NEWS: Fix typo.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
4b95cf5c 2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d
L
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
22109423 136 unsigned int negated; /* turn off indicated flags. */
6305a203
L
137}
138arch_entry;
139
78f12dd3 140static void update_code_flag (int, int);
e3bb37b5
L
141static void set_code_flag (int);
142static void set_16bit_gcc_code_flag (int);
143static void set_intel_syntax (int);
1efbbeb4 144static void set_intel_mnemonic (int);
db51cc60 145static void set_allow_index_reg (int);
7bab8ab5 146static void set_check (int);
e3bb37b5 147static void set_cpu_arch (int);
6482c264 148#ifdef TE_PE
e3bb37b5 149static void pe_directive_secrel (int);
6482c264 150#endif
e3bb37b5
L
151static void signed_cons (int);
152static char *output_invalid (int c);
ee86248c
JB
153static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
a7619375 157static int i386_att_operand (char *);
e3bb37b5 158static int i386_intel_operand (char *, int);
ee86248c
JB
159static int i386_intel_simplify (expressionS *);
160static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
161static const reg_entry *parse_register (char *, char **);
162static char *parse_insn (char *, char *);
163static char *parse_operands (char *, const char *);
164static void swap_operands (void);
4d456e3d 165static void swap_2_operands (int, int);
e3bb37b5
L
166static void optimize_imm (void);
167static void optimize_disp (void);
d3ce72d0 168static const insn_template *match_template (void);
e3bb37b5
L
169static int check_string (void);
170static int process_suffix (void);
171static int check_byte_reg (void);
172static int check_long_reg (void);
173static int check_qword_reg (void);
174static int check_word_reg (void);
175static int finalize_imm (void);
176static int process_operands (void);
177static const seg_entry *build_modrm_byte (void);
178static void output_insn (void);
179static void output_imm (fragS *, offsetT);
180static void output_disp (fragS *, offsetT);
29b0f896 181#ifndef I386COFF
e3bb37b5 182static void s_bss (int);
252b5132 183#endif
17d4e2a2
L
184#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185static void handle_large_common (int small ATTRIBUTE_UNUSED);
186#endif
252b5132 187
a847613f 188static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 189
43234a1e
L
190/* This struct describes rounding control and SAE in the instruction. */
191struct RC_Operation
192{
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202};
203
204static struct RC_Operation rc_op;
205
206/* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209struct Mask_Operation
210{
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215};
216
217static struct Mask_Operation mask_op;
218
219/* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221struct Broadcast_Operation
222{
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228};
229
230static struct Broadcast_Operation broadcast_op;
231
c0f3af97
L
232/* VEX prefix. */
233typedef struct
234{
43234a1e
L
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
c0f3af97
L
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240} vex_prefix;
241
252b5132 242/* 'md_assemble ()' gathers together information and puts it into a
47926f60 243 i386_insn. */
252b5132 244
520dc8e8
AM
245union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
a65babc9
L
252enum i386_error
253 {
86e026a4 254 operand_size_mismatch,
a65babc9
L
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
6c30d220
L
263 unsupported,
264 invalid_vsib_address,
7bab8ab5 265 invalid_vector_register_set,
43234a1e
L
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
a65babc9
L
277 };
278
252b5132
RH
279struct _i386_insn
280 {
47926f60 281 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 282 insn_template tm;
252b5132 283
7d5e4556
L
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
252b5132
RH
286 char suffix;
287
47926f60 288 /* OPERANDS gives the number of given operands. */
252b5132
RH
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
47926f60 293 operands. */
252b5132
RH
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 297 use OP[i] for the corresponding operand. */
40fb9820 298 i386_operand_type types[MAX_OPERANDS];
252b5132 299
520dc8e8
AM
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
252b5132 303
3e73aa7c
JH
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306#define Operand_PCrel 1
307
252b5132 308 /* Relocation type for operand */
