Fix memory access violation when attempting to shorten a suffixed micromips instructi...
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
86fa6981
L
372 /* How to encode vector instructions. */
373 enum
374 {
375 vex_encoding_default = 0,
376 vex_encoding_vex2,
377 vex_encoding_vex3,
378 vex_encoding_evex
379 } vec_encoding;
380
d5de92cf
L
381 /* REP prefix. */
382 const char *rep_prefix;
383
165de32a
L
384 /* HLE prefix. */
385 const char *hle_prefix;
42164a71 386
7e8b059b
L
387 /* Have BND prefix. */
388 const char *bnd_prefix;
389
04ef582a
L
390 /* Have NOTRACK prefix. */
391 const char *notrack_prefix;
392
891edac4 393 /* Error message. */
a65babc9 394 enum i386_error error;
252b5132
RH
395 };
396
397typedef struct _i386_insn i386_insn;
398
43234a1e
L
399/* Link RC type with corresponding string, that'll be looked for in
400 asm. */
401struct RC_name
402{
403 enum rc_type type;
404 const char *name;
405 unsigned int len;
406};
407
408static const struct RC_name RC_NamesTable[] =
409{
410 { rne, STRING_COMMA_LEN ("rn-sae") },
411 { rd, STRING_COMMA_LEN ("rd-sae") },
412 { ru, STRING_COMMA_LEN ("ru-sae") },
413 { rz, STRING_COMMA_LEN ("rz-sae") },
414 { saeonly, STRING_COMMA_LEN ("sae") },
415};
416
252b5132
RH
417/* List of chars besides those in app.c:symbol_chars that can start an
418 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 419const char extra_symbol_chars[] = "*%-([{}"
252b5132 420#ifdef LEX_AT
32137342
NC
421 "@"
422#endif
423#ifdef LEX_QM
424 "?"
252b5132 425#endif
32137342 426 ;
252b5132 427
29b0f896
AM
428#if (defined (TE_I386AIX) \
429 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 430 && !defined (TE_GNU) \
29b0f896 431 && !defined (TE_LINUX) \
8d63c93e
RM
432 && !defined (TE_NACL) \
433 && !defined (TE_NETWARE) \
29b0f896 434 && !defined (TE_FreeBSD) \
5b806d27 435 && !defined (TE_DragonFly) \
29b0f896 436 && !defined (TE_NetBSD)))
252b5132 437/* This array holds the chars that always start a comment. If the
b3b91714
AM
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440const char *i386_comment_chars = "#/";
441#define SVR4_COMMENT_CHARS 1
252b5132 442#define PREFIX_SEPARATOR '\\'
252b5132 443
b3b91714
AM
444#else
445const char *i386_comment_chars = "#";
446#define PREFIX_SEPARATOR '/'
447#endif
448
252b5132
RH
449/* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 453 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
252b5132 456 '/' isn't otherwise defined. */
b3b91714 457const char line_comment_chars[] = "#/";
252b5132 458
63a0b638 459const char line_separator_chars[] = ";";
252b5132 460
ce8a8b2f
AM
461/* Chars that can be used to separate mant from exp in floating point
462 nums. */
252b5132
RH
463const char EXP_CHARS[] = "eE";
464
ce8a8b2f
AM
465/* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
252b5132
RH
468const char FLT_CHARS[] = "fFdDxX";
469
ce8a8b2f 470/* Tables for lexical analysis. */
252b5132
RH
471static char mnemonic_chars[256];
472static char register_chars[256];
473static char operand_chars[256];
474static char identifier_chars[256];
475static char digit_chars[256];
476
ce8a8b2f 477/* Lexical macros. */
252b5132
RH
478#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479#define is_operand_char(x) (operand_chars[(unsigned char) x])
480#define is_register_char(x) (register_chars[(unsigned char) x])
481#define is_space_char(x) ((x) == ' ')
482#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483#define is_digit_char(x) (digit_chars[(unsigned char) x])
484
0234cb7c 485/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
486static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488/* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
47926f60 491 assembler instruction). */
252b5132 492static char save_stack[32];
ce8a8b2f 493static char *save_stack_p;
252b5132
RH
494#define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496#define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
47926f60 499/* The instruction we're assembling. */
252b5132
RH
500static i386_insn i;
501
502/* Possible templates for current insn. */
503static const templates *current_templates;
504
31b2323c
L
505/* Per instruction expressionS buffers: max displacements & immediates. */
506static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 508
47926f60 509/* Current operand we are working on. */
ee86248c 510static int this_operand = -1;
252b5132 511
3e73aa7c
JH
512/* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520static enum flag_code flag_code;
4fa24527 521static unsigned int object_64bit;
862be3fb 522static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
523static int use_rela_relocations = 0;
524
7af8ed2d
NC
525#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
351f65ca
L
529/* The ELF ABI to use. */
530enum x86_elf_abi
531{
532 I386_ABI,
7f56bc95
L
533 X86_64_ABI,
534 X86_64_X32_ABI
351f65ca
L
535};
536
537static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 538#endif
351f65ca 539
167ad85b
TG
540#if defined (TE_PE) || defined (TE_PEP)
541/* Use big object file format. */
542static int use_big_obj = 0;
543#endif
544
8dcea932
L
545#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546/* 1 if generating code for a shared library. */
547static int shared = 0;
548#endif
549
47926f60
KH
550/* 1 for intel syntax,
551 0 if att syntax. */
552static int intel_syntax = 0;
252b5132 553
e89c5eaa
L
554/* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556static int intel64;
557
1efbbeb4
L
558/* 1 for intel mnemonic,
559 0 if att mnemonic. */
560static int intel_mnemonic = !SYSV386_COMPAT;
561
5209009a 562/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
563static int old_gcc = OLDGCC_COMPAT;
564
a60de03c
JB
565/* 1 if pseudo registers are permitted. */
566static int allow_pseudo_reg = 0;
567
47926f60
KH
568/* 1 if register prefix % not required. */
569static int allow_naked_reg = 0;
252b5132 570
33eaf5de 571/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574static int add_bnd_prefix = 0;
575
ba104c83 576/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
577static int allow_index_reg = 0;
578
d022bddd
IT
579/* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581static int omit_lock_prefix = 0;
582
e4e00185
AS
583/* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585static int avoid_fence = 0;
586
0cb4071e
L
587/* 1 if the assembler should generate relax relocations. */
588
589static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
7bab8ab5 592static enum check_kind
daf50ae7 593 {
7bab8ab5
JB
594 check_none = 0,
595 check_warning,
596 check_error
daf50ae7 597 }
7bab8ab5 598sse_check, operand_check = check_warning;
daf50ae7 599
2ca3ace5
L
600/* Register prefix used for error message. */
601static const char *register_prefix = "%";
602
47926f60
KH
603/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
604 leave, push, and pop instructions so that gcc has the same stack
605 frame as in 32 bit mode. */
606static char stackop_size = '\0';
eecb386c 607
12b55ccc
L
608/* Non-zero to optimize code alignment. */
609int optimize_align_code = 1;
610
47926f60
KH
611/* Non-zero to quieten some warnings. */
612static int quiet_warnings = 0;
a38cf1db 613
47926f60
KH
614/* CPU name. */
615static const char *cpu_arch_name = NULL;
6305a203 616static char *cpu_sub_arch_name = NULL;
a38cf1db 617
47926f60 618/* CPU feature flags. */
40fb9820
L
619static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
620
ccc9c027
L
621/* If we have selected a cpu we are generating instructions for. */
622static int cpu_arch_tune_set = 0;
623
9103f4f4 624/* Cpu we are generating instructions for. */
fbf3f584 625enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
626
627/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 628static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 629
ccc9c027 630/* CPU instruction set architecture used. */
fbf3f584 631enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 632
9103f4f4 633/* CPU feature flags of instruction set architecture used. */
fbf3f584 634i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 635
fddf5b5b
AM
636/* If set, conditional jumps are not automatically promoted to handle
637 larger than a byte offset. */
638static unsigned int no_cond_jump_promotion = 0;
639
c0f3af97
L
640/* Encode SSE instructions with VEX prefix. */
641static unsigned int sse2avx;
642
539f890d
L
643/* Encode scalar AVX instructions with specific vector length. */
644static enum
645 {
646 vex128 = 0,
647 vex256
648 } avxscalar;
649
43234a1e
L
650/* Encode scalar EVEX LIG instructions with specific vector length. */
651static enum
652 {
653 evexl128 = 0,
654 evexl256,
655 evexl512
656 } evexlig;
657
658/* Encode EVEX WIG instructions with specific evex.w. */
659static enum
660 {
661 evexw0 = 0,
662 evexw1
663 } evexwig;
664
d3d3c6db
IT
665/* Value to encode in EVEX RC bits, for SAE-only instructions. */
666static enum rc_type evexrcig = rne;
667
29b0f896 668/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 669static symbolS *GOT_symbol;
29b0f896 670
a4447b93
RH
671/* The dwarf2 return column, adjusted for 32 or 64 bit. */
672unsigned int x86_dwarf2_return_column;
673
674/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
675int x86_cie_data_alignment;
676
252b5132 677/* Interface to relax_segment.
fddf5b5b
AM
678 There are 3 major relax states for 386 jump insns because the
679 different types of jumps add different sizes to frags when we're
680 figuring out what sort of jump to choose to reach a given label. */
252b5132 681
47926f60 682/* Types. */
93c2a809
AM
683#define UNCOND_JUMP 0
684#define COND_JUMP 1
685#define COND_JUMP86 2
fddf5b5b 686
47926f60 687/* Sizes. */
252b5132
RH
688#define CODE16 1
689#define SMALL 0
29b0f896 690#define SMALL16 (SMALL | CODE16)
252b5132 691#define BIG 2
29b0f896 692#define BIG16 (BIG | CODE16)
252b5132
RH
693
694#ifndef INLINE
695#ifdef __GNUC__
696#define INLINE __inline__
697#else
698#define INLINE
699#endif
700#endif
701
fddf5b5b
AM
702#define ENCODE_RELAX_STATE(type, size) \
703 ((relax_substateT) (((type) << 2) | (size)))
704#define TYPE_FROM_RELAX_STATE(s) \
705 ((s) >> 2)
706#define DISP_SIZE_FROM_RELAX_STATE(s) \
707 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
708
709/* This table is used by relax_frag to promote short jumps to long
710 ones where necessary. SMALL (short) jumps may be promoted to BIG
711 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
712 don't allow a short jump in a 32 bit code segment to be promoted to
713 a 16 bit offset jump because it's slower (requires data size
714 prefix), and doesn't work, unless the destination is in the bottom
715 64k of the code segment (The top 16 bits of eip are zeroed). */
716
717const relax_typeS md_relax_table[] =
718{
24eab124
AM
719 /* The fields are:
720 1) most positive reach of this state,
721 2) most negative reach of this state,
93c2a809 722 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 723 4) which index into the table to try if we can't fit into this one. */
252b5132 724
fddf5b5b 725 /* UNCOND_JUMP states. */
93c2a809
AM
726 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
728 /* dword jmp adds 4 bytes to frag:
729 0 extra opcode bytes, 4 displacement bytes. */
252b5132 730 {0, 0, 4, 0},
93c2a809
AM
731 /* word jmp adds 2 byte2 to frag:
732 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
733 {0, 0, 2, 0},
734
93c2a809
AM
735 /* COND_JUMP states. */
736 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
738 /* dword conditionals adds 5 bytes to frag:
739 1 extra opcode byte, 4 displacement bytes. */
740 {0, 0, 5, 0},
fddf5b5b 741 /* word conditionals add 3 bytes to frag:
93c2a809
AM
742 1 extra opcode byte, 2 displacement bytes. */
743 {0, 0, 3, 0},
744
745 /* COND_JUMP86 states. */
746 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
748 /* dword conditionals adds 5 bytes to frag:
749 1 extra opcode byte, 4 displacement bytes. */
750 {0, 0, 5, 0},
751 /* word conditionals add 4 bytes to frag:
752 1 displacement byte and a 3 byte long branch insn. */
753 {0, 0, 4, 0}
252b5132
RH
754};
755
9103f4f4
L
756static const arch_entry cpu_arch[] =
757{
89507696
JB
758 /* Do not replace the first two entries - i386_target_format()
759 relies on them being there in this order. */
8a2c8fef 760 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 761 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 762 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 763 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 764 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 765 CPU_NONE_FLAGS, 0 },
8a2c8fef 766 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 767 CPU_I186_FLAGS, 0 },
8a2c8fef 768 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 769 CPU_I286_FLAGS, 0 },
8a2c8fef 770 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 771 CPU_I386_FLAGS, 0 },
8a2c8fef 772 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 773 CPU_I486_FLAGS, 0 },
8a2c8fef 774 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 775 CPU_I586_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 777 CPU_I686_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 779 CPU_I586_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 781 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 783 CPU_P2_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 785 CPU_P3_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 787 CPU_P4_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 789 CPU_CORE_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 791 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 793 CPU_CORE_FLAGS, 1 },
8a2c8fef 794 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 795 CPU_CORE_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 797 CPU_CORE2_FLAGS, 1 },
8a2c8fef 798 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 799 CPU_CORE2_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 801 CPU_COREI7_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 803 CPU_L1OM_FLAGS, 0 },
7a9068fe 804 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 805 CPU_K1OM_FLAGS, 0 },
81486035 806 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 807 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 809 CPU_K6_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 811 CPU_K6_2_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 813 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 815 CPU_K8_FLAGS, 1 },
8a2c8fef 816 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 817 CPU_K8_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 819 CPU_K8_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 821 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 822 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 823 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 824 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 825 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 826 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 827 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 828 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 829 CPU_BDVER4_FLAGS, 0 },
029f3522 830 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 831 CPU_ZNVER1_FLAGS, 0 },
7b458c12 832 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 833 CPU_BTVER1_FLAGS, 0 },
7b458c12 834 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 835 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 837 CPU_8087_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 839 CPU_287_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 841 CPU_387_FLAGS, 0 },
1848e567
L
842 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
843 CPU_687_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 845 CPU_MMX_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 847 CPU_SSE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 849 CPU_SSE2_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 851 CPU_SSE3_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_AVX_FLAGS, 0 },
6c30d220 862 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_AVX2_FLAGS, 0 },
43234a1e 864 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_AVX512F_FLAGS, 0 },
43234a1e 866 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_AVX512CD_FLAGS, 0 },
43234a1e 868 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_AVX512ER_FLAGS, 0 },
43234a1e 870 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 872 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 874 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 876 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_VMX_FLAGS, 0 },
8729a6f6 880 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_SMX_FLAGS, 0 },
8a2c8fef 884 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 886 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 888 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 892 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AES_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 898 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 900 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 902 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_F16C_FLAGS, 0 },
6c30d220 904 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_BMI2_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_FMA_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_FMA4_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_XOP_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_LWP_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_MOVBE_FLAGS, 0 },
60aa667e 916 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_CX16_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_EPT_FLAGS, 0 },
6c30d220 920 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_LZCNT_FLAGS, 0 },
42164a71 922 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_HLE_FLAGS, 0 },
42164a71 924 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_RTM_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_CLFLUSH_FLAGS, 0 },
22109423 930 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_NOP_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 938 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_SVME_FLAGS, 1 },
8a2c8fef 944 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_SVME_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_ABM_FLAGS, 0 },
87973e9f 950 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_BMI_FLAGS, 0 },
2a2a0f38 952 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_TBM_FLAGS, 0 },
e2e1fcde 954 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_ADX_FLAGS, 0 },
e2e1fcde 956 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 958 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PRFCHW_FLAGS, 0 },
5c111e37 960 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SMAP_FLAGS, 0 },
7e8b059b 962 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_MPX_FLAGS, 0 },
a0046408 964 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SHA_FLAGS, 0 },
963f3586 966 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 968 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 970 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_SE1_FLAGS, 0 },
c5e7287a 972 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 974 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 976 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
978 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
979 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
980 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
981 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
982 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
983 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
984 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
985 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
986 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
987 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
988 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
989 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 990 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_CLZERO_FLAGS, 0 },
9916071f 992 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_MWAITX_FLAGS, 0 },
8eab4136 994 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_OSPKE_FLAGS, 0 },
8bc52696 996 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_RDPID_FLAGS, 0 },
6b40c462
L
998 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
999 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1000 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1001 CPU_IBT_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1003 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1004 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1005 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1006 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1007 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1008 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1009 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1010 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1011 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1012 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1013 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1014};
1015
1016static const noarch_entry cpu_noarch[] =
1017{
1018 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1019 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1020 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1021 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1022 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1023 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1024 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1025 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1026 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1027 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1028 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1029 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1030 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1031 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1032 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1041 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1042 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1043 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1044 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1045 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1046 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1047 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1048 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1049};
1050
704209c0 1051#ifdef I386COFF
a6c24e68
NC
1052/* Like s_lcomm_internal in gas/read.c but the alignment string
1053 is allowed to be optional. */
1054
1055static symbolS *
1056pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1057{
1058 addressT align = 0;
1059
1060 SKIP_WHITESPACE ();
1061
7ab9ffdd 1062 if (needs_align
a6c24e68
NC
1063 && *input_line_pointer == ',')
1064 {
1065 align = parse_align (needs_align - 1);
7ab9ffdd 1066
a6c24e68
NC
1067 if (align == (addressT) -1)
1068 return NULL;
1069 }
1070 else
1071 {
1072 if (size >= 8)
1073 align = 3;
1074 else if (size >= 4)
1075 align = 2;
1076 else if (size >= 2)
1077 align = 1;
1078 else
1079 align = 0;
1080 }
1081
1082 bss_alloc (symbolP, size, align);
1083 return symbolP;
1084}
1085
704209c0 1086static void
a6c24e68
NC
1087pe_lcomm (int needs_align)
1088{
1089 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1090}
704209c0 1091#endif
a6c24e68 1092
29b0f896
AM
1093const pseudo_typeS md_pseudo_table[] =
1094{
1095#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1096 {"align", s_align_bytes, 0},
1097#else
1098 {"align", s_align_ptwo, 0},
1099#endif
1100 {"arch", set_cpu_arch, 0},
1101#ifndef I386COFF
1102 {"bss", s_bss, 0},
a6c24e68
NC
1103#else
1104 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1105#endif
1106 {"ffloat", float_cons, 'f'},
1107 {"dfloat", float_cons, 'd'},
1108 {"tfloat", float_cons, 'x'},
1109 {"value", cons, 2},
d182319b 1110 {"slong", signed_cons, 4},
29b0f896
AM
1111 {"noopt", s_ignore, 0},
1112 {"optim", s_ignore, 0},
1113 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1114 {"code16", set_code_flag, CODE_16BIT},
1115 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1116#ifdef BFD64
29b0f896 1117 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1118#endif
29b0f896
AM
1119 {"intel_syntax", set_intel_syntax, 1},
1120 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1121 {"intel_mnemonic", set_intel_mnemonic, 1},
1122 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1123 {"allow_index_reg", set_allow_index_reg, 1},
1124 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1125 {"sse_check", set_check, 0},
1126 {"operand_check", set_check, 1},
3b22753a
L
1127#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1128 {"largecomm", handle_large_common, 0},
07a53e5c 1129#else
68d20676 1130 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1131 {"loc", dwarf2_directive_loc, 0},
1132 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1133#endif
6482c264
NC
1134#ifdef TE_PE
1135 {"secrel32", pe_directive_secrel, 0},
1136#endif
29b0f896
AM
1137 {0, 0, 0}
1138};
1139
1140/* For interface with expression (). */
1141extern char *input_line_pointer;
1142
1143/* Hash table for instruction mnemonic lookup. */
1144static struct hash_control *op_hash;
1145
1146/* Hash table for register lookup. */
1147static struct hash_control *reg_hash;
1148\f
ce8a8b2f
AM
1149 /* Various efficient no-op patterns for aligning code labels.
1150 Note: Don't try to assemble the instructions in the comments.
1151 0L and 0w are not legal. */
62a02d25
L
1152static const unsigned char f32_1[] =
1153 {0x90}; /* nop */
1154static const unsigned char f32_2[] =
1155 {0x66,0x90}; /* xchg %ax,%ax */
1156static const unsigned char f32_3[] =
1157 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1158static const unsigned char f32_4[] =
1159 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1160static const unsigned char f32_5[] =
1161 {0x90, /* nop */
1162 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1163static const unsigned char f32_6[] =
1164 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1165static const unsigned char f32_7[] =
1166 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1167static const unsigned char f32_8[] =
1168 {0x90, /* nop */
1169 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1170static const unsigned char f32_9[] =
1171 {0x89,0xf6, /* movl %esi,%esi */
1172 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1173static const unsigned char f32_10[] =
1174 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1175 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1176static const unsigned char f32_11[] =
1177 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1178 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1179static const unsigned char f32_12[] =
1180 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1181 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1182static const unsigned char f32_13[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1184 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1185static const unsigned char f32_14[] =
1186 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1187 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1188static const unsigned char f16_3[] =
1189 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1190static const unsigned char f16_4[] =
1191 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1192static const unsigned char f16_5[] =
1193 {0x90, /* nop */
1194 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1195static const unsigned char f16_6[] =
1196 {0x89,0xf6, /* mov %si,%si */
1197 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1198static const unsigned char f16_7[] =
1199 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1200 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1201static const unsigned char f16_8[] =
1202 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1203 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1204static const unsigned char jump_31[] =
1205 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1206 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1207 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1208 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1209/* 32-bit NOPs patterns. */
1210static const unsigned char *const f32_patt[] = {
1211 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1212 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1213};
1214/* 16-bit NOPs patterns. */
1215static const unsigned char *const f16_patt[] = {
1216 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1217};
1218/* nopl (%[re]ax) */
1219static const unsigned char alt_3[] =
1220 {0x0f,0x1f,0x00};
1221/* nopl 0(%[re]ax) */
1222static const unsigned char alt_4[] =
1223 {0x0f,0x1f,0x40,0x00};
1224/* nopl 0(%[re]ax,%[re]ax,1) */
1225static const unsigned char alt_5[] =
1226 {0x0f,0x1f,0x44,0x00,0x00};
1227/* nopw 0(%[re]ax,%[re]ax,1) */
1228static const unsigned char alt_6[] =
1229 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1230/* nopl 0L(%[re]ax) */
1231static const unsigned char alt_7[] =
1232 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1233/* nopl 0L(%[re]ax,%[re]ax,1) */
1234static const unsigned char alt_8[] =
1235 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1236/* nopw 0L(%[re]ax,%[re]ax,1) */
1237static const unsigned char alt_9[] =
1238 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1239/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1240static const unsigned char alt_10[] =
1241 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1242/* 32-bit and 64-bit NOPs patterns. */
1243static const unsigned char *const alt_patt[] = {
1244 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1245 alt_9, alt_10
1246};
1247/* 64-bit only: nopw %cs:0L(%eax,%eax,1) */
1248static const unsigned char alt64_11[] =
1249 {0x67,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1250/* 64-bit NOPs patterns. */
1251static const unsigned char *const alt64_patt[] = {
1252 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1253 alt_9, alt_10, alt64_11
1254};
1255
1256/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1257 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1258
1259static void
1260i386_output_nops (char *where, const unsigned char *const *patt,
1261 int count, int max_single_nop_size)
1262
1263{
1264 while (count > max_single_nop_size)
1265 {
1266 count -= max_single_nop_size;
1267 memcpy (where + count, patt[max_single_nop_size - 1],
1268 max_single_nop_size);
1269 }
1270
1271 if (count)
1272 memcpy (where, patt[count - 1], count);
1273}
1274
1275
1276/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1277 single NOP instruction LIMIT. */
1278
1279void
1280i386_generate_nops (fragS *f, char *where, offsetT count, int limit)
1281{
1282 /* Output NOPs for .nop directive. */
1283 int max_single_nop_size;
1284 const unsigned char *const *patt;
1285
1286 if (flag_code == CODE_16BIT)
1287 {
1288 patt = f16_patt;
1289 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1290 }
1291 else if (flag_code == CODE_64BIT)
1292 {
1293 patt = alt64_patt;
1294 max_single_nop_size = sizeof (alt64_patt) / sizeof (alt64_patt[0]);
1295 }
1296 else
1297 {
1298 patt = alt_patt;
1299 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1300 }
1301 if (limit == 0)
1302 limit = max_single_nop_size;
1303 else if (limit > max_single_nop_size)
1304 {
1305 as_bad_where (f->fr_file, f->fr_line,
1306 _("invalide single nop size: %d (expect within [0, %d])"),
1307 limit, max_single_nop_size);
1308 return;
1309 }
1310
1311 i386_output_nops (where, patt, count, limit);
1312}
252b5132 1313
62a02d25
L
1314void
1315i386_align_code (fragS *fragP, int count)
1316{
76bc74dc
L
1317 /* Only align for at least a positive non-zero boundary. */
1318 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1319 return;
3e73aa7c 1320
ccc9c027
L
1321 /* We need to decide which NOP sequence to use for 32bit and
1322 64bit. When -mtune= is used:
4eed87de 1323
76bc74dc
L
1324 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1325 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1326 2. For the rest, alt_patt will be used.
1327
1328 When -mtune= isn't used, alt_patt will be used if
22109423 1329 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1330 be used.
ccc9c027
L
1331
1332 When -march= or .arch is used, we can't use anything beyond
1333 cpu_arch_isa_flags. */
1334
1335 if (flag_code == CODE_16BIT)
1336 {
ccc9c027 1337 if (count > 8)
33fef721 1338 {
76bc74dc
L
1339 memcpy (fragP->fr_literal + fragP->fr_fix,
1340 jump_31, count);
1341 /* Adjust jump offset. */
1342 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1343 }
76bc74dc
L
1344 else
1345 memcpy (fragP->fr_literal + fragP->fr_fix,
1346 f16_patt[count - 1], count);
252b5132 1347 }
33fef721 1348 else
ccc9c027 1349 {
bad6e36d 1350 const unsigned char *const *patt = NULL;
ccc9c027 1351
fbf3f584 1352 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1353 {
1354 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1355 switch (cpu_arch_tune)
1356 {
1357 case PROCESSOR_UNKNOWN:
1358 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1359 optimize with nops. */
1360 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1361 patt = alt_patt;
ccc9c027
L
1362 else
1363 patt = f32_patt;
1364 break;
ccc9c027
L
1365 case PROCESSOR_PENTIUM4:
1366 case PROCESSOR_NOCONA:
ef05d495 1367 case PROCESSOR_CORE:
76bc74dc 1368 case PROCESSOR_CORE2:
bd5295b2 1369 case PROCESSOR_COREI7:
3632d14b 1370 case PROCESSOR_L1OM:
7a9068fe 1371 case PROCESSOR_K1OM:
76bc74dc 1372 case PROCESSOR_GENERIC64:
ccc9c027
L
1373 case PROCESSOR_K6:
1374 case PROCESSOR_ATHLON:
1375 case PROCESSOR_K8:
4eed87de 1376 case PROCESSOR_AMDFAM10:
8aedb9fe 1377 case PROCESSOR_BD:
029f3522 1378 case PROCESSOR_ZNVER:
7b458c12 1379 case PROCESSOR_BT:
80b8656c 1380 patt = alt_patt;
ccc9c027 1381 break;
76bc74dc 1382 case PROCESSOR_I386:
ccc9c027
L
1383 case PROCESSOR_I486:
1384 case PROCESSOR_PENTIUM:
2dde1948 1385 case PROCESSOR_PENTIUMPRO:
81486035 1386 case PROCESSOR_IAMCU:
ccc9c027
L
1387 case PROCESSOR_GENERIC32:
1388 patt = f32_patt;
1389 break;
4eed87de 1390 }
ccc9c027
L
1391 }
1392 else
1393 {
fbf3f584 1394 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1395 {
1396 case PROCESSOR_UNKNOWN:
e6a14101 1397 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1398 PROCESSOR_UNKNOWN. */
1399 abort ();
1400 break;
1401
76bc74dc 1402 case PROCESSOR_I386:
ccc9c027
L
1403 case PROCESSOR_I486:
1404 case PROCESSOR_PENTIUM:
81486035 1405 case PROCESSOR_IAMCU:
ccc9c027
L
1406 case PROCESSOR_K6:
1407 case PROCESSOR_ATHLON:
1408 case PROCESSOR_K8:
4eed87de 1409 case PROCESSOR_AMDFAM10:
8aedb9fe 1410 case PROCESSOR_BD:
029f3522 1411 case PROCESSOR_ZNVER:
7b458c12 1412 case PROCESSOR_BT:
ccc9c027
L
1413 case PROCESSOR_GENERIC32:
1414 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1415 with nops. */
1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1417 patt = alt_patt;
ccc9c027
L
1418 else
1419 patt = f32_patt;
1420 break;
76bc74dc
L
1421 case PROCESSOR_PENTIUMPRO:
1422 case PROCESSOR_PENTIUM4:
1423 case PROCESSOR_NOCONA:
1424 case PROCESSOR_CORE:
ef05d495 1425 case PROCESSOR_CORE2:
bd5295b2 1426 case PROCESSOR_COREI7:
3632d14b 1427 case PROCESSOR_L1OM:
7a9068fe 1428 case PROCESSOR_K1OM:
22109423 1429 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1430 patt = alt_patt;
ccc9c027
L
1431 else
1432 patt = f32_patt;
1433 break;
1434 case PROCESSOR_GENERIC64:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
4eed87de 1437 }
ccc9c027
L
1438 }
1439
76bc74dc
L
1440 if (patt == f32_patt)
1441 {
1442 /* If the padding is less than 15 bytes, we use the normal
1443 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1444 its offset. */
1445 int limit;
76ba9986 1446
711eedef
L
1447 /* For 64bit, the limit is 3 bytes. */
1448 if (flag_code == CODE_64BIT
1449 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1450 limit = 3;
1451 else
1452 limit = 15;
1453 if (count < limit)
76bc74dc
L
1454 memcpy (fragP->fr_literal + fragP->fr_fix,
1455 patt[count - 1], count);
1456 else
1457 {
1458 memcpy (fragP->fr_literal + fragP->fr_fix,
1459 jump_31, count);
1460 /* Adjust jump offset. */
1461 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1462 }
1463 }
1464 else
1465 {
80b8656c
L
1466 /* Maximum length of an instruction is 10 byte. If the
1467 padding is greater than 10 bytes and we don't use jump,
76bc74dc 1468 we have to break it into smaller pieces. */
62a02d25
L
1469 i386_output_nops (fragP->fr_literal + fragP->fr_fix,
1470 patt, count, 10);
76bc74dc 1471 }
ccc9c027 1472 }
33fef721 1473 fragP->fr_var = count;
252b5132
RH
1474}
1475
c6fb90c8 1476static INLINE int
0dfbf9d7 1477operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1478{
0dfbf9d7 1479 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1480 {
1481 case 3:
0dfbf9d7 1482 if (x->array[2])
c6fb90c8 1483 return 0;
1a0670f3 1484 /* Fall through. */
c6fb90c8 1485 case 2:
0dfbf9d7 1486 if (x->array[1])
c6fb90c8 1487 return 0;
1a0670f3 1488 /* Fall through. */
c6fb90c8 1489 case 1:
0dfbf9d7 1490 return !x->array[0];
c6fb90c8
L
1491 default:
1492 abort ();
1493 }
40fb9820
L
1494}
1495
c6fb90c8 1496static INLINE void
0dfbf9d7 1497operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1498{
0dfbf9d7 1499 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1500 {
1501 case 3:
0dfbf9d7 1502 x->array[2] = v;
1a0670f3 1503 /* Fall through. */
c6fb90c8 1504 case 2:
0dfbf9d7 1505 x->array[1] = v;
1a0670f3 1506 /* Fall through. */
c6fb90c8 1507 case 1:
0dfbf9d7 1508 x->array[0] = v;
1a0670f3 1509 /* Fall through. */
c6fb90c8
L
1510 break;
1511 default:
1512 abort ();
1513 }
1514}
40fb9820 1515
c6fb90c8 1516static INLINE int
0dfbf9d7
L
1517operand_type_equal (const union i386_operand_type *x,
1518 const union i386_operand_type *y)
c6fb90c8 1519{
0dfbf9d7 1520 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1521 {
1522 case 3:
0dfbf9d7 1523 if (x->array[2] != y->array[2])
c6fb90c8 1524 return 0;
1a0670f3 1525 /* Fall through. */
c6fb90c8 1526 case 2:
0dfbf9d7 1527 if (x->array[1] != y->array[1])
c6fb90c8 1528 return 0;
1a0670f3 1529 /* Fall through. */
c6fb90c8 1530 case 1:
0dfbf9d7 1531 return x->array[0] == y->array[0];
c6fb90c8
L
1532 break;
1533 default:
1534 abort ();
1535 }
1536}
40fb9820 1537
0dfbf9d7
L
1538static INLINE int
1539cpu_flags_all_zero (const union i386_cpu_flags *x)
1540{
1541 switch (ARRAY_SIZE(x->array))
1542 {
53467f57
IT
1543 case 4:
1544 if (x->array[3])
1545 return 0;
1546 /* Fall through. */
0dfbf9d7
L
1547 case 3:
1548 if (x->array[2])
1549 return 0;
1a0670f3 1550 /* Fall through. */
0dfbf9d7
L
1551 case 2:
1552 if (x->array[1])
1553 return 0;
1a0670f3 1554 /* Fall through. */
0dfbf9d7
L
1555 case 1:
1556 return !x->array[0];
1557 default:
1558 abort ();
1559 }
1560}
1561
0dfbf9d7
L
1562static INLINE int
1563cpu_flags_equal (const union i386_cpu_flags *x,
1564 const union i386_cpu_flags *y)
1565{
1566 switch (ARRAY_SIZE(x->array))
1567 {
53467f57
IT
1568 case 4:
1569 if (x->array[3] != y->array[3])
1570 return 0;
1571 /* Fall through. */
0dfbf9d7
L
1572 case 3:
1573 if (x->array[2] != y->array[2])
1574 return 0;
1a0670f3 1575 /* Fall through. */
0dfbf9d7
L
1576 case 2:
1577 if (x->array[1] != y->array[1])
1578 return 0;
1a0670f3 1579 /* Fall through. */
0dfbf9d7
L
1580 case 1:
1581 return x->array[0] == y->array[0];
1582 break;
1583 default:
1584 abort ();
1585 }
1586}
c6fb90c8
L
1587
1588static INLINE int
1589cpu_flags_check_cpu64 (i386_cpu_flags f)
1590{
1591 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1592 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1593}
1594
c6fb90c8
L
1595static INLINE i386_cpu_flags
1596cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1597{
c6fb90c8
L
1598 switch (ARRAY_SIZE (x.array))
1599 {
53467f57
IT
1600 case 4:
1601 x.array [3] &= y.array [3];
1602 /* Fall through. */
c6fb90c8
L
1603 case 3:
1604 x.array [2] &= y.array [2];
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 case 2:
1607 x.array [1] &= y.array [1];
1a0670f3 1608 /* Fall through. */
c6fb90c8
L
1609 case 1:
1610 x.array [0] &= y.array [0];
1611 break;
1612 default:
1613 abort ();
1614 }
1615 return x;
1616}
40fb9820 1617
c6fb90c8
L
1618static INLINE i386_cpu_flags
1619cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1620{
c6fb90c8 1621 switch (ARRAY_SIZE (x.array))
40fb9820 1622 {
53467f57
IT
1623 case 4:
1624 x.array [3] |= y.array [3];
1625 /* Fall through. */
c6fb90c8
L
1626 case 3:
1627 x.array [2] |= y.array [2];
1a0670f3 1628 /* Fall through. */
c6fb90c8
L
1629 case 2:
1630 x.array [1] |= y.array [1];
1a0670f3 1631 /* Fall through. */
c6fb90c8
L
1632 case 1:
1633 x.array [0] |= y.array [0];
40fb9820
L
1634 break;
1635 default:
1636 abort ();
1637 }
40fb9820
L
1638 return x;
1639}
1640
309d3373
JB
1641static INLINE i386_cpu_flags
1642cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1643{
1644 switch (ARRAY_SIZE (x.array))
1645 {
53467f57
IT
1646 case 4:
1647 x.array [3] &= ~y.array [3];
1648 /* Fall through. */
309d3373
JB
1649 case 3:
1650 x.array [2] &= ~y.array [2];
1a0670f3 1651 /* Fall through. */
309d3373
JB
1652 case 2:
1653 x.array [1] &= ~y.array [1];
1a0670f3 1654 /* Fall through. */
309d3373
JB
1655 case 1:
1656 x.array [0] &= ~y.array [0];
1657 break;
1658 default:
1659 abort ();
1660 }
1661 return x;
1662}
1663
c0f3af97
L
1664#define CPU_FLAGS_ARCH_MATCH 0x1
1665#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1666#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1667#define CPU_FLAGS_PCLMUL_MATCH 0x8
1668#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1669
a5ff0eb2 1670#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1671 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1672 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1673#define CPU_FLAGS_PERFECT_MATCH \
1674 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1675
1676/* Return CPU flags match bits. */
3629bb00 1677
40fb9820 1678static int
d3ce72d0 1679cpu_flags_match (const insn_template *t)
40fb9820 1680{
c0f3af97
L
1681 i386_cpu_flags x = t->cpu_flags;
1682 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1683
1684 x.bitfield.cpu64 = 0;
1685 x.bitfield.cpuno64 = 0;
1686
0dfbf9d7 1687 if (cpu_flags_all_zero (&x))
c0f3af97
L
1688 {
1689 /* This instruction is available on all archs. */
1690 match |= CPU_FLAGS_32BIT_MATCH;
1691 }
3629bb00
L
1692 else
1693 {
c0f3af97 1694 /* This instruction is available only on some archs. */
3629bb00
L
1695 i386_cpu_flags cpu = cpu_arch_flags;
1696
3629bb00 1697 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1698 if (!cpu_flags_all_zero (&cpu))
1699 {
a5ff0eb2
L
1700 if (x.bitfield.cpuavx)
1701 {
ce2f5b3c 1702 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1703 if (cpu.bitfield.cpuavx)
1704 {
1705 /* Check SSE2AVX. */
1706 if (!t->opcode_modifier.sse2avx|| sse2avx)
1707 {
1708 match |= (CPU_FLAGS_ARCH_MATCH
1709 | CPU_FLAGS_AVX_MATCH);
1710 /* Check AES. */
1711 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1712 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1713 /* Check PCLMUL. */
1714 if (!x.bitfield.cpupclmul
1715 || cpu.bitfield.cpupclmul)
1716 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1717 }
1718 }
1719 else
1720 match |= CPU_FLAGS_ARCH_MATCH;
1721 }
73b090a9
L
1722 else if (x.bitfield.cpuavx512vl)
1723 {
1724 /* Match AVX512VL. */
1725 if (cpu.bitfield.cpuavx512vl)
1726 {
1727 /* Need another match. */
1728 cpu.bitfield.cpuavx512vl = 0;
1729 if (!cpu_flags_all_zero (&cpu))
1730 match |= CPU_FLAGS_32BIT_MATCH;
1731 else
1732 match |= CPU_FLAGS_ARCH_MATCH;
1733 }
1734 else
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
a5ff0eb2 1737 else
c0f3af97
L
1738 match |= CPU_FLAGS_32BIT_MATCH;
1739 }
3629bb00 1740 }
c0f3af97 1741 return match;
40fb9820
L
1742}
1743
c6fb90c8
L
1744static INLINE i386_operand_type
1745operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1746{
c6fb90c8
L
1747 switch (ARRAY_SIZE (x.array))
1748 {
1749 case 3:
1750 x.array [2] &= y.array [2];
1a0670f3 1751 /* Fall through. */
c6fb90c8
L
1752 case 2:
1753 x.array [1] &= y.array [1];
1a0670f3 1754 /* Fall through. */
c6fb90c8
L
1755 case 1:
1756 x.array [0] &= y.array [0];
1757 break;
1758 default:
1759 abort ();
1760 }
1761 return x;
40fb9820
L
1762}
1763
c6fb90c8
L
1764static INLINE i386_operand_type
1765operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1766{
c6fb90c8 1767 switch (ARRAY_SIZE (x.array))
40fb9820 1768 {
c6fb90c8
L
1769 case 3:
1770 x.array [2] |= y.array [2];
1a0670f3 1771 /* Fall through. */
c6fb90c8
L
1772 case 2:
1773 x.array [1] |= y.array [1];
1a0670f3 1774 /* Fall through. */
c6fb90c8
L
1775 case 1:
1776 x.array [0] |= y.array [0];
40fb9820
L
1777 break;
1778 default:
1779 abort ();
1780 }
c6fb90c8
L
1781 return x;
1782}
40fb9820 1783
c6fb90c8
L
1784static INLINE i386_operand_type
1785operand_type_xor (i386_operand_type x, i386_operand_type y)
1786{
1787 switch (ARRAY_SIZE (x.array))
1788 {
1789 case 3:
1790 x.array [2] ^= y.array [2];
1a0670f3 1791 /* Fall through. */
c6fb90c8
L
1792 case 2:
1793 x.array [1] ^= y.array [1];
1a0670f3 1794 /* Fall through. */
c6fb90c8
L
1795 case 1:
1796 x.array [0] ^= y.array [0];
1797 break;
1798 default:
1799 abort ();
1800 }
40fb9820
L
1801 return x;
1802}
1803
1804static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1805static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1806static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1807static const i386_operand_type inoutportreg
1808 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1809static const i386_operand_type reg16_inoutportreg
1810 = OPERAND_TYPE_REG16_INOUTPORTREG;
1811static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1812static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1813static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1814static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1815static const i386_operand_type anydisp
1816 = OPERAND_TYPE_ANYDISP;
40fb9820 1817static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1818static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1819static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1820static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1821static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1822static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1823static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1824static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1825static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1826static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1827static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1828static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1829
1830enum operand_type
1831{
1832 reg,
40fb9820
L
1833 imm,
1834 disp,
1835 anymem
1836};
1837
c6fb90c8 1838static INLINE int
40fb9820
L
1839operand_type_check (i386_operand_type t, enum operand_type c)
1840{
1841 switch (c)
1842 {
1843 case reg:
dc821c5f 1844 return t.bitfield.reg;
40fb9820 1845
40fb9820
L
1846 case imm:
1847 return (t.bitfield.imm8
1848 || t.bitfield.imm8s
1849 || t.bitfield.imm16
1850 || t.bitfield.imm32
1851 || t.bitfield.imm32s
1852 || t.bitfield.imm64);
1853
1854 case disp:
1855 return (t.bitfield.disp8
1856 || t.bitfield.disp16
1857 || t.bitfield.disp32
1858 || t.bitfield.disp32s
1859 || t.bitfield.disp64);
1860
1861 case anymem:
1862 return (t.bitfield.disp8
1863 || t.bitfield.disp16
1864 || t.bitfield.disp32
1865 || t.bitfield.disp32s
1866 || t.bitfield.disp64
1867 || t.bitfield.baseindex);
1868
1869 default:
1870 abort ();
1871 }
2cfe26b6
AM
1872
1873 return 0;
40fb9820
L
1874}
1875
ca0d63fe 1876/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1877 operand J for instruction template T. */
1878
1879static INLINE int
d3ce72d0 1880match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1881{
1882 return !((i.types[j].bitfield.byte
1883 && !t->operand_types[j].bitfield.byte)
1884 || (i.types[j].bitfield.word
1885 && !t->operand_types[j].bitfield.word)
1886 || (i.types[j].bitfield.dword
1887 && !t->operand_types[j].bitfield.dword)
1888 || (i.types[j].bitfield.qword
ca0d63fe
JB
1889 && !t->operand_types[j].bitfield.qword)
1890 || (i.types[j].bitfield.tbyte
1891 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1892}
1893
1b54b8d7
JB
1894/* Return 1 if there is no conflict in SIMD register on
1895 operand J for instruction template T. */
1896
1897static INLINE int
1898match_simd_size (const insn_template *t, unsigned int j)
1899{
1900 return !((i.types[j].bitfield.xmmword
1901 && !t->operand_types[j].bitfield.xmmword)
1902 || (i.types[j].bitfield.ymmword
1903 && !t->operand_types[j].bitfield.ymmword)
1904 || (i.types[j].bitfield.zmmword
1905 && !t->operand_types[j].bitfield.zmmword));
1906}
1907
5c07affc
L
1908/* Return 1 if there is no conflict in any size on operand J for
1909 instruction template T. */
1910
1911static INLINE int
d3ce72d0 1912match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1913{
1914 return (match_reg_size (t, j)
1915 && !((i.types[j].bitfield.unspecified
af508cb9 1916 && !i.broadcast
5c07affc
L
1917 && !t->operand_types[j].bitfield.unspecified)
1918 || (i.types[j].bitfield.fword
1919 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1920 /* For scalar opcode templates to allow register and memory
1921 operands at the same time, some special casing is needed
1922 here. */
1923 || ((t->operand_types[j].bitfield.regsimd
1924 && !t->opcode_modifier.broadcast
1925 && (t->operand_types[j].bitfield.dword
1926 || t->operand_types[j].bitfield.qword))
1927 ? (i.types[j].bitfield.xmmword
1928 || i.types[j].bitfield.ymmword
1929 || i.types[j].bitfield.zmmword)
1930 : !match_simd_size(t, j))));
5c07affc
L
1931}
1932
1933/* Return 1 if there is no size conflict on any operands for
1934 instruction template T. */
1935
1936static INLINE int
d3ce72d0 1937operand_size_match (const insn_template *t)
5c07affc
L
1938{
1939 unsigned int j;
1940 int match = 1;
1941
1942 /* Don't check jump instructions. */
1943 if (t->opcode_modifier.jump
1944 || t->opcode_modifier.jumpbyte
1945 || t->opcode_modifier.jumpdword
1946 || t->opcode_modifier.jumpintersegment)
1947 return match;
1948
1949 /* Check memory and accumulator operand size. */
1950 for (j = 0; j < i.operands; j++)
1951 {
1b54b8d7
JB
1952 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1953 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1954 continue;
1955
1b54b8d7 1956 if (t->operand_types[j].bitfield.reg
dc821c5f 1957 && !match_reg_size (t, j))
5c07affc
L
1958 {
1959 match = 0;
1960 break;
1961 }
1962
1b54b8d7
JB
1963 if (t->operand_types[j].bitfield.regsimd
1964 && !match_simd_size (t, j))
1965 {
1966 match = 0;
1967 break;
1968 }
1969
1970 if (t->operand_types[j].bitfield.acc
1971 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1972 {
1973 match = 0;
1974 break;
1975 }
1976
5c07affc
L
1977 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1978 {
1979 match = 0;
1980 break;
1981 }
1982 }
1983
891edac4 1984 if (match)
5c07affc 1985 return match;
891edac4
L
1986 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1987 {
1988mismatch:
86e026a4 1989 i.error = operand_size_mismatch;
891edac4
L
1990 return 0;
1991 }
5c07affc
L
1992
1993 /* Check reverse. */
9c2799c2 1994 gas_assert (i.operands == 2);
5c07affc
L
1995
1996 match = 1;
1997 for (j = 0; j < 2; j++)
1998 {
dc821c5f
JB
1999 if ((t->operand_types[j].bitfield.reg
2000 || t->operand_types[j].bitfield.acc)
5c07affc 2001 && !match_reg_size (t, j ? 0 : 1))
891edac4 2002 goto mismatch;
5c07affc
L
2003
2004 if (i.types[j].bitfield.mem
2005 && !match_mem_size (t, j ? 0 : 1))
891edac4 2006 goto mismatch;
5c07affc
L
2007 }
2008
2009 return match;
2010}
2011
c6fb90c8 2012static INLINE int
40fb9820
L
2013operand_type_match (i386_operand_type overlap,
2014 i386_operand_type given)
2015{
2016 i386_operand_type temp = overlap;
2017
2018 temp.bitfield.jumpabsolute = 0;
7d5e4556 2019 temp.bitfield.unspecified = 0;
5c07affc
L
2020 temp.bitfield.byte = 0;
2021 temp.bitfield.word = 0;
2022 temp.bitfield.dword = 0;
2023 temp.bitfield.fword = 0;
2024 temp.bitfield.qword = 0;
2025 temp.bitfield.tbyte = 0;
2026 temp.bitfield.xmmword = 0;
c0f3af97 2027 temp.bitfield.ymmword = 0;
43234a1e 2028 temp.bitfield.zmmword = 0;
0dfbf9d7 2029 if (operand_type_all_zero (&temp))
891edac4 2030 goto mismatch;
40fb9820 2031
891edac4
L
2032 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2033 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2034 return 1;
2035
2036mismatch:
a65babc9 2037 i.error = operand_type_mismatch;
891edac4 2038 return 0;
40fb9820
L
2039}
2040
7d5e4556 2041/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2042 unless the expected operand type register overlap is null.
