x86: drop stray W
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
2c703856 3007pi (const char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
21df382b 3034 || x->types[j].bitfield.sreg
09137c09
SP
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
252b5132
RH
3043 }
3044}
3045
3046static void
d3ce72d0 3047pte (insn_template *t)
252b5132 3048{
09137c09 3049 unsigned int j;
252b5132 3050 fprintf (stdout, " %d operands ", t->operands);
47926f60 3051 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3054 if (t->opcode_modifier.d)
252b5132 3055 fprintf (stdout, "D");
40fb9820 3056 if (t->opcode_modifier.w)
252b5132
RH
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
09137c09 3059 for (j = 0; j < t->operands; j++)
252b5132 3060 {
09137c09
SP
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
252b5132
RH
3063 fprintf (stdout, "\n");
3064 }
3065}
3066
3067static void
e3bb37b5 3068pe (expressionS *e)
252b5132 3069{
24eab124 3070 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085}
3086
3087static void
e3bb37b5 3088ps (symbolS *s)
252b5132
RH
3089{
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094}
3095
7b81dfbb 3096static struct type_name
252b5132 3097 {
40fb9820
L
3098 i386_operand_type mask;
3099 const char *name;
252b5132 3100 }
7b81dfbb 3101const type_names[] =
252b5132 3102{
40fb9820
L
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3131 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3135 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3138 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3139};
3140
3141static void
40fb9820 3142pt (i386_operand_type t)
252b5132 3143{
40fb9820 3144 unsigned int j;
c6fb90c8 3145 i386_operand_type a;
252b5132 3146
40fb9820 3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
2c703856 3150 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
252b5132
RH
3153 fflush (stdout);
3154}
3155
3156#endif /* DEBUG386 */
3157\f
252b5132 3158static bfd_reloc_code_real_type
3956db08 3159reloc (unsigned int size,
64e74474
AM
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
252b5132 3163{
47926f60 3164 if (other != NO_RELOC)
3956db08 3165 {
91d6fa6a 3166 reloc_howto_type *rel;
3956db08
JB
3167
3168 if (size == 8)
3169 switch (other)
3170 {
64e74474
AM
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
553d1284
L
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
64e74474
AM
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3956db08 3194 }
e05278af 3195
8ce3d284 3196#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
1ab668bf 3200 other = BFD_RELOC_SIZE64;
8fd4256d 3201 if (pcrel)
1ab668bf
AM
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
8fd4256d 3206 }
8ce3d284 3207#endif
8fd4256d 3208
e05278af 3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3211 sign = -1;
3212
91d6fa6a
NC
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3956db08 3215 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3216 else if (size != bfd_get_reloc_size (rel))
3956db08 3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3218 bfd_get_reloc_size (rel),
3956db08 3219 size);
91d6fa6a 3220 else if (pcrel && !rel->pc_relative)
3956db08 3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3223 && !sign)
91d6fa6a 3224 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3225 && sign > 0))
3956db08
JB
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
252b5132
RH
3231
3232 if (pcrel)
3233 {
3e73aa7c 3234 if (!sign)
3956db08 3235 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
d258b828 3240 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3241 case 8: return BFD_RELOC_64_PCREL;
252b5132 3242 }
3956db08 3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3244 }
3245 else
3246 {
3956db08 3247 if (sign > 0)
e5cb08ac 3248 switch (size)
3e73aa7c
JH
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3956db08
JB
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3262 }
3263
0cc9e1d3 3264 return NO_RELOC;
252b5132
RH
3265}
3266
47926f60
KH
3267/* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
252b5132 3272int
e3bb37b5 3273tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3274{
6d249963 3275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3276 if (!IS_ELF)
31312f95
AM
3277 return 1;
3278
a161fe53
AM
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
252b5132 3284 return 0;
31312f95 3285
8d01d9a9
AJ
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
8fd4256d
L
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
31312f95 3328#endif
252b5132
RH
3329 return 1;
3330}
252b5132 3331
b4cac588 3332static int
e3bb37b5 3333intel_float_operand (const char *mnemonic)
252b5132 3334{
9306ca4a
JB
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
252b5132 3381
9306ca4a 3382 return 1;
252b5132
RH
3383}
3384
c0f3af97
L
3385/* Build the VEX prefix. */
3386
3387static void
d3ce72d0 3388build_vex_prefix (const insn_template *t)
c0f3af97
L
3389{
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
03751133 3393 unsigned int w;
c0f3af97
L
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
43234a1e
L
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
c0f3af97
L
3402 else
3403 register_specifier = 0xf;
3404
79f0fa25
L
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
86fa6981 3409 && i.dir_encoding == dir_encoding_default
fa99fab2 3410 && i.operands == i.reg_operands
dbbc8b7e 3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3412 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
9c2799c2 3427 gas_assert (i.rm.mode == 3);
fa99fab2
L
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
dbbc8b7e
JB
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
fa99fab2
L
3439 }
3440
79dec6b7
JB
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
539f890d
L
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
10c17abd
JB
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
539f890d 3482 else
10c17abd 3483 {
56522fc5 3484 unsigned int op;
10c17abd 3485
c7213af9
L
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
10c17abd 3488 vector_length = 0;
56522fc5 3489 for (op = t->operands; op--;)
10c17abd
JB
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
c0f3af97
L
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
03751133
L
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
931d03b7 3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3524
c0f3af97 3525 /* Use 2-byte VEX prefix if possible. */
03751133
L
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
86fa6981 3528 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
03751133 3547 unsigned int m;
c0f3af97 3548
f88c9eb0 3549 i.vex.length = 3;
f88c9eb0 3550
7f399153 3551 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3552 {
7f399153
L
3553 case VEX0F:
3554 m = 0x1;
80de6e00 3555 i.vex.bytes[0] = 0xc4;
7f399153
L
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
80de6e00 3559 i.vex.bytes[0] = 0xc4;
7f399153
L
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
80de6e00 3563 i.vex.bytes[0] = 0xc4;
7f399153
L
3564 break;
3565 case XOP08:
5dd85c99
SP
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
7f399153
L
3568 break;
3569 case XOP09:
f88c9eb0
SP
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
7f399153
L
3572 break;
3573 case XOP0A:
f88c9eb0
SP
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
7f399153
L
3576 break;
3577 default:
3578 abort ();
f88c9eb0 3579 }
c0f3af97 3580
c0f3af97
L
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
c0f3af97
L
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590}
3591
e771e7c9
JB
3592static INLINE bfd_boolean
3593is_evex_encoding (const insn_template *t)
3594{
7091c612 3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3597 || t->opcode_modifier.sae;
e771e7c9
JB
3598}
3599
7a8655d2
JB
3600static INLINE bfd_boolean
3601is_any_vex_encoding (const insn_template *t)
3602{
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605}
3606
43234a1e
L
3607/* Build the EVEX prefix. */
3608
3609static void
3610build_evex_prefix (void)
3611{
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
6865c043
L
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
931d03b7 3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
e771e7c9
JB
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
56522fc5 3738 unsigned int op;
e771e7c9 3739
c7213af9
L
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
e771e7c9 3742 vec_length = 0;
56522fc5 3743 for (op = i.operands; op--;)
e771e7c9
JB
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
c7213af9
L
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
e771e7c9 3753 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
e771e7c9 3758 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
625cbd7a
JB
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
4a1b91ea 3765 switch (i.broadcast->bytes)
625cbd7a
JB
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
c7213af9 3777 abort ();
625cbd7a 3778 }
c7213af9 3779 break;
625cbd7a 3780 }
e771e7c9 3781 }
c7213af9 3782
56522fc5 3783 if (op >= MAX_OPERANDS)
c7213af9 3784 abort ();
e771e7c9
JB
3785 }
3786
43234a1e
L
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
d3d3c6db 3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820}
3821
65da13b5
L
3822static void
3823process_immext (void)
3824{
3825 expressionS *exp;
3826
4c692bc7
JB
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
65da13b5 3829 {
4c692bc7
JB
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
65da13b5
L
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
4c692bc7 3837 if (register_number (i.op[x].regs) != x)
65da13b5 3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
65da13b5
L
3843 }
3844
9916071f
AP
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
c0f3af97 3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
c1e679ec 3878 AVX instructions also use this encoding, for some of
c0f3af97 3879 3 argument instructions. */
65da13b5 3880
43234a1e 3881 gas_assert (i.imm_operands <= 1
7ab9ffdd 3882 && (i.operands <= 2
7a8655d2 3883 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3884 && i.operands <= 4)));
65da13b5
L
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893}
3894
42164a71
L
3895
3896static int
3897check_hle (void)
3898{
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
82c2def5 3903 case HLEPrefixNone:
165de32a
L
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
42164a71 3906 return 0;
82c2def5 3907 case HLEPrefixLock:
42164a71
L
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
165de32a 3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3911 return 0;
82c2def5 3912 case HLEPrefixAny:
42164a71 3913 return 1;
82c2def5 3914 case HLEPrefixRelease:
42164a71
L
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
8dc0818e 3921 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3922 {
3923 as_bad (_("memory destination needed for instruction `%s'"
3924 " after `xrelease'"), i.tm.name);
3925 return 0;
3926 }
3927 return 1;
3928 }
3929}
3930
b6f8c7c4
L
3931/* Try the shortest encoding by shortening operand size. */
3932
3933static void
3934optimize_encoding (void)
3935{
a0a1771e 3936 unsigned int j;
b6f8c7c4
L
3937
3938 if (optimize_for_space
3939 && i.reg_operands == 1
3940 && i.imm_operands == 1
3941 && !i.types[1].bitfield.byte
3942 && i.op[0].imms->X_op == O_constant
3943 && fits_in_imm7 (i.op[0].imms->X_add_number)
3944 && ((i.tm.base_opcode == 0xa8
3945 && i.tm.extension_opcode == None)
3946 || (i.tm.base_opcode == 0xf6
3947 && i.tm.extension_opcode == 0x0)))
3948 {
3949 /* Optimize: -Os:
3950 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3951 */
3952 unsigned int base_regnum = i.op[1].regs->reg_num;
3953 if (flag_code == CODE_64BIT || base_regnum < 4)
3954 {
3955 i.types[1].bitfield.byte = 1;
3956 /* Ignore the suffix. */
3957 i.suffix = 0;
3958 if (base_regnum >= 4
3959 && !(i.op[1].regs->reg_flags & RegRex))
3960 {
3961 /* Handle SP, BP, SI and DI registers. */
3962 if (i.types[1].bitfield.word)
3963 j = 16;
3964 else if (i.types[1].bitfield.dword)
3965 j = 32;
3966 else
3967 j = 48;
3968 i.op[1].regs -= j;
3969 }
3970 }
3971 }
3972 else if (flag_code == CODE_64BIT
d3d50934
L
3973 && ((i.types[1].bitfield.qword
3974 && i.reg_operands == 1
b6f8c7c4
L
3975 && i.imm_operands == 1
3976 && i.op[0].imms->X_op == O_constant
507916b8 3977 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3978 && i.tm.extension_opcode == None
3979 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3980 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3981 && (((i.tm.base_opcode == 0x24
3982 || i.tm.base_opcode == 0xa8)
3983 && i.tm.extension_opcode == None)
3984 || (i.tm.base_opcode == 0x80
3985 && i.tm.extension_opcode == 0x4)
3986 || ((i.tm.base_opcode == 0xf6
507916b8 3987 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
3988 && i.tm.extension_opcode == 0x0)))
3989 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3990 && i.tm.base_opcode == 0x83
3991 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3992 || (i.types[0].bitfield.qword
3993 && ((i.reg_operands == 2
3994 && i.op[0].regs == i.op[1].regs
3995 && ((i.tm.base_opcode == 0x30
3996 || i.tm.base_opcode == 0x28)
3997 && i.tm.extension_opcode == None))
3998 || (i.reg_operands == 1
3999 && i.operands == 1
4000 && i.tm.base_opcode == 0x30
4001 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4002 {
4003 /* Optimize: -O:
4004 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4005 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4006 testq $imm31, %r64 -> testl $imm31, %r32
4007 xorq %r64, %r64 -> xorl %r32, %r32
4008 subq %r64, %r64 -> subl %r32, %r32
4009 movq $imm31, %r64 -> movl $imm31, %r32
4010 movq $imm32, %r64 -> movl $imm32, %r32
4011 */
4012 i.tm.opcode_modifier.norex64 = 1;
507916b8 4013 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4014 {
4015 /* Handle
4016 movq $imm31, %r64 -> movl $imm31, %r32
4017 movq $imm32, %r64 -> movl $imm32, %r32
4018 */
4019 i.tm.operand_types[0].bitfield.imm32 = 1;
4020 i.tm.operand_types[0].bitfield.imm32s = 0;
4021 i.tm.operand_types[0].bitfield.imm64 = 0;
4022 i.types[0].bitfield.imm32 = 1;
4023 i.types[0].bitfield.imm32s = 0;
4024 i.types[0].bitfield.imm64 = 0;
4025 i.types[1].bitfield.dword = 1;
4026 i.types[1].bitfield.qword = 0;
507916b8 4027 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4028 {
4029 /* Handle
4030 movq $imm31, %r64 -> movl $imm31, %r32
4031 */
507916b8 4032 i.tm.base_opcode = 0xb8;
b6f8c7c4 4033 i.tm.extension_opcode = None;
507916b8 4034 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
5641ec01
JB
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
99112332 4063 else if (i.reg_operands == 3
b6f8c7c4
L
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
7a69eac3 4067 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4068 && !i.rounding
e771e7c9 4069 && is_evex_encoding (&i.tm)
80c34c38 4070 && (i.vec_encoding != vex_encoding_evex
dd22218c 4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4073 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4074 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
8305403a
L
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4089 && i.tm.extension_opcode == None))
4090 {
99112332 4091 /* Optimize: -O1:
8305403a
L
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
b6f8c7c4
L
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4125 */
e771e7c9 4126 if (is_evex_encoding (&i.tm))
b6f8c7c4 4127 {
7b1d7ca1 4128 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
7b1d7ca1 4134 else if (optimize > 1)
dd22218c
L
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
b6f8c7c4 4138 }
1424ad86
JB
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
b6f8c7c4
L
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
392a5972 4154 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4155 && !i.types[0].bitfield.zmmword
392a5972 4156 && !i.types[1].bitfield.zmmword
97ed31ae 4157 && !i.mask
a0a1771e 4158 && !i.broadcast
97ed31ae 4159 && is_evex_encoding (&i.tm)
392a5972
L
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4191 */
a0a1771e 4192 for (j = 0; j < i.operands; j++)
392a5972
L
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
a0a1771e 4225 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
a0a1771e
JB
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4231 }
b6f8c7c4
L
4232}
4233
252b5132
RH
4234/* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238void
65da13b5 4239md_assemble (char *line)
252b5132 4240{
40fb9820 4241 unsigned int j;
83b16ac6 4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4243 const insn_template *t;
252b5132 4244
47926f60 4245 /* Initialize globals. */
252b5132
RH
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4248 i.reloc[j] = NO_RELOC;
252b5132
RH
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4251 save_stack_p = save_stack;
252b5132
RH
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4255 start of a (possibly prefixed) mnemonic. */
252b5132 4256
29b0f896
AM
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
83b16ac6 4260 mnem_suffix = i.suffix;
252b5132 4261
29b0f896 4262 line = parse_operands (line, mnemonic);
ee86248c 4263 this_operand = -1;
8325cc63
JB
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
29b0f896
AM
4266 if (line == NULL)
4267 return;
252b5132 4268
29b0f896
AM
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
050dfa73 4275 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4276 if (intel_syntax
4277 && i.operands > 1
29b0f896 4278 && (strcmp (mnemonic, "bound") != 0)
30123838 4279 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4282 swap_operands ();
4283
ec56d5c0
JB
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
29b0f896
AM
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
b300c311
L
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
a501d77e 4297 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
29b0f896
AM
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
252b5132 4305
83b16ac6 4306 if (!(t = match_template (mnem_suffix)))
29b0f896 4307 return;
252b5132 4308
7bab8ab5 4309 if (sse_check != check_none
81f8a913 4310 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4311 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4321 {
7bab8ab5 4322 (sse_check == check_warning
daf50ae7
L
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
321fd21e
L
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4332 {
321fd21e
L
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
7ab9ffdd 4337 && intel_syntax)
321fd21e
L
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
cd61ebfe 4341 }
24eab124 4342
40fb9820 4343 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
252b5132 4346
d5de92cf
L
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
c1ba0266
L
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
c32fa91d
L
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
8dc0818e 4361 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
7a8655d2
JB
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
42164a71 4374 /* Check if HLE prefix is OK. */
165de32a 4375 if (i.hle_prefix && !check_hle ())
42164a71
L
4376 return;
4377
7e8b059b
L
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
04ef582a 4382 /* Check NOTRACK prefix. */
9fef80d6
L
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4385
327e8c42
JB
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
7e8b059b
L
4395
4396 /* Insert BND prefix. */
76d3a78a
JB
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
7e8b059b 4407
29b0f896 4408 /* Check string instruction segment overrides. */
40fb9820 4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4410 {
4411 if (!check_string ())
5dd0794d 4412 return;
fc0763e6 4413 i.disp_operands = 0;
29b0f896 4414 }
5dd0794d 4415
b6f8c7c4
L
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
29b0f896
AM
4419 if (!process_suffix ())
4420 return;
e413e4e9 4421
bc0844ae
L
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
29b0f896
AM
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
252b5132 4430
40fb9820 4431 if (i.types[0].bitfield.imm1)
29b0f896 4432 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4433
9afe6eb8
L
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
1b54b8d7 4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4441 i.reg_operands--;
40fb9820 4442
c0f3af97
L
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
65da13b5 4446 process_immext ();
252b5132 4447
29b0f896
AM
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
40fb9820 4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
252b5132 4459
7a8655d2 4460 if (is_any_vex_encoding (&i.tm))
9e5e5283 4461 {
c1dc7af5 4462 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4463 {
c1dc7af5 4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4465 i.tm.name);
4466 return;
4467 }
c0f3af97 4468
9e5e5283
L
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
43234a1e 4474
5dd85c99
SP
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
252b5132 4485
40fb9820
L
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
252b5132 4497
40fb9820 4498 if (i.tm.opcode_modifier.rex64)
161a04f6 4499 i.rex |= REX_W;
252b5132 4500
29b0f896
AM
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
773f551c 4504
dc821c5f 4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4511 && i.rex != 0))
4512 {
4513 int x;
726c5dcd 4514
29b0f896
AM
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4521 {
29b0f896
AM
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
a540244d 4524 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4525 "instruction requiring REX prefix."),
a540244d 4526 register_prefix, i.op[x].regs->reg_name);
773f551c 4527
29b0f896
AM
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
773f551c 4533 }
29b0f896
AM
4534 }
4535 }
773f551c 4536
6b6b6807
L
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
7ab9ffdd 4557 if (i.rex != 0)
29b0f896
AM
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562}
4563
4564static char *
e3bb37b5 4565parse_insn (char *line, char *mnemonic)
29b0f896
AM
4566{
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
5c6af06e 4570 int supported;
d3ce72d0 4571 const insn_template *t;
b6169b20 4572 char *dot_p = NULL;
29b0f896 4573
29b0f896
AM
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
b6169b20
L
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
29b0f896
AM
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4583 {
29b0f896
AM
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
e44823cf
JB
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
29b0f896
AM
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
e44823cf 4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
45288df1 4607
29b0f896 4608 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4610
29b0f896
AM
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
40fb9820 4614 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4615 {
c6fb90c8 4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
29b0f896
AM
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4628 && flag_code != CODE_64BIT
673fe0f0 4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
45288df1 4635 }
86fa6981 4636 if (current_templates->start->opcode_length == 0)
29b0f896 4637 {
86fa6981
L
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
6b6b6807
L
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
b6f8c7c4
L
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
86fa6981
L
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4684 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4685 {
4e9ac44a
L
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
d777820b 4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
86fa6981 4702 }
29b0f896
AM
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
45288df1 4710
30a55f88 4711 if (!current_templates)
b6169b20 4712 {
07d5e953
JB
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
f8a5c266 4715 encoding. */
30a55f88 4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4717 i.dir_encoding = dir_encoding_swap;
8d63c93e 4718 else if (mnem_p - 3 == dot_p
a501d77e
L
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4722 else if (mnem_p - 4 == dot_p
f8a5c266
L
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
a501d77e 4726 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
d3ce72d0 4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4732 }
4733
29b0f896
AM
4734 if (!current_templates)
4735 {
b6169b20 4736check_suffix:
1c529385 4737 if (mnem_p > mnemonic)
29b0f896 4738 {
1c529385
LH
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
29b0f896 4741 {
1c529385
LH
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
1c529385
LH
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
29b0f896 4750 mnem_p[-1] = '\0';
d3ce72d0 4751 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
29b0f896 4778 }
29b0f896 4779 }
1c529385 4780
29b0f896
AM
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
252b5132 4787
40fb9820
L
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
252b5132 4820
29b0f896 4821 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
c0f3af97
L
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4830
548d0ee6
JB
4831 return l;
4832 }
29b0f896 4833 }
3629bb00 4834
548d0ee6
JB
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4845
548d0ee6 4846 return NULL;
29b0f896 4847}
252b5132 4848
29b0f896 4849static char *
e3bb37b5 4850parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4851{
4852 char *token_start;
3138f287 4853
29b0f896
AM
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
252b5132 4856
29b0f896
AM
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
d02603dc 4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
d02603dc 4872 token_start = l; /* After white space. */
29b0f896
AM
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
d02603dc 4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
9d46ce34 4924 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
1286ab78
L
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
29b0f896
AM
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
a7619375 4940 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
7f3f1ea2 4960
29b0f896
AM
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973}
7f3f1ea2 4974
050dfa73 4975static void
4d456e3d 4976swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4977{
4978 union i386_op temp_op;
40fb9820 4979 i386_operand_type temp_type;
c48dadc9 4980 unsigned int temp_flags;
050dfa73 4981 enum bfd_reloc_code_real temp_reloc;
4eed87de 4982
050dfa73
MM
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
c48dadc9
JB
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
050dfa73
MM
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
c48dadc9 4994
050dfa73
MM
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
050dfa73
MM
5020}
5021
29b0f896 5022static void
e3bb37b5 5023swap_operands (void)
29b0f896 5024{
b7c61d9a 5025 switch (i.operands)
050dfa73 5026 {
c0f3af97 5027 case 5:
b7c61d9a 5028 case 4:
4d456e3d 5029 swap_2_operands (1, i.operands - 2);
1a0670f3 5030 /* Fall through. */
b7c61d9a
L
5031 case 3:
5032 case 2:
4d456e3d 5033 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5034 break;
5035 default:
5036 abort ();
29b0f896 5037 }
29b0f896
AM
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046}
252b5132 5047
29b0f896
AM
5048/* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050static void
e3bb37b5 5051optimize_imm (void)
29b0f896
AM
5052{
5053 char guess_suffix = 0;
5054 int op;
252b5132 5055
29b0f896
AM
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
dc821c5f 5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5066 {
40fb9820
L
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
dc821c5f 5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5071 {
40fb9820
L
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
dc821c5f 5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
dc821c5f 5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5083 break;
252b5132 5084 }
29b0f896
AM
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
40fb9820 5090 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5091 {
5092 switch (i.op[op].imms->X_op)
252b5132 5093 {
29b0f896
AM
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
252b5132 5097 {
29b0f896 5098 case LONG_MNEM_SUFFIX:
40fb9820
L
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5101 break;
5102 case WORD_MNEM_SUFFIX:
40fb9820
L
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5107 break;
5108 case BYTE_MNEM_SUFFIX:
40fb9820
L
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
29b0f896 5115 break;
252b5132 5116 }
252b5132 5117
29b0f896
AM
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
40fb9820 5123 if ((i.types[op].bitfield.imm16)
29b0f896 5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5125 {
29b0f896
AM
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5131 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
a28def75 5139#endif
40fb9820 5140 i.types[op]
c6fb90c8
L
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5143
29b0f896
AM
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5147 i.types[op].bitfield.imm32 = 0;
29b0f896 5148 break;
252b5132 5149
29b0f896
AM
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
9cd96992
JB
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
40fb9820 5160 i386_operand_type mask, allowed;
d3ce72d0 5161 const insn_template *t;
9cd96992 5162
0dfbf9d7
L
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
40fb9820 5165
4eed87de
AM
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
c6fb90c8
L
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
9cd96992
JB
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
40fb9820
L
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
9cd96992
JB
5176 break;
5177 case LONG_MNEM_SUFFIX:
40fb9820 5178 mask.bitfield.imm32 = 1;
9cd96992
JB
5179 break;
5180 case WORD_MNEM_SUFFIX:
40fb9820 5181 mask.bitfield.imm16 = 1;
9cd96992
JB
5182 break;
5183 case BYTE_MNEM_SUFFIX:
40fb9820 5184 mask.bitfield.imm8 = 1;
9cd96992
JB
5185 break;
5186 default:
9cd96992
JB
5187 break;
5188 }
c6fb90c8 5189 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5190 if (!operand_type_all_zero (&allowed))
c6fb90c8 5191 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5192 }
29b0f896 5193 break;
252b5132 5194 }
29b0f896
AM
5195 }
5196}
47926f60 5197
29b0f896
AM
5198/* Try to use the smallest displacement type too. */
5199static void
e3bb37b5 5200optimize_disp (void)
29b0f896
AM
5201{
5202 int op;
3e73aa7c 5203
29b0f896 5204 for (op = i.operands; --op >= 0;)
40fb9820 5205 if (operand_type_check (i.types[op], disp))
252b5132 5206 {
b300c311 5207 if (i.op[op].disps->X_op == O_constant)
252b5132 5208 {
91d6fa6a 5209 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5210
40fb9820 5211 if (i.types[op].bitfield.disp16
91d6fa6a 5212 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
91d6fa6a 5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5218 i.types[op].bitfield.disp64 = 0;
b300c311 5219 }
a28def75
L
5220#ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5222 if (i.types[op].bitfield.disp32
91d6fa6a 5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
91d6fa6a
NC
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5230 i.types[op].bitfield.disp64 = 0;
b300c311 5231 }
a28def75 5232#endif
91d6fa6a 5233 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5234 {
40fb9820
L
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
b300c311
L
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
91d6fa6a 5245 if (fits_in_signed_long (op_disp))
28a9d8f5 5246 {
40fb9820
L
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5249 }
0e1147d9 5250 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5251 && fits_in_unsigned_long (op_disp))
40fb9820 5252 i.types[op].bitfield.disp32 = 1;
b300c311 5253 }
40fb9820
L
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
b5014f7a 5257 && fits_in_disp8 (op_disp))
40fb9820 5258 i.types[op].bitfield.disp8 = 1;
252b5132 5259 }
67a4f2b7
AO
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5270 }
5271 else
b300c311 5272 /* We only support 64bit displacement on constants. */
40fb9820 5273 i.types[op].bitfield.disp64 = 0;
252b5132 5274 }
29b0f896
AM
5275}
5276
4a1b91ea
L
5277/* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280static INLINE int
5281match_broadcast_size (const insn_template *t, unsigned int given)
5282{
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291}
5292
6c30d220
L
5293/* Check if operands are valid for the instruction. */
5294
5295static int
5296check_VecOperands (const insn_template *t)
5297{
43234a1e 5298 unsigned int op;
e2195274
JB
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
43234a1e 5323
6c30d220
L
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
1b54b8d7
JB
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
ad8ecc81
MZ
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
7bab8ab5
JB
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
6c30d220 5348 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5349 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5350 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5351 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5352 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5353 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
43234a1e
L
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
1b54b8d7
JB
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
43234a1e
L
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
8444f82a
MZ
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
1b54b8d7
JB
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
43234a1e 5402 }
7bab8ab5 5403
43234a1e
L
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
8e6e0792 5408 i386_operand_type type, overlap;
43234a1e
L
5409
5410 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5411 and its broadcast bytes match the memory operand. */
32546502 5412 op = i.broadcast->operand;
8e6e0792 5413 if (!t->opcode_modifier.broadcast
c48dadc9 5414 || !(i.flags[op] & Operand_Mem)
c39e5b26 5415 || (!i.types[op].bitfield.unspecified
4a1b91ea 5416 && !match_broadcast_size (t, op)))
43234a1e
L
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
8e6e0792 5422
4a1b91ea
L
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
8e6e0792 5425 operand_type_set (&type, 0);
4a1b91ea 5426 switch (i.broadcast->bytes)
8e6e0792 5427 {
4a1b91ea
L
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
8e6e0792
JB
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
e2195274 5458 type.bitfield.baseindex = 1;
8e6e0792
JB
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
43234a1e
L
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
8dc0818e 5476 if (i.flags[op] & Operand_Mem)
43234a1e
L
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
4a1b91ea 5480 if (match_broadcast_size (t, op))
43234a1e
L
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
c39e5b26
JB
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5488
5489 /* Check if requested masking is supported. */
ae2387fe 5490 if (i.mask)
43234a1e 5491 {
ae2387fe
JB
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
c48dadc9 5510 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
43234a1e
L
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
43234a1e
L
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
a80195f1
JB
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5546 {
43234a1e 5547 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5548 return 1;
5549 }
6c30d220
L
5550 }
5551
43234a1e 5552 /* Check vector Disp8 operand. */
b5014f7a
JB
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5555 {
5556 if (i.broadcast)
4a1b91ea 5557 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5559 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
8dc0818e 5566 if (i.flags[op] & Operand_Mem)
7091c612 5567 {
4174bfff
JB
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
4174bfff
JB
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
43234a1e
L
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
b5014f7a 5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5608 {
b5014f7a
JB
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
43234a1e 5611 }
b5014f7a 5612 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5613 }
5614 }
b5014f7a
JB
5615
5616 i.memshift = 0;
43234a1e 5617
6c30d220
L
5618 return 0;
5619}
5620
43f3e2ee 5621/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5622 operand types. */
5623
5624static int
5625VEX_check_operands (const insn_template *t)
5626{
86fa6981 5627 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5628 {
86fa6981 5629 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5630 if (!is_evex_encoding (t))
86fa6981
L
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
43234a1e
L
5636 }
5637
a683cc34 5638 if (!t->opcode_modifier.vex)
86fa6981
L
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
a683cc34 5648
9d3bf266
JB
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5654 {
a65babc9 5655 i.error = bad_imm4;
891edac4
L
5656 return 1;
5657 }
a683cc34 5658
9d3bf266
JB
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
a683cc34
SP
5661 }
5662
5663 return 0;
5664}
5665
d3ce72d0 5666static const insn_template *
83b16ac6 5667match_template (char mnem_suffix)
29b0f896
AM
5668{
5669 /* Points to template once we've found it. */
d3ce72d0 5670 const insn_template *t;
40fb9820 5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5672 i386_operand_type overlap4;
29b0f896 5673 unsigned int found_reverse_match;
83b16ac6 5674 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5675 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5676 int addr_prefix_disp;
a5c311ca 5677 unsigned int j;
3ac21baa 5678 unsigned int found_cpu_match, size_match;
45664ddb 5679 unsigned int check_register;
5614d22c 5680 enum i386_error specific_error = 0;
29b0f896 5681
c0f3af97
L
5682#if MAX_OPERANDS != 5
5683# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5684#endif
5685
29b0f896 5686 found_reverse_match = 0;
539e75ad 5687 addr_prefix_disp = -1;
40fb9820
L
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5703 suffix_check.no_ldsuf = 1;
29b0f896 5704
83b16ac6
JB
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
01559ecc
L
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
45aa61fe 5721 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5722 {
539e75ad 5723 addr_prefix_disp = -1;
dbbc8b7e 5724 found_reverse_match = 0;
539e75ad 5725
29b0f896
AM
5726 if (i.operands != t->operands)
5727 continue;
5728
50aecf8c 5729 /* Check processor support. */
a65babc9 5730 i.error = unsupported;
c0f3af97
L
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5733 if (!found_cpu_match)
5734 continue;
5735
e1d4d893 5736 /* Check AT&T mnemonic. */
a65babc9 5737 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5739 continue;
5740
e92bae62 5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5742 i.error = unsupported_syntax;
5c07affc 5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5747 continue;
5748
20592a94 5749 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5750 i.error = invalid_instruction_suffix;
567e4e96
L
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5758 continue;
83b16ac6
JB
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
29b0f896 5767
3ac21baa
JB
5768 size_match = operand_size_match (t);
5769 if (!size_match)
7d5e4556 5770 continue;
539e75ad 5771
5c07affc
L
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
45aa61fe
AM
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
40fb9820 5779 ? (!t->opcode_modifier.ignoresize
625cbd7a 5780 && !t->opcode_modifier.broadcast
45aa61fe
AM
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
40fb9820 5783 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5784 && !operand_types[0].bitfield.regsimd)
40fb9820 5785 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5786 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
192dc9c6
JB
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5799 && !operand_types[0].bitfield.regsimd)
192dc9c6 5800 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5802 continue;
5803
29b0f896 5804 /* Do not verify operands when there are none. */
50aecf8c 5805 else
29b0f896 5806 {
c6fb90c8 5807 if (!t->operands)
2dbab7d5
L
5808 /* We've found a match; break out of loop. */
5809 break;
29b0f896 5810 }
252b5132 5811
539e75ad
L
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
40fb9820 5816 /* There should be only one Disp operand. */
539e75ad
L
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
40fb9820
L
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
539e75ad
L
5830 break;
5831 case CODE_32BIT:
40fb9820
L
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
539e75ad
L
5842 break;
5843 case CODE_64BIT:
40fb9820
L
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
539e75ad
L
5854 break;
5855 }
539e75ad
L
5856 }
5857
02a86693
L
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
56ffb741 5862 /* We check register size if needed. */
e2195274
JB
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
c6fb90c8 5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5873 switch (t->operands)
5874 {
5875 case 1:
40fb9820 5876 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5877 continue;
5878 break;
5879 case 2:
33eaf5de 5880 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
2c703856
JB
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5888 continue;
1212781b
JB
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
8dc0818e 5895 && (i.flags[1] & Operand_Mem))
1212781b 5896 continue;
f5eb1d70
JB
5897 /* Fall through. */
5898
5899 case 3:
3ac21baa
JB
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
64c49ab3
JB
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5914 || t->opcode_modifier.regmem)
64c49ab3
JB
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5920 && !t->opcode_modifier.regmem)
64c49ab3
JB
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
86fa6981 5930 /* If we want store form, we skip the current load. */
64c49ab3
JB
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
fa99fab2 5935 continue;
1a0670f3 5936 /* Fall through. */
f48ff2ae 5937 case 4:
c0f3af97 5938 case 5:
c6fb90c8 5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
e2195274 5942 || ((check_register & 3) == 3
dc821c5f 5943 && !operand_type_register_match (i.types[0],
40fb9820 5944 operand_types[0],
dc821c5f 5945 i.types[1],
40fb9820 5946 operand_types[1])))
29b0f896
AM
5947 {
5948 /* Check if other direction is valid ... */
38e314eb 5949 if (!t->opcode_modifier.d)
29b0f896
AM
5950 continue;
5951
b6169b20 5952check_reverse:
3ac21baa
JB
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
29b0f896 5955 /* Try reversing direction of operands. */
f5eb1d70
JB
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5958 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5960 || (check_register
dc821c5f 5961 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
45664ddb 5964 operand_types[0])))
29b0f896
AM
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
38e314eb 5969 /* found_reverse_match holds which of D or FloatR
29b0f896 5970 we've found. */
38e314eb
JB
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5974 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5975 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5976 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5977 || operand_types[0].bitfield.regmmx
f5eb1d70 5978 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5982 else
38e314eb 5983 found_reverse_match = Opcode_D;
40fb9820 5984 if (t->opcode_modifier.floatr)
8a2ed489 5985 found_reverse_match |= Opcode_FloatR;
29b0f896 5986 }
f48ff2ae 5987 else
29b0f896 5988 {
f48ff2ae 5989 /* Found a forward 2 operand match here. */
d1cbb4db
L
5990 switch (t->operands)
5991 {
c0f3af97
L
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
1a0670f3 5995 /* Fall through. */
d1cbb4db 5996 case 4:
c6fb90c8
L
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
1a0670f3 5999 /* Fall through. */
d1cbb4db 6000 case 3:
c6fb90c8
L
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
d1cbb4db
L
6003 break;
6004 }
29b0f896 6005
f48ff2ae
L
6006 switch (t->operands)
6007 {
c0f3af97
L
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6010 || !operand_type_register_match (i.types[3],
c0f3af97 6011 operand_types[3],
c0f3af97
L
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
1a0670f3 6015 /* Fall through. */
f48ff2ae 6016 case 4:
40fb9820 6017 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
f7768225
JB
6020 operand_types[1],
6021 i.types[3],
e2195274
JB
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
f48ff2ae 6028 continue;
1a0670f3 6029 /* Fall through. */
f48ff2ae
L
6030 case 3:
6031 /* Here we make use of the fact that there are no
23e42951 6032 reverse match 3 operand instructions. */
40fb9820 6033 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
23e42951
JB
6036 operand_types[0],
6037 i.types[2],
e2195274
JB
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
f48ff2ae
L
6044 continue;
6045 break;
6046 }
29b0f896 6047 }
f48ff2ae 6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6049 slip through to break. */
6050 }
3629bb00 6051 if (!found_cpu_match)
dbbc8b7e 6052 continue;
c0f3af97 6053
5614d22c
JB
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
a683cc34 6060
29b0f896
AM
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
a65babc9 6068 const char *err_msg;
5614d22c 6069 switch (specific_error ? specific_error : i.error)
a65babc9
L
6070 {
6071 default:
6072 abort ();
86e026a4 6073 case operand_size_mismatch:
a65babc9
L
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
4a2608e3 6089 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6090 break;
a65babc9
L
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
35262a23 6098 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6099 current_templates->start->name);
6100 return NULL;
6c30d220
L
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
7bab8ab5
JB
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6c30d220
L
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
43234a1e
L
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
43234a1e
L
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
a65babc9
L
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
891edac4 6139 current_templates->start->name);
fa99fab2 6140 return NULL;
29b0f896 6141 }
252b5132 6142
29b0f896
AM
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
40fb9820
L
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
40fb9820
L
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
29b0f896
AM
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
539e75ad
L
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
29b0f896
AM
6168 if (found_reverse_match)
6169 {
dfd69174
JB
6170 /* If we found a reverse match we must alter the opcode direction
6171 bit and clear/flip the regmem modifier one. found_reverse_match
6172 holds bits to change (different for int & float insns). */
29b0f896
AM
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
f5eb1d70
JB
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6178
6179 /* Certain SIMD insns have their load forms specified in the opcode
6180 table, and hence we need to _set_ RegMem instead of clearing it.