f86103b7 309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 310
252b5132
RH
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 318 explicit segment overrides are given. */
ce8a8b2f 319 const seg_entry *seg[2];
252b5132
RH
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 327 addressing modes of this insn are encoded. */
252b5132 328 modrm_byte rm;
3e73aa7c 329 rex_byte rex;
43234a1e 330 rex_byte vrex;
252b5132 331 sib_byte sib;
c0f3af97 332 vex_prefix vex;
b6169b20 333
43234a1e
L
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
b6169b20 346 /* Swap operand in encoding. */
4473e004 347 unsigned int swap_operand;
891edac4 348
a501d77e
L
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
f8a5c266 356
d5de92cf
L
357 /* REP prefix. */
358 const char *rep_prefix;
359
165de32a
L
360 /* HLE prefix. */
361 const char *hle_prefix;
42164a71 362
7e8b059b
L
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
43234a1e
L
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
891edac4 369 /* Error message. */
a65babc9 370 enum i386_error error;
252b5132
RH
371 };
372
373typedef struct _i386_insn i386_insn;
374
43234a1e
L
375/* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377struct RC_name
378{
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382};
383
384static const struct RC_name RC_NamesTable[] =
385{
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391};
392
252b5132
RH
393/* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
43234a1e 395const char extra_symbol_chars[] = "*%-([{"
252b5132 396#ifdef LEX_AT
32137342
NC
397 "@"
398#endif
399#ifdef LEX_QM
400 "?"
252b5132 401#endif
32137342 402 ;
252b5132 403
29b0f896
AM
404#if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 406 && !defined (TE_GNU) \
29b0f896 407 && !defined (TE_LINUX) \
8d63c93e
RM
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
29b0f896 410 && !defined (TE_FreeBSD) \
5b806d27 411 && !defined (TE_DragonFly) \
29b0f896 412 && !defined (TE_NetBSD)))
252b5132 413/* This array holds the chars that always start a comment. If the
b3b91714
AM
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416const char *i386_comment_chars = "#/";
417#define SVR4_COMMENT_CHARS 1
252b5132 418#define PREFIX_SEPARATOR '\\'
252b5132 419
b3b91714
AM
420#else
421const char *i386_comment_chars = "#";
422#define PREFIX_SEPARATOR '/'
423#endif
424
252b5132
RH
425/* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 429 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
252b5132 432 '/' isn't otherwise defined. */
b3b91714 433const char line_comment_chars[] = "#/";
252b5132 434
63a0b638 435const char line_separator_chars[] = ";";
252b5132 436
ce8a8b2f
AM
437/* Chars that can be used to separate mant from exp in floating point
438 nums. */
252b5132
RH
439const char EXP_CHARS[] = "eE";
440
ce8a8b2f
AM
441/* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
252b5132
RH
444const char FLT_CHARS[] = "fFdDxX";
445
ce8a8b2f 446/* Tables for lexical analysis. */
252b5132
RH
447static char mnemonic_chars[256];
448static char register_chars[256];
449static char operand_chars[256];
450static char identifier_chars[256];
451static char digit_chars[256];
452
ce8a8b2f 453/* Lexical macros. */
252b5132
RH
454#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455#define is_operand_char(x) (operand_chars[(unsigned char) x])
456#define is_register_char(x) (register_chars[(unsigned char) x])
457#define is_space_char(x) ((x) == ' ')
458#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459#define is_digit_char(x) (digit_chars[(unsigned char) x])
460
0234cb7c 461/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
462static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464/* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
47926f60 467 assembler instruction). */
252b5132 468static char save_stack[32];
ce8a8b2f 469static char *save_stack_p;
252b5132
RH
470#define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472#define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
47926f60 475/* The instruction we're assembling. */
252b5132
RH
476static i386_insn i;
477
478/* Possible templates for current insn. */
479static const templates *current_templates;
480
31b2323c
L
481/* Per instruction expressionS buffers: max displacements & immediates. */
482static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 484
47926f60 485/* Current operand we are working on. */
ee86248c 486static int this_operand = -1;
252b5132 487
3e73aa7c
JH