2043 Memory operand size of certain SIMD instructions is also being checked
2044 here. */
40fb9820 2045
c6fb90c8 2046static INLINE int
dc821c5f 2047operand_type_register_match (i386_operand_type g0,
40fb9820 2048 i386_operand_type t0,
40fb9820
L
2049 i386_operand_type g1,
2050 i386_operand_type t1)
2051{
10c17abd
JB
2052 if (!g0.bitfield.reg
2053 && !g0.bitfield.regsimd
2054 && (!operand_type_check (g0, anymem)
2055 || g0.bitfield.unspecified
2056 || !t0.bitfield.regsimd))
40fb9820
L
2057 return 1;
2058
10c17abd
JB
2059 if (!g1.bitfield.reg
2060 && !g1.bitfield.regsimd
2061 && (!operand_type_check (g1, anymem)
2062 || g1.bitfield.unspecified
2063 || !t1.bitfield.regsimd))
40fb9820
L
2064 return 1;
2065
dc821c5f
JB
2066 if (g0.bitfield.byte == g1.bitfield.byte
2067 && g0.bitfield.word == g1.bitfield.word
2068 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2069 && g0.bitfield.qword == g1.bitfield.qword
2070 && g0.bitfield.xmmword == g1.bitfield.xmmword
2071 && g0.bitfield.ymmword == g1.bitfield.ymmword
2072 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2073 return 1;
2074
dc821c5f
JB
2075 if (!(t0.bitfield.byte & t1.bitfield.byte)
2076 && !(t0.bitfield.word & t1.bitfield.word)
2077 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2078 && !(t0.bitfield.qword & t1.bitfield.qword)
2079 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2080 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2081 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2082 return 1;
2083
a65babc9 2084 i.error = register_type_mismatch;
891edac4
L
2085
2086 return 0;
40fb9820
L
2087}
2088
4c692bc7
JB
2089static INLINE unsigned int
2090register_number (const reg_entry *r)
2091{
2092 unsigned int nr = r->reg_num;
2093
2094 if (r->reg_flags & RegRex)
2095 nr += 8;
2096
200cbe0f
L
2097 if (r->reg_flags & RegVRex)
2098 nr += 16;
2099
4c692bc7
JB
2100 return nr;
2101}
2102
252b5132 2103static INLINE unsigned int
40fb9820 2104mode_from_disp_size (i386_operand_type t)
252b5132 2105{
b5014f7a 2106 if (t.bitfield.disp8)
40fb9820
L
2107 return 1;
2108 else if (t.bitfield.disp16
2109 || t.bitfield.disp32
2110 || t.bitfield.disp32s)
2111 return 2;
2112 else
2113 return 0;
252b5132
RH
2114}
2115
2116static INLINE int
65879393 2117fits_in_signed_byte (addressT num)
252b5132 2118{
65879393 2119 return num + 0x80 <= 0xff;
47926f60 2120}
252b5132
RH
2121
2122static INLINE int
65879393 2123fits_in_unsigned_byte (addressT num)
252b5132 2124{
65879393 2125 return num <= 0xff;
47926f60 2126}
252b5132
RH
2127
2128static INLINE int
65879393 2129fits_in_unsigned_word (addressT num)
252b5132 2130{
65879393 2131 return num <= 0xffff;
47926f60 2132}
252b5132
RH
2133
2134static INLINE int
65879393 2135fits_in_signed_word (addressT num)
252b5132 2136{
65879393 2137 return num + 0x8000 <= 0xffff;
47926f60 2138}
2a962e6d 2139
3e73aa7c 2140static INLINE int
65879393 2141fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2142{
2143#ifndef BFD64
2144 return 1;
2145#else
65879393 2146 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2147#endif
2148} /* fits_in_signed_long() */
2a962e6d 2149
3e73aa7c 2150static INLINE int
65879393 2151fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2152{
2153#ifndef BFD64
2154 return 1;
2155#else
65879393 2156 return num <= 0xffffffff;
3e73aa7c
JH
2157#endif
2158} /* fits_in_unsigned_long() */
252b5132 2159
43234a1e 2160static INLINE int
b5014f7a 2161fits_in_disp8 (offsetT num)
43234a1e
L
2162{
2163 int shift = i.memshift;
2164 unsigned int mask;
2165
2166 if (shift == -1)
2167 abort ();
2168
2169 mask = (1 << shift) - 1;
2170
2171 /* Return 0 if NUM isn't properly aligned. */
2172 if ((num & mask))
2173 return 0;
2174
2175 /* Check if NUM will fit in 8bit after shift. */
2176 return fits_in_signed_byte (num >> shift);
2177}
2178
a683cc34
SP
2179static INLINE int
2180fits_in_imm4 (offsetT num)
2181{
2182 return (num & 0xf) == num;
2183}
2184
40fb9820 2185static i386_operand_type
e3bb37b5 2186smallest_imm_type (offsetT num)
252b5132 2187{
40fb9820 2188 i386_operand_type t;
7ab9ffdd 2189
0dfbf9d7 2190 operand_type_set (&t, 0);
40fb9820
L
2191 t.bitfield.imm64 = 1;
2192
2193 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2194 {
2195 /* This code is disabled on the 486 because all the Imm1 forms
2196 in the opcode table are slower on the i486. They're the
2197 versions with the implicitly specified single-position
2198 displacement, which has another syntax if you really want to
2199 use that form. */
40fb9820
L
2200 t.bitfield.imm1 = 1;
2201 t.bitfield.imm8 = 1;
2202 t.bitfield.imm8s = 1;
2203 t.bitfield.imm16 = 1;
2204 t.bitfield.imm32 = 1;
2205 t.bitfield.imm32s = 1;
2206 }
2207 else if (fits_in_signed_byte (num))
2208 {
2209 t.bitfield.imm8 = 1;
2210 t.bitfield.imm8s = 1;
2211 t.bitfield.imm16 = 1;
2212 t.bitfield.imm32 = 1;
2213 t.bitfield.imm32s = 1;
2214 }
2215 else if (fits_in_unsigned_byte (num))
2216 {
2217 t.bitfield.imm8 = 1;
2218 t.bitfield.imm16 = 1;
2219 t.bitfield.imm32 = 1;
2220 t.bitfield.imm32s = 1;
2221 }
2222 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2223 {
2224 t.bitfield.imm16 = 1;
2225 t.bitfield.imm32 = 1;
2226 t.bitfield.imm32s = 1;
2227 }
2228 else if (fits_in_signed_long (num))
2229 {
2230 t.bitfield.imm32 = 1;
2231 t.bitfield.imm32s = 1;
2232 }
2233 else if (fits_in_unsigned_long (num))
2234 t.bitfield.imm32 = 1;
2235
2236 return t;
47926f60 2237}
252b5132 2238
847f7ad4 2239static offsetT
e3bb37b5 2240offset_in_range (offsetT val, int size)
847f7ad4 2241{
508866be 2242 addressT mask;
ba2adb93 2243
847f7ad4
AM
2244 switch (size)
2245 {
508866be
L
2246 case 1: mask = ((addressT) 1 << 8) - 1; break;
2247 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2248 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2249#ifdef BFD64
2250 case 8: mask = ((addressT) 2 << 63) - 1; break;
2251#endif
47926f60 2252 default: abort ();
847f7ad4
AM
2253 }
2254
9de868bf
L
2255#ifdef BFD64
2256 /* If BFD64, sign extend val for 32bit address mode. */
2257 if (flag_code != CODE_64BIT
2258 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2259 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2260 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2261#endif
ba2adb93 2262
47926f60 2263 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2264 {
2265 char buf1[40], buf2[40];
2266
2267 sprint_value (buf1, val);
2268 sprint_value (buf2, val & mask);
2269 as_warn (_("%s shortened to %s"), buf1, buf2);
2270 }
2271 return val & mask;
2272}
2273
c32fa91d
L
2274enum PREFIX_GROUP
2275{
2276 PREFIX_EXIST = 0,
2277 PREFIX_LOCK,
2278 PREFIX_REP,
04ef582a 2279 PREFIX_DS,
c32fa91d
L
2280 PREFIX_OTHER
2281};
2282
2283/* Returns
2284 a. PREFIX_EXIST if attempting to add a prefix where one from the
2285 same class already exists.
2286 b. PREFIX_LOCK if lock prefix is added.
2287 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2288 d. PREFIX_DS if ds prefix is added.
2289 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2290 */
2291
2292static enum PREFIX_GROUP
e3bb37b5 2293add_prefix (unsigned int prefix)
252b5132 2294{
c32fa91d 2295 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2296 unsigned int q;
252b5132 2297
29b0f896
AM
2298 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2299 && flag_code == CODE_64BIT)
b1905489 2300 {
161a04f6
L
2301 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2302 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2303 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2304 ret = PREFIX_EXIST;
b1905489
JB
2305 q = REX_PREFIX;
2306 }
3e73aa7c 2307 else
b1905489
JB
2308 {
2309 switch (prefix)
2310 {
2311 default:
2312 abort ();
2313
b1905489 2314 case DS_PREFIX_OPCODE:
04ef582a
L
2315 ret = PREFIX_DS;
2316 /* Fall through. */
2317 case CS_PREFIX_OPCODE:
b1905489
JB
2318 case ES_PREFIX_OPCODE:
2319 case FS_PREFIX_OPCODE:
2320 case GS_PREFIX_OPCODE:
2321 case SS_PREFIX_OPCODE:
2322 q = SEG_PREFIX;
2323 break;
2324
2325 case REPNE_PREFIX_OPCODE:
2326 case REPE_PREFIX_OPCODE:
c32fa91d
L
2327 q = REP_PREFIX;
2328 ret = PREFIX_REP;
2329 break;
2330
b1905489 2331 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2332 q = LOCK_PREFIX;
2333 ret = PREFIX_LOCK;
b1905489
JB
2334 break;
2335
2336 case FWAIT_OPCODE:
2337 q = WAIT_PREFIX;
2338 break;
2339
2340 case ADDR_PREFIX_OPCODE:
2341 q = ADDR_PREFIX;
2342 break;
2343
2344 case DATA_PREFIX_OPCODE:
2345 q = DATA_PREFIX;
2346 break;
2347 }
2348 if (i.prefix[q] != 0)
c32fa91d 2349 ret = PREFIX_EXIST;
b1905489 2350 }
252b5132 2351
b1905489 2352 if (ret)
252b5132 2353 {
b1905489
JB
2354 if (!i.prefix[q])
2355 ++i.prefixes;
2356 i.prefix[q] |= prefix;
252b5132 2357 }
b1905489
JB
2358 else
2359 as_bad (_("same type of prefix used twice"));
252b5132 2360
252b5132
RH
2361 return ret;
2362}
2363
2364static void
78f12dd3 2365update_code_flag (int value, int check)
eecb386c 2366{
78f12dd3
L
2367 PRINTF_LIKE ((*as_error));
2368
1e9cc1c2 2369 flag_code = (enum flag_code) value;
40fb9820
L
2370 if (flag_code == CODE_64BIT)
2371 {
2372 cpu_arch_flags.bitfield.cpu64 = 1;
2373 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2374 }
2375 else
2376 {
2377 cpu_arch_flags.bitfield.cpu64 = 0;
2378 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2379 }
2380 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2381 {
78f12dd3
L
2382 if (check)
2383 as_error = as_fatal;
2384 else
2385 as_error = as_bad;
2386 (*as_error) (_("64bit mode not supported on `%s'."),
2387 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2388 }
40fb9820 2389 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2390 {
78f12dd3
L
2391 if (check)
2392 as_error = as_fatal;
2393 else
2394 as_error = as_bad;
2395 (*as_error) (_("32bit mode not supported on `%s'."),
2396 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2397 }
eecb386c
AM
2398 stackop_size = '\0';
2399}
2400
78f12dd3
L
2401static void
2402set_code_flag (int value)
2403{
2404 update_code_flag (value, 0);
2405}
2406
eecb386c 2407static void
e3bb37b5 2408set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2409{
1e9cc1c2 2410 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2411 if (flag_code != CODE_16BIT)
2412 abort ();
2413 cpu_arch_flags.bitfield.cpu64 = 0;
2414 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2415 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2416}
2417
2418static void
e3bb37b5 2419set_intel_syntax (int syntax_flag)
252b5132
RH
2420{
2421 /* Find out if register prefixing is specified. */
2422 int ask_naked_reg = 0;
2423
2424 SKIP_WHITESPACE ();
29b0f896 2425 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2426 {
d02603dc
NC
2427 char *string;
2428 int e = get_symbol_name (&string);
252b5132 2429
47926f60 2430 if (strcmp (string, "prefix") == 0)
252b5132 2431 ask_naked_reg = 1;
47926f60 2432 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2433 ask_naked_reg = -1;
2434 else
d0b47220 2435 as_bad (_("bad argument to syntax directive."));
d02603dc 2436 (void) restore_line_pointer (e);
252b5132
RH
2437 }
2438 demand_empty_rest_of_line ();
c3332e24 2439
252b5132
RH
2440 intel_syntax = syntax_flag;
2441
2442 if (ask_naked_reg == 0)
f86103b7
AM
2443 allow_naked_reg = (intel_syntax
2444 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2445 else
2446 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2447
ee86248c 2448 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2449
e4a3b5a4 2450 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2451 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2452 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2453}
2454
1efbbeb4
L
2455static void
2456set_intel_mnemonic (int mnemonic_flag)
2457{
e1d4d893 2458 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2459}
2460
db51cc60
L
2461static void
2462set_allow_index_reg (int flag)
2463{
2464 allow_index_reg = flag;
2465}
2466
cb19c032 2467static void
7bab8ab5 2468set_check (int what)
cb19c032 2469{
7bab8ab5
JB
2470 enum check_kind *kind;
2471 const char *str;
2472
2473 if (what)
2474 {
2475 kind = &operand_check;
2476 str = "operand";
2477 }
2478 else
2479 {
2480 kind = &sse_check;
2481 str = "sse";
2482 }
2483
cb19c032
L
2484 SKIP_WHITESPACE ();
2485
2486 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2487 {
d02603dc
NC
2488 char *string;
2489 int e = get_symbol_name (&string);
cb19c032
L
2490
2491 if (strcmp (string, "none") == 0)
7bab8ab5 2492 *kind = check_none;
cb19c032 2493 else if (strcmp (string, "warning") == 0)
7bab8ab5 2494 *kind = check_warning;
cb19c032 2495 else if (strcmp (string, "error") == 0)
7bab8ab5 2496 *kind = check_error;
cb19c032 2497 else
7bab8ab5 2498 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2499 (void) restore_line_pointer (e);
cb19c032
L
2500 }
2501 else
7bab8ab5 2502 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2503
2504 demand_empty_rest_of_line ();
2505}
2506
8a9036a4
L
2507static void
2508check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2509 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2510{
2511#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2512 static const char *arch;
2513
2514 /* Intel LIOM is only supported on ELF. */
2515 if (!IS_ELF)
2516 return;
2517
2518 if (!arch)
2519 {
2520 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2521 use default_arch. */
2522 arch = cpu_arch_name;
2523 if (!arch)
2524 arch = default_arch;
2525 }
2526
81486035
L
2527 /* If we are targeting Intel MCU, we must enable it. */
2528 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2529 || new_flag.bitfield.cpuiamcu)
2530 return;
2531
3632d14b 2532 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2533 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2534 || new_flag.bitfield.cpul1om)
8a9036a4 2535 return;
76ba9986 2536
7a9068fe
L
2537 /* If we are targeting Intel K1OM, we must enable it. */
2538 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2539 || new_flag.bitfield.cpuk1om)
2540 return;
2541
8a9036a4
L
2542 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2543#endif
2544}
2545
e413e4e9 2546static void
e3bb37b5 2547set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2548{
47926f60 2549 SKIP_WHITESPACE ();
e413e4e9 2550
29b0f896 2551 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2552 {
d02603dc
NC
2553 char *string;
2554 int e = get_symbol_name (&string);
91d6fa6a 2555 unsigned int j;
40fb9820 2556 i386_cpu_flags flags;
e413e4e9 2557
91d6fa6a 2558 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2559 {
91d6fa6a 2560 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2561 {
91d6fa6a 2562 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2563
5c6af06e
JB
2564 if (*string != '.')
2565 {
91d6fa6a 2566 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2567 cpu_sub_arch_name = NULL;
91d6fa6a 2568 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2569 if (flag_code == CODE_64BIT)
2570 {
2571 cpu_arch_flags.bitfield.cpu64 = 1;
2572 cpu_arch_flags.bitfield.cpuno64 = 0;
2573 }
2574 else
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 0;
2577 cpu_arch_flags.bitfield.cpuno64 = 1;
2578 }
91d6fa6a
NC
2579 cpu_arch_isa = cpu_arch[j].type;
2580 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2581 if (!cpu_arch_tune_set)
2582 {
2583 cpu_arch_tune = cpu_arch_isa;
2584 cpu_arch_tune_flags = cpu_arch_isa_flags;
2585 }
5c6af06e
JB
2586 break;
2587 }
40fb9820 2588
293f5f65
L
2589 flags = cpu_flags_or (cpu_arch_flags,
2590 cpu_arch[j].flags);
81486035 2591
5b64d091 2592 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2593 {
6305a203
L
2594 if (cpu_sub_arch_name)
2595 {
2596 char *name = cpu_sub_arch_name;
2597 cpu_sub_arch_name = concat (name,
91d6fa6a 2598 cpu_arch[j].name,
1bf57e9f 2599 (const char *) NULL);
6305a203
L
2600 free (name);
2601 }
2602 else
91d6fa6a 2603 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2604 cpu_arch_flags = flags;
a586129e 2605 cpu_arch_isa_flags = flags;
5c6af06e 2606 }
d02603dc 2607 (void) restore_line_pointer (e);
5c6af06e
JB
2608 demand_empty_rest_of_line ();
2609 return;
e413e4e9
AM
2610 }
2611 }
293f5f65
L
2612
2613 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2614 {
33eaf5de 2615 /* Disable an ISA extension. */
293f5f65
L
2616 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2617 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2618 {
2619 flags = cpu_flags_and_not (cpu_arch_flags,
2620 cpu_noarch[j].flags);
2621 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2622 {
2623 if (cpu_sub_arch_name)
2624 {
2625 char *name = cpu_sub_arch_name;
2626 cpu_sub_arch_name = concat (name, string,
2627 (const char *) NULL);
2628 free (name);
2629 }
2630 else
2631 cpu_sub_arch_name = xstrdup (string);
2632 cpu_arch_flags = flags;
2633 cpu_arch_isa_flags = flags;
2634 }
2635 (void) restore_line_pointer (e);
2636 demand_empty_rest_of_line ();
2637 return;
2638 }
2639
2640 j = ARRAY_SIZE (cpu_arch);
2641 }
2642
91d6fa6a 2643 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2644 as_bad (_("no such architecture: `%s'"), string);
2645
2646 *input_line_pointer = e;
2647 }
2648 else
2649 as_bad (_("missing cpu architecture"));
2650
fddf5b5b
AM
2651 no_cond_jump_promotion = 0;
2652 if (*input_line_pointer == ','
29b0f896 2653 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2654 {
d02603dc
NC
2655 char *string;
2656 char e;
2657
2658 ++input_line_pointer;
2659 e = get_symbol_name (&string);
fddf5b5b
AM
2660
2661 if (strcmp (string, "nojumps") == 0)
2662 no_cond_jump_promotion = 1;
2663 else if (strcmp (string, "jumps") == 0)
2664 ;
2665 else
2666 as_bad (_("no such architecture modifier: `%s'"), string);
2667
d02603dc 2668 (void) restore_line_pointer (e);
fddf5b5b
AM
2669 }
2670
e413e4e9
AM
2671 demand_empty_rest_of_line ();
2672}
2673
8a9036a4
L
2674enum bfd_architecture
2675i386_arch (void)
2676{
3632d14b 2677 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2678 {
2679 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2680 || flag_code != CODE_64BIT)
2681 as_fatal (_("Intel L1OM is 64bit ELF only"));
2682 return bfd_arch_l1om;
2683 }
7a9068fe
L
2684 else if (cpu_arch_isa == PROCESSOR_K1OM)
2685 {
2686 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2687 || flag_code != CODE_64BIT)
2688 as_fatal (_("Intel K1OM is 64bit ELF only"));
2689 return bfd_arch_k1om;
2690 }
81486035
L
2691 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2692 {
2693 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2694 || flag_code == CODE_64BIT)
2695 as_fatal (_("Intel MCU is 32bit ELF only"));
2696 return bfd_arch_iamcu;
2697 }
8a9036a4
L
2698 else
2699 return bfd_arch_i386;
2700}
2701
b9d79e03 2702unsigned long
7016a5d5 2703i386_mach (void)
b9d79e03 2704{
351f65ca 2705 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2706 {
3632d14b 2707 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2708 {
351f65ca
L
2709 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2710 || default_arch[6] != '\0')
8a9036a4
L
2711 as_fatal (_("Intel L1OM is 64bit ELF only"));
2712 return bfd_mach_l1om;
2713 }
7a9068fe
L
2714 else if (cpu_arch_isa == PROCESSOR_K1OM)
2715 {
2716 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2717 || default_arch[6] != '\0')
2718 as_fatal (_("Intel K1OM is 64bit ELF only"));
2719 return bfd_mach_k1om;
2720 }
351f65ca 2721 else if (default_arch[6] == '\0')
8a9036a4 2722 return bfd_mach_x86_64;
351f65ca
L
2723 else
2724 return bfd_mach_x64_32;
8a9036a4 2725 }
5197d474
L
2726 else if (!strcmp (default_arch, "i386")
2727 || !strcmp (default_arch, "iamcu"))
81486035
L
2728 {
2729 if (cpu_arch_isa == PROCESSOR_IAMCU)
2730 {
2731 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2732 as_fatal (_("Intel MCU is 32bit ELF only"));
2733 return bfd_mach_i386_iamcu;
2734 }
2735 else
2736 return bfd_mach_i386_i386;
2737 }
b9d79e03 2738 else
2b5d6a91 2739 as_fatal (_("unknown architecture"));
b9d79e03 2740}
b9d79e03 2741\f
252b5132 2742void
7016a5d5 2743md_begin (void)
252b5132
RH
2744{
2745 const char *hash_err;
2746
86fa6981
L
2747 /* Support pseudo prefixes like {disp32}. */
2748 lex_type ['{'] = LEX_BEGIN_NAME;
2749
47926f60 2750 /* Initialize op_hash hash table. */
252b5132
RH
2751 op_hash = hash_new ();
2752
2753 {
d3ce72d0 2754 const insn_template *optab;
29b0f896 2755 templates *core_optab;
252b5132 2756
47926f60
KH
2757 /* Setup for loop. */
2758 optab = i386_optab;
add39d23 2759 core_optab = XNEW (templates);
252b5132
RH
2760 core_optab->start = optab;
2761
2762 while (1)
2763 {
2764 ++optab;
2765 if (optab->name == NULL
2766 || strcmp (optab->name, (optab - 1)->name) != 0)
2767 {
2768 /* different name --> ship out current template list;
47926f60 2769 add to hash table; & begin anew. */
252b5132
RH
2770 core_optab->end = optab;
2771 hash_err = hash_insert (op_hash,
2772 (optab - 1)->name,
5a49b8ac 2773 (void *) core_optab);
252b5132
RH
2774 if (hash_err)
2775 {
b37df7c4 2776 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2777 (optab - 1)->name,
2778 hash_err);
2779 }
2780 if (optab->name == NULL)
2781 break;
add39d23 2782 core_optab = XNEW (templates);
252b5132
RH
2783 core_optab->start = optab;
2784 }
2785 }
2786 }
2787
47926f60 2788 /* Initialize reg_hash hash table. */
252b5132
RH
2789 reg_hash = hash_new ();
2790 {
29b0f896 2791 const reg_entry *regtab;
c3fe08fa 2792 unsigned int regtab_size = i386_regtab_size;
252b5132 2793
c3fe08fa 2794 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2795 {
5a49b8ac 2796 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2797 if (hash_err)
b37df7c4 2798 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2799 regtab->reg_name,
2800 hash_err);
252b5132
RH
2801 }
2802 }
2803
47926f60 2804 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2805 {
29b0f896
AM
2806 int c;
2807 char *p;
252b5132
RH
2808
2809 for (c = 0; c < 256; c++)
2810 {
3882b010 2811 if (ISDIGIT (c))
252b5132
RH
2812 {
2813 digit_chars[c] = c;
2814 mnemonic_chars[c] = c;
2815 register_chars[c] = c;
2816 operand_chars[c] = c;
2817 }
3882b010 2818 else if (ISLOWER (c))
252b5132
RH
2819 {
2820 mnemonic_chars[c] = c;
2821 register_chars[c] = c;
2822 operand_chars[c] = c;
2823 }
3882b010 2824 else if (ISUPPER (c))
252b5132 2825 {
3882b010 2826 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2827 register_chars[c] = mnemonic_chars[c];
2828 operand_chars[c] = c;
2829 }
43234a1e 2830 else if (c == '{' || c == '}')
86fa6981
L
2831 {
2832 mnemonic_chars[c] = c;
2833 operand_chars[c] = c;
2834 }
252b5132 2835
3882b010 2836 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2837 identifier_chars[c] = c;
2838 else if (c >= 128)
2839 {
2840 identifier_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 }
2844
2845#ifdef LEX_AT
2846 identifier_chars['@'] = '@';
32137342
NC
2847#endif
2848#ifdef LEX_QM
2849 identifier_chars['?'] = '?';
2850 operand_chars['?'] = '?';
252b5132 2851#endif
252b5132 2852 digit_chars['-'] = '-';
c0f3af97 2853 mnemonic_chars['_'] = '_';
791fe849 2854 mnemonic_chars['-'] = '-';
0003779b 2855 mnemonic_chars['.'] = '.';
252b5132
RH
2856 identifier_chars['_'] = '_';
2857 identifier_chars['.'] = '.';
2858
2859 for (p = operand_special_chars; *p != '\0'; p++)
2860 operand_chars[(unsigned char) *p] = *p;
2861 }
2862
a4447b93
RH
2863 if (flag_code == CODE_64BIT)
2864 {
ca19b261
KT
2865#if defined (OBJ_COFF) && defined (TE_PE)
2866 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2867 ? 32 : 16);
2868#else
a4447b93 2869 x86_dwarf2_return_column = 16;
ca19b261 2870#endif
61ff971f 2871 x86_cie_data_alignment = -8;
a4447b93
RH
2872 }
2873 else
2874 {
2875 x86_dwarf2_return_column = 8;
2876 x86_cie_data_alignment = -4;
2877 }
252b5132
RH
2878}
2879
2880void
e3bb37b5 2881i386_print_statistics (FILE *file)
252b5132
RH
2882{
2883 hash_print_statistics (file, "i386 opcode", op_hash);
2884 hash_print_statistics (file, "i386 register", reg_hash);
2885}
2886\f
252b5132
RH
2887#ifdef DEBUG386
2888
ce8a8b2f 2889/* Debugging routines for md_assemble. */
d3ce72d0 2890static void pte (insn_template *);
40fb9820 2891static void pt (i386_operand_type);
e3bb37b5
L
2892static void pe (expressionS *);
2893static void ps (symbolS *);
252b5132
RH
2894
2895static void
e3bb37b5 2896pi (char *line, i386_insn *x)
252b5132 2897{
09137c09 2898 unsigned int j;
252b5132
RH
2899
2900 fprintf (stdout, "%s: template ", line);
2901 pte (&x->tm);
09f131f2
JH
2902 fprintf (stdout, " address: base %s index %s scale %x\n",
2903 x->base_reg ? x->base_reg->reg_name : "none",
2904 x->index_reg ? x->index_reg->reg_name : "none",
2905 x->log2_scale_factor);
2906 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2907 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2908 fprintf (stdout, " sib: base %x index %x scale %x\n",
2909 x->sib.base, x->sib.index, x->sib.scale);
2910 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2911 (x->rex & REX_W) != 0,
2912 (x->rex & REX_R) != 0,
2913 (x->rex & REX_X) != 0,
2914 (x->rex & REX_B) != 0);
09137c09 2915 for (j = 0; j < x->operands; j++)
252b5132 2916 {
09137c09
SP
2917 fprintf (stdout, " #%d: ", j + 1);
2918 pt (x->types[j]);
252b5132 2919 fprintf (stdout, "\n");
dc821c5f 2920 if (x->types[j].bitfield.reg
09137c09 2921 || x->types[j].bitfield.regmmx
1b54b8d7 2922 || x->types[j].bitfield.regsimd
09137c09
SP
2923 || x->types[j].bitfield.sreg2
2924 || x->types[j].bitfield.sreg3
2925 || x->types[j].bitfield.control
2926 || x->types[j].bitfield.debug
2927 || x->types[j].bitfield.test)
2928 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2929 if (operand_type_check (x->types[j], imm))
2930 pe (x->op[j].imms);
2931 if (operand_type_check (x->types[j], disp))
2932 pe (x->op[j].disps);
252b5132
RH
2933 }
2934}
2935
2936static void
d3ce72d0 2937pte (insn_template *t)
252b5132 2938{
09137c09 2939 unsigned int j;
252b5132 2940 fprintf (stdout, " %d operands ", t->operands);
47926f60 2941 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2942 if (t->extension_opcode != None)
2943 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2944 if (t->opcode_modifier.d)
252b5132 2945 fprintf (stdout, "D");
40fb9820 2946 if (t->opcode_modifier.w)
252b5132
RH
2947 fprintf (stdout, "W");
2948 fprintf (stdout, "\n");
09137c09 2949 for (j = 0; j < t->operands; j++)
252b5132 2950 {
09137c09
SP
2951 fprintf (stdout, " #%d type ", j + 1);
2952 pt (t->operand_types[j]);
252b5132
RH
2953 fprintf (stdout, "\n");
2954 }
2955}
2956
2957static void
e3bb37b5 2958pe (expressionS *e)
252b5132 2959{
24eab124 2960 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2961 fprintf (stdout, " add_number %ld (%lx)\n",
2962 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2963 if (e->X_add_symbol)
2964 {
2965 fprintf (stdout, " add_symbol ");
2966 ps (e->X_add_symbol);
2967 fprintf (stdout, "\n");
2968 }
2969 if (e->X_op_symbol)
2970 {
2971 fprintf (stdout, " op_symbol ");
2972 ps (e->X_op_symbol);
2973 fprintf (stdout, "\n");
2974 }
2975}
2976
2977static void
e3bb37b5 2978ps (symbolS *s)
252b5132
RH
2979{
2980 fprintf (stdout, "%s type %s%s",
2981 S_GET_NAME (s),
2982 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2983 segment_name (S_GET_SEGMENT (s)));
2984}
2985
7b81dfbb 2986static struct type_name
252b5132 2987 {
40fb9820
L
2988 i386_operand_type mask;
2989 const char *name;
252b5132 2990 }
7b81dfbb 2991const type_names[] =
252b5132 2992{
40fb9820
L
2993 { OPERAND_TYPE_REG8, "r8" },
2994 { OPERAND_TYPE_REG16, "r16" },
2995 { OPERAND_TYPE_REG32, "r32" },
2996 { OPERAND_TYPE_REG64, "r64" },
2997 { OPERAND_TYPE_IMM8, "i8" },
2998 { OPERAND_TYPE_IMM8, "i8s" },
2999 { OPERAND_TYPE_IMM16, "i16" },
3000 { OPERAND_TYPE_IMM32, "i32" },
3001 { OPERAND_TYPE_IMM32S, "i32s" },
3002 { OPERAND_TYPE_IMM64, "i64" },
3003 { OPERAND_TYPE_IMM1, "i1" },
3004 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3005 { OPERAND_TYPE_DISP8, "d8" },
3006 { OPERAND_TYPE_DISP16, "d16" },
3007 { OPERAND_TYPE_DISP32, "d32" },
3008 { OPERAND_TYPE_DISP32S, "d32s" },
3009 { OPERAND_TYPE_DISP64, "d64" },
3010 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3011 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3012 { OPERAND_TYPE_CONTROL, "control reg" },
3013 { OPERAND_TYPE_TEST, "test reg" },
3014 { OPERAND_TYPE_DEBUG, "debug reg" },
3015 { OPERAND_TYPE_FLOATREG, "FReg" },
3016 { OPERAND_TYPE_FLOATACC, "FAcc" },
3017 { OPERAND_TYPE_SREG2, "SReg2" },
3018 { OPERAND_TYPE_SREG3, "SReg3" },
3019 { OPERAND_TYPE_ACC, "Acc" },
3020 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3021 { OPERAND_TYPE_REGMMX, "rMMX" },
3022 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3023 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3024 { OPERAND_TYPE_REGZMM, "rZMM" },
3025 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3026 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3027};
3028
3029static void
40fb9820 3030pt (i386_operand_type t)
252b5132 3031{
40fb9820 3032 unsigned int j;
c6fb90c8 3033 i386_operand_type a;
252b5132 3034
40fb9820 3035 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3036 {
3037 a = operand_type_and (t, type_names[j].mask);
0349dc08 3038 if (!operand_type_all_zero (&a))
c6fb90c8
L
3039 fprintf (stdout, "%s, ", type_names[j].name);
3040 }
252b5132
RH
3041 fflush (stdout);
3042}
3043
3044#endif /* DEBUG386 */
3045\f
252b5132 3046static bfd_reloc_code_real_type
3956db08 3047reloc (unsigned int size,
64e74474
AM
3048 int pcrel,
3049 int sign,
3050 bfd_reloc_code_real_type other)
252b5132 3051{
47926f60 3052 if (other != NO_RELOC)
3956db08 3053 {
91d6fa6a 3054 reloc_howto_type *rel;
3956db08
JB
3055
3056 if (size == 8)
3057 switch (other)
3058 {
64e74474
AM
3059 case BFD_RELOC_X86_64_GOT32:
3060 return BFD_RELOC_X86_64_GOT64;
3061 break;
553d1284
L
3062 case BFD_RELOC_X86_64_GOTPLT64:
3063 return BFD_RELOC_X86_64_GOTPLT64;
3064 break;
64e74474
AM
3065 case BFD_RELOC_X86_64_PLTOFF64:
3066 return BFD_RELOC_X86_64_PLTOFF64;
3067 break;
3068 case BFD_RELOC_X86_64_GOTPC32:
3069 other = BFD_RELOC_X86_64_GOTPC64;
3070 break;
3071 case BFD_RELOC_X86_64_GOTPCREL:
3072 other = BFD_RELOC_X86_64_GOTPCREL64;
3073 break;
3074 case BFD_RELOC_X86_64_TPOFF32:
3075 other = BFD_RELOC_X86_64_TPOFF64;
3076 break;
3077 case BFD_RELOC_X86_64_DTPOFF32:
3078 other = BFD_RELOC_X86_64_DTPOFF64;
3079 break;
3080 default:
3081 break;
3956db08 3082 }
e05278af 3083
8ce3d284 3084#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3085 if (other == BFD_RELOC_SIZE32)
3086 {
3087 if (size == 8)
1ab668bf 3088 other = BFD_RELOC_SIZE64;
8fd4256d 3089 if (pcrel)
1ab668bf
AM
3090 {
3091 as_bad (_("there are no pc-relative size relocations"));
3092 return NO_RELOC;
3093 }
8fd4256d 3094 }
8ce3d284 3095#endif
8fd4256d 3096
e05278af 3097 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3098 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3099 sign = -1;
3100
91d6fa6a
NC
3101 rel = bfd_reloc_type_lookup (stdoutput, other);
3102 if (!rel)
3956db08 3103 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3104 else if (size != bfd_get_reloc_size (rel))
3956db08 3105 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3106 bfd_get_reloc_size (rel),
3956db08 3107 size);
91d6fa6a 3108 else if (pcrel && !rel->pc_relative)
3956db08 3109 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3110 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3111 && !sign)
91d6fa6a 3112 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3113 && sign > 0))
3956db08
JB
3114 as_bad (_("relocated field and relocation type differ in signedness"));
3115 else
3116 return other;
3117 return NO_RELOC;
3118 }
252b5132
RH
3119
3120 if (pcrel)
3121 {
3e73aa7c 3122 if (!sign)
3956db08 3123 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3124 switch (size)
3125 {
3126 case 1: return BFD_RELOC_8_PCREL;
3127 case 2: return BFD_RELOC_16_PCREL;
d258b828 3128 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3129 case 8: return BFD_RELOC_64_PCREL;
252b5132 3130 }
3956db08 3131 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3132 }
3133 else
3134 {
3956db08 3135 if (sign > 0)
e5cb08ac 3136 switch (size)
3e73aa7c
JH
3137 {
3138 case 4: return BFD_RELOC_X86_64_32S;
3139 }
3140 else
3141 switch (size)
3142 {
3143 case 1: return BFD_RELOC_8;
3144 case 2: return BFD_RELOC_16;
3145 case 4: return BFD_RELOC_32;
3146 case 8: return BFD_RELOC_64;
3147 }
3956db08
JB
3148 as_bad (_("cannot do %s %u byte relocation"),
3149 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3150 }
3151
0cc9e1d3 3152 return NO_RELOC;
252b5132
RH
3153}
3154
47926f60
KH
3155/* Here we decide which fixups can be adjusted to make them relative to
3156 the beginning of the section instead of the symbol. Basically we need
3157 to make sure that the dynamic relocations are done correctly, so in
3158 some cases we force the original symbol to be used. */
3159
252b5132 3160int
e3bb37b5 3161tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3162{
6d249963 3163#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3164 if (!IS_ELF)
31312f95
AM
3165 return 1;
3166
a161fe53
AM
3167 /* Don't adjust pc-relative references to merge sections in 64-bit
3168 mode. */
3169 if (use_rela_relocations
3170 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3171 && fixP->fx_pcrel)
252b5132 3172 return 0;
31312f95 3173
8d01d9a9
AJ
3174 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3175 and changed later by validate_fix. */
3176 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3177 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3178 return 0;
3179
8fd4256d
L
3180 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3181 for size relocations. */
3182 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3183 || fixP->fx_r_type == BFD_RELOC_SIZE64
3184 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3185 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3186 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3187 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3188 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3189 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3190 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3191 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3192 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3193 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3194 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3195 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3196 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3197 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3198 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3199 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3200 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3201 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3202 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3203 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3204 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3205 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3206 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3207 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3208 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3209 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3210 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3211 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3212 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3213 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3214 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3215 return 0;
31312f95 3216#endif
252b5132
RH
3217 return 1;
3218}
252b5132 3219
b4cac588 3220static int
e3bb37b5 3221intel_float_operand (const char *mnemonic)
252b5132 3222{
9306ca4a
JB
3223 /* Note that the value returned is meaningful only for opcodes with (memory)
3224 operands, hence the code here is free to improperly handle opcodes that
3225 have no operands (for better performance and smaller code). */
3226
3227 if (mnemonic[0] != 'f')
3228 return 0; /* non-math */
3229
3230 switch (mnemonic[1])
3231 {
3232 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3233 the fs segment override prefix not currently handled because no
3234 call path can make opcodes without operands get here */
3235 case 'i':
3236 return 2 /* integer op */;
3237 case 'l':
3238 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3239 return 3; /* fldcw/fldenv */
3240 break;
3241 case 'n':
3242 if (mnemonic[2] != 'o' /* fnop */)
3243 return 3; /* non-waiting control op */
3244 break;
3245 case 'r':
3246 if (mnemonic[2] == 's')
3247 return 3; /* frstor/frstpm */
3248 break;
3249 case 's':
3250 if (mnemonic[2] == 'a')
3251 return 3; /* fsave */
3252 if (mnemonic[2] == 't')
3253 {
3254 switch (mnemonic[3])
3255 {
3256 case 'c': /* fstcw */
3257 case 'd': /* fstdw */
3258 case 'e': /* fstenv */
3259 case 's': /* fsts[gw] */
3260 return 3;
3261 }
3262 }
3263 break;
3264 case 'x':
3265 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3266 return 0; /* fxsave/fxrstor are not really math ops */
3267 break;
3268 }
252b5132 3269
9306ca4a 3270 return 1;
252b5132
RH
3271}
3272
c0f3af97
L
3273/* Build the VEX prefix. */
3274
3275static void
d3ce72d0 3276build_vex_prefix (const insn_template *t)
c0f3af97
L
3277{
3278 unsigned int register_specifier;
3279 unsigned int implied_prefix;
3280 unsigned int vector_length;
3281
3282 /* Check register specifier. */
3283 if (i.vex.register_specifier)
43234a1e
L
3284 {
3285 register_specifier =
3286 ~register_number (i.vex.register_specifier) & 0xf;
3287 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3288 }
c0f3af97
L
3289 else
3290 register_specifier = 0xf;
3291
33eaf5de 3292 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3293 operand. */
86fa6981
L
3294 if (i.vec_encoding != vex_encoding_vex3
3295 && i.dir_encoding == dir_encoding_default
fa99fab2 3296 && i.operands == i.reg_operands
7f399153 3297 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3298 && i.tm.opcode_modifier.load
fa99fab2
L
3299 && i.rex == REX_B)
3300 {
3301 unsigned int xchg = i.operands - 1;
3302 union i386_op temp_op;
3303 i386_operand_type temp_type;
3304
3305 temp_type = i.types[xchg];
3306 i.types[xchg] = i.types[0];
3307 i.types[0] = temp_type;
3308 temp_op = i.op[xchg];
3309 i.op[xchg] = i.op[0];
3310 i.op[0] = temp_op;
3311
9c2799c2 3312 gas_assert (i.rm.mode == 3);
fa99fab2
L
3313
3314 i.rex = REX_R;
3315 xchg = i.rm.regmem;
3316 i.rm.regmem = i.rm.reg;
3317 i.rm.reg = xchg;
3318
3319 /* Use the next insn. */
3320 i.tm = t[1];
3321 }
3322
539f890d
L
3323 if (i.tm.opcode_modifier.vex == VEXScalar)
3324 vector_length = avxscalar;
10c17abd
JB
3325 else if (i.tm.opcode_modifier.vex == VEX256)
3326 vector_length = 1;
539f890d 3327 else
10c17abd
JB
3328 {
3329 unsigned int op;
3330
3331 vector_length = 0;
3332 for (op = 0; op < t->operands; ++op)
3333 if (t->operand_types[op].bitfield.xmmword
3334 && t->operand_types[op].bitfield.ymmword
3335 && i.types[op].bitfield.ymmword)
3336 {
3337 vector_length = 1;
3338 break;
3339 }
3340 }
c0f3af97
L
3341
3342 switch ((i.tm.base_opcode >> 8) & 0xff)
3343 {
3344 case 0:
3345 implied_prefix = 0;
3346 break;
3347 case DATA_PREFIX_OPCODE:
3348 implied_prefix = 1;
3349 break;
3350 case REPE_PREFIX_OPCODE:
3351 implied_prefix = 2;
3352 break;
3353 case REPNE_PREFIX_OPCODE:
3354 implied_prefix = 3;
3355 break;
3356 default:
3357 abort ();
3358 }
3359
3360 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3361 if (i.vec_encoding != vex_encoding_vex3
3362 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3363 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3364 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3365 {
3366 /* 2-byte VEX prefix. */
3367 unsigned int r;
3368
3369 i.vex.length = 2;
3370 i.vex.bytes[0] = 0xc5;
3371
3372 /* Check the REX.R bit. */
3373 r = (i.rex & REX_R) ? 0 : 1;
3374 i.vex.bytes[1] = (r << 7
3375 | register_specifier << 3
3376 | vector_length << 2
3377 | implied_prefix);
3378 }
3379 else
3380 {
3381 /* 3-byte VEX prefix. */
3382 unsigned int m, w;
3383
f88c9eb0 3384 i.vex.length = 3;
f88c9eb0 3385
7f399153 3386 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3387 {
7f399153
L
3388 case VEX0F:
3389 m = 0x1;
80de6e00 3390 i.vex.bytes[0] = 0xc4;
7f399153
L
3391 break;
3392 case VEX0F38:
3393 m = 0x2;
80de6e00 3394 i.vex.bytes[0] = 0xc4;
7f399153
L
3395 break;
3396 case VEX0F3A:
3397 m = 0x3;
80de6e00 3398 i.vex.bytes[0] = 0xc4;
7f399153
L
3399 break;
3400 case XOP08:
5dd85c99
SP
3401 m = 0x8;
3402 i.vex.bytes[0] = 0x8f;
7f399153
L
3403 break;
3404 case XOP09:
f88c9eb0
SP
3405 m = 0x9;
3406 i.vex.bytes[0] = 0x8f;
7f399153
L
3407 break;
3408 case XOP0A:
f88c9eb0
SP
3409 m = 0xa;
3410 i.vex.bytes[0] = 0x8f;
7f399153
L
3411 break;
3412 default:
3413 abort ();
f88c9eb0 3414 }
c0f3af97 3415
c0f3af97
L
3416 /* The high 3 bits of the second VEX byte are 1's compliment
3417 of RXB bits from REX. */
3418 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3419
3420 /* Check the REX.W bit. */
3421 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3422 if (i.tm.opcode_modifier.vexw == VEXW1)
3423 w = 1;
c0f3af97
L
3424
3425 i.vex.bytes[2] = (w << 7
3426 | register_specifier << 3
3427 | vector_length << 2
3428 | implied_prefix);
3429 }
3430}
3431
43234a1e
L
3432/* Build the EVEX prefix. */
3433
3434static void
3435build_evex_prefix (void)
3436{
3437 unsigned int register_specifier;
3438 unsigned int implied_prefix;
3439 unsigned int m, w;
3440 rex_byte vrex_used = 0;
3441
3442 /* Check register specifier. */
3443 if (i.vex.register_specifier)
3444 {
3445 gas_assert ((i.vrex & REX_X) == 0);
3446
3447 register_specifier = i.vex.register_specifier->reg_num;
3448 if ((i.vex.register_specifier->reg_flags & RegRex))
3449 register_specifier += 8;
3450 /* The upper 16 registers are encoded in the fourth byte of the
3451 EVEX prefix. */
3452 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3453 i.vex.bytes[3] = 0x8;
3454 register_specifier = ~register_specifier & 0xf;
3455 }
3456 else
3457 {
3458 register_specifier = 0xf;
3459
3460 /* Encode upper 16 vector index register in the fourth byte of
3461 the EVEX prefix. */
3462 if (!(i.vrex & REX_X))
3463 i.vex.bytes[3] = 0x8;
3464 else
3465 vrex_used |= REX_X;
3466 }
3467
3468 switch ((i.tm.base_opcode >> 8) & 0xff)
3469 {
3470 case 0:
3471 implied_prefix = 0;
3472 break;
3473 case DATA_PREFIX_OPCODE:
3474 implied_prefix = 1;
3475 break;
3476 case REPE_PREFIX_OPCODE:
3477 implied_prefix = 2;
3478 break;
3479 case REPNE_PREFIX_OPCODE:
3480 implied_prefix = 3;
3481 break;
3482 default:
3483 abort ();
3484 }
3485
3486 /* 4 byte EVEX prefix. */
3487 i.vex.length = 4;
3488 i.vex.bytes[0] = 0x62;
3489
3490 /* mmmm bits. */
3491 switch (i.tm.opcode_modifier.vexopcode)
3492 {
3493 case VEX0F:
3494 m = 1;
3495 break;
3496 case VEX0F38:
3497 m = 2;
3498 break;
3499 case VEX0F3A:
3500 m = 3;
3501 break;
3502 default:
3503 abort ();
3504 break;
3505 }
3506
3507 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3508 bits from REX. */
3509 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3510
3511 /* The fifth bit of the second EVEX byte is 1's compliment of the
3512 REX_R bit in VREX. */
3513 if (!(i.vrex & REX_R))
3514 i.vex.bytes[1] |= 0x10;
3515 else
3516 vrex_used |= REX_R;
3517
3518 if ((i.reg_operands + i.imm_operands) == i.operands)
3519 {
3520 /* When all operands are registers, the REX_X bit in REX is not
3521 used. We reuse it to encode the upper 16 registers, which is
3522 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3523 as 1's compliment. */
3524 if ((i.vrex & REX_B))
3525 {
3526 vrex_used |= REX_B;
3527 i.vex.bytes[1] &= ~0x40;
3528 }
3529 }
3530
3531 /* EVEX instructions shouldn't need the REX prefix. */
3532 i.vrex &= ~vrex_used;
3533 gas_assert (i.vrex == 0);
3534
3535 /* Check the REX.W bit. */
3536 w = (i.rex & REX_W) ? 1 : 0;
3537 if (i.tm.opcode_modifier.vexw)
3538 {
3539 if (i.tm.opcode_modifier.vexw == VEXW1)
3540 w = 1;
3541 }
3542 /* If w is not set it means we are dealing with WIG instruction. */
3543 else if (!w)
3544 {
3545 if (evexwig == evexw1)
3546 w = 1;
3547 }
3548
3549 /* Encode the U bit. */
3550 implied_prefix |= 0x4;
3551
3552 /* The third byte of the EVEX prefix. */
3553 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3554
3555 /* The fourth byte of the EVEX prefix. */
3556 /* The zeroing-masking bit. */
3557 if (i.mask && i.mask->zeroing)
3558 i.vex.bytes[3] |= 0x80;
3559
3560 /* Don't always set the broadcast bit if there is no RC. */
3561 if (!i.rounding)
3562 {
3563 /* Encode the vector length. */
3564 unsigned int vec_length;
3565
3566 switch (i.tm.opcode_modifier.evex)
3567 {
3568 case EVEXLIG: /* LL' is ignored */
3569 vec_length = evexlig << 5;
3570 break;
3571 case EVEX128:
3572 vec_length = 0 << 5;
3573 break;
3574 case EVEX256:
3575 vec_length = 1 << 5;
3576 break;
3577 case EVEX512:
3578 vec_length = 2 << 5;
3579 break;
3580 default:
3581 abort ();
3582 break;
3583 }
3584 i.vex.bytes[3] |= vec_length;
3585 /* Encode the broadcast bit. */
3586 if (i.broadcast)
3587 i.vex.bytes[3] |= 0x10;
3588 }
3589 else
3590 {
3591 if (i.rounding->type != saeonly)
3592 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3593 else
d3d3c6db 3594 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3595 }
3596
3597 if (i.mask && i.mask->mask)
3598 i.vex.bytes[3] |= i.mask->mask->reg_num;
3599}
3600
65da13b5
L
3601static void
3602process_immext (void)
3603{
3604 expressionS *exp;
3605
4c692bc7
JB
3606 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3607 && i.operands > 0)
65da13b5 3608 {
4c692bc7
JB
3609 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3610 with an opcode suffix which is coded in the same place as an
3611 8-bit immediate field would be.
