb37b5 1129i386_align_code (fragS *fragP, int count)
252b5132 1130{
ce8a8b2f
AM
1131 /* Various efficient no-op patterns for aligning code labels.
1132 Note: Don't try to assemble the instructions in the comments.
1133 0L and 0w are not legal. */
bad6e36d 1134 static const unsigned char f32_1[] =
252b5132 1135 {0x90}; /* nop */
bad6e36d 1136 static const unsigned char f32_2[] =
ccc9c027 1137 {0x66,0x90}; /* xchg %ax,%ax */
bad6e36d 1138 static const unsigned char f32_3[] =
252b5132 1139 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
bad6e36d 1140 static const unsigned char f32_4[] =
252b5132 1141 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1142 static const unsigned char f32_5[] =
252b5132
RH
1143 {0x90, /* nop */
1144 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1145 static const unsigned char f32_6[] =
252b5132 1146 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
bad6e36d 1147 static const unsigned char f32_7[] =
252b5132 1148 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1149 static const unsigned char f32_8[] =
252b5132
RH
1150 {0x90, /* nop */
1151 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1152 static const unsigned char f32_9[] =
252b5132
RH
1153 {0x89,0xf6, /* movl %esi,%esi */
1154 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1155 static const unsigned char f32_10[] =
252b5132
RH
1156 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1157 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1158 static const unsigned char f32_11[] =
252b5132
RH
1159 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1160 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1161 static const unsigned char f32_12[] =
252b5132
RH
1162 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1163 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
bad6e36d 1164 static const unsigned char f32_13[] =
252b5132
RH
1165 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1166 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1167 static const unsigned char f32_14[] =
252b5132
RH
1168 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1169 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1170 static const unsigned char f16_3[] =
c3332e24 1171 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
bad6e36d 1172 static const unsigned char f16_4[] =
252b5132 1173 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1174 static const unsigned char f16_5[] =
252b5132
RH
1175 {0x90, /* nop */
1176 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1177 static const unsigned char f16_6[] =
252b5132
RH
1178 {0x89,0xf6, /* mov %si,%si */
1179 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1180 static const unsigned char f16_7[] =
252b5132
RH
1181 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1182 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1183 static const unsigned char f16_8[] =
252b5132
RH
1184 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1185 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1186 static const unsigned char jump_31[] =
76bc74dc
L
1187 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1188 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1189 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1190 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
bad6e36d 1191 static const unsigned char *const f32_patt[] = {
252b5132 1192 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1193 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132 1194 };
bad6e36d 1195 static const unsigned char *const f16_patt[] = {
76bc74dc 1196 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1197 };
ccc9c027 1198 /* nopl (%[re]ax) */
bad6e36d 1199 static const unsigned char alt_3[] =
ccc9c027
L
1200 {0x0f,0x1f,0x00};
1201 /* nopl 0(%[re]ax) */
bad6e36d 1202 static const unsigned char alt_4[] =
ccc9c027
L
1203 {0x0f,0x1f,0x40,0x00};
1204 /* nopl 0(%[re]ax,%[re]ax,1) */
bad6e36d 1205 static const unsigned char alt_5[] =
ccc9c027
L
1206 {0x0f,0x1f,0x44,0x00,0x00};
1207 /* nopw 0(%[re]ax,%[re]ax,1) */
bad6e36d 1208 static const unsigned char alt_6[] =
ccc9c027
L
1209 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1210 /* nopl 0L(%[re]ax) */
bad6e36d 1211 static const unsigned char alt_7[] =
ccc9c027
L
1212 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1213 /* nopl 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1214 static const unsigned char alt_8[] =
ccc9c027
L
1215 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1216 /* nopw 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1217 static const unsigned char alt_9[] =
ccc9c027
L
1218 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1219 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
bad6e36d 1220 static const unsigned char alt_10[] =
ccc9c027 1221 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
bad6e36d 1222 static const unsigned char *const alt_patt[] = {
ccc9c027 1223 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
80b8656c 1224 alt_9, alt_10
ccc9c027 1225 };
252b5132 1226
76bc74dc
L
1227 /* Only align for at least a positive non-zero boundary. */
1228 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1229 return;
3e73aa7c 1230
ccc9c027
L
1231 /* We need to decide which NOP sequence to use for 32bit and
1232 64bit. When -mtune= is used:
4eed87de 1233
76bc74dc
L
1234 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1235 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1236 2. For the rest, alt_patt will be used.
1237
1238 When -mtune= isn't used, alt_patt will be used if
22109423 1239 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1240 be used.
ccc9c027
L
1241
1242 When -march= or .arch is used, we can't use anything beyond
1243 cpu_arch_isa_flags. */
1244
1245 if (flag_code == CODE_16BIT)
1246 {
ccc9c027 1247 if (count > 8)
33fef721 1248 {
76bc74dc
L
1249 memcpy (fragP->fr_literal + fragP->fr_fix,
1250 jump_31, count);
1251 /* Adjust jump offset. */
1252 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1253 }
76bc74dc
L
1254 else
1255 memcpy (fragP->fr_literal + fragP->fr_fix,
1256 f16_patt[count - 1], count);
252b5132 1257 }
33fef721 1258 else
ccc9c027 1259 {
bad6e36d 1260 const unsigned char *const *patt = NULL;
ccc9c027 1261
fbf3f584 1262 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1263 {
1264 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1265 switch (cpu_arch_tune)
1266 {
1267 case PROCESSOR_UNKNOWN:
1268 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1269 optimize with nops. */
1270 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1271 patt = alt_patt;
ccc9c027
L
1272 else
1273 patt = f32_patt;
1274 break;
ccc9c027
L
1275 case PROCESSOR_PENTIUM4:
1276 case PROCESSOR_NOCONA:
ef05d495 1277 case PROCESSOR_CORE:
76bc74dc 1278 case PROCESSOR_CORE2:
bd5295b2 1279 case PROCESSOR_COREI7:
3632d14b 1280 case PROCESSOR_L1OM:
7a9068fe 1281 case PROCESSOR_K1OM:
76bc74dc 1282 case PROCESSOR_GENERIC64:
ccc9c027
L
1283 case PROCESSOR_K6:
1284 case PROCESSOR_ATHLON:
1285 case PROCESSOR_K8:
4eed87de 1286 case PROCESSOR_AMDFAM10:
8aedb9fe 1287 case PROCESSOR_BD:
029f3522 1288 case PROCESSOR_ZNVER:
7b458c12 1289 case PROCESSOR_BT:
80b8656c 1290 patt = alt_patt;
ccc9c027 1291 break;
76bc74dc 1292 case PROCESSOR_I386:
ccc9c027
L
1293 case PROCESSOR_I486:
1294 case PROCESSOR_PENTIUM:
2dde1948 1295 case PROCESSOR_PENTIUMPRO:
81486035 1296 case PROCESSOR_IAMCU:
ccc9c027
L
1297 case PROCESSOR_GENERIC32:
1298 patt = f32_patt;
1299 break;
4eed87de 1300 }
ccc9c027
L
1301 }
1302 else
1303 {
fbf3f584 1304 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1305 {
1306 case PROCESSOR_UNKNOWN:
e6a14101 1307 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1308 PROCESSOR_UNKNOWN. */
1309 abort ();
1310 break;
1311
76bc74dc 1312 case PROCESSOR_I386:
ccc9c027
L
1313 case PROCESSOR_I486:
1314 case PROCESSOR_PENTIUM:
81486035 1315 case PROCESSOR_IAMCU:
ccc9c027
L
1316 case PROCESSOR_K6:
1317 case PROCESSOR_ATHLON:
1318 case PROCESSOR_K8:
4eed87de 1319 case PROCESSOR_AMDFAM10:
8aedb9fe 1320 case PROCESSOR_BD:
029f3522 1321 case PROCESSOR_ZNVER:
7b458c12 1322 case PROCESSOR_BT:
ccc9c027
L
1323 case PROCESSOR_GENERIC32:
1324 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1325 with nops. */
1326 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1327 patt = alt_patt;
ccc9c027
L
1328 else
1329 patt = f32_patt;
1330 break;
76bc74dc
L
1331 case PROCESSOR_PENTIUMPRO:
1332 case PROCESSOR_PENTIUM4:
1333 case PROCESSOR_NOCONA:
1334 case PROCESSOR_CORE:
ef05d495 1335 case PROCESSOR_CORE2:
bd5295b2 1336 case PROCESSOR_COREI7:
3632d14b 1337 case PROCESSOR_L1OM:
7a9068fe 1338 case PROCESSOR_K1OM:
22109423 1339 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1340 patt = alt_patt;
ccc9c027
L
1341 else
1342 patt = f32_patt;
1343 break;
1344 case PROCESSOR_GENERIC64:
80b8656c 1345 patt = alt_patt;
ccc9c027 1346 break;
4eed87de 1347 }
ccc9c027
L
1348 }
1349
76bc74dc
L
1350 if (patt == f32_patt)
1351 {
1352 /* If the padding is less than 15 bytes, we use the normal
1353 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1354 its offset. */
1355 int limit;
76ba9986 1356
711eedef
L
1357 /* For 64bit, the limit is 3 bytes. */
1358 if (flag_code == CODE_64BIT
1359 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1360 limit = 3;
1361 else
1362 limit = 15;
1363 if (count < limit)
76bc74dc
L
1364 memcpy (fragP->fr_literal + fragP->fr_fix,
1365 patt[count - 1], count);
1366 else
1367 {
1368 memcpy (fragP->fr_literal + fragP->fr_fix,
1369 jump_31, count);
1370 /* Adjust jump offset. */
1371 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1372 }
1373 }
1374 else
1375 {
80b8656c
L
1376 /* Maximum length of an instruction is 10 byte. If the
1377 padding is greater than 10 bytes and we don't use jump,
76bc74dc
L
1378 we have to break it into smaller pieces. */
1379 int padding = count;
80b8656c 1380 while (padding > 10)
76bc74dc 1381 {
80b8656c 1382 padding -= 10;
76bc74dc 1383 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
80b8656c 1384 patt [9], 10);
76bc74dc
L
1385 }
1386
1387 if (padding)
1388 memcpy (fragP->fr_literal + fragP->fr_fix,
1389 patt [padding - 1], padding);
1390 }
ccc9c027 1391 }
33fef721 1392 fragP->fr_var = count;
252b5132
RH
1393}
1394
c6fb90c8 1395static INLINE int
0dfbf9d7 1396operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1397{
0dfbf9d7 1398 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1399 {
1400 case 3:
0dfbf9d7 1401 if (x->array[2])
c6fb90c8 1402 return 0;
1a0670f3 1403 /* Fall through. */
c6fb90c8 1404 case 2:
0dfbf9d7 1405 if (x->array[1])
c6fb90c8 1406 return 0;
1a0670f3 1407 /* Fall through. */
c6fb90c8 1408 case 1:
0dfbf9d7 1409 return !x->array[0];
c6fb90c8
L
1410 default:
1411 abort ();
1412 }
40fb9820
L
1413}
1414
c6fb90c8 1415static INLINE void
0dfbf9d7 1416operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1417{
0dfbf9d7 1418 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1419 {
1420 case 3:
0dfbf9d7 1421 x->array[2] = v;
1a0670f3 1422 /* Fall through. */
c6fb90c8 1423 case 2:
0dfbf9d7 1424 x->array[1] = v;
1a0670f3 1425 /* Fall through. */
c6fb90c8 1426 case 1:
0dfbf9d7 1427 x->array[0] = v;
1a0670f3 1428 /* Fall through. */
c6fb90c8
L
1429 break;
1430 default:
1431 abort ();
1432 }
1433}
40fb9820 1434
c6fb90c8 1435static INLINE int
0dfbf9d7
L
1436operand_type_equal (const union i386_operand_type *x,
1437 const union i386_operand_type *y)
c6fb90c8 1438{
0dfbf9d7 1439 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1440 {
1441 case 3:
0dfbf9d7 1442 if (x->array[2] != y->array[2])
c6fb90c8 1443 return 0;
1a0670f3 1444 /* Fall through. */
c6fb90c8 1445 case 2:
0dfbf9d7 1446 if (x->array[1] != y->array[1])
c6fb90c8 1447 return 0;
1a0670f3 1448 /* Fall through. */
c6fb90c8 1449 case 1:
0dfbf9d7 1450 return x->array[0] == y->array[0];
c6fb90c8
L
1451 break;
1452 default:
1453 abort ();
1454 }
1455}
40fb9820 1456
0dfbf9d7
L
1457static INLINE int
1458cpu_flags_all_zero (const union i386_cpu_flags *x)
1459{
1460 switch (ARRAY_SIZE(x->array))
1461 {
1462 case 3:
1463 if (x->array[2])
1464 return 0;
1a0670f3 1465 /* Fall through. */
0dfbf9d7
L
1466 case 2:
1467 if (x->array[1])
1468 return 0;
1a0670f3 1469 /* Fall through. */
0dfbf9d7
L
1470 case 1:
1471 return !x->array[0];
1472 default:
1473 abort ();
1474 }
1475}
1476
0dfbf9d7
L
1477static INLINE int
1478cpu_flags_equal (const union i386_cpu_flags *x,
1479 const union i386_cpu_flags *y)
1480{
1481 switch (ARRAY_SIZE(x->array))
1482 {
1483 case 3:
1484 if (x->array[2] != y->array[2])
1485 return 0;
1a0670f3 1486 /* Fall through. */
0dfbf9d7
L
1487 case 2:
1488 if (x->array[1] != y->array[1])
1489 return 0;
1a0670f3 1490 /* Fall through. */
0dfbf9d7
L
1491 case 1:
1492 return x->array[0] == y->array[0];
1493 break;
1494 default:
1495 abort ();
1496 }
1497}
c6fb90c8
L
1498
1499static INLINE int
1500cpu_flags_check_cpu64 (i386_cpu_flags f)
1501{
1502 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1503 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1504}
1505
c6fb90c8
L
1506static INLINE i386_cpu_flags
1507cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1508{
c6fb90c8
L
1509 switch (ARRAY_SIZE (x.array))
1510 {
1511 case 3:
1512 x.array [2] &= y.array [2];
1a0670f3 1513 /* Fall through. */
c6fb90c8
L
1514 case 2:
1515 x.array [1] &= y.array [1];
1a0670f3 1516 /* Fall through. */
c6fb90c8
L
1517 case 1:
1518 x.array [0] &= y.array [0];
1519 break;
1520 default:
1521 abort ();
1522 }
1523 return x;
1524}
40fb9820 1525
c6fb90c8
L
1526static INLINE i386_cpu_flags
1527cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1528{
c6fb90c8 1529 switch (ARRAY_SIZE (x.array))
40fb9820 1530 {
c6fb90c8
L
1531 case 3:
1532 x.array [2] |= y.array [2];
1a0670f3 1533 /* Fall through. */
c6fb90c8
L
1534 case 2:
1535 x.array [1] |= y.array [1];
1a0670f3 1536 /* Fall through. */
c6fb90c8
L
1537 case 1:
1538 x.array [0] |= y.array [0];
40fb9820
L
1539 break;
1540 default:
1541 abort ();
1542 }
40fb9820
L
1543 return x;
1544}
1545
309d3373
JB
1546static INLINE i386_cpu_flags
1547cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1548{
1549 switch (ARRAY_SIZE (x.array))
1550 {
1551 case 3:
1552 x.array [2] &= ~y.array [2];
1a0670f3 1553 /* Fall through. */
309d3373
JB
1554 case 2:
1555 x.array [1] &= ~y.array [1];
1a0670f3 1556 /* Fall through. */
309d3373
JB
1557 case 1:
1558 x.array [0] &= ~y.array [0];
1559 break;
1560 default:
1561 abort ();
1562 }
1563 return x;
1564}
1565
c0f3af97
L
1566#define CPU_FLAGS_ARCH_MATCH 0x1
1567#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1568#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1569#define CPU_FLAGS_PCLMUL_MATCH 0x8
1570#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1571
a5ff0eb2 1572#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1573 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1574 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1575#define CPU_FLAGS_PERFECT_MATCH \
1576 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1577
1578/* Return CPU flags match bits. */
3629bb00 1579
40fb9820 1580static int
d3ce72d0 1581cpu_flags_match (const insn_template *t)
40fb9820 1582{
c0f3af97
L
1583 i386_cpu_flags x = t->cpu_flags;
1584 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1585
1586 x.bitfield.cpu64 = 0;
1587 x.bitfield.cpuno64 = 0;
1588
0dfbf9d7 1589 if (cpu_flags_all_zero (&x))
c0f3af97
L
1590 {
1591 /* This instruction is available on all archs. */
1592 match |= CPU_FLAGS_32BIT_MATCH;
1593 }
3629bb00
L
1594 else
1595 {
c0f3af97 1596 /* This instruction is available only on some archs. */
3629bb00
L
1597 i386_cpu_flags cpu = cpu_arch_flags;
1598
3629bb00 1599 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1600 if (!cpu_flags_all_zero (&cpu))
1601 {
a5ff0eb2
L
1602 if (x.bitfield.cpuavx)
1603 {
ce2f5b3c 1604 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1605 if (cpu.bitfield.cpuavx)
1606 {
1607 /* Check SSE2AVX. */
1608 if (!t->opcode_modifier.sse2avx|| sse2avx)
1609 {
1610 match |= (CPU_FLAGS_ARCH_MATCH
1611 | CPU_FLAGS_AVX_MATCH);
1612 /* Check AES. */
1613 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1614 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1615 /* Check PCLMUL. */
1616 if (!x.bitfield.cpupclmul
1617 || cpu.bitfield.cpupclmul)
1618 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1619 }
1620 }
1621 else
1622 match |= CPU_FLAGS_ARCH_MATCH;
1623 }
73b090a9
L
1624 else if (x.bitfield.cpuavx512vl)
1625 {
1626 /* Match AVX512VL. */
1627 if (cpu.bitfield.cpuavx512vl)
1628 {
1629 /* Need another match. */
1630 cpu.bitfield.cpuavx512vl = 0;
1631 if (!cpu_flags_all_zero (&cpu))
1632 match |= CPU_FLAGS_32BIT_MATCH;
1633 else
1634 match |= CPU_FLAGS_ARCH_MATCH;
1635 }
1636 else
1637 match |= CPU_FLAGS_ARCH_MATCH;
1638 }
a5ff0eb2 1639 else
c0f3af97
L
1640 match |= CPU_FLAGS_32BIT_MATCH;
1641 }
3629bb00 1642 }
c0f3af97 1643 return match;
40fb9820
L
1644}
1645
c6fb90c8
L
1646static INLINE i386_operand_type
1647operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1648{
c6fb90c8
L
1649 switch (ARRAY_SIZE (x.array))
1650 {
1651 case 3:
1652 x.array [2] &= y.array [2];
1a0670f3 1653 /* Fall through. */
c6fb90c8
L
1654 case 2:
1655 x.array [1] &= y.array [1];
1a0670f3 1656 /* Fall through. */
c6fb90c8
L
1657 case 1:
1658 x.array [0] &= y.array [0];
1659 break;
1660 default:
1661 abort ();
1662 }
1663 return x;
40fb9820
L
1664}
1665
c6fb90c8
L
1666static INLINE i386_operand_type
1667operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1668{
c6fb90c8 1669 switch (ARRAY_SIZE (x.array))
40fb9820 1670 {
c6fb90c8
L
1671 case 3:
1672 x.array [2] |= y.array [2];
1a0670f3 1673 /* Fall through. */
c6fb90c8
L
1674 case 2:
1675 x.array [1] |= y.array [1];
1a0670f3 1676 /* Fall through. */
c6fb90c8
L
1677 case 1:
1678 x.array [0] |= y.array [0];
40fb9820
L
1679 break;
1680 default:
1681 abort ();
1682 }
c6fb90c8
L
1683 return x;
1684}
40fb9820 1685
c6fb90c8
L
1686static INLINE i386_operand_type
1687operand_type_xor (i386_operand_type x, i386_operand_type y)
1688{
1689 switch (ARRAY_SIZE (x.array))
1690 {
1691 case 3:
1692 x.array [2] ^= y.array [2];
1a0670f3 1693 /* Fall through. */
c6fb90c8
L
1694 case 2:
1695 x.array [1] ^= y.array [1];
1a0670f3 1696 /* Fall through. */
c6fb90c8
L
1697 case 1:
1698 x.array [0] ^= y.array [0];
1699 break;
1700 default:
1701 abort ();
1702 }
40fb9820
L
1703 return x;
1704}
1705
1706static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1707static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1708static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1709static const i386_operand_type inoutportreg
1710 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1711static const i386_operand_type reg16_inoutportreg
1712 = OPERAND_TYPE_REG16_INOUTPORTREG;
1713static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1714static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1715static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1716static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1717static const i386_operand_type anydisp
1718 = OPERAND_TYPE_ANYDISP;
40fb9820 1719static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1720static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1721static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1722static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1723static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1724static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1725static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1726static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1727static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1728static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1729static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1730static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1731static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1732static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1733
1734enum operand_type
1735{
1736 reg,
40fb9820
L
1737 imm,
1738 disp,
1739 anymem
1740};
1741
c6fb90c8 1742static INLINE int
40fb9820
L
1743operand_type_check (i386_operand_type t, enum operand_type c)
1744{
1745 switch (c)
1746 {
1747 case reg:
1748 return (t.bitfield.reg8
1749 || t.bitfield.reg16
1750 || t.bitfield.reg32
1751 || t.bitfield.reg64);
1752
40fb9820
L
1753 case imm:
1754 return (t.bitfield.imm8
1755 || t.bitfield.imm8s
1756 || t.bitfield.imm16
1757 || t.bitfield.imm32
1758 || t.bitfield.imm32s
1759 || t.bitfield.imm64);
1760
1761 case disp:
1762 return (t.bitfield.disp8
1763 || t.bitfield.disp16
1764 || t.bitfield.disp32
1765 || t.bitfield.disp32s
1766 || t.bitfield.disp64);
1767
1768 case anymem:
1769 return (t.bitfield.disp8
1770 || t.bitfield.disp16
1771 || t.bitfield.disp32
1772 || t.bitfield.disp32s
1773 || t.bitfield.disp64
1774 || t.bitfield.baseindex);
1775
1776 default:
1777 abort ();
1778 }
2cfe26b6
AM
1779
1780 return 0;
40fb9820
L
1781}
1782
5c07affc
L
1783/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1784 operand J for instruction template T. */
1785
1786static INLINE int
d3ce72d0 1787match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1788{
1789 return !((i.types[j].bitfield.byte
1790 && !t->operand_types[j].bitfield.byte)
1791 || (i.types[j].bitfield.word
1792 && !t->operand_types[j].bitfield.word)
1793 || (i.types[j].bitfield.dword
1794 && !t->operand_types[j].bitfield.dword)
1795 || (i.types[j].bitfield.qword
1796 && !t->operand_types[j].bitfield.qword));
1797}
1798
1799/* Return 1 if there is no conflict in any size on operand J for
1800 instruction template T. */
1801
1802static INLINE int
d3ce72d0 1803match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1804{
1805 return (match_reg_size (t, j)
1806 && !((i.types[j].bitfield.unspecified
af508cb9 1807 && !i.broadcast
5c07affc
L
1808 && !t->operand_types[j].bitfield.unspecified)
1809 || (i.types[j].bitfield.fword
1810 && !t->operand_types[j].bitfield.fword)
1811 || (i.types[j].bitfield.tbyte
1812 && !t->operand_types[j].bitfield.tbyte)
1813 || (i.types[j].bitfield.xmmword
c0f3af97
L
1814 && !t->operand_types[j].bitfield.xmmword)
1815 || (i.types[j].bitfield.ymmword
43234a1e
L
1816 && !t->operand_types[j].bitfield.ymmword)
1817 || (i.types[j].bitfield.zmmword
1818 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1819}
1820
1821/* Return 1 if there is no size conflict on any operands for
1822 instruction template T. */
1823
1824static INLINE int
d3ce72d0 1825operand_size_match (const insn_template *t)
5c07affc
L
1826{
1827 unsigned int j;
1828 int match = 1;
1829
1830 /* Don't check jump instructions. */
1831 if (t->opcode_modifier.jump
1832 || t->opcode_modifier.jumpbyte
1833 || t->opcode_modifier.jumpdword
1834 || t->opcode_modifier.jumpintersegment)
1835 return match;
1836
1837 /* Check memory and accumulator operand size. */
1838 for (j = 0; j < i.operands; j++)
1839 {
1840 if (t->operand_types[j].bitfield.anysize)
1841 continue;
1842
1843 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1844 {
1845 match = 0;
1846 break;
1847 }
1848
1849 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1850 {
1851 match = 0;
1852 break;
1853 }
1854 }
1855
891edac4 1856 if (match)
5c07affc 1857 return match;
891edac4
L
1858 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1859 {
1860mismatch:
86e026a4 1861 i.error = operand_size_mismatch;
891edac4
L
1862 return 0;
1863 }
5c07affc
L
1864
1865 /* Check reverse. */
9c2799c2 1866 gas_assert (i.operands == 2);
5c07affc
L
1867
1868 match = 1;
1869 for (j = 0; j < 2; j++)
1870 {
1871 if (t->operand_types[j].bitfield.acc
1872 && !match_reg_size (t, j ? 0 : 1))
891edac4 1873 goto mismatch;
5c07affc
L
1874
1875 if (i.types[j].bitfield.mem
1876 && !match_mem_size (t, j ? 0 : 1))
891edac4 1877 goto mismatch;
5c07affc
L
1878 }
1879
1880 return match;
1881}
1882
c6fb90c8 1883static INLINE int
40fb9820
L
1884operand_type_match (i386_operand_type overlap,
1885 i386_operand_type given)
1886{
1887 i386_operand_type temp = overlap;
1888
1889 temp.bitfield.jumpabsolute = 0;
7d5e4556 1890 temp.bitfield.unspecified = 0;
5c07affc
L
1891 temp.bitfield.byte = 0;
1892 temp.bitfield.word = 0;
1893 temp.bitfield.dword = 0;
1894 temp.bitfield.fword = 0;
1895 temp.bitfield.qword = 0;
1896 temp.bitfield.tbyte = 0;
1897 temp.bitfield.xmmword = 0;
c0f3af97 1898 temp.bitfield.ymmword = 0;
43234a1e 1899 temp.bitfield.zmmword = 0;
0dfbf9d7 1900 if (operand_type_all_zero (&temp))
891edac4 1901 goto mismatch;
40fb9820 1902
891edac4
L
1903 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1904 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1905 return 1;
1906
1907mismatch:
a65babc9 1908 i.error = operand_type_mismatch;
891edac4 1909 return 0;
40fb9820
L
1910}
1911
7d5e4556 1912/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1913 unless the expected operand type register overlap is null.
1914 Note that Acc in a template matches every size of reg. */
1915
c6fb90c8 1916static INLINE int
40fb9820
L
1917operand_type_register_match (i386_operand_type m0,
1918 i386_operand_type g0,
1919 i386_operand_type t0,
1920 i386_operand_type m1,
1921 i386_operand_type g1,
1922 i386_operand_type t1)
1923{
1924 if (!operand_type_check (g0, reg))
1925 return 1;
1926
1927 if (!operand_type_check (g1, reg))
1928 return 1;
1929
1930 if (g0.bitfield.reg8 == g1.bitfield.reg8
1931 && g0.bitfield.reg16 == g1.bitfield.reg16
1932 && g0.bitfield.reg32 == g1.bitfield.reg32
1933 && g0.bitfield.reg64 == g1.bitfield.reg64)
1934 return 1;
1935
1936 if (m0.bitfield.acc)
1937 {
1938 t0.bitfield.reg8 = 1;
1939 t0.bitfield.reg16 = 1;
1940 t0.bitfield.reg32 = 1;
1941 t0.bitfield.reg64 = 1;
1942 }
1943
1944 if (m1.bitfield.acc)
1945 {
1946 t1.bitfield.reg8 = 1;
1947 t1.bitfield.reg16 = 1;
1948 t1.bitfield.reg32 = 1;
1949 t1.bitfield.reg64 = 1;
1950 }
1951
891edac4
L
1952 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1953 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1954 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1955 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1956 return 1;
1957
a65babc9 1958 i.error = register_type_mismatch;
891edac4
L
1959
1960 return 0;
40fb9820
L
1961}
1962
4c692bc7
JB
1963static INLINE unsigned int
1964register_number (const reg_entry *r)
1965{
1966 unsigned int nr = r->reg_num;
1967
1968 if (r->reg_flags & RegRex)
1969 nr += 8;
1970
200cbe0f
L
1971 if (r->reg_flags & RegVRex)
1972 nr += 16;
1973
4c692bc7
JB
1974 return nr;
1975}
1976
252b5132 1977static INLINE unsigned int
40fb9820 1978mode_from_disp_size (i386_operand_type t)
252b5132 1979{
43234a1e 1980 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1981 return 1;
1982 else if (t.bitfield.disp16
1983 || t.bitfield.disp32
1984 || t.bitfield.disp32s)
1985 return 2;
1986 else
1987 return 0;
252b5132
RH
1988}
1989
1990static INLINE int
65879393 1991fits_in_signed_byte (addressT num)
252b5132 1992{
65879393 1993 return num + 0x80 <= 0xff;
47926f60 1994}
252b5132
RH
1995
1996static INLINE int
65879393 1997fits_in_unsigned_byte (addressT num)
252b5132 1998{
65879393 1999 return num <= 0xff;
47926f60 2000}
252b5132
RH
2001
2002static INLINE int
65879393 2003fits_in_unsigned_word (addressT num)
252b5132 2004{
65879393 2005 return num <= 0xffff;
47926f60 2006}
252b5132
RH
2007
2008static INLINE int
65879393 2009fits_in_signed_word (addressT num)
252b5132 2010{
65879393 2011 return num + 0x8000 <= 0xffff;
47926f60 2012}
2a962e6d 2013
3e73aa7c 2014static INLINE int
65879393 2015fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2016{
2017#ifndef BFD64
2018 return 1;
2019#else
65879393 2020 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2021#endif
2022} /* fits_in_signed_long() */
2a962e6d 2023
3e73aa7c 2024static INLINE int
65879393 2025fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2026{
2027#ifndef BFD64
2028 return 1;
2029#else
65879393 2030 return num <= 0xffffffff;
3e73aa7c
JH
2031#endif
2032} /* fits_in_unsigned_long() */
252b5132 2033
43234a1e
L
2034static INLINE int
2035fits_in_vec_disp8 (offsetT num)
2036{
2037 int shift = i.memshift;
2038 unsigned int mask;
2039
2040 if (shift == -1)
2041 abort ();
2042
2043 mask = (1 << shift) - 1;
2044
2045 /* Return 0 if NUM isn't properly aligned. */
2046 if ((num & mask))
2047 return 0;
2048
2049 /* Check if NUM will fit in 8bit after shift. */
2050 return fits_in_signed_byte (num >> shift);
2051}
2052
a683cc34
SP
2053static INLINE int
2054fits_in_imm4 (offsetT num)
2055{
2056 return (num & 0xf) == num;
2057}
2058
40fb9820 2059static i386_operand_type
e3bb37b5 2060smallest_imm_type (offsetT num)
252b5132 2061{
40fb9820 2062 i386_operand_type t;
7ab9ffdd 2063
0dfbf9d7 2064 operand_type_set (&t, 0);
40fb9820
L
2065 t.bitfield.imm64 = 1;
2066
2067 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2068 {
2069 /* This code is disabled on the 486 because all the Imm1 forms
2070 in the opcode table are slower on the i486. They're the
2071 versions with the implicitly specified single-position
2072 displacement, which has another syntax if you really want to
2073 use that form. */
40fb9820
L
2074 t.bitfield.imm1 = 1;
2075 t.bitfield.imm8 = 1;
2076 t.bitfield.imm8s = 1;
2077 t.bitfield.imm16 = 1;
2078 t.bitfield.imm32 = 1;
2079 t.bitfield.imm32s = 1;
2080 }
2081 else if (fits_in_signed_byte (num))
2082 {
2083 t.bitfield.imm8 = 1;
2084 t.bitfield.imm8s = 1;
2085 t.bitfield.imm16 = 1;
2086 t.bitfield.imm32 = 1;
2087 t.bitfield.imm32s = 1;
2088 }
2089 else if (fits_in_unsigned_byte (num))
2090 {
2091 t.bitfield.imm8 = 1;
2092 t.bitfield.imm16 = 1;
2093 t.bitfield.imm32 = 1;
2094 t.bitfield.imm32s = 1;
2095 }
2096 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2097 {
2098 t.bitfield.imm16 = 1;
2099 t.bitfield.imm32 = 1;
2100 t.bitfield.imm32s = 1;
2101 }
2102 else if (fits_in_signed_long (num))
2103 {
2104 t.bitfield.imm32 = 1;
2105 t.bitfield.imm32s = 1;
2106 }
2107 else if (fits_in_unsigned_long (num))
2108 t.bitfield.imm32 = 1;
2109
2110 return t;
47926f60 2111}
252b5132 2112
847f7ad4 2113static offsetT
e3bb37b5 2114offset_in_range (offsetT val, int size)
847f7ad4 2115{
508866be 2116 addressT mask;
ba2adb93 2117
847f7ad4
AM
2118 switch (size)
2119 {
508866be
L
2120 case 1: mask = ((addressT) 1 << 8) - 1; break;
2121 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2122 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2123#ifdef BFD64
2124 case 8: mask = ((addressT) 2 << 63) - 1; break;
2125#endif
47926f60 2126 default: abort ();
847f7ad4
AM
2127 }
2128
9de868bf
L
2129#ifdef BFD64
2130 /* If BFD64, sign extend val for 32bit address mode. */
2131 if (flag_code != CODE_64BIT
2132 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2133 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2134 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2135#endif
ba2adb93 2136
47926f60 2137 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2138 {
2139 char buf1[40], buf2[40];
2140
2141 sprint_value (buf1, val);
2142 sprint_value (buf2, val & mask);
2143 as_warn (_("%s shortened to %s"), buf1, buf2);
2144 }
2145 return val & mask;
2146}
2147
c32fa91d
L
2148enum PREFIX_GROUP
2149{
2150 PREFIX_EXIST = 0,
2151 PREFIX_LOCK,
2152 PREFIX_REP,
04ef582a 2153 PREFIX_DS,
c32fa91d
L
2154 PREFIX_OTHER
2155};
2156
2157/* Returns
2158 a. PREFIX_EXIST if attempting to add a prefix where one from the
2159 same class already exists.
2160 b. PREFIX_LOCK if lock prefix is added.
2161 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2162 d. PREFIX_DS if ds prefix is added.
2163 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2164 */
2165
2166static enum PREFIX_GROUP
e3bb37b5 2167add_prefix (unsigned int prefix)
252b5132 2168{
c32fa91d 2169 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2170 unsigned int q;
252b5132 2171
29b0f896
AM
2172 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2173 && flag_code == CODE_64BIT)
b1905489 2174 {
161a04f6
L
2175 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2176 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2177 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2178 ret = PREFIX_EXIST;
b1905489
JB
2179 q = REX_PREFIX;
2180 }
3e73aa7c 2181 else
b1905489
JB
2182 {
2183 switch (prefix)
2184 {
2185 default:
2186 abort ();
2187
b1905489 2188 case DS_PREFIX_OPCODE:
04ef582a
L
2189 ret = PREFIX_DS;
2190 /* Fall through. */
2191 case CS_PREFIX_OPCODE:
b1905489
JB
2192 case ES_PREFIX_OPCODE:
2193 case FS_PREFIX_OPCODE:
2194 case GS_PREFIX_OPCODE:
2195 case SS_PREFIX_OPCODE:
2196 q = SEG_PREFIX;
2197 break;
2198
2199 case REPNE_PREFIX_OPCODE:
2200 case REPE_PREFIX_OPCODE:
c32fa91d
L
2201 q = REP_PREFIX;
2202 ret = PREFIX_REP;
2203 break;
2204
b1905489 2205 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2206 q = LOCK_PREFIX;
2207 ret = PREFIX_LOCK;
b1905489
JB
2208 break;
2209
2210 case FWAIT_OPCODE:
2211 q = WAIT_PREFIX;
2212 break;
2213
2214 case ADDR_PREFIX_OPCODE:
2215 q = ADDR_PREFIX;
2216 break;
2217
2218 case DATA_PREFIX_OPCODE:
2219 q = DATA_PREFIX;
2220 break;
2221 }
2222 if (i.prefix[q] != 0)
c32fa91d 2223 ret = PREFIX_EXIST;
b1905489 2224 }
252b5132 2225
b1905489 2226 if (ret)
252b5132 2227 {
b1905489
JB
2228 if (!i.prefix[q])
2229 ++i.prefixes;
2230 i.prefix[q] |= prefix;
252b5132 2231 }
b1905489
JB
2232 else
2233 as_bad (_("same type of prefix used twice"));
252b5132 2234
252b5132
RH
2235 return ret;
2236}
2237
2238static void
78f12dd3 2239update_code_flag (int value, int check)
eecb386c 2240{
78f12dd3
L
2241 PRINTF_LIKE ((*as_error));
2242
1e9cc1c2 2243 flag_code = (enum flag_code) value;
40fb9820
L
2244 if (flag_code == CODE_64BIT)
2245 {
2246 cpu_arch_flags.bitfield.cpu64 = 1;
2247 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2248 }
2249 else
2250 {
2251 cpu_arch_flags.bitfield.cpu64 = 0;
2252 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2253 }
2254 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2255 {
78f12dd3
L
2256 if (check)
2257 as_error = as_fatal;
2258 else
2259 as_error = as_bad;
2260 (*as_error) (_("64bit mode not supported on `%s'."),
2261 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2262 }
40fb9820 2263 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2264 {
78f12dd3
L
2265 if (check)
2266 as_error = as_fatal;
2267 else
2268 as_error = as_bad;
2269 (*as_error) (_("32bit mode not supported on `%s'."),
2270 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2271 }
eecb386c
AM
2272 stackop_size = '\0';
2273}
2274
78f12dd3
L
2275static void
2276set_code_flag (int value)
2277{
2278 update_code_flag (value, 0);
2279}
2280
eecb386c 2281static void
e3bb37b5 2282set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2283{
1e9cc1c2 2284 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2285 if (flag_code != CODE_16BIT)
2286 abort ();
2287 cpu_arch_flags.bitfield.cpu64 = 0;
2288 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2289 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2290}
2291
2292static void
e3bb37b5 2293set_intel_syntax (int syntax_flag)
252b5132
RH
2294{
2295 /* Find out if register prefixing is specified. */
2296 int ask_naked_reg = 0;
2297
2298 SKIP_WHITESPACE ();
29b0f896 2299 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2300 {
d02603dc
NC
2301 char *string;
2302 int e = get_symbol_name (&string);
252b5132 2303
47926f60 2304 if (strcmp (string, "prefix") == 0)
252b5132 2305 ask_naked_reg = 1;
47926f60 2306 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2307 ask_naked_reg = -1;
2308 else
d0b47220 2309 as_bad (_("bad argument to syntax directive."));
d02603dc 2310 (void) restore_line_pointer (e);
252b5132
RH
2311 }
2312 demand_empty_rest_of_line ();
c3332e24 2313
252b5132
RH
2314 intel_syntax = syntax_flag;
2315
2316 if (ask_naked_reg == 0)
f86103b7
AM
2317 allow_naked_reg = (intel_syntax
2318 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2319 else
2320 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2321
ee86248c 2322 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2323
e4a3b5a4 2324 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2325 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2326 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2327}
2328
1efbbeb4
L
2329static void
2330set_intel_mnemonic (int mnemonic_flag)
2331{
e1d4d893 2332 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2333}
2334
db51cc60
L
2335static void
2336set_allow_index_reg (int flag)
2337{
2338 allow_index_reg = flag;
2339}
2340
cb19c032 2341static void
7bab8ab5 2342set_check (int what)
cb19c032 2343{
7bab8ab5
JB
2344 enum check_kind *kind;
2345 const char *str;
2346
2347 if (what)
2348 {
2349 kind = &operand_check;
2350 str = "operand";
2351 }
2352 else
2353 {
2354 kind = &sse_check;
2355 str = "sse";
2356 }
2357
cb19c032
L
2358 SKIP_WHITESPACE ();
2359
2360 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2361 {
d02603dc
NC
2362 char *string;
2363 int e = get_symbol_name (&string);
cb19c032
L
2364
2365 if (strcmp (string, "none") == 0)
7bab8ab5 2366 *kind = check_none;
cb19c032 2367 else if (strcmp (string, "warning") == 0)
7bab8ab5 2368 *kind = check_warning;
cb19c032 2369 else if (strcmp (string, "error") == 0)
7bab8ab5 2370 *kind = check_error;
cb19c032 2371 else
7bab8ab5 2372 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2373 (void) restore_line_pointer (e);
cb19c032
L
2374 }
2375 else
7bab8ab5 2376 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2377
2378 demand_empty_rest_of_line ();
2379}
2380
8a9036a4
L
2381static void
2382check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2383 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2384{
2385#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2386 static const char *arch;
2387
2388 /* Intel LIOM is only supported on ELF. */
2389 if (!IS_ELF)
2390 return;
2391
2392 if (!arch)
2393 {
2394 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2395 use default_arch. */
2396 arch = cpu_arch_name;
2397 if (!arch)
2398 arch = default_arch;
2399 }
2400
81486035
L
2401 /* If we are targeting Intel MCU, we must enable it. */
2402 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2403 || new_flag.bitfield.cpuiamcu)
2404 return;
2405
3632d14b 2406 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2407 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2408 || new_flag.bitfield.cpul1om)
8a9036a4 2409 return;
76ba9986 2410
7a9068fe
L
2411 /* If we are targeting Intel K1OM, we must enable it. */
2412 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2413 || new_flag.bitfield.cpuk1om)
2414 return;
2415
8a9036a4
L
2416 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2417#endif
2418}
2419
e413e4e9 2420static void
e3bb37b5 2421set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2422{
47926f60 2423 SKIP_WHITESPACE ();
e413e4e9 2424
29b0f896 2425 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2426 {
d02603dc
NC
2427 char *string;
2428 int e = get_symbol_name (&string);
91d6fa6a 2429 unsigned int j;
40fb9820 2430 i386_cpu_flags flags;
e413e4e9 2431
91d6fa6a 2432 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2433 {
91d6fa6a 2434 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2435 {
91d6fa6a 2436 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2437
5c6af06e
JB
2438 if (*string != '.')