488/* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496static enum flag_code flag_code;
4fa24527 497static unsigned int object_64bit;
862be3fb 498static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
499static int use_rela_relocations = 0;
500
7af8ed2d
NC
501#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
351f65ca
L
505/* The ELF ABI to use. */
506enum x86_elf_abi
507{
508 I386_ABI,
7f56bc95
L
509 X86_64_ABI,
510 X86_64_X32_ABI
351f65ca
L
511};
512
513static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 514#endif
351f65ca 515
167ad85b
TG
516#if defined (TE_PE) || defined (TE_PEP)
517/* Use big object file format. */
518static int use_big_obj = 0;
519#endif
520
47926f60
KH
521/* 1 for intel syntax,
522 0 if att syntax. */
523static int intel_syntax = 0;
252b5132 524
1efbbeb4
L
525/* 1 for intel mnemonic,
526 0 if att mnemonic. */
527static int intel_mnemonic = !SYSV386_COMPAT;
528
5209009a 529/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
530static int old_gcc = OLDGCC_COMPAT;
531
a60de03c
JB
532/* 1 if pseudo registers are permitted. */
533static int allow_pseudo_reg = 0;
534
47926f60
KH
535/* 1 if register prefix % not required. */
536static int allow_naked_reg = 0;
252b5132 537
7e8b059b
L
538/* 1 if the assembler should add BND prefix for all control-tranferring
539 instructions supporting it, even if this prefix wasn't specified
540 explicitly. */
541static int add_bnd_prefix = 0;
542
ba104c83 543/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
544static int allow_index_reg = 0;
545
d022bddd
IT
546/* 1 if the assembler should ignore LOCK prefix, even if it was
547 specified explicitly. */
548static int omit_lock_prefix = 0;
549
7bab8ab5 550static enum check_kind
daf50ae7 551 {
7bab8ab5
JB
552 check_none = 0,
553 check_warning,
554 check_error
daf50ae7 555 }
7bab8ab5 556sse_check, operand_check = check_warning;
daf50ae7 557
2ca3ace5
L
558/* Register prefix used for error message. */
559static const char *register_prefix = "%";
560
47926f60
KH
561/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
562 leave, push, and pop instructions so that gcc has the same stack
563 frame as in 32 bit mode. */
564static char stackop_size = '\0';
eecb386c 565
12b55ccc
L
566/* Non-zero to optimize code alignment. */
567int optimize_align_code = 1;
568
47926f60
KH
569/* Non-zero to quieten some warnings. */
570static int quiet_warnings = 0;
a38cf1db 571
47926f60
KH
572/* CPU name. */
573static const char *cpu_arch_name = NULL;
6305a203 574static char *cpu_sub_arch_name = NULL;
a38cf1db 575
47926f60 576/* CPU feature flags. */
40fb9820
L
577static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
578
ccc9c027
L
579/* If we have selected a cpu we are generating instructions for. */
580static int cpu_arch_tune_set = 0;
581
9103f4f4 582/* Cpu we are generating instructions for. */
fbf3f584 583enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
584
585/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 586static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 587
ccc9c027 588/* CPU instruction set architecture used. */
fbf3f584 589enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 590
9103f4f4 591/* CPU feature flags of instruction set architecture used. */
fbf3f584 592i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 593
fddf5b5b
AM
594/* If set, conditional jumps are not automatically promoted to handle
595 larger than a byte offset. */
596static unsigned int no_cond_jump_promotion = 0;
597
c0f3af97
L
598/* Encode SSE instructions with VEX prefix. */
599static unsigned int sse2avx;
600
539f890d
L
601/* Encode scalar AVX instructions with specific vector length. */
602static enum
603 {
604 vex128 = 0,
605 vex256
606 } avxscalar;
607
43234a1e
L
608/* Encode scalar EVEX LIG instructions with specific vector length. */
609static enum
610 {
611 evexl128 = 0,
612 evexl256,
613 evexl512
614 } evexlig;
615
616/* Encode EVEX WIG instructions with specific evex.w. */
617static enum
618 {
619 evexw0 = 0,
620 evexw1
621 } evexwig;
622
d3d3c6db
IT
623/* Value to encode in EVEX RC bits, for SAE-only instructions. */
624static enum rc_type evexrcig = rne;
625
29b0f896 626/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 627static symbolS *GOT_symbol;
29b0f896 628
a4447b93
RH
629/* The dwarf2 return column, adjusted for 32 or 64 bit. */
630unsigned int x86_dwarf2_return_column;
631
632/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
633int x86_cie_data_alignment;
634
252b5132 635/* Interface to relax_segment.