3612 Here we check those operands and remove them afterwards. */
65da13b5
L
3613 unsigned int x;
3614
3615 for (x = 0; x < i.operands; x++)
4c692bc7 3616 if (register_number (i.op[x].regs) != x)
65da13b5 3617 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3618 register_prefix, i.op[x].regs->reg_name, x + 1,
3619 i.tm.name);
3620
3621 i.operands = 0;
65da13b5
L
3622 }
3623
9916071f
AP
3624 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3625 {
3626 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3627 suffix which is coded in the same place as an 8-bit immediate
3628 field would be.
3629 Here we check those operands and remove them afterwards. */
3630 unsigned int x;
3631
3632 if (i.operands != 3)
3633 abort();
3634
3635 for (x = 0; x < 2; x++)
3636 if (register_number (i.op[x].regs) != x)
3637 goto bad_register_operand;
3638
3639 /* Check for third operand for mwaitx/monitorx insn. */
3640 if (register_number (i.op[x].regs)
3641 != (x + (i.tm.extension_opcode == 0xfb)))
3642 {
3643bad_register_operand:
3644 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3645 register_prefix, i.op[x].regs->reg_name, x+1,
3646 i.tm.name);
3647 }
3648
3649 i.operands = 0;
3650 }
3651
c0f3af97 3652 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3653 which is coded in the same place as an 8-bit immediate field
3654 would be. Here we fake an 8-bit immediate operand from the
3655 opcode suffix stored in tm.extension_opcode.
3656
c1e679ec 3657 AVX instructions also use this encoding, for some of
c0f3af97 3658 3 argument instructions. */
65da13b5 3659
43234a1e 3660 gas_assert (i.imm_operands <= 1
7ab9ffdd 3661 && (i.operands <= 2
43234a1e
L
3662 || ((i.tm.opcode_modifier.vex
3663 || i.tm.opcode_modifier.evex)
7ab9ffdd 3664 && i.operands <= 4)));
65da13b5
L
3665
3666 exp = &im_expressions[i.imm_operands++];
3667 i.op[i.operands].imms = exp;
3668 i.types[i.operands] = imm8;
3669 i.operands++;
3670 exp->X_op = O_constant;
3671 exp->X_add_number = i.tm.extension_opcode;
3672 i.tm.extension_opcode = None;
3673}
3674
42164a71
L
3675
3676static int
3677check_hle (void)
3678{
3679 switch (i.tm.opcode_modifier.hleprefixok)
3680 {
3681 default:
3682 abort ();
82c2def5 3683 case HLEPrefixNone:
165de32a
L
3684 as_bad (_("invalid instruction `%s' after `%s'"),
3685 i.tm.name, i.hle_prefix);
42164a71 3686 return 0;
82c2def5 3687 case HLEPrefixLock:
42164a71
L
3688 if (i.prefix[LOCK_PREFIX])
3689 return 1;
165de32a 3690 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3691 return 0;
82c2def5 3692 case HLEPrefixAny:
42164a71 3693 return 1;
82c2def5 3694 case HLEPrefixRelease:
42164a71
L
3695 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3696 {
3697 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3698 i.tm.name);
3699 return 0;
3700 }
3701 if (i.mem_operands == 0
3702 || !operand_type_check (i.types[i.operands - 1], anymem))
3703 {
3704 as_bad (_("memory destination needed for instruction `%s'"
3705 " after `xrelease'"), i.tm.name);
3706 return 0;
3707 }
3708 return 1;
3709 }
3710}
3711
252b5132
RH
3712/* This is the guts of the machine-dependent assembler. LINE points to a
3713 machine dependent instruction. This function is supposed to emit
3714 the frags/bytes it assembles to. */
3715
3716void
65da13b5 3717md_assemble (char *line)
252b5132 3718{
40fb9820 3719 unsigned int j;
83b16ac6 3720 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3721 const insn_template *t;
252b5132 3722
47926f60 3723 /* Initialize globals. */
252b5132
RH
3724 memset (&i, '\0', sizeof (i));
3725 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3726 i.reloc[j] = NO_RELOC;
252b5132
RH
3727 memset (disp_expressions, '\0', sizeof (disp_expressions));
3728 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3729 save_stack_p = save_stack;
252b5132
RH
3730
3731 /* First parse an instruction mnemonic & call i386_operand for the operands.
3732 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3733 start of a (possibly prefixed) mnemonic. */
252b5132 3734
29b0f896
AM
3735 line = parse_insn (line, mnemonic);
3736 if (line == NULL)
3737 return;
83b16ac6 3738 mnem_suffix = i.suffix;
252b5132 3739
29b0f896 3740 line = parse_operands (line, mnemonic);
ee86248c 3741 this_operand = -1;
8325cc63
JB
3742 xfree (i.memop1_string);
3743 i.memop1_string = NULL;
29b0f896
AM
3744 if (line == NULL)
3745 return;
252b5132 3746
29b0f896
AM
3747 /* Now we've parsed the mnemonic into a set of templates, and have the
3748 operands at hand. */
3749
3750 /* All intel opcodes have reversed operands except for "bound" and
3751 "enter". We also don't reverse intersegment "jmp" and "call"
3752 instructions with 2 immediate operands so that the immediate segment
050dfa73 3753 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3754 if (intel_syntax
3755 && i.operands > 1
29b0f896 3756 && (strcmp (mnemonic, "bound") != 0)
30123838 3757 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3758 && !(operand_type_check (i.types[0], imm)
3759 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3760 swap_operands ();
3761
ec56d5c0
JB
3762 /* The order of the immediates should be reversed
3763 for 2 immediates extrq and insertq instructions */
3764 if (i.imm_operands == 2
3765 && (strcmp (mnemonic, "extrq") == 0
3766 || strcmp (mnemonic, "insertq") == 0))
3767 swap_2_operands (0, 1);
3768
29b0f896
AM
3769 if (i.imm_operands)
3770 optimize_imm ();
3771
b300c311
L
3772 /* Don't optimize displacement for movabs since it only takes 64bit
3773 displacement. */
3774 if (i.disp_operands
a501d77e 3775 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3776 && (flag_code != CODE_64BIT
3777 || strcmp (mnemonic, "movabs") != 0))
3778 optimize_disp ();
29b0f896
AM
3779
3780 /* Next, we find a template that matches the given insn,
3781 making sure the overlap of the given operands types is consistent
3782 with the template operand types. */
252b5132 3783
83b16ac6 3784 if (!(t = match_template (mnem_suffix)))
29b0f896 3785 return;
252b5132 3786
7bab8ab5 3787 if (sse_check != check_none
81f8a913 3788 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3789 && (i.tm.cpu_flags.bitfield.cpusse
3790 || i.tm.cpu_flags.bitfield.cpusse2
3791 || i.tm.cpu_flags.bitfield.cpusse3
3792 || i.tm.cpu_flags.bitfield.cpussse3
3793 || i.tm.cpu_flags.bitfield.cpusse4_1
3794 || i.tm.cpu_flags.bitfield.cpusse4_2))
3795 {
7bab8ab5 3796 (sse_check == check_warning
daf50ae7
L
3797 ? as_warn
3798 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3799 }
3800
321fd21e
L
3801 /* Zap movzx and movsx suffix. The suffix has been set from
3802 "word ptr" or "byte ptr" on the source operand in Intel syntax
3803 or extracted from mnemonic in AT&T syntax. But we'll use
3804 the destination register to choose the suffix for encoding. */
3805 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3806 {
321fd21e
L
3807 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3808 there is no suffix, the default will be byte extension. */
3809 if (i.reg_operands != 2
3810 && !i.suffix
7ab9ffdd 3811 && intel_syntax)
321fd21e
L
3812 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3813
3814 i.suffix = 0;
cd61ebfe 3815 }
24eab124 3816
40fb9820 3817 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3818 if (!add_prefix (FWAIT_OPCODE))
3819 return;
252b5132 3820
d5de92cf
L
3821 /* Check if REP prefix is OK. */
3822 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3823 {
3824 as_bad (_("invalid instruction `%s' after `%s'"),
3825 i.tm.name, i.rep_prefix);
3826 return;
3827 }
3828
c1ba0266
L
3829 /* Check for lock without a lockable instruction. Destination operand
3830 must be memory unless it is xchg (0x86). */
c32fa91d
L
3831 if (i.prefix[LOCK_PREFIX]
3832 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3833 || i.mem_operands == 0
3834 || (i.tm.base_opcode != 0x86
3835 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3836 {
3837 as_bad (_("expecting lockable instruction after `lock'"));
3838 return;
3839 }
3840
42164a71 3841 /* Check if HLE prefix is OK. */
165de32a 3842 if (i.hle_prefix && !check_hle ())
42164a71
L
3843 return;
3844
7e8b059b
L
3845 /* Check BND prefix. */
3846 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3847 as_bad (_("expecting valid branch instruction after `bnd'"));
3848
04ef582a 3849 /* Check NOTRACK prefix. */
9fef80d6
L
3850 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3851 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 3852
327e8c42
JB
3853 if (i.tm.cpu_flags.bitfield.cpumpx)
3854 {
3855 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3856 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3857 else if (flag_code != CODE_16BIT
3858 ? i.prefix[ADDR_PREFIX]
3859 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3860 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3861 }
7e8b059b
L
3862
3863 /* Insert BND prefix. */
3864 if (add_bnd_prefix
3865 && i.tm.opcode_modifier.bndprefixok
3866 && !i.prefix[BND_PREFIX])
3867 add_prefix (BND_PREFIX_OPCODE);
3868
29b0f896 3869 /* Check string instruction segment overrides. */
40fb9820 3870 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3871 {
3872 if (!check_string ())
5dd0794d 3873 return;
fc0763e6 3874 i.disp_operands = 0;
29b0f896 3875 }
5dd0794d 3876
29b0f896
AM
3877 if (!process_suffix ())
3878 return;
e413e4e9 3879
bc0844ae
L
3880 /* Update operand types. */
3881 for (j = 0; j < i.operands; j++)
3882 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3883
29b0f896
AM
3884 /* Make still unresolved immediate matches conform to size of immediate
3885 given in i.suffix. */
3886 if (!finalize_imm ())
3887 return;
252b5132 3888
40fb9820 3889 if (i.types[0].bitfield.imm1)
29b0f896 3890 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3891
9afe6eb8
L
3892 /* We only need to check those implicit registers for instructions
3893 with 3 operands or less. */
3894 if (i.operands <= 3)
3895 for (j = 0; j < i.operands; j++)
3896 if (i.types[j].bitfield.inoutportreg
3897 || i.types[j].bitfield.shiftcount
1b54b8d7 3898 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 3899 i.reg_operands--;
40fb9820 3900
c0f3af97
L
3901 /* ImmExt should be processed after SSE2AVX. */
3902 if (!i.tm.opcode_modifier.sse2avx
3903 && i.tm.opcode_modifier.immext)
65da13b5 3904 process_immext ();
252b5132 3905
29b0f896
AM
3906 /* For insns with operands there are more diddles to do to the opcode. */
3907 if (i.operands)
3908 {
3909 if (!process_operands ())
3910 return;
3911 }
40fb9820 3912 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3913 {
3914 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3915 as_warn (_("translating to `%sp'"), i.tm.name);
3916 }
252b5132 3917
9e5e5283
L
3918 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3919 {
3920 if (flag_code == CODE_16BIT)
3921 {
3922 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3923 i.tm.name);
3924 return;
3925 }
c0f3af97 3926
9e5e5283
L
3927 if (i.tm.opcode_modifier.vex)
3928 build_vex_prefix (t);
3929 else
3930 build_evex_prefix ();
3931 }
43234a1e 3932
5dd85c99
SP
3933 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3934 instructions may define INT_OPCODE as well, so avoid this corner
3935 case for those instructions that use MODRM. */
3936 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3937 && !i.tm.opcode_modifier.modrm
3938 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3939 {
3940 i.tm.base_opcode = INT3_OPCODE;
3941 i.imm_operands = 0;
3942 }
252b5132 3943
40fb9820
L
3944 if ((i.tm.opcode_modifier.jump
3945 || i.tm.opcode_modifier.jumpbyte
3946 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3947 && i.op[0].disps->X_op == O_constant)
3948 {
3949 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3950 the absolute address given by the constant. Since ix86 jumps and
3951 calls are pc relative, we need to generate a reloc. */
3952 i.op[0].disps->X_add_symbol = &abs_symbol;
3953 i.op[0].disps->X_op = O_symbol;
3954 }
252b5132 3955
40fb9820 3956 if (i.tm.opcode_modifier.rex64)
161a04f6 3957 i.rex |= REX_W;
252b5132 3958
29b0f896
AM
3959 /* For 8 bit registers we need an empty rex prefix. Also if the
3960 instruction already has a prefix, we need to convert old
3961 registers to new ones. */
773f551c 3962
dc821c5f 3963 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 3964 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 3965 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 3966 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
3967 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
3968 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
3969 && i.rex != 0))
3970 {
3971 int x;
726c5dcd 3972
29b0f896
AM
3973 i.rex |= REX_OPCODE;
3974 for (x = 0; x < 2; x++)
3975 {
3976 /* Look for 8 bit operand that uses old registers. */
dc821c5f 3977 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 3978 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3979 {
29b0f896
AM
3980 /* In case it is "hi" register, give up. */
3981 if (i.op[x].regs->reg_num > 3)
a540244d 3982 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3983 "instruction requiring REX prefix."),
a540244d 3984 register_prefix, i.op[x].regs->reg_name);
773f551c 3985
29b0f896
AM
3986 /* Otherwise it is equivalent to the extended register.
3987 Since the encoding doesn't change this is merely
3988 cosmetic cleanup for debug output. */
3989
3990 i.op[x].regs = i.op[x].regs + 8;
773f551c 3991 }
29b0f896
AM
3992 }
3993 }
773f551c 3994
7ab9ffdd 3995 if (i.rex != 0)
29b0f896
AM
3996 add_prefix (REX_OPCODE | i.rex);
3997
3998 /* We are ready to output the insn. */
3999 output_insn ();
4000}
4001
4002static char *
e3bb37b5 4003parse_insn (char *line, char *mnemonic)
29b0f896
AM
4004{
4005 char *l = line;
4006 char *token_start = l;
4007 char *mnem_p;
5c6af06e 4008 int supported;
d3ce72d0 4009 const insn_template *t;
b6169b20 4010 char *dot_p = NULL;
29b0f896 4011
29b0f896
AM
4012 while (1)
4013 {
4014 mnem_p = mnemonic;
4015 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4016 {
b6169b20
L
4017 if (*mnem_p == '.')
4018 dot_p = mnem_p;
29b0f896
AM
4019 mnem_p++;
4020 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4021 {
29b0f896
AM
4022 as_bad (_("no such instruction: `%s'"), token_start);
4023 return NULL;
4024 }
4025 l++;
4026 }
4027 if (!is_space_char (*l)
4028 && *l != END_OF_INSN
e44823cf
JB
4029 && (intel_syntax
4030 || (*l != PREFIX_SEPARATOR
4031 && *l != ',')))
29b0f896
AM
4032 {
4033 as_bad (_("invalid character %s in mnemonic"),
4034 output_invalid (*l));
4035 return NULL;
4036 }
4037 if (token_start == l)
4038 {
e44823cf 4039 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4040 as_bad (_("expecting prefix; got nothing"));
4041 else
4042 as_bad (_("expecting mnemonic; got nothing"));
4043 return NULL;
4044 }
45288df1 4045
29b0f896 4046 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4047 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4048
29b0f896
AM
4049 if (*l != END_OF_INSN
4050 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4051 && current_templates
40fb9820 4052 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4053 {
c6fb90c8 4054 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4055 {
4056 as_bad ((flag_code != CODE_64BIT
4057 ? _("`%s' is only supported in 64-bit mode")
4058 : _("`%s' is not supported in 64-bit mode")),
4059 current_templates->start->name);
4060 return NULL;
4061 }
29b0f896
AM
4062 /* If we are in 16-bit mode, do not allow addr16 or data16.
4063 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4064 if ((current_templates->start->opcode_modifier.size16
4065 || current_templates->start->opcode_modifier.size32)
29b0f896 4066 && flag_code != CODE_64BIT
40fb9820 4067 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4068 ^ (flag_code == CODE_16BIT)))
4069 {
4070 as_bad (_("redundant %s prefix"),
4071 current_templates->start->name);
4072 return NULL;
45288df1 4073 }
86fa6981 4074 if (current_templates->start->opcode_length == 0)
29b0f896 4075 {
86fa6981
L
4076 /* Handle pseudo prefixes. */
4077 switch (current_templates->start->base_opcode)
4078 {
4079 case 0x0:
4080 /* {disp8} */
4081 i.disp_encoding = disp_encoding_8bit;
4082 break;
4083 case 0x1:
4084 /* {disp32} */
4085 i.disp_encoding = disp_encoding_32bit;
4086 break;
4087 case 0x2:
4088 /* {load} */
4089 i.dir_encoding = dir_encoding_load;
4090 break;
4091 case 0x3:
4092 /* {store} */
4093 i.dir_encoding = dir_encoding_store;
4094 break;
4095 case 0x4:
4096 /* {vex2} */
4097 i.vec_encoding = vex_encoding_vex2;
4098 break;
4099 case 0x5:
4100 /* {vex3} */
4101 i.vec_encoding = vex_encoding_vex3;
4102 break;
4103 case 0x6:
4104 /* {evex} */
4105 i.vec_encoding = vex_encoding_evex;
4106 break;
4107 default:
4108 abort ();
4109 }
4110 }
4111 else
4112 {
4113 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4114 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4115 {
4e9ac44a
L
4116 case PREFIX_EXIST:
4117 return NULL;
4118 case PREFIX_DS:
d777820b 4119 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4120 i.notrack_prefix = current_templates->start->name;
4121 break;
4122 case PREFIX_REP:
4123 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4124 i.hle_prefix = current_templates->start->name;
4125 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4126 i.bnd_prefix = current_templates->start->name;
4127 else
4128 i.rep_prefix = current_templates->start->name;
4129 break;
4130 default:
4131 break;
86fa6981 4132 }
29b0f896
AM
4133 }
4134 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4135 token_start = ++l;
4136 }
4137 else
4138 break;
4139 }
45288df1 4140
30a55f88 4141 if (!current_templates)
b6169b20 4142 {
f8a5c266
L
4143 /* Check if we should swap operand or force 32bit displacement in
4144 encoding. */
30a55f88 4145 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4146 i.dir_encoding = dir_encoding_store;
8d63c93e 4147 else if (mnem_p - 3 == dot_p
a501d77e
L
4148 && dot_p[1] == 'd'
4149 && dot_p[2] == '8')
4150 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4151 else if (mnem_p - 4 == dot_p
f8a5c266
L
4152 && dot_p[1] == 'd'
4153 && dot_p[2] == '3'
4154 && dot_p[3] == '2')
a501d77e 4155 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4156 else
4157 goto check_suffix;
4158 mnem_p = dot_p;
4159 *dot_p = '\0';
d3ce72d0 4160 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4161 }
4162
29b0f896
AM
4163 if (!current_templates)
4164 {
b6169b20 4165check_suffix:
29b0f896
AM
4166 /* See if we can get a match by trimming off a suffix. */
4167 switch (mnem_p[-1])
4168 {
4169 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4170 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4171 i.suffix = SHORT_MNEM_SUFFIX;
4172 else
1a0670f3 4173 /* Fall through. */
29b0f896
AM
4174 case BYTE_MNEM_SUFFIX:
4175 case QWORD_MNEM_SUFFIX:
4176 i.suffix = mnem_p[-1];
4177 mnem_p[-1] = '\0';
d3ce72d0
NC
4178 current_templates = (const templates *) hash_find (op_hash,
4179 mnemonic);
29b0f896
AM
4180 break;
4181 case SHORT_MNEM_SUFFIX:
4182 case LONG_MNEM_SUFFIX:
4183 if (!intel_syntax)
4184 {
4185 i.suffix = mnem_p[-1];
4186 mnem_p[-1] = '\0';
d3ce72d0
NC
4187 current_templates = (const templates *) hash_find (op_hash,
4188 mnemonic);
29b0f896
AM
4189 }
4190 break;
252b5132 4191
29b0f896
AM
4192 /* Intel Syntax. */
4193 case 'd':
4194 if (intel_syntax)
4195 {
9306ca4a 4196 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4197 i.suffix = SHORT_MNEM_SUFFIX;
4198 else
4199 i.suffix = LONG_MNEM_SUFFIX;
4200 mnem_p[-1] = '\0';
d3ce72d0
NC
4201 current_templates = (const templates *) hash_find (op_hash,
4202 mnemonic);
29b0f896
AM
4203 }
4204 break;
4205 }
4206 if (!current_templates)
4207 {
4208 as_bad (_("no such instruction: `%s'"), token_start);
4209 return NULL;
4210 }
4211 }
252b5132 4212
40fb9820
L
4213 if (current_templates->start->opcode_modifier.jump
4214 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4215 {
4216 /* Check for a branch hint. We allow ",pt" and ",pn" for
4217 predict taken and predict not taken respectively.
4218 I'm not sure that branch hints actually do anything on loop
4219 and jcxz insns (JumpByte) for current Pentium4 chips. They
4220 may work in the future and it doesn't hurt to accept them
4221 now. */
4222 if (l[0] == ',' && l[1] == 'p')
4223 {
4224 if (l[2] == 't')
4225 {
4226 if (!add_prefix (DS_PREFIX_OPCODE))
4227 return NULL;
4228 l += 3;
4229 }
4230 else if (l[2] == 'n')
4231 {
4232 if (!add_prefix (CS_PREFIX_OPCODE))
4233 return NULL;
4234 l += 3;
4235 }
4236 }
4237 }
4238 /* Any other comma loses. */
4239 if (*l == ',')
4240 {
4241 as_bad (_("invalid character %s in mnemonic"),
4242 output_invalid (*l));
4243 return NULL;
4244 }
252b5132 4245
29b0f896 4246 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4247 supported = 0;
4248 for (t = current_templates->start; t < current_templates->end; ++t)
4249 {
c0f3af97
L
4250 supported |= cpu_flags_match (t);
4251 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4252 goto skip;
5c6af06e 4253 }
3629bb00 4254
c0f3af97 4255 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4256 {
4257 as_bad (flag_code == CODE_64BIT
4258 ? _("`%s' is not supported in 64-bit mode")
4259 : _("`%s' is only supported in 64-bit mode"),
4260 current_templates->start->name);
4261 return NULL;
4262 }
c0f3af97 4263 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4264 {
3629bb00 4265 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4266 current_templates->start->name,
41aacd83 4267 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4268 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4269 return NULL;
29b0f896 4270 }
3629bb00
L
4271
4272skip:
4273 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4274 && (flag_code != CODE_16BIT))
29b0f896
AM
4275 {
4276 as_warn (_("use .code16 to ensure correct addressing mode"));
4277 }
252b5132 4278
29b0f896
AM
4279 return l;
4280}
252b5132 4281
29b0f896 4282static char *
e3bb37b5 4283parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4284{
4285 char *token_start;
3138f287 4286
29b0f896
AM
4287 /* 1 if operand is pending after ','. */
4288 unsigned int expecting_operand = 0;
252b5132 4289
29b0f896
AM
4290 /* Non-zero if operand parens not balanced. */
4291 unsigned int paren_not_balanced;
4292
4293 while (*l != END_OF_INSN)
4294 {
4295 /* Skip optional white space before operand. */
4296 if (is_space_char (*l))
4297 ++l;
d02603dc 4298 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4299 {
4300 as_bad (_("invalid character %s before operand %d"),
4301 output_invalid (*l),
4302 i.operands + 1);
4303 return NULL;
4304 }
d02603dc 4305 token_start = l; /* After white space. */
29b0f896
AM
4306 paren_not_balanced = 0;
4307 while (paren_not_balanced || *l != ',')
4308 {
4309 if (*l == END_OF_INSN)
4310 {
4311 if (paren_not_balanced)
4312 {
4313 if (!intel_syntax)
4314 as_bad (_("unbalanced parenthesis in operand %d."),
4315 i.operands + 1);
4316 else
4317 as_bad (_("unbalanced brackets in operand %d."),
4318 i.operands + 1);
4319 return NULL;
4320 }
4321 else
4322 break; /* we are done */
4323 }
d02603dc 4324 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4325 {
4326 as_bad (_("invalid character %s in operand %d"),
4327 output_invalid (*l),
4328 i.operands + 1);
4329 return NULL;
4330 }
4331 if (!intel_syntax)
4332 {
4333 if (*l == '(')
4334 ++paren_not_balanced;
4335 if (*l == ')')
4336 --paren_not_balanced;
4337 }
4338 else
4339 {
4340 if (*l == '[')
4341 ++paren_not_balanced;
4342 if (*l == ']')
4343 --paren_not_balanced;
4344 }
4345 l++;
4346 }
4347 if (l != token_start)
4348 { /* Yes, we've read in another operand. */
4349 unsigned int operand_ok;
4350 this_operand = i.operands++;
4351 if (i.operands > MAX_OPERANDS)
4352 {
4353 as_bad (_("spurious operands; (%d operands/instruction max)"),
4354 MAX_OPERANDS);
4355 return NULL;
4356 }
9d46ce34 4357 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4358 /* Now parse operand adding info to 'i' as we go along. */
4359 END_STRING_AND_SAVE (l);
4360
4361 if (intel_syntax)
4362 operand_ok =
4363 i386_intel_operand (token_start,
4364 intel_float_operand (mnemonic));
4365 else
a7619375 4366 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4367
4368 RESTORE_END_STRING (l);
4369 if (!operand_ok)
4370 return NULL;
4371 }
4372 else
4373 {
4374 if (expecting_operand)
4375 {
4376 expecting_operand_after_comma:
4377 as_bad (_("expecting operand after ','; got nothing"));
4378 return NULL;
4379 }
4380 if (*l == ',')
4381 {
4382 as_bad (_("expecting operand before ','; got nothing"));
4383 return NULL;
4384 }
4385 }
7f3f1ea2 4386
29b0f896
AM
4387 /* Now *l must be either ',' or END_OF_INSN. */
4388 if (*l == ',')
4389 {
4390 if (*++l == END_OF_INSN)
4391 {
4392 /* Just skip it, if it's \n complain. */
4393 goto expecting_operand_after_comma;
4394 }
4395 expecting_operand = 1;
4396 }
4397 }
4398 return l;
4399}
7f3f1ea2 4400
050dfa73 4401static void
4d456e3d 4402swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4403{
4404 union i386_op temp_op;
40fb9820 4405 i386_operand_type temp_type;
050dfa73 4406 enum bfd_reloc_code_real temp_reloc;
4eed87de 4407
050dfa73
MM
4408 temp_type = i.types[xchg2];
4409 i.types[xchg2] = i.types[xchg1];
4410 i.types[xchg1] = temp_type;
4411 temp_op = i.op[xchg2];
4412 i.op[xchg2] = i.op[xchg1];
4413 i.op[xchg1] = temp_op;
4414 temp_reloc = i.reloc[xchg2];
4415 i.reloc[xchg2] = i.reloc[xchg1];
4416 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4417
4418 if (i.mask)
4419 {
4420 if (i.mask->operand == xchg1)
4421 i.mask->operand = xchg2;
4422 else if (i.mask->operand == xchg2)
4423 i.mask->operand = xchg1;
4424 }
4425 if (i.broadcast)
4426 {
4427 if (i.broadcast->operand == xchg1)
4428 i.broadcast->operand = xchg2;
4429 else if (i.broadcast->operand == xchg2)
4430 i.broadcast->operand = xchg1;
4431 }
4432 if (i.rounding)
4433 {
4434 if (i.rounding->operand == xchg1)
4435 i.rounding->operand = xchg2;
4436 else if (i.rounding->operand == xchg2)
4437 i.rounding->operand = xchg1;
4438 }
050dfa73
MM
4439}
4440
29b0f896 4441static void
e3bb37b5 4442swap_operands (void)
29b0f896 4443{
b7c61d9a 4444 switch (i.operands)
050dfa73 4445 {
c0f3af97 4446 case 5:
b7c61d9a 4447 case 4:
4d456e3d 4448 swap_2_operands (1, i.operands - 2);
1a0670f3 4449 /* Fall through. */
b7c61d9a
L
4450 case 3:
4451 case 2:
4d456e3d 4452 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4453 break;
4454 default:
4455 abort ();
29b0f896 4456 }
29b0f896
AM
4457
4458 if (i.mem_operands == 2)
4459 {
4460 const seg_entry *temp_seg;
4461 temp_seg = i.seg[0];
4462 i.seg[0] = i.seg[1];
4463 i.seg[1] = temp_seg;
4464 }
4465}
252b5132 4466
29b0f896
AM
4467/* Try to ensure constant immediates are represented in the smallest
4468 opcode possible. */
4469static void
e3bb37b5 4470optimize_imm (void)
29b0f896
AM
4471{
4472 char guess_suffix = 0;
4473 int op;
252b5132 4474
29b0f896
AM
4475 if (i.suffix)
4476 guess_suffix = i.suffix;
4477 else if (i.reg_operands)
4478 {
4479 /* Figure out a suffix from the last register operand specified.
4480 We can't do this properly yet, ie. excluding InOutPortReg,
4481 but the following works for instructions with immediates.
4482 In any case, we can't set i.suffix yet. */
4483 for (op = i.operands; --op >= 0;)
dc821c5f 4484 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4485 {
40fb9820
L
4486 guess_suffix = BYTE_MNEM_SUFFIX;
4487 break;
4488 }
dc821c5f 4489 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4490 {
40fb9820
L
4491 guess_suffix = WORD_MNEM_SUFFIX;
4492 break;
4493 }
dc821c5f 4494 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4495 {
4496 guess_suffix = LONG_MNEM_SUFFIX;
4497 break;
4498 }
dc821c5f 4499 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4500 {
4501 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4502 break;
252b5132 4503 }
29b0f896
AM
4504 }
4505 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4506 guess_suffix = WORD_MNEM_SUFFIX;
4507
4508 for (op = i.operands; --op >= 0;)
40fb9820 4509 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4510 {
4511 switch (i.op[op].imms->X_op)
252b5132 4512 {
29b0f896
AM
4513 case O_constant:
4514 /* If a suffix is given, this operand may be shortened. */
4515 switch (guess_suffix)
252b5132 4516 {
29b0f896 4517 case LONG_MNEM_SUFFIX:
40fb9820
L
4518 i.types[op].bitfield.imm32 = 1;
4519 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4520 break;
4521 case WORD_MNEM_SUFFIX:
40fb9820
L
4522 i.types[op].bitfield.imm16 = 1;
4523 i.types[op].bitfield.imm32 = 1;
4524 i.types[op].bitfield.imm32s = 1;
4525 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4526 break;
4527 case BYTE_MNEM_SUFFIX:
40fb9820
L
4528 i.types[op].bitfield.imm8 = 1;
4529 i.types[op].bitfield.imm8s = 1;
4530 i.types[op].bitfield.imm16 = 1;
4531 i.types[op].bitfield.imm32 = 1;
4532 i.types[op].bitfield.imm32s = 1;
4533 i.types[op].bitfield.imm64 = 1;
29b0f896 4534 break;
252b5132 4535 }
252b5132 4536
29b0f896
AM
4537 /* If this operand is at most 16 bits, convert it
4538 to a signed 16 bit number before trying to see
4539 whether it will fit in an even smaller size.
