Fix build for aarch64, arm, and riscv FreeBSD native targets.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
2c703856 3007pi (const char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
09137c09
SP
3034 || x->types[j].bitfield.sreg2
3035 || x->types[j].bitfield.sreg3
3036 || x->types[j].bitfield.control
3037 || x->types[j].bitfield.debug
3038 || x->types[j].bitfield.test)
3039 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3040 if (operand_type_check (x->types[j], imm))
3041 pe (x->op[j].imms);
3042 if (operand_type_check (x->types[j], disp))
3043 pe (x->op[j].disps);
252b5132
RH
3044 }
3045}
3046
3047static void
d3ce72d0 3048pte (insn_template *t)
252b5132 3049{
09137c09 3050 unsigned int j;
252b5132 3051 fprintf (stdout, " %d operands ", t->operands);
47926f60 3052 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3053 if (t->extension_opcode != None)
3054 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3055 if (t->opcode_modifier.d)
252b5132 3056 fprintf (stdout, "D");
40fb9820 3057 if (t->opcode_modifier.w)
252b5132
RH
3058 fprintf (stdout, "W");
3059 fprintf (stdout, "\n");
09137c09 3060 for (j = 0; j < t->operands; j++)
252b5132 3061 {
09137c09
SP
3062 fprintf (stdout, " #%d type ", j + 1);
3063 pt (t->operand_types[j]);
252b5132
RH
3064 fprintf (stdout, "\n");
3065 }
3066}
3067
3068static void
e3bb37b5 3069pe (expressionS *e)
252b5132 3070{
24eab124 3071 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3072 fprintf (stdout, " add_number %ld (%lx)\n",
3073 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3074 if (e->X_add_symbol)
3075 {
3076 fprintf (stdout, " add_symbol ");
3077 ps (e->X_add_symbol);
3078 fprintf (stdout, "\n");
3079 }
3080 if (e->X_op_symbol)
3081 {
3082 fprintf (stdout, " op_symbol ");
3083 ps (e->X_op_symbol);
3084 fprintf (stdout, "\n");
3085 }
3086}
3087
3088static void
e3bb37b5 3089ps (symbolS *s)
252b5132
RH
3090{
3091 fprintf (stdout, "%s type %s%s",
3092 S_GET_NAME (s),
3093 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3094 segment_name (S_GET_SEGMENT (s)));
3095}
3096
7b81dfbb 3097static struct type_name
252b5132 3098 {
40fb9820
L
3099 i386_operand_type mask;
3100 const char *name;
252b5132 3101 }
7b81dfbb 3102const type_names[] =
252b5132 3103{
40fb9820
L
3104 { OPERAND_TYPE_REG8, "r8" },
3105 { OPERAND_TYPE_REG16, "r16" },
3106 { OPERAND_TYPE_REG32, "r32" },
3107 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3108 { OPERAND_TYPE_ACC8, "acc8" },
3109 { OPERAND_TYPE_ACC16, "acc16" },
3110 { OPERAND_TYPE_ACC32, "acc32" },
3111 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3112 { OPERAND_TYPE_IMM8, "i8" },
3113 { OPERAND_TYPE_IMM8, "i8s" },
3114 { OPERAND_TYPE_IMM16, "i16" },
3115 { OPERAND_TYPE_IMM32, "i32" },
3116 { OPERAND_TYPE_IMM32S, "i32s" },
3117 { OPERAND_TYPE_IMM64, "i64" },
3118 { OPERAND_TYPE_IMM1, "i1" },
3119 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3120 { OPERAND_TYPE_DISP8, "d8" },
3121 { OPERAND_TYPE_DISP16, "d16" },
3122 { OPERAND_TYPE_DISP32, "d32" },
3123 { OPERAND_TYPE_DISP32S, "d32s" },
3124 { OPERAND_TYPE_DISP64, "d64" },
3125 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3126 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3127 { OPERAND_TYPE_CONTROL, "control reg" },
3128 { OPERAND_TYPE_TEST, "test reg" },
3129 { OPERAND_TYPE_DEBUG, "debug reg" },
3130 { OPERAND_TYPE_FLOATREG, "FReg" },
3131 { OPERAND_TYPE_FLOATACC, "FAcc" },
3132 { OPERAND_TYPE_SREG2, "SReg2" },
3133 { OPERAND_TYPE_SREG3, "SReg3" },
40fb9820
L
3134 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3135 { OPERAND_TYPE_REGMMX, "rMMX" },
3136 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3137 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3138 { OPERAND_TYPE_REGZMM, "rZMM" },
3139 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3140 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3141};
3142
3143static void
40fb9820 3144pt (i386_operand_type t)
252b5132 3145{
40fb9820 3146 unsigned int j;
c6fb90c8 3147 i386_operand_type a;
252b5132 3148
40fb9820 3149 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3150 {
3151 a = operand_type_and (t, type_names[j].mask);
2c703856 3152 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3153 fprintf (stdout, "%s, ", type_names[j].name);
3154 }
252b5132
RH
3155 fflush (stdout);
3156}
3157
3158#endif /* DEBUG386 */
3159\f
252b5132 3160static bfd_reloc_code_real_type
3956db08 3161reloc (unsigned int size,
64e74474
AM
3162 int pcrel,
3163 int sign,
3164 bfd_reloc_code_real_type other)
252b5132 3165{
47926f60 3166 if (other != NO_RELOC)
3956db08 3167 {
91d6fa6a 3168 reloc_howto_type *rel;
3956db08
JB
3169
3170 if (size == 8)
3171 switch (other)
3172 {
64e74474
AM
3173 case BFD_RELOC_X86_64_GOT32:
3174 return BFD_RELOC_X86_64_GOT64;
3175 break;
553d1284
L
3176 case BFD_RELOC_X86_64_GOTPLT64:
3177 return BFD_RELOC_X86_64_GOTPLT64;
3178 break;
64e74474
AM
3179 case BFD_RELOC_X86_64_PLTOFF64:
3180 return BFD_RELOC_X86_64_PLTOFF64;
3181 break;
3182 case BFD_RELOC_X86_64_GOTPC32:
3183 other = BFD_RELOC_X86_64_GOTPC64;
3184 break;
3185 case BFD_RELOC_X86_64_GOTPCREL:
3186 other = BFD_RELOC_X86_64_GOTPCREL64;
3187 break;
3188 case BFD_RELOC_X86_64_TPOFF32:
3189 other = BFD_RELOC_X86_64_TPOFF64;
3190 break;
3191 case BFD_RELOC_X86_64_DTPOFF32:
3192 other = BFD_RELOC_X86_64_DTPOFF64;
3193 break;
3194 default:
3195 break;
3956db08 3196 }
e05278af 3197
8ce3d284 3198#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3199 if (other == BFD_RELOC_SIZE32)
3200 {
3201 if (size == 8)
1ab668bf 3202 other = BFD_RELOC_SIZE64;
8fd4256d 3203 if (pcrel)
1ab668bf
AM
3204 {
3205 as_bad (_("there are no pc-relative size relocations"));
3206 return NO_RELOC;
3207 }
8fd4256d 3208 }
8ce3d284 3209#endif
8fd4256d 3210
e05278af 3211 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3212 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3213 sign = -1;
3214
91d6fa6a
NC
3215 rel = bfd_reloc_type_lookup (stdoutput, other);
3216 if (!rel)
3956db08 3217 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3218 else if (size != bfd_get_reloc_size (rel))
3956db08 3219 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3220 bfd_get_reloc_size (rel),
3956db08 3221 size);
91d6fa6a 3222 else if (pcrel && !rel->pc_relative)
3956db08 3223 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3224 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3225 && !sign)
91d6fa6a 3226 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3227 && sign > 0))
3956db08
JB
3228 as_bad (_("relocated field and relocation type differ in signedness"));
3229 else
3230 return other;
3231 return NO_RELOC;
3232 }
252b5132
RH
3233
3234 if (pcrel)
3235 {
3e73aa7c 3236 if (!sign)
3956db08 3237 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3238 switch (size)
3239 {
3240 case 1: return BFD_RELOC_8_PCREL;
3241 case 2: return BFD_RELOC_16_PCREL;
d258b828 3242 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3243 case 8: return BFD_RELOC_64_PCREL;
252b5132 3244 }
3956db08 3245 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3246 }
3247 else
3248 {
3956db08 3249 if (sign > 0)
e5cb08ac 3250 switch (size)
3e73aa7c
JH
3251 {
3252 case 4: return BFD_RELOC_X86_64_32S;
3253 }
3254 else
3255 switch (size)
3256 {
3257 case 1: return BFD_RELOC_8;
3258 case 2: return BFD_RELOC_16;
3259 case 4: return BFD_RELOC_32;
3260 case 8: return BFD_RELOC_64;
3261 }
3956db08
JB
3262 as_bad (_("cannot do %s %u byte relocation"),
3263 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3264 }
3265
0cc9e1d3 3266 return NO_RELOC;
252b5132
RH
3267}
3268
47926f60
KH
3269/* Here we decide which fixups can be adjusted to make them relative to
3270 the beginning of the section instead of the symbol. Basically we need
3271 to make sure that the dynamic relocations are done correctly, so in
3272 some cases we force the original symbol to be used. */
3273
252b5132 3274int
e3bb37b5 3275tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3276{
6d249963 3277#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3278 if (!IS_ELF)
31312f95
AM
3279 return 1;
3280
a161fe53
AM
3281 /* Don't adjust pc-relative references to merge sections in 64-bit
3282 mode. */
3283 if (use_rela_relocations
3284 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3285 && fixP->fx_pcrel)
252b5132 3286 return 0;
31312f95 3287
8d01d9a9
AJ
3288 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3289 and changed later by validate_fix. */
3290 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3291 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3292 return 0;
3293
8fd4256d
L
3294 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3295 for size relocations. */
3296 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3297 || fixP->fx_r_type == BFD_RELOC_SIZE64
3298 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3299 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3300 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3301 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3310 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3311 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3314 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3320 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3325 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3326 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3327 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3328 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3329 return 0;
31312f95 3330#endif
252b5132
RH
3331 return 1;
3332}
252b5132 3333
b4cac588 3334static int
e3bb37b5 3335intel_float_operand (const char *mnemonic)
252b5132 3336{
9306ca4a
JB
3337 /* Note that the value returned is meaningful only for opcodes with (memory)
3338 operands, hence the code here is free to improperly handle opcodes that
3339 have no operands (for better performance and smaller code). */
3340
3341 if (mnemonic[0] != 'f')
3342 return 0; /* non-math */
3343
3344 switch (mnemonic[1])
3345 {
3346 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3347 the fs segment override prefix not currently handled because no
3348 call path can make opcodes without operands get here */
3349 case 'i':
3350 return 2 /* integer op */;
3351 case 'l':
3352 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3353 return 3; /* fldcw/fldenv */
3354 break;
3355 case 'n':
3356 if (mnemonic[2] != 'o' /* fnop */)
3357 return 3; /* non-waiting control op */
3358 break;
3359 case 'r':
3360 if (mnemonic[2] == 's')
3361 return 3; /* frstor/frstpm */
3362 break;
3363 case 's':
3364 if (mnemonic[2] == 'a')
3365 return 3; /* fsave */
3366 if (mnemonic[2] == 't')
3367 {
3368 switch (mnemonic[3])
3369 {
3370 case 'c': /* fstcw */
3371 case 'd': /* fstdw */
3372 case 'e': /* fstenv */
3373 case 's': /* fsts[gw] */
3374 return 3;
3375 }
3376 }
3377 break;
3378 case 'x':
3379 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3380 return 0; /* fxsave/fxrstor are not really math ops */
3381 break;
3382 }
252b5132 3383
9306ca4a 3384 return 1;
252b5132
RH
3385}
3386
c0f3af97
L
3387/* Build the VEX prefix. */
3388
3389static void
d3ce72d0 3390build_vex_prefix (const insn_template *t)
c0f3af97
L
3391{
3392 unsigned int register_specifier;
3393 unsigned int implied_prefix;
3394 unsigned int vector_length;
03751133 3395 unsigned int w;
c0f3af97
L
3396
3397 /* Check register specifier. */
3398 if (i.vex.register_specifier)
43234a1e
L
3399 {
3400 register_specifier =
3401 ~register_number (i.vex.register_specifier) & 0xf;
3402 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3403 }
c0f3af97
L
3404 else
3405 register_specifier = 0xf;
3406
79f0fa25
L
3407 /* Use 2-byte VEX prefix by swapping destination and source operand
3408 if there are more than 1 register operand. */
3409 if (i.reg_operands > 1
3410 && i.vec_encoding != vex_encoding_vex3
86fa6981 3411 && i.dir_encoding == dir_encoding_default
fa99fab2 3412 && i.operands == i.reg_operands
dbbc8b7e 3413 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3414 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3415 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3416 && i.rex == REX_B)
3417 {
3418 unsigned int xchg = i.operands - 1;
3419 union i386_op temp_op;
3420 i386_operand_type temp_type;
3421
3422 temp_type = i.types[xchg];
3423 i.types[xchg] = i.types[0];
3424 i.types[0] = temp_type;
3425 temp_op = i.op[xchg];
3426 i.op[xchg] = i.op[0];
3427 i.op[0] = temp_op;
3428
9c2799c2 3429 gas_assert (i.rm.mode == 3);
fa99fab2
L
3430
3431 i.rex = REX_R;
3432 xchg = i.rm.regmem;
3433 i.rm.regmem = i.rm.reg;
3434 i.rm.reg = xchg;
3435
dbbc8b7e
JB
3436 if (i.tm.opcode_modifier.d)
3437 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3438 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3439 else /* Use the next insn. */
3440 i.tm = t[1];
fa99fab2
L
3441 }
3442
79dec6b7
JB
3443 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3444 are no memory operands and at least 3 register ones. */
3445 if (i.reg_operands >= 3
3446 && i.vec_encoding != vex_encoding_vex3
3447 && i.reg_operands == i.operands - i.imm_operands
3448 && i.tm.opcode_modifier.vex
3449 && i.tm.opcode_modifier.commutative
3450 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3451 && i.rex == REX_B
3452 && i.vex.register_specifier
3453 && !(i.vex.register_specifier->reg_flags & RegRex))
3454 {
3455 unsigned int xchg = i.operands - i.reg_operands;
3456 union i386_op temp_op;
3457 i386_operand_type temp_type;
3458
3459 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3460 gas_assert (!i.tm.opcode_modifier.sae);
3461 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3462 &i.types[i.operands - 3]));
3463 gas_assert (i.rm.mode == 3);
3464
3465 temp_type = i.types[xchg];
3466 i.types[xchg] = i.types[xchg + 1];
3467 i.types[xchg + 1] = temp_type;
3468 temp_op = i.op[xchg];
3469 i.op[xchg] = i.op[xchg + 1];
3470 i.op[xchg + 1] = temp_op;
3471
3472 i.rex = 0;
3473 xchg = i.rm.regmem | 8;
3474 i.rm.regmem = ~register_specifier & 0xf;
3475 gas_assert (!(i.rm.regmem & 8));
3476 i.vex.register_specifier += xchg - i.rm.regmem;
3477 register_specifier = ~xchg & 0xf;
3478 }
3479
539f890d
L
3480 if (i.tm.opcode_modifier.vex == VEXScalar)
3481 vector_length = avxscalar;
10c17abd
JB
3482 else if (i.tm.opcode_modifier.vex == VEX256)
3483 vector_length = 1;
539f890d 3484 else
10c17abd 3485 {
56522fc5 3486 unsigned int op;
10c17abd 3487
c7213af9
L
3488 /* Determine vector length from the last multi-length vector
3489 operand. */
10c17abd 3490 vector_length = 0;
56522fc5 3491 for (op = t->operands; op--;)
10c17abd
JB
3492 if (t->operand_types[op].bitfield.xmmword
3493 && t->operand_types[op].bitfield.ymmword
3494 && i.types[op].bitfield.ymmword)
3495 {
3496 vector_length = 1;
3497 break;
3498 }
3499 }
c0f3af97
L
3500
3501 switch ((i.tm.base_opcode >> 8) & 0xff)
3502 {
3503 case 0:
3504 implied_prefix = 0;
3505 break;
3506 case DATA_PREFIX_OPCODE:
3507 implied_prefix = 1;
3508 break;
3509 case REPE_PREFIX_OPCODE:
3510 implied_prefix = 2;
3511 break;
3512 case REPNE_PREFIX_OPCODE:
3513 implied_prefix = 3;
3514 break;
3515 default:
3516 abort ();
3517 }
3518
03751133
L
3519 /* Check the REX.W bit and VEXW. */
3520 if (i.tm.opcode_modifier.vexw == VEXWIG)
3521 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3522 else if (i.tm.opcode_modifier.vexw)
3523 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3524 else
931d03b7 3525 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3526
c0f3af97 3527 /* Use 2-byte VEX prefix if possible. */
03751133
L
3528 if (w == 0
3529 && i.vec_encoding != vex_encoding_vex3
86fa6981 3530 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3531 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3532 {
3533 /* 2-byte VEX prefix. */
3534 unsigned int r;
3535
3536 i.vex.length = 2;
3537 i.vex.bytes[0] = 0xc5;
3538
3539 /* Check the REX.R bit. */
3540 r = (i.rex & REX_R) ? 0 : 1;
3541 i.vex.bytes[1] = (r << 7
3542 | register_specifier << 3
3543 | vector_length << 2
3544 | implied_prefix);
3545 }
3546 else
3547 {
3548 /* 3-byte VEX prefix. */
03751133 3549 unsigned int m;
c0f3af97 3550
f88c9eb0 3551 i.vex.length = 3;
f88c9eb0 3552
7f399153 3553 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3554 {
7f399153
L
3555 case VEX0F:
3556 m = 0x1;
80de6e00 3557 i.vex.bytes[0] = 0xc4;
7f399153
L
3558 break;
3559 case VEX0F38:
3560 m = 0x2;
80de6e00 3561 i.vex.bytes[0] = 0xc4;
7f399153
L
3562 break;
3563 case VEX0F3A:
3564 m = 0x3;
80de6e00 3565 i.vex.bytes[0] = 0xc4;
7f399153
L
3566 break;
3567 case XOP08:
5dd85c99
SP
3568 m = 0x8;
3569 i.vex.bytes[0] = 0x8f;
7f399153
L
3570 break;
3571 case XOP09:
f88c9eb0
SP
3572 m = 0x9;
3573 i.vex.bytes[0] = 0x8f;
7f399153
L
3574 break;
3575 case XOP0A:
f88c9eb0
SP
3576 m = 0xa;
3577 i.vex.bytes[0] = 0x8f;
7f399153
L
3578 break;
3579 default:
3580 abort ();
f88c9eb0 3581 }
c0f3af97 3582
c0f3af97
L
3583 /* The high 3 bits of the second VEX byte are 1's compliment
3584 of RXB bits from REX. */
3585 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3586
c0f3af97
L
3587 i.vex.bytes[2] = (w << 7
3588 | register_specifier << 3
3589 | vector_length << 2
3590 | implied_prefix);
3591 }
3592}
3593
e771e7c9
JB
3594static INLINE bfd_boolean
3595is_evex_encoding (const insn_template *t)
3596{
7091c612 3597 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3598 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3599 || t->opcode_modifier.sae;
e771e7c9
JB
3600}
3601
7a8655d2
JB
3602static INLINE bfd_boolean
3603is_any_vex_encoding (const insn_template *t)
3604{
3605 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3606 || is_evex_encoding (t);
3607}
3608
43234a1e
L
3609/* Build the EVEX prefix. */
3610
3611static void
3612build_evex_prefix (void)
3613{
3614 unsigned int register_specifier;
3615 unsigned int implied_prefix;
3616 unsigned int m, w;
3617 rex_byte vrex_used = 0;
3618
3619 /* Check register specifier. */
3620 if (i.vex.register_specifier)
3621 {
3622 gas_assert ((i.vrex & REX_X) == 0);
3623
3624 register_specifier = i.vex.register_specifier->reg_num;
3625 if ((i.vex.register_specifier->reg_flags & RegRex))
3626 register_specifier += 8;
3627 /* The upper 16 registers are encoded in the fourth byte of the
3628 EVEX prefix. */
3629 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3630 i.vex.bytes[3] = 0x8;
3631 register_specifier = ~register_specifier & 0xf;
3632 }
3633 else
3634 {
3635 register_specifier = 0xf;
3636
3637 /* Encode upper 16 vector index register in the fourth byte of
3638 the EVEX prefix. */
3639 if (!(i.vrex & REX_X))
3640 i.vex.bytes[3] = 0x8;
3641 else
3642 vrex_used |= REX_X;
3643 }
3644
3645 switch ((i.tm.base_opcode >> 8) & 0xff)
3646 {
3647 case 0:
3648 implied_prefix = 0;
3649 break;
3650 case DATA_PREFIX_OPCODE:
3651 implied_prefix = 1;
3652 break;
3653 case REPE_PREFIX_OPCODE:
3654 implied_prefix = 2;
3655 break;
3656 case REPNE_PREFIX_OPCODE:
3657 implied_prefix = 3;
3658 break;
3659 default:
3660 abort ();
3661 }
3662
3663 /* 4 byte EVEX prefix. */
3664 i.vex.length = 4;
3665 i.vex.bytes[0] = 0x62;
3666
3667 /* mmmm bits. */
3668 switch (i.tm.opcode_modifier.vexopcode)
3669 {
3670 case VEX0F:
3671 m = 1;
3672 break;
3673 case VEX0F38:
3674 m = 2;
3675 break;
3676 case VEX0F3A:
3677 m = 3;
3678 break;
3679 default:
3680 abort ();
3681 break;
3682 }
3683
3684 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3685 bits from REX. */
3686 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3687
3688 /* The fifth bit of the second EVEX byte is 1's compliment of the
3689 REX_R bit in VREX. */
3690 if (!(i.vrex & REX_R))
3691 i.vex.bytes[1] |= 0x10;
3692 else
3693 vrex_used |= REX_R;
3694
3695 if ((i.reg_operands + i.imm_operands) == i.operands)
3696 {
3697 /* When all operands are registers, the REX_X bit in REX is not
3698 used. We reuse it to encode the upper 16 registers, which is
3699 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3700 as 1's compliment. */
3701 if ((i.vrex & REX_B))
3702 {
3703 vrex_used |= REX_B;
3704 i.vex.bytes[1] &= ~0x40;
3705 }
3706 }
3707
3708 /* EVEX instructions shouldn't need the REX prefix. */
3709 i.vrex &= ~vrex_used;
3710 gas_assert (i.vrex == 0);
3711
6865c043
L
3712 /* Check the REX.W bit and VEXW. */
3713 if (i.tm.opcode_modifier.vexw == VEXWIG)
3714 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3715 else if (i.tm.opcode_modifier.vexw)
3716 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3717 else
931d03b7 3718 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3719
3720 /* Encode the U bit. */
3721 implied_prefix |= 0x4;
3722
3723 /* The third byte of the EVEX prefix. */
3724 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3725
3726 /* The fourth byte of the EVEX prefix. */
3727 /* The zeroing-masking bit. */
3728 if (i.mask && i.mask->zeroing)
3729 i.vex.bytes[3] |= 0x80;
3730
3731 /* Don't always set the broadcast bit if there is no RC. */
3732 if (!i.rounding)
3733 {
3734 /* Encode the vector length. */
3735 unsigned int vec_length;
3736
e771e7c9
JB
3737 if (!i.tm.opcode_modifier.evex
3738 || i.tm.opcode_modifier.evex == EVEXDYN)
3739 {
56522fc5 3740 unsigned int op;
e771e7c9 3741
c7213af9
L
3742 /* Determine vector length from the last multi-length vector
3743 operand. */
e771e7c9 3744 vec_length = 0;
56522fc5 3745 for (op = i.operands; op--;)
e771e7c9
JB
3746 if (i.tm.operand_types[op].bitfield.xmmword
3747 + i.tm.operand_types[op].bitfield.ymmword
3748 + i.tm.operand_types[op].bitfield.zmmword > 1)
3749 {
3750 if (i.types[op].bitfield.zmmword)
c7213af9
L
3751 {
3752 i.tm.opcode_modifier.evex = EVEX512;
3753 break;
3754 }
e771e7c9 3755 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3756 {
3757 i.tm.opcode_modifier.evex = EVEX256;
3758 break;
3759 }
e771e7c9 3760 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3761 {
3762 i.tm.opcode_modifier.evex = EVEX128;
3763 break;
3764 }
625cbd7a
JB
3765 else if (i.broadcast && (int) op == i.broadcast->operand)
3766 {
4a1b91ea 3767 switch (i.broadcast->bytes)
625cbd7a
JB
3768 {
3769 case 64:
3770 i.tm.opcode_modifier.evex = EVEX512;
3771 break;
3772 case 32:
3773 i.tm.opcode_modifier.evex = EVEX256;
3774 break;
3775 case 16:
3776 i.tm.opcode_modifier.evex = EVEX128;
3777 break;
3778 default:
c7213af9 3779 abort ();
625cbd7a 3780 }
c7213af9 3781 break;
625cbd7a 3782 }
e771e7c9 3783 }
c7213af9 3784
56522fc5 3785 if (op >= MAX_OPERANDS)
c7213af9 3786 abort ();
e771e7c9
JB
3787 }
3788
43234a1e
L
3789 switch (i.tm.opcode_modifier.evex)
3790 {
3791 case EVEXLIG: /* LL' is ignored */
3792 vec_length = evexlig << 5;
3793 break;
3794 case EVEX128:
3795 vec_length = 0 << 5;
3796 break;
3797 case EVEX256:
3798 vec_length = 1 << 5;
3799 break;
3800 case EVEX512:
3801 vec_length = 2 << 5;
3802 break;
3803 default:
3804 abort ();
3805 break;
3806 }
3807 i.vex.bytes[3] |= vec_length;
3808 /* Encode the broadcast bit. */
3809 if (i.broadcast)
3810 i.vex.bytes[3] |= 0x10;
3811 }
3812 else
3813 {
3814 if (i.rounding->type != saeonly)
3815 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3816 else
d3d3c6db 3817 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3818 }
3819
3820 if (i.mask && i.mask->mask)
3821 i.vex.bytes[3] |= i.mask->mask->reg_num;
3822}
3823
65da13b5
L
3824static void
3825process_immext (void)
3826{
3827 expressionS *exp;
3828
4c692bc7
JB
3829 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3830 && i.operands > 0)
65da13b5 3831 {
4c692bc7
JB
3832 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3833 with an opcode suffix which is coded in the same place as an
3834 8-bit immediate field would be.
3835 Here we check those operands and remove them afterwards. */
65da13b5
L
3836 unsigned int x;
3837
3838 for (x = 0; x < i.operands; x++)
4c692bc7 3839 if (register_number (i.op[x].regs) != x)
65da13b5 3840 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3841 register_prefix, i.op[x].regs->reg_name, x + 1,
3842 i.tm.name);
3843
3844 i.operands = 0;
65da13b5
L
3845 }
3846
9916071f
AP
3847 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3848 {
3849 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3850 suffix which is coded in the same place as an 8-bit immediate
3851 field would be.
3852 Here we check those operands and remove them afterwards. */
3853 unsigned int x;
3854
3855 if (i.operands != 3)
3856 abort();
3857
3858 for (x = 0; x < 2; x++)
3859 if (register_number (i.op[x].regs) != x)
3860 goto bad_register_operand;
3861
3862 /* Check for third operand for mwaitx/monitorx insn. */
3863 if (register_number (i.op[x].regs)
3864 != (x + (i.tm.extension_opcode == 0xfb)))
3865 {
3866bad_register_operand:
3867 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3868 register_prefix, i.op[x].regs->reg_name, x+1,
3869 i.tm.name);
3870 }
3871
3872 i.operands = 0;
3873 }
3874
c0f3af97 3875 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3876 which is coded in the same place as an 8-bit immediate field
3877 would be. Here we fake an 8-bit immediate operand from the
3878 opcode suffix stored in tm.extension_opcode.
3879
c1e679ec 3880 AVX instructions also use this encoding, for some of
c0f3af97 3881 3 argument instructions. */
65da13b5 3882
43234a1e 3883 gas_assert (i.imm_operands <= 1
7ab9ffdd 3884 && (i.operands <= 2
7a8655d2 3885 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3886 && i.operands <= 4)));
65da13b5
L
3887
3888 exp = &im_expressions[i.imm_operands++];
3889 i.op[i.operands].imms = exp;
3890 i.types[i.operands] = imm8;
3891 i.operands++;
3892 exp->X_op = O_constant;
3893 exp->X_add_number = i.tm.extension_opcode;
3894 i.tm.extension_opcode = None;
3895}
3896
42164a71
L
3897
3898static int
3899check_hle (void)
3900{
3901 switch (i.tm.opcode_modifier.hleprefixok)
3902 {
3903 default:
3904 abort ();
82c2def5 3905 case HLEPrefixNone:
165de32a
L
3906 as_bad (_("invalid instruction `%s' after `%s'"),
3907 i.tm.name, i.hle_prefix);
42164a71 3908 return 0;
82c2def5 3909 case HLEPrefixLock:
42164a71
L
3910 if (i.prefix[LOCK_PREFIX])
3911 return 1;
165de32a 3912 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3913 return 0;
82c2def5 3914 case HLEPrefixAny:
42164a71 3915 return 1;
82c2def5 3916 case HLEPrefixRelease:
42164a71
L
3917 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3918 {
3919 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3920 i.tm.name);
3921 return 0;
3922 }
3923 if (i.mem_operands == 0
3924 || !operand_type_check (i.types[i.operands - 1], anymem))
3925 {
3926 as_bad (_("memory destination needed for instruction `%s'"
3927 " after `xrelease'"), i.tm.name);
3928 return 0;
3929 }
3930 return 1;
3931 }
3932}
3933
b6f8c7c4
L
3934/* Try the shortest encoding by shortening operand size. */
3935
3936static void
3937optimize_encoding (void)
3938{
a0a1771e 3939 unsigned int j;
b6f8c7c4
L
3940
3941 if (optimize_for_space
3942 && i.reg_operands == 1
3943 && i.imm_operands == 1
3944 && !i.types[1].bitfield.byte
3945 && i.op[0].imms->X_op == O_constant
3946 && fits_in_imm7 (i.op[0].imms->X_add_number)
3947 && ((i.tm.base_opcode == 0xa8
3948 && i.tm.extension_opcode == None)
3949 || (i.tm.base_opcode == 0xf6
3950 && i.tm.extension_opcode == 0x0)))
3951 {
3952 /* Optimize: -Os:
3953 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3954 */
3955 unsigned int base_regnum = i.op[1].regs->reg_num;
3956 if (flag_code == CODE_64BIT || base_regnum < 4)
3957 {
3958 i.types[1].bitfield.byte = 1;
3959 /* Ignore the suffix. */
3960 i.suffix = 0;
3961 if (base_regnum >= 4
3962 && !(i.op[1].regs->reg_flags & RegRex))
3963 {
3964 /* Handle SP, BP, SI and DI registers. */
3965 if (i.types[1].bitfield.word)
3966 j = 16;
3967 else if (i.types[1].bitfield.dword)
3968 j = 32;
3969 else
3970 j = 48;
3971 i.op[1].regs -= j;
3972 }
3973 }
3974 }
3975 else if (flag_code == CODE_64BIT
d3d50934
L
3976 && ((i.types[1].bitfield.qword
3977 && i.reg_operands == 1
b6f8c7c4
L
3978 && i.imm_operands == 1
3979 && i.op[0].imms->X_op == O_constant
3980 && ((i.tm.base_opcode == 0xb0
3981 && i.tm.extension_opcode == None
3982 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3983 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3984 && (((i.tm.base_opcode == 0x24
3985 || i.tm.base_opcode == 0xa8)
3986 && i.tm.extension_opcode == None)
3987 || (i.tm.base_opcode == 0x80
3988 && i.tm.extension_opcode == 0x4)
3989 || ((i.tm.base_opcode == 0xf6
3990 || i.tm.base_opcode == 0xc6)
b8364fa7
JB
3991 && i.tm.extension_opcode == 0x0)))
3992 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3993 && i.tm.base_opcode == 0x83
3994 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3995 || (i.types[0].bitfield.qword
3996 && ((i.reg_operands == 2
3997 && i.op[0].regs == i.op[1].regs
3998 && ((i.tm.base_opcode == 0x30
3999 || i.tm.base_opcode == 0x28)
4000 && i.tm.extension_opcode == None))
4001 || (i.reg_operands == 1
4002 && i.operands == 1
4003 && i.tm.base_opcode == 0x30
4004 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4005 {
4006 /* Optimize: -O:
4007 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4008 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4009 testq $imm31, %r64 -> testl $imm31, %r32
4010 xorq %r64, %r64 -> xorl %r32, %r32
4011 subq %r64, %r64 -> subl %r32, %r32
4012 movq $imm31, %r64 -> movl $imm31, %r32
4013 movq $imm32, %r64 -> movl $imm32, %r32
4014 */
4015 i.tm.opcode_modifier.norex64 = 1;
4016 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4017 {
4018 /* Handle
4019 movq $imm31, %r64 -> movl $imm31, %r32
4020 movq $imm32, %r64 -> movl $imm32, %r32
4021 */
4022 i.tm.operand_types[0].bitfield.imm32 = 1;
4023 i.tm.operand_types[0].bitfield.imm32s = 0;
4024 i.tm.operand_types[0].bitfield.imm64 = 0;
4025 i.types[0].bitfield.imm32 = 1;
4026 i.types[0].bitfield.imm32s = 0;
4027 i.types[0].bitfield.imm64 = 0;
4028 i.types[1].bitfield.dword = 1;
4029 i.types[1].bitfield.qword = 0;
4030 if (i.tm.base_opcode == 0xc6)
4031 {
4032 /* Handle
4033 movq $imm31, %r64 -> movl $imm31, %r32
4034 */
4035 i.tm.base_opcode = 0xb0;
4036 i.tm.extension_opcode = None;
4037 i.tm.opcode_modifier.shortform = 1;
4038 i.tm.opcode_modifier.modrm = 0;
4039 }
4040 }
4041 }
5641ec01
JB
4042 else if (optimize > 1
4043 && !optimize_for_space
4044 && i.reg_operands == 2
4045 && i.op[0].regs == i.op[1].regs
4046 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4047 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4048 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4049 {
4050 /* Optimize: -O2:
4051 andb %rN, %rN -> testb %rN, %rN
4052 andw %rN, %rN -> testw %rN, %rN
4053 andq %rN, %rN -> testq %rN, %rN
4054 orb %rN, %rN -> testb %rN, %rN
4055 orw %rN, %rN -> testw %rN, %rN
4056 orq %rN, %rN -> testq %rN, %rN
4057
4058 and outside of 64-bit mode
4059
4060 andl %rN, %rN -> testl %rN, %rN
4061 orl %rN, %rN -> testl %rN, %rN
4062 */
4063 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4064 }
99112332 4065 else if (i.reg_operands == 3
b6f8c7c4
L
4066 && i.op[0].regs == i.op[1].regs
4067 && !i.types[2].bitfield.xmmword
4068 && (i.tm.opcode_modifier.vex
7a69eac3 4069 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4070 && !i.rounding
e771e7c9 4071 && is_evex_encoding (&i.tm)
80c34c38 4072 && (i.vec_encoding != vex_encoding_evex
dd22218c 4073 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4074 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4075 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4076 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4077 && ((i.tm.base_opcode == 0x55
4078 || i.tm.base_opcode == 0x6655
4079 || i.tm.base_opcode == 0x66df
4080 || i.tm.base_opcode == 0x57
4081 || i.tm.base_opcode == 0x6657
8305403a
L
4082 || i.tm.base_opcode == 0x66ef
4083 || i.tm.base_opcode == 0x66f8
4084 || i.tm.base_opcode == 0x66f9
4085 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4086 || i.tm.base_opcode == 0x66fb
4087 || i.tm.base_opcode == 0x42
4088 || i.tm.base_opcode == 0x6642
4089 || i.tm.base_opcode == 0x47
4090 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4091 && i.tm.extension_opcode == None))
4092 {
99112332 4093 /* Optimize: -O1:
8305403a
L
4094 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4095 vpsubq and vpsubw:
b6f8c7c4
L
4096 EVEX VOP %zmmM, %zmmM, %zmmN
4097 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4098 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4099 EVEX VOP %ymmM, %ymmM, %ymmN
4100 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4101 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4102 VEX VOP %ymmM, %ymmM, %ymmN
4103 -> VEX VOP %xmmM, %xmmM, %xmmN
4104 VOP, one of vpandn and vpxor:
4105 VEX VOP %ymmM, %ymmM, %ymmN
4106 -> VEX VOP %xmmM, %xmmM, %xmmN
4107 VOP, one of vpandnd and vpandnq:
4108 EVEX VOP %zmmM, %zmmM, %zmmN
4109 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4110 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4111 EVEX VOP %ymmM, %ymmM, %ymmN
4112 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4113 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4114 VOP, one of vpxord and vpxorq:
4115 EVEX VOP %zmmM, %zmmM, %zmmN
4116 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4117 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4118 EVEX VOP %ymmM, %ymmM, %ymmN
4119 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4120 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4121 VOP, one of kxord and kxorq:
4122 VEX VOP %kM, %kM, %kN
4123 -> VEX kxorw %kM, %kM, %kN
4124 VOP, one of kandnd and kandnq:
4125 VEX VOP %kM, %kM, %kN
4126 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4127 */
e771e7c9 4128 if (is_evex_encoding (&i.tm))
b6f8c7c4 4129 {
7b1d7ca1 4130 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4131 {
4132 i.tm.opcode_modifier.vex = VEX128;
4133 i.tm.opcode_modifier.vexw = VEXW0;
4134 i.tm.opcode_modifier.evex = 0;
4135 }
7b1d7ca1 4136 else if (optimize > 1)
dd22218c
L
4137 i.tm.opcode_modifier.evex = EVEX128;
4138 else
4139 return;
b6f8c7c4 4140 }
1424ad86
JB
4141 else if (i.tm.operand_types[0].bitfield.regmask)
4142 {
4143 i.tm.base_opcode &= 0xff;
4144 i.tm.opcode_modifier.vexw = VEXW0;
4145 }
b6f8c7c4
L
4146 else
4147 i.tm.opcode_modifier.vex = VEX128;
4148
4149 if (i.tm.opcode_modifier.vex)
4150 for (j = 0; j < 3; j++)
4151 {
4152 i.types[j].bitfield.xmmword = 1;
4153 i.types[j].bitfield.ymmword = 0;
4154 }
4155 }
392a5972 4156 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4157 && !i.types[0].bitfield.zmmword
392a5972 4158 && !i.types[1].bitfield.zmmword
97ed31ae 4159 && !i.mask
a0a1771e 4160 && !i.broadcast
97ed31ae 4161 && is_evex_encoding (&i.tm)
392a5972
L
4162 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4163 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4164 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4165 || (i.tm.base_opcode & ~4) == 0x66db
4166 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4167 && i.tm.extension_opcode == None)
4168 {
4169 /* Optimize: -O1:
4170 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4171 vmovdqu32 and vmovdqu64:
4172 EVEX VOP %xmmM, %xmmN
4173 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4174 EVEX VOP %ymmM, %ymmN
4175 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4176 EVEX VOP %xmmM, mem
4177 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4178 EVEX VOP %ymmM, mem
4179 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4180 EVEX VOP mem, %xmmN
4181 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4182 EVEX VOP mem, %ymmN
4183 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4184 VOP, one of vpand, vpandn, vpor, vpxor:
4185 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4186 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4187 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4188 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4189 EVEX VOP{d,q} mem, %xmmM, %xmmN
4190 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4191 EVEX VOP{d,q} mem, %ymmM, %ymmN
4192 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4193 */
a0a1771e 4194 for (j = 0; j < i.operands; j++)
392a5972
L
4195 if (operand_type_check (i.types[j], disp)
4196 && i.op[j].disps->X_op == O_constant)
4197 {
4198 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4199 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4200 bytes, we choose EVEX Disp8 over VEX Disp32. */
4201 int evex_disp8, vex_disp8;
4202 unsigned int memshift = i.memshift;
4203 offsetT n = i.op[j].disps->X_add_number;
4204
4205 evex_disp8 = fits_in_disp8 (n);
4206 i.memshift = 0;
4207 vex_disp8 = fits_in_disp8 (n);
4208 if (evex_disp8 != vex_disp8)
4209 {
4210 i.memshift = memshift;
4211 return;
4212 }
4213
4214 i.types[j].bitfield.disp8 = vex_disp8;
4215 break;
4216 }
4217 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4218 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4219 i.tm.opcode_modifier.vex
4220 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4221 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4222 /* VPAND, VPOR, and VPXOR are commutative. */
4223 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4224 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4225 i.tm.opcode_modifier.evex = 0;
4226 i.tm.opcode_modifier.masking = 0;
a0a1771e 4227 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4228 i.tm.opcode_modifier.disp8memshift = 0;
4229 i.memshift = 0;
a0a1771e
JB
4230 if (j < i.operands)
4231 i.types[j].bitfield.disp8
4232 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4233 }
b6f8c7c4
L
4234}
4235
252b5132
RH
4236/* This is the guts of the machine-dependent assembler. LINE points to a
4237 machine dependent instruction. This function is supposed to emit
4238 the frags/bytes it assembles to. */
4239
4240void
65da13b5 4241md_assemble (char *line)
252b5132 4242{
40fb9820 4243 unsigned int j;
83b16ac6 4244 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4245 const insn_template *t;
252b5132 4246
47926f60 4247 /* Initialize globals. */
252b5132
RH
4248 memset (&i, '\0', sizeof (i));
4249 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4250 i.reloc[j] = NO_RELOC;
252b5132
RH
4251 memset (disp_expressions, '\0', sizeof (disp_expressions));
4252 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4253 save_stack_p = save_stack;
252b5132
RH
4254
4255 /* First parse an instruction mnemonic & call i386_operand for the operands.