fddf5b5b
AM
636 There are 3 major relax states for 386 jump insns because the
637 different types of jumps add different sizes to frags when we're
638 figuring out what sort of jump to choose to reach a given label. */
252b5132 639
47926f60 640/* Types. */
93c2a809
AM
641#define UNCOND_JUMP 0
642#define COND_JUMP 1
643#define COND_JUMP86 2
fddf5b5b 644
47926f60 645/* Sizes. */
252b5132
RH
646#define CODE16 1
647#define SMALL 0
29b0f896 648#define SMALL16 (SMALL | CODE16)
252b5132 649#define BIG 2
29b0f896 650#define BIG16 (BIG | CODE16)
252b5132
RH
651
652#ifndef INLINE
653#ifdef __GNUC__
654#define INLINE __inline__
655#else
656#define INLINE
657#endif
658#endif
659
fddf5b5b
AM
660#define ENCODE_RELAX_STATE(type, size) \
661 ((relax_substateT) (((type) << 2) | (size)))
662#define TYPE_FROM_RELAX_STATE(s) \
663 ((s) >> 2)
664#define DISP_SIZE_FROM_RELAX_STATE(s) \
665 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
666
667/* This table is used by relax_frag to promote short jumps to long
668 ones where necessary. SMALL (short) jumps may be promoted to BIG
669 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
670 don't allow a short jump in a 32 bit code segment to be promoted to
671 a 16 bit offset jump because it's slower (requires data size
672 prefix), and doesn't work, unless the destination is in the bottom
673 64k of the code segment (The top 16 bits of eip are zeroed). */
674
675const relax_typeS md_relax_table[] =
676{
24eab124
AM
677 /* The fields are:
678 1) most positive reach of this state,
679 2) most negative reach of this state,
93c2a809 680 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 681 4) which index into the table to try if we can't fit into this one. */
252b5132 682
fddf5b5b 683 /* UNCOND_JUMP states. */
93c2a809
AM
684 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
686 /* dword jmp adds 4 bytes to frag:
687 0 extra opcode bytes, 4 displacement bytes. */
252b5132 688 {0, 0, 4, 0},
93c2a809
AM
689 /* word jmp adds 2 byte2 to frag:
690 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
691 {0, 0, 2, 0},
692
93c2a809
AM
693 /* COND_JUMP states. */
694 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
696 /* dword conditionals adds 5 bytes to frag:
697 1 extra opcode byte, 4 displacement bytes. */
698 {0, 0, 5, 0},
fddf5b5b 699 /* word conditionals add 3 bytes to frag:
93c2a809
AM
700 1 extra opcode byte, 2 displacement bytes. */
701 {0, 0, 3, 0},
702
703 /* COND_JUMP86 states. */
704 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
705 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
706 /* dword conditionals adds 5 bytes to frag:
707 1 extra opcode byte, 4 displacement bytes. */
708 {0, 0, 5, 0},
709 /* word conditionals add 4 bytes to frag:
710 1 displacement byte and a 3 byte long branch insn. */
711 {0, 0, 4, 0}
252b5132
RH
712};
713
9103f4f4
L
714static const arch_entry cpu_arch[] =
715{
89507696
JB
716 /* Do not replace the first two entries - i386_target_format()
717 relies on them being there in this order. */
8a2c8fef 718 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 719 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 720 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 721 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 722 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 723 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 724 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 725 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 726 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 727 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 728 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 729 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 730 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 731 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 732 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 733 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 734 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 735 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 736 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 737 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 738 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 739 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 740 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 741 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 742 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 743 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 744 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 745 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 746 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 747 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 748 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 749 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 750 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 751 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 752 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 753 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 754 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 755 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 756 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 757 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 758 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 759 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 760 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 761 CPU_L1OM_FLAGS, 0, 0 },