4540 This allows a 16-bit operand such as $0xffe0 to
4541 be recognised as within Imm8S range. */
40fb9820 4542 if ((i.types[op].bitfield.imm16)
29b0f896 4543 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4544 {
29b0f896
AM
4545 i.op[op].imms->X_add_number =
4546 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4547 }
a28def75
L
4548#ifdef BFD64
4549 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4550 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4551 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4552 == 0))
4553 {
4554 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4555 ^ ((offsetT) 1 << 31))
4556 - ((offsetT) 1 << 31));
4557 }
a28def75 4558#endif
40fb9820 4559 i.types[op]
c6fb90c8
L
4560 = operand_type_or (i.types[op],
4561 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4562
29b0f896
AM
4563 /* We must avoid matching of Imm32 templates when 64bit
4564 only immediate is available. */
4565 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4566 i.types[op].bitfield.imm32 = 0;
29b0f896 4567 break;
252b5132 4568
29b0f896
AM
4569 case O_absent:
4570 case O_register:
4571 abort ();
4572
4573 /* Symbols and expressions. */
4574 default:
9cd96992
JB
4575 /* Convert symbolic operand to proper sizes for matching, but don't
4576 prevent matching a set of insns that only supports sizes other
4577 than those matching the insn suffix. */
4578 {
40fb9820 4579 i386_operand_type mask, allowed;
d3ce72d0 4580 const insn_template *t;
9cd96992 4581
0dfbf9d7
L
4582 operand_type_set (&mask, 0);
4583 operand_type_set (&allowed, 0);
40fb9820 4584
4eed87de
AM
4585 for (t = current_templates->start;
4586 t < current_templates->end;
4587 ++t)
c6fb90c8
L
4588 allowed = operand_type_or (allowed,
4589 t->operand_types[op]);
9cd96992
JB
4590 switch (guess_suffix)
4591 {
4592 case QWORD_MNEM_SUFFIX:
40fb9820
L
4593 mask.bitfield.imm64 = 1;
4594 mask.bitfield.imm32s = 1;
9cd96992
JB
4595 break;
4596 case LONG_MNEM_SUFFIX:
40fb9820 4597 mask.bitfield.imm32 = 1;
9cd96992
JB
4598 break;
4599 case WORD_MNEM_SUFFIX:
40fb9820 4600 mask.bitfield.imm16 = 1;
9cd96992
JB
4601 break;
4602 case BYTE_MNEM_SUFFIX:
40fb9820 4603 mask.bitfield.imm8 = 1;
9cd96992
JB
4604 break;
4605 default:
9cd96992
JB
4606 break;
4607 }
c6fb90c8 4608 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4609 if (!operand_type_all_zero (&allowed))
c6fb90c8 4610 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4611 }
29b0f896 4612 break;
252b5132 4613 }
29b0f896
AM
4614 }
4615}
47926f60 4616
29b0f896
AM
4617/* Try to use the smallest displacement type too. */
4618static void
e3bb37b5 4619optimize_disp (void)
29b0f896
AM
4620{
4621 int op;
3e73aa7c 4622
29b0f896 4623 for (op = i.operands; --op >= 0;)
40fb9820 4624 if (operand_type_check (i.types[op], disp))
252b5132 4625 {
b300c311 4626 if (i.op[op].disps->X_op == O_constant)
252b5132 4627 {
91d6fa6a 4628 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4629
40fb9820 4630 if (i.types[op].bitfield.disp16
91d6fa6a 4631 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4632 {
4633 /* If this operand is at most 16 bits, convert
4634 to a signed 16 bit number and don't use 64bit
4635 displacement. */
91d6fa6a 4636 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4637 i.types[op].bitfield.disp64 = 0;
b300c311 4638 }
a28def75
L
4639#ifdef BFD64
4640 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4641 if (i.types[op].bitfield.disp32
91d6fa6a 4642 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4643 {
4644 /* If this operand is at most 32 bits, convert
4645 to a signed 32 bit number and don't use 64bit
4646 displacement. */
91d6fa6a
NC
4647 op_disp &= (((offsetT) 2 << 31) - 1);
4648 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4649 i.types[op].bitfield.disp64 = 0;
b300c311 4650 }
a28def75 4651#endif
91d6fa6a 4652 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4653 {
40fb9820
L
4654 i.types[op].bitfield.disp8 = 0;
4655 i.types[op].bitfield.disp16 = 0;
4656 i.types[op].bitfield.disp32 = 0;
4657 i.types[op].bitfield.disp32s = 0;
4658 i.types[op].bitfield.disp64 = 0;
b300c311
L
4659 i.op[op].disps = 0;
4660 i.disp_operands--;
4661 }
4662 else if (flag_code == CODE_64BIT)
4663 {
91d6fa6a 4664 if (fits_in_signed_long (op_disp))
28a9d8f5 4665 {
40fb9820
L
4666 i.types[op].bitfield.disp64 = 0;
4667 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4668 }
0e1147d9 4669 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4670 && fits_in_unsigned_long (op_disp))
40fb9820 4671 i.types[op].bitfield.disp32 = 1;
b300c311 4672 }
40fb9820
L
4673 if ((i.types[op].bitfield.disp32
4674 || i.types[op].bitfield.disp32s
4675 || i.types[op].bitfield.disp16)
b5014f7a 4676 && fits_in_disp8 (op_disp))
40fb9820 4677 i.types[op].bitfield.disp8 = 1;
252b5132 4678 }
67a4f2b7
AO
4679 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4680 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4681 {
4682 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4683 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4684 i.types[op].bitfield.disp8 = 0;
4685 i.types[op].bitfield.disp16 = 0;
4686 i.types[op].bitfield.disp32 = 0;
4687 i.types[op].bitfield.disp32s = 0;
4688 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4689 }
4690 else
b300c311 4691 /* We only support 64bit displacement on constants. */
40fb9820 4692 i.types[op].bitfield.disp64 = 0;
252b5132 4693 }
29b0f896
AM
4694}
4695
6c30d220
L
4696/* Check if operands are valid for the instruction. */
4697
4698static int
4699check_VecOperands (const insn_template *t)
4700{
43234a1e
L
4701 unsigned int op;
4702
6c30d220
L
4703 /* Without VSIB byte, we can't have a vector register for index. */
4704 if (!t->opcode_modifier.vecsib
4705 && i.index_reg
1b54b8d7
JB
4706 && (i.index_reg->reg_type.bitfield.xmmword
4707 || i.index_reg->reg_type.bitfield.ymmword
4708 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4709 {
4710 i.error = unsupported_vector_index_register;
4711 return 1;
4712 }
4713
ad8ecc81
MZ
4714 /* Check if default mask is allowed. */
4715 if (t->opcode_modifier.nodefmask
4716 && (!i.mask || i.mask->mask->reg_num == 0))
4717 {
4718 i.error = no_default_mask;
4719 return 1;
4720 }
4721
7bab8ab5
JB
4722 /* For VSIB byte, we need a vector register for index, and all vector
4723 registers must be distinct. */
4724 if (t->opcode_modifier.vecsib)
4725 {
4726 if (!i.index_reg
6c30d220 4727 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4728 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4729 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4730 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4731 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4732 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4733 {
4734 i.error = invalid_vsib_address;
4735 return 1;
4736 }
4737
43234a1e
L
4738 gas_assert (i.reg_operands == 2 || i.mask);
4739 if (i.reg_operands == 2 && !i.mask)
4740 {
1b54b8d7
JB
4741 gas_assert (i.types[0].bitfield.regsimd);
4742 gas_assert (i.types[0].bitfield.xmmword
4743 || i.types[0].bitfield.ymmword);
4744 gas_assert (i.types[2].bitfield.regsimd);
4745 gas_assert (i.types[2].bitfield.xmmword
4746 || i.types[2].bitfield.ymmword);
43234a1e
L
4747 if (operand_check == check_none)
4748 return 0;
4749 if (register_number (i.op[0].regs)
4750 != register_number (i.index_reg)
4751 && register_number (i.op[2].regs)
4752 != register_number (i.index_reg)
4753 && register_number (i.op[0].regs)
4754 != register_number (i.op[2].regs))
4755 return 0;
4756 if (operand_check == check_error)
4757 {
4758 i.error = invalid_vector_register_set;
4759 return 1;
4760 }
4761 as_warn (_("mask, index, and destination registers should be distinct"));
4762 }
8444f82a
MZ
4763 else if (i.reg_operands == 1 && i.mask)
4764 {
1b54b8d7
JB
4765 if (i.types[1].bitfield.regsimd
4766 && (i.types[1].bitfield.xmmword
4767 || i.types[1].bitfield.ymmword
4768 || i.types[1].bitfield.zmmword)
8444f82a
MZ
4769 && (register_number (i.op[1].regs)
4770 == register_number (i.index_reg)))
4771 {
4772 if (operand_check == check_error)
4773 {
4774 i.error = invalid_vector_register_set;
4775 return 1;
4776 }
4777 if (operand_check != check_none)
4778 as_warn (_("index and destination registers should be distinct"));
4779 }
4780 }
43234a1e 4781 }
7bab8ab5 4782
43234a1e
L
4783 /* Check if broadcast is supported by the instruction and is applied
4784 to the memory operand. */
4785 if (i.broadcast)
4786 {
4787 int broadcasted_opnd_size;
4788
4789 /* Check if specified broadcast is supported in this instruction,
4790 and it's applied to memory operand of DWORD or QWORD type,
4791 depending on VecESize. */
4792 if (i.broadcast->type != t->opcode_modifier.broadcast
4793 || !i.types[i.broadcast->operand].bitfield.mem
4794 || (t->opcode_modifier.vecesize == 0
4795 && !i.types[i.broadcast->operand].bitfield.dword
4796 && !i.types[i.broadcast->operand].bitfield.unspecified)
4797 || (t->opcode_modifier.vecesize == 1
4798 && !i.types[i.broadcast->operand].bitfield.qword
4799 && !i.types[i.broadcast->operand].bitfield.unspecified))
4800 goto bad_broadcast;
4801
4802 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4803 if (i.broadcast->type == BROADCAST_1TO16)
4804 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4805 else if (i.broadcast->type == BROADCAST_1TO8)
4806 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4807 else if (i.broadcast->type == BROADCAST_1TO4)
4808 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4809 else if (i.broadcast->type == BROADCAST_1TO2)
4810 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4811 else
4812 goto bad_broadcast;
4813
4814 if ((broadcasted_opnd_size == 256
4815 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4816 || (broadcasted_opnd_size == 512
4817 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4818 {
4819 bad_broadcast:
4820 i.error = unsupported_broadcast;
4821 return 1;
4822 }
4823 }
4824 /* If broadcast is supported in this instruction, we need to check if
4825 operand of one-element size isn't specified without broadcast. */
4826 else if (t->opcode_modifier.broadcast && i.mem_operands)
4827 {
4828 /* Find memory operand. */
4829 for (op = 0; op < i.operands; op++)
4830 if (operand_type_check (i.types[op], anymem))
4831 break;
4832 gas_assert (op < i.operands);
4833 /* Check size of the memory operand. */
4834 if ((t->opcode_modifier.vecesize == 0
4835 && i.types[op].bitfield.dword)
4836 || (t->opcode_modifier.vecesize == 1
4837 && i.types[op].bitfield.qword))
4838 {
4839 i.error = broadcast_needed;
4840 return 1;
4841 }
4842 }
4843
4844 /* Check if requested masking is supported. */
4845 if (i.mask
4846 && (!t->opcode_modifier.masking
4847 || (i.mask->zeroing
4848 && t->opcode_modifier.masking == MERGING_MASKING)))
4849 {
4850 i.error = unsupported_masking;
4851 return 1;
4852 }
4853
4854 /* Check if masking is applied to dest operand. */
4855 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4856 {
4857 i.error = mask_not_on_destination;
4858 return 1;
4859 }
4860
43234a1e
L
4861 /* Check RC/SAE. */
4862 if (i.rounding)
4863 {
4864 if ((i.rounding->type != saeonly
4865 && !t->opcode_modifier.staticrounding)
4866 || (i.rounding->type == saeonly
4867 && (t->opcode_modifier.staticrounding
4868 || !t->opcode_modifier.sae)))
4869 {
4870 i.error = unsupported_rc_sae;
4871 return 1;
4872 }
4873 /* If the instruction has several immediate operands and one of
4874 them is rounding, the rounding operand should be the last
4875 immediate operand. */
4876 if (i.imm_operands > 1
4877 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4878 {
43234a1e 4879 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4880 return 1;
4881 }
6c30d220
L
4882 }
4883
43234a1e 4884 /* Check vector Disp8 operand. */
b5014f7a
JB
4885 if (t->opcode_modifier.disp8memshift
4886 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
4887 {
4888 if (i.broadcast)
4889 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4890 else
4891 i.memshift = t->opcode_modifier.disp8memshift;
4892
4893 for (op = 0; op < i.operands; op++)
4894 if (operand_type_check (i.types[op], disp)
4895 && i.op[op].disps->X_op == O_constant)
4896 {
b5014f7a 4897 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 4898 {
b5014f7a
JB
4899 i.types[op].bitfield.disp8 = 1;
4900 return 0;
43234a1e 4901 }
b5014f7a 4902 i.types[op].bitfield.disp8 = 0;
43234a1e
L
4903 }
4904 }
b5014f7a
JB
4905
4906 i.memshift = 0;
43234a1e 4907
6c30d220
L
4908 return 0;
4909}
4910
43f3e2ee 4911/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4912 operand types. */
4913
4914static int
4915VEX_check_operands (const insn_template *t)
4916{
86fa6981 4917 if (i.vec_encoding == vex_encoding_evex)
43234a1e 4918 {
86fa6981
L
4919 /* This instruction must be encoded with EVEX prefix. */
4920 if (!t->opcode_modifier.evex)
4921 {
4922 i.error = unsupported;
4923 return 1;
4924 }
4925 return 0;
43234a1e
L
4926 }
4927
a683cc34 4928 if (!t->opcode_modifier.vex)
86fa6981
L
4929 {
4930 /* This instruction template doesn't have VEX prefix. */
4931 if (i.vec_encoding != vex_encoding_default)
4932 {
4933 i.error = unsupported;
4934 return 1;
4935 }
4936 return 0;
4937 }
a683cc34
SP
4938
4939 /* Only check VEX_Imm4, which must be the first operand. */
4940 if (t->operand_types[0].bitfield.vec_imm4)
4941 {
4942 if (i.op[0].imms->X_op != O_constant
4943 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4944 {
a65babc9 4945 i.error = bad_imm4;
891edac4
L
4946 return 1;
4947 }
a683cc34
SP
4948
4949 /* Turn off Imm8 so that update_imm won't complain. */
4950 i.types[0] = vec_imm4;
4951 }
4952
4953 return 0;
4954}
4955
d3ce72d0 4956static const insn_template *
83b16ac6 4957match_template (char mnem_suffix)
29b0f896
AM
4958{
4959 /* Points to template once we've found it. */
d3ce72d0 4960 const insn_template *t;
40fb9820 4961 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4962 i386_operand_type overlap4;
29b0f896 4963 unsigned int found_reverse_match;
83b16ac6 4964 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 4965 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4966 int addr_prefix_disp;
a5c311ca 4967 unsigned int j;
3629bb00 4968 unsigned int found_cpu_match;
45664ddb 4969 unsigned int check_register;
5614d22c 4970 enum i386_error specific_error = 0;
29b0f896 4971
c0f3af97
L
4972#if MAX_OPERANDS != 5
4973# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4974#endif
4975
29b0f896 4976 found_reverse_match = 0;
539e75ad 4977 addr_prefix_disp = -1;
40fb9820
L
4978
4979 memset (&suffix_check, 0, sizeof (suffix_check));
4980 if (i.suffix == BYTE_MNEM_SUFFIX)
4981 suffix_check.no_bsuf = 1;
4982 else if (i.suffix == WORD_MNEM_SUFFIX)
4983 suffix_check.no_wsuf = 1;
4984 else if (i.suffix == SHORT_MNEM_SUFFIX)
4985 suffix_check.no_ssuf = 1;
4986 else if (i.suffix == LONG_MNEM_SUFFIX)
4987 suffix_check.no_lsuf = 1;
4988 else if (i.suffix == QWORD_MNEM_SUFFIX)
4989 suffix_check.no_qsuf = 1;
4990 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4991 suffix_check.no_ldsuf = 1;
29b0f896 4992
83b16ac6
JB
4993 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4994 if (intel_syntax)
4995 {
4996 switch (mnem_suffix)
4997 {
4998 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4999 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5000 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5001 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5002 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5003 }
5004 }
5005
01559ecc
L
5006 /* Must have right number of operands. */
5007 i.error = number_of_operands_mismatch;
5008
45aa61fe 5009 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5010 {
539e75ad
L
5011 addr_prefix_disp = -1;
5012
29b0f896
AM
5013 if (i.operands != t->operands)
5014 continue;
5015
50aecf8c 5016 /* Check processor support. */
a65babc9 5017 i.error = unsupported;
c0f3af97
L
5018 found_cpu_match = (cpu_flags_match (t)
5019 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5020 if (!found_cpu_match)
5021 continue;
5022
e1d4d893 5023 /* Check old gcc support. */
a65babc9 5024 i.error = old_gcc_only;
e1d4d893
L
5025 if (!old_gcc && t->opcode_modifier.oldgcc)
5026 continue;
5027
5028 /* Check AT&T mnemonic. */
a65babc9 5029 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5030 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5031 continue;
5032
e92bae62 5033 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5034 i.error = unsupported_syntax;
5c07affc 5035 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5036 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5037 || (intel64 && t->opcode_modifier.amd64)
5038 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5039 continue;
5040
20592a94 5041 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5042 i.error = invalid_instruction_suffix;
567e4e96
L
5043 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5044 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5045 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5046 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5047 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5048 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5049 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5050 continue;
83b16ac6
JB
5051 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5052 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5053 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5054 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5055 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5056 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5057 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5058 continue;
29b0f896 5059
5c07affc 5060 if (!operand_size_match (t))
7d5e4556 5061 continue;
539e75ad 5062
5c07affc
L
5063 for (j = 0; j < MAX_OPERANDS; j++)
5064 operand_types[j] = t->operand_types[j];
5065
45aa61fe
AM
5066 /* In general, don't allow 64-bit operands in 32-bit mode. */
5067 if (i.suffix == QWORD_MNEM_SUFFIX
5068 && flag_code != CODE_64BIT
5069 && (intel_syntax
40fb9820 5070 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5071 && !intel_float_operand (t->name))
5072 : intel_float_operand (t->name) != 2)
40fb9820 5073 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5074 && !operand_types[0].bitfield.regsimd)
40fb9820 5075 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5076 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5077 && (t->base_opcode != 0x0fc7
5078 || t->extension_opcode != 1 /* cmpxchg8b */))
5079 continue;
5080
192dc9c6
JB
5081 /* In general, don't allow 32-bit operands on pre-386. */
5082 else if (i.suffix == LONG_MNEM_SUFFIX
5083 && !cpu_arch_flags.bitfield.cpui386
5084 && (intel_syntax
5085 ? (!t->opcode_modifier.ignoresize
5086 && !intel_float_operand (t->name))
5087 : intel_float_operand (t->name) != 2)
5088 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5089 && !operand_types[0].bitfield.regsimd)
192dc9c6 5090 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5091 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5092 continue;
5093
29b0f896 5094 /* Do not verify operands when there are none. */
50aecf8c 5095 else
29b0f896 5096 {
c6fb90c8 5097 if (!t->operands)
2dbab7d5
L
5098 /* We've found a match; break out of loop. */
5099 break;
29b0f896 5100 }
252b5132 5101
539e75ad
L
5102 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5103 into Disp32/Disp16/Disp32 operand. */
5104 if (i.prefix[ADDR_PREFIX] != 0)
5105 {
40fb9820 5106 /* There should be only one Disp operand. */
539e75ad
L
5107 switch (flag_code)
5108 {
5109 case CODE_16BIT:
40fb9820
L
5110 for (j = 0; j < MAX_OPERANDS; j++)
5111 {
5112 if (operand_types[j].bitfield.disp16)
5113 {
5114 addr_prefix_disp = j;
5115 operand_types[j].bitfield.disp32 = 1;
5116 operand_types[j].bitfield.disp16 = 0;
5117 break;
5118 }
5119 }
539e75ad
L
5120 break;
5121 case CODE_32BIT:
40fb9820
L
5122 for (j = 0; j < MAX_OPERANDS; j++)
5123 {
5124 if (operand_types[j].bitfield.disp32)
5125 {
5126 addr_prefix_disp = j;
5127 operand_types[j].bitfield.disp32 = 0;
5128 operand_types[j].bitfield.disp16 = 1;
5129 break;
5130 }
5131 }
539e75ad
L
5132 break;
5133 case CODE_64BIT:
40fb9820
L
5134 for (j = 0; j < MAX_OPERANDS; j++)
5135 {
5136 if (operand_types[j].bitfield.disp64)
5137 {
5138 addr_prefix_disp = j;
5139 operand_types[j].bitfield.disp64 = 0;
5140 operand_types[j].bitfield.disp32 = 1;
5141 break;
5142 }
5143 }
539e75ad
L
5144 break;
5145 }
539e75ad
L
5146 }
5147
02a86693
L
5148 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5149 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5150 continue;
5151
56ffb741
L
5152 /* We check register size if needed. */
5153 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5154 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5155 switch (t->operands)
5156 {
5157 case 1:
40fb9820 5158 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5159 continue;
5160 break;
5161 case 2:
33eaf5de 5162 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5163 only in 32bit mode and we can use opcode 0x90. In 64bit
5164 mode, we can't use 0x90 for xchg %eax, %eax since it should
5165 zero-extend %eax to %rax. */
5166 if (flag_code == CODE_64BIT
5167 && t->base_opcode == 0x90
0dfbf9d7
L
5168 && operand_type_equal (&i.types [0], &acc32)
5169 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5170 continue;
86fa6981
L
5171 /* If we want store form, we reverse direction of operands. */
5172 if (i.dir_encoding == dir_encoding_store
5173 && t->opcode_modifier.d)
5174 goto check_reverse;
1a0670f3 5175 /* Fall through. */
b6169b20 5176
29b0f896 5177 case 3:
86fa6981
L
5178 /* If we want store form, we skip the current load. */
5179 if (i.dir_encoding == dir_encoding_store
5180 && i.mem_operands == 0
5181 && t->opcode_modifier.load)
fa99fab2 5182 continue;
1a0670f3 5183 /* Fall through. */
f48ff2ae 5184 case 4:
c0f3af97 5185 case 5:
c6fb90c8 5186 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5187 if (!operand_type_match (overlap0, i.types[0])
5188 || !operand_type_match (overlap1, i.types[1])
45664ddb 5189 || (check_register
dc821c5f 5190 && !operand_type_register_match (i.types[0],
40fb9820 5191 operand_types[0],
dc821c5f 5192 i.types[1],
40fb9820 5193 operand_types[1])))
29b0f896
AM
5194 {
5195 /* Check if other direction is valid ... */
40fb9820 5196 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
5197 continue;
5198
b6169b20 5199check_reverse:
29b0f896 5200 /* Try reversing direction of operands. */
c6fb90c8
L
5201 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5202 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5203 if (!operand_type_match (overlap0, i.types[0])
5204 || !operand_type_match (overlap1, i.types[1])
45664ddb 5205 || (check_register
dc821c5f 5206 && !operand_type_register_match (i.types[0],
45664ddb 5207 operand_types[1],
45664ddb
L
5208 i.types[1],
5209 operand_types[0])))
29b0f896
AM
5210 {
5211 /* Does not match either direction. */
5212 continue;
5213 }
5214 /* found_reverse_match holds which of D or FloatDR
5215 we've found. */
40fb9820 5216 if (t->opcode_modifier.d)
8a2ed489 5217 found_reverse_match = Opcode_D;
40fb9820 5218 else if (t->opcode_modifier.floatd)
8a2ed489
L
5219 found_reverse_match = Opcode_FloatD;
5220 else
5221 found_reverse_match = 0;
40fb9820 5222 if (t->opcode_modifier.floatr)
8a2ed489 5223 found_reverse_match |= Opcode_FloatR;
29b0f896 5224 }
f48ff2ae 5225 else
29b0f896 5226 {
f48ff2ae 5227 /* Found a forward 2 operand match here. */
d1cbb4db
L
5228 switch (t->operands)
5229 {
c0f3af97
L
5230 case 5:
5231 overlap4 = operand_type_and (i.types[4],
5232 operand_types[4]);
1a0670f3 5233 /* Fall through. */
d1cbb4db 5234 case 4:
c6fb90c8
L
5235 overlap3 = operand_type_and (i.types[3],
5236 operand_types[3]);
1a0670f3 5237 /* Fall through. */
d1cbb4db 5238 case 3:
c6fb90c8
L
5239 overlap2 = operand_type_and (i.types[2],
5240 operand_types[2]);
d1cbb4db
L
5241 break;
5242 }
29b0f896 5243
f48ff2ae
L
5244 switch (t->operands)
5245 {
c0f3af97
L
5246 case 5:
5247 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5248 || !operand_type_register_match (i.types[3],
c0f3af97 5249 operand_types[3],
c0f3af97
L
5250 i.types[4],
5251 operand_types[4]))
5252 continue;
1a0670f3 5253 /* Fall through. */
f48ff2ae 5254 case 4:
40fb9820 5255 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5256 || (check_register
dc821c5f 5257 && !operand_type_register_match (i.types[2],
45664ddb 5258 operand_types[2],
45664ddb
L
5259 i.types[3],
5260 operand_types[3])))
f48ff2ae 5261 continue;
1a0670f3 5262 /* Fall through. */
f48ff2ae
L
5263 case 3:
5264 /* Here we make use of the fact that there are no
5265 reverse match 3 operand instructions, and all 3
5266 operand instructions only need to be checked for
5267 register consistency between operands 2 and 3. */
40fb9820 5268 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5269 || (check_register
dc821c5f 5270 && !operand_type_register_match (i.types[1],
45664ddb 5271 operand_types[1],
45664ddb
L
5272 i.types[2],
5273 operand_types[2])))
f48ff2ae
L
5274 continue;
5275 break;
5276 }
29b0f896 5277 }
f48ff2ae 5278 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5279 slip through to break. */
5280 }
3629bb00 5281 if (!found_cpu_match)
29b0f896
AM
5282 {
5283 found_reverse_match = 0;
5284 continue;
5285 }
c0f3af97 5286
5614d22c
JB
5287 /* Check if vector and VEX operands are valid. */
5288 if (check_VecOperands (t) || VEX_check_operands (t))
5289 {
5290 specific_error = i.error;
5291 continue;
5292 }
a683cc34 5293
29b0f896
AM
5294 /* We've found a match; break out of loop. */
5295 break;
5296 }
5297
5298 if (t == current_templates->end)
5299 {
5300 /* We found no match. */
a65babc9 5301 const char *err_msg;
5614d22c 5302 switch (specific_error ? specific_error : i.error)
a65babc9
L
5303 {
5304 default:
5305 abort ();
86e026a4 5306 case operand_size_mismatch:
a65babc9
L
5307 err_msg = _("operand size mismatch");
5308 break;
5309 case operand_type_mismatch:
5310 err_msg = _("operand type mismatch");
5311 break;
5312 case register_type_mismatch:
5313 err_msg = _("register type mismatch");
5314 break;
5315 case number_of_operands_mismatch:
5316 err_msg = _("number of operands mismatch");
5317 break;
5318 case invalid_instruction_suffix:
5319 err_msg = _("invalid instruction suffix");
5320 break;
5321 case bad_imm4:
4a2608e3 5322 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5323 break;
5324 case old_gcc_only:
5325 err_msg = _("only supported with old gcc");
5326 break;
5327 case unsupported_with_intel_mnemonic:
5328 err_msg = _("unsupported with Intel mnemonic");
5329 break;
5330 case unsupported_syntax:
5331 err_msg = _("unsupported syntax");
5332 break;
5333 case unsupported:
35262a23 5334 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5335 current_templates->start->name);
5336 return NULL;
6c30d220
L
5337 case invalid_vsib_address:
5338 err_msg = _("invalid VSIB address");
5339 break;
7bab8ab5
JB
5340 case invalid_vector_register_set:
5341 err_msg = _("mask, index, and destination registers must be distinct");
5342 break;
6c30d220
L
5343 case unsupported_vector_index_register:
5344 err_msg = _("unsupported vector index register");
5345 break;
43234a1e
L
5346 case unsupported_broadcast:
5347 err_msg = _("unsupported broadcast");
5348 break;
5349 case broadcast_not_on_src_operand:
5350 err_msg = _("broadcast not on source memory operand");
5351 break;
5352 case broadcast_needed:
5353 err_msg = _("broadcast is needed for operand of such type");
5354 break;
5355 case unsupported_masking:
5356 err_msg = _("unsupported masking");
5357 break;
5358 case mask_not_on_destination:
5359 err_msg = _("mask not on destination operand");
5360 break;
5361 case no_default_mask:
5362 err_msg = _("default mask isn't allowed");
5363 break;
5364 case unsupported_rc_sae:
5365 err_msg = _("unsupported static rounding/sae");
5366 break;
5367 case rc_sae_operand_not_last_imm:
5368 if (intel_syntax)
5369 err_msg = _("RC/SAE operand must precede immediate operands");
5370 else
5371 err_msg = _("RC/SAE operand must follow immediate operands");
5372 break;
5373 case invalid_register_operand:
5374 err_msg = _("invalid register operand");
5375 break;
a65babc9
L
5376 }
5377 as_bad (_("%s for `%s'"), err_msg,
891edac4 5378 current_templates->start->name);
fa99fab2 5379 return NULL;
29b0f896 5380 }
252b5132 5381
29b0f896
AM
5382 if (!quiet_warnings)
5383 {
5384 if (!intel_syntax
40fb9820
L
5385 && (i.types[0].bitfield.jumpabsolute
5386 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5387 {
5388 as_warn (_("indirect %s without `*'"), t->name);
5389 }
5390
40fb9820
L
5391 if (t->opcode_modifier.isprefix
5392 && t->opcode_modifier.ignoresize)
29b0f896
AM
5393 {
5394 /* Warn them that a data or address size prefix doesn't
5395 affect assembly of the next line of code. */
5396 as_warn (_("stand-alone `%s' prefix"), t->name);
5397 }
5398 }
5399
5400 /* Copy the template we found. */
5401 i.tm = *t;
539e75ad
L
5402
5403 if (addr_prefix_disp != -1)
5404 i.tm.operand_types[addr_prefix_disp]
5405 = operand_types[addr_prefix_disp];
5406
29b0f896
AM
5407 if (found_reverse_match)
5408 {
5409 /* If we found a reverse match we must alter the opcode
5410 direction bit. found_reverse_match holds bits to change
5411 (different for int & float insns). */
5412
5413 i.tm.base_opcode ^= found_reverse_match;
5414
539e75ad
L
5415 i.tm.operand_types[0] = operand_types[1];
5416 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5417 }
5418
fa99fab2 5419 return t;
29b0f896
AM
5420}
5421
5422static int
e3bb37b5 5423check_string (void)
29b0f896 5424{
40fb9820
L
5425 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5426 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5427 {
5428 if (i.seg[0] != NULL && i.seg[0] != &es)
5429 {
a87af027 5430 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5431 i.tm.name,
a87af027
JB
5432 mem_op + 1,
5433 register_prefix);
29b0f896
AM
5434 return 0;
5435 }
5436 /* There's only ever one segment override allowed per instruction.
5437 This instruction possibly has a legal segment override on the
5438 second operand, so copy the segment to where non-string
5439 instructions store it, allowing common code. */
5440 i.seg[0] = i.seg[1];
5441 }
40fb9820 5442 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5443 {
5444 if (i.seg[1] != NULL && i.seg[1] != &es)
5445 {
a87af027 5446 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5447 i.tm.name,
a87af027
JB
5448 mem_op + 2,
5449 register_prefix);
29b0f896
AM
5450 return 0;
5451 }
5452 }
5453 return 1;
5454}
5455
5456static int
543613e9 5457process_suffix (void)
29b0f896
AM
5458{
5459 /* If matched instruction specifies an explicit instruction mnemonic
5460 suffix, use it. */
40fb9820
L
5461 if (i.tm.opcode_modifier.size16)
5462 i.suffix = WORD_MNEM_SUFFIX;
5463 else if (i.tm.opcode_modifier.size32)
5464 i.suffix = LONG_MNEM_SUFFIX;
5465 else if (i.tm.opcode_modifier.size64)
5466 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5467 else if (i.reg_operands)
5468 {
5469 /* If there's no instruction mnemonic suffix we try to invent one
5470 based on register operands. */
5471 if (!i.suffix)
5472 {
5473 /* We take i.suffix from the last register operand specified,
5474 Destination register type is more significant than source
381d071f
L
5475 register type. crc32 in SSE4.2 prefers source register
5476 type. */
5477 if (i.tm.base_opcode == 0xf20f38f1)
5478 {
dc821c5f 5479 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5480 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5481 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5482 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5483 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5484 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5485 }
9344ff29 5486 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5487 {
dc821c5f 5488 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5489 i.suffix = BYTE_MNEM_SUFFIX;
5490 }
381d071f
L
5491
5492 if (!i.suffix)
5493 {
5494 int op;
5495
20592a94
L
5496 if (i.tm.base_opcode == 0xf20f38f1
5497 || i.tm.base_opcode == 0xf20f38f0)
5498 {
5499 /* We have to know the operand size for crc32. */
5500 as_bad (_("ambiguous memory operand size for `%s`"),
5501 i.tm.name);
5502 return 0;
5503 }
5504
381d071f 5505 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5506 if (!i.tm.operand_types[op].bitfield.inoutportreg
5507 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5508 {
dc821c5f 5509 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
40fb9820
L
5510 {
5511 i.suffix = BYTE_MNEM_SUFFIX;
5512 break;
5513 }
dc821c5f 5514 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
40fb9820
L
5515 {
5516 i.suffix = WORD_MNEM_SUFFIX;
5517 break;
5518 }
dc821c5f 5519 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5520 {
5521 i.suffix = LONG_MNEM_SUFFIX;
5522 break;
5523 }
dc821c5f 5524 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5525 {
5526 i.suffix = QWORD_MNEM_SUFFIX;
5527 break;
5528 }
381d071f
L
5529 }
5530 }
29b0f896
AM
5531 }
5532 else if (i.suffix == BYTE_MNEM_SUFFIX)
5533 {
2eb952a4
L
5534 if (intel_syntax
5535 && i.tm.opcode_modifier.ignoresize
5536 && i.tm.opcode_modifier.no_bsuf)
5537 i.suffix = 0;
5538 else if (!check_byte_reg ())
29b0f896
AM
5539 return 0;
5540 }
5541 else if (i.suffix == LONG_MNEM_SUFFIX)
5542 {
2eb952a4
L
5543 if (intel_syntax
5544 && i.tm.opcode_modifier.ignoresize
5545 && i.tm.opcode_modifier.no_lsuf)
5546 i.suffix = 0;
5547 else if (!check_long_reg ())
29b0f896
AM
5548 return 0;
5549 }
5550 else if (i.suffix == QWORD_MNEM_SUFFIX)
5551 {
955e1e6a
L
5552 if (intel_syntax
5553 && i.tm.opcode_modifier.ignoresize
5554 && i.tm.opcode_modifier.no_qsuf)
5555 i.suffix = 0;
5556 else if (!check_qword_reg ())
29b0f896
AM
5557 return 0;
5558 }
5559 else if (i.suffix == WORD_MNEM_SUFFIX)
5560 {
2eb952a4
L
5561 if (intel_syntax
5562 && i.tm.opcode_modifier.ignoresize
5563 && i.tm.opcode_modifier.no_wsuf)
5564 i.suffix = 0;
5565 else if (!check_word_reg ())
29b0f896
AM
5566 return 0;
5567 }
c0f3af97 5568 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5569 || i.suffix == YMMWORD_MNEM_SUFFIX
5570 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5571 {
43234a1e 5572 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5573 should check if it is a valid suffix. */
5574 }
40fb9820 5575 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5576 /* Do nothing if the instruction is going to ignore the prefix. */
5577 ;
5578 else
5579 abort ();
5580 }
40fb9820 5581 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5582 && !i.suffix
5583 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5584 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5585 {
5586 i.suffix = stackop_size;
5587 }
9306ca4a
JB
5588 else if (intel_syntax
5589 && !i.suffix
40fb9820
L
5590 && (i.tm.operand_types[0].bitfield.jumpabsolute
5591 || i.tm.opcode_modifier.jumpbyte
5592 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5593 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5594 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5595 {
5596 switch (flag_code)
5597 {
5598 case CODE_64BIT:
40fb9820 5599 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5600 {
5601 i.suffix = QWORD_MNEM_SUFFIX;
5602 break;
5603 }
1a0670f3 5604 /* Fall through. */
9306ca4a 5605 case CODE_32BIT:
40fb9820 5606 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5607 i.suffix = LONG_MNEM_SUFFIX;
5608 break;
5609 case CODE_16BIT:
40fb9820 5610 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5611 i.suffix = WORD_MNEM_SUFFIX;
5612 break;
5613 }
5614 }
252b5132 5615
9306ca4a 5616 if (!i.suffix)
29b0f896 5617 {
9306ca4a
JB
5618 if (!intel_syntax)
5619 {
40fb9820 5620 if (i.tm.opcode_modifier.w)
9306ca4a 5621 {
4eed87de
AM
5622 as_bad (_("no instruction mnemonic suffix given and "
5623 "no register operands; can't size instruction"));
9306ca4a
JB
5624 return 0;
5625 }
5626 }
5627 else
5628 {
40fb9820 5629 unsigned int suffixes;
7ab9ffdd 5630
40fb9820
L
5631 suffixes = !i.tm.opcode_modifier.no_bsuf;
5632 if (!i.tm.opcode_modifier.no_wsuf)
5633 suffixes |= 1 << 1;
5634 if (!i.tm.opcode_modifier.no_lsuf)
5635 suffixes |= 1 << 2;
fc4adea1 5636 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5637 suffixes |= 1 << 3;
5638 if (!i.tm.opcode_modifier.no_ssuf)
5639 suffixes |= 1 << 4;
c2b9da16 5640 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5641 suffixes |= 1 << 5;
5642
5643 /* There are more than suffix matches. */
5644 if (i.tm.opcode_modifier.w
9306ca4a 5645 || ((suffixes & (suffixes - 1))
40fb9820
L
5646 && !i.tm.opcode_modifier.defaultsize
5647 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5648 {
5649 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5650 return 0;
5651 }
5652 }
29b0f896 5653 }
252b5132 5654
9306ca4a
JB
5655 /* Change the opcode based on the operand size given by i.suffix;
5656 We don't need to change things for byte insns. */
5657
582d5edd
L
5658 if (i.suffix
5659 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5660 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5661 && i.suffix != YMMWORD_MNEM_SUFFIX
5662 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5663 {
5664 /* It's not a byte, select word/dword operation. */
40fb9820 5665 if (i.tm.opcode_modifier.w)
29b0f896 5666 {
40fb9820 5667 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5668 i.tm.base_opcode |= 8;
5669 else
5670 i.tm.base_opcode |= 1;
5671 }
0f3f3d8b 5672
29b0f896
AM
5673 /* Now select between word & dword operations via the operand
5674 size prefix, except for instructions that will ignore this
5675 prefix anyway. */
ca61edf2 5676 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5677 {
ca61edf2
L
5678 /* The address size override prefix changes the size of the
5679 first operand. */
40fb9820 5680 if ((flag_code == CODE_32BIT
dc821c5f 5681 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5682 || (flag_code != CODE_32BIT
dc821c5f 5683 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5684 if (!add_prefix (ADDR_PREFIX_OPCODE))
5685 return 0;
5686 }
5687 else if (i.suffix != QWORD_MNEM_SUFFIX
5688 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5689 && !i.tm.opcode_modifier.ignoresize
5690 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5691 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5692 || (flag_code == CODE_64BIT
40fb9820 5693 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5694 {
5695 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5696
40fb9820 5697 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5698 prefix = ADDR_PREFIX_OPCODE;
252b5132 5699
29b0f896
AM
5700 if (!add_prefix (prefix))
5701 return 0;
24eab124 5702 }
252b5132 5703
29b0f896
AM
5704 /* Set mode64 for an operand. */
5705 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5706 && flag_code == CODE_64BIT
40fb9820 5707 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5708 {
5709 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5710 need rex64. cmpxchg8b is also a special case. */
5711 if (! (i.operands == 2
5712 && i.tm.base_opcode == 0x90
5713 && i.tm.extension_opcode == None
0dfbf9d7
L
5714 && operand_type_equal (&i.types [0], &acc64)
5715 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5716 && ! (i.operands == 1
5717 && i.tm.base_opcode == 0xfc7
5718 && i.tm.extension_opcode == 1
40fb9820
L
5719 && !operand_type_check (i.types [0], reg)
5720 && operand_type_check (i.types [0], anymem)))
f6bee062 5721 i.rex |= REX_W;
46e883c5 5722 }
3e73aa7c 5723
29b0f896
AM
5724 /* Size floating point instruction. */
5725 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5726 if (i.tm.opcode_modifier.floatmf)
543613e9 5727 i.tm.base_opcode ^= 4;
29b0f896 5728 }
7ecd2f8b 5729
29b0f896
AM
5730 return 1;
5731}
3e73aa7c 5732
29b0f896 5733static int
543613e9 5734check_byte_reg (void)
29b0f896
AM
5735{
5736 int op;
543613e9 5737
29b0f896
AM
5738 for (op = i.operands; --op >= 0;)
5739 {
dc821c5f
JB
5740 /* Skip non-register operands. */
5741 if (!i.types[op].bitfield.reg)
5742 continue;
5743
29b0f896
AM
5744 /* If this is an eight bit register, it's OK. If it's the 16 or
5745 32 bit version of an eight bit register, we will just use the
5746 low portion, and that's OK too. */
dc821c5f 5747 if (i.types[op].bitfield.byte)
29b0f896
AM
5748 continue;
5749
5a819eb9
JB
5750 /* I/O port address operands are OK too. */
5751 if (i.tm.operand_types[op].bitfield.inoutportreg)
5752 continue;
5753
9344ff29
L
5754 /* crc32 doesn't generate this warning. */
5755 if (i.tm.base_opcode == 0xf20f38f0)
5756 continue;
5757
dc821c5f
JB
5758 if ((i.types[op].bitfield.word
5759 || i.types[op].bitfield.dword
5760 || i.types[op].bitfield.qword)
5a819eb9
JB
5761 && i.op[op].regs->reg_num < 4
5762 /* Prohibit these changes in 64bit mode, since the lowering
5763 would be more complicated. */
5764 && flag_code != CODE_64BIT)
29b0f896 5765 {
29b0f896 5766#if REGISTER_WARNINGS
5a819eb9 5767 if (!quiet_warnings)
a540244d
L
5768 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5769 register_prefix,
dc821c5f 5770 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
5771 ? REGNAM_AL - REGNAM_AX
5772 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5773 register_prefix,
29b0f896
AM
5774 i.op[op].regs->reg_name,
5775 i.suffix);
5776#endif
5777 continue;
5778 }
5779 /* Any other register is bad. */
dc821c5f 5780 if (i.types[op].bitfield.reg
40fb9820 5781 || i.types[op].bitfield.regmmx
1b54b8d7 5782 || i.types[op].bitfield.regsimd
40fb9820
L
5783 || i.types[op].bitfield.sreg2
5784 || i.types[op].bitfield.sreg3
5785 || i.types[op].bitfield.control
5786 || i.types[op].bitfield.debug
ca0d63fe 5787 || i.types[op].bitfield.test)
29b0f896 5788 {
a540244d
L
5789 as_bad (_("`%s%s' not allowed with `%s%c'"),
5790 register_prefix,
29b0f896
AM
5791 i.op[op].regs->reg_name,
5792 i.tm.name,
5793 i.suffix);
5794 return 0;
5795 }
5796 }
5797 return 1;
5798}
5799
5800static int
e3bb37b5 5801check_long_reg (void)
29b0f896
AM
5802{
5803 int op;
5804
5805 for (op = i.operands; --op >= 0;)
dc821c5f
JB
5806 /* Skip non-register operands. */
5807 if (!i.types[op].bitfield.reg)
5808 continue;
29b0f896
AM
5809 /* Reject eight bit registers, except where the template requires
5810 them. (eg. movzb) */
dc821c5f
JB
5811 else if (i.types[op].bitfield.byte
5812 && (i.tm.operand_types[op].bitfield.reg
5813 || i.tm.operand_types[op].bitfield.acc)
5814 && (i.tm.operand_types[op].bitfield.word
5815 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5816 {
a540244d
L
5817 as_bad (_("`%s%s' not allowed with `%s%c'"),
5818 register_prefix,
29b0f896
AM
5819 i.op[op].regs->reg_name,
5820 i.tm.name,
5821 i.suffix);
5822 return 0;
5823 }
e4630f71 5824 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5825 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
5826 && i.types[op].bitfield.word
5827 && (i.tm.operand_types[op].bitfield.reg
5828 || i.tm.operand_types[op].bitfield.acc)
5829 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
5830 {
5831 /* Prohibit these changes in the 64bit mode, since the
5832 lowering is more complicated. */
5833 if (flag_code == CODE_64BIT)
252b5132 5834 {
2b5d6a91 5835 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5836 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5837 i.suffix);
5838 return 0;
252b5132 5839 }
29b0f896 5840#if REGISTER_WARNINGS
cecf1424
JB
5841 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5842 register_prefix,
5843 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5844 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5845#endif
252b5132 5846 }
e4630f71 5847 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
5848 else if (i.types[op].bitfield.qword
5849 && (i.tm.operand_types[op].bitfield.reg
5850 || i.tm.operand_types[op].bitfield.acc)
5851 && i.tm.operand_types[op].bitfield.dword)
252b5132 5852 {
34828aad 5853 if (intel_syntax
ca61edf2 5854 && i.tm.opcode_modifier.toqword
1b54b8d7 5855 && !i.types[0].bitfield.regsimd)
34828aad 5856 {
ca61edf2 5857 /* Convert to QWORD. We want REX byte. */
34828aad
L
5858 i.suffix = QWORD_MNEM_SUFFIX;
5859 }
5860 else
5861 {
2b5d6a91 5862 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5863 register_prefix, i.op[op].regs->reg_name,
5864 i.suffix);
5865 return 0;
5866 }
29b0f896
AM
5867 }
5868 return 1;
5869}
252b5132 5870
29b0f896 5871static int
e3bb37b5 5872check_qword_reg (void)
29b0f896
AM
5873{
5874 int op;
252b5132 5875
29b0f896 5876 for (op = i.operands; --op >= 0; )
dc821c5f
JB
5877 /* Skip non-register operands. */
5878 if (!i.types[op].bitfield.reg)
5879 continue;
29b0f896
AM
5880 /* Reject eight bit registers, except where the template requires
5881 them. (eg. movzb) */
dc821c5f
JB
5882 else if (i.types[op].bitfield.byte
5883 && (i.tm.operand_types[op].bitfield.reg
5884 || i.tm.operand_types[op].bitfield.acc)
5885 && (i.tm.operand_types[op].bitfield.word
5886 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5887 {
a540244d
L
5888 as_bad (_("`%s%s' not allowed with `%s%c'"),
5889 register_prefix,
29b0f896
AM
5890 i.op[op].regs->reg_name,
5891 i.tm.name,
5892 i.suffix);
5893 return 0;
5894 }
e4630f71 5895 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
5896 else if ((i.types[op].bitfield.word
5897 || i.types[op].bitfield.dword)
5898 && (i.tm.operand_types[op].bitfield.reg
5899 || i.tm.operand_types[op].bitfield.acc)
5900 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
5901 {
5902 /* Prohibit these changes in the 64bit mode, since the
5903 lowering is more complicated. */
34828aad 5904 if (intel_syntax
ca61edf2 5905 && i.tm.opcode_modifier.todword
1b54b8d7 5906 && !i.types[0].bitfield.regsimd)
34828aad 5907 {
ca61edf2 5908 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5909 i.suffix = LONG_MNEM_SUFFIX;
5910 }
5911 else
5912 {
2b5d6a91 5913 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5914 register_prefix, i.op[op].regs->reg_name,
5915 i.suffix);
5916 return 0;
5917 }
252b5132 5918 }
29b0f896
AM
5919 return 1;
5920}
252b5132 5921
29b0f896 5922static int
e3bb37b5 5923check_word_reg (void)
29b0f896
AM
5924{
5925 int op;
5926 for (op = i.operands; --op >= 0;)
dc821c5f
JB
5927 /* Skip non-register operands. */
5928 if (!i.types[op].bitfield.reg)
5929 continue;
29b0f896
AM
5930 /* Reject eight bit registers, except where the template requires
5931 them. (eg. movzb) */
dc821c5f
JB
5932 else if (i.types[op].bitfield.byte
5933 && (i.tm.operand_types[op].bitfield.reg
5934 || i.tm.operand_types[op].bitfield.acc)
5935 && (i.tm.operand_types[op].bitfield.word
5936 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5937 {
a540244d
L
5938 as_bad (_("`%s%s' not allowed with `%s%c'"),
5939 register_prefix,
29b0f896
AM
5940 i.op[op].regs->reg_name,
5941 i.tm.name,
5942 i.suffix);
5943 return 0;
5944 }
e4630f71 5945 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5946 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
5947 && (i.types[op].bitfield.dword
5948 || i.types[op].bitfield.qword)
5949 && (i.tm.operand_types[op].bitfield.reg
5950 || i.tm.operand_types[op].bitfield.acc)
5951 && i.tm.operand_types[op].bitfield.word)
252b5132 5952 {
29b0f896
AM
5953 /* Prohibit these changes in the 64bit mode, since the
5954 lowering is more complicated. */
5955 if (flag_code == CODE_64BIT)
252b5132 5956 {
2b5d6a91 5957 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5958 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5959 i.suffix);
5960 return 0;
252b5132 5961 }
29b0f896 5962#if REGISTER_WARNINGS
cecf1424
JB
5963 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5964 register_prefix,
5965 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5966 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5967#endif
5968 }
5969 return 1;
5970}
252b5132 5971
29b0f896 5972static int
40fb9820 5973update_imm (unsigned int j)
29b0f896 5974{
bc0844ae 5975 i386_operand_type overlap = i.types[j];
40fb9820
L
5976 if ((overlap.bitfield.imm8
5977 || overlap.bitfield.imm8s
5978 || overlap.bitfield.imm16
5979 || overlap.bitfield.imm32
5980 || overlap.bitfield.imm32s
5981 || overlap.bitfield.imm64)
0dfbf9d7
L
5982 && !operand_type_equal (&overlap, &imm8)
5983 && !operand_type_equal (&overlap, &imm8s)
5984 && !operand_type_equal (&overlap, &imm16)
5985 && !operand_type_equal (&overlap, &imm32)
5986 && !operand_type_equal (&overlap, &imm32s)
5987 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5988 {
5989 if (i.suffix)
5990 {
40fb9820
L
5991 i386_operand_type temp;
5992
0dfbf9d7 5993 operand_type_set (&temp, 0);
7ab9ffdd 5994 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5995 {
5996 temp.bitfield.imm8 = overlap.bitfield.imm8;
5997 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5998 }
5999 else if (i.suffix == WORD_MNEM_SUFFIX)
6000 temp.bitfield.imm16 = overlap.bitfield.imm16;
6001 else if (i.suffix == QWORD_MNEM_SUFFIX)
6002 {
6003 temp.bitfield.imm64 = overlap.bitfield.imm64;
6004 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6005 }
6006 else
6007 temp.bitfield.imm32 = overlap.bitfield.imm32;
6008 overlap = temp;
29b0f896 6009 }
0dfbf9d7
L
6010 else if (operand_type_equal (&overlap, &imm16_32_32s)
6011 || operand_type_equal (&overlap, &imm16_32)
6012 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6013 {
40fb9820 6014 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6015 overlap = imm16;
40fb9820 6016 else
65da13b5 6017 overlap = imm32s;
29b0f896 6018 }
0dfbf9d7
L
6019 if (!operand_type_equal (&overlap, &imm8)
6020 && !operand_type_equal (&overlap, &imm8s)
6021 && !operand_type_equal (&overlap, &imm16)
6022 && !operand_type_equal (&overlap, &imm32)
6023 && !operand_type_equal (&overlap, &imm32s)
6024 && !operand_type_equal (&overlap, &imm64))
29b0f896 6025 {
4eed87de
AM
6026 as_bad (_("no instruction mnemonic suffix given; "
6027 "can't determine immediate size"));
29b0f896
AM
6028 return 0;
6029 }
6030 }
40fb9820 6031 i.types[j] = overlap;
29b0f896 6032
40fb9820
L
6033 return 1;
6034}
6035
6036static int
6037finalize_imm (void)
6038{
bc0844ae 6039 unsigned int j, n;
29b0f896 6040
bc0844ae
L
6041 /* Update the first 2 immediate operands. */
6042 n = i.operands > 2 ? 2 : i.operands;
6043 if (n)
6044 {
6045 for (j = 0; j < n; j++)
6046 if (update_imm (j) == 0)
6047 return 0;
40fb9820 6048
bc0844ae
L
6049 /* The 3rd operand can't be immediate operand. */
6050 gas_assert (operand_type_check (i.types[2], imm) == 0);
6051 }
29b0f896
AM
6052
6053 return 1;
6054}
6055
6056static int
e3bb37b5 6057process_operands (void)
29b0f896
AM
6058{
6059 /* Default segment register this instruction will use for memory
6060 accesses. 0 means unknown. This is only for optimizing out
6061 unnecessary segment overrides. */
6062 const seg_entry *default_seg = 0;
6063
2426c15f 6064 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6065 {
91d6fa6a
NC
6066 unsigned int dupl = i.operands;
6067 unsigned int dest = dupl - 1;
9fcfb3d7
L
6068 unsigned int j;
6069
c0f3af97 6070 /* The destination must be an xmm register. */
9c2799c2 6071 gas_assert (i.reg_operands
91d6fa6a 6072 && MAX_OPERANDS > dupl
7ab9ffdd 6073 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6074
1b54b8d7
JB
6075 if (i.tm.operand_types[0].bitfield.acc
6076 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6077 {
8cd7925b 6078 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6079 {
6080 /* Keep xmm0 for instructions with VEX prefix and 3
6081 sources. */
1b54b8d7
JB
6082 i.tm.operand_types[0].bitfield.acc = 0;
6083 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6084 goto duplicate;
6085 }
e2ec9d29 6086 else
c0f3af97
L
6087 {
6088 /* We remove the first xmm0 and keep the number of
6089 operands unchanged, which in fact duplicates the
6090 destination. */
6091 for (j = 1; j < i.operands; j++)
6092 {
6093 i.op[j - 1] = i.op[j];
6094 i.types[j - 1] = i.types[j];
6095 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6096 }
6097 }
6098 }
6099 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6100 {
91d6fa6a 6101 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6102 && (i.tm.opcode_modifier.vexsources
6103 == VEX3SOURCES));
c0f3af97
L
6104
6105 /* Add the implicit xmm0 for instructions with VEX prefix
6106 and 3 sources. */
6107 for (j = i.operands; j > 0; j--)
6108 {
6109 i.op[j] = i.op[j - 1];
6110 i.types[j] = i.types[j - 1];
6111 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6112 }
6113 i.op[0].regs
6114 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6115 i.types[0] = regxmm;
c0f3af97
L
6116 i.tm.operand_types[0] = regxmm;
6117
6118 i.operands += 2;
6119 i.reg_operands += 2;
6120 i.tm.operands += 2;
6121
91d6fa6a 6122 dupl++;
c0f3af97 6123 dest++;
91d6fa6a
NC
6124 i.op[dupl] = i.op[dest];
6125 i.types[dupl] = i.types[dest];
6126 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6127 }
c0f3af97
L
6128 else
6129 {
6130duplicate:
6131 i.operands++;
6132 i.reg_operands++;
6133 i.tm.operands++;
6134
91d6fa6a
NC
6135 i.op[dupl] = i.op[dest];
6136 i.types[dupl] = i.types[dest];
6137 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6138 }
6139
6140 if (i.tm.opcode_modifier.immext)
6141 process_immext ();
6142 }
1b54b8d7
JB
6143 else if (i.tm.operand_types[0].bitfield.acc
6144 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6145 {
6146 unsigned int j;
6147
9fcfb3d7
L
6148 for (j = 1; j < i.operands; j++)
6149 {
6150 i.op[j - 1] = i.op[j];
6151 i.types[j - 1] = i.types[j];
6152
6153 /* We need to adjust fields in i.tm since they are used by
6154 build_modrm_byte. */
6155 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6156 }
6157
e2ec9d29
L
6158 i.operands--;
6159 i.reg_operands--;
e2ec9d29
L
6160 i.tm.operands--;
6161 }
920d2ddc
IT
6162 else if (i.tm.opcode_modifier.implicitquadgroup)
6163 {
6164 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6165 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
920d2ddc
IT
6166 unsigned int regnum = register_number (i.op[1].regs);
6167 unsigned int first_reg_in_group = regnum & ~3;
6168 unsigned int last_reg_in_group = first_reg_in_group + 3;
6169 if (regnum != first_reg_in_group) {
6170 as_warn (_("the second source register `%s%s' implicitly denotes"
6171 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6172 register_prefix, i.op[1].regs->reg_name,
6173 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6174 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6175 i.tm.name);
6176 }
6177 }
e2ec9d29
L
6178 else if (i.tm.opcode_modifier.regkludge)
6179 {
6180 /* The imul $imm, %reg instruction is converted into
6181 imul $imm, %reg, %reg, and the clr %reg instruction
6182 is converted into xor %reg, %reg. */
6183
6184 unsigned int first_reg_op;
6185
6186 if (operand_type_check (i.types[0], reg))
6187 first_reg_op = 0;
6188 else
6189 first_reg_op = 1;
6190 /* Pretend we saw the extra register operand. */
9c2799c2 6191 gas_assert (i.reg_operands == 1
7ab9ffdd 6192 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6193 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6194 i.types[first_reg_op + 1] = i.types[first_reg_op];
6195 i.operands++;
6196 i.reg_operands++;
29b0f896
AM
6197 }
6198
40fb9820 6199 if (i.tm.opcode_modifier.shortform)
29b0f896 6200 {
40fb9820
L
6201 if (i.types[0].bitfield.sreg2
6202 || i.types[0].bitfield.sreg3)
29b0f896 6203 {
4eed87de
AM
6204 if (i.tm.base_opcode == POP_SEG_SHORT
6205 && i.op[0].regs->reg_num == 1)
29b0f896 6206 {
a87af027 6207 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6208 return 0;
29b0f896 6209 }
4eed87de
AM
6210 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6211 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6212 i.rex |= REX_B;
4eed87de
AM
6213 }
6214 else
6215 {
7ab9ffdd 6216 /* The register or float register operand is in operand
85f10a01 6217 0 or 1. */
40fb9820 6218 unsigned int op;
7ab9ffdd 6219
ca0d63fe 6220 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6221 || operand_type_check (i.types[0], reg))
6222 op = 0;
6223 else
6224 op = 1;
4eed87de
AM
6225 /* Register goes in low 3 bits of opcode. */
6226 i.tm.base_opcode |= i.op[op].regs->reg_num;
6227 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6228 i.rex |= REX_B;
40fb9820 6229 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6230 {
4eed87de
AM
6231 /* Warn about some common errors, but press on regardless.