6181 We need to avoid setting the bit though on insns like KMOVW. */
6182 i.tm.opcode_modifier.regmem
6183 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6184 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6185 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6186 }
6187
fa99fab2 6188 return t;
29b0f896
AM
6189}
6190
6191static int
e3bb37b5 6192check_string (void)
29b0f896 6193{
8dc0818e
JB
6194 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6195
40fb9820 6196 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6197 {
6198 if (i.seg[0] != NULL && i.seg[0] != &es)
6199 {
a87af027 6200 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6201 i.tm.name,
d241b910 6202 intel_syntax ? i.tm.operands - mem_op : mem_op + 1,
a87af027 6203 register_prefix);
29b0f896
AM
6204 return 0;
6205 }
6206 /* There's only ever one segment override allowed per instruction.
6207 This instruction possibly has a legal segment override on the
6208 second operand, so copy the segment to where non-string
6209 instructions store it, allowing common code. */
6210 i.seg[0] = i.seg[1];
6211 }
40fb9820 6212 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6213 {
6214 if (i.seg[1] != NULL && i.seg[1] != &es)
6215 {
a87af027 6216 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6217 i.tm.name,
d241b910 6218 intel_syntax ? i.tm.operands - mem_op - 1 : mem_op + 2,
a87af027 6219 register_prefix);
29b0f896
AM
6220 return 0;
6221 }
6222 }
6223 return 1;
6224}
6225
6226static int
543613e9 6227process_suffix (void)
29b0f896
AM
6228{
6229 /* If matched instruction specifies an explicit instruction mnemonic
6230 suffix, use it. */
673fe0f0 6231 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6232 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6233 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6234 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6235 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6236 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6237 else if (i.reg_operands)
6238 {
6239 /* If there's no instruction mnemonic suffix we try to invent one
6240 based on register operands. */
6241 if (!i.suffix)
6242 {
6243 /* We take i.suffix from the last register operand specified,
6244 Destination register type is more significant than source
381d071f
L
6245 register type. crc32 in SSE4.2 prefers source register
6246 type. */
556059dd 6247 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6248 {
556059dd
JB
6249 if (i.types[0].bitfield.byte)
6250 i.suffix = BYTE_MNEM_SUFFIX;
6251 else if (i.types[0].bitfield.word)
40fb9820 6252 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6253 else if (i.types[0].bitfield.dword)
40fb9820 6254 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6255 else if (i.types[0].bitfield.qword)
40fb9820 6256 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6257 }
6258
6259 if (!i.suffix)
6260 {
6261 int op;
6262
556059dd 6263 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6264 {
6265 /* We have to know the operand size for crc32. */
6266 as_bad (_("ambiguous memory operand size for `%s`"),
6267 i.tm.name);
6268 return 0;
6269 }
6270
381d071f 6271 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6272 if (!i.tm.operand_types[op].bitfield.inoutportreg
6273 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6274 {
8819ada6
JB
6275 if (!i.types[op].bitfield.reg)
6276 continue;
6277 if (i.types[op].bitfield.byte)
6278 i.suffix = BYTE_MNEM_SUFFIX;
6279 else if (i.types[op].bitfield.word)
6280 i.suffix = WORD_MNEM_SUFFIX;
6281 else if (i.types[op].bitfield.dword)
6282 i.suffix = LONG_MNEM_SUFFIX;
6283 else if (i.types[op].bitfield.qword)
6284 i.suffix = QWORD_MNEM_SUFFIX;
6285 else
6286 continue;
6287 break;
381d071f
L
6288 }
6289 }
29b0f896
AM
6290 }
6291 else if (i.suffix == BYTE_MNEM_SUFFIX)
6292 {
2eb952a4
L
6293 if (intel_syntax
6294 && i.tm.opcode_modifier.ignoresize
6295 && i.tm.opcode_modifier.no_bsuf)
6296 i.suffix = 0;
6297 else if (!check_byte_reg ())
29b0f896
AM
6298 return 0;
6299 }
6300 else if (i.suffix == LONG_MNEM_SUFFIX)
6301 {
2eb952a4
L
6302 if (intel_syntax
6303 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6304 && i.tm.opcode_modifier.no_lsuf
6305 && !i.tm.opcode_modifier.todword
6306 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6307 i.suffix = 0;
6308 else if (!check_long_reg ())
29b0f896
AM
6309 return 0;
6310 }
6311 else if (i.suffix == QWORD_MNEM_SUFFIX)
6312 {
955e1e6a
L
6313 if (intel_syntax
6314 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6315 && i.tm.opcode_modifier.no_qsuf
6316 && !i.tm.opcode_modifier.todword
6317 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6318 i.suffix = 0;
6319 else if (!check_qword_reg ())
29b0f896
AM
6320 return 0;
6321 }
6322 else if (i.suffix == WORD_MNEM_SUFFIX)
6323 {
2eb952a4
L
6324 if (intel_syntax
6325 && i.tm.opcode_modifier.ignoresize
6326 && i.tm.opcode_modifier.no_wsuf)
6327 i.suffix = 0;
6328 else if (!check_word_reg ())
29b0f896
AM
6329 return 0;
6330 }
40fb9820 6331 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6332 /* Do nothing if the instruction is going to ignore the prefix. */
6333 ;
6334 else
6335 abort ();
6336 }
40fb9820 6337 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6338 && !i.suffix
6339 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6340 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6341 {
06f74c5c
L
6342 if (stackop_size == LONG_MNEM_SUFFIX
6343 && i.tm.base_opcode == 0xcf)
6344 {
6345 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6346 .code16gcc directive to support 16-bit mode with
6347 32-bit address. For IRET without a suffix, generate
6348 16-bit IRET (opcode 0xcf) to return from an interrupt
6349 handler. */
6350 i.suffix = WORD_MNEM_SUFFIX;
6351 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6352 }
6353 else
6354 i.suffix = stackop_size;
29b0f896 6355 }
9306ca4a
JB
6356 else if (intel_syntax
6357 && !i.suffix
40fb9820
L
6358 && (i.tm.operand_types[0].bitfield.jumpabsolute
6359 || i.tm.opcode_modifier.jumpbyte
6360 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6361 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6362 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6363 {
6364 switch (flag_code)
6365 {
6366 case CODE_64BIT:
40fb9820 6367 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6368 {
6369 i.suffix = QWORD_MNEM_SUFFIX;
6370 break;
6371 }
1a0670f3 6372 /* Fall through. */
9306ca4a 6373 case CODE_32BIT:
40fb9820 6374 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6375 i.suffix = LONG_MNEM_SUFFIX;
6376 break;
6377 case CODE_16BIT:
40fb9820 6378 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6379 i.suffix = WORD_MNEM_SUFFIX;
6380 break;
6381 }
6382 }
252b5132 6383
9306ca4a 6384 if (!i.suffix)
29b0f896 6385 {
9306ca4a
JB
6386 if (!intel_syntax)
6387 {
40fb9820 6388 if (i.tm.opcode_modifier.w)
9306ca4a 6389 {
4eed87de
AM
6390 as_bad (_("no instruction mnemonic suffix given and "
6391 "no register operands; can't size instruction"));
9306ca4a
JB
6392 return 0;
6393 }
6394 }
6395 else
6396 {
40fb9820 6397 unsigned int suffixes;
7ab9ffdd 6398
40fb9820
L
6399 suffixes = !i.tm.opcode_modifier.no_bsuf;
6400 if (!i.tm.opcode_modifier.no_wsuf)
6401 suffixes |= 1 << 1;
6402 if (!i.tm.opcode_modifier.no_lsuf)
6403 suffixes |= 1 << 2;
fc4adea1 6404 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6405 suffixes |= 1 << 3;
6406 if (!i.tm.opcode_modifier.no_ssuf)
6407 suffixes |= 1 << 4;
c2b9da16 6408 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6409 suffixes |= 1 << 5;
6410
6411 /* There are more than suffix matches. */
6412 if (i.tm.opcode_modifier.w
9306ca4a 6413 || ((suffixes & (suffixes - 1))
40fb9820
L
6414 && !i.tm.opcode_modifier.defaultsize
6415 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6416 {
6417 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6418 return 0;
6419 }
6420 }
29b0f896 6421 }
252b5132 6422
d2224064
JB
6423 /* Change the opcode based on the operand size given by i.suffix. */
6424 switch (i.suffix)
29b0f896 6425 {
d2224064
JB
6426 /* Size floating point instruction. */
6427 case LONG_MNEM_SUFFIX:
6428 if (i.tm.opcode_modifier.floatmf)
6429 {
6430 i.tm.base_opcode ^= 4;
6431 break;
6432 }
6433 /* fall through */
6434 case WORD_MNEM_SUFFIX:
6435 case QWORD_MNEM_SUFFIX:
29b0f896 6436 /* It's not a byte, select word/dword operation. */
40fb9820 6437 if (i.tm.opcode_modifier.w)
29b0f896 6438 {
40fb9820 6439 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6440 i.tm.base_opcode |= 8;
6441 else
6442 i.tm.base_opcode |= 1;
6443 }
d2224064
JB
6444 /* fall through */
6445 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6446 /* Now select between word & dword operations via the operand
6447 size prefix, except for instructions that will ignore this
6448 prefix anyway. */
75c0a438
L
6449 if (i.reg_operands > 0
6450 && i.types[0].bitfield.reg
6451 && i.tm.opcode_modifier.addrprefixopreg
6452 && (i.tm.opcode_modifier.immext
6453 || i.operands == 1))
cb712a9e 6454 {
ca61edf2
L
6455 /* The address size override prefix changes the size of the
6456 first operand. */
40fb9820 6457 if ((flag_code == CODE_32BIT
75c0a438 6458 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6459 || (flag_code != CODE_32BIT
75c0a438 6460 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6461 if (!add_prefix (ADDR_PREFIX_OPCODE))
6462 return 0;
6463 }
6464 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6465 && !i.tm.opcode_modifier.ignoresize
6466 && !i.tm.opcode_modifier.floatmf
a38d7118 6467 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6468 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6469 || (flag_code == CODE_64BIT
40fb9820 6470 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6471 {
6472 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6473
40fb9820 6474 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6475 prefix = ADDR_PREFIX_OPCODE;
252b5132 6476
29b0f896
AM
6477 if (!add_prefix (prefix))
6478 return 0;
24eab124 6479 }
252b5132 6480
29b0f896
AM
6481 /* Set mode64 for an operand. */
6482 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6483 && flag_code == CODE_64BIT
d2224064 6484 && !i.tm.opcode_modifier.norex64
46e883c5 6485 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6486 need rex64. */
6487 && ! (i.operands == 2
6488 && i.tm.base_opcode == 0x90
6489 && i.tm.extension_opcode == None
2c703856
JB
6490 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6491 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6492 i.rex |= REX_W;
3e73aa7c 6493
d2224064 6494 break;
29b0f896 6495 }
7ecd2f8b 6496
c0a30a9f
L
6497 if (i.reg_operands != 0
6498 && i.operands > 1
6499 && i.tm.opcode_modifier.addrprefixopreg
6500 && !i.tm.opcode_modifier.immext)
6501 {
6502 /* Check invalid register operand when the address size override
6503 prefix changes the size of register operands. */
6504 unsigned int op;
6505 enum { need_word, need_dword, need_qword } need;
6506
6507 if (flag_code == CODE_32BIT)
6508 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6509 else
6510 {
6511 if (i.prefix[ADDR_PREFIX])
6512 need = need_dword;
6513 else
6514 need = flag_code == CODE_64BIT ? need_qword : need_word;
6515 }
6516
6517 for (op = 0; op < i.operands; op++)
6518 if (i.types[op].bitfield.reg
6519 && ((need == need_word
6520 && !i.op[op].regs->reg_type.bitfield.word)
6521 || (need == need_dword
6522 && !i.op[op].regs->reg_type.bitfield.dword)
6523 || (need == need_qword
6524 && !i.op[op].regs->reg_type.bitfield.qword)))
6525 {
6526 as_bad (_("invalid register operand size for `%s'"),
6527 i.tm.name);
6528 return 0;
6529 }
6530 }
6531
29b0f896
AM
6532 return 1;
6533}
3e73aa7c 6534
29b0f896 6535static int
543613e9 6536check_byte_reg (void)
29b0f896
AM
6537{
6538 int op;
543613e9 6539
29b0f896
AM
6540 for (op = i.operands; --op >= 0;)
6541 {
dc821c5f
JB
6542 /* Skip non-register operands. */
6543 if (!i.types[op].bitfield.reg)
6544 continue;
6545
29b0f896
AM
6546 /* If this is an eight bit register, it's OK. If it's the 16 or
6547 32 bit version of an eight bit register, we will just use the
6548 low portion, and that's OK too. */
dc821c5f 6549 if (i.types[op].bitfield.byte)
29b0f896
AM
6550 continue;
6551
5a819eb9
JB
6552 /* I/O port address operands are OK too. */
6553 if (i.tm.operand_types[op].bitfield.inoutportreg)
6554 continue;
6555
9344ff29
L
6556 /* crc32 doesn't generate this warning. */
6557 if (i.tm.base_opcode == 0xf20f38f0)
6558 continue;
6559
dc821c5f
JB
6560 if ((i.types[op].bitfield.word
6561 || i.types[op].bitfield.dword
6562 || i.types[op].bitfield.qword)
5a819eb9
JB
6563 && i.op[op].regs->reg_num < 4
6564 /* Prohibit these changes in 64bit mode, since the lowering
6565 would be more complicated. */
6566 && flag_code != CODE_64BIT)
29b0f896 6567 {
29b0f896 6568#if REGISTER_WARNINGS
5a819eb9 6569 if (!quiet_warnings)
a540244d
L
6570 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6571 register_prefix,
dc821c5f 6572 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6573 ? REGNAM_AL - REGNAM_AX
6574 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6575 register_prefix,
29b0f896
AM
6576 i.op[op].regs->reg_name,
6577 i.suffix);
6578#endif
6579 continue;
6580 }
6581 /* Any other register is bad. */
dc821c5f 6582 if (i.types[op].bitfield.reg
40fb9820 6583 || i.types[op].bitfield.regmmx
1b54b8d7 6584 || i.types[op].bitfield.regsimd
21df382b 6585 || i.types[op].bitfield.sreg
40fb9820
L
6586 || i.types[op].bitfield.control
6587 || i.types[op].bitfield.debug
ca0d63fe 6588 || i.types[op].bitfield.test)
29b0f896 6589 {
a540244d
L
6590 as_bad (_("`%s%s' not allowed with `%s%c'"),
6591 register_prefix,
29b0f896
AM
6592 i.op[op].regs->reg_name,
6593 i.tm.name,
6594 i.suffix);
6595 return 0;
6596 }
6597 }
6598 return 1;
6599}
6600
6601static int
e3bb37b5 6602check_long_reg (void)
29b0f896
AM
6603{
6604 int op;
6605
6606 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6607 /* Skip non-register operands. */
6608 if (!i.types[op].bitfield.reg)
6609 continue;
29b0f896
AM
6610 /* Reject eight bit registers, except where the template requires
6611 them. (eg. movzb) */
dc821c5f
JB
6612 else if (i.types[op].bitfield.byte
6613 && (i.tm.operand_types[op].bitfield.reg
6614 || i.tm.operand_types[op].bitfield.acc)
6615 && (i.tm.operand_types[op].bitfield.word
6616 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6617 {
a540244d
L
6618 as_bad (_("`%s%s' not allowed with `%s%c'"),
6619 register_prefix,
29b0f896
AM
6620 i.op[op].regs->reg_name,
6621 i.tm.name,
6622 i.suffix);
6623 return 0;
6624 }
e4630f71 6625 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6626 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6627 && i.types[op].bitfield.word
6628 && (i.tm.operand_types[op].bitfield.reg
6629 || i.tm.operand_types[op].bitfield.acc)
6630 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6631 {
6632 /* Prohibit these changes in the 64bit mode, since the
6633 lowering is more complicated. */
6634 if (flag_code == CODE_64BIT)
252b5132 6635 {
2b5d6a91 6636 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6637 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6638 i.suffix);
6639 return 0;
252b5132 6640 }
29b0f896 6641#if REGISTER_WARNINGS
cecf1424
JB
6642 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6643 register_prefix,
6644 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6645 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6646#endif
252b5132 6647 }
e4630f71 6648 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6649 else if (i.types[op].bitfield.qword
6650 && (i.tm.operand_types[op].bitfield.reg
6651 || i.tm.operand_types[op].bitfield.acc)
6652 && i.tm.operand_types[op].bitfield.dword)
252b5132 6653 {
34828aad 6654 if (intel_syntax
ca61edf2 6655 && i.tm.opcode_modifier.toqword
1b54b8d7 6656 && !i.types[0].bitfield.regsimd)
34828aad 6657 {
ca61edf2 6658 /* Convert to QWORD. We want REX byte. */
34828aad
L
6659 i.suffix = QWORD_MNEM_SUFFIX;
6660 }
6661 else
6662 {
2b5d6a91 6663 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6664 register_prefix, i.op[op].regs->reg_name,
6665 i.suffix);
6666 return 0;
6667 }
29b0f896
AM
6668 }
6669 return 1;
6670}
252b5132 6671
29b0f896 6672static int
e3bb37b5 6673check_qword_reg (void)
29b0f896
AM
6674{
6675 int op;
252b5132 6676
29b0f896 6677 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6678 /* Skip non-register operands. */
6679 if (!i.types[op].bitfield.reg)
6680 continue;
29b0f896
AM
6681 /* Reject eight bit registers, except where the template requires
6682 them. (eg. movzb) */
dc821c5f
JB
6683 else if (i.types[op].bitfield.byte
6684 && (i.tm.operand_types[op].bitfield.reg
6685 || i.tm.operand_types[op].bitfield.acc)
6686 && (i.tm.operand_types[op].bitfield.word
6687 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6688 {
a540244d
L
6689 as_bad (_("`%s%s' not allowed with `%s%c'"),
6690 register_prefix,
29b0f896
AM
6691 i.op[op].regs->reg_name,
6692 i.tm.name,
6693 i.suffix);
6694 return 0;
6695 }
e4630f71 6696 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6697 else if ((i.types[op].bitfield.word
6698 || i.types[op].bitfield.dword)
6699 && (i.tm.operand_types[op].bitfield.reg
6700 || i.tm.operand_types[op].bitfield.acc)
6701 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6702 {
6703 /* Prohibit these changes in the 64bit mode, since the
6704 lowering is more complicated. */
34828aad 6705 if (intel_syntax
ca61edf2 6706 && i.tm.opcode_modifier.todword
1b54b8d7 6707 && !i.types[0].bitfield.regsimd)
34828aad 6708 {
ca61edf2 6709 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6710 i.suffix = LONG_MNEM_SUFFIX;
6711 }
6712 else
6713 {
2b5d6a91 6714 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6715 register_prefix, i.op[op].regs->reg_name,
6716 i.suffix);
6717 return 0;
6718 }
252b5132 6719 }
29b0f896
AM
6720 return 1;
6721}
252b5132 6722
29b0f896 6723static int
e3bb37b5 6724check_word_reg (void)
29b0f896
AM
6725{
6726 int op;
6727 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6728 /* Skip non-register operands. */
6729 if (!i.types[op].bitfield.reg)
6730 continue;
29b0f896
AM
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
dc821c5f
JB
6733 else if (i.types[op].bitfield.byte
6734 && (i.tm.operand_types[op].bitfield.reg
6735 || i.tm.operand_types[op].bitfield.acc)
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6738 {
a540244d
L
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
29b0f896
AM
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
e4630f71 6746 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6747 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6748 && (i.types[op].bitfield.dword
6749 || i.types[op].bitfield.qword)
6750 && (i.tm.operand_types[op].bitfield.reg
6751 || i.tm.operand_types[op].bitfield.acc)
6752 && i.tm.operand_types[op].bitfield.word)
252b5132 6753 {
29b0f896
AM
6754 /* Prohibit these changes in the 64bit mode, since the
6755 lowering is more complicated. */
6756 if (flag_code == CODE_64BIT)
252b5132 6757 {
2b5d6a91 6758 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6759 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6760 i.suffix);
6761 return 0;
252b5132 6762 }
29b0f896 6763#if REGISTER_WARNINGS
cecf1424
JB
6764 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6765 register_prefix,
6766 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6767 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6768#endif
6769 }
6770 return 1;
6771}
252b5132 6772
29b0f896 6773static int
40fb9820 6774update_imm (unsigned int j)
29b0f896 6775{
bc0844ae 6776 i386_operand_type overlap = i.types[j];
40fb9820
L
6777 if ((overlap.bitfield.imm8
6778 || overlap.bitfield.imm8s
6779 || overlap.bitfield.imm16
6780 || overlap.bitfield.imm32
6781 || overlap.bitfield.imm32s
6782 || overlap.bitfield.imm64)
0dfbf9d7
L
6783 && !operand_type_equal (&overlap, &imm8)
6784 && !operand_type_equal (&overlap, &imm8s)
6785 && !operand_type_equal (&overlap, &imm16)
6786 && !operand_type_equal (&overlap, &imm32)
6787 && !operand_type_equal (&overlap, &imm32s)
6788 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6789 {
6790 if (i.suffix)
6791 {
40fb9820
L
6792 i386_operand_type temp;
6793
0dfbf9d7 6794 operand_type_set (&temp, 0);
7ab9ffdd 6795 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6796 {
6797 temp.bitfield.imm8 = overlap.bitfield.imm8;
6798 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6799 }
6800 else if (i.suffix == WORD_MNEM_SUFFIX)
6801 temp.bitfield.imm16 = overlap.bitfield.imm16;
6802 else if (i.suffix == QWORD_MNEM_SUFFIX)
6803 {
6804 temp.bitfield.imm64 = overlap.bitfield.imm64;
6805 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6806 }
6807 else
6808 temp.bitfield.imm32 = overlap.bitfield.imm32;
6809 overlap = temp;
29b0f896 6810 }
0dfbf9d7
L
6811 else if (operand_type_equal (&overlap, &imm16_32_32s)
6812 || operand_type_equal (&overlap, &imm16_32)
6813 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6814 {
40fb9820 6815 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6816 overlap = imm16;
40fb9820 6817 else
65da13b5 6818 overlap = imm32s;
29b0f896 6819 }
0dfbf9d7
L
6820 if (!operand_type_equal (&overlap, &imm8)
6821 && !operand_type_equal (&overlap, &imm8s)
6822 && !operand_type_equal (&overlap, &imm16)
6823 && !operand_type_equal (&overlap, &imm32)
6824 && !operand_type_equal (&overlap, &imm32s)
6825 && !operand_type_equal (&overlap, &imm64))
29b0f896 6826 {
4eed87de
AM
6827 as_bad (_("no instruction mnemonic suffix given; "
6828 "can't determine immediate size"));
29b0f896
AM
6829 return 0;
6830 }
6831 }
40fb9820 6832 i.types[j] = overlap;
29b0f896 6833
40fb9820
L
6834 return 1;
6835}
6836
6837static int
6838finalize_imm (void)
6839{
bc0844ae 6840 unsigned int j, n;
29b0f896 6841
bc0844ae
L
6842 /* Update the first 2 immediate operands. */
6843 n = i.operands > 2 ? 2 : i.operands;
6844 if (n)
6845 {
6846 for (j = 0; j < n; j++)
6847 if (update_imm (j) == 0)
6848 return 0;
40fb9820 6849
bc0844ae
L
6850 /* The 3rd operand can't be immediate operand. */
6851 gas_assert (operand_type_check (i.types[2], imm) == 0);
6852 }
29b0f896
AM
6853
6854 return 1;
6855}
6856
6857static int
e3bb37b5 6858process_operands (void)
29b0f896
AM
6859{
6860 /* Default segment register this instruction will use for memory
6861 accesses. 0 means unknown. This is only for optimizing out
6862 unnecessary segment overrides. */
6863 const seg_entry *default_seg = 0;
6864
2426c15f 6865 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6866 {
91d6fa6a
NC
6867 unsigned int dupl = i.operands;
6868 unsigned int dest = dupl - 1;
9fcfb3d7
L
6869 unsigned int j;
6870
c0f3af97 6871 /* The destination must be an xmm register. */
9c2799c2 6872 gas_assert (i.reg_operands
91d6fa6a 6873 && MAX_OPERANDS > dupl
7ab9ffdd 6874 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6875
1b54b8d7
JB
6876 if (i.tm.operand_types[0].bitfield.acc
6877 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6878 {
8cd7925b 6879 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6880 {
6881 /* Keep xmm0 for instructions with VEX prefix and 3
6882 sources. */
1b54b8d7
JB
6883 i.tm.operand_types[0].bitfield.acc = 0;
6884 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6885 goto duplicate;
6886 }
e2ec9d29 6887 else
c0f3af97
L
6888 {
6889 /* We remove the first xmm0 and keep the number of
6890 operands unchanged, which in fact duplicates the
6891 destination. */
6892 for (j = 1; j < i.operands; j++)
6893 {
6894 i.op[j - 1] = i.op[j];
6895 i.types[j - 1] = i.types[j];
6896 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6897 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6898 }
6899 }
6900 }
6901 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6902 {
91d6fa6a 6903 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6904 && (i.tm.opcode_modifier.vexsources
6905 == VEX3SOURCES));
c0f3af97
L
6906
6907 /* Add the implicit xmm0 for instructions with VEX prefix
6908 and 3 sources. */
6909 for (j = i.operands; j > 0; j--)
6910 {
6911 i.op[j] = i.op[j - 1];
6912 i.types[j] = i.types[j - 1];
6913 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6914 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6915 }
6916 i.op[0].regs
6917 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6918 i.types[0] = regxmm;
c0f3af97
L
6919 i.tm.operand_types[0] = regxmm;
6920
6921 i.operands += 2;
6922 i.reg_operands += 2;
6923 i.tm.operands += 2;
6924
91d6fa6a 6925 dupl++;
c0f3af97 6926 dest++;
91d6fa6a
NC
6927 i.op[dupl] = i.op[dest];
6928 i.types[dupl] = i.types[dest];
6929 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6930 i.flags[dupl] = i.flags[dest];
e2ec9d29 6931 }
c0f3af97
L
6932 else
6933 {
6934duplicate:
6935 i.operands++;
6936 i.reg_operands++;
6937 i.tm.operands++;
6938
91d6fa6a
NC
6939 i.op[dupl] = i.op[dest];
6940 i.types[dupl] = i.types[dest];
6941 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6942 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6943 }
6944
6945 if (i.tm.opcode_modifier.immext)
6946 process_immext ();
6947 }
1b54b8d7
JB
6948 else if (i.tm.operand_types[0].bitfield.acc
6949 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6950 {
6951 unsigned int j;
6952
9fcfb3d7
L
6953 for (j = 1; j < i.operands; j++)
6954 {
6955 i.op[j - 1] = i.op[j];
6956 i.types[j - 1] = i.types[j];
6957
6958 /* We need to adjust fields in i.tm since they are used by
6959 build_modrm_byte. */
6960 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6961
6962 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6963 }
6964
e2ec9d29
L
6965 i.operands--;
6966 i.reg_operands--;
e2ec9d29
L
6967 i.tm.operands--;
6968 }
920d2ddc
IT
6969 else if (i.tm.opcode_modifier.implicitquadgroup)
6970 {
a477a8c4
JB
6971 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6972
920d2ddc 6973 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6974 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6975 regnum = register_number (i.op[1].regs);
6976 first_reg_in_group = regnum & ~3;
6977 last_reg_in_group = first_reg_in_group + 3;
6978 if (regnum != first_reg_in_group)
6979 as_warn (_("source register `%s%s' implicitly denotes"
6980 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6981 register_prefix, i.op[1].regs->reg_name,
6982 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6983 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6984 i.tm.name);
6985 }
e2ec9d29
L
6986 else if (i.tm.opcode_modifier.regkludge)
6987 {
6988 /* The imul $imm, %reg instruction is converted into
6989 imul $imm, %reg, %reg, and the clr %reg instruction
6990 is converted into xor %reg, %reg. */
6991
6992 unsigned int first_reg_op;
6993
6994 if (operand_type_check (i.types[0], reg))
6995 first_reg_op = 0;
6996 else
6997 first_reg_op = 1;
6998 /* Pretend we saw the extra register operand. */
9c2799c2 6999 gas_assert (i.reg_operands == 1
7ab9ffdd 7000 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7001 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7002 i.types[first_reg_op + 1] = i.types[first_reg_op];
7003 i.operands++;
7004 i.reg_operands++;
29b0f896
AM
7005 }
7006
40fb9820 7007 if (i.tm.opcode_modifier.shortform)
29b0f896 7008 {
21df382b 7009 if (i.types[0].bitfield.sreg)
29b0f896 7010 {
21df382b
JB
7011 if (flag_code != CODE_64BIT
7012 ? i.tm.base_opcode == POP_SEG_SHORT
7013 && i.op[0].regs->reg_num == 1
3f9aad11 7014 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
21df382b 7015 && i.op[0].regs->reg_num < 4)
29b0f896 7016 {
21df382b
JB
7017 as_bad (_("you can't `%s %s%s'"),
7018 i.tm.name, register_prefix, i.op[0].regs->reg_name);
4eed87de 7019 return 0;
29b0f896 7020 }
3f9aad11 7021 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
21df382b
JB
7022 {
7023 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7024 i.tm.opcode_length = 2;
7025 }
4eed87de 7026 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4eed87de
AM
7027 }
7028 else
7029 {
7ab9ffdd 7030 /* The register or float register operand is in operand
85f10a01 7031 0 or 1. */
40fb9820 7032 unsigned int op;
7ab9ffdd 7033
ca0d63fe 7034 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
7035 || operand_type_check (i.types[0], reg))
7036 op = 0;
7037 else
7038 op = 1;
4eed87de
AM
7039 /* Register goes in low 3 bits of opcode. */
7040 i.tm.base_opcode |= i.op[op].regs->reg_num;
7041 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 7042 i.rex |= REX_B;
40fb9820 7043 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 7044 {
4eed87de
AM
7045 /* Warn about some common errors, but press on regardless.