4256 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4257 start of a (possibly prefixed) mnemonic. */
252b5132 4258
29b0f896
AM
4259 line = parse_insn (line, mnemonic);
4260 if (line == NULL)
4261 return;
83b16ac6 4262 mnem_suffix = i.suffix;
252b5132 4263
29b0f896 4264 line = parse_operands (line, mnemonic);
ee86248c 4265 this_operand = -1;
8325cc63
JB
4266 xfree (i.memop1_string);
4267 i.memop1_string = NULL;
29b0f896
AM
4268 if (line == NULL)
4269 return;
252b5132 4270
29b0f896
AM
4271 /* Now we've parsed the mnemonic into a set of templates, and have the
4272 operands at hand. */
4273
4274 /* All intel opcodes have reversed operands except for "bound" and
4275 "enter". We also don't reverse intersegment "jmp" and "call"
4276 instructions with 2 immediate operands so that the immediate segment
050dfa73 4277 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4278 if (intel_syntax
4279 && i.operands > 1
29b0f896 4280 && (strcmp (mnemonic, "bound") != 0)
30123838 4281 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4282 && !(operand_type_check (i.types[0], imm)
4283 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4284 swap_operands ();
4285
ec56d5c0
JB
4286 /* The order of the immediates should be reversed
4287 for 2 immediates extrq and insertq instructions */
4288 if (i.imm_operands == 2
4289 && (strcmp (mnemonic, "extrq") == 0
4290 || strcmp (mnemonic, "insertq") == 0))
4291 swap_2_operands (0, 1);
4292
29b0f896
AM
4293 if (i.imm_operands)
4294 optimize_imm ();
4295
b300c311
L
4296 /* Don't optimize displacement for movabs since it only takes 64bit
4297 displacement. */
4298 if (i.disp_operands
a501d77e 4299 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4300 && (flag_code != CODE_64BIT
4301 || strcmp (mnemonic, "movabs") != 0))
4302 optimize_disp ();
29b0f896
AM
4303
4304 /* Next, we find a template that matches the given insn,
4305 making sure the overlap of the given operands types is consistent
4306 with the template operand types. */
252b5132 4307
83b16ac6 4308 if (!(t = match_template (mnem_suffix)))
29b0f896 4309 return;
252b5132 4310
7bab8ab5 4311 if (sse_check != check_none
81f8a913 4312 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4313 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4314 && (i.tm.cpu_flags.bitfield.cpusse
4315 || i.tm.cpu_flags.bitfield.cpusse2
4316 || i.tm.cpu_flags.bitfield.cpusse3
4317 || i.tm.cpu_flags.bitfield.cpussse3
4318 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4319 || i.tm.cpu_flags.bitfield.cpusse4_2
4320 || i.tm.cpu_flags.bitfield.cpupclmul
4321 || i.tm.cpu_flags.bitfield.cpuaes
4322 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4323 {
7bab8ab5 4324 (sse_check == check_warning
daf50ae7
L
4325 ? as_warn
4326 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4327 }
4328
321fd21e
L
4329 /* Zap movzx and movsx suffix. The suffix has been set from
4330 "word ptr" or "byte ptr" on the source operand in Intel syntax
4331 or extracted from mnemonic in AT&T syntax. But we'll use
4332 the destination register to choose the suffix for encoding. */
4333 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4334 {
321fd21e
L
4335 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4336 there is no suffix, the default will be byte extension. */
4337 if (i.reg_operands != 2
4338 && !i.suffix
7ab9ffdd 4339 && intel_syntax)
321fd21e
L
4340 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4341
4342 i.suffix = 0;
cd61ebfe 4343 }
24eab124 4344
40fb9820 4345 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4346 if (!add_prefix (FWAIT_OPCODE))
4347 return;
252b5132 4348
d5de92cf
L
4349 /* Check if REP prefix is OK. */
4350 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4351 {
4352 as_bad (_("invalid instruction `%s' after `%s'"),
4353 i.tm.name, i.rep_prefix);
4354 return;
4355 }
4356
c1ba0266
L
4357 /* Check for lock without a lockable instruction. Destination operand
4358 must be memory unless it is xchg (0x86). */
c32fa91d
L
4359 if (i.prefix[LOCK_PREFIX]
4360 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4361 || i.mem_operands == 0
4362 || (i.tm.base_opcode != 0x86
4363 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4364 {
4365 as_bad (_("expecting lockable instruction after `lock'"));
4366 return;
4367 }
4368
7a8655d2
JB
4369 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4370 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4371 {
4372 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4373 return;
4374 }
4375
42164a71 4376 /* Check if HLE prefix is OK. */
165de32a 4377 if (i.hle_prefix && !check_hle ())
42164a71
L
4378 return;
4379
7e8b059b
L
4380 /* Check BND prefix. */
4381 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4382 as_bad (_("expecting valid branch instruction after `bnd'"));
4383
04ef582a 4384 /* Check NOTRACK prefix. */
9fef80d6
L
4385 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4386 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4387
327e8c42
JB
4388 if (i.tm.cpu_flags.bitfield.cpumpx)
4389 {
4390 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4391 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4392 else if (flag_code != CODE_16BIT
4393 ? i.prefix[ADDR_PREFIX]
4394 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4395 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4396 }
7e8b059b
L
4397
4398 /* Insert BND prefix. */
76d3a78a
JB
4399 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4400 {
4401 if (!i.prefix[BND_PREFIX])
4402 add_prefix (BND_PREFIX_OPCODE);
4403 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4404 {
4405 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4406 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4407 }
4408 }
7e8b059b 4409
29b0f896 4410 /* Check string instruction segment overrides. */
40fb9820 4411 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4412 {
4413 if (!check_string ())
5dd0794d 4414 return;
fc0763e6 4415 i.disp_operands = 0;
29b0f896 4416 }
5dd0794d 4417
b6f8c7c4
L
4418 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4419 optimize_encoding ();
4420
29b0f896
AM
4421 if (!process_suffix ())
4422 return;
e413e4e9 4423
bc0844ae
L
4424 /* Update operand types. */
4425 for (j = 0; j < i.operands; j++)
4426 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4427
29b0f896
AM
4428 /* Make still unresolved immediate matches conform to size of immediate
4429 given in i.suffix. */
4430 if (!finalize_imm ())
4431 return;
252b5132 4432
40fb9820 4433 if (i.types[0].bitfield.imm1)
29b0f896 4434 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4435
9afe6eb8
L
4436 /* We only need to check those implicit registers for instructions
4437 with 3 operands or less. */
4438 if (i.operands <= 3)
4439 for (j = 0; j < i.operands; j++)
4440 if (i.types[j].bitfield.inoutportreg
4441 || i.types[j].bitfield.shiftcount
1b54b8d7 4442 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4443 i.reg_operands--;
40fb9820 4444
c0f3af97
L
4445 /* ImmExt should be processed after SSE2AVX. */
4446 if (!i.tm.opcode_modifier.sse2avx
4447 && i.tm.opcode_modifier.immext)
65da13b5 4448 process_immext ();
252b5132 4449
29b0f896
AM
4450 /* For insns with operands there are more diddles to do to the opcode. */
4451 if (i.operands)
4452 {
4453 if (!process_operands ())
4454 return;
4455 }
40fb9820 4456 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4457 {
4458 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4459 as_warn (_("translating to `%sp'"), i.tm.name);
4460 }
252b5132 4461
7a8655d2 4462 if (is_any_vex_encoding (&i.tm))
9e5e5283 4463 {
c1dc7af5 4464 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4465 {
c1dc7af5 4466 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4467 i.tm.name);
4468 return;
4469 }
c0f3af97 4470
9e5e5283
L
4471 if (i.tm.opcode_modifier.vex)
4472 build_vex_prefix (t);
4473 else
4474 build_evex_prefix ();
4475 }
43234a1e 4476
5dd85c99
SP
4477 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4478 instructions may define INT_OPCODE as well, so avoid this corner
4479 case for those instructions that use MODRM. */
4480 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4481 && !i.tm.opcode_modifier.modrm
4482 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4483 {
4484 i.tm.base_opcode = INT3_OPCODE;
4485 i.imm_operands = 0;
4486 }
252b5132 4487
40fb9820
L
4488 if ((i.tm.opcode_modifier.jump
4489 || i.tm.opcode_modifier.jumpbyte
4490 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4491 && i.op[0].disps->X_op == O_constant)
4492 {
4493 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4494 the absolute address given by the constant. Since ix86 jumps and
4495 calls are pc relative, we need to generate a reloc. */
4496 i.op[0].disps->X_add_symbol = &abs_symbol;
4497 i.op[0].disps->X_op = O_symbol;
4498 }
252b5132 4499
40fb9820 4500 if (i.tm.opcode_modifier.rex64)
161a04f6 4501 i.rex |= REX_W;
252b5132 4502
29b0f896
AM
4503 /* For 8 bit registers we need an empty rex prefix. Also if the
4504 instruction already has a prefix, we need to convert old
4505 registers to new ones. */
773f551c 4506
dc821c5f 4507 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4508 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4509 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4510 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4511 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4512 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4513 && i.rex != 0))
4514 {
4515 int x;
726c5dcd 4516
29b0f896
AM
4517 i.rex |= REX_OPCODE;
4518 for (x = 0; x < 2; x++)
4519 {
4520 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4521 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4522 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4523 {
29b0f896
AM
4524 /* In case it is "hi" register, give up. */
4525 if (i.op[x].regs->reg_num > 3)
a540244d 4526 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4527 "instruction requiring REX prefix."),
a540244d 4528 register_prefix, i.op[x].regs->reg_name);
773f551c 4529
29b0f896
AM
4530 /* Otherwise it is equivalent to the extended register.
4531 Since the encoding doesn't change this is merely
4532 cosmetic cleanup for debug output. */
4533
4534 i.op[x].regs = i.op[x].regs + 8;
773f551c 4535 }
29b0f896
AM
4536 }
4537 }
773f551c 4538
6b6b6807
L
4539 if (i.rex == 0 && i.rex_encoding)
4540 {
4541 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4542 that uses legacy register. If it is "hi" register, don't add
4543 the REX_OPCODE byte. */
4544 int x;
4545 for (x = 0; x < 2; x++)
4546 if (i.types[x].bitfield.reg
4547 && i.types[x].bitfield.byte
4548 && (i.op[x].regs->reg_flags & RegRex64) == 0
4549 && i.op[x].regs->reg_num > 3)
4550 {
4551 i.rex_encoding = FALSE;
4552 break;
4553 }
4554
4555 if (i.rex_encoding)
4556 i.rex = REX_OPCODE;
4557 }
4558
7ab9ffdd 4559 if (i.rex != 0)
29b0f896
AM
4560 add_prefix (REX_OPCODE | i.rex);
4561
4562 /* We are ready to output the insn. */
4563 output_insn ();
4564}
4565
4566static char *
e3bb37b5 4567parse_insn (char *line, char *mnemonic)
29b0f896
AM
4568{
4569 char *l = line;
4570 char *token_start = l;
4571 char *mnem_p;
5c6af06e 4572 int supported;
d3ce72d0 4573 const insn_template *t;
b6169b20 4574 char *dot_p = NULL;
29b0f896 4575
29b0f896
AM
4576 while (1)
4577 {
4578 mnem_p = mnemonic;
4579 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4580 {
b6169b20
L
4581 if (*mnem_p == '.')
4582 dot_p = mnem_p;
29b0f896
AM
4583 mnem_p++;
4584 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4585 {
29b0f896
AM
4586 as_bad (_("no such instruction: `%s'"), token_start);
4587 return NULL;
4588 }
4589 l++;
4590 }
4591 if (!is_space_char (*l)
4592 && *l != END_OF_INSN
e44823cf
JB
4593 && (intel_syntax
4594 || (*l != PREFIX_SEPARATOR
4595 && *l != ',')))
29b0f896
AM
4596 {
4597 as_bad (_("invalid character %s in mnemonic"),
4598 output_invalid (*l));
4599 return NULL;
4600 }
4601 if (token_start == l)
4602 {
e44823cf 4603 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4604 as_bad (_("expecting prefix; got nothing"));
4605 else
4606 as_bad (_("expecting mnemonic; got nothing"));
4607 return NULL;
4608 }
45288df1 4609
29b0f896 4610 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4611 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4612
29b0f896
AM
4613 if (*l != END_OF_INSN
4614 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4615 && current_templates
40fb9820 4616 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4617 {
c6fb90c8 4618 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4619 {
4620 as_bad ((flag_code != CODE_64BIT
4621 ? _("`%s' is only supported in 64-bit mode")
4622 : _("`%s' is not supported in 64-bit mode")),
4623 current_templates->start->name);
4624 return NULL;
4625 }
29b0f896
AM
4626 /* If we are in 16-bit mode, do not allow addr16 or data16.
4627 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4628 if ((current_templates->start->opcode_modifier.size == SIZE16
4629 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4630 && flag_code != CODE_64BIT
673fe0f0 4631 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4632 ^ (flag_code == CODE_16BIT)))
4633 {
4634 as_bad (_("redundant %s prefix"),
4635 current_templates->start->name);
4636 return NULL;
45288df1 4637 }
86fa6981 4638 if (current_templates->start->opcode_length == 0)
29b0f896 4639 {
86fa6981
L
4640 /* Handle pseudo prefixes. */
4641 switch (current_templates->start->base_opcode)
4642 {
4643 case 0x0:
4644 /* {disp8} */
4645 i.disp_encoding = disp_encoding_8bit;
4646 break;
4647 case 0x1:
4648 /* {disp32} */
4649 i.disp_encoding = disp_encoding_32bit;
4650 break;
4651 case 0x2:
4652 /* {load} */
4653 i.dir_encoding = dir_encoding_load;
4654 break;
4655 case 0x3:
4656 /* {store} */
4657 i.dir_encoding = dir_encoding_store;
4658 break;
4659 case 0x4:
4660 /* {vex2} */
4661 i.vec_encoding = vex_encoding_vex2;
4662 break;
4663 case 0x5:
4664 /* {vex3} */
4665 i.vec_encoding = vex_encoding_vex3;
4666 break;
4667 case 0x6:
4668 /* {evex} */
4669 i.vec_encoding = vex_encoding_evex;
4670 break;
6b6b6807
L
4671 case 0x7:
4672 /* {rex} */
4673 i.rex_encoding = TRUE;
4674 break;
b6f8c7c4
L
4675 case 0x8:
4676 /* {nooptimize} */
4677 i.no_optimize = TRUE;
4678 break;
86fa6981
L
4679 default:
4680 abort ();
4681 }
4682 }
4683 else
4684 {
4685 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4686 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4687 {
4e9ac44a
L
4688 case PREFIX_EXIST:
4689 return NULL;
4690 case PREFIX_DS:
d777820b 4691 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4692 i.notrack_prefix = current_templates->start->name;
4693 break;
4694 case PREFIX_REP:
4695 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4696 i.hle_prefix = current_templates->start->name;
4697 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4698 i.bnd_prefix = current_templates->start->name;
4699 else
4700 i.rep_prefix = current_templates->start->name;
4701 break;
4702 default:
4703 break;
86fa6981 4704 }
29b0f896
AM
4705 }
4706 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4707 token_start = ++l;
4708 }
4709 else
4710 break;
4711 }
45288df1 4712
30a55f88 4713 if (!current_templates)
b6169b20 4714 {
07d5e953
JB
4715 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4716 Check if we should swap operand or force 32bit displacement in
f8a5c266 4717 encoding. */
30a55f88 4718 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4719 i.dir_encoding = dir_encoding_swap;
8d63c93e 4720 else if (mnem_p - 3 == dot_p
a501d77e
L
4721 && dot_p[1] == 'd'
4722 && dot_p[2] == '8')
4723 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4724 else if (mnem_p - 4 == dot_p
f8a5c266
L
4725 && dot_p[1] == 'd'
4726 && dot_p[2] == '3'
4727 && dot_p[3] == '2')
a501d77e 4728 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4729 else
4730 goto check_suffix;
4731 mnem_p = dot_p;
4732 *dot_p = '\0';
d3ce72d0 4733 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4734 }
4735
29b0f896
AM
4736 if (!current_templates)
4737 {
b6169b20 4738check_suffix:
1c529385 4739 if (mnem_p > mnemonic)
29b0f896 4740 {
1c529385
LH
4741 /* See if we can get a match by trimming off a suffix. */
4742 switch (mnem_p[-1])
29b0f896 4743 {
1c529385
LH
4744 case WORD_MNEM_SUFFIX:
4745 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4746 i.suffix = SHORT_MNEM_SUFFIX;
4747 else
1c529385
LH
4748 /* Fall through. */
4749 case BYTE_MNEM_SUFFIX:
4750 case QWORD_MNEM_SUFFIX:
4751 i.suffix = mnem_p[-1];
29b0f896 4752 mnem_p[-1] = '\0';
d3ce72d0 4753 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4754 mnemonic);
4755 break;
4756 case SHORT_MNEM_SUFFIX:
4757 case LONG_MNEM_SUFFIX:
4758 if (!intel_syntax)
4759 {
4760 i.suffix = mnem_p[-1];
4761 mnem_p[-1] = '\0';
4762 current_templates = (const templates *) hash_find (op_hash,
4763 mnemonic);
4764 }
4765 break;
4766
4767 /* Intel Syntax. */
4768 case 'd':
4769 if (intel_syntax)
4770 {
4771 if (intel_float_operand (mnemonic) == 1)
4772 i.suffix = SHORT_MNEM_SUFFIX;
4773 else
4774 i.suffix = LONG_MNEM_SUFFIX;
4775 mnem_p[-1] = '\0';
4776 current_templates = (const templates *) hash_find (op_hash,
4777 mnemonic);
4778 }
4779 break;
29b0f896 4780 }
29b0f896 4781 }
1c529385 4782
29b0f896
AM
4783 if (!current_templates)
4784 {
4785 as_bad (_("no such instruction: `%s'"), token_start);
4786 return NULL;
4787 }
4788 }
252b5132 4789
40fb9820
L
4790 if (current_templates->start->opcode_modifier.jump
4791 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4792 {
4793 /* Check for a branch hint. We allow ",pt" and ",pn" for
4794 predict taken and predict not taken respectively.
4795 I'm not sure that branch hints actually do anything on loop
4796 and jcxz insns (JumpByte) for current Pentium4 chips. They
4797 may work in the future and it doesn't hurt to accept them
4798 now. */
4799 if (l[0] == ',' && l[1] == 'p')
4800 {
4801 if (l[2] == 't')
4802 {
4803 if (!add_prefix (DS_PREFIX_OPCODE))
4804 return NULL;
4805 l += 3;
4806 }
4807 else if (l[2] == 'n')
4808 {
4809 if (!add_prefix (CS_PREFIX_OPCODE))
4810 return NULL;
4811 l += 3;
4812 }
4813 }
4814 }
4815 /* Any other comma loses. */
4816 if (*l == ',')
4817 {
4818 as_bad (_("invalid character %s in mnemonic"),
4819 output_invalid (*l));
4820 return NULL;
4821 }
252b5132 4822
29b0f896 4823 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4824 supported = 0;
4825 for (t = current_templates->start; t < current_templates->end; ++t)
4826 {
c0f3af97
L
4827 supported |= cpu_flags_match (t);
4828 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4829 {
4830 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4831 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4832
548d0ee6
JB
4833 return l;
4834 }
29b0f896 4835 }
3629bb00 4836
548d0ee6
JB
4837 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4838 as_bad (flag_code == CODE_64BIT
4839 ? _("`%s' is not supported in 64-bit mode")
4840 : _("`%s' is only supported in 64-bit mode"),
4841 current_templates->start->name);
4842 else
4843 as_bad (_("`%s' is not supported on `%s%s'"),
4844 current_templates->start->name,
4845 cpu_arch_name ? cpu_arch_name : default_arch,
4846 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4847
548d0ee6 4848 return NULL;
29b0f896 4849}
252b5132 4850
29b0f896 4851static char *
e3bb37b5 4852parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4853{
4854 char *token_start;
3138f287 4855
29b0f896
AM
4856 /* 1 if operand is pending after ','. */
4857 unsigned int expecting_operand = 0;
252b5132 4858
29b0f896
AM
4859 /* Non-zero if operand parens not balanced. */
4860 unsigned int paren_not_balanced;
4861
4862 while (*l != END_OF_INSN)
4863 {
4864 /* Skip optional white space before operand. */
4865 if (is_space_char (*l))
4866 ++l;
d02603dc 4867 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4868 {
4869 as_bad (_("invalid character %s before operand %d"),
4870 output_invalid (*l),
4871 i.operands + 1);
4872 return NULL;
4873 }
d02603dc 4874 token_start = l; /* After white space. */
29b0f896
AM
4875 paren_not_balanced = 0;
4876 while (paren_not_balanced || *l != ',')
4877 {
4878 if (*l == END_OF_INSN)
4879 {
4880 if (paren_not_balanced)
4881 {
4882 if (!intel_syntax)
4883 as_bad (_("unbalanced parenthesis in operand %d."),
4884 i.operands + 1);
4885 else
4886 as_bad (_("unbalanced brackets in operand %d."),
4887 i.operands + 1);
4888 return NULL;
4889 }
4890 else
4891 break; /* we are done */
4892 }
d02603dc 4893 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4894 {
4895 as_bad (_("invalid character %s in operand %d"),
4896 output_invalid (*l),
4897 i.operands + 1);
4898 return NULL;
4899 }
4900 if (!intel_syntax)
4901 {
4902 if (*l == '(')
4903 ++paren_not_balanced;
4904 if (*l == ')')
4905 --paren_not_balanced;
4906 }
4907 else
4908 {
4909 if (*l == '[')
4910 ++paren_not_balanced;
4911 if (*l == ']')
4912 --paren_not_balanced;
4913 }
4914 l++;
4915 }
4916 if (l != token_start)
4917 { /* Yes, we've read in another operand. */
4918 unsigned int operand_ok;
4919 this_operand = i.operands++;
4920 if (i.operands > MAX_OPERANDS)
4921 {
4922 as_bad (_("spurious operands; (%d operands/instruction max)"),
4923 MAX_OPERANDS);
4924 return NULL;
4925 }
9d46ce34 4926 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4927 /* Now parse operand adding info to 'i' as we go along. */
4928 END_STRING_AND_SAVE (l);
4929
1286ab78
L
4930 if (i.mem_operands > 1)
4931 {
4932 as_bad (_("too many memory references for `%s'"),
4933 mnemonic);
4934 return 0;
4935 }
4936
29b0f896
AM
4937 if (intel_syntax)
4938 operand_ok =
4939 i386_intel_operand (token_start,
4940 intel_float_operand (mnemonic));
4941 else
a7619375 4942 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4943
4944 RESTORE_END_STRING (l);
4945 if (!operand_ok)
4946 return NULL;
4947 }
4948 else
4949 {
4950 if (expecting_operand)
4951 {
4952 expecting_operand_after_comma:
4953 as_bad (_("expecting operand after ','; got nothing"));
4954 return NULL;
4955 }
4956 if (*l == ',')
4957 {
4958 as_bad (_("expecting operand before ','; got nothing"));
4959 return NULL;
4960 }
4961 }
7f3f1ea2 4962
29b0f896
AM
4963 /* Now *l must be either ',' or END_OF_INSN. */
4964 if (*l == ',')
4965 {
4966 if (*++l == END_OF_INSN)
4967 {
4968 /* Just skip it, if it's \n complain. */
4969 goto expecting_operand_after_comma;
4970 }
4971 expecting_operand = 1;
4972 }
4973 }
4974 return l;
4975}
7f3f1ea2 4976
050dfa73 4977static void
4d456e3d 4978swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4979{
4980 union i386_op temp_op;
40fb9820 4981 i386_operand_type temp_type;
c48dadc9 4982 unsigned int temp_flags;
050dfa73 4983 enum bfd_reloc_code_real temp_reloc;
4eed87de 4984
050dfa73
MM
4985 temp_type = i.types[xchg2];
4986 i.types[xchg2] = i.types[xchg1];
4987 i.types[xchg1] = temp_type;
c48dadc9
JB
4988
4989 temp_flags = i.flags[xchg2];
4990 i.flags[xchg2] = i.flags[xchg1];
4991 i.flags[xchg1] = temp_flags;
4992
050dfa73
MM
4993 temp_op = i.op[xchg2];
4994 i.op[xchg2] = i.op[xchg1];
4995 i.op[xchg1] = temp_op;
c48dadc9 4996
050dfa73
MM
4997 temp_reloc = i.reloc[xchg2];
4998 i.reloc[xchg2] = i.reloc[xchg1];
4999 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5000
5001 if (i.mask)
5002 {
5003 if (i.mask->operand == xchg1)
5004 i.mask->operand = xchg2;
5005 else if (i.mask->operand == xchg2)
5006 i.mask->operand = xchg1;
5007 }
5008 if (i.broadcast)
5009 {
5010 if (i.broadcast->operand == xchg1)
5011 i.broadcast->operand = xchg2;
5012 else if (i.broadcast->operand == xchg2)
5013 i.broadcast->operand = xchg1;
5014 }
5015 if (i.rounding)
5016 {
5017 if (i.rounding->operand == xchg1)
5018 i.rounding->operand = xchg2;
5019 else if (i.rounding->operand == xchg2)
5020 i.rounding->operand = xchg1;
5021 }
050dfa73
MM
5022}
5023
29b0f896 5024static void
e3bb37b5 5025swap_operands (void)
29b0f896 5026{
b7c61d9a 5027 switch (i.operands)
050dfa73 5028 {
c0f3af97 5029 case 5:
b7c61d9a 5030 case 4:
4d456e3d 5031 swap_2_operands (1, i.operands - 2);
1a0670f3 5032 /* Fall through. */
b7c61d9a
L
5033 case 3:
5034 case 2:
4d456e3d 5035 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5036 break;
5037 default:
5038 abort ();
29b0f896 5039 }
29b0f896
AM
5040
5041 if (i.mem_operands == 2)
5042 {
5043 const seg_entry *temp_seg;
5044 temp_seg = i.seg[0];
5045 i.seg[0] = i.seg[1];
5046 i.seg[1] = temp_seg;
5047 }
5048}
252b5132 5049
29b0f896
AM
5050/* Try to ensure constant immediates are represented in the smallest
5051 opcode possible. */
5052static void
e3bb37b5 5053optimize_imm (void)
29b0f896
AM
5054{
5055 char guess_suffix = 0;
5056 int op;
252b5132 5057
29b0f896
AM
5058 if (i.suffix)
5059 guess_suffix = i.suffix;
5060 else if (i.reg_operands)
5061 {
5062 /* Figure out a suffix from the last register operand specified.
5063 We can't do this properly yet, ie. excluding InOutPortReg,
5064 but the following works for instructions with immediates.
5065 In any case, we can't set i.suffix yet. */
5066 for (op = i.operands; --op >= 0;)
dc821c5f 5067 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5068 {
40fb9820
L
5069 guess_suffix = BYTE_MNEM_SUFFIX;
5070 break;
5071 }
dc821c5f 5072 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5073 {
40fb9820
L
5074 guess_suffix = WORD_MNEM_SUFFIX;
5075 break;
5076 }
dc821c5f 5077 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5078 {
5079 guess_suffix = LONG_MNEM_SUFFIX;
5080 break;
5081 }
dc821c5f 5082 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5083 {
5084 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5085 break;
252b5132 5086 }
29b0f896
AM
5087 }
5088 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5089 guess_suffix = WORD_MNEM_SUFFIX;
5090
5091 for (op = i.operands; --op >= 0;)
40fb9820 5092 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5093 {
5094 switch (i.op[op].imms->X_op)
252b5132 5095 {
29b0f896
AM
5096 case O_constant:
5097 /* If a suffix is given, this operand may be shortened. */
5098 switch (guess_suffix)
252b5132 5099 {
29b0f896 5100 case LONG_MNEM_SUFFIX:
40fb9820
L
5101 i.types[op].bitfield.imm32 = 1;
5102 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5103 break;
5104 case WORD_MNEM_SUFFIX:
40fb9820
L
5105 i.types[op].bitfield.imm16 = 1;
5106 i.types[op].bitfield.imm32 = 1;
5107 i.types[op].bitfield.imm32s = 1;
5108 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5109 break;
5110 case BYTE_MNEM_SUFFIX:
40fb9820
L
5111 i.types[op].bitfield.imm8 = 1;
5112 i.types[op].bitfield.imm8s = 1;
5113 i.types[op].bitfield.imm16 = 1;
5114 i.types[op].bitfield.imm32 = 1;
5115 i.types[op].bitfield.imm32s = 1;
5116 i.types[op].bitfield.imm64 = 1;
29b0f896 5117 break;
252b5132 5118 }
252b5132 5119
29b0f896
AM
5120 /* If this operand is at most 16 bits, convert it
5121 to a signed 16 bit number before trying to see
5122 whether it will fit in an even smaller size.