7a9068fe
L
762 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
763 CPU_K1OM_FLAGS, 0, 0 },
8a2c8fef 764 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 765 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 766 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 767 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 768 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 769 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 770 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 771 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 772 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 773 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 774 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 775 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 777 CPU_AMDFAM10_FLAGS, 0, 0 },
8aedb9fe 778 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
22109423 779 CPU_BDVER1_FLAGS, 0, 0 },
8aedb9fe 780 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
af2f724e 781 CPU_BDVER2_FLAGS, 0, 0 },
5e5c50d3
NE
782 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
783 CPU_BDVER3_FLAGS, 0, 0 },
c7b0bd56
SE
784 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
785 CPU_BDVER4_FLAGS, 0, 0 },
7b458c12
L
786 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
787 CPU_BTVER1_FLAGS, 0, 0 },
788 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
789 CPU_BTVER2_FLAGS, 0, 0 },
8a2c8fef 790 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 791 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 792 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 793 CPU_287_FLAGS, 0, 0 },
8a2c8fef 794 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 795 CPU_387_FLAGS, 0, 0 },
8a2c8fef 796 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 797 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 798 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 799 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 800 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 801 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 802 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 803 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 804 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 805 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 806 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 807 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 808 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 809 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 810 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 811 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 812 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 813 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 814 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 815 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 816 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 817 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 818 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 819 CPU_AVX_FLAGS, 0, 0 },
6c30d220
L
820 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
821 CPU_AVX2_FLAGS, 0, 0 },
43234a1e
L
822 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
823 CPU_AVX512F_FLAGS, 0, 0 },
824 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
825 CPU_AVX512CD_FLAGS, 0, 0 },
826 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
827 CPU_AVX512ER_FLAGS, 0, 0 },
828 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
829 CPU_AVX512PF_FLAGS, 0, 0 },
8a2c8fef 830 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 831 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 832 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 833 CPU_VMX_FLAGS, 0, 0 },
8729a6f6
L
834 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
835 CPU_VMFUNC_FLAGS, 0, 0 },
8a2c8fef 836 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 837 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 838 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 839 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 840 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 841 CPU_XSAVEOPT_FLAGS, 0, 0 },