7046 The first case can be generated by gcc (<= 2.8.1). */
7047 if (i.operands == 2)
7048 {
7049 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 7050 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
7051 register_prefix, i.op[!intel_syntax].regs->reg_name,
7052 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
7053 }
7054 else
7055 {
7056 /* Extraneous `l' suffix on fp insn. */
a540244d
L
7057 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7058 register_prefix, i.op[0].regs->reg_name);
4eed87de 7059 }
29b0f896
AM
7060 }
7061 }
7062 }
40fb9820 7063 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7064 {
7065 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7066 must be put into the modrm byte). Now, we make the modrm and
7067 index base bytes based on all the info we've collected. */
29b0f896
AM
7068
7069 default_seg = build_modrm_byte ();
7070 }
8a2ed489 7071 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7072 {
7073 default_seg = &ds;
7074 }
40fb9820 7075 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7076 {
7077 /* For the string instructions that allow a segment override
7078 on one of their operands, the default segment is ds. */
7079 default_seg = &ds;
7080 }
7081
75178d9d
L
7082 if (i.tm.base_opcode == 0x8d /* lea */
7083 && i.seg[0]
7084 && !quiet_warnings)
30123838 7085 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7086
7087 /* If a segment was explicitly specified, and the specified segment
7088 is not the default, use an opcode prefix to select it. If we
7089 never figured out what the default segment is, then default_seg
7090 will be zero at this point, and the specified segment prefix will
7091 always be used. */
29b0f896
AM
7092 if ((i.seg[0]) && (i.seg[0] != default_seg))
7093 {
7094 if (!add_prefix (i.seg[0]->seg_prefix))
7095 return 0;
7096 }
7097 return 1;
7098}
7099
7100static const seg_entry *
e3bb37b5 7101build_modrm_byte (void)
29b0f896
AM
7102{
7103 const seg_entry *default_seg = 0;
c0f3af97 7104 unsigned int source, dest;
8cd7925b 7105 int vex_3_sources;
c0f3af97 7106
8cd7925b 7107 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7108 if (vex_3_sources)
7109 {
91d6fa6a 7110 unsigned int nds, reg_slot;
4c2c6516 7111 expressionS *exp;
c0f3af97 7112
6b8d3588 7113 dest = i.operands - 1;
c0f3af97 7114 nds = dest - 1;
922d8de8 7115
a683cc34 7116 /* There are 2 kinds of instructions:
bed3d976 7117 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7118 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7119 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7120 ZMM register.
bed3d976 7121 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7122 plus 1 memory operand, with VexXDS. */
922d8de8 7123 gas_assert ((i.reg_operands == 4
bed3d976
JB
7124 || (i.reg_operands == 3 && i.mem_operands == 1))
7125 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7126 && i.tm.opcode_modifier.vexw
7127 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7128
48db9223
JB
7129 /* If VexW1 is set, the first non-immediate operand is the source and
7130 the second non-immediate one is encoded in the immediate operand. */
7131 if (i.tm.opcode_modifier.vexw == VEXW1)
7132 {
7133 source = i.imm_operands;
7134 reg_slot = i.imm_operands + 1;
7135 }
7136 else
7137 {
7138 source = i.imm_operands + 1;
7139 reg_slot = i.imm_operands;
7140 }
7141
a683cc34 7142 if (i.imm_operands == 0)
bed3d976
JB
7143 {
7144 /* When there is no immediate operand, generate an 8bit
7145 immediate operand to encode the first operand. */
7146 exp = &im_expressions[i.imm_operands++];
7147 i.op[i.operands].imms = exp;
7148 i.types[i.operands] = imm8;
7149 i.operands++;
7150
7151 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7152 exp->X_op = O_constant;
7153 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7154 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7155 }
922d8de8 7156 else
bed3d976 7157 {
9d3bf266
JB
7158 gas_assert (i.imm_operands == 1);
7159 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7160 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7161
9d3bf266
JB
7162 /* Turn on Imm8 again so that output_imm will generate it. */
7163 i.types[0].bitfield.imm8 = 1;
bed3d976
JB
7164
7165 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
9d3bf266 7166 i.op[0].imms->X_add_number
bed3d976 7167 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7168 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7169 }
a683cc34 7170
10c17abd 7171 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7172 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7173 }
7174 else
7175 source = dest = 0;
29b0f896
AM
7176
7177 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7178 implicit registers do not count. If there are 3 register
7179 operands, it must be a instruction with VexNDS. For a
7180 instruction with VexNDD, the destination register is encoded
7181 in VEX prefix. If there are 4 register operands, it must be
7182 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7183 if (i.mem_operands == 0
7184 && ((i.reg_operands == 2
2426c15f 7185 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7186 || (i.reg_operands == 3
2426c15f 7187 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7188 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7189 {
cab737b9
L
7190 switch (i.operands)
7191 {
7192 case 2:
7193 source = 0;
7194 break;
7195 case 3:
c81128dc
L
7196 /* When there are 3 operands, one of them may be immediate,
7197 which may be the first or the last operand. Otherwise,
c0f3af97
L
7198 the first operand must be shift count register (cl) or it
7199 is an instruction with VexNDS. */
9c2799c2 7200 gas_assert (i.imm_operands == 1
7ab9ffdd 7201 || (i.imm_operands == 0
2426c15f 7202 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7203 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7204 if (operand_type_check (i.types[0], imm)
7205 || i.types[0].bitfield.shiftcount)
7206 source = 1;
7207 else
7208 source = 0;
cab737b9
L
7209 break;
7210 case 4:
368d64cc
L
7211 /* When there are 4 operands, the first two must be 8bit
7212 immediate operands. The source operand will be the 3rd
c0f3af97
L
7213 one.
7214
7215 For instructions with VexNDS, if the first operand
7216 an imm8, the source operand is the 2nd one. If the last
7217 operand is imm8, the source operand is the first one. */
9c2799c2 7218 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7219 && i.types[0].bitfield.imm8
7220 && i.types[1].bitfield.imm8)
2426c15f 7221 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7222 && i.imm_operands == 1
7223 && (i.types[0].bitfield.imm8
43234a1e
L
7224 || i.types[i.operands - 1].bitfield.imm8
7225 || i.rounding)));
9f2670f2
L
7226 if (i.imm_operands == 2)
7227 source = 2;
7228 else
c0f3af97
L
7229 {
7230 if (i.types[0].bitfield.imm8)
7231 source = 1;
7232 else
7233 source = 0;
7234 }
c0f3af97
L
7235 break;
7236 case 5:
e771e7c9 7237 if (is_evex_encoding (&i.tm))
43234a1e
L
7238 {
7239 /* For EVEX instructions, when there are 5 operands, the
7240 first one must be immediate operand. If the second one
7241 is immediate operand, the source operand is the 3th
7242 one. If the last one is immediate operand, the source
7243 operand is the 2nd one. */
7244 gas_assert (i.imm_operands == 2
7245 && i.tm.opcode_modifier.sae
7246 && operand_type_check (i.types[0], imm));
7247 if (operand_type_check (i.types[1], imm))
7248 source = 2;
7249 else if (operand_type_check (i.types[4], imm))
7250 source = 1;
7251 else
7252 abort ();
7253 }
cab737b9
L
7254 break;
7255 default:
7256 abort ();
7257 }
7258
c0f3af97
L
7259 if (!vex_3_sources)
7260 {
7261 dest = source + 1;
7262
43234a1e
L
7263 /* RC/SAE operand could be between DEST and SRC. That happens
7264 when one operand is GPR and the other one is XMM/YMM/ZMM
7265 register. */
7266 if (i.rounding && i.rounding->operand == (int) dest)
7267 dest++;
7268
2426c15f 7269 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7270 {
43234a1e 7271 /* For instructions with VexNDS, the register-only source
c5d0745b 7272 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7273 register. It is encoded in VEX prefix. */
f12dc422
L
7274
7275 i386_operand_type op;
7276 unsigned int vvvv;
7277
7278 /* Check register-only source operand when two source
7279 operands are swapped. */
7280 if (!i.tm.operand_types[source].bitfield.baseindex
7281 && i.tm.operand_types[dest].bitfield.baseindex)
7282 {
7283 vvvv = source;
7284 source = dest;
7285 }
7286 else
7287 vvvv = dest;
7288
7289 op = i.tm.operand_types[vvvv];
c0f3af97 7290 if ((dest + 1) >= i.operands
dc821c5f
JB
7291 || ((!op.bitfield.reg
7292 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7293 && !op.bitfield.regsimd
43234a1e 7294 && !operand_type_equal (&op, &regmask)))
c0f3af97 7295 abort ();
f12dc422 7296 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7297 dest++;
7298 }
7299 }
29b0f896
AM
7300
7301 i.rm.mode = 3;
dfd69174
JB
7302 /* One of the register operands will be encoded in the i.rm.reg
7303 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7304 fields. If no form of this instruction supports a memory
7305 destination operand, then we assume the source operand may
7306 sometimes be a memory operand and so we need to store the
7307 destination in the i.rm.reg field. */
dfd69174 7308 if (!i.tm.opcode_modifier.regmem
40fb9820 7309 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7310 {
7311 i.rm.reg = i.op[dest].regs->reg_num;
7312 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7313 if (i.op[dest].regs->reg_type.bitfield.regmmx
7314 || i.op[source].regs->reg_type.bitfield.regmmx)
7315 i.has_regmmx = TRUE;
7316 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7317 || i.op[source].regs->reg_type.bitfield.regsimd)
7318 {
7319 if (i.types[dest].bitfield.zmmword
7320 || i.types[source].bitfield.zmmword)
7321 i.has_regzmm = TRUE;
7322 else if (i.types[dest].bitfield.ymmword
7323 || i.types[source].bitfield.ymmword)
7324 i.has_regymm = TRUE;
7325 else
7326 i.has_regxmm = TRUE;
7327 }
29b0f896 7328 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7329 i.rex |= REX_R;
43234a1e
L
7330 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7331 i.vrex |= REX_R;
29b0f896 7332 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7333 i.rex |= REX_B;
43234a1e
L
7334 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7335 i.vrex |= REX_B;
29b0f896
AM
7336 }
7337 else
7338 {
7339 i.rm.reg = i.op[source].regs->reg_num;
7340 i.rm.regmem = i.op[dest].regs->reg_num;
7341 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7342 i.rex |= REX_B;
43234a1e
L
7343 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7344 i.vrex |= REX_B;
29b0f896 7345 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7346 i.rex |= REX_R;
43234a1e
L
7347 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7348 i.vrex |= REX_R;
29b0f896 7349 }
e0c7f900 7350 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7351 {
dfd69174 7352 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
c4a530c5 7353 abort ();
e0c7f900 7354 i.rex &= ~REX_R;
c4a530c5
JB
7355 add_prefix (LOCK_PREFIX_OPCODE);
7356 }
29b0f896
AM
7357 }
7358 else
7359 { /* If it's not 2 reg operands... */
c0f3af97
L
7360 unsigned int mem;
7361
29b0f896
AM
7362 if (i.mem_operands)
7363 {
7364 unsigned int fake_zero_displacement = 0;
99018f42 7365 unsigned int op;
4eed87de 7366
7ab9ffdd 7367 for (op = 0; op < i.operands; op++)
8dc0818e 7368 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7369 break;
7ab9ffdd 7370 gas_assert (op < i.operands);
29b0f896 7371
6c30d220
L
7372 if (i.tm.opcode_modifier.vecsib)
7373 {
e968fc9b 7374 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7375 abort ();
7376
7377 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7378 if (!i.base_reg)
7379 {
7380 i.sib.base = NO_BASE_REGISTER;
7381 i.sib.scale = i.log2_scale_factor;
7382 i.types[op].bitfield.disp8 = 0;
7383 i.types[op].bitfield.disp16 = 0;
7384 i.types[op].bitfield.disp64 = 0;
43083a50 7385 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7386 {
7387 /* Must be 32 bit */
7388 i.types[op].bitfield.disp32 = 1;
7389 i.types[op].bitfield.disp32s = 0;
7390 }
7391 else
7392 {
7393 i.types[op].bitfield.disp32 = 0;
7394 i.types[op].bitfield.disp32s = 1;
7395 }
7396 }
7397 i.sib.index = i.index_reg->reg_num;
7398 if ((i.index_reg->reg_flags & RegRex) != 0)
7399 i.rex |= REX_X;
43234a1e
L
7400 if ((i.index_reg->reg_flags & RegVRex) != 0)
7401 i.vrex |= REX_X;
6c30d220
L
7402 }
7403
29b0f896
AM
7404 default_seg = &ds;
7405
7406 if (i.base_reg == 0)
7407 {
7408 i.rm.mode = 0;
7409 if (!i.disp_operands)
9bb129e8 7410 fake_zero_displacement = 1;
29b0f896
AM
7411 if (i.index_reg == 0)
7412 {
73053c1f
JB
7413 i386_operand_type newdisp;
7414
6c30d220 7415 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7416 /* Operand is just <disp> */
20f0a1fc 7417 if (flag_code == CODE_64BIT)
29b0f896
AM
7418 {
7419 /* 64bit mode overwrites the 32bit absolute
7420 addressing by RIP relative addressing and
7421 absolute addressing is encoded by one of the
7422 redundant SIB forms. */
7423 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7424 i.sib.base = NO_BASE_REGISTER;
7425 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7426 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7427 }
fc225355
L
7428 else if ((flag_code == CODE_16BIT)
7429 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7430 {
7431 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7432 newdisp = disp16;
20f0a1fc
NC
7433 }
7434 else
7435 {
7436 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7437 newdisp = disp32;
29b0f896 7438 }
73053c1f
JB
7439 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7440 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7441 }
6c30d220 7442 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7443 {
6c30d220 7444 /* !i.base_reg && i.index_reg */
e968fc9b 7445 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7446 i.sib.index = NO_INDEX_REGISTER;
7447 else
7448 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7449 i.sib.base = NO_BASE_REGISTER;
7450 i.sib.scale = i.log2_scale_factor;
7451 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7452 i.types[op].bitfield.disp8 = 0;
7453 i.types[op].bitfield.disp16 = 0;
7454 i.types[op].bitfield.disp64 = 0;
43083a50 7455 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7456 {
7457 /* Must be 32 bit */
7458 i.types[op].bitfield.disp32 = 1;
7459 i.types[op].bitfield.disp32s = 0;
7460 }
29b0f896 7461 else
40fb9820
L
7462 {
7463 i.types[op].bitfield.disp32 = 0;
7464 i.types[op].bitfield.disp32s = 1;
7465 }
29b0f896 7466 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7467 i.rex |= REX_X;
29b0f896
AM
7468 }
7469 }
7470 /* RIP addressing for 64bit mode. */
e968fc9b 7471 else if (i.base_reg->reg_num == RegIP)
29b0f896 7472 {
6c30d220 7473 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7474 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7475 i.types[op].bitfield.disp8 = 0;
7476 i.types[op].bitfield.disp16 = 0;
7477 i.types[op].bitfield.disp32 = 0;
7478 i.types[op].bitfield.disp32s = 1;
7479 i.types[op].bitfield.disp64 = 0;
71903a11 7480 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7481 if (! i.disp_operands)
7482 fake_zero_displacement = 1;
29b0f896 7483 }
dc821c5f 7484 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7485 {
6c30d220 7486 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7487 switch (i.base_reg->reg_num)
7488 {
7489 case 3: /* (%bx) */
7490 if (i.index_reg == 0)
7491 i.rm.regmem = 7;
7492 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7493 i.rm.regmem = i.index_reg->reg_num - 6;
7494 break;
7495 case 5: /* (%bp) */
7496 default_seg = &ss;
7497 if (i.index_reg == 0)
7498 {
7499 i.rm.regmem = 6;
40fb9820 7500 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7501 {
7502 /* fake (%bp) into 0(%bp) */
b5014f7a 7503 i.types[op].bitfield.disp8 = 1;
252b5132 7504 fake_zero_displacement = 1;
29b0f896
AM
7505 }
7506 }
7507 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7508 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7509 break;
7510 default: /* (%si) -> 4 or (%di) -> 5 */
7511 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7512 }
7513 i.rm.mode = mode_from_disp_size (i.types[op]);
7514 }
7515 else /* i.base_reg and 32/64 bit mode */
7516 {
7517 if (flag_code == CODE_64BIT
40fb9820
L
7518 && operand_type_check (i.types[op], disp))
7519 {
73053c1f
JB
7520 i.types[op].bitfield.disp16 = 0;
7521 i.types[op].bitfield.disp64 = 0;
40fb9820 7522 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7523 {
7524 i.types[op].bitfield.disp32 = 0;
7525 i.types[op].bitfield.disp32s = 1;
7526 }
40fb9820 7527 else
73053c1f
JB
7528 {
7529 i.types[op].bitfield.disp32 = 1;
7530 i.types[op].bitfield.disp32s = 0;
7531 }
40fb9820 7532 }
20f0a1fc 7533
6c30d220
L
7534 if (!i.tm.opcode_modifier.vecsib)
7535 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7536 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7537 i.rex |= REX_B;
29b0f896
AM
7538 i.sib.base = i.base_reg->reg_num;
7539 /* x86-64 ignores REX prefix bit here to avoid decoder
7540 complications. */
848930b2
JB
7541 if (!(i.base_reg->reg_flags & RegRex)
7542 && (i.base_reg->reg_num == EBP_REG_NUM
7543 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7544 default_seg = &ss;
848930b2 7545 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7546 {
848930b2 7547 fake_zero_displacement = 1;
b5014f7a 7548 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7549 }
7550 i.sib.scale = i.log2_scale_factor;
7551 if (i.index_reg == 0)
7552 {
6c30d220 7553 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7554 /* <disp>(%esp) becomes two byte modrm with no index
7555 register. We've already stored the code for esp
7556 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7557 Any base register besides %esp will not use the
7558 extra modrm byte. */
7559 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7560 }
6c30d220 7561 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7562 {
e968fc9b 7563 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7564 i.sib.index = NO_INDEX_REGISTER;
7565 else
7566 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7567 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7568 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7569 i.rex |= REX_X;
29b0f896 7570 }
67a4f2b7
AO
7571
7572 if (i.disp_operands
7573 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7574 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7575 i.rm.mode = 0;
7576 else
a501d77e
L
7577 {
7578 if (!fake_zero_displacement
7579 && !i.disp_operands
7580 && i.disp_encoding)
7581 {
7582 fake_zero_displacement = 1;
7583 if (i.disp_encoding == disp_encoding_8bit)
7584 i.types[op].bitfield.disp8 = 1;
7585 else
7586 i.types[op].bitfield.disp32 = 1;
7587 }
7588 i.rm.mode = mode_from_disp_size (i.types[op]);
7589 }
29b0f896 7590 }
252b5132 7591
29b0f896
AM
7592 if (fake_zero_displacement)
7593 {
7594 /* Fakes a zero displacement assuming that i.types[op]
7595 holds the correct displacement size. */
7596 expressionS *exp;
7597
9c2799c2 7598 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7599 exp = &disp_expressions[i.disp_operands++];
7600 i.op[op].disps = exp;
7601 exp->X_op = O_constant;
7602 exp->X_add_number = 0;
7603 exp->X_add_symbol = (symbolS *) 0;
7604 exp->X_op_symbol = (symbolS *) 0;
7605 }
c0f3af97
L
7606
7607 mem = op;
29b0f896 7608 }
c0f3af97
L
7609 else
7610 mem = ~0;
252b5132 7611
8c43a48b 7612 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7613 {
7614 if (operand_type_check (i.types[0], imm))
7615 i.vex.register_specifier = NULL;
7616 else
7617 {
7618 /* VEX.vvvv encodes one of the sources when the first
7619 operand is not an immediate. */
1ef99a7b 7620 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7621 i.vex.register_specifier = i.op[0].regs;
7622 else
7623 i.vex.register_specifier = i.op[1].regs;
7624 }
7625
7626 /* Destination is a XMM register encoded in the ModRM.reg
7627 and VEX.R bit. */
7628 i.rm.reg = i.op[2].regs->reg_num;
7629 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7630 i.rex |= REX_R;
7631
7632 /* ModRM.rm and VEX.B encodes the other source. */
7633 if (!i.mem_operands)
7634 {
7635 i.rm.mode = 3;
7636
1ef99a7b 7637 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7638 i.rm.regmem = i.op[1].regs->reg_num;
7639 else
7640 i.rm.regmem = i.op[0].regs->reg_num;
7641
7642 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7643 i.rex |= REX_B;
7644 }
7645 }
2426c15f 7646 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7647 {
7648 i.vex.register_specifier = i.op[2].regs;
7649 if (!i.mem_operands)
7650 {
7651 i.rm.mode = 3;
7652 i.rm.regmem = i.op[1].regs->reg_num;
7653 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7654 i.rex |= REX_B;
7655 }
7656 }
29b0f896
AM
7657 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7658 (if any) based on i.tm.extension_opcode. Again, we must be
7659 careful to make sure that segment/control/debug/test/MMX
7660 registers are coded into the i.rm.reg field. */
f88c9eb0 7661 else if (i.reg_operands)
29b0f896 7662 {
99018f42 7663 unsigned int op;
7ab9ffdd
L
7664 unsigned int vex_reg = ~0;
7665
7666 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7667 {
7668 if (i.types[op].bitfield.reg
7669 || i.types[op].bitfield.regbnd
7670 || i.types[op].bitfield.regmask
21df382b 7671 || i.types[op].bitfield.sreg
b4a3a7b4
L
7672 || i.types[op].bitfield.control
7673 || i.types[op].bitfield.debug
7674 || i.types[op].bitfield.test)
7675 break;
7676 if (i.types[op].bitfield.regsimd)
7677 {
7678 if (i.types[op].bitfield.zmmword)
7679 i.has_regzmm = TRUE;
7680 else if (i.types[op].bitfield.ymmword)
7681 i.has_regymm = TRUE;
7682 else
7683 i.has_regxmm = TRUE;
7684 break;
7685 }
7686 if (i.types[op].bitfield.regmmx)
7687 {
7688 i.has_regmmx = TRUE;
7689 break;
7690 }
7691 }
c0209578 7692
7ab9ffdd
L
7693 if (vex_3_sources)
7694 op = dest;
2426c15f 7695 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7696 {
7697 /* For instructions with VexNDS, the register-only
7698 source operand is encoded in VEX prefix. */
7699 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7700
7ab9ffdd 7701 if (op > mem)
c0f3af97 7702 {
7ab9ffdd
L
7703 vex_reg = op++;
7704 gas_assert (op < i.operands);
c0f3af97
L
7705 }
7706 else
c0f3af97 7707 {
f12dc422
L
7708 /* Check register-only source operand when two source
7709 operands are swapped. */
7710 if (!i.tm.operand_types[op].bitfield.baseindex
7711 && i.tm.operand_types[op + 1].bitfield.baseindex)
7712 {
7713 vex_reg = op;
7714 op += 2;
7715 gas_assert (mem == (vex_reg + 1)
7716 && op < i.operands);
7717 }
7718 else
7719 {
7720 vex_reg = op + 1;
7721 gas_assert (vex_reg < i.operands);
7722 }
c0f3af97 7723 }
7ab9ffdd 7724 }
2426c15f 7725 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7726 {
f12dc422 7727 /* For instructions with VexNDD, the register destination
7ab9ffdd 7728 is encoded in VEX prefix. */
f12dc422
L
7729 if (i.mem_operands == 0)
7730 {
7731 /* There is no memory operand. */
7732 gas_assert ((op + 2) == i.operands);
7733 vex_reg = op + 1;
7734 }
7735 else
8d63c93e 7736 {
ed438a93
JB
7737 /* There are only 2 non-immediate operands. */
7738 gas_assert (op < i.imm_operands + 2
7739 && i.operands == i.imm_operands + 2);
7740 vex_reg = i.imm_operands + 1;
f12dc422 7741 }
7ab9ffdd
L
7742 }
7743 else
7744 gas_assert (op < i.operands);
99018f42 7745
7ab9ffdd
L
7746 if (vex_reg != (unsigned int) ~0)
7747 {
f12dc422 7748 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7749
dc821c5f
JB
7750 if ((!type->bitfield.reg
7751 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7752 && !type->bitfield.regsimd
43234a1e 7753 && !operand_type_equal (type, &regmask))
7ab9ffdd 7754 abort ();
f88c9eb0 7755
7ab9ffdd
L
7756 i.vex.register_specifier = i.op[vex_reg].regs;
7757 }
7758
1b9f0c97
L
7759 /* Don't set OP operand twice. */
7760 if (vex_reg != op)
7ab9ffdd 7761 {
1b9f0c97
L
7762 /* If there is an extension opcode to put here, the
7763 register number must be put into the regmem field. */
7764 if (i.tm.extension_opcode != None)
7765 {
7766 i.rm.regmem = i.op[op].regs->reg_num;
7767 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7768 i.rex |= REX_B;
43234a1e
L
7769 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7770 i.vrex |= REX_B;
1b9f0c97
L
7771 }
7772 else
7773 {
7774 i.rm.reg = i.op[op].regs->reg_num;
7775 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7776 i.rex |= REX_R;
43234a1e
L
7777 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7778 i.vrex |= REX_R;
1b9f0c97 7779 }
7ab9ffdd 7780 }
252b5132 7781
29b0f896
AM
7782 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7783 must set it to 3 to indicate this is a register operand
7784 in the regmem field. */
7785 if (!i.mem_operands)
7786 i.rm.mode = 3;
7787 }
252b5132 7788
29b0f896 7789 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7790 if (i.tm.extension_opcode != None)
29b0f896
AM
7791 i.rm.reg = i.tm.extension_opcode;
7792 }
7793 return default_seg;
7794}
252b5132 7795
29b0f896 7796static void
e3bb37b5 7797output_branch (void)
29b0f896
AM
7798{
7799 char *p;
f8a5c266 7800 int size;
29b0f896
AM
7801 int code16;
7802 int prefix;
7803 relax_substateT subtype;
7804 symbolS *sym;
7805 offsetT off;
7806
f8a5c266 7807 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7808 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7809
7810 prefix = 0;
7811 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7812 {
29b0f896
AM
7813 prefix = 1;
7814 i.prefixes -= 1;
7815 code16 ^= CODE16;
252b5132 7816 }
29b0f896
AM
7817 /* Pentium4 branch hints. */
7818 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7819 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7820 {
29b0f896
AM
7821 prefix++;
7822 i.prefixes--;
7823 }
7824 if (i.prefix[REX_PREFIX] != 0)
7825 {
7826 prefix++;
7827 i.prefixes--;
2f66722d
AM
7828 }
7829
7e8b059b
L
7830 /* BND prefixed jump. */
7831 if (i.prefix[BND_PREFIX] != 0)
7832 {
7833 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7834 i.prefixes -= 1;
7835 }
7836
29b0f896
AM
7837 if (i.prefixes != 0 && !intel_syntax)
7838 as_warn (_("skipping prefixes on this instruction"));
7839
7840 /* It's always a symbol; End frag & setup for relax.