6232 The first case can be generated by gcc (<= 2.8.1). */
6233 if (i.operands == 2)
6234 {
6235 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6236 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6237 register_prefix, i.op[!intel_syntax].regs->reg_name,
6238 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6239 }
6240 else
6241 {
6242 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6243 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6244 register_prefix, i.op[0].regs->reg_name);
4eed87de 6245 }
29b0f896
AM
6246 }
6247 }
6248 }
40fb9820 6249 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6250 {
6251 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6252 must be put into the modrm byte). Now, we make the modrm and
6253 index base bytes based on all the info we've collected. */
29b0f896
AM
6254
6255 default_seg = build_modrm_byte ();
6256 }
8a2ed489 6257 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6258 {
6259 default_seg = &ds;
6260 }
40fb9820 6261 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6262 {
6263 /* For the string instructions that allow a segment override
6264 on one of their operands, the default segment is ds. */
6265 default_seg = &ds;
6266 }
6267
75178d9d
L
6268 if (i.tm.base_opcode == 0x8d /* lea */
6269 && i.seg[0]
6270 && !quiet_warnings)
30123838 6271 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6272
6273 /* If a segment was explicitly specified, and the specified segment
6274 is not the default, use an opcode prefix to select it. If we
6275 never figured out what the default segment is, then default_seg
6276 will be zero at this point, and the specified segment prefix will
6277 always be used. */
29b0f896
AM
6278 if ((i.seg[0]) && (i.seg[0] != default_seg))
6279 {
6280 if (!add_prefix (i.seg[0]->seg_prefix))
6281 return 0;
6282 }
6283 return 1;
6284}
6285
6286static const seg_entry *
e3bb37b5 6287build_modrm_byte (void)
29b0f896
AM
6288{
6289 const seg_entry *default_seg = 0;
c0f3af97 6290 unsigned int source, dest;
8cd7925b 6291 int vex_3_sources;
c0f3af97
L
6292
6293 /* The first operand of instructions with VEX prefix and 3 sources
6294 must be VEX_Imm4. */
8cd7925b 6295 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6296 if (vex_3_sources)
6297 {
91d6fa6a 6298 unsigned int nds, reg_slot;
4c2c6516 6299 expressionS *exp;
c0f3af97 6300
922d8de8 6301 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6302 && i.tm.opcode_modifier.immext)
6303 {
6304 dest = i.operands - 2;
6305 gas_assert (dest == 3);
6306 }
922d8de8 6307 else
a683cc34 6308 dest = i.operands - 1;
c0f3af97 6309 nds = dest - 1;
922d8de8 6310
a683cc34
SP
6311 /* There are 2 kinds of instructions:
6312 1. 5 operands: 4 register operands or 3 register operands
6313 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6314 VexW0 or VexW1. The destination must be either XMM, YMM or
6315 ZMM register.
a683cc34
SP
6316 2. 4 operands: 4 register operands or 3 register operands
6317 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6318 gas_assert ((i.reg_operands == 4
a683cc34
SP
6319 || (i.reg_operands == 3 && i.mem_operands == 1))
6320 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6321 && (i.tm.opcode_modifier.veximmext
6322 || (i.imm_operands == 1
6323 && i.types[0].bitfield.vec_imm4
6324 && (i.tm.opcode_modifier.vexw == VEXW0
6325 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6326 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6327
6328 if (i.imm_operands == 0)
6329 {
6330 /* When there is no immediate operand, generate an 8bit
6331 immediate operand to encode the first operand. */
6332 exp = &im_expressions[i.imm_operands++];
6333 i.op[i.operands].imms = exp;
6334 i.types[i.operands] = imm8;
6335 i.operands++;
6336 /* If VexW1 is set, the first operand is the source and
6337 the second operand is encoded in the immediate operand. */
6338 if (i.tm.opcode_modifier.vexw == VEXW1)
6339 {
6340 source = 0;
6341 reg_slot = 1;
6342 }
6343 else
6344 {
6345 source = 1;
6346 reg_slot = 0;
6347 }
6348
6349 /* FMA swaps REG and NDS. */
6350 if (i.tm.cpu_flags.bitfield.cpufma)
6351 {
6352 unsigned int tmp;
6353 tmp = reg_slot;
6354 reg_slot = nds;
6355 nds = tmp;
6356 }
6357
10c17abd 6358 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6359 exp->X_op = O_constant;
4c692bc7 6360 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6361 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6362 }
922d8de8 6363 else
a683cc34
SP
6364 {
6365 unsigned int imm_slot;
6366
6367 if (i.tm.opcode_modifier.vexw == VEXW0)
6368 {
6369 /* If VexW0 is set, the third operand is the source and
6370 the second operand is encoded in the immediate
6371 operand. */
6372 source = 2;
6373 reg_slot = 1;
6374 }
6375 else
6376 {
6377 /* VexW1 is set, the second operand is the source and
6378 the third operand is encoded in the immediate
6379 operand. */
6380 source = 1;
6381 reg_slot = 2;
6382 }
6383
6384 if (i.tm.opcode_modifier.immext)
6385 {
33eaf5de 6386 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6387 operand. */
6388 imm_slot = i.operands - 1;
6389 source--;
6390 reg_slot--;
6391 }
6392 else
6393 {
6394 imm_slot = 0;
6395
6396 /* Turn on Imm8 so that output_imm will generate it. */
6397 i.types[imm_slot].bitfield.imm8 = 1;
6398 }
6399
10c17abd 6400 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6401 i.op[imm_slot].imms->X_add_number
4c692bc7 6402 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6403 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6404 }
6405
10c17abd 6406 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6407 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6408 }
6409 else
6410 source = dest = 0;
29b0f896
AM
6411
6412 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6413 implicit registers do not count. If there are 3 register
6414 operands, it must be a instruction with VexNDS. For a
6415 instruction with VexNDD, the destination register is encoded
6416 in VEX prefix. If there are 4 register operands, it must be
6417 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6418 if (i.mem_operands == 0
6419 && ((i.reg_operands == 2
2426c15f 6420 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6421 || (i.reg_operands == 3
2426c15f 6422 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6423 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6424 {
cab737b9
L
6425 switch (i.operands)
6426 {
6427 case 2:
6428 source = 0;
6429 break;
6430 case 3:
c81128dc
L
6431 /* When there are 3 operands, one of them may be immediate,
6432 which may be the first or the last operand. Otherwise,
c0f3af97
L
6433 the first operand must be shift count register (cl) or it
6434 is an instruction with VexNDS. */
9c2799c2 6435 gas_assert (i.imm_operands == 1
7ab9ffdd 6436 || (i.imm_operands == 0
2426c15f 6437 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6438 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6439 if (operand_type_check (i.types[0], imm)
6440 || i.types[0].bitfield.shiftcount)
6441 source = 1;
6442 else
6443 source = 0;
cab737b9
L
6444 break;
6445 case 4:
368d64cc
L
6446 /* When there are 4 operands, the first two must be 8bit
6447 immediate operands. The source operand will be the 3rd
c0f3af97
L
6448 one.
6449
6450 For instructions with VexNDS, if the first operand
6451 an imm8, the source operand is the 2nd one. If the last
6452 operand is imm8, the source operand is the first one. */
9c2799c2 6453 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6454 && i.types[0].bitfield.imm8
6455 && i.types[1].bitfield.imm8)
2426c15f 6456 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6457 && i.imm_operands == 1
6458 && (i.types[0].bitfield.imm8
43234a1e
L
6459 || i.types[i.operands - 1].bitfield.imm8
6460 || i.rounding)));
9f2670f2
L
6461 if (i.imm_operands == 2)
6462 source = 2;
6463 else
c0f3af97
L
6464 {
6465 if (i.types[0].bitfield.imm8)
6466 source = 1;
6467 else
6468 source = 0;
6469 }
c0f3af97
L
6470 break;
6471 case 5:
43234a1e
L
6472 if (i.tm.opcode_modifier.evex)
6473 {
6474 /* For EVEX instructions, when there are 5 operands, the
6475 first one must be immediate operand. If the second one
6476 is immediate operand, the source operand is the 3th
6477 one. If the last one is immediate operand, the source
6478 operand is the 2nd one. */
6479 gas_assert (i.imm_operands == 2
6480 && i.tm.opcode_modifier.sae
6481 && operand_type_check (i.types[0], imm));
6482 if (operand_type_check (i.types[1], imm))
6483 source = 2;
6484 else if (operand_type_check (i.types[4], imm))
6485 source = 1;
6486 else
6487 abort ();
6488 }
cab737b9
L
6489 break;
6490 default:
6491 abort ();
6492 }
6493
c0f3af97
L
6494 if (!vex_3_sources)
6495 {
6496 dest = source + 1;
6497
43234a1e
L
6498 /* RC/SAE operand could be between DEST and SRC. That happens
6499 when one operand is GPR and the other one is XMM/YMM/ZMM
6500 register. */
6501 if (i.rounding && i.rounding->operand == (int) dest)
6502 dest++;
6503
2426c15f 6504 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6505 {
43234a1e 6506 /* For instructions with VexNDS, the register-only source
c5d0745b 6507 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6508 register. It is encoded in VEX prefix. We need to
6509 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6510
6511 i386_operand_type op;
6512 unsigned int vvvv;
6513
6514 /* Check register-only source operand when two source
6515 operands are swapped. */
6516 if (!i.tm.operand_types[source].bitfield.baseindex
6517 && i.tm.operand_types[dest].bitfield.baseindex)
6518 {
6519 vvvv = source;
6520 source = dest;
6521 }
6522 else
6523 vvvv = dest;
6524
6525 op = i.tm.operand_types[vvvv];
fa99fab2 6526 op.bitfield.regmem = 0;
c0f3af97 6527 if ((dest + 1) >= i.operands
dc821c5f
JB
6528 || ((!op.bitfield.reg
6529 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6530 && !op.bitfield.regsimd
43234a1e 6531 && !operand_type_equal (&op, &regmask)))
c0f3af97 6532 abort ();
f12dc422 6533 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6534 dest++;
6535 }
6536 }
29b0f896
AM
6537
6538 i.rm.mode = 3;
6539 /* One of the register operands will be encoded in the i.tm.reg
6540 field, the other in the combined i.tm.mode and i.tm.regmem
6541 fields. If no form of this instruction supports a memory
6542 destination operand, then we assume the source operand may
6543 sometimes be a memory operand and so we need to store the
6544 destination in the i.rm.reg field. */
40fb9820
L
6545 if (!i.tm.operand_types[dest].bitfield.regmem
6546 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6547 {
6548 i.rm.reg = i.op[dest].regs->reg_num;
6549 i.rm.regmem = i.op[source].regs->reg_num;
6550 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6551 i.rex |= REX_R;
43234a1e
L
6552 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6553 i.vrex |= REX_R;
29b0f896 6554 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6555 i.rex |= REX_B;
43234a1e
L
6556 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6557 i.vrex |= REX_B;
29b0f896
AM
6558 }
6559 else
6560 {
6561 i.rm.reg = i.op[source].regs->reg_num;
6562 i.rm.regmem = i.op[dest].regs->reg_num;
6563 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6564 i.rex |= REX_B;
43234a1e
L
6565 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6566 i.vrex |= REX_B;
29b0f896 6567 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6568 i.rex |= REX_R;
43234a1e
L
6569 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6570 i.vrex |= REX_R;
29b0f896 6571 }
161a04f6 6572 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6573 {
40fb9820
L
6574 if (!i.types[0].bitfield.control
6575 && !i.types[1].bitfield.control)
c4a530c5 6576 abort ();
161a04f6 6577 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6578 add_prefix (LOCK_PREFIX_OPCODE);
6579 }
29b0f896
AM
6580 }
6581 else
6582 { /* If it's not 2 reg operands... */
c0f3af97
L
6583 unsigned int mem;
6584
29b0f896
AM
6585 if (i.mem_operands)
6586 {
6587 unsigned int fake_zero_displacement = 0;
99018f42 6588 unsigned int op;
4eed87de 6589
7ab9ffdd
L
6590 for (op = 0; op < i.operands; op++)
6591 if (operand_type_check (i.types[op], anymem))
6592 break;
7ab9ffdd 6593 gas_assert (op < i.operands);
29b0f896 6594
6c30d220
L
6595 if (i.tm.opcode_modifier.vecsib)
6596 {
6597 if (i.index_reg->reg_num == RegEiz
6598 || i.index_reg->reg_num == RegRiz)
6599 abort ();
6600
6601 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6602 if (!i.base_reg)
6603 {
6604 i.sib.base = NO_BASE_REGISTER;
6605 i.sib.scale = i.log2_scale_factor;
6606 i.types[op].bitfield.disp8 = 0;
6607 i.types[op].bitfield.disp16 = 0;
6608 i.types[op].bitfield.disp64 = 0;
43083a50 6609 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6610 {
6611 /* Must be 32 bit */
6612 i.types[op].bitfield.disp32 = 1;
6613 i.types[op].bitfield.disp32s = 0;
6614 }
6615 else
6616 {
6617 i.types[op].bitfield.disp32 = 0;
6618 i.types[op].bitfield.disp32s = 1;
6619 }
6620 }
6621 i.sib.index = i.index_reg->reg_num;
6622 if ((i.index_reg->reg_flags & RegRex) != 0)
6623 i.rex |= REX_X;
43234a1e
L
6624 if ((i.index_reg->reg_flags & RegVRex) != 0)
6625 i.vrex |= REX_X;
6c30d220
L
6626 }
6627
29b0f896
AM
6628 default_seg = &ds;
6629
6630 if (i.base_reg == 0)
6631 {
6632 i.rm.mode = 0;
6633 if (!i.disp_operands)
9bb129e8 6634 fake_zero_displacement = 1;
29b0f896
AM
6635 if (i.index_reg == 0)
6636 {
6c30d220 6637 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6638 /* Operand is just <disp> */
20f0a1fc 6639 if (flag_code == CODE_64BIT)
29b0f896
AM
6640 {
6641 /* 64bit mode overwrites the 32bit absolute
6642 addressing by RIP relative addressing and
6643 absolute addressing is encoded by one of the
6644 redundant SIB forms. */
6645 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6646 i.sib.base = NO_BASE_REGISTER;
6647 i.sib.index = NO_INDEX_REGISTER;
fc225355 6648 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6649 ? disp32s : disp32);
20f0a1fc 6650 }
fc225355
L
6651 else if ((flag_code == CODE_16BIT)
6652 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6653 {
6654 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6655 i.types[op] = disp16;
20f0a1fc
NC
6656 }
6657 else
6658 {
6659 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6660 i.types[op] = disp32;
29b0f896
AM
6661 }
6662 }
6c30d220 6663 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6664 {
6c30d220 6665 /* !i.base_reg && i.index_reg */
db51cc60
L
6666 if (i.index_reg->reg_num == RegEiz
6667 || i.index_reg->reg_num == RegRiz)
6668 i.sib.index = NO_INDEX_REGISTER;
6669 else
6670 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6671 i.sib.base = NO_BASE_REGISTER;
6672 i.sib.scale = i.log2_scale_factor;
6673 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6674 i.types[op].bitfield.disp8 = 0;
6675 i.types[op].bitfield.disp16 = 0;
6676 i.types[op].bitfield.disp64 = 0;
43083a50 6677 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6678 {
6679 /* Must be 32 bit */
6680 i.types[op].bitfield.disp32 = 1;
6681 i.types[op].bitfield.disp32s = 0;
6682 }
29b0f896 6683 else
40fb9820
L
6684 {
6685 i.types[op].bitfield.disp32 = 0;
6686 i.types[op].bitfield.disp32s = 1;
6687 }
29b0f896 6688 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6689 i.rex |= REX_X;
29b0f896
AM
6690 }
6691 }
6692 /* RIP addressing for 64bit mode. */
9a04903e
JB
6693 else if (i.base_reg->reg_num == RegRip ||
6694 i.base_reg->reg_num == RegEip)
29b0f896 6695 {
6c30d220 6696 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6697 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6698 i.types[op].bitfield.disp8 = 0;
6699 i.types[op].bitfield.disp16 = 0;
6700 i.types[op].bitfield.disp32 = 0;
6701 i.types[op].bitfield.disp32s = 1;
6702 i.types[op].bitfield.disp64 = 0;
71903a11 6703 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6704 if (! i.disp_operands)
6705 fake_zero_displacement = 1;
29b0f896 6706 }
dc821c5f 6707 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6708 {
6c30d220 6709 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6710 switch (i.base_reg->reg_num)
6711 {
6712 case 3: /* (%bx) */
6713 if (i.index_reg == 0)
6714 i.rm.regmem = 7;
6715 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6716 i.rm.regmem = i.index_reg->reg_num - 6;
6717 break;
6718 case 5: /* (%bp) */
6719 default_seg = &ss;
6720 if (i.index_reg == 0)
6721 {
6722 i.rm.regmem = 6;
40fb9820 6723 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6724 {
6725 /* fake (%bp) into 0(%bp) */
b5014f7a 6726 i.types[op].bitfield.disp8 = 1;
252b5132 6727 fake_zero_displacement = 1;
29b0f896
AM
6728 }
6729 }
6730 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6731 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6732 break;
6733 default: /* (%si) -> 4 or (%di) -> 5 */
6734 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6735 }
6736 i.rm.mode = mode_from_disp_size (i.types[op]);
6737 }
6738 else /* i.base_reg and 32/64 bit mode */
6739 {
6740 if (flag_code == CODE_64BIT
40fb9820
L
6741 && operand_type_check (i.types[op], disp))
6742 {
6743 i386_operand_type temp;
0dfbf9d7 6744 operand_type_set (&temp, 0);
40fb9820
L
6745 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6746 i.types[op] = temp;
6747 if (i.prefix[ADDR_PREFIX] == 0)
6748 i.types[op].bitfield.disp32s = 1;
6749 else
6750 i.types[op].bitfield.disp32 = 1;
6751 }
20f0a1fc 6752
6c30d220
L
6753 if (!i.tm.opcode_modifier.vecsib)
6754 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6755 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6756 i.rex |= REX_B;
29b0f896
AM
6757 i.sib.base = i.base_reg->reg_num;
6758 /* x86-64 ignores REX prefix bit here to avoid decoder
6759 complications. */
848930b2
JB
6760 if (!(i.base_reg->reg_flags & RegRex)
6761 && (i.base_reg->reg_num == EBP_REG_NUM
6762 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6763 default_seg = &ss;
848930b2 6764 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6765 {
848930b2 6766 fake_zero_displacement = 1;
b5014f7a 6767 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6768 }
6769 i.sib.scale = i.log2_scale_factor;
6770 if (i.index_reg == 0)
6771 {
6c30d220 6772 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6773 /* <disp>(%esp) becomes two byte modrm with no index
6774 register. We've already stored the code for esp
6775 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6776 Any base register besides %esp will not use the
6777 extra modrm byte. */
6778 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6779 }
6c30d220 6780 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6781 {
db51cc60
L
6782 if (i.index_reg->reg_num == RegEiz
6783 || i.index_reg->reg_num == RegRiz)
6784 i.sib.index = NO_INDEX_REGISTER;
6785 else
6786 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6787 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6788 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6789 i.rex |= REX_X;
29b0f896 6790 }
67a4f2b7
AO
6791
6792 if (i.disp_operands
6793 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6794 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6795 i.rm.mode = 0;
6796 else
a501d77e
L
6797 {
6798 if (!fake_zero_displacement
6799 && !i.disp_operands
6800 && i.disp_encoding)
6801 {
6802 fake_zero_displacement = 1;
6803 if (i.disp_encoding == disp_encoding_8bit)
6804 i.types[op].bitfield.disp8 = 1;
6805 else
6806 i.types[op].bitfield.disp32 = 1;
6807 }
6808 i.rm.mode = mode_from_disp_size (i.types[op]);
6809 }
29b0f896 6810 }
252b5132 6811
29b0f896
AM
6812 if (fake_zero_displacement)
6813 {
6814 /* Fakes a zero displacement assuming that i.types[op]
6815 holds the correct displacement size. */
6816 expressionS *exp;
6817
9c2799c2 6818 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6819 exp = &disp_expressions[i.disp_operands++];
6820 i.op[op].disps = exp;
6821 exp->X_op = O_constant;
6822 exp->X_add_number = 0;
6823 exp->X_add_symbol = (symbolS *) 0;
6824 exp->X_op_symbol = (symbolS *) 0;
6825 }
c0f3af97
L
6826
6827 mem = op;
29b0f896 6828 }
c0f3af97
L
6829 else
6830 mem = ~0;
252b5132 6831
8c43a48b 6832 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6833 {
6834 if (operand_type_check (i.types[0], imm))
6835 i.vex.register_specifier = NULL;
6836 else
6837 {
6838 /* VEX.vvvv encodes one of the sources when the first
6839 operand is not an immediate. */
1ef99a7b 6840 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6841 i.vex.register_specifier = i.op[0].regs;
6842 else
6843 i.vex.register_specifier = i.op[1].regs;
6844 }
6845
6846 /* Destination is a XMM register encoded in the ModRM.reg
6847 and VEX.R bit. */
6848 i.rm.reg = i.op[2].regs->reg_num;
6849 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6850 i.rex |= REX_R;
6851
6852 /* ModRM.rm and VEX.B encodes the other source. */
6853 if (!i.mem_operands)
6854 {
6855 i.rm.mode = 3;
6856
1ef99a7b 6857 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6858 i.rm.regmem = i.op[1].regs->reg_num;
6859 else
6860 i.rm.regmem = i.op[0].regs->reg_num;
6861
6862 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6863 i.rex |= REX_B;
6864 }
6865 }
2426c15f 6866 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6867 {
6868 i.vex.register_specifier = i.op[2].regs;
6869 if (!i.mem_operands)
6870 {
6871 i.rm.mode = 3;
6872 i.rm.regmem = i.op[1].regs->reg_num;
6873 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6874 i.rex |= REX_B;
6875 }
6876 }
29b0f896
AM
6877 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6878 (if any) based on i.tm.extension_opcode. Again, we must be
6879 careful to make sure that segment/control/debug/test/MMX
6880 registers are coded into the i.rm.reg field. */
f88c9eb0 6881 else if (i.reg_operands)
29b0f896 6882 {
99018f42 6883 unsigned int op;
7ab9ffdd
L
6884 unsigned int vex_reg = ~0;
6885
6886 for (op = 0; op < i.operands; op++)
dc821c5f 6887 if (i.types[op].bitfield.reg
7ab9ffdd 6888 || i.types[op].bitfield.regmmx
1b54b8d7 6889 || i.types[op].bitfield.regsimd
7e8b059b 6890 || i.types[op].bitfield.regbnd
43234a1e 6891 || i.types[op].bitfield.regmask
7ab9ffdd
L
6892 || i.types[op].bitfield.sreg2
6893 || i.types[op].bitfield.sreg3
6894 || i.types[op].bitfield.control
6895 || i.types[op].bitfield.debug
6896 || i.types[op].bitfield.test)
6897 break;
c0209578 6898
7ab9ffdd
L
6899 if (vex_3_sources)
6900 op = dest;
2426c15f 6901 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6902 {
6903 /* For instructions with VexNDS, the register-only
6904 source operand is encoded in VEX prefix. */
6905 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6906
7ab9ffdd 6907 if (op > mem)
c0f3af97 6908 {
7ab9ffdd
L
6909 vex_reg = op++;
6910 gas_assert (op < i.operands);
c0f3af97
L
6911 }
6912 else
c0f3af97 6913 {
f12dc422
L
6914 /* Check register-only source operand when two source
6915 operands are swapped. */
6916 if (!i.tm.operand_types[op].bitfield.baseindex
6917 && i.tm.operand_types[op + 1].bitfield.baseindex)
6918 {
6919 vex_reg = op;
6920 op += 2;
6921 gas_assert (mem == (vex_reg + 1)
6922 && op < i.operands);
6923 }
6924 else
6925 {
6926 vex_reg = op + 1;
6927 gas_assert (vex_reg < i.operands);
6928 }
c0f3af97 6929 }
7ab9ffdd 6930 }
2426c15f 6931 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6932 {
f12dc422 6933 /* For instructions with VexNDD, the register destination
7ab9ffdd 6934 is encoded in VEX prefix. */
f12dc422
L
6935 if (i.mem_operands == 0)
6936 {
6937 /* There is no memory operand. */
6938 gas_assert ((op + 2) == i.operands);
6939 vex_reg = op + 1;
6940 }
6941 else
8d63c93e 6942 {
f12dc422
L
6943 /* There are only 2 operands. */
6944 gas_assert (op < 2 && i.operands == 2);
6945 vex_reg = 1;
6946 }
7ab9ffdd
L
6947 }
6948 else
6949 gas_assert (op < i.operands);
99018f42 6950
7ab9ffdd
L
6951 if (vex_reg != (unsigned int) ~0)
6952 {
f12dc422 6953 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6954
dc821c5f
JB
6955 if ((!type->bitfield.reg
6956 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 6957 && !type->bitfield.regsimd
43234a1e 6958 && !operand_type_equal (type, &regmask))
7ab9ffdd 6959 abort ();
f88c9eb0 6960
7ab9ffdd
L
6961 i.vex.register_specifier = i.op[vex_reg].regs;
6962 }
6963
1b9f0c97
L
6964 /* Don't set OP operand twice. */
6965 if (vex_reg != op)
7ab9ffdd 6966 {
1b9f0c97
L
6967 /* If there is an extension opcode to put here, the
6968 register number must be put into the regmem field. */
6969 if (i.tm.extension_opcode != None)
6970 {
6971 i.rm.regmem = i.op[op].regs->reg_num;
6972 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6973 i.rex |= REX_B;
43234a1e
L
6974 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6975 i.vrex |= REX_B;
1b9f0c97
L
6976 }
6977 else
6978 {
6979 i.rm.reg = i.op[op].regs->reg_num;
6980 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6981 i.rex |= REX_R;
43234a1e
L
6982 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6983 i.vrex |= REX_R;
1b9f0c97 6984 }
7ab9ffdd 6985 }
252b5132 6986
29b0f896
AM
6987 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6988 must set it to 3 to indicate this is a register operand
6989 in the regmem field. */
6990 if (!i.mem_operands)
6991 i.rm.mode = 3;
6992 }
252b5132 6993
29b0f896 6994 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6995 if (i.tm.extension_opcode != None)
29b0f896
AM
6996 i.rm.reg = i.tm.extension_opcode;
6997 }
6998 return default_seg;
6999}
252b5132 7000
29b0f896 7001static void
e3bb37b5 7002output_branch (void)
29b0f896
AM
7003{
7004 char *p;
f8a5c266 7005 int size;
29b0f896
AM
7006 int code16;
7007 int prefix;
7008 relax_substateT subtype;
7009 symbolS *sym;
7010 offsetT off;
7011
f8a5c266 7012 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7013 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7014
7015 prefix = 0;
7016 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7017 {
29b0f896
AM
7018 prefix = 1;
7019 i.prefixes -= 1;
7020 code16 ^= CODE16;
252b5132 7021 }
29b0f896
AM
7022 /* Pentium4 branch hints. */
7023 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7024 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7025 {
29b0f896
AM
7026 prefix++;
7027 i.prefixes--;
7028 }
7029 if (i.prefix[REX_PREFIX] != 0)
7030 {
7031 prefix++;
7032 i.prefixes--;
2f66722d
AM
7033 }
7034
7e8b059b
L
7035 /* BND prefixed jump. */
7036 if (i.prefix[BND_PREFIX] != 0)
7037 {
7038 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7039 i.prefixes -= 1;
7040 }
7041
29b0f896
AM
7042 if (i.prefixes != 0 && !intel_syntax)
7043 as_warn (_("skipping prefixes on this instruction"));
7044
7045 /* It's always a symbol; End frag & setup for relax.
7046 Make sure there is enough room in this frag for the largest
7047 instruction we may generate in md_convert_frag. This is 2
7048 bytes for the opcode and room for the prefix and largest
7049 displacement. */
7050 frag_grow (prefix + 2 + 4);
7051 /* Prefix and 1 opcode byte go in fr_fix. */
7052 p = frag_more (prefix + 1);
7053 if (i.prefix[DATA_PREFIX] != 0)
7054 *p++ = DATA_PREFIX_OPCODE;
7055 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7056 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7057 *p++ = i.prefix[SEG_PREFIX];
7058 if (i.prefix[REX_PREFIX] != 0)
7059 *p++ = i.prefix[REX_PREFIX];
7060 *p = i.tm.base_opcode;
7061
7062 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7063 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7064 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7065 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7066 else
f8a5c266 7067 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7068 subtype |= code16;
3e73aa7c 7069
29b0f896
AM
7070 sym = i.op[0].disps->X_add_symbol;
7071 off = i.op[0].disps->X_add_number;
3e73aa7c 7072
29b0f896
AM
7073 if (i.op[0].disps->X_op != O_constant
7074 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7075 {
29b0f896
AM
7076 /* Handle complex expressions. */
7077 sym = make_expr_symbol (i.op[0].disps);
7078 off = 0;
7079 }
3e73aa7c 7080
29b0f896
AM
7081 /* 1 possible extra opcode + 4 byte displacement go in var part.
7082 Pass reloc in fr_var. */
d258b828 7083 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7084}
3e73aa7c 7085
bd7ab16b
L
7086#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7087/* Return TRUE iff PLT32 relocation should be used for branching to
7088 symbol S. */
7089
7090static bfd_boolean
7091need_plt32_p (symbolS *s)
7092{
7093 /* PLT32 relocation is ELF only. */
7094 if (!IS_ELF)
7095 return FALSE;
7096
7097 /* Since there is no need to prepare for PLT branch on x86-64, we
7098 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7099 be used as a marker for 32-bit PC-relative branches. */
7100 if (!object_64bit)
7101 return FALSE;
7102
7103 /* Weak or undefined symbol need PLT32 relocation. */
7104 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7105 return TRUE;
7106
7107 /* Non-global symbol doesn't need PLT32 relocation. */
7108 if (! S_IS_EXTERNAL (s))
7109 return FALSE;
7110
7111 /* Other global symbols need PLT32 relocation. NB: Symbol with
7112 non-default visibilities are treated as normal global symbol
7113 so that PLT32 relocation can be used as a marker for 32-bit
7114 PC-relative branches. It is useful for linker relaxation. */
7115 return TRUE;
7116}
7117#endif
7118
29b0f896 7119static void
e3bb37b5 7120output_jump (void)
29b0f896
AM
7121{
7122 char *p;
7123 int size;
3e02c1cc 7124 fixS *fixP;
bd7ab16b 7125 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7126
40fb9820 7127 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7128 {
7129 /* This is a loop or jecxz type instruction. */
7130 size = 1;
7131 if (i.prefix[ADDR_PREFIX] != 0)
7132 {
7133 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7134 i.prefixes -= 1;
7135 }
7136 /* Pentium4 branch hints. */
7137 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7138 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7139 {
7140 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7141 i.prefixes--;
3e73aa7c
JH
7142 }
7143 }
29b0f896
AM
7144 else
7145 {
7146 int code16;
3e73aa7c 7147
29b0f896
AM
7148 code16 = 0;
7149 if (flag_code == CODE_16BIT)
7150 code16 = CODE16;
3e73aa7c 7151
29b0f896
AM
7152 if (i.prefix[DATA_PREFIX] != 0)
7153 {
7154 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7155 i.prefixes -= 1;
7156 code16 ^= CODE16;
7157 }
252b5132 7158
29b0f896
AM
7159 size = 4;
7160 if (code16)
7161 size = 2;
7162 }
9fcc94b6 7163
29b0f896
AM
7164 if (i.prefix[REX_PREFIX] != 0)
7165 {
7166 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7167 i.prefixes -= 1;
7168 }
252b5132 7169
7e8b059b
L
7170 /* BND prefixed jump. */
7171 if (i.prefix[BND_PREFIX] != 0)
7172 {
7173 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7174 i.prefixes -= 1;
7175 }
7176
29b0f896
AM
7177 if (i.prefixes != 0 && !intel_syntax)
7178 as_warn (_("skipping prefixes on this instruction"));
e0890092 7179
42164a71
L
7180 p = frag_more (i.tm.opcode_length + size);
7181 switch (i.tm.opcode_length)
7182 {
7183 case 2:
7184 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7185 /* Fall through. */
42164a71
L
7186 case 1:
7187 *p++ = i.tm.base_opcode;
7188 break;
7189 default:
7190 abort ();
7191 }
e0890092 7192
bd7ab16b
L
7193#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7194 if (size == 4
7195 && jump_reloc == NO_RELOC
7196 && need_plt32_p (i.op[0].disps->X_add_symbol))
7197 jump_reloc = BFD_RELOC_X86_64_PLT32;
7198#endif
7199
7200 jump_reloc = reloc (size, 1, 1, jump_reloc);
7201
3e02c1cc 7202 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7203 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7204
7205 /* All jumps handled here are signed, but don't use a signed limit
7206 check for 32 and 16 bit jumps as we want to allow wrap around at
7207 4G and 64k respectively. */
7208 if (size == 1)
7209 fixP->fx_signed = 1;
29b0f896 7210}
e0890092 7211
29b0f896 7212static void
e3bb37b5 7213output_interseg_jump (void)
29b0f896
AM
7214{
7215 char *p;
7216 int size;
7217 int prefix;
7218 int code16;
252b5132 7219
29b0f896
AM
7220 code16 = 0;
7221 if (flag_code == CODE_16BIT)
7222 code16 = CODE16;
a217f122 7223
29b0f896
AM
7224 prefix = 0;
7225 if (i.prefix[DATA_PREFIX] != 0)
7226 {
7227 prefix = 1;
7228 i.prefixes -= 1;
7229 code16 ^= CODE16;
7230 }
7231 if (i.prefix[REX_PREFIX] != 0)
7232 {
7233 prefix++;
7234 i.prefixes -= 1;
7235 }
252b5132 7236
29b0f896
AM
7237 size = 4;
7238 if (code16)
7239 size = 2;
252b5132 7240
29b0f896
AM
7241 if (i.prefixes != 0 && !intel_syntax)
7242 as_warn (_("skipping prefixes on this instruction"));
252b5132 7243
29b0f896
AM
7244 /* 1 opcode; 2 segment; offset */
7245 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7246
29b0f896
AM
7247 if (i.prefix[DATA_PREFIX] != 0)
7248 *p++ = DATA_PREFIX_OPCODE;
252b5132 7249
29b0f896
AM
7250 if (i.prefix[REX_PREFIX] != 0)
7251 *p++ = i.prefix[REX_PREFIX];
252b5132 7252
29b0f896
AM
7253 *p++ = i.tm.base_opcode;
7254 if (i.op[1].imms->X_op == O_constant)
7255 {
7256 offsetT n = i.op[1].imms->X_add_number;
252b5132 7257
29b0f896
AM
7258 if (size == 2
7259 && !fits_in_unsigned_word (n)
7260 && !fits_in_signed_word (n))
7261 {
7262 as_bad (_("16-bit jump out of range"));
7263 return;
7264 }
7265 md_number_to_chars (p, n, size);
7266 }
7267 else
7268 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7269 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7270 if (i.op[0].imms->X_op != O_constant)
7271 as_bad (_("can't handle non absolute segment in `%s'"),
7272 i.tm.name);
7273 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7274}
a217f122 7275
29b0f896 7276static void
e3bb37b5 7277output_insn (void)
29b0f896 7278{
2bbd9c25
JJ
7279 fragS *insn_start_frag;
7280 offsetT insn_start_off;
7281
29b0f896
AM
7282 /* Tie dwarf2 debug info to the address at the start of the insn.