8a2c8fef 842 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 843 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 844 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 845 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 846 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 847 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 848 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 849 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 850 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 851 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 852 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 853 CPU_F16C_FLAGS, 0, 0 },
6c30d220
L
854 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
855 CPU_BMI2_FLAGS, 0, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 857 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 859 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 861 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 863 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 865 CPU_MOVBE_FLAGS, 0, 0 },
60aa667e
L
866 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
867 CPU_CX16_FLAGS, 0, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 869 CPU_EPT_FLAGS, 0, 0 },
6c30d220
L
870 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
871 CPU_LZCNT_FLAGS, 0, 0 },
42164a71
L
872 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
873 CPU_HLE_FLAGS, 0, 0 },
874 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
875 CPU_RTM_FLAGS, 0, 0 },
6c30d220
L
876 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
877 CPU_INVPCID_FLAGS, 0, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
879 CPU_CLFLUSH_FLAGS, 0, 0 },
880 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
881 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 883 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 884 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 885 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 886 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 887 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 888 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 889 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 890 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 891 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 892 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 893 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 895 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 897 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 899 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
900 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
901 CPU_BMI_FLAGS, 0, 0 },
2a2a0f38
QN
902 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
903 CPU_TBM_FLAGS, 0, 0 },
e2e1fcde
L
904 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
905 CPU_ADX_FLAGS, 0, 0 },
906 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
907 CPU_RDSEED_FLAGS, 0, 0 },
908 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
909 CPU_PRFCHW_FLAGS, 0, 0 },
5c111e37
L
910 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
911 CPU_SMAP_FLAGS, 0, 0 },
7e8b059b
L
912 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
913 CPU_MPX_FLAGS, 0, 0 },
a0046408
L
914 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
915 CPU_SHA_FLAGS, 0, 0 },
963f3586
IT
916 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
917 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
918 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
919 CPU_XSAVEC_FLAGS, 0, 0 },
920 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
921 CPU_XSAVES_FLAGS, 0, 0 },
dcf893b5
IT
922 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
923 CPU_PREFETCHWT1_FLAGS, 0, 0 },
2cf200a4
IT
924 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
925 CPU_SE1_FLAGS, 0, 0 },
90a915bf
IT
926 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
927 CPU_AVX512DQ_FLAGS, 0, 0 },
1ba585e8
IT
928 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
929 CPU_AVX512BW_FLAGS, 0, 0 },
b28d1bda
IT
930 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
931 CPU_AVX512VL_FLAGS, 0, 0 },
e413e4e9
AM
932};
933
704209c0 934#ifdef I386COFF
a6c24e68
NC
935/* Like s_lcomm_internal in gas/read.c but the alignment string
936 is allowed to be optional. */
937
938static symbolS *
939pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
940{
941 addressT align = 0;
942
943 SKIP_WHITESPACE ();
944
7ab9ffdd 945 if (needs_align
a6c24e68
NC
946 && *input_line_pointer == ',')
947 {
948 align = parse_align (needs_align - 1);
7ab9ffdd 949
a6c24e68
NC
950 if (align == (addressT) -1)
951 return NULL;
952 }
953 else
954 {
955 if (size >= 8)
956 align = 3;
957 else if (size >= 4)
958 align = 2;
959 else if (size >= 2)
960 align = 1;
961 else
962 align = 0;
963 }
964
965 bss_alloc (symbolP, size, align);
966 return symbolP;
967}
968
704209c0 969static void
a6c24e68
NC
970pe_lcomm (int needs_align)
971{
972 s_comm_internal (needs_align * 2, pe_lcomm_internal);
973}
704209c0 974#endif
a6c24e68 975
29b0f896
AM
976const pseudo_typeS md_pseudo_table[] =
977{
978#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
979 {"align", s_align_bytes, 0},
980#else
981 {"align", s_align_ptwo, 0},
982#endif
983 {"arch", set_cpu_arch, 0},
984#ifndef I386COFF
985 {"bss", s_bss, 0},
a6c24e68
NC
986#else