5123 This allows a 16-bit operand such as $0xffe0 to
5124 be recognised as within Imm8S range. */
40fb9820 5125 if ((i.types[op].bitfield.imm16)
29b0f896 5126 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5127 {
29b0f896
AM
5128 i.op[op].imms->X_add_number =
5129 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5130 }
a28def75
L
5131#ifdef BFD64
5132 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5133 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5134 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5135 == 0))
5136 {
5137 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5138 ^ ((offsetT) 1 << 31))
5139 - ((offsetT) 1 << 31));
5140 }
a28def75 5141#endif
40fb9820 5142 i.types[op]
c6fb90c8
L
5143 = operand_type_or (i.types[op],
5144 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5145
29b0f896
AM
5146 /* We must avoid matching of Imm32 templates when 64bit
5147 only immediate is available. */
5148 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5149 i.types[op].bitfield.imm32 = 0;
29b0f896 5150 break;
252b5132 5151
29b0f896
AM
5152 case O_absent:
5153 case O_register:
5154 abort ();
5155
5156 /* Symbols and expressions. */
5157 default:
9cd96992
JB
5158 /* Convert symbolic operand to proper sizes for matching, but don't
5159 prevent matching a set of insns that only supports sizes other
5160 than those matching the insn suffix. */
5161 {
40fb9820 5162 i386_operand_type mask, allowed;
d3ce72d0 5163 const insn_template *t;
9cd96992 5164
0dfbf9d7
L
5165 operand_type_set (&mask, 0);
5166 operand_type_set (&allowed, 0);
40fb9820 5167
4eed87de
AM
5168 for (t = current_templates->start;
5169 t < current_templates->end;
5170 ++t)
c6fb90c8
L
5171 allowed = operand_type_or (allowed,
5172 t->operand_types[op]);
9cd96992
JB
5173 switch (guess_suffix)
5174 {
5175 case QWORD_MNEM_SUFFIX:
40fb9820
L
5176 mask.bitfield.imm64 = 1;
5177 mask.bitfield.imm32s = 1;
9cd96992
JB
5178 break;
5179 case LONG_MNEM_SUFFIX:
40fb9820 5180 mask.bitfield.imm32 = 1;
9cd96992
JB
5181 break;
5182 case WORD_MNEM_SUFFIX:
40fb9820 5183 mask.bitfield.imm16 = 1;
9cd96992
JB
5184 break;
5185 case BYTE_MNEM_SUFFIX:
40fb9820 5186 mask.bitfield.imm8 = 1;
9cd96992
JB
5187 break;
5188 default:
9cd96992
JB
5189 break;
5190 }
c6fb90c8 5191 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5192 if (!operand_type_all_zero (&allowed))
c6fb90c8 5193 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5194 }
29b0f896 5195 break;
252b5132 5196 }
29b0f896
AM
5197 }
5198}
47926f60 5199
29b0f896
AM
5200/* Try to use the smallest displacement type too. */
5201static void
e3bb37b5 5202optimize_disp (void)
29b0f896
AM
5203{
5204 int op;
3e73aa7c 5205
29b0f896 5206 for (op = i.operands; --op >= 0;)
40fb9820 5207 if (operand_type_check (i.types[op], disp))
252b5132 5208 {
b300c311 5209 if (i.op[op].disps->X_op == O_constant)
252b5132 5210 {
91d6fa6a 5211 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5212
40fb9820 5213 if (i.types[op].bitfield.disp16
91d6fa6a 5214 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5215 {
5216 /* If this operand is at most 16 bits, convert
5217 to a signed 16 bit number and don't use 64bit
5218 displacement. */
91d6fa6a 5219 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5220 i.types[op].bitfield.disp64 = 0;
b300c311 5221 }
a28def75
L
5222#ifdef BFD64
5223 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5224 if (i.types[op].bitfield.disp32
91d6fa6a 5225 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5226 {
5227 /* If this operand is at most 32 bits, convert
5228 to a signed 32 bit number and don't use 64bit
5229 displacement. */
91d6fa6a
NC
5230 op_disp &= (((offsetT) 2 << 31) - 1);
5231 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5232 i.types[op].bitfield.disp64 = 0;
b300c311 5233 }
a28def75 5234#endif
91d6fa6a 5235 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5236 {
40fb9820
L
5237 i.types[op].bitfield.disp8 = 0;
5238 i.types[op].bitfield.disp16 = 0;
5239 i.types[op].bitfield.disp32 = 0;
5240 i.types[op].bitfield.disp32s = 0;
5241 i.types[op].bitfield.disp64 = 0;
b300c311
L
5242 i.op[op].disps = 0;
5243 i.disp_operands--;
5244 }
5245 else if (flag_code == CODE_64BIT)
5246 {
91d6fa6a 5247 if (fits_in_signed_long (op_disp))
28a9d8f5 5248 {
40fb9820
L
5249 i.types[op].bitfield.disp64 = 0;
5250 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5251 }
0e1147d9 5252 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5253 && fits_in_unsigned_long (op_disp))
40fb9820 5254 i.types[op].bitfield.disp32 = 1;
b300c311 5255 }
40fb9820
L
5256 if ((i.types[op].bitfield.disp32
5257 || i.types[op].bitfield.disp32s
5258 || i.types[op].bitfield.disp16)
b5014f7a 5259 && fits_in_disp8 (op_disp))
40fb9820 5260 i.types[op].bitfield.disp8 = 1;
252b5132 5261 }
67a4f2b7
AO
5262 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5263 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5264 {
5265 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5266 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5267 i.types[op].bitfield.disp8 = 0;
5268 i.types[op].bitfield.disp16 = 0;
5269 i.types[op].bitfield.disp32 = 0;
5270 i.types[op].bitfield.disp32s = 0;
5271 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5272 }
5273 else
b300c311 5274 /* We only support 64bit displacement on constants. */
40fb9820 5275 i.types[op].bitfield.disp64 = 0;
252b5132 5276 }
29b0f896
AM
5277}
5278
4a1b91ea
L
5279/* Return 1 if there is a match in broadcast bytes between operand
5280 GIVEN and instruction template T. */
5281
5282static INLINE int
5283match_broadcast_size (const insn_template *t, unsigned int given)
5284{
5285 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5286 && i.types[given].bitfield.byte)
5287 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5288 && i.types[given].bitfield.word)
5289 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5290 && i.types[given].bitfield.dword)
5291 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5292 && i.types[given].bitfield.qword));
5293}
5294
6c30d220
L
5295/* Check if operands are valid for the instruction. */
5296
5297static int
5298check_VecOperands (const insn_template *t)
5299{
43234a1e 5300 unsigned int op;
e2195274
JB
5301 i386_cpu_flags cpu;
5302 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5303
5304 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5305 any one operand are implicity requiring AVX512VL support if the actual
5306 operand size is YMMword or XMMword. Since this function runs after
5307 template matching, there's no need to check for YMMword/XMMword in
5308 the template. */
5309 cpu = cpu_flags_and (t->cpu_flags, avx512);
5310 if (!cpu_flags_all_zero (&cpu)
5311 && !t->cpu_flags.bitfield.cpuavx512vl
5312 && !cpu_arch_flags.bitfield.cpuavx512vl)
5313 {
5314 for (op = 0; op < t->operands; ++op)
5315 {
5316 if (t->operand_types[op].bitfield.zmmword
5317 && (i.types[op].bitfield.ymmword
5318 || i.types[op].bitfield.xmmword))
5319 {
5320 i.error = unsupported;
5321 return 1;
5322 }
5323 }
5324 }
43234a1e 5325
6c30d220
L
5326 /* Without VSIB byte, we can't have a vector register for index. */
5327 if (!t->opcode_modifier.vecsib
5328 && i.index_reg
1b54b8d7
JB
5329 && (i.index_reg->reg_type.bitfield.xmmword
5330 || i.index_reg->reg_type.bitfield.ymmword
5331 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5332 {
5333 i.error = unsupported_vector_index_register;
5334 return 1;
5335 }
5336
ad8ecc81
MZ
5337 /* Check if default mask is allowed. */
5338 if (t->opcode_modifier.nodefmask
5339 && (!i.mask || i.mask->mask->reg_num == 0))
5340 {
5341 i.error = no_default_mask;
5342 return 1;
5343 }
5344
7bab8ab5
JB
5345 /* For VSIB byte, we need a vector register for index, and all vector
5346 registers must be distinct. */
5347 if (t->opcode_modifier.vecsib)
5348 {
5349 if (!i.index_reg
6c30d220 5350 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5351 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5352 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5353 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5354 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5355 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5356 {
5357 i.error = invalid_vsib_address;
5358 return 1;
5359 }
5360
43234a1e
L
5361 gas_assert (i.reg_operands == 2 || i.mask);
5362 if (i.reg_operands == 2 && !i.mask)
5363 {
1b54b8d7
JB
5364 gas_assert (i.types[0].bitfield.regsimd);
5365 gas_assert (i.types[0].bitfield.xmmword
5366 || i.types[0].bitfield.ymmword);
5367 gas_assert (i.types[2].bitfield.regsimd);
5368 gas_assert (i.types[2].bitfield.xmmword
5369 || i.types[2].bitfield.ymmword);
43234a1e
L
5370 if (operand_check == check_none)
5371 return 0;
5372 if (register_number (i.op[0].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[2].regs)
5375 != register_number (i.index_reg)
5376 && register_number (i.op[0].regs)
5377 != register_number (i.op[2].regs))
5378 return 0;
5379 if (operand_check == check_error)
5380 {
5381 i.error = invalid_vector_register_set;
5382 return 1;
5383 }
5384 as_warn (_("mask, index, and destination registers should be distinct"));
5385 }
8444f82a
MZ
5386 else if (i.reg_operands == 1 && i.mask)
5387 {
1b54b8d7
JB
5388 if (i.types[1].bitfield.regsimd
5389 && (i.types[1].bitfield.xmmword
5390 || i.types[1].bitfield.ymmword
5391 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5392 && (register_number (i.op[1].regs)
5393 == register_number (i.index_reg)))
5394 {
5395 if (operand_check == check_error)
5396 {
5397 i.error = invalid_vector_register_set;
5398 return 1;
5399 }
5400 if (operand_check != check_none)
5401 as_warn (_("index and destination registers should be distinct"));
5402 }
5403 }
43234a1e 5404 }
7bab8ab5 5405
43234a1e
L
5406 /* Check if broadcast is supported by the instruction and is applied
5407 to the memory operand. */
5408 if (i.broadcast)
5409 {
8e6e0792 5410 i386_operand_type type, overlap;
43234a1e
L
5411
5412 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5413 and its broadcast bytes match the memory operand. */
32546502 5414 op = i.broadcast->operand;
8e6e0792 5415 if (!t->opcode_modifier.broadcast
c48dadc9 5416 || !(i.flags[op] & Operand_Mem)
c39e5b26 5417 || (!i.types[op].bitfield.unspecified
4a1b91ea 5418 && !match_broadcast_size (t, op)))
43234a1e
L
5419 {
5420 bad_broadcast:
5421 i.error = unsupported_broadcast;
5422 return 1;
5423 }
8e6e0792 5424
4a1b91ea
L
5425 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5426 * i.broadcast->type);
8e6e0792 5427 operand_type_set (&type, 0);
4a1b91ea 5428 switch (i.broadcast->bytes)
8e6e0792 5429 {
4a1b91ea
L
5430 case 2:
5431 type.bitfield.word = 1;
5432 break;
5433 case 4:
5434 type.bitfield.dword = 1;
5435 break;
8e6e0792
JB
5436 case 8:
5437 type.bitfield.qword = 1;
5438 break;
5439 case 16:
5440 type.bitfield.xmmword = 1;
5441 break;
5442 case 32:
5443 type.bitfield.ymmword = 1;
5444 break;
5445 case 64:
5446 type.bitfield.zmmword = 1;
5447 break;
5448 default:
5449 goto bad_broadcast;
5450 }
5451
5452 overlap = operand_type_and (type, t->operand_types[op]);
5453 if (operand_type_all_zero (&overlap))
5454 goto bad_broadcast;
5455
5456 if (t->opcode_modifier.checkregsize)
5457 {
5458 unsigned int j;
5459
e2195274 5460 type.bitfield.baseindex = 1;
8e6e0792
JB
5461 for (j = 0; j < i.operands; ++j)
5462 {
5463 if (j != op
5464 && !operand_type_register_match(i.types[j],
5465 t->operand_types[j],
5466 type,
5467 t->operand_types[op]))
5468 goto bad_broadcast;
5469 }
5470 }
43234a1e
L
5471 }
5472 /* If broadcast is supported in this instruction, we need to check if
5473 operand of one-element size isn't specified without broadcast. */
5474 else if (t->opcode_modifier.broadcast && i.mem_operands)
5475 {
5476 /* Find memory operand. */
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 break;
5480 gas_assert (op < i.operands);
5481 /* Check size of the memory operand. */
4a1b91ea 5482 if (match_broadcast_size (t, op))
43234a1e
L
5483 {
5484 i.error = broadcast_needed;
5485 return 1;
5486 }
5487 }
c39e5b26
JB
5488 else
5489 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5490
5491 /* Check if requested masking is supported. */
ae2387fe 5492 if (i.mask)
43234a1e 5493 {
ae2387fe
JB
5494 switch (t->opcode_modifier.masking)
5495 {
5496 case BOTH_MASKING:
5497 break;
5498 case MERGING_MASKING:
5499 if (i.mask->zeroing)
5500 {
5501 case 0:
5502 i.error = unsupported_masking;
5503 return 1;
5504 }
5505 break;
5506 case DYNAMIC_MASKING:
5507 /* Memory destinations allow only merging masking. */
5508 if (i.mask->zeroing && i.mem_operands)
5509 {
5510 /* Find memory operand. */
5511 for (op = 0; op < i.operands; op++)
c48dadc9 5512 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5513 break;
5514 gas_assert (op < i.operands);
5515 if (op == i.operands - 1)
5516 {
5517 i.error = unsupported_masking;
5518 return 1;
5519 }
5520 }
5521 break;
5522 default:
5523 abort ();
5524 }
43234a1e
L
5525 }
5526
5527 /* Check if masking is applied to dest operand. */
5528 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5529 {
5530 i.error = mask_not_on_destination;
5531 return 1;
5532 }
5533
43234a1e
L
5534 /* Check RC/SAE. */
5535 if (i.rounding)
5536 {
a80195f1
JB
5537 if (!t->opcode_modifier.sae
5538 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5539 {
5540 i.error = unsupported_rc_sae;
5541 return 1;
5542 }
5543 /* If the instruction has several immediate operands and one of
5544 them is rounding, the rounding operand should be the last
5545 immediate operand. */
5546 if (i.imm_operands > 1
5547 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5548 {
43234a1e 5549 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5550 return 1;
5551 }
6c30d220
L
5552 }
5553
43234a1e 5554 /* Check vector Disp8 operand. */
b5014f7a
JB
5555 if (t->opcode_modifier.disp8memshift
5556 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5557 {
5558 if (i.broadcast)
4a1b91ea 5559 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5560 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5561 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5562 else
5563 {
5564 const i386_operand_type *type = NULL;
5565
5566 i.memshift = 0;
5567 for (op = 0; op < i.operands; op++)
5568 if (operand_type_check (i.types[op], anymem))
5569 {
4174bfff
JB
5570 if (t->opcode_modifier.evex == EVEXLIG)
5571 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5572 else if (t->operand_types[op].bitfield.xmmword
5573 + t->operand_types[op].bitfield.ymmword
5574 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5575 type = &t->operand_types[op];
5576 else if (!i.types[op].bitfield.unspecified)
5577 type = &i.types[op];
5578 }
4174bfff
JB
5579 else if (i.types[op].bitfield.regsimd
5580 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5581 {
5582 if (i.types[op].bitfield.zmmword)
5583 i.memshift = 6;
5584 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5585 i.memshift = 5;
5586 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5587 i.memshift = 4;
5588 }
5589
5590 if (type)
5591 {
5592 if (type->bitfield.zmmword)
5593 i.memshift = 6;
5594 else if (type->bitfield.ymmword)
5595 i.memshift = 5;
5596 else if (type->bitfield.xmmword)
5597 i.memshift = 4;
5598 }
5599
5600 /* For the check in fits_in_disp8(). */
5601 if (i.memshift == 0)
5602 i.memshift = -1;
5603 }
43234a1e
L
5604
5605 for (op = 0; op < i.operands; op++)
5606 if (operand_type_check (i.types[op], disp)
5607 && i.op[op].disps->X_op == O_constant)
5608 {
b5014f7a 5609 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5610 {
b5014f7a
JB
5611 i.types[op].bitfield.disp8 = 1;
5612 return 0;
43234a1e 5613 }
b5014f7a 5614 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5615 }
5616 }
b5014f7a
JB
5617
5618 i.memshift = 0;
43234a1e 5619
6c30d220
L
5620 return 0;
5621}
5622
43f3e2ee 5623/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5624 operand types. */
5625
5626static int
5627VEX_check_operands (const insn_template *t)
5628{
86fa6981 5629 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5630 {
86fa6981 5631 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5632 if (!is_evex_encoding (t))
86fa6981
L
5633 {
5634 i.error = unsupported;
5635 return 1;
5636 }
5637 return 0;
43234a1e
L
5638 }
5639
a683cc34 5640 if (!t->opcode_modifier.vex)
86fa6981
L
5641 {
5642 /* This instruction template doesn't have VEX prefix. */
5643 if (i.vec_encoding != vex_encoding_default)
5644 {
5645 i.error = unsupported;
5646 return 1;
5647 }
5648 return 0;
5649 }
a683cc34 5650
9d3bf266
JB
5651 /* Check the special Imm4 cases; must be the first operand. */
5652 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5653 {
5654 if (i.op[0].imms->X_op != O_constant
5655 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5656 {
a65babc9 5657 i.error = bad_imm4;
891edac4
L
5658 return 1;
5659 }
a683cc34 5660
9d3bf266
JB
5661 /* Turn off Imm<N> so that update_imm won't complain. */
5662 operand_type_set (&i.types[0], 0);
a683cc34
SP
5663 }
5664
5665 return 0;
5666}
5667
d3ce72d0 5668static const insn_template *
83b16ac6 5669match_template (char mnem_suffix)
29b0f896
AM
5670{
5671 /* Points to template once we've found it. */
d3ce72d0 5672 const insn_template *t;
40fb9820 5673 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5674 i386_operand_type overlap4;
29b0f896 5675 unsigned int found_reverse_match;
83b16ac6 5676 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5677 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5678 int addr_prefix_disp;
a5c311ca 5679 unsigned int j;
3ac21baa 5680 unsigned int found_cpu_match, size_match;
45664ddb 5681 unsigned int check_register;
5614d22c 5682 enum i386_error specific_error = 0;
29b0f896 5683
c0f3af97
L
5684#if MAX_OPERANDS != 5
5685# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5686#endif
5687
29b0f896 5688 found_reverse_match = 0;
539e75ad 5689 addr_prefix_disp = -1;
40fb9820
L
5690
5691 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5692 if (intel_syntax && i.broadcast)
5693 /* nothing */;
5694 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5695 suffix_check.no_bsuf = 1;
5696 else if (i.suffix == WORD_MNEM_SUFFIX)
5697 suffix_check.no_wsuf = 1;
5698 else if (i.suffix == SHORT_MNEM_SUFFIX)
5699 suffix_check.no_ssuf = 1;
5700 else if (i.suffix == LONG_MNEM_SUFFIX)
5701 suffix_check.no_lsuf = 1;
5702 else if (i.suffix == QWORD_MNEM_SUFFIX)
5703 suffix_check.no_qsuf = 1;
5704 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5705 suffix_check.no_ldsuf = 1;
29b0f896 5706
83b16ac6
JB
5707 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5708 if (intel_syntax)
5709 {
5710 switch (mnem_suffix)
5711 {
5712 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5713 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5714 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5715 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5716 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5717 }
5718 }
5719
01559ecc
L
5720 /* Must have right number of operands. */
5721 i.error = number_of_operands_mismatch;
5722
45aa61fe 5723 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5724 {
539e75ad 5725 addr_prefix_disp = -1;
dbbc8b7e 5726 found_reverse_match = 0;
539e75ad 5727
29b0f896
AM
5728 if (i.operands != t->operands)
5729 continue;
5730
50aecf8c 5731 /* Check processor support. */
a65babc9 5732 i.error = unsupported;
c0f3af97
L
5733 found_cpu_match = (cpu_flags_match (t)
5734 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5735 if (!found_cpu_match)
5736 continue;
5737
e1d4d893 5738 /* Check AT&T mnemonic. */
a65babc9 5739 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5740 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5741 continue;
5742
e92bae62 5743 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5744 i.error = unsupported_syntax;
5c07affc 5745 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5746 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5747 || (intel64 && t->opcode_modifier.amd64)
5748 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5749 continue;
5750
20592a94 5751 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5752 i.error = invalid_instruction_suffix;
567e4e96
L
5753 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5754 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5755 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5756 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5757 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5758 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5759 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5760 continue;
83b16ac6
JB
5761 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5762 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5763 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5764 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5765 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5766 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5767 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5768 continue;
29b0f896 5769
3ac21baa
JB
5770 size_match = operand_size_match (t);
5771 if (!size_match)
7d5e4556 5772 continue;
539e75ad 5773
5c07affc
L
5774 for (j = 0; j < MAX_OPERANDS; j++)
5775 operand_types[j] = t->operand_types[j];
5776
45aa61fe
AM
5777 /* In general, don't allow 64-bit operands in 32-bit mode. */
5778 if (i.suffix == QWORD_MNEM_SUFFIX
5779 && flag_code != CODE_64BIT
5780 && (intel_syntax
40fb9820 5781 ? (!t->opcode_modifier.ignoresize
625cbd7a 5782 && !t->opcode_modifier.broadcast
45aa61fe
AM
5783 && !intel_float_operand (t->name))
5784 : intel_float_operand (t->name) != 2)
40fb9820 5785 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5786 && !operand_types[0].bitfield.regsimd)
40fb9820 5787 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5788 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5789 && (t->base_opcode != 0x0fc7
5790 || t->extension_opcode != 1 /* cmpxchg8b */))
5791 continue;
5792
192dc9c6
JB
5793 /* In general, don't allow 32-bit operands on pre-386. */
5794 else if (i.suffix == LONG_MNEM_SUFFIX
5795 && !cpu_arch_flags.bitfield.cpui386
5796 && (intel_syntax
5797 ? (!t->opcode_modifier.ignoresize
5798 && !intel_float_operand (t->name))
5799 : intel_float_operand (t->name) != 2)
5800 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5801 && !operand_types[0].bitfield.regsimd)
192dc9c6 5802 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5803 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5804 continue;
5805
29b0f896 5806 /* Do not verify operands when there are none. */
50aecf8c 5807 else
29b0f896 5808 {
c6fb90c8 5809 if (!t->operands)
2dbab7d5
L
5810 /* We've found a match; break out of loop. */
5811 break;
29b0f896 5812 }
252b5132 5813
539e75ad
L
5814 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5815 into Disp32/Disp16/Disp32 operand. */
5816 if (i.prefix[ADDR_PREFIX] != 0)
5817 {
40fb9820 5818 /* There should be only one Disp operand. */
539e75ad
L
5819 switch (flag_code)
5820 {
5821 case CODE_16BIT:
40fb9820
L
5822 for (j = 0; j < MAX_OPERANDS; j++)
5823 {
5824 if (operand_types[j].bitfield.disp16)
5825 {
5826 addr_prefix_disp = j;
5827 operand_types[j].bitfield.disp32 = 1;
5828 operand_types[j].bitfield.disp16 = 0;
5829 break;
5830 }
5831 }
539e75ad
L
5832 break;
5833 case CODE_32BIT:
40fb9820
L
5834 for (j = 0; j < MAX_OPERANDS; j++)
5835 {
5836 if (operand_types[j].bitfield.disp32)
5837 {
5838 addr_prefix_disp = j;
5839 operand_types[j].bitfield.disp32 = 0;
5840 operand_types[j].bitfield.disp16 = 1;
5841 break;
5842 }
5843 }
539e75ad
L
5844 break;
5845 case CODE_64BIT:
40fb9820
L
5846 for (j = 0; j < MAX_OPERANDS; j++)
5847 {
5848 if (operand_types[j].bitfield.disp64)
5849 {
5850 addr_prefix_disp = j;
5851 operand_types[j].bitfield.disp64 = 0;
5852 operand_types[j].bitfield.disp32 = 1;
5853 break;
5854 }
5855 }
539e75ad
L
5856 break;
5857 }
539e75ad
L
5858 }
5859
02a86693
L
5860 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5861 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5862 continue;
5863
56ffb741 5864 /* We check register size if needed. */
e2195274
JB
5865 if (t->opcode_modifier.checkregsize)
5866 {
5867 check_register = (1 << t->operands) - 1;
5868 if (i.broadcast)
5869 check_register &= ~(1 << i.broadcast->operand);
5870 }
5871 else
5872 check_register = 0;
5873
c6fb90c8 5874 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5875 switch (t->operands)
5876 {
5877 case 1:
40fb9820 5878 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5879 continue;
5880 break;
5881 case 2:
33eaf5de 5882 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5883 only in 32bit mode and we can use opcode 0x90. In 64bit
5884 mode, we can't use 0x90 for xchg %eax, %eax since it should
5885 zero-extend %eax to %rax. */
5886 if (flag_code == CODE_64BIT
5887 && t->base_opcode == 0x90
2c703856
JB
5888 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5889 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5890 continue;
1212781b
JB
5891 /* xrelease mov %eax, <disp> is another special case. It must not
5892 match the accumulator-only encoding of mov. */
5893 if (flag_code != CODE_64BIT
5894 && i.hle_prefix
5895 && t->base_opcode == 0xa0
5896 && i.types[0].bitfield.acc
5897 && operand_type_check (i.types[1], anymem))
5898 continue;
f5eb1d70
JB
5899 /* Fall through. */
5900
5901 case 3:
3ac21baa
JB
5902 if (!(size_match & MATCH_STRAIGHT))
5903 goto check_reverse;
64c49ab3
JB
5904 /* Reverse direction of operands if swapping is possible in the first
5905 place (operands need to be symmetric) and
5906 - the load form is requested, and the template is a store form,
5907 - the store form is requested, and the template is a load form,
5908 - the non-default (swapped) form is requested. */
5909 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5910 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5911 && !operand_type_all_zero (&overlap1))
5912 switch (i.dir_encoding)
5913 {
5914 case dir_encoding_load:
5915 if (operand_type_check (operand_types[i.operands - 1], anymem)
5916 || operand_types[i.operands - 1].bitfield.regmem)
5917 goto check_reverse;
5918 break;
5919
5920 case dir_encoding_store:
5921 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5922 && !operand_types[i.operands - 1].bitfield.regmem)
5923 goto check_reverse;
5924 break;
5925
5926 case dir_encoding_swap:
5927 goto check_reverse;
5928
5929 case dir_encoding_default:
5930 break;
5931 }
86fa6981 5932 /* If we want store form, we skip the current load. */
64c49ab3
JB
5933 if ((i.dir_encoding == dir_encoding_store
5934 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5935 && i.mem_operands == 0
5936 && t->opcode_modifier.load)
fa99fab2 5937 continue;
1a0670f3 5938 /* Fall through. */
f48ff2ae 5939 case 4:
c0f3af97 5940 case 5:
c6fb90c8 5941 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5942 if (!operand_type_match (overlap0, i.types[0])
5943 || !operand_type_match (overlap1, i.types[1])
e2195274 5944 || ((check_register & 3) == 3
dc821c5f 5945 && !operand_type_register_match (i.types[0],
40fb9820 5946 operand_types[0],
dc821c5f 5947 i.types[1],
40fb9820 5948 operand_types[1])))
29b0f896
AM
5949 {
5950 /* Check if other direction is valid ... */
38e314eb 5951 if (!t->opcode_modifier.d)
29b0f896
AM
5952 continue;
5953
b6169b20 5954check_reverse:
3ac21baa
JB
5955 if (!(size_match & MATCH_REVERSE))
5956 continue;
29b0f896 5957 /* Try reversing direction of operands. */
f5eb1d70
JB
5958 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5959 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5960 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5961 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5962 || (check_register
dc821c5f 5963 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5964 operand_types[i.operands - 1],
5965 i.types[i.operands - 1],
45664ddb 5966 operand_types[0])))
29b0f896
AM
5967 {
5968 /* Does not match either direction. */
5969 continue;
5970 }
38e314eb 5971 /* found_reverse_match holds which of D or FloatR
29b0f896 5972 we've found. */
38e314eb
JB
5973 if (!t->opcode_modifier.d)
5974 found_reverse_match = 0;
5975 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5976 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5977 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5978 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5979 || operand_types[0].bitfield.regmmx
f5eb1d70 5980 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5981 || is_any_vex_encoding(t))
5982 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5983 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5984 else
38e314eb 5985 found_reverse_match = Opcode_D;
40fb9820 5986 if (t->opcode_modifier.floatr)
8a2ed489 5987 found_reverse_match |= Opcode_FloatR;
29b0f896 5988 }
f48ff2ae 5989 else
29b0f896 5990 {
f48ff2ae 5991 /* Found a forward 2 operand match here. */
d1cbb4db
L
5992 switch (t->operands)
5993 {
c0f3af97
L
5994 case 5:
5995 overlap4 = operand_type_and (i.types[4],
5996 operand_types[4]);
1a0670f3 5997 /* Fall through. */
d1cbb4db 5998 case 4:
c6fb90c8
L
5999 overlap3 = operand_type_and (i.types[3],
6000 operand_types[3]);
1a0670f3 6001 /* Fall through. */
d1cbb4db 6002 case 3:
c6fb90c8
L
6003 overlap2 = operand_type_and (i.types[2],
6004 operand_types[2]);
d1cbb4db
L
6005 break;
6006 }
29b0f896 6007
f48ff2ae
L
6008 switch (t->operands)
6009 {
c0f3af97
L
6010 case 5:
6011 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6012 || !operand_type_register_match (i.types[3],
c0f3af97 6013 operand_types[3],
c0f3af97
L
6014 i.types[4],
6015 operand_types[4]))
6016 continue;
1a0670f3 6017 /* Fall through. */
f48ff2ae 6018 case 4:
40fb9820 6019 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6020 || ((check_register & 0xa) == 0xa
6021 && !operand_type_register_match (i.types[1],
f7768225
JB
6022 operand_types[1],
6023 i.types[3],
e2195274
JB
6024 operand_types[3]))
6025 || ((check_register & 0xc) == 0xc
6026 && !operand_type_register_match (i.types[2],
6027 operand_types[2],
6028 i.types[3],
6029 operand_types[3])))
f48ff2ae 6030 continue;
1a0670f3 6031 /* Fall through. */
f48ff2ae
L
6032 case 3:
6033 /* Here we make use of the fact that there are no
23e42951 6034 reverse match 3 operand instructions. */
40fb9820 6035 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6036 || ((check_register & 5) == 5
6037 && !operand_type_register_match (i.types[0],
23e42951
JB
6038 operand_types[0],
6039 i.types[2],
e2195274
JB
6040 operand_types[2]))
6041 || ((check_register & 6) == 6
6042 && !operand_type_register_match (i.types[1],
6043 operand_types[1],
6044 i.types[2],
6045 operand_types[2])))
f48ff2ae
L
6046 continue;
6047 break;
6048 }
29b0f896 6049 }
f48ff2ae 6050 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6051 slip through to break. */
6052 }
3629bb00 6053 if (!found_cpu_match)
dbbc8b7e 6054 continue;
c0f3af97 6055
5614d22c
JB
6056 /* Check if vector and VEX operands are valid. */
6057 if (check_VecOperands (t) || VEX_check_operands (t))
6058 {
6059 specific_error = i.error;
6060 continue;
6061 }
a683cc34 6062
29b0f896
AM
6063 /* We've found a match; break out of loop. */
6064 break;
6065 }
6066
6067 if (t == current_templates->end)
6068 {
6069 /* We found no match. */
a65babc9 6070 const char *err_msg;
5614d22c 6071 switch (specific_error ? specific_error : i.error)
a65babc9
L
6072 {
6073 default:
6074 abort ();
86e026a4 6075 case operand_size_mismatch:
a65babc9
L
6076 err_msg = _("operand size mismatch");
6077 break;
6078 case operand_type_mismatch:
6079 err_msg = _("operand type mismatch");
6080 break;
6081 case register_type_mismatch:
6082 err_msg = _("register type mismatch");
6083 break;
6084 case number_of_operands_mismatch:
6085 err_msg = _("number of operands mismatch");
6086 break;
6087 case invalid_instruction_suffix:
6088 err_msg = _("invalid instruction suffix");
6089 break;
6090 case bad_imm4:
4a2608e3 6091 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6092 break;
a65babc9
L
6093 case unsupported_with_intel_mnemonic:
6094 err_msg = _("unsupported with Intel mnemonic");
6095 break;
6096 case unsupported_syntax:
6097 err_msg = _("unsupported syntax");
6098 break;
6099 case unsupported:
35262a23 6100 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6101 current_templates->start->name);
6102 return NULL;
6c30d220
L
6103 case invalid_vsib_address:
6104 err_msg = _("invalid VSIB address");
6105 break;
7bab8ab5
JB
6106 case invalid_vector_register_set:
6107 err_msg = _("mask, index, and destination registers must be distinct");
6108 break;
6c30d220
L
6109 case unsupported_vector_index_register:
6110 err_msg = _("unsupported vector index register");
6111 break;
43234a1e
L
6112 case unsupported_broadcast:
6113 err_msg = _("unsupported broadcast");
6114 break;
43234a1e
L
6115 case broadcast_needed:
6116 err_msg = _("broadcast is needed for operand of such type");
6117 break;
6118 case unsupported_masking:
6119 err_msg = _("unsupported masking");
6120 break;
6121 case mask_not_on_destination:
6122 err_msg = _("mask not on destination operand");
6123 break;
6124 case no_default_mask:
6125 err_msg = _("default mask isn't allowed");
6126 break;
6127 case unsupported_rc_sae:
6128 err_msg = _("unsupported static rounding/sae");
6129 break;
6130 case rc_sae_operand_not_last_imm:
6131 if (intel_syntax)
6132 err_msg = _("RC/SAE operand must precede immediate operands");
6133 else
6134 err_msg = _("RC/SAE operand must follow immediate operands");
6135 break;
6136 case invalid_register_operand:
6137 err_msg = _("invalid register operand");
6138 break;
a65babc9
L
6139 }
6140 as_bad (_("%s for `%s'"), err_msg,
891edac4 6141 current_templates->start->name);
fa99fab2 6142 return NULL;
29b0f896 6143 }
252b5132 6144
29b0f896
AM
6145 if (!quiet_warnings)
6146 {
6147 if (!intel_syntax
40fb9820
L
6148 && (i.types[0].bitfield.jumpabsolute
6149 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6150 {
6151 as_warn (_("indirect %s without `*'"), t->name);
6152 }
6153
40fb9820
L
6154 if (t->opcode_modifier.isprefix
6155 && t->opcode_modifier.ignoresize)
29b0f896
AM
6156 {
6157 /* Warn them that a data or address size prefix doesn't
6158 affect assembly of the next line of code. */
6159 as_warn (_("stand-alone `%s' prefix"), t->name);
6160 }
6161 }
6162
6163 /* Copy the template we found. */
6164 i.tm = *t;
539e75ad
L
6165
6166 if (addr_prefix_disp != -1)
6167 i.tm.operand_types[addr_prefix_disp]
6168 = operand_types[addr_prefix_disp];
6169
29b0f896
AM
6170 if (found_reverse_match)
6171 {
6172 /* If we found a reverse match we must alter the opcode
6173 direction bit. found_reverse_match holds bits to change
6174 (different for int & float insns). */
6175
6176 i.tm.base_opcode ^= found_reverse_match;
6177
f5eb1d70
JB
6178 i.tm.operand_types[0] = operand_types[i.operands - 1];
6179 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6180 }
6181
fa99fab2 6182 return t;
29b0f896
AM
6183}
6184
6185static int
e3bb37b5 6186check_string (void)
29b0f896 6187{
40fb9820
L
6188 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6189 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6190 {
6191 if (i.seg[0] != NULL && i.seg[0] != &es)
6192 {
a87af027 6193 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6194 i.tm.name,
a87af027
JB
6195 mem_op + 1,
6196 register_prefix);
29b0f896
AM
6197 return 0;
6198 }
6199 /* There's only ever one segment override allowed per instruction.