2439 {
91d6fa6a 2440 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2441 cpu_sub_arch_name = NULL;
91d6fa6a 2442 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2443 if (flag_code == CODE_64BIT)
2444 {
2445 cpu_arch_flags.bitfield.cpu64 = 1;
2446 cpu_arch_flags.bitfield.cpuno64 = 0;
2447 }
2448 else
2449 {
2450 cpu_arch_flags.bitfield.cpu64 = 0;
2451 cpu_arch_flags.bitfield.cpuno64 = 1;
2452 }
91d6fa6a
NC
2453 cpu_arch_isa = cpu_arch[j].type;
2454 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2455 if (!cpu_arch_tune_set)
2456 {
2457 cpu_arch_tune = cpu_arch_isa;
2458 cpu_arch_tune_flags = cpu_arch_isa_flags;
2459 }
5c6af06e
JB
2460 break;
2461 }
40fb9820 2462
293f5f65
L
2463 flags = cpu_flags_or (cpu_arch_flags,
2464 cpu_arch[j].flags);
81486035 2465
5b64d091 2466 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2467 {
6305a203
L
2468 if (cpu_sub_arch_name)
2469 {
2470 char *name = cpu_sub_arch_name;
2471 cpu_sub_arch_name = concat (name,
91d6fa6a 2472 cpu_arch[j].name,
1bf57e9f 2473 (const char *) NULL);
6305a203
L
2474 free (name);
2475 }
2476 else
91d6fa6a 2477 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2478 cpu_arch_flags = flags;
a586129e 2479 cpu_arch_isa_flags = flags;
5c6af06e 2480 }
d02603dc 2481 (void) restore_line_pointer (e);
5c6af06e
JB
2482 demand_empty_rest_of_line ();
2483 return;
e413e4e9
AM
2484 }
2485 }
293f5f65
L
2486
2487 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2488 {
33eaf5de 2489 /* Disable an ISA extension. */
293f5f65
L
2490 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2491 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2492 {
2493 flags = cpu_flags_and_not (cpu_arch_flags,
2494 cpu_noarch[j].flags);
2495 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2496 {
2497 if (cpu_sub_arch_name)
2498 {
2499 char *name = cpu_sub_arch_name;
2500 cpu_sub_arch_name = concat (name, string,
2501 (const char *) NULL);
2502 free (name);
2503 }
2504 else
2505 cpu_sub_arch_name = xstrdup (string);
2506 cpu_arch_flags = flags;
2507 cpu_arch_isa_flags = flags;
2508 }
2509 (void) restore_line_pointer (e);
2510 demand_empty_rest_of_line ();
2511 return;
2512 }
2513
2514 j = ARRAY_SIZE (cpu_arch);
2515 }
2516
91d6fa6a 2517 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2518 as_bad (_("no such architecture: `%s'"), string);
2519
2520 *input_line_pointer = e;
2521 }
2522 else
2523 as_bad (_("missing cpu architecture"));
2524
fddf5b5b
AM
2525 no_cond_jump_promotion = 0;
2526 if (*input_line_pointer == ','
29b0f896 2527 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2528 {
d02603dc
NC
2529 char *string;
2530 char e;
2531
2532 ++input_line_pointer;
2533 e = get_symbol_name (&string);
fddf5b5b
AM
2534
2535 if (strcmp (string, "nojumps") == 0)
2536 no_cond_jump_promotion = 1;
2537 else if (strcmp (string, "jumps") == 0)
2538 ;
2539 else
2540 as_bad (_("no such architecture modifier: `%s'"), string);
2541
d02603dc 2542 (void) restore_line_pointer (e);
fddf5b5b
AM
2543 }
2544
e413e4e9
AM
2545 demand_empty_rest_of_line ();
2546}
2547
8a9036a4
L
2548enum bfd_architecture
2549i386_arch (void)
2550{
3632d14b 2551 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2552 {
2553 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2554 || flag_code != CODE_64BIT)
2555 as_fatal (_("Intel L1OM is 64bit ELF only"));
2556 return bfd_arch_l1om;
2557 }
7a9068fe
L
2558 else if (cpu_arch_isa == PROCESSOR_K1OM)
2559 {
2560 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2561 || flag_code != CODE_64BIT)
2562 as_fatal (_("Intel K1OM is 64bit ELF only"));
2563 return bfd_arch_k1om;
2564 }
81486035
L
2565 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2566 {
2567 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2568 || flag_code == CODE_64BIT)
2569 as_fatal (_("Intel MCU is 32bit ELF only"));
2570 return bfd_arch_iamcu;
2571 }
8a9036a4
L
2572 else
2573 return bfd_arch_i386;
2574}
2575
b9d79e03 2576unsigned long
7016a5d5 2577i386_mach (void)
b9d79e03 2578{
351f65ca 2579 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2580 {
3632d14b 2581 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2582 {
351f65ca
L
2583 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2584 || default_arch[6] != '\0')
8a9036a4
L
2585 as_fatal (_("Intel L1OM is 64bit ELF only"));
2586 return bfd_mach_l1om;
2587 }
7a9068fe
L
2588 else if (cpu_arch_isa == PROCESSOR_K1OM)
2589 {
2590 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2591 || default_arch[6] != '\0')
2592 as_fatal (_("Intel K1OM is 64bit ELF only"));
2593 return bfd_mach_k1om;
2594 }
351f65ca 2595 else if (default_arch[6] == '\0')
8a9036a4 2596 return bfd_mach_x86_64;
351f65ca
L
2597 else
2598 return bfd_mach_x64_32;
8a9036a4 2599 }
5197d474
L
2600 else if (!strcmp (default_arch, "i386")
2601 || !strcmp (default_arch, "iamcu"))
81486035
L
2602 {
2603 if (cpu_arch_isa == PROCESSOR_IAMCU)
2604 {
2605 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2606 as_fatal (_("Intel MCU is 32bit ELF only"));
2607 return bfd_mach_i386_iamcu;
2608 }
2609 else
2610 return bfd_mach_i386_i386;
2611 }
b9d79e03 2612 else
2b5d6a91 2613 as_fatal (_("unknown architecture"));
b9d79e03 2614}
b9d79e03 2615\f
252b5132 2616void
7016a5d5 2617md_begin (void)
252b5132
RH
2618{
2619 const char *hash_err;
2620
86fa6981
L
2621 /* Support pseudo prefixes like {disp32}. */
2622 lex_type ['{'] = LEX_BEGIN_NAME;
2623
47926f60 2624 /* Initialize op_hash hash table. */
252b5132
RH
2625 op_hash = hash_new ();
2626
2627 {
d3ce72d0 2628 const insn_template *optab;
29b0f896 2629 templates *core_optab;
252b5132 2630
47926f60
KH
2631 /* Setup for loop. */
2632 optab = i386_optab;
add39d23 2633 core_optab = XNEW (templates);
252b5132
RH
2634 core_optab->start = optab;
2635
2636 while (1)
2637 {
2638 ++optab;
2639 if (optab->name == NULL
2640 || strcmp (optab->name, (optab - 1)->name) != 0)
2641 {
2642 /* different name --> ship out current template list;
47926f60 2643 add to hash table; & begin anew. */
252b5132
RH
2644 core_optab->end = optab;
2645 hash_err = hash_insert (op_hash,
2646 (optab - 1)->name,
5a49b8ac 2647 (void *) core_optab);
252b5132
RH
2648 if (hash_err)
2649 {
b37df7c4 2650 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2651 (optab - 1)->name,
2652 hash_err);
2653 }
2654 if (optab->name == NULL)
2655 break;
add39d23 2656 core_optab = XNEW (templates);
252b5132
RH
2657 core_optab->start = optab;
2658 }
2659 }
2660 }
2661
47926f60 2662 /* Initialize reg_hash hash table. */
252b5132
RH
2663 reg_hash = hash_new ();
2664 {
29b0f896 2665 const reg_entry *regtab;
c3fe08fa 2666 unsigned int regtab_size = i386_regtab_size;
252b5132 2667
c3fe08fa 2668 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2669 {
5a49b8ac 2670 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2671 if (hash_err)
b37df7c4 2672 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2673 regtab->reg_name,
2674 hash_err);
252b5132
RH
2675 }
2676 }
2677
47926f60 2678 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2679 {
29b0f896
AM
2680 int c;
2681 char *p;
252b5132
RH
2682
2683 for (c = 0; c < 256; c++)
2684 {
3882b010 2685 if (ISDIGIT (c))
252b5132
RH
2686 {
2687 digit_chars[c] = c;
2688 mnemonic_chars[c] = c;
2689 register_chars[c] = c;
2690 operand_chars[c] = c;
2691 }
3882b010 2692 else if (ISLOWER (c))
252b5132
RH
2693 {
2694 mnemonic_chars[c] = c;
2695 register_chars[c] = c;
2696 operand_chars[c] = c;
2697 }
3882b010 2698 else if (ISUPPER (c))
252b5132 2699 {
3882b010 2700 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2701 register_chars[c] = mnemonic_chars[c];
2702 operand_chars[c] = c;
2703 }
43234a1e 2704 else if (c == '{' || c == '}')
86fa6981
L
2705 {
2706 mnemonic_chars[c] = c;
2707 operand_chars[c] = c;
2708 }
252b5132 2709
3882b010 2710 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2711 identifier_chars[c] = c;
2712 else if (c >= 128)
2713 {
2714 identifier_chars[c] = c;
2715 operand_chars[c] = c;
2716 }
2717 }
2718
2719#ifdef LEX_AT
2720 identifier_chars['@'] = '@';
32137342
NC
2721#endif
2722#ifdef LEX_QM
2723 identifier_chars['?'] = '?';
2724 operand_chars['?'] = '?';
252b5132 2725#endif
252b5132 2726 digit_chars['-'] = '-';
c0f3af97 2727 mnemonic_chars['_'] = '_';
791fe849 2728 mnemonic_chars['-'] = '-';
0003779b 2729 mnemonic_chars['.'] = '.';
252b5132
RH
2730 identifier_chars['_'] = '_';
2731 identifier_chars['.'] = '.';
2732
2733 for (p = operand_special_chars; *p != '\0'; p++)
2734 operand_chars[(unsigned char) *p] = *p;
2735 }
2736
a4447b93
RH
2737 if (flag_code == CODE_64BIT)
2738 {
ca19b261
KT
2739#if defined (OBJ_COFF) && defined (TE_PE)
2740 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2741 ? 32 : 16);
2742#else
a4447b93 2743 x86_dwarf2_return_column = 16;
ca19b261 2744#endif
61ff971f 2745 x86_cie_data_alignment = -8;
a4447b93
RH
2746 }
2747 else
2748 {
2749 x86_dwarf2_return_column = 8;
2750 x86_cie_data_alignment = -4;
2751 }
252b5132
RH
2752}
2753
2754void
e3bb37b5 2755i386_print_statistics (FILE *file)
252b5132
RH
2756{
2757 hash_print_statistics (file, "i386 opcode", op_hash);
2758 hash_print_statistics (file, "i386 register", reg_hash);
2759}
2760\f
252b5132
RH
2761#ifdef DEBUG386
2762
ce8a8b2f 2763/* Debugging routines for md_assemble. */
d3ce72d0 2764static void pte (insn_template *);
40fb9820 2765static void pt (i386_operand_type);
e3bb37b5
L
2766static void pe (expressionS *);
2767static void ps (symbolS *);
252b5132
RH
2768
2769static void
e3bb37b5 2770pi (char *line, i386_insn *x)
252b5132 2771{
09137c09 2772 unsigned int j;
252b5132
RH
2773
2774 fprintf (stdout, "%s: template ", line);
2775 pte (&x->tm);
09f131f2
JH
2776 fprintf (stdout, " address: base %s index %s scale %x\n",
2777 x->base_reg ? x->base_reg->reg_name : "none",
2778 x->index_reg ? x->index_reg->reg_name : "none",
2779 x->log2_scale_factor);
2780 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2781 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2782 fprintf (stdout, " sib: base %x index %x scale %x\n",
2783 x->sib.base, x->sib.index, x->sib.scale);
2784 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2785 (x->rex & REX_W) != 0,
2786 (x->rex & REX_R) != 0,
2787 (x->rex & REX_X) != 0,
2788 (x->rex & REX_B) != 0);
09137c09 2789 for (j = 0; j < x->operands; j++)
252b5132 2790 {
09137c09
SP
2791 fprintf (stdout, " #%d: ", j + 1);
2792 pt (x->types[j]);
252b5132 2793 fprintf (stdout, "\n");
09137c09
SP
2794 if (x->types[j].bitfield.reg8
2795 || x->types[j].bitfield.reg16
2796 || x->types[j].bitfield.reg32
2797 || x->types[j].bitfield.reg64
2798 || x->types[j].bitfield.regmmx
2799 || x->types[j].bitfield.regxmm
2800 || x->types[j].bitfield.regymm
43234a1e 2801 || x->types[j].bitfield.regzmm
09137c09
SP
2802 || x->types[j].bitfield.sreg2
2803 || x->types[j].bitfield.sreg3
2804 || x->types[j].bitfield.control
2805 || x->types[j].bitfield.debug
2806 || x->types[j].bitfield.test)
2807 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2808 if (operand_type_check (x->types[j], imm))
2809 pe (x->op[j].imms);
2810 if (operand_type_check (x->types[j], disp))
2811 pe (x->op[j].disps);
252b5132
RH
2812 }
2813}
2814
2815static void
d3ce72d0 2816pte (insn_template *t)
252b5132 2817{
09137c09 2818 unsigned int j;
252b5132 2819 fprintf (stdout, " %d operands ", t->operands);
47926f60 2820 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2821 if (t->extension_opcode != None)
2822 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2823 if (t->opcode_modifier.d)
252b5132 2824 fprintf (stdout, "D");
40fb9820 2825 if (t->opcode_modifier.w)
252b5132
RH
2826 fprintf (stdout, "W");
2827 fprintf (stdout, "\n");
09137c09 2828 for (j = 0; j < t->operands; j++)
252b5132 2829 {
09137c09
SP
2830 fprintf (stdout, " #%d type ", j + 1);
2831 pt (t->operand_types[j]);
252b5132
RH
2832 fprintf (stdout, "\n");
2833 }
2834}
2835
2836static void
e3bb37b5 2837pe (expressionS *e)
252b5132 2838{
24eab124 2839 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2840 fprintf (stdout, " add_number %ld (%lx)\n",
2841 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2842 if (e->X_add_symbol)
2843 {
2844 fprintf (stdout, " add_symbol ");
2845 ps (e->X_add_symbol);
2846 fprintf (stdout, "\n");
2847 }
2848 if (e->X_op_symbol)
2849 {
2850 fprintf (stdout, " op_symbol ");
2851 ps (e->X_op_symbol);
2852 fprintf (stdout, "\n");
2853 }
2854}
2855
2856static void
e3bb37b5 2857ps (symbolS *s)
252b5132
RH
2858{
2859 fprintf (stdout, "%s type %s%s",
2860 S_GET_NAME (s),
2861 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2862 segment_name (S_GET_SEGMENT (s)));
2863}
2864
7b81dfbb 2865static struct type_name
252b5132 2866 {
40fb9820
L
2867 i386_operand_type mask;
2868 const char *name;
252b5132 2869 }
7b81dfbb 2870const type_names[] =
252b5132 2871{
40fb9820
L
2872 { OPERAND_TYPE_REG8, "r8" },
2873 { OPERAND_TYPE_REG16, "r16" },
2874 { OPERAND_TYPE_REG32, "r32" },
2875 { OPERAND_TYPE_REG64, "r64" },
2876 { OPERAND_TYPE_IMM8, "i8" },
2877 { OPERAND_TYPE_IMM8, "i8s" },
2878 { OPERAND_TYPE_IMM16, "i16" },
2879 { OPERAND_TYPE_IMM32, "i32" },
2880 { OPERAND_TYPE_IMM32S, "i32s" },
2881 { OPERAND_TYPE_IMM64, "i64" },
2882 { OPERAND_TYPE_IMM1, "i1" },
2883 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2884 { OPERAND_TYPE_DISP8, "d8" },
2885 { OPERAND_TYPE_DISP16, "d16" },
2886 { OPERAND_TYPE_DISP32, "d32" },
2887 { OPERAND_TYPE_DISP32S, "d32s" },
2888 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2889 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2890 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2891 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2892 { OPERAND_TYPE_CONTROL, "control reg" },
2893 { OPERAND_TYPE_TEST, "test reg" },
2894 { OPERAND_TYPE_DEBUG, "debug reg" },
2895 { OPERAND_TYPE_FLOATREG, "FReg" },
2896 { OPERAND_TYPE_FLOATACC, "FAcc" },
2897 { OPERAND_TYPE_SREG2, "SReg2" },
2898 { OPERAND_TYPE_SREG3, "SReg3" },
2899 { OPERAND_TYPE_ACC, "Acc" },
2900 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2901 { OPERAND_TYPE_REGMMX, "rMMX" },
2902 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2903 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2904 { OPERAND_TYPE_REGZMM, "rZMM" },
2905 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2906 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2907};
2908
2909static void
40fb9820 2910pt (i386_operand_type t)
252b5132 2911{
40fb9820 2912 unsigned int j;
c6fb90c8 2913 i386_operand_type a;
252b5132 2914
40fb9820 2915 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2916 {
2917 a = operand_type_and (t, type_names[j].mask);
0349dc08 2918 if (!operand_type_all_zero (&a))
c6fb90c8
L
2919 fprintf (stdout, "%s, ", type_names[j].name);
2920 }
252b5132
RH
2921 fflush (stdout);
2922}
2923
2924#endif /* DEBUG386 */
2925\f
252b5132 2926static bfd_reloc_code_real_type
3956db08 2927reloc (unsigned int size,
64e74474
AM
2928 int pcrel,
2929 int sign,
2930 bfd_reloc_code_real_type other)
252b5132 2931{
47926f60 2932 if (other != NO_RELOC)
3956db08 2933 {
91d6fa6a 2934 reloc_howto_type *rel;
3956db08
JB
2935
2936 if (size == 8)
2937 switch (other)
2938 {
64e74474
AM
2939 case BFD_RELOC_X86_64_GOT32:
2940 return BFD_RELOC_X86_64_GOT64;
2941 break;
553d1284
L
2942 case BFD_RELOC_X86_64_GOTPLT64:
2943 return BFD_RELOC_X86_64_GOTPLT64;
2944 break;
64e74474
AM
2945 case BFD_RELOC_X86_64_PLTOFF64:
2946 return BFD_RELOC_X86_64_PLTOFF64;
2947 break;
2948 case BFD_RELOC_X86_64_GOTPC32:
2949 other = BFD_RELOC_X86_64_GOTPC64;
2950 break;
2951 case BFD_RELOC_X86_64_GOTPCREL:
2952 other = BFD_RELOC_X86_64_GOTPCREL64;
2953 break;
2954 case BFD_RELOC_X86_64_TPOFF32:
2955 other = BFD_RELOC_X86_64_TPOFF64;
2956 break;
2957 case BFD_RELOC_X86_64_DTPOFF32:
2958 other = BFD_RELOC_X86_64_DTPOFF64;
2959 break;
2960 default:
2961 break;
3956db08 2962 }
e05278af 2963
8ce3d284 2964#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2965 if (other == BFD_RELOC_SIZE32)
2966 {
2967 if (size == 8)
1ab668bf 2968 other = BFD_RELOC_SIZE64;
8fd4256d 2969 if (pcrel)
1ab668bf
AM
2970 {
2971 as_bad (_("there are no pc-relative size relocations"));
2972 return NO_RELOC;
2973 }
8fd4256d 2974 }
8ce3d284 2975#endif
8fd4256d 2976
e05278af 2977 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2978 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2979 sign = -1;
2980
91d6fa6a
NC
2981 rel = bfd_reloc_type_lookup (stdoutput, other);
2982 if (!rel)
3956db08 2983 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2984 else if (size != bfd_get_reloc_size (rel))
3956db08 2985 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2986 bfd_get_reloc_size (rel),
3956db08 2987 size);
91d6fa6a 2988 else if (pcrel && !rel->pc_relative)
3956db08 2989 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2990 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2991 && !sign)
91d6fa6a 2992 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2993 && sign > 0))
3956db08
JB
2994 as_bad (_("relocated field and relocation type differ in signedness"));
2995 else
2996 return other;
2997 return NO_RELOC;
2998 }
252b5132
RH
2999
3000 if (pcrel)
3001 {
3e73aa7c 3002 if (!sign)
3956db08 3003 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3004 switch (size)
3005 {
3006 case 1: return BFD_RELOC_8_PCREL;
3007 case 2: return BFD_RELOC_16_PCREL;
d258b828 3008 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3009 case 8: return BFD_RELOC_64_PCREL;
252b5132 3010 }
3956db08 3011 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3012 }
3013 else
3014 {
3956db08 3015 if (sign > 0)
e5cb08ac 3016 switch (size)
3e73aa7c
JH
3017 {
3018 case 4: return BFD_RELOC_X86_64_32S;
3019 }
3020 else
3021 switch (size)
3022 {
3023 case 1: return BFD_RELOC_8;
3024 case 2: return BFD_RELOC_16;
3025 case 4: return BFD_RELOC_32;
3026 case 8: return BFD_RELOC_64;
3027 }
3956db08
JB
3028 as_bad (_("cannot do %s %u byte relocation"),
3029 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3030 }
3031
0cc9e1d3 3032 return NO_RELOC;
252b5132
RH
3033}
3034
47926f60
KH
3035/* Here we decide which fixups can be adjusted to make them relative to
3036 the beginning of the section instead of the symbol. Basically we need
3037 to make sure that the dynamic relocations are done correctly, so in
3038 some cases we force the original symbol to be used. */
3039
252b5132 3040int
e3bb37b5 3041tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3042{
6d249963 3043#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3044 if (!IS_ELF)
31312f95
AM
3045 return 1;
3046
a161fe53
AM
3047 /* Don't adjust pc-relative references to merge sections in 64-bit
3048 mode. */
3049 if (use_rela_relocations
3050 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3051 && fixP->fx_pcrel)
252b5132 3052 return 0;
31312f95 3053
8d01d9a9
AJ
3054 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3055 and changed later by validate_fix. */
3056 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3057 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3058 return 0;
3059
8fd4256d
L
3060 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3061 for size relocations. */
3062 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3063 || fixP->fx_r_type == BFD_RELOC_SIZE64
3064 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3065 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3066 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3067 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3068 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3069 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3070 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3071 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3072 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3073 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3074 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3075 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3076 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3077 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3078 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3079 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3080 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3081 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3082 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3083 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3084 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3085 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3086 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3087 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3088 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3089 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3090 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3091 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3092 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3093 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3094 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3095 return 0;
31312f95 3096#endif
252b5132
RH
3097 return 1;
3098}
252b5132 3099
b4cac588 3100static int
e3bb37b5 3101intel_float_operand (const char *mnemonic)
252b5132 3102{
9306ca4a
JB
3103 /* Note that the value returned is meaningful only for opcodes with (memory)
3104 operands, hence the code here is free to improperly handle opcodes that
3105 have no operands (for better performance and smaller code). */
3106
3107 if (mnemonic[0] != 'f')
3108 return 0; /* non-math */
3109
3110 switch (mnemonic[1])
3111 {
3112 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3113 the fs segment override prefix not currently handled because no
3114 call path can make opcodes without operands get here */
3115 case 'i':
3116 return 2 /* integer op */;
3117 case 'l':
3118 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3119 return 3; /* fldcw/fldenv */
3120 break;
3121 case 'n':
3122 if (mnemonic[2] != 'o' /* fnop */)
3123 return 3; /* non-waiting control op */
3124 break;
3125 case 'r':
3126 if (mnemonic[2] == 's')
3127 return 3; /* frstor/frstpm */
3128 break;
3129 case 's':
3130 if (mnemonic[2] == 'a')
3131 return 3; /* fsave */
3132 if (mnemonic[2] == 't')
3133 {
3134 switch (mnemonic[3])
3135 {
3136 case 'c': /* fstcw */
3137 case 'd': /* fstdw */
3138 case 'e': /* fstenv */
3139 case 's': /* fsts[gw] */
3140 return 3;
3141 }
3142 }
3143 break;
3144 case 'x':
3145 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3146 return 0; /* fxsave/fxrstor are not really math ops */
3147 break;
3148 }
252b5132 3149
9306ca4a 3150 return 1;
252b5132
RH
3151}
3152
c0f3af97
L
3153/* Build the VEX prefix. */
3154
3155static void
d3ce72d0 3156build_vex_prefix (const insn_template *t)
c0f3af97
L
3157{
3158 unsigned int register_specifier;
3159 unsigned int implied_prefix;
3160 unsigned int vector_length;
3161
3162 /* Check register specifier. */
3163 if (i.vex.register_specifier)
43234a1e
L
3164 {
3165 register_specifier =
3166 ~register_number (i.vex.register_specifier) & 0xf;
3167 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3168 }
c0f3af97
L
3169 else
3170 register_specifier = 0xf;
3171
33eaf5de 3172 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3173 operand. */
86fa6981
L
3174 if (i.vec_encoding != vex_encoding_vex3
3175 && i.dir_encoding == dir_encoding_default
fa99fab2 3176 && i.operands == i.reg_operands
7f399153 3177 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3178 && i.tm.opcode_modifier.load
fa99fab2
L
3179 && i.rex == REX_B)
3180 {
3181 unsigned int xchg = i.operands - 1;
3182 union i386_op temp_op;
3183 i386_operand_type temp_type;
3184
3185 temp_type = i.types[xchg];
3186 i.types[xchg] = i.types[0];
3187 i.types[0] = temp_type;
3188 temp_op = i.op[xchg];
3189 i.op[xchg] = i.op[0];
3190 i.op[0] = temp_op;
3191
9c2799c2 3192 gas_assert (i.rm.mode == 3);
fa99fab2
L
3193
3194 i.rex = REX_R;
3195 xchg = i.rm.regmem;
3196 i.rm.regmem = i.rm.reg;
3197 i.rm.reg = xchg;
3198
3199 /* Use the next insn. */
3200 i.tm = t[1];
3201 }
3202
539f890d
L
3203 if (i.tm.opcode_modifier.vex == VEXScalar)
3204 vector_length = avxscalar;
3205 else
3206 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3207
3208 switch ((i.tm.base_opcode >> 8) & 0xff)
3209 {
3210 case 0:
3211 implied_prefix = 0;
3212 break;
3213 case DATA_PREFIX_OPCODE:
3214 implied_prefix = 1;
3215 break;
3216 case REPE_PREFIX_OPCODE:
3217 implied_prefix = 2;
3218 break;
3219 case REPNE_PREFIX_OPCODE:
3220 implied_prefix = 3;
3221 break;
3222 default:
3223 abort ();
3224 }
3225
3226 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3227 if (i.vec_encoding != vex_encoding_vex3
3228 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3229 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3230 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3231 {
3232 /* 2-byte VEX prefix. */
3233 unsigned int r;
3234
3235 i.vex.length = 2;
3236 i.vex.bytes[0] = 0xc5;
3237
3238 /* Check the REX.R bit. */
3239 r = (i.rex & REX_R) ? 0 : 1;
3240 i.vex.bytes[1] = (r << 7
3241 | register_specifier << 3
3242 | vector_length << 2
3243 | implied_prefix);
3244 }
3245 else
3246 {
3247 /* 3-byte VEX prefix. */
3248 unsigned int m, w;
3249
f88c9eb0 3250 i.vex.length = 3;
f88c9eb0 3251
7f399153 3252 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3253 {
7f399153
L
3254 case VEX0F:
3255 m = 0x1;
80de6e00 3256 i.vex.bytes[0] = 0xc4;
7f399153
L
3257 break;
3258 case VEX0F38:
3259 m = 0x2;
80de6e00 3260 i.vex.bytes[0] = 0xc4;
7f399153
L
3261 break;
3262 case VEX0F3A:
3263 m = 0x3;
80de6e00 3264 i.vex.bytes[0] = 0xc4;
7f399153
L
3265 break;
3266 case XOP08:
5dd85c99
SP
3267 m = 0x8;
3268 i.vex.bytes[0] = 0x8f;
7f399153
L
3269 break;
3270 case XOP09:
f88c9eb0
SP
3271 m = 0x9;
3272 i.vex.bytes[0] = 0x8f;
7f399153
L
3273 break;
3274 case XOP0A:
f88c9eb0
SP
3275 m = 0xa;
3276 i.vex.bytes[0] = 0x8f;
7f399153
L
3277 break;
3278 default:
3279 abort ();
f88c9eb0 3280 }
c0f3af97 3281
c0f3af97
L
3282 /* The high 3 bits of the second VEX byte are 1's compliment
3283 of RXB bits from REX. */
3284 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3285
3286 /* Check the REX.W bit. */
3287 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3288 if (i.tm.opcode_modifier.vexw == VEXW1)
3289 w = 1;
c0f3af97
L
3290
3291 i.vex.bytes[2] = (w << 7
3292 | register_specifier << 3
3293 | vector_length << 2
3294 | implied_prefix);
3295 }
3296}
3297
43234a1e
L
3298/* Build the EVEX prefix. */
3299
3300static void
3301build_evex_prefix (void)
3302{
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int m, w;
3306 rex_byte vrex_used = 0;
3307
3308 /* Check register specifier. */
3309 if (i.vex.register_specifier)
3310 {
3311 gas_assert ((i.vrex & REX_X) == 0);
3312
3313 register_specifier = i.vex.register_specifier->reg_num;
3314 if ((i.vex.register_specifier->reg_flags & RegRex))
3315 register_specifier += 8;
3316 /* The upper 16 registers are encoded in the fourth byte of the
3317 EVEX prefix. */
3318 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3319 i.vex.bytes[3] = 0x8;
3320 register_specifier = ~register_specifier & 0xf;
3321 }
3322 else
3323 {
3324 register_specifier = 0xf;
3325
3326 /* Encode upper 16 vector index register in the fourth byte of
3327 the EVEX prefix. */
3328 if (!(i.vrex & REX_X))
3329 i.vex.bytes[3] = 0x8;
3330 else
3331 vrex_used |= REX_X;
3332 }
3333
3334 switch ((i.tm.base_opcode >> 8) & 0xff)
3335 {
3336 case 0:
3337 implied_prefix = 0;
3338 break;
3339 case DATA_PREFIX_OPCODE:
3340 implied_prefix = 1;
3341 break;
3342 case REPE_PREFIX_OPCODE:
3343 implied_prefix = 2;
3344 break;
3345 case REPNE_PREFIX_OPCODE:
3346 implied_prefix = 3;
3347 break;
3348 default:
3349 abort ();
3350 }
3351
3352 /* 4 byte EVEX prefix. */
3353 i.vex.length = 4;
3354 i.vex.bytes[0] = 0x62;
3355
3356 /* mmmm bits. */
3357 switch (i.tm.opcode_modifier.vexopcode)
3358 {
3359 case VEX0F:
3360 m = 1;
3361 break;
3362 case VEX0F38:
3363 m = 2;
3364 break;
3365 case VEX0F3A:
3366 m = 3;
3367 break;
3368 default:
3369 abort ();
3370 break;
3371 }
3372
3373 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3374 bits from REX. */
3375 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3376
3377 /* The fifth bit of the second EVEX byte is 1's compliment of the
3378 REX_R bit in VREX. */
3379 if (!(i.vrex & REX_R))
3380 i.vex.bytes[1] |= 0x10;
3381 else
3382 vrex_used |= REX_R;
3383
3384 if ((i.reg_operands + i.imm_operands) == i.operands)
3385 {
3386 /* When all operands are registers, the REX_X bit in REX is not
3387 used. We reuse it to encode the upper 16 registers, which is
3388 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3389 as 1's compliment. */
3390 if ((i.vrex & REX_B))
3391 {
3392 vrex_used |= REX_B;
3393 i.vex.bytes[1] &= ~0x40;
3394 }
3395 }
3396
3397 /* EVEX instructions shouldn't need the REX prefix. */
3398 i.vrex &= ~vrex_used;
3399 gas_assert (i.vrex == 0);
3400
3401 /* Check the REX.W bit. */
3402 w = (i.rex & REX_W) ? 1 : 0;
3403 if (i.tm.opcode_modifier.vexw)
3404 {
3405 if (i.tm.opcode_modifier.vexw == VEXW1)
3406 w = 1;
3407 }
3408 /* If w is not set it means we are dealing with WIG instruction. */
3409 else if (!w)
3410 {
3411 if (evexwig == evexw1)
3412 w = 1;
3413 }
3414
3415 /* Encode the U bit. */
3416 implied_prefix |= 0x4;
3417
3418 /* The third byte of the EVEX prefix. */
3419 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3420
3421 /* The fourth byte of the EVEX prefix. */
3422 /* The zeroing-masking bit. */
3423 if (i.mask && i.mask->zeroing)
3424 i.vex.bytes[3] |= 0x80;
3425
3426 /* Don't always set the broadcast bit if there is no RC. */
3427 if (!i.rounding)
3428 {
3429 /* Encode the vector length. */
3430 unsigned int vec_length;
3431
3432 switch (i.tm.opcode_modifier.evex)
3433 {
3434 case EVEXLIG: /* LL' is ignored */
3435 vec_length = evexlig << 5;
3436 break;
3437 case EVEX128:
3438 vec_length = 0 << 5;
3439 break;
3440 case EVEX256:
3441 vec_length = 1 << 5;
3442 break;
3443 case EVEX512:
3444 vec_length = 2 << 5;
3445 break;
3446 default:
3447 abort ();
3448 break;
3449 }
3450 i.vex.bytes[3] |= vec_length;
3451 /* Encode the broadcast bit. */
3452 if (i.broadcast)
3453 i.vex.bytes[3] |= 0x10;
3454 }
3455 else
3456 {
3457 if (i.rounding->type != saeonly)
3458 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3459 else
d3d3c6db 3460 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3461 }
3462
3463 if (i.mask && i.mask->mask)
3464 i.vex.bytes[3] |= i.mask->mask->reg_num;
3465}
3466
65da13b5
L
3467static void
3468process_immext (void)
3469{
3470 expressionS *exp;
3471
4c692bc7
JB
3472 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3473 && i.operands > 0)
65da13b5 3474 {
4c692bc7
JB
3475 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3476 with an opcode suffix which is coded in the same place as an
3477 8-bit immediate field would be.
3478 Here we check those operands and remove them afterwards. */
65da13b5
L
3479 unsigned int x;
3480
3481 for (x = 0; x < i.operands; x++)
4c692bc7 3482 if (register_number (i.op[x].regs) != x)
65da13b5 3483 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3484 register_prefix, i.op[x].regs->reg_name, x + 1,
3485 i.tm.name);
3486
3487 i.operands = 0;
65da13b5
L
3488 }
3489
9916071f
AP
3490 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3491 {
3492 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3493 suffix which is coded in the same place as an 8-bit immediate
3494 field would be.
3495 Here we check those operands and remove them afterwards. */
3496 unsigned int x;
3497
3498 if (i.operands != 3)
3499 abort();
3500
3501 for (x = 0; x < 2; x++)
3502 if (register_number (i.op[x].regs) != x)
3503 goto bad_register_operand;
3504
3505 /* Check for third operand for mwaitx/monitorx insn. */
3506 if (register_number (i.op[x].regs)
3507 != (x + (i.tm.extension_opcode == 0xfb)))
3508 {
3509bad_register_operand:
3510 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3511 register_prefix, i.op[x].regs->reg_name, x+1,
3512 i.tm.name);
3513 }
3514
3515 i.operands = 0;
3516 }
3517
c0f3af97 3518 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3519 which is coded in the same place as an 8-bit immediate field
3520 would be. Here we fake an 8-bit immediate operand from the
3521 opcode suffix stored in tm.extension_opcode.
3522
c1e679ec 3523 AVX instructions also use this encoding, for some of
c0f3af97 3524 3 argument instructions. */
65da13b5 3525
43234a1e 3526 gas_assert (i.imm_operands <= 1
7ab9ffdd 3527 && (i.operands <= 2
43234a1e
L
3528 || ((i.tm.opcode_modifier.vex
3529 || i.tm.opcode_modifier.evex)
7ab9ffdd 3530 && i.operands <= 4)));
65da13b5
L
3531
3532 exp = &im_expressions[i.imm_operands++];
3533 i.op[i.operands].imms = exp;
3534 i.types[i.operands] = imm8;
3535 i.operands++;
3536 exp->X_op = O_constant;
3537 exp->X_add_number = i.tm.extension_opcode;
3538 i.tm.extension_opcode = None;
3539}
3540
42164a71
L
3541
3542static int
3543check_hle (void)
3544{
3545 switch (i.tm.opcode_modifier.hleprefixok)
3546 {
3547 default:
3548 abort ();
82c2def5 3549 case HLEPrefixNone:
165de32a
L
3550 as_bad (_("invalid instruction `%s' after `%s'"),
3551 i.tm.name, i.hle_prefix);
42164a71 3552 return 0;
82c2def5 3553 case HLEPrefixLock:
42164a71
L
3554 if (i.prefix[LOCK_PREFIX])
3555 return 1;
165de32a 3556 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3557 return 0;
82c2def5 3558 case HLEPrefixAny:
42164a71 3559 return 1;
82c2def5 3560 case HLEPrefixRelease:
42164a71
L
3561 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3562 {
3563 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3564 i.tm.name);
3565 return 0;
3566 }
3567 if (i.mem_operands == 0
3568 || !operand_type_check (i.types[i.operands - 1], anymem))
3569 {
3570 as_bad (_("memory destination needed for instruction `%s'"
3571 " after `xrelease'"), i.tm.name);
3572 return 0;
3573 }
3574 return 1;
3575 }
3576}
3577
252b5132
RH
3578/* This is the guts of the machine-dependent assembler. LINE points to a
3579 machine dependent instruction. This function is supposed to emit
3580 the frags/bytes it assembles to. */
3581
3582void
65da13b5 3583md_assemble (char *line)
252b5132 3584{
40fb9820 3585 unsigned int j;
83b16ac6 3586 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3587 const insn_template *t;
252b5132 3588
47926f60 3589 /* Initialize globals. */
252b5132
RH
3590 memset (&i, '\0', sizeof (i));
3591 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3592 i.reloc[j] = NO_RELOC;
252b5132
RH
3593 memset (disp_expressions, '\0', sizeof (disp_expressions));
3594 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3595 save_stack_p = save_stack;
252b5132
RH
3596
3597 /* First parse an instruction mnemonic & call i386_operand for the operands.