7283 We can't do this after the insn has been output as the current
7284 frag may have been closed off. eg. by frag_var. */
7285 dwarf2_emit_insn (0);
7286
2bbd9c25
JJ
7287 insn_start_frag = frag_now;
7288 insn_start_off = frag_now_fix ();
7289
29b0f896 7290 /* Output jumps. */
40fb9820 7291 if (i.tm.opcode_modifier.jump)
29b0f896 7292 output_branch ();
40fb9820
L
7293 else if (i.tm.opcode_modifier.jumpbyte
7294 || i.tm.opcode_modifier.jumpdword)
29b0f896 7295 output_jump ();
40fb9820 7296 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7297 output_interseg_jump ();
7298 else
7299 {
7300 /* Output normal instructions here. */
7301 char *p;
7302 unsigned char *q;
47465058 7303 unsigned int j;
331d2d0d 7304 unsigned int prefix;
4dffcebc 7305
e4e00185
AS
7306 if (avoid_fence
7307 && i.tm.base_opcode == 0xfae
7308 && i.operands == 1
7309 && i.imm_operands == 1
7310 && (i.op[0].imms->X_add_number == 0xe8
7311 || i.op[0].imms->X_add_number == 0xf0
7312 || i.op[0].imms->X_add_number == 0xf8))
7313 {
7314 /* Encode lfence, mfence, and sfence as
7315 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7316 offsetT val = 0x240483f0ULL;
7317 p = frag_more (5);
7318 md_number_to_chars (p, val, 5);
7319 return;
7320 }
7321
d022bddd
IT
7322 /* Some processors fail on LOCK prefix. This options makes
7323 assembler ignore LOCK prefix and serves as a workaround. */
7324 if (omit_lock_prefix)
7325 {
7326 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7327 return;
7328 i.prefix[LOCK_PREFIX] = 0;
7329 }
7330
43234a1e
L
7331 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7332 don't need the explicit prefix. */
7333 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7334 {
c0f3af97 7335 switch (i.tm.opcode_length)
bc4bd9ab 7336 {
c0f3af97
L
7337 case 3:
7338 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7339 {
c0f3af97
L
7340 prefix = (i.tm.base_opcode >> 24) & 0xff;
7341 goto check_prefix;
7342 }
7343 break;
7344 case 2:
7345 if ((i.tm.base_opcode & 0xff0000) != 0)
7346 {
7347 prefix = (i.tm.base_opcode >> 16) & 0xff;
7348 if (i.tm.cpu_flags.bitfield.cpupadlock)
7349 {
4dffcebc 7350check_prefix:
c0f3af97 7351 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7352 || (i.prefix[REP_PREFIX]
c0f3af97
L
7353 != REPE_PREFIX_OPCODE))
7354 add_prefix (prefix);
7355 }
7356 else
4dffcebc
L
7357 add_prefix (prefix);
7358 }
c0f3af97
L
7359 break;
7360 case 1:
7361 break;
390c91cf
L
7362 case 0:
7363 /* Check for pseudo prefixes. */
7364 as_bad_where (insn_start_frag->fr_file,
7365 insn_start_frag->fr_line,
7366 _("pseudo prefix without instruction"));
7367 return;
c0f3af97
L
7368 default:
7369 abort ();
bc4bd9ab 7370 }
c0f3af97 7371
6d19a37a 7372#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7373 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7374 R_X86_64_GOTTPOFF relocation so that linker can safely
7375 perform IE->LE optimization. */
7376 if (x86_elf_abi == X86_64_X32_ABI
7377 && i.operands == 2
7378 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7379 && i.prefix[REX_PREFIX] == 0)
7380 add_prefix (REX_OPCODE);
6d19a37a 7381#endif
cf61b747 7382
c0f3af97
L
7383 /* The prefix bytes. */
7384 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7385 if (*q)
7386 FRAG_APPEND_1_CHAR (*q);
0f10071e 7387 }
ae5c1c7b 7388 else
c0f3af97
L
7389 {
7390 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7391 if (*q)
7392 switch (j)
7393 {
7394 case REX_PREFIX:
7395 /* REX byte is encoded in VEX prefix. */
7396 break;
7397 case SEG_PREFIX:
7398 case ADDR_PREFIX:
7399 FRAG_APPEND_1_CHAR (*q);
7400 break;
7401 default:
7402 /* There should be no other prefixes for instructions
7403 with VEX prefix. */
7404 abort ();
7405 }
7406
43234a1e
L
7407 /* For EVEX instructions i.vrex should become 0 after
7408 build_evex_prefix. For VEX instructions upper 16 registers
7409 aren't available, so VREX should be 0. */
7410 if (i.vrex)
7411 abort ();
c0f3af97
L
7412 /* Now the VEX prefix. */
7413 p = frag_more (i.vex.length);
7414 for (j = 0; j < i.vex.length; j++)
7415 p[j] = i.vex.bytes[j];
7416 }
252b5132 7417
29b0f896 7418 /* Now the opcode; be careful about word order here! */
4dffcebc 7419 if (i.tm.opcode_length == 1)
29b0f896
AM
7420 {
7421 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7422 }
7423 else
7424 {
4dffcebc 7425 switch (i.tm.opcode_length)
331d2d0d 7426 {
43234a1e
L
7427 case 4:
7428 p = frag_more (4);
7429 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7430 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7431 break;
4dffcebc 7432 case 3:
331d2d0d
L
7433 p = frag_more (3);
7434 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7435 break;
7436 case 2:
7437 p = frag_more (2);
7438 break;
7439 default:
7440 abort ();
7441 break;
331d2d0d 7442 }
0f10071e 7443
29b0f896
AM
7444 /* Put out high byte first: can't use md_number_to_chars! */
7445 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7446 *p = i.tm.base_opcode & 0xff;
7447 }
3e73aa7c 7448
29b0f896 7449 /* Now the modrm byte and sib byte (if present). */
40fb9820 7450 if (i.tm.opcode_modifier.modrm)
29b0f896 7451 {
4a3523fa
L
7452 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7453 | i.rm.reg << 3
7454 | i.rm.mode << 6));
29b0f896
AM
7455 /* If i.rm.regmem == ESP (4)
7456 && i.rm.mode != (Register mode)
7457 && not 16 bit
7458 ==> need second modrm byte. */
7459 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7460 && i.rm.mode != 3
dc821c5f 7461 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7462 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7463 | i.sib.index << 3
7464 | i.sib.scale << 6));
29b0f896 7465 }
3e73aa7c 7466
29b0f896 7467 if (i.disp_operands)
2bbd9c25 7468 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7469
29b0f896 7470 if (i.imm_operands)
2bbd9c25 7471 output_imm (insn_start_frag, insn_start_off);
29b0f896 7472 }
252b5132 7473
29b0f896
AM
7474#ifdef DEBUG386
7475 if (flag_debug)
7476 {
7b81dfbb 7477 pi ("" /*line*/, &i);
29b0f896
AM
7478 }
7479#endif /* DEBUG386 */
7480}
252b5132 7481
e205caa7
L
7482/* Return the size of the displacement operand N. */
7483
7484static int
7485disp_size (unsigned int n)
7486{
7487 int size = 4;
43234a1e 7488
b5014f7a 7489 if (i.types[n].bitfield.disp64)
40fb9820
L
7490 size = 8;
7491 else if (i.types[n].bitfield.disp8)
7492 size = 1;
7493 else if (i.types[n].bitfield.disp16)
7494 size = 2;
e205caa7
L
7495 return size;
7496}
7497
7498/* Return the size of the immediate operand N. */
7499
7500static int
7501imm_size (unsigned int n)
7502{
7503 int size = 4;
40fb9820
L
7504 if (i.types[n].bitfield.imm64)
7505 size = 8;
7506 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7507 size = 1;
7508 else if (i.types[n].bitfield.imm16)
7509 size = 2;
e205caa7
L
7510 return size;
7511}
7512
29b0f896 7513static void
64e74474 7514output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7515{
7516 char *p;
7517 unsigned int n;
252b5132 7518
29b0f896
AM
7519 for (n = 0; n < i.operands; n++)
7520 {
b5014f7a 7521 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7522 {
7523 if (i.op[n].disps->X_op == O_constant)
7524 {
e205caa7 7525 int size = disp_size (n);
43234a1e 7526 offsetT val = i.op[n].disps->X_add_number;
252b5132 7527
b5014f7a 7528 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7529 p = frag_more (size);
7530 md_number_to_chars (p, val, size);
7531 }
7532 else
7533 {
f86103b7 7534 enum bfd_reloc_code_real reloc_type;
e205caa7 7535 int size = disp_size (n);
40fb9820 7536 int sign = i.types[n].bitfield.disp32s;
29b0f896 7537 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7538 fixS *fixP;
29b0f896 7539
e205caa7 7540 /* We can't have 8 bit displacement here. */
9c2799c2 7541 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7542
29b0f896
AM
7543 /* The PC relative address is computed relative
7544 to the instruction boundary, so in case immediate
7545 fields follows, we need to adjust the value. */
7546 if (pcrel && i.imm_operands)
7547 {
29b0f896 7548 unsigned int n1;
e205caa7 7549 int sz = 0;
252b5132 7550
29b0f896 7551 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7552 if (operand_type_check (i.types[n1], imm))
252b5132 7553 {
e205caa7
L
7554 /* Only one immediate is allowed for PC
7555 relative address. */
9c2799c2 7556 gas_assert (sz == 0);
e205caa7
L
7557 sz = imm_size (n1);
7558 i.op[n].disps->X_add_number -= sz;
252b5132 7559 }
29b0f896 7560 /* We should find the immediate. */
9c2799c2 7561 gas_assert (sz != 0);
29b0f896 7562 }
520dc8e8 7563
29b0f896 7564 p = frag_more (size);
d258b828 7565 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7566 if (GOT_symbol
2bbd9c25 7567 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7568 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7569 || reloc_type == BFD_RELOC_X86_64_32S
7570 || (reloc_type == BFD_RELOC_64
7571 && object_64bit))
d6ab8113
JB
7572 && (i.op[n].disps->X_op == O_symbol
7573 || (i.op[n].disps->X_op == O_add
7574 && ((symbol_get_value_expression
7575 (i.op[n].disps->X_op_symbol)->X_op)
7576 == O_subtract))))
7577 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7578 {
7579 offsetT add;
7580
7581 if (insn_start_frag == frag_now)
7582 add = (p - frag_now->fr_literal) - insn_start_off;
7583 else
7584 {
7585 fragS *fr;
7586
7587 add = insn_start_frag->fr_fix - insn_start_off;
7588 for (fr = insn_start_frag->fr_next;
7589 fr && fr != frag_now; fr = fr->fr_next)
7590 add += fr->fr_fix;
7591 add += p - frag_now->fr_literal;
7592 }
7593
4fa24527 7594 if (!object_64bit)
7b81dfbb
AJ
7595 {
7596 reloc_type = BFD_RELOC_386_GOTPC;
7597 i.op[n].imms->X_add_number += add;
7598 }
7599 else if (reloc_type == BFD_RELOC_64)
7600 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7601 else
7b81dfbb
AJ
7602 /* Don't do the adjustment for x86-64, as there
7603 the pcrel addressing is relative to the _next_
7604 insn, and that is taken care of in other code. */
d6ab8113 7605 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7606 }
02a86693
L
7607 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7608 size, i.op[n].disps, pcrel,
7609 reloc_type);
7610 /* Check for "call/jmp *mem", "mov mem, %reg",
7611 "test %reg, mem" and "binop mem, %reg" where binop
7612 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7613 instructions. Always generate R_386_GOT32X for
7614 "sym*GOT" operand in 32-bit mode. */
7615 if ((generate_relax_relocations
7616 || (!object_64bit
7617 && i.rm.mode == 0
7618 && i.rm.regmem == 5))
7619 && (i.rm.mode == 2
7620 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7621 && ((i.operands == 1
7622 && i.tm.base_opcode == 0xff
7623 && (i.rm.reg == 2 || i.rm.reg == 4))
7624 || (i.operands == 2
7625 && (i.tm.base_opcode == 0x8b
7626 || i.tm.base_opcode == 0x85
7627 || (i.tm.base_opcode & 0xc7) == 0x03))))
7628 {
7629 if (object_64bit)
7630 {
7631 fixP->fx_tcbit = i.rex != 0;
7632 if (i.base_reg
7633 && (i.base_reg->reg_num == RegRip
7634 || i.base_reg->reg_num == RegEip))
7635 fixP->fx_tcbit2 = 1;
7636 }
7637 else
7638 fixP->fx_tcbit2 = 1;
7639 }
29b0f896
AM
7640 }
7641 }
7642 }
7643}
252b5132 7644
29b0f896 7645static void
64e74474 7646output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7647{
7648 char *p;
7649 unsigned int n;
252b5132 7650
29b0f896
AM
7651 for (n = 0; n < i.operands; n++)
7652 {
43234a1e
L
7653 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7654 if (i.rounding && (int) n == i.rounding->operand)
7655 continue;
7656
40fb9820 7657 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7658 {
7659 if (i.op[n].imms->X_op == O_constant)
7660 {
e205caa7 7661 int size = imm_size (n);
29b0f896 7662 offsetT val;
b4cac588 7663
29b0f896
AM
7664 val = offset_in_range (i.op[n].imms->X_add_number,
7665 size);
7666 p = frag_more (size);
7667 md_number_to_chars (p, val, size);
7668 }
7669 else
7670 {
7671 /* Not absolute_section.
7672 Need a 32-bit fixup (don't support 8bit
7673 non-absolute imms). Try to support other
7674 sizes ... */
f86103b7 7675 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7676 int size = imm_size (n);
7677 int sign;
29b0f896 7678
40fb9820 7679 if (i.types[n].bitfield.imm32s
a7d61044 7680 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7681 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7682 sign = 1;
e205caa7
L
7683 else
7684 sign = 0;
520dc8e8 7685
29b0f896 7686 p = frag_more (size);
d258b828 7687 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7688
2bbd9c25
JJ
7689 /* This is tough to explain. We end up with this one if we
7690 * have operands that look like
7691 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7692 * obtain the absolute address of the GOT, and it is strongly
7693 * preferable from a performance point of view to avoid using
7694 * a runtime relocation for this. The actual sequence of
7695 * instructions often look something like:
7696 *
7697 * call .L66
7698 * .L66:
7699 * popl %ebx
7700 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7701 *
7702 * The call and pop essentially return the absolute address
7703 * of the label .L66 and store it in %ebx. The linker itself
7704 * will ultimately change the first operand of the addl so
7705 * that %ebx points to the GOT, but to keep things simple, the
7706 * .o file must have this operand set so that it generates not
7707 * the absolute address of .L66, but the absolute address of
7708 * itself. This allows the linker itself simply treat a GOTPC
7709 * relocation as asking for a pcrel offset to the GOT to be
7710 * added in, and the addend of the relocation is stored in the
7711 * operand field for the instruction itself.
7712 *
7713 * Our job here is to fix the operand so that it would add
7714 * the correct offset so that %ebx would point to itself. The
7715 * thing that is tricky is that .-.L66 will point to the
7716 * beginning of the instruction, so we need to further modify
7717 * the operand so that it will point to itself. There are
7718 * other cases where you have something like:
7719 *
7720 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7721 *
7722 * and here no correction would be required. Internally in
7723 * the assembler we treat operands of this form as not being
7724 * pcrel since the '.' is explicitly mentioned, and I wonder
7725 * whether it would simplify matters to do it this way. Who
7726 * knows. In earlier versions of the PIC patches, the
7727 * pcrel_adjust field was used to store the correction, but
7728 * since the expression is not pcrel, I felt it would be
7729 * confusing to do it this way. */
7730
d6ab8113 7731 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7732 || reloc_type == BFD_RELOC_X86_64_32S
7733 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7734 && GOT_symbol
7735 && GOT_symbol == i.op[n].imms->X_add_symbol
7736 && (i.op[n].imms->X_op == O_symbol
7737 || (i.op[n].imms->X_op == O_add
7738 && ((symbol_get_value_expression
7739 (i.op[n].imms->X_op_symbol)->X_op)
7740 == O_subtract))))
7741 {
2bbd9c25
JJ
7742 offsetT add;
7743
7744 if (insn_start_frag == frag_now)
7745 add = (p - frag_now->fr_literal) - insn_start_off;
7746 else
7747 {
7748 fragS *fr;
7749
7750 add = insn_start_frag->fr_fix - insn_start_off;
7751 for (fr = insn_start_frag->fr_next;
7752 fr && fr != frag_now; fr = fr->fr_next)
7753 add += fr->fr_fix;
7754 add += p - frag_now->fr_literal;
7755 }
7756
4fa24527 7757 if (!object_64bit)
d6ab8113 7758 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7759 else if (size == 4)
d6ab8113 7760 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7761 else if (size == 8)
7762 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7763 i.op[n].imms->X_add_number += add;
29b0f896 7764 }
29b0f896
AM
7765 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7766 i.op[n].imms, 0, reloc_type);
7767 }
7768 }
7769 }
252b5132
RH
7770}
7771\f
d182319b
JB
7772/* x86_cons_fix_new is called via the expression parsing code when a
7773 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7774static int cons_sign = -1;
7775
7776void
e3bb37b5 7777x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7778 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7779{
d258b828 7780 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7781
7782#ifdef TE_PE
7783 if (exp->X_op == O_secrel)
7784 {
7785 exp->X_op = O_symbol;
7786 r = BFD_RELOC_32_SECREL;
7787 }
7788#endif
7789
7790 fix_new_exp (frag, off, len, exp, 0, r);
7791}
7792
357d1bd8
L
7793/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7794 purpose of the `.dc.a' internal pseudo-op. */
7795
7796int
7797x86_address_bytes (void)
7798{
7799 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7800 return 4;
7801 return stdoutput->arch_info->bits_per_address / 8;
7802}
7803
d382c579
TG
7804#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7805 || defined (LEX_AT)
d258b828 7806# define lex_got(reloc, adjust, types) NULL
718ddfc0 7807#else
f3c180ae
AM
7808/* Parse operands of the form
7809 <symbol>@GOTOFF+<nnn>
7810 and similar .plt or .got references.
7811
7812 If we find one, set up the correct relocation in RELOC and copy the
7813 input string, minus the `@GOTOFF' into a malloc'd buffer for
7814 parsing by the calling routine. Return this buffer, and if ADJUST
7815 is non-null set it to the length of the string we removed from the
7816 input line. Otherwise return NULL. */
7817static char *
91d6fa6a 7818lex_got (enum bfd_reloc_code_real *rel,
64e74474 7819 int *adjust,
d258b828 7820 i386_operand_type *types)
f3c180ae 7821{
7b81dfbb
AJ
7822 /* Some of the relocations depend on the size of what field is to
7823 be relocated. But in our callers i386_immediate and i386_displacement
7824 we don't yet know the operand size (this will be set by insn
7825 matching). Hence we record the word32 relocation here,
7826 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7827 static const struct {
7828 const char *str;
cff8d58a 7829 int len;
4fa24527 7830 const enum bfd_reloc_code_real rel[2];
40fb9820 7831 const i386_operand_type types64;
f3c180ae 7832 } gotrel[] = {
8ce3d284 7833#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7834 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7835 BFD_RELOC_SIZE32 },
7836 OPERAND_TYPE_IMM32_64 },
8ce3d284 7837#endif
cff8d58a
L
7838 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7839 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7840 OPERAND_TYPE_IMM64 },
cff8d58a
L
7841 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7842 BFD_RELOC_X86_64_PLT32 },
40fb9820 7843 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7844 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7845 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7846 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7847 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7848 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7849 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7850 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7851 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7852 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7853 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7854 BFD_RELOC_X86_64_TLSGD },
40fb9820 7855 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7856 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7857 _dummy_first_bfd_reloc_code_real },
40fb9820 7858 OPERAND_TYPE_NONE },
cff8d58a
L
7859 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7860 BFD_RELOC_X86_64_TLSLD },
40fb9820 7861 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7862 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7863 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7864 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7865 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7866 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7867 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7868 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7869 _dummy_first_bfd_reloc_code_real },
40fb9820 7870 OPERAND_TYPE_NONE },
cff8d58a
L
7871 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7872 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7873 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7874 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7875 _dummy_first_bfd_reloc_code_real },
40fb9820 7876 OPERAND_TYPE_NONE },
cff8d58a
L
7877 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7878 _dummy_first_bfd_reloc_code_real },
40fb9820 7879 OPERAND_TYPE_NONE },
cff8d58a
L
7880 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7881 BFD_RELOC_X86_64_GOT32 },
40fb9820 7882 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7883 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7884 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7885 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7886 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7887 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7888 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7889 };
7890 char *cp;
7891 unsigned int j;
7892
d382c579 7893#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7894 if (!IS_ELF)
7895 return NULL;
d382c579 7896#endif
718ddfc0 7897
f3c180ae 7898 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7899 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7900 return NULL;
7901
47465058 7902 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7903 {
cff8d58a 7904 int len = gotrel[j].len;
28f81592 7905 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7906 {
4fa24527 7907 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7908 {
28f81592
AM
7909 int first, second;
7910 char *tmpbuf, *past_reloc;
f3c180ae 7911
91d6fa6a 7912 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7913
3956db08
JB
7914 if (types)
7915 {
7916 if (flag_code != CODE_64BIT)
40fb9820
L
7917 {
7918 types->bitfield.imm32 = 1;
7919 types->bitfield.disp32 = 1;
7920 }
3956db08
JB
7921 else
7922 *types = gotrel[j].types64;
7923 }
7924
8fd4256d 7925 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7926 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7927
28f81592 7928 /* The length of the first part of our input line. */
f3c180ae 7929 first = cp - input_line_pointer;
28f81592
AM
7930
7931 /* The second part goes from after the reloc token until
67c11a9b 7932 (and including) an end_of_line char or comma. */
28f81592 7933 past_reloc = cp + 1 + len;
67c11a9b
AM
7934 cp = past_reloc;
7935 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7936 ++cp;
7937 second = cp + 1 - past_reloc;
28f81592
AM
7938
7939 /* Allocate and copy string. The trailing NUL shouldn't
7940 be necessary, but be safe. */
add39d23 7941 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 7942 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7943 if (second != 0 && *past_reloc != ' ')
7944 /* Replace the relocation token with ' ', so that
7945 errors like foo@GOTOFF1 will be detected. */
7946 tmpbuf[first++] = ' ';
af89796a
L
7947 else
7948 /* Increment length by 1 if the relocation token is
7949 removed. */
7950 len++;
7951 if (adjust)
7952 *adjust = len;
0787a12d
AM
7953 memcpy (tmpbuf + first, past_reloc, second);
7954 tmpbuf[first + second] = '\0';
f3c180ae
AM
7955 return tmpbuf;
7956 }
7957
4fa24527
JB
7958 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7959 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7960 return NULL;
7961 }
7962 }
7963
7964 /* Might be a symbol version string. Don't as_bad here. */
7965 return NULL;
7966}
4e4f7c87 7967#endif
f3c180ae 7968
a988325c
NC
7969#ifdef TE_PE
7970#ifdef lex_got
7971#undef lex_got
7972#endif
7973/* Parse operands of the form
7974 <symbol>@SECREL32+<nnn>
7975
7976 If we find one, set up the correct relocation in RELOC and copy the
7977 input string, minus the `@SECREL32' into a malloc'd buffer for
7978 parsing by the calling routine. Return this buffer, and if ADJUST
7979 is non-null set it to the length of the string we removed from the
34bca508
L
7980 input line. Otherwise return NULL.
7981
a988325c
NC
7982 This function is copied from the ELF version above adjusted for PE targets. */
7983
7984static char *
7985lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7986 int *adjust ATTRIBUTE_UNUSED,
d258b828 7987 i386_operand_type *types)
a988325c
NC
7988{
7989 static const struct
7990 {
7991 const char *str;
7992 int len;
7993 const enum bfd_reloc_code_real rel[2];
7994 const i386_operand_type types64;
7995 }
7996 gotrel[] =
7997 {
7998 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7999 BFD_RELOC_32_SECREL },
8000 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8001 };
8002
8003 char *cp;
8004 unsigned j;
8005
8006 for (cp = input_line_pointer; *cp != '@'; cp++)
8007 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8008 return NULL;
8009
8010 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8011 {
8012 int len = gotrel[j].len;
8013
8014 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8015 {
8016 if (gotrel[j].rel[object_64bit] != 0)
8017 {
8018 int first, second;
8019 char *tmpbuf, *past_reloc;
8020
8021 *rel = gotrel[j].rel[object_64bit];
8022 if (adjust)
8023 *adjust = len;
8024
8025 if (types)
8026 {
8027 if (flag_code != CODE_64BIT)
8028 {
8029 types->bitfield.imm32 = 1;
8030 types->bitfield.disp32 = 1;
8031 }
8032 else
8033 *types = gotrel[j].types64;
8034 }
8035
8036 /* The length of the first part of our input line. */
8037 first = cp - input_line_pointer;
8038
8039 /* The second part goes from after the reloc token until
8040 (and including) an end_of_line char or comma. */
8041 past_reloc = cp + 1 + len;
8042 cp = past_reloc;
8043 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8044 ++cp;
8045 second = cp + 1 - past_reloc;
8046
8047 /* Allocate and copy string. The trailing NUL shouldn't
8048 be necessary, but be safe. */
add39d23 8049 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8050 memcpy (tmpbuf, input_line_pointer, first);
8051 if (second != 0 && *past_reloc != ' ')
8052 /* Replace the relocation token with ' ', so that
8053 errors like foo@SECLREL321 will be detected. */
8054 tmpbuf[first++] = ' ';
8055 memcpy (tmpbuf + first, past_reloc, second);
8056 tmpbuf[first + second] = '\0';
8057 return tmpbuf;
8058 }
8059
8060 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8061 gotrel[j].str, 1 << (5 + object_64bit));
8062 return NULL;
8063 }
8064 }
8065
8066 /* Might be a symbol version string. Don't as_bad here. */
8067 return NULL;
8068}
8069
8070#endif /* TE_PE */
8071
62ebcb5c 8072bfd_reloc_code_real_type
e3bb37b5 8073x86_cons (expressionS *exp, int size)
f3c180ae 8074{
62ebcb5c
AM
8075 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8076
ee86248c
JB
8077 intel_syntax = -intel_syntax;
8078
3c7b9c2c 8079 exp->X_md = 0;
4fa24527 8080 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8081 {
8082 /* Handle @GOTOFF and the like in an expression. */
8083 char *save;
8084 char *gotfree_input_line;
4a57f2cf 8085 int adjust = 0;
f3c180ae
AM
8086
8087 save = input_line_pointer;
d258b828 8088 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8089 if (gotfree_input_line)
8090 input_line_pointer = gotfree_input_line;
8091
8092 expression (exp);
8093
8094 if (gotfree_input_line)
8095 {
8096 /* expression () has merrily parsed up to the end of line,
8097 or a comma - in the wrong buffer. Transfer how far
8098 input_line_pointer has moved to the right buffer. */
8099 input_line_pointer = (save
8100 + (input_line_pointer - gotfree_input_line)
8101 + adjust);
8102 free (gotfree_input_line);
3992d3b7
AM
8103 if (exp->X_op == O_constant
8104 || exp->X_op == O_absent
8105 || exp->X_op == O_illegal
0398aac5 8106 || exp->X_op == O_register
3992d3b7
AM
8107 || exp->X_op == O_big)
8108 {
8109 char c = *input_line_pointer;
8110 *input_line_pointer = 0;
8111 as_bad (_("missing or invalid expression `%s'"), save);
8112 *input_line_pointer = c;
8113 }
f3c180ae
AM
8114 }
8115 }
8116 else
8117 expression (exp);
ee86248c
JB
8118
8119 intel_syntax = -intel_syntax;
8120
8121 if (intel_syntax)
8122 i386_intel_simplify (exp);
62ebcb5c
AM
8123
8124 return got_reloc;
f3c180ae 8125}
f3c180ae 8126
9f32dd5b
L
8127static void
8128signed_cons (int size)
6482c264 8129{
d182319b
JB
8130 if (flag_code == CODE_64BIT)
8131 cons_sign = 1;
8132 cons (size);
8133 cons_sign = -1;
6482c264
NC
8134}
8135
d182319b 8136#ifdef TE_PE
6482c264 8137static void
7016a5d5 8138pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8139{
8140 expressionS exp;
8141
8142 do
8143 {
8144 expression (&exp);
8145 if (exp.X_op == O_symbol)
8146 exp.X_op = O_secrel;
8147
8148 emit_expr (&exp, 4);
8149 }
8150 while (*input_line_pointer++ == ',');
8151
8152 input_line_pointer--;
8153 demand_empty_rest_of_line ();
8154}
6482c264
NC
8155#endif
8156
43234a1e
L
8157/* Handle Vector operations. */
8158
8159static char *
8160check_VecOperations (char *op_string, char *op_end)
8161{
8162 const reg_entry *mask;
8163 const char *saved;
8164 char *end_op;
8165
8166 while (*op_string
8167 && (op_end == NULL || op_string < op_end))
8168 {
8169 saved = op_string;
8170 if (*op_string == '{')
8171 {
8172 op_string++;
8173
8174 /* Check broadcasts. */
8175 if (strncmp (op_string, "1to", 3) == 0)
8176 {
8177 int bcst_type;
8178
8179 if (i.broadcast)
8180 goto duplicated_vec_op;
8181
8182 op_string += 3;
8183 if (*op_string == '8')
8184 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8185 else if (*op_string == '4')
8186 bcst_type = BROADCAST_1TO4;
8187 else if (*op_string == '2')
8188 bcst_type = BROADCAST_1TO2;
43234a1e
L
8189 else if (*op_string == '1'
8190 && *(op_string+1) == '6')
8191 {
8192 bcst_type = BROADCAST_1TO16;
8193 op_string++;
8194 }
8195 else
8196 {
8197 as_bad (_("Unsupported broadcast: `%s'"), saved);
8198 return NULL;
8199 }
8200 op_string++;
8201
8202 broadcast_op.type = bcst_type;
8203 broadcast_op.operand = this_operand;
8204 i.broadcast = &broadcast_op;
8205 }
8206 /* Check masking operation. */
8207 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8208 {
8209 /* k0 can't be used for write mask. */
6d2cd6b2 8210 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8211 {
6d2cd6b2
JB
8212 as_bad (_("`%s%s' can't be used for write mask"),
8213 register_prefix, mask->reg_name);
43234a1e
L
8214 return NULL;
8215 }
8216
8217 if (!i.mask)
8218 {
8219 mask_op.mask = mask;
8220 mask_op.zeroing = 0;
8221 mask_op.operand = this_operand;
8222 i.mask = &mask_op;
8223 }
8224 else
8225 {
8226 if (i.mask->mask)
8227 goto duplicated_vec_op;
8228
8229 i.mask->mask = mask;
8230
8231 /* Only "{z}" is allowed here. No need to check
8232 zeroing mask explicitly. */
8233 if (i.mask->operand != this_operand)
8234 {
8235 as_bad (_("invalid write mask `%s'"), saved);
8236 return NULL;
8237 }
8238 }
8239
8240 op_string = end_op;
8241 }
8242 /* Check zeroing-flag for masking operation. */
8243 else if (*op_string == 'z')
8244 {
8245 if (!i.mask)
8246 {
8247 mask_op.mask = NULL;
8248 mask_op.zeroing = 1;
8249 mask_op.operand = this_operand;
8250 i.mask = &mask_op;
8251 }
8252 else
8253 {
8254 if (i.mask->zeroing)
8255 {
8256 duplicated_vec_op:
8257 as_bad (_("duplicated `%s'"), saved);
8258 return NULL;
8259 }
8260
8261 i.mask->zeroing = 1;
8262
8263 /* Only "{%k}" is allowed here. No need to check mask
8264 register explicitly. */
8265 if (i.mask->operand != this_operand)
8266 {
8267 as_bad (_("invalid zeroing-masking `%s'"),
8268 saved);
8269 return NULL;
8270 }
8271 }
8272
8273 op_string++;
8274 }
8275 else
8276 goto unknown_vec_op;
8277
8278 if (*op_string != '}')
8279 {
8280 as_bad (_("missing `}' in `%s'"), saved);
8281 return NULL;
8282 }
8283 op_string++;
8284 continue;
8285 }
8286 unknown_vec_op:
8287 /* We don't know this one. */
8288 as_bad (_("unknown vector operation: `%s'"), saved);
8289 return NULL;
8290 }
8291
6d2cd6b2
JB
8292 if (i.mask && i.mask->zeroing && !i.mask->mask)
8293 {
8294 as_bad (_("zeroing-masking only allowed with write mask"));
8295 return NULL;
8296 }
8297
43234a1e
L
8298 return op_string;
8299}
8300
252b5132 8301static int
70e41ade 8302i386_immediate (char *imm_start)
252b5132
RH
8303{
8304 char *save_input_line_pointer;
f3c180ae 8305 char *gotfree_input_line;
252b5132 8306 segT exp_seg = 0;
47926f60 8307 expressionS *exp;
40fb9820
L
8308 i386_operand_type types;
8309
0dfbf9d7 8310 operand_type_set (&types, ~0);
252b5132
RH
8311
8312 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8313 {
31b2323c
L
8314 as_bad (_("at most %d immediate operands are allowed"),
8315 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8316 return 0;
8317 }
8318
8319 exp = &im_expressions[i.imm_operands++];
520dc8e8 8320 i.op[this_operand].imms = exp;
252b5132
RH
8321
8322 if (is_space_char (*imm_start))
8323 ++imm_start;
8324
8325 save_input_line_pointer = input_line_pointer;
8326 input_line_pointer = imm_start;
8327
d258b828 8328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8329 if (gotfree_input_line)
8330 input_line_pointer = gotfree_input_line;
252b5132
RH
8331
8332 exp_seg = expression (exp);
8333
83183c0c 8334 SKIP_WHITESPACE ();
43234a1e
L
8335
8336 /* Handle vector operations. */
8337 if (*input_line_pointer == '{')
8338 {
8339 input_line_pointer = check_VecOperations (input_line_pointer,
8340 NULL);
8341 if (input_line_pointer == NULL)
8342 return 0;
8343 }
8344
252b5132 8345 if (*input_line_pointer)
f3c180ae 8346 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8347
8348 input_line_pointer = save_input_line_pointer;
f3c180ae 8349 if (gotfree_input_line)
ee86248c
JB
8350 {
8351 free (gotfree_input_line);
8352
8353 if (exp->X_op == O_constant || exp->X_op == O_register)
8354 exp->X_op = O_illegal;
8355 }
8356
8357 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8358}
252b5132 8359
ee86248c
JB
8360static int
8361i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8362 i386_operand_type types, const char *imm_start)
8363{
8364 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8365 {
313c53d1
L
8366 if (imm_start)
8367 as_bad (_("missing or invalid immediate expression `%s'"),
8368 imm_start);
3992d3b7 8369 return 0;
252b5132 8370 }
3e73aa7c 8371 else if (exp->X_op == O_constant)
252b5132 8372 {
47926f60 8373 /* Size it properly later. */
40fb9820 8374 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8375 /* If not 64bit, sign extend val. */
8376 if (flag_code != CODE_64BIT
4eed87de
AM
8377 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8378 exp->X_add_number
8379 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8380 }
4c63da97 8381#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8382 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8383 && exp_seg != absolute_section
47926f60 8384 && exp_seg != text_section
24eab124
AM
8385 && exp_seg != data_section
8386 && exp_seg != bss_section
8387 && exp_seg != undefined_section
f86103b7 8388 && !bfd_is_com_section (exp_seg))
252b5132 8389 {
d0b47220 8390 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8391 return 0;
8392 }
8393#endif
a841bdf5 8394 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8395 {
313c53d1
L
8396 if (imm_start)
8397 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8398 return 0;
8399 }
252b5132
RH
8400 else
8401 {
8402 /* This is an address. The size of the address will be
24eab124 8403 determined later, depending on destination register,
3e73aa7c 8404 suffix, or the default for the section. */
40fb9820
L
8405 i.types[this_operand].bitfield.imm8 = 1;
8406 i.types[this_operand].bitfield.imm16 = 1;
8407 i.types[this_operand].bitfield.imm32 = 1;
8408 i.types[this_operand].bitfield.imm32s = 1;
8409 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8410 i.types[this_operand] = operand_type_and (i.types[this_operand],
8411 types);
252b5132
RH
8412 }
8413
8414 return 1;
8415}
8416
551c1ca1 8417static char *
e3bb37b5 8418i386_scale (char *scale)
252b5132 8419{
551c1ca1
AM
8420 offsetT val;
8421 char *save = input_line_pointer;
252b5132 8422
551c1ca1
AM
8423 input_line_pointer = scale;
8424 val = get_absolute_expression ();
8425
8426 switch (val)
252b5132 8427 {
551c1ca1 8428 case 1:
252b5132
RH
8429 i.log2_scale_factor = 0;
8430 break;
551c1ca1 8431 case 2:
252b5132
RH
8432 i.log2_scale_factor = 1;
8433 break;
551c1ca1 8434 case 4:
252b5132
RH
8435 i.log2_scale_factor = 2;
8436 break;
551c1ca1 8437 case 8:
252b5132
RH
8438 i.log2_scale_factor = 3;
8439 break;
8440 default:
a724f0f4
JB
8441 {
8442 char sep = *input_line_pointer;
8443
8444 *input_line_pointer = '\0';
8445 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8446 scale);
8447 *input_line_pointer = sep;
8448 input_line_pointer = save;
8449 return NULL;
8450 }
252b5132 8451 }
29b0f896 8452 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8453 {
8454 as_warn (_("scale factor of %d without an index register"),
24eab124 8455 1 << i.log2_scale_factor);
252b5132 8456 i.log2_scale_factor = 0;
252b5132 8457 }
551c1ca1
AM
8458 scale = input_line_pointer;
8459 input_line_pointer = save;
8460 return scale;
252b5132
RH
8461}
8462
252b5132 8463static int
e3bb37b5 8464i386_displacement (char *disp_start, char *disp_end)
252b5132 8465{
29b0f896 8466 expressionS *exp;
252b5132
RH
8467 segT exp_seg = 0;
8468 char *save_input_line_pointer;
f3c180ae 8469 char *gotfree_input_line;
40fb9820
L
8470 int override;
8471 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8472 int ret;
252b5132 8473
31b2323c
L
8474 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8475 {
8476 as_bad (_("at most %d displacement operands are allowed"),
8477 MAX_MEMORY_OPERANDS);
8478 return 0;
8479 }
8480
0dfbf9d7 8481 operand_type_set (&bigdisp, 0);
40fb9820
L
8482 if ((i.types[this_operand].bitfield.jumpabsolute)
8483 || (!current_templates->start->opcode_modifier.jump
8484 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8485 {
40fb9820 8486 bigdisp.bitfield.disp32 = 1;
e05278af 8487 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8488 if (flag_code == CODE_64BIT)
8489 {
8490 if (!override)
8491 {
8492 bigdisp.bitfield.disp32s = 1;
8493 bigdisp.bitfield.disp64 = 1;
8494 }
8495 }
8496 else if ((flag_code == CODE_16BIT) ^ override)
8497 {
8498 bigdisp.bitfield.disp32 = 0;
8499 bigdisp.bitfield.disp16 = 1;
8500 }
e05278af
JB
8501 }
8502 else
8503 {
8504 /* For PC-relative branches, the width of the displacement
8505 is dependent upon data size, not address size. */
e05278af 8506 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8507 if (flag_code == CODE_64BIT)
8508 {
8509 if (override || i.suffix == WORD_MNEM_SUFFIX)
8510 bigdisp.bitfield.disp16 = 1;
8511 else
8512 {
8513 bigdisp.bitfield.disp32 = 1;
8514 bigdisp.bitfield.disp32s = 1;
8515 }
8516 }
8517 else
e05278af
JB
8518 {
8519 if (!override)
8520 override = (i.suffix == (flag_code != CODE_16BIT
8521 ? WORD_MNEM_SUFFIX
8522 : LONG_MNEM_SUFFIX));
40fb9820
L
8523 bigdisp.bitfield.disp32 = 1;
8524 if ((flag_code == CODE_16BIT) ^ override)
8525 {
8526 bigdisp.bitfield.disp32 = 0;
8527 bigdisp.bitfield.disp16 = 1;
8528 }
e05278af 8529 }
e05278af 8530 }
c6fb90c8
L
8531 i.types[this_operand] = operand_type_or (i.types[this_operand],
8532 bigdisp);
252b5132
RH
8533
8534 exp = &disp_expressions[i.disp_operands];
520dc8e8 8535 i.op[this_operand].disps = exp;
252b5132
RH
8536 i.disp_operands++;
8537 save_input_line_pointer = input_line_pointer;
8538 input_line_pointer = disp_start;
8539 END_STRING_AND_SAVE (disp_end);
8540
8541#ifndef GCC_ASM_O_HACK
8542#define GCC_ASM_O_HACK 0
8543#endif
8544#if GCC_ASM_O_HACK
8545 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8546 if (i.types[this_operand].bitfield.baseIndex
24eab124 8547 && displacement_string_end[-1] == '+')
252b5132
RH
8548 {
8549 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8550 constraint within gcc asm statements.