6200 This instruction possibly has a legal segment override on the
6201 second operand, so copy the segment to where non-string
6202 instructions store it, allowing common code. */
6203 i.seg[0] = i.seg[1];
6204 }
40fb9820 6205 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6206 {
6207 if (i.seg[1] != NULL && i.seg[1] != &es)
6208 {
a87af027 6209 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6210 i.tm.name,
a87af027
JB
6211 mem_op + 2,
6212 register_prefix);
29b0f896
AM
6213 return 0;
6214 }
6215 }
6216 return 1;
6217}
6218
6219static int
543613e9 6220process_suffix (void)
29b0f896
AM
6221{
6222 /* If matched instruction specifies an explicit instruction mnemonic
6223 suffix, use it. */
673fe0f0 6224 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6225 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6226 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6227 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6228 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6229 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6230 else if (i.reg_operands)
6231 {
6232 /* If there's no instruction mnemonic suffix we try to invent one
6233 based on register operands. */
6234 if (!i.suffix)
6235 {
6236 /* We take i.suffix from the last register operand specified,
6237 Destination register type is more significant than source
381d071f
L
6238 register type. crc32 in SSE4.2 prefers source register
6239 type. */
556059dd 6240 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6241 {
556059dd
JB
6242 if (i.types[0].bitfield.byte)
6243 i.suffix = BYTE_MNEM_SUFFIX;
6244 else if (i.types[0].bitfield.word)
40fb9820 6245 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6246 else if (i.types[0].bitfield.dword)
40fb9820 6247 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6248 else if (i.types[0].bitfield.qword)
40fb9820 6249 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6250 }
6251
6252 if (!i.suffix)
6253 {
6254 int op;
6255
556059dd 6256 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6257 {
6258 /* We have to know the operand size for crc32. */
6259 as_bad (_("ambiguous memory operand size for `%s`"),
6260 i.tm.name);
6261 return 0;
6262 }
6263
381d071f 6264 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6265 if (!i.tm.operand_types[op].bitfield.inoutportreg
6266 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6267 {
8819ada6
JB
6268 if (!i.types[op].bitfield.reg)
6269 continue;
6270 if (i.types[op].bitfield.byte)
6271 i.suffix = BYTE_MNEM_SUFFIX;
6272 else if (i.types[op].bitfield.word)
6273 i.suffix = WORD_MNEM_SUFFIX;
6274 else if (i.types[op].bitfield.dword)
6275 i.suffix = LONG_MNEM_SUFFIX;
6276 else if (i.types[op].bitfield.qword)
6277 i.suffix = QWORD_MNEM_SUFFIX;
6278 else
6279 continue;
6280 break;
381d071f
L
6281 }
6282 }
29b0f896
AM
6283 }
6284 else if (i.suffix == BYTE_MNEM_SUFFIX)
6285 {
2eb952a4
L
6286 if (intel_syntax
6287 && i.tm.opcode_modifier.ignoresize
6288 && i.tm.opcode_modifier.no_bsuf)
6289 i.suffix = 0;
6290 else if (!check_byte_reg ())
29b0f896
AM
6291 return 0;
6292 }
6293 else if (i.suffix == LONG_MNEM_SUFFIX)
6294 {
2eb952a4
L
6295 if (intel_syntax
6296 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6297 && i.tm.opcode_modifier.no_lsuf
6298 && !i.tm.opcode_modifier.todword
6299 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6300 i.suffix = 0;
6301 else if (!check_long_reg ())
29b0f896
AM
6302 return 0;
6303 }
6304 else if (i.suffix == QWORD_MNEM_SUFFIX)
6305 {
955e1e6a
L
6306 if (intel_syntax
6307 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6308 && i.tm.opcode_modifier.no_qsuf
6309 && !i.tm.opcode_modifier.todword
6310 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6311 i.suffix = 0;
6312 else if (!check_qword_reg ())
29b0f896
AM
6313 return 0;
6314 }
6315 else if (i.suffix == WORD_MNEM_SUFFIX)
6316 {
2eb952a4
L
6317 if (intel_syntax
6318 && i.tm.opcode_modifier.ignoresize
6319 && i.tm.opcode_modifier.no_wsuf)
6320 i.suffix = 0;
6321 else if (!check_word_reg ())
29b0f896
AM
6322 return 0;
6323 }
40fb9820 6324 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6325 /* Do nothing if the instruction is going to ignore the prefix. */
6326 ;
6327 else
6328 abort ();
6329 }
40fb9820 6330 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6331 && !i.suffix
6332 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6333 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6334 {
06f74c5c
L
6335 if (stackop_size == LONG_MNEM_SUFFIX
6336 && i.tm.base_opcode == 0xcf)
6337 {
6338 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6339 .code16gcc directive to support 16-bit mode with
6340 32-bit address. For IRET without a suffix, generate
6341 16-bit IRET (opcode 0xcf) to return from an interrupt
6342 handler. */
6343 i.suffix = WORD_MNEM_SUFFIX;
6344 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6345 }
6346 else
6347 i.suffix = stackop_size;
29b0f896 6348 }
9306ca4a
JB
6349 else if (intel_syntax
6350 && !i.suffix
40fb9820
L
6351 && (i.tm.operand_types[0].bitfield.jumpabsolute
6352 || i.tm.opcode_modifier.jumpbyte
6353 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6354 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6355 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6356 {
6357 switch (flag_code)
6358 {
6359 case CODE_64BIT:
40fb9820 6360 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6361 {
6362 i.suffix = QWORD_MNEM_SUFFIX;
6363 break;
6364 }
1a0670f3 6365 /* Fall through. */
9306ca4a 6366 case CODE_32BIT:
40fb9820 6367 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6368 i.suffix = LONG_MNEM_SUFFIX;
6369 break;
6370 case CODE_16BIT:
40fb9820 6371 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6372 i.suffix = WORD_MNEM_SUFFIX;
6373 break;
6374 }
6375 }
252b5132 6376
9306ca4a 6377 if (!i.suffix)
29b0f896 6378 {
9306ca4a
JB
6379 if (!intel_syntax)
6380 {
40fb9820 6381 if (i.tm.opcode_modifier.w)
9306ca4a 6382 {
4eed87de
AM
6383 as_bad (_("no instruction mnemonic suffix given and "
6384 "no register operands; can't size instruction"));
9306ca4a
JB
6385 return 0;
6386 }
6387 }
6388 else
6389 {
40fb9820 6390 unsigned int suffixes;
7ab9ffdd 6391
40fb9820
L
6392 suffixes = !i.tm.opcode_modifier.no_bsuf;
6393 if (!i.tm.opcode_modifier.no_wsuf)
6394 suffixes |= 1 << 1;
6395 if (!i.tm.opcode_modifier.no_lsuf)
6396 suffixes |= 1 << 2;
fc4adea1 6397 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6398 suffixes |= 1 << 3;
6399 if (!i.tm.opcode_modifier.no_ssuf)
6400 suffixes |= 1 << 4;
c2b9da16 6401 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6402 suffixes |= 1 << 5;
6403
6404 /* There are more than suffix matches. */
6405 if (i.tm.opcode_modifier.w
9306ca4a 6406 || ((suffixes & (suffixes - 1))
40fb9820
L
6407 && !i.tm.opcode_modifier.defaultsize
6408 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6409 {
6410 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6411 return 0;
6412 }
6413 }
29b0f896 6414 }
252b5132 6415
d2224064
JB
6416 /* Change the opcode based on the operand size given by i.suffix. */
6417 switch (i.suffix)
29b0f896 6418 {
d2224064
JB
6419 /* Size floating point instruction. */
6420 case LONG_MNEM_SUFFIX:
6421 if (i.tm.opcode_modifier.floatmf)
6422 {
6423 i.tm.base_opcode ^= 4;
6424 break;
6425 }
6426 /* fall through */
6427 case WORD_MNEM_SUFFIX:
6428 case QWORD_MNEM_SUFFIX:
29b0f896 6429 /* It's not a byte, select word/dword operation. */
40fb9820 6430 if (i.tm.opcode_modifier.w)
29b0f896 6431 {
40fb9820 6432 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6433 i.tm.base_opcode |= 8;
6434 else
6435 i.tm.base_opcode |= 1;
6436 }
d2224064
JB
6437 /* fall through */
6438 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6439 /* Now select between word & dword operations via the operand
6440 size prefix, except for instructions that will ignore this
6441 prefix anyway. */
75c0a438
L
6442 if (i.reg_operands > 0
6443 && i.types[0].bitfield.reg
6444 && i.tm.opcode_modifier.addrprefixopreg
6445 && (i.tm.opcode_modifier.immext
6446 || i.operands == 1))
cb712a9e 6447 {
ca61edf2
L
6448 /* The address size override prefix changes the size of the
6449 first operand. */
40fb9820 6450 if ((flag_code == CODE_32BIT
75c0a438 6451 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6452 || (flag_code != CODE_32BIT
75c0a438 6453 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6454 if (!add_prefix (ADDR_PREFIX_OPCODE))
6455 return 0;
6456 }
6457 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6458 && !i.tm.opcode_modifier.ignoresize
6459 && !i.tm.opcode_modifier.floatmf
a38d7118 6460 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6461 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6462 || (flag_code == CODE_64BIT
40fb9820 6463 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6464 {
6465 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6466
40fb9820 6467 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6468 prefix = ADDR_PREFIX_OPCODE;
252b5132 6469
29b0f896
AM
6470 if (!add_prefix (prefix))
6471 return 0;
24eab124 6472 }
252b5132 6473
29b0f896
AM
6474 /* Set mode64 for an operand. */
6475 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6476 && flag_code == CODE_64BIT
d2224064 6477 && !i.tm.opcode_modifier.norex64
46e883c5 6478 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6479 need rex64. */
6480 && ! (i.operands == 2
6481 && i.tm.base_opcode == 0x90
6482 && i.tm.extension_opcode == None
2c703856
JB
6483 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6484 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6485 i.rex |= REX_W;
3e73aa7c 6486
d2224064 6487 break;
29b0f896 6488 }
7ecd2f8b 6489
c0a30a9f
L
6490 if (i.reg_operands != 0
6491 && i.operands > 1
6492 && i.tm.opcode_modifier.addrprefixopreg
6493 && !i.tm.opcode_modifier.immext)
6494 {
6495 /* Check invalid register operand when the address size override
6496 prefix changes the size of register operands. */
6497 unsigned int op;
6498 enum { need_word, need_dword, need_qword } need;
6499
6500 if (flag_code == CODE_32BIT)
6501 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6502 else
6503 {
6504 if (i.prefix[ADDR_PREFIX])
6505 need = need_dword;
6506 else
6507 need = flag_code == CODE_64BIT ? need_qword : need_word;
6508 }
6509
6510 for (op = 0; op < i.operands; op++)
6511 if (i.types[op].bitfield.reg
6512 && ((need == need_word
6513 && !i.op[op].regs->reg_type.bitfield.word)
6514 || (need == need_dword
6515 && !i.op[op].regs->reg_type.bitfield.dword)
6516 || (need == need_qword
6517 && !i.op[op].regs->reg_type.bitfield.qword)))
6518 {
6519 as_bad (_("invalid register operand size for `%s'"),
6520 i.tm.name);
6521 return 0;
6522 }
6523 }
6524
29b0f896
AM
6525 return 1;
6526}
3e73aa7c 6527
29b0f896 6528static int
543613e9 6529check_byte_reg (void)
29b0f896
AM
6530{
6531 int op;
543613e9 6532
29b0f896
AM
6533 for (op = i.operands; --op >= 0;)
6534 {
dc821c5f
JB
6535 /* Skip non-register operands. */
6536 if (!i.types[op].bitfield.reg)
6537 continue;
6538
29b0f896
AM
6539 /* If this is an eight bit register, it's OK. If it's the 16 or
6540 32 bit version of an eight bit register, we will just use the
6541 low portion, and that's OK too. */
dc821c5f 6542 if (i.types[op].bitfield.byte)
29b0f896
AM
6543 continue;
6544
5a819eb9
JB
6545 /* I/O port address operands are OK too. */
6546 if (i.tm.operand_types[op].bitfield.inoutportreg)
6547 continue;
6548
9344ff29
L
6549 /* crc32 doesn't generate this warning. */
6550 if (i.tm.base_opcode == 0xf20f38f0)
6551 continue;
6552
dc821c5f
JB
6553 if ((i.types[op].bitfield.word
6554 || i.types[op].bitfield.dword
6555 || i.types[op].bitfield.qword)
5a819eb9
JB
6556 && i.op[op].regs->reg_num < 4
6557 /* Prohibit these changes in 64bit mode, since the lowering
6558 would be more complicated. */
6559 && flag_code != CODE_64BIT)
29b0f896 6560 {
29b0f896 6561#if REGISTER_WARNINGS
5a819eb9 6562 if (!quiet_warnings)
a540244d
L
6563 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6564 register_prefix,
dc821c5f 6565 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6566 ? REGNAM_AL - REGNAM_AX
6567 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6568 register_prefix,
29b0f896
AM
6569 i.op[op].regs->reg_name,
6570 i.suffix);
6571#endif
6572 continue;
6573 }
6574 /* Any other register is bad. */
dc821c5f 6575 if (i.types[op].bitfield.reg
40fb9820 6576 || i.types[op].bitfield.regmmx
1b54b8d7 6577 || i.types[op].bitfield.regsimd
40fb9820
L
6578 || i.types[op].bitfield.sreg2
6579 || i.types[op].bitfield.sreg3
6580 || i.types[op].bitfield.control
6581 || i.types[op].bitfield.debug
ca0d63fe 6582 || i.types[op].bitfield.test)
29b0f896 6583 {
a540244d
L
6584 as_bad (_("`%s%s' not allowed with `%s%c'"),
6585 register_prefix,
29b0f896
AM
6586 i.op[op].regs->reg_name,
6587 i.tm.name,
6588 i.suffix);
6589 return 0;
6590 }
6591 }
6592 return 1;
6593}
6594
6595static int
e3bb37b5 6596check_long_reg (void)
29b0f896
AM
6597{
6598 int op;
6599
6600 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6601 /* Skip non-register operands. */
6602 if (!i.types[op].bitfield.reg)
6603 continue;
29b0f896
AM
6604 /* Reject eight bit registers, except where the template requires
6605 them. (eg. movzb) */
dc821c5f
JB
6606 else if (i.types[op].bitfield.byte
6607 && (i.tm.operand_types[op].bitfield.reg
6608 || i.tm.operand_types[op].bitfield.acc)
6609 && (i.tm.operand_types[op].bitfield.word
6610 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6611 {
a540244d
L
6612 as_bad (_("`%s%s' not allowed with `%s%c'"),
6613 register_prefix,
29b0f896
AM
6614 i.op[op].regs->reg_name,
6615 i.tm.name,
6616 i.suffix);
6617 return 0;
6618 }
e4630f71 6619 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6620 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6621 && i.types[op].bitfield.word
6622 && (i.tm.operand_types[op].bitfield.reg
6623 || i.tm.operand_types[op].bitfield.acc)
6624 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6625 {
6626 /* Prohibit these changes in the 64bit mode, since the
6627 lowering is more complicated. */
6628 if (flag_code == CODE_64BIT)
252b5132 6629 {
2b5d6a91 6630 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6631 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6632 i.suffix);
6633 return 0;
252b5132 6634 }
29b0f896 6635#if REGISTER_WARNINGS
cecf1424
JB
6636 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6637 register_prefix,
6638 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6639 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6640#endif
252b5132 6641 }
e4630f71 6642 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6643 else if (i.types[op].bitfield.qword
6644 && (i.tm.operand_types[op].bitfield.reg
6645 || i.tm.operand_types[op].bitfield.acc)
6646 && i.tm.operand_types[op].bitfield.dword)
252b5132 6647 {
34828aad 6648 if (intel_syntax
ca61edf2 6649 && i.tm.opcode_modifier.toqword
1b54b8d7 6650 && !i.types[0].bitfield.regsimd)
34828aad 6651 {
ca61edf2 6652 /* Convert to QWORD. We want REX byte. */
34828aad
L
6653 i.suffix = QWORD_MNEM_SUFFIX;
6654 }
6655 else
6656 {
2b5d6a91 6657 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6658 register_prefix, i.op[op].regs->reg_name,
6659 i.suffix);
6660 return 0;
6661 }
29b0f896
AM
6662 }
6663 return 1;
6664}
252b5132 6665
29b0f896 6666static int
e3bb37b5 6667check_qword_reg (void)
29b0f896
AM
6668{
6669 int op;
252b5132 6670
29b0f896 6671 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6672 /* Skip non-register operands. */
6673 if (!i.types[op].bitfield.reg)
6674 continue;
29b0f896
AM
6675 /* Reject eight bit registers, except where the template requires
6676 them. (eg. movzb) */
dc821c5f
JB
6677 else if (i.types[op].bitfield.byte
6678 && (i.tm.operand_types[op].bitfield.reg
6679 || i.tm.operand_types[op].bitfield.acc)
6680 && (i.tm.operand_types[op].bitfield.word
6681 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6682 {
a540244d
L
6683 as_bad (_("`%s%s' not allowed with `%s%c'"),
6684 register_prefix,
29b0f896
AM
6685 i.op[op].regs->reg_name,
6686 i.tm.name,
6687 i.suffix);
6688 return 0;
6689 }
e4630f71 6690 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6691 else if ((i.types[op].bitfield.word
6692 || i.types[op].bitfield.dword)
6693 && (i.tm.operand_types[op].bitfield.reg
6694 || i.tm.operand_types[op].bitfield.acc)
6695 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6696 {
6697 /* Prohibit these changes in the 64bit mode, since the
6698 lowering is more complicated. */
34828aad 6699 if (intel_syntax
ca61edf2 6700 && i.tm.opcode_modifier.todword
1b54b8d7 6701 && !i.types[0].bitfield.regsimd)
34828aad 6702 {
ca61edf2 6703 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6704 i.suffix = LONG_MNEM_SUFFIX;
6705 }
6706 else
6707 {
2b5d6a91 6708 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6709 register_prefix, i.op[op].regs->reg_name,
6710 i.suffix);
6711 return 0;
6712 }
252b5132 6713 }
29b0f896
AM
6714 return 1;
6715}
252b5132 6716
29b0f896 6717static int
e3bb37b5 6718check_word_reg (void)
29b0f896
AM
6719{
6720 int op;
6721 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6722 /* Skip non-register operands. */
6723 if (!i.types[op].bitfield.reg)
6724 continue;
29b0f896
AM
6725 /* Reject eight bit registers, except where the template requires
6726 them. (eg. movzb) */
dc821c5f
JB
6727 else if (i.types[op].bitfield.byte
6728 && (i.tm.operand_types[op].bitfield.reg
6729 || i.tm.operand_types[op].bitfield.acc)
6730 && (i.tm.operand_types[op].bitfield.word
6731 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6732 {
a540244d
L
6733 as_bad (_("`%s%s' not allowed with `%s%c'"),
6734 register_prefix,
29b0f896
AM
6735 i.op[op].regs->reg_name,
6736 i.tm.name,
6737 i.suffix);
6738 return 0;
6739 }
e4630f71 6740 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6741 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6742 && (i.types[op].bitfield.dword
6743 || i.types[op].bitfield.qword)
6744 && (i.tm.operand_types[op].bitfield.reg
6745 || i.tm.operand_types[op].bitfield.acc)
6746 && i.tm.operand_types[op].bitfield.word)
252b5132 6747 {
29b0f896
AM
6748 /* Prohibit these changes in the 64bit mode, since the
6749 lowering is more complicated. */
6750 if (flag_code == CODE_64BIT)
252b5132 6751 {
2b5d6a91 6752 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6753 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6754 i.suffix);
6755 return 0;
252b5132 6756 }
29b0f896 6757#if REGISTER_WARNINGS
cecf1424
JB
6758 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6759 register_prefix,
6760 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6761 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6762#endif
6763 }
6764 return 1;
6765}
252b5132 6766
29b0f896 6767static int
40fb9820 6768update_imm (unsigned int j)
29b0f896 6769{
bc0844ae 6770 i386_operand_type overlap = i.types[j];
40fb9820
L
6771 if ((overlap.bitfield.imm8
6772 || overlap.bitfield.imm8s
6773 || overlap.bitfield.imm16
6774 || overlap.bitfield.imm32
6775 || overlap.bitfield.imm32s
6776 || overlap.bitfield.imm64)
0dfbf9d7
L
6777 && !operand_type_equal (&overlap, &imm8)
6778 && !operand_type_equal (&overlap, &imm8s)
6779 && !operand_type_equal (&overlap, &imm16)
6780 && !operand_type_equal (&overlap, &imm32)
6781 && !operand_type_equal (&overlap, &imm32s)
6782 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6783 {
6784 if (i.suffix)
6785 {
40fb9820
L
6786 i386_operand_type temp;
6787
0dfbf9d7 6788 operand_type_set (&temp, 0);
7ab9ffdd 6789 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6790 {
6791 temp.bitfield.imm8 = overlap.bitfield.imm8;
6792 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6793 }
6794 else if (i.suffix == WORD_MNEM_SUFFIX)
6795 temp.bitfield.imm16 = overlap.bitfield.imm16;
6796 else if (i.suffix == QWORD_MNEM_SUFFIX)
6797 {
6798 temp.bitfield.imm64 = overlap.bitfield.imm64;
6799 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6800 }
6801 else
6802 temp.bitfield.imm32 = overlap.bitfield.imm32;
6803 overlap = temp;
29b0f896 6804 }
0dfbf9d7
L
6805 else if (operand_type_equal (&overlap, &imm16_32_32s)
6806 || operand_type_equal (&overlap, &imm16_32)
6807 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6808 {
40fb9820 6809 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6810 overlap = imm16;
40fb9820 6811 else
65da13b5 6812 overlap = imm32s;
29b0f896 6813 }
0dfbf9d7
L
6814 if (!operand_type_equal (&overlap, &imm8)
6815 && !operand_type_equal (&overlap, &imm8s)
6816 && !operand_type_equal (&overlap, &imm16)
6817 && !operand_type_equal (&overlap, &imm32)
6818 && !operand_type_equal (&overlap, &imm32s)
6819 && !operand_type_equal (&overlap, &imm64))
29b0f896 6820 {
4eed87de
AM
6821 as_bad (_("no instruction mnemonic suffix given; "
6822 "can't determine immediate size"));
29b0f896
AM
6823 return 0;
6824 }
6825 }
40fb9820 6826 i.types[j] = overlap;
29b0f896 6827
40fb9820
L
6828 return 1;
6829}
6830
6831static int
6832finalize_imm (void)
6833{
bc0844ae 6834 unsigned int j, n;
29b0f896 6835
bc0844ae
L
6836 /* Update the first 2 immediate operands. */
6837 n = i.operands > 2 ? 2 : i.operands;
6838 if (n)
6839 {
6840 for (j = 0; j < n; j++)
6841 if (update_imm (j) == 0)
6842 return 0;
40fb9820 6843
bc0844ae
L
6844 /* The 3rd operand can't be immediate operand. */
6845 gas_assert (operand_type_check (i.types[2], imm) == 0);
6846 }
29b0f896
AM
6847
6848 return 1;
6849}
6850
6851static int
e3bb37b5 6852process_operands (void)
29b0f896
AM
6853{
6854 /* Default segment register this instruction will use for memory
6855 accesses. 0 means unknown. This is only for optimizing out
6856 unnecessary segment overrides. */
6857 const seg_entry *default_seg = 0;
6858
2426c15f 6859 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6860 {
91d6fa6a
NC
6861 unsigned int dupl = i.operands;
6862 unsigned int dest = dupl - 1;
9fcfb3d7
L
6863 unsigned int j;
6864
c0f3af97 6865 /* The destination must be an xmm register. */
9c2799c2 6866 gas_assert (i.reg_operands
91d6fa6a 6867 && MAX_OPERANDS > dupl
7ab9ffdd 6868 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6869
1b54b8d7
JB
6870 if (i.tm.operand_types[0].bitfield.acc
6871 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6872 {
8cd7925b 6873 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6874 {
6875 /* Keep xmm0 for instructions with VEX prefix and 3
6876 sources. */
1b54b8d7
JB
6877 i.tm.operand_types[0].bitfield.acc = 0;
6878 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6879 goto duplicate;
6880 }
e2ec9d29 6881 else
c0f3af97
L
6882 {
6883 /* We remove the first xmm0 and keep the number of
6884 operands unchanged, which in fact duplicates the
6885 destination. */
6886 for (j = 1; j < i.operands; j++)
6887 {
6888 i.op[j - 1] = i.op[j];
6889 i.types[j - 1] = i.types[j];
6890 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6891 }
6892 }
6893 }
6894 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6895 {
91d6fa6a 6896 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6897 && (i.tm.opcode_modifier.vexsources
6898 == VEX3SOURCES));
c0f3af97
L
6899
6900 /* Add the implicit xmm0 for instructions with VEX prefix
6901 and 3 sources. */
6902 for (j = i.operands; j > 0; j--)
6903 {
6904 i.op[j] = i.op[j - 1];
6905 i.types[j] = i.types[j - 1];
6906 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6907 }
6908 i.op[0].regs
6909 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6910 i.types[0] = regxmm;
c0f3af97
L
6911 i.tm.operand_types[0] = regxmm;
6912
6913 i.operands += 2;
6914 i.reg_operands += 2;
6915 i.tm.operands += 2;
6916
91d6fa6a 6917 dupl++;
c0f3af97 6918 dest++;
91d6fa6a
NC
6919 i.op[dupl] = i.op[dest];
6920 i.types[dupl] = i.types[dest];
6921 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6922 }
c0f3af97
L
6923 else
6924 {
6925duplicate:
6926 i.operands++;
6927 i.reg_operands++;
6928 i.tm.operands++;
6929
91d6fa6a
NC
6930 i.op[dupl] = i.op[dest];
6931 i.types[dupl] = i.types[dest];
6932 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6933 }
6934
6935 if (i.tm.opcode_modifier.immext)
6936 process_immext ();
6937 }
1b54b8d7
JB
6938 else if (i.tm.operand_types[0].bitfield.acc
6939 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6940 {
6941 unsigned int j;
6942
9fcfb3d7
L
6943 for (j = 1; j < i.operands; j++)
6944 {
6945 i.op[j - 1] = i.op[j];
6946 i.types[j - 1] = i.types[j];
6947
6948 /* We need to adjust fields in i.tm since they are used by
6949 build_modrm_byte. */
6950 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6951 }
6952
e2ec9d29
L
6953 i.operands--;
6954 i.reg_operands--;
e2ec9d29
L
6955 i.tm.operands--;
6956 }
920d2ddc
IT
6957 else if (i.tm.opcode_modifier.implicitquadgroup)
6958 {
a477a8c4
JB
6959 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6960
920d2ddc 6961 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6962 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6963 regnum = register_number (i.op[1].regs);
6964 first_reg_in_group = regnum & ~3;
6965 last_reg_in_group = first_reg_in_group + 3;
6966 if (regnum != first_reg_in_group)
6967 as_warn (_("source register `%s%s' implicitly denotes"
6968 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6969 register_prefix, i.op[1].regs->reg_name,
6970 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6971 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6972 i.tm.name);
6973 }
e2ec9d29
L
6974 else if (i.tm.opcode_modifier.regkludge)
6975 {
6976 /* The imul $imm, %reg instruction is converted into
6977 imul $imm, %reg, %reg, and the clr %reg instruction
6978 is converted into xor %reg, %reg. */
6979
6980 unsigned int first_reg_op;
6981
6982 if (operand_type_check (i.types[0], reg))
6983 first_reg_op = 0;
6984 else
6985 first_reg_op = 1;
6986 /* Pretend we saw the extra register operand. */
9c2799c2 6987 gas_assert (i.reg_operands == 1
7ab9ffdd 6988 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6989 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6990 i.types[first_reg_op + 1] = i.types[first_reg_op];
6991 i.operands++;
6992 i.reg_operands++;
29b0f896
AM
6993 }
6994
40fb9820 6995 if (i.tm.opcode_modifier.shortform)
29b0f896 6996 {
40fb9820
L
6997 if (i.types[0].bitfield.sreg2
6998 || i.types[0].bitfield.sreg3)
29b0f896 6999 {
4eed87de
AM
7000 if (i.tm.base_opcode == POP_SEG_SHORT
7001 && i.op[0].regs->reg_num == 1)
29b0f896 7002 {
a87af027 7003 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 7004 return 0;
29b0f896 7005 }
4eed87de
AM
7006 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7007 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 7008 i.rex |= REX_B;
4eed87de
AM
7009 }
7010 else
7011 {
7ab9ffdd 7012 /* The register or float register operand is in operand
85f10a01 7013 0 or 1. */
40fb9820 7014 unsigned int op;
7ab9ffdd 7015
ca0d63fe 7016 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
7017 || operand_type_check (i.types[0], reg))
7018 op = 0;
7019 else
7020 op = 1;
4eed87de
AM
7021 /* Register goes in low 3 bits of opcode. */
7022 i.tm.base_opcode |= i.op[op].regs->reg_num;
7023 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 7024 i.rex |= REX_B;
40fb9820 7025 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 7026 {
4eed87de
AM
7027 /* Warn about some common errors, but press on regardless.
7028 The first case can be generated by gcc (<= 2.8.1). */
7029 if (i.operands == 2)
7030 {
7031 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 7032 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
7033 register_prefix, i.op[!intel_syntax].regs->reg_name,
7034 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
7035 }
7036 else
7037 {
7038 /* Extraneous `l' suffix on fp insn. */
a540244d
L
7039 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7040 register_prefix, i.op[0].regs->reg_name);
4eed87de 7041 }
29b0f896
AM
7042 }
7043 }
7044 }
40fb9820 7045 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7046 {
7047 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7048 must be put into the modrm byte). Now, we make the modrm and
7049 index base bytes based on all the info we've collected. */
29b0f896
AM
7050
7051 default_seg = build_modrm_byte ();
7052 }
8a2ed489 7053 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7054 {
7055 default_seg = &ds;
7056 }
40fb9820 7057 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7058 {
7059 /* For the string instructions that allow a segment override
7060 on one of their operands, the default segment is ds. */
7061 default_seg = &ds;
7062 }
7063
75178d9d
L
7064 if (i.tm.base_opcode == 0x8d /* lea */
7065 && i.seg[0]
7066 && !quiet_warnings)
30123838 7067 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7068
7069 /* If a segment was explicitly specified, and the specified segment
7070 is not the default, use an opcode prefix to select it. If we
7071 never figured out what the default segment is, then default_seg
7072 will be zero at this point, and the specified segment prefix will
7073 always be used. */
29b0f896
AM
7074 if ((i.seg[0]) && (i.seg[0] != default_seg))
7075 {
7076 if (!add_prefix (i.seg[0]->seg_prefix))
7077 return 0;
7078 }
7079 return 1;
7080}
7081
7082static const seg_entry *
e3bb37b5 7083build_modrm_byte (void)
29b0f896
AM
7084{
7085 const seg_entry *default_seg = 0;
c0f3af97 7086 unsigned int source, dest;
8cd7925b 7087 int vex_3_sources;
c0f3af97 7088
8cd7925b 7089 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7090 if (vex_3_sources)
7091 {
91d6fa6a 7092 unsigned int nds, reg_slot;
4c2c6516 7093 expressionS *exp;
c0f3af97 7094
6b8d3588 7095 dest = i.operands - 1;
c0f3af97 7096 nds = dest - 1;
922d8de8 7097
a683cc34 7098 /* There are 2 kinds of instructions:
bed3d976 7099 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7100 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7101 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7102 ZMM register.
bed3d976 7103 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7104 plus 1 memory operand, with VexXDS. */
922d8de8 7105 gas_assert ((i.reg_operands == 4
bed3d976
JB
7106 || (i.reg_operands == 3 && i.mem_operands == 1))
7107 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7108 && i.tm.opcode_modifier.vexw
7109 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7110
48db9223
JB
7111 /* If VexW1 is set, the first non-immediate operand is the source and
7112 the second non-immediate one is encoded in the immediate operand. */
7113 if (i.tm.opcode_modifier.vexw == VEXW1)
7114 {
7115 source = i.imm_operands;
7116 reg_slot = i.imm_operands + 1;
7117 }
7118 else
7119 {
7120 source = i.imm_operands + 1;
7121 reg_slot = i.imm_operands;
7122 }
7123
a683cc34 7124 if (i.imm_operands == 0)
bed3d976
JB
7125 {
7126 /* When there is no immediate operand, generate an 8bit
7127 immediate operand to encode the first operand. */
7128 exp = &im_expressions[i.imm_operands++];
7129 i.op[i.operands].imms = exp;
7130 i.types[i.operands] = imm8;
7131 i.operands++;
7132
7133 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7134 exp->X_op = O_constant;
7135 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7136 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7137 }
922d8de8 7138 else
bed3d976 7139 {
9d3bf266
JB
7140 gas_assert (i.imm_operands == 1);
7141 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7142 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7143
9d3bf266
JB
7144 /* Turn on Imm8 again so that output_imm will generate it. */
7145 i.types[0].bitfield.imm8 = 1;
bed3d976
JB
7146
7147 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
9d3bf266 7148 i.op[0].imms->X_add_number
bed3d976 7149 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7150 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7151 }
a683cc34 7152
10c17abd 7153 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7154 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7155 }
7156 else
7157 source = dest = 0;
29b0f896
AM
7158
7159 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7160 implicit registers do not count. If there are 3 register
7161 operands, it must be a instruction with VexNDS. For a
7162 instruction with VexNDD, the destination register is encoded
7163 in VEX prefix. If there are 4 register operands, it must be
7164 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7165 if (i.mem_operands == 0
7166 && ((i.reg_operands == 2
2426c15f 7167 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7168 || (i.reg_operands == 3
2426c15f 7169 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7170 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7171 {
cab737b9
L
7172 switch (i.operands)
7173 {
7174 case 2:
7175 source = 0;
7176 break;
7177 case 3:
c81128dc
L
7178 /* When there are 3 operands, one of them may be immediate,
7179 which may be the first or the last operand. Otherwise,
c0f3af97
L
7180 the first operand must be shift count register (cl) or it
7181 is an instruction with VexNDS. */
9c2799c2 7182 gas_assert (i.imm_operands == 1
7ab9ffdd 7183 || (i.imm_operands == 0
2426c15f 7184 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7185 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7186 if (operand_type_check (i.types[0], imm)
7187 || i.types[0].bitfield.shiftcount)
7188 source = 1;
7189 else
7190 source = 0;
cab737b9
L
7191 break;
7192 case 4:
368d64cc
L
7193 /* When there are 4 operands, the first two must be 8bit
7194 immediate operands. The source operand will be the 3rd
c0f3af97
L
7195 one.
7196
7197 For instructions with VexNDS, if the first operand
7198 an imm8, the source operand is the 2nd one. If the last
7199 operand is imm8, the source operand is the first one. */
9c2799c2 7200 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7201 && i.types[0].bitfield.imm8
7202 && i.types[1].bitfield.imm8)
2426c15f 7203 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7204 && i.imm_operands == 1
7205 && (i.types[0].bitfield.imm8
43234a1e
L
7206 || i.types[i.operands - 1].bitfield.imm8
7207 || i.rounding)));
9f2670f2
L
7208 if (i.imm_operands == 2)
7209 source = 2;
7210 else
c0f3af97
L
7211 {
7212 if (i.types[0].bitfield.imm8)
7213 source = 1;
7214 else
7215 source = 0;
7216 }
c0f3af97
L
7217 break;
7218 case 5:
e771e7c9 7219 if (is_evex_encoding (&i.tm))
43234a1e
L
7220 {
7221 /* For EVEX instructions, when there are 5 operands, the
7222 first one must be immediate operand. If the second one
7223 is immediate operand, the source operand is the 3th
7224 one. If the last one is immediate operand, the source
7225 operand is the 2nd one. */
7226 gas_assert (i.imm_operands == 2
7227 && i.tm.opcode_modifier.sae
7228 && operand_type_check (i.types[0], imm));
7229 if (operand_type_check (i.types[1], imm))
7230 source = 2;
7231 else if (operand_type_check (i.types[4], imm))
7232 source = 1;
7233 else
7234 abort ();
7235 }
cab737b9
L
7236 break;
7237 default:
7238 abort ();
7239 }
7240
c0f3af97
L
7241 if (!vex_3_sources)
7242 {
7243 dest = source + 1;
7244
43234a1e
L
7245 /* RC/SAE operand could be between DEST and SRC. That happens
7246 when one operand is GPR and the other one is XMM/YMM/ZMM
7247 register. */
7248 if (i.rounding && i.rounding->operand == (int) dest)
7249 dest++;
7250
2426c15f 7251 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7252 {
43234a1e 7253 /* For instructions with VexNDS, the register-only source
c5d0745b 7254 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7255 register. It is encoded in VEX prefix. We need to
7256 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7257
7258 i386_operand_type op;
7259 unsigned int vvvv;
7260
7261 /* Check register-only source operand when two source
7262 operands are swapped. */
7263 if (!i.tm.operand_types[source].bitfield.baseindex
7264 && i.tm.operand_types[dest].bitfield.baseindex)
7265 {
7266 vvvv = source;
7267 source = dest;
7268 }
7269 else
7270 vvvv = dest;
7271
7272 op = i.tm.operand_types[vvvv];
fa99fab2 7273 op.bitfield.regmem = 0;
c0f3af97 7274 if ((dest + 1) >= i.operands
dc821c5f
JB
7275 || ((!op.bitfield.reg
7276 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7277 && !op.bitfield.regsimd
43234a1e 7278 && !operand_type_equal (&op, &regmask)))
c0f3af97 7279 abort ();
f12dc422 7280 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7281 dest++;
7282 }
7283 }
29b0f896
AM
7284
7285 i.rm.mode = 3;
7286 /* One of the register operands will be encoded in the i.tm.reg
7287 field, the other in the combined i.tm.mode and i.tm.regmem
7288 fields. If no form of this instruction supports a memory
7289 destination operand, then we assume the source operand may
7290 sometimes be a memory operand and so we need to store the
7291 destination in the i.rm.reg field. */
40fb9820
L
7292 if (!i.tm.operand_types[dest].bitfield.regmem
7293 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7294 {
7295 i.rm.reg = i.op[dest].regs->reg_num;
7296 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7297 if (i.op[dest].regs->reg_type.bitfield.regmmx
7298 || i.op[source].regs->reg_type.bitfield.regmmx)
7299 i.has_regmmx = TRUE;
7300 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7301 || i.op[source].regs->reg_type.bitfield.regsimd)
7302 {
7303 if (i.types[dest].bitfield.zmmword
7304 || i.types[source].bitfield.zmmword)
7305 i.has_regzmm = TRUE;
7306 else if (i.types[dest].bitfield.ymmword
7307 || i.types[source].bitfield.ymmword)
7308 i.has_regymm = TRUE;
7309 else
7310 i.has_regxmm = TRUE;
7311 }
29b0f896 7312 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7313 i.rex |= REX_R;
43234a1e
L
7314 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7315 i.vrex |= REX_R;
29b0f896 7316 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7317 i.rex |= REX_B;
43234a1e
L
7318 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7319 i.vrex |= REX_B;
29b0f896
AM
7320 }
7321 else
7322 {
7323 i.rm.reg = i.op[source].regs->reg_num;
7324 i.rm.regmem = i.op[dest].regs->reg_num;
7325 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7326 i.rex |= REX_B;
43234a1e
L
7327 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7328 i.vrex |= REX_B;
29b0f896 7329 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7330 i.rex |= REX_R;
43234a1e
L
7331 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7332 i.vrex |= REX_R;
29b0f896 7333 }
e0c7f900 7334 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7335 {
e0c7f900 7336 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7337 abort ();
e0c7f900 7338 i.rex &= ~REX_R;
c4a530c5
JB
7339 add_prefix (LOCK_PREFIX_OPCODE);
7340 }
29b0f896
AM
7341 }
7342 else
7343 { /* If it's not 2 reg operands... */
c0f3af97
L
7344 unsigned int mem;
7345
29b0f896
AM
7346 if (i.mem_operands)
7347 {
7348 unsigned int fake_zero_displacement = 0;
99018f42 7349 unsigned int op;
4eed87de 7350
7ab9ffdd
L
7351 for (op = 0; op < i.operands; op++)
7352 if (operand_type_check (i.types[op], anymem))
7353 break;
7ab9ffdd 7354 gas_assert (op < i.operands);
29b0f896 7355
6c30d220
L
7356 if (i.tm.opcode_modifier.vecsib)
7357 {
e968fc9b 7358 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7359 abort ();
7360
7361 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7362 if (!i.base_reg)
7363 {
7364 i.sib.base = NO_BASE_REGISTER;
7365 i.sib.scale = i.log2_scale_factor;
7366 i.types[op].bitfield.disp8 = 0;
7367 i.types[op].bitfield.disp16 = 0;
7368 i.types[op].bitfield.disp64 = 0;
43083a50 7369 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7370 {
7371 /* Must be 32 bit */
7372 i.types[op].bitfield.disp32 = 1;
7373 i.types[op].bitfield.disp32s = 0;
7374 }
7375 else
7376 {
7377 i.types[op].bitfield.disp32 = 0;
7378 i.types[op].bitfield.disp32s = 1;
7379 }
7380 }
7381 i.sib.index = i.index_reg->reg_num;
7382 if ((i.index_reg->reg_flags & RegRex) != 0)
7383 i.rex |= REX_X;
43234a1e
L
7384 if ((i.index_reg->reg_flags & RegVRex) != 0)
7385 i.vrex |= REX_X;
6c30d220
L
7386 }
7387
29b0f896
AM
7388 default_seg = &ds;
7389
7390 if (i.base_reg == 0)
7391 {
7392 i.rm.mode = 0;
7393 if (!i.disp_operands)
9bb129e8 7394 fake_zero_displacement = 1;
29b0f896
AM
7395 if (i.index_reg == 0)
7396 {
73053c1f
JB
7397 i386_operand_type newdisp;
7398
6c30d220 7399 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7400 /* Operand is just <disp> */
20f0a1fc 7401 if (flag_code == CODE_64BIT)
29b0f896
AM
7402 {
7403 /* 64bit mode overwrites the 32bit absolute
7404 addressing by RIP relative addressing and
7405 absolute addressing is encoded by one of the
7406 redundant SIB forms. */
7407 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7408 i.sib.base = NO_BASE_REGISTER;
7409 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7410 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7411 }
fc225355
L
7412 else if ((flag_code == CODE_16BIT)
7413 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7414 {
7415 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7416 newdisp = disp16;
20f0a1fc
NC
7417 }
7418 else
7419 {
7420 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7421 newdisp = disp32;
29b0f896 7422 }
73053c1f
JB
7423 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7424 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7425 }
6c30d220 7426 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7427 {
6c30d220 7428 /* !i.base_reg && i.index_reg */
e968fc9b 7429 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7430 i.sib.index = NO_INDEX_REGISTER;
7431 else
7432 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7433 i.sib.base = NO_BASE_REGISTER;
7434 i.sib.scale = i.log2_scale_factor;
7435 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7436 i.types[op].bitfield.disp8 = 0;
7437 i.types[op].bitfield.disp16 = 0;
7438 i.types[op].bitfield.disp64 = 0;
43083a50 7439 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7440 {
7441 /* Must be 32 bit */
7442 i.types[op].bitfield.disp32 = 1;
7443 i.types[op].bitfield.disp32s = 0;
7444 }
29b0f896 7445 else
40fb9820
L
7446 {
7447 i.types[op].bitfield.disp32 = 0;
7448 i.types[op].bitfield.disp32s = 1;
7449 }
29b0f896 7450 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7451 i.rex |= REX_X;
29b0f896
AM
7452 }
7453 }
7454 /* RIP addressing for 64bit mode. */
e968fc9b 7455 else if (i.base_reg->reg_num == RegIP)
29b0f896 7456 {
6c30d220 7457 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7458 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7459 i.types[op].bitfield.disp8 = 0;
7460 i.types[op].bitfield.disp16 = 0;
7461 i.types[op].bitfield.disp32 = 0;
7462 i.types[op].bitfield.disp32s = 1;
7463 i.types[op].bitfield.disp64 = 0;
71903a11 7464 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7465 if (! i.disp_operands)
7466 fake_zero_displacement = 1;
29b0f896 7467 }
dc821c5f 7468 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7469 {
6c30d220 7470 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7471 switch (i.base_reg->reg_num)
7472 {
7473 case 3: /* (%bx) */
7474 if (i.index_reg == 0)
7475 i.rm.regmem = 7;
7476 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7477 i.rm.regmem = i.index_reg->reg_num - 6;
7478 break;
7479 case 5: /* (%bp) */
7480 default_seg = &ss;
7481 if (i.index_reg == 0)
7482 {
7483 i.rm.regmem = 6;
40fb9820 7484 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7485 {
7486 /* fake (%bp) into 0(%bp) */
b5014f7a 7487 i.types[op].bitfield.disp8 = 1;
252b5132 7488 fake_zero_displacement = 1;
29b0f896
AM
7489 }
7490 }
7491 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7492 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7493 break;
7494 default: /* (%si) -> 4 or (%di) -> 5 */
7495 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7496 }
7497 i.rm.mode = mode_from_disp_size (i.types[op]);
7498 }
7499 else /* i.base_reg and 32/64 bit mode */
7500 {
7501 if (flag_code == CODE_64BIT
40fb9820
L
7502 && operand_type_check (i.types[op], disp))
7503 {
73053c1f
JB
7504 i.types[op].bitfield.disp16 = 0;
7505 i.types[op].bitfield.disp64 = 0;
40fb9820 7506 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7507 {
7508 i.types[op].bitfield.disp32 = 0;
7509 i.types[op].bitfield.disp32s = 1;
7510 }
40fb9820 7511 else
73053c1f
JB
7512 {
7513 i.types[op].bitfield.disp32 = 1;
7514 i.types[op].bitfield.disp32s = 0;
7515 }
40fb9820 7516 }
20f0a1fc 7517
6c30d220
L
7518 if (!i.tm.opcode_modifier.vecsib)
7519 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7520 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7521 i.rex |= REX_B;
29b0f896
AM
7522 i.sib.base = i.base_reg->reg_num;
7523 /* x86-64 ignores REX prefix bit here to avoid decoder
7524 complications. */
848930b2
JB
7525 if (!(i.base_reg->reg_flags & RegRex)
7526 && (i.base_reg->reg_num == EBP_REG_NUM
7527 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7528 default_seg = &ss;
848930b2 7529 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7530 {
848930b2 7531 fake_zero_displacement = 1;
b5014f7a 7532 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7533 }
7534 i.sib.scale = i.log2_scale_factor;
7535 if (i.index_reg == 0)
7536 {
6c30d220 7537 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7538 /* <disp>(%esp) becomes two byte modrm with no index
7539 register. We've already stored the code for esp
7540 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7541 Any base register besides %esp will not use the
7542 extra modrm byte. */
7543 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7544 }
6c30d220 7545 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7546 {
e968fc9b 7547 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7548 i.sib.index = NO_INDEX_REGISTER;
7549 else
7550 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7551 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7552 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7553 i.rex |= REX_X;
29b0f896 7554 }
67a4f2b7
AO
7555
7556 if (i.disp_operands
7557 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7558 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7559 i.rm.mode = 0;
7560 else
a501d77e
L
7561 {
7562 if (!fake_zero_displacement
7563 && !i.disp_operands
7564 && i.disp_encoding)
7565 {
7566 fake_zero_displacement = 1;
7567 if (i.disp_encoding == disp_encoding_8bit)
7568 i.types[op].bitfield.disp8 = 1;
7569 else
7570 i.types[op].bitfield.disp32 = 1;
7571 }
7572 i.rm.mode = mode_from_disp_size (i.types[op]);
7573 }
29b0f896 7574 }
252b5132 7575
29b0f896
AM
7576 if (fake_zero_displacement)
7577 {
7578 /* Fakes a zero displacement assuming that i.types[op]
7579 holds the correct displacement size. */
7580 expressionS *exp;
7581
9c2799c2 7582 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7583 exp = &disp_expressions[i.disp_operands++];
7584 i.op[op].disps = exp;
7585 exp->X_op = O_constant;
7586 exp->X_add_number = 0;
7587 exp->X_add_symbol = (symbolS *) 0;
7588 exp->X_op_symbol = (symbolS *) 0;
7589 }
c0f3af97
L
7590
7591 mem = op;
29b0f896 7592 }
c0f3af97
L
7593 else
7594 mem = ~0;
252b5132 7595
8c43a48b 7596 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7597 {
7598 if (operand_type_check (i.types[0], imm))
7599 i.vex.register_specifier = NULL;
7600 else
7601 {
7602 /* VEX.vvvv encodes one of the sources when the first
7603 operand is not an immediate. */
1ef99a7b 7604 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7605 i.vex.register_specifier = i.op[0].regs;
7606 else
7607 i.vex.register_specifier = i.op[1].regs;
7608 }
7609
7610 /* Destination is a XMM register encoded in the ModRM.reg
7611 and VEX.R bit. */
7612 i.rm.reg = i.op[2].regs->reg_num;
7613 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7614 i.rex |= REX_R;
7615
7616 /* ModRM.rm and VEX.B encodes the other source. */
7617 if (!i.mem_operands)
7618 {
7619 i.rm.mode = 3;
7620
1ef99a7b 7621 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7622 i.rm.regmem = i.op[1].regs->reg_num;
7623 else
7624 i.rm.regmem = i.op[0].regs->reg_num;
7625
7626 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7627 i.rex |= REX_B;
7628 }
7629 }
2426c15f 7630 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7631 {
7632 i.vex.register_specifier = i.op[2].regs;
7633 if (!i.mem_operands)
7634 {
7635 i.rm.mode = 3;
7636 i.rm.regmem = i.op[1].regs->reg_num;
7637 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7638 i.rex |= REX_B;
7639 }
7640 }
29b0f896
AM
7641 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7642 (if any) based on i.tm.extension_opcode. Again, we must be
7643 careful to make sure that segment/control/debug/test/MMX
7644 registers are coded into the i.rm.reg field. */
f88c9eb0 7645 else if (i.reg_operands)
29b0f896 7646 {
99018f42 7647 unsigned int op;
7ab9ffdd
L
7648 unsigned int vex_reg = ~0;
7649
7650 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7651 {
7652 if (i.types[op].bitfield.reg
7653 || i.types[op].bitfield.regbnd
7654 || i.types[op].bitfield.regmask
7655 || i.types[op].bitfield.sreg2
7656 || i.types[op].bitfield.sreg3
7657 || i.types[op].bitfield.control
7658 || i.types[op].bitfield.debug
7659 || i.types[op].bitfield.test)
7660 break;
7661 if (i.types[op].bitfield.regsimd)
7662 {
7663 if (i.types[op].bitfield.zmmword)
7664 i.has_regzmm = TRUE;
7665 else if (i.types[op].bitfield.ymmword)
7666 i.has_regymm = TRUE;
7667 else
7668 i.has_regxmm = TRUE;
7669 break;
7670 }
7671 if (i.types[op].bitfield.regmmx)
7672 {
7673 i.has_regmmx = TRUE;
7674 break;
7675 }
7676 }
c0209578 7677
7ab9ffdd
L
7678 if (vex_3_sources)
7679 op = dest;
2426c15f 7680 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7681 {
7682 /* For instructions with VexNDS, the register-only
7683 source operand is encoded in VEX prefix. */
7684 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7685
7ab9ffdd 7686 if (op > mem)
c0f3af97 7687 {
7ab9ffdd
L
7688 vex_reg = op++;
7689 gas_assert (op < i.operands);
c0f3af97
L
7690 }
7691 else
c0f3af97 7692 {
f12dc422
L
7693 /* Check register-only source operand when two source
7694 operands are swapped. */
7695 if (!i.tm.operand_types[op].bitfield.baseindex
7696 && i.tm.operand_types[op + 1].bitfield.baseindex)
7697 {
7698 vex_reg = op;
7699 op += 2;
7700 gas_assert (mem == (vex_reg + 1)
7701 && op < i.operands);
7702 }
7703 else
7704 {
7705 vex_reg = op + 1;
7706 gas_assert (vex_reg < i.operands);
7707 }
c0f3af97 7708 }
7ab9ffdd 7709 }
2426c15f 7710 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7711 {
f12dc422 7712 /* For instructions with VexNDD, the register destination
7ab9ffdd 7713 is encoded in VEX prefix. */
f12dc422
L
7714 if (i.mem_operands == 0)
7715 {
7716 /* There is no memory operand. */
7717 gas_assert ((op + 2) == i.operands);
7718 vex_reg = op + 1;
7719 }
7720 else
8d63c93e 7721 {
ed438a93
JB
7722 /* There are only 2 non-immediate operands. */
7723 gas_assert (op < i.imm_operands + 2
7724 && i.operands == i.imm_operands + 2);
7725 vex_reg = i.imm_operands + 1;
f12dc422 7726 }
7ab9ffdd
L
7727 }
7728 else
7729 gas_assert (op < i.operands);
99018f42 7730
7ab9ffdd
L
7731 if (vex_reg != (unsigned int) ~0)
7732 {
f12dc422 7733 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7734
dc821c5f
JB
7735 if ((!type->bitfield.reg
7736 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7737 && !type->bitfield.regsimd
43234a1e 7738 && !operand_type_equal (type, &regmask))
7ab9ffdd 7739 abort ();
f88c9eb0 7740
7ab9ffdd
L
7741 i.vex.register_specifier = i.op[vex_reg].regs;
7742 }
7743
1b9f0c97
L
7744 /* Don't set OP operand twice. */
7745 if (vex_reg != op)
7ab9ffdd 7746 {
1b9f0c97
L
7747 /* If there is an extension opcode to put here, the
7748 register number must be put into the regmem field. */
7749 if (i.tm.extension_opcode != None)
7750 {
7751 i.rm.regmem = i.op[op].regs->reg_num;
7752 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7753 i.rex |= REX_B;
43234a1e
L
7754 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7755 i.vrex |= REX_B;
1b9f0c97
L
7756 }
7757 else
7758 {
7759 i.rm.reg = i.op[op].regs->reg_num;
7760 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7761 i.rex |= REX_R;
43234a1e
L
7762 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7763 i.vrex |= REX_R;
1b9f0c97 7764 }
7ab9ffdd 7765 }
252b5132 7766
29b0f896
AM
7767 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7768 must set it to 3 to indicate this is a register operand
7769 in the regmem field. */
7770 if (!i.mem_operands)
7771 i.rm.mode = 3;
7772 }
252b5132 7773
29b0f896 7774 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7775 if (i.tm.extension_opcode != None)
29b0f896
AM
7776 i.rm.reg = i.tm.extension_opcode;
7777 }
7778 return default_seg;
7779}
252b5132 7780
29b0f896 7781static void
e3bb37b5 7782output_branch (void)
29b0f896
AM
7783{
7784 char *p;
f8a5c266 7785 int size;
29b0f896
AM
7786 int code16;
7787 int prefix;
7788 relax_substateT subtype;
7789 symbolS *sym;
7790 offsetT off;
7791
f8a5c266 7792 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7793 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7794
7795 prefix = 0;
7796 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7797 {
29b0f896
AM
7798 prefix = 1;
7799 i.prefixes -= 1;
7800 code16 ^= CODE16;
252b5132 7801 }
29b0f896
AM
7802 /* Pentium4 branch hints. */
7803 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7804 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7805 {
29b0f896
AM
7806 prefix++;
7807 i.prefixes--;
7808 }
7809 if (i.prefix[REX_PREFIX] != 0)
7810 {
7811 prefix++;
7812 i.prefixes--;
2f66722d
AM
7813 }
7814
7e8b059b
L
7815 /* BND prefixed jump. */
7816 if (i.prefix[BND_PREFIX] != 0)
7817 {
7818 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7819 i.prefixes -= 1;
7820 }
7821
29b0f896
AM
7822 if (i.prefixes != 0 && !intel_syntax)
7823 as_warn (_("skipping prefixes on this instruction"));
7824
7825 /* It's always a symbol; End frag & setup for relax.