7841 Make sure there is enough room in this frag for the largest
7842 instruction we may generate in md_convert_frag. This is 2
7843 bytes for the opcode and room for the prefix and largest
7844 displacement. */
7845 frag_grow (prefix + 2 + 4);
7846 /* Prefix and 1 opcode byte go in fr_fix. */
7847 p = frag_more (prefix + 1);
7848 if (i.prefix[DATA_PREFIX] != 0)
7849 *p++ = DATA_PREFIX_OPCODE;
7850 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7851 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7852 *p++ = i.prefix[SEG_PREFIX];
7853 if (i.prefix[REX_PREFIX] != 0)
7854 *p++ = i.prefix[REX_PREFIX];
7855 *p = i.tm.base_opcode;
7856
7857 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7858 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7859 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7860 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7861 else
f8a5c266 7862 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7863 subtype |= code16;
3e73aa7c 7864
29b0f896
AM
7865 sym = i.op[0].disps->X_add_symbol;
7866 off = i.op[0].disps->X_add_number;
3e73aa7c 7867
29b0f896
AM
7868 if (i.op[0].disps->X_op != O_constant
7869 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7870 {
29b0f896
AM
7871 /* Handle complex expressions. */
7872 sym = make_expr_symbol (i.op[0].disps);
7873 off = 0;
7874 }
3e73aa7c 7875
29b0f896
AM
7876 /* 1 possible extra opcode + 4 byte displacement go in var part.
7877 Pass reloc in fr_var. */
d258b828 7878 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7879}
3e73aa7c 7880
bd7ab16b
L
7881#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7882/* Return TRUE iff PLT32 relocation should be used for branching to
7883 symbol S. */
7884
7885static bfd_boolean
7886need_plt32_p (symbolS *s)
7887{
7888 /* PLT32 relocation is ELF only. */
7889 if (!IS_ELF)
7890 return FALSE;
7891
a5def729
RO
7892#ifdef TE_SOLARIS
7893 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7894 krtld support it. */
7895 return FALSE;
7896#endif
7897
bd7ab16b
L
7898 /* Since there is no need to prepare for PLT branch on x86-64, we
7899 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7900 be used as a marker for 32-bit PC-relative branches. */
7901 if (!object_64bit)
7902 return FALSE;
7903
7904 /* Weak or undefined symbol need PLT32 relocation. */
7905 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7906 return TRUE;
7907
7908 /* Non-global symbol doesn't need PLT32 relocation. */
7909 if (! S_IS_EXTERNAL (s))
7910 return FALSE;
7911
7912 /* Other global symbols need PLT32 relocation. NB: Symbol with
7913 non-default visibilities are treated as normal global symbol
7914 so that PLT32 relocation can be used as a marker for 32-bit
7915 PC-relative branches. It is useful for linker relaxation. */
7916 return TRUE;
7917}
7918#endif
7919
29b0f896 7920static void
e3bb37b5 7921output_jump (void)
29b0f896
AM
7922{
7923 char *p;
7924 int size;
3e02c1cc 7925 fixS *fixP;
bd7ab16b 7926 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7927
40fb9820 7928 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7929 {
7930 /* This is a loop or jecxz type instruction. */
7931 size = 1;
7932 if (i.prefix[ADDR_PREFIX] != 0)
7933 {
7934 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7935 i.prefixes -= 1;
7936 }
7937 /* Pentium4 branch hints. */
7938 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7939 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7940 {
7941 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7942 i.prefixes--;
3e73aa7c
JH
7943 }
7944 }
29b0f896
AM
7945 else
7946 {
7947 int code16;
3e73aa7c 7948
29b0f896
AM
7949 code16 = 0;
7950 if (flag_code == CODE_16BIT)
7951 code16 = CODE16;
3e73aa7c 7952
29b0f896
AM
7953 if (i.prefix[DATA_PREFIX] != 0)
7954 {
7955 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7956 i.prefixes -= 1;
7957 code16 ^= CODE16;
7958 }
252b5132 7959
29b0f896
AM
7960 size = 4;
7961 if (code16)
7962 size = 2;
7963 }
9fcc94b6 7964
29b0f896
AM
7965 if (i.prefix[REX_PREFIX] != 0)
7966 {
7967 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7968 i.prefixes -= 1;
7969 }
252b5132 7970
7e8b059b
L
7971 /* BND prefixed jump. */
7972 if (i.prefix[BND_PREFIX] != 0)
7973 {
7974 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7975 i.prefixes -= 1;
7976 }
7977
29b0f896
AM
7978 if (i.prefixes != 0 && !intel_syntax)
7979 as_warn (_("skipping prefixes on this instruction"));
e0890092 7980
42164a71
L
7981 p = frag_more (i.tm.opcode_length + size);
7982 switch (i.tm.opcode_length)
7983 {
7984 case 2:
7985 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7986 /* Fall through. */
42164a71
L
7987 case 1:
7988 *p++ = i.tm.base_opcode;
7989 break;
7990 default:
7991 abort ();
7992 }
e0890092 7993
bd7ab16b
L
7994#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7995 if (size == 4
7996 && jump_reloc == NO_RELOC
7997 && need_plt32_p (i.op[0].disps->X_add_symbol))
7998 jump_reloc = BFD_RELOC_X86_64_PLT32;
7999#endif
8000
8001 jump_reloc = reloc (size, 1, 1, jump_reloc);
8002
3e02c1cc 8003 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8004 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8005
8006 /* All jumps handled here are signed, but don't use a signed limit
8007 check for 32 and 16 bit jumps as we want to allow wrap around at
8008 4G and 64k respectively. */
8009 if (size == 1)
8010 fixP->fx_signed = 1;
29b0f896 8011}
e0890092 8012
29b0f896 8013static void
e3bb37b5 8014output_interseg_jump (void)
29b0f896
AM
8015{
8016 char *p;
8017 int size;
8018 int prefix;
8019 int code16;
252b5132 8020
29b0f896
AM
8021 code16 = 0;
8022 if (flag_code == CODE_16BIT)
8023 code16 = CODE16;
a217f122 8024
29b0f896
AM
8025 prefix = 0;
8026 if (i.prefix[DATA_PREFIX] != 0)
8027 {
8028 prefix = 1;
8029 i.prefixes -= 1;
8030 code16 ^= CODE16;
8031 }
8032 if (i.prefix[REX_PREFIX] != 0)
8033 {
8034 prefix++;
8035 i.prefixes -= 1;
8036 }
252b5132 8037
29b0f896
AM
8038 size = 4;
8039 if (code16)
8040 size = 2;
252b5132 8041
29b0f896
AM
8042 if (i.prefixes != 0 && !intel_syntax)
8043 as_warn (_("skipping prefixes on this instruction"));
252b5132 8044
29b0f896
AM
8045 /* 1 opcode; 2 segment; offset */
8046 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8047
29b0f896
AM
8048 if (i.prefix[DATA_PREFIX] != 0)
8049 *p++ = DATA_PREFIX_OPCODE;
252b5132 8050
29b0f896
AM
8051 if (i.prefix[REX_PREFIX] != 0)
8052 *p++ = i.prefix[REX_PREFIX];
252b5132 8053
29b0f896
AM
8054 *p++ = i.tm.base_opcode;
8055 if (i.op[1].imms->X_op == O_constant)
8056 {
8057 offsetT n = i.op[1].imms->X_add_number;
252b5132 8058
29b0f896
AM
8059 if (size == 2
8060 && !fits_in_unsigned_word (n)
8061 && !fits_in_signed_word (n))
8062 {
8063 as_bad (_("16-bit jump out of range"));
8064 return;
8065 }
8066 md_number_to_chars (p, n, size);
8067 }
8068 else
8069 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8070 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8071 if (i.op[0].imms->X_op != O_constant)
8072 as_bad (_("can't handle non absolute segment in `%s'"),
8073 i.tm.name);
8074 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8075}
a217f122 8076
b4a3a7b4
L
8077#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8078void
8079x86_cleanup (void)
8080{
8081 char *p;
8082 asection *seg = now_seg;
8083 subsegT subseg = now_subseg;
8084 asection *sec;
8085 unsigned int alignment, align_size_1;
8086 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8087 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8088 unsigned int padding;
8089
8090 if (!IS_ELF || !x86_used_note)
8091 return;
8092
b4a3a7b4
L
8093 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8094
8095 /* The .note.gnu.property section layout:
8096
8097 Field Length Contents
8098 ---- ---- ----
8099 n_namsz 4 4
8100 n_descsz 4 The note descriptor size
8101 n_type 4 NT_GNU_PROPERTY_TYPE_0
8102 n_name 4 "GNU"
8103 n_desc n_descsz The program property array
8104 .... .... ....
8105 */
8106
8107 /* Create the .note.gnu.property section. */
8108 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8109 bfd_set_section_flags (sec,
b4a3a7b4
L
8110 (SEC_ALLOC
8111 | SEC_LOAD
8112 | SEC_DATA
8113 | SEC_HAS_CONTENTS
8114 | SEC_READONLY));
8115
8116 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8117 {
8118 align_size_1 = 7;
8119 alignment = 3;
8120 }
8121 else
8122 {
8123 align_size_1 = 3;
8124 alignment = 2;
8125 }
8126
fd361982 8127 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8128 elf_section_type (sec) = SHT_NOTE;
8129
8130 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8131 + 4-byte data */
8132 isa_1_descsz_raw = 4 + 4 + 4;
8133 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8134 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8135
8136 feature_2_descsz_raw = isa_1_descsz;
8137 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8138 + 4-byte data */
8139 feature_2_descsz_raw += 4 + 4 + 4;
8140 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8141 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8142 & ~align_size_1);
8143
8144 descsz = feature_2_descsz;
8145 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8146 p = frag_more (4 + 4 + 4 + 4 + descsz);
8147
8148 /* Write n_namsz. */
8149 md_number_to_chars (p, (valueT) 4, 4);
8150
8151 /* Write n_descsz. */
8152 md_number_to_chars (p + 4, (valueT) descsz, 4);
8153
8154 /* Write n_type. */
8155 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8156
8157 /* Write n_name. */
8158 memcpy (p + 4 * 3, "GNU", 4);
8159
8160 /* Write 4-byte type. */
8161 md_number_to_chars (p + 4 * 4,
8162 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8163
8164 /* Write 4-byte data size. */
8165 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8166
8167 /* Write 4-byte data. */
8168 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8169
8170 /* Zero out paddings. */
8171 padding = isa_1_descsz - isa_1_descsz_raw;
8172 if (padding)
8173 memset (p + 4 * 7, 0, padding);
8174
8175 /* Write 4-byte type. */
8176 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8177 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8178
8179 /* Write 4-byte data size. */
8180 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8181
8182 /* Write 4-byte data. */
8183 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8184 (valueT) x86_feature_2_used, 4);
8185
8186 /* Zero out paddings. */
8187 padding = feature_2_descsz - feature_2_descsz_raw;
8188 if (padding)
8189 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8190
8191 /* We probably can't restore the current segment, for there likely
8192 isn't one yet... */
8193 if (seg && subseg)
8194 subseg_set (seg, subseg);
8195}
8196#endif
8197
9c33702b
JB
8198static unsigned int
8199encoding_length (const fragS *start_frag, offsetT start_off,
8200 const char *frag_now_ptr)
8201{
8202 unsigned int len = 0;
8203
8204 if (start_frag != frag_now)
8205 {
8206 const fragS *fr = start_frag;
8207
8208 do {
8209 len += fr->fr_fix;
8210 fr = fr->fr_next;
8211 } while (fr && fr != frag_now);
8212 }
8213
8214 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8215}
8216
29b0f896 8217static void
e3bb37b5 8218output_insn (void)
29b0f896 8219{
2bbd9c25
JJ
8220 fragS *insn_start_frag;
8221 offsetT insn_start_off;
8222
b4a3a7b4
L
8223#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8224 if (IS_ELF && x86_used_note)
8225 {
8226 if (i.tm.cpu_flags.bitfield.cpucmov)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8228 if (i.tm.cpu_flags.bitfield.cpusse)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8230 if (i.tm.cpu_flags.bitfield.cpusse2)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8232 if (i.tm.cpu_flags.bitfield.cpusse3)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8234 if (i.tm.cpu_flags.bitfield.cpussse3)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8236 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8238 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8240 if (i.tm.cpu_flags.bitfield.cpuavx)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8242 if (i.tm.cpu_flags.bitfield.cpuavx2)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8244 if (i.tm.cpu_flags.bitfield.cpufma)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8250 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8252 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8254 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8256 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8258 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8259 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8260 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8261 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8262 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8263 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8264 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8265 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8266 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8267 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8268 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8269 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8270 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8271 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8272 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8273 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8274 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8275 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8276
8277 if (i.tm.cpu_flags.bitfield.cpu8087
8278 || i.tm.cpu_flags.bitfield.cpu287
8279 || i.tm.cpu_flags.bitfield.cpu387
8280 || i.tm.cpu_flags.bitfield.cpu687
8281 || i.tm.cpu_flags.bitfield.cpufisttp)
8282 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8283 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8284 Xfence instructions. */
8285 if (i.tm.base_opcode != 0xf18
8286 && i.tm.base_opcode != 0xf0d
c3949f43 8287 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8288 && (i.has_regmmx
8289 || i.tm.cpu_flags.bitfield.cpummx
8290 || i.tm.cpu_flags.bitfield.cpua3dnow
8291 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8292 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8293 if (i.has_regxmm)
8294 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8295 if (i.has_regymm)
8296 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8297 if (i.has_regzmm)
8298 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8299 if (i.tm.cpu_flags.bitfield.cpufxsr)
8300 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8301 if (i.tm.cpu_flags.bitfield.cpuxsave)
8302 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8303 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8304 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8305 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8306 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8307 }
8308#endif
8309
29b0f896
AM
8310 /* Tie dwarf2 debug info to the address at the start of the insn.
8311 We can't do this after the insn has been output as the current
8312 frag may have been closed off. eg. by frag_var. */
8313 dwarf2_emit_insn (0);
8314
2bbd9c25
JJ
8315 insn_start_frag = frag_now;
8316 insn_start_off = frag_now_fix ();
8317
29b0f896 8318 /* Output jumps. */
40fb9820 8319 if (i.tm.opcode_modifier.jump)
29b0f896 8320 output_branch ();
40fb9820
L
8321 else if (i.tm.opcode_modifier.jumpbyte
8322 || i.tm.opcode_modifier.jumpdword)
29b0f896 8323 output_jump ();
40fb9820 8324 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8325 output_interseg_jump ();
8326 else
8327 {
8328 /* Output normal instructions here. */
8329 char *p;
8330 unsigned char *q;
47465058 8331 unsigned int j;
331d2d0d 8332 unsigned int prefix;
4dffcebc 8333
e4e00185 8334 if (avoid_fence
c3949f43
JB
8335 && (i.tm.base_opcode == 0xfaee8
8336 || i.tm.base_opcode == 0xfaef0
8337 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8338 {
8339 /* Encode lfence, mfence, and sfence as
8340 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8341 offsetT val = 0x240483f0ULL;
8342 p = frag_more (5);
8343 md_number_to_chars (p, val, 5);
8344 return;
8345 }
8346
d022bddd
IT
8347 /* Some processors fail on LOCK prefix. This options makes
8348 assembler ignore LOCK prefix and serves as a workaround. */
8349 if (omit_lock_prefix)
8350 {
8351 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8352 return;
8353 i.prefix[LOCK_PREFIX] = 0;
8354 }
8355
43234a1e
L
8356 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8357 don't need the explicit prefix. */
8358 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8359 {
c0f3af97 8360 switch (i.tm.opcode_length)
bc4bd9ab 8361 {
c0f3af97
L
8362 case 3:
8363 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8364 {
c0f3af97 8365 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8366 if (!i.tm.cpu_flags.bitfield.cpupadlock
8367 || prefix != REPE_PREFIX_OPCODE
8368 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8369 add_prefix (prefix);
c0f3af97
L
8370 }
8371 break;
8372 case 2:
8373 if ((i.tm.base_opcode & 0xff0000) != 0)
8374 {
8375 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8376 add_prefix (prefix);
4dffcebc 8377 }
c0f3af97
L
8378 break;
8379 case 1:
8380 break;
390c91cf
L
8381 case 0:
8382 /* Check for pseudo prefixes. */
8383 as_bad_where (insn_start_frag->fr_file,
8384 insn_start_frag->fr_line,
8385 _("pseudo prefix without instruction"));
8386 return;
c0f3af97
L
8387 default:
8388 abort ();
bc4bd9ab 8389 }
c0f3af97 8390
6d19a37a 8391#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8392 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8393 R_X86_64_GOTTPOFF relocation so that linker can safely
8394 perform IE->LE optimization. */
8395 if (x86_elf_abi == X86_64_X32_ABI
8396 && i.operands == 2
8397 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8398 && i.prefix[REX_PREFIX] == 0)
8399 add_prefix (REX_OPCODE);
6d19a37a 8400#endif
cf61b747 8401
c0f3af97
L
8402 /* The prefix bytes. */
8403 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8404 if (*q)
8405 FRAG_APPEND_1_CHAR (*q);
0f10071e 8406 }
ae5c1c7b 8407 else
c0f3af97
L
8408 {
8409 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8410 if (*q)
8411 switch (j)
8412 {
8413 case REX_PREFIX:
8414 /* REX byte is encoded in VEX prefix. */
8415 break;
8416 case SEG_PREFIX:
8417 case ADDR_PREFIX:
8418 FRAG_APPEND_1_CHAR (*q);
8419 break;
8420 default:
8421 /* There should be no other prefixes for instructions
8422 with VEX prefix. */
8423 abort ();
8424 }
8425
43234a1e
L
8426 /* For EVEX instructions i.vrex should become 0 after
8427 build_evex_prefix. For VEX instructions upper 16 registers
8428 aren't available, so VREX should be 0. */
8429 if (i.vrex)
8430 abort ();
c0f3af97
L
8431 /* Now the VEX prefix. */
8432 p = frag_more (i.vex.length);
8433 for (j = 0; j < i.vex.length; j++)
8434 p[j] = i.vex.bytes[j];
8435 }
252b5132 8436
29b0f896 8437 /* Now the opcode; be careful about word order here! */
4dffcebc 8438 if (i.tm.opcode_length == 1)
29b0f896
AM
8439 {
8440 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8441 }
8442 else
8443 {
4dffcebc 8444 switch (i.tm.opcode_length)
331d2d0d 8445 {
43234a1e
L
8446 case 4:
8447 p = frag_more (4);
8448 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8449 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8450 break;
4dffcebc 8451 case 3:
331d2d0d
L
8452 p = frag_more (3);
8453 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8454 break;
8455 case 2:
8456 p = frag_more (2);
8457 break;
8458 default:
8459 abort ();
8460 break;
331d2d0d 8461 }
0f10071e 8462
29b0f896
AM
8463 /* Put out high byte first: can't use md_number_to_chars! */
8464 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8465 *p = i.tm.base_opcode & 0xff;
8466 }
3e73aa7c 8467
29b0f896 8468 /* Now the modrm byte and sib byte (if present). */
40fb9820 8469 if (i.tm.opcode_modifier.modrm)
29b0f896 8470 {
4a3523fa
L
8471 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8472 | i.rm.reg << 3
8473 | i.rm.mode << 6));
29b0f896
AM
8474 /* If i.rm.regmem == ESP (4)
8475 && i.rm.mode != (Register mode)
8476 && not 16 bit
8477 ==> need second modrm byte. */
8478 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8479 && i.rm.mode != 3
dc821c5f 8480 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8481 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8482 | i.sib.index << 3
8483 | i.sib.scale << 6));
29b0f896 8484 }
3e73aa7c 8485
29b0f896 8486 if (i.disp_operands)
2bbd9c25 8487 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8488
29b0f896 8489 if (i.imm_operands)
2bbd9c25 8490 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8491
8492 /*
8493 * frag_now_fix () returning plain abs_section_offset when we're in the
8494 * absolute section, and abs_section_offset not getting updated as data
8495 * gets added to the frag breaks the logic below.
8496 */
8497 if (now_seg != absolute_section)
8498 {
8499 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8500 if (j > 15)
8501 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8502 j);
8503 }
29b0f896 8504 }
252b5132 8505
29b0f896
AM
8506#ifdef DEBUG386
8507 if (flag_debug)
8508 {
7b81dfbb 8509 pi ("" /*line*/, &i);
29b0f896
AM
8510 }
8511#endif /* DEBUG386 */
8512}
252b5132 8513
e205caa7
L
8514/* Return the size of the displacement operand N. */
8515
8516static int
8517disp_size (unsigned int n)
8518{
8519 int size = 4;
43234a1e 8520
b5014f7a 8521 if (i.types[n].bitfield.disp64)
40fb9820
L
8522 size = 8;
8523 else if (i.types[n].bitfield.disp8)
8524 size = 1;
8525 else if (i.types[n].bitfield.disp16)
8526 size = 2;
e205caa7
L
8527 return size;
8528}
8529
8530/* Return the size of the immediate operand N. */
8531
8532static int
8533imm_size (unsigned int n)
8534{
8535 int size = 4;
40fb9820
L
8536 if (i.types[n].bitfield.imm64)
8537 size = 8;
8538 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8539 size = 1;
8540 else if (i.types[n].bitfield.imm16)
8541 size = 2;
e205caa7
L
8542 return size;
8543}
8544
29b0f896 8545static void
64e74474 8546output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8547{
8548 char *p;
8549 unsigned int n;
252b5132 8550
29b0f896
AM
8551 for (n = 0; n < i.operands; n++)
8552 {
b5014f7a 8553 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8554 {
8555 if (i.op[n].disps->X_op == O_constant)
8556 {
e205caa7 8557 int size = disp_size (n);
43234a1e 8558 offsetT val = i.op[n].disps->X_add_number;
252b5132 8559
629cfaf1
JB
8560 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8561 size);
29b0f896
AM
8562 p = frag_more (size);
8563 md_number_to_chars (p, val, size);
8564 }
8565 else
8566 {
f86103b7 8567 enum bfd_reloc_code_real reloc_type;
e205caa7 8568 int size = disp_size (n);
40fb9820 8569 int sign = i.types[n].bitfield.disp32s;
29b0f896 8570 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8571 fixS *fixP;
29b0f896 8572
e205caa7 8573 /* We can't have 8 bit displacement here. */
9c2799c2 8574 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8575
29b0f896
AM
8576 /* The PC relative address is computed relative
8577 to the instruction boundary, so in case immediate
8578 fields follows, we need to adjust the value. */
8579 if (pcrel && i.imm_operands)
8580 {
29b0f896 8581 unsigned int n1;
e205caa7 8582 int sz = 0;
252b5132 8583
29b0f896 8584 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8585 if (operand_type_check (i.types[n1], imm))
252b5132 8586 {
e205caa7
L
8587 /* Only one immediate is allowed for PC
8588 relative address. */
9c2799c2 8589 gas_assert (sz == 0);
e205caa7
L
8590 sz = imm_size (n1);
8591 i.op[n].disps->X_add_number -= sz;
252b5132 8592 }
29b0f896 8593 /* We should find the immediate. */
9c2799c2 8594 gas_assert (sz != 0);
29b0f896 8595 }
520dc8e8 8596
29b0f896 8597 p = frag_more (size);
d258b828 8598 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8599 if (GOT_symbol
2bbd9c25 8600 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8601 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8602 || reloc_type == BFD_RELOC_X86_64_32S
8603 || (reloc_type == BFD_RELOC_64
8604 && object_64bit))
d6ab8113
JB
8605 && (i.op[n].disps->X_op == O_symbol
8606 || (i.op[n].disps->X_op == O_add
8607 && ((symbol_get_value_expression
8608 (i.op[n].disps->X_op_symbol)->X_op)
8609 == O_subtract))))
8610 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8611 {
4fa24527 8612 if (!object_64bit)
7b81dfbb
AJ
8613 {
8614 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8615 i.op[n].imms->X_add_number +=
8616 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8617 }
8618 else if (reloc_type == BFD_RELOC_64)
8619 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8620 else
7b81dfbb
AJ
8621 /* Don't do the adjustment for x86-64, as there
8622 the pcrel addressing is relative to the _next_
8623 insn, and that is taken care of in other code. */
d6ab8113 8624 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8625 }
02a86693
L
8626 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8627 size, i.op[n].disps, pcrel,
8628 reloc_type);
8629 /* Check for "call/jmp *mem", "mov mem, %reg",
8630 "test %reg, mem" and "binop mem, %reg" where binop
8631 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8632 instructions without data prefix. Always generate
8633 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8634 if (i.prefix[DATA_PREFIX] == 0
8635 && (generate_relax_relocations
8636 || (!object_64bit
8637 && i.rm.mode == 0
8638 && i.rm.regmem == 5))
0cb4071e
L
8639 && (i.rm.mode == 2
8640 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8641 && ((i.operands == 1
8642 && i.tm.base_opcode == 0xff
8643 && (i.rm.reg == 2 || i.rm.reg == 4))
8644 || (i.operands == 2
8645 && (i.tm.base_opcode == 0x8b
8646 || i.tm.base_opcode == 0x85
8647 || (i.tm.base_opcode & 0xc7) == 0x03))))
8648 {
8649 if (object_64bit)
8650 {
8651 fixP->fx_tcbit = i.rex != 0;
8652 if (i.base_reg
e968fc9b 8653 && (i.base_reg->reg_num == RegIP))
02a86693
L
8654 fixP->fx_tcbit2 = 1;
8655 }
8656 else
8657 fixP->fx_tcbit2 = 1;
8658 }
29b0f896
AM
8659 }
8660 }
8661 }
8662}
252b5132 8663
29b0f896 8664static void
64e74474 8665output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8666{
8667 char *p;
8668 unsigned int n;
252b5132 8669
29b0f896
AM
8670 for (n = 0; n < i.operands; n++)
8671 {
43234a1e
L
8672 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8673 if (i.rounding && (int) n == i.rounding->operand)
8674 continue;
8675
40fb9820 8676 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8677 {
8678 if (i.op[n].imms->X_op == O_constant)
8679 {
e205caa7 8680 int size = imm_size (n);
29b0f896 8681 offsetT val;
b4cac588 8682
29b0f896
AM
8683 val = offset_in_range (i.op[n].imms->X_add_number,
8684 size);
8685 p = frag_more (size);
8686 md_number_to_chars (p, val, size);
8687 }
8688 else
8689 {
8690 /* Not absolute_section.