987 {"lcomm", pe_lcomm, 1},
29b0f896
AM
988#endif
989 {"ffloat", float_cons, 'f'},
990 {"dfloat", float_cons, 'd'},
991 {"tfloat", float_cons, 'x'},
992 {"value", cons, 2},
d182319b 993 {"slong", signed_cons, 4},
29b0f896
AM
994 {"noopt", s_ignore, 0},
995 {"optim", s_ignore, 0},
996 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
997 {"code16", set_code_flag, CODE_16BIT},
998 {"code32", set_code_flag, CODE_32BIT},
999 {"code64", set_code_flag, CODE_64BIT},
1000 {"intel_syntax", set_intel_syntax, 1},
1001 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1002 {"intel_mnemonic", set_intel_mnemonic, 1},
1003 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1004 {"allow_index_reg", set_allow_index_reg, 1},
1005 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1006 {"sse_check", set_check, 0},
1007 {"operand_check", set_check, 1},
3b22753a
L
1008#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1009 {"largecomm", handle_large_common, 0},
07a53e5c 1010#else
e3bb37b5 1011 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
1012 {"loc", dwarf2_directive_loc, 0},
1013 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1014#endif
6482c264
NC
1015#ifdef TE_PE
1016 {"secrel32", pe_directive_secrel, 0},
1017#endif
29b0f896
AM
1018 {0, 0, 0}
1019};
1020
1021/* For interface with expression (). */
1022extern char *input_line_pointer;
1023
1024/* Hash table for instruction mnemonic lookup. */
1025static struct hash_control *op_hash;
1026
1027/* Hash table for register lookup. */
1028static struct hash_control *reg_hash;
1029\f
252b5132 1030void
e3bb37b5 1031i386_align_code (fragS *fragP, int count)
252b5132 1032{
ce8a8b2f
AM
1033 /* Various efficient no-op patterns for aligning code labels.
1034 Note: Don't try to assemble the instructions in the comments.
1035 0L and 0w are not legal. */
252b5132
RH
1036 static const char f32_1[] =
1037 {0x90}; /* nop */
1038 static const char f32_2[] =
ccc9c027 1039 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
1040 static const char f32_3[] =
1041 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1042 static const char f32_4[] =
1043 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1044 static const char f32_5[] =
1045 {0x90, /* nop */
1046 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1047 static const char f32_6[] =
1048 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1049 static const char f32_7[] =
1050 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1051 static const char f32_8[] =
1052 {0x90, /* nop */
1053 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1054 static const char f32_9[] =
1055 {0x89,0xf6, /* movl %esi,%esi */
1056 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1057 static const char f32_10[] =
1058 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1059 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1060 static const char f32_11[] =
1061 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1062 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1063 static const char f32_12[] =
1064 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1065 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1066 static const char f32_13[] =
1067 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1068 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1069 static const char f32_14[] =
1070 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1071 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
1072 static const char f16_3[] =
1073 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
1074 static const char f16_4[] =
1075 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1076 static const char f16_5[] =
1077 {0x90, /* nop */
1078 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1079 static const char f16_6[] =
1080 {0x89,0xf6, /* mov %si,%si */
1081 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1082 static const char f16_7[] =
1083 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1084 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1085 static const char f16_8[] =
1086 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1087 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
1088 static const char jump_31[] =
1089 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1090 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1091 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1092 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
1093 static const char *const f32_patt[] = {
1094 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1095 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
1096 };
1097 static const char *const f16_patt[] = {
76bc74dc 1098 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1099 };
ccc9c027
L
1100 /* nopl (%[re]ax) */
1101 static const char alt_3[] =
1102 {0x0f,0x1f,0x00};
1103 /* nopl 0(%[re]ax) */
1104 static const char alt_4[] =
1105 {0x0f,0x1f,0x40,0x00};
1106 /* nopl 0(%[re]ax,%[re]ax,1) */
1107 static const char alt_5[] =
1108 {0x0f,0x1f,0x44,0x00,0x00};
1109 /* nopw 0(%[re]ax,%[re]ax,1) */