7826 Make sure there is enough room in this frag for the largest
7827 instruction we may generate in md_convert_frag. This is 2
7828 bytes for the opcode and room for the prefix and largest
7829 displacement. */
7830 frag_grow (prefix + 2 + 4);
7831 /* Prefix and 1 opcode byte go in fr_fix. */
7832 p = frag_more (prefix + 1);
7833 if (i.prefix[DATA_PREFIX] != 0)
7834 *p++ = DATA_PREFIX_OPCODE;
7835 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7836 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7837 *p++ = i.prefix[SEG_PREFIX];
7838 if (i.prefix[REX_PREFIX] != 0)
7839 *p++ = i.prefix[REX_PREFIX];
7840 *p = i.tm.base_opcode;
7841
7842 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7843 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7844 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7845 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7846 else
f8a5c266 7847 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7848 subtype |= code16;
3e73aa7c 7849
29b0f896
AM
7850 sym = i.op[0].disps->X_add_symbol;
7851 off = i.op[0].disps->X_add_number;
3e73aa7c 7852
29b0f896
AM
7853 if (i.op[0].disps->X_op != O_constant
7854 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7855 {
29b0f896
AM
7856 /* Handle complex expressions. */
7857 sym = make_expr_symbol (i.op[0].disps);
7858 off = 0;
7859 }
3e73aa7c 7860
29b0f896
AM
7861 /* 1 possible extra opcode + 4 byte displacement go in var part.
7862 Pass reloc in fr_var. */
d258b828 7863 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7864}
3e73aa7c 7865
bd7ab16b
L
7866#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7867/* Return TRUE iff PLT32 relocation should be used for branching to
7868 symbol S. */
7869
7870static bfd_boolean
7871need_plt32_p (symbolS *s)
7872{
7873 /* PLT32 relocation is ELF only. */
7874 if (!IS_ELF)
7875 return FALSE;
7876
a5def729
RO
7877#ifdef TE_SOLARIS
7878 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7879 krtld support it. */
7880 return FALSE;
7881#endif
7882
bd7ab16b
L
7883 /* Since there is no need to prepare for PLT branch on x86-64, we
7884 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7885 be used as a marker for 32-bit PC-relative branches. */
7886 if (!object_64bit)
7887 return FALSE;
7888
7889 /* Weak or undefined symbol need PLT32 relocation. */
7890 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7891 return TRUE;
7892
7893 /* Non-global symbol doesn't need PLT32 relocation. */
7894 if (! S_IS_EXTERNAL (s))
7895 return FALSE;
7896
7897 /* Other global symbols need PLT32 relocation. NB: Symbol with
7898 non-default visibilities are treated as normal global symbol
7899 so that PLT32 relocation can be used as a marker for 32-bit
7900 PC-relative branches. It is useful for linker relaxation. */
7901 return TRUE;
7902}
7903#endif
7904
29b0f896 7905static void
e3bb37b5 7906output_jump (void)
29b0f896
AM
7907{
7908 char *p;
7909 int size;
3e02c1cc 7910 fixS *fixP;
bd7ab16b 7911 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7912
40fb9820 7913 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7914 {
7915 /* This is a loop or jecxz type instruction. */
7916 size = 1;
7917 if (i.prefix[ADDR_PREFIX] != 0)
7918 {
7919 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7920 i.prefixes -= 1;
7921 }
7922 /* Pentium4 branch hints. */
7923 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7924 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7925 {
7926 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7927 i.prefixes--;
3e73aa7c
JH
7928 }
7929 }
29b0f896
AM
7930 else
7931 {
7932 int code16;
3e73aa7c 7933
29b0f896
AM
7934 code16 = 0;
7935 if (flag_code == CODE_16BIT)
7936 code16 = CODE16;
3e73aa7c 7937
29b0f896
AM
7938 if (i.prefix[DATA_PREFIX] != 0)
7939 {
7940 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7941 i.prefixes -= 1;
7942 code16 ^= CODE16;
7943 }
252b5132 7944
29b0f896
AM
7945 size = 4;
7946 if (code16)
7947 size = 2;
7948 }
9fcc94b6 7949
29b0f896
AM
7950 if (i.prefix[REX_PREFIX] != 0)
7951 {
7952 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7953 i.prefixes -= 1;
7954 }
252b5132 7955
7e8b059b
L
7956 /* BND prefixed jump. */
7957 if (i.prefix[BND_PREFIX] != 0)
7958 {
7959 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7960 i.prefixes -= 1;
7961 }
7962
29b0f896
AM
7963 if (i.prefixes != 0 && !intel_syntax)
7964 as_warn (_("skipping prefixes on this instruction"));
e0890092 7965
42164a71
L
7966 p = frag_more (i.tm.opcode_length + size);
7967 switch (i.tm.opcode_length)
7968 {
7969 case 2:
7970 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7971 /* Fall through. */
42164a71
L
7972 case 1:
7973 *p++ = i.tm.base_opcode;
7974 break;
7975 default:
7976 abort ();
7977 }
e0890092 7978
bd7ab16b
L
7979#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7980 if (size == 4
7981 && jump_reloc == NO_RELOC
7982 && need_plt32_p (i.op[0].disps->X_add_symbol))
7983 jump_reloc = BFD_RELOC_X86_64_PLT32;
7984#endif
7985
7986 jump_reloc = reloc (size, 1, 1, jump_reloc);
7987
3e02c1cc 7988 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7989 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7990
7991 /* All jumps handled here are signed, but don't use a signed limit
7992 check for 32 and 16 bit jumps as we want to allow wrap around at
7993 4G and 64k respectively. */
7994 if (size == 1)
7995 fixP->fx_signed = 1;
29b0f896 7996}
e0890092 7997
29b0f896 7998static void
e3bb37b5 7999output_interseg_jump (void)
29b0f896
AM
8000{
8001 char *p;
8002 int size;
8003 int prefix;
8004 int code16;
252b5132 8005
29b0f896
AM
8006 code16 = 0;
8007 if (flag_code == CODE_16BIT)
8008 code16 = CODE16;
a217f122 8009
29b0f896
AM
8010 prefix = 0;
8011 if (i.prefix[DATA_PREFIX] != 0)
8012 {
8013 prefix = 1;
8014 i.prefixes -= 1;
8015 code16 ^= CODE16;
8016 }
8017 if (i.prefix[REX_PREFIX] != 0)
8018 {
8019 prefix++;
8020 i.prefixes -= 1;
8021 }
252b5132 8022
29b0f896
AM
8023 size = 4;
8024 if (code16)
8025 size = 2;
252b5132 8026
29b0f896
AM
8027 if (i.prefixes != 0 && !intel_syntax)
8028 as_warn (_("skipping prefixes on this instruction"));
252b5132 8029
29b0f896
AM
8030 /* 1 opcode; 2 segment; offset */
8031 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8032
29b0f896
AM
8033 if (i.prefix[DATA_PREFIX] != 0)
8034 *p++ = DATA_PREFIX_OPCODE;
252b5132 8035
29b0f896
AM
8036 if (i.prefix[REX_PREFIX] != 0)
8037 *p++ = i.prefix[REX_PREFIX];
252b5132 8038
29b0f896
AM
8039 *p++ = i.tm.base_opcode;
8040 if (i.op[1].imms->X_op == O_constant)
8041 {
8042 offsetT n = i.op[1].imms->X_add_number;
252b5132 8043
29b0f896
AM
8044 if (size == 2
8045 && !fits_in_unsigned_word (n)
8046 && !fits_in_signed_word (n))
8047 {
8048 as_bad (_("16-bit jump out of range"));
8049 return;
8050 }
8051 md_number_to_chars (p, n, size);
8052 }
8053 else
8054 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8055 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8056 if (i.op[0].imms->X_op != O_constant)
8057 as_bad (_("can't handle non absolute segment in `%s'"),
8058 i.tm.name);
8059 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8060}
a217f122 8061
b4a3a7b4
L
8062#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8063void
8064x86_cleanup (void)
8065{
8066 char *p;
8067 asection *seg = now_seg;
8068 subsegT subseg = now_subseg;
8069 asection *sec;
8070 unsigned int alignment, align_size_1;
8071 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8072 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8073 unsigned int padding;
8074
8075 if (!IS_ELF || !x86_used_note)
8076 return;
8077
b4a3a7b4
L
8078 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8079
8080 /* The .note.gnu.property section layout:
8081
8082 Field Length Contents
8083 ---- ---- ----
8084 n_namsz 4 4
8085 n_descsz 4 The note descriptor size
8086 n_type 4 NT_GNU_PROPERTY_TYPE_0
8087 n_name 4 "GNU"
8088 n_desc n_descsz The program property array
8089 .... .... ....
8090 */
8091
8092 /* Create the .note.gnu.property section. */
8093 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8094 bfd_set_section_flags (stdoutput, sec,
8095 (SEC_ALLOC
8096 | SEC_LOAD
8097 | SEC_DATA
8098 | SEC_HAS_CONTENTS
8099 | SEC_READONLY));
8100
8101 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8102 {
8103 align_size_1 = 7;
8104 alignment = 3;
8105 }
8106 else
8107 {
8108 align_size_1 = 3;
8109 alignment = 2;
8110 }
8111
8112 bfd_set_section_alignment (stdoutput, sec, alignment);
8113 elf_section_type (sec) = SHT_NOTE;
8114
8115 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8116 + 4-byte data */
8117 isa_1_descsz_raw = 4 + 4 + 4;
8118 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8119 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8120
8121 feature_2_descsz_raw = isa_1_descsz;
8122 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8123 + 4-byte data */
8124 feature_2_descsz_raw += 4 + 4 + 4;
8125 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8126 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8127 & ~align_size_1);
8128
8129 descsz = feature_2_descsz;
8130 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8131 p = frag_more (4 + 4 + 4 + 4 + descsz);
8132
8133 /* Write n_namsz. */
8134 md_number_to_chars (p, (valueT) 4, 4);
8135
8136 /* Write n_descsz. */
8137 md_number_to_chars (p + 4, (valueT) descsz, 4);
8138
8139 /* Write n_type. */
8140 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8141
8142 /* Write n_name. */
8143 memcpy (p + 4 * 3, "GNU", 4);
8144
8145 /* Write 4-byte type. */
8146 md_number_to_chars (p + 4 * 4,
8147 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8148
8149 /* Write 4-byte data size. */
8150 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8151
8152 /* Write 4-byte data. */
8153 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8154
8155 /* Zero out paddings. */
8156 padding = isa_1_descsz - isa_1_descsz_raw;
8157 if (padding)
8158 memset (p + 4 * 7, 0, padding);
8159
8160 /* Write 4-byte type. */
8161 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8162 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8163
8164 /* Write 4-byte data size. */
8165 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8166
8167 /* Write 4-byte data. */
8168 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8169 (valueT) x86_feature_2_used, 4);
8170
8171 /* Zero out paddings. */
8172 padding = feature_2_descsz - feature_2_descsz_raw;
8173 if (padding)
8174 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8175
8176 /* We probably can't restore the current segment, for there likely
8177 isn't one yet... */
8178 if (seg && subseg)
8179 subseg_set (seg, subseg);
8180}
8181#endif
8182
9c33702b
JB
8183static unsigned int
8184encoding_length (const fragS *start_frag, offsetT start_off,
8185 const char *frag_now_ptr)
8186{
8187 unsigned int len = 0;
8188
8189 if (start_frag != frag_now)
8190 {
8191 const fragS *fr = start_frag;
8192
8193 do {
8194 len += fr->fr_fix;
8195 fr = fr->fr_next;
8196 } while (fr && fr != frag_now);
8197 }
8198
8199 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8200}
8201
29b0f896 8202static void
e3bb37b5 8203output_insn (void)
29b0f896 8204{
2bbd9c25
JJ
8205 fragS *insn_start_frag;
8206 offsetT insn_start_off;
8207
b4a3a7b4
L
8208#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8209 if (IS_ELF && x86_used_note)
8210 {
8211 if (i.tm.cpu_flags.bitfield.cpucmov)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8213 if (i.tm.cpu_flags.bitfield.cpusse)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8215 if (i.tm.cpu_flags.bitfield.cpusse2)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8217 if (i.tm.cpu_flags.bitfield.cpusse3)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8219 if (i.tm.cpu_flags.bitfield.cpussse3)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8221 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8223 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8225 if (i.tm.cpu_flags.bitfield.cpuavx)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8227 if (i.tm.cpu_flags.bitfield.cpuavx2)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8229 if (i.tm.cpu_flags.bitfield.cpufma)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8259 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8261
8262 if (i.tm.cpu_flags.bitfield.cpu8087
8263 || i.tm.cpu_flags.bitfield.cpu287
8264 || i.tm.cpu_flags.bitfield.cpu387
8265 || i.tm.cpu_flags.bitfield.cpu687
8266 || i.tm.cpu_flags.bitfield.cpufisttp)
8267 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8268 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8269 Xfence instructions. */
8270 if (i.tm.base_opcode != 0xf18
8271 && i.tm.base_opcode != 0xf0d
c3949f43 8272 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8273 && (i.has_regmmx
8274 || i.tm.cpu_flags.bitfield.cpummx
8275 || i.tm.cpu_flags.bitfield.cpua3dnow
8276 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8278 if (i.has_regxmm)
8279 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8280 if (i.has_regymm)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8282 if (i.has_regzmm)
8283 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8284 if (i.tm.cpu_flags.bitfield.cpufxsr)
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8286 if (i.tm.cpu_flags.bitfield.cpuxsave)
8287 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8288 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8289 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8290 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8292 }
8293#endif
8294
29b0f896
AM
8295 /* Tie dwarf2 debug info to the address at the start of the insn.
8296 We can't do this after the insn has been output as the current
8297 frag may have been closed off. eg. by frag_var. */
8298 dwarf2_emit_insn (0);
8299
2bbd9c25
JJ
8300 insn_start_frag = frag_now;
8301 insn_start_off = frag_now_fix ();
8302
29b0f896 8303 /* Output jumps. */
40fb9820 8304 if (i.tm.opcode_modifier.jump)
29b0f896 8305 output_branch ();
40fb9820
L
8306 else if (i.tm.opcode_modifier.jumpbyte
8307 || i.tm.opcode_modifier.jumpdword)
29b0f896 8308 output_jump ();
40fb9820 8309 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8310 output_interseg_jump ();
8311 else
8312 {
8313 /* Output normal instructions here. */
8314 char *p;
8315 unsigned char *q;
47465058 8316 unsigned int j;
331d2d0d 8317 unsigned int prefix;
4dffcebc 8318
e4e00185 8319 if (avoid_fence
c3949f43
JB
8320 && (i.tm.base_opcode == 0xfaee8
8321 || i.tm.base_opcode == 0xfaef0
8322 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8323 {
8324 /* Encode lfence, mfence, and sfence as
8325 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8326 offsetT val = 0x240483f0ULL;
8327 p = frag_more (5);
8328 md_number_to_chars (p, val, 5);
8329 return;
8330 }
8331
d022bddd
IT
8332 /* Some processors fail on LOCK prefix. This options makes
8333 assembler ignore LOCK prefix and serves as a workaround. */
8334 if (omit_lock_prefix)
8335 {
8336 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8337 return;
8338 i.prefix[LOCK_PREFIX] = 0;
8339 }
8340
43234a1e
L
8341 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8342 don't need the explicit prefix. */
8343 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8344 {
c0f3af97 8345 switch (i.tm.opcode_length)
bc4bd9ab 8346 {
c0f3af97
L
8347 case 3:
8348 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8349 {
c0f3af97 8350 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8351 if (!i.tm.cpu_flags.bitfield.cpupadlock
8352 || prefix != REPE_PREFIX_OPCODE
8353 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8354 add_prefix (prefix);
c0f3af97
L
8355 }
8356 break;
8357 case 2:
8358 if ((i.tm.base_opcode & 0xff0000) != 0)
8359 {
8360 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8361 add_prefix (prefix);
4dffcebc 8362 }
c0f3af97
L
8363 break;
8364 case 1:
8365 break;
390c91cf
L
8366 case 0:
8367 /* Check for pseudo prefixes. */
8368 as_bad_where (insn_start_frag->fr_file,
8369 insn_start_frag->fr_line,
8370 _("pseudo prefix without instruction"));
8371 return;
c0f3af97
L
8372 default:
8373 abort ();
bc4bd9ab 8374 }
c0f3af97 8375
6d19a37a 8376#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8377 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8378 R_X86_64_GOTTPOFF relocation so that linker can safely
8379 perform IE->LE optimization. */
8380 if (x86_elf_abi == X86_64_X32_ABI
8381 && i.operands == 2
8382 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8383 && i.prefix[REX_PREFIX] == 0)
8384 add_prefix (REX_OPCODE);
6d19a37a 8385#endif
cf61b747 8386
c0f3af97
L
8387 /* The prefix bytes. */
8388 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8389 if (*q)
8390 FRAG_APPEND_1_CHAR (*q);
0f10071e 8391 }
ae5c1c7b 8392 else
c0f3af97
L
8393 {
8394 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8395 if (*q)
8396 switch (j)
8397 {
8398 case REX_PREFIX:
8399 /* REX byte is encoded in VEX prefix. */
8400 break;
8401 case SEG_PREFIX:
8402 case ADDR_PREFIX:
8403 FRAG_APPEND_1_CHAR (*q);
8404 break;
8405 default:
8406 /* There should be no other prefixes for instructions
8407 with VEX prefix. */
8408 abort ();
8409 }
8410
43234a1e
L
8411 /* For EVEX instructions i.vrex should become 0 after
8412 build_evex_prefix. For VEX instructions upper 16 registers
8413 aren't available, so VREX should be 0. */
8414 if (i.vrex)
8415 abort ();
c0f3af97
L
8416 /* Now the VEX prefix. */
8417 p = frag_more (i.vex.length);
8418 for (j = 0; j < i.vex.length; j++)
8419 p[j] = i.vex.bytes[j];
8420 }
252b5132 8421
29b0f896 8422 /* Now the opcode; be careful about word order here! */
4dffcebc 8423 if (i.tm.opcode_length == 1)
29b0f896
AM
8424 {
8425 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8426 }
8427 else
8428 {
4dffcebc 8429 switch (i.tm.opcode_length)
331d2d0d 8430 {
43234a1e
L
8431 case 4:
8432 p = frag_more (4);
8433 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8434 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8435 break;
4dffcebc 8436 case 3:
331d2d0d
L
8437 p = frag_more (3);
8438 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8439 break;
8440 case 2:
8441 p = frag_more (2);
8442 break;
8443 default:
8444 abort ();
8445 break;
331d2d0d 8446 }
0f10071e 8447
29b0f896
AM
8448 /* Put out high byte first: can't use md_number_to_chars! */
8449 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8450 *p = i.tm.base_opcode & 0xff;
8451 }
3e73aa7c 8452
29b0f896 8453 /* Now the modrm byte and sib byte (if present). */
40fb9820 8454 if (i.tm.opcode_modifier.modrm)
29b0f896 8455 {
4a3523fa
L
8456 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8457 | i.rm.reg << 3
8458 | i.rm.mode << 6));
29b0f896
AM
8459 /* If i.rm.regmem == ESP (4)
8460 && i.rm.mode != (Register mode)
8461 && not 16 bit
8462 ==> need second modrm byte. */
8463 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8464 && i.rm.mode != 3
dc821c5f 8465 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8466 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8467 | i.sib.index << 3
8468 | i.sib.scale << 6));
29b0f896 8469 }
3e73aa7c 8470
29b0f896 8471 if (i.disp_operands)
2bbd9c25 8472 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8473
29b0f896 8474 if (i.imm_operands)
2bbd9c25 8475 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8476
8477 /*
8478 * frag_now_fix () returning plain abs_section_offset when we're in the
8479 * absolute section, and abs_section_offset not getting updated as data
8480 * gets added to the frag breaks the logic below.
8481 */
8482 if (now_seg != absolute_section)
8483 {
8484 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8485 if (j > 15)
8486 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8487 j);
8488 }
29b0f896 8489 }
252b5132 8490
29b0f896
AM
8491#ifdef DEBUG386
8492 if (flag_debug)
8493 {
7b81dfbb 8494 pi ("" /*line*/, &i);
29b0f896
AM
8495 }
8496#endif /* DEBUG386 */
8497}
252b5132 8498
e205caa7
L
8499/* Return the size of the displacement operand N. */
8500
8501static int
8502disp_size (unsigned int n)
8503{
8504 int size = 4;
43234a1e 8505
b5014f7a 8506 if (i.types[n].bitfield.disp64)
40fb9820
L
8507 size = 8;
8508 else if (i.types[n].bitfield.disp8)
8509 size = 1;
8510 else if (i.types[n].bitfield.disp16)
8511 size = 2;
e205caa7
L
8512 return size;
8513}
8514
8515/* Return the size of the immediate operand N. */
8516
8517static int
8518imm_size (unsigned int n)
8519{
8520 int size = 4;
40fb9820
L
8521 if (i.types[n].bitfield.imm64)
8522 size = 8;
8523 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8524 size = 1;
8525 else if (i.types[n].bitfield.imm16)
8526 size = 2;
e205caa7
L
8527 return size;
8528}
8529
29b0f896 8530static void
64e74474 8531output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8532{
8533 char *p;
8534 unsigned int n;
252b5132 8535
29b0f896
AM
8536 for (n = 0; n < i.operands; n++)
8537 {
b5014f7a 8538 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8539 {
8540 if (i.op[n].disps->X_op == O_constant)
8541 {
e205caa7 8542 int size = disp_size (n);
43234a1e 8543 offsetT val = i.op[n].disps->X_add_number;
252b5132 8544
629cfaf1
JB
8545 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8546 size);
29b0f896
AM
8547 p = frag_more (size);
8548 md_number_to_chars (p, val, size);
8549 }
8550 else
8551 {
f86103b7 8552 enum bfd_reloc_code_real reloc_type;
e205caa7 8553 int size = disp_size (n);
40fb9820 8554 int sign = i.types[n].bitfield.disp32s;
29b0f896 8555 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8556 fixS *fixP;
29b0f896 8557
e205caa7 8558 /* We can't have 8 bit displacement here. */
9c2799c2 8559 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8560
29b0f896
AM
8561 /* The PC relative address is computed relative
8562 to the instruction boundary, so in case immediate
8563 fields follows, we need to adjust the value. */
8564 if (pcrel && i.imm_operands)
8565 {
29b0f896 8566 unsigned int n1;
e205caa7 8567 int sz = 0;
252b5132 8568
29b0f896 8569 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8570 if (operand_type_check (i.types[n1], imm))
252b5132 8571 {
e205caa7
L
8572 /* Only one immediate is allowed for PC
8573 relative address. */
9c2799c2 8574 gas_assert (sz == 0);
e205caa7
L
8575 sz = imm_size (n1);
8576 i.op[n].disps->X_add_number -= sz;
252b5132 8577 }
29b0f896 8578 /* We should find the immediate. */
9c2799c2 8579 gas_assert (sz != 0);
29b0f896 8580 }
520dc8e8 8581
29b0f896 8582 p = frag_more (size);
d258b828 8583 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8584 if (GOT_symbol
2bbd9c25 8585 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8586 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8587 || reloc_type == BFD_RELOC_X86_64_32S
8588 || (reloc_type == BFD_RELOC_64
8589 && object_64bit))
d6ab8113
JB
8590 && (i.op[n].disps->X_op == O_symbol
8591 || (i.op[n].disps->X_op == O_add
8592 && ((symbol_get_value_expression
8593 (i.op[n].disps->X_op_symbol)->X_op)
8594 == O_subtract))))
8595 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8596 {
4fa24527 8597 if (!object_64bit)
7b81dfbb
AJ
8598 {
8599 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8600 i.op[n].imms->X_add_number +=
8601 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8602 }
8603 else if (reloc_type == BFD_RELOC_64)
8604 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8605 else
7b81dfbb
AJ
8606 /* Don't do the adjustment for x86-64, as there
8607 the pcrel addressing is relative to the _next_
8608 insn, and that is taken care of in other code. */
d6ab8113 8609 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8610 }
02a86693
L
8611 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8612 size, i.op[n].disps, pcrel,
8613 reloc_type);
8614 /* Check for "call/jmp *mem", "mov mem, %reg",
8615 "test %reg, mem" and "binop mem, %reg" where binop
8616 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8617 instructions without data prefix. Always generate
8618 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8619 if (i.prefix[DATA_PREFIX] == 0
8620 && (generate_relax_relocations
8621 || (!object_64bit
8622 && i.rm.mode == 0
8623 && i.rm.regmem == 5))
0cb4071e
L
8624 && (i.rm.mode == 2
8625 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8626 && ((i.operands == 1
8627 && i.tm.base_opcode == 0xff
8628 && (i.rm.reg == 2 || i.rm.reg == 4))
8629 || (i.operands == 2
8630 && (i.tm.base_opcode == 0x8b
8631 || i.tm.base_opcode == 0x85
8632 || (i.tm.base_opcode & 0xc7) == 0x03))))
8633 {
8634 if (object_64bit)
8635 {
8636 fixP->fx_tcbit = i.rex != 0;
8637 if (i.base_reg
e968fc9b 8638 && (i.base_reg->reg_num == RegIP))
02a86693
L
8639 fixP->fx_tcbit2 = 1;
8640 }
8641 else
8642 fixP->fx_tcbit2 = 1;
8643 }
29b0f896
AM
8644 }
8645 }
8646 }
8647}
252b5132 8648
29b0f896 8649static void
64e74474 8650output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8651{
8652 char *p;
8653 unsigned int n;
252b5132 8654
29b0f896
AM
8655 for (n = 0; n < i.operands; n++)
8656 {
43234a1e
L
8657 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8658 if (i.rounding && (int) n == i.rounding->operand)
8659 continue;
8660
40fb9820 8661 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8662 {
8663 if (i.op[n].imms->X_op == O_constant)
8664 {
e205caa7 8665 int size = imm_size (n);
29b0f896 8666 offsetT val;
b4cac588 8667
29b0f896
AM
8668 val = offset_in_range (i.op[n].imms->X_add_number,
8669 size);
8670 p = frag_more (size);
8671 md_number_to_chars (p, val, size);
8672 }
8673 else
8674 {
8675 /* Not absolute_section.
8676 Need a 32-bit fixup (don't support 8bit
8677 non-absolute imms). Try to support other
8678 sizes ... */
f86103b7 8679 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8680 int size = imm_size (n);
8681 int sign;
29b0f896 8682
40fb9820 8683 if (i.types[n].bitfield.imm32s
a7d61044 8684 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8685 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8686 sign = 1;
e205caa7
L
8687 else
8688 sign = 0;
520dc8e8 8689
29b0f896 8690 p = frag_more (size);
d258b828 8691 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8692
2bbd9c25
JJ
8693 /* This is tough to explain. We end up with this one if we
8694 * have operands that look like
8695 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8696 * obtain the absolute address of the GOT, and it is strongly
8697 * preferable from a performance point of view to avoid using
8698 * a runtime relocation for this. The actual sequence of
8699 * instructions often look something like:
8700 *
8701 * call .L66
8702 * .L66:
8703 * popl %ebx
8704 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8705 *
8706 * The call and pop essentially return the absolute address
8707 * of the label .L66 and store it in %ebx. The linker itself
8708 * will ultimately change the first operand of the addl so
8709 * that %ebx points to the GOT, but to keep things simple, the
8710 * .o file must have this operand set so that it generates not
8711 * the absolute address of .L66, but the absolute address of
8712 * itself. This allows the linker itself simply treat a GOTPC
8713 * relocation as asking for a pcrel offset to the GOT to be
8714 * added in, and the addend of the relocation is stored in the
8715 * operand field for the instruction itself.
8716 *
8717 * Our job here is to fix the operand so that it would add
8718 * the correct offset so that %ebx would point to itself. The
8719 * thing that is tricky is that .-.L66 will point to the
8720 * beginning of the instruction, so we need to further modify
8721 * the operand so that it will point to itself. There are
8722 * other cases where you have something like:
8723 *
8724 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8725 *
8726 * and here no correction would be required. Internally in
8727 * the assembler we treat operands of this form as not being
8728 * pcrel since the '.' is explicitly mentioned, and I wonder
8729 * whether it would simplify matters to do it this way. Who
8730 * knows. In earlier versions of the PIC patches, the
8731 * pcrel_adjust field was used to store the correction, but
8732 * since the expression is not pcrel, I felt it would be
8733 * confusing to do it this way. */
8734
d6ab8113 8735 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8736 || reloc_type == BFD_RELOC_X86_64_32S
8737 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8738 && GOT_symbol
8739 && GOT_symbol == i.op[n].imms->X_add_symbol
8740 && (i.op[n].imms->X_op == O_symbol
8741 || (i.op[n].imms->X_op == O_add
8742 && ((symbol_get_value_expression
8743 (i.op[n].imms->X_op_symbol)->X_op)
8744 == O_subtract))))
8745 {
4fa24527 8746 if (!object_64bit)
d6ab8113 8747 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8748 else if (size == 4)
d6ab8113 8749 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8750 else if (size == 8)
8751 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8752 i.op[n].imms->X_add_number +=
8753 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8754 }
29b0f896
AM
8755 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8756 i.op[n].imms, 0, reloc_type);
8757 }
8758 }
8759 }
252b5132
RH
8760}
8761\f
d182319b
JB
8762/* x86_cons_fix_new is called via the expression parsing code when a
8763 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8764static int cons_sign = -1;
8765
8766void
e3bb37b5 8767x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8768 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8769{
d258b828 8770 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8771
8772#ifdef TE_PE
8773 if (exp->X_op == O_secrel)
8774 {
8775 exp->X_op = O_symbol;
8776 r = BFD_RELOC_32_SECREL;
8777 }
8778#endif
8779
8780 fix_new_exp (frag, off, len, exp, 0, r);
8781}
8782
357d1bd8
L
8783/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8784 purpose of the `.dc.a' internal pseudo-op. */
8785
8786int
8787x86_address_bytes (void)
8788{
8789 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8790 return 4;
8791 return stdoutput->arch_info->bits_per_address / 8;
8792}
8793
d382c579
TG
8794#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8795 || defined (LEX_AT)
d258b828 8796# define lex_got(reloc, adjust, types) NULL
718ddfc0 8797#else
f3c180ae
AM
8798/* Parse operands of the form
8799 <symbol>@GOTOFF+<nnn>
8800 and similar .plt or .got references.