8691 Need a 32-bit fixup (don't support 8bit
8692 non-absolute imms). Try to support other
8693 sizes ... */
f86103b7 8694 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8695 int size = imm_size (n);
8696 int sign;
29b0f896 8697
40fb9820 8698 if (i.types[n].bitfield.imm32s
a7d61044 8699 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8700 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8701 sign = 1;
e205caa7
L
8702 else
8703 sign = 0;
520dc8e8 8704
29b0f896 8705 p = frag_more (size);
d258b828 8706 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8707
2bbd9c25
JJ
8708 /* This is tough to explain. We end up with this one if we
8709 * have operands that look like
8710 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8711 * obtain the absolute address of the GOT, and it is strongly
8712 * preferable from a performance point of view to avoid using
8713 * a runtime relocation for this. The actual sequence of
8714 * instructions often look something like:
8715 *
8716 * call .L66
8717 * .L66:
8718 * popl %ebx
8719 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8720 *
8721 * The call and pop essentially return the absolute address
8722 * of the label .L66 and store it in %ebx. The linker itself
8723 * will ultimately change the first operand of the addl so
8724 * that %ebx points to the GOT, but to keep things simple, the
8725 * .o file must have this operand set so that it generates not
8726 * the absolute address of .L66, but the absolute address of
8727 * itself. This allows the linker itself simply treat a GOTPC
8728 * relocation as asking for a pcrel offset to the GOT to be
8729 * added in, and the addend of the relocation is stored in the
8730 * operand field for the instruction itself.
8731 *
8732 * Our job here is to fix the operand so that it would add
8733 * the correct offset so that %ebx would point to itself. The
8734 * thing that is tricky is that .-.L66 will point to the
8735 * beginning of the instruction, so we need to further modify
8736 * the operand so that it will point to itself. There are
8737 * other cases where you have something like:
8738 *
8739 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8740 *
8741 * and here no correction would be required. Internally in
8742 * the assembler we treat operands of this form as not being
8743 * pcrel since the '.' is explicitly mentioned, and I wonder
8744 * whether it would simplify matters to do it this way. Who
8745 * knows. In earlier versions of the PIC patches, the
8746 * pcrel_adjust field was used to store the correction, but
8747 * since the expression is not pcrel, I felt it would be
8748 * confusing to do it this way. */
8749
d6ab8113 8750 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8751 || reloc_type == BFD_RELOC_X86_64_32S
8752 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8753 && GOT_symbol
8754 && GOT_symbol == i.op[n].imms->X_add_symbol
8755 && (i.op[n].imms->X_op == O_symbol
8756 || (i.op[n].imms->X_op == O_add
8757 && ((symbol_get_value_expression
8758 (i.op[n].imms->X_op_symbol)->X_op)
8759 == O_subtract))))
8760 {
4fa24527 8761 if (!object_64bit)
d6ab8113 8762 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8763 else if (size == 4)
d6ab8113 8764 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8765 else if (size == 8)
8766 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8767 i.op[n].imms->X_add_number +=
8768 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8769 }
29b0f896
AM
8770 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8771 i.op[n].imms, 0, reloc_type);
8772 }
8773 }
8774 }
252b5132
RH
8775}
8776\f
d182319b
JB
8777/* x86_cons_fix_new is called via the expression parsing code when a
8778 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8779static int cons_sign = -1;
8780
8781void
e3bb37b5 8782x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8783 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8784{
d258b828 8785 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8786
8787#ifdef TE_PE
8788 if (exp->X_op == O_secrel)
8789 {
8790 exp->X_op = O_symbol;
8791 r = BFD_RELOC_32_SECREL;
8792 }
8793#endif
8794
8795 fix_new_exp (frag, off, len, exp, 0, r);
8796}
8797
357d1bd8
L
8798/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8799 purpose of the `.dc.a' internal pseudo-op. */
8800
8801int
8802x86_address_bytes (void)
8803{
8804 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8805 return 4;
8806 return stdoutput->arch_info->bits_per_address / 8;
8807}
8808
d382c579
TG
8809#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8810 || defined (LEX_AT)
d258b828 8811# define lex_got(reloc, adjust, types) NULL
718ddfc0 8812#else
f3c180ae
AM
8813/* Parse operands of the form
8814 <symbol>@GOTOFF+<nnn>
8815 and similar .plt or .got references.
8816
8817 If we find one, set up the correct relocation in RELOC and copy the
8818 input string, minus the `@GOTOFF' into a malloc'd buffer for
8819 parsing by the calling routine. Return this buffer, and if ADJUST
8820 is non-null set it to the length of the string we removed from the
8821 input line. Otherwise return NULL. */
8822static char *
91d6fa6a 8823lex_got (enum bfd_reloc_code_real *rel,
64e74474 8824 int *adjust,
d258b828 8825 i386_operand_type *types)
f3c180ae 8826{
7b81dfbb
AJ
8827 /* Some of the relocations depend on the size of what field is to
8828 be relocated. But in our callers i386_immediate and i386_displacement
8829 we don't yet know the operand size (this will be set by insn
8830 matching). Hence we record the word32 relocation here,
8831 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8832 static const struct {
8833 const char *str;
cff8d58a 8834 int len;
4fa24527 8835 const enum bfd_reloc_code_real rel[2];
40fb9820 8836 const i386_operand_type types64;
f3c180ae 8837 } gotrel[] = {
8ce3d284 8838#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8839 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8840 BFD_RELOC_SIZE32 },
8841 OPERAND_TYPE_IMM32_64 },
8ce3d284 8842#endif
cff8d58a
L
8843 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8844 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8845 OPERAND_TYPE_IMM64 },
cff8d58a
L
8846 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8847 BFD_RELOC_X86_64_PLT32 },
40fb9820 8848 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8849 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8850 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8851 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8852 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8853 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8854 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8855 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8856 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8857 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8858 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8859 BFD_RELOC_X86_64_TLSGD },
40fb9820 8860 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8861 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8862 _dummy_first_bfd_reloc_code_real },
40fb9820 8863 OPERAND_TYPE_NONE },
cff8d58a
L
8864 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8865 BFD_RELOC_X86_64_TLSLD },
40fb9820 8866 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8867 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8868 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8869 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8870 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8871 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8872 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8873 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8874 _dummy_first_bfd_reloc_code_real },
40fb9820 8875 OPERAND_TYPE_NONE },
cff8d58a
L
8876 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8877 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8878 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8879 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8880 _dummy_first_bfd_reloc_code_real },
40fb9820 8881 OPERAND_TYPE_NONE },
cff8d58a
L
8882 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8883 _dummy_first_bfd_reloc_code_real },
40fb9820 8884 OPERAND_TYPE_NONE },
cff8d58a
L
8885 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8886 BFD_RELOC_X86_64_GOT32 },
40fb9820 8887 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8888 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8889 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8890 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8891 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8892 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8893 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8894 };
8895 char *cp;
8896 unsigned int j;
8897
d382c579 8898#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8899 if (!IS_ELF)
8900 return NULL;
d382c579 8901#endif
718ddfc0 8902
f3c180ae 8903 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8904 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8905 return NULL;
8906
47465058 8907 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8908 {
cff8d58a 8909 int len = gotrel[j].len;
28f81592 8910 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8911 {
4fa24527 8912 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8913 {
28f81592
AM
8914 int first, second;
8915 char *tmpbuf, *past_reloc;
f3c180ae 8916
91d6fa6a 8917 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8918
3956db08
JB
8919 if (types)
8920 {
8921 if (flag_code != CODE_64BIT)
40fb9820
L
8922 {
8923 types->bitfield.imm32 = 1;
8924 types->bitfield.disp32 = 1;
8925 }
3956db08
JB
8926 else
8927 *types = gotrel[j].types64;
8928 }
8929
8fd4256d 8930 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8931 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8932
28f81592 8933 /* The length of the first part of our input line. */
f3c180ae 8934 first = cp - input_line_pointer;
28f81592
AM
8935
8936 /* The second part goes from after the reloc token until
67c11a9b 8937 (and including) an end_of_line char or comma. */
28f81592 8938 past_reloc = cp + 1 + len;
67c11a9b
AM
8939 cp = past_reloc;
8940 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8941 ++cp;
8942 second = cp + 1 - past_reloc;
28f81592
AM
8943
8944 /* Allocate and copy string. The trailing NUL shouldn't
8945 be necessary, but be safe. */
add39d23 8946 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8947 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8948 if (second != 0 && *past_reloc != ' ')
8949 /* Replace the relocation token with ' ', so that
8950 errors like foo@GOTOFF1 will be detected. */
8951 tmpbuf[first++] = ' ';
af89796a
L
8952 else
8953 /* Increment length by 1 if the relocation token is
8954 removed. */
8955 len++;
8956 if (adjust)
8957 *adjust = len;
0787a12d
AM
8958 memcpy (tmpbuf + first, past_reloc, second);
8959 tmpbuf[first + second] = '\0';
f3c180ae
AM
8960 return tmpbuf;
8961 }
8962
4fa24527
JB
8963 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8964 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8965 return NULL;
8966 }
8967 }
8968
8969 /* Might be a symbol version string. Don't as_bad here. */
8970 return NULL;
8971}
4e4f7c87 8972#endif
f3c180ae 8973
a988325c
NC
8974#ifdef TE_PE
8975#ifdef lex_got
8976#undef lex_got
8977#endif
8978/* Parse operands of the form
8979 <symbol>@SECREL32+<nnn>
8980
8981 If we find one, set up the correct relocation in RELOC and copy the
8982 input string, minus the `@SECREL32' into a malloc'd buffer for
8983 parsing by the calling routine. Return this buffer, and if ADJUST
8984 is non-null set it to the length of the string we removed from the
34bca508
L
8985 input line. Otherwise return NULL.
8986
a988325c
NC
8987 This function is copied from the ELF version above adjusted for PE targets. */
8988
8989static char *
8990lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8991 int *adjust ATTRIBUTE_UNUSED,
d258b828 8992 i386_operand_type *types)
a988325c
NC
8993{
8994 static const struct
8995 {
8996 const char *str;
8997 int len;
8998 const enum bfd_reloc_code_real rel[2];
8999 const i386_operand_type types64;
9000 }
9001 gotrel[] =
9002 {
9003 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9004 BFD_RELOC_32_SECREL },
9005 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9006 };
9007
9008 char *cp;
9009 unsigned j;
9010
9011 for (cp = input_line_pointer; *cp != '@'; cp++)
9012 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9013 return NULL;
9014
9015 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9016 {
9017 int len = gotrel[j].len;
9018
9019 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9020 {
9021 if (gotrel[j].rel[object_64bit] != 0)
9022 {
9023 int first, second;
9024 char *tmpbuf, *past_reloc;
9025
9026 *rel = gotrel[j].rel[object_64bit];
9027 if (adjust)
9028 *adjust = len;
9029
9030 if (types)
9031 {
9032 if (flag_code != CODE_64BIT)
9033 {
9034 types->bitfield.imm32 = 1;
9035 types->bitfield.disp32 = 1;
9036 }
9037 else
9038 *types = gotrel[j].types64;
9039 }
9040
9041 /* The length of the first part of our input line. */
9042 first = cp - input_line_pointer;
9043
9044 /* The second part goes from after the reloc token until
9045 (and including) an end_of_line char or comma. */
9046 past_reloc = cp + 1 + len;
9047 cp = past_reloc;
9048 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9049 ++cp;
9050 second = cp + 1 - past_reloc;
9051
9052 /* Allocate and copy string. The trailing NUL shouldn't
9053 be necessary, but be safe. */
add39d23 9054 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9055 memcpy (tmpbuf, input_line_pointer, first);
9056 if (second != 0 && *past_reloc != ' ')
9057 /* Replace the relocation token with ' ', so that
9058 errors like foo@SECLREL321 will be detected. */
9059 tmpbuf[first++] = ' ';
9060 memcpy (tmpbuf + first, past_reloc, second);
9061 tmpbuf[first + second] = '\0';
9062 return tmpbuf;
9063 }
9064
9065 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9066 gotrel[j].str, 1 << (5 + object_64bit));
9067 return NULL;
9068 }
9069 }
9070
9071 /* Might be a symbol version string. Don't as_bad here. */
9072 return NULL;
9073}
9074
9075#endif /* TE_PE */
9076
62ebcb5c 9077bfd_reloc_code_real_type
e3bb37b5 9078x86_cons (expressionS *exp, int size)
f3c180ae 9079{
62ebcb5c
AM
9080 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9081
ee86248c
JB
9082 intel_syntax = -intel_syntax;
9083
3c7b9c2c 9084 exp->X_md = 0;
4fa24527 9085 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9086 {
9087 /* Handle @GOTOFF and the like in an expression. */
9088 char *save;
9089 char *gotfree_input_line;
4a57f2cf 9090 int adjust = 0;
f3c180ae
AM
9091
9092 save = input_line_pointer;
d258b828 9093 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9094 if (gotfree_input_line)
9095 input_line_pointer = gotfree_input_line;
9096
9097 expression (exp);
9098
9099 if (gotfree_input_line)
9100 {
9101 /* expression () has merrily parsed up to the end of line,
9102 or a comma - in the wrong buffer. Transfer how far
9103 input_line_pointer has moved to the right buffer. */
9104 input_line_pointer = (save
9105 + (input_line_pointer - gotfree_input_line)
9106 + adjust);
9107 free (gotfree_input_line);
3992d3b7
AM
9108 if (exp->X_op == O_constant
9109 || exp->X_op == O_absent
9110 || exp->X_op == O_illegal
0398aac5 9111 || exp->X_op == O_register
3992d3b7
AM
9112 || exp->X_op == O_big)
9113 {
9114 char c = *input_line_pointer;
9115 *input_line_pointer = 0;
9116 as_bad (_("missing or invalid expression `%s'"), save);
9117 *input_line_pointer = c;
9118 }
b9519cfe
L
9119 else if ((got_reloc == BFD_RELOC_386_PLT32
9120 || got_reloc == BFD_RELOC_X86_64_PLT32)
9121 && exp->X_op != O_symbol)
9122 {
9123 char c = *input_line_pointer;
9124 *input_line_pointer = 0;
9125 as_bad (_("invalid PLT expression `%s'"), save);
9126 *input_line_pointer = c;
9127 }
f3c180ae
AM
9128 }
9129 }
9130 else
9131 expression (exp);
ee86248c
JB
9132
9133 intel_syntax = -intel_syntax;
9134
9135 if (intel_syntax)
9136 i386_intel_simplify (exp);
62ebcb5c
AM
9137
9138 return got_reloc;
f3c180ae 9139}
f3c180ae 9140
9f32dd5b
L
9141static void
9142signed_cons (int size)
6482c264 9143{
d182319b
JB
9144 if (flag_code == CODE_64BIT)
9145 cons_sign = 1;
9146 cons (size);
9147 cons_sign = -1;
6482c264
NC
9148}
9149
d182319b 9150#ifdef TE_PE
6482c264 9151static void
7016a5d5 9152pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9153{
9154 expressionS exp;
9155
9156 do
9157 {
9158 expression (&exp);
9159 if (exp.X_op == O_symbol)
9160 exp.X_op = O_secrel;
9161
9162 emit_expr (&exp, 4);
9163 }
9164 while (*input_line_pointer++ == ',');
9165
9166 input_line_pointer--;
9167 demand_empty_rest_of_line ();
9168}
6482c264
NC
9169#endif
9170
43234a1e
L
9171/* Handle Vector operations. */
9172
9173static char *
9174check_VecOperations (char *op_string, char *op_end)
9175{
9176 const reg_entry *mask;
9177 const char *saved;
9178 char *end_op;
9179
9180 while (*op_string
9181 && (op_end == NULL || op_string < op_end))
9182 {
9183 saved = op_string;
9184 if (*op_string == '{')
9185 {
9186 op_string++;
9187
9188 /* Check broadcasts. */
9189 if (strncmp (op_string, "1to", 3) == 0)
9190 {
9191 int bcst_type;
9192
9193 if (i.broadcast)
9194 goto duplicated_vec_op;
9195
9196 op_string += 3;
9197 if (*op_string == '8')
8e6e0792 9198 bcst_type = 8;
b28d1bda 9199 else if (*op_string == '4')
8e6e0792 9200 bcst_type = 4;
b28d1bda 9201 else if (*op_string == '2')
8e6e0792 9202 bcst_type = 2;
43234a1e
L
9203 else if (*op_string == '1'
9204 && *(op_string+1) == '6')
9205 {
8e6e0792 9206 bcst_type = 16;
43234a1e
L
9207 op_string++;
9208 }
9209 else
9210 {
9211 as_bad (_("Unsupported broadcast: `%s'"), saved);
9212 return NULL;
9213 }
9214 op_string++;
9215
9216 broadcast_op.type = bcst_type;
9217 broadcast_op.operand = this_operand;
1f75763a 9218 broadcast_op.bytes = 0;
43234a1e
L
9219 i.broadcast = &broadcast_op;
9220 }
9221 /* Check masking operation. */
9222 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9223 {
9224 /* k0 can't be used for write mask. */
6d2cd6b2 9225 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9226 {
6d2cd6b2
JB
9227 as_bad (_("`%s%s' can't be used for write mask"),
9228 register_prefix, mask->reg_name);
43234a1e
L
9229 return NULL;
9230 }
9231
9232 if (!i.mask)
9233 {
9234 mask_op.mask = mask;
9235 mask_op.zeroing = 0;
9236 mask_op.operand = this_operand;
9237 i.mask = &mask_op;
9238 }
9239 else
9240 {
9241 if (i.mask->mask)
9242 goto duplicated_vec_op;
9243
9244 i.mask->mask = mask;
9245
9246 /* Only "{z}" is allowed here. No need to check
9247 zeroing mask explicitly. */
9248 if (i.mask->operand != this_operand)
9249 {
9250 as_bad (_("invalid write mask `%s'"), saved);
9251 return NULL;
9252 }
9253 }
9254
9255 op_string = end_op;
9256 }
9257 /* Check zeroing-flag for masking operation. */
9258 else if (*op_string == 'z')
9259 {
9260 if (!i.mask)
9261 {
9262 mask_op.mask = NULL;
9263 mask_op.zeroing = 1;
9264 mask_op.operand = this_operand;
9265 i.mask = &mask_op;
9266 }
9267 else
9268 {
9269 if (i.mask->zeroing)
9270 {
9271 duplicated_vec_op:
9272 as_bad (_("duplicated `%s'"), saved);
9273 return NULL;
9274 }
9275
9276 i.mask->zeroing = 1;
9277
9278 /* Only "{%k}" is allowed here. No need to check mask
9279 register explicitly. */
9280 if (i.mask->operand != this_operand)
9281 {
9282 as_bad (_("invalid zeroing-masking `%s'"),
9283 saved);
9284 return NULL;
9285 }
9286 }
9287
9288 op_string++;
9289 }
9290 else
9291 goto unknown_vec_op;
9292
9293 if (*op_string != '}')
9294 {
9295 as_bad (_("missing `}' in `%s'"), saved);
9296 return NULL;
9297 }
9298 op_string++;
0ba3a731
L
9299
9300 /* Strip whitespace since the addition of pseudo prefixes
9301 changed how the scrubber treats '{'. */
9302 if (is_space_char (*op_string))
9303 ++op_string;
9304
43234a1e
L
9305 continue;
9306 }
9307 unknown_vec_op:
9308 /* We don't know this one. */
9309 as_bad (_("unknown vector operation: `%s'"), saved);
9310 return NULL;
9311 }
9312
6d2cd6b2
JB
9313 if (i.mask && i.mask->zeroing && !i.mask->mask)
9314 {
9315 as_bad (_("zeroing-masking only allowed with write mask"));
9316 return NULL;
9317 }
9318
43234a1e
L
9319 return op_string;
9320}
9321
252b5132 9322static int
70e41ade 9323i386_immediate (char *imm_start)
252b5132
RH
9324{
9325 char *save_input_line_pointer;
f3c180ae 9326 char *gotfree_input_line;
252b5132 9327 segT exp_seg = 0;
47926f60 9328 expressionS *exp;
40fb9820
L
9329 i386_operand_type types;
9330
0dfbf9d7 9331 operand_type_set (&types, ~0);
252b5132
RH
9332
9333 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9334 {
31b2323c
L
9335 as_bad (_("at most %d immediate operands are allowed"),
9336 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9337 return 0;
9338 }
9339
9340 exp = &im_expressions[i.imm_operands++];
520dc8e8 9341 i.op[this_operand].imms = exp;
252b5132
RH
9342
9343 if (is_space_char (*imm_start))
9344 ++imm_start;
9345
9346 save_input_line_pointer = input_line_pointer;
9347 input_line_pointer = imm_start;
9348
d258b828 9349 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9350 if (gotfree_input_line)
9351 input_line_pointer = gotfree_input_line;
252b5132
RH
9352
9353 exp_seg = expression (exp);
9354
83183c0c 9355 SKIP_WHITESPACE ();
43234a1e
L
9356
9357 /* Handle vector operations. */
9358 if (*input_line_pointer == '{')
9359 {
9360 input_line_pointer = check_VecOperations (input_line_pointer,
9361 NULL);
9362 if (input_line_pointer == NULL)
9363 return 0;
9364 }
9365
252b5132 9366 if (*input_line_pointer)
f3c180ae 9367 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9368
9369 input_line_pointer = save_input_line_pointer;
f3c180ae 9370 if (gotfree_input_line)
ee86248c
JB
9371 {
9372 free (gotfree_input_line);
9373
9374 if (exp->X_op == O_constant || exp->X_op == O_register)
9375 exp->X_op = O_illegal;
9376 }
9377
9378 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9379}
252b5132 9380
ee86248c
JB
9381static int
9382i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9383 i386_operand_type types, const char *imm_start)
9384{
9385 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9386 {
313c53d1
L
9387 if (imm_start)
9388 as_bad (_("missing or invalid immediate expression `%s'"),
9389 imm_start);
3992d3b7 9390 return 0;
252b5132 9391 }
3e73aa7c 9392 else if (exp->X_op == O_constant)
252b5132 9393 {
47926f60 9394 /* Size it properly later. */
40fb9820 9395 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9396 /* If not 64bit, sign extend val. */
9397 if (flag_code != CODE_64BIT
4eed87de
AM
9398 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9399 exp->X_add_number
9400 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9401 }
4c63da97 9402#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9403 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9404 && exp_seg != absolute_section
47926f60 9405 && exp_seg != text_section
24eab124
AM
9406 && exp_seg != data_section
9407 && exp_seg != bss_section
9408 && exp_seg != undefined_section
f86103b7 9409 && !bfd_is_com_section (exp_seg))
252b5132 9410 {
d0b47220 9411 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9412 return 0;
9413 }
9414#endif
a841bdf5 9415 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9416 {
313c53d1
L
9417 if (imm_start)
9418 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9419 return 0;
9420 }
252b5132
RH
9421 else
9422 {
9423 /* This is an address. The size of the address will be
24eab124 9424 determined later, depending on destination register,
3e73aa7c 9425 suffix, or the default for the section. */
40fb9820
L
9426 i.types[this_operand].bitfield.imm8 = 1;
9427 i.types[this_operand].bitfield.imm16 = 1;
9428 i.types[this_operand].bitfield.imm32 = 1;
9429 i.types[this_operand].bitfield.imm32s = 1;
9430 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9431 i.types[this_operand] = operand_type_and (i.types[this_operand],
9432 types);
252b5132
RH
9433 }
9434
9435 return 1;
9436}
9437
551c1ca1 9438static char *
e3bb37b5 9439i386_scale (char *scale)
252b5132 9440{
551c1ca1
AM
9441 offsetT val;
9442 char *save = input_line_pointer;
252b5132 9443
551c1ca1
AM
9444 input_line_pointer = scale;
9445 val = get_absolute_expression ();
9446
9447 switch (val)
252b5132 9448 {
551c1ca1 9449 case 1:
252b5132
RH
9450 i.log2_scale_factor = 0;
9451 break;
551c1ca1 9452 case 2:
252b5132
RH
9453 i.log2_scale_factor = 1;
9454 break;
551c1ca1 9455 case 4:
252b5132
RH
9456 i.log2_scale_factor = 2;
9457 break;
551c1ca1 9458 case 8:
252b5132
RH
9459 i.log2_scale_factor = 3;
9460 break;
9461 default:
a724f0f4
JB
9462 {
9463 char sep = *input_line_pointer;
9464
9465 *input_line_pointer = '\0';
9466 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9467 scale);
9468 *input_line_pointer = sep;
9469 input_line_pointer = save;
9470 return NULL;
9471 }
252b5132 9472 }
29b0f896 9473 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9474 {
9475 as_warn (_("scale factor of %d without an index register"),
24eab124 9476 1 << i.log2_scale_factor);
252b5132 9477 i.log2_scale_factor = 0;
252b5132 9478 }
551c1ca1
AM
9479 scale = input_line_pointer;
9480 input_line_pointer = save;
9481 return scale;
252b5132
RH
9482}
9483
252b5132 9484static int
e3bb37b5 9485i386_displacement (char *disp_start, char *disp_end)
252b5132 9486{
29b0f896 9487 expressionS *exp;
252b5132
RH
9488 segT exp_seg = 0;
9489 char *save_input_line_pointer;
f3c180ae 9490 char *gotfree_input_line;
40fb9820
L
9491 int override;
9492 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9493 int ret;
252b5132 9494
31b2323c
L
9495 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9496 {
9497 as_bad (_("at most %d displacement operands are allowed"),
9498 MAX_MEMORY_OPERANDS);
9499 return 0;
9500 }
9501
0dfbf9d7 9502 operand_type_set (&bigdisp, 0);
40fb9820
L
9503 if ((i.types[this_operand].bitfield.jumpabsolute)
9504 || (!current_templates->start->opcode_modifier.jump
9505 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9506 {
40fb9820 9507 bigdisp.bitfield.disp32 = 1;
e05278af 9508 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9509 if (flag_code == CODE_64BIT)
9510 {
9511 if (!override)
9512 {
9513 bigdisp.bitfield.disp32s = 1;
9514 bigdisp.bitfield.disp64 = 1;
9515 }
9516 }
9517 else if ((flag_code == CODE_16BIT) ^ override)
9518 {
9519 bigdisp.bitfield.disp32 = 0;
9520 bigdisp.bitfield.disp16 = 1;
9521 }
e05278af
JB
9522 }
9523 else
9524 {
9525 /* For PC-relative branches, the width of the displacement
9526 is dependent upon data size, not address size. */
e05278af 9527 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9528 if (flag_code == CODE_64BIT)
9529 {
9530 if (override || i.suffix == WORD_MNEM_SUFFIX)
9531 bigdisp.bitfield.disp16 = 1;
9532 else
9533 {
9534 bigdisp.bitfield.disp32 = 1;
9535 bigdisp.bitfield.disp32s = 1;
9536 }
9537 }
9538 else
e05278af
JB
9539 {
9540 if (!override)
9541 override = (i.suffix == (flag_code != CODE_16BIT
9542 ? WORD_MNEM_SUFFIX
9543 : LONG_MNEM_SUFFIX));
40fb9820
L
9544 bigdisp.bitfield.disp32 = 1;
9545 if ((flag_code == CODE_16BIT) ^ override)
9546 {
9547 bigdisp.bitfield.disp32 = 0;
9548 bigdisp.bitfield.disp16 = 1;
9549 }
e05278af 9550 }
e05278af 9551 }
c6fb90c8
L
9552 i.types[this_operand] = operand_type_or (i.types[this_operand],
9553 bigdisp);
252b5132
RH
9554
9555 exp = &disp_expressions[i.disp_operands];
520dc8e8 9556 i.op[this_operand].disps = exp;
252b5132
RH
9557 i.disp_operands++;
9558 save_input_line_pointer = input_line_pointer;
9559 input_line_pointer = disp_start;
9560 END_STRING_AND_SAVE (disp_end);
9561
9562#ifndef GCC_ASM_O_HACK
9563#define GCC_ASM_O_HACK 0
9564#endif
9565#if GCC_ASM_O_HACK
9566 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9567 if (i.types[this_operand].bitfield.baseIndex
24eab124 9568 && displacement_string_end[-1] == '+')
252b5132
RH
9569 {
9570 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9571 constraint within gcc asm statements.