3598 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3599 start of a (possibly prefixed) mnemonic. */
252b5132 3600
29b0f896
AM
3601 line = parse_insn (line, mnemonic);
3602 if (line == NULL)
3603 return;
83b16ac6 3604 mnem_suffix = i.suffix;
252b5132 3605
29b0f896 3606 line = parse_operands (line, mnemonic);
ee86248c 3607 this_operand = -1;
8325cc63
JB
3608 xfree (i.memop1_string);
3609 i.memop1_string = NULL;
29b0f896
AM
3610 if (line == NULL)
3611 return;
252b5132 3612
29b0f896
AM
3613 /* Now we've parsed the mnemonic into a set of templates, and have the
3614 operands at hand. */
3615
3616 /* All intel opcodes have reversed operands except for "bound" and
3617 "enter". We also don't reverse intersegment "jmp" and "call"
3618 instructions with 2 immediate operands so that the immediate segment
050dfa73 3619 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3620 if (intel_syntax
3621 && i.operands > 1
29b0f896 3622 && (strcmp (mnemonic, "bound") != 0)
30123838 3623 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3624 && !(operand_type_check (i.types[0], imm)
3625 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3626 swap_operands ();
3627
ec56d5c0
JB
3628 /* The order of the immediates should be reversed
3629 for 2 immediates extrq and insertq instructions */
3630 if (i.imm_operands == 2
3631 && (strcmp (mnemonic, "extrq") == 0
3632 || strcmp (mnemonic, "insertq") == 0))
3633 swap_2_operands (0, 1);
3634
29b0f896
AM
3635 if (i.imm_operands)
3636 optimize_imm ();
3637
b300c311
L
3638 /* Don't optimize displacement for movabs since it only takes 64bit
3639 displacement. */
3640 if (i.disp_operands
a501d77e 3641 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3642 && (flag_code != CODE_64BIT
3643 || strcmp (mnemonic, "movabs") != 0))
3644 optimize_disp ();
29b0f896
AM
3645
3646 /* Next, we find a template that matches the given insn,
3647 making sure the overlap of the given operands types is consistent
3648 with the template operand types. */
252b5132 3649
83b16ac6 3650 if (!(t = match_template (mnem_suffix)))
29b0f896 3651 return;
252b5132 3652
7bab8ab5 3653 if (sse_check != check_none
81f8a913 3654 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3655 && (i.tm.cpu_flags.bitfield.cpusse
3656 || i.tm.cpu_flags.bitfield.cpusse2
3657 || i.tm.cpu_flags.bitfield.cpusse3
3658 || i.tm.cpu_flags.bitfield.cpussse3
3659 || i.tm.cpu_flags.bitfield.cpusse4_1
3660 || i.tm.cpu_flags.bitfield.cpusse4_2))
3661 {
7bab8ab5 3662 (sse_check == check_warning
daf50ae7
L
3663 ? as_warn
3664 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3665 }
3666
321fd21e
L
3667 /* Zap movzx and movsx suffix. The suffix has been set from
3668 "word ptr" or "byte ptr" on the source operand in Intel syntax
3669 or extracted from mnemonic in AT&T syntax. But we'll use
3670 the destination register to choose the suffix for encoding. */
3671 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3672 {
321fd21e
L
3673 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3674 there is no suffix, the default will be byte extension. */
3675 if (i.reg_operands != 2
3676 && !i.suffix
7ab9ffdd 3677 && intel_syntax)
321fd21e
L
3678 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3679
3680 i.suffix = 0;
cd61ebfe 3681 }
24eab124 3682
40fb9820 3683 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3684 if (!add_prefix (FWAIT_OPCODE))
3685 return;
252b5132 3686
d5de92cf
L
3687 /* Check if REP prefix is OK. */
3688 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3689 {
3690 as_bad (_("invalid instruction `%s' after `%s'"),
3691 i.tm.name, i.rep_prefix);
3692 return;
3693 }
3694
c1ba0266
L
3695 /* Check for lock without a lockable instruction. Destination operand
3696 must be memory unless it is xchg (0x86). */
c32fa91d
L
3697 if (i.prefix[LOCK_PREFIX]
3698 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3699 || i.mem_operands == 0
3700 || (i.tm.base_opcode != 0x86
3701 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3702 {
3703 as_bad (_("expecting lockable instruction after `lock'"));
3704 return;
3705 }
3706
42164a71 3707 /* Check if HLE prefix is OK. */
165de32a 3708 if (i.hle_prefix && !check_hle ())
42164a71
L
3709 return;
3710
7e8b059b
L
3711 /* Check BND prefix. */
3712 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3713 as_bad (_("expecting valid branch instruction after `bnd'"));
3714
04ef582a 3715 /* Check NOTRACK prefix. */
9fef80d6
L
3716 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3717 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 3718
327e8c42
JB
3719 if (i.tm.cpu_flags.bitfield.cpumpx)
3720 {
3721 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3722 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3723 else if (flag_code != CODE_16BIT
3724 ? i.prefix[ADDR_PREFIX]
3725 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3726 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3727 }
7e8b059b
L
3728
3729 /* Insert BND prefix. */
3730 if (add_bnd_prefix
3731 && i.tm.opcode_modifier.bndprefixok
3732 && !i.prefix[BND_PREFIX])
3733 add_prefix (BND_PREFIX_OPCODE);
3734
29b0f896 3735 /* Check string instruction segment overrides. */
40fb9820 3736 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3737 {
3738 if (!check_string ())
5dd0794d 3739 return;
fc0763e6 3740 i.disp_operands = 0;
29b0f896 3741 }
5dd0794d 3742
29b0f896
AM
3743 if (!process_suffix ())
3744 return;
e413e4e9 3745
bc0844ae
L
3746 /* Update operand types. */
3747 for (j = 0; j < i.operands; j++)
3748 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3749
29b0f896
AM
3750 /* Make still unresolved immediate matches conform to size of immediate
3751 given in i.suffix. */
3752 if (!finalize_imm ())
3753 return;
252b5132 3754
40fb9820 3755 if (i.types[0].bitfield.imm1)
29b0f896 3756 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3757
9afe6eb8
L
3758 /* We only need to check those implicit registers for instructions
3759 with 3 operands or less. */
3760 if (i.operands <= 3)
3761 for (j = 0; j < i.operands; j++)
3762 if (i.types[j].bitfield.inoutportreg
3763 || i.types[j].bitfield.shiftcount
3764 || i.types[j].bitfield.acc
3765 || i.types[j].bitfield.floatacc)
3766 i.reg_operands--;
40fb9820 3767
c0f3af97
L
3768 /* ImmExt should be processed after SSE2AVX. */
3769 if (!i.tm.opcode_modifier.sse2avx
3770 && i.tm.opcode_modifier.immext)
65da13b5 3771 process_immext ();
252b5132 3772
29b0f896
AM
3773 /* For insns with operands there are more diddles to do to the opcode. */
3774 if (i.operands)
3775 {
3776 if (!process_operands ())
3777 return;
3778 }
40fb9820 3779 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3780 {
3781 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3782 as_warn (_("translating to `%sp'"), i.tm.name);
3783 }
252b5132 3784
9e5e5283
L
3785 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3786 {
3787 if (flag_code == CODE_16BIT)
3788 {
3789 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3790 i.tm.name);
3791 return;
3792 }
c0f3af97 3793
9e5e5283
L
3794 if (i.tm.opcode_modifier.vex)
3795 build_vex_prefix (t);
3796 else
3797 build_evex_prefix ();
3798 }
43234a1e 3799
5dd85c99
SP
3800 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3801 instructions may define INT_OPCODE as well, so avoid this corner
3802 case for those instructions that use MODRM. */
3803 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3804 && !i.tm.opcode_modifier.modrm
3805 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3806 {
3807 i.tm.base_opcode = INT3_OPCODE;
3808 i.imm_operands = 0;
3809 }
252b5132 3810
40fb9820
L
3811 if ((i.tm.opcode_modifier.jump
3812 || i.tm.opcode_modifier.jumpbyte
3813 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3814 && i.op[0].disps->X_op == O_constant)
3815 {
3816 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3817 the absolute address given by the constant. Since ix86 jumps and
3818 calls are pc relative, we need to generate a reloc. */
3819 i.op[0].disps->X_add_symbol = &abs_symbol;
3820 i.op[0].disps->X_op = O_symbol;
3821 }
252b5132 3822
40fb9820 3823 if (i.tm.opcode_modifier.rex64)
161a04f6 3824 i.rex |= REX_W;
252b5132 3825
29b0f896
AM
3826 /* For 8 bit registers we need an empty rex prefix. Also if the
3827 instruction already has a prefix, we need to convert old
3828 registers to new ones. */
773f551c 3829
40fb9820 3830 if ((i.types[0].bitfield.reg8
29b0f896 3831 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3832 || (i.types[1].bitfield.reg8
29b0f896 3833 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3834 || ((i.types[0].bitfield.reg8
3835 || i.types[1].bitfield.reg8)
29b0f896
AM
3836 && i.rex != 0))
3837 {
3838 int x;
726c5dcd 3839
29b0f896
AM
3840 i.rex |= REX_OPCODE;
3841 for (x = 0; x < 2; x++)
3842 {
3843 /* Look for 8 bit operand that uses old registers. */
40fb9820 3844 if (i.types[x].bitfield.reg8
29b0f896 3845 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3846 {
29b0f896
AM
3847 /* In case it is "hi" register, give up. */
3848 if (i.op[x].regs->reg_num > 3)
a540244d 3849 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3850 "instruction requiring REX prefix."),
a540244d 3851 register_prefix, i.op[x].regs->reg_name);
773f551c 3852
29b0f896
AM
3853 /* Otherwise it is equivalent to the extended register.
3854 Since the encoding doesn't change this is merely
3855 cosmetic cleanup for debug output. */
3856
3857 i.op[x].regs = i.op[x].regs + 8;
773f551c 3858 }
29b0f896
AM
3859 }
3860 }
773f551c 3861
7ab9ffdd 3862 if (i.rex != 0)
29b0f896
AM
3863 add_prefix (REX_OPCODE | i.rex);
3864
3865 /* We are ready to output the insn. */
3866 output_insn ();
3867}
3868
3869static char *
e3bb37b5 3870parse_insn (char *line, char *mnemonic)
29b0f896
AM
3871{
3872 char *l = line;
3873 char *token_start = l;
3874 char *mnem_p;
5c6af06e 3875 int supported;
d3ce72d0 3876 const insn_template *t;
b6169b20 3877 char *dot_p = NULL;
29b0f896 3878
29b0f896
AM
3879 while (1)
3880 {
3881 mnem_p = mnemonic;
3882 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3883 {
b6169b20
L
3884 if (*mnem_p == '.')
3885 dot_p = mnem_p;
29b0f896
AM
3886 mnem_p++;
3887 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3888 {
29b0f896
AM
3889 as_bad (_("no such instruction: `%s'"), token_start);
3890 return NULL;
3891 }
3892 l++;
3893 }
3894 if (!is_space_char (*l)
3895 && *l != END_OF_INSN
e44823cf
JB
3896 && (intel_syntax
3897 || (*l != PREFIX_SEPARATOR
3898 && *l != ',')))
29b0f896
AM
3899 {
3900 as_bad (_("invalid character %s in mnemonic"),
3901 output_invalid (*l));
3902 return NULL;
3903 }
3904 if (token_start == l)
3905 {
e44823cf 3906 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3907 as_bad (_("expecting prefix; got nothing"));
3908 else
3909 as_bad (_("expecting mnemonic; got nothing"));
3910 return NULL;
3911 }
45288df1 3912
29b0f896 3913 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3914 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3915
29b0f896
AM
3916 if (*l != END_OF_INSN
3917 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3918 && current_templates
40fb9820 3919 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3920 {
c6fb90c8 3921 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3922 {
3923 as_bad ((flag_code != CODE_64BIT
3924 ? _("`%s' is only supported in 64-bit mode")
3925 : _("`%s' is not supported in 64-bit mode")),
3926 current_templates->start->name);
3927 return NULL;
3928 }
29b0f896
AM
3929 /* If we are in 16-bit mode, do not allow addr16 or data16.
3930 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3931 if ((current_templates->start->opcode_modifier.size16
3932 || current_templates->start->opcode_modifier.size32)
29b0f896 3933 && flag_code != CODE_64BIT
40fb9820 3934 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3935 ^ (flag_code == CODE_16BIT)))
3936 {
3937 as_bad (_("redundant %s prefix"),
3938 current_templates->start->name);
3939 return NULL;
45288df1 3940 }
86fa6981 3941 if (current_templates->start->opcode_length == 0)
29b0f896 3942 {
86fa6981
L
3943 /* Handle pseudo prefixes. */
3944 switch (current_templates->start->base_opcode)
3945 {
3946 case 0x0:
3947 /* {disp8} */
3948 i.disp_encoding = disp_encoding_8bit;
3949 break;
3950 case 0x1:
3951 /* {disp32} */
3952 i.disp_encoding = disp_encoding_32bit;
3953 break;
3954 case 0x2:
3955 /* {load} */
3956 i.dir_encoding = dir_encoding_load;
3957 break;
3958 case 0x3:
3959 /* {store} */
3960 i.dir_encoding = dir_encoding_store;
3961 break;
3962 case 0x4:
3963 /* {vex2} */
3964 i.vec_encoding = vex_encoding_vex2;
3965 break;
3966 case 0x5:
3967 /* {vex3} */
3968 i.vec_encoding = vex_encoding_vex3;
3969 break;
3970 case 0x6:
3971 /* {evex} */
3972 i.vec_encoding = vex_encoding_evex;
3973 break;
3974 default:
3975 abort ();
3976 }
3977 }
3978 else
3979 {
3980 /* Add prefix, checking for repeated prefixes. */
04ef582a
L
3981 enum PREFIX_GROUP p
3982 = add_prefix (current_templates->start->base_opcode);
3983 if (p == PREFIX_DS
3984 && current_templates->start->cpu_flags.bitfield.cpucet)
86fa6981 3985 {
04ef582a
L
3986 i.notrack_prefix = current_templates->start->name;
3987 /* Move NOTRACK_PREFIX_OPCODE to NOTRACK_PREFIX slot so
3988 that it is placed before others. */
3989 i.prefix[SEG_PREFIX] = 0;
3990 i.prefix[NOTRACK_PREFIX] = NOTRACK_PREFIX_OPCODE;
3991 }
3992 else
3993 {
3994 switch (p)
3995 {
3996 case PREFIX_EXIST:
3997 return NULL;
3998 case PREFIX_REP:
3999 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4000 i.hle_prefix = current_templates->start->name;
4001 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4002 i.bnd_prefix = current_templates->start->name;
4003 else
4004 i.rep_prefix = current_templates->start->name;
4005 break;
4006 default:
4007 break;
4008 }
4009
4010 if (i.notrack_prefix != NULL)
4011 {
4012 /* There must be no other prefixes after NOTRACK
4013 prefix. */
4014 as_bad (_("expecting no other prefixes after `notrack'"));
4015 return NULL;
4016 }
86fa6981 4017 }
29b0f896
AM
4018 }
4019 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4020 token_start = ++l;
4021 }
4022 else
4023 break;
4024 }
45288df1 4025
30a55f88 4026 if (!current_templates)
b6169b20 4027 {
f8a5c266
L
4028 /* Check if we should swap operand or force 32bit displacement in
4029 encoding. */
30a55f88 4030 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4031 i.dir_encoding = dir_encoding_store;
8d63c93e 4032 else if (mnem_p - 3 == dot_p
a501d77e
L
4033 && dot_p[1] == 'd'
4034 && dot_p[2] == '8')
4035 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4036 else if (mnem_p - 4 == dot_p
f8a5c266
L
4037 && dot_p[1] == 'd'
4038 && dot_p[2] == '3'
4039 && dot_p[3] == '2')
a501d77e 4040 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4041 else
4042 goto check_suffix;
4043 mnem_p = dot_p;
4044 *dot_p = '\0';
d3ce72d0 4045 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4046 }
4047
29b0f896
AM
4048 if (!current_templates)
4049 {
b6169b20 4050check_suffix:
29b0f896
AM
4051 /* See if we can get a match by trimming off a suffix. */
4052 switch (mnem_p[-1])
4053 {
4054 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4055 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4056 i.suffix = SHORT_MNEM_SUFFIX;
4057 else
1a0670f3 4058 /* Fall through. */
29b0f896
AM
4059 case BYTE_MNEM_SUFFIX:
4060 case QWORD_MNEM_SUFFIX:
4061 i.suffix = mnem_p[-1];
4062 mnem_p[-1] = '\0';
d3ce72d0
NC
4063 current_templates = (const templates *) hash_find (op_hash,
4064 mnemonic);
29b0f896
AM
4065 break;
4066 case SHORT_MNEM_SUFFIX:
4067 case LONG_MNEM_SUFFIX:
4068 if (!intel_syntax)
4069 {
4070 i.suffix = mnem_p[-1];
4071 mnem_p[-1] = '\0';
d3ce72d0
NC
4072 current_templates = (const templates *) hash_find (op_hash,
4073 mnemonic);
29b0f896
AM
4074 }
4075 break;
252b5132 4076
29b0f896
AM
4077 /* Intel Syntax. */
4078 case 'd':
4079 if (intel_syntax)
4080 {
9306ca4a 4081 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4082 i.suffix = SHORT_MNEM_SUFFIX;
4083 else
4084 i.suffix = LONG_MNEM_SUFFIX;
4085 mnem_p[-1] = '\0';
d3ce72d0
NC
4086 current_templates = (const templates *) hash_find (op_hash,
4087 mnemonic);
29b0f896
AM
4088 }
4089 break;
4090 }
4091 if (!current_templates)
4092 {
4093 as_bad (_("no such instruction: `%s'"), token_start);
4094 return NULL;
4095 }
4096 }
252b5132 4097
40fb9820
L
4098 if (current_templates->start->opcode_modifier.jump
4099 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4100 {
4101 /* Check for a branch hint. We allow ",pt" and ",pn" for
4102 predict taken and predict not taken respectively.
4103 I'm not sure that branch hints actually do anything on loop
4104 and jcxz insns (JumpByte) for current Pentium4 chips. They
4105 may work in the future and it doesn't hurt to accept them
4106 now. */
4107 if (l[0] == ',' && l[1] == 'p')
4108 {
4109 if (l[2] == 't')
4110 {
4111 if (!add_prefix (DS_PREFIX_OPCODE))
4112 return NULL;
4113 l += 3;
4114 }
4115 else if (l[2] == 'n')
4116 {
4117 if (!add_prefix (CS_PREFIX_OPCODE))
4118 return NULL;
4119 l += 3;
4120 }
4121 }
4122 }
4123 /* Any other comma loses. */
4124 if (*l == ',')
4125 {
4126 as_bad (_("invalid character %s in mnemonic"),
4127 output_invalid (*l));
4128 return NULL;
4129 }
252b5132 4130
29b0f896 4131 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4132 supported = 0;
4133 for (t = current_templates->start; t < current_templates->end; ++t)
4134 {
c0f3af97
L
4135 supported |= cpu_flags_match (t);
4136 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4137 goto skip;
5c6af06e 4138 }
3629bb00 4139
c0f3af97 4140 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4141 {
4142 as_bad (flag_code == CODE_64BIT
4143 ? _("`%s' is not supported in 64-bit mode")
4144 : _("`%s' is only supported in 64-bit mode"),
4145 current_templates->start->name);
4146 return NULL;
4147 }
c0f3af97 4148 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4149 {
3629bb00 4150 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4151 current_templates->start->name,
41aacd83 4152 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4153 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4154 return NULL;
29b0f896 4155 }
3629bb00
L
4156
4157skip:
4158 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4159 && (flag_code != CODE_16BIT))
29b0f896
AM
4160 {
4161 as_warn (_("use .code16 to ensure correct addressing mode"));
4162 }
252b5132 4163
29b0f896
AM
4164 return l;
4165}
252b5132 4166
29b0f896 4167static char *
e3bb37b5 4168parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4169{
4170 char *token_start;
3138f287 4171
29b0f896
AM
4172 /* 1 if operand is pending after ','. */
4173 unsigned int expecting_operand = 0;
252b5132 4174
29b0f896
AM
4175 /* Non-zero if operand parens not balanced. */
4176 unsigned int paren_not_balanced;
4177
4178 while (*l != END_OF_INSN)
4179 {
4180 /* Skip optional white space before operand. */
4181 if (is_space_char (*l))
4182 ++l;
d02603dc 4183 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4184 {
4185 as_bad (_("invalid character %s before operand %d"),
4186 output_invalid (*l),
4187 i.operands + 1);
4188 return NULL;
4189 }
d02603dc 4190 token_start = l; /* After white space. */
29b0f896
AM
4191 paren_not_balanced = 0;
4192 while (paren_not_balanced || *l != ',')
4193 {
4194 if (*l == END_OF_INSN)
4195 {
4196 if (paren_not_balanced)
4197 {
4198 if (!intel_syntax)
4199 as_bad (_("unbalanced parenthesis in operand %d."),
4200 i.operands + 1);
4201 else
4202 as_bad (_("unbalanced brackets in operand %d."),
4203 i.operands + 1);
4204 return NULL;
4205 }
4206 else
4207 break; /* we are done */
4208 }
d02603dc 4209 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4210 {
4211 as_bad (_("invalid character %s in operand %d"),
4212 output_invalid (*l),
4213 i.operands + 1);
4214 return NULL;
4215 }
4216 if (!intel_syntax)
4217 {
4218 if (*l == '(')
4219 ++paren_not_balanced;
4220 if (*l == ')')
4221 --paren_not_balanced;
4222 }
4223 else
4224 {
4225 if (*l == '[')
4226 ++paren_not_balanced;
4227 if (*l == ']')
4228 --paren_not_balanced;
4229 }
4230 l++;
4231 }
4232 if (l != token_start)
4233 { /* Yes, we've read in another operand. */
4234 unsigned int operand_ok;
4235 this_operand = i.operands++;
4236 if (i.operands > MAX_OPERANDS)
4237 {
4238 as_bad (_("spurious operands; (%d operands/instruction max)"),
4239 MAX_OPERANDS);
4240 return NULL;
4241 }
9d46ce34 4242 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4243 /* Now parse operand adding info to 'i' as we go along. */
4244 END_STRING_AND_SAVE (l);
4245
4246 if (intel_syntax)
4247 operand_ok =
4248 i386_intel_operand (token_start,
4249 intel_float_operand (mnemonic));
4250 else
a7619375 4251 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4252
4253 RESTORE_END_STRING (l);
4254 if (!operand_ok)
4255 return NULL;
4256 }
4257 else
4258 {
4259 if (expecting_operand)
4260 {
4261 expecting_operand_after_comma:
4262 as_bad (_("expecting operand after ','; got nothing"));
4263 return NULL;
4264 }
4265 if (*l == ',')
4266 {
4267 as_bad (_("expecting operand before ','; got nothing"));
4268 return NULL;
4269 }
4270 }
7f3f1ea2 4271
29b0f896
AM
4272 /* Now *l must be either ',' or END_OF_INSN. */
4273 if (*l == ',')
4274 {
4275 if (*++l == END_OF_INSN)
4276 {
4277 /* Just skip it, if it's \n complain. */
4278 goto expecting_operand_after_comma;
4279 }
4280 expecting_operand = 1;
4281 }
4282 }
4283 return l;
4284}
7f3f1ea2 4285
050dfa73 4286static void
4d456e3d 4287swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4288{
4289 union i386_op temp_op;
40fb9820 4290 i386_operand_type temp_type;
050dfa73 4291 enum bfd_reloc_code_real temp_reloc;
4eed87de 4292
050dfa73
MM
4293 temp_type = i.types[xchg2];
4294 i.types[xchg2] = i.types[xchg1];
4295 i.types[xchg1] = temp_type;
4296 temp_op = i.op[xchg2];
4297 i.op[xchg2] = i.op[xchg1];
4298 i.op[xchg1] = temp_op;
4299 temp_reloc = i.reloc[xchg2];
4300 i.reloc[xchg2] = i.reloc[xchg1];
4301 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4302
4303 if (i.mask)
4304 {
4305 if (i.mask->operand == xchg1)
4306 i.mask->operand = xchg2;
4307 else if (i.mask->operand == xchg2)
4308 i.mask->operand = xchg1;
4309 }
4310 if (i.broadcast)
4311 {
4312 if (i.broadcast->operand == xchg1)
4313 i.broadcast->operand = xchg2;
4314 else if (i.broadcast->operand == xchg2)
4315 i.broadcast->operand = xchg1;
4316 }
4317 if (i.rounding)
4318 {
4319 if (i.rounding->operand == xchg1)
4320 i.rounding->operand = xchg2;
4321 else if (i.rounding->operand == xchg2)
4322 i.rounding->operand = xchg1;
4323 }
050dfa73
MM
4324}
4325
29b0f896 4326static void
e3bb37b5 4327swap_operands (void)
29b0f896 4328{
b7c61d9a 4329 switch (i.operands)
050dfa73 4330 {
c0f3af97 4331 case 5:
b7c61d9a 4332 case 4:
4d456e3d 4333 swap_2_operands (1, i.operands - 2);
1a0670f3 4334 /* Fall through. */
b7c61d9a
L
4335 case 3:
4336 case 2:
4d456e3d 4337 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4338 break;
4339 default:
4340 abort ();
29b0f896 4341 }
29b0f896
AM
4342
4343 if (i.mem_operands == 2)
4344 {
4345 const seg_entry *temp_seg;
4346 temp_seg = i.seg[0];
4347 i.seg[0] = i.seg[1];
4348 i.seg[1] = temp_seg;
4349 }
4350}
252b5132 4351
29b0f896
AM
4352/* Try to ensure constant immediates are represented in the smallest
4353 opcode possible. */
4354static void
e3bb37b5 4355optimize_imm (void)
29b0f896
AM
4356{
4357 char guess_suffix = 0;
4358 int op;
252b5132 4359
29b0f896
AM
4360 if (i.suffix)
4361 guess_suffix = i.suffix;
4362 else if (i.reg_operands)
4363 {
4364 /* Figure out a suffix from the last register operand specified.
4365 We can't do this properly yet, ie. excluding InOutPortReg,
4366 but the following works for instructions with immediates.
4367 In any case, we can't set i.suffix yet. */
4368 for (op = i.operands; --op >= 0;)
40fb9820 4369 if (i.types[op].bitfield.reg8)
7ab9ffdd 4370 {
40fb9820
L
4371 guess_suffix = BYTE_MNEM_SUFFIX;
4372 break;
4373 }
4374 else if (i.types[op].bitfield.reg16)
252b5132 4375 {
40fb9820
L
4376 guess_suffix = WORD_MNEM_SUFFIX;
4377 break;
4378 }
4379 else if (i.types[op].bitfield.reg32)
4380 {
4381 guess_suffix = LONG_MNEM_SUFFIX;
4382 break;
4383 }
4384 else if (i.types[op].bitfield.reg64)
4385 {
4386 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4387 break;
252b5132 4388 }
29b0f896
AM
4389 }
4390 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4391 guess_suffix = WORD_MNEM_SUFFIX;
4392
4393 for (op = i.operands; --op >= 0;)
40fb9820 4394 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4395 {
4396 switch (i.op[op].imms->X_op)
252b5132 4397 {
29b0f896
AM
4398 case O_constant:
4399 /* If a suffix is given, this operand may be shortened. */
4400 switch (guess_suffix)
252b5132 4401 {
29b0f896 4402 case LONG_MNEM_SUFFIX:
40fb9820
L
4403 i.types[op].bitfield.imm32 = 1;
4404 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4405 break;
4406 case WORD_MNEM_SUFFIX:
40fb9820
L
4407 i.types[op].bitfield.imm16 = 1;
4408 i.types[op].bitfield.imm32 = 1;
4409 i.types[op].bitfield.imm32s = 1;
4410 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4411 break;
4412 case BYTE_MNEM_SUFFIX:
40fb9820
L
4413 i.types[op].bitfield.imm8 = 1;
4414 i.types[op].bitfield.imm8s = 1;
4415 i.types[op].bitfield.imm16 = 1;
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm32s = 1;
4418 i.types[op].bitfield.imm64 = 1;
29b0f896 4419 break;
252b5132 4420 }
252b5132 4421
29b0f896
AM
4422 /* If this operand is at most 16 bits, convert it
4423 to a signed 16 bit number before trying to see
4424 whether it will fit in an even smaller size.
4425 This allows a 16-bit operand such as $0xffe0 to
4426 be recognised as within Imm8S range. */
40fb9820 4427 if ((i.types[op].bitfield.imm16)
29b0f896 4428 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4429 {
29b0f896
AM
4430 i.op[op].imms->X_add_number =
4431 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4432 }
a28def75
L
4433#ifdef BFD64
4434 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4435 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4436 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4437 == 0))
4438 {
4439 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4440 ^ ((offsetT) 1 << 31))
4441 - ((offsetT) 1 << 31));
4442 }
a28def75 4443#endif
40fb9820 4444 i.types[op]
c6fb90c8
L
4445 = operand_type_or (i.types[op],
4446 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4447
29b0f896
AM
4448 /* We must avoid matching of Imm32 templates when 64bit
4449 only immediate is available. */
4450 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4451 i.types[op].bitfield.imm32 = 0;
29b0f896 4452 break;
252b5132 4453
29b0f896
AM
4454 case O_absent:
4455 case O_register:
4456 abort ();
4457
4458 /* Symbols and expressions. */
4459 default:
9cd96992
JB
4460 /* Convert symbolic operand to proper sizes for matching, but don't
4461 prevent matching a set of insns that only supports sizes other
4462 than those matching the insn suffix. */
4463 {
40fb9820 4464 i386_operand_type mask, allowed;
d3ce72d0 4465 const insn_template *t;
9cd96992 4466
0dfbf9d7
L
4467 operand_type_set (&mask, 0);
4468 operand_type_set (&allowed, 0);
40fb9820 4469
4eed87de
AM
4470 for (t = current_templates->start;
4471 t < current_templates->end;
4472 ++t)
c6fb90c8
L
4473 allowed = operand_type_or (allowed,
4474 t->operand_types[op]);
9cd96992
JB
4475 switch (guess_suffix)
4476 {
4477 case QWORD_MNEM_SUFFIX:
40fb9820
L
4478 mask.bitfield.imm64 = 1;
4479 mask.bitfield.imm32s = 1;
9cd96992
JB
4480 break;
4481 case LONG_MNEM_SUFFIX:
40fb9820 4482 mask.bitfield.imm32 = 1;
9cd96992
JB
4483 break;
4484 case WORD_MNEM_SUFFIX:
40fb9820 4485 mask.bitfield.imm16 = 1;
9cd96992
JB
4486 break;
4487 case BYTE_MNEM_SUFFIX:
40fb9820 4488 mask.bitfield.imm8 = 1;
9cd96992
JB
4489 break;
4490 default:
9cd96992
JB
4491 break;
4492 }
c6fb90c8 4493 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4494 if (!operand_type_all_zero (&allowed))
c6fb90c8 4495 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4496 }
29b0f896 4497 break;
252b5132 4498 }
29b0f896
AM
4499 }
4500}
47926f60 4501
29b0f896
AM
4502/* Try to use the smallest displacement type too. */
4503static void
e3bb37b5 4504optimize_disp (void)
29b0f896
AM
4505{
4506 int op;
3e73aa7c 4507
29b0f896 4508 for (op = i.operands; --op >= 0;)
40fb9820 4509 if (operand_type_check (i.types[op], disp))
252b5132 4510 {
b300c311 4511 if (i.op[op].disps->X_op == O_constant)
252b5132 4512 {
91d6fa6a 4513 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4514
40fb9820 4515 if (i.types[op].bitfield.disp16
91d6fa6a 4516 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4517 {
4518 /* If this operand is at most 16 bits, convert
4519 to a signed 16 bit number and don't use 64bit
4520 displacement. */
91d6fa6a 4521 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4522 i.types[op].bitfield.disp64 = 0;
b300c311 4523 }
a28def75
L
4524#ifdef BFD64
4525 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4526 if (i.types[op].bitfield.disp32
91d6fa6a 4527 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4528 {
4529 /* If this operand is at most 32 bits, convert
4530 to a signed 32 bit number and don't use 64bit
4531 displacement. */
91d6fa6a
NC
4532 op_disp &= (((offsetT) 2 << 31) - 1);
4533 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4534 i.types[op].bitfield.disp64 = 0;
b300c311 4535 }
a28def75 4536#endif
91d6fa6a 4537 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4538 {
40fb9820
L
4539 i.types[op].bitfield.disp8 = 0;
4540 i.types[op].bitfield.disp16 = 0;
4541 i.types[op].bitfield.disp32 = 0;
4542 i.types[op].bitfield.disp32s = 0;
4543 i.types[op].bitfield.disp64 = 0;
b300c311
L
4544 i.op[op].disps = 0;
4545 i.disp_operands--;
4546 }
4547 else if (flag_code == CODE_64BIT)
4548 {
91d6fa6a 4549 if (fits_in_signed_long (op_disp))
28a9d8f5 4550 {
40fb9820
L
4551 i.types[op].bitfield.disp64 = 0;
4552 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4553 }
0e1147d9 4554 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4555 && fits_in_unsigned_long (op_disp))
40fb9820 4556 i.types[op].bitfield.disp32 = 1;
b300c311 4557 }
40fb9820
L
4558 if ((i.types[op].bitfield.disp32
4559 || i.types[op].bitfield.disp32s
4560 || i.types[op].bitfield.disp16)
91d6fa6a 4561 && fits_in_signed_byte (op_disp))
40fb9820 4562 i.types[op].bitfield.disp8 = 1;
252b5132 4563 }
67a4f2b7
AO
4564 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4565 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4566 {
4567 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4568 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4569 i.types[op].bitfield.disp8 = 0;
4570 i.types[op].bitfield.disp16 = 0;
4571 i.types[op].bitfield.disp32 = 0;
4572 i.types[op].bitfield.disp32s = 0;
4573 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4574 }
4575 else
b300c311 4576 /* We only support 64bit displacement on constants. */
40fb9820 4577 i.types[op].bitfield.disp64 = 0;
252b5132 4578 }
29b0f896
AM
4579}
4580
6c30d220
L
4581/* Check if operands are valid for the instruction. */
4582
4583static int
4584check_VecOperands (const insn_template *t)
4585{
43234a1e
L
4586 unsigned int op;
4587
6c30d220
L
4588 /* Without VSIB byte, we can't have a vector register for index. */
4589 if (!t->opcode_modifier.vecsib
4590 && i.index_reg
4591 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4592 || i.index_reg->reg_type.bitfield.regymm
4593 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4594 {
4595 i.error = unsupported_vector_index_register;
4596 return 1;
4597 }
4598
ad8ecc81
MZ
4599 /* Check if default mask is allowed. */
4600 if (t->opcode_modifier.nodefmask
4601 && (!i.mask || i.mask->mask->reg_num == 0))
4602 {
4603 i.error = no_default_mask;
4604 return 1;
4605 }
4606
7bab8ab5
JB
4607 /* For VSIB byte, we need a vector register for index, and all vector
4608 registers must be distinct. */
4609 if (t->opcode_modifier.vecsib)
4610 {
4611 if (!i.index_reg
6c30d220
L
4612 || !((t->opcode_modifier.vecsib == VecSIB128
4613 && i.index_reg->reg_type.bitfield.regxmm)
4614 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4615 && i.index_reg->reg_type.bitfield.regymm)
4616 || (t->opcode_modifier.vecsib == VecSIB512
4617 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4618 {
4619 i.error = invalid_vsib_address;
4620 return 1;
4621 }
4622
43234a1e
L
4623 gas_assert (i.reg_operands == 2 || i.mask);
4624 if (i.reg_operands == 2 && !i.mask)
4625 {
4626 gas_assert (i.types[0].bitfield.regxmm
7c84a0ca 4627 || i.types[0].bitfield.regymm);
43234a1e 4628 gas_assert (i.types[2].bitfield.regxmm
7c84a0ca 4629 || i.types[2].bitfield.regymm);
43234a1e
L
4630 if (operand_check == check_none)
4631 return 0;
4632 if (register_number (i.op[0].regs)
4633 != register_number (i.index_reg)
4634 && register_number (i.op[2].regs)
4635 != register_number (i.index_reg)
4636 && register_number (i.op[0].regs)
4637 != register_number (i.op[2].regs))
4638 return 0;
4639 if (operand_check == check_error)
4640 {
4641 i.error = invalid_vector_register_set;
4642 return 1;
4643 }
4644 as_warn (_("mask, index, and destination registers should be distinct"));
4645 }
8444f82a
MZ
4646 else if (i.reg_operands == 1 && i.mask)
4647 {
4648 if ((i.types[1].bitfield.regymm
4649 || i.types[1].bitfield.regzmm)
4650 && (register_number (i.op[1].regs)
4651 == register_number (i.index_reg)))
4652 {
4653 if (operand_check == check_error)
4654 {
4655 i.error = invalid_vector_register_set;
4656 return 1;
4657 }
4658 if (operand_check != check_none)
4659 as_warn (_("index and destination registers should be distinct"));
4660 }
4661 }
43234a1e 4662 }
7bab8ab5 4663
43234a1e
L
4664 /* Check if broadcast is supported by the instruction and is applied
4665 to the memory operand. */
4666 if (i.broadcast)
4667 {
4668 int broadcasted_opnd_size;
4669
4670 /* Check if specified broadcast is supported in this instruction,
4671 and it's applied to memory operand of DWORD or QWORD type,
4672 depending on VecESize. */
4673 if (i.broadcast->type != t->opcode_modifier.broadcast
4674 || !i.types[i.broadcast->operand].bitfield.mem
4675 || (t->opcode_modifier.vecesize == 0
4676 && !i.types[i.broadcast->operand].bitfield.dword
4677 && !i.types[i.broadcast->operand].bitfield.unspecified)
4678 || (t->opcode_modifier.vecesize == 1
4679 && !i.types[i.broadcast->operand].bitfield.qword
4680 && !i.types[i.broadcast->operand].bitfield.unspecified))
4681 goto bad_broadcast;
4682
4683 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4684 if (i.broadcast->type == BROADCAST_1TO16)
4685 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4686 else if (i.broadcast->type == BROADCAST_1TO8)
4687 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4688 else if (i.broadcast->type == BROADCAST_1TO4)
4689 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4690 else if (i.broadcast->type == BROADCAST_1TO2)
4691 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4692 else
4693 goto bad_broadcast;
4694
4695 if ((broadcasted_opnd_size == 256
4696 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4697 || (broadcasted_opnd_size == 512
4698 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4699 {
4700 bad_broadcast:
4701 i.error = unsupported_broadcast;
4702 return 1;
4703 }
4704 }
4705 /* If broadcast is supported in this instruction, we need to check if
4706 operand of one-element size isn't specified without broadcast. */
4707 else if (t->opcode_modifier.broadcast && i.mem_operands)
4708 {
4709 /* Find memory operand. */
4710 for (op = 0; op < i.operands; op++)
4711 if (operand_type_check (i.types[op], anymem))
4712 break;
4713 gas_assert (op < i.operands);
4714 /* Check size of the memory operand. */
4715 if ((t->opcode_modifier.vecesize == 0
4716 && i.types[op].bitfield.dword)
4717 || (t->opcode_modifier.vecesize == 1
4718 && i.types[op].bitfield.qword))
4719 {
4720 i.error = broadcast_needed;
4721 return 1;
4722 }
4723 }
4724
4725 /* Check if requested masking is supported. */
4726 if (i.mask
4727 && (!t->opcode_modifier.masking
4728 || (i.mask->zeroing
4729 && t->opcode_modifier.masking == MERGING_MASKING)))
4730 {
4731 i.error = unsupported_masking;
4732 return 1;
4733 }
4734
4735 /* Check if masking is applied to dest operand. */
4736 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4737 {
4738 i.error = mask_not_on_destination;
4739 return 1;
4740 }
4741
43234a1e
L
4742 /* Check RC/SAE. */
4743 if (i.rounding)
4744 {
4745 if ((i.rounding->type != saeonly
4746 && !t->opcode_modifier.staticrounding)
4747 || (i.rounding->type == saeonly
4748 && (t->opcode_modifier.staticrounding
4749 || !t->opcode_modifier.sae)))
4750 {
4751 i.error = unsupported_rc_sae;
4752 return 1;
4753 }
4754 /* If the instruction has several immediate operands and one of
4755 them is rounding, the rounding operand should be the last
4756 immediate operand. */
4757 if (i.imm_operands > 1
4758 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4759 {
43234a1e 4760 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4761 return 1;
4762 }
6c30d220
L
4763 }
4764
43234a1e
L
4765 /* Check vector Disp8 operand. */
4766 if (t->opcode_modifier.disp8memshift)
4767 {
4768 if (i.broadcast)
4769 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4770 else
4771 i.memshift = t->opcode_modifier.disp8memshift;
4772
4773 for (op = 0; op < i.operands; op++)
4774 if (operand_type_check (i.types[op], disp)
4775 && i.op[op].disps->X_op == O_constant)
4776 {
4777 offsetT value = i.op[op].disps->X_add_number;
5be33403
L
4778 int vec_disp8_ok
4779 = (i.disp_encoding != disp_encoding_32bit
4780 && fits_in_vec_disp8 (value));
43234a1e
L
4781 if (t->operand_types [op].bitfield.vec_disp8)
4782 {
4783 if (vec_disp8_ok)
4784 i.types[op].bitfield.vec_disp8 = 1;
4785 else
4786 {
4787 /* Vector insn can only have Vec_Disp8/Disp32 in
4788 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4789 mode. */
4790 i.types[op].bitfield.disp8 = 0;
4791 if (flag_code != CODE_16BIT)
4792 i.types[op].bitfield.disp16 = 0;
4793 }
4794 }
4795 else if (flag_code != CODE_16BIT)
4796 {
4797 /* One form of this instruction supports vector Disp8.