1110 static const char alt_6[] =
1111 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1112 /* nopl 0L(%[re]ax) */
1113 static const char alt_7[] =
1114 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1115 /* nopl 0L(%[re]ax,%[re]ax,1) */
1116 static const char alt_8[] =
1117 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1118 /* nopw 0L(%[re]ax,%[re]ax,1) */
1119 static const char alt_9[] =
1120 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1121 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1122 static const char alt_10[] =
1123 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1124 /* data16
1125 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1126 static const char alt_long_11[] =
1127 {0x66,
1128 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1129 /* data16
1130 data16
1131 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1132 static const char alt_long_12[] =
1133 {0x66,
1134 0x66,
1135 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1136 /* data16
1137 data16
1138 data16
1139 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1140 static const char alt_long_13[] =
1141 {0x66,
1142 0x66,
1143 0x66,
1144 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1145 /* data16
1146 data16
1147 data16
1148 data16
1149 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1150 static const char alt_long_14[] =
1151 {0x66,
1152 0x66,
1153 0x66,
1154 0x66,
1155 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1156 /* data16
1157 data16
1158 data16
1159 data16
1160 data16
1161 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1162 static const char alt_long_15[] =
1163 {0x66,
1164 0x66,
1165 0x66,
1166 0x66,
1167 0x66,
1168 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1169 /* nopl 0(%[re]ax,%[re]ax,1)
1170 nopw 0(%[re]ax,%[re]ax,1) */
1171 static const char alt_short_11[] =
1172 {0x0f,0x1f,0x44,0x00,0x00,
1173 0x66,0x0f,0x1f,0x44,0x00,0x00};
1174 /* nopw 0(%[re]ax,%[re]ax,1)
1175 nopw 0(%[re]ax,%[re]ax,1) */
1176 static const char alt_short_12[] =
1177 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1178 0x66,0x0f,0x1f,0x44,0x00,0x00};
1179 /* nopw 0(%[re]ax,%[re]ax,1)
1180 nopl 0L(%[re]ax) */
1181 static const char alt_short_13[] =
1182 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1183 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1184 /* nopl 0L(%[re]ax)
1185 nopl 0L(%[re]ax) */
1186 static const char alt_short_14[] =
1187 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1188 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1189 /* nopl 0L(%[re]ax)
1190 nopl 0L(%[re]ax,%[re]ax,1) */
1191 static const char alt_short_15[] =
1192 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1193 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1194 static const char *const alt_short_patt[] = {
1195 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1196 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1197 alt_short_14, alt_short_15
1198 };
1199 static const char *const alt_long_patt[] = {
1200 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1201 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1202 alt_long_14, alt_long_15
1203 };
252b5132 1204
76bc74dc
L
1205 /* Only align for at least a positive non-zero boundary. */
1206 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1207 return;
3e73aa7c 1208
ccc9c027
L
1209 /* We need to decide which NOP sequence to use for 32bit and
1210 64bit. When -mtune= is used:
4eed87de 1211
76bc74dc
L
1212 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1213 PROCESSOR_GENERIC32, f32_patt will be used.
1214 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
1215 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1216 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc 1217 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
7b458c12 1218 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
69dd9865 1219 will be used.
ccc9c027 1220
76bc74dc 1221 When -mtune= isn't used, alt_long_patt will be used if
22109423 1222 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1223 be used.
ccc9c027
L
1224
1225 When -march= or .arch is used, we can't use anything beyond
1226 cpu_arch_isa_flags. */
1227
1228 if (flag_code == CODE_16BIT)
1229 {
ccc9c027 1230 if (count > 8)
33fef721 1231 {
76bc74dc
L
1232 memcpy (fragP->fr_literal + fragP->fr_fix,
1233 jump_31, count);
1234 /* Adjust jump offset. */
1235 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1236 }
76bc74dc
L
1237 else
1238 memcpy (fragP->fr_literal + fragP->fr_fix,
1239 f16_patt[count - 1], count);
252b5132 1240 }
33fef721 1241 else
ccc9c027
L
1242 {
1243 const char *const *patt = NULL;
1244
fbf3f584 1245 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1246 {
1247 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1248 switch (cpu_arch_tune)
1249 {
1250 case PROCESSOR_UNKNOWN:
1251 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1252 optimize with nops. */
1253 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
76bc74dc 1254 patt = alt