9572 For instance:
9573
9574 #define _set_tssldt_desc(n,addr,limit,type) \
9575 __asm__ __volatile__ ( \
9576 "movw %w2,%0\n\t" \
9577 "movw %w1,2+%0\n\t" \
9578 "rorl $16,%1\n\t" \
9579 "movb %b1,4+%0\n\t" \
9580 "movb %4,5+%0\n\t" \
9581 "movb $0,6+%0\n\t" \
9582 "movb %h1,7+%0\n\t" \
9583 "rorl $16,%1" \
9584 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9585
9586 This works great except that the output assembler ends
9587 up looking a bit weird if it turns out that there is
9588 no offset. You end up producing code that looks like:
9589
9590 #APP
9591 movw $235,(%eax)
9592 movw %dx,2+(%eax)
9593 rorl $16,%edx
9594 movb %dl,4+(%eax)
9595 movb $137,5+(%eax)
9596 movb $0,6+(%eax)
9597 movb %dh,7+(%eax)
9598 rorl $16,%edx
9599 #NO_APP
9600
47926f60 9601 So here we provide the missing zero. */
24eab124
AM
9602
9603 *displacement_string_end = '0';
252b5132
RH
9604 }
9605#endif
d258b828 9606 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9607 if (gotfree_input_line)
9608 input_line_pointer = gotfree_input_line;
252b5132 9609
24eab124 9610 exp_seg = expression (exp);
252b5132 9611
636c26b0
AM
9612 SKIP_WHITESPACE ();
9613 if (*input_line_pointer)
9614 as_bad (_("junk `%s' after expression"), input_line_pointer);
9615#if GCC_ASM_O_HACK
9616 RESTORE_END_STRING (disp_end + 1);
9617#endif
636c26b0 9618 input_line_pointer = save_input_line_pointer;
636c26b0 9619 if (gotfree_input_line)
ee86248c
JB
9620 {
9621 free (gotfree_input_line);
9622
9623 if (exp->X_op == O_constant || exp->X_op == O_register)
9624 exp->X_op = O_illegal;
9625 }
9626
9627 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9628
9629 RESTORE_END_STRING (disp_end);
9630
9631 return ret;
9632}
9633
9634static int
9635i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9636 i386_operand_type types, const char *disp_start)
9637{
9638 i386_operand_type bigdisp;
9639 int ret = 1;
636c26b0 9640
24eab124
AM
9641 /* We do this to make sure that the section symbol is in
9642 the symbol table. We will ultimately change the relocation
47926f60 9643 to be relative to the beginning of the section. */
1ae12ab7 9644 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9645 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9646 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9647 {
636c26b0 9648 if (exp->X_op != O_symbol)
3992d3b7 9649 goto inv_disp;
636c26b0 9650
e5cb08ac 9651 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9652 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9653 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9654 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9655 exp->X_op = O_subtract;
9656 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9657 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9658 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9659 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9660 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9661 else
29b0f896 9662 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9663 }
252b5132 9664
3992d3b7
AM
9665 else if (exp->X_op == O_absent
9666 || exp->X_op == O_illegal
ee86248c 9667 || exp->X_op == O_big)
2daf4fd8 9668 {
3992d3b7
AM
9669 inv_disp:
9670 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9671 disp_start);
3992d3b7 9672 ret = 0;
2daf4fd8
AM
9673 }
9674
0e1147d9
L
9675 else if (flag_code == CODE_64BIT
9676 && !i.prefix[ADDR_PREFIX]
9677 && exp->X_op == O_constant)
9678 {
9679 /* Since displacement is signed extended to 64bit, don't allow
9680 disp32 and turn off disp32s if they are out of range. */
9681 i.types[this_operand].bitfield.disp32 = 0;
9682 if (!fits_in_signed_long (exp->X_add_number))
9683 {
9684 i.types[this_operand].bitfield.disp32s = 0;
9685 if (i.types[this_operand].bitfield.baseindex)
9686 {
9687 as_bad (_("0x%lx out range of signed 32bit displacement"),
9688 (long) exp->X_add_number);
9689 ret = 0;
9690 }
9691 }
9692 }
9693
4c63da97 9694#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9695 else if (exp->X_op != O_constant
9696 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9697 && exp_seg != absolute_section
9698 && exp_seg != text_section
9699 && exp_seg != data_section
9700 && exp_seg != bss_section
9701 && exp_seg != undefined_section
9702 && !bfd_is_com_section (exp_seg))
24eab124 9703 {
d0b47220 9704 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9705 ret = 0;
24eab124 9706 }
252b5132 9707#endif
3956db08 9708
40fb9820
L
9709 /* Check if this is a displacement only operand. */
9710 bigdisp = i.types[this_operand];
9711 bigdisp.bitfield.disp8 = 0;
9712 bigdisp.bitfield.disp16 = 0;
9713 bigdisp.bitfield.disp32 = 0;
9714 bigdisp.bitfield.disp32s = 0;
9715 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9716 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9717 i.types[this_operand] = operand_type_and (i.types[this_operand],
9718 types);
3956db08 9719
3992d3b7 9720 return ret;
252b5132
RH
9721}
9722
2abc2bec
JB
9723/* Return the active addressing mode, taking address override and
9724 registers forming the address into consideration. Update the
9725 address override prefix if necessary. */
47926f60 9726
2abc2bec
JB
9727static enum flag_code
9728i386_addressing_mode (void)
252b5132 9729{
be05d201
L
9730 enum flag_code addr_mode;
9731
9732 if (i.prefix[ADDR_PREFIX])
9733 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9734 else
9735 {
9736 addr_mode = flag_code;
9737
24eab124 9738#if INFER_ADDR_PREFIX
be05d201
L
9739 if (i.mem_operands == 0)
9740 {
9741 /* Infer address prefix from the first memory operand. */
9742 const reg_entry *addr_reg = i.base_reg;
9743
9744 if (addr_reg == NULL)
9745 addr_reg = i.index_reg;
eecb386c 9746
be05d201
L
9747 if (addr_reg)
9748 {
e968fc9b 9749 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9750 addr_mode = CODE_32BIT;
9751 else if (flag_code != CODE_64BIT
dc821c5f 9752 && addr_reg->reg_type.bitfield.word)
be05d201
L
9753 addr_mode = CODE_16BIT;
9754
9755 if (addr_mode != flag_code)
9756 {
9757 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9758 i.prefixes += 1;
9759 /* Change the size of any displacement too. At most one
9760 of Disp16 or Disp32 is set.
9761 FIXME. There doesn't seem to be any real need for
9762 separate Disp16 and Disp32 flags. The same goes for
9763 Imm16 and Imm32. Removing them would probably clean
9764 up the code quite a lot. */
9765 if (flag_code != CODE_64BIT
9766 && (i.types[this_operand].bitfield.disp16
9767 || i.types[this_operand].bitfield.disp32))
9768 i.types[this_operand]
9769 = operand_type_xor (i.types[this_operand], disp16_32);
9770 }
9771 }
9772 }
24eab124 9773#endif
be05d201
L
9774 }
9775
2abc2bec
JB
9776 return addr_mode;
9777}
9778
9779/* Make sure the memory operand we've been dealt is valid.
9780 Return 1 on success, 0 on a failure. */
9781
9782static int
9783i386_index_check (const char *operand_string)
9784{
9785 const char *kind = "base/index";
9786 enum flag_code addr_mode = i386_addressing_mode ();
9787
fc0763e6 9788 if (current_templates->start->opcode_modifier.isstring
c3949f43 9789 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9790 && (current_templates->end[-1].opcode_modifier.isstring
9791 || i.mem_operands))
9792 {
9793 /* Memory operands of string insns are special in that they only allow
9794 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9795 const reg_entry *expected_reg;
9796 static const char *di_si[][2] =
9797 {
9798 { "esi", "edi" },
9799 { "si", "di" },
9800 { "rsi", "rdi" }
9801 };
9802 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9803
9804 kind = "string address";
9805
8325cc63 9806 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9807 {
9808 i386_operand_type type = current_templates->end[-1].operand_types[0];
9809
9810 if (!type.bitfield.baseindex
9811 || ((!i.mem_operands != !intel_syntax)
9812 && current_templates->end[-1].operand_types[1]
9813 .bitfield.baseindex))
9814 type = current_templates->end[-1].operand_types[1];
be05d201
L
9815 expected_reg = hash_find (reg_hash,
9816 di_si[addr_mode][type.bitfield.esseg]);
9817
fc0763e6
JB
9818 }
9819 else
be05d201 9820 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9821
be05d201
L
9822 if (i.base_reg != expected_reg
9823 || i.index_reg
fc0763e6 9824 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9825 {
be05d201
L
9826 /* The second memory operand must have the same size as
9827 the first one. */
9828 if (i.mem_operands
9829 && i.base_reg
9830 && !((addr_mode == CODE_64BIT
dc821c5f 9831 && i.base_reg->reg_type.bitfield.qword)
be05d201 9832 || (addr_mode == CODE_32BIT
dc821c5f
JB
9833 ? i.base_reg->reg_type.bitfield.dword
9834 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9835 goto bad_address;
9836
fc0763e6
JB
9837 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9838 operand_string,
9839 intel_syntax ? '[' : '(',
9840 register_prefix,
be05d201 9841 expected_reg->reg_name,
fc0763e6 9842 intel_syntax ? ']' : ')');
be05d201 9843 return 1;
fc0763e6 9844 }
be05d201
L
9845 else
9846 return 1;
9847
9848bad_address:
9849 as_bad (_("`%s' is not a valid %s expression"),
9850 operand_string, kind);
9851 return 0;
3e73aa7c
JH
9852 }
9853 else
9854 {
be05d201
L
9855 if (addr_mode != CODE_16BIT)
9856 {
9857 /* 32-bit/64-bit checks. */
9858 if ((i.base_reg
e968fc9b
JB
9859 && ((addr_mode == CODE_64BIT
9860 ? !i.base_reg->reg_type.bitfield.qword
9861 : !i.base_reg->reg_type.bitfield.dword)
9862 || (i.index_reg && i.base_reg->reg_num == RegIP)
9863 || i.base_reg->reg_num == RegIZ))
be05d201 9864 || (i.index_reg
1b54b8d7
JB
9865 && !i.index_reg->reg_type.bitfield.xmmword
9866 && !i.index_reg->reg_type.bitfield.ymmword
9867 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9868 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9869 ? !i.index_reg->reg_type.bitfield.qword
9870 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9871 || !i.index_reg->reg_type.bitfield.baseindex)))
9872 goto bad_address;
8178be5b
JB
9873
9874 /* bndmk, bndldx, and bndstx have special restrictions. */
9875 if (current_templates->start->base_opcode == 0xf30f1b
9876 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9877 {
9878 /* They cannot use RIP-relative addressing. */
e968fc9b 9879 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9880 {
9881 as_bad (_("`%s' cannot be used here"), operand_string);
9882 return 0;
9883 }
9884
9885 /* bndldx and bndstx ignore their scale factor. */
9886 if (current_templates->start->base_opcode != 0xf30f1b
9887 && i.log2_scale_factor)
9888 as_warn (_("register scaling is being ignored here"));
9889 }
be05d201
L
9890 }
9891 else
3e73aa7c 9892 {
be05d201 9893 /* 16-bit checks. */
3e73aa7c 9894 if ((i.base_reg
dc821c5f 9895 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9896 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9897 || (i.index_reg
dc821c5f 9898 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9899 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9900 || !(i.base_reg
9901 && i.base_reg->reg_num < 6
9902 && i.index_reg->reg_num >= 6
9903 && i.log2_scale_factor == 0))))
be05d201 9904 goto bad_address;
3e73aa7c
JH
9905 }
9906 }
be05d201 9907 return 1;
24eab124 9908}
252b5132 9909
43234a1e
L
9910/* Handle vector immediates. */
9911
9912static int
9913RC_SAE_immediate (const char *imm_start)
9914{
9915 unsigned int match_found, j;
9916 const char *pstr = imm_start;
9917 expressionS *exp;
9918
9919 if (*pstr != '{')
9920 return 0;
9921
9922 pstr++;
9923 match_found = 0;
9924 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9925 {
9926 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9927 {
9928 if (!i.rounding)
9929 {
9930 rc_op.type = RC_NamesTable[j].type;
9931 rc_op.operand = this_operand;
9932 i.rounding = &rc_op;
9933 }
9934 else
9935 {
9936 as_bad (_("duplicated `%s'"), imm_start);
9937 return 0;
9938 }
9939 pstr += RC_NamesTable[j].len;
9940 match_found = 1;
9941 break;
9942 }
9943 }
9944 if (!match_found)
9945 return 0;
9946
9947 if (*pstr++ != '}')
9948 {
9949 as_bad (_("Missing '}': '%s'"), imm_start);
9950 return 0;
9951 }
9952 /* RC/SAE immediate string should contain nothing more. */;
9953 if (*pstr != 0)
9954 {
9955 as_bad (_("Junk after '}': '%s'"), imm_start);
9956 return 0;
9957 }
9958
9959 exp = &im_expressions[i.imm_operands++];
9960 i.op[this_operand].imms = exp;
9961
9962 exp->X_op = O_constant;
9963 exp->X_add_number = 0;
9964 exp->X_add_symbol = (symbolS *) 0;
9965 exp->X_op_symbol = (symbolS *) 0;
9966
9967 i.types[this_operand].bitfield.imm8 = 1;
9968 return 1;
9969}
9970
8325cc63
JB
9971/* Only string instructions can have a second memory operand, so
9972 reduce current_templates to just those if it contains any. */
9973static int
9974maybe_adjust_templates (void)
9975{
9976 const insn_template *t;
9977
9978 gas_assert (i.mem_operands == 1);
9979
9980 for (t = current_templates->start; t < current_templates->end; ++t)
9981 if (t->opcode_modifier.isstring)
9982 break;
9983
9984 if (t < current_templates->end)
9985 {
9986 static templates aux_templates;
9987 bfd_boolean recheck;
9988
9989 aux_templates.start = t;
9990 for (; t < current_templates->end; ++t)
9991 if (!t->opcode_modifier.isstring)
9992 break;
9993 aux_templates.end = t;
9994
9995 /* Determine whether to re-check the first memory operand. */
9996 recheck = (aux_templates.start != current_templates->start
9997 || t != current_templates->end);
9998
9999 current_templates = &aux_templates;
10000
10001 if (recheck)
10002 {
10003 i.mem_operands = 0;
10004 if (i.memop1_string != NULL
10005 && i386_index_check (i.memop1_string) == 0)
10006 return 0;
10007 i.mem_operands = 1;
10008 }
10009 }
10010
10011 return 1;
10012}
10013
fc0763e6 10014/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10015 on error. */
252b5132 10016
252b5132 10017static int
a7619375 10018i386_att_operand (char *operand_string)
252b5132 10019{
af6bdddf
AM
10020 const reg_entry *r;
10021 char *end_op;
24eab124 10022 char *op_string = operand_string;
252b5132 10023
24eab124 10024 if (is_space_char (*op_string))
252b5132
RH
10025 ++op_string;
10026
24eab124 10027 /* We check for an absolute prefix (differentiating,
47926f60 10028 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10029 if (*op_string == ABSOLUTE_PREFIX)
10030 {
10031 ++op_string;
10032 if (is_space_char (*op_string))
10033 ++op_string;
40fb9820 10034 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10035 }
252b5132 10036
47926f60 10037 /* Check if operand is a register. */
4d1bb795 10038 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10039 {
40fb9820
L
10040 i386_operand_type temp;
10041
24eab124
AM
10042 /* Check for a segment override by searching for ':' after a
10043 segment register. */
10044 op_string = end_op;
10045 if (is_space_char (*op_string))
10046 ++op_string;
21df382b 10047 if (*op_string == ':' && r->reg_type.bitfield.sreg)
24eab124
AM
10048 {
10049 switch (r->reg_num)
10050 {
10051 case 0:
10052 i.seg[i.mem_operands] = &es;
10053 break;
10054 case 1:
10055 i.seg[i.mem_operands] = &cs;
10056 break;
10057 case 2:
10058 i.seg[i.mem_operands] = &ss;
10059 break;
10060 case 3:
10061 i.seg[i.mem_operands] = &ds;
10062 break;
10063 case 4:
10064 i.seg[i.mem_operands] = &fs;
10065 break;
10066 case 5:
10067 i.seg[i.mem_operands] = &gs;
10068 break;
10069 }
252b5132 10070
24eab124 10071 /* Skip the ':' and whitespace. */
252b5132
RH
10072 ++op_string;
10073 if (is_space_char (*op_string))
24eab124 10074 ++op_string;
252b5132 10075
24eab124
AM
10076 if (!is_digit_char (*op_string)
10077 && !is_identifier_char (*op_string)
10078 && *op_string != '('
10079 && *op_string != ABSOLUTE_PREFIX)
10080 {
10081 as_bad (_("bad memory operand `%s'"), op_string);
10082 return 0;
10083 }
47926f60 10084 /* Handle case of %es:*foo. */
24eab124
AM
10085 if (*op_string == ABSOLUTE_PREFIX)
10086 {
10087 ++op_string;
10088 if (is_space_char (*op_string))
10089 ++op_string;
40fb9820 10090 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10091 }
10092 goto do_memory_reference;
10093 }
43234a1e
L
10094
10095 /* Handle vector operations. */
10096 if (*op_string == '{')
10097 {
10098 op_string = check_VecOperations (op_string, NULL);
10099 if (op_string == NULL)
10100 return 0;
10101 }
10102
24eab124
AM
10103 if (*op_string)
10104 {
d0b47220 10105 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10106 return 0;
10107 }
40fb9820
L
10108 temp = r->reg_type;
10109 temp.bitfield.baseindex = 0;
c6fb90c8
L
10110 i.types[this_operand] = operand_type_or (i.types[this_operand],
10111 temp);
7d5e4556 10112 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10113 i.op[this_operand].regs = r;
24eab124
AM
10114 i.reg_operands++;
10115 }
af6bdddf
AM
10116 else if (*op_string == REGISTER_PREFIX)
10117 {
10118 as_bad (_("bad register name `%s'"), op_string);
10119 return 0;
10120 }
24eab124 10121 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10122 {
24eab124 10123 ++op_string;
40fb9820 10124 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10125 {
d0b47220 10126 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10127 return 0;
10128 }
10129 if (!i386_immediate (op_string))
10130 return 0;
10131 }
43234a1e
L
10132 else if (RC_SAE_immediate (operand_string))
10133 {
10134 /* If it is a RC or SAE immediate, do nothing. */
10135 ;
10136 }
24eab124
AM
10137 else if (is_digit_char (*op_string)
10138 || is_identifier_char (*op_string)
d02603dc 10139 || *op_string == '"'
e5cb08ac 10140 || *op_string == '(')
24eab124 10141 {
47926f60 10142 /* This is a memory reference of some sort. */
af6bdddf 10143 char *base_string;
252b5132 10144
47926f60 10145 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10146 char *displacement_string_start;
10147 char *displacement_string_end;
43234a1e 10148 char *vop_start;
252b5132 10149
24eab124 10150 do_memory_reference:
8325cc63
JB
10151 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10152 return 0;
24eab124 10153 if ((i.mem_operands == 1
40fb9820 10154 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10155 || i.mem_operands == 2)
10156 {
10157 as_bad (_("too many memory references for `%s'"),
10158 current_templates->start->name);
10159 return 0;
10160 }
252b5132 10161
24eab124
AM
10162 /* Check for base index form. We detect the base index form by
10163 looking for an ')' at the end of the operand, searching
10164 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10165 after the '('. */
af6bdddf 10166 base_string = op_string + strlen (op_string);
c3332e24 10167
43234a1e
L
10168 /* Handle vector operations. */
10169 vop_start = strchr (op_string, '{');
10170 if (vop_start && vop_start < base_string)
10171 {
10172 if (check_VecOperations (vop_start, base_string) == NULL)
10173 return 0;
10174 base_string = vop_start;
10175 }
10176
af6bdddf
AM
10177 --base_string;
10178 if (is_space_char (*base_string))
10179 --base_string;
252b5132 10180
47926f60 10181 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10182 displacement_string_start = op_string;
10183 displacement_string_end = base_string + 1;
252b5132 10184
24eab124
AM
10185 if (*base_string == ')')
10186 {
af6bdddf 10187 char *temp_string;
24eab124
AM
10188 unsigned int parens_balanced = 1;
10189 /* We've already checked that the number of left & right ()'s are
47926f60 10190 equal, so this loop will not be infinite. */
24eab124
AM
10191 do
10192 {
10193 base_string--;
10194 if (*base_string == ')')
10195 parens_balanced++;
10196 if (*base_string == '(')
10197 parens_balanced--;
10198 }
10199 while (parens_balanced);
c3332e24 10200
af6bdddf 10201 temp_string = base_string;
c3332e24 10202
24eab124 10203 /* Skip past '(' and whitespace. */
252b5132
RH
10204 ++base_string;
10205 if (is_space_char (*base_string))
24eab124 10206 ++base_string;
252b5132 10207
af6bdddf 10208 if (*base_string == ','
4eed87de
AM
10209 || ((i.base_reg = parse_register (base_string, &end_op))
10210 != NULL))
252b5132 10211 {
af6bdddf 10212 displacement_string_end = temp_string;
252b5132 10213
40fb9820 10214 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10215
af6bdddf 10216 if (i.base_reg)
24eab124 10217 {
24eab124
AM
10218 base_string = end_op;
10219 if (is_space_char (*base_string))
10220 ++base_string;
af6bdddf
AM
10221 }
10222
10223 /* There may be an index reg or scale factor here. */
10224 if (*base_string == ',')
10225 {
10226 ++base_string;
10227 if (is_space_char (*base_string))
10228 ++base_string;
10229
4eed87de
AM
10230 if ((i.index_reg = parse_register (base_string, &end_op))
10231 != NULL)
24eab124 10232 {
af6bdddf 10233 base_string = end_op;
24eab124
AM
10234 if (is_space_char (*base_string))
10235 ++base_string;
af6bdddf
AM
10236 if (*base_string == ',')
10237 {
10238 ++base_string;
10239 if (is_space_char (*base_string))
10240 ++base_string;
10241 }
e5cb08ac 10242 else if (*base_string != ')')
af6bdddf 10243 {
4eed87de
AM
10244 as_bad (_("expecting `,' or `)' "
10245 "after index register in `%s'"),
af6bdddf
AM
10246 operand_string);
10247 return 0;
10248 }
24eab124 10249 }
af6bdddf 10250 else if (*base_string == REGISTER_PREFIX)
24eab124 10251 {
f76bf5e0
L
10252 end_op = strchr (base_string, ',');
10253 if (end_op)
10254 *end_op = '\0';
af6bdddf 10255 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10256 return 0;
10257 }
252b5132 10258
47926f60 10259 /* Check for scale factor. */
551c1ca1 10260 if (*base_string != ')')
af6bdddf 10261 {
551c1ca1
AM
10262 char *end_scale = i386_scale (base_string);
10263
10264 if (!end_scale)
af6bdddf 10265 return 0;
24eab124 10266
551c1ca1 10267 base_string = end_scale;
af6bdddf
AM
10268 if (is_space_char (*base_string))
10269 ++base_string;
10270 if (*base_string != ')')
10271 {
4eed87de
AM
10272 as_bad (_("expecting `)' "
10273 "after scale factor in `%s'"),
af6bdddf
AM
10274 operand_string);
10275 return 0;
10276 }
10277 }
10278 else if (!i.index_reg)
24eab124 10279 {
4eed87de
AM
10280 as_bad (_("expecting index register or scale factor "
10281 "after `,'; got '%c'"),
af6bdddf 10282 *base_string);
24eab124
AM
10283 return 0;
10284 }
10285 }
af6bdddf 10286 else if (*base_string != ')')
24eab124 10287 {
4eed87de
AM
10288 as_bad (_("expecting `,' or `)' "
10289 "after base register in `%s'"),
af6bdddf 10290 operand_string);
24eab124
AM
10291 return 0;
10292 }
c3332e24 10293 }
af6bdddf 10294 else if (*base_string == REGISTER_PREFIX)
c3332e24 10295 {
f76bf5e0
L
10296 end_op = strchr (base_string, ',');
10297 if (end_op)
10298 *end_op = '\0';
af6bdddf 10299 as_bad (_("bad register name `%s'"), base_string);
24eab124 10300 return 0;
c3332e24 10301 }
24eab124
AM
10302 }
10303
10304 /* If there's an expression beginning the operand, parse it,
10305 assuming displacement_string_start and
10306 displacement_string_end are meaningful. */
10307 if (displacement_string_start != displacement_string_end)
10308 {
10309 if (!i386_displacement (displacement_string_start,
10310 displacement_string_end))
10311 return 0;
10312 }
10313
10314 /* Special case for (%dx) while doing input/output op. */
10315 if (i.base_reg
2fb5be8d 10316 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10317 && i.index_reg == 0
10318 && i.log2_scale_factor == 0
10319 && i.seg[i.mem_operands] == 0
40fb9820 10320 && !operand_type_check (i.types[this_operand], disp))
24eab124 10321 {
2fb5be8d 10322 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10323 return 1;
10324 }
10325
eecb386c
AM
10326 if (i386_index_check (operand_string) == 0)
10327 return 0;
c48dadc9 10328 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10329 if (i.mem_operands == 0)
10330 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10331 i.mem_operands++;
10332 }
10333 else
ce8a8b2f
AM
10334 {
10335 /* It's not a memory operand; argh! */
24eab124
AM
10336 as_bad (_("invalid char %s beginning operand %d `%s'"),
10337 output_invalid (*op_string),
10338 this_operand + 1,
10339 op_string);
10340 return 0;
10341 }
47926f60 10342 return 1; /* Normal return. */
252b5132
RH
10343}
10344\f
fa94de6b
RM
10345/* Calculate the maximum variable size (i.e., excluding fr_fix)
10346 that an rs_machine_dependent frag may reach. */
10347
10348unsigned int
10349i386_frag_max_var (fragS *frag)
10350{
10351 /* The only relaxable frags are for jumps.
10352 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10353 gas_assert (frag->fr_type == rs_machine_dependent);
10354 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10355}
10356
b084df0b
L
10357#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10358static int
8dcea932 10359elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10360{
10361 /* STT_GNU_IFUNC symbol must go through PLT. */
10362 if ((symbol_get_bfdsym (fr_symbol)->flags
10363 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10364 return 0;
10365
10366 if (!S_IS_EXTERNAL (fr_symbol))
10367 /* Symbol may be weak or local. */
10368 return !S_IS_WEAK (fr_symbol);
10369
8dcea932
L
10370 /* Global symbols with non-default visibility can't be preempted. */
10371 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10372 return 1;
10373
10374 if (fr_var != NO_RELOC)
10375 switch ((enum bfd_reloc_code_real) fr_var)
10376 {
10377 case BFD_RELOC_386_PLT32:
10378 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10379 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10380 return 0;
10381 default:
10382 abort ();
10383 }
10384
b084df0b
L
10385 /* Global symbols with default visibility in a shared library may be
10386 preempted by another definition. */
8dcea932 10387 return !shared;
b084df0b
L
10388}
10389#endif
10390
ee7fcc42
AM
10391/* md_estimate_size_before_relax()
10392
10393 Called just before relax() for rs_machine_dependent frags. The x86
10394 assembler uses these frags to handle variable size jump
10395 instructions.
10396
10397 Any symbol that is now undefined will not become defined.
10398 Return the correct fr_subtype in the frag.
10399 Return the initial "guess for variable size of frag" to caller.
10400 The guess is actually the growth beyond the fixed part. Whatever
10401 we do to grow the fixed or variable part contributes to our
10402 returned value. */
10403
252b5132 10404int
7016a5d5 10405md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10406{
252b5132 10407 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10408 check for un-relaxable symbols. On an ELF system, we can't relax
10409 an externally visible symbol, because it may be overridden by a
10410 shared library. */
10411 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10412#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10413 || (IS_ELF
8dcea932
L
10414 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10415 fragP->fr_var))
fbeb56a4
DK
10416#endif
10417#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10418 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10419 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10420#endif
10421 )
252b5132 10422 {
b98ef147
AM
10423 /* Symbol is undefined in this segment, or we need to keep a
10424 reloc so that weak symbols can be overridden. */
10425 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10426 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10427 unsigned char *opcode;
10428 int old_fr_fix;
f6af82bd 10429
ee7fcc42 10430 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10431 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10432 else if (size == 2)
f6af82bd 10433 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10434#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10435 else if (need_plt32_p (fragP->fr_symbol))
10436 reloc_type = BFD_RELOC_X86_64_PLT32;
10437#endif
f6af82bd
AM
10438 else
10439 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10440
ee7fcc42
AM
10441 old_fr_fix = fragP->fr_fix;
10442 opcode = (unsigned char *) fragP->fr_opcode;
10443
fddf5b5b 10444 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10445 {
fddf5b5b
AM
10446 case UNCOND_JUMP:
10447 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10448 opcode[0] = 0xe9;
252b5132 10449 fragP->fr_fix += size;
062cd5e7
AS
10450 fix_new (fragP, old_fr_fix, size,
10451 fragP->fr_symbol,
10452 fragP->fr_offset, 1,
10453 reloc_type);
252b5132
RH
10454 break;
10455
fddf5b5b 10456 case COND_JUMP86:
412167cb
AM
10457 if (size == 2
10458 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10459 {
10460 /* Negate the condition, and branch past an
10461 unconditional jump. */
10462 opcode[0] ^= 1;
10463 opcode[1] = 3;
10464 /* Insert an unconditional jump. */
10465 opcode[2] = 0xe9;
10466 /* We added two extra opcode bytes, and have a two byte
10467 offset. */
10468 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10469 fix_new (fragP, old_fr_fix + 2, 2,
10470 fragP->fr_symbol,
10471 fragP->fr_offset, 1,
10472 reloc_type);
fddf5b5b
AM
10473 break;
10474 }
10475 /* Fall through. */
10476
10477 case COND_JUMP:
412167cb
AM
10478 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10479 {
3e02c1cc
AM
10480 fixS *fixP;
10481
412167cb 10482 fragP->fr_fix += 1;
3e02c1cc
AM
10483 fixP = fix_new (fragP, old_fr_fix, 1,
10484 fragP->fr_symbol,
10485 fragP->fr_offset, 1,
10486 BFD_RELOC_8_PCREL);
10487 fixP->fx_signed = 1;
412167cb
AM
10488 break;
10489 }
93c2a809 10490
24eab124 10491 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10492 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10493 opcode[1] = opcode[0] + 0x10;
f6af82bd 10494 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10495 /* We've added an opcode byte. */
10496 fragP->fr_fix += 1 + size;
062cd5e7
AS
10497 fix_new (fragP, old_fr_fix + 1, size,
10498 fragP->fr_symbol,
10499 fragP->fr_offset, 1,
10500 reloc_type);
252b5132 10501 break;
fddf5b5b
AM
10502
10503 default:
10504 BAD_CASE (fragP->fr_subtype);
10505 break;
252b5132
RH
10506 }
10507 frag_wane (fragP);
ee7fcc42 10508 return fragP->fr_fix - old_fr_fix;
252b5132 10509 }
93c2a809 10510
93c2a809
AM
10511 /* Guess size depending on current relax state. Initially the relax
10512 state will correspond to a short jump and we return 1, because
10513 the variable part of the frag (the branch offset) is one byte
10514 long. However, we can relax a section more than once and in that
10515 case we must either set fr_subtype back to the unrelaxed state,
10516 or return the value for the appropriate branch. */
10517 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10518}
10519
47926f60
KH
10520/* Called after relax() is finished.