4798 Try vector Disp8 if we need to use Disp32. */
4799 if (vec_disp8_ok && !fits_in_signed_byte (value))
4800 {
4801 i.error = try_vector_disp8;
4802 return 1;
4803 }
4804 }
4805 }
4806 }
4807 else
4808 i.memshift = -1;
4809
6c30d220
L
4810 return 0;
4811}
4812
43f3e2ee 4813/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4814 operand types. */
4815
4816static int
4817VEX_check_operands (const insn_template *t)
4818{
86fa6981 4819 if (i.vec_encoding == vex_encoding_evex)
43234a1e 4820 {
86fa6981
L
4821 /* This instruction must be encoded with EVEX prefix. */
4822 if (!t->opcode_modifier.evex)
4823 {
4824 i.error = unsupported;
4825 return 1;
4826 }
4827 return 0;
43234a1e
L
4828 }
4829
a683cc34 4830 if (!t->opcode_modifier.vex)
86fa6981
L
4831 {
4832 /* This instruction template doesn't have VEX prefix. */
4833 if (i.vec_encoding != vex_encoding_default)
4834 {
4835 i.error = unsupported;
4836 return 1;
4837 }
4838 return 0;
4839 }
a683cc34
SP
4840
4841 /* Only check VEX_Imm4, which must be the first operand. */
4842 if (t->operand_types[0].bitfield.vec_imm4)
4843 {
4844 if (i.op[0].imms->X_op != O_constant
4845 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4846 {
a65babc9 4847 i.error = bad_imm4;
891edac4
L
4848 return 1;
4849 }
a683cc34
SP
4850
4851 /* Turn off Imm8 so that update_imm won't complain. */
4852 i.types[0] = vec_imm4;
4853 }
4854
4855 return 0;
4856}
4857
d3ce72d0 4858static const insn_template *
83b16ac6 4859match_template (char mnem_suffix)
29b0f896
AM
4860{
4861 /* Points to template once we've found it. */
d3ce72d0 4862 const insn_template *t;
40fb9820 4863 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4864 i386_operand_type overlap4;
29b0f896 4865 unsigned int found_reverse_match;
83b16ac6 4866 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 4867 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4868 int addr_prefix_disp;
a5c311ca 4869 unsigned int j;
3629bb00 4870 unsigned int found_cpu_match;
45664ddb 4871 unsigned int check_register;
5614d22c 4872 enum i386_error specific_error = 0;
29b0f896 4873
c0f3af97
L
4874#if MAX_OPERANDS != 5
4875# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4876#endif
4877
29b0f896 4878 found_reverse_match = 0;
539e75ad 4879 addr_prefix_disp = -1;
40fb9820
L
4880
4881 memset (&suffix_check, 0, sizeof (suffix_check));
4882 if (i.suffix == BYTE_MNEM_SUFFIX)
4883 suffix_check.no_bsuf = 1;
4884 else if (i.suffix == WORD_MNEM_SUFFIX)
4885 suffix_check.no_wsuf = 1;
4886 else if (i.suffix == SHORT_MNEM_SUFFIX)
4887 suffix_check.no_ssuf = 1;
4888 else if (i.suffix == LONG_MNEM_SUFFIX)
4889 suffix_check.no_lsuf = 1;
4890 else if (i.suffix == QWORD_MNEM_SUFFIX)
4891 suffix_check.no_qsuf = 1;
4892 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4893 suffix_check.no_ldsuf = 1;
29b0f896 4894
83b16ac6
JB
4895 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4896 if (intel_syntax)
4897 {
4898 switch (mnem_suffix)
4899 {
4900 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4901 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4902 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4903 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4904 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4905 }
4906 }
4907
01559ecc
L
4908 /* Must have right number of operands. */
4909 i.error = number_of_operands_mismatch;
4910
45aa61fe 4911 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4912 {
539e75ad
L
4913 addr_prefix_disp = -1;
4914
29b0f896
AM
4915 if (i.operands != t->operands)
4916 continue;
4917
50aecf8c 4918 /* Check processor support. */
a65babc9 4919 i.error = unsupported;
c0f3af97
L
4920 found_cpu_match = (cpu_flags_match (t)
4921 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4922 if (!found_cpu_match)
4923 continue;
4924
e1d4d893 4925 /* Check old gcc support. */
a65babc9 4926 i.error = old_gcc_only;
e1d4d893
L
4927 if (!old_gcc && t->opcode_modifier.oldgcc)
4928 continue;
4929
4930 /* Check AT&T mnemonic. */
a65babc9 4931 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4932 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4933 continue;
4934
e92bae62 4935 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 4936 i.error = unsupported_syntax;
5c07affc 4937 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
4938 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4939 || (intel64 && t->opcode_modifier.amd64)
4940 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
4941 continue;
4942
20592a94 4943 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4944 i.error = invalid_instruction_suffix;
567e4e96
L
4945 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4946 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4947 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4948 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4949 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4950 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4951 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 4952 continue;
83b16ac6
JB
4953 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4954 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4955 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4956 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4957 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4958 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4959 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4960 continue;
29b0f896 4961
5c07affc 4962 if (!operand_size_match (t))
7d5e4556 4963 continue;
539e75ad 4964
5c07affc
L
4965 for (j = 0; j < MAX_OPERANDS; j++)
4966 operand_types[j] = t->operand_types[j];
4967
45aa61fe
AM
4968 /* In general, don't allow 64-bit operands in 32-bit mode. */
4969 if (i.suffix == QWORD_MNEM_SUFFIX
4970 && flag_code != CODE_64BIT
4971 && (intel_syntax
40fb9820 4972 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4973 && !intel_float_operand (t->name))
4974 : intel_float_operand (t->name) != 2)
40fb9820 4975 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4976 && !operand_types[0].bitfield.regxmm
43234a1e
L
4977 && !operand_types[0].bitfield.regymm
4978 && !operand_types[0].bitfield.regzmm)
40fb9820 4979 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736
AM
4980 && operand_types[t->operands > 1].bitfield.regxmm
4981 && operand_types[t->operands > 1].bitfield.regymm
4982 && operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4983 && (t->base_opcode != 0x0fc7
4984 || t->extension_opcode != 1 /* cmpxchg8b */))
4985 continue;
4986
192dc9c6
JB
4987 /* In general, don't allow 32-bit operands on pre-386. */
4988 else if (i.suffix == LONG_MNEM_SUFFIX
4989 && !cpu_arch_flags.bitfield.cpui386
4990 && (intel_syntax
4991 ? (!t->opcode_modifier.ignoresize
4992 && !intel_float_operand (t->name))
4993 : intel_float_operand (t->name) != 2)
4994 && ((!operand_types[0].bitfield.regmmx
4995 && !operand_types[0].bitfield.regxmm)
4996 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736 4997 && operand_types[t->operands > 1].bitfield.regxmm)))
192dc9c6
JB
4998 continue;
4999
29b0f896 5000 /* Do not verify operands when there are none. */
50aecf8c 5001 else
29b0f896 5002 {
c6fb90c8 5003 if (!t->operands)
2dbab7d5
L
5004 /* We've found a match; break out of loop. */
5005 break;
29b0f896 5006 }
252b5132 5007
539e75ad
L
5008 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5009 into Disp32/Disp16/Disp32 operand. */
5010 if (i.prefix[ADDR_PREFIX] != 0)
5011 {
40fb9820 5012 /* There should be only one Disp operand. */
539e75ad
L
5013 switch (flag_code)
5014 {
5015 case CODE_16BIT:
40fb9820
L
5016 for (j = 0; j < MAX_OPERANDS; j++)
5017 {
5018 if (operand_types[j].bitfield.disp16)
5019 {
5020 addr_prefix_disp = j;
5021 operand_types[j].bitfield.disp32 = 1;
5022 operand_types[j].bitfield.disp16 = 0;
5023 break;
5024 }
5025 }
539e75ad
L
5026 break;
5027 case CODE_32BIT:
40fb9820
L
5028 for (j = 0; j < MAX_OPERANDS; j++)
5029 {
5030 if (operand_types[j].bitfield.disp32)
5031 {
5032 addr_prefix_disp = j;
5033 operand_types[j].bitfield.disp32 = 0;
5034 operand_types[j].bitfield.disp16 = 1;
5035 break;
5036 }
5037 }
539e75ad
L
5038 break;
5039 case CODE_64BIT:
40fb9820
L
5040 for (j = 0; j < MAX_OPERANDS; j++)
5041 {
5042 if (operand_types[j].bitfield.disp64)
5043 {
5044 addr_prefix_disp = j;
5045 operand_types[j].bitfield.disp64 = 0;
5046 operand_types[j].bitfield.disp32 = 1;
5047 break;
5048 }
5049 }
539e75ad
L
5050 break;
5051 }
539e75ad
L
5052 }
5053
02a86693
L
5054 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5055 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5056 continue;
5057
56ffb741
L
5058 /* We check register size if needed. */
5059 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5060 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5061 switch (t->operands)
5062 {
5063 case 1:
40fb9820 5064 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5065 continue;
5066 break;
5067 case 2:
33eaf5de 5068 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5069 only in 32bit mode and we can use opcode 0x90. In 64bit
5070 mode, we can't use 0x90 for xchg %eax, %eax since it should
5071 zero-extend %eax to %rax. */
5072 if (flag_code == CODE_64BIT
5073 && t->base_opcode == 0x90
0dfbf9d7
L
5074 && operand_type_equal (&i.types [0], &acc32)
5075 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5076 continue;
86fa6981
L
5077 /* If we want store form, we reverse direction of operands. */
5078 if (i.dir_encoding == dir_encoding_store
5079 && t->opcode_modifier.d)
5080 goto check_reverse;
1a0670f3 5081 /* Fall through. */
b6169b20 5082
29b0f896 5083 case 3:
86fa6981
L
5084 /* If we want store form, we skip the current load. */
5085 if (i.dir_encoding == dir_encoding_store
5086 && i.mem_operands == 0
5087 && t->opcode_modifier.load)
fa99fab2 5088 continue;
1a0670f3 5089 /* Fall through. */
f48ff2ae 5090 case 4:
c0f3af97 5091 case 5:
c6fb90c8 5092 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5093 if (!operand_type_match (overlap0, i.types[0])
5094 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
5095 || (check_register
5096 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
5097 operand_types[0],
5098 overlap1, i.types[1],
5099 operand_types[1])))
29b0f896
AM
5100 {
5101 /* Check if other direction is valid ... */
40fb9820 5102 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
5103 continue;
5104
b6169b20 5105check_reverse:
29b0f896 5106 /* Try reversing direction of operands. */
c6fb90c8
L
5107 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5108 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5109 if (!operand_type_match (overlap0, i.types[0])
5110 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
5111 || (check_register
5112 && !operand_type_register_match (overlap0,
5113 i.types[0],
5114 operand_types[1],
5115 overlap1,
5116 i.types[1],
5117 operand_types[0])))
29b0f896
AM
5118 {
5119 /* Does not match either direction. */
5120 continue;
5121 }
5122 /* found_reverse_match holds which of D or FloatDR
5123 we've found. */
40fb9820 5124 if (t->opcode_modifier.d)
8a2ed489 5125 found_reverse_match = Opcode_D;
40fb9820 5126 else if (t->opcode_modifier.floatd)
8a2ed489
L
5127 found_reverse_match = Opcode_FloatD;
5128 else
5129 found_reverse_match = 0;
40fb9820 5130 if (t->opcode_modifier.floatr)
8a2ed489 5131 found_reverse_match |= Opcode_FloatR;
29b0f896 5132 }
f48ff2ae 5133 else
29b0f896 5134 {
f48ff2ae 5135 /* Found a forward 2 operand match here. */
d1cbb4db
L
5136 switch (t->operands)
5137 {
c0f3af97
L
5138 case 5:
5139 overlap4 = operand_type_and (i.types[4],
5140 operand_types[4]);
1a0670f3 5141 /* Fall through. */
d1cbb4db 5142 case 4:
c6fb90c8
L
5143 overlap3 = operand_type_and (i.types[3],
5144 operand_types[3]);
1a0670f3 5145 /* Fall through. */
d1cbb4db 5146 case 3:
c6fb90c8
L
5147 overlap2 = operand_type_and (i.types[2],
5148 operand_types[2]);
d1cbb4db
L
5149 break;
5150 }
29b0f896 5151
f48ff2ae
L
5152 switch (t->operands)
5153 {
c0f3af97
L
5154 case 5:
5155 if (!operand_type_match (overlap4, i.types[4])
5156 || !operand_type_register_match (overlap3,
5157 i.types[3],
5158 operand_types[3],
5159 overlap4,
5160 i.types[4],
5161 operand_types[4]))
5162 continue;
1a0670f3 5163 /* Fall through. */
f48ff2ae 5164 case 4:
40fb9820 5165 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
5166 || (check_register
5167 && !operand_type_register_match (overlap2,
5168 i.types[2],
5169 operand_types[2],
5170 overlap3,
5171 i.types[3],
5172 operand_types[3])))
f48ff2ae 5173 continue;
1a0670f3 5174 /* Fall through. */
f48ff2ae
L
5175 case 3:
5176 /* Here we make use of the fact that there are no
5177 reverse match 3 operand instructions, and all 3
5178 operand instructions only need to be checked for
5179 register consistency between operands 2 and 3. */
40fb9820 5180 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
5181 || (check_register
5182 && !operand_type_register_match (overlap1,
5183 i.types[1],
5184 operand_types[1],
5185 overlap2,
5186 i.types[2],
5187 operand_types[2])))
f48ff2ae
L
5188 continue;
5189 break;
5190 }
29b0f896 5191 }
f48ff2ae 5192 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5193 slip through to break. */
5194 }
3629bb00 5195 if (!found_cpu_match)
29b0f896
AM
5196 {
5197 found_reverse_match = 0;
5198 continue;
5199 }
c0f3af97 5200
5614d22c
JB
5201 /* Check if vector and VEX operands are valid. */
5202 if (check_VecOperands (t) || VEX_check_operands (t))
5203 {
5204 specific_error = i.error;
5205 continue;
5206 }
a683cc34 5207
29b0f896
AM
5208 /* We've found a match; break out of loop. */
5209 break;
5210 }
5211
5212 if (t == current_templates->end)
5213 {
5214 /* We found no match. */
a65babc9 5215 const char *err_msg;
5614d22c 5216 switch (specific_error ? specific_error : i.error)
a65babc9
L
5217 {
5218 default:
5219 abort ();
86e026a4 5220 case operand_size_mismatch:
a65babc9
L
5221 err_msg = _("operand size mismatch");
5222 break;
5223 case operand_type_mismatch:
5224 err_msg = _("operand type mismatch");
5225 break;
5226 case register_type_mismatch:
5227 err_msg = _("register type mismatch");
5228 break;
5229 case number_of_operands_mismatch:
5230 err_msg = _("number of operands mismatch");
5231 break;
5232 case invalid_instruction_suffix:
5233 err_msg = _("invalid instruction suffix");
5234 break;
5235 case bad_imm4:
4a2608e3 5236 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5237 break;
5238 case old_gcc_only:
5239 err_msg = _("only supported with old gcc");
5240 break;
5241 case unsupported_with_intel_mnemonic:
5242 err_msg = _("unsupported with Intel mnemonic");
5243 break;
5244 case unsupported_syntax:
5245 err_msg = _("unsupported syntax");
5246 break;
5247 case unsupported:
35262a23 5248 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5249 current_templates->start->name);
5250 return NULL;
6c30d220
L
5251 case invalid_vsib_address:
5252 err_msg = _("invalid VSIB address");
5253 break;
7bab8ab5
JB
5254 case invalid_vector_register_set:
5255 err_msg = _("mask, index, and destination registers must be distinct");
5256 break;
6c30d220
L
5257 case unsupported_vector_index_register:
5258 err_msg = _("unsupported vector index register");
5259 break;
43234a1e
L
5260 case unsupported_broadcast:
5261 err_msg = _("unsupported broadcast");
5262 break;
5263 case broadcast_not_on_src_operand:
5264 err_msg = _("broadcast not on source memory operand");
5265 break;
5266 case broadcast_needed:
5267 err_msg = _("broadcast is needed for operand of such type");
5268 break;
5269 case unsupported_masking:
5270 err_msg = _("unsupported masking");
5271 break;
5272 case mask_not_on_destination:
5273 err_msg = _("mask not on destination operand");
5274 break;
5275 case no_default_mask:
5276 err_msg = _("default mask isn't allowed");
5277 break;
5278 case unsupported_rc_sae:
5279 err_msg = _("unsupported static rounding/sae");
5280 break;
5281 case rc_sae_operand_not_last_imm:
5282 if (intel_syntax)
5283 err_msg = _("RC/SAE operand must precede immediate operands");
5284 else
5285 err_msg = _("RC/SAE operand must follow immediate operands");
5286 break;
5287 case invalid_register_operand:
5288 err_msg = _("invalid register operand");
5289 break;
a65babc9
L
5290 }
5291 as_bad (_("%s for `%s'"), err_msg,
891edac4 5292 current_templates->start->name);
fa99fab2 5293 return NULL;
29b0f896 5294 }
252b5132 5295
29b0f896
AM
5296 if (!quiet_warnings)
5297 {
5298 if (!intel_syntax
40fb9820
L
5299 && (i.types[0].bitfield.jumpabsolute
5300 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5301 {
5302 as_warn (_("indirect %s without `*'"), t->name);
5303 }
5304
40fb9820
L
5305 if (t->opcode_modifier.isprefix
5306 && t->opcode_modifier.ignoresize)
29b0f896
AM
5307 {
5308 /* Warn them that a data or address size prefix doesn't
5309 affect assembly of the next line of code. */
5310 as_warn (_("stand-alone `%s' prefix"), t->name);
5311 }
5312 }
5313
5314 /* Copy the template we found. */
5315 i.tm = *t;
539e75ad
L
5316
5317 if (addr_prefix_disp != -1)
5318 i.tm.operand_types[addr_prefix_disp]
5319 = operand_types[addr_prefix_disp];
5320
29b0f896
AM
5321 if (found_reverse_match)
5322 {
5323 /* If we found a reverse match we must alter the opcode
5324 direction bit. found_reverse_match holds bits to change
5325 (different for int & float insns). */
5326
5327 i.tm.base_opcode ^= found_reverse_match;
5328
539e75ad
L
5329 i.tm.operand_types[0] = operand_types[1];
5330 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5331 }
5332
fa99fab2 5333 return t;
29b0f896
AM
5334}
5335
5336static int
e3bb37b5 5337check_string (void)
29b0f896 5338{
40fb9820
L
5339 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5340 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5341 {
5342 if (i.seg[0] != NULL && i.seg[0] != &es)
5343 {
a87af027 5344 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5345 i.tm.name,
a87af027
JB
5346 mem_op + 1,
5347 register_prefix);
29b0f896
AM
5348 return 0;
5349 }
5350 /* There's only ever one segment override allowed per instruction.
5351 This instruction possibly has a legal segment override on the
5352 second operand, so copy the segment to where non-string
5353 instructions store it, allowing common code. */
5354 i.seg[0] = i.seg[1];
5355 }
40fb9820 5356 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5357 {
5358 if (i.seg[1] != NULL && i.seg[1] != &es)
5359 {
a87af027 5360 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5361 i.tm.name,
a87af027
JB
5362 mem_op + 2,
5363 register_prefix);
29b0f896
AM
5364 return 0;
5365 }
5366 }
5367 return 1;
5368}
5369
5370static int
543613e9 5371process_suffix (void)
29b0f896
AM
5372{
5373 /* If matched instruction specifies an explicit instruction mnemonic
5374 suffix, use it. */
40fb9820
L
5375 if (i.tm.opcode_modifier.size16)
5376 i.suffix = WORD_MNEM_SUFFIX;
5377 else if (i.tm.opcode_modifier.size32)
5378 i.suffix = LONG_MNEM_SUFFIX;
5379 else if (i.tm.opcode_modifier.size64)
5380 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5381 else if (i.reg_operands)
5382 {
5383 /* If there's no instruction mnemonic suffix we try to invent one
5384 based on register operands. */
5385 if (!i.suffix)
5386 {
5387 /* We take i.suffix from the last register operand specified,
5388 Destination register type is more significant than source
381d071f
L
5389 register type. crc32 in SSE4.2 prefers source register
5390 type. */
5391 if (i.tm.base_opcode == 0xf20f38f1)
5392 {
40fb9820
L
5393 if (i.types[0].bitfield.reg16)
5394 i.suffix = WORD_MNEM_SUFFIX;
5395 else if (i.types[0].bitfield.reg32)
5396 i.suffix = LONG_MNEM_SUFFIX;
5397 else if (i.types[0].bitfield.reg64)
5398 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5399 }
9344ff29 5400 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5401 {
40fb9820 5402 if (i.types[0].bitfield.reg8)
20592a94
L
5403 i.suffix = BYTE_MNEM_SUFFIX;
5404 }
381d071f
L
5405
5406 if (!i.suffix)
5407 {
5408 int op;
5409
20592a94
L
5410 if (i.tm.base_opcode == 0xf20f38f1
5411 || i.tm.base_opcode == 0xf20f38f0)
5412 {
5413 /* We have to know the operand size for crc32. */
5414 as_bad (_("ambiguous memory operand size for `%s`"),
5415 i.tm.name);
5416 return 0;
5417 }
5418
381d071f 5419 for (op = i.operands; --op >= 0;)
40fb9820 5420 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5421 {
40fb9820
L
5422 if (i.types[op].bitfield.reg8)
5423 {
5424 i.suffix = BYTE_MNEM_SUFFIX;
5425 break;
5426 }
5427 else if (i.types[op].bitfield.reg16)
5428 {
5429 i.suffix = WORD_MNEM_SUFFIX;
5430 break;
5431 }
5432 else if (i.types[op].bitfield.reg32)
5433 {
5434 i.suffix = LONG_MNEM_SUFFIX;
5435 break;
5436 }
5437 else if (i.types[op].bitfield.reg64)
5438 {
5439 i.suffix = QWORD_MNEM_SUFFIX;
5440 break;
5441 }
381d071f
L
5442 }
5443 }
29b0f896
AM
5444 }
5445 else if (i.suffix == BYTE_MNEM_SUFFIX)
5446 {
2eb952a4
L
5447 if (intel_syntax
5448 && i.tm.opcode_modifier.ignoresize
5449 && i.tm.opcode_modifier.no_bsuf)
5450 i.suffix = 0;
5451 else if (!check_byte_reg ())
29b0f896
AM
5452 return 0;
5453 }
5454 else if (i.suffix == LONG_MNEM_SUFFIX)
5455 {
2eb952a4
L
5456 if (intel_syntax
5457 && i.tm.opcode_modifier.ignoresize
5458 && i.tm.opcode_modifier.no_lsuf)
5459 i.suffix = 0;
5460 else if (!check_long_reg ())
29b0f896
AM
5461 return 0;
5462 }
5463 else if (i.suffix == QWORD_MNEM_SUFFIX)
5464 {
955e1e6a
L
5465 if (intel_syntax
5466 && i.tm.opcode_modifier.ignoresize
5467 && i.tm.opcode_modifier.no_qsuf)
5468 i.suffix = 0;
5469 else if (!check_qword_reg ())
29b0f896
AM
5470 return 0;
5471 }
5472 else if (i.suffix == WORD_MNEM_SUFFIX)
5473 {
2eb952a4
L
5474 if (intel_syntax
5475 && i.tm.opcode_modifier.ignoresize
5476 && i.tm.opcode_modifier.no_wsuf)
5477 i.suffix = 0;
5478 else if (!check_word_reg ())
29b0f896
AM
5479 return 0;
5480 }
c0f3af97 5481 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5482 || i.suffix == YMMWORD_MNEM_SUFFIX
5483 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5484 {
43234a1e 5485 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5486 should check if it is a valid suffix. */
5487 }
40fb9820 5488 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5489 /* Do nothing if the instruction is going to ignore the prefix. */
5490 ;
5491 else
5492 abort ();
5493 }
40fb9820 5494 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5495 && !i.suffix
5496 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5497 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5498 {
5499 i.suffix = stackop_size;
5500 }
9306ca4a
JB
5501 else if (intel_syntax
5502 && !i.suffix
40fb9820
L
5503 && (i.tm.operand_types[0].bitfield.jumpabsolute
5504 || i.tm.opcode_modifier.jumpbyte
5505 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5506 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5507 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5508 {
5509 switch (flag_code)
5510 {
5511 case CODE_64BIT:
40fb9820 5512 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5513 {
5514 i.suffix = QWORD_MNEM_SUFFIX;
5515 break;
5516 }
1a0670f3 5517 /* Fall through. */
9306ca4a 5518 case CODE_32BIT:
40fb9820 5519 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5520 i.suffix = LONG_MNEM_SUFFIX;
5521 break;
5522 case CODE_16BIT:
40fb9820 5523 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5524 i.suffix = WORD_MNEM_SUFFIX;
5525 break;
5526 }
5527 }
252b5132 5528
9306ca4a 5529 if (!i.suffix)
29b0f896 5530 {
9306ca4a
JB
5531 if (!intel_syntax)
5532 {
40fb9820 5533 if (i.tm.opcode_modifier.w)
9306ca4a 5534 {
4eed87de
AM
5535 as_bad (_("no instruction mnemonic suffix given and "
5536 "no register operands; can't size instruction"));
9306ca4a
JB
5537 return 0;
5538 }
5539 }
5540 else
5541 {
40fb9820 5542 unsigned int suffixes;
7ab9ffdd 5543
40fb9820
L
5544 suffixes = !i.tm.opcode_modifier.no_bsuf;
5545 if (!i.tm.opcode_modifier.no_wsuf)
5546 suffixes |= 1 << 1;
5547 if (!i.tm.opcode_modifier.no_lsuf)
5548 suffixes |= 1 << 2;
fc4adea1 5549 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5550 suffixes |= 1 << 3;
5551 if (!i.tm.opcode_modifier.no_ssuf)
5552 suffixes |= 1 << 4;
5553 if (!i.tm.opcode_modifier.no_qsuf)
5554 suffixes |= 1 << 5;
5555
5556 /* There are more than suffix matches. */
5557 if (i.tm.opcode_modifier.w
9306ca4a 5558 || ((suffixes & (suffixes - 1))
40fb9820
L
5559 && !i.tm.opcode_modifier.defaultsize
5560 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5561 {
5562 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5563 return 0;
5564 }
5565 }
29b0f896 5566 }
252b5132 5567
9306ca4a
JB
5568 /* Change the opcode based on the operand size given by i.suffix;
5569 We don't need to change things for byte insns. */
5570
582d5edd
L
5571 if (i.suffix
5572 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5573 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5574 && i.suffix != YMMWORD_MNEM_SUFFIX
5575 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5576 {
5577 /* It's not a byte, select word/dword operation. */
40fb9820 5578 if (i.tm.opcode_modifier.w)
29b0f896 5579 {
40fb9820 5580 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5581 i.tm.base_opcode |= 8;
5582 else
5583 i.tm.base_opcode |= 1;
5584 }
0f3f3d8b 5585
29b0f896
AM
5586 /* Now select between word & dword operations via the operand
5587 size prefix, except for instructions that will ignore this
5588 prefix anyway. */
ca61edf2 5589 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5590 {
ca61edf2
L
5591 /* The address size override prefix changes the size of the
5592 first operand. */
40fb9820
L
5593 if ((flag_code == CODE_32BIT
5594 && i.op->regs[0].reg_type.bitfield.reg16)
5595 || (flag_code != CODE_32BIT
5596 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5597 if (!add_prefix (ADDR_PREFIX_OPCODE))
5598 return 0;
5599 }
5600 else if (i.suffix != QWORD_MNEM_SUFFIX
5601 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5602 && !i.tm.opcode_modifier.ignoresize
5603 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5604 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5605 || (flag_code == CODE_64BIT
40fb9820 5606 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5607 {
5608 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5609
40fb9820 5610 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5611 prefix = ADDR_PREFIX_OPCODE;
252b5132 5612
29b0f896
AM
5613 if (!add_prefix (prefix))
5614 return 0;
24eab124 5615 }
252b5132 5616
29b0f896
AM
5617 /* Set mode64 for an operand. */
5618 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5619 && flag_code == CODE_64BIT
40fb9820 5620 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5621 {
5622 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5623 need rex64. cmpxchg8b is also a special case. */
5624 if (! (i.operands == 2
5625 && i.tm.base_opcode == 0x90
5626 && i.tm.extension_opcode == None
0dfbf9d7
L
5627 && operand_type_equal (&i.types [0], &acc64)
5628 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5629 && ! (i.operands == 1
5630 && i.tm.base_opcode == 0xfc7
5631 && i.tm.extension_opcode == 1
40fb9820
L
5632 && !operand_type_check (i.types [0], reg)
5633 && operand_type_check (i.types [0], anymem)))
f6bee062 5634 i.rex |= REX_W;
46e883c5 5635 }
3e73aa7c 5636
29b0f896
AM
5637 /* Size floating point instruction. */
5638 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5639 if (i.tm.opcode_modifier.floatmf)
543613e9 5640 i.tm.base_opcode ^= 4;
29b0f896 5641 }
7ecd2f8b 5642
29b0f896
AM
5643 return 1;
5644}
3e73aa7c 5645
29b0f896 5646static int
543613e9 5647check_byte_reg (void)
29b0f896
AM
5648{
5649 int op;
543613e9 5650
29b0f896
AM
5651 for (op = i.operands; --op >= 0;)
5652 {
5653 /* If this is an eight bit register, it's OK. If it's the 16 or
5654 32 bit version of an eight bit register, we will just use the
5655 low portion, and that's OK too. */
40fb9820 5656 if (i.types[op].bitfield.reg8)
29b0f896
AM
5657 continue;
5658
5a819eb9
JB
5659 /* I/O port address operands are OK too. */
5660 if (i.tm.operand_types[op].bitfield.inoutportreg)
5661 continue;
5662
9344ff29
L
5663 /* crc32 doesn't generate this warning. */
5664 if (i.tm.base_opcode == 0xf20f38f0)
5665 continue;
5666
40fb9820
L
5667 if ((i.types[op].bitfield.reg16
5668 || i.types[op].bitfield.reg32
5669 || i.types[op].bitfield.reg64)
5a819eb9
JB
5670 && i.op[op].regs->reg_num < 4
5671 /* Prohibit these changes in 64bit mode, since the lowering
5672 would be more complicated. */
5673 && flag_code != CODE_64BIT)
29b0f896 5674 {
29b0f896 5675#if REGISTER_WARNINGS
5a819eb9 5676 if (!quiet_warnings)
a540244d
L
5677 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5678 register_prefix,
40fb9820 5679 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5680 ? REGNAM_AL - REGNAM_AX
5681 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5682 register_prefix,
29b0f896
AM
5683 i.op[op].regs->reg_name,
5684 i.suffix);
5685#endif
5686 continue;
5687 }
5688 /* Any other register is bad. */
40fb9820
L
5689 if (i.types[op].bitfield.reg16
5690 || i.types[op].bitfield.reg32
5691 || i.types[op].bitfield.reg64
5692 || i.types[op].bitfield.regmmx
5693 || i.types[op].bitfield.regxmm
c0f3af97 5694 || i.types[op].bitfield.regymm
43234a1e 5695 || i.types[op].bitfield.regzmm
40fb9820
L
5696 || i.types[op].bitfield.sreg2
5697 || i.types[op].bitfield.sreg3
5698 || i.types[op].bitfield.control
5699 || i.types[op].bitfield.debug
5700 || i.types[op].bitfield.test
5701 || i.types[op].bitfield.floatreg
5702 || i.types[op].bitfield.floatacc)
29b0f896 5703 {
a540244d
L
5704 as_bad (_("`%s%s' not allowed with `%s%c'"),
5705 register_prefix,
29b0f896
AM
5706 i.op[op].regs->reg_name,
5707 i.tm.name,
5708 i.suffix);
5709 return 0;
5710 }
5711 }
5712 return 1;
5713}
5714
5715static int
e3bb37b5 5716check_long_reg (void)
29b0f896
AM
5717{
5718 int op;
5719
5720 for (op = i.operands; --op >= 0;)
5721 /* Reject eight bit registers, except where the template requires
5722 them. (eg. movzb) */
40fb9820
L
5723 if (i.types[op].bitfield.reg8
5724 && (i.tm.operand_types[op].bitfield.reg16
5725 || i.tm.operand_types[op].bitfield.reg32
5726 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5727 {
a540244d
L
5728 as_bad (_("`%s%s' not allowed with `%s%c'"),
5729 register_prefix,
29b0f896
AM
5730 i.op[op].regs->reg_name,
5731 i.tm.name,
5732 i.suffix);
5733 return 0;
5734 }
e4630f71 5735 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5736 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5737 && i.types[op].bitfield.reg16
5738 && (i.tm.operand_types[op].bitfield.reg32
5739 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5740 {
5741 /* Prohibit these changes in the 64bit mode, since the
5742 lowering is more complicated. */
5743 if (flag_code == CODE_64BIT)
252b5132 5744 {
2b5d6a91 5745 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5746 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5747 i.suffix);
5748 return 0;
252b5132 5749 }
29b0f896 5750#if REGISTER_WARNINGS
cecf1424
JB
5751 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5752 register_prefix,
5753 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5754 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5755#endif
252b5132 5756 }
e4630f71 5757 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5758 else if (i.types[op].bitfield.reg64
5759 && (i.tm.operand_types[op].bitfield.reg32
5760 || i.tm.operand_types[op].bitfield.acc))
252b5132 5761 {
34828aad 5762 if (intel_syntax
ca61edf2 5763 && i.tm.opcode_modifier.toqword
40fb9820 5764 && !i.types[0].bitfield.regxmm)
34828aad 5765 {
ca61edf2 5766 /* Convert to QWORD. We want REX byte. */
34828aad
L
5767 i.suffix = QWORD_MNEM_SUFFIX;
5768 }
5769 else
5770 {
2b5d6a91 5771 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5772 register_prefix, i.op[op].regs->reg_name,
5773 i.suffix);
5774 return 0;
5775 }
29b0f896
AM
5776 }
5777 return 1;
5778}
252b5132 5779
29b0f896 5780static int
e3bb37b5 5781check_qword_reg (void)
29b0f896
AM
5782{
5783 int op;
252b5132 5784
29b0f896
AM
5785 for (op = i.operands; --op >= 0; )
5786 /* Reject eight bit registers, except where the template requires
5787 them. (eg. movzb) */
40fb9820
L
5788 if (i.types[op].bitfield.reg8
5789 && (i.tm.operand_types[op].bitfield.reg16
5790 || i.tm.operand_types[op].bitfield.reg32
5791 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5792 {
a540244d
L
5793 as_bad (_("`%s%s' not allowed with `%s%c'"),
5794 register_prefix,
29b0f896
AM
5795 i.op[op].regs->reg_name,
5796 i.tm.name,
5797 i.suffix);
5798 return 0;
5799 }
e4630f71 5800 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5801 else if ((i.types[op].bitfield.reg16
5802 || i.types[op].bitfield.reg32)
33d0ab95 5803 && (i.tm.operand_types[op].bitfield.reg64
40fb9820 5804 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5805 {
5806 /* Prohibit these changes in the 64bit mode, since the
5807 lowering is more complicated. */
34828aad 5808 if (intel_syntax
ca61edf2 5809 && i.tm.opcode_modifier.todword
40fb9820 5810 && !i.types[0].bitfield.regxmm)
34828aad 5811 {
ca61edf2 5812 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5813 i.suffix = LONG_MNEM_SUFFIX;
5814 }
5815 else
5816 {
2b5d6a91 5817 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5818 register_prefix, i.op[op].regs->reg_name,
5819 i.suffix);
5820 return 0;
5821 }
252b5132 5822 }
29b0f896
AM
5823 return 1;
5824}
252b5132 5825
29b0f896 5826static int
e3bb37b5 5827check_word_reg (void)
29b0f896
AM
5828{
5829 int op;
5830 for (op = i.operands; --op >= 0;)
5831 /* Reject eight bit registers, except where the template requires
5832 them. (eg. movzb) */
40fb9820
L
5833 if (i.types[op].bitfield.reg8
5834 && (i.tm.operand_types[op].bitfield.reg16
5835 || i.tm.operand_types[op].bitfield.reg32
5836 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5837 {
a540244d
L
5838 as_bad (_("`%s%s' not allowed with `%s%c'"),
5839 register_prefix,
29b0f896
AM
5840 i.op[op].regs->reg_name,
5841 i.tm.name,
5842 i.suffix);
5843 return 0;
5844 }
e4630f71 5845 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5846 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5847 && (i.types[op].bitfield.reg32
5848 || i.types[op].bitfield.reg64)
40fb9820
L
5849 && (i.tm.operand_types[op].bitfield.reg16
5850 || i.tm.operand_types[op].bitfield.acc))
252b5132 5851 {
29b0f896
AM
5852 /* Prohibit these changes in the 64bit mode, since the
5853 lowering is more complicated. */
5854 if (flag_code == CODE_64BIT)
252b5132 5855 {
2b5d6a91 5856 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5857 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5858 i.suffix);
5859 return 0;
252b5132 5860 }
29b0f896 5861#if REGISTER_WARNINGS
cecf1424
JB
5862 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5863 register_prefix,
5864 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5865 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5866#endif
5867 }
5868 return 1;
5869}
252b5132 5870
29b0f896 5871static int
40fb9820 5872update_imm (unsigned int j)
29b0f896 5873{
bc0844ae 5874 i386_operand_type overlap = i.types[j];
40fb9820
L
5875 if ((overlap.bitfield.imm8
5876 || overlap.bitfield.imm8s
5877 || overlap.bitfield.imm16
5878 || overlap.bitfield.imm32
5879 || overlap.bitfield.imm32s
5880 || overlap.bitfield.imm64)
0dfbf9d7
L
5881 && !operand_type_equal (&overlap, &imm8)
5882 && !operand_type_equal (&overlap, &imm8s)
5883 && !operand_type_equal (&overlap, &imm16)
5884 && !operand_type_equal (&overlap, &imm32)
5885 && !operand_type_equal (&overlap, &imm32s)
5886 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5887 {
5888 if (i.suffix)
5889 {
40fb9820
L
5890 i386_operand_type temp;
5891
0dfbf9d7 5892 operand_type_set (&temp, 0);
7ab9ffdd 5893 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5894 {
5895 temp.bitfield.imm8 = overlap.bitfield.imm8;
5896 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5897 }
5898 else if (i.suffix == WORD_MNEM_SUFFIX)
5899 temp.bitfield.imm16 = overlap.bitfield.imm16;
5900 else if (i.suffix == QWORD_MNEM_SUFFIX)
5901 {
5902 temp.bitfield.imm64 = overlap.bitfield.imm64;
5903 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5904 }
5905 else
5906 temp.bitfield.imm32 = overlap.bitfield.imm32;
5907 overlap = temp;
29b0f896 5908 }
0dfbf9d7
L
5909 else if (operand_type_equal (&overlap, &imm16_32_32s)
5910 || operand_type_equal (&overlap, &imm16_32)
5911 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5912 {
40fb9820 5913 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5914 overlap = imm16;
40fb9820 5915 else
65da13b5 5916 overlap = imm32s;
29b0f896 5917 }
0dfbf9d7
L
5918 if (!operand_type_equal (&overlap, &imm8)
5919 && !operand_type_equal (&overlap, &imm8s)
5920 && !operand_type_equal (&overlap, &imm16)
5921 && !operand_type_equal (&overlap, &imm32)
5922 && !operand_type_equal (&overlap, &imm32s)
5923 && !operand_type_equal (&overlap, &imm64))
29b0f896 5924 {
4eed87de
AM
5925 as_bad (_("no instruction mnemonic suffix given; "
5926 "can't determine immediate size"));
29b0f896
AM
5927 return 0;
5928 }
5929 }
40fb9820 5930 i.types[j] = overlap;
29b0f896 5931
40fb9820
L
5932 return 1;
5933}
5934
5935static int
5936finalize_imm (void)
5937{
bc0844ae 5938 unsigned int j, n;
29b0f896 5939
bc0844ae
L
5940 /* Update the first 2 immediate operands. */
5941 n = i.operands > 2 ? 2 : i.operands;
5942 if (n)
5943 {
5944 for (j = 0; j < n; j++)
5945 if (update_imm (j) == 0)
5946 return 0;
40fb9820 5947
bc0844ae
L
5948 /* The 3rd operand can't be immediate operand. */
5949 gas_assert (operand_type_check (i.types[2], imm) == 0);
5950 }
29b0f896
AM
5951
5952 return 1;
5953}
5954
c0f3af97
L
5955static int
5956bad_implicit_operand (int xmm)
5957{
91d6fa6a
NC
5958 const char *ireg = xmm ? "xmm0" : "ymm0";
5959
c0f3af97
L
5960 if (intel_syntax)
5961 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5962 i.tm.name, register_prefix, ireg);
c0f3af97
L
5963 else
5964 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5965 i.tm.name, register_prefix, ireg);
c0f3af97
L
5966 return 0;
5967}
5968
29b0f896 5969static int
e3bb37b5 5970process_operands (void)
29b0f896
AM
5971{
5972 /* Default segment register this instruction will use for memory
5973 accesses. 0 means unknown. This is only for optimizing out
5974 unnecessary segment overrides. */
5975 const seg_entry *default_seg = 0;
5976
2426c15f 5977 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5978 {
91d6fa6a
NC
5979 unsigned int dupl = i.operands;
5980 unsigned int dest = dupl - 1;
9fcfb3d7
L
5981 unsigned int j;
5982
c0f3af97 5983 /* The destination must be an xmm register. */
9c2799c2 5984 gas_assert (i.reg_operands
91d6fa6a 5985 && MAX_OPERANDS > dupl
7ab9ffdd 5986 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5987
5988 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5989 {
c0f3af97 5990 /* The first operand is implicit and must be xmm0. */
9c2799c2 5991 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5992 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5993 return bad_implicit_operand (1);
5994
8cd7925b 5995 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5996 {
5997 /* Keep xmm0 for instructions with VEX prefix and 3
5998 sources. */
5999 goto duplicate;
6000 }
e2ec9d29 6001 else
c0f3af97
L
6002 {
6003 /* We remove the first xmm0 and keep the number of
6004 operands unchanged, which in fact duplicates the
6005 destination. */
6006 for (j = 1; j < i.operands; j++)
6007 {
6008 i.op[j - 1] = i.op[j];
6009 i.types[j - 1] = i.types[j];
6010 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6011 }
6012 }
6013 }
6014 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6015 {
91d6fa6a 6016 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6017 && (i.tm.opcode_modifier.vexsources
6018 == VEX3SOURCES));
c0f3af97
L
6019
6020 /* Add the implicit xmm0 for instructions with VEX prefix
6021 and 3 sources. */
6022 for (j = i.operands; j > 0; j--)
6023 {
6024 i.op[j] = i.op[j - 1];
6025 i.types[j] = i.types[j - 1];
6026 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6027 }
6028 i.op[0].regs
6029 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6030 i.types[0] = regxmm;
c0f3af97
L
6031 i.tm.operand_types[0] = regxmm;
6032
6033 i.operands += 2;
6034 i.reg_operands += 2;
6035 i.tm.operands += 2;
6036
91d6fa6a 6037 dupl++;
c0f3af97 6038 dest++;
91d6fa6a
NC
6039 i.op[dupl] = i.op[dest];
6040 i.types[dupl] = i.types[dest];
6041 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6042 }
c0f3af97
L
6043 else
6044 {
6045duplicate:
6046 i.operands++;
6047 i.reg_operands++;
6048 i.tm.operands++;
6049
91d6fa6a
NC
6050 i.op[dupl] = i.op[dest];
6051 i.types[dupl] = i.types[dest];
6052 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6053 }
6054
6055 if (i.tm.opcode_modifier.immext)
6056 process_immext ();
6057 }
6058 else if (i.tm.opcode_modifier.firstxmm0)
6059 {
6060 unsigned int j;
6061
43234a1e 6062 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 6063 gas_assert (i.reg_operands
7ab9ffdd 6064 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
6065 || operand_type_equal (&i.types[0], &regymm)
6066 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 6067 if (register_number (i.op[0].regs) != 0)
c0f3af97 6068 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
6069
6070 for (j = 1; j < i.operands; j++)
6071 {
6072 i.op[j - 1] = i.op[j];
6073 i.types[j - 1] = i.types[j];
6074
6075 /* We need to adjust fields in i.tm since they are used by
6076 build_modrm_byte. */
6077 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6078 }
6079
e2ec9d29
L
6080 i.operands--;
6081 i.reg_operands--;
e2ec9d29
L
6082 i.tm.operands--;
6083 }
920d2ddc
IT
6084 else if (i.tm.opcode_modifier.implicitquadgroup)
6085 {
6086 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6087 gas_assert (i.operands >= 2
6088 && (operand_type_equal (&i.types[1], &regxmm)
6089 || operand_type_equal (&i.types[1], &regymm)
6090 || operand_type_equal (&i.types[1], &regzmm)));
6091 unsigned int regnum = register_number (i.op[1].regs);
6092 unsigned int first_reg_in_group = regnum & ~3;
6093 unsigned int last_reg_in_group = first_reg_in_group + 3;
6094 if (regnum != first_reg_in_group) {
6095 as_warn (_("the second source register `%s%s' implicitly denotes"
6096 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6097 register_prefix, i.op[1].regs->reg_name,
6098 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6099 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6100 i.tm.name);
6101 }
6102 }
e2ec9d29
L
6103 else if (i.tm.opcode_modifier.regkludge)
6104 {
6105 /* The imul $imm, %reg instruction is converted into
6106 imul $imm, %reg, %reg, and the clr %reg instruction
6107 is converted into xor %reg, %reg. */
6108
6109 unsigned int first_reg_op;
6110
6111 if (operand_type_check (i.types[0], reg))
6112 first_reg_op = 0;
6113 else
6114 first_reg_op = 1;
6115 /* Pretend we saw the extra register operand. */
9c2799c2 6116 gas_assert (i.reg_operands == 1
7ab9ffdd 6117 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6118 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6119 i.types[first_reg_op + 1] = i.types[first_reg_op];
6120 i.operands++;
6121 i.reg_operands++;
29b0f896
AM
6122 }
6123
40fb9820 6124 if (i.tm.opcode_modifier.shortform)
29b0f896 6125 {
40fb9820
L
6126 if (i.types[0].bitfield.sreg2
6127 || i.types[0].bitfield.sreg3)
29b0f896 6128 {
4eed87de
AM
6129 if (i.tm.base_opcode == POP_SEG_SHORT
6130 && i.op[0].regs->reg_num == 1)
29b0f896 6131 {
a87af027 6132 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6133 return 0;
29b0f896 6134 }
4eed87de
AM
6135 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6136 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6137 i.rex |= REX_B;
4eed87de
AM
6138 }
6139 else
6140 {
7ab9ffdd 6141 /* The register or float register operand is in operand
85f10a01 6142 0 or 1. */
40fb9820 6143 unsigned int op;
7ab9ffdd
L
6144
6145 if (i.types[0].bitfield.floatreg
6146 || operand_type_check (i.types[0], reg))
6147 op = 0;
6148 else
6149 op = 1;
4eed87de
AM
6150 /* Register goes in low 3 bits of opcode. */
6151 i.tm.base_opcode |= i.op[op].regs->reg_num;
6152 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6153 i.rex |= REX_B;
40fb9820 6154 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6155 {
4eed87de
AM
6156 /* Warn about some common errors, but press on regardless.