8801
8802 If we find one, set up the correct relocation in RELOC and copy the
8803 input string, minus the `@GOTOFF' into a malloc'd buffer for
8804 parsing by the calling routine. Return this buffer, and if ADJUST
8805 is non-null set it to the length of the string we removed from the
8806 input line. Otherwise return NULL. */
8807static char *
91d6fa6a 8808lex_got (enum bfd_reloc_code_real *rel,
64e74474 8809 int *adjust,
d258b828 8810 i386_operand_type *types)
f3c180ae 8811{
7b81dfbb
AJ
8812 /* Some of the relocations depend on the size of what field is to
8813 be relocated. But in our callers i386_immediate and i386_displacement
8814 we don't yet know the operand size (this will be set by insn
8815 matching). Hence we record the word32 relocation here,
8816 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8817 static const struct {
8818 const char *str;
cff8d58a 8819 int len;
4fa24527 8820 const enum bfd_reloc_code_real rel[2];
40fb9820 8821 const i386_operand_type types64;
f3c180ae 8822 } gotrel[] = {
8ce3d284 8823#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8824 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8825 BFD_RELOC_SIZE32 },
8826 OPERAND_TYPE_IMM32_64 },
8ce3d284 8827#endif
cff8d58a
L
8828 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8830 OPERAND_TYPE_IMM64 },
cff8d58a
L
8831 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8832 BFD_RELOC_X86_64_PLT32 },
40fb9820 8833 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8834 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8835 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8836 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8837 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8838 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8839 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8840 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8841 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8842 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8843 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8844 BFD_RELOC_X86_64_TLSGD },
40fb9820 8845 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8846 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8847 _dummy_first_bfd_reloc_code_real },
40fb9820 8848 OPERAND_TYPE_NONE },
cff8d58a
L
8849 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8850 BFD_RELOC_X86_64_TLSLD },
40fb9820 8851 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8852 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8853 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8854 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8855 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8856 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8857 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8858 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8859 _dummy_first_bfd_reloc_code_real },
40fb9820 8860 OPERAND_TYPE_NONE },
cff8d58a
L
8861 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8862 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8863 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8864 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8865 _dummy_first_bfd_reloc_code_real },
40fb9820 8866 OPERAND_TYPE_NONE },
cff8d58a
L
8867 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8868 _dummy_first_bfd_reloc_code_real },
40fb9820 8869 OPERAND_TYPE_NONE },
cff8d58a
L
8870 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8871 BFD_RELOC_X86_64_GOT32 },
40fb9820 8872 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8873 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8874 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8875 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8876 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8877 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8878 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8879 };
8880 char *cp;
8881 unsigned int j;
8882
d382c579 8883#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8884 if (!IS_ELF)
8885 return NULL;
d382c579 8886#endif
718ddfc0 8887
f3c180ae 8888 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8889 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8890 return NULL;
8891
47465058 8892 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8893 {
cff8d58a 8894 int len = gotrel[j].len;
28f81592 8895 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8896 {
4fa24527 8897 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8898 {
28f81592
AM
8899 int first, second;
8900 char *tmpbuf, *past_reloc;
f3c180ae 8901
91d6fa6a 8902 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8903
3956db08
JB
8904 if (types)
8905 {
8906 if (flag_code != CODE_64BIT)
40fb9820
L
8907 {
8908 types->bitfield.imm32 = 1;
8909 types->bitfield.disp32 = 1;
8910 }
3956db08
JB
8911 else
8912 *types = gotrel[j].types64;
8913 }
8914
8fd4256d 8915 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8916 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8917
28f81592 8918 /* The length of the first part of our input line. */
f3c180ae 8919 first = cp - input_line_pointer;
28f81592
AM
8920
8921 /* The second part goes from after the reloc token until
67c11a9b 8922 (and including) an end_of_line char or comma. */
28f81592 8923 past_reloc = cp + 1 + len;
67c11a9b
AM
8924 cp = past_reloc;
8925 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8926 ++cp;
8927 second = cp + 1 - past_reloc;
28f81592
AM
8928
8929 /* Allocate and copy string. The trailing NUL shouldn't
8930 be necessary, but be safe. */
add39d23 8931 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8932 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8933 if (second != 0 && *past_reloc != ' ')
8934 /* Replace the relocation token with ' ', so that
8935 errors like foo@GOTOFF1 will be detected. */
8936 tmpbuf[first++] = ' ';
af89796a
L
8937 else
8938 /* Increment length by 1 if the relocation token is
8939 removed. */
8940 len++;
8941 if (adjust)
8942 *adjust = len;
0787a12d
AM
8943 memcpy (tmpbuf + first, past_reloc, second);
8944 tmpbuf[first + second] = '\0';
f3c180ae
AM
8945 return tmpbuf;
8946 }
8947
4fa24527
JB
8948 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8949 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8950 return NULL;
8951 }
8952 }
8953
8954 /* Might be a symbol version string. Don't as_bad here. */
8955 return NULL;
8956}
4e4f7c87 8957#endif
f3c180ae 8958
a988325c
NC
8959#ifdef TE_PE
8960#ifdef lex_got
8961#undef lex_got
8962#endif
8963/* Parse operands of the form
8964 <symbol>@SECREL32+<nnn>
8965
8966 If we find one, set up the correct relocation in RELOC and copy the
8967 input string, minus the `@SECREL32' into a malloc'd buffer for
8968 parsing by the calling routine. Return this buffer, and if ADJUST
8969 is non-null set it to the length of the string we removed from the
34bca508
L
8970 input line. Otherwise return NULL.
8971
a988325c
NC
8972 This function is copied from the ELF version above adjusted for PE targets. */
8973
8974static char *
8975lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8976 int *adjust ATTRIBUTE_UNUSED,
d258b828 8977 i386_operand_type *types)
a988325c
NC
8978{
8979 static const struct
8980 {
8981 const char *str;
8982 int len;
8983 const enum bfd_reloc_code_real rel[2];
8984 const i386_operand_type types64;
8985 }
8986 gotrel[] =
8987 {
8988 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8989 BFD_RELOC_32_SECREL },
8990 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8991 };
8992
8993 char *cp;
8994 unsigned j;
8995
8996 for (cp = input_line_pointer; *cp != '@'; cp++)
8997 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8998 return NULL;
8999
9000 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9001 {
9002 int len = gotrel[j].len;
9003
9004 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9005 {
9006 if (gotrel[j].rel[object_64bit] != 0)
9007 {
9008 int first, second;
9009 char *tmpbuf, *past_reloc;
9010
9011 *rel = gotrel[j].rel[object_64bit];
9012 if (adjust)
9013 *adjust = len;
9014
9015 if (types)
9016 {
9017 if (flag_code != CODE_64BIT)
9018 {
9019 types->bitfield.imm32 = 1;
9020 types->bitfield.disp32 = 1;
9021 }
9022 else
9023 *types = gotrel[j].types64;
9024 }
9025
9026 /* The length of the first part of our input line. */
9027 first = cp - input_line_pointer;
9028
9029 /* The second part goes from after the reloc token until
9030 (and including) an end_of_line char or comma. */
9031 past_reloc = cp + 1 + len;
9032 cp = past_reloc;
9033 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9034 ++cp;
9035 second = cp + 1 - past_reloc;
9036
9037 /* Allocate and copy string. The trailing NUL shouldn't
9038 be necessary, but be safe. */
add39d23 9039 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9040 memcpy (tmpbuf, input_line_pointer, first);
9041 if (second != 0 && *past_reloc != ' ')
9042 /* Replace the relocation token with ' ', so that
9043 errors like foo@SECLREL321 will be detected. */
9044 tmpbuf[first++] = ' ';
9045 memcpy (tmpbuf + first, past_reloc, second);
9046 tmpbuf[first + second] = '\0';
9047 return tmpbuf;
9048 }
9049
9050 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9051 gotrel[j].str, 1 << (5 + object_64bit));
9052 return NULL;
9053 }
9054 }
9055
9056 /* Might be a symbol version string. Don't as_bad here. */
9057 return NULL;
9058}
9059
9060#endif /* TE_PE */
9061
62ebcb5c 9062bfd_reloc_code_real_type
e3bb37b5 9063x86_cons (expressionS *exp, int size)
f3c180ae 9064{
62ebcb5c
AM
9065 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9066
ee86248c
JB
9067 intel_syntax = -intel_syntax;
9068
3c7b9c2c 9069 exp->X_md = 0;
4fa24527 9070 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9071 {
9072 /* Handle @GOTOFF and the like in an expression. */
9073 char *save;
9074 char *gotfree_input_line;
4a57f2cf 9075 int adjust = 0;
f3c180ae
AM
9076
9077 save = input_line_pointer;
d258b828 9078 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9079 if (gotfree_input_line)
9080 input_line_pointer = gotfree_input_line;
9081
9082 expression (exp);
9083
9084 if (gotfree_input_line)
9085 {
9086 /* expression () has merrily parsed up to the end of line,
9087 or a comma - in the wrong buffer. Transfer how far
9088 input_line_pointer has moved to the right buffer. */
9089 input_line_pointer = (save
9090 + (input_line_pointer - gotfree_input_line)
9091 + adjust);
9092 free (gotfree_input_line);
3992d3b7
AM
9093 if (exp->X_op == O_constant
9094 || exp->X_op == O_absent
9095 || exp->X_op == O_illegal
0398aac5 9096 || exp->X_op == O_register
3992d3b7
AM
9097 || exp->X_op == O_big)
9098 {
9099 char c = *input_line_pointer;
9100 *input_line_pointer = 0;
9101 as_bad (_("missing or invalid expression `%s'"), save);
9102 *input_line_pointer = c;
9103 }
b9519cfe
L
9104 else if ((got_reloc == BFD_RELOC_386_PLT32
9105 || got_reloc == BFD_RELOC_X86_64_PLT32)
9106 && exp->X_op != O_symbol)
9107 {
9108 char c = *input_line_pointer;
9109 *input_line_pointer = 0;
9110 as_bad (_("invalid PLT expression `%s'"), save);
9111 *input_line_pointer = c;
9112 }
f3c180ae
AM
9113 }
9114 }
9115 else
9116 expression (exp);
ee86248c
JB
9117
9118 intel_syntax = -intel_syntax;
9119
9120 if (intel_syntax)
9121 i386_intel_simplify (exp);
62ebcb5c
AM
9122
9123 return got_reloc;
f3c180ae 9124}
f3c180ae 9125
9f32dd5b
L
9126static void
9127signed_cons (int size)
6482c264 9128{
d182319b
JB
9129 if (flag_code == CODE_64BIT)
9130 cons_sign = 1;
9131 cons (size);
9132 cons_sign = -1;
6482c264
NC
9133}
9134
d182319b 9135#ifdef TE_PE
6482c264 9136static void
7016a5d5 9137pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9138{
9139 expressionS exp;
9140
9141 do
9142 {
9143 expression (&exp);
9144 if (exp.X_op == O_symbol)
9145 exp.X_op = O_secrel;
9146
9147 emit_expr (&exp, 4);
9148 }
9149 while (*input_line_pointer++ == ',');
9150
9151 input_line_pointer--;
9152 demand_empty_rest_of_line ();
9153}
6482c264
NC
9154#endif
9155
43234a1e
L
9156/* Handle Vector operations. */
9157
9158static char *
9159check_VecOperations (char *op_string, char *op_end)
9160{
9161 const reg_entry *mask;
9162 const char *saved;
9163 char *end_op;
9164
9165 while (*op_string
9166 && (op_end == NULL || op_string < op_end))
9167 {
9168 saved = op_string;
9169 if (*op_string == '{')
9170 {
9171 op_string++;
9172
9173 /* Check broadcasts. */
9174 if (strncmp (op_string, "1to", 3) == 0)
9175 {
9176 int bcst_type;
9177
9178 if (i.broadcast)
9179 goto duplicated_vec_op;
9180
9181 op_string += 3;
9182 if (*op_string == '8')
8e6e0792 9183 bcst_type = 8;
b28d1bda 9184 else if (*op_string == '4')
8e6e0792 9185 bcst_type = 4;
b28d1bda 9186 else if (*op_string == '2')
8e6e0792 9187 bcst_type = 2;
43234a1e
L
9188 else if (*op_string == '1'
9189 && *(op_string+1) == '6')
9190 {
8e6e0792 9191 bcst_type = 16;
43234a1e
L
9192 op_string++;
9193 }
9194 else
9195 {
9196 as_bad (_("Unsupported broadcast: `%s'"), saved);
9197 return NULL;
9198 }
9199 op_string++;
9200
9201 broadcast_op.type = bcst_type;
9202 broadcast_op.operand = this_operand;
1f75763a 9203 broadcast_op.bytes = 0;
43234a1e
L
9204 i.broadcast = &broadcast_op;
9205 }
9206 /* Check masking operation. */
9207 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9208 {
9209 /* k0 can't be used for write mask. */
6d2cd6b2 9210 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9211 {
6d2cd6b2
JB
9212 as_bad (_("`%s%s' can't be used for write mask"),
9213 register_prefix, mask->reg_name);
43234a1e
L
9214 return NULL;
9215 }
9216
9217 if (!i.mask)
9218 {
9219 mask_op.mask = mask;
9220 mask_op.zeroing = 0;
9221 mask_op.operand = this_operand;
9222 i.mask = &mask_op;
9223 }
9224 else
9225 {
9226 if (i.mask->mask)
9227 goto duplicated_vec_op;
9228
9229 i.mask->mask = mask;
9230
9231 /* Only "{z}" is allowed here. No need to check
9232 zeroing mask explicitly. */
9233 if (i.mask->operand != this_operand)
9234 {
9235 as_bad (_("invalid write mask `%s'"), saved);
9236 return NULL;
9237 }
9238 }
9239
9240 op_string = end_op;
9241 }
9242 /* Check zeroing-flag for masking operation. */
9243 else if (*op_string == 'z')
9244 {
9245 if (!i.mask)
9246 {
9247 mask_op.mask = NULL;
9248 mask_op.zeroing = 1;
9249 mask_op.operand = this_operand;
9250 i.mask = &mask_op;
9251 }
9252 else
9253 {
9254 if (i.mask->zeroing)
9255 {
9256 duplicated_vec_op:
9257 as_bad (_("duplicated `%s'"), saved);
9258 return NULL;
9259 }
9260
9261 i.mask->zeroing = 1;
9262
9263 /* Only "{%k}" is allowed here. No need to check mask
9264 register explicitly. */
9265 if (i.mask->operand != this_operand)
9266 {
9267 as_bad (_("invalid zeroing-masking `%s'"),
9268 saved);
9269 return NULL;
9270 }
9271 }
9272
9273 op_string++;
9274 }
9275 else
9276 goto unknown_vec_op;
9277
9278 if (*op_string != '}')
9279 {
9280 as_bad (_("missing `}' in `%s'"), saved);
9281 return NULL;
9282 }
9283 op_string++;
0ba3a731
L
9284
9285 /* Strip whitespace since the addition of pseudo prefixes
9286 changed how the scrubber treats '{'. */
9287 if (is_space_char (*op_string))
9288 ++op_string;
9289
43234a1e
L
9290 continue;
9291 }
9292 unknown_vec_op:
9293 /* We don't know this one. */
9294 as_bad (_("unknown vector operation: `%s'"), saved);
9295 return NULL;
9296 }
9297
6d2cd6b2
JB
9298 if (i.mask && i.mask->zeroing && !i.mask->mask)
9299 {
9300 as_bad (_("zeroing-masking only allowed with write mask"));
9301 return NULL;
9302 }
9303
43234a1e
L
9304 return op_string;
9305}
9306
252b5132 9307static int
70e41ade 9308i386_immediate (char *imm_start)
252b5132
RH
9309{
9310 char *save_input_line_pointer;
f3c180ae 9311 char *gotfree_input_line;
252b5132 9312 segT exp_seg = 0;
47926f60 9313 expressionS *exp;
40fb9820
L
9314 i386_operand_type types;
9315
0dfbf9d7 9316 operand_type_set (&types, ~0);
252b5132
RH
9317
9318 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9319 {
31b2323c
L
9320 as_bad (_("at most %d immediate operands are allowed"),
9321 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9322 return 0;
9323 }
9324
9325 exp = &im_expressions[i.imm_operands++];
520dc8e8 9326 i.op[this_operand].imms = exp;
252b5132
RH
9327
9328 if (is_space_char (*imm_start))
9329 ++imm_start;
9330
9331 save_input_line_pointer = input_line_pointer;
9332 input_line_pointer = imm_start;
9333
d258b828 9334 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9335 if (gotfree_input_line)
9336 input_line_pointer = gotfree_input_line;
252b5132
RH
9337
9338 exp_seg = expression (exp);
9339
83183c0c 9340 SKIP_WHITESPACE ();
43234a1e
L
9341
9342 /* Handle vector operations. */
9343 if (*input_line_pointer == '{')
9344 {
9345 input_line_pointer = check_VecOperations (input_line_pointer,
9346 NULL);
9347 if (input_line_pointer == NULL)
9348 return 0;
9349 }
9350
252b5132 9351 if (*input_line_pointer)
f3c180ae 9352 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9353
9354 input_line_pointer = save_input_line_pointer;
f3c180ae 9355 if (gotfree_input_line)
ee86248c
JB
9356 {
9357 free (gotfree_input_line);
9358
9359 if (exp->X_op == O_constant || exp->X_op == O_register)
9360 exp->X_op = O_illegal;
9361 }
9362
9363 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9364}
252b5132 9365
ee86248c
JB
9366static int
9367i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9368 i386_operand_type types, const char *imm_start)
9369{
9370 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9371 {
313c53d1
L
9372 if (imm_start)
9373 as_bad (_("missing or invalid immediate expression `%s'"),
9374 imm_start);
3992d3b7 9375 return 0;
252b5132 9376 }
3e73aa7c 9377 else if (exp->X_op == O_constant)
252b5132 9378 {
47926f60 9379 /* Size it properly later. */
40fb9820 9380 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9381 /* If not 64bit, sign extend val. */
9382 if (flag_code != CODE_64BIT
4eed87de
AM
9383 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9384 exp->X_add_number
9385 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9386 }
4c63da97 9387#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9388 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9389 && exp_seg != absolute_section
47926f60 9390 && exp_seg != text_section
24eab124
AM
9391 && exp_seg != data_section
9392 && exp_seg != bss_section
9393 && exp_seg != undefined_section
f86103b7 9394 && !bfd_is_com_section (exp_seg))
252b5132 9395 {
d0b47220 9396 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9397 return 0;
9398 }
9399#endif
a841bdf5 9400 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9401 {
313c53d1
L
9402 if (imm_start)
9403 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9404 return 0;
9405 }
252b5132
RH
9406 else
9407 {
9408 /* This is an address. The size of the address will be
24eab124 9409 determined later, depending on destination register,
3e73aa7c 9410 suffix, or the default for the section. */
40fb9820
L
9411 i.types[this_operand].bitfield.imm8 = 1;
9412 i.types[this_operand].bitfield.imm16 = 1;
9413 i.types[this_operand].bitfield.imm32 = 1;
9414 i.types[this_operand].bitfield.imm32s = 1;
9415 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9416 i.types[this_operand] = operand_type_and (i.types[this_operand],
9417 types);
252b5132
RH
9418 }
9419
9420 return 1;
9421}
9422
551c1ca1 9423static char *
e3bb37b5 9424i386_scale (char *scale)
252b5132 9425{
551c1ca1
AM
9426 offsetT val;
9427 char *save = input_line_pointer;
252b5132 9428
551c1ca1
AM
9429 input_line_pointer = scale;
9430 val = get_absolute_expression ();
9431
9432 switch (val)
252b5132 9433 {
551c1ca1 9434 case 1:
252b5132
RH
9435 i.log2_scale_factor = 0;
9436 break;
551c1ca1 9437 case 2:
252b5132
RH
9438 i.log2_scale_factor = 1;
9439 break;
551c1ca1 9440 case 4:
252b5132
RH
9441 i.log2_scale_factor = 2;
9442 break;
551c1ca1 9443 case 8:
252b5132
RH
9444 i.log2_scale_factor = 3;
9445 break;
9446 default:
a724f0f4
JB
9447 {
9448 char sep = *input_line_pointer;
9449
9450 *input_line_pointer = '\0';
9451 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9452 scale);
9453 *input_line_pointer = sep;
9454 input_line_pointer = save;
9455 return NULL;
9456 }
252b5132 9457 }
29b0f896 9458 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9459 {
9460 as_warn (_("scale factor of %d without an index register"),
24eab124 9461 1 << i.log2_scale_factor);
252b5132 9462 i.log2_scale_factor = 0;
252b5132 9463 }
551c1ca1
AM
9464 scale = input_line_pointer;
9465 input_line_pointer = save;
9466 return scale;
252b5132
RH
9467}
9468
252b5132 9469static int
e3bb37b5 9470i386_displacement (char *disp_start, char *disp_end)
252b5132 9471{
29b0f896 9472 expressionS *exp;
252b5132
RH
9473 segT exp_seg = 0;
9474 char *save_input_line_pointer;
f3c180ae 9475 char *gotfree_input_line;
40fb9820
L
9476 int override;
9477 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9478 int ret;
252b5132 9479
31b2323c
L
9480 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9481 {
9482 as_bad (_("at most %d displacement operands are allowed"),
9483 MAX_MEMORY_OPERANDS);
9484 return 0;
9485 }
9486
0dfbf9d7 9487 operand_type_set (&bigdisp, 0);
40fb9820
L
9488 if ((i.types[this_operand].bitfield.jumpabsolute)
9489 || (!current_templates->start->opcode_modifier.jump
9490 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9491 {
40fb9820 9492 bigdisp.bitfield.disp32 = 1;
e05278af 9493 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9494 if (flag_code == CODE_64BIT)
9495 {
9496 if (!override)
9497 {
9498 bigdisp.bitfield.disp32s = 1;
9499 bigdisp.bitfield.disp64 = 1;
9500 }
9501 }
9502 else if ((flag_code == CODE_16BIT) ^ override)
9503 {
9504 bigdisp.bitfield.disp32 = 0;
9505 bigdisp.bitfield.disp16 = 1;
9506 }
e05278af
JB
9507 }
9508 else
9509 {
9510 /* For PC-relative branches, the width of the displacement
9511 is dependent upon data size, not address size. */
e05278af 9512 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9513 if (flag_code == CODE_64BIT)
9514 {
9515 if (override || i.suffix == WORD_MNEM_SUFFIX)
9516 bigdisp.bitfield.disp16 = 1;
9517 else
9518 {
9519 bigdisp.bitfield.disp32 = 1;
9520 bigdisp.bitfield.disp32s = 1;
9521 }
9522 }
9523 else
e05278af
JB
9524 {
9525 if (!override)
9526 override = (i.suffix == (flag_code != CODE_16BIT
9527 ? WORD_MNEM_SUFFIX
9528 : LONG_MNEM_SUFFIX));
40fb9820
L
9529 bigdisp.bitfield.disp32 = 1;
9530 if ((flag_code == CODE_16BIT) ^ override)
9531 {
9532 bigdisp.bitfield.disp32 = 0;
9533 bigdisp.bitfield.disp16 = 1;
9534 }
e05278af 9535 }
e05278af 9536 }
c6fb90c8
L
9537 i.types[this_operand] = operand_type_or (i.types[this_operand],
9538 bigdisp);
252b5132
RH
9539
9540 exp = &disp_expressions[i.disp_operands];
520dc8e8 9541 i.op[this_operand].disps = exp;
252b5132
RH
9542 i.disp_operands++;
9543 save_input_line_pointer = input_line_pointer;
9544 input_line_pointer = disp_start;
9545 END_STRING_AND_SAVE (disp_end);
9546
9547#ifndef GCC_ASM_O_HACK
9548#define GCC_ASM_O_HACK 0
9549#endif
9550#if GCC_ASM_O_HACK
9551 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9552 if (i.types[this_operand].bitfield.baseIndex
24eab124 9553 && displacement_string_end[-1] == '+')
252b5132
RH
9554 {
9555 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9556 constraint within gcc asm statements.
9557 For instance:
9558
9559 #define _set_tssldt_desc(n,addr,limit,type) \
9560 __asm__ __volatile__ ( \
9561 "movw %w2,%0\n\t" \
9562 "movw %w1,2+%0\n\t" \
9563 "rorl $16,%1\n\t" \
9564 "movb %b1,4+%0\n\t" \
9565 "movb %4,5+%0\n\t" \
9566 "movb $0,6+%0\n\t" \
9567 "movb %h1,7+%0\n\t" \
9568 "rorl $16,%1" \
9569 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9570
9571 This works great except that the output assembler ends
9572 up looking a bit weird if it turns out that there is
9573 no offset. You end up producing code that looks like:
9574
9575 #APP
9576 movw $235,(%eax)
9577 movw %dx,2+(%eax)
9578 rorl $16,%edx
9579 movb %dl,4+(%eax)
9580 movb $137,5+(%eax)
9581 movb $0,6+(%eax)
9582 movb %dh,7+(%eax)
9583 rorl $16,%edx
9584 #NO_APP
9585
47926f60 9586 So here we provide the missing zero. */
24eab124
AM
9587
9588 *displacement_string_end = '0';
252b5132
RH
9589 }
9590#endif
d258b828 9591 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9592 if (gotfree_input_line)
9593 input_line_pointer = gotfree_input_line;
252b5132 9594
24eab124 9595 exp_seg = expression (exp);
252b5132 9596
636c26b0
AM
9597 SKIP_WHITESPACE ();
9598 if (*input_line_pointer)
9599 as_bad (_("junk `%s' after expression"), input_line_pointer);
9600#if GCC_ASM_O_HACK
9601 RESTORE_END_STRING (disp_end + 1);
9602#endif
636c26b0 9603 input_line_pointer = save_input_line_pointer;
636c26b0 9604 if (gotfree_input_line)
ee86248c
JB
9605 {
9606 free (gotfree_input_line);
9607
9608 if (exp->X_op == O_constant || exp->X_op == O_register)
9609 exp->X_op = O_illegal;
9610 }
9611
9612 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9613
9614 RESTORE_END_STRING (disp_end);
9615
9616 return ret;
9617}
9618
9619static int
9620i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9621 i386_operand_type types, const char *disp_start)
9622{
9623 i386_operand_type bigdisp;
9624 int ret = 1;
636c26b0 9625
24eab124
AM
9626 /* We do this to make sure that the section symbol is in
9627 the symbol table. We will ultimately change the relocation
47926f60 9628 to be relative to the beginning of the section. */
1ae12ab7 9629 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9630 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9631 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9632 {
636c26b0 9633 if (exp->X_op != O_symbol)
3992d3b7 9634 goto inv_disp;
636c26b0 9635
e5cb08ac 9636 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9637 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9638 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9639 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9640 exp->X_op = O_subtract;
9641 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9642 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9643 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9644 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9645 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9646 else
29b0f896 9647 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9648 }
252b5132 9649
3992d3b7
AM
9650 else if (exp->X_op == O_absent
9651 || exp->X_op == O_illegal
ee86248c 9652 || exp->X_op == O_big)
2daf4fd8 9653 {
3992d3b7
AM
9654 inv_disp:
9655 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9656 disp_start);
3992d3b7 9657 ret = 0;
2daf4fd8
AM
9658 }
9659
0e1147d9
L
9660 else if (flag_code == CODE_64BIT
9661 && !i.prefix[ADDR_PREFIX]
9662 && exp->X_op == O_constant)
9663 {
9664 /* Since displacement is signed extended to 64bit, don't allow
9665 disp32 and turn off disp32s if they are out of range. */
9666 i.types[this_operand].bitfield.disp32 = 0;
9667 if (!fits_in_signed_long (exp->X_add_number))
9668 {
9669 i.types[this_operand].bitfield.disp32s = 0;
9670 if (i.types[this_operand].bitfield.baseindex)
9671 {
9672 as_bad (_("0x%lx out range of signed 32bit displacement"),
9673 (long) exp->X_add_number);
9674 ret = 0;
9675 }
9676 }
9677 }
9678
4c63da97 9679#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9680 else if (exp->X_op != O_constant
9681 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9682 && exp_seg != absolute_section
9683 && exp_seg != text_section
9684 && exp_seg != data_section
9685 && exp_seg != bss_section
9686 && exp_seg != undefined_section
9687 && !bfd_is_com_section (exp_seg))
24eab124 9688 {
d0b47220 9689 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9690 ret = 0;
24eab124 9691 }
252b5132 9692#endif
3956db08 9693
40fb9820
L
9694 /* Check if this is a displacement only operand. */
9695 bigdisp = i.types[this_operand];
9696 bigdisp.bitfield.disp8 = 0;
9697 bigdisp.bitfield.disp16 = 0;
9698 bigdisp.bitfield.disp32 = 0;
9699 bigdisp.bitfield.disp32s = 0;
9700 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9701 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9702 i.types[this_operand] = operand_type_and (i.types[this_operand],
9703 types);
3956db08 9704
3992d3b7 9705 return ret;
252b5132
RH
9706}
9707
2abc2bec
JB
9708/* Return the active addressing mode, taking address override and
9709 registers forming the address into consideration. Update the
9710 address override prefix if necessary. */
47926f60 9711
2abc2bec
JB
9712static enum flag_code
9713i386_addressing_mode (void)
252b5132 9714{
be05d201
L
9715 enum flag_code addr_mode;
9716
9717 if (i.prefix[ADDR_PREFIX])
9718 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9719 else
9720 {
9721 addr_mode = flag_code;
9722
24eab124 9723#if INFER_ADDR_PREFIX
be05d201
L
9724 if (i.mem_operands == 0)
9725 {
9726 /* Infer address prefix from the first memory operand. */
9727 const reg_entry *addr_reg = i.base_reg;
9728
9729 if (addr_reg == NULL)
9730 addr_reg = i.index_reg;
eecb386c 9731
be05d201
L
9732 if (addr_reg)
9733 {
e968fc9b 9734 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9735 addr_mode = CODE_32BIT;
9736 else if (flag_code != CODE_64BIT
dc821c5f 9737 && addr_reg->reg_type.bitfield.word)
be05d201
L
9738 addr_mode = CODE_16BIT;
9739
9740 if (addr_mode != flag_code)
9741 {
9742 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9743 i.prefixes += 1;
9744 /* Change the size of any displacement too. At most one
9745 of Disp16 or Disp32 is set.
9746 FIXME. There doesn't seem to be any real need for
9747 separate Disp16 and Disp32 flags. The same goes for
9748 Imm16 and Imm32. Removing them would probably clean
9749 up the code quite a lot. */
9750 if (flag_code != CODE_64BIT
9751 && (i.types[this_operand].bitfield.disp16
9752 || i.types[this_operand].bitfield.disp32))
9753 i.types[this_operand]
9754 = operand_type_xor (i.types[this_operand], disp16_32);
9755 }
9756 }
9757 }
24eab124 9758#endif
be05d201
L
9759 }
9760
2abc2bec
JB
9761 return addr_mode;
9762}
9763
9764/* Make sure the memory operand we've been dealt is valid.