10521
10522 In: Address of frag.
10523 fr_type == rs_machine_dependent.
10524 fr_subtype is what the address relaxed to.
10525
10526 Out: Any fixSs and constants are set up.
10527 Caller will turn frag into a ".space 0". */
10528
252b5132 10529void
7016a5d5
TG
10530md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10531 fragS *fragP)
252b5132 10532{
29b0f896 10533 unsigned char *opcode;
252b5132 10534 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10535 offsetT target_address;
10536 offsetT opcode_address;
252b5132 10537 unsigned int extension = 0;
847f7ad4 10538 offsetT displacement_from_opcode_start;
252b5132
RH
10539
10540 opcode = (unsigned char *) fragP->fr_opcode;
10541
47926f60 10542 /* Address we want to reach in file space. */
252b5132 10543 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10544
47926f60 10545 /* Address opcode resides at in file space. */
252b5132
RH
10546 opcode_address = fragP->fr_address + fragP->fr_fix;
10547
47926f60 10548 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10549 displacement_from_opcode_start = target_address - opcode_address;
10550
fddf5b5b 10551 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10552 {
47926f60
KH
10553 /* Don't have to change opcode. */
10554 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10555 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10556 }
10557 else
10558 {
10559 if (no_cond_jump_promotion
10560 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10561 as_warn_where (fragP->fr_file, fragP->fr_line,
10562 _("long jump required"));
252b5132 10563
fddf5b5b
AM
10564 switch (fragP->fr_subtype)
10565 {
10566 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10567 extension = 4; /* 1 opcode + 4 displacement */
10568 opcode[0] = 0xe9;
10569 where_to_put_displacement = &opcode[1];
10570 break;
252b5132 10571
fddf5b5b
AM
10572 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10573 extension = 2; /* 1 opcode + 2 displacement */
10574 opcode[0] = 0xe9;
10575 where_to_put_displacement = &opcode[1];
10576 break;
252b5132 10577
fddf5b5b
AM
10578 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10579 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10580 extension = 5; /* 2 opcode + 4 displacement */
10581 opcode[1] = opcode[0] + 0x10;
10582 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10583 where_to_put_displacement = &opcode[2];
10584 break;
252b5132 10585
fddf5b5b
AM
10586 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10587 extension = 3; /* 2 opcode + 2 displacement */
10588 opcode[1] = opcode[0] + 0x10;
10589 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10590 where_to_put_displacement = &opcode[2];
10591 break;
252b5132 10592
fddf5b5b
AM
10593 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10594 extension = 4;
10595 opcode[0] ^= 1;
10596 opcode[1] = 3;
10597 opcode[2] = 0xe9;
10598 where_to_put_displacement = &opcode[3];
10599 break;
10600
10601 default:
10602 BAD_CASE (fragP->fr_subtype);
10603 break;
10604 }
252b5132 10605 }
fddf5b5b 10606
7b81dfbb
AJ
10607 /* If size if less then four we are sure that the operand fits,
10608 but if it's 4, then it could be that the displacement is larger
10609 then -/+ 2GB. */
10610 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10611 && object_64bit
10612 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10613 + ((addressT) 1 << 31))
10614 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10615 {
10616 as_bad_where (fragP->fr_file, fragP->fr_line,
10617 _("jump target out of range"));
10618 /* Make us emit 0. */
10619 displacement_from_opcode_start = extension;
10620 }
47926f60 10621 /* Now put displacement after opcode. */
252b5132
RH
10622 md_number_to_chars ((char *) where_to_put_displacement,
10623 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10624 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10625 fragP->fr_fix += extension;
10626}
10627\f
7016a5d5 10628/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10629 by our caller that we have all the info we need to fix it up.
10630
7016a5d5
TG
10631 Parameter valP is the pointer to the value of the bits.
10632
252b5132
RH
10633 On the 386, immediates, displacements, and data pointers are all in
10634 the same (little-endian) format, so we don't need to care about which
10635 we are handling. */
10636
94f592af 10637void
7016a5d5 10638md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10639{
94f592af 10640 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10641 valueT value = *valP;
252b5132 10642
f86103b7 10643#if !defined (TE_Mach)
93382f6d
AM
10644 if (fixP->fx_pcrel)
10645 {
10646 switch (fixP->fx_r_type)
10647 {
5865bb77
ILT
10648 default:
10649 break;
10650
d6ab8113
JB
10651 case BFD_RELOC_64:
10652 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10653 break;
93382f6d 10654 case BFD_RELOC_32:
ae8887b5 10655 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10656 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10657 break;
10658 case BFD_RELOC_16:
10659 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10660 break;
10661 case BFD_RELOC_8:
10662 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10663 break;
10664 }
10665 }
252b5132 10666
a161fe53 10667 if (fixP->fx_addsy != NULL
31312f95 10668 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10669 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10670 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10671 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10672 && !use_rela_relocations)
252b5132 10673 {
31312f95
AM
10674 /* This is a hack. There should be a better way to handle this.
10675 This covers for the fact that bfd_install_relocation will
10676 subtract the current location (for partial_inplace, PC relative
10677 relocations); see more below. */
252b5132 10678#ifndef OBJ_AOUT
718ddfc0 10679 if (IS_ELF
252b5132
RH
10680#ifdef TE_PE
10681 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10682#endif
10683 )
10684 value += fixP->fx_where + fixP->fx_frag->fr_address;
10685#endif
10686#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10687 if (IS_ELF)
252b5132 10688 {
6539b54b 10689 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10690
6539b54b 10691 if ((sym_seg == seg
2f66722d 10692 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10693 && sym_seg != absolute_section))
af65af87 10694 && !generic_force_reloc (fixP))
2f66722d
AM
10695 {
10696 /* Yes, we add the values in twice. This is because
6539b54b
AM
10697 bfd_install_relocation subtracts them out again. I think
10698 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10699 it. FIXME. */
10700 value += fixP->fx_where + fixP->fx_frag->fr_address;
10701 }
252b5132
RH
10702 }
10703#endif
10704#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10705 /* For some reason, the PE format does not store a
10706 section address offset for a PC relative symbol. */
10707 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10708 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10709 value += md_pcrel_from (fixP);
10710#endif
10711 }
fbeb56a4 10712#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10713 if (fixP->fx_addsy != NULL
10714 && S_IS_WEAK (fixP->fx_addsy)
10715 /* PR 16858: Do not modify weak function references. */
10716 && ! fixP->fx_pcrel)
fbeb56a4 10717 {
296a8689
NC
10718#if !defined (TE_PEP)
10719 /* For x86 PE weak function symbols are neither PC-relative
10720 nor do they set S_IS_FUNCTION. So the only reliable way
10721 to detect them is to check the flags of their containing
10722 section. */
10723 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10724 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10725 ;
10726 else
10727#endif
fbeb56a4
DK
10728 value -= S_GET_VALUE (fixP->fx_addsy);
10729 }
10730#endif
252b5132
RH
10731
10732 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10733 and we must not disappoint it. */
252b5132 10734#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10735 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10736 switch (fixP->fx_r_type)
10737 {
10738 case BFD_RELOC_386_PLT32:
3e73aa7c 10739 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10740 /* Make the jump instruction point to the address of the operand.
10741 At runtime we merely add the offset to the actual PLT entry.
10742 NB: Subtract the offset size only for jump instructions. */
10743 if (fixP->fx_pcrel)
10744 value = -4;
47926f60 10745 break;
31312f95 10746
13ae64f3
JJ
10747 case BFD_RELOC_386_TLS_GD:
10748 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10749 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10750 case BFD_RELOC_386_TLS_IE:
10751 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10752 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10753 case BFD_RELOC_X86_64_TLSGD:
10754 case BFD_RELOC_X86_64_TLSLD:
10755 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10756 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10757 value = 0; /* Fully resolved at runtime. No addend. */
10758 /* Fallthrough */
10759 case BFD_RELOC_386_TLS_LE:
10760 case BFD_RELOC_386_TLS_LDO_32:
10761 case BFD_RELOC_386_TLS_LE_32:
10762 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10763 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10764 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10765 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10766 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10767 break;
10768
67a4f2b7
AO
10769 case BFD_RELOC_386_TLS_DESC_CALL:
10770 case BFD_RELOC_X86_64_TLSDESC_CALL:
10771 value = 0; /* Fully resolved at runtime. No addend. */
10772 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10773 fixP->fx_done = 0;
10774 return;
10775
47926f60
KH
10776 case BFD_RELOC_VTABLE_INHERIT:
10777 case BFD_RELOC_VTABLE_ENTRY:
10778 fixP->fx_done = 0;
94f592af 10779 return;
47926f60
KH
10780
10781 default:
10782 break;
10783 }
10784#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10785 *valP = value;
f86103b7 10786#endif /* !defined (TE_Mach) */
3e73aa7c 10787
3e73aa7c 10788 /* Are we finished with this relocation now? */
c6682705 10789 if (fixP->fx_addsy == NULL)
3e73aa7c 10790 fixP->fx_done = 1;
fbeb56a4
DK
10791#if defined (OBJ_COFF) && defined (TE_PE)
10792 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10793 {
10794 fixP->fx_done = 0;
10795 /* Remember value for tc_gen_reloc. */
10796 fixP->fx_addnumber = value;
10797 /* Clear out the frag for now. */
10798 value = 0;
10799 }
10800#endif
3e73aa7c
JH
10801 else if (use_rela_relocations)
10802 {
10803 fixP->fx_no_overflow = 1;
062cd5e7
AS
10804 /* Remember value for tc_gen_reloc. */
10805 fixP->fx_addnumber = value;
3e73aa7c
JH
10806 value = 0;
10807 }
f86103b7 10808
94f592af 10809 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10810}
252b5132 10811\f
6d4af3c2 10812const char *
499ac353 10813md_atof (int type, char *litP, int *sizeP)
252b5132 10814{
499ac353
NC
10815 /* This outputs the LITTLENUMs in REVERSE order;
10816 in accord with the bigendian 386. */
10817 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10818}
10819\f
2d545b82 10820static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10821
252b5132 10822static char *
e3bb37b5 10823output_invalid (int c)
252b5132 10824{
3882b010 10825 if (ISPRINT (c))
f9f21a03
L
10826 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10827 "'%c'", c);
252b5132 10828 else
f9f21a03 10829 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10830 "(0x%x)", (unsigned char) c);
252b5132
RH
10831 return output_invalid_buf;
10832}
10833
af6bdddf 10834/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10835
10836static const reg_entry *
4d1bb795 10837parse_real_register (char *reg_string, char **end_op)
252b5132 10838{
af6bdddf
AM
10839 char *s = reg_string;
10840 char *p;
252b5132
RH
10841 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10842 const reg_entry *r;
10843
10844 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10845 if (*s == REGISTER_PREFIX)
10846 ++s;
10847
10848 if (is_space_char (*s))
10849 ++s;
10850
10851 p = reg_name_given;
af6bdddf 10852 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10853 {
10854 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10855 return (const reg_entry *) NULL;
10856 s++;
252b5132
RH
10857 }
10858
6588847e
DN
10859 /* For naked regs, make sure that we are not dealing with an identifier.
10860 This prevents confusing an identifier like `eax_var' with register
10861 `eax'. */
10862 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10863 return (const reg_entry *) NULL;
10864
af6bdddf 10865 *end_op = s;
252b5132
RH
10866
10867 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10868
5f47d35b 10869 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10870 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10871 {
0e0eea78
JB
10872 if (!cpu_arch_flags.bitfield.cpu8087
10873 && !cpu_arch_flags.bitfield.cpu287
10874 && !cpu_arch_flags.bitfield.cpu387)
10875 return (const reg_entry *) NULL;
10876
5f47d35b
AM
10877 if (is_space_char (*s))
10878 ++s;
10879 if (*s == '(')
10880 {
af6bdddf 10881 ++s;
5f47d35b
AM
10882 if (is_space_char (*s))
10883 ++s;
10884 if (*s >= '0' && *s <= '7')
10885 {
db557034 10886 int fpr = *s - '0';
af6bdddf 10887 ++s;
5f47d35b
AM
10888 if (is_space_char (*s))
10889 ++s;
10890 if (*s == ')')
10891 {
10892 *end_op = s + 1;
1e9cc1c2 10893 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10894 know (r);
10895 return r + fpr;
5f47d35b 10896 }
5f47d35b 10897 }
47926f60 10898 /* We have "%st(" then garbage. */
5f47d35b
AM
10899 return (const reg_entry *) NULL;
10900 }
10901 }
10902
a60de03c
JB
10903 if (r == NULL || allow_pseudo_reg)
10904 return r;
10905
0dfbf9d7 10906 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10907 return (const reg_entry *) NULL;
10908
dc821c5f 10909 if ((r->reg_type.bitfield.dword
21df382b 10910 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
192dc9c6
JB
10911 || r->reg_type.bitfield.control
10912 || r->reg_type.bitfield.debug
10913 || r->reg_type.bitfield.test)
10914 && !cpu_arch_flags.bitfield.cpui386)
10915 return (const reg_entry *) NULL;
10916
6e041cf4 10917 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10918 return (const reg_entry *) NULL;
10919
6e041cf4
JB
10920 if (!cpu_arch_flags.bitfield.cpuavx512f)
10921 {
10922 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10923 return (const reg_entry *) NULL;
40f12533 10924
6e041cf4
JB
10925 if (!cpu_arch_flags.bitfield.cpuavx)
10926 {
10927 if (r->reg_type.bitfield.ymmword)
10928 return (const reg_entry *) NULL;
1848e567 10929
6e041cf4
JB
10930 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10931 return (const reg_entry *) NULL;
10932 }
10933 }
43234a1e 10934
1adf7f56
JB
10935 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10936 return (const reg_entry *) NULL;
10937
db51cc60 10938 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10939 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10940 return (const reg_entry *) NULL;
10941
1d3f8286
JB
10942 /* Upper 16 vector registers are only available with VREX in 64bit
10943 mode, and require EVEX encoding. */
10944 if (r->reg_flags & RegVRex)
43234a1e 10945 {
e951d5ca 10946 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10947 || flag_code != CODE_64BIT)
10948 return (const reg_entry *) NULL;
1d3f8286
JB
10949
10950 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10951 }
10952
4787f4a5
JB
10953 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10954 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10955 && flag_code != CODE_64BIT)
20f0a1fc 10956 return (const reg_entry *) NULL;
1ae00879 10957
21df382b 10958 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
b7240065
JB
10959 return (const reg_entry *) NULL;
10960
252b5132
RH
10961 return r;
10962}
4d1bb795
JB
10963
10964/* REG_STRING starts *before* REGISTER_PREFIX. */
10965
10966static const reg_entry *
10967parse_register (char *reg_string, char **end_op)
10968{
10969 const reg_entry *r;
10970
10971 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10972 r = parse_real_register (reg_string, end_op);
10973 else
10974 r = NULL;
10975 if (!r)
10976 {
10977 char *save = input_line_pointer;
10978 char c;
10979 symbolS *symbolP;
10980
10981 input_line_pointer = reg_string;
d02603dc 10982 c = get_symbol_name (&reg_string);
4d1bb795
JB
10983 symbolP = symbol_find (reg_string);
10984 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10985 {
10986 const expressionS *e = symbol_get_value_expression (symbolP);
10987
0398aac5 10988 know (e->X_op == O_register);
4eed87de 10989 know (e->X_add_number >= 0
c3fe08fa 10990 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10991 r = i386_regtab + e->X_add_number;
d3bb6b49 10992 if ((r->reg_flags & RegVRex))
86fa6981 10993 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10994 *end_op = input_line_pointer;
10995 }
10996 *input_line_pointer = c;
10997 input_line_pointer = save;
10998 }
10999 return r;
11000}
11001
11002int
11003i386_parse_name (char *name, expressionS *e, char *nextcharP)
11004{
11005 const reg_entry *r;
11006 char *end = input_line_pointer;
11007
11008 *end = *nextcharP;
11009 r = parse_register (name, &input_line_pointer);
11010 if (r && end <= input_line_pointer)
11011 {
11012 *nextcharP = *input_line_pointer;
11013 *input_line_pointer = 0;
11014 e->X_op = O_register;
11015 e->X_add_number = r - i386_regtab;
11016 return 1;
11017 }
11018 input_line_pointer = end;
11019 *end = 0;
ee86248c 11020 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11021}
11022
11023void
11024md_operand (expressionS *e)
11025{
ee86248c
JB
11026 char *end;
11027 const reg_entry *r;
4d1bb795 11028
ee86248c
JB
11029 switch (*input_line_pointer)
11030 {
11031 case REGISTER_PREFIX:
11032 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11033 if (r)
11034 {
11035 e->X_op = O_register;
11036 e->X_add_number = r - i386_regtab;
11037 input_line_pointer = end;
11038 }
ee86248c
JB
11039 break;
11040
11041 case '[':
9c2799c2 11042 gas_assert (intel_syntax);
ee86248c
JB
11043 end = input_line_pointer++;
11044 expression (e);
11045 if (*input_line_pointer == ']')
11046 {
11047 ++input_line_pointer;
11048 e->X_op_symbol = make_expr_symbol (e);
11049 e->X_add_symbol = NULL;
11050 e->X_add_number = 0;
11051 e->X_op = O_index;
11052 }
11053 else
11054 {
11055 e->X_op = O_absent;
11056 input_line_pointer = end;
11057 }
11058 break;
4d1bb795
JB
11059 }
11060}
11061
252b5132 11062\f
4cc782b5 11063#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11064const char *md_shortopts = "kVQ:sqnO::";
252b5132 11065#else
b6f8c7c4 11066const char *md_shortopts = "qnO::";
252b5132 11067#endif
6e0b89ee 11068
3e73aa7c 11069#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11070#define OPTION_64 (OPTION_MD_BASE + 1)
11071#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11072#define OPTION_MARCH (OPTION_MD_BASE + 3)
11073#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11074#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11075#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11076#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11077#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11078#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11079#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11080#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11081#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11082#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11083#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11084#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11085#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11086#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11087#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11088#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11089#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11090#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11091#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11092#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11093#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11094#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11095#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11096
99ad8390
NC
11097struct option md_longopts[] =
11098{
3e73aa7c 11099 {"32", no_argument, NULL, OPTION_32},
321098a5 11100#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11101 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11102 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11103#endif
11104#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11105 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11106 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11107 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11108#endif
b3b91714 11109 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11110 {"march", required_argument, NULL, OPTION_MARCH},
11111 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11112 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11113 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11114 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11115 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11116 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11117 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11118 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11119 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11120 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11121 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11122 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11123 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11124# if defined (TE_PE) || defined (TE_PEP)
11125 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11126#endif
d1982f93 11127 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11128 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11129 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11130 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11131 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11132 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11133 {NULL, no_argument, NULL, 0}
11134};
11135size_t md_longopts_size = sizeof (md_longopts);
11136
11137int
17b9d67d 11138md_parse_option (int c, const char *arg)
252b5132 11139{
91d6fa6a 11140 unsigned int j;
293f5f65 11141 char *arch, *next, *saved;
9103f4f4 11142
252b5132
RH
11143 switch (c)
11144 {
12b55ccc
L
11145 case 'n':
11146 optimize_align_code = 0;
11147 break;
11148
a38cf1db
AM
11149 case 'q':
11150 quiet_warnings = 1;
252b5132
RH
11151 break;
11152
11153#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11154 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11155 should be emitted or not. FIXME: Not implemented. */
11156 case 'Q':
d4693039
JB
11157 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11158 return 0;
252b5132
RH
11159 break;
11160
11161 /* -V: SVR4 argument to print version ID. */
11162 case 'V':
11163 print_version_id ();
11164 break;
11165
a38cf1db
AM
11166 /* -k: Ignore for FreeBSD compatibility. */
11167 case 'k':
252b5132 11168 break;
4cc782b5
ILT
11169
11170 case 's':
11171 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11172 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11173 break;
8dcea932
L
11174
11175 case OPTION_MSHARED:
11176 shared = 1;
11177 break;
b4a3a7b4
L
11178
11179 case OPTION_X86_USED_NOTE:
11180 if (strcasecmp (arg, "yes") == 0)
11181 x86_used_note = 1;
11182 else if (strcasecmp (arg, "no") == 0)
11183 x86_used_note = 0;
11184 else
11185 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11186 break;
11187
11188
99ad8390 11189#endif
321098a5 11190#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11191 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11192 case OPTION_64:
11193 {
11194 const char **list, **l;
11195
3e73aa7c
JH
11196 list = bfd_target_list ();
11197 for (l = list; *l != NULL; l++)
8620418b 11198 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11199 || strcmp (*l, "coff-x86-64") == 0
11200 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11201 || strcmp (*l, "pei-x86-64") == 0
11202 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11203 {
11204 default_arch = "x86_64";
11205 break;
11206 }
3e73aa7c 11207 if (*l == NULL)
2b5d6a91 11208 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11209 free (list);
11210 }
11211 break;
11212#endif
252b5132 11213
351f65ca 11214#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11215 case OPTION_X32:
351f65ca
L
11216 if (IS_ELF)
11217 {
11218 const char **list, **l;
11219
11220 list = bfd_target_list ();
11221 for (l = list; *l != NULL; l++)
11222 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11223 {
11224 default_arch = "x86_64:32";
11225 break;
11226 }
11227 if (*l == NULL)
2b5d6a91 11228 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11229 free (list);
11230 }
11231 else
11232 as_fatal (_("32bit x86_64 is only supported for ELF"));
11233 break;
11234#endif
11235
6e0b89ee
AM
11236 case OPTION_32:
11237 default_arch = "i386";
11238 break;
11239
b3b91714
AM
11240 case OPTION_DIVIDE:
11241#ifdef SVR4_COMMENT_CHARS
11242 {
11243 char *n, *t;
11244 const char *s;
11245
add39d23 11246 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11247 t = n;
11248 for (s = i386_comment_chars; *s != '\0'; s++)
11249 if (*s != '/')
11250 *t++ = *s;
11251 *t = '\0';
11252 i386_comment_chars = n;
11253 }
11254#endif
11255 break;
11256
9103f4f4 11257 case OPTION_MARCH:
293f5f65
L
11258 saved = xstrdup (arg);
11259 arch = saved;
11260 /* Allow -march=+nosse. */
11261 if (*arch == '+')
11262 arch++;
6305a203 11263 do
9103f4f4 11264 {
6305a203 11265 if (*arch == '.')
2b5d6a91 11266 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11267 next = strchr (arch, '+');
11268 if (next)
11269 *next++ = '\0';
91d6fa6a 11270 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11271 {
91d6fa6a 11272 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11273 {
6305a203 11274 /* Processor. */
1ded5609
JB
11275 if (! cpu_arch[j].flags.bitfield.cpui386)
11276 continue;
11277
91d6fa6a 11278 cpu_arch_name = cpu_arch[j].name;
6305a203 11279 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11280 cpu_arch_flags = cpu_arch[j].flags;
11281 cpu_arch_isa = cpu_arch[j].type;
11282 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11283 if (!cpu_arch_tune_set)
11284 {
11285 cpu_arch_tune = cpu_arch_isa;
11286 cpu_arch_tune_flags = cpu_arch_isa_flags;
11287 }
11288 break;
11289 }
91d6fa6a
NC
11290 else if (*cpu_arch [j].name == '.'
11291 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11292 {
33eaf5de 11293 /* ISA extension. */
6305a203 11294 i386_cpu_flags flags;
309d3373 11295
293f5f65
L
11296 flags = cpu_flags_or (cpu_arch_flags,
11297 cpu_arch[j].flags);
81486035 11298
5b64d091 11299 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11300 {
11301 if (cpu_sub_arch_name)
11302 {
11303 char *name = cpu_sub_arch_name;
11304 cpu_sub_arch_name = concat (name,
91d6fa6a 11305 cpu_arch[j].name,
1bf57e9f 11306 (const char *) NULL);
6305a203
L
11307 free (name);
11308 }
11309 else
91d6fa6a 11310 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11311 cpu_arch_flags = flags;
a586129e 11312 cpu_arch_isa_flags = flags;
6305a203 11313 }
0089dace
L
11314 else
11315 cpu_arch_isa_flags
11316 = cpu_flags_or (cpu_arch_isa_flags,
11317 cpu_arch[j].flags);
6305a203 11318 break;
ccc9c027 11319 }
9103f4f4 11320 }
6305a203 11321
293f5f65
L
11322 if (j >= ARRAY_SIZE (cpu_arch))
11323 {
33eaf5de 11324 /* Disable an ISA extension. */
293f5f65
L
11325 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11326 if (strcmp (arch, cpu_noarch [j].name) == 0)
11327 {
11328 i386_cpu_flags flags;
11329
11330 flags = cpu_flags_and_not (cpu_arch_flags,
11331 cpu_noarch[j].flags);
11332 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11333 {
11334 if (cpu_sub_arch_name)
11335 {
11336 char *name = cpu_sub_arch_name;
11337 cpu_sub_arch_name = concat (arch,
11338 (const char *) NULL);
11339 free (name);
11340 }
11341 else
11342 cpu_sub_arch_name = xstrdup (arch);
11343 cpu_arch_flags = flags;
11344 cpu_arch_isa_flags = flags;
11345 }
11346 break;
11347 }
11348
11349 if (j >= ARRAY_SIZE (cpu_noarch))
11350 j = ARRAY_SIZE (cpu_arch);
11351 }
11352
91d6fa6a 11353 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11354 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11355
11356 arch = next;
9103f4f4 11357 }
293f5f65
L
11358 while (next != NULL);
11359 free (saved);
9103f4f4
L
11360 break;
11361
11362 case OPTION_MTUNE:
11363 if (*arg == '.')
2b5d6a91 11364 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11365 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11366 {
91d6fa6a 11367 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11368 {
ccc9c027 11369 cpu_arch_tune_set = 1;
91d6fa6a
NC
11370 cpu_arch_tune = cpu_arch [j].type;
11371 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11372 break;
11373 }
11374 }
91d6fa6a 11375 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11376 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11377 break;
11378
1efbbeb4
L
11379 case OPTION_MMNEMONIC:
11380 if (strcasecmp (arg, "att") == 0)
11381 intel_mnemonic = 0;
11382 else if (strcasecmp (arg, "intel") == 0)
11383 intel_mnemonic = 1;
11384 else
2b5d6a91 11385 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11386 break;
11387
11388 case OPTION_MSYNTAX:
11389 if (strcasecmp (arg, "att") == 0)
11390 intel_syntax = 0;
11391 else if (strcasecmp (arg, "intel") == 0)
11392 intel_syntax = 1;
11393 else
2b5d6a91 11394 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11395 break;
11396
11397 case OPTION_MINDEX_REG:
11398 allow_index_reg = 1;
11399 break;
11400
11401 case OPTION_MNAKED_REG:
11402 allow_naked_reg = 1;
11403 break;
11404
c0f3af97
L
11405 case OPTION_MSSE2AVX:
11406 sse2avx = 1;
11407 break;
11408
daf50ae7
L
11409 case OPTION_MSSE_CHECK:
11410 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11411 sse_check = check_error;
daf50ae7 11412 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11413 sse_check = check_warning;
daf50ae7 11414 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11415 sse_check = check_none;
daf50ae7 11416 else
2b5d6a91 11417 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11418 break;
11419
7bab8ab5
JB
11420 case OPTION_MOPERAND_CHECK:
11421 if (strcasecmp (arg, "error") == 0)
11422 operand_check = check_error;
11423 else if (strcasecmp (arg, "warning") == 0)
11424 operand_check = check_warning;
11425 else if (strcasecmp (arg, "none") == 0)
11426 operand_check = check_none;
11427 else
11428 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11429 break;
11430
539f890d
L
11431 case OPTION_MAVXSCALAR:
11432 if (strcasecmp (arg, "128") == 0)
11433 avxscalar = vex128;
11434 else if (strcasecmp (arg, "256") == 0)
11435 avxscalar = vex256;
11436 else
2b5d6a91 11437 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11438 break;
11439
03751133
L
11440 case OPTION_MVEXWIG:
11441 if (strcmp (arg, "0") == 0)
40c9c8de 11442 vexwig = vexw0;
03751133 11443 else if (strcmp (arg, "1") == 0)
40c9c8de 11444 vexwig = vexw1;
03751133
L
11445 else
11446 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11447 break;
11448
7e8b059b
L
11449 case OPTION_MADD_BND_PREFIX:
11450 add_bnd_prefix = 1;
11451 break;
11452
43234a1e
L
11453 case OPTION_MEVEXLIG:
11454 if (strcmp (arg, "128") == 0)
11455 evexlig = evexl128;
11456 else if (strcmp (arg, "256") == 0)
11457 evexlig = evexl256;
11458 else if (strcmp (arg, "512") == 0)
11459 evexlig = evexl512;
11460 else
11461 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11462 break;
11463
d3d3c6db
IT
11464 case OPTION_MEVEXRCIG:
11465 if (strcmp (arg, "rne") == 0)
11466 evexrcig = rne;
11467 else if (strcmp (arg, "rd") == 0)
11468 evexrcig = rd;
11469 else if (strcmp (arg, "ru") == 0)
11470 evexrcig = ru;
11471 else if (strcmp (arg, "rz") == 0)
11472 evexrcig = rz;
11473 else
11474 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11475 break;
11476
43234a1e
L
11477 case OPTION_MEVEXWIG:
11478 if (strcmp (arg, "0") == 0)
11479 evexwig = evexw0;
11480 else if (strcmp (arg, "1") == 0)
11481 evexwig = evexw1;
11482 else
11483 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11484 break;
11485
167ad85b
TG
11486# if defined (TE_PE) || defined (TE_PEP)
11487 case OPTION_MBIG_OBJ:
11488 use_big_obj = 1;
11489 break;
11490#endif
11491
d1982f93 11492 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11493 if (strcasecmp (arg, "yes") == 0)
11494 omit_lock_prefix = 1;
11495 else if (strcasecmp (arg, "no") == 0)
11496 omit_lock_prefix = 0;
11497 else
11498 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11499 break;
11500
e4e00185
AS
11501 case OPTION_MFENCE_AS_LOCK_ADD:
11502 if (strcasecmp (arg, "yes") == 0)
11503 avoid_fence = 1;
11504 else if (strcasecmp (arg, "no") == 0)
11505 avoid_fence = 0;
11506 else
11507 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11508 break;
11509
0cb4071e
L
11510 case OPTION_MRELAX_RELOCATIONS:
11511 if (strcasecmp (arg, "yes") == 0)
11512 generate_relax_relocations = 1;
11513 else if (strcasecmp (arg, "no") == 0)
11514 generate_relax_relocations = 0;
11515 else
11516 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11517 break;
11518
5db04b09 11519 case OPTION_MAMD64:
e89c5eaa 11520 intel64 = 0;
5db04b09
L
11521 break;
11522
11523 case OPTION_MINTEL64:
e89c5eaa 11524 intel64 = 1;
5db04b09
L
11525 break;
11526
b6f8c7c4
L
11527 case 'O':
11528 if (arg == NULL)
11529 {
11530 optimize = 1;
11531 /* Turn off -Os. */
11532 optimize_for_space = 0;
11533 }
11534 else if (*arg == 's')
11535 {
11536 optimize_for_space = 1;
11537 /* Turn on all encoding optimizations. */
41fd2579 11538 optimize = INT_MAX;
b6f8c7c4
L
11539 }
11540 else
11541 {
11542 optimize = atoi (arg);
11543 /* Turn off -Os. */
11544 optimize_for_space = 0;
11545 }
11546 break;
11547
252b5132
RH
11548 default:
11549 return 0;
11550 }
11551 return 1;
11552}
11553
8a2c8fef
L
11554#define MESSAGE_TEMPLATE \
11555" "
11556
293f5f65
L
11557static char *
11558output_message (FILE *stream, char *p, char *message, char *start,
11559 int *left_p, const char *name, int len)
11560{
11561 int size = sizeof (MESSAGE_TEMPLATE);
11562 int left = *left_p;
11563
11564 /* Reserve 2 spaces for ", " or ",\0" */
11565 left -= len + 2;
11566
11567 /* Check if there is any room. */
11568 if (left >= 0)
11569 {
11570 if (p != start)
11571 {
11572 *p++ = ',';
11573 *p++ = ' ';
11574 }
11575 p = mempcpy (p, name, len);
11576 }
11577 else
11578 {
11579 /* Output the current message now and start a new one. */
11580 *p++ = ',';
11581 *p = '\0';
11582 fprintf (stream, "%s\n", message);
11583 p = start;
11584 left = size - (start - message) - len - 2;
11585
11586 gas_assert (left >= 0);
11587
11588 p = mempcpy (p, name, len);
11589 }
11590
11591 *left_p = left;
11592 return p;
11593}
11594
8a2c8fef 11595static void
1ded5609 11596show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11597{
11598 static char message[] = MESSAGE_TEMPLATE;
11599 char *start = message + 27;
11600 char *p;
11601 int size = sizeof (MESSAGE_TEMPLATE);
11602 int left;
11603 const char *name;
11604 int len;
11605 unsigned int j;
11606
11607 p = start;
11608 left = size - (start - message);
11609 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11610 {
11611 /* Should it be skipped? */
11612 if (cpu_arch [j].skip)
11613 continue;
11614
11615 name = cpu_arch [j].name;
11616 len = cpu_arch [j].len;
11617 if (*name == '.')