6157 The first case can be generated by gcc (<= 2.8.1). */
6158 if (i.operands == 2)
6159 {
6160 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6161 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6162 register_prefix, i.op[!intel_syntax].regs->reg_name,
6163 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6164 }
6165 else
6166 {
6167 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6168 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6169 register_prefix, i.op[0].regs->reg_name);
4eed87de 6170 }
29b0f896
AM
6171 }
6172 }
6173 }
40fb9820 6174 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6175 {
6176 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6177 must be put into the modrm byte). Now, we make the modrm and
6178 index base bytes based on all the info we've collected. */
29b0f896
AM
6179
6180 default_seg = build_modrm_byte ();
6181 }
8a2ed489 6182 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6183 {
6184 default_seg = &ds;
6185 }
40fb9820 6186 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6187 {
6188 /* For the string instructions that allow a segment override
6189 on one of their operands, the default segment is ds. */
6190 default_seg = &ds;
6191 }
6192
75178d9d
L
6193 if (i.tm.base_opcode == 0x8d /* lea */
6194 && i.seg[0]
6195 && !quiet_warnings)
30123838 6196 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6197
6198 /* If a segment was explicitly specified, and the specified segment
6199 is not the default, use an opcode prefix to select it. If we
6200 never figured out what the default segment is, then default_seg
6201 will be zero at this point, and the specified segment prefix will
6202 always be used. */
29b0f896
AM
6203 if ((i.seg[0]) && (i.seg[0] != default_seg))
6204 {
6205 if (!add_prefix (i.seg[0]->seg_prefix))
6206 return 0;
6207 }
6208 return 1;
6209}
6210
6211static const seg_entry *
e3bb37b5 6212build_modrm_byte (void)
29b0f896
AM
6213{
6214 const seg_entry *default_seg = 0;
c0f3af97 6215 unsigned int source, dest;
8cd7925b 6216 int vex_3_sources;
c0f3af97
L
6217
6218 /* The first operand of instructions with VEX prefix and 3 sources
6219 must be VEX_Imm4. */
8cd7925b 6220 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6221 if (vex_3_sources)
6222 {
91d6fa6a 6223 unsigned int nds, reg_slot;
4c2c6516 6224 expressionS *exp;
c0f3af97 6225
922d8de8 6226 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6227 && i.tm.opcode_modifier.immext)
6228 {
6229 dest = i.operands - 2;
6230 gas_assert (dest == 3);
6231 }
922d8de8 6232 else
a683cc34 6233 dest = i.operands - 1;
c0f3af97 6234 nds = dest - 1;
922d8de8 6235
a683cc34
SP
6236 /* There are 2 kinds of instructions:
6237 1. 5 operands: 4 register operands or 3 register operands
6238 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6239 VexW0 or VexW1. The destination must be either XMM, YMM or
6240 ZMM register.
a683cc34
SP
6241 2. 4 operands: 4 register operands or 3 register operands
6242 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6243 gas_assert ((i.reg_operands == 4
a683cc34
SP
6244 || (i.reg_operands == 3 && i.mem_operands == 1))
6245 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6246 && (i.tm.opcode_modifier.veximmext
6247 || (i.imm_operands == 1
6248 && i.types[0].bitfield.vec_imm4
6249 && (i.tm.opcode_modifier.vexw == VEXW0
6250 || i.tm.opcode_modifier.vexw == VEXW1)
6251 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
6252 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6253 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
6254
6255 if (i.imm_operands == 0)
6256 {
6257 /* When there is no immediate operand, generate an 8bit
6258 immediate operand to encode the first operand. */
6259 exp = &im_expressions[i.imm_operands++];
6260 i.op[i.operands].imms = exp;
6261 i.types[i.operands] = imm8;
6262 i.operands++;
6263 /* If VexW1 is set, the first operand is the source and
6264 the second operand is encoded in the immediate operand. */
6265 if (i.tm.opcode_modifier.vexw == VEXW1)
6266 {
6267 source = 0;
6268 reg_slot = 1;
6269 }
6270 else
6271 {
6272 source = 1;
6273 reg_slot = 0;
6274 }
6275
6276 /* FMA swaps REG and NDS. */
6277 if (i.tm.cpu_flags.bitfield.cpufma)
6278 {
6279 unsigned int tmp;
6280 tmp = reg_slot;
6281 reg_slot = nds;
6282 nds = tmp;
6283 }
6284
24981e7b
L
6285 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6286 &regxmm)
a683cc34 6287 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6288 &regymm)
6289 || operand_type_equal (&i.tm.operand_types[reg_slot],
6290 &regzmm));
a683cc34 6291 exp->X_op = O_constant;
4c692bc7 6292 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6293 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6294 }
922d8de8 6295 else
a683cc34
SP
6296 {
6297 unsigned int imm_slot;
6298
6299 if (i.tm.opcode_modifier.vexw == VEXW0)
6300 {
6301 /* If VexW0 is set, the third operand is the source and
6302 the second operand is encoded in the immediate
6303 operand. */
6304 source = 2;
6305 reg_slot = 1;
6306 }
6307 else
6308 {
6309 /* VexW1 is set, the second operand is the source and
6310 the third operand is encoded in the immediate
6311 operand. */
6312 source = 1;
6313 reg_slot = 2;
6314 }
6315
6316 if (i.tm.opcode_modifier.immext)
6317 {
33eaf5de 6318 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6319 operand. */
6320 imm_slot = i.operands - 1;
6321 source--;
6322 reg_slot--;
6323 }
6324 else
6325 {
6326 imm_slot = 0;
6327
6328 /* Turn on Imm8 so that output_imm will generate it. */
6329 i.types[imm_slot].bitfield.imm8 = 1;
6330 }
6331
24981e7b
L
6332 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6333 &regxmm)
6334 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6335 &regymm)
6336 || operand_type_equal (&i.tm.operand_types[reg_slot],
6337 &regzmm));
a683cc34 6338 i.op[imm_slot].imms->X_add_number
4c692bc7 6339 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6340 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6341 }
6342
6343 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6344 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6345 &regymm)
6346 || operand_type_equal (&i.tm.operand_types[nds],
6347 &regzmm));
dae39acc 6348 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6349 }
6350 else
6351 source = dest = 0;
29b0f896
AM
6352
6353 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6354 implicit registers do not count. If there are 3 register
6355 operands, it must be a instruction with VexNDS. For a
6356 instruction with VexNDD, the destination register is encoded
6357 in VEX prefix. If there are 4 register operands, it must be
6358 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6359 if (i.mem_operands == 0
6360 && ((i.reg_operands == 2
2426c15f 6361 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6362 || (i.reg_operands == 3
2426c15f 6363 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6364 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6365 {
cab737b9
L
6366 switch (i.operands)
6367 {
6368 case 2:
6369 source = 0;
6370 break;
6371 case 3:
c81128dc
L
6372 /* When there are 3 operands, one of them may be immediate,
6373 which may be the first or the last operand. Otherwise,
c0f3af97
L
6374 the first operand must be shift count register (cl) or it
6375 is an instruction with VexNDS. */
9c2799c2 6376 gas_assert (i.imm_operands == 1
7ab9ffdd 6377 || (i.imm_operands == 0
2426c15f 6378 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6379 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6380 if (operand_type_check (i.types[0], imm)
6381 || i.types[0].bitfield.shiftcount)
6382 source = 1;
6383 else
6384 source = 0;
cab737b9
L
6385 break;
6386 case 4:
368d64cc
L
6387 /* When there are 4 operands, the first two must be 8bit
6388 immediate operands. The source operand will be the 3rd
c0f3af97
L
6389 one.
6390
6391 For instructions with VexNDS, if the first operand
6392 an imm8, the source operand is the 2nd one. If the last
6393 operand is imm8, the source operand is the first one. */
9c2799c2 6394 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6395 && i.types[0].bitfield.imm8
6396 && i.types[1].bitfield.imm8)
2426c15f 6397 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6398 && i.imm_operands == 1
6399 && (i.types[0].bitfield.imm8
43234a1e
L
6400 || i.types[i.operands - 1].bitfield.imm8
6401 || i.rounding)));
9f2670f2
L
6402 if (i.imm_operands == 2)
6403 source = 2;
6404 else
c0f3af97
L
6405 {
6406 if (i.types[0].bitfield.imm8)
6407 source = 1;
6408 else
6409 source = 0;
6410 }
c0f3af97
L
6411 break;
6412 case 5:
43234a1e
L
6413 if (i.tm.opcode_modifier.evex)
6414 {
6415 /* For EVEX instructions, when there are 5 operands, the
6416 first one must be immediate operand. If the second one
6417 is immediate operand, the source operand is the 3th
6418 one. If the last one is immediate operand, the source
6419 operand is the 2nd one. */
6420 gas_assert (i.imm_operands == 2
6421 && i.tm.opcode_modifier.sae
6422 && operand_type_check (i.types[0], imm));
6423 if (operand_type_check (i.types[1], imm))
6424 source = 2;
6425 else if (operand_type_check (i.types[4], imm))
6426 source = 1;
6427 else
6428 abort ();
6429 }
cab737b9
L
6430 break;
6431 default:
6432 abort ();
6433 }
6434
c0f3af97
L
6435 if (!vex_3_sources)
6436 {
6437 dest = source + 1;
6438
43234a1e
L
6439 /* RC/SAE operand could be between DEST and SRC. That happens
6440 when one operand is GPR and the other one is XMM/YMM/ZMM
6441 register. */
6442 if (i.rounding && i.rounding->operand == (int) dest)
6443 dest++;
6444
2426c15f 6445 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6446 {
43234a1e
L
6447 /* For instructions with VexNDS, the register-only source
6448 operand must be 32/64bit integer, XMM, YMM or ZMM
6449 register. It is encoded in VEX prefix. We need to
6450 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6451
6452 i386_operand_type op;
6453 unsigned int vvvv;
6454
6455 /* Check register-only source operand when two source
6456 operands are swapped. */
6457 if (!i.tm.operand_types[source].bitfield.baseindex
6458 && i.tm.operand_types[dest].bitfield.baseindex)
6459 {
6460 vvvv = source;
6461 source = dest;
6462 }
6463 else
6464 vvvv = dest;
6465
6466 op = i.tm.operand_types[vvvv];
fa99fab2 6467 op.bitfield.regmem = 0;
c0f3af97 6468 if ((dest + 1) >= i.operands
ac4eb736
AM
6469 || (!op.bitfield.reg32
6470 && op.bitfield.reg64
f12dc422 6471 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6472 && !operand_type_equal (&op, &regymm)
6473 && !operand_type_equal (&op, &regzmm)
6474 && !operand_type_equal (&op, &regmask)))
c0f3af97 6475 abort ();
f12dc422 6476 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6477 dest++;
6478 }
6479 }
29b0f896
AM
6480
6481 i.rm.mode = 3;
6482 /* One of the register operands will be encoded in the i.tm.reg
6483 field, the other in the combined i.tm.mode and i.tm.regmem
6484 fields. If no form of this instruction supports a memory
6485 destination operand, then we assume the source operand may
6486 sometimes be a memory operand and so we need to store the
6487 destination in the i.rm.reg field. */
40fb9820
L
6488 if (!i.tm.operand_types[dest].bitfield.regmem
6489 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6490 {
6491 i.rm.reg = i.op[dest].regs->reg_num;
6492 i.rm.regmem = i.op[source].regs->reg_num;
6493 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6494 i.rex |= REX_R;
43234a1e
L
6495 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6496 i.vrex |= REX_R;
29b0f896 6497 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6498 i.rex |= REX_B;
43234a1e
L
6499 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6500 i.vrex |= REX_B;
29b0f896
AM
6501 }
6502 else
6503 {
6504 i.rm.reg = i.op[source].regs->reg_num;
6505 i.rm.regmem = i.op[dest].regs->reg_num;
6506 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6507 i.rex |= REX_B;
43234a1e
L
6508 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6509 i.vrex |= REX_B;
29b0f896 6510 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6511 i.rex |= REX_R;
43234a1e
L
6512 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6513 i.vrex |= REX_R;
29b0f896 6514 }
161a04f6 6515 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6516 {
40fb9820
L
6517 if (!i.types[0].bitfield.control
6518 && !i.types[1].bitfield.control)
c4a530c5 6519 abort ();
161a04f6 6520 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6521 add_prefix (LOCK_PREFIX_OPCODE);
6522 }
29b0f896
AM
6523 }
6524 else
6525 { /* If it's not 2 reg operands... */
c0f3af97
L
6526 unsigned int mem;
6527
29b0f896
AM
6528 if (i.mem_operands)
6529 {
6530 unsigned int fake_zero_displacement = 0;
99018f42 6531 unsigned int op;
4eed87de 6532
7ab9ffdd
L
6533 for (op = 0; op < i.operands; op++)
6534 if (operand_type_check (i.types[op], anymem))
6535 break;
7ab9ffdd 6536 gas_assert (op < i.operands);
29b0f896 6537
6c30d220
L
6538 if (i.tm.opcode_modifier.vecsib)
6539 {
6540 if (i.index_reg->reg_num == RegEiz
6541 || i.index_reg->reg_num == RegRiz)
6542 abort ();
6543
6544 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6545 if (!i.base_reg)
6546 {
6547 i.sib.base = NO_BASE_REGISTER;
6548 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6549 /* No Vec_Disp8 if there is no base. */
6550 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6551 i.types[op].bitfield.disp8 = 0;
6552 i.types[op].bitfield.disp16 = 0;
6553 i.types[op].bitfield.disp64 = 0;
6554 if (flag_code != CODE_64BIT)
6555 {
6556 /* Must be 32 bit */
6557 i.types[op].bitfield.disp32 = 1;
6558 i.types[op].bitfield.disp32s = 0;
6559 }
6560 else
6561 {
6562 i.types[op].bitfield.disp32 = 0;
6563 i.types[op].bitfield.disp32s = 1;
6564 }
6565 }
6566 i.sib.index = i.index_reg->reg_num;
6567 if ((i.index_reg->reg_flags & RegRex) != 0)
6568 i.rex |= REX_X;
43234a1e
L
6569 if ((i.index_reg->reg_flags & RegVRex) != 0)
6570 i.vrex |= REX_X;
6c30d220
L
6571 }
6572
29b0f896
AM
6573 default_seg = &ds;
6574
6575 if (i.base_reg == 0)
6576 {
6577 i.rm.mode = 0;
6578 if (!i.disp_operands)
6c30d220
L
6579 {
6580 fake_zero_displacement = 1;
6581 /* Instructions with VSIB byte need 32bit displacement
6582 if there is no base register. */
6583 if (i.tm.opcode_modifier.vecsib)
6584 i.types[op].bitfield.disp32 = 1;
6585 }
29b0f896
AM
6586 if (i.index_reg == 0)
6587 {
6c30d220 6588 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6589 /* Operand is just <disp> */
20f0a1fc 6590 if (flag_code == CODE_64BIT)
29b0f896
AM
6591 {
6592 /* 64bit mode overwrites the 32bit absolute
6593 addressing by RIP relative addressing and
6594 absolute addressing is encoded by one of the
6595 redundant SIB forms. */
6596 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6597 i.sib.base = NO_BASE_REGISTER;
6598 i.sib.index = NO_INDEX_REGISTER;
fc225355 6599 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6600 ? disp32s : disp32);
20f0a1fc 6601 }
fc225355
L
6602 else if ((flag_code == CODE_16BIT)
6603 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6604 {
6605 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6606 i.types[op] = disp16;
20f0a1fc
NC
6607 }
6608 else
6609 {
6610 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6611 i.types[op] = disp32;
29b0f896
AM
6612 }
6613 }
6c30d220 6614 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6615 {
6c30d220 6616 /* !i.base_reg && i.index_reg */
db51cc60
L
6617 if (i.index_reg->reg_num == RegEiz
6618 || i.index_reg->reg_num == RegRiz)
6619 i.sib.index = NO_INDEX_REGISTER;
6620 else
6621 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6622 i.sib.base = NO_BASE_REGISTER;
6623 i.sib.scale = i.log2_scale_factor;
6624 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6625 /* No Vec_Disp8 if there is no base. */
6626 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6627 i.types[op].bitfield.disp8 = 0;
6628 i.types[op].bitfield.disp16 = 0;
6629 i.types[op].bitfield.disp64 = 0;
29b0f896 6630 if (flag_code != CODE_64BIT)
40fb9820
L
6631 {
6632 /* Must be 32 bit */
6633 i.types[op].bitfield.disp32 = 1;
6634 i.types[op].bitfield.disp32s = 0;
6635 }
29b0f896 6636 else
40fb9820
L
6637 {
6638 i.types[op].bitfield.disp32 = 0;
6639 i.types[op].bitfield.disp32s = 1;
6640 }
29b0f896 6641 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6642 i.rex |= REX_X;
29b0f896
AM
6643 }
6644 }
6645 /* RIP addressing for 64bit mode. */
9a04903e
JB
6646 else if (i.base_reg->reg_num == RegRip ||
6647 i.base_reg->reg_num == RegEip)
29b0f896 6648 {
6c30d220 6649 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6650 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6651 i.types[op].bitfield.disp8 = 0;
6652 i.types[op].bitfield.disp16 = 0;
6653 i.types[op].bitfield.disp32 = 0;
6654 i.types[op].bitfield.disp32s = 1;
6655 i.types[op].bitfield.disp64 = 0;
43234a1e 6656 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6657 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6658 if (! i.disp_operands)
6659 fake_zero_displacement = 1;
29b0f896 6660 }
40fb9820 6661 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6662 {
6c30d220 6663 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6664 switch (i.base_reg->reg_num)
6665 {
6666 case 3: /* (%bx) */
6667 if (i.index_reg == 0)
6668 i.rm.regmem = 7;
6669 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6670 i.rm.regmem = i.index_reg->reg_num - 6;
6671 break;
6672 case 5: /* (%bp) */
6673 default_seg = &ss;
6674 if (i.index_reg == 0)
6675 {
6676 i.rm.regmem = 6;
40fb9820 6677 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6678 {
6679 /* fake (%bp) into 0(%bp) */
43234a1e
L
6680 if (i.tm.operand_types[op].bitfield.vec_disp8)
6681 i.types[op].bitfield.vec_disp8 = 1;
6682 else
6683 i.types[op].bitfield.disp8 = 1;
252b5132 6684 fake_zero_displacement = 1;
29b0f896
AM
6685 }
6686 }
6687 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6688 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6689 break;
6690 default: /* (%si) -> 4 or (%di) -> 5 */
6691 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6692 }
6693 i.rm.mode = mode_from_disp_size (i.types[op]);
6694 }
6695 else /* i.base_reg and 32/64 bit mode */
6696 {
6697 if (flag_code == CODE_64BIT
40fb9820
L
6698 && operand_type_check (i.types[op], disp))
6699 {
6700 i386_operand_type temp;
0dfbf9d7 6701 operand_type_set (&temp, 0);
40fb9820 6702 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6703 temp.bitfield.vec_disp8
6704 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6705 i.types[op] = temp;
6706 if (i.prefix[ADDR_PREFIX] == 0)
6707 i.types[op].bitfield.disp32s = 1;
6708 else
6709 i.types[op].bitfield.disp32 = 1;
6710 }
20f0a1fc 6711
6c30d220
L
6712 if (!i.tm.opcode_modifier.vecsib)
6713 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6714 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6715 i.rex |= REX_B;
29b0f896
AM
6716 i.sib.base = i.base_reg->reg_num;
6717 /* x86-64 ignores REX prefix bit here to avoid decoder
6718 complications. */
848930b2
JB
6719 if (!(i.base_reg->reg_flags & RegRex)
6720 && (i.base_reg->reg_num == EBP_REG_NUM
6721 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6722 default_seg = &ss;
848930b2 6723 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6724 {
848930b2 6725 fake_zero_displacement = 1;
43234a1e
L
6726 if (i.tm.operand_types [op].bitfield.vec_disp8)
6727 i.types[op].bitfield.vec_disp8 = 1;
6728 else
6729 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6730 }
6731 i.sib.scale = i.log2_scale_factor;
6732 if (i.index_reg == 0)
6733 {
6c30d220 6734 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6735 /* <disp>(%esp) becomes two byte modrm with no index
6736 register. We've already stored the code for esp
6737 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6738 Any base register besides %esp will not use the
6739 extra modrm byte. */
6740 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6741 }
6c30d220 6742 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6743 {
db51cc60
L
6744 if (i.index_reg->reg_num == RegEiz
6745 || i.index_reg->reg_num == RegRiz)
6746 i.sib.index = NO_INDEX_REGISTER;
6747 else
6748 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6749 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6750 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6751 i.rex |= REX_X;
29b0f896 6752 }
67a4f2b7
AO
6753
6754 if (i.disp_operands
6755 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6756 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6757 i.rm.mode = 0;
6758 else
a501d77e
L
6759 {
6760 if (!fake_zero_displacement
6761 && !i.disp_operands
6762 && i.disp_encoding)
6763 {
6764 fake_zero_displacement = 1;
6765 if (i.disp_encoding == disp_encoding_8bit)
6766 i.types[op].bitfield.disp8 = 1;
6767 else
6768 i.types[op].bitfield.disp32 = 1;
6769 }
6770 i.rm.mode = mode_from_disp_size (i.types[op]);
6771 }
29b0f896 6772 }
252b5132 6773
29b0f896
AM
6774 if (fake_zero_displacement)
6775 {
6776 /* Fakes a zero displacement assuming that i.types[op]
6777 holds the correct displacement size. */
6778 expressionS *exp;
6779
9c2799c2 6780 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6781 exp = &disp_expressions[i.disp_operands++];
6782 i.op[op].disps = exp;
6783 exp->X_op = O_constant;
6784 exp->X_add_number = 0;
6785 exp->X_add_symbol = (symbolS *) 0;
6786 exp->X_op_symbol = (symbolS *) 0;
6787 }
c0f3af97
L
6788
6789 mem = op;
29b0f896 6790 }
c0f3af97
L
6791 else
6792 mem = ~0;
252b5132 6793
8c43a48b 6794 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6795 {
6796 if (operand_type_check (i.types[0], imm))
6797 i.vex.register_specifier = NULL;
6798 else
6799 {
6800 /* VEX.vvvv encodes one of the sources when the first
6801 operand is not an immediate. */
1ef99a7b 6802 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6803 i.vex.register_specifier = i.op[0].regs;
6804 else
6805 i.vex.register_specifier = i.op[1].regs;
6806 }
6807
6808 /* Destination is a XMM register encoded in the ModRM.reg
6809 and VEX.R bit. */
6810 i.rm.reg = i.op[2].regs->reg_num;
6811 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6812 i.rex |= REX_R;
6813
6814 /* ModRM.rm and VEX.B encodes the other source. */
6815 if (!i.mem_operands)
6816 {
6817 i.rm.mode = 3;
6818
1ef99a7b 6819 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6820 i.rm.regmem = i.op[1].regs->reg_num;
6821 else
6822 i.rm.regmem = i.op[0].regs->reg_num;
6823
6824 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6825 i.rex |= REX_B;
6826 }
6827 }
2426c15f 6828 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6829 {
6830 i.vex.register_specifier = i.op[2].regs;
6831 if (!i.mem_operands)
6832 {
6833 i.rm.mode = 3;
6834 i.rm.regmem = i.op[1].regs->reg_num;
6835 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6836 i.rex |= REX_B;
6837 }
6838 }
29b0f896
AM
6839 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6840 (if any) based on i.tm.extension_opcode. Again, we must be
6841 careful to make sure that segment/control/debug/test/MMX
6842 registers are coded into the i.rm.reg field. */
f88c9eb0 6843 else if (i.reg_operands)
29b0f896 6844 {
99018f42 6845 unsigned int op;
7ab9ffdd
L
6846 unsigned int vex_reg = ~0;
6847
6848 for (op = 0; op < i.operands; op++)
6849 if (i.types[op].bitfield.reg8
6850 || i.types[op].bitfield.reg16
6851 || i.types[op].bitfield.reg32
6852 || i.types[op].bitfield.reg64
6853 || i.types[op].bitfield.regmmx
6854 || i.types[op].bitfield.regxmm
6855 || i.types[op].bitfield.regymm
7e8b059b 6856 || i.types[op].bitfield.regbnd
43234a1e
L
6857 || i.types[op].bitfield.regzmm
6858 || i.types[op].bitfield.regmask
7ab9ffdd
L
6859 || i.types[op].bitfield.sreg2
6860 || i.types[op].bitfield.sreg3
6861 || i.types[op].bitfield.control
6862 || i.types[op].bitfield.debug
6863 || i.types[op].bitfield.test)
6864 break;
c0209578 6865
7ab9ffdd
L
6866 if (vex_3_sources)
6867 op = dest;
2426c15f 6868 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6869 {
6870 /* For instructions with VexNDS, the register-only
6871 source operand is encoded in VEX prefix. */
6872 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6873
7ab9ffdd 6874 if (op > mem)
c0f3af97 6875 {
7ab9ffdd
L
6876 vex_reg = op++;
6877 gas_assert (op < i.operands);
c0f3af97
L
6878 }
6879 else
c0f3af97 6880 {
f12dc422
L
6881 /* Check register-only source operand when two source
6882 operands are swapped. */
6883 if (!i.tm.operand_types[op].bitfield.baseindex
6884 && i.tm.operand_types[op + 1].bitfield.baseindex)
6885 {
6886 vex_reg = op;
6887 op += 2;
6888 gas_assert (mem == (vex_reg + 1)
6889 && op < i.operands);
6890 }
6891 else
6892 {
6893 vex_reg = op + 1;
6894 gas_assert (vex_reg < i.operands);
6895 }
c0f3af97 6896 }
7ab9ffdd 6897 }
2426c15f 6898 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6899 {
f12dc422 6900 /* For instructions with VexNDD, the register destination
7ab9ffdd 6901 is encoded in VEX prefix. */
f12dc422
L
6902 if (i.mem_operands == 0)
6903 {
6904 /* There is no memory operand. */
6905 gas_assert ((op + 2) == i.operands);
6906 vex_reg = op + 1;
6907 }
6908 else
8d63c93e 6909 {
f12dc422
L
6910 /* There are only 2 operands. */
6911 gas_assert (op < 2 && i.operands == 2);
6912 vex_reg = 1;
6913 }
7ab9ffdd
L
6914 }
6915 else
6916 gas_assert (op < i.operands);
99018f42 6917
7ab9ffdd
L
6918 if (vex_reg != (unsigned int) ~0)
6919 {
f12dc422 6920 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6921
f12dc422
L
6922 if (type->bitfield.reg32 != 1
6923 && type->bitfield.reg64 != 1
6924 && !operand_type_equal (type, &regxmm)
43234a1e
L
6925 && !operand_type_equal (type, &regymm)
6926 && !operand_type_equal (type, &regzmm)
6927 && !operand_type_equal (type, &regmask))
7ab9ffdd 6928 abort ();
f88c9eb0 6929
7ab9ffdd
L
6930 i.vex.register_specifier = i.op[vex_reg].regs;
6931 }
6932
1b9f0c97
L
6933 /* Don't set OP operand twice. */
6934 if (vex_reg != op)
7ab9ffdd 6935 {
1b9f0c97
L
6936 /* If there is an extension opcode to put here, the
6937 register number must be put into the regmem field. */
6938 if (i.tm.extension_opcode != None)
6939 {
6940 i.rm.regmem = i.op[op].regs->reg_num;
6941 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6942 i.rex |= REX_B;
43234a1e
L
6943 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6944 i.vrex |= REX_B;
1b9f0c97
L
6945 }
6946 else
6947 {
6948 i.rm.reg = i.op[op].regs->reg_num;
6949 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6950 i.rex |= REX_R;
43234a1e
L
6951 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6952 i.vrex |= REX_R;
1b9f0c97 6953 }
7ab9ffdd 6954 }
252b5132 6955
29b0f896
AM
6956 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6957 must set it to 3 to indicate this is a register operand
6958 in the regmem field. */
6959 if (!i.mem_operands)
6960 i.rm.mode = 3;
6961 }
252b5132 6962
29b0f896 6963 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6964 if (i.tm.extension_opcode != None)
29b0f896
AM
6965 i.rm.reg = i.tm.extension_opcode;
6966 }
6967 return default_seg;
6968}
252b5132 6969
29b0f896 6970static void
e3bb37b5 6971output_branch (void)
29b0f896
AM
6972{
6973 char *p;
f8a5c266 6974 int size;
29b0f896
AM
6975 int code16;
6976 int prefix;
6977 relax_substateT subtype;
6978 symbolS *sym;
6979 offsetT off;
6980
f8a5c266 6981 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6982 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6983
6984 prefix = 0;
6985 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6986 {
29b0f896
AM
6987 prefix = 1;
6988 i.prefixes -= 1;
6989 code16 ^= CODE16;
252b5132 6990 }
29b0f896
AM
6991 /* Pentium4 branch hints. */
6992 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6993 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6994 {
29b0f896
AM
6995 prefix++;
6996 i.prefixes--;
6997 }
6998 if (i.prefix[REX_PREFIX] != 0)
6999 {
7000 prefix++;
7001 i.prefixes--;
2f66722d
AM
7002 }
7003
7e8b059b
L
7004 /* BND prefixed jump. */
7005 if (i.prefix[BND_PREFIX] != 0)
7006 {
7007 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7008 i.prefixes -= 1;
7009 }
7010
29b0f896
AM
7011 if (i.prefixes != 0 && !intel_syntax)
7012 as_warn (_("skipping prefixes on this instruction"));
7013
7014 /* It's always a symbol; End frag & setup for relax.
7015 Make sure there is enough room in this frag for the largest
7016 instruction we may generate in md_convert_frag. This is 2
7017 bytes for the opcode and room for the prefix and largest
7018 displacement. */
7019 frag_grow (prefix + 2 + 4);
7020 /* Prefix and 1 opcode byte go in fr_fix. */
7021 p = frag_more (prefix + 1);
7022 if (i.prefix[DATA_PREFIX] != 0)
7023 *p++ = DATA_PREFIX_OPCODE;
7024 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7025 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7026 *p++ = i.prefix[SEG_PREFIX];
7027 if (i.prefix[REX_PREFIX] != 0)
7028 *p++ = i.prefix[REX_PREFIX];
7029 *p = i.tm.base_opcode;
7030
7031 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7032 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7033 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7034 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7035 else
f8a5c266 7036 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7037 subtype |= code16;
3e73aa7c 7038
29b0f896
AM
7039 sym = i.op[0].disps->X_add_symbol;
7040 off = i.op[0].disps->X_add_number;
3e73aa7c 7041
29b0f896
AM
7042 if (i.op[0].disps->X_op != O_constant
7043 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7044 {
29b0f896
AM
7045 /* Handle complex expressions. */
7046 sym = make_expr_symbol (i.op[0].disps);
7047 off = 0;
7048 }
3e73aa7c 7049
29b0f896
AM
7050 /* 1 possible extra opcode + 4 byte displacement go in var part.
7051 Pass reloc in fr_var. */
d258b828 7052 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7053}
3e73aa7c 7054
29b0f896 7055static void
e3bb37b5 7056output_jump (void)
29b0f896
AM
7057{
7058 char *p;
7059 int size;
3e02c1cc 7060 fixS *fixP;
29b0f896 7061
40fb9820 7062 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7063 {
7064 /* This is a loop or jecxz type instruction. */
7065 size = 1;
7066 if (i.prefix[ADDR_PREFIX] != 0)
7067 {
7068 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7069 i.prefixes -= 1;
7070 }
7071 /* Pentium4 branch hints. */
7072 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7073 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7074 {
7075 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7076 i.prefixes--;
3e73aa7c
JH
7077 }
7078 }
29b0f896
AM
7079 else
7080 {
7081 int code16;
3e73aa7c 7082
29b0f896
AM
7083 code16 = 0;
7084 if (flag_code == CODE_16BIT)
7085 code16 = CODE16;
3e73aa7c 7086
29b0f896
AM
7087 if (i.prefix[DATA_PREFIX] != 0)
7088 {
7089 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7090 i.prefixes -= 1;
7091 code16 ^= CODE16;
7092 }
252b5132 7093
29b0f896
AM
7094 size = 4;
7095 if (code16)
7096 size = 2;
7097 }
9fcc94b6 7098
29b0f896
AM
7099 if (i.prefix[REX_PREFIX] != 0)
7100 {
7101 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7102 i.prefixes -= 1;
7103 }
252b5132 7104
7e8b059b
L
7105 /* BND prefixed jump. */
7106 if (i.prefix[BND_PREFIX] != 0)
7107 {
7108 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7109 i.prefixes -= 1;
7110 }
7111
29b0f896
AM
7112 if (i.prefixes != 0 && !intel_syntax)
7113 as_warn (_("skipping prefixes on this instruction"));
e0890092 7114
42164a71
L
7115 p = frag_more (i.tm.opcode_length + size);
7116 switch (i.tm.opcode_length)
7117 {
7118 case 2:
7119 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7120 /* Fall through. */
42164a71
L
7121 case 1:
7122 *p++ = i.tm.base_opcode;
7123 break;
7124 default:
7125 abort ();
7126 }
e0890092 7127
3e02c1cc 7128 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7129 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3e02c1cc
AM
7130
7131 /* All jumps handled here are signed, but don't use a signed limit
7132 check for 32 and 16 bit jumps as we want to allow wrap around at
7133 4G and 64k respectively. */
7134 if (size == 1)
7135 fixP->fx_signed = 1;
29b0f896 7136}
e0890092 7137
29b0f896 7138static void
e3bb37b5 7139output_interseg_jump (void)
29b0f896
AM
7140{
7141 char *p;
7142 int size;
7143 int prefix;
7144 int code16;
252b5132 7145
29b0f896
AM
7146 code16 = 0;
7147 if (flag_code == CODE_16BIT)
7148 code16 = CODE16;
a217f122 7149
29b0f896
AM
7150 prefix = 0;
7151 if (i.prefix[DATA_PREFIX] != 0)
7152 {
7153 prefix = 1;
7154 i.prefixes -= 1;
7155 code16 ^= CODE16;
7156 }
7157 if (i.prefix[REX_PREFIX] != 0)
7158 {
7159 prefix++;
7160 i.prefixes -= 1;
7161 }
252b5132 7162
29b0f896
AM
7163 size = 4;
7164 if (code16)
7165 size = 2;
252b5132 7166
29b0f896
AM
7167 if (i.prefixes != 0 && !intel_syntax)
7168 as_warn (_("skipping prefixes on this instruction"));
252b5132 7169
29b0f896
AM
7170 /* 1 opcode; 2 segment; offset */
7171 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7172
29b0f896
AM
7173 if (i.prefix[DATA_PREFIX] != 0)
7174 *p++ = DATA_PREFIX_OPCODE;
252b5132 7175
29b0f896
AM
7176 if (i.prefix[REX_PREFIX] != 0)
7177 *p++ = i.prefix[REX_PREFIX];
252b5132 7178
29b0f896
AM
7179 *p++ = i.tm.base_opcode;
7180 if (i.op[1].imms->X_op == O_constant)
7181 {
7182 offsetT n = i.op[1].imms->X_add_number;
252b5132 7183
29b0f896
AM
7184 if (size == 2
7185 && !fits_in_unsigned_word (n)
7186 && !fits_in_signed_word (n))
7187 {
7188 as_bad (_("16-bit jump out of range"));
7189 return;
7190 }
7191 md_number_to_chars (p, n, size);
7192 }
7193 else
7194 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7195 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7196 if (i.op[0].imms->X_op != O_constant)
7197 as_bad (_("can't handle non absolute segment in `%s'"),
7198 i.tm.name);
7199 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7200}
a217f122 7201
29b0f896 7202static void
e3bb37b5 7203output_insn (void)
29b0f896 7204{
2bbd9c25
JJ
7205 fragS *insn_start_frag;
7206 offsetT insn_start_off;
7207
29b0f896
AM
7208 /* Tie dwarf2 debug info to the address at the start of the insn.