9765 Return 1 on success, 0 on a failure. */
9766
9767static int
9768i386_index_check (const char *operand_string)
9769{
9770 const char *kind = "base/index";
9771 enum flag_code addr_mode = i386_addressing_mode ();
9772
fc0763e6 9773 if (current_templates->start->opcode_modifier.isstring
c3949f43 9774 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9775 && (current_templates->end[-1].opcode_modifier.isstring
9776 || i.mem_operands))
9777 {
9778 /* Memory operands of string insns are special in that they only allow
9779 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9780 const reg_entry *expected_reg;
9781 static const char *di_si[][2] =
9782 {
9783 { "esi", "edi" },
9784 { "si", "di" },
9785 { "rsi", "rdi" }
9786 };
9787 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9788
9789 kind = "string address";
9790
8325cc63 9791 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9792 {
9793 i386_operand_type type = current_templates->end[-1].operand_types[0];
9794
9795 if (!type.bitfield.baseindex
9796 || ((!i.mem_operands != !intel_syntax)
9797 && current_templates->end[-1].operand_types[1]
9798 .bitfield.baseindex))
9799 type = current_templates->end[-1].operand_types[1];
be05d201
L
9800 expected_reg = hash_find (reg_hash,
9801 di_si[addr_mode][type.bitfield.esseg]);
9802
fc0763e6
JB
9803 }
9804 else
be05d201 9805 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9806
be05d201
L
9807 if (i.base_reg != expected_reg
9808 || i.index_reg
fc0763e6 9809 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9810 {
be05d201
L
9811 /* The second memory operand must have the same size as
9812 the first one. */
9813 if (i.mem_operands
9814 && i.base_reg
9815 && !((addr_mode == CODE_64BIT
dc821c5f 9816 && i.base_reg->reg_type.bitfield.qword)
be05d201 9817 || (addr_mode == CODE_32BIT
dc821c5f
JB
9818 ? i.base_reg->reg_type.bitfield.dword
9819 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9820 goto bad_address;
9821
fc0763e6
JB
9822 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9823 operand_string,
9824 intel_syntax ? '[' : '(',
9825 register_prefix,
be05d201 9826 expected_reg->reg_name,
fc0763e6 9827 intel_syntax ? ']' : ')');
be05d201 9828 return 1;
fc0763e6 9829 }
be05d201
L
9830 else
9831 return 1;
9832
9833bad_address:
9834 as_bad (_("`%s' is not a valid %s expression"),
9835 operand_string, kind);
9836 return 0;
3e73aa7c
JH
9837 }
9838 else
9839 {
be05d201
L
9840 if (addr_mode != CODE_16BIT)
9841 {
9842 /* 32-bit/64-bit checks. */
9843 if ((i.base_reg
e968fc9b
JB
9844 && ((addr_mode == CODE_64BIT
9845 ? !i.base_reg->reg_type.bitfield.qword
9846 : !i.base_reg->reg_type.bitfield.dword)
9847 || (i.index_reg && i.base_reg->reg_num == RegIP)
9848 || i.base_reg->reg_num == RegIZ))
be05d201 9849 || (i.index_reg
1b54b8d7
JB
9850 && !i.index_reg->reg_type.bitfield.xmmword
9851 && !i.index_reg->reg_type.bitfield.ymmword
9852 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9853 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9854 ? !i.index_reg->reg_type.bitfield.qword
9855 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9856 || !i.index_reg->reg_type.bitfield.baseindex)))
9857 goto bad_address;
8178be5b
JB
9858
9859 /* bndmk, bndldx, and bndstx have special restrictions. */
9860 if (current_templates->start->base_opcode == 0xf30f1b
9861 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9862 {
9863 /* They cannot use RIP-relative addressing. */
e968fc9b 9864 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9865 {
9866 as_bad (_("`%s' cannot be used here"), operand_string);
9867 return 0;
9868 }
9869
9870 /* bndldx and bndstx ignore their scale factor. */
9871 if (current_templates->start->base_opcode != 0xf30f1b
9872 && i.log2_scale_factor)
9873 as_warn (_("register scaling is being ignored here"));
9874 }
be05d201
L
9875 }
9876 else
3e73aa7c 9877 {
be05d201 9878 /* 16-bit checks. */
3e73aa7c 9879 if ((i.base_reg
dc821c5f 9880 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9881 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9882 || (i.index_reg
dc821c5f 9883 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9884 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9885 || !(i.base_reg
9886 && i.base_reg->reg_num < 6
9887 && i.index_reg->reg_num >= 6
9888 && i.log2_scale_factor == 0))))
be05d201 9889 goto bad_address;
3e73aa7c
JH
9890 }
9891 }
be05d201 9892 return 1;
24eab124 9893}
252b5132 9894
43234a1e
L
9895/* Handle vector immediates. */
9896
9897static int
9898RC_SAE_immediate (const char *imm_start)
9899{
9900 unsigned int match_found, j;
9901 const char *pstr = imm_start;
9902 expressionS *exp;
9903
9904 if (*pstr != '{')
9905 return 0;
9906
9907 pstr++;
9908 match_found = 0;
9909 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9910 {
9911 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9912 {
9913 if (!i.rounding)
9914 {
9915 rc_op.type = RC_NamesTable[j].type;
9916 rc_op.operand = this_operand;
9917 i.rounding = &rc_op;
9918 }
9919 else
9920 {
9921 as_bad (_("duplicated `%s'"), imm_start);
9922 return 0;
9923 }
9924 pstr += RC_NamesTable[j].len;
9925 match_found = 1;
9926 break;
9927 }
9928 }
9929 if (!match_found)
9930 return 0;
9931
9932 if (*pstr++ != '}')
9933 {
9934 as_bad (_("Missing '}': '%s'"), imm_start);
9935 return 0;
9936 }
9937 /* RC/SAE immediate string should contain nothing more. */;
9938 if (*pstr != 0)
9939 {
9940 as_bad (_("Junk after '}': '%s'"), imm_start);
9941 return 0;
9942 }
9943
9944 exp = &im_expressions[i.imm_operands++];
9945 i.op[this_operand].imms = exp;
9946
9947 exp->X_op = O_constant;
9948 exp->X_add_number = 0;
9949 exp->X_add_symbol = (symbolS *) 0;
9950 exp->X_op_symbol = (symbolS *) 0;
9951
9952 i.types[this_operand].bitfield.imm8 = 1;
9953 return 1;
9954}
9955
8325cc63
JB
9956/* Only string instructions can have a second memory operand, so
9957 reduce current_templates to just those if it contains any. */
9958static int
9959maybe_adjust_templates (void)
9960{
9961 const insn_template *t;
9962
9963 gas_assert (i.mem_operands == 1);
9964
9965 for (t = current_templates->start; t < current_templates->end; ++t)
9966 if (t->opcode_modifier.isstring)
9967 break;
9968
9969 if (t < current_templates->end)
9970 {
9971 static templates aux_templates;
9972 bfd_boolean recheck;
9973
9974 aux_templates.start = t;
9975 for (; t < current_templates->end; ++t)
9976 if (!t->opcode_modifier.isstring)
9977 break;
9978 aux_templates.end = t;
9979
9980 /* Determine whether to re-check the first memory operand. */
9981 recheck = (aux_templates.start != current_templates->start
9982 || t != current_templates->end);
9983
9984 current_templates = &aux_templates;
9985
9986 if (recheck)
9987 {
9988 i.mem_operands = 0;
9989 if (i.memop1_string != NULL
9990 && i386_index_check (i.memop1_string) == 0)
9991 return 0;
9992 i.mem_operands = 1;
9993 }
9994 }
9995
9996 return 1;
9997}
9998
fc0763e6 9999/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10000 on error. */
252b5132 10001
252b5132 10002static int
a7619375 10003i386_att_operand (char *operand_string)
252b5132 10004{
af6bdddf
AM
10005 const reg_entry *r;
10006 char *end_op;
24eab124 10007 char *op_string = operand_string;
252b5132 10008
24eab124 10009 if (is_space_char (*op_string))
252b5132
RH
10010 ++op_string;
10011
24eab124 10012 /* We check for an absolute prefix (differentiating,
47926f60 10013 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10014 if (*op_string == ABSOLUTE_PREFIX)
10015 {
10016 ++op_string;
10017 if (is_space_char (*op_string))
10018 ++op_string;
40fb9820 10019 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10020 }
252b5132 10021
47926f60 10022 /* Check if operand is a register. */
4d1bb795 10023 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10024 {
40fb9820
L
10025 i386_operand_type temp;
10026
24eab124
AM
10027 /* Check for a segment override by searching for ':' after a
10028 segment register. */
10029 op_string = end_op;
10030 if (is_space_char (*op_string))
10031 ++op_string;
40fb9820
L
10032 if (*op_string == ':'
10033 && (r->reg_type.bitfield.sreg2
10034 || r->reg_type.bitfield.sreg3))
24eab124
AM
10035 {
10036 switch (r->reg_num)
10037 {
10038 case 0:
10039 i.seg[i.mem_operands] = &es;
10040 break;
10041 case 1:
10042 i.seg[i.mem_operands] = &cs;
10043 break;
10044 case 2:
10045 i.seg[i.mem_operands] = &ss;
10046 break;
10047 case 3:
10048 i.seg[i.mem_operands] = &ds;
10049 break;
10050 case 4:
10051 i.seg[i.mem_operands] = &fs;
10052 break;
10053 case 5:
10054 i.seg[i.mem_operands] = &gs;
10055 break;
10056 }
252b5132 10057
24eab124 10058 /* Skip the ':' and whitespace. */
252b5132
RH
10059 ++op_string;
10060 if (is_space_char (*op_string))
24eab124 10061 ++op_string;
252b5132 10062
24eab124
AM
10063 if (!is_digit_char (*op_string)
10064 && !is_identifier_char (*op_string)
10065 && *op_string != '('
10066 && *op_string != ABSOLUTE_PREFIX)
10067 {
10068 as_bad (_("bad memory operand `%s'"), op_string);
10069 return 0;
10070 }
47926f60 10071 /* Handle case of %es:*foo. */
24eab124
AM
10072 if (*op_string == ABSOLUTE_PREFIX)
10073 {
10074 ++op_string;
10075 if (is_space_char (*op_string))
10076 ++op_string;
40fb9820 10077 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10078 }
10079 goto do_memory_reference;
10080 }
43234a1e
L
10081
10082 /* Handle vector operations. */
10083 if (*op_string == '{')
10084 {
10085 op_string = check_VecOperations (op_string, NULL);
10086 if (op_string == NULL)
10087 return 0;
10088 }
10089
24eab124
AM
10090 if (*op_string)
10091 {
d0b47220 10092 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10093 return 0;
10094 }
40fb9820
L
10095 temp = r->reg_type;
10096 temp.bitfield.baseindex = 0;
c6fb90c8
L
10097 i.types[this_operand] = operand_type_or (i.types[this_operand],
10098 temp);
7d5e4556 10099 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10100 i.op[this_operand].regs = r;
24eab124
AM
10101 i.reg_operands++;
10102 }
af6bdddf
AM
10103 else if (*op_string == REGISTER_PREFIX)
10104 {
10105 as_bad (_("bad register name `%s'"), op_string);
10106 return 0;
10107 }
24eab124 10108 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10109 {
24eab124 10110 ++op_string;
40fb9820 10111 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10112 {
d0b47220 10113 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10114 return 0;
10115 }
10116 if (!i386_immediate (op_string))
10117 return 0;
10118 }
43234a1e
L
10119 else if (RC_SAE_immediate (operand_string))
10120 {
10121 /* If it is a RC or SAE immediate, do nothing. */
10122 ;
10123 }
24eab124
AM
10124 else if (is_digit_char (*op_string)
10125 || is_identifier_char (*op_string)
d02603dc 10126 || *op_string == '"'
e5cb08ac 10127 || *op_string == '(')
24eab124 10128 {
47926f60 10129 /* This is a memory reference of some sort. */
af6bdddf 10130 char *base_string;
252b5132 10131
47926f60 10132 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10133 char *displacement_string_start;
10134 char *displacement_string_end;
43234a1e 10135 char *vop_start;
252b5132 10136
24eab124 10137 do_memory_reference:
8325cc63
JB
10138 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10139 return 0;
24eab124 10140 if ((i.mem_operands == 1
40fb9820 10141 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10142 || i.mem_operands == 2)
10143 {
10144 as_bad (_("too many memory references for `%s'"),
10145 current_templates->start->name);
10146 return 0;
10147 }
252b5132 10148
24eab124
AM
10149 /* Check for base index form. We detect the base index form by
10150 looking for an ')' at the end of the operand, searching
10151 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10152 after the '('. */
af6bdddf 10153 base_string = op_string + strlen (op_string);
c3332e24 10154
43234a1e
L
10155 /* Handle vector operations. */
10156 vop_start = strchr (op_string, '{');
10157 if (vop_start && vop_start < base_string)
10158 {
10159 if (check_VecOperations (vop_start, base_string) == NULL)
10160 return 0;
10161 base_string = vop_start;
10162 }
10163
af6bdddf
AM
10164 --base_string;
10165 if (is_space_char (*base_string))
10166 --base_string;
252b5132 10167
47926f60 10168 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10169 displacement_string_start = op_string;
10170 displacement_string_end = base_string + 1;
252b5132 10171
24eab124
AM
10172 if (*base_string == ')')
10173 {
af6bdddf 10174 char *temp_string;
24eab124
AM
10175 unsigned int parens_balanced = 1;
10176 /* We've already checked that the number of left & right ()'s are
47926f60 10177 equal, so this loop will not be infinite. */
24eab124
AM
10178 do
10179 {
10180 base_string--;
10181 if (*base_string == ')')
10182 parens_balanced++;
10183 if (*base_string == '(')
10184 parens_balanced--;
10185 }
10186 while (parens_balanced);
c3332e24 10187
af6bdddf 10188 temp_string = base_string;
c3332e24 10189
24eab124 10190 /* Skip past '(' and whitespace. */
252b5132
RH
10191 ++base_string;
10192 if (is_space_char (*base_string))
24eab124 10193 ++base_string;
252b5132 10194
af6bdddf 10195 if (*base_string == ','
4eed87de
AM
10196 || ((i.base_reg = parse_register (base_string, &end_op))
10197 != NULL))
252b5132 10198 {
af6bdddf 10199 displacement_string_end = temp_string;
252b5132 10200
40fb9820 10201 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10202
af6bdddf 10203 if (i.base_reg)
24eab124 10204 {
24eab124
AM
10205 base_string = end_op;
10206 if (is_space_char (*base_string))
10207 ++base_string;
af6bdddf
AM
10208 }
10209
10210 /* There may be an index reg or scale factor here. */
10211 if (*base_string == ',')
10212 {
10213 ++base_string;
10214 if (is_space_char (*base_string))
10215 ++base_string;
10216
4eed87de
AM
10217 if ((i.index_reg = parse_register (base_string, &end_op))
10218 != NULL)
24eab124 10219 {
af6bdddf 10220 base_string = end_op;
24eab124
AM
10221 if (is_space_char (*base_string))
10222 ++base_string;
af6bdddf
AM
10223 if (*base_string == ',')
10224 {
10225 ++base_string;
10226 if (is_space_char (*base_string))
10227 ++base_string;
10228 }
e5cb08ac 10229 else if (*base_string != ')')
af6bdddf 10230 {
4eed87de
AM
10231 as_bad (_("expecting `,' or `)' "
10232 "after index register in `%s'"),
af6bdddf
AM
10233 operand_string);
10234 return 0;
10235 }
24eab124 10236 }
af6bdddf 10237 else if (*base_string == REGISTER_PREFIX)
24eab124 10238 {
f76bf5e0
L
10239 end_op = strchr (base_string, ',');
10240 if (end_op)
10241 *end_op = '\0';
af6bdddf 10242 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10243 return 0;
10244 }
252b5132 10245
47926f60 10246 /* Check for scale factor. */
551c1ca1 10247 if (*base_string != ')')
af6bdddf 10248 {
551c1ca1
AM
10249 char *end_scale = i386_scale (base_string);
10250
10251 if (!end_scale)
af6bdddf 10252 return 0;
24eab124 10253
551c1ca1 10254 base_string = end_scale;
af6bdddf
AM
10255 if (is_space_char (*base_string))
10256 ++base_string;
10257 if (*base_string != ')')
10258 {
4eed87de
AM
10259 as_bad (_("expecting `)' "
10260 "after scale factor in `%s'"),
af6bdddf
AM
10261 operand_string);
10262 return 0;
10263 }
10264 }
10265 else if (!i.index_reg)
24eab124 10266 {
4eed87de
AM
10267 as_bad (_("expecting index register or scale factor "
10268 "after `,'; got '%c'"),
af6bdddf 10269 *base_string);
24eab124
AM
10270 return 0;
10271 }
10272 }
af6bdddf 10273 else if (*base_string != ')')
24eab124 10274 {
4eed87de
AM
10275 as_bad (_("expecting `,' or `)' "
10276 "after base register in `%s'"),
af6bdddf 10277 operand_string);
24eab124
AM
10278 return 0;
10279 }
c3332e24 10280 }
af6bdddf 10281 else if (*base_string == REGISTER_PREFIX)
c3332e24 10282 {
f76bf5e0
L
10283 end_op = strchr (base_string, ',');
10284 if (end_op)
10285 *end_op = '\0';
af6bdddf 10286 as_bad (_("bad register name `%s'"), base_string);
24eab124 10287 return 0;
c3332e24 10288 }
24eab124
AM
10289 }
10290
10291 /* If there's an expression beginning the operand, parse it,
10292 assuming displacement_string_start and
10293 displacement_string_end are meaningful. */
10294 if (displacement_string_start != displacement_string_end)
10295 {
10296 if (!i386_displacement (displacement_string_start,
10297 displacement_string_end))
10298 return 0;
10299 }
10300
10301 /* Special case for (%dx) while doing input/output op. */
10302 if (i.base_reg
2fb5be8d 10303 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10304 && i.index_reg == 0
10305 && i.log2_scale_factor == 0
10306 && i.seg[i.mem_operands] == 0
40fb9820 10307 && !operand_type_check (i.types[this_operand], disp))
24eab124 10308 {
2fb5be8d 10309 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10310 return 1;
10311 }
10312
eecb386c
AM
10313 if (i386_index_check (operand_string) == 0)
10314 return 0;
c48dadc9 10315 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10316 if (i.mem_operands == 0)
10317 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10318 i.mem_operands++;
10319 }
10320 else
ce8a8b2f
AM
10321 {
10322 /* It's not a memory operand; argh! */
24eab124
AM
10323 as_bad (_("invalid char %s beginning operand %d `%s'"),
10324 output_invalid (*op_string),
10325 this_operand + 1,
10326 op_string);
10327 return 0;
10328 }
47926f60 10329 return 1; /* Normal return. */
252b5132
RH
10330}
10331\f
fa94de6b
RM
10332/* Calculate the maximum variable size (i.e., excluding fr_fix)
10333 that an rs_machine_dependent frag may reach. */
10334
10335unsigned int
10336i386_frag_max_var (fragS *frag)
10337{
10338 /* The only relaxable frags are for jumps.
10339 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10340 gas_assert (frag->fr_type == rs_machine_dependent);
10341 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10342}
10343
b084df0b
L
10344#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10345static int
8dcea932 10346elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10347{
10348 /* STT_GNU_IFUNC symbol must go through PLT. */
10349 if ((symbol_get_bfdsym (fr_symbol)->flags
10350 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10351 return 0;
10352
10353 if (!S_IS_EXTERNAL (fr_symbol))
10354 /* Symbol may be weak or local. */
10355 return !S_IS_WEAK (fr_symbol);
10356
8dcea932
L
10357 /* Global symbols with non-default visibility can't be preempted. */
10358 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10359 return 1;
10360
10361 if (fr_var != NO_RELOC)
10362 switch ((enum bfd_reloc_code_real) fr_var)
10363 {
10364 case BFD_RELOC_386_PLT32:
10365 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10366 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10367 return 0;
10368 default:
10369 abort ();
10370 }
10371
b084df0b
L
10372 /* Global symbols with default visibility in a shared library may be
10373 preempted by another definition. */
8dcea932 10374 return !shared;
b084df0b
L
10375}
10376#endif
10377
ee7fcc42
AM
10378/* md_estimate_size_before_relax()
10379
10380 Called just before relax() for rs_machine_dependent frags. The x86
10381 assembler uses these frags to handle variable size jump
10382 instructions.
10383
10384 Any symbol that is now undefined will not become defined.
10385 Return the correct fr_subtype in the frag.
10386 Return the initial "guess for variable size of frag" to caller.
10387 The guess is actually the growth beyond the fixed part. Whatever
10388 we do to grow the fixed or variable part contributes to our
10389 returned value. */
10390
252b5132 10391int
7016a5d5 10392md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10393{
252b5132 10394 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10395 check for un-relaxable symbols. On an ELF system, we can't relax
10396 an externally visible symbol, because it may be overridden by a
10397 shared library. */
10398 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10399#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10400 || (IS_ELF
8dcea932
L
10401 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10402 fragP->fr_var))
fbeb56a4
DK
10403#endif
10404#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10405 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10406 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10407#endif
10408 )
252b5132 10409 {
b98ef147
AM
10410 /* Symbol is undefined in this segment, or we need to keep a
10411 reloc so that weak symbols can be overridden. */
10412 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10413 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10414 unsigned char *opcode;
10415 int old_fr_fix;
f6af82bd 10416
ee7fcc42 10417 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10418 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10419 else if (size == 2)
f6af82bd 10420 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10421#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10422 else if (need_plt32_p (fragP->fr_symbol))
10423 reloc_type = BFD_RELOC_X86_64_PLT32;
10424#endif
f6af82bd
AM
10425 else
10426 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10427
ee7fcc42
AM
10428 old_fr_fix = fragP->fr_fix;
10429 opcode = (unsigned char *) fragP->fr_opcode;
10430
fddf5b5b 10431 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10432 {
fddf5b5b
AM
10433 case UNCOND_JUMP:
10434 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10435 opcode[0] = 0xe9;
252b5132 10436 fragP->fr_fix += size;
062cd5e7
AS
10437 fix_new (fragP, old_fr_fix, size,
10438 fragP->fr_symbol,
10439 fragP->fr_offset, 1,
10440 reloc_type);
252b5132
RH
10441 break;
10442
fddf5b5b 10443 case COND_JUMP86:
412167cb
AM
10444 if (size == 2
10445 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10446 {
10447 /* Negate the condition, and branch past an
10448 unconditional jump. */
10449 opcode[0] ^= 1;
10450 opcode[1] = 3;
10451 /* Insert an unconditional jump. */
10452 opcode[2] = 0xe9;
10453 /* We added two extra opcode bytes, and have a two byte
10454 offset. */
10455 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10456 fix_new (fragP, old_fr_fix + 2, 2,
10457 fragP->fr_symbol,
10458 fragP->fr_offset, 1,
10459 reloc_type);
fddf5b5b
AM
10460 break;
10461 }
10462 /* Fall through. */
10463
10464 case COND_JUMP:
412167cb
AM
10465 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10466 {
3e02c1cc
AM
10467 fixS *fixP;
10468
412167cb 10469 fragP->fr_fix += 1;
3e02c1cc
AM
10470 fixP = fix_new (fragP, old_fr_fix, 1,
10471 fragP->fr_symbol,
10472 fragP->fr_offset, 1,
10473 BFD_RELOC_8_PCREL);
10474 fixP->fx_signed = 1;
412167cb
AM
10475 break;
10476 }
93c2a809 10477
24eab124 10478 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10479 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10480 opcode[1] = opcode[0] + 0x10;
f6af82bd 10481 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10482 /* We've added an opcode byte. */
10483 fragP->fr_fix += 1 + size;
062cd5e7
AS
10484 fix_new (fragP, old_fr_fix + 1, size,
10485 fragP->fr_symbol,
10486 fragP->fr_offset, 1,
10487 reloc_type);
252b5132 10488 break;
fddf5b5b
AM
10489
10490 default:
10491 BAD_CASE (fragP->fr_subtype);
10492 break;
252b5132
RH
10493 }
10494 frag_wane (fragP);
ee7fcc42 10495 return fragP->fr_fix - old_fr_fix;
252b5132 10496 }
93c2a809 10497
93c2a809
AM
10498 /* Guess size depending on current relax state. Initially the relax
10499 state will correspond to a short jump and we return 1, because
10500 the variable part of the frag (the branch offset) is one byte
10501 long. However, we can relax a section more than once and in that
10502 case we must either set fr_subtype back to the unrelaxed state,
10503 or return the value for the appropriate branch. */
10504 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10505}
10506
47926f60
KH
10507/* Called after relax() is finished.
10508
10509 In: Address of frag.
10510 fr_type == rs_machine_dependent.
10511 fr_subtype is what the address relaxed to.
10512
10513 Out: Any fixSs and constants are set up.
10514 Caller will turn frag into a ".space 0". */
10515
252b5132 10516void
7016a5d5
TG
10517md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10518 fragS *fragP)
252b5132 10519{
29b0f896 10520 unsigned char *opcode;
252b5132 10521 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10522 offsetT target_address;
10523 offsetT opcode_address;
252b5132 10524 unsigned int extension = 0;
847f7ad4 10525 offsetT displacement_from_opcode_start;
252b5132
RH
10526
10527 opcode = (unsigned char *) fragP->fr_opcode;
10528
47926f60 10529 /* Address we want to reach in file space. */
252b5132 10530 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10531
47926f60 10532 /* Address opcode resides at in file space. */
252b5132
RH
10533 opcode_address = fragP->fr_address + fragP->fr_fix;
10534
47926f60 10535 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10536 displacement_from_opcode_start = target_address - opcode_address;
10537
fddf5b5b 10538 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10539 {
47926f60
KH
10540 /* Don't have to change opcode. */
10541 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10542 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10543 }
10544 else
10545 {
10546 if (no_cond_jump_promotion
10547 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10548 as_warn_where (fragP->fr_file, fragP->fr_line,
10549 _("long jump required"));
252b5132 10550
fddf5b5b
AM
10551 switch (fragP->fr_subtype)
10552 {
10553 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10554 extension = 4; /* 1 opcode + 4 displacement */
10555 opcode[0] = 0xe9;
10556 where_to_put_displacement = &opcode[1];
10557 break;
252b5132 10558
fddf5b5b
AM
10559 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10560 extension = 2; /* 1 opcode + 2 displacement */
10561 opcode[0] = 0xe9;
10562 where_to_put_displacement = &opcode[1];
10563 break;
252b5132 10564
fddf5b5b
AM
10565 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10566 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10567 extension = 5; /* 2 opcode + 4 displacement */
10568 opcode[1] = opcode[0] + 0x10;
10569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10570 where_to_put_displacement = &opcode[2];
10571 break;
252b5132 10572
fddf5b5b
AM
10573 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10574 extension = 3; /* 2 opcode + 2 displacement */
10575 opcode[1] = opcode[0] + 0x10;
10576 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10577 where_to_put_displacement = &opcode[2];
10578 break;
252b5132 10579
fddf5b5b
AM
10580 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10581 extension = 4;
10582 opcode[0] ^= 1;
10583 opcode[1] = 3;
10584 opcode[2] = 0xe9;
10585 where_to_put_displacement = &opcode[3];
10586 break;
10587
10588 default:
10589 BAD_CASE (fragP->fr_subtype);
10590 break;
10591 }
252b5132 10592 }
fddf5b5b 10593
7b81dfbb
AJ
10594 /* If size if less then four we are sure that the operand fits,
10595 but if it's 4, then it could be that the displacement is larger
10596 then -/+ 2GB. */
10597 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10598 && object_64bit
10599 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10600 + ((addressT) 1 << 31))
10601 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10602 {
10603 as_bad_where (fragP->fr_file, fragP->fr_line,
10604 _("jump target out of range"));
10605 /* Make us emit 0. */
10606 displacement_from_opcode_start = extension;
10607 }
47926f60 10608 /* Now put displacement after opcode. */
252b5132
RH
10609 md_number_to_chars ((char *) where_to_put_displacement,
10610 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10611 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10612 fragP->fr_fix += extension;
10613}
10614\f
7016a5d5 10615/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10616 by our caller that we have all the info we need to fix it up.
10617
7016a5d5
TG
10618 Parameter valP is the pointer to the value of the bits.
10619
252b5132
RH
10620 On the 386, immediates, displacements, and data pointers are all in
10621 the same (little-endian) format, so we don't need to care about which
10622 we are handling. */
10623
94f592af 10624void
7016a5d5 10625md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10626{
94f592af 10627 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10628 valueT value = *valP;
252b5132 10629
f86103b7 10630#if !defined (TE_Mach)
93382f6d
AM
10631 if (fixP->fx_pcrel)
10632 {
10633 switch (fixP->fx_r_type)
10634 {
5865bb77
ILT
10635 default:
10636 break;
10637
d6ab8113
JB
10638 case BFD_RELOC_64:
10639 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10640 break;
93382f6d 10641 case BFD_RELOC_32:
ae8887b5 10642 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10643 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10644 break;
10645 case BFD_RELOC_16:
10646 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10647 break;
10648 case BFD_RELOC_8:
10649 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10650 break;
10651 }
10652 }
252b5132 10653
a161fe53 10654 if (fixP->fx_addsy != NULL
31312f95 10655 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10656 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10657 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10658 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10659 && !use_rela_relocations)
252b5132 10660 {
31312f95
AM
10661 /* This is a hack. There should be a better way to handle this.
10662 This covers for the fact that bfd_install_relocation will
10663 subtract the current location (for partial_inplace, PC relative
10664 relocations); see more below. */
252b5132 10665#ifndef OBJ_AOUT
718ddfc0 10666 if (IS_ELF
252b5132
RH
10667#ifdef TE_PE
10668 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10669#endif
10670 )
10671 value += fixP->fx_where + fixP->fx_frag->fr_address;
10672#endif
10673#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10674 if (IS_ELF)
252b5132 10675 {
6539b54b 10676 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10677
6539b54b 10678 if ((sym_seg == seg
2f66722d 10679 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10680 && sym_seg != absolute_section))
af65af87 10681 && !generic_force_reloc (fixP))
2f66722d
AM
10682 {
10683 /* Yes, we add the values in twice. This is because
6539b54b
AM
10684 bfd_install_relocation subtracts them out again. I think
10685 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10686 it. FIXME. */
10687 value += fixP->fx_where + fixP->fx_frag->fr_address;
10688 }
252b5132
RH
10689 }
10690#endif
10691#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10692 /* For some reason, the PE format does not store a
10693 section address offset for a PC relative symbol. */
10694 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10695 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10696 value += md_pcrel_from (fixP);
10697#endif
10698 }
fbeb56a4 10699#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10700 if (fixP->fx_addsy != NULL
10701 && S_IS_WEAK (fixP->fx_addsy)
10702 /* PR 16858: Do not modify weak function references. */
10703 && ! fixP->fx_pcrel)
fbeb56a4 10704 {
296a8689
NC
10705#if !defined (TE_PEP)
10706 /* For x86 PE weak function symbols are neither PC-relative
10707 nor do they set S_IS_FUNCTION. So the only reliable way
10708 to detect them is to check the flags of their containing
10709 section. */
10710 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10711 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10712 ;
10713 else
10714#endif
fbeb56a4
DK
10715 value -= S_GET_VALUE (fixP->fx_addsy);
10716 }
10717#endif
252b5132
RH
10718
10719 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10720 and we must not disappoint it. */
252b5132 10721#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10722 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10723 switch (fixP->fx_r_type)
10724 {
10725 case BFD_RELOC_386_PLT32:
3e73aa7c 10726 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10727 /* Make the jump instruction point to the address of the operand.
10728 At runtime we merely add the offset to the actual PLT entry.
10729 NB: Subtract the offset size only for jump instructions. */
10730 if (fixP->fx_pcrel)
10731 value = -4;
47926f60 10732 break;
31312f95 10733
13ae64f3
JJ
10734 case BFD_RELOC_386_TLS_GD:
10735 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10736 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10737 case BFD_RELOC_386_TLS_IE:
10738 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10739 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10740 case BFD_RELOC_X86_64_TLSGD:
10741 case BFD_RELOC_X86_64_TLSLD:
10742 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10743 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10744 value = 0; /* Fully resolved at runtime. No addend. */
10745 /* Fallthrough */
10746 case BFD_RELOC_386_TLS_LE:
10747 case BFD_RELOC_386_TLS_LDO_32:
10748 case BFD_RELOC_386_TLS_LE_32:
10749 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10750 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10751 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10752 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10753 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10754 break;
10755
67a4f2b7
AO
10756 case BFD_RELOC_386_TLS_DESC_CALL:
10757 case BFD_RELOC_X86_64_TLSDESC_CALL:
10758 value = 0; /* Fully resolved at runtime. No addend. */
10759 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10760 fixP->fx_done = 0;
10761 return;
10762
47926f60
KH
10763 case BFD_RELOC_VTABLE_INHERIT:
10764 case BFD_RELOC_VTABLE_ENTRY:
10765 fixP->fx_done = 0;
94f592af 10766 return;
47926f60
KH
10767
10768 default:
10769 break;
10770 }
10771#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10772 *valP = value;
f86103b7 10773#endif /* !defined (TE_Mach) */
3e73aa7c 10774
3e73aa7c 10775 /* Are we finished with this relocation now? */
c6682705 10776 if (fixP->fx_addsy == NULL)
3e73aa7c 10777 fixP->fx_done = 1;
fbeb56a4
DK
10778#if defined (OBJ_COFF) && defined (TE_PE)
10779 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10780 {
10781 fixP->fx_done = 0;
10782 /* Remember value for tc_gen_reloc. */
10783 fixP->fx_addnumber = value;
10784 /* Clear out the frag for now. */
10785 value = 0;
10786 }
10787#endif
3e73aa7c
JH
10788 else if (use_rela_relocations)
10789 {
10790 fixP->fx_no_overflow = 1;
062cd5e7
AS
10791 /* Remember value for tc_gen_reloc. */
10792 fixP->fx_addnumber = value;
3e73aa7c
JH
10793 value = 0;
10794 }
f86103b7 10795
94f592af 10796 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10797}
252b5132 10798\f
6d4af3c2 10799const char *
499ac353 10800md_atof (int type, char *litP, int *sizeP)
252b5132 10801{
499ac353
NC
10802 /* This outputs the LITTLENUMs in REVERSE order;
10803 in accord with the bigendian 386. */
10804 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10805}
10806\f
2d545b82 10807static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10808
252b5132 10809static char *
e3bb37b5 10810output_invalid (int c)
252b5132 10811{
3882b010 10812 if (ISPRINT (c))
f9f21a03
L
10813 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10814 "'%c'", c);
252b5132 10815 else
f9f21a03 10816 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10817 "(0x%x)", (unsigned char) c);
252b5132
RH
10818 return output_invalid_buf;
10819}
10820
af6bdddf 10821/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10822
10823static const reg_entry *
4d1bb795 10824parse_real_register (char *reg_string, char **end_op)
252b5132 10825{
af6bdddf
AM
10826 char *s = reg_string;
10827 char *p;
252b5132
RH
10828 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10829 const reg_entry *r;
10830
10831 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10832 if (*s == REGISTER_PREFIX)
10833 ++s;
10834
10835 if (is_space_char (*s))
10836 ++s;
10837
10838 p = reg_name_given;
af6bdddf 10839 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10840 {
10841 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10842 return (const reg_entry *) NULL;
10843 s++;
252b5132
RH
10844 }
10845
6588847e
DN
10846 /* For naked regs, make sure that we are not dealing with an identifier.
10847 This prevents confusing an identifier like `eax_var' with register
10848 `eax'. */
10849 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10850 return (const reg_entry *) NULL;
10851
af6bdddf 10852 *end_op = s;
252b5132
RH
10853
10854 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10855
5f47d35b 10856 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10857 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10858 {
0e0eea78
JB
10859 if (!cpu_arch_flags.bitfield.cpu8087
10860 && !cpu_arch_flags.bitfield.cpu287
10861 && !cpu_arch_flags.bitfield.cpu387)
10862 return (const reg_entry *) NULL;
10863
5f47d35b
AM
10864 if (is_space_char (*s))
10865 ++s;
10866 if (*s == '(')
10867 {
af6bdddf 10868 ++s;
5f47d35b
AM
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s >= '0' && *s <= '7')
10872 {
db557034 10873 int fpr = *s - '0';
af6bdddf 10874 ++s;
5f47d35b
AM
10875 if (is_space_char (*s))
10876 ++s;
10877 if (*s == ')')
10878 {
10879 *end_op = s + 1;
1e9cc1c2 10880 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10881 know (r);
10882 return r + fpr;
5f47d35b 10883 }
5f47d35b 10884 }
47926f60 10885 /* We have "%st(" then garbage. */
5f47d35b
AM
10886 return (const reg_entry *) NULL;
10887 }
10888 }
10889
a60de03c
JB
10890 if (r == NULL || allow_pseudo_reg)
10891 return r;
10892
0dfbf9d7 10893 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10894 return (const reg_entry *) NULL;
10895
dc821c5f 10896 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10897 || r->reg_type.bitfield.sreg3
10898 || r->reg_type.bitfield.control
10899 || r->reg_type.bitfield.debug
10900 || r->reg_type.bitfield.test)
10901 && !cpu_arch_flags.bitfield.cpui386)
10902 return (const reg_entry *) NULL;
10903
6e041cf4 10904 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10905 return (const reg_entry *) NULL;
10906
6e041cf4
JB
10907 if (!cpu_arch_flags.bitfield.cpuavx512f)
10908 {
10909 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10910 return (const reg_entry *) NULL;
40f12533 10911
6e041cf4
JB
10912 if (!cpu_arch_flags.bitfield.cpuavx)
10913 {
10914 if (r->reg_type.bitfield.ymmword)
10915 return (const reg_entry *) NULL;
1848e567 10916
6e041cf4
JB
10917 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10918 return (const reg_entry *) NULL;
10919 }
10920 }
43234a1e 10921
1adf7f56
JB
10922 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10923 return (const reg_entry *) NULL;
10924
db51cc60 10925 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10926 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10927 return (const reg_entry *) NULL;
10928
1d3f8286
JB
10929 /* Upper 16 vector registers are only available with VREX in 64bit
10930 mode, and require EVEX encoding. */
10931 if (r->reg_flags & RegVRex)
43234a1e 10932 {
e951d5ca 10933 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10934 || flag_code != CODE_64BIT)
10935 return (const reg_entry *) NULL;
1d3f8286
JB
10936
10937 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10938 }
10939
4787f4a5
JB
10940 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10941 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10942 && flag_code != CODE_64BIT)
20f0a1fc 10943 return (const reg_entry *) NULL;
1ae00879 10944
b7240065
JB
10945 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10946 return (const reg_entry *) NULL;
10947
252b5132
RH
10948 return r;
10949}
4d1bb795
JB
10950
10951/* REG_STRING starts *before* REGISTER_PREFIX. */
10952
10953static const reg_entry *
10954parse_register (char *reg_string, char **end_op)
10955{
10956 const reg_entry *r;
10957
10958 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10959 r = parse_real_register (reg_string, end_op);
10960 else
10961 r = NULL;
10962 if (!r)
10963 {
10964 char *save = input_line_pointer;
10965 char c;
10966 symbolS *symbolP;
10967
10968 input_line_pointer = reg_string;
d02603dc 10969 c = get_symbol_name (&reg_string);
4d1bb795
JB
10970 symbolP = symbol_find (reg_string);
10971 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10972 {
10973 const expressionS *e = symbol_get_value_expression (symbolP);
10974
0398aac5 10975 know (e->X_op == O_register);
4eed87de 10976 know (e->X_add_number >= 0
c3fe08fa 10977 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10978 r = i386_regtab + e->X_add_number;
d3bb6b49 10979 if ((r->reg_flags & RegVRex))
86fa6981 10980 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10981 *end_op = input_line_pointer;
10982 }
10983 *input_line_pointer = c;
10984 input_line_pointer = save;
10985 }
10986 return r;
10987}
10988
10989int
10990i386_parse_name (char *name, expressionS *e, char *nextcharP)
10991{
10992 const reg_entry *r;
10993 char *end = input_line_pointer;
10994
10995 *end = *nextcharP;
10996 r = parse_register (name, &input_line_pointer);
10997 if (r && end <= input_line_pointer)
10998 {
10999 *nextcharP = *input_line_pointer;
11000 *input_line_pointer = 0;
11001 e->X_op = O_register;
11002 e->X_add_number = r - i386_regtab;
11003 return 1;
11004 }
11005 input_line_pointer = end;
11006 *end = 0;
ee86248c 11007 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11008}
11009
11010void
11011md_operand (expressionS *e)
11012{
ee86248c
JB
11013 char *end;
11014 const reg_entry *r;
4d1bb795 11015
ee86248c
JB
11016 switch (*input_line_pointer)
11017 {
11018 case REGISTER_PREFIX:
11019 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11020 if (r)
11021 {
11022 e->X_op = O_register;
11023 e->X_add_number = r - i386_regtab;
11024 input_line_pointer = end;
11025 }
ee86248c
JB
11026 break;
11027
11028 case '[':
9c2799c2 11029 gas_assert (intel_syntax);
ee86248c
JB
11030 end = input_line_pointer++;
11031 expression (e);
11032 if (*input_line_pointer == ']')
11033 {
11034 ++input_line_pointer;
11035 e->X_op_symbol = make_expr_symbol (e);
11036 e->X_add_symbol = NULL;
11037 e->X_add_number = 0;
11038 e->X_op = O_index;
11039 }
11040 else
11041 {
11042 e->X_op = O_absent;
11043 input_line_pointer = end;
11044 }
11045 break;
4d1bb795
JB
11046 }
11047}
11048
252b5132 11049\f
4cc782b5 11050#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11051const char *md_shortopts = "kVQ:sqnO::";
252b5132 11052#else
b6f8c7c4 11053const char *md_shortopts = "qnO::";
252b5132 11054#endif
6e0b89ee 11055
3e73aa7c 11056#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11057#define OPTION_64 (OPTION_MD_BASE + 1)
11058#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11059#define OPTION_MARCH (OPTION_MD_BASE + 3)
11060#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11061#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11062#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11063#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11064#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11065#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11066#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11067#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11068#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11069#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11070#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11071#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11072#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11073#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11074#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11075#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11076#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11077#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11078#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11079#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11080#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11081#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11082#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11083
99ad8390
NC
11084struct option md_longopts[] =
11085{
3e73aa7c 11086 {"32", no_argument, NULL, OPTION_32},
321098a5 11087#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11088 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11089 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11090#endif
11091#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11092 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11093 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11094 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11095#endif
b3b91714 11096 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11097 {"march", required_argument, NULL, OPTION_MARCH},
11098 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11099 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11100 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11101 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11102 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11103 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11104 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11105 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11106 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11107 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11108 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11109 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11110 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11111# if defined (TE_PE) || defined (TE_PEP)
11112 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11113#endif
d1982f93 11114 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11115 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11116 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11117 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11118 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11119 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11120 {NULL, no_argument, NULL, 0}
11121};
11122size_t md_longopts_size = sizeof (md_longopts);
11123
11124int
17b9d67d 11125md_parse_option (int c, const char *arg)
252b5132 11126{
91d6fa6a 11127 unsigned int j;
293f5f65 11128 char *arch, *next, *saved;
9103f4f4 11129
252b5132
RH
11130 switch (c)
11131 {
12b55ccc
L
11132 case 'n':
11133 optimize_align_code = 0;
11134 break;
11135
a38cf1db
AM
11136 case 'q':
11137 quiet_warnings = 1;
252b5132
RH
11138 break;
11139
11140#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11141 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11142 should be emitted or not. FIXME: Not implemented. */
11143 case 'Q':
d4693039
JB
11144 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11145 return 0;
252b5132
RH
11146 break;
11147
11148 /* -V: SVR4 argument to print version ID. */
11149 case 'V':
11150 print_version_id ();
11151 break;
11152
a38cf1db
AM
11153 /* -k: Ignore for FreeBSD compatibility. */
11154 case 'k':
252b5132 11155 break;
4cc782b5
ILT
11156
11157 case 's':
11158 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11159 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11160 break;
8dcea932
L
11161
11162 case OPTION_MSHARED:
11163 shared = 1;
11164 break;
b4a3a7b4
L
11165
11166 case OPTION_X86_USED_NOTE:
11167 if (strcasecmp (arg, "yes") == 0)
11168 x86_used_note = 1;
11169 else if (strcasecmp (arg, "no") == 0)
11170 x86_used_note = 0;
11171 else
11172 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11173 break;
11174
11175
99ad8390 11176#endif
321098a5 11177#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11178 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11179 case OPTION_64:
11180 {
11181 const char **list, **l;
11182
3e73aa7c
JH
11183 list = bfd_target_list ();
11184 for (l = list; *l != NULL; l++)
8620418b 11185 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11186 || strcmp (*l, "coff-x86-64") == 0
11187 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11188 || strcmp (*l, "pei-x86-64") == 0
11189 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11190 {
11191 default_arch = "x86_64";
11192 break;
11193 }
3e73aa7c 11194 if (*l == NULL)
2b5d6a91 11195 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11196 free (list);
11197 }
11198 break;
11199#endif
252b5132 11200
351f65ca 11201#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11202 case OPTION_X32:
351f65ca
L
11203 if (IS_ELF)
11204 {
11205 const char **list, **l;
11206
11207 list = bfd_target_list ();
11208 for (l = list; *l != NULL; l++)
11209 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11210 {
11211 default_arch = "x86_64:32";
11212 break;
11213 }
11214 if (*l == NULL)
2b5d6a91 11215 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11216 free (list);
11217 }
11218 else
11219 as_fatal (_("32bit x86_64 is only supported for ELF"));
11220 break;
11221#endif
11222
6e0b89ee
AM
11223 case OPTION_32:
11224 default_arch = "i386";
11225 break;
11226
b3b91714
AM
11227 case OPTION_DIVIDE:
11228#ifdef SVR4_COMMENT_CHARS
11229 {
11230 char *n, *t;
11231 const char *s;
11232
add39d23 11233 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11234 t = n;
11235 for (s = i386_comment_chars; *s != '\0'; s++)
11236 if (*s != '/')
11237 *t++ = *s;
11238 *t = '\0';
11239 i386_comment_chars = n;
11240 }
11241#endif
11242 break;
11243
9103f4f4 11244 case OPTION_MARCH:
293f5f65
L
11245 saved = xstrdup (arg);
11246 arch = saved;
11247 /* Allow -march=+nosse. */
11248 if (*arch == '+')
11249 arch++;
6305a203 11250 do
9103f4f4 11251 {
6305a203 11252 if (*arch == '.')