11618 {
11619 /* It is an extension. Skip if we aren't asked to show it. */
11620 if (ext)
11621 {
11622 name++;
11623 len--;
11624 }
11625 else
11626 continue;
11627 }
11628 else if (ext)
11629 {
11630 /* It is an processor. Skip if we show only extension. */
11631 continue;
11632 }
1ded5609
JB
11633 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11634 {
11635 /* It is an impossible processor - skip. */
11636 continue;
11637 }
8a2c8fef 11638
293f5f65 11639 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11640 }
11641
293f5f65
L
11642 /* Display disabled extensions. */
11643 if (ext)
11644 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11645 {
11646 name = cpu_noarch [j].name;
11647 len = cpu_noarch [j].len;
11648 p = output_message (stream, p, message, start, &left, name,
11649 len);
11650 }
11651
8a2c8fef
L
11652 *p = '\0';
11653 fprintf (stream, "%s\n", message);
11654}
11655
252b5132 11656void
8a2c8fef 11657md_show_usage (FILE *stream)
252b5132 11658{
4cc782b5
ILT
11659#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11660 fprintf (stream, _("\
d4693039 11661 -Qy, -Qn ignored\n\
a38cf1db 11662 -V print assembler version number\n\
b3b91714
AM
11663 -k ignored\n"));
11664#endif
11665 fprintf (stream, _("\
12b55ccc 11666 -n Do not optimize code alignment\n\
b3b91714
AM
11667 -q quieten some warnings\n"));
11668#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11669 fprintf (stream, _("\
a38cf1db 11670 -s ignored\n"));
b3b91714 11671#endif
d7f449c0
L
11672#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11673 || defined (TE_PE) || defined (TE_PEP))
751d281c 11674 fprintf (stream, _("\
570561f7 11675 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11676#endif
b3b91714
AM
11677#ifdef SVR4_COMMENT_CHARS
11678 fprintf (stream, _("\
11679 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11680#else
11681 fprintf (stream, _("\
b3b91714 11682 --divide ignored\n"));
4cc782b5 11683#endif
9103f4f4 11684 fprintf (stream, _("\
6305a203 11685 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11686 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11687 show_arch (stream, 0, 1);
8a2c8fef
L
11688 fprintf (stream, _("\
11689 EXTENSION is combination of:\n"));
1ded5609 11690 show_arch (stream, 1, 0);
6305a203 11691 fprintf (stream, _("\
8a2c8fef 11692 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11693 show_arch (stream, 0, 0);
ba104c83 11694 fprintf (stream, _("\
c0f3af97
L
11695 -msse2avx encode SSE instructions with VEX prefix\n"));
11696 fprintf (stream, _("\
7c5c05ef 11697 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11698 check SSE instructions\n"));
11699 fprintf (stream, _("\
7c5c05ef 11700 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11701 check operand combinations for validity\n"));
11702 fprintf (stream, _("\
7c5c05ef
L
11703 -mavxscalar=[128|256] (default: 128)\n\
11704 encode scalar AVX instructions with specific vector\n\
539f890d
L
11705 length\n"));
11706 fprintf (stream, _("\
03751133
L
11707 -mvexwig=[0|1] (default: 0)\n\
11708 encode VEX instructions with specific VEX.W value\n\
11709 for VEX.W bit ignored instructions\n"));
11710 fprintf (stream, _("\
7c5c05ef
L
11711 -mevexlig=[128|256|512] (default: 128)\n\
11712 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11713 length\n"));
11714 fprintf (stream, _("\
7c5c05ef
L
11715 -mevexwig=[0|1] (default: 0)\n\
11716 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11717 for EVEX.W bit ignored instructions\n"));
11718 fprintf (stream, _("\
7c5c05ef 11719 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11720 encode EVEX instructions with specific EVEX.RC value\n\
11721 for SAE-only ignored instructions\n"));
11722 fprintf (stream, _("\
7c5c05ef
L
11723 -mmnemonic=[att|intel] "));
11724 if (SYSV386_COMPAT)
11725 fprintf (stream, _("(default: att)\n"));
11726 else
11727 fprintf (stream, _("(default: intel)\n"));
11728 fprintf (stream, _("\
11729 use AT&T/Intel mnemonic\n"));
ba104c83 11730 fprintf (stream, _("\
7c5c05ef
L
11731 -msyntax=[att|intel] (default: att)\n\
11732 use AT&T/Intel syntax\n"));
ba104c83
L
11733 fprintf (stream, _("\
11734 -mindex-reg support pseudo index registers\n"));
11735 fprintf (stream, _("\
11736 -mnaked-reg don't require `%%' prefix for registers\n"));
11737 fprintf (stream, _("\
7e8b059b 11738 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11739#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11740 fprintf (stream, _("\
11741 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11742 fprintf (stream, _("\
11743 -mx86-used-note=[no|yes] "));
11744 if (DEFAULT_X86_USED_NOTE)
11745 fprintf (stream, _("(default: yes)\n"));
11746 else
11747 fprintf (stream, _("(default: no)\n"));
11748 fprintf (stream, _("\
11749 generate x86 used ISA and feature properties\n"));
11750#endif
11751#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11752 fprintf (stream, _("\
11753 -mbig-obj generate big object files\n"));
11754#endif
d022bddd 11755 fprintf (stream, _("\
7c5c05ef 11756 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11757 strip all lock prefixes\n"));
5db04b09 11758 fprintf (stream, _("\
7c5c05ef 11759 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11760 encode lfence, mfence and sfence as\n\
11761 lock addl $0x0, (%%{re}sp)\n"));
11762 fprintf (stream, _("\
7c5c05ef
L
11763 -mrelax-relocations=[no|yes] "));
11764 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11765 fprintf (stream, _("(default: yes)\n"));
11766 else
11767 fprintf (stream, _("(default: no)\n"));
11768 fprintf (stream, _("\
0cb4071e
L
11769 generate relax relocations\n"));
11770 fprintf (stream, _("\
7c5c05ef 11771 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11772 fprintf (stream, _("\
11773 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11774}
11775
3e73aa7c 11776#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11777 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11778 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11779
11780/* Pick the target format to use. */
11781
47926f60 11782const char *
e3bb37b5 11783i386_target_format (void)
252b5132 11784{
351f65ca
L
11785 if (!strncmp (default_arch, "x86_64", 6))
11786 {
11787 update_code_flag (CODE_64BIT, 1);
11788 if (default_arch[6] == '\0')
7f56bc95 11789 x86_elf_abi = X86_64_ABI;
351f65ca 11790 else
7f56bc95 11791 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11792 }
3e73aa7c 11793 else if (!strcmp (default_arch, "i386"))
78f12dd3 11794 update_code_flag (CODE_32BIT, 1);
5197d474
L
11795 else if (!strcmp (default_arch, "iamcu"))
11796 {
11797 update_code_flag (CODE_32BIT, 1);
11798 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11799 {
11800 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11801 cpu_arch_name = "iamcu";
11802 cpu_sub_arch_name = NULL;
11803 cpu_arch_flags = iamcu_flags;
11804 cpu_arch_isa = PROCESSOR_IAMCU;
11805 cpu_arch_isa_flags = iamcu_flags;
11806 if (!cpu_arch_tune_set)
11807 {
11808 cpu_arch_tune = cpu_arch_isa;
11809 cpu_arch_tune_flags = cpu_arch_isa_flags;
11810 }
11811 }
8d471ec1 11812 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11813 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11814 cpu_arch_name);
11815 }
3e73aa7c 11816 else
2b5d6a91 11817 as_fatal (_("unknown architecture"));
89507696
JB
11818
11819 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11820 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11821 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11822 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11823
252b5132
RH
11824 switch (OUTPUT_FLAVOR)
11825 {
9384f2ff 11826#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11827 case bfd_target_aout_flavour:
47926f60 11828 return AOUT_TARGET_FORMAT;
4c63da97 11829#endif
9384f2ff
AM
11830#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11831# if defined (TE_PE) || defined (TE_PEP)
11832 case bfd_target_coff_flavour:
167ad85b
TG
11833 if (flag_code == CODE_64BIT)
11834 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11835 else
11836 return "pe-i386";
9384f2ff 11837# elif defined (TE_GO32)
0561d57c
JK
11838 case bfd_target_coff_flavour:
11839 return "coff-go32";
9384f2ff 11840# else
252b5132
RH
11841 case bfd_target_coff_flavour:
11842 return "coff-i386";
9384f2ff 11843# endif
4c63da97 11844#endif
3e73aa7c 11845#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11846 case bfd_target_elf_flavour:
3e73aa7c 11847 {
351f65ca
L
11848 const char *format;
11849
11850 switch (x86_elf_abi)
4fa24527 11851 {
351f65ca
L
11852 default:
11853 format = ELF_TARGET_FORMAT;
11854 break;
7f56bc95 11855 case X86_64_ABI:
351f65ca 11856 use_rela_relocations = 1;
4fa24527 11857 object_64bit = 1;
351f65ca
L
11858 format = ELF_TARGET_FORMAT64;
11859 break;
7f56bc95 11860 case X86_64_X32_ABI:
4fa24527 11861 use_rela_relocations = 1;
351f65ca 11862 object_64bit = 1;
862be3fb 11863 disallow_64bit_reloc = 1;
351f65ca
L
11864 format = ELF_TARGET_FORMAT32;
11865 break;
4fa24527 11866 }
3632d14b 11867 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11868 {
7f56bc95 11869 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11870 as_fatal (_("Intel L1OM is 64bit only"));
11871 return ELF_TARGET_L1OM_FORMAT;
11872 }
b49f93f6 11873 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11874 {
11875 if (x86_elf_abi != X86_64_ABI)
11876 as_fatal (_("Intel K1OM is 64bit only"));
11877 return ELF_TARGET_K1OM_FORMAT;
11878 }
81486035
L
11879 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11880 {
11881 if (x86_elf_abi != I386_ABI)
11882 as_fatal (_("Intel MCU is 32bit only"));
11883 return ELF_TARGET_IAMCU_FORMAT;
11884 }
8a9036a4 11885 else
351f65ca 11886 return format;
3e73aa7c 11887 }
e57f8c65
TG
11888#endif
11889#if defined (OBJ_MACH_O)
11890 case bfd_target_mach_o_flavour:
d382c579
TG
11891 if (flag_code == CODE_64BIT)
11892 {
11893 use_rela_relocations = 1;
11894 object_64bit = 1;
11895 return "mach-o-x86-64";
11896 }
11897 else
11898 return "mach-o-i386";
4c63da97 11899#endif
252b5132
RH
11900 default:
11901 abort ();
11902 return NULL;
11903 }
11904}
11905
47926f60 11906#endif /* OBJ_MAYBE_ more than one */
252b5132 11907\f
252b5132 11908symbolS *
7016a5d5 11909md_undefined_symbol (char *name)
252b5132 11910{
18dc2407
ILT
11911 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11912 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11913 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11914 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11915 {
11916 if (!GOT_symbol)
11917 {
11918 if (symbol_find (name))
11919 as_bad (_("GOT already in symbol table"));
11920 GOT_symbol = symbol_new (name, undefined_section,
11921 (valueT) 0, &zero_address_frag);
11922 };
11923 return GOT_symbol;
11924 }
252b5132
RH
11925 return 0;
11926}
11927
11928/* Round up a section size to the appropriate boundary. */
47926f60 11929
252b5132 11930valueT
7016a5d5 11931md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11932{
4c63da97
AM
11933#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11934 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11935 {
11936 /* For a.out, force the section size to be aligned. If we don't do
11937 this, BFD will align it for us, but it will not write out the
11938 final bytes of the section. This may be a bug in BFD, but it is
11939 easier to fix it here since that is how the other a.out targets
11940 work. */
11941 int align;
11942
fd361982 11943 align = bfd_section_alignment (segment);
8d3842cd 11944 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11945 }
252b5132
RH
11946#endif
11947
11948 return size;
11949}
11950
11951/* On the i386, PC-relative offsets are relative to the start of the
11952 next instruction. That is, the address of the offset, plus its
11953 size, since the offset is always the last part of the insn. */
11954
11955long
e3bb37b5 11956md_pcrel_from (fixS *fixP)
252b5132
RH
11957{
11958 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11959}
11960
11961#ifndef I386COFF
11962
11963static void
e3bb37b5 11964s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11965{
29b0f896 11966 int temp;
252b5132 11967
8a75718c
JB
11968#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11969 if (IS_ELF)
11970 obj_elf_section_change_hook ();
11971#endif
252b5132
RH
11972 temp = get_absolute_expression ();
11973 subseg_set (bss_section, (subsegT) temp);
11974 demand_empty_rest_of_line ();
11975}
11976
11977#endif
11978
252b5132 11979void
e3bb37b5 11980i386_validate_fix (fixS *fixp)
252b5132 11981{
02a86693 11982 if (fixp->fx_subsy)
252b5132 11983 {
02a86693 11984 if (fixp->fx_subsy == GOT_symbol)
23df1078 11985 {
02a86693
L
11986 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11987 {
11988 if (!object_64bit)
11989 abort ();
11990#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11991 if (fixp->fx_tcbit2)
56ceb5b5
L
11992 fixp->fx_r_type = (fixp->fx_tcbit
11993 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11994 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11995 else
11996#endif
11997 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11998 }
d6ab8113 11999 else
02a86693
L
12000 {
12001 if (!object_64bit)
12002 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12003 else
12004 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12005 }
12006 fixp->fx_subsy = 0;
23df1078 12007 }
252b5132 12008 }
02a86693
L
12009#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12010 else if (!object_64bit)
12011 {
12012 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12013 && fixp->fx_tcbit2)
12014 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12015 }
12016#endif
252b5132
RH
12017}
12018
252b5132 12019arelent *
7016a5d5 12020tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12021{
12022 arelent *rel;
12023 bfd_reloc_code_real_type code;
12024
12025 switch (fixp->fx_r_type)
12026 {
8ce3d284 12027#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12028 case BFD_RELOC_SIZE32:
12029 case BFD_RELOC_SIZE64:
12030 if (S_IS_DEFINED (fixp->fx_addsy)
12031 && !S_IS_EXTERNAL (fixp->fx_addsy))
12032 {
12033 /* Resolve size relocation against local symbol to size of
12034 the symbol plus addend. */
12035 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12036 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12037 && !fits_in_unsigned_long (value))
12038 as_bad_where (fixp->fx_file, fixp->fx_line,
12039 _("symbol size computation overflow"));
12040 fixp->fx_addsy = NULL;
12041 fixp->fx_subsy = NULL;
12042 md_apply_fix (fixp, (valueT *) &value, NULL);
12043 return NULL;
12044 }
8ce3d284 12045#endif
1a0670f3 12046 /* Fall through. */
8fd4256d 12047
3e73aa7c
JH
12048 case BFD_RELOC_X86_64_PLT32:
12049 case BFD_RELOC_X86_64_GOT32:
12050 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12051 case BFD_RELOC_X86_64_GOTPCRELX:
12052 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12053 case BFD_RELOC_386_PLT32:
12054 case BFD_RELOC_386_GOT32:
02a86693 12055 case BFD_RELOC_386_GOT32X:
252b5132
RH
12056 case BFD_RELOC_386_GOTOFF:
12057 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12058 case BFD_RELOC_386_TLS_GD:
12059 case BFD_RELOC_386_TLS_LDM:
12060 case BFD_RELOC_386_TLS_LDO_32:
12061 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12062 case BFD_RELOC_386_TLS_IE:
12063 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12064 case BFD_RELOC_386_TLS_LE_32:
12065 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12066 case BFD_RELOC_386_TLS_GOTDESC:
12067 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12068 case BFD_RELOC_X86_64_TLSGD:
12069 case BFD_RELOC_X86_64_TLSLD:
12070 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12071 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12072 case BFD_RELOC_X86_64_GOTTPOFF:
12073 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12074 case BFD_RELOC_X86_64_TPOFF64:
12075 case BFD_RELOC_X86_64_GOTOFF64:
12076 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12077 case BFD_RELOC_X86_64_GOT64:
12078 case BFD_RELOC_X86_64_GOTPCREL64:
12079 case BFD_RELOC_X86_64_GOTPC64:
12080 case BFD_RELOC_X86_64_GOTPLT64:
12081 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12082 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12083 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12084 case BFD_RELOC_RVA:
12085 case BFD_RELOC_VTABLE_ENTRY:
12086 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12087#ifdef TE_PE
12088 case BFD_RELOC_32_SECREL:
12089#endif
252b5132
RH
12090 code = fixp->fx_r_type;
12091 break;
dbbaec26
L
12092 case BFD_RELOC_X86_64_32S:
12093 if (!fixp->fx_pcrel)
12094 {
12095 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12096 code = fixp->fx_r_type;
12097 break;
12098 }
1a0670f3 12099 /* Fall through. */
252b5132 12100 default:
93382f6d 12101 if (fixp->fx_pcrel)
252b5132 12102 {
93382f6d
AM
12103 switch (fixp->fx_size)
12104 {
12105 default:
b091f402
AM
12106 as_bad_where (fixp->fx_file, fixp->fx_line,
12107 _("can not do %d byte pc-relative relocation"),
12108 fixp->fx_size);
93382f6d
AM
12109 code = BFD_RELOC_32_PCREL;
12110 break;
12111 case 1: code = BFD_RELOC_8_PCREL; break;
12112 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12113 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12114#ifdef BFD64
12115 case 8: code = BFD_RELOC_64_PCREL; break;
12116#endif
93382f6d
AM
12117 }
12118 }
12119 else
12120 {
12121 switch (fixp->fx_size)
12122 {
12123 default:
b091f402
AM
12124 as_bad_where (fixp->fx_file, fixp->fx_line,
12125 _("can not do %d byte relocation"),
12126 fixp->fx_size);
93382f6d
AM
12127 code = BFD_RELOC_32;
12128 break;
12129 case 1: code = BFD_RELOC_8; break;
12130 case 2: code = BFD_RELOC_16; break;
12131 case 4: code = BFD_RELOC_32; break;
937149dd 12132#ifdef BFD64
3e73aa7c 12133 case 8: code = BFD_RELOC_64; break;
937149dd 12134#endif
93382f6d 12135 }
252b5132
RH
12136 }
12137 break;
12138 }
252b5132 12139
d182319b
JB
12140 if ((code == BFD_RELOC_32
12141 || code == BFD_RELOC_32_PCREL
12142 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12143 && GOT_symbol
12144 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12145 {
4fa24527 12146 if (!object_64bit)
d6ab8113
JB
12147 code = BFD_RELOC_386_GOTPC;
12148 else
12149 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12150 }
7b81dfbb
AJ
12151 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12152 && GOT_symbol
12153 && fixp->fx_addsy == GOT_symbol)
12154 {
12155 code = BFD_RELOC_X86_64_GOTPC64;
12156 }
252b5132 12157
add39d23
TS
12158 rel = XNEW (arelent);
12159 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12160 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12161
12162 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12163
3e73aa7c
JH
12164 if (!use_rela_relocations)
12165 {
12166 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12167 vtable entry to be used in the relocation's section offset. */
12168 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12169 rel->address = fixp->fx_offset;
fbeb56a4
DK
12170#if defined (OBJ_COFF) && defined (TE_PE)
12171 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12172 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12173 else
12174#endif
c6682705 12175 rel->addend = 0;
3e73aa7c
JH
12176 }
12177 /* Use the rela in 64bit mode. */
252b5132 12178 else
3e73aa7c 12179 {
862be3fb
L
12180 if (disallow_64bit_reloc)
12181 switch (code)
12182 {
862be3fb
L
12183 case BFD_RELOC_X86_64_DTPOFF64:
12184 case BFD_RELOC_X86_64_TPOFF64:
12185 case BFD_RELOC_64_PCREL:
12186 case BFD_RELOC_X86_64_GOTOFF64:
12187 case BFD_RELOC_X86_64_GOT64:
12188 case BFD_RELOC_X86_64_GOTPCREL64:
12189 case BFD_RELOC_X86_64_GOTPC64:
12190 case BFD_RELOC_X86_64_GOTPLT64:
12191 case BFD_RELOC_X86_64_PLTOFF64:
12192 as_bad_where (fixp->fx_file, fixp->fx_line,
12193 _("cannot represent relocation type %s in x32 mode"),
12194 bfd_get_reloc_code_name (code));
12195 break;
12196 default:
12197 break;
12198 }
12199
062cd5e7
AS
12200 if (!fixp->fx_pcrel)
12201 rel->addend = fixp->fx_offset;
12202 else
12203 switch (code)
12204 {
12205 case BFD_RELOC_X86_64_PLT32:
12206 case BFD_RELOC_X86_64_GOT32:
12207 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12208 case BFD_RELOC_X86_64_GOTPCRELX:
12209 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12210 case BFD_RELOC_X86_64_TLSGD:
12211 case BFD_RELOC_X86_64_TLSLD:
12212 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12213 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12214 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12215 rel->addend = fixp->fx_offset - fixp->fx_size;
12216 break;
12217 default:
12218 rel->addend = (section->vma
12219 - fixp->fx_size
12220 + fixp->fx_addnumber
12221 + md_pcrel_from (fixp));
12222 break;
12223 }
3e73aa7c
JH
12224 }
12225
252b5132
RH
12226 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12227 if (rel->howto == NULL)
12228 {
12229 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12230 _("cannot represent relocation type %s"),
252b5132
RH
12231 bfd_get_reloc_code_name (code));
12232 /* Set howto to a garbage value so that we can keep going. */
12233 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12234 gas_assert (rel->howto != NULL);
252b5132
RH
12235 }
12236
12237 return rel;
12238}
12239
ee86248c 12240#include "tc-i386-intel.c"
54cfded0 12241
a60de03c
JB
12242void
12243tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12244{
a60de03c
JB
12245 int saved_naked_reg;
12246 char saved_register_dot;
54cfded0 12247
a60de03c
JB
12248 saved_naked_reg = allow_naked_reg;
12249 allow_naked_reg = 1;
12250 saved_register_dot = register_chars['.'];
12251 register_chars['.'] = '.';
12252 allow_pseudo_reg = 1;
12253 expression_and_evaluate (exp);
12254 allow_pseudo_reg = 0;
12255 register_chars['.'] = saved_register_dot;
12256 allow_naked_reg = saved_naked_reg;
12257
e96d56a1 12258 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12259 {
a60de03c
JB
12260 if ((addressT) exp->X_add_number < i386_regtab_size)
12261 {
12262 exp->X_op = O_constant;
12263 exp->X_add_number = i386_regtab[exp->X_add_number]
12264 .dw2_regnum[flag_code >> 1];
12265 }
12266 else
12267 exp->X_op = O_illegal;
54cfded0 12268 }
54cfded0
AM
12269}
12270
12271void
12272tc_x86_frame_initial_instructions (void)
12273{
a60de03c
JB
12274 static unsigned int sp_regno[2];
12275
12276 if (!sp_regno[flag_code >> 1])
12277 {
12278 char *saved_input = input_line_pointer;
12279 char sp[][4] = {"esp", "rsp"};
12280 expressionS exp;
a4447b93 12281
a60de03c
JB
12282 input_line_pointer = sp[flag_code >> 1];
12283 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12284 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12285 sp_regno[flag_code >> 1] = exp.X_add_number;
12286 input_line_pointer = saved_input;
12287 }
a4447b93 12288
61ff971f
L
12289 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12290 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12291}
d2b2c203 12292
d7921315
L
12293int
12294x86_dwarf2_addr_size (void)
12295{
12296#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12297 if (x86_elf_abi == X86_64_X32_ABI)
12298 return 4;
12299#endif
12300 return bfd_arch_bits_per_address (stdoutput) / 8;
12301}
12302
d2b2c203
DJ
12303int
12304i386_elf_section_type (const char *str, size_t len)
12305{
12306 if (flag_code == CODE_64BIT
12307 && len == sizeof ("unwind") - 1
12308 && strncmp (str, "unwind", 6) == 0)
12309 return SHT_X86_64_UNWIND;
12310
12311 return -1;
12312}
bb41ade5 12313
ad5fec3b
EB
12314#ifdef TE_SOLARIS
12315void
12316i386_solaris_fix_up_eh_frame (segT sec)
12317{
12318 if (flag_code == CODE_64BIT)
12319 elf_section_type (sec) = SHT_X86_64_UNWIND;
12320}
12321#endif
12322
bb41ade5
AM
12323#ifdef TE_PE
12324void
12325tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12326{
91d6fa6a 12327 expressionS exp;
bb41ade5 12328
91d6fa6a
NC
12329 exp.X_op = O_secrel;
12330 exp.X_add_symbol = symbol;
12331 exp.X_add_number = 0;
12332 emit_expr (&exp, size);
bb41ade5
AM
12333}
12334#endif
3b22753a
L
12335
12336#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12337/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12338
01e1a5bc 12339bfd_vma
6d4af3c2 12340x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12341{
12342 if (flag_code == CODE_64BIT)
12343 {
12344 if (letter == 'l')
12345 return SHF_X86_64_LARGE;
12346
8f3bae45 12347 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12348 }
3b22753a 12349 else
8f3bae45 12350 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12351 return -1;
12352}
12353
01e1a5bc 12354bfd_vma
3b22753a
L
12355x86_64_section_word (char *str, size_t len)
12356{
8620418b 12357 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12358 return SHF_X86_64_LARGE;
12359
12360 return -1;
12361}
12362
12363static void
12364handle_large_common (int small ATTRIBUTE_UNUSED)
12365{
12366 if (flag_code != CODE_64BIT)
12367 {
12368 s_comm_internal (0, elf_common_parse);
12369 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12370 }
12371 else
12372 {
12373 static segT lbss_section;
12374 asection *saved_com_section_ptr = elf_com_section_ptr;
12375 asection *saved_bss_section = bss_section;
12376
12377 if (lbss_section == NULL)
12378 {
12379 flagword applicable;
12380 segT seg = now_seg;
12381 subsegT subseg = now_subseg;
12382
12383 /* The .lbss section is for local .largecomm symbols. */
12384 lbss_section = subseg_new (".lbss", 0);
12385 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12386 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12387 seg_info (lbss_section)->bss = 1;
12388
12389 subseg_set (seg, subseg);
12390 }
12391
12392 elf_com_section_ptr = &_bfd_elf_large_com_section;
12393 bss_section = lbss_section;
12394
12395 s_comm_internal (0, elf_common_parse);
12396
12397 elf_com_section_ptr = saved_com_section_ptr;
12398 bss_section = saved_bss_section;
12399 }
12400}
12401#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.158333 seconds and 4 git commands to generate.