7209 We can't do this after the insn has been output as the current
7210 frag may have been closed off. eg. by frag_var. */
7211 dwarf2_emit_insn (0);
7212
2bbd9c25
JJ
7213 insn_start_frag = frag_now;
7214 insn_start_off = frag_now_fix ();
7215
29b0f896 7216 /* Output jumps. */
40fb9820 7217 if (i.tm.opcode_modifier.jump)
29b0f896 7218 output_branch ();
40fb9820
L
7219 else if (i.tm.opcode_modifier.jumpbyte
7220 || i.tm.opcode_modifier.jumpdword)
29b0f896 7221 output_jump ();
40fb9820 7222 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7223 output_interseg_jump ();
7224 else
7225 {
7226 /* Output normal instructions here. */
7227 char *p;
7228 unsigned char *q;
47465058 7229 unsigned int j;
331d2d0d 7230 unsigned int prefix;
4dffcebc 7231
e4e00185
AS
7232 if (avoid_fence
7233 && i.tm.base_opcode == 0xfae
7234 && i.operands == 1
7235 && i.imm_operands == 1
7236 && (i.op[0].imms->X_add_number == 0xe8
7237 || i.op[0].imms->X_add_number == 0xf0
7238 || i.op[0].imms->X_add_number == 0xf8))
7239 {
7240 /* Encode lfence, mfence, and sfence as
7241 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7242 offsetT val = 0x240483f0ULL;
7243 p = frag_more (5);
7244 md_number_to_chars (p, val, 5);
7245 return;
7246 }
7247
d022bddd
IT
7248 /* Some processors fail on LOCK prefix. This options makes
7249 assembler ignore LOCK prefix and serves as a workaround. */
7250 if (omit_lock_prefix)
7251 {
7252 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7253 return;
7254 i.prefix[LOCK_PREFIX] = 0;
7255 }
7256
43234a1e
L
7257 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7258 don't need the explicit prefix. */
7259 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7260 {
c0f3af97 7261 switch (i.tm.opcode_length)
bc4bd9ab 7262 {
c0f3af97
L
7263 case 3:
7264 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7265 {
c0f3af97
L
7266 prefix = (i.tm.base_opcode >> 24) & 0xff;
7267 goto check_prefix;
7268 }
7269 break;
7270 case 2:
7271 if ((i.tm.base_opcode & 0xff0000) != 0)
7272 {
7273 prefix = (i.tm.base_opcode >> 16) & 0xff;
7274 if (i.tm.cpu_flags.bitfield.cpupadlock)
7275 {
4dffcebc 7276check_prefix:
c0f3af97 7277 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7278 || (i.prefix[REP_PREFIX]
c0f3af97
L
7279 != REPE_PREFIX_OPCODE))
7280 add_prefix (prefix);
7281 }
7282 else
4dffcebc
L
7283 add_prefix (prefix);
7284 }
c0f3af97
L
7285 break;
7286 case 1:
7287 break;
7288 default:
7289 abort ();
bc4bd9ab 7290 }
c0f3af97 7291
6d19a37a 7292#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7293 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7294 R_X86_64_GOTTPOFF relocation so that linker can safely
7295 perform IE->LE optimization. */
7296 if (x86_elf_abi == X86_64_X32_ABI
7297 && i.operands == 2
7298 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7299 && i.prefix[REX_PREFIX] == 0)
7300 add_prefix (REX_OPCODE);
6d19a37a 7301#endif
cf61b747 7302
c0f3af97
L
7303 /* The prefix bytes. */
7304 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7305 if (*q)
7306 FRAG_APPEND_1_CHAR (*q);
0f10071e 7307 }
ae5c1c7b 7308 else
c0f3af97
L
7309 {
7310 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7311 if (*q)
7312 switch (j)
7313 {
7314 case REX_PREFIX:
7315 /* REX byte is encoded in VEX prefix. */
7316 break;
7317 case SEG_PREFIX:
7318 case ADDR_PREFIX:
7319 FRAG_APPEND_1_CHAR (*q);
7320 break;
7321 default:
7322 /* There should be no other prefixes for instructions
7323 with VEX prefix. */
7324 abort ();
7325 }
7326
43234a1e
L
7327 /* For EVEX instructions i.vrex should become 0 after
7328 build_evex_prefix. For VEX instructions upper 16 registers
7329 aren't available, so VREX should be 0. */
7330 if (i.vrex)
7331 abort ();
c0f3af97
L
7332 /* Now the VEX prefix. */
7333 p = frag_more (i.vex.length);
7334 for (j = 0; j < i.vex.length; j++)
7335 p[j] = i.vex.bytes[j];
7336 }
252b5132 7337
29b0f896 7338 /* Now the opcode; be careful about word order here! */
4dffcebc 7339 if (i.tm.opcode_length == 1)
29b0f896
AM
7340 {
7341 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7342 }
7343 else
7344 {
4dffcebc 7345 switch (i.tm.opcode_length)
331d2d0d 7346 {
43234a1e
L
7347 case 4:
7348 p = frag_more (4);
7349 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7350 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7351 break;
4dffcebc 7352 case 3:
331d2d0d
L
7353 p = frag_more (3);
7354 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7355 break;
7356 case 2:
7357 p = frag_more (2);
7358 break;
7359 default:
7360 abort ();
7361 break;
331d2d0d 7362 }
0f10071e 7363
29b0f896
AM
7364 /* Put out high byte first: can't use md_number_to_chars! */
7365 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7366 *p = i.tm.base_opcode & 0xff;
7367 }
3e73aa7c 7368
29b0f896 7369 /* Now the modrm byte and sib byte (if present). */
40fb9820 7370 if (i.tm.opcode_modifier.modrm)
29b0f896 7371 {
4a3523fa
L
7372 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7373 | i.rm.reg << 3
7374 | i.rm.mode << 6));
29b0f896
AM
7375 /* If i.rm.regmem == ESP (4)
7376 && i.rm.mode != (Register mode)
7377 && not 16 bit
7378 ==> need second modrm byte. */
7379 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7380 && i.rm.mode != 3
40fb9820 7381 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7382 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7383 | i.sib.index << 3
7384 | i.sib.scale << 6));
29b0f896 7385 }
3e73aa7c 7386
29b0f896 7387 if (i.disp_operands)
2bbd9c25 7388 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7389
29b0f896 7390 if (i.imm_operands)
2bbd9c25 7391 output_imm (insn_start_frag, insn_start_off);
29b0f896 7392 }
252b5132 7393
29b0f896
AM
7394#ifdef DEBUG386
7395 if (flag_debug)
7396 {
7b81dfbb 7397 pi ("" /*line*/, &i);
29b0f896
AM
7398 }
7399#endif /* DEBUG386 */
7400}
252b5132 7401
e205caa7
L
7402/* Return the size of the displacement operand N. */
7403
7404static int
7405disp_size (unsigned int n)
7406{
7407 int size = 4;
43234a1e
L
7408
7409 /* Vec_Disp8 has to be 8bit. */
7410 if (i.types[n].bitfield.vec_disp8)
7411 size = 1;
7412 else if (i.types[n].bitfield.disp64)
40fb9820
L
7413 size = 8;
7414 else if (i.types[n].bitfield.disp8)
7415 size = 1;
7416 else if (i.types[n].bitfield.disp16)
7417 size = 2;
e205caa7
L
7418 return size;
7419}
7420
7421/* Return the size of the immediate operand N. */
7422
7423static int
7424imm_size (unsigned int n)
7425{
7426 int size = 4;
40fb9820
L
7427 if (i.types[n].bitfield.imm64)
7428 size = 8;
7429 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7430 size = 1;
7431 else if (i.types[n].bitfield.imm16)
7432 size = 2;
e205caa7
L
7433 return size;
7434}
7435
29b0f896 7436static void
64e74474 7437output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7438{
7439 char *p;
7440 unsigned int n;
252b5132 7441
29b0f896
AM
7442 for (n = 0; n < i.operands; n++)
7443 {
43234a1e
L
7444 if (i.types[n].bitfield.vec_disp8
7445 || operand_type_check (i.types[n], disp))
29b0f896
AM
7446 {
7447 if (i.op[n].disps->X_op == O_constant)
7448 {
e205caa7 7449 int size = disp_size (n);
43234a1e 7450 offsetT val = i.op[n].disps->X_add_number;
252b5132 7451
43234a1e
L
7452 if (i.types[n].bitfield.vec_disp8)
7453 val >>= i.memshift;
7454 val = offset_in_range (val, size);
29b0f896
AM
7455 p = frag_more (size);
7456 md_number_to_chars (p, val, size);
7457 }
7458 else
7459 {
f86103b7 7460 enum bfd_reloc_code_real reloc_type;
e205caa7 7461 int size = disp_size (n);
40fb9820 7462 int sign = i.types[n].bitfield.disp32s;
29b0f896 7463 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7464 fixS *fixP;
29b0f896 7465
e205caa7 7466 /* We can't have 8 bit displacement here. */
9c2799c2 7467 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7468
29b0f896
AM
7469 /* The PC relative address is computed relative
7470 to the instruction boundary, so in case immediate
7471 fields follows, we need to adjust the value. */
7472 if (pcrel && i.imm_operands)
7473 {
29b0f896 7474 unsigned int n1;
e205caa7 7475 int sz = 0;
252b5132 7476
29b0f896 7477 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7478 if (operand_type_check (i.types[n1], imm))
252b5132 7479 {
e205caa7
L
7480 /* Only one immediate is allowed for PC
7481 relative address. */
9c2799c2 7482 gas_assert (sz == 0);
e205caa7
L
7483 sz = imm_size (n1);
7484 i.op[n].disps->X_add_number -= sz;
252b5132 7485 }
29b0f896 7486 /* We should find the immediate. */
9c2799c2 7487 gas_assert (sz != 0);
29b0f896 7488 }
520dc8e8 7489
29b0f896 7490 p = frag_more (size);
d258b828 7491 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7492 if (GOT_symbol
2bbd9c25 7493 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7494 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7495 || reloc_type == BFD_RELOC_X86_64_32S
7496 || (reloc_type == BFD_RELOC_64
7497 && object_64bit))
d6ab8113
JB
7498 && (i.op[n].disps->X_op == O_symbol
7499 || (i.op[n].disps->X_op == O_add
7500 && ((symbol_get_value_expression
7501 (i.op[n].disps->X_op_symbol)->X_op)
7502 == O_subtract))))
7503 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7504 {
7505 offsetT add;
7506
7507 if (insn_start_frag == frag_now)
7508 add = (p - frag_now->fr_literal) - insn_start_off;
7509 else
7510 {
7511 fragS *fr;
7512
7513 add = insn_start_frag->fr_fix - insn_start_off;
7514 for (fr = insn_start_frag->fr_next;
7515 fr && fr != frag_now; fr = fr->fr_next)
7516 add += fr->fr_fix;
7517 add += p - frag_now->fr_literal;
7518 }
7519
4fa24527 7520 if (!object_64bit)
7b81dfbb
AJ
7521 {
7522 reloc_type = BFD_RELOC_386_GOTPC;
7523 i.op[n].imms->X_add_number += add;
7524 }
7525 else if (reloc_type == BFD_RELOC_64)
7526 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7527 else
7b81dfbb
AJ
7528 /* Don't do the adjustment for x86-64, as there
7529 the pcrel addressing is relative to the _next_
7530 insn, and that is taken care of in other code. */
d6ab8113 7531 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7532 }
02a86693
L
7533 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7534 size, i.op[n].disps, pcrel,
7535 reloc_type);
7536 /* Check for "call/jmp *mem", "mov mem, %reg",
7537 "test %reg, mem" and "binop mem, %reg" where binop
7538 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7539 instructions. Always generate R_386_GOT32X for
7540 "sym*GOT" operand in 32-bit mode. */
7541 if ((generate_relax_relocations
7542 || (!object_64bit
7543 && i.rm.mode == 0
7544 && i.rm.regmem == 5))
7545 && (i.rm.mode == 2
7546 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7547 && ((i.operands == 1
7548 && i.tm.base_opcode == 0xff
7549 && (i.rm.reg == 2 || i.rm.reg == 4))
7550 || (i.operands == 2
7551 && (i.tm.base_opcode == 0x8b
7552 || i.tm.base_opcode == 0x85
7553 || (i.tm.base_opcode & 0xc7) == 0x03))))
7554 {
7555 if (object_64bit)
7556 {
7557 fixP->fx_tcbit = i.rex != 0;
7558 if (i.base_reg
7559 && (i.base_reg->reg_num == RegRip
7560 || i.base_reg->reg_num == RegEip))
7561 fixP->fx_tcbit2 = 1;
7562 }
7563 else
7564 fixP->fx_tcbit2 = 1;
7565 }
29b0f896
AM
7566 }
7567 }
7568 }
7569}
252b5132 7570
29b0f896 7571static void
64e74474 7572output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7573{
7574 char *p;
7575 unsigned int n;
252b5132 7576
29b0f896
AM
7577 for (n = 0; n < i.operands; n++)
7578 {
43234a1e
L
7579 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7580 if (i.rounding && (int) n == i.rounding->operand)
7581 continue;
7582
40fb9820 7583 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7584 {
7585 if (i.op[n].imms->X_op == O_constant)
7586 {
e205caa7 7587 int size = imm_size (n);
29b0f896 7588 offsetT val;
b4cac588 7589
29b0f896
AM
7590 val = offset_in_range (i.op[n].imms->X_add_number,
7591 size);
7592 p = frag_more (size);
7593 md_number_to_chars (p, val, size);
7594 }
7595 else
7596 {
7597 /* Not absolute_section.
7598 Need a 32-bit fixup (don't support 8bit
7599 non-absolute imms). Try to support other
7600 sizes ... */
f86103b7 7601 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7602 int size = imm_size (n);
7603 int sign;
29b0f896 7604
40fb9820 7605 if (i.types[n].bitfield.imm32s
a7d61044 7606 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7607 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7608 sign = 1;
e205caa7
L
7609 else
7610 sign = 0;
520dc8e8 7611
29b0f896 7612 p = frag_more (size);
d258b828 7613 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7614
2bbd9c25
JJ
7615 /* This is tough to explain. We end up with this one if we
7616 * have operands that look like
7617 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7618 * obtain the absolute address of the GOT, and it is strongly
7619 * preferable from a performance point of view to avoid using
7620 * a runtime relocation for this. The actual sequence of
7621 * instructions often look something like:
7622 *
7623 * call .L66
7624 * .L66:
7625 * popl %ebx
7626 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7627 *
7628 * The call and pop essentially return the absolute address
7629 * of the label .L66 and store it in %ebx. The linker itself
7630 * will ultimately change the first operand of the addl so
7631 * that %ebx points to the GOT, but to keep things simple, the
7632 * .o file must have this operand set so that it generates not
7633 * the absolute address of .L66, but the absolute address of
7634 * itself. This allows the linker itself simply treat a GOTPC
7635 * relocation as asking for a pcrel offset to the GOT to be
7636 * added in, and the addend of the relocation is stored in the
7637 * operand field for the instruction itself.
7638 *
7639 * Our job here is to fix the operand so that it would add
7640 * the correct offset so that %ebx would point to itself. The
7641 * thing that is tricky is that .-.L66 will point to the
7642 * beginning of the instruction, so we need to further modify
7643 * the operand so that it will point to itself. There are
7644 * other cases where you have something like:
7645 *
7646 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7647 *
7648 * and here no correction would be required. Internally in
7649 * the assembler we treat operands of this form as not being
7650 * pcrel since the '.' is explicitly mentioned, and I wonder
7651 * whether it would simplify matters to do it this way. Who
7652 * knows. In earlier versions of the PIC patches, the
7653 * pcrel_adjust field was used to store the correction, but
7654 * since the expression is not pcrel, I felt it would be
7655 * confusing to do it this way. */
7656
d6ab8113 7657 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7658 || reloc_type == BFD_RELOC_X86_64_32S
7659 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7660 && GOT_symbol
7661 && GOT_symbol == i.op[n].imms->X_add_symbol
7662 && (i.op[n].imms->X_op == O_symbol
7663 || (i.op[n].imms->X_op == O_add
7664 && ((symbol_get_value_expression
7665 (i.op[n].imms->X_op_symbol)->X_op)
7666 == O_subtract))))
7667 {
2bbd9c25
JJ
7668 offsetT add;
7669
7670 if (insn_start_frag == frag_now)
7671 add = (p - frag_now->fr_literal) - insn_start_off;
7672 else
7673 {
7674 fragS *fr;
7675
7676 add = insn_start_frag->fr_fix - insn_start_off;
7677 for (fr = insn_start_frag->fr_next;
7678 fr && fr != frag_now; fr = fr->fr_next)
7679 add += fr->fr_fix;
7680 add += p - frag_now->fr_literal;
7681 }
7682
4fa24527 7683 if (!object_64bit)
d6ab8113 7684 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7685 else if (size == 4)
d6ab8113 7686 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7687 else if (size == 8)
7688 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7689 i.op[n].imms->X_add_number += add;
29b0f896 7690 }
29b0f896
AM
7691 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7692 i.op[n].imms, 0, reloc_type);
7693 }
7694 }
7695 }
252b5132
RH
7696}
7697\f
d182319b
JB
7698/* x86_cons_fix_new is called via the expression parsing code when a
7699 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7700static int cons_sign = -1;
7701
7702void
e3bb37b5 7703x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7704 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7705{
d258b828 7706 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7707
7708#ifdef TE_PE
7709 if (exp->X_op == O_secrel)
7710 {
7711 exp->X_op = O_symbol;
7712 r = BFD_RELOC_32_SECREL;
7713 }
7714#endif
7715
7716 fix_new_exp (frag, off, len, exp, 0, r);
7717}
7718
357d1bd8
L
7719/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7720 purpose of the `.dc.a' internal pseudo-op. */
7721
7722int
7723x86_address_bytes (void)
7724{
7725 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7726 return 4;
7727 return stdoutput->arch_info->bits_per_address / 8;
7728}
7729
d382c579
TG
7730#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7731 || defined (LEX_AT)
d258b828 7732# define lex_got(reloc, adjust, types) NULL
718ddfc0 7733#else
f3c180ae
AM
7734/* Parse operands of the form
7735 <symbol>@GOTOFF+<nnn>
7736 and similar .plt or .got references.
7737
7738 If we find one, set up the correct relocation in RELOC and copy the
7739 input string, minus the `@GOTOFF' into a malloc'd buffer for
7740 parsing by the calling routine. Return this buffer, and if ADJUST
7741 is non-null set it to the length of the string we removed from the
7742 input line. Otherwise return NULL. */
7743static char *
91d6fa6a 7744lex_got (enum bfd_reloc_code_real *rel,
64e74474 7745 int *adjust,
d258b828 7746 i386_operand_type *types)
f3c180ae 7747{
7b81dfbb
AJ
7748 /* Some of the relocations depend on the size of what field is to
7749 be relocated. But in our callers i386_immediate and i386_displacement
7750 we don't yet know the operand size (this will be set by insn
7751 matching). Hence we record the word32 relocation here,
7752 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7753 static const struct {
7754 const char *str;
cff8d58a 7755 int len;
4fa24527 7756 const enum bfd_reloc_code_real rel[2];
40fb9820 7757 const i386_operand_type types64;
f3c180ae 7758 } gotrel[] = {
8ce3d284 7759#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7760 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7761 BFD_RELOC_SIZE32 },
7762 OPERAND_TYPE_IMM32_64 },
8ce3d284 7763#endif
cff8d58a
L
7764 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7765 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7766 OPERAND_TYPE_IMM64 },
cff8d58a
L
7767 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7768 BFD_RELOC_X86_64_PLT32 },
40fb9820 7769 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7770 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7771 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7772 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7773 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7774 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7775 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7776 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7777 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7778 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7779 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7780 BFD_RELOC_X86_64_TLSGD },
40fb9820 7781 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7782 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7783 _dummy_first_bfd_reloc_code_real },
40fb9820 7784 OPERAND_TYPE_NONE },
cff8d58a
L
7785 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7786 BFD_RELOC_X86_64_TLSLD },
40fb9820 7787 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7788 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7789 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7790 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7791 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7792 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7793 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7794 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7795 _dummy_first_bfd_reloc_code_real },
40fb9820 7796 OPERAND_TYPE_NONE },
cff8d58a
L
7797 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7798 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7799 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7800 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7801 _dummy_first_bfd_reloc_code_real },
40fb9820 7802 OPERAND_TYPE_NONE },
cff8d58a
L
7803 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7804 _dummy_first_bfd_reloc_code_real },
40fb9820 7805 OPERAND_TYPE_NONE },
cff8d58a
L
7806 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7807 BFD_RELOC_X86_64_GOT32 },
40fb9820 7808 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7809 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7810 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7811 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7812 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7813 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7814 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7815 };
7816 char *cp;
7817 unsigned int j;
7818
d382c579 7819#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7820 if (!IS_ELF)
7821 return NULL;
d382c579 7822#endif
718ddfc0 7823
f3c180ae 7824 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7825 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7826 return NULL;
7827
47465058 7828 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7829 {
cff8d58a 7830 int len = gotrel[j].len;
28f81592 7831 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7832 {
4fa24527 7833 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7834 {
28f81592
AM
7835 int first, second;
7836 char *tmpbuf, *past_reloc;
f3c180ae 7837
91d6fa6a 7838 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7839
3956db08
JB
7840 if (types)
7841 {
7842 if (flag_code != CODE_64BIT)
40fb9820
L
7843 {
7844 types->bitfield.imm32 = 1;
7845 types->bitfield.disp32 = 1;
7846 }
3956db08
JB
7847 else
7848 *types = gotrel[j].types64;
7849 }
7850
8fd4256d 7851 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7852 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7853
28f81592 7854 /* The length of the first part of our input line. */
f3c180ae 7855 first = cp - input_line_pointer;
28f81592
AM
7856
7857 /* The second part goes from after the reloc token until
67c11a9b 7858 (and including) an end_of_line char or comma. */
28f81592 7859 past_reloc = cp + 1 + len;
67c11a9b
AM
7860 cp = past_reloc;
7861 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7862 ++cp;
7863 second = cp + 1 - past_reloc;
28f81592
AM
7864
7865 /* Allocate and copy string. The trailing NUL shouldn't
7866 be necessary, but be safe. */
add39d23 7867 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 7868 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7869 if (second != 0 && *past_reloc != ' ')
7870 /* Replace the relocation token with ' ', so that
7871 errors like foo@GOTOFF1 will be detected. */
7872 tmpbuf[first++] = ' ';
af89796a
L
7873 else
7874 /* Increment length by 1 if the relocation token is
7875 removed. */
7876 len++;
7877 if (adjust)
7878 *adjust = len;
0787a12d
AM
7879 memcpy (tmpbuf + first, past_reloc, second);
7880 tmpbuf[first + second] = '\0';
f3c180ae
AM
7881 return tmpbuf;
7882 }
7883
4fa24527
JB
7884 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7885 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7886 return NULL;
7887 }
7888 }
7889
7890 /* Might be a symbol version string. Don't as_bad here. */
7891 return NULL;
7892}
4e4f7c87 7893#endif
f3c180ae 7894
a988325c
NC
7895#ifdef TE_PE
7896#ifdef lex_got
7897#undef lex_got
7898#endif
7899/* Parse operands of the form
7900 <symbol>@SECREL32+<nnn>
7901
7902 If we find one, set up the correct relocation in RELOC and copy the
7903 input string, minus the `@SECREL32' into a malloc'd buffer for
7904 parsing by the calling routine. Return this buffer, and if ADJUST
7905 is non-null set it to the length of the string we removed from the
34bca508
L
7906 input line. Otherwise return NULL.
7907
a988325c
NC
7908 This function is copied from the ELF version above adjusted for PE targets. */
7909
7910static char *
7911lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7912 int *adjust ATTRIBUTE_UNUSED,
d258b828 7913 i386_operand_type *types)
a988325c
NC
7914{
7915 static const struct
7916 {
7917 const char *str;
7918 int len;
7919 const enum bfd_reloc_code_real rel[2];
7920 const i386_operand_type types64;
7921 }
7922 gotrel[] =
7923 {
7924 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7925 BFD_RELOC_32_SECREL },
7926 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7927 };
7928
7929 char *cp;
7930 unsigned j;
7931
7932 for (cp = input_line_pointer; *cp != '@'; cp++)
7933 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7934 return NULL;
7935
7936 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7937 {
7938 int len = gotrel[j].len;
7939
7940 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7941 {
7942 if (gotrel[j].rel[object_64bit] != 0)
7943 {
7944 int first, second;
7945 char *tmpbuf, *past_reloc;
7946
7947 *rel = gotrel[j].rel[object_64bit];
7948 if (adjust)
7949 *adjust = len;
7950
7951 if (types)
7952 {
7953 if (flag_code != CODE_64BIT)
7954 {
7955 types->bitfield.imm32 = 1;
7956 types->bitfield.disp32 = 1;
7957 }
7958 else
7959 *types = gotrel[j].types64;
7960 }
7961
7962 /* The length of the first part of our input line. */
7963 first = cp - input_line_pointer;
7964
7965 /* The second part goes from after the reloc token until
7966 (and including) an end_of_line char or comma. */
7967 past_reloc = cp + 1 + len;
7968 cp = past_reloc;
7969 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7970 ++cp;
7971 second = cp + 1 - past_reloc;
7972
7973 /* Allocate and copy string. The trailing NUL shouldn't
7974 be necessary, but be safe. */
add39d23 7975 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
7976 memcpy (tmpbuf, input_line_pointer, first);
7977 if (second != 0 && *past_reloc != ' ')
7978 /* Replace the relocation token with ' ', so that
7979 errors like foo@SECLREL321 will be detected. */
7980 tmpbuf[first++] = ' ';
7981 memcpy (tmpbuf + first, past_reloc, second);
7982 tmpbuf[first + second] = '\0';
7983 return tmpbuf;
7984 }
7985
7986 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7987 gotrel[j].str, 1 << (5 + object_64bit));
7988 return NULL;
7989 }
7990 }
7991
7992 /* Might be a symbol version string. Don't as_bad here. */
7993 return NULL;
7994}
7995
7996#endif /* TE_PE */
7997
62ebcb5c 7998bfd_reloc_code_real_type
e3bb37b5 7999x86_cons (expressionS *exp, int size)
f3c180ae 8000{
62ebcb5c
AM
8001 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8002
ee86248c
JB
8003 intel_syntax = -intel_syntax;
8004
3c7b9c2c 8005 exp->X_md = 0;
4fa24527 8006 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8007 {
8008 /* Handle @GOTOFF and the like in an expression. */
8009 char *save;
8010 char *gotfree_input_line;
4a57f2cf 8011 int adjust = 0;
f3c180ae
AM
8012
8013 save = input_line_pointer;
d258b828 8014 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8015 if (gotfree_input_line)
8016 input_line_pointer = gotfree_input_line;
8017
8018 expression (exp);
8019
8020 if (gotfree_input_line)
8021 {
8022 /* expression () has merrily parsed up to the end of line,
8023 or a comma - in the wrong buffer. Transfer how far
8024 input_line_pointer has moved to the right buffer. */
8025 input_line_pointer = (save
8026 + (input_line_pointer - gotfree_input_line)
8027 + adjust);
8028 free (gotfree_input_line);
3992d3b7
AM
8029 if (exp->X_op == O_constant
8030 || exp->X_op == O_absent
8031 || exp->X_op == O_illegal
0398aac5 8032 || exp->X_op == O_register
3992d3b7
AM
8033 || exp->X_op == O_big)
8034 {
8035 char c = *input_line_pointer;
8036 *input_line_pointer = 0;
8037 as_bad (_("missing or invalid expression `%s'"), save);
8038 *input_line_pointer = c;
8039 }
f3c180ae
AM
8040 }
8041 }
8042 else
8043 expression (exp);
ee86248c
JB
8044
8045 intel_syntax = -intel_syntax;
8046
8047 if (intel_syntax)
8048 i386_intel_simplify (exp);
62ebcb5c
AM
8049
8050 return got_reloc;
f3c180ae 8051}
f3c180ae 8052
9f32dd5b
L
8053static void
8054signed_cons (int size)
6482c264 8055{
d182319b
JB
8056 if (flag_code == CODE_64BIT)
8057 cons_sign = 1;
8058 cons (size);
8059 cons_sign = -1;
6482c264
NC
8060}
8061
d182319b 8062#ifdef TE_PE
6482c264 8063static void
7016a5d5 8064pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8065{
8066 expressionS exp;
8067
8068 do
8069 {
8070 expression (&exp);
8071 if (exp.X_op == O_symbol)
8072 exp.X_op = O_secrel;
8073
8074 emit_expr (&exp, 4);
8075 }
8076 while (*input_line_pointer++ == ',');
8077
8078 input_line_pointer--;
8079 demand_empty_rest_of_line ();
8080}
6482c264
NC
8081#endif
8082
43234a1e
L
8083/* Handle Vector operations. */
8084
8085static char *
8086check_VecOperations (char *op_string, char *op_end)
8087{
8088 const reg_entry *mask;
8089 const char *saved;
8090 char *end_op;
8091
8092 while (*op_string
8093 && (op_end == NULL || op_string < op_end))
8094 {
8095 saved = op_string;
8096 if (*op_string == '{')
8097 {
8098 op_string++;
8099
8100 /* Check broadcasts. */
8101 if (strncmp (op_string, "1to", 3) == 0)
8102 {
8103 int bcst_type;
8104
8105 if (i.broadcast)
8106 goto duplicated_vec_op;
8107
8108 op_string += 3;
8109 if (*op_string == '8')
8110 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8111 else if (*op_string == '4')
8112 bcst_type = BROADCAST_1TO4;
8113 else if (*op_string == '2')
8114 bcst_type = BROADCAST_1TO2;
43234a1e
L
8115 else if (*op_string == '1'
8116 && *(op_string+1) == '6')
8117 {
8118 bcst_type = BROADCAST_1TO16;
8119 op_string++;
8120 }
8121 else
8122 {
8123 as_bad (_("Unsupported broadcast: `%s'"), saved);
8124 return NULL;
8125 }
8126 op_string++;
8127
8128 broadcast_op.type = bcst_type;
8129 broadcast_op.operand = this_operand;
8130 i.broadcast = &broadcast_op;
8131 }
8132 /* Check masking operation. */
8133 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8134 {
8135 /* k0 can't be used for write mask. */
8136 if (mask->reg_num == 0)
8137 {
8138 as_bad (_("`%s' can't be used for write mask"),
8139 op_string);
8140 return NULL;
8141 }
8142
8143 if (!i.mask)
8144 {
8145 mask_op.mask = mask;
8146 mask_op.zeroing = 0;
8147 mask_op.operand = this_operand;
8148 i.mask = &mask_op;
8149 }
8150 else
8151 {
8152 if (i.mask->mask)
8153 goto duplicated_vec_op;
8154
8155 i.mask->mask = mask;
8156
8157 /* Only "{z}" is allowed here. No need to check
8158 zeroing mask explicitly. */
8159 if (i.mask->operand != this_operand)
8160 {
8161 as_bad (_("invalid write mask `%s'"), saved);
8162 return NULL;
8163 }
8164 }
8165
8166 op_string = end_op;
8167 }
8168 /* Check zeroing-flag for masking operation. */
8169 else if (*op_string == 'z')
8170 {
8171 if (!i.mask)
8172 {
8173 mask_op.mask = NULL;
8174 mask_op.zeroing = 1;
8175 mask_op.operand = this_operand;
8176 i.mask = &mask_op;
8177 }
8178 else
8179 {
8180 if (i.mask->zeroing)
8181 {
8182 duplicated_vec_op:
8183 as_bad (_("duplicated `%s'"), saved);
8184 return NULL;
8185 }
8186
8187 i.mask->zeroing = 1;
8188
8189 /* Only "{%k}" is allowed here. No need to check mask
8190 register explicitly. */
8191 if (i.mask->operand != this_operand)
8192 {
8193 as_bad (_("invalid zeroing-masking `%s'"),
8194 saved);
8195 return NULL;
8196 }
8197 }
8198
8199 op_string++;
8200 }
8201 else
8202 goto unknown_vec_op;
8203
8204 if (*op_string != '}')
8205 {
8206 as_bad (_("missing `}' in `%s'"), saved);
8207 return NULL;
8208 }
8209 op_string++;
8210 continue;
8211 }
8212 unknown_vec_op:
8213 /* We don't know this one. */
8214 as_bad (_("unknown vector operation: `%s'"), saved);
8215 return NULL;
8216 }
8217
8218 return op_string;
8219}
8220
252b5132 8221static int
70e41ade 8222i386_immediate (char *imm_start)
252b5132
RH
8223{
8224 char *save_input_line_pointer;
f3c180ae 8225 char *gotfree_input_line;
252b5132 8226 segT exp_seg = 0;
47926f60 8227 expressionS *exp;
40fb9820
L
8228 i386_operand_type types;
8229
0dfbf9d7 8230 operand_type_set (&types, ~0);
252b5132
RH
8231
8232 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8233 {
31b2323c
L
8234 as_bad (_("at most %d immediate operands are allowed"),
8235 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8236 return 0;
8237 }
8238
8239 exp = &im_expressions[i.imm_operands++];
520dc8e8 8240 i.op[this_operand].imms = exp;
252b5132
RH
8241
8242 if (is_space_char (*imm_start))
8243 ++imm_start;
8244
8245 save_input_line_pointer = input_line_pointer;
8246 input_line_pointer = imm_start;
8247
d258b828 8248 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8249 if (gotfree_input_line)
8250 input_line_pointer = gotfree_input_line;
252b5132
RH
8251
8252 exp_seg = expression (exp);
8253
83183c0c 8254 SKIP_WHITESPACE ();
43234a1e
L
8255
8256 /* Handle vector operations. */
8257 if (*input_line_pointer == '{')
8258 {
8259 input_line_pointer = check_VecOperations (input_line_pointer,
8260 NULL);
8261 if (input_line_pointer == NULL)
8262 return 0;
8263 }
8264
252b5132 8265 if (*input_line_pointer)
f3c180ae 8266 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8267
8268 input_line_pointer = save_input_line_pointer;
f3c180ae 8269 if (gotfree_input_line)
ee86248c
JB
8270 {
8271 free (gotfree_input_line);
8272
8273 if (exp->X_op == O_constant || exp->X_op == O_register)
8274 exp->X_op = O_illegal;
8275 }
8276
8277 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8278}
252b5132 8279
ee86248c
JB
8280static int
8281i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8282 i386_operand_type types, const char *imm_start)
8283{
8284 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8285 {
313c53d1
L
8286 if (imm_start)
8287 as_bad (_("missing or invalid immediate expression `%s'"),
8288 imm_start);
3992d3b7 8289 return 0;
252b5132 8290 }
3e73aa7c 8291 else if (exp->X_op == O_constant)
252b5132 8292 {
47926f60 8293 /* Size it properly later. */
40fb9820 8294 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8295 /* If not 64bit, sign extend val. */
8296 if (flag_code != CODE_64BIT
4eed87de
AM
8297 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8298 exp->X_add_number
8299 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8300 }
4c63da97 8301#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8302 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8303 && exp_seg != absolute_section
47926f60 8304 && exp_seg != text_section
24eab124
AM
8305 && exp_seg != data_section
8306 && exp_seg != bss_section
8307 && exp_seg != undefined_section
f86103b7 8308 && !bfd_is_com_section (exp_seg))
252b5132 8309 {
d0b47220 8310 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8311 return 0;
8312 }
8313#endif
a841bdf5 8314 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8315 {
313c53d1
L
8316 if (imm_start)
8317 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8318 return 0;
8319 }
252b5132
RH
8320 else
8321 {
8322 /* This is an address. The size of the address will be
24eab124 8323 determined later, depending on destination register,
3e73aa7c 8324 suffix, or the default for the section. */
40fb9820
L
8325 i.types[this_operand].bitfield.imm8 = 1;
8326 i.types[this_operand].bitfield.imm16 = 1;
8327 i.types[this_operand].bitfield.imm32 = 1;
8328 i.types[this_operand].bitfield.imm32s = 1;
8329 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8330 i.types[this_operand] = operand_type_and (i.types[this_operand],
8331 types);
252b5132
RH
8332 }
8333
8334 return 1;
8335}
8336
551c1ca1 8337static char *
e3bb37b5 8338i386_scale (char *scale)
252b5132 8339{
551c1ca1
AM
8340 offsetT val;
8341 char *save = input_line_pointer;
252b5132 8342
551c1ca1
AM
8343 input_line_pointer = scale;
8344 val = get_absolute_expression ();
8345
8346 switch (val)
252b5132 8347 {
551c1ca1 8348 case 1:
252b5132
RH
8349 i.log2_scale_factor = 0;
8350 break;
551c1ca1 8351 case 2:
252b5132
RH
8352 i.log2_scale_factor = 1;
8353 break;
551c1ca1 8354 case 4:
252b5132
RH
8355 i.log2_scale_factor = 2;
8356 break;
551c1ca1 8357 case 8:
252b5132
RH
8358 i.log2_scale_factor = 3;
8359 break;
8360 default:
a724f0f4
JB
8361 {
8362 char sep = *input_line_pointer;
8363
8364 *input_line_pointer = '\0';
8365 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8366 scale);
8367 *input_line_pointer = sep;
8368 input_line_pointer = save;
8369 return NULL;
8370 }
252b5132 8371 }
29b0f896 8372 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8373 {
8374 as_warn (_("scale factor of %d without an index register"),
24eab124 8375 1 << i.log2_scale_factor);
252b5132 8376 i.log2_scale_factor = 0;
252b5132 8377 }
551c1ca1
AM
8378 scale = input_line_pointer;
8379 input_line_pointer = save;
8380 return scale;
252b5132
RH
8381}
8382
252b5132 8383static int
e3bb37b5 8384i386_displacement (char *disp_start, char *disp_end)
252b5132 8385{
29b0f896 8386 expressionS *exp;
252b5132
RH
8387 segT exp_seg = 0;
8388 char *save_input_line_pointer;
f3c180ae 8389 char *gotfree_input_line;
40fb9820
L
8390 int override;
8391 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8392 int ret;
252b5132 8393
31b2323c
L
8394 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8395 {
8396 as_bad (_("at most %d displacement operands are allowed"),
8397 MAX_MEMORY_OPERANDS);
8398 return 0;
8399 }
8400
0dfbf9d7 8401 operand_type_set (&bigdisp, 0);
40fb9820
L
8402 if ((i.types[this_operand].bitfield.jumpabsolute)
8403 || (!current_templates->start->opcode_modifier.jump
8404 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8405 {
40fb9820 8406 bigdisp.bitfield.disp32 = 1;
e05278af 8407 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8408 if (flag_code == CODE_64BIT)
8409 {
8410 if (!override)
8411 {
8412 bigdisp.bitfield.disp32s = 1;
8413 bigdisp.bitfield.disp64 = 1;
8414 }
8415 }
8416 else if ((flag_code == CODE_16BIT) ^ override)
8417 {
8418 bigdisp.bitfield.disp32 = 0;
8419 bigdisp.bitfield.disp16 = 1;
8420 }
e05278af
JB
8421 }
8422 else
8423 {
8424 /* For PC-relative branches, the width of the displacement
8425 is dependent upon data size, not address size. */
e05278af 8426 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8427 if (flag_code == CODE_64BIT)
8428 {
8429 if (override || i.suffix == WORD_MNEM_SUFFIX)
8430 bigdisp.bitfield.disp16 = 1;
8431 else
8432 {
8433 bigdisp.bitfield.disp32 = 1;
8434 bigdisp.bitfield.disp32s = 1;
8435 }
8436 }
8437 else
e05278af
JB
8438 {
8439 if (!override)
8440 override = (i.suffix == (flag_code != CODE_16BIT
8441 ? WORD_MNEM_SUFFIX
8442 : LONG_MNEM_SUFFIX));
40fb9820
L
8443 bigdisp.bitfield.disp32 = 1;
8444 if ((flag_code == CODE_16BIT) ^ override)
8445 {
8446 bigdisp.bitfield.disp32 = 0;
8447 bigdisp.bitfield.disp16 = 1;
8448 }
e05278af 8449 }
e05278af 8450 }
c6fb90c8
L
8451 i.types[this_operand] = operand_type_or (i.types[this_operand],
8452 bigdisp);
252b5132
RH
8453
8454 exp = &disp_expressions[i.disp_operands];
520dc8e8 8455 i.op[this_operand].disps = exp;
252b5132
RH
8456 i.disp_operands++;
8457 save_input_line_pointer = input_line_pointer;
8458 input_line_pointer = disp_start;
8459 END_STRING_AND_SAVE (disp_end);
8460
8461#ifndef GCC_ASM_O_HACK
8462#define GCC_ASM_O_HACK 0
8463#endif
8464#if GCC_ASM_O_HACK
8465 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8466 if (i.types[this_operand].bitfield.baseIndex
24eab124 8467 && displacement_string_end[-1] == '+')
252b5132
RH
8468 {
8469 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8470 constraint within gcc asm statements.
8471 For instance:
8472
8473 #define _set_tssldt_desc(n,addr,limit,type) \
8474 __asm__ __volatile__ ( \
8475 "movw %w2,%0\n\t" \
8476 "movw %w1,2+%0\n\t" \
8477 "rorl $16,%1\n\t" \
8478 "movb %b1,4+%0\n\t" \
8479 "movb %4,5+%0\n\t" \
8480 "movb $0,6+%0\n\t" \
8481 "movb %h1,7+%0\n\t" \
8482 "rorl $16,%1" \
8483 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8484
8485 This works great except that the output assembler ends
8486 up looking a bit weird if it turns out that there is
8487 no offset. You end up producing code that looks like:
8488
8489 #APP
8490 movw $235,(%eax)
8491 movw %dx,2+(%eax)
8492 rorl $16,%edx
8493 movb %dl,4+(%eax)
8494 movb $137,5+(%eax)
8495 movb $0,6+(%eax)
8496 movb %dh,7+(%eax)
8497 rorl $16,%edx
8498 #NO_APP
8499
47926f60 8500 So here we provide the missing zero. */
24eab124
AM
8501
8502 *displacement_string_end = '0';
252b5132
RH
8503 }
8504#endif
d258b828 8505 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8506 if (gotfree_input_line)
8507 input_line_pointer = gotfree_input_line;
252b5132 8508
24eab124 8509 exp_seg = expression (exp);
252b5132 8510
636c26b0
AM
8511 SKIP_WHITESPACE ();
8512 if (*input_line_pointer)
8513 as_bad (_("junk `%s' after expression"), input_line_pointer);
8514#if GCC_ASM_O_HACK
8515 RESTORE_END_STRING (disp_end + 1);
8516#endif
636c26b0 8517 input_line_pointer = save_input_line_pointer;
636c26b0 8518 if (gotfree_input_line)
ee86248c
JB
8519 {
8520 free (gotfree_input_line);
8521
8522 if (exp->X_op == O_constant || exp->X_op == O_register)
8523 exp->X_op = O_illegal;
8524 }
8525
8526 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8527
8528 RESTORE_END_STRING (disp_end);
8529
8530 return ret;
8531}
8532
8533static int
8534i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8535 i386_operand_type types, const char *disp_start)
8536{
8537 i386_operand_type bigdisp;
8538 int ret = 1;
636c26b0 8539
24eab124
AM
8540 /* We do this to make sure that the section symbol is in
8541 the symbol table. We will ultimately change the relocation
47926f60 8542 to be relative to the beginning of the section. */
1ae12ab7 8543 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8544 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8545 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8546 {
636c26b0 8547 if (exp->X_op != O_symbol)
3992d3b7 8548 goto inv_disp;
636c26b0 8549
e5cb08ac 8550 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8551 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8552 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8553 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8554 exp->X_op = O_subtract;
8555 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8556 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8557 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8558 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8559 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8560 else
29b0f896 8561 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8562 }
252b5132 8563
3992d3b7
AM
8564 else if (exp->X_op == O_absent
8565 || exp->X_op == O_illegal
ee86248c 8566 || exp->X_op == O_big)
2daf4fd8 8567 {
3992d3b7
AM
8568 inv_disp:
8569 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8570 disp_start);
3992d3b7 8571 ret = 0;
2daf4fd8
AM
8572 }
8573
0e1147d9
L
8574 else if (flag_code == CODE_64BIT
8575 && !i.prefix[ADDR_PREFIX]
8576 && exp->X_op == O_constant)
8577 {
8578 /* Since displacement is signed extended to 64bit, don't allow
8579 disp32 and turn off disp32s if they are out of range. */
8580 i.types[this_operand].bitfield.disp32 = 0;
8581 if (!fits_in_signed_long (exp->X_add_number))
8582 {
8583 i.types[this_operand].bitfield.disp32s = 0;
8584 if (i.types[this_operand].bitfield.baseindex)
8585 {
8586 as_bad (_("0x%lx out range of signed 32bit displacement"),
8587 (long) exp->X_add_number);
8588 ret = 0;
8589 }
8590 }
8591 }
8592
4c63da97 8593#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8594 else if (exp->X_op != O_constant
8595 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8596 && exp_seg != absolute_section
8597 && exp_seg != text_section
8598 && exp_seg != data_section
8599 && exp_seg != bss_section
8600 && exp_seg != undefined_section
8601 && !bfd_is_com_section (exp_seg))
24eab124 8602 {
d0b47220 8603 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8604 ret = 0;
24eab124 8605 }
252b5132 8606#endif
3956db08 8607
40fb9820
L
8608 /* Check if this is a displacement only operand. */
8609 bigdisp = i.types[this_operand];
8610 bigdisp.bitfield.disp8 = 0;
8611 bigdisp.bitfield.disp16 = 0;
8612 bigdisp.bitfield.disp32 = 0;
8613 bigdisp.bitfield.disp32s = 0;
8614 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8615 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8616 i.types[this_operand] = operand_type_and (i.types[this_operand],
8617 types);
3956db08 8618
3992d3b7 8619 return ret;
252b5132
RH
8620}
8621
eecb386c 8622/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8623 Return 1 on success, 0 on a failure. */
8624
252b5132 8625static int
e3bb37b5 8626i386_index_check (const char *operand_string)
252b5132 8627{
fc0763e6 8628 const char *kind = "base/index";
be05d201
L
8629 enum flag_code addr_mode;
8630
8631 if (i.prefix[ADDR_PREFIX])
8632 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8633 else
8634 {
8635 addr_mode = flag_code;
8636
24eab124 8637#if INFER_ADDR_PREFIX
be05d201
L
8638 if (i.mem_operands == 0)
8639 {
8640 /* Infer address prefix from the first memory operand. */
8641 const reg_entry *addr_reg = i.base_reg;
8642
8643 if (addr_reg == NULL)
8644 addr_reg = i.index_reg;
eecb386c 8645
be05d201
L
8646 if (addr_reg)
8647 {
8648 if (addr_reg->reg_num == RegEip
8649 || addr_reg->reg_num == RegEiz
8650 || addr_reg->reg_type.bitfield.reg32)
8651 addr_mode = CODE_32BIT;
8652 else if (flag_code != CODE_64BIT
8653 && addr_reg->reg_type.bitfield.reg16)
8654 addr_mode = CODE_16BIT;
8655
8656 if (addr_mode != flag_code)
8657 {
8658 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8659 i.prefixes += 1;
8660 /* Change the size of any displacement too. At most one
8661 of Disp16 or Disp32 is set.