8551 For instance:
8552
8553 #define _set_tssldt_desc(n,addr,limit,type) \
8554 __asm__ __volatile__ ( \
8555 "movw %w2,%0\n\t" \
8556 "movw %w1,2+%0\n\t" \
8557 "rorl $16,%1\n\t" \
8558 "movb %b1,4+%0\n\t" \
8559 "movb %4,5+%0\n\t" \
8560 "movb $0,6+%0\n\t" \
8561 "movb %h1,7+%0\n\t" \
8562 "rorl $16,%1" \
8563 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8564
8565 This works great except that the output assembler ends
8566 up looking a bit weird if it turns out that there is
8567 no offset. You end up producing code that looks like:
8568
8569 #APP
8570 movw $235,(%eax)
8571 movw %dx,2+(%eax)
8572 rorl $16,%edx
8573 movb %dl,4+(%eax)
8574 movb $137,5+(%eax)
8575 movb $0,6+(%eax)
8576 movb %dh,7+(%eax)
8577 rorl $16,%edx
8578 #NO_APP
8579
47926f60 8580 So here we provide the missing zero. */
24eab124
AM
8581
8582 *displacement_string_end = '0';
252b5132
RH
8583 }
8584#endif
d258b828 8585 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8586 if (gotfree_input_line)
8587 input_line_pointer = gotfree_input_line;
252b5132 8588
24eab124 8589 exp_seg = expression (exp);
252b5132 8590
636c26b0
AM
8591 SKIP_WHITESPACE ();
8592 if (*input_line_pointer)
8593 as_bad (_("junk `%s' after expression"), input_line_pointer);
8594#if GCC_ASM_O_HACK
8595 RESTORE_END_STRING (disp_end + 1);
8596#endif
636c26b0 8597 input_line_pointer = save_input_line_pointer;
636c26b0 8598 if (gotfree_input_line)
ee86248c
JB
8599 {
8600 free (gotfree_input_line);
8601
8602 if (exp->X_op == O_constant || exp->X_op == O_register)
8603 exp->X_op = O_illegal;
8604 }
8605
8606 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8607
8608 RESTORE_END_STRING (disp_end);
8609
8610 return ret;
8611}
8612
8613static int
8614i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8615 i386_operand_type types, const char *disp_start)
8616{
8617 i386_operand_type bigdisp;
8618 int ret = 1;
636c26b0 8619
24eab124
AM
8620 /* We do this to make sure that the section symbol is in
8621 the symbol table. We will ultimately change the relocation
47926f60 8622 to be relative to the beginning of the section. */
1ae12ab7 8623 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8624 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8625 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8626 {
636c26b0 8627 if (exp->X_op != O_symbol)
3992d3b7 8628 goto inv_disp;
636c26b0 8629
e5cb08ac 8630 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8631 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8632 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8633 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8634 exp->X_op = O_subtract;
8635 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8636 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8637 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8638 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8639 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8640 else
29b0f896 8641 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8642 }
252b5132 8643
3992d3b7
AM
8644 else if (exp->X_op == O_absent
8645 || exp->X_op == O_illegal
ee86248c 8646 || exp->X_op == O_big)
2daf4fd8 8647 {
3992d3b7
AM
8648 inv_disp:
8649 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8650 disp_start);
3992d3b7 8651 ret = 0;
2daf4fd8
AM
8652 }
8653
0e1147d9
L
8654 else if (flag_code == CODE_64BIT
8655 && !i.prefix[ADDR_PREFIX]
8656 && exp->X_op == O_constant)
8657 {
8658 /* Since displacement is signed extended to 64bit, don't allow
8659 disp32 and turn off disp32s if they are out of range. */
8660 i.types[this_operand].bitfield.disp32 = 0;
8661 if (!fits_in_signed_long (exp->X_add_number))
8662 {
8663 i.types[this_operand].bitfield.disp32s = 0;
8664 if (i.types[this_operand].bitfield.baseindex)
8665 {
8666 as_bad (_("0x%lx out range of signed 32bit displacement"),
8667 (long) exp->X_add_number);
8668 ret = 0;
8669 }
8670 }
8671 }
8672
4c63da97 8673#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8674 else if (exp->X_op != O_constant
8675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8676 && exp_seg != absolute_section
8677 && exp_seg != text_section
8678 && exp_seg != data_section
8679 && exp_seg != bss_section
8680 && exp_seg != undefined_section
8681 && !bfd_is_com_section (exp_seg))
24eab124 8682 {
d0b47220 8683 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8684 ret = 0;
24eab124 8685 }
252b5132 8686#endif
3956db08 8687
40fb9820
L
8688 /* Check if this is a displacement only operand. */
8689 bigdisp = i.types[this_operand];
8690 bigdisp.bitfield.disp8 = 0;
8691 bigdisp.bitfield.disp16 = 0;
8692 bigdisp.bitfield.disp32 = 0;
8693 bigdisp.bitfield.disp32s = 0;
8694 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8695 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8696 i.types[this_operand] = operand_type_and (i.types[this_operand],
8697 types);
3956db08 8698
3992d3b7 8699 return ret;
252b5132
RH
8700}
8701
2abc2bec
JB
8702/* Return the active addressing mode, taking address override and
8703 registers forming the address into consideration. Update the
8704 address override prefix if necessary. */
47926f60 8705
2abc2bec
JB
8706static enum flag_code
8707i386_addressing_mode (void)
252b5132 8708{
be05d201
L
8709 enum flag_code addr_mode;
8710
8711 if (i.prefix[ADDR_PREFIX])
8712 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8713 else
8714 {
8715 addr_mode = flag_code;
8716
24eab124 8717#if INFER_ADDR_PREFIX
be05d201
L
8718 if (i.mem_operands == 0)
8719 {
8720 /* Infer address prefix from the first memory operand. */
8721 const reg_entry *addr_reg = i.base_reg;
8722
8723 if (addr_reg == NULL)
8724 addr_reg = i.index_reg;
eecb386c 8725
be05d201
L
8726 if (addr_reg)
8727 {
8728 if (addr_reg->reg_num == RegEip
8729 || addr_reg->reg_num == RegEiz
dc821c5f 8730 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8731 addr_mode = CODE_32BIT;
8732 else if (flag_code != CODE_64BIT
dc821c5f 8733 && addr_reg->reg_type.bitfield.word)
be05d201
L
8734 addr_mode = CODE_16BIT;
8735
8736 if (addr_mode != flag_code)
8737 {
8738 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8739 i.prefixes += 1;
8740 /* Change the size of any displacement too. At most one
8741 of Disp16 or Disp32 is set.
8742 FIXME. There doesn't seem to be any real need for
8743 separate Disp16 and Disp32 flags. The same goes for
8744 Imm16 and Imm32. Removing them would probably clean
8745 up the code quite a lot. */
8746 if (flag_code != CODE_64BIT
8747 && (i.types[this_operand].bitfield.disp16
8748 || i.types[this_operand].bitfield.disp32))
8749 i.types[this_operand]
8750 = operand_type_xor (i.types[this_operand], disp16_32);
8751 }
8752 }
8753 }
24eab124 8754#endif
be05d201
L
8755 }
8756
2abc2bec
JB
8757 return addr_mode;
8758}
8759
8760/* Make sure the memory operand we've been dealt is valid.
8761 Return 1 on success, 0 on a failure. */
8762
8763static int
8764i386_index_check (const char *operand_string)
8765{
8766 const char *kind = "base/index";
8767 enum flag_code addr_mode = i386_addressing_mode ();
8768
fc0763e6
JB
8769 if (current_templates->start->opcode_modifier.isstring
8770 && !current_templates->start->opcode_modifier.immext
8771 && (current_templates->end[-1].opcode_modifier.isstring
8772 || i.mem_operands))
8773 {
8774 /* Memory operands of string insns are special in that they only allow
8775 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8776 const reg_entry *expected_reg;
8777 static const char *di_si[][2] =
8778 {
8779 { "esi", "edi" },
8780 { "si", "di" },
8781 { "rsi", "rdi" }
8782 };
8783 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8784
8785 kind = "string address";
8786
8325cc63 8787 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
8788 {
8789 i386_operand_type type = current_templates->end[-1].operand_types[0];
8790
8791 if (!type.bitfield.baseindex
8792 || ((!i.mem_operands != !intel_syntax)
8793 && current_templates->end[-1].operand_types[1]
8794 .bitfield.baseindex))
8795 type = current_templates->end[-1].operand_types[1];
be05d201
L
8796 expected_reg = hash_find (reg_hash,
8797 di_si[addr_mode][type.bitfield.esseg]);
8798
fc0763e6
JB
8799 }
8800 else
be05d201 8801 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8802
be05d201
L
8803 if (i.base_reg != expected_reg
8804 || i.index_reg
fc0763e6 8805 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8806 {
be05d201
L
8807 /* The second memory operand must have the same size as
8808 the first one. */
8809 if (i.mem_operands
8810 && i.base_reg
8811 && !((addr_mode == CODE_64BIT
dc821c5f 8812 && i.base_reg->reg_type.bitfield.qword)
be05d201 8813 || (addr_mode == CODE_32BIT
dc821c5f
JB
8814 ? i.base_reg->reg_type.bitfield.dword
8815 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
8816 goto bad_address;
8817
fc0763e6
JB
8818 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8819 operand_string,
8820 intel_syntax ? '[' : '(',
8821 register_prefix,
be05d201 8822 expected_reg->reg_name,
fc0763e6 8823 intel_syntax ? ']' : ')');
be05d201 8824 return 1;
fc0763e6 8825 }
be05d201
L
8826 else
8827 return 1;
8828
8829bad_address:
8830 as_bad (_("`%s' is not a valid %s expression"),
8831 operand_string, kind);
8832 return 0;
3e73aa7c
JH
8833 }
8834 else
8835 {
be05d201
L
8836 if (addr_mode != CODE_16BIT)
8837 {
8838 /* 32-bit/64-bit checks. */
8839 if ((i.base_reg
8840 && (addr_mode == CODE_64BIT
dc821c5f
JB
8841 ? !i.base_reg->reg_type.bitfield.qword
8842 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
8843 && (i.index_reg
8844 || (i.base_reg->reg_num
8845 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8846 || (i.index_reg
1b54b8d7
JB
8847 && !i.index_reg->reg_type.bitfield.xmmword
8848 && !i.index_reg->reg_type.bitfield.ymmword
8849 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 8850 && ((addr_mode == CODE_64BIT
dc821c5f 8851 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 8852 || i.index_reg->reg_num == RegRiz)
dc821c5f 8853 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
8854 || i.index_reg->reg_num == RegEiz))
8855 || !i.index_reg->reg_type.bitfield.baseindex)))
8856 goto bad_address;
8178be5b
JB
8857
8858 /* bndmk, bndldx, and bndstx have special restrictions. */
8859 if (current_templates->start->base_opcode == 0xf30f1b
8860 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8861 {
8862 /* They cannot use RIP-relative addressing. */
8863 if (i.base_reg && i.base_reg->reg_num == RegRip)
8864 {
8865 as_bad (_("`%s' cannot be used here"), operand_string);
8866 return 0;
8867 }
8868
8869 /* bndldx and bndstx ignore their scale factor. */
8870 if (current_templates->start->base_opcode != 0xf30f1b
8871 && i.log2_scale_factor)
8872 as_warn (_("register scaling is being ignored here"));
8873 }
be05d201
L
8874 }
8875 else
3e73aa7c 8876 {
be05d201 8877 /* 16-bit checks. */
3e73aa7c 8878 if ((i.base_reg
dc821c5f 8879 && (!i.base_reg->reg_type.bitfield.word
40fb9820 8880 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8881 || (i.index_reg
dc821c5f 8882 && (!i.index_reg->reg_type.bitfield.word
40fb9820 8883 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8884 || !(i.base_reg
8885 && i.base_reg->reg_num < 6
8886 && i.index_reg->reg_num >= 6
8887 && i.log2_scale_factor == 0))))
be05d201 8888 goto bad_address;
3e73aa7c
JH
8889 }
8890 }
be05d201 8891 return 1;
24eab124 8892}
252b5132 8893
43234a1e
L
8894/* Handle vector immediates. */
8895
8896static int
8897RC_SAE_immediate (const char *imm_start)
8898{
8899 unsigned int match_found, j;
8900 const char *pstr = imm_start;
8901 expressionS *exp;
8902
8903 if (*pstr != '{')
8904 return 0;
8905
8906 pstr++;
8907 match_found = 0;
8908 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8909 {
8910 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8911 {
8912 if (!i.rounding)
8913 {
8914 rc_op.type = RC_NamesTable[j].type;
8915 rc_op.operand = this_operand;
8916 i.rounding = &rc_op;
8917 }
8918 else
8919 {
8920 as_bad (_("duplicated `%s'"), imm_start);
8921 return 0;
8922 }
8923 pstr += RC_NamesTable[j].len;
8924 match_found = 1;
8925 break;
8926 }
8927 }
8928 if (!match_found)
8929 return 0;
8930
8931 if (*pstr++ != '}')
8932 {
8933 as_bad (_("Missing '}': '%s'"), imm_start);
8934 return 0;
8935 }
8936 /* RC/SAE immediate string should contain nothing more. */;
8937 if (*pstr != 0)
8938 {
8939 as_bad (_("Junk after '}': '%s'"), imm_start);
8940 return 0;
8941 }
8942
8943 exp = &im_expressions[i.imm_operands++];
8944 i.op[this_operand].imms = exp;
8945
8946 exp->X_op = O_constant;
8947 exp->X_add_number = 0;
8948 exp->X_add_symbol = (symbolS *) 0;
8949 exp->X_op_symbol = (symbolS *) 0;
8950
8951 i.types[this_operand].bitfield.imm8 = 1;
8952 return 1;
8953}
8954
8325cc63
JB
8955/* Only string instructions can have a second memory operand, so
8956 reduce current_templates to just those if it contains any. */
8957static int
8958maybe_adjust_templates (void)
8959{
8960 const insn_template *t;
8961
8962 gas_assert (i.mem_operands == 1);
8963
8964 for (t = current_templates->start; t < current_templates->end; ++t)
8965 if (t->opcode_modifier.isstring)
8966 break;
8967
8968 if (t < current_templates->end)
8969 {
8970 static templates aux_templates;
8971 bfd_boolean recheck;
8972
8973 aux_templates.start = t;
8974 for (; t < current_templates->end; ++t)
8975 if (!t->opcode_modifier.isstring)
8976 break;
8977 aux_templates.end = t;
8978
8979 /* Determine whether to re-check the first memory operand. */
8980 recheck = (aux_templates.start != current_templates->start
8981 || t != current_templates->end);
8982
8983 current_templates = &aux_templates;
8984
8985 if (recheck)
8986 {
8987 i.mem_operands = 0;
8988 if (i.memop1_string != NULL
8989 && i386_index_check (i.memop1_string) == 0)
8990 return 0;
8991 i.mem_operands = 1;
8992 }
8993 }
8994
8995 return 1;
8996}
8997
fc0763e6 8998/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8999 on error. */
252b5132 9000
252b5132 9001static int
a7619375 9002i386_att_operand (char *operand_string)
252b5132 9003{
af6bdddf
AM
9004 const reg_entry *r;
9005 char *end_op;
24eab124 9006 char *op_string = operand_string;
252b5132 9007
24eab124 9008 if (is_space_char (*op_string))
252b5132
RH
9009 ++op_string;
9010
24eab124 9011 /* We check for an absolute prefix (differentiating,
47926f60 9012 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9013 if (*op_string == ABSOLUTE_PREFIX)
9014 {
9015 ++op_string;
9016 if (is_space_char (*op_string))
9017 ++op_string;
40fb9820 9018 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9019 }
252b5132 9020
47926f60 9021 /* Check if operand is a register. */
4d1bb795 9022 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9023 {
40fb9820
L
9024 i386_operand_type temp;
9025
24eab124
AM
9026 /* Check for a segment override by searching for ':' after a
9027 segment register. */
9028 op_string = end_op;
9029 if (is_space_char (*op_string))
9030 ++op_string;
40fb9820
L
9031 if (*op_string == ':'
9032 && (r->reg_type.bitfield.sreg2
9033 || r->reg_type.bitfield.sreg3))
24eab124
AM
9034 {
9035 switch (r->reg_num)
9036 {
9037 case 0:
9038 i.seg[i.mem_operands] = &es;
9039 break;
9040 case 1:
9041 i.seg[i.mem_operands] = &cs;
9042 break;
9043 case 2:
9044 i.seg[i.mem_operands] = &ss;
9045 break;
9046 case 3:
9047 i.seg[i.mem_operands] = &ds;
9048 break;
9049 case 4:
9050 i.seg[i.mem_operands] = &fs;
9051 break;
9052 case 5:
9053 i.seg[i.mem_operands] = &gs;
9054 break;
9055 }
252b5132 9056
24eab124 9057 /* Skip the ':' and whitespace. */
252b5132
RH
9058 ++op_string;
9059 if (is_space_char (*op_string))
24eab124 9060 ++op_string;
252b5132 9061
24eab124
AM
9062 if (!is_digit_char (*op_string)
9063 && !is_identifier_char (*op_string)
9064 && *op_string != '('
9065 && *op_string != ABSOLUTE_PREFIX)
9066 {
9067 as_bad (_("bad memory operand `%s'"), op_string);
9068 return 0;
9069 }
47926f60 9070 /* Handle case of %es:*foo. */
24eab124
AM
9071 if (*op_string == ABSOLUTE_PREFIX)
9072 {
9073 ++op_string;
9074 if (is_space_char (*op_string))
9075 ++op_string;
40fb9820 9076 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9077 }
9078 goto do_memory_reference;
9079 }
43234a1e
L
9080
9081 /* Handle vector operations. */
9082 if (*op_string == '{')
9083 {
9084 op_string = check_VecOperations (op_string, NULL);
9085 if (op_string == NULL)
9086 return 0;
9087 }
9088
24eab124
AM
9089 if (*op_string)
9090 {
d0b47220 9091 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9092 return 0;
9093 }
40fb9820
L
9094 temp = r->reg_type;
9095 temp.bitfield.baseindex = 0;
c6fb90c8
L
9096 i.types[this_operand] = operand_type_or (i.types[this_operand],
9097 temp);
7d5e4556 9098 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9099 i.op[this_operand].regs = r;
24eab124
AM
9100 i.reg_operands++;
9101 }
af6bdddf
AM
9102 else if (*op_string == REGISTER_PREFIX)
9103 {
9104 as_bad (_("bad register name `%s'"), op_string);
9105 return 0;
9106 }
24eab124 9107 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9108 {
24eab124 9109 ++op_string;
40fb9820 9110 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9111 {
d0b47220 9112 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9113 return 0;
9114 }
9115 if (!i386_immediate (op_string))
9116 return 0;
9117 }
43234a1e
L
9118 else if (RC_SAE_immediate (operand_string))
9119 {
9120 /* If it is a RC or SAE immediate, do nothing. */
9121 ;
9122 }
24eab124
AM
9123 else if (is_digit_char (*op_string)
9124 || is_identifier_char (*op_string)
d02603dc 9125 || *op_string == '"'
e5cb08ac 9126 || *op_string == '(')
24eab124 9127 {
47926f60 9128 /* This is a memory reference of some sort. */
af6bdddf 9129 char *base_string;
252b5132 9130
47926f60 9131 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9132 char *displacement_string_start;
9133 char *displacement_string_end;
43234a1e 9134 char *vop_start;
252b5132 9135
24eab124 9136 do_memory_reference:
8325cc63
JB
9137 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9138 return 0;
24eab124 9139 if ((i.mem_operands == 1
40fb9820 9140 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9141 || i.mem_operands == 2)
9142 {
9143 as_bad (_("too many memory references for `%s'"),
9144 current_templates->start->name);
9145 return 0;
9146 }
252b5132 9147
24eab124
AM
9148 /* Check for base index form. We detect the base index form by
9149 looking for an ')' at the end of the operand, searching
9150 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9151 after the '('. */
af6bdddf 9152 base_string = op_string + strlen (op_string);
c3332e24 9153
43234a1e
L
9154 /* Handle vector operations. */
9155 vop_start = strchr (op_string, '{');
9156 if (vop_start && vop_start < base_string)
9157 {
9158 if (check_VecOperations (vop_start, base_string) == NULL)
9159 return 0;
9160 base_string = vop_start;
9161 }
9162
af6bdddf
AM
9163 --base_string;
9164 if (is_space_char (*base_string))
9165 --base_string;
252b5132 9166
47926f60 9167 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9168 displacement_string_start = op_string;
9169 displacement_string_end = base_string + 1;
252b5132 9170
24eab124
AM
9171 if (*base_string == ')')
9172 {
af6bdddf 9173 char *temp_string;
24eab124
AM
9174 unsigned int parens_balanced = 1;
9175 /* We've already checked that the number of left & right ()'s are
47926f60 9176 equal, so this loop will not be infinite. */
24eab124
AM
9177 do
9178 {
9179 base_string--;
9180 if (*base_string == ')')
9181 parens_balanced++;
9182 if (*base_string == '(')
9183 parens_balanced--;
9184 }
9185 while (parens_balanced);
c3332e24 9186
af6bdddf 9187 temp_string = base_string;
c3332e24 9188
24eab124 9189 /* Skip past '(' and whitespace. */
252b5132
RH
9190 ++base_string;
9191 if (is_space_char (*base_string))
24eab124 9192 ++base_string;
252b5132 9193
af6bdddf 9194 if (*base_string == ','
4eed87de
AM
9195 || ((i.base_reg = parse_register (base_string, &end_op))
9196 != NULL))
252b5132 9197 {
af6bdddf 9198 displacement_string_end = temp_string;
252b5132 9199
40fb9820 9200 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9201
af6bdddf 9202 if (i.base_reg)
24eab124 9203 {
24eab124
AM
9204 base_string = end_op;
9205 if (is_space_char (*base_string))
9206 ++base_string;
af6bdddf
AM
9207 }
9208
9209 /* There may be an index reg or scale factor here. */
9210 if (*base_string == ',')
9211 {
9212 ++base_string;
9213 if (is_space_char (*base_string))
9214 ++base_string;
9215
4eed87de
AM
9216 if ((i.index_reg = parse_register (base_string, &end_op))
9217 != NULL)
24eab124 9218 {
af6bdddf 9219 base_string = end_op;
24eab124
AM
9220 if (is_space_char (*base_string))
9221 ++base_string;
af6bdddf
AM
9222 if (*base_string == ',')
9223 {
9224 ++base_string;
9225 if (is_space_char (*base_string))
9226 ++base_string;
9227 }
e5cb08ac 9228 else if (*base_string != ')')
af6bdddf 9229 {
4eed87de
AM
9230 as_bad (_("expecting `,' or `)' "
9231 "after index register in `%s'"),
af6bdddf
AM
9232 operand_string);
9233 return 0;
9234 }
24eab124 9235 }
af6bdddf 9236 else if (*base_string == REGISTER_PREFIX)
24eab124 9237 {
f76bf5e0
L
9238 end_op = strchr (base_string, ',');
9239 if (end_op)
9240 *end_op = '\0';
af6bdddf 9241 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9242 return 0;
9243 }
252b5132 9244
47926f60 9245 /* Check for scale factor. */
551c1ca1 9246 if (*base_string != ')')
af6bdddf 9247 {
551c1ca1
AM
9248 char *end_scale = i386_scale (base_string);
9249
9250 if (!end_scale)
af6bdddf 9251 return 0;
24eab124 9252
551c1ca1 9253 base_string = end_scale;
af6bdddf
AM
9254 if (is_space_char (*base_string))
9255 ++base_string;
9256 if (*base_string != ')')
9257 {
4eed87de
AM
9258 as_bad (_("expecting `)' "
9259 "after scale factor in `%s'"),
af6bdddf
AM
9260 operand_string);
9261 return 0;
9262 }
9263 }
9264 else if (!i.index_reg)
24eab124 9265 {
4eed87de
AM
9266 as_bad (_("expecting index register or scale factor "
9267 "after `,'; got '%c'"),
af6bdddf 9268 *base_string);
24eab124
AM
9269 return 0;
9270 }
9271 }
af6bdddf 9272 else if (*base_string != ')')
24eab124 9273 {
4eed87de
AM
9274 as_bad (_("expecting `,' or `)' "
9275 "after base register in `%s'"),
af6bdddf 9276 operand_string);
24eab124
AM
9277 return 0;
9278 }
c3332e24 9279 }
af6bdddf 9280 else if (*base_string == REGISTER_PREFIX)
c3332e24 9281 {
f76bf5e0
L
9282 end_op = strchr (base_string, ',');
9283 if (end_op)
9284 *end_op = '\0';
af6bdddf 9285 as_bad (_("bad register name `%s'"), base_string);
24eab124 9286 return 0;
c3332e24 9287 }
24eab124
AM
9288 }
9289
9290 /* If there's an expression beginning the operand, parse it,
9291 assuming displacement_string_start and
9292 displacement_string_end are meaningful. */
9293 if (displacement_string_start != displacement_string_end)
9294 {
9295 if (!i386_displacement (displacement_string_start,
9296 displacement_string_end))
9297 return 0;
9298 }
9299
9300 /* Special case for (%dx) while doing input/output op. */
9301 if (i.base_reg
0dfbf9d7
L
9302 && operand_type_equal (&i.base_reg->reg_type,
9303 &reg16_inoutportreg)
24eab124
AM
9304 && i.index_reg == 0
9305 && i.log2_scale_factor == 0
9306 && i.seg[i.mem_operands] == 0
40fb9820 9307 && !operand_type_check (i.types[this_operand], disp))
24eab124 9308 {
65da13b5 9309 i.types[this_operand] = inoutportreg;
24eab124
AM
9310 return 1;
9311 }
9312
eecb386c
AM
9313 if (i386_index_check (operand_string) == 0)
9314 return 0;
5c07affc 9315 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9316 if (i.mem_operands == 0)
9317 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9318 i.mem_operands++;
9319 }
9320 else
ce8a8b2f
AM
9321 {
9322 /* It's not a memory operand; argh! */
24eab124
AM
9323 as_bad (_("invalid char %s beginning operand %d `%s'"),
9324 output_invalid (*op_string),
9325 this_operand + 1,
9326 op_string);
9327 return 0;
9328 }
47926f60 9329 return 1; /* Normal return. */
252b5132
RH
9330}
9331\f
fa94de6b
RM
9332/* Calculate the maximum variable size (i.e., excluding fr_fix)
9333 that an rs_machine_dependent frag may reach. */
9334
9335unsigned int
9336i386_frag_max_var (fragS *frag)
9337{
9338 /* The only relaxable frags are for jumps.
9339 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9340 gas_assert (frag->fr_type == rs_machine_dependent);
9341 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9342}
9343
b084df0b
L
9344#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9345static int
8dcea932 9346elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9347{
9348 /* STT_GNU_IFUNC symbol must go through PLT. */
9349 if ((symbol_get_bfdsym (fr_symbol)->flags
9350 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9351 return 0;
9352
9353 if (!S_IS_EXTERNAL (fr_symbol))
9354 /* Symbol may be weak or local. */
9355 return !S_IS_WEAK (fr_symbol);
9356
8dcea932
L
9357 /* Global symbols with non-default visibility can't be preempted. */
9358 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9359 return 1;
9360
9361 if (fr_var != NO_RELOC)
9362 switch ((enum bfd_reloc_code_real) fr_var)
9363 {
9364 case BFD_RELOC_386_PLT32:
9365 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9366 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9367 return 0;
9368 default:
9369 abort ();
9370 }
9371
b084df0b
L
9372 /* Global symbols with default visibility in a shared library may be
9373 preempted by another definition. */
8dcea932 9374 return !shared;
b084df0b
L
9375}
9376#endif
9377
ee7fcc42
AM
9378/* md_estimate_size_before_relax()
9379
9380 Called just before relax() for rs_machine_dependent frags. The x86
9381 assembler uses these frags to handle variable size jump
9382 instructions.
9383
9384 Any symbol that is now undefined will not become defined.
9385 Return the correct fr_subtype in the frag.
9386 Return the initial "guess for variable size of frag" to caller.
9387 The guess is actually the growth beyond the fixed part. Whatever
9388 we do to grow the fixed or variable part contributes to our
9389 returned value. */
9390
252b5132 9391int
7016a5d5 9392md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9393{
252b5132 9394 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9395 check for un-relaxable symbols. On an ELF system, we can't relax
9396 an externally visible symbol, because it may be overridden by a
9397 shared library. */
9398 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9399#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9400 || (IS_ELF
8dcea932
L
9401 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9402 fragP->fr_var))
fbeb56a4
DK
9403#endif
9404#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9405 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9406 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9407#endif
9408 )
252b5132 9409 {
b98ef147
AM
9410 /* Symbol is undefined in this segment, or we need to keep a
9411 reloc so that weak symbols can be overridden. */
9412 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9413 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9414 unsigned char *opcode;
9415 int old_fr_fix;
f6af82bd 9416
ee7fcc42 9417 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9418 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9419 else if (size == 2)
f6af82bd 9420 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9421#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9422 else if (need_plt32_p (fragP->fr_symbol))
9423 reloc_type = BFD_RELOC_X86_64_PLT32;
9424#endif
f6af82bd
AM
9425 else
9426 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9427
ee7fcc42
AM
9428 old_fr_fix = fragP->fr_fix;
9429 opcode = (unsigned char *) fragP->fr_opcode;
9430
fddf5b5b 9431 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9432 {
fddf5b5b
AM
9433 case UNCOND_JUMP:
9434 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9435 opcode[0] = 0xe9;
252b5132 9436 fragP->fr_fix += size;
062cd5e7
AS
9437 fix_new (fragP, old_fr_fix, size,
9438 fragP->fr_symbol,
9439 fragP->fr_offset, 1,
9440 reloc_type);
252b5132
RH
9441 break;
9442
fddf5b5b 9443 case COND_JUMP86:
412167cb
AM
9444 if (size == 2
9445 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9446 {
9447 /* Negate the condition, and branch past an
9448 unconditional jump. */
9449 opcode[0] ^= 1;
9450 opcode[1] = 3;
9451 /* Insert an unconditional jump. */
9452 opcode[2] = 0xe9;
9453 /* We added two extra opcode bytes, and have a two byte
9454 offset. */
9455 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9456 fix_new (fragP, old_fr_fix + 2, 2,
9457 fragP->fr_symbol,
9458 fragP->fr_offset, 1,
9459 reloc_type);
fddf5b5b
AM
9460 break;
9461 }
9462 /* Fall through. */
9463
9464 case COND_JUMP:
412167cb
AM
9465 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9466 {
3e02c1cc
AM
9467 fixS *fixP;
9468
412167cb 9469 fragP->fr_fix += 1;
3e02c1cc
AM
9470 fixP = fix_new (fragP, old_fr_fix, 1,
9471 fragP->fr_symbol,
9472 fragP->fr_offset, 1,
9473 BFD_RELOC_8_PCREL);
9474 fixP->fx_signed = 1;
412167cb
AM
9475 break;
9476 }
93c2a809 9477
24eab124 9478 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9479 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9480 opcode[1] = opcode[0] + 0x10;
f6af82bd 9481 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9482 /* We've added an opcode byte. */
9483 fragP->fr_fix += 1 + size;
062cd5e7
AS
9484 fix_new (fragP, old_fr_fix + 1, size,
9485 fragP->fr_symbol,
9486 fragP->fr_offset, 1,
9487 reloc_type);
252b5132 9488 break;
fddf5b5b
AM
9489
9490 default:
9491 BAD_CASE (fragP->fr_subtype);
9492 break;
252b5132
RH
9493 }
9494 frag_wane (fragP);
ee7fcc42 9495 return fragP->fr_fix - old_fr_fix;
252b5132 9496 }
93c2a809 9497
93c2a809
AM
9498 /* Guess size depending on current relax state. Initially the relax
9499 state will correspond to a short jump and we return 1, because
9500 the variable part of the frag (the branch offset) is one byte
9501 long. However, we can relax a section more than once and in that
9502 case we must either set fr_subtype back to the unrelaxed state,
9503 or return the value for the appropriate branch. */
9504 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9505}
9506
47926f60
KH
9507/* Called after relax() is finished.
9508
9509 In: Address of frag.
9510 fr_type == rs_machine_dependent.
9511 fr_subtype is what the address relaxed to.
9512
9513 Out: Any fixSs and constants are set up.
9514 Caller will turn frag into a ".space 0". */
9515
252b5132 9516void
7016a5d5
TG
9517md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9518 fragS *fragP)
252b5132 9519{
29b0f896 9520 unsigned char *opcode;
252b5132 9521 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9522 offsetT target_address;
9523 offsetT opcode_address;
252b5132 9524 unsigned int extension = 0;
847f7ad4 9525 offsetT displacement_from_opcode_start;
252b5132
RH
9526
9527 opcode = (unsigned char *) fragP->fr_opcode;
9528
47926f60 9529 /* Address we want to reach in file space. */
252b5132 9530 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9531
47926f60 9532 /* Address opcode resides at in file space. */
252b5132
RH
9533 opcode_address = fragP->fr_address + fragP->fr_fix;
9534
47926f60 9535 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9536 displacement_from_opcode_start = target_address - opcode_address;
9537
fddf5b5b 9538 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9539 {
47926f60
KH
9540 /* Don't have to change opcode. */
9541 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9542 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9543 }
9544 else
9545 {
9546 if (no_cond_jump_promotion
9547 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9548 as_warn_where (fragP->fr_file, fragP->fr_line,
9549 _("long jump required"));
252b5132 9550
fddf5b5b
AM
9551 switch (fragP->fr_subtype)
9552 {
9553 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9554 extension = 4; /* 1 opcode + 4 displacement */
9555 opcode[0] = 0xe9;
9556 where_to_put_displacement = &opcode[1];
9557 break;
252b5132 9558
fddf5b5b
AM
9559 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9560 extension = 2; /* 1 opcode + 2 displacement */
9561 opcode[0] = 0xe9;
9562 where_to_put_displacement = &opcode[1];
9563 break;
252b5132 9564
fddf5b5b
AM
9565 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9566 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9567 extension = 5; /* 2 opcode + 4 displacement */
9568 opcode[1] = opcode[0] + 0x10;
9569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9570 where_to_put_displacement = &opcode[2];
9571 break;
252b5132 9572
fddf5b5b
AM
9573 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9574 extension = 3; /* 2 opcode + 2 displacement */
9575 opcode[1] = opcode[0] + 0x10;
9576 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9577 where_to_put_displacement = &opcode[2];
9578 break;
252b5132 9579
fddf5b5b
AM
9580 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9581 extension = 4;
9582 opcode[0] ^= 1;
9583 opcode[1] = 3;
9584 opcode[2] = 0xe9;
9585 where_to_put_displacement = &opcode[3];
9586 break;
9587
9588 default:
9589 BAD_CASE (fragP->fr_subtype);
9590 break;
9591 }
252b5132 9592 }
fddf5b5b 9593
7b81dfbb
AJ
9594 /* If size if less then four we are sure that the operand fits,
9595 but if it's 4, then it could be that the displacement is larger
9596 then -/+ 2GB. */
9597 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9598 && object_64bit
9599 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9600 + ((addressT) 1 << 31))
9601 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9602 {
9603 as_bad_where (fragP->fr_file, fragP->fr_line,
9604 _("jump target out of range"));
9605 /* Make us emit 0. */
9606 displacement_from_opcode_start = extension;
9607 }
47926f60 9608 /* Now put displacement after opcode. */
252b5132
RH
9609 md_number_to_chars ((char *) where_to_put_displacement,
9610 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9611 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9612 fragP->fr_fix += extension;
9613}
9614\f
7016a5d5 9615/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9616 by our caller that we have all the info we need to fix it up.
9617
7016a5d5
TG
9618 Parameter valP is the pointer to the value of the bits.
9619
252b5132
RH
9620 On the 386, immediates, displacements, and data pointers are all in
9621 the same (little-endian) format, so we don't need to care about which
9622 we are handling. */
9623
94f592af 9624void
7016a5d5 9625md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9626{
94f592af 9627 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9628 valueT value = *valP;
252b5132 9629
f86103b7 9630#if !defined (TE_Mach)
93382f6d
AM
9631 if (fixP->fx_pcrel)
9632 {
9633 switch (fixP->fx_r_type)
9634 {
5865bb77
ILT
9635 default:
9636 break;
9637
d6ab8113
JB
9638 case BFD_RELOC_64:
9639 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9640 break;
93382f6d 9641 case BFD_RELOC_32:
ae8887b5 9642 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9643 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9644 break;
9645 case BFD_RELOC_16:
9646 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9647 break;
9648 case BFD_RELOC_8:
9649 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9650 break;
9651 }
9652 }
252b5132 9653
a161fe53 9654 if (fixP->fx_addsy != NULL
31312f95 9655 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9656 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9657 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9658 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9659 && !use_rela_relocations)
252b5132 9660 {
31312f95
AM
9661 /* This is a hack. There should be a better way to handle this.
9662 This covers for the fact that bfd_install_relocation will
9663 subtract the current location (for partial_inplace, PC relative
9664 relocations); see more below. */
252b5132 9665#ifndef OBJ_AOUT
718ddfc0 9666 if (IS_ELF
252b5132
RH
9667#ifdef TE_PE
9668 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9669#endif
9670 )
9671 value += fixP->fx_where + fixP->fx_frag->fr_address;
9672#endif
9673#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9674 if (IS_ELF)
252b5132 9675 {
6539b54b 9676 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9677
6539b54b 9678 if ((sym_seg == seg
2f66722d 9679 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9680 && sym_seg != absolute_section))
af65af87 9681 && !generic_force_reloc (fixP))
2f66722d
AM
9682 {
9683 /* Yes, we add the values in twice. This is because
6539b54b
AM
9684 bfd_install_relocation subtracts them out again. I think
9685 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9686 it. FIXME. */
9687 value += fixP->fx_where + fixP->fx_frag->fr_address;
9688 }
252b5132
RH
9689 }
9690#endif
9691#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9692 /* For some reason, the PE format does not store a
9693 section address offset for a PC relative symbol. */
9694 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9695 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9696 value += md_pcrel_from (fixP);
9697#endif
9698 }
fbeb56a4 9699#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9700 if (fixP->fx_addsy != NULL
9701 && S_IS_WEAK (fixP->fx_addsy)
9702 /* PR 16858: Do not modify weak function references. */
9703 && ! fixP->fx_pcrel)
fbeb56a4 9704 {
296a8689
NC
9705#if !defined (TE_PEP)
9706 /* For x86 PE weak function symbols are neither PC-relative
9707 nor do they set S_IS_FUNCTION. So the only reliable way
9708 to detect them is to check the flags of their containing
9709 section. */
9710 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9711 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9712 ;
9713 else
9714#endif
fbeb56a4
DK
9715 value -= S_GET_VALUE (fixP->fx_addsy);
9716 }
9717#endif
252b5132
RH
9718
9719 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9720 and we must not disappoint it. */
252b5132 9721#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9722 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9723 switch (fixP->fx_r_type)
9724 {
9725 case BFD_RELOC_386_PLT32:
3e73aa7c 9726 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9727 /* Make the jump instruction point to the address of the operand. At
9728 runtime we merely add the offset to the actual PLT entry. */
9729 value = -4;
9730 break;
31312f95 9731
13ae64f3
JJ
9732 case BFD_RELOC_386_TLS_GD:
9733 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9734 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9735 case BFD_RELOC_386_TLS_IE:
9736 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9737 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9738 case BFD_RELOC_X86_64_TLSGD:
9739 case BFD_RELOC_X86_64_TLSLD:
9740 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9741 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9742 value = 0; /* Fully resolved at runtime. No addend. */
9743 /* Fallthrough */
9744 case BFD_RELOC_386_TLS_LE:
9745 case BFD_RELOC_386_TLS_LDO_32:
9746 case BFD_RELOC_386_TLS_LE_32:
9747 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9748 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9749 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9750 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9751 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9752 break;
9753
67a4f2b7
AO
9754 case BFD_RELOC_386_TLS_DESC_CALL:
9755 case BFD_RELOC_X86_64_TLSDESC_CALL:
9756 value = 0; /* Fully resolved at runtime. No addend. */
9757 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9758 fixP->fx_done = 0;
9759 return;
9760
47926f60
KH
9761 case BFD_RELOC_VTABLE_INHERIT:
9762 case BFD_RELOC_VTABLE_ENTRY:
9763 fixP->fx_done = 0;
94f592af 9764 return;
47926f60
KH
9765
9766 default:
9767 break;
9768 }
9769#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9770 *valP = value;
f86103b7 9771#endif /* !defined (TE_Mach) */
3e73aa7c 9772
3e73aa7c 9773 /* Are we finished with this relocation now? */
c6682705 9774 if (fixP->fx_addsy == NULL)
3e73aa7c 9775 fixP->fx_done = 1;
fbeb56a4
DK
9776#if defined (OBJ_COFF) && defined (TE_PE)
9777 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9778 {
9779 fixP->fx_done = 0;
9780 /* Remember value for tc_gen_reloc. */
9781 fixP->fx_addnumber = value;
9782 /* Clear out the frag for now. */
9783 value = 0;
9784 }
9785#endif
3e73aa7c
JH
9786 else if (use_rela_relocations)
9787 {
9788 fixP->fx_no_overflow = 1;
062cd5e7
AS
9789 /* Remember value for tc_gen_reloc. */
9790 fixP->fx_addnumber = value;
3e73aa7c
JH
9791 value = 0;
9792 }
f86103b7 9793
94f592af 9794 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9795}
252b5132 9796\f
6d4af3c2 9797const char *
499ac353 9798md_atof (int type, char *litP, int *sizeP)
252b5132 9799{
499ac353
NC
9800 /* This outputs the LITTLENUMs in REVERSE order;
9801 in accord with the bigendian 386. */
9802 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9803}
9804\f
2d545b82 9805static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9806
252b5132 9807static char *
e3bb37b5 9808output_invalid (int c)
252b5132 9809{
3882b010 9810 if (ISPRINT (c))
f9f21a03
L
9811 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9812 "'%c'", c);
252b5132 9813 else
f9f21a03 9814 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9815 "(0x%x)", (unsigned char) c);
252b5132
RH
9816 return output_invalid_buf;
9817}
9818
af6bdddf 9819/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9820
9821static const reg_entry *
4d1bb795 9822parse_real_register (char *reg_string, char **end_op)
252b5132 9823{
af6bdddf
AM
9824 char *s = reg_string;
9825 char *p;
252b5132
RH
9826 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9827 const reg_entry *r;
9828
9829 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9830 if (*s == REGISTER_PREFIX)
9831 ++s;
9832
9833 if (is_space_char (*s))
9834 ++s;
9835
9836 p = reg_name_given;
af6bdddf 9837 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9838 {
9839 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9840 return (const reg_entry *) NULL;
9841 s++;
252b5132
RH
9842 }
9843
6588847e
DN
9844 /* For naked regs, make sure that we are not dealing with an identifier.