2b5d6a91 11253 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11254 next = strchr (arch, '+');
11255 if (next)
11256 *next++ = '\0';
91d6fa6a 11257 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11258 {
91d6fa6a 11259 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11260 {
6305a203 11261 /* Processor. */
1ded5609
JB
11262 if (! cpu_arch[j].flags.bitfield.cpui386)
11263 continue;
11264
91d6fa6a 11265 cpu_arch_name = cpu_arch[j].name;
6305a203 11266 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11267 cpu_arch_flags = cpu_arch[j].flags;
11268 cpu_arch_isa = cpu_arch[j].type;
11269 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11270 if (!cpu_arch_tune_set)
11271 {
11272 cpu_arch_tune = cpu_arch_isa;
11273 cpu_arch_tune_flags = cpu_arch_isa_flags;
11274 }
11275 break;
11276 }
91d6fa6a
NC
11277 else if (*cpu_arch [j].name == '.'
11278 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11279 {
33eaf5de 11280 /* ISA extension. */
6305a203 11281 i386_cpu_flags flags;
309d3373 11282
293f5f65
L
11283 flags = cpu_flags_or (cpu_arch_flags,
11284 cpu_arch[j].flags);
81486035 11285
5b64d091 11286 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11287 {
11288 if (cpu_sub_arch_name)
11289 {
11290 char *name = cpu_sub_arch_name;
11291 cpu_sub_arch_name = concat (name,
91d6fa6a 11292 cpu_arch[j].name,
1bf57e9f 11293 (const char *) NULL);
6305a203
L
11294 free (name);
11295 }
11296 else
91d6fa6a 11297 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11298 cpu_arch_flags = flags;
a586129e 11299 cpu_arch_isa_flags = flags;
6305a203 11300 }
0089dace
L
11301 else
11302 cpu_arch_isa_flags
11303 = cpu_flags_or (cpu_arch_isa_flags,
11304 cpu_arch[j].flags);
6305a203 11305 break;
ccc9c027 11306 }
9103f4f4 11307 }
6305a203 11308
293f5f65
L
11309 if (j >= ARRAY_SIZE (cpu_arch))
11310 {
33eaf5de 11311 /* Disable an ISA extension. */
293f5f65
L
11312 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11313 if (strcmp (arch, cpu_noarch [j].name) == 0)
11314 {
11315 i386_cpu_flags flags;
11316
11317 flags = cpu_flags_and_not (cpu_arch_flags,
11318 cpu_noarch[j].flags);
11319 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11320 {
11321 if (cpu_sub_arch_name)
11322 {
11323 char *name = cpu_sub_arch_name;
11324 cpu_sub_arch_name = concat (arch,
11325 (const char *) NULL);
11326 free (name);
11327 }
11328 else
11329 cpu_sub_arch_name = xstrdup (arch);
11330 cpu_arch_flags = flags;
11331 cpu_arch_isa_flags = flags;
11332 }
11333 break;
11334 }
11335
11336 if (j >= ARRAY_SIZE (cpu_noarch))
11337 j = ARRAY_SIZE (cpu_arch);
11338 }
11339
91d6fa6a 11340 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11341 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11342
11343 arch = next;
9103f4f4 11344 }
293f5f65
L
11345 while (next != NULL);
11346 free (saved);
9103f4f4
L
11347 break;
11348
11349 case OPTION_MTUNE:
11350 if (*arg == '.')
2b5d6a91 11351 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11352 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11353 {
91d6fa6a 11354 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11355 {
ccc9c027 11356 cpu_arch_tune_set = 1;
91d6fa6a
NC
11357 cpu_arch_tune = cpu_arch [j].type;
11358 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11359 break;
11360 }
11361 }
91d6fa6a 11362 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11363 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11364 break;
11365
1efbbeb4
L
11366 case OPTION_MMNEMONIC:
11367 if (strcasecmp (arg, "att") == 0)
11368 intel_mnemonic = 0;
11369 else if (strcasecmp (arg, "intel") == 0)
11370 intel_mnemonic = 1;
11371 else
2b5d6a91 11372 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11373 break;
11374
11375 case OPTION_MSYNTAX:
11376 if (strcasecmp (arg, "att") == 0)
11377 intel_syntax = 0;
11378 else if (strcasecmp (arg, "intel") == 0)
11379 intel_syntax = 1;
11380 else
2b5d6a91 11381 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11382 break;
11383
11384 case OPTION_MINDEX_REG:
11385 allow_index_reg = 1;
11386 break;
11387
11388 case OPTION_MNAKED_REG:
11389 allow_naked_reg = 1;
11390 break;
11391
c0f3af97
L
11392 case OPTION_MSSE2AVX:
11393 sse2avx = 1;
11394 break;
11395
daf50ae7
L
11396 case OPTION_MSSE_CHECK:
11397 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11398 sse_check = check_error;
daf50ae7 11399 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11400 sse_check = check_warning;
daf50ae7 11401 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11402 sse_check = check_none;
daf50ae7 11403 else
2b5d6a91 11404 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11405 break;
11406
7bab8ab5
JB
11407 case OPTION_MOPERAND_CHECK:
11408 if (strcasecmp (arg, "error") == 0)
11409 operand_check = check_error;
11410 else if (strcasecmp (arg, "warning") == 0)
11411 operand_check = check_warning;
11412 else if (strcasecmp (arg, "none") == 0)
11413 operand_check = check_none;
11414 else
11415 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11416 break;
11417
539f890d
L
11418 case OPTION_MAVXSCALAR:
11419 if (strcasecmp (arg, "128") == 0)
11420 avxscalar = vex128;
11421 else if (strcasecmp (arg, "256") == 0)
11422 avxscalar = vex256;
11423 else
2b5d6a91 11424 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11425 break;
11426
03751133
L
11427 case OPTION_MVEXWIG:
11428 if (strcmp (arg, "0") == 0)
11429 vexwig = evexw0;
11430 else if (strcmp (arg, "1") == 0)
11431 vexwig = evexw1;
11432 else
11433 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11434 break;
11435
7e8b059b
L
11436 case OPTION_MADD_BND_PREFIX:
11437 add_bnd_prefix = 1;
11438 break;
11439
43234a1e
L
11440 case OPTION_MEVEXLIG:
11441 if (strcmp (arg, "128") == 0)
11442 evexlig = evexl128;
11443 else if (strcmp (arg, "256") == 0)
11444 evexlig = evexl256;
11445 else if (strcmp (arg, "512") == 0)
11446 evexlig = evexl512;
11447 else
11448 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11449 break;
11450
d3d3c6db
IT
11451 case OPTION_MEVEXRCIG:
11452 if (strcmp (arg, "rne") == 0)
11453 evexrcig = rne;
11454 else if (strcmp (arg, "rd") == 0)
11455 evexrcig = rd;
11456 else if (strcmp (arg, "ru") == 0)
11457 evexrcig = ru;
11458 else if (strcmp (arg, "rz") == 0)
11459 evexrcig = rz;
11460 else
11461 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11462 break;
11463
43234a1e
L
11464 case OPTION_MEVEXWIG:
11465 if (strcmp (arg, "0") == 0)
11466 evexwig = evexw0;
11467 else if (strcmp (arg, "1") == 0)
11468 evexwig = evexw1;
11469 else
11470 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11471 break;
11472
167ad85b
TG
11473# if defined (TE_PE) || defined (TE_PEP)
11474 case OPTION_MBIG_OBJ:
11475 use_big_obj = 1;
11476 break;
11477#endif
11478
d1982f93 11479 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11480 if (strcasecmp (arg, "yes") == 0)
11481 omit_lock_prefix = 1;
11482 else if (strcasecmp (arg, "no") == 0)
11483 omit_lock_prefix = 0;
11484 else
11485 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11486 break;
11487
e4e00185
AS
11488 case OPTION_MFENCE_AS_LOCK_ADD:
11489 if (strcasecmp (arg, "yes") == 0)
11490 avoid_fence = 1;
11491 else if (strcasecmp (arg, "no") == 0)
11492 avoid_fence = 0;
11493 else
11494 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11495 break;
11496
0cb4071e
L
11497 case OPTION_MRELAX_RELOCATIONS:
11498 if (strcasecmp (arg, "yes") == 0)
11499 generate_relax_relocations = 1;
11500 else if (strcasecmp (arg, "no") == 0)
11501 generate_relax_relocations = 0;
11502 else
11503 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11504 break;
11505
5db04b09 11506 case OPTION_MAMD64:
e89c5eaa 11507 intel64 = 0;
5db04b09
L
11508 break;
11509
11510 case OPTION_MINTEL64:
e89c5eaa 11511 intel64 = 1;
5db04b09
L
11512 break;
11513
b6f8c7c4
L
11514 case 'O':
11515 if (arg == NULL)
11516 {
11517 optimize = 1;
11518 /* Turn off -Os. */
11519 optimize_for_space = 0;
11520 }
11521 else if (*arg == 's')
11522 {
11523 optimize_for_space = 1;
11524 /* Turn on all encoding optimizations. */
41fd2579 11525 optimize = INT_MAX;
b6f8c7c4
L
11526 }
11527 else
11528 {
11529 optimize = atoi (arg);
11530 /* Turn off -Os. */
11531 optimize_for_space = 0;
11532 }
11533 break;
11534
252b5132
RH
11535 default:
11536 return 0;
11537 }
11538 return 1;
11539}
11540
8a2c8fef
L
11541#define MESSAGE_TEMPLATE \
11542" "
11543
293f5f65
L
11544static char *
11545output_message (FILE *stream, char *p, char *message, char *start,
11546 int *left_p, const char *name, int len)
11547{
11548 int size = sizeof (MESSAGE_TEMPLATE);
11549 int left = *left_p;
11550
11551 /* Reserve 2 spaces for ", " or ",\0" */
11552 left -= len + 2;
11553
11554 /* Check if there is any room. */
11555 if (left >= 0)
11556 {
11557 if (p != start)
11558 {
11559 *p++ = ',';
11560 *p++ = ' ';
11561 }
11562 p = mempcpy (p, name, len);
11563 }
11564 else
11565 {
11566 /* Output the current message now and start a new one. */
11567 *p++ = ',';
11568 *p = '\0';
11569 fprintf (stream, "%s\n", message);
11570 p = start;
11571 left = size - (start - message) - len - 2;
11572
11573 gas_assert (left >= 0);
11574
11575 p = mempcpy (p, name, len);
11576 }
11577
11578 *left_p = left;
11579 return p;
11580}
11581
8a2c8fef 11582static void
1ded5609 11583show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11584{
11585 static char message[] = MESSAGE_TEMPLATE;
11586 char *start = message + 27;
11587 char *p;
11588 int size = sizeof (MESSAGE_TEMPLATE);
11589 int left;
11590 const char *name;
11591 int len;
11592 unsigned int j;
11593
11594 p = start;
11595 left = size - (start - message);
11596 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11597 {
11598 /* Should it be skipped? */
11599 if (cpu_arch [j].skip)
11600 continue;
11601
11602 name = cpu_arch [j].name;
11603 len = cpu_arch [j].len;
11604 if (*name == '.')
11605 {
11606 /* It is an extension. Skip if we aren't asked to show it. */
11607 if (ext)
11608 {
11609 name++;
11610 len--;
11611 }
11612 else
11613 continue;
11614 }
11615 else if (ext)
11616 {
11617 /* It is an processor. Skip if we show only extension. */
11618 continue;
11619 }
1ded5609
JB
11620 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11621 {
11622 /* It is an impossible processor - skip. */
11623 continue;
11624 }
8a2c8fef 11625
293f5f65 11626 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11627 }
11628
293f5f65
L
11629 /* Display disabled extensions. */
11630 if (ext)
11631 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11632 {
11633 name = cpu_noarch [j].name;
11634 len = cpu_noarch [j].len;
11635 p = output_message (stream, p, message, start, &left, name,
11636 len);
11637 }
11638
8a2c8fef
L
11639 *p = '\0';
11640 fprintf (stream, "%s\n", message);
11641}
11642
252b5132 11643void
8a2c8fef 11644md_show_usage (FILE *stream)
252b5132 11645{
4cc782b5
ILT
11646#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11647 fprintf (stream, _("\
d4693039 11648 -Qy, -Qn ignored\n\
a38cf1db 11649 -V print assembler version number\n\
b3b91714
AM
11650 -k ignored\n"));
11651#endif
11652 fprintf (stream, _("\
12b55ccc 11653 -n Do not optimize code alignment\n\
b3b91714
AM
11654 -q quieten some warnings\n"));
11655#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11656 fprintf (stream, _("\
a38cf1db 11657 -s ignored\n"));
b3b91714 11658#endif
d7f449c0
L
11659#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11660 || defined (TE_PE) || defined (TE_PEP))
751d281c 11661 fprintf (stream, _("\
570561f7 11662 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11663#endif
b3b91714
AM
11664#ifdef SVR4_COMMENT_CHARS
11665 fprintf (stream, _("\
11666 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11667#else
11668 fprintf (stream, _("\
b3b91714 11669 --divide ignored\n"));
4cc782b5 11670#endif
9103f4f4 11671 fprintf (stream, _("\
6305a203 11672 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11673 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11674 show_arch (stream, 0, 1);
8a2c8fef
L
11675 fprintf (stream, _("\
11676 EXTENSION is combination of:\n"));
1ded5609 11677 show_arch (stream, 1, 0);
6305a203 11678 fprintf (stream, _("\
8a2c8fef 11679 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11680 show_arch (stream, 0, 0);
ba104c83 11681 fprintf (stream, _("\
c0f3af97
L
11682 -msse2avx encode SSE instructions with VEX prefix\n"));
11683 fprintf (stream, _("\
7c5c05ef 11684 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11685 check SSE instructions\n"));
11686 fprintf (stream, _("\
7c5c05ef 11687 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11688 check operand combinations for validity\n"));
11689 fprintf (stream, _("\
7c5c05ef
L
11690 -mavxscalar=[128|256] (default: 128)\n\
11691 encode scalar AVX instructions with specific vector\n\
539f890d
L
11692 length\n"));
11693 fprintf (stream, _("\
03751133
L
11694 -mvexwig=[0|1] (default: 0)\n\
11695 encode VEX instructions with specific VEX.W value\n\
11696 for VEX.W bit ignored instructions\n"));
11697 fprintf (stream, _("\
7c5c05ef
L
11698 -mevexlig=[128|256|512] (default: 128)\n\
11699 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11700 length\n"));
11701 fprintf (stream, _("\
7c5c05ef
L
11702 -mevexwig=[0|1] (default: 0)\n\
11703 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11704 for EVEX.W bit ignored instructions\n"));
11705 fprintf (stream, _("\
7c5c05ef 11706 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11707 encode EVEX instructions with specific EVEX.RC value\n\
11708 for SAE-only ignored instructions\n"));
11709 fprintf (stream, _("\
7c5c05ef
L
11710 -mmnemonic=[att|intel] "));
11711 if (SYSV386_COMPAT)
11712 fprintf (stream, _("(default: att)\n"));
11713 else
11714 fprintf (stream, _("(default: intel)\n"));
11715 fprintf (stream, _("\
11716 use AT&T/Intel mnemonic\n"));
ba104c83 11717 fprintf (stream, _("\
7c5c05ef
L
11718 -msyntax=[att|intel] (default: att)\n\
11719 use AT&T/Intel syntax\n"));
ba104c83
L
11720 fprintf (stream, _("\
11721 -mindex-reg support pseudo index registers\n"));
11722 fprintf (stream, _("\
11723 -mnaked-reg don't require `%%' prefix for registers\n"));
11724 fprintf (stream, _("\
7e8b059b 11725 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11726#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11727 fprintf (stream, _("\
11728 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11729 fprintf (stream, _("\
11730 -mx86-used-note=[no|yes] "));
11731 if (DEFAULT_X86_USED_NOTE)
11732 fprintf (stream, _("(default: yes)\n"));
11733 else
11734 fprintf (stream, _("(default: no)\n"));
11735 fprintf (stream, _("\
11736 generate x86 used ISA and feature properties\n"));
11737#endif
11738#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11739 fprintf (stream, _("\
11740 -mbig-obj generate big object files\n"));
11741#endif
d022bddd 11742 fprintf (stream, _("\
7c5c05ef 11743 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11744 strip all lock prefixes\n"));
5db04b09 11745 fprintf (stream, _("\
7c5c05ef 11746 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11747 encode lfence, mfence and sfence as\n\
11748 lock addl $0x0, (%%{re}sp)\n"));
11749 fprintf (stream, _("\
7c5c05ef
L
11750 -mrelax-relocations=[no|yes] "));
11751 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11752 fprintf (stream, _("(default: yes)\n"));
11753 else
11754 fprintf (stream, _("(default: no)\n"));
11755 fprintf (stream, _("\
0cb4071e
L
11756 generate relax relocations\n"));
11757 fprintf (stream, _("\
7c5c05ef 11758 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11759 fprintf (stream, _("\
11760 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11761}
11762
3e73aa7c 11763#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11764 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11765 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11766
11767/* Pick the target format to use. */
11768
47926f60 11769const char *
e3bb37b5 11770i386_target_format (void)
252b5132 11771{
351f65ca
L
11772 if (!strncmp (default_arch, "x86_64", 6))
11773 {
11774 update_code_flag (CODE_64BIT, 1);
11775 if (default_arch[6] == '\0')
7f56bc95 11776 x86_elf_abi = X86_64_ABI;
351f65ca 11777 else
7f56bc95 11778 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11779 }
3e73aa7c 11780 else if (!strcmp (default_arch, "i386"))
78f12dd3 11781 update_code_flag (CODE_32BIT, 1);
5197d474
L
11782 else if (!strcmp (default_arch, "iamcu"))
11783 {
11784 update_code_flag (CODE_32BIT, 1);
11785 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11786 {
11787 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11788 cpu_arch_name = "iamcu";
11789 cpu_sub_arch_name = NULL;
11790 cpu_arch_flags = iamcu_flags;
11791 cpu_arch_isa = PROCESSOR_IAMCU;
11792 cpu_arch_isa_flags = iamcu_flags;
11793 if (!cpu_arch_tune_set)
11794 {
11795 cpu_arch_tune = cpu_arch_isa;
11796 cpu_arch_tune_flags = cpu_arch_isa_flags;
11797 }
11798 }
8d471ec1 11799 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11800 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11801 cpu_arch_name);
11802 }
3e73aa7c 11803 else
2b5d6a91 11804 as_fatal (_("unknown architecture"));
89507696
JB
11805
11806 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11807 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11808 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11809 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11810
252b5132
RH
11811 switch (OUTPUT_FLAVOR)
11812 {
9384f2ff 11813#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11814 case bfd_target_aout_flavour:
47926f60 11815 return AOUT_TARGET_FORMAT;
4c63da97 11816#endif
9384f2ff
AM
11817#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11818# if defined (TE_PE) || defined (TE_PEP)
11819 case bfd_target_coff_flavour:
167ad85b
TG
11820 if (flag_code == CODE_64BIT)
11821 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11822 else
11823 return "pe-i386";
9384f2ff 11824# elif defined (TE_GO32)
0561d57c
JK
11825 case bfd_target_coff_flavour:
11826 return "coff-go32";
9384f2ff 11827# else
252b5132
RH
11828 case bfd_target_coff_flavour:
11829 return "coff-i386";
9384f2ff 11830# endif
4c63da97 11831#endif
3e73aa7c 11832#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11833 case bfd_target_elf_flavour:
3e73aa7c 11834 {
351f65ca
L
11835 const char *format;
11836
11837 switch (x86_elf_abi)
4fa24527 11838 {
351f65ca
L
11839 default:
11840 format = ELF_TARGET_FORMAT;
11841 break;
7f56bc95 11842 case X86_64_ABI:
351f65ca 11843 use_rela_relocations = 1;
4fa24527 11844 object_64bit = 1;
351f65ca
L
11845 format = ELF_TARGET_FORMAT64;
11846 break;
7f56bc95 11847 case X86_64_X32_ABI:
4fa24527 11848 use_rela_relocations = 1;
351f65ca 11849 object_64bit = 1;
862be3fb 11850 disallow_64bit_reloc = 1;
351f65ca
L
11851 format = ELF_TARGET_FORMAT32;
11852 break;
4fa24527 11853 }
3632d14b 11854 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11855 {
7f56bc95 11856 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11857 as_fatal (_("Intel L1OM is 64bit only"));
11858 return ELF_TARGET_L1OM_FORMAT;
11859 }
b49f93f6 11860 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11861 {
11862 if (x86_elf_abi != X86_64_ABI)
11863 as_fatal (_("Intel K1OM is 64bit only"));
11864 return ELF_TARGET_K1OM_FORMAT;
11865 }
81486035
L
11866 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11867 {
11868 if (x86_elf_abi != I386_ABI)
11869 as_fatal (_("Intel MCU is 32bit only"));
11870 return ELF_TARGET_IAMCU_FORMAT;
11871 }
8a9036a4 11872 else
351f65ca 11873 return format;
3e73aa7c 11874 }
e57f8c65
TG
11875#endif
11876#if defined (OBJ_MACH_O)
11877 case bfd_target_mach_o_flavour:
d382c579
TG
11878 if (flag_code == CODE_64BIT)
11879 {
11880 use_rela_relocations = 1;
11881 object_64bit = 1;
11882 return "mach-o-x86-64";
11883 }
11884 else
11885 return "mach-o-i386";
4c63da97 11886#endif
252b5132
RH
11887 default:
11888 abort ();
11889 return NULL;
11890 }
11891}
11892
47926f60 11893#endif /* OBJ_MAYBE_ more than one */
252b5132 11894\f
252b5132 11895symbolS *
7016a5d5 11896md_undefined_symbol (char *name)
252b5132 11897{
18dc2407
ILT
11898 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11899 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11900 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11901 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11902 {
11903 if (!GOT_symbol)
11904 {
11905 if (symbol_find (name))
11906 as_bad (_("GOT already in symbol table"));
11907 GOT_symbol = symbol_new (name, undefined_section,
11908 (valueT) 0, &zero_address_frag);
11909 };
11910 return GOT_symbol;
11911 }
252b5132
RH
11912 return 0;
11913}
11914
11915/* Round up a section size to the appropriate boundary. */
47926f60 11916
252b5132 11917valueT
7016a5d5 11918md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11919{
4c63da97
AM
11920#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11921 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11922 {
11923 /* For a.out, force the section size to be aligned. If we don't do
11924 this, BFD will align it for us, but it will not write out the
11925 final bytes of the section. This may be a bug in BFD, but it is
11926 easier to fix it here since that is how the other a.out targets
11927 work. */
11928 int align;
11929
11930 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11931 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11932 }
252b5132
RH
11933#endif
11934
11935 return size;
11936}
11937
11938/* On the i386, PC-relative offsets are relative to the start of the
11939 next instruction. That is, the address of the offset, plus its
11940 size, since the offset is always the last part of the insn. */
11941
11942long
e3bb37b5 11943md_pcrel_from (fixS *fixP)
252b5132
RH
11944{
11945 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11946}
11947
11948#ifndef I386COFF
11949
11950static void
e3bb37b5 11951s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11952{
29b0f896 11953 int temp;
252b5132 11954
8a75718c
JB
11955#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11956 if (IS_ELF)
11957 obj_elf_section_change_hook ();
11958#endif
252b5132
RH
11959 temp = get_absolute_expression ();
11960 subseg_set (bss_section, (subsegT) temp);
11961 demand_empty_rest_of_line ();
11962}
11963
11964#endif
11965
252b5132 11966void
e3bb37b5 11967i386_validate_fix (fixS *fixp)
252b5132 11968{
02a86693 11969 if (fixp->fx_subsy)
252b5132 11970 {
02a86693 11971 if (fixp->fx_subsy == GOT_symbol)
23df1078 11972 {
02a86693
L
11973 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11974 {
11975 if (!object_64bit)
11976 abort ();
11977#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11978 if (fixp->fx_tcbit2)
56ceb5b5
L
11979 fixp->fx_r_type = (fixp->fx_tcbit
11980 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11981 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11982 else
11983#endif
11984 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11985 }
d6ab8113 11986 else
02a86693
L
11987 {
11988 if (!object_64bit)
11989 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11990 else
11991 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11992 }
11993 fixp->fx_subsy = 0;
23df1078 11994 }
252b5132 11995 }
02a86693
L
11996#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11997 else if (!object_64bit)
11998 {
11999 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12000 && fixp->fx_tcbit2)
12001 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12002 }
12003#endif
252b5132
RH
12004}
12005
252b5132 12006arelent *
7016a5d5 12007tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12008{
12009 arelent *rel;
12010 bfd_reloc_code_real_type code;
12011
12012 switch (fixp->fx_r_type)
12013 {
8ce3d284 12014#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12015 case BFD_RELOC_SIZE32:
12016 case BFD_RELOC_SIZE64:
12017 if (S_IS_DEFINED (fixp->fx_addsy)
12018 && !S_IS_EXTERNAL (fixp->fx_addsy))
12019 {
12020 /* Resolve size relocation against local symbol to size of
12021 the symbol plus addend. */
12022 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12023 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12024 && !fits_in_unsigned_long (value))
12025 as_bad_where (fixp->fx_file, fixp->fx_line,
12026 _("symbol size computation overflow"));
12027 fixp->fx_addsy = NULL;
12028 fixp->fx_subsy = NULL;
12029 md_apply_fix (fixp, (valueT *) &value, NULL);
12030 return NULL;
12031 }
8ce3d284 12032#endif
1a0670f3 12033 /* Fall through. */
8fd4256d 12034
3e73aa7c
JH
12035 case BFD_RELOC_X86_64_PLT32:
12036 case BFD_RELOC_X86_64_GOT32:
12037 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12038 case BFD_RELOC_X86_64_GOTPCRELX:
12039 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12040 case BFD_RELOC_386_PLT32:
12041 case BFD_RELOC_386_GOT32:
02a86693 12042 case BFD_RELOC_386_GOT32X:
252b5132
RH
12043 case BFD_RELOC_386_GOTOFF:
12044 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12045 case BFD_RELOC_386_TLS_GD:
12046 case BFD_RELOC_386_TLS_LDM:
12047 case BFD_RELOC_386_TLS_LDO_32:
12048 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12049 case BFD_RELOC_386_TLS_IE:
12050 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12051 case BFD_RELOC_386_TLS_LE_32:
12052 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12053 case BFD_RELOC_386_TLS_GOTDESC:
12054 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12055 case BFD_RELOC_X86_64_TLSGD:
12056 case BFD_RELOC_X86_64_TLSLD:
12057 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12058 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12059 case BFD_RELOC_X86_64_GOTTPOFF:
12060 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12061 case BFD_RELOC_X86_64_TPOFF64:
12062 case BFD_RELOC_X86_64_GOTOFF64:
12063 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12064 case BFD_RELOC_X86_64_GOT64:
12065 case BFD_RELOC_X86_64_GOTPCREL64:
12066 case BFD_RELOC_X86_64_GOTPC64:
12067 case BFD_RELOC_X86_64_GOTPLT64:
12068 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12069 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12070 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12071 case BFD_RELOC_RVA:
12072 case BFD_RELOC_VTABLE_ENTRY:
12073 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12074#ifdef TE_PE
12075 case BFD_RELOC_32_SECREL:
12076#endif
252b5132
RH
12077 code = fixp->fx_r_type;
12078 break;
dbbaec26
L
12079 case BFD_RELOC_X86_64_32S:
12080 if (!fixp->fx_pcrel)
12081 {
12082 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12083 code = fixp->fx_r_type;
12084 break;
12085 }
1a0670f3 12086 /* Fall through. */
252b5132 12087 default:
93382f6d 12088 if (fixp->fx_pcrel)
252b5132 12089 {
93382f6d
AM
12090 switch (fixp->fx_size)
12091 {
12092 default:
b091f402
AM
12093 as_bad_where (fixp->fx_file, fixp->fx_line,
12094 _("can not do %d byte pc-relative relocation"),
12095 fixp->fx_size);
93382f6d
AM
12096 code = BFD_RELOC_32_PCREL;
12097 break;
12098 case 1: code = BFD_RELOC_8_PCREL; break;
12099 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12100 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12101#ifdef BFD64
12102 case 8: code = BFD_RELOC_64_PCREL; break;
12103#endif
93382f6d
AM
12104 }
12105 }
12106 else
12107 {
12108 switch (fixp->fx_size)
12109 {
12110 default:
b091f402
AM
12111 as_bad_where (fixp->fx_file, fixp->fx_line,
12112 _("can not do %d byte relocation"),
12113 fixp->fx_size);
93382f6d
AM
12114 code = BFD_RELOC_32;
12115 break;
12116 case 1: code = BFD_RELOC_8; break;
12117 case 2: code = BFD_RELOC_16; break;
12118 case 4: code = BFD_RELOC_32; break;
937149dd 12119#ifdef BFD64
3e73aa7c 12120 case 8: code = BFD_RELOC_64; break;
937149dd 12121#endif
93382f6d 12122 }
252b5132
RH
12123 }
12124 break;
12125 }
252b5132 12126
d182319b
JB
12127 if ((code == BFD_RELOC_32
12128 || code == BFD_RELOC_32_PCREL
12129 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12130 && GOT_symbol
12131 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12132 {
4fa24527 12133 if (!object_64bit)
d6ab8113
JB
12134 code = BFD_RELOC_386_GOTPC;
12135 else
12136 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12137 }
7b81dfbb
AJ
12138 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12139 && GOT_symbol
12140 && fixp->fx_addsy == GOT_symbol)
12141 {
12142 code = BFD_RELOC_X86_64_GOTPC64;
12143 }
252b5132 12144
add39d23
TS
12145 rel = XNEW (arelent);
12146 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12147 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12148
12149 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12150
3e73aa7c
JH
12151 if (!use_rela_relocations)
12152 {
12153 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12154 vtable entry to be used in the relocation's section offset. */
12155 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12156 rel->address = fixp->fx_offset;
fbeb56a4
DK
12157#if defined (OBJ_COFF) && defined (TE_PE)
12158 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12159 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12160 else
12161#endif
c6682705 12162 rel->addend = 0;
3e73aa7c
JH
12163 }
12164 /* Use the rela in 64bit mode. */
252b5132 12165 else
3e73aa7c 12166 {
862be3fb
L
12167 if (disallow_64bit_reloc)
12168 switch (code)
12169 {
862be3fb
L
12170 case BFD_RELOC_X86_64_DTPOFF64:
12171 case BFD_RELOC_X86_64_TPOFF64:
12172 case BFD_RELOC_64_PCREL:
12173 case BFD_RELOC_X86_64_GOTOFF64:
12174 case BFD_RELOC_X86_64_GOT64:
12175 case BFD_RELOC_X86_64_GOTPCREL64:
12176 case BFD_RELOC_X86_64_GOTPC64:
12177 case BFD_RELOC_X86_64_GOTPLT64:
12178 case BFD_RELOC_X86_64_PLTOFF64:
12179 as_bad_where (fixp->fx_file, fixp->fx_line,
12180 _("cannot represent relocation type %s in x32 mode"),
12181 bfd_get_reloc_code_name (code));
12182 break;
12183 default:
12184 break;
12185 }
12186
062cd5e7
AS
12187 if (!fixp->fx_pcrel)
12188 rel->addend = fixp->fx_offset;
12189 else
12190 switch (code)
12191 {
12192 case BFD_RELOC_X86_64_PLT32:
12193 case BFD_RELOC_X86_64_GOT32:
12194 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12195 case BFD_RELOC_X86_64_GOTPCRELX:
12196 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12197 case BFD_RELOC_X86_64_TLSGD:
12198 case BFD_RELOC_X86_64_TLSLD:
12199 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12200 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12201 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12202 rel->addend = fixp->fx_offset - fixp->fx_size;
12203 break;
12204 default:
12205 rel->addend = (section->vma
12206 - fixp->fx_size
12207 + fixp->fx_addnumber
12208 + md_pcrel_from (fixp));
12209 break;
12210 }
3e73aa7c
JH
12211 }
12212
252b5132
RH
12213 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12214 if (rel->howto == NULL)
12215 {
12216 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12217 _("cannot represent relocation type %s"),
252b5132
RH
12218 bfd_get_reloc_code_name (code));
12219 /* Set howto to a garbage value so that we can keep going. */
12220 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12221 gas_assert (rel->howto != NULL);
252b5132
RH
12222 }
12223
12224 return rel;
12225}
12226
ee86248c 12227#include "tc-i386-intel.c"
54cfded0 12228
a60de03c
JB
12229void
12230tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12231{
a60de03c
JB
12232 int saved_naked_reg;
12233 char saved_register_dot;
54cfded0 12234
a60de03c
JB
12235 saved_naked_reg = allow_naked_reg;
12236 allow_naked_reg = 1;
12237 saved_register_dot = register_chars['.'];
12238 register_chars['.'] = '.';
12239 allow_pseudo_reg = 1;
12240 expression_and_evaluate (exp);
12241 allow_pseudo_reg = 0;
12242 register_chars['.'] = saved_register_dot;
12243 allow_naked_reg = saved_naked_reg;
12244
e96d56a1 12245 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12246 {
a60de03c
JB
12247 if ((addressT) exp->X_add_number < i386_regtab_size)
12248 {
12249 exp->X_op = O_constant;
12250 exp->X_add_number = i386_regtab[exp->X_add_number]
12251 .dw2_regnum[flag_code >> 1];
12252 }
12253 else
12254 exp->X_op = O_illegal;
54cfded0 12255 }
54cfded0
AM
12256}
12257
12258void
12259tc_x86_frame_initial_instructions (void)
12260{
a60de03c
JB
12261 static unsigned int sp_regno[2];
12262
12263 if (!sp_regno[flag_code >> 1])
12264 {
12265 char *saved_input = input_line_pointer;
12266 char sp[][4] = {"esp", "rsp"};
12267 expressionS exp;
a4447b93 12268
a60de03c
JB
12269 input_line_pointer = sp[flag_code >> 1];
12270 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12271 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12272 sp_regno[flag_code >> 1] = exp.X_add_number;
12273 input_line_pointer = saved_input;
12274 }
a4447b93 12275
61ff971f
L
12276 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12277 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12278}
d2b2c203 12279
d7921315
L
12280int
12281x86_dwarf2_addr_size (void)
12282{
12283#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12284 if (x86_elf_abi == X86_64_X32_ABI)
12285 return 4;
12286#endif
12287 return bfd_arch_bits_per_address (stdoutput) / 8;
12288}
12289
d2b2c203
DJ
12290int
12291i386_elf_section_type (const char *str, size_t len)
12292{
12293 if (flag_code == CODE_64BIT
12294 && len == sizeof ("unwind") - 1
12295 && strncmp (str, "unwind", 6) == 0)
12296 return SHT_X86_64_UNWIND;
12297
12298 return -1;
12299}
bb41ade5 12300
ad5fec3b
EB
12301#ifdef TE_SOLARIS
12302void
12303i386_solaris_fix_up_eh_frame (segT sec)
12304{
12305 if (flag_code == CODE_64BIT)
12306 elf_section_type (sec) = SHT_X86_64_UNWIND;
12307}
12308#endif
12309
bb41ade5
AM
12310#ifdef TE_PE
12311void
12312tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12313{
91d6fa6a 12314 expressionS exp;
bb41ade5 12315
91d6fa6a
NC
12316 exp.X_op = O_secrel;
12317 exp.X_add_symbol = symbol;
12318 exp.X_add_number = 0;
12319 emit_expr (&exp, size);
bb41ade5
AM
12320}
12321#endif
3b22753a
L
12322
12323#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12324/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12325
01e1a5bc 12326bfd_vma
6d4af3c2 12327x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12328{
12329 if (flag_code == CODE_64BIT)
12330 {
12331 if (letter == 'l')
12332 return SHF_X86_64_LARGE;
12333
8f3bae45 12334 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12335 }
3b22753a 12336 else
8f3bae45 12337 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12338 return -1;
12339}
12340
01e1a5bc 12341bfd_vma
3b22753a
L
12342x86_64_section_word (char *str, size_t len)
12343{
8620418b 12344 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12345 return SHF_X86_64_LARGE;
12346
12347 return -1;
12348}
12349
12350static void
12351handle_large_common (int small ATTRIBUTE_UNUSED)
12352{
12353 if (flag_code != CODE_64BIT)
12354 {
12355 s_comm_internal (0, elf_common_parse);
12356 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12357 }
12358 else
12359 {
12360 static segT lbss_section;
12361 asection *saved_com_section_ptr = elf_com_section_ptr;
12362 asection *saved_bss_section = bss_section;
12363
12364 if (lbss_section == NULL)
12365 {
12366 flagword applicable;
12367 segT seg = now_seg;
12368 subsegT subseg = now_subseg;
12369
12370 /* The .lbss section is for local .largecomm symbols. */
12371 lbss_section = subseg_new (".lbss", 0);
12372 applicable = bfd_applicable_section_flags (stdoutput);
12373 bfd_set_section_flags (stdoutput, lbss_section,
12374 applicable & SEC_ALLOC);
12375 seg_info (lbss_section)->bss = 1;
12376
12377 subseg_set (seg, subseg);
12378 }
12379
12380 elf_com_section_ptr = &_bfd_elf_large_com_section;
12381 bss_section = lbss_section;
12382
12383 s_comm_internal (0, elf_common_parse);
12384
12385 elf_com_section_ptr = saved_com_section_ptr;
12386 bss_section = saved_bss_section;
12387 }
12388}
12389#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.591815 seconds and 4 git commands to generate.