8662 FIXME. There doesn't seem to be any real need for
8663 separate Disp16 and Disp32 flags. The same goes for
8664 Imm16 and Imm32. Removing them would probably clean
8665 up the code quite a lot. */
8666 if (flag_code != CODE_64BIT
8667 && (i.types[this_operand].bitfield.disp16
8668 || i.types[this_operand].bitfield.disp32))
8669 i.types[this_operand]
8670 = operand_type_xor (i.types[this_operand], disp16_32);
8671 }
8672 }
8673 }
24eab124 8674#endif
be05d201
L
8675 }
8676
fc0763e6
JB
8677 if (current_templates->start->opcode_modifier.isstring
8678 && !current_templates->start->opcode_modifier.immext
8679 && (current_templates->end[-1].opcode_modifier.isstring
8680 || i.mem_operands))
8681 {
8682 /* Memory operands of string insns are special in that they only allow
8683 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8684 const reg_entry *expected_reg;
8685 static const char *di_si[][2] =
8686 {
8687 { "esi", "edi" },
8688 { "si", "di" },
8689 { "rsi", "rdi" }
8690 };
8691 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8692
8693 kind = "string address";
8694
8325cc63 8695 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
8696 {
8697 i386_operand_type type = current_templates->end[-1].operand_types[0];
8698
8699 if (!type.bitfield.baseindex
8700 || ((!i.mem_operands != !intel_syntax)
8701 && current_templates->end[-1].operand_types[1]
8702 .bitfield.baseindex))
8703 type = current_templates->end[-1].operand_types[1];
be05d201
L
8704 expected_reg = hash_find (reg_hash,
8705 di_si[addr_mode][type.bitfield.esseg]);
8706
fc0763e6
JB
8707 }
8708 else
be05d201 8709 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8710
be05d201
L
8711 if (i.base_reg != expected_reg
8712 || i.index_reg
fc0763e6 8713 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8714 {
be05d201
L
8715 /* The second memory operand must have the same size as
8716 the first one. */
8717 if (i.mem_operands
8718 && i.base_reg
8719 && !((addr_mode == CODE_64BIT
8720 && i.base_reg->reg_type.bitfield.reg64)
8721 || (addr_mode == CODE_32BIT
8722 ? i.base_reg->reg_type.bitfield.reg32
8723 : i.base_reg->reg_type.bitfield.reg16)))
8724 goto bad_address;
8725
fc0763e6
JB
8726 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8727 operand_string,
8728 intel_syntax ? '[' : '(',
8729 register_prefix,
be05d201 8730 expected_reg->reg_name,
fc0763e6 8731 intel_syntax ? ']' : ')');
be05d201 8732 return 1;
fc0763e6 8733 }
be05d201
L
8734 else
8735 return 1;
8736
8737bad_address:
8738 as_bad (_("`%s' is not a valid %s expression"),
8739 operand_string, kind);
8740 return 0;
3e73aa7c
JH
8741 }
8742 else
8743 {
be05d201
L
8744 if (addr_mode != CODE_16BIT)
8745 {
8746 /* 32-bit/64-bit checks. */
8747 if ((i.base_reg
8748 && (addr_mode == CODE_64BIT
8749 ? !i.base_reg->reg_type.bitfield.reg64
8750 : !i.base_reg->reg_type.bitfield.reg32)
8751 && (i.index_reg
8752 || (i.base_reg->reg_num
8753 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8754 || (i.index_reg
8755 && !i.index_reg->reg_type.bitfield.regxmm
8756 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8757 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8758 && ((addr_mode == CODE_64BIT
8759 ? !(i.index_reg->reg_type.bitfield.reg64
8760 || i.index_reg->reg_num == RegRiz)
8761 : !(i.index_reg->reg_type.bitfield.reg32
8762 || i.index_reg->reg_num == RegEiz))
8763 || !i.index_reg->reg_type.bitfield.baseindex)))
8764 goto bad_address;
8178be5b
JB
8765
8766 /* bndmk, bndldx, and bndstx have special restrictions. */
8767 if (current_templates->start->base_opcode == 0xf30f1b
8768 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8769 {
8770 /* They cannot use RIP-relative addressing. */
8771 if (i.base_reg && i.base_reg->reg_num == RegRip)
8772 {
8773 as_bad (_("`%s' cannot be used here"), operand_string);
8774 return 0;
8775 }
8776
8777 /* bndldx and bndstx ignore their scale factor. */
8778 if (current_templates->start->base_opcode != 0xf30f1b
8779 && i.log2_scale_factor)
8780 as_warn (_("register scaling is being ignored here"));
8781 }
be05d201
L
8782 }
8783 else
3e73aa7c 8784 {
be05d201 8785 /* 16-bit checks. */
3e73aa7c 8786 if ((i.base_reg
40fb9820
L
8787 && (!i.base_reg->reg_type.bitfield.reg16
8788 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8789 || (i.index_reg
40fb9820
L
8790 && (!i.index_reg->reg_type.bitfield.reg16
8791 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8792 || !(i.base_reg
8793 && i.base_reg->reg_num < 6
8794 && i.index_reg->reg_num >= 6
8795 && i.log2_scale_factor == 0))))
be05d201 8796 goto bad_address;
3e73aa7c
JH
8797 }
8798 }
be05d201 8799 return 1;
24eab124 8800}
252b5132 8801
43234a1e
L
8802/* Handle vector immediates. */
8803
8804static int
8805RC_SAE_immediate (const char *imm_start)
8806{
8807 unsigned int match_found, j;
8808 const char *pstr = imm_start;
8809 expressionS *exp;
8810
8811 if (*pstr != '{')
8812 return 0;
8813
8814 pstr++;
8815 match_found = 0;
8816 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8817 {
8818 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8819 {
8820 if (!i.rounding)
8821 {
8822 rc_op.type = RC_NamesTable[j].type;
8823 rc_op.operand = this_operand;
8824 i.rounding = &rc_op;
8825 }
8826 else
8827 {
8828 as_bad (_("duplicated `%s'"), imm_start);
8829 return 0;
8830 }
8831 pstr += RC_NamesTable[j].len;
8832 match_found = 1;
8833 break;
8834 }
8835 }
8836 if (!match_found)
8837 return 0;
8838
8839 if (*pstr++ != '}')
8840 {
8841 as_bad (_("Missing '}': '%s'"), imm_start);
8842 return 0;
8843 }
8844 /* RC/SAE immediate string should contain nothing more. */;
8845 if (*pstr != 0)
8846 {
8847 as_bad (_("Junk after '}': '%s'"), imm_start);
8848 return 0;
8849 }
8850
8851 exp = &im_expressions[i.imm_operands++];
8852 i.op[this_operand].imms = exp;
8853
8854 exp->X_op = O_constant;
8855 exp->X_add_number = 0;
8856 exp->X_add_symbol = (symbolS *) 0;
8857 exp->X_op_symbol = (symbolS *) 0;
8858
8859 i.types[this_operand].bitfield.imm8 = 1;
8860 return 1;
8861}
8862
8325cc63
JB
8863/* Only string instructions can have a second memory operand, so
8864 reduce current_templates to just those if it contains any. */
8865static int
8866maybe_adjust_templates (void)
8867{
8868 const insn_template *t;
8869
8870 gas_assert (i.mem_operands == 1);
8871
8872 for (t = current_templates->start; t < current_templates->end; ++t)
8873 if (t->opcode_modifier.isstring)
8874 break;
8875
8876 if (t < current_templates->end)
8877 {
8878 static templates aux_templates;
8879 bfd_boolean recheck;
8880
8881 aux_templates.start = t;
8882 for (; t < current_templates->end; ++t)
8883 if (!t->opcode_modifier.isstring)
8884 break;
8885 aux_templates.end = t;
8886
8887 /* Determine whether to re-check the first memory operand. */
8888 recheck = (aux_templates.start != current_templates->start
8889 || t != current_templates->end);
8890
8891 current_templates = &aux_templates;
8892
8893 if (recheck)
8894 {
8895 i.mem_operands = 0;
8896 if (i.memop1_string != NULL
8897 && i386_index_check (i.memop1_string) == 0)
8898 return 0;
8899 i.mem_operands = 1;
8900 }
8901 }
8902
8903 return 1;
8904}
8905
fc0763e6 8906/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8907 on error. */
252b5132 8908
252b5132 8909static int
a7619375 8910i386_att_operand (char *operand_string)
252b5132 8911{
af6bdddf
AM
8912 const reg_entry *r;
8913 char *end_op;
24eab124 8914 char *op_string = operand_string;
252b5132 8915
24eab124 8916 if (is_space_char (*op_string))
252b5132
RH
8917 ++op_string;
8918
24eab124 8919 /* We check for an absolute prefix (differentiating,
47926f60 8920 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8921 if (*op_string == ABSOLUTE_PREFIX)
8922 {
8923 ++op_string;
8924 if (is_space_char (*op_string))
8925 ++op_string;
40fb9820 8926 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8927 }
252b5132 8928
47926f60 8929 /* Check if operand is a register. */
4d1bb795 8930 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8931 {
40fb9820
L
8932 i386_operand_type temp;
8933
24eab124
AM
8934 /* Check for a segment override by searching for ':' after a
8935 segment register. */
8936 op_string = end_op;
8937 if (is_space_char (*op_string))
8938 ++op_string;
40fb9820
L
8939 if (*op_string == ':'
8940 && (r->reg_type.bitfield.sreg2
8941 || r->reg_type.bitfield.sreg3))
24eab124
AM
8942 {
8943 switch (r->reg_num)
8944 {
8945 case 0:
8946 i.seg[i.mem_operands] = &es;
8947 break;
8948 case 1:
8949 i.seg[i.mem_operands] = &cs;
8950 break;
8951 case 2:
8952 i.seg[i.mem_operands] = &ss;
8953 break;
8954 case 3:
8955 i.seg[i.mem_operands] = &ds;
8956 break;
8957 case 4:
8958 i.seg[i.mem_operands] = &fs;
8959 break;
8960 case 5:
8961 i.seg[i.mem_operands] = &gs;
8962 break;
8963 }
252b5132 8964
24eab124 8965 /* Skip the ':' and whitespace. */
252b5132
RH
8966 ++op_string;
8967 if (is_space_char (*op_string))
24eab124 8968 ++op_string;
252b5132 8969
24eab124
AM
8970 if (!is_digit_char (*op_string)
8971 && !is_identifier_char (*op_string)
8972 && *op_string != '('
8973 && *op_string != ABSOLUTE_PREFIX)
8974 {
8975 as_bad (_("bad memory operand `%s'"), op_string);
8976 return 0;
8977 }
47926f60 8978 /* Handle case of %es:*foo. */
24eab124
AM
8979 if (*op_string == ABSOLUTE_PREFIX)
8980 {
8981 ++op_string;
8982 if (is_space_char (*op_string))
8983 ++op_string;
40fb9820 8984 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8985 }
8986 goto do_memory_reference;
8987 }
43234a1e
L
8988
8989 /* Handle vector operations. */
8990 if (*op_string == '{')
8991 {
8992 op_string = check_VecOperations (op_string, NULL);
8993 if (op_string == NULL)
8994 return 0;
8995 }
8996
24eab124
AM
8997 if (*op_string)
8998 {
d0b47220 8999 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9000 return 0;
9001 }
40fb9820
L
9002 temp = r->reg_type;
9003 temp.bitfield.baseindex = 0;
c6fb90c8
L
9004 i.types[this_operand] = operand_type_or (i.types[this_operand],
9005 temp);
7d5e4556 9006 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9007 i.op[this_operand].regs = r;
24eab124
AM
9008 i.reg_operands++;
9009 }
af6bdddf
AM
9010 else if (*op_string == REGISTER_PREFIX)
9011 {
9012 as_bad (_("bad register name `%s'"), op_string);
9013 return 0;
9014 }
24eab124 9015 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9016 {
24eab124 9017 ++op_string;
40fb9820 9018 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9019 {
d0b47220 9020 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9021 return 0;
9022 }
9023 if (!i386_immediate (op_string))
9024 return 0;
9025 }
43234a1e
L
9026 else if (RC_SAE_immediate (operand_string))
9027 {
9028 /* If it is a RC or SAE immediate, do nothing. */
9029 ;
9030 }
24eab124
AM
9031 else if (is_digit_char (*op_string)
9032 || is_identifier_char (*op_string)
d02603dc 9033 || *op_string == '"'
e5cb08ac 9034 || *op_string == '(')
24eab124 9035 {
47926f60 9036 /* This is a memory reference of some sort. */
af6bdddf 9037 char *base_string;
252b5132 9038
47926f60 9039 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9040 char *displacement_string_start;
9041 char *displacement_string_end;
43234a1e 9042 char *vop_start;
252b5132 9043
24eab124 9044 do_memory_reference:
8325cc63
JB
9045 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9046 return 0;
24eab124 9047 if ((i.mem_operands == 1
40fb9820 9048 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9049 || i.mem_operands == 2)
9050 {
9051 as_bad (_("too many memory references for `%s'"),
9052 current_templates->start->name);
9053 return 0;
9054 }
252b5132 9055
24eab124
AM
9056 /* Check for base index form. We detect the base index form by
9057 looking for an ')' at the end of the operand, searching
9058 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9059 after the '('. */
af6bdddf 9060 base_string = op_string + strlen (op_string);
c3332e24 9061
43234a1e
L
9062 /* Handle vector operations. */
9063 vop_start = strchr (op_string, '{');
9064 if (vop_start && vop_start < base_string)
9065 {
9066 if (check_VecOperations (vop_start, base_string) == NULL)
9067 return 0;
9068 base_string = vop_start;
9069 }
9070
af6bdddf
AM
9071 --base_string;
9072 if (is_space_char (*base_string))
9073 --base_string;
252b5132 9074
47926f60 9075 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9076 displacement_string_start = op_string;
9077 displacement_string_end = base_string + 1;
252b5132 9078
24eab124
AM
9079 if (*base_string == ')')
9080 {
af6bdddf 9081 char *temp_string;
24eab124
AM
9082 unsigned int parens_balanced = 1;
9083 /* We've already checked that the number of left & right ()'s are
47926f60 9084 equal, so this loop will not be infinite. */
24eab124
AM
9085 do
9086 {
9087 base_string--;
9088 if (*base_string == ')')
9089 parens_balanced++;
9090 if (*base_string == '(')
9091 parens_balanced--;
9092 }
9093 while (parens_balanced);
c3332e24 9094
af6bdddf 9095 temp_string = base_string;
c3332e24 9096
24eab124 9097 /* Skip past '(' and whitespace. */
252b5132
RH
9098 ++base_string;
9099 if (is_space_char (*base_string))
24eab124 9100 ++base_string;
252b5132 9101
af6bdddf 9102 if (*base_string == ','
4eed87de
AM
9103 || ((i.base_reg = parse_register (base_string, &end_op))
9104 != NULL))
252b5132 9105 {
af6bdddf 9106 displacement_string_end = temp_string;
252b5132 9107
40fb9820 9108 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9109
af6bdddf 9110 if (i.base_reg)
24eab124 9111 {
24eab124
AM
9112 base_string = end_op;
9113 if (is_space_char (*base_string))
9114 ++base_string;
af6bdddf
AM
9115 }
9116
9117 /* There may be an index reg or scale factor here. */
9118 if (*base_string == ',')
9119 {
9120 ++base_string;
9121 if (is_space_char (*base_string))
9122 ++base_string;
9123
4eed87de
AM
9124 if ((i.index_reg = parse_register (base_string, &end_op))
9125 != NULL)
24eab124 9126 {
af6bdddf 9127 base_string = end_op;
24eab124
AM
9128 if (is_space_char (*base_string))
9129 ++base_string;
af6bdddf
AM
9130 if (*base_string == ',')
9131 {
9132 ++base_string;
9133 if (is_space_char (*base_string))
9134 ++base_string;
9135 }
e5cb08ac 9136 else if (*base_string != ')')
af6bdddf 9137 {
4eed87de
AM
9138 as_bad (_("expecting `,' or `)' "
9139 "after index register in `%s'"),
af6bdddf
AM
9140 operand_string);
9141 return 0;
9142 }
24eab124 9143 }
af6bdddf 9144 else if (*base_string == REGISTER_PREFIX)
24eab124 9145 {
f76bf5e0
L
9146 end_op = strchr (base_string, ',');
9147 if (end_op)
9148 *end_op = '\0';
af6bdddf 9149 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9150 return 0;
9151 }
252b5132 9152
47926f60 9153 /* Check for scale factor. */
551c1ca1 9154 if (*base_string != ')')
af6bdddf 9155 {
551c1ca1
AM
9156 char *end_scale = i386_scale (base_string);
9157
9158 if (!end_scale)
af6bdddf 9159 return 0;
24eab124 9160
551c1ca1 9161 base_string = end_scale;
af6bdddf
AM
9162 if (is_space_char (*base_string))
9163 ++base_string;
9164 if (*base_string != ')')
9165 {
4eed87de
AM
9166 as_bad (_("expecting `)' "
9167 "after scale factor in `%s'"),
af6bdddf
AM
9168 operand_string);
9169 return 0;
9170 }
9171 }
9172 else if (!i.index_reg)
24eab124 9173 {
4eed87de
AM
9174 as_bad (_("expecting index register or scale factor "
9175 "after `,'; got '%c'"),
af6bdddf 9176 *base_string);
24eab124
AM
9177 return 0;
9178 }
9179 }
af6bdddf 9180 else if (*base_string != ')')
24eab124 9181 {
4eed87de
AM
9182 as_bad (_("expecting `,' or `)' "
9183 "after base register in `%s'"),
af6bdddf 9184 operand_string);
24eab124
AM
9185 return 0;
9186 }
c3332e24 9187 }
af6bdddf 9188 else if (*base_string == REGISTER_PREFIX)
c3332e24 9189 {
f76bf5e0
L
9190 end_op = strchr (base_string, ',');
9191 if (end_op)
9192 *end_op = '\0';
af6bdddf 9193 as_bad (_("bad register name `%s'"), base_string);
24eab124 9194 return 0;
c3332e24 9195 }
24eab124
AM
9196 }
9197
9198 /* If there's an expression beginning the operand, parse it,
9199 assuming displacement_string_start and
9200 displacement_string_end are meaningful. */
9201 if (displacement_string_start != displacement_string_end)
9202 {
9203 if (!i386_displacement (displacement_string_start,
9204 displacement_string_end))
9205 return 0;
9206 }
9207
9208 /* Special case for (%dx) while doing input/output op. */
9209 if (i.base_reg
0dfbf9d7
L
9210 && operand_type_equal (&i.base_reg->reg_type,
9211 &reg16_inoutportreg)
24eab124
AM
9212 && i.index_reg == 0
9213 && i.log2_scale_factor == 0
9214 && i.seg[i.mem_operands] == 0
40fb9820 9215 && !operand_type_check (i.types[this_operand], disp))
24eab124 9216 {
65da13b5 9217 i.types[this_operand] = inoutportreg;
24eab124
AM
9218 return 1;
9219 }
9220
eecb386c
AM
9221 if (i386_index_check (operand_string) == 0)
9222 return 0;
5c07affc 9223 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9224 if (i.mem_operands == 0)
9225 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9226 i.mem_operands++;
9227 }
9228 else
ce8a8b2f
AM
9229 {
9230 /* It's not a memory operand; argh! */
24eab124
AM
9231 as_bad (_("invalid char %s beginning operand %d `%s'"),
9232 output_invalid (*op_string),
9233 this_operand + 1,
9234 op_string);
9235 return 0;
9236 }
47926f60 9237 return 1; /* Normal return. */
252b5132
RH
9238}
9239\f
fa94de6b
RM
9240/* Calculate the maximum variable size (i.e., excluding fr_fix)
9241 that an rs_machine_dependent frag may reach. */
9242
9243unsigned int
9244i386_frag_max_var (fragS *frag)
9245{
9246 /* The only relaxable frags are for jumps.
9247 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9248 gas_assert (frag->fr_type == rs_machine_dependent);
9249 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9250}
9251
b084df0b
L
9252#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9253static int
8dcea932 9254elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9255{
9256 /* STT_GNU_IFUNC symbol must go through PLT. */
9257 if ((symbol_get_bfdsym (fr_symbol)->flags
9258 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9259 return 0;
9260
9261 if (!S_IS_EXTERNAL (fr_symbol))
9262 /* Symbol may be weak or local. */
9263 return !S_IS_WEAK (fr_symbol);
9264
8dcea932
L
9265 /* Global symbols with non-default visibility can't be preempted. */
9266 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9267 return 1;
9268
9269 if (fr_var != NO_RELOC)
9270 switch ((enum bfd_reloc_code_real) fr_var)
9271 {
9272 case BFD_RELOC_386_PLT32:
9273 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9274 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9275 return 0;
9276 default:
9277 abort ();
9278 }
9279
b084df0b
L
9280 /* Global symbols with default visibility in a shared library may be
9281 preempted by another definition. */
8dcea932 9282 return !shared;
b084df0b
L
9283}
9284#endif
9285
ee7fcc42
AM
9286/* md_estimate_size_before_relax()
9287
9288 Called just before relax() for rs_machine_dependent frags. The x86
9289 assembler uses these frags to handle variable size jump
9290 instructions.
9291
9292 Any symbol that is now undefined will not become defined.
9293 Return the correct fr_subtype in the frag.
9294 Return the initial "guess for variable size of frag" to caller.
9295 The guess is actually the growth beyond the fixed part. Whatever
9296 we do to grow the fixed or variable part contributes to our
9297 returned value. */
9298
252b5132 9299int
7016a5d5 9300md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9301{
252b5132 9302 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9303 check for un-relaxable symbols. On an ELF system, we can't relax
9304 an externally visible symbol, because it may be overridden by a
9305 shared library. */
9306 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9307#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9308 || (IS_ELF
8dcea932
L
9309 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9310 fragP->fr_var))
fbeb56a4
DK
9311#endif
9312#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9313 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9314 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9315#endif
9316 )
252b5132 9317 {
b98ef147
AM
9318 /* Symbol is undefined in this segment, or we need to keep a
9319 reloc so that weak symbols can be overridden. */
9320 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9321 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9322 unsigned char *opcode;
9323 int old_fr_fix;
f6af82bd 9324
ee7fcc42 9325 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9326 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9327 else if (size == 2)
f6af82bd
AM
9328 reloc_type = BFD_RELOC_16_PCREL;
9329 else
9330 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9331
ee7fcc42
AM
9332 old_fr_fix = fragP->fr_fix;
9333 opcode = (unsigned char *) fragP->fr_opcode;
9334
fddf5b5b 9335 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9336 {
fddf5b5b
AM
9337 case UNCOND_JUMP:
9338 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9339 opcode[0] = 0xe9;
252b5132 9340 fragP->fr_fix += size;
062cd5e7
AS
9341 fix_new (fragP, old_fr_fix, size,
9342 fragP->fr_symbol,
9343 fragP->fr_offset, 1,
9344 reloc_type);
252b5132
RH
9345 break;
9346
fddf5b5b 9347 case COND_JUMP86:
412167cb
AM
9348 if (size == 2
9349 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9350 {
9351 /* Negate the condition, and branch past an
9352 unconditional jump. */
9353 opcode[0] ^= 1;
9354 opcode[1] = 3;
9355 /* Insert an unconditional jump. */
9356 opcode[2] = 0xe9;
9357 /* We added two extra opcode bytes, and have a two byte
9358 offset. */
9359 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9360 fix_new (fragP, old_fr_fix + 2, 2,
9361 fragP->fr_symbol,
9362 fragP->fr_offset, 1,
9363 reloc_type);
fddf5b5b
AM
9364 break;
9365 }
9366 /* Fall through. */
9367
9368 case COND_JUMP:
412167cb
AM
9369 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9370 {
3e02c1cc
AM
9371 fixS *fixP;
9372
412167cb 9373 fragP->fr_fix += 1;
3e02c1cc
AM
9374 fixP = fix_new (fragP, old_fr_fix, 1,
9375 fragP->fr_symbol,
9376 fragP->fr_offset, 1,
9377 BFD_RELOC_8_PCREL);
9378 fixP->fx_signed = 1;
412167cb
AM
9379 break;
9380 }
93c2a809 9381
24eab124 9382 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9383 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9384 opcode[1] = opcode[0] + 0x10;
f6af82bd 9385 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9386 /* We've added an opcode byte. */
9387 fragP->fr_fix += 1 + size;
062cd5e7
AS
9388 fix_new (fragP, old_fr_fix + 1, size,
9389 fragP->fr_symbol,
9390 fragP->fr_offset, 1,
9391 reloc_type);
252b5132 9392 break;
fddf5b5b
AM
9393
9394 default:
9395 BAD_CASE (fragP->fr_subtype);
9396 break;
252b5132
RH
9397 }
9398 frag_wane (fragP);
ee7fcc42 9399 return fragP->fr_fix - old_fr_fix;
252b5132 9400 }
93c2a809 9401
93c2a809
AM
9402 /* Guess size depending on current relax state. Initially the relax
9403 state will correspond to a short jump and we return 1, because
9404 the variable part of the frag (the branch offset) is one byte
9405 long. However, we can relax a section more than once and in that
9406 case we must either set fr_subtype back to the unrelaxed state,
9407 or return the value for the appropriate branch. */
9408 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9409}
9410
47926f60
KH
9411/* Called after relax() is finished.
9412
9413 In: Address of frag.
9414 fr_type == rs_machine_dependent.
9415 fr_subtype is what the address relaxed to.
9416
9417 Out: Any fixSs and constants are set up.
9418 Caller will turn frag into a ".space 0". */
9419
252b5132 9420void
7016a5d5
TG
9421md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9422 fragS *fragP)
252b5132 9423{
29b0f896 9424 unsigned char *opcode;
252b5132 9425 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9426 offsetT target_address;
9427 offsetT opcode_address;
252b5132 9428 unsigned int extension = 0;
847f7ad4 9429 offsetT displacement_from_opcode_start;
252b5132
RH
9430
9431 opcode = (unsigned char *) fragP->fr_opcode;
9432
47926f60 9433 /* Address we want to reach in file space. */
252b5132 9434 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9435
47926f60 9436 /* Address opcode resides at in file space. */
252b5132
RH
9437 opcode_address = fragP->fr_address + fragP->fr_fix;
9438
47926f60 9439 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9440 displacement_from_opcode_start = target_address - opcode_address;
9441
fddf5b5b 9442 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9443 {
47926f60
KH
9444 /* Don't have to change opcode. */
9445 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9446 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9447 }
9448 else
9449 {
9450 if (no_cond_jump_promotion
9451 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9452 as_warn_where (fragP->fr_file, fragP->fr_line,
9453 _("long jump required"));
252b5132 9454
fddf5b5b
AM
9455 switch (fragP->fr_subtype)
9456 {
9457 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9458 extension = 4; /* 1 opcode + 4 displacement */
9459 opcode[0] = 0xe9;
9460 where_to_put_displacement = &opcode[1];
9461 break;
252b5132 9462
fddf5b5b
AM
9463 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9464 extension = 2; /* 1 opcode + 2 displacement */
9465 opcode[0] = 0xe9;
9466 where_to_put_displacement = &opcode[1];
9467 break;
252b5132 9468
fddf5b5b
AM
9469 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9470 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9471 extension = 5; /* 2 opcode + 4 displacement */
9472 opcode[1] = opcode[0] + 0x10;
9473 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9474 where_to_put_displacement = &opcode[2];
9475 break;
252b5132 9476
fddf5b5b
AM
9477 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9478 extension = 3; /* 2 opcode + 2 displacement */
9479 opcode[1] = opcode[0] + 0x10;
9480 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9481 where_to_put_displacement = &opcode[2];
9482 break;
252b5132 9483
fddf5b5b
AM
9484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9485 extension = 4;
9486 opcode[0] ^= 1;
9487 opcode[1] = 3;
9488 opcode[2] = 0xe9;
9489 where_to_put_displacement = &opcode[3];
9490 break;
9491
9492 default:
9493 BAD_CASE (fragP->fr_subtype);
9494 break;
9495 }
252b5132 9496 }
fddf5b5b 9497
7b81dfbb
AJ
9498 /* If size if less then four we are sure that the operand fits,
9499 but if it's 4, then it could be that the displacement is larger
9500 then -/+ 2GB. */
9501 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9502 && object_64bit
9503 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9504 + ((addressT) 1 << 31))
9505 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9506 {
9507 as_bad_where (fragP->fr_file, fragP->fr_line,
9508 _("jump target out of range"));
9509 /* Make us emit 0. */
9510 displacement_from_opcode_start = extension;
9511 }
47926f60 9512 /* Now put displacement after opcode. */
252b5132
RH
9513 md_number_to_chars ((char *) where_to_put_displacement,
9514 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9515 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9516 fragP->fr_fix += extension;
9517}
9518\f
7016a5d5 9519/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9520 by our caller that we have all the info we need to fix it up.
9521
7016a5d5
TG
9522 Parameter valP is the pointer to the value of the bits.
9523
252b5132
RH
9524 On the 386, immediates, displacements, and data pointers are all in
9525 the same (little-endian) format, so we don't need to care about which
9526 we are handling. */
9527
94f592af 9528void
7016a5d5 9529md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9530{
94f592af 9531 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9532 valueT value = *valP;
252b5132 9533
f86103b7 9534#if !defined (TE_Mach)
93382f6d
AM
9535 if (fixP->fx_pcrel)
9536 {
9537 switch (fixP->fx_r_type)
9538 {
5865bb77
ILT
9539 default:
9540 break;
9541
d6ab8113
JB
9542 case BFD_RELOC_64:
9543 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9544 break;
93382f6d 9545 case BFD_RELOC_32:
ae8887b5 9546 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9547 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9548 break;
9549 case BFD_RELOC_16:
9550 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9551 break;
9552 case BFD_RELOC_8:
9553 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9554 break;
9555 }
9556 }
252b5132 9557
a161fe53 9558 if (fixP->fx_addsy != NULL
31312f95 9559 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9560 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9561 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9562 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9563 && !use_rela_relocations)
252b5132 9564 {
31312f95
AM
9565 /* This is a hack. There should be a better way to handle this.
9566 This covers for the fact that bfd_install_relocation will
9567 subtract the current location (for partial_inplace, PC relative
9568 relocations); see more below. */
252b5132 9569#ifndef OBJ_AOUT
718ddfc0 9570 if (IS_ELF
252b5132
RH
9571#ifdef TE_PE
9572 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9573#endif
9574 )
9575 value += fixP->fx_where + fixP->fx_frag->fr_address;
9576#endif
9577#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9578 if (IS_ELF)
252b5132 9579 {
6539b54b 9580 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9581
6539b54b 9582 if ((sym_seg == seg
2f66722d 9583 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9584 && sym_seg != absolute_section))
af65af87 9585 && !generic_force_reloc (fixP))
2f66722d
AM
9586 {
9587 /* Yes, we add the values in twice. This is because
6539b54b
AM
9588 bfd_install_relocation subtracts them out again. I think
9589 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9590 it. FIXME. */
9591 value += fixP->fx_where + fixP->fx_frag->fr_address;
9592 }
252b5132
RH
9593 }
9594#endif
9595#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9596 /* For some reason, the PE format does not store a
9597 section address offset for a PC relative symbol. */
9598 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9599 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9600 value += md_pcrel_from (fixP);
9601#endif
9602 }
fbeb56a4 9603#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9604 if (fixP->fx_addsy != NULL
9605 && S_IS_WEAK (fixP->fx_addsy)
9606 /* PR 16858: Do not modify weak function references. */
9607 && ! fixP->fx_pcrel)
fbeb56a4 9608 {
296a8689
NC
9609#if !defined (TE_PEP)
9610 /* For x86 PE weak function symbols are neither PC-relative
9611 nor do they set S_IS_FUNCTION. So the only reliable way
9612 to detect them is to check the flags of their containing
9613 section. */
9614 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9615 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9616 ;
9617 else
9618#endif
fbeb56a4
DK
9619 value -= S_GET_VALUE (fixP->fx_addsy);
9620 }
9621#endif
252b5132
RH
9622
9623 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9624 and we must not disappoint it. */
252b5132 9625#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9626 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9627 switch (fixP->fx_r_type)
9628 {
9629 case BFD_RELOC_386_PLT32:
3e73aa7c 9630 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9631 /* Make the jump instruction point to the address of the operand. At
9632 runtime we merely add the offset to the actual PLT entry. */
9633 value = -4;
9634 break;
31312f95 9635
13ae64f3
JJ
9636 case BFD_RELOC_386_TLS_GD:
9637 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9638 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9639 case BFD_RELOC_386_TLS_IE:
9640 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9641 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9642 case BFD_RELOC_X86_64_TLSGD:
9643 case BFD_RELOC_X86_64_TLSLD:
9644 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9645 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9646 value = 0; /* Fully resolved at runtime. No addend. */
9647 /* Fallthrough */
9648 case BFD_RELOC_386_TLS_LE:
9649 case BFD_RELOC_386_TLS_LDO_32:
9650 case BFD_RELOC_386_TLS_LE_32:
9651 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9652 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9653 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9654 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9655 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9656 break;
9657
67a4f2b7
AO
9658 case BFD_RELOC_386_TLS_DESC_CALL:
9659 case BFD_RELOC_X86_64_TLSDESC_CALL:
9660 value = 0; /* Fully resolved at runtime. No addend. */
9661 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9662 fixP->fx_done = 0;
9663 return;
9664
47926f60
KH
9665 case BFD_RELOC_VTABLE_INHERIT:
9666 case BFD_RELOC_VTABLE_ENTRY:
9667 fixP->fx_done = 0;
94f592af 9668 return;
47926f60
KH
9669
9670 default:
9671 break;
9672 }
9673#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9674 *valP = value;
f86103b7 9675#endif /* !defined (TE_Mach) */
3e73aa7c 9676
3e73aa7c 9677 /* Are we finished with this relocation now? */
c6682705 9678 if (fixP->fx_addsy == NULL)
3e73aa7c 9679 fixP->fx_done = 1;
fbeb56a4
DK
9680#if defined (OBJ_COFF) && defined (TE_PE)
9681 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9682 {
9683 fixP->fx_done = 0;
9684 /* Remember value for tc_gen_reloc. */
9685 fixP->fx_addnumber = value;
9686 /* Clear out the frag for now. */
9687 value = 0;
9688 }
9689#endif
3e73aa7c
JH
9690 else if (use_rela_relocations)
9691 {
9692 fixP->fx_no_overflow = 1;
062cd5e7
AS
9693 /* Remember value for tc_gen_reloc. */
9694 fixP->fx_addnumber = value;
3e73aa7c
JH
9695 value = 0;
9696 }
f86103b7 9697
94f592af 9698 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9699}
252b5132 9700\f
6d4af3c2 9701const char *
499ac353 9702md_atof (int type, char *litP, int *sizeP)
252b5132 9703{
499ac353
NC
9704 /* This outputs the LITTLENUMs in REVERSE order;
9705 in accord with the bigendian 386. */
9706 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9707}
9708\f
2d545b82 9709static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9710
252b5132 9711static char *
e3bb37b5 9712output_invalid (int c)
252b5132 9713{
3882b010 9714 if (ISPRINT (c))
f9f21a03
L
9715 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9716 "'%c'", c);
252b5132 9717 else
f9f21a03 9718 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9719 "(0x%x)", (unsigned char) c);
252b5132
RH
9720 return output_invalid_buf;
9721}
9722
af6bdddf 9723/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9724
9725static const reg_entry *
4d1bb795 9726parse_real_register (char *reg_string, char **end_op)
252b5132 9727{
af6bdddf
AM
9728 char *s = reg_string;
9729 char *p;
252b5132
RH
9730 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9731 const reg_entry *r;
9732
9733 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9734 if (*s == REGISTER_PREFIX)
9735 ++s;
9736
9737 if (is_space_char (*s))
9738 ++s;
9739
9740 p = reg_name_given;
af6bdddf 9741 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9742 {
9743 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9744 return (const reg_entry *) NULL;
9745 s++;
252b5132
RH
9746 }
9747
6588847e
DN
9748 /* For naked regs, make sure that we are not dealing with an identifier.