9845 This prevents confusing an identifier like `eax_var' with register
9846 `eax'. */
9847 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9848 return (const reg_entry *) NULL;
9849
af6bdddf 9850 *end_op = s;
252b5132
RH
9851
9852 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9853
5f47d35b 9854 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9855 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9856 {
5f47d35b
AM
9857 if (is_space_char (*s))
9858 ++s;
9859 if (*s == '(')
9860 {
af6bdddf 9861 ++s;
5f47d35b
AM
9862 if (is_space_char (*s))
9863 ++s;
9864 if (*s >= '0' && *s <= '7')
9865 {
db557034 9866 int fpr = *s - '0';
af6bdddf 9867 ++s;
5f47d35b
AM
9868 if (is_space_char (*s))
9869 ++s;
9870 if (*s == ')')
9871 {
9872 *end_op = s + 1;
1e9cc1c2 9873 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9874 know (r);
9875 return r + fpr;
5f47d35b 9876 }
5f47d35b 9877 }
47926f60 9878 /* We have "%st(" then garbage. */
5f47d35b
AM
9879 return (const reg_entry *) NULL;
9880 }
9881 }
9882
a60de03c
JB
9883 if (r == NULL || allow_pseudo_reg)
9884 return r;
9885
0dfbf9d7 9886 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9887 return (const reg_entry *) NULL;
9888
dc821c5f 9889 if ((r->reg_type.bitfield.dword
192dc9c6
JB
9890 || r->reg_type.bitfield.sreg3
9891 || r->reg_type.bitfield.control
9892 || r->reg_type.bitfield.debug
9893 || r->reg_type.bitfield.test)
9894 && !cpu_arch_flags.bitfield.cpui386)
9895 return (const reg_entry *) NULL;
9896
ca0d63fe 9897 if (r->reg_type.bitfield.tbyte
309d3373
JB
9898 && !cpu_arch_flags.bitfield.cpu8087
9899 && !cpu_arch_flags.bitfield.cpu287
9900 && !cpu_arch_flags.bitfield.cpu387)
9901 return (const reg_entry *) NULL;
9902
1848e567 9903 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
9904 return (const reg_entry *) NULL;
9905
1b54b8d7 9906 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
9907 return (const reg_entry *) NULL;
9908
1b54b8d7 9909 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
9910 return (const reg_entry *) NULL;
9911
1b54b8d7 9912 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
9913 return (const reg_entry *) NULL;
9914
9915 if (r->reg_type.bitfield.regmask
9916 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
9917 return (const reg_entry *) NULL;
9918
db51cc60 9919 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9920 if (!allow_index_reg
db51cc60
L
9921 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9922 return (const reg_entry *) NULL;
9923
43234a1e
L
9924 /* Upper 16 vector register is only available with VREX in 64bit
9925 mode. */
9926 if ((r->reg_flags & RegVRex))
9927 {
86fa6981
L
9928 if (i.vec_encoding == vex_encoding_default)
9929 i.vec_encoding = vex_encoding_evex;
9930
43234a1e 9931 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 9932 || i.vec_encoding != vex_encoding_evex
43234a1e
L
9933 || flag_code != CODE_64BIT)
9934 return (const reg_entry *) NULL;
43234a1e
L
9935 }
9936
a60de03c 9937 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 9938 || r->reg_type.bitfield.qword)
40fb9820 9939 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9940 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9941 && flag_code != CODE_64BIT)
20f0a1fc 9942 return (const reg_entry *) NULL;
1ae00879 9943
b7240065
JB
9944 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9945 return (const reg_entry *) NULL;
9946
252b5132
RH
9947 return r;
9948}
4d1bb795
JB
9949
9950/* REG_STRING starts *before* REGISTER_PREFIX. */
9951
9952static const reg_entry *
9953parse_register (char *reg_string, char **end_op)
9954{
9955 const reg_entry *r;
9956
9957 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9958 r = parse_real_register (reg_string, end_op);
9959 else
9960 r = NULL;
9961 if (!r)
9962 {
9963 char *save = input_line_pointer;
9964 char c;
9965 symbolS *symbolP;
9966
9967 input_line_pointer = reg_string;
d02603dc 9968 c = get_symbol_name (&reg_string);
4d1bb795
JB
9969 symbolP = symbol_find (reg_string);
9970 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9971 {
9972 const expressionS *e = symbol_get_value_expression (symbolP);
9973
0398aac5 9974 know (e->X_op == O_register);
4eed87de 9975 know (e->X_add_number >= 0
c3fe08fa 9976 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9977 r = i386_regtab + e->X_add_number;
d3bb6b49 9978 if ((r->reg_flags & RegVRex))
86fa6981 9979 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
9980 *end_op = input_line_pointer;
9981 }
9982 *input_line_pointer = c;
9983 input_line_pointer = save;
9984 }
9985 return r;
9986}
9987
9988int
9989i386_parse_name (char *name, expressionS *e, char *nextcharP)
9990{
9991 const reg_entry *r;
9992 char *end = input_line_pointer;
9993
9994 *end = *nextcharP;
9995 r = parse_register (name, &input_line_pointer);
9996 if (r && end <= input_line_pointer)
9997 {
9998 *nextcharP = *input_line_pointer;
9999 *input_line_pointer = 0;
10000 e->X_op = O_register;
10001 e->X_add_number = r - i386_regtab;
10002 return 1;
10003 }
10004 input_line_pointer = end;
10005 *end = 0;
ee86248c 10006 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10007}
10008
10009void
10010md_operand (expressionS *e)
10011{
ee86248c
JB
10012 char *end;
10013 const reg_entry *r;
4d1bb795 10014
ee86248c
JB
10015 switch (*input_line_pointer)
10016 {
10017 case REGISTER_PREFIX:
10018 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10019 if (r)
10020 {
10021 e->X_op = O_register;
10022 e->X_add_number = r - i386_regtab;
10023 input_line_pointer = end;
10024 }
ee86248c
JB
10025 break;
10026
10027 case '[':
9c2799c2 10028 gas_assert (intel_syntax);
ee86248c
JB
10029 end = input_line_pointer++;
10030 expression (e);
10031 if (*input_line_pointer == ']')
10032 {
10033 ++input_line_pointer;
10034 e->X_op_symbol = make_expr_symbol (e);
10035 e->X_add_symbol = NULL;
10036 e->X_add_number = 0;
10037 e->X_op = O_index;
10038 }
10039 else
10040 {
10041 e->X_op = O_absent;
10042 input_line_pointer = end;
10043 }
10044 break;
4d1bb795
JB
10045 }
10046}
10047
252b5132 10048\f
4cc782b5 10049#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 10050const char *md_shortopts = "kVQ:sqn";
252b5132 10051#else
12b55ccc 10052const char *md_shortopts = "qn";
252b5132 10053#endif
6e0b89ee 10054
3e73aa7c 10055#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10056#define OPTION_64 (OPTION_MD_BASE + 1)
10057#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10058#define OPTION_MARCH (OPTION_MD_BASE + 3)
10059#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10060#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10061#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10062#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10063#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10064#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10065#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10066#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10067#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10068#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10069#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10070#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10071#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10072#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10073#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10074#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10075#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10076#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10077#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10078#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10079#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10080#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10081
99ad8390
NC
10082struct option md_longopts[] =
10083{
3e73aa7c 10084 {"32", no_argument, NULL, OPTION_32},
321098a5 10085#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10086 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10087 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10088#endif
10089#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10090 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10091 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10092#endif
b3b91714 10093 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10094 {"march", required_argument, NULL, OPTION_MARCH},
10095 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10096 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10097 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10098 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10099 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10100 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10101 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10102 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10103 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10104 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10105 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10106 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10107 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10108# if defined (TE_PE) || defined (TE_PEP)
10109 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10110#endif
d1982f93 10111 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10112 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10113 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10114 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10115 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10116 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10117 {NULL, no_argument, NULL, 0}
10118};
10119size_t md_longopts_size = sizeof (md_longopts);
10120
10121int
17b9d67d 10122md_parse_option (int c, const char *arg)
252b5132 10123{
91d6fa6a 10124 unsigned int j;
293f5f65 10125 char *arch, *next, *saved;
9103f4f4 10126
252b5132
RH
10127 switch (c)
10128 {
12b55ccc
L
10129 case 'n':
10130 optimize_align_code = 0;
10131 break;
10132
a38cf1db
AM
10133 case 'q':
10134 quiet_warnings = 1;
252b5132
RH
10135 break;
10136
10137#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10138 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10139 should be emitted or not. FIXME: Not implemented. */
10140 case 'Q':
252b5132
RH
10141 break;
10142
10143 /* -V: SVR4 argument to print version ID. */
10144 case 'V':
10145 print_version_id ();
10146 break;
10147
a38cf1db
AM
10148 /* -k: Ignore for FreeBSD compatibility. */
10149 case 'k':
252b5132 10150 break;
4cc782b5
ILT
10151
10152 case 's':
10153 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10154 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10155 break;
8dcea932
L
10156
10157 case OPTION_MSHARED:
10158 shared = 1;
10159 break;
99ad8390 10160#endif
321098a5 10161#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10162 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10163 case OPTION_64:
10164 {
10165 const char **list, **l;
10166
3e73aa7c
JH
10167 list = bfd_target_list ();
10168 for (l = list; *l != NULL; l++)
8620418b 10169 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10170 || strcmp (*l, "coff-x86-64") == 0
10171 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10172 || strcmp (*l, "pei-x86-64") == 0
10173 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10174 {
10175 default_arch = "x86_64";
10176 break;
10177 }
3e73aa7c 10178 if (*l == NULL)
2b5d6a91 10179 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10180 free (list);
10181 }
10182 break;
10183#endif
252b5132 10184
351f65ca 10185#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10186 case OPTION_X32:
351f65ca
L
10187 if (IS_ELF)
10188 {
10189 const char **list, **l;
10190
10191 list = bfd_target_list ();
10192 for (l = list; *l != NULL; l++)
10193 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10194 {
10195 default_arch = "x86_64:32";
10196 break;
10197 }
10198 if (*l == NULL)
2b5d6a91 10199 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10200 free (list);
10201 }
10202 else
10203 as_fatal (_("32bit x86_64 is only supported for ELF"));
10204 break;
10205#endif
10206
6e0b89ee
AM
10207 case OPTION_32:
10208 default_arch = "i386";
10209 break;
10210
b3b91714
AM
10211 case OPTION_DIVIDE:
10212#ifdef SVR4_COMMENT_CHARS
10213 {
10214 char *n, *t;
10215 const char *s;
10216
add39d23 10217 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10218 t = n;
10219 for (s = i386_comment_chars; *s != '\0'; s++)
10220 if (*s != '/')
10221 *t++ = *s;
10222 *t = '\0';
10223 i386_comment_chars = n;
10224 }
10225#endif
10226 break;
10227
9103f4f4 10228 case OPTION_MARCH:
293f5f65
L
10229 saved = xstrdup (arg);
10230 arch = saved;
10231 /* Allow -march=+nosse. */
10232 if (*arch == '+')
10233 arch++;
6305a203 10234 do
9103f4f4 10235 {
6305a203 10236 if (*arch == '.')
2b5d6a91 10237 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10238 next = strchr (arch, '+');
10239 if (next)
10240 *next++ = '\0';
91d6fa6a 10241 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10242 {
91d6fa6a 10243 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10244 {
6305a203 10245 /* Processor. */
1ded5609
JB
10246 if (! cpu_arch[j].flags.bitfield.cpui386)
10247 continue;
10248
91d6fa6a 10249 cpu_arch_name = cpu_arch[j].name;
6305a203 10250 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10251 cpu_arch_flags = cpu_arch[j].flags;
10252 cpu_arch_isa = cpu_arch[j].type;
10253 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10254 if (!cpu_arch_tune_set)
10255 {
10256 cpu_arch_tune = cpu_arch_isa;
10257 cpu_arch_tune_flags = cpu_arch_isa_flags;
10258 }
10259 break;
10260 }
91d6fa6a
NC
10261 else if (*cpu_arch [j].name == '.'
10262 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10263 {
33eaf5de 10264 /* ISA extension. */
6305a203 10265 i386_cpu_flags flags;
309d3373 10266
293f5f65
L
10267 flags = cpu_flags_or (cpu_arch_flags,
10268 cpu_arch[j].flags);
81486035 10269
5b64d091 10270 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10271 {
10272 if (cpu_sub_arch_name)
10273 {
10274 char *name = cpu_sub_arch_name;
10275 cpu_sub_arch_name = concat (name,
91d6fa6a 10276 cpu_arch[j].name,
1bf57e9f 10277 (const char *) NULL);
6305a203
L
10278 free (name);
10279 }
10280 else
91d6fa6a 10281 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10282 cpu_arch_flags = flags;
a586129e 10283 cpu_arch_isa_flags = flags;
6305a203
L
10284 }
10285 break;
ccc9c027 10286 }
9103f4f4 10287 }
6305a203 10288
293f5f65
L
10289 if (j >= ARRAY_SIZE (cpu_arch))
10290 {
33eaf5de 10291 /* Disable an ISA extension. */
293f5f65
L
10292 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10293 if (strcmp (arch, cpu_noarch [j].name) == 0)
10294 {
10295 i386_cpu_flags flags;
10296
10297 flags = cpu_flags_and_not (cpu_arch_flags,
10298 cpu_noarch[j].flags);
10299 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10300 {
10301 if (cpu_sub_arch_name)
10302 {
10303 char *name = cpu_sub_arch_name;
10304 cpu_sub_arch_name = concat (arch,
10305 (const char *) NULL);
10306 free (name);
10307 }
10308 else
10309 cpu_sub_arch_name = xstrdup (arch);
10310 cpu_arch_flags = flags;
10311 cpu_arch_isa_flags = flags;
10312 }
10313 break;
10314 }
10315
10316 if (j >= ARRAY_SIZE (cpu_noarch))
10317 j = ARRAY_SIZE (cpu_arch);
10318 }
10319
91d6fa6a 10320 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10321 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10322
10323 arch = next;
9103f4f4 10324 }
293f5f65
L
10325 while (next != NULL);
10326 free (saved);
9103f4f4
L
10327 break;
10328
10329 case OPTION_MTUNE:
10330 if (*arg == '.')
2b5d6a91 10331 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10332 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10333 {
91d6fa6a 10334 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10335 {
ccc9c027 10336 cpu_arch_tune_set = 1;
91d6fa6a
NC
10337 cpu_arch_tune = cpu_arch [j].type;
10338 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10339 break;
10340 }
10341 }
91d6fa6a 10342 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10343 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10344 break;
10345
1efbbeb4
L
10346 case OPTION_MMNEMONIC:
10347 if (strcasecmp (arg, "att") == 0)
10348 intel_mnemonic = 0;
10349 else if (strcasecmp (arg, "intel") == 0)
10350 intel_mnemonic = 1;
10351 else
2b5d6a91 10352 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10353 break;
10354
10355 case OPTION_MSYNTAX:
10356 if (strcasecmp (arg, "att") == 0)
10357 intel_syntax = 0;
10358 else if (strcasecmp (arg, "intel") == 0)
10359 intel_syntax = 1;
10360 else
2b5d6a91 10361 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10362 break;
10363
10364 case OPTION_MINDEX_REG:
10365 allow_index_reg = 1;
10366 break;
10367
10368 case OPTION_MNAKED_REG:
10369 allow_naked_reg = 1;
10370 break;
10371
10372 case OPTION_MOLD_GCC:
10373 old_gcc = 1;
1efbbeb4
L
10374 break;
10375
c0f3af97
L
10376 case OPTION_MSSE2AVX:
10377 sse2avx = 1;
10378 break;
10379
daf50ae7
L
10380 case OPTION_MSSE_CHECK:
10381 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10382 sse_check = check_error;
daf50ae7 10383 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10384 sse_check = check_warning;
daf50ae7 10385 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10386 sse_check = check_none;
daf50ae7 10387 else
2b5d6a91 10388 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10389 break;
10390
7bab8ab5
JB
10391 case OPTION_MOPERAND_CHECK:
10392 if (strcasecmp (arg, "error") == 0)
10393 operand_check = check_error;
10394 else if (strcasecmp (arg, "warning") == 0)
10395 operand_check = check_warning;
10396 else if (strcasecmp (arg, "none") == 0)
10397 operand_check = check_none;
10398 else
10399 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10400 break;
10401
539f890d
L
10402 case OPTION_MAVXSCALAR:
10403 if (strcasecmp (arg, "128") == 0)
10404 avxscalar = vex128;
10405 else if (strcasecmp (arg, "256") == 0)
10406 avxscalar = vex256;
10407 else
2b5d6a91 10408 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10409 break;
10410
7e8b059b
L
10411 case OPTION_MADD_BND_PREFIX:
10412 add_bnd_prefix = 1;
10413 break;
10414
43234a1e
L
10415 case OPTION_MEVEXLIG:
10416 if (strcmp (arg, "128") == 0)
10417 evexlig = evexl128;
10418 else if (strcmp (arg, "256") == 0)
10419 evexlig = evexl256;
10420 else if (strcmp (arg, "512") == 0)
10421 evexlig = evexl512;
10422 else
10423 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10424 break;
10425
d3d3c6db
IT
10426 case OPTION_MEVEXRCIG:
10427 if (strcmp (arg, "rne") == 0)
10428 evexrcig = rne;
10429 else if (strcmp (arg, "rd") == 0)
10430 evexrcig = rd;
10431 else if (strcmp (arg, "ru") == 0)
10432 evexrcig = ru;
10433 else if (strcmp (arg, "rz") == 0)
10434 evexrcig = rz;
10435 else
10436 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10437 break;
10438
43234a1e
L
10439 case OPTION_MEVEXWIG:
10440 if (strcmp (arg, "0") == 0)
10441 evexwig = evexw0;
10442 else if (strcmp (arg, "1") == 0)
10443 evexwig = evexw1;
10444 else
10445 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10446 break;
10447
167ad85b
TG
10448# if defined (TE_PE) || defined (TE_PEP)
10449 case OPTION_MBIG_OBJ:
10450 use_big_obj = 1;
10451 break;
10452#endif
10453
d1982f93 10454 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10455 if (strcasecmp (arg, "yes") == 0)
10456 omit_lock_prefix = 1;
10457 else if (strcasecmp (arg, "no") == 0)
10458 omit_lock_prefix = 0;
10459 else
10460 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10461 break;
10462
e4e00185
AS
10463 case OPTION_MFENCE_AS_LOCK_ADD:
10464 if (strcasecmp (arg, "yes") == 0)
10465 avoid_fence = 1;
10466 else if (strcasecmp (arg, "no") == 0)
10467 avoid_fence = 0;
10468 else
10469 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10470 break;
10471
0cb4071e
L
10472 case OPTION_MRELAX_RELOCATIONS:
10473 if (strcasecmp (arg, "yes") == 0)
10474 generate_relax_relocations = 1;
10475 else if (strcasecmp (arg, "no") == 0)
10476 generate_relax_relocations = 0;
10477 else
10478 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10479 break;
10480
5db04b09 10481 case OPTION_MAMD64:
e89c5eaa 10482 intel64 = 0;
5db04b09
L
10483 break;
10484
10485 case OPTION_MINTEL64:
e89c5eaa 10486 intel64 = 1;
5db04b09
L
10487 break;
10488
252b5132
RH
10489 default:
10490 return 0;
10491 }
10492 return 1;
10493}
10494
8a2c8fef
L
10495#define MESSAGE_TEMPLATE \
10496" "
10497
293f5f65
L
10498static char *
10499output_message (FILE *stream, char *p, char *message, char *start,
10500 int *left_p, const char *name, int len)
10501{
10502 int size = sizeof (MESSAGE_TEMPLATE);
10503 int left = *left_p;
10504
10505 /* Reserve 2 spaces for ", " or ",\0" */
10506 left -= len + 2;
10507
10508 /* Check if there is any room. */
10509 if (left >= 0)
10510 {
10511 if (p != start)
10512 {
10513 *p++ = ',';
10514 *p++ = ' ';
10515 }
10516 p = mempcpy (p, name, len);
10517 }
10518 else
10519 {
10520 /* Output the current message now and start a new one. */
10521 *p++ = ',';
10522 *p = '\0';
10523 fprintf (stream, "%s\n", message);
10524 p = start;
10525 left = size - (start - message) - len - 2;
10526
10527 gas_assert (left >= 0);
10528
10529 p = mempcpy (p, name, len);
10530 }
10531
10532 *left_p = left;
10533 return p;
10534}
10535
8a2c8fef 10536static void
1ded5609 10537show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10538{
10539 static char message[] = MESSAGE_TEMPLATE;
10540 char *start = message + 27;
10541 char *p;
10542 int size = sizeof (MESSAGE_TEMPLATE);
10543 int left;
10544 const char *name;
10545 int len;
10546 unsigned int j;
10547
10548 p = start;
10549 left = size - (start - message);
10550 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10551 {
10552 /* Should it be skipped? */
10553 if (cpu_arch [j].skip)
10554 continue;
10555
10556 name = cpu_arch [j].name;
10557 len = cpu_arch [j].len;
10558 if (*name == '.')
10559 {
10560 /* It is an extension. Skip if we aren't asked to show it. */
10561 if (ext)
10562 {
10563 name++;
10564 len--;
10565 }
10566 else
10567 continue;
10568 }
10569 else if (ext)
10570 {
10571 /* It is an processor. Skip if we show only extension. */
10572 continue;
10573 }
1ded5609
JB
10574 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10575 {
10576 /* It is an impossible processor - skip. */
10577 continue;
10578 }
8a2c8fef 10579
293f5f65 10580 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10581 }
10582
293f5f65
L
10583 /* Display disabled extensions. */
10584 if (ext)
10585 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10586 {
10587 name = cpu_noarch [j].name;
10588 len = cpu_noarch [j].len;
10589 p = output_message (stream, p, message, start, &left, name,
10590 len);
10591 }
10592
8a2c8fef
L
10593 *p = '\0';
10594 fprintf (stream, "%s\n", message);
10595}
10596
252b5132 10597void
8a2c8fef 10598md_show_usage (FILE *stream)
252b5132 10599{
4cc782b5
ILT
10600#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10601 fprintf (stream, _("\
a38cf1db
AM
10602 -Q ignored\n\
10603 -V print assembler version number\n\
b3b91714
AM
10604 -k ignored\n"));
10605#endif
10606 fprintf (stream, _("\
12b55ccc 10607 -n Do not optimize code alignment\n\
b3b91714
AM
10608 -q quieten some warnings\n"));
10609#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10610 fprintf (stream, _("\
a38cf1db 10611 -s ignored\n"));
b3b91714 10612#endif
321098a5
L
10613#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10614 || defined (TE_PE) || defined (TE_PEP))
751d281c 10615 fprintf (stream, _("\
570561f7 10616 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10617#endif
b3b91714
AM
10618#ifdef SVR4_COMMENT_CHARS
10619 fprintf (stream, _("\
10620 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10621#else
10622 fprintf (stream, _("\
b3b91714 10623 --divide ignored\n"));
4cc782b5 10624#endif
9103f4f4 10625 fprintf (stream, _("\
6305a203 10626 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10627 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10628 show_arch (stream, 0, 1);
8a2c8fef
L
10629 fprintf (stream, _("\
10630 EXTENSION is combination of:\n"));
1ded5609 10631 show_arch (stream, 1, 0);
6305a203 10632 fprintf (stream, _("\
8a2c8fef 10633 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10634 show_arch (stream, 0, 0);
ba104c83 10635 fprintf (stream, _("\
c0f3af97
L
10636 -msse2avx encode SSE instructions with VEX prefix\n"));
10637 fprintf (stream, _("\
daf50ae7
L
10638 -msse-check=[none|error|warning]\n\
10639 check SSE instructions\n"));
10640 fprintf (stream, _("\
7bab8ab5
JB
10641 -moperand-check=[none|error|warning]\n\
10642 check operand combinations for validity\n"));
10643 fprintf (stream, _("\
539f890d
L
10644 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10645 length\n"));
10646 fprintf (stream, _("\
43234a1e
L
10647 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10648 length\n"));
10649 fprintf (stream, _("\
10650 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10651 for EVEX.W bit ignored instructions\n"));
10652 fprintf (stream, _("\
d3d3c6db
IT
10653 -mevexrcig=[rne|rd|ru|rz]\n\
10654 encode EVEX instructions with specific EVEX.RC value\n\
10655 for SAE-only ignored instructions\n"));
10656 fprintf (stream, _("\
ba104c83
L
10657 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10658 fprintf (stream, _("\
10659 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10660 fprintf (stream, _("\
10661 -mindex-reg support pseudo index registers\n"));
10662 fprintf (stream, _("\
10663 -mnaked-reg don't require `%%' prefix for registers\n"));
10664 fprintf (stream, _("\
10665 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10666 fprintf (stream, _("\
10667 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10668 fprintf (stream, _("\
10669 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10670# if defined (TE_PE) || defined (TE_PEP)
10671 fprintf (stream, _("\
10672 -mbig-obj generate big object files\n"));
10673#endif
d022bddd
IT
10674 fprintf (stream, _("\
10675 -momit-lock-prefix=[no|yes]\n\
10676 strip all lock prefixes\n"));
5db04b09 10677 fprintf (stream, _("\
e4e00185
AS
10678 -mfence-as-lock-add=[no|yes]\n\
10679 encode lfence, mfence and sfence as\n\
10680 lock addl $0x0, (%%{re}sp)\n"));
10681 fprintf (stream, _("\
0cb4071e
L
10682 -mrelax-relocations=[no|yes]\n\
10683 generate relax relocations\n"));
10684 fprintf (stream, _("\
5db04b09
L
10685 -mamd64 accept only AMD64 ISA\n"));
10686 fprintf (stream, _("\
10687 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10688}
10689
3e73aa7c 10690#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10691 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10692 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10693
10694/* Pick the target format to use. */
10695
47926f60 10696const char *
e3bb37b5 10697i386_target_format (void)
252b5132 10698{
351f65ca
L
10699 if (!strncmp (default_arch, "x86_64", 6))
10700 {
10701 update_code_flag (CODE_64BIT, 1);
10702 if (default_arch[6] == '\0')
7f56bc95 10703 x86_elf_abi = X86_64_ABI;
351f65ca 10704 else
7f56bc95 10705 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10706 }
3e73aa7c 10707 else if (!strcmp (default_arch, "i386"))
78f12dd3 10708 update_code_flag (CODE_32BIT, 1);
5197d474
L
10709 else if (!strcmp (default_arch, "iamcu"))
10710 {
10711 update_code_flag (CODE_32BIT, 1);
10712 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10713 {
10714 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10715 cpu_arch_name = "iamcu";
10716 cpu_sub_arch_name = NULL;
10717 cpu_arch_flags = iamcu_flags;
10718 cpu_arch_isa = PROCESSOR_IAMCU;
10719 cpu_arch_isa_flags = iamcu_flags;
10720 if (!cpu_arch_tune_set)
10721 {
10722 cpu_arch_tune = cpu_arch_isa;
10723 cpu_arch_tune_flags = cpu_arch_isa_flags;
10724 }
10725 }
8d471ec1 10726 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10727 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10728 cpu_arch_name);
10729 }
3e73aa7c 10730 else
2b5d6a91 10731 as_fatal (_("unknown architecture"));
89507696
JB
10732
10733 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10734 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10735 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10736 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10737
252b5132
RH
10738 switch (OUTPUT_FLAVOR)
10739 {
9384f2ff 10740#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10741 case bfd_target_aout_flavour:
47926f60 10742 return AOUT_TARGET_FORMAT;
4c63da97 10743#endif
9384f2ff
AM
10744#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10745# if defined (TE_PE) || defined (TE_PEP)
10746 case bfd_target_coff_flavour:
167ad85b
TG
10747 if (flag_code == CODE_64BIT)
10748 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10749 else
10750 return "pe-i386";
9384f2ff 10751# elif defined (TE_GO32)
0561d57c
JK
10752 case bfd_target_coff_flavour:
10753 return "coff-go32";
9384f2ff 10754# else
252b5132
RH
10755 case bfd_target_coff_flavour:
10756 return "coff-i386";
9384f2ff 10757# endif
4c63da97 10758#endif
3e73aa7c 10759#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10760 case bfd_target_elf_flavour:
3e73aa7c 10761 {
351f65ca
L
10762 const char *format;
10763
10764 switch (x86_elf_abi)
4fa24527 10765 {
351f65ca
L
10766 default:
10767 format = ELF_TARGET_FORMAT;
10768 break;
7f56bc95 10769 case X86_64_ABI:
351f65ca 10770 use_rela_relocations = 1;
4fa24527 10771 object_64bit = 1;
351f65ca
L
10772 format = ELF_TARGET_FORMAT64;
10773 break;
7f56bc95 10774 case X86_64_X32_ABI:
4fa24527 10775 use_rela_relocations = 1;
351f65ca 10776 object_64bit = 1;
862be3fb 10777 disallow_64bit_reloc = 1;
351f65ca
L
10778 format = ELF_TARGET_FORMAT32;
10779 break;
4fa24527 10780 }
3632d14b 10781 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10782 {
7f56bc95 10783 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10784 as_fatal (_("Intel L1OM is 64bit only"));
10785 return ELF_TARGET_L1OM_FORMAT;
10786 }
b49f93f6 10787 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10788 {
10789 if (x86_elf_abi != X86_64_ABI)
10790 as_fatal (_("Intel K1OM is 64bit only"));
10791 return ELF_TARGET_K1OM_FORMAT;
10792 }
81486035
L
10793 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10794 {
10795 if (x86_elf_abi != I386_ABI)
10796 as_fatal (_("Intel MCU is 32bit only"));
10797 return ELF_TARGET_IAMCU_FORMAT;
10798 }
8a9036a4 10799 else
351f65ca 10800 return format;
3e73aa7c 10801 }
e57f8c65
TG
10802#endif
10803#if defined (OBJ_MACH_O)
10804 case bfd_target_mach_o_flavour:
d382c579
TG
10805 if (flag_code == CODE_64BIT)
10806 {
10807 use_rela_relocations = 1;
10808 object_64bit = 1;
10809 return "mach-o-x86-64";
10810 }
10811 else
10812 return "mach-o-i386";
4c63da97 10813#endif
252b5132
RH
10814 default:
10815 abort ();
10816 return NULL;
10817 }
10818}
10819
47926f60 10820#endif /* OBJ_MAYBE_ more than one */
252b5132 10821\f
252b5132 10822symbolS *
7016a5d5 10823md_undefined_symbol (char *name)
252b5132 10824{
18dc2407
ILT
10825 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10826 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10827 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10828 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10829 {
10830 if (!GOT_symbol)
10831 {
10832 if (symbol_find (name))
10833 as_bad (_("GOT already in symbol table"));
10834 GOT_symbol = symbol_new (name, undefined_section,
10835 (valueT) 0, &zero_address_frag);
10836 };
10837 return GOT_symbol;
10838 }
252b5132
RH
10839 return 0;
10840}
10841
10842/* Round up a section size to the appropriate boundary. */
47926f60 10843
252b5132 10844valueT
7016a5d5 10845md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10846{
4c63da97
AM
10847#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10848 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10849 {
10850 /* For a.out, force the section size to be aligned. If we don't do
10851 this, BFD will align it for us, but it will not write out the
10852 final bytes of the section. This may be a bug in BFD, but it is
10853 easier to fix it here since that is how the other a.out targets
10854 work. */
10855 int align;
10856
10857 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10858 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10859 }
252b5132
RH
10860#endif
10861
10862 return size;
10863}
10864
10865/* On the i386, PC-relative offsets are relative to the start of the
10866 next instruction. That is, the address of the offset, plus its
10867 size, since the offset is always the last part of the insn. */
10868
10869long
e3bb37b5 10870md_pcrel_from (fixS *fixP)
252b5132
RH
10871{
10872 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10873}
10874
10875#ifndef I386COFF
10876
10877static void
e3bb37b5 10878s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10879{
29b0f896 10880 int temp;
252b5132 10881
8a75718c
JB
10882#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10883 if (IS_ELF)
10884 obj_elf_section_change_hook ();
10885#endif
252b5132
RH
10886 temp = get_absolute_expression ();
10887 subseg_set (bss_section, (subsegT) temp);
10888 demand_empty_rest_of_line ();
10889}
10890
10891#endif
10892
252b5132 10893void
e3bb37b5 10894i386_validate_fix (fixS *fixp)
252b5132 10895{
02a86693 10896 if (fixp->fx_subsy)
252b5132 10897 {
02a86693 10898 if (fixp->fx_subsy == GOT_symbol)
23df1078 10899 {
02a86693
L
10900 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10901 {
10902 if (!object_64bit)
10903 abort ();
10904#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10905 if (fixp->fx_tcbit2)
56ceb5b5
L
10906 fixp->fx_r_type = (fixp->fx_tcbit
10907 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10908 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10909 else
10910#endif
10911 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10912 }
d6ab8113 10913 else
02a86693
L
10914 {
10915 if (!object_64bit)
10916 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10917 else
10918 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10919 }
10920 fixp->fx_subsy = 0;
23df1078 10921 }
252b5132 10922 }
02a86693
L
10923#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10924 else if (!object_64bit)
10925 {
10926 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10927 && fixp->fx_tcbit2)
10928 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10929 }
10930#endif
252b5132
RH
10931}
10932
252b5132 10933arelent *
7016a5d5 10934tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10935{
10936 arelent *rel;
10937 bfd_reloc_code_real_type code;
10938
10939 switch (fixp->fx_r_type)
10940 {
8ce3d284 10941#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10942 case BFD_RELOC_SIZE32:
10943 case BFD_RELOC_SIZE64:
10944 if (S_IS_DEFINED (fixp->fx_addsy)
10945 && !S_IS_EXTERNAL (fixp->fx_addsy))
10946 {
10947 /* Resolve size relocation against local symbol to size of
10948 the symbol plus addend. */
10949 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10950 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10951 && !fits_in_unsigned_long (value))
10952 as_bad_where (fixp->fx_file, fixp->fx_line,
10953 _("symbol size computation overflow"));
10954 fixp->fx_addsy = NULL;
10955 fixp->fx_subsy = NULL;
10956 md_apply_fix (fixp, (valueT *) &value, NULL);
10957 return NULL;
10958 }
8ce3d284 10959#endif
1a0670f3 10960 /* Fall through. */
8fd4256d 10961
3e73aa7c
JH
10962 case BFD_RELOC_X86_64_PLT32:
10963 case BFD_RELOC_X86_64_GOT32:
10964 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10965 case BFD_RELOC_X86_64_GOTPCRELX:
10966 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10967 case BFD_RELOC_386_PLT32:
10968 case BFD_RELOC_386_GOT32:
02a86693 10969 case BFD_RELOC_386_GOT32X:
252b5132
RH
10970 case BFD_RELOC_386_GOTOFF:
10971 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10972 case BFD_RELOC_386_TLS_GD:
10973 case BFD_RELOC_386_TLS_LDM:
10974 case BFD_RELOC_386_TLS_LDO_32:
10975 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10976 case BFD_RELOC_386_TLS_IE:
10977 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10978 case BFD_RELOC_386_TLS_LE_32:
10979 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10980 case BFD_RELOC_386_TLS_GOTDESC:
10981 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10982 case BFD_RELOC_X86_64_TLSGD:
10983 case BFD_RELOC_X86_64_TLSLD:
10984 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10985 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10986 case BFD_RELOC_X86_64_GOTTPOFF:
10987 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10988 case BFD_RELOC_X86_64_TPOFF64:
10989 case BFD_RELOC_X86_64_GOTOFF64:
10990 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10991 case BFD_RELOC_X86_64_GOT64:
10992 case BFD_RELOC_X86_64_GOTPCREL64:
10993 case BFD_RELOC_X86_64_GOTPC64:
10994 case BFD_RELOC_X86_64_GOTPLT64:
10995 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10996 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10997 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10998 case BFD_RELOC_RVA:
10999 case BFD_RELOC_VTABLE_ENTRY:
11000 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11001#ifdef TE_PE
11002 case BFD_RELOC_32_SECREL:
11003#endif
252b5132
RH
11004 code = fixp->fx_r_type;
11005 break;
dbbaec26
L
11006 case BFD_RELOC_X86_64_32S:
11007 if (!fixp->fx_pcrel)
11008 {
11009 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11010 code = fixp->fx_r_type;
11011 break;
11012 }
1a0670f3 11013 /* Fall through. */
252b5132 11014 default:
93382f6d 11015 if (fixp->fx_pcrel)
252b5132 11016 {
93382f6d
AM
11017 switch (fixp->fx_size)
11018 {
11019 default:
b091f402
AM
11020 as_bad_where (fixp->fx_file, fixp->fx_line,
11021 _("can not do %d byte pc-relative relocation"),
11022 fixp->fx_size);
93382f6d
AM
11023 code = BFD_RELOC_32_PCREL;
11024 break;
11025 case 1: code = BFD_RELOC_8_PCREL; break;
11026 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11027 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11028#ifdef BFD64
11029 case 8: code = BFD_RELOC_64_PCREL; break;
11030#endif
93382f6d
AM
11031 }
11032 }
11033 else
11034 {
11035 switch (fixp->fx_size)
11036 {
11037 default:
b091f402
AM
11038 as_bad_where (fixp->fx_file, fixp->fx_line,
11039 _("can not do %d byte relocation"),
11040 fixp->fx_size);
93382f6d
AM
11041 code = BFD_RELOC_32;
11042 break;
11043 case 1: code = BFD_RELOC_8; break;
11044 case 2: code = BFD_RELOC_16; break;
11045 case 4: code = BFD_RELOC_32; break;
937149dd 11046#ifdef BFD64
3e73aa7c 11047 case 8: code = BFD_RELOC_64; break;
937149dd 11048#endif
93382f6d 11049 }
252b5132
RH
11050 }
11051 break;
11052 }
252b5132 11053
d182319b
JB
11054 if ((code == BFD_RELOC_32
11055 || code == BFD_RELOC_32_PCREL
11056 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11057 && GOT_symbol
11058 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11059 {
4fa24527 11060 if (!object_64bit)
d6ab8113
JB
11061 code = BFD_RELOC_386_GOTPC;
11062 else
11063 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11064 }
7b81dfbb
AJ
11065 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11066 && GOT_symbol
11067 && fixp->fx_addsy == GOT_symbol)
11068 {
11069 code = BFD_RELOC_X86_64_GOTPC64;
11070 }
252b5132 11071
add39d23
TS
11072 rel = XNEW (arelent);
11073 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11074 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11075
11076 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11077
3e73aa7c
JH
11078 if (!use_rela_relocations)
11079 {
11080 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11081 vtable entry to be used in the relocation's section offset. */
11082 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11083 rel->address = fixp->fx_offset;
fbeb56a4
DK
11084#if defined (OBJ_COFF) && defined (TE_PE)
11085 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11086 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11087 else
11088#endif
c6682705 11089 rel->addend = 0;
3e73aa7c
JH
11090 }
11091 /* Use the rela in 64bit mode. */
252b5132 11092 else
3e73aa7c 11093 {
862be3fb
L
11094 if (disallow_64bit_reloc)
11095 switch (code)
11096 {
862be3fb
L
11097 case BFD_RELOC_X86_64_DTPOFF64:
11098 case BFD_RELOC_X86_64_TPOFF64:
11099 case BFD_RELOC_64_PCREL:
11100 case BFD_RELOC_X86_64_GOTOFF64:
11101 case BFD_RELOC_X86_64_GOT64:
11102 case BFD_RELOC_X86_64_GOTPCREL64:
11103 case BFD_RELOC_X86_64_GOTPC64:
11104 case BFD_RELOC_X86_64_GOTPLT64:
11105 case BFD_RELOC_X86_64_PLTOFF64:
11106 as_bad_where (fixp->fx_file, fixp->fx_line,
11107 _("cannot represent relocation type %s in x32 mode"),
11108 bfd_get_reloc_code_name (code));
11109 break;
11110 default:
11111 break;
11112 }
11113
062cd5e7
AS
11114 if (!fixp->fx_pcrel)
11115 rel->addend = fixp->fx_offset;
11116 else
11117 switch (code)
11118 {
11119 case BFD_RELOC_X86_64_PLT32:
11120 case BFD_RELOC_X86_64_GOT32:
11121 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11122 case BFD_RELOC_X86_64_GOTPCRELX:
11123 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11124 case BFD_RELOC_X86_64_TLSGD:
11125 case BFD_RELOC_X86_64_TLSLD:
11126 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11127 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11128 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11129 rel->addend = fixp->fx_offset - fixp->fx_size;
11130 break;
11131 default:
11132 rel->addend = (section->vma
11133 - fixp->fx_size
11134 + fixp->fx_addnumber
11135 + md_pcrel_from (fixp));
11136 break;
11137 }
3e73aa7c
JH
11138 }
11139
252b5132
RH
11140 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11141 if (rel->howto == NULL)
11142 {
11143 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11144 _("cannot represent relocation type %s"),
252b5132
RH
11145 bfd_get_reloc_code_name (code));
11146 /* Set howto to a garbage value so that we can keep going. */
11147 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11148 gas_assert (rel->howto != NULL);
252b5132
RH
11149 }
11150
11151 return rel;
11152}
11153
ee86248c 11154#include "tc-i386-intel.c"
54cfded0 11155
a60de03c
JB
11156void
11157tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11158{
a60de03c
JB
11159 int saved_naked_reg;
11160 char saved_register_dot;
54cfded0 11161
a60de03c
JB
11162 saved_naked_reg = allow_naked_reg;
11163 allow_naked_reg = 1;
11164 saved_register_dot = register_chars['.'];
11165 register_chars['.'] = '.';
11166 allow_pseudo_reg = 1;
11167 expression_and_evaluate (exp);
11168 allow_pseudo_reg = 0;
11169 register_chars['.'] = saved_register_dot;
11170 allow_naked_reg = saved_naked_reg;
11171
e96d56a1 11172 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11173 {
a60de03c
JB
11174 if ((addressT) exp->X_add_number < i386_regtab_size)
11175 {
11176 exp->X_op = O_constant;
11177 exp->X_add_number = i386_regtab[exp->X_add_number]
11178 .dw2_regnum[flag_code >> 1];
11179 }
11180 else
11181 exp->X_op = O_illegal;
54cfded0 11182 }
54cfded0
AM
11183}
11184
11185void
11186tc_x86_frame_initial_instructions (void)
11187{
a60de03c
JB
11188 static unsigned int sp_regno[2];
11189
11190 if (!sp_regno[flag_code >> 1])
11191 {
11192 char *saved_input = input_line_pointer;
11193 char sp[][4] = {"esp", "rsp"};
11194 expressionS exp;
a4447b93 11195
a60de03c
JB
11196 input_line_pointer = sp[flag_code >> 1];
11197 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11198 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11199 sp_regno[flag_code >> 1] = exp.X_add_number;
11200 input_line_pointer = saved_input;
11201 }
a4447b93 11202
61ff971f
L
11203 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11204 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11205}
d2b2c203 11206
d7921315
L
11207int
11208x86_dwarf2_addr_size (void)
11209{
11210#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11211 if (x86_elf_abi == X86_64_X32_ABI)
11212 return 4;
11213#endif
11214 return bfd_arch_bits_per_address (stdoutput) / 8;
11215}
11216
d2b2c203
DJ
11217int
11218i386_elf_section_type (const char *str, size_t len)
11219{
11220 if (flag_code == CODE_64BIT
11221 && len == sizeof ("unwind") - 1
11222 && strncmp (str, "unwind", 6) == 0)
11223 return SHT_X86_64_UNWIND;
11224
11225 return -1;
11226}
bb41ade5 11227
ad5fec3b
EB
11228#ifdef TE_SOLARIS
11229void
11230i386_solaris_fix_up_eh_frame (segT sec)
11231{
11232 if (flag_code == CODE_64BIT)
11233 elf_section_type (sec) = SHT_X86_64_UNWIND;
11234}
11235#endif
11236
bb41ade5
AM
11237#ifdef TE_PE
11238void
11239tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11240{
91d6fa6a 11241 expressionS exp;
bb41ade5 11242
91d6fa6a
NC
11243 exp.X_op = O_secrel;
11244 exp.X_add_symbol = symbol;
11245 exp.X_add_number = 0;
11246 emit_expr (&exp, size);
bb41ade5
AM
11247}
11248#endif
3b22753a
L
11249
11250#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11251/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11252
01e1a5bc 11253bfd_vma
6d4af3c2 11254x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11255{
11256 if (flag_code == CODE_64BIT)
11257 {
11258 if (letter == 'l')
11259 return SHF_X86_64_LARGE;
11260
8f3bae45 11261 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11262 }
3b22753a 11263 else
8f3bae45 11264 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11265 return -1;
11266}
11267
01e1a5bc 11268bfd_vma
3b22753a
L
11269x86_64_section_word (char *str, size_t len)
11270{
8620418b 11271 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11272 return SHF_X86_64_LARGE;
11273
11274 return -1;
11275}
11276
11277static void
11278handle_large_common (int small ATTRIBUTE_UNUSED)
11279{
11280 if (flag_code != CODE_64BIT)
11281 {
11282 s_comm_internal (0, elf_common_parse);
11283 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11284 }
11285 else
11286 {
11287 static segT lbss_section;
11288 asection *saved_com_section_ptr = elf_com_section_ptr;
11289 asection *saved_bss_section = bss_section;
11290
11291 if (lbss_section == NULL)
11292 {
11293 flagword applicable;
11294 segT seg = now_seg;
11295 subsegT subseg = now_subseg;
11296
11297 /* The .lbss section is for local .largecomm symbols. */
11298 lbss_section = subseg_new (".lbss", 0);
11299 applicable = bfd_applicable_section_flags (stdoutput);
11300 bfd_set_section_flags (stdoutput, lbss_section,
11301 applicable & SEC_ALLOC);
11302 seg_info (lbss_section)->bss = 1;
11303
11304 subseg_set (seg, subseg);
11305 }
11306
11307 elf_com_section_ptr = &_bfd_elf_large_com_section;
11308 bss_section = lbss_section;
11309
11310 s_comm_internal (0, elf_common_parse);
11311
11312 elf_com_section_ptr = saved_com_section_ptr;
11313 bss_section = saved_bss_section;
11314 }
11315}
11316#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.936626 seconds and 4 git commands to generate.