9749 This prevents confusing an identifier like `eax_var' with register
9750 `eax'. */
9751 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9752 return (const reg_entry *) NULL;
9753
af6bdddf 9754 *end_op = s;
252b5132
RH
9755
9756 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9757
5f47d35b 9758 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9759 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9760 {
5f47d35b
AM
9761 if (is_space_char (*s))
9762 ++s;
9763 if (*s == '(')
9764 {
af6bdddf 9765 ++s;
5f47d35b
AM
9766 if (is_space_char (*s))
9767 ++s;
9768 if (*s >= '0' && *s <= '7')
9769 {
db557034 9770 int fpr = *s - '0';
af6bdddf 9771 ++s;
5f47d35b
AM
9772 if (is_space_char (*s))
9773 ++s;
9774 if (*s == ')')
9775 {
9776 *end_op = s + 1;
1e9cc1c2 9777 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9778 know (r);
9779 return r + fpr;
5f47d35b 9780 }
5f47d35b 9781 }
47926f60 9782 /* We have "%st(" then garbage. */
5f47d35b
AM
9783 return (const reg_entry *) NULL;
9784 }
9785 }
9786
a60de03c
JB
9787 if (r == NULL || allow_pseudo_reg)
9788 return r;
9789
0dfbf9d7 9790 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9791 return (const reg_entry *) NULL;
9792
192dc9c6
JB
9793 if ((r->reg_type.bitfield.reg32
9794 || r->reg_type.bitfield.sreg3
9795 || r->reg_type.bitfield.control
9796 || r->reg_type.bitfield.debug
9797 || r->reg_type.bitfield.test)
9798 && !cpu_arch_flags.bitfield.cpui386)
9799 return (const reg_entry *) NULL;
9800
309d3373
JB
9801 if (r->reg_type.bitfield.floatreg
9802 && !cpu_arch_flags.bitfield.cpu8087
9803 && !cpu_arch_flags.bitfield.cpu287
9804 && !cpu_arch_flags.bitfield.cpu387)
9805 return (const reg_entry *) NULL;
9806
1848e567 9807 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
9808 return (const reg_entry *) NULL;
9809
1848e567 9810 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
9811 return (const reg_entry *) NULL;
9812
1848e567 9813 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
9814 return (const reg_entry *) NULL;
9815
1848e567
L
9816 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9817 return (const reg_entry *) NULL;
9818
9819 if (r->reg_type.bitfield.regmask
9820 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
9821 return (const reg_entry *) NULL;
9822
db51cc60 9823 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9824 if (!allow_index_reg
db51cc60
L
9825 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9826 return (const reg_entry *) NULL;
9827
43234a1e
L
9828 /* Upper 16 vector register is only available with VREX in 64bit
9829 mode. */
9830 if ((r->reg_flags & RegVRex))
9831 {
86fa6981
L
9832 if (i.vec_encoding == vex_encoding_default)
9833 i.vec_encoding = vex_encoding_evex;
9834
43234a1e 9835 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 9836 || i.vec_encoding != vex_encoding_evex
43234a1e
L
9837 || flag_code != CODE_64BIT)
9838 return (const reg_entry *) NULL;
43234a1e
L
9839 }
9840
a60de03c
JB
9841 if (((r->reg_flags & (RegRex64 | RegRex))
9842 || r->reg_type.bitfield.reg64)
40fb9820 9843 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9844 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9845 && flag_code != CODE_64BIT)
20f0a1fc 9846 return (const reg_entry *) NULL;
1ae00879 9847
b7240065
JB
9848 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9849 return (const reg_entry *) NULL;
9850
252b5132
RH
9851 return r;
9852}
4d1bb795
JB
9853
9854/* REG_STRING starts *before* REGISTER_PREFIX. */
9855
9856static const reg_entry *
9857parse_register (char *reg_string, char **end_op)
9858{
9859 const reg_entry *r;
9860
9861 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9862 r = parse_real_register (reg_string, end_op);
9863 else
9864 r = NULL;
9865 if (!r)
9866 {
9867 char *save = input_line_pointer;
9868 char c;
9869 symbolS *symbolP;
9870
9871 input_line_pointer = reg_string;
d02603dc 9872 c = get_symbol_name (&reg_string);
4d1bb795
JB
9873 symbolP = symbol_find (reg_string);
9874 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9875 {
9876 const expressionS *e = symbol_get_value_expression (symbolP);
9877
0398aac5 9878 know (e->X_op == O_register);
4eed87de 9879 know (e->X_add_number >= 0
c3fe08fa 9880 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9881 r = i386_regtab + e->X_add_number;
d3bb6b49 9882 if ((r->reg_flags & RegVRex))
86fa6981 9883 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
9884 *end_op = input_line_pointer;
9885 }
9886 *input_line_pointer = c;
9887 input_line_pointer = save;
9888 }
9889 return r;
9890}
9891
9892int
9893i386_parse_name (char *name, expressionS *e, char *nextcharP)
9894{
9895 const reg_entry *r;
9896 char *end = input_line_pointer;
9897
9898 *end = *nextcharP;
9899 r = parse_register (name, &input_line_pointer);
9900 if (r && end <= input_line_pointer)
9901 {
9902 *nextcharP = *input_line_pointer;
9903 *input_line_pointer = 0;
9904 e->X_op = O_register;
9905 e->X_add_number = r - i386_regtab;
9906 return 1;
9907 }
9908 input_line_pointer = end;
9909 *end = 0;
ee86248c 9910 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9911}
9912
9913void
9914md_operand (expressionS *e)
9915{
ee86248c
JB
9916 char *end;
9917 const reg_entry *r;
4d1bb795 9918
ee86248c
JB
9919 switch (*input_line_pointer)
9920 {
9921 case REGISTER_PREFIX:
9922 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9923 if (r)
9924 {
9925 e->X_op = O_register;
9926 e->X_add_number = r - i386_regtab;
9927 input_line_pointer = end;
9928 }
ee86248c
JB
9929 break;
9930
9931 case '[':
9c2799c2 9932 gas_assert (intel_syntax);
ee86248c
JB
9933 end = input_line_pointer++;
9934 expression (e);
9935 if (*input_line_pointer == ']')
9936 {
9937 ++input_line_pointer;
9938 e->X_op_symbol = make_expr_symbol (e);
9939 e->X_add_symbol = NULL;
9940 e->X_add_number = 0;
9941 e->X_op = O_index;
9942 }
9943 else
9944 {
9945 e->X_op = O_absent;
9946 input_line_pointer = end;
9947 }
9948 break;
4d1bb795
JB
9949 }
9950}
9951
252b5132 9952\f
4cc782b5 9953#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9954const char *md_shortopts = "kVQ:sqn";
252b5132 9955#else
12b55ccc 9956const char *md_shortopts = "qn";
252b5132 9957#endif
6e0b89ee 9958
3e73aa7c 9959#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9960#define OPTION_64 (OPTION_MD_BASE + 1)
9961#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9962#define OPTION_MARCH (OPTION_MD_BASE + 3)
9963#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9964#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9965#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9966#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9967#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9968#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9969#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9970#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9971#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9972#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9973#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9974#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9975#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9976#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 9977#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 9978#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 9979#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 9980#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
9981#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9982#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 9983#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 9984#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 9985
99ad8390
NC
9986struct option md_longopts[] =
9987{
3e73aa7c 9988 {"32", no_argument, NULL, OPTION_32},
321098a5 9989#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9990 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9991 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9992#endif
9993#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9994 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 9995 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 9996#endif
b3b91714 9997 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9998 {"march", required_argument, NULL, OPTION_MARCH},
9999 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10000 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10001 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10002 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10003 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10004 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10005 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10006 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10007 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10008 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10009 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10010 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10011 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10012# if defined (TE_PE) || defined (TE_PEP)
10013 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10014#endif
d1982f93 10015 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10016 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10017 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10018 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10019 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10020 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10021 {NULL, no_argument, NULL, 0}
10022};
10023size_t md_longopts_size = sizeof (md_longopts);
10024
10025int
17b9d67d 10026md_parse_option (int c, const char *arg)
252b5132 10027{
91d6fa6a 10028 unsigned int j;
293f5f65 10029 char *arch, *next, *saved;
9103f4f4 10030
252b5132
RH
10031 switch (c)
10032 {
12b55ccc
L
10033 case 'n':
10034 optimize_align_code = 0;
10035 break;
10036
a38cf1db
AM
10037 case 'q':
10038 quiet_warnings = 1;
252b5132
RH
10039 break;
10040
10041#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10042 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10043 should be emitted or not. FIXME: Not implemented. */
10044 case 'Q':
252b5132
RH
10045 break;
10046
10047 /* -V: SVR4 argument to print version ID. */
10048 case 'V':
10049 print_version_id ();
10050 break;
10051
a38cf1db
AM
10052 /* -k: Ignore for FreeBSD compatibility. */
10053 case 'k':
252b5132 10054 break;
4cc782b5
ILT
10055
10056 case 's':
10057 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10058 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10059 break;
8dcea932
L
10060
10061 case OPTION_MSHARED:
10062 shared = 1;
10063 break;
99ad8390 10064#endif
321098a5 10065#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10066 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10067 case OPTION_64:
10068 {
10069 const char **list, **l;
10070
3e73aa7c
JH
10071 list = bfd_target_list ();
10072 for (l = list; *l != NULL; l++)
8620418b 10073 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10074 || strcmp (*l, "coff-x86-64") == 0
10075 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10076 || strcmp (*l, "pei-x86-64") == 0
10077 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10078 {
10079 default_arch = "x86_64";
10080 break;
10081 }
3e73aa7c 10082 if (*l == NULL)
2b5d6a91 10083 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10084 free (list);
10085 }
10086 break;
10087#endif
252b5132 10088
351f65ca 10089#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10090 case OPTION_X32:
351f65ca
L
10091 if (IS_ELF)
10092 {
10093 const char **list, **l;
10094
10095 list = bfd_target_list ();
10096 for (l = list; *l != NULL; l++)
10097 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10098 {
10099 default_arch = "x86_64:32";
10100 break;
10101 }
10102 if (*l == NULL)
2b5d6a91 10103 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10104 free (list);
10105 }
10106 else
10107 as_fatal (_("32bit x86_64 is only supported for ELF"));
10108 break;
10109#endif
10110
6e0b89ee
AM
10111 case OPTION_32:
10112 default_arch = "i386";
10113 break;
10114
b3b91714
AM
10115 case OPTION_DIVIDE:
10116#ifdef SVR4_COMMENT_CHARS
10117 {
10118 char *n, *t;
10119 const char *s;
10120
add39d23 10121 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10122 t = n;
10123 for (s = i386_comment_chars; *s != '\0'; s++)
10124 if (*s != '/')
10125 *t++ = *s;
10126 *t = '\0';
10127 i386_comment_chars = n;
10128 }
10129#endif
10130 break;
10131
9103f4f4 10132 case OPTION_MARCH:
293f5f65
L
10133 saved = xstrdup (arg);
10134 arch = saved;
10135 /* Allow -march=+nosse. */
10136 if (*arch == '+')
10137 arch++;
6305a203 10138 do
9103f4f4 10139 {
6305a203 10140 if (*arch == '.')
2b5d6a91 10141 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10142 next = strchr (arch, '+');
10143 if (next)
10144 *next++ = '\0';
91d6fa6a 10145 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10146 {
91d6fa6a 10147 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10148 {
6305a203 10149 /* Processor. */
1ded5609
JB
10150 if (! cpu_arch[j].flags.bitfield.cpui386)
10151 continue;
10152
91d6fa6a 10153 cpu_arch_name = cpu_arch[j].name;
6305a203 10154 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10155 cpu_arch_flags = cpu_arch[j].flags;
10156 cpu_arch_isa = cpu_arch[j].type;
10157 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10158 if (!cpu_arch_tune_set)
10159 {
10160 cpu_arch_tune = cpu_arch_isa;
10161 cpu_arch_tune_flags = cpu_arch_isa_flags;
10162 }
10163 break;
10164 }
91d6fa6a
NC
10165 else if (*cpu_arch [j].name == '.'
10166 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10167 {
33eaf5de 10168 /* ISA extension. */
6305a203 10169 i386_cpu_flags flags;
309d3373 10170
293f5f65
L
10171 flags = cpu_flags_or (cpu_arch_flags,
10172 cpu_arch[j].flags);
81486035 10173
5b64d091 10174 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10175 {
10176 if (cpu_sub_arch_name)
10177 {
10178 char *name = cpu_sub_arch_name;
10179 cpu_sub_arch_name = concat (name,
91d6fa6a 10180 cpu_arch[j].name,
1bf57e9f 10181 (const char *) NULL);
6305a203
L
10182 free (name);
10183 }
10184 else
91d6fa6a 10185 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10186 cpu_arch_flags = flags;
a586129e 10187 cpu_arch_isa_flags = flags;
6305a203
L
10188 }
10189 break;
ccc9c027 10190 }
9103f4f4 10191 }
6305a203 10192
293f5f65
L
10193 if (j >= ARRAY_SIZE (cpu_arch))
10194 {
33eaf5de 10195 /* Disable an ISA extension. */
293f5f65
L
10196 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10197 if (strcmp (arch, cpu_noarch [j].name) == 0)
10198 {
10199 i386_cpu_flags flags;
10200
10201 flags = cpu_flags_and_not (cpu_arch_flags,
10202 cpu_noarch[j].flags);
10203 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10204 {
10205 if (cpu_sub_arch_name)
10206 {
10207 char *name = cpu_sub_arch_name;
10208 cpu_sub_arch_name = concat (arch,
10209 (const char *) NULL);
10210 free (name);
10211 }
10212 else
10213 cpu_sub_arch_name = xstrdup (arch);
10214 cpu_arch_flags = flags;
10215 cpu_arch_isa_flags = flags;
10216 }
10217 break;
10218 }
10219
10220 if (j >= ARRAY_SIZE (cpu_noarch))
10221 j = ARRAY_SIZE (cpu_arch);
10222 }
10223
91d6fa6a 10224 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10225 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10226
10227 arch = next;
9103f4f4 10228 }
293f5f65
L
10229 while (next != NULL);
10230 free (saved);
9103f4f4
L
10231 break;
10232
10233 case OPTION_MTUNE:
10234 if (*arg == '.')
2b5d6a91 10235 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10236 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10237 {
91d6fa6a 10238 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10239 {
ccc9c027 10240 cpu_arch_tune_set = 1;
91d6fa6a
NC
10241 cpu_arch_tune = cpu_arch [j].type;
10242 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10243 break;
10244 }
10245 }
91d6fa6a 10246 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10247 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10248 break;
10249
1efbbeb4
L
10250 case OPTION_MMNEMONIC:
10251 if (strcasecmp (arg, "att") == 0)
10252 intel_mnemonic = 0;
10253 else if (strcasecmp (arg, "intel") == 0)
10254 intel_mnemonic = 1;
10255 else
2b5d6a91 10256 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10257 break;
10258
10259 case OPTION_MSYNTAX:
10260 if (strcasecmp (arg, "att") == 0)
10261 intel_syntax = 0;
10262 else if (strcasecmp (arg, "intel") == 0)
10263 intel_syntax = 1;
10264 else
2b5d6a91 10265 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10266 break;
10267
10268 case OPTION_MINDEX_REG:
10269 allow_index_reg = 1;
10270 break;
10271
10272 case OPTION_MNAKED_REG:
10273 allow_naked_reg = 1;
10274 break;
10275
10276 case OPTION_MOLD_GCC:
10277 old_gcc = 1;
1efbbeb4
L
10278 break;
10279
c0f3af97
L
10280 case OPTION_MSSE2AVX:
10281 sse2avx = 1;
10282 break;
10283
daf50ae7
L
10284 case OPTION_MSSE_CHECK:
10285 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10286 sse_check = check_error;
daf50ae7 10287 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10288 sse_check = check_warning;
daf50ae7 10289 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10290 sse_check = check_none;
daf50ae7 10291 else
2b5d6a91 10292 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10293 break;
10294
7bab8ab5
JB
10295 case OPTION_MOPERAND_CHECK:
10296 if (strcasecmp (arg, "error") == 0)
10297 operand_check = check_error;
10298 else if (strcasecmp (arg, "warning") == 0)
10299 operand_check = check_warning;
10300 else if (strcasecmp (arg, "none") == 0)
10301 operand_check = check_none;
10302 else
10303 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10304 break;
10305
539f890d
L
10306 case OPTION_MAVXSCALAR:
10307 if (strcasecmp (arg, "128") == 0)
10308 avxscalar = vex128;
10309 else if (strcasecmp (arg, "256") == 0)
10310 avxscalar = vex256;
10311 else
2b5d6a91 10312 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10313 break;
10314
7e8b059b
L
10315 case OPTION_MADD_BND_PREFIX:
10316 add_bnd_prefix = 1;
10317 break;
10318
43234a1e
L
10319 case OPTION_MEVEXLIG:
10320 if (strcmp (arg, "128") == 0)
10321 evexlig = evexl128;
10322 else if (strcmp (arg, "256") == 0)
10323 evexlig = evexl256;
10324 else if (strcmp (arg, "512") == 0)
10325 evexlig = evexl512;
10326 else
10327 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10328 break;
10329
d3d3c6db
IT
10330 case OPTION_MEVEXRCIG:
10331 if (strcmp (arg, "rne") == 0)
10332 evexrcig = rne;
10333 else if (strcmp (arg, "rd") == 0)
10334 evexrcig = rd;
10335 else if (strcmp (arg, "ru") == 0)
10336 evexrcig = ru;
10337 else if (strcmp (arg, "rz") == 0)
10338 evexrcig = rz;
10339 else
10340 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10341 break;
10342
43234a1e
L
10343 case OPTION_MEVEXWIG:
10344 if (strcmp (arg, "0") == 0)
10345 evexwig = evexw0;
10346 else if (strcmp (arg, "1") == 0)
10347 evexwig = evexw1;
10348 else
10349 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10350 break;
10351
167ad85b
TG
10352# if defined (TE_PE) || defined (TE_PEP)
10353 case OPTION_MBIG_OBJ:
10354 use_big_obj = 1;
10355 break;
10356#endif
10357
d1982f93 10358 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10359 if (strcasecmp (arg, "yes") == 0)
10360 omit_lock_prefix = 1;
10361 else if (strcasecmp (arg, "no") == 0)
10362 omit_lock_prefix = 0;
10363 else
10364 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10365 break;
10366
e4e00185
AS
10367 case OPTION_MFENCE_AS_LOCK_ADD:
10368 if (strcasecmp (arg, "yes") == 0)
10369 avoid_fence = 1;
10370 else if (strcasecmp (arg, "no") == 0)
10371 avoid_fence = 0;
10372 else
10373 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10374 break;
10375
0cb4071e
L
10376 case OPTION_MRELAX_RELOCATIONS:
10377 if (strcasecmp (arg, "yes") == 0)
10378 generate_relax_relocations = 1;
10379 else if (strcasecmp (arg, "no") == 0)
10380 generate_relax_relocations = 0;
10381 else
10382 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10383 break;
10384
5db04b09 10385 case OPTION_MAMD64:
e89c5eaa 10386 intel64 = 0;
5db04b09
L
10387 break;
10388
10389 case OPTION_MINTEL64:
e89c5eaa 10390 intel64 = 1;
5db04b09
L
10391 break;
10392
252b5132
RH
10393 default:
10394 return 0;
10395 }
10396 return 1;
10397}
10398
8a2c8fef
L
10399#define MESSAGE_TEMPLATE \
10400" "
10401
293f5f65
L
10402static char *
10403output_message (FILE *stream, char *p, char *message, char *start,
10404 int *left_p, const char *name, int len)
10405{
10406 int size = sizeof (MESSAGE_TEMPLATE);
10407 int left = *left_p;
10408
10409 /* Reserve 2 spaces for ", " or ",\0" */
10410 left -= len + 2;
10411
10412 /* Check if there is any room. */
10413 if (left >= 0)
10414 {
10415 if (p != start)
10416 {
10417 *p++ = ',';
10418 *p++ = ' ';
10419 }
10420 p = mempcpy (p, name, len);
10421 }
10422 else
10423 {
10424 /* Output the current message now and start a new one. */
10425 *p++ = ',';
10426 *p = '\0';
10427 fprintf (stream, "%s\n", message);
10428 p = start;
10429 left = size - (start - message) - len - 2;
10430
10431 gas_assert (left >= 0);
10432
10433 p = mempcpy (p, name, len);
10434 }
10435
10436 *left_p = left;
10437 return p;
10438}
10439
8a2c8fef 10440static void
1ded5609 10441show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10442{
10443 static char message[] = MESSAGE_TEMPLATE;
10444 char *start = message + 27;
10445 char *p;
10446 int size = sizeof (MESSAGE_TEMPLATE);
10447 int left;
10448 const char *name;
10449 int len;
10450 unsigned int j;
10451
10452 p = start;
10453 left = size - (start - message);
10454 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10455 {
10456 /* Should it be skipped? */
10457 if (cpu_arch [j].skip)
10458 continue;
10459
10460 name = cpu_arch [j].name;
10461 len = cpu_arch [j].len;
10462 if (*name == '.')
10463 {
10464 /* It is an extension. Skip if we aren't asked to show it. */
10465 if (ext)
10466 {
10467 name++;
10468 len--;
10469 }
10470 else
10471 continue;
10472 }
10473 else if (ext)
10474 {
10475 /* It is an processor. Skip if we show only extension. */
10476 continue;
10477 }
1ded5609
JB
10478 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10479 {
10480 /* It is an impossible processor - skip. */
10481 continue;
10482 }
8a2c8fef 10483
293f5f65 10484 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10485 }
10486
293f5f65
L
10487 /* Display disabled extensions. */
10488 if (ext)
10489 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10490 {
10491 name = cpu_noarch [j].name;
10492 len = cpu_noarch [j].len;
10493 p = output_message (stream, p, message, start, &left, name,
10494 len);
10495 }
10496
8a2c8fef
L
10497 *p = '\0';
10498 fprintf (stream, "%s\n", message);
10499}
10500
252b5132 10501void
8a2c8fef 10502md_show_usage (FILE *stream)
252b5132 10503{
4cc782b5
ILT
10504#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10505 fprintf (stream, _("\
a38cf1db
AM
10506 -Q ignored\n\
10507 -V print assembler version number\n\
b3b91714
AM
10508 -k ignored\n"));
10509#endif
10510 fprintf (stream, _("\
12b55ccc 10511 -n Do not optimize code alignment\n\
b3b91714
AM
10512 -q quieten some warnings\n"));
10513#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10514 fprintf (stream, _("\
a38cf1db 10515 -s ignored\n"));
b3b91714 10516#endif
321098a5
L
10517#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10518 || defined (TE_PE) || defined (TE_PEP))
751d281c 10519 fprintf (stream, _("\
570561f7 10520 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10521#endif
b3b91714
AM
10522#ifdef SVR4_COMMENT_CHARS
10523 fprintf (stream, _("\
10524 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10525#else
10526 fprintf (stream, _("\
b3b91714 10527 --divide ignored\n"));
4cc782b5 10528#endif
9103f4f4 10529 fprintf (stream, _("\
6305a203 10530 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10531 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10532 show_arch (stream, 0, 1);
8a2c8fef
L
10533 fprintf (stream, _("\
10534 EXTENSION is combination of:\n"));
1ded5609 10535 show_arch (stream, 1, 0);
6305a203 10536 fprintf (stream, _("\
8a2c8fef 10537 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10538 show_arch (stream, 0, 0);
ba104c83 10539 fprintf (stream, _("\
c0f3af97
L
10540 -msse2avx encode SSE instructions with VEX prefix\n"));
10541 fprintf (stream, _("\
daf50ae7
L
10542 -msse-check=[none|error|warning]\n\
10543 check SSE instructions\n"));
10544 fprintf (stream, _("\
7bab8ab5
JB
10545 -moperand-check=[none|error|warning]\n\
10546 check operand combinations for validity\n"));
10547 fprintf (stream, _("\
539f890d
L
10548 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10549 length\n"));
10550 fprintf (stream, _("\
43234a1e
L
10551 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10552 length\n"));
10553 fprintf (stream, _("\
10554 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10555 for EVEX.W bit ignored instructions\n"));
10556 fprintf (stream, _("\
d3d3c6db
IT
10557 -mevexrcig=[rne|rd|ru|rz]\n\
10558 encode EVEX instructions with specific EVEX.RC value\n\
10559 for SAE-only ignored instructions\n"));
10560 fprintf (stream, _("\
ba104c83
L
10561 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10562 fprintf (stream, _("\
10563 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10564 fprintf (stream, _("\
10565 -mindex-reg support pseudo index registers\n"));
10566 fprintf (stream, _("\
10567 -mnaked-reg don't require `%%' prefix for registers\n"));
10568 fprintf (stream, _("\
10569 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10570 fprintf (stream, _("\
10571 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10572 fprintf (stream, _("\
10573 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10574# if defined (TE_PE) || defined (TE_PEP)
10575 fprintf (stream, _("\
10576 -mbig-obj generate big object files\n"));
10577#endif
d022bddd
IT
10578 fprintf (stream, _("\
10579 -momit-lock-prefix=[no|yes]\n\
10580 strip all lock prefixes\n"));
5db04b09 10581 fprintf (stream, _("\
e4e00185
AS
10582 -mfence-as-lock-add=[no|yes]\n\
10583 encode lfence, mfence and sfence as\n\
10584 lock addl $0x0, (%%{re}sp)\n"));
10585 fprintf (stream, _("\
0cb4071e
L
10586 -mrelax-relocations=[no|yes]\n\
10587 generate relax relocations\n"));
10588 fprintf (stream, _("\
5db04b09
L
10589 -mamd64 accept only AMD64 ISA\n"));
10590 fprintf (stream, _("\
10591 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10592}
10593
3e73aa7c 10594#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10595 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10596 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10597
10598/* Pick the target format to use. */
10599
47926f60 10600const char *
e3bb37b5 10601i386_target_format (void)
252b5132 10602{
351f65ca
L
10603 if (!strncmp (default_arch, "x86_64", 6))
10604 {
10605 update_code_flag (CODE_64BIT, 1);
10606 if (default_arch[6] == '\0')
7f56bc95 10607 x86_elf_abi = X86_64_ABI;
351f65ca 10608 else
7f56bc95 10609 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10610 }
3e73aa7c 10611 else if (!strcmp (default_arch, "i386"))
78f12dd3 10612 update_code_flag (CODE_32BIT, 1);
5197d474
L
10613 else if (!strcmp (default_arch, "iamcu"))
10614 {
10615 update_code_flag (CODE_32BIT, 1);
10616 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10617 {
10618 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10619 cpu_arch_name = "iamcu";
10620 cpu_sub_arch_name = NULL;
10621 cpu_arch_flags = iamcu_flags;
10622 cpu_arch_isa = PROCESSOR_IAMCU;
10623 cpu_arch_isa_flags = iamcu_flags;
10624 if (!cpu_arch_tune_set)
10625 {
10626 cpu_arch_tune = cpu_arch_isa;
10627 cpu_arch_tune_flags = cpu_arch_isa_flags;
10628 }
10629 }
8d471ec1 10630 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10631 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10632 cpu_arch_name);
10633 }
3e73aa7c 10634 else
2b5d6a91 10635 as_fatal (_("unknown architecture"));
89507696
JB
10636
10637 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10638 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10639 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10640 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10641
252b5132
RH
10642 switch (OUTPUT_FLAVOR)
10643 {
9384f2ff 10644#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10645 case bfd_target_aout_flavour:
47926f60 10646 return AOUT_TARGET_FORMAT;
4c63da97 10647#endif
9384f2ff
AM
10648#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10649# if defined (TE_PE) || defined (TE_PEP)
10650 case bfd_target_coff_flavour:
167ad85b
TG
10651 if (flag_code == CODE_64BIT)
10652 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10653 else
10654 return "pe-i386";
9384f2ff 10655# elif defined (TE_GO32)
0561d57c
JK
10656 case bfd_target_coff_flavour:
10657 return "coff-go32";
9384f2ff 10658# else
252b5132
RH
10659 case bfd_target_coff_flavour:
10660 return "coff-i386";
9384f2ff 10661# endif
4c63da97 10662#endif
3e73aa7c 10663#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10664 case bfd_target_elf_flavour:
3e73aa7c 10665 {
351f65ca
L
10666 const char *format;
10667
10668 switch (x86_elf_abi)
4fa24527 10669 {
351f65ca
L
10670 default:
10671 format = ELF_TARGET_FORMAT;
10672 break;
7f56bc95 10673 case X86_64_ABI:
351f65ca 10674 use_rela_relocations = 1;
4fa24527 10675 object_64bit = 1;
351f65ca
L
10676 format = ELF_TARGET_FORMAT64;
10677 break;
7f56bc95 10678 case X86_64_X32_ABI:
4fa24527 10679 use_rela_relocations = 1;
351f65ca 10680 object_64bit = 1;
862be3fb 10681 disallow_64bit_reloc = 1;
351f65ca
L
10682 format = ELF_TARGET_FORMAT32;
10683 break;
4fa24527 10684 }
3632d14b 10685 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10686 {
7f56bc95 10687 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10688 as_fatal (_("Intel L1OM is 64bit only"));
10689 return ELF_TARGET_L1OM_FORMAT;
10690 }
b49f93f6 10691 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10692 {
10693 if (x86_elf_abi != X86_64_ABI)
10694 as_fatal (_("Intel K1OM is 64bit only"));
10695 return ELF_TARGET_K1OM_FORMAT;
10696 }
81486035
L
10697 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10698 {
10699 if (x86_elf_abi != I386_ABI)
10700 as_fatal (_("Intel MCU is 32bit only"));
10701 return ELF_TARGET_IAMCU_FORMAT;
10702 }
8a9036a4 10703 else
351f65ca 10704 return format;
3e73aa7c 10705 }
e57f8c65
TG
10706#endif
10707#if defined (OBJ_MACH_O)
10708 case bfd_target_mach_o_flavour:
d382c579
TG
10709 if (flag_code == CODE_64BIT)
10710 {
10711 use_rela_relocations = 1;
10712 object_64bit = 1;
10713 return "mach-o-x86-64";
10714 }
10715 else
10716 return "mach-o-i386";
4c63da97 10717#endif
252b5132
RH
10718 default:
10719 abort ();
10720 return NULL;
10721 }
10722}
10723
47926f60 10724#endif /* OBJ_MAYBE_ more than one */
252b5132 10725\f
252b5132 10726symbolS *
7016a5d5 10727md_undefined_symbol (char *name)
252b5132 10728{
18dc2407
ILT
10729 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10730 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10731 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10732 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10733 {
10734 if (!GOT_symbol)
10735 {
10736 if (symbol_find (name))
10737 as_bad (_("GOT already in symbol table"));
10738 GOT_symbol = symbol_new (name, undefined_section,
10739 (valueT) 0, &zero_address_frag);
10740 };
10741 return GOT_symbol;
10742 }
252b5132
RH
10743 return 0;
10744}
10745
10746/* Round up a section size to the appropriate boundary. */
47926f60 10747
252b5132 10748valueT
7016a5d5 10749md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10750{
4c63da97
AM
10751#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10752 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10753 {
10754 /* For a.out, force the section size to be aligned. If we don't do
10755 this, BFD will align it for us, but it will not write out the
10756 final bytes of the section. This may be a bug in BFD, but it is
10757 easier to fix it here since that is how the other a.out targets
10758 work. */
10759 int align;
10760
10761 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10762 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10763 }
252b5132
RH
10764#endif
10765
10766 return size;
10767}
10768
10769/* On the i386, PC-relative offsets are relative to the start of the
10770 next instruction. That is, the address of the offset, plus its
10771 size, since the offset is always the last part of the insn. */
10772
10773long
e3bb37b5 10774md_pcrel_from (fixS *fixP)
252b5132
RH
10775{
10776 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10777}
10778
10779#ifndef I386COFF
10780
10781static void
e3bb37b5 10782s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10783{
29b0f896 10784 int temp;
252b5132 10785
8a75718c
JB
10786#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10787 if (IS_ELF)
10788 obj_elf_section_change_hook ();
10789#endif
252b5132
RH
10790 temp = get_absolute_expression ();
10791 subseg_set (bss_section, (subsegT) temp);
10792 demand_empty_rest_of_line ();
10793}
10794
10795#endif
10796
252b5132 10797void
e3bb37b5 10798i386_validate_fix (fixS *fixp)
252b5132 10799{
02a86693 10800 if (fixp->fx_subsy)
252b5132 10801 {
02a86693 10802 if (fixp->fx_subsy == GOT_symbol)
23df1078 10803 {
02a86693
L
10804 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10805 {
10806 if (!object_64bit)
10807 abort ();
10808#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10809 if (fixp->fx_tcbit2)
56ceb5b5
L
10810 fixp->fx_r_type = (fixp->fx_tcbit
10811 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10812 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10813 else
10814#endif
10815 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10816 }
d6ab8113 10817 else
02a86693
L
10818 {
10819 if (!object_64bit)
10820 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10821 else
10822 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10823 }
10824 fixp->fx_subsy = 0;
23df1078 10825 }
252b5132 10826 }
02a86693
L
10827#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10828 else if (!object_64bit)
10829 {
10830 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10831 && fixp->fx_tcbit2)
10832 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10833 }
10834#endif
252b5132
RH
10835}
10836
252b5132 10837arelent *
7016a5d5 10838tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10839{
10840 arelent *rel;
10841 bfd_reloc_code_real_type code;
10842
10843 switch (fixp->fx_r_type)
10844 {
8ce3d284 10845#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10846 case BFD_RELOC_SIZE32:
10847 case BFD_RELOC_SIZE64:
10848 if (S_IS_DEFINED (fixp->fx_addsy)
10849 && !S_IS_EXTERNAL (fixp->fx_addsy))
10850 {
10851 /* Resolve size relocation against local symbol to size of
10852 the symbol plus addend. */
10853 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10854 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10855 && !fits_in_unsigned_long (value))
10856 as_bad_where (fixp->fx_file, fixp->fx_line,
10857 _("symbol size computation overflow"));
10858 fixp->fx_addsy = NULL;
10859 fixp->fx_subsy = NULL;
10860 md_apply_fix (fixp, (valueT *) &value, NULL);
10861 return NULL;
10862 }
8ce3d284 10863#endif
1a0670f3 10864 /* Fall through. */
8fd4256d 10865
3e73aa7c
JH
10866 case BFD_RELOC_X86_64_PLT32:
10867 case BFD_RELOC_X86_64_GOT32:
10868 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10869 case BFD_RELOC_X86_64_GOTPCRELX:
10870 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10871 case BFD_RELOC_386_PLT32:
10872 case BFD_RELOC_386_GOT32:
02a86693 10873 case BFD_RELOC_386_GOT32X:
252b5132
RH
10874 case BFD_RELOC_386_GOTOFF:
10875 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10876 case BFD_RELOC_386_TLS_GD:
10877 case BFD_RELOC_386_TLS_LDM:
10878 case BFD_RELOC_386_TLS_LDO_32:
10879 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10880 case BFD_RELOC_386_TLS_IE:
10881 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10882 case BFD_RELOC_386_TLS_LE_32:
10883 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10884 case BFD_RELOC_386_TLS_GOTDESC:
10885 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10886 case BFD_RELOC_X86_64_TLSGD:
10887 case BFD_RELOC_X86_64_TLSLD:
10888 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10889 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10890 case BFD_RELOC_X86_64_GOTTPOFF:
10891 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10892 case BFD_RELOC_X86_64_TPOFF64:
10893 case BFD_RELOC_X86_64_GOTOFF64:
10894 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10895 case BFD_RELOC_X86_64_GOT64:
10896 case BFD_RELOC_X86_64_GOTPCREL64:
10897 case BFD_RELOC_X86_64_GOTPC64:
10898 case BFD_RELOC_X86_64_GOTPLT64:
10899 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10900 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10901 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10902 case BFD_RELOC_RVA:
10903 case BFD_RELOC_VTABLE_ENTRY:
10904 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10905#ifdef TE_PE
10906 case BFD_RELOC_32_SECREL:
10907#endif
252b5132
RH
10908 code = fixp->fx_r_type;
10909 break;
dbbaec26
L
10910 case BFD_RELOC_X86_64_32S:
10911 if (!fixp->fx_pcrel)
10912 {
10913 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10914 code = fixp->fx_r_type;
10915 break;
10916 }
1a0670f3 10917 /* Fall through. */
252b5132 10918 default:
93382f6d 10919 if (fixp->fx_pcrel)
252b5132 10920 {
93382f6d
AM
10921 switch (fixp->fx_size)
10922 {
10923 default:
b091f402
AM
10924 as_bad_where (fixp->fx_file, fixp->fx_line,
10925 _("can not do %d byte pc-relative relocation"),
10926 fixp->fx_size);
93382f6d
AM
10927 code = BFD_RELOC_32_PCREL;
10928 break;
10929 case 1: code = BFD_RELOC_8_PCREL; break;
10930 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 10931 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10932#ifdef BFD64
10933 case 8: code = BFD_RELOC_64_PCREL; break;
10934#endif
93382f6d
AM
10935 }
10936 }
10937 else
10938 {
10939 switch (fixp->fx_size)
10940 {
10941 default:
b091f402
AM
10942 as_bad_where (fixp->fx_file, fixp->fx_line,
10943 _("can not do %d byte relocation"),
10944 fixp->fx_size);
93382f6d
AM
10945 code = BFD_RELOC_32;
10946 break;
10947 case 1: code = BFD_RELOC_8; break;
10948 case 2: code = BFD_RELOC_16; break;
10949 case 4: code = BFD_RELOC_32; break;
937149dd 10950#ifdef BFD64
3e73aa7c 10951 case 8: code = BFD_RELOC_64; break;
937149dd 10952#endif
93382f6d 10953 }
252b5132
RH
10954 }
10955 break;
10956 }
252b5132 10957
d182319b
JB
10958 if ((code == BFD_RELOC_32
10959 || code == BFD_RELOC_32_PCREL
10960 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10961 && GOT_symbol
10962 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10963 {
4fa24527 10964 if (!object_64bit)
d6ab8113
JB
10965 code = BFD_RELOC_386_GOTPC;
10966 else
10967 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10968 }
7b81dfbb
AJ
10969 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10970 && GOT_symbol
10971 && fixp->fx_addsy == GOT_symbol)
10972 {
10973 code = BFD_RELOC_X86_64_GOTPC64;
10974 }
252b5132 10975
add39d23
TS
10976 rel = XNEW (arelent);
10977 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 10978 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10979
10980 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10981
3e73aa7c
JH
10982 if (!use_rela_relocations)
10983 {
10984 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10985 vtable entry to be used in the relocation's section offset. */
10986 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10987 rel->address = fixp->fx_offset;
fbeb56a4
DK
10988#if defined (OBJ_COFF) && defined (TE_PE)
10989 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10990 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10991 else
10992#endif
c6682705 10993 rel->addend = 0;
3e73aa7c
JH
10994 }
10995 /* Use the rela in 64bit mode. */
252b5132 10996 else
3e73aa7c 10997 {
862be3fb
L
10998 if (disallow_64bit_reloc)
10999 switch (code)
11000 {
862be3fb
L
11001 case BFD_RELOC_X86_64_DTPOFF64:
11002 case BFD_RELOC_X86_64_TPOFF64:
11003 case BFD_RELOC_64_PCREL:
11004 case BFD_RELOC_X86_64_GOTOFF64:
11005 case BFD_RELOC_X86_64_GOT64:
11006 case BFD_RELOC_X86_64_GOTPCREL64:
11007 case BFD_RELOC_X86_64_GOTPC64:
11008 case BFD_RELOC_X86_64_GOTPLT64:
11009 case BFD_RELOC_X86_64_PLTOFF64:
11010 as_bad_where (fixp->fx_file, fixp->fx_line,
11011 _("cannot represent relocation type %s in x32 mode"),
11012 bfd_get_reloc_code_name (code));
11013 break;
11014 default:
11015 break;
11016 }
11017
062cd5e7
AS
11018 if (!fixp->fx_pcrel)
11019 rel->addend = fixp->fx_offset;
11020 else
11021 switch (code)
11022 {
11023 case BFD_RELOC_X86_64_PLT32:
11024 case BFD_RELOC_X86_64_GOT32:
11025 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11026 case BFD_RELOC_X86_64_GOTPCRELX:
11027 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11028 case BFD_RELOC_X86_64_TLSGD:
11029 case BFD_RELOC_X86_64_TLSLD:
11030 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11031 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11032 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11033 rel->addend = fixp->fx_offset - fixp->fx_size;
11034 break;
11035 default:
11036 rel->addend = (section->vma
11037 - fixp->fx_size
11038 + fixp->fx_addnumber
11039 + md_pcrel_from (fixp));
11040 break;
11041 }
3e73aa7c
JH
11042 }
11043
252b5132
RH
11044 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11045 if (rel->howto == NULL)
11046 {
11047 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11048 _("cannot represent relocation type %s"),
252b5132
RH
11049 bfd_get_reloc_code_name (code));
11050 /* Set howto to a garbage value so that we can keep going. */
11051 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11052 gas_assert (rel->howto != NULL);
252b5132
RH
11053 }
11054
11055 return rel;
11056}
11057
ee86248c 11058#include "tc-i386-intel.c"
54cfded0 11059
a60de03c
JB
11060void
11061tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11062{
a60de03c
JB
11063 int saved_naked_reg;
11064 char saved_register_dot;
54cfded0 11065
a60de03c
JB
11066 saved_naked_reg = allow_naked_reg;
11067 allow_naked_reg = 1;
11068 saved_register_dot = register_chars['.'];
11069 register_chars['.'] = '.';
11070 allow_pseudo_reg = 1;
11071 expression_and_evaluate (exp);
11072 allow_pseudo_reg = 0;
11073 register_chars['.'] = saved_register_dot;
11074 allow_naked_reg = saved_naked_reg;
11075
e96d56a1 11076 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11077 {
a60de03c
JB
11078 if ((addressT) exp->X_add_number < i386_regtab_size)
11079 {
11080 exp->X_op = O_constant;
11081 exp->X_add_number = i386_regtab[exp->X_add_number]
11082 .dw2_regnum[flag_code >> 1];
11083 }
11084 else
11085 exp->X_op = O_illegal;
54cfded0 11086 }
54cfded0
AM
11087}
11088
11089void
11090tc_x86_frame_initial_instructions (void)
11091{
a60de03c
JB
11092 static unsigned int sp_regno[2];
11093
11094 if (!sp_regno[flag_code >> 1])
11095 {
11096 char *saved_input = input_line_pointer;
11097 char sp[][4] = {"esp", "rsp"};
11098 expressionS exp;
a4447b93 11099
a60de03c
JB
11100 input_line_pointer = sp[flag_code >> 1];
11101 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11102 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11103 sp_regno[flag_code >> 1] = exp.X_add_number;
11104 input_line_pointer = saved_input;
11105 }
a4447b93 11106
61ff971f
L
11107 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11108 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11109}
d2b2c203 11110
d7921315
L
11111int
11112x86_dwarf2_addr_size (void)
11113{
11114#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11115 if (x86_elf_abi == X86_64_X32_ABI)
11116 return 4;
11117#endif
11118 return bfd_arch_bits_per_address (stdoutput) / 8;
11119}
11120
d2b2c203
DJ
11121int
11122i386_elf_section_type (const char *str, size_t len)
11123{
11124 if (flag_code == CODE_64BIT
11125 && len == sizeof ("unwind") - 1
11126 && strncmp (str, "unwind", 6) == 0)
11127 return SHT_X86_64_UNWIND;
11128
11129 return -1;
11130}
bb41ade5 11131
ad5fec3b
EB
11132#ifdef TE_SOLARIS
11133void
11134i386_solaris_fix_up_eh_frame (segT sec)
11135{
11136 if (flag_code == CODE_64BIT)
11137 elf_section_type (sec) = SHT_X86_64_UNWIND;
11138}
11139#endif
11140
bb41ade5
AM
11141#ifdef TE_PE
11142void
11143tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11144{
91d6fa6a 11145 expressionS exp;
bb41ade5 11146
91d6fa6a
NC
11147 exp.X_op = O_secrel;
11148 exp.X_add_symbol = symbol;
11149 exp.X_add_number = 0;
11150 emit_expr (&exp, size);
bb41ade5
AM
11151}
11152#endif
3b22753a
L
11153
11154#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11155/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11156
01e1a5bc 11157bfd_vma
6d4af3c2 11158x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11159{
11160 if (flag_code == CODE_64BIT)
11161 {
11162 if (letter == 'l')
11163 return SHF_X86_64_LARGE;
11164
8f3bae45 11165 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11166 }
3b22753a 11167 else
8f3bae45 11168 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11169 return -1;
11170}
11171
01e1a5bc 11172bfd_vma
3b22753a
L
11173x86_64_section_word (char *str, size_t len)
11174{
8620418b 11175 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11176 return SHF_X86_64_LARGE;
11177
11178 return -1;
11179}
11180
11181static void
11182handle_large_common (int small ATTRIBUTE_UNUSED)
11183{
11184 if (flag_code != CODE_64BIT)
11185 {
11186 s_comm_internal (0, elf_common_parse);
11187 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11188 }
11189 else
11190 {
11191 static segT lbss_section;
11192 asection *saved_com_section_ptr = elf_com_section_ptr;
11193 asection *saved_bss_section = bss_section;
11194
11195 if (lbss_section == NULL)
11196 {
11197 flagword applicable;
11198 segT seg = now_seg;
11199 subsegT subseg = now_subseg;
11200
11201 /* The .lbss section is for local .largecomm symbols. */
11202 lbss_section = subseg_new (".lbss", 0);
11203 applicable = bfd_applicable_section_flags (stdoutput);
11204 bfd_set_section_flags (stdoutput, lbss_section,
11205 applicable & SEC_ALLOC);
11206 seg_info (lbss_section)->bss = 1;
11207
11208 subseg_set (seg, subseg);
11209 }
11210
11211 elf_com_section_ptr = &_bfd_elf_large_com_section;
11212 bss_section = lbss_section;
11213
11214 s_comm_internal (0, elf_common_parse);
11215
11216 elf_com_section_ptr = saved_com_section_ptr;
11217 bss_section = saved_bss_section;
11218 }
11219}
11220#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.884938 seconds and 4 git commands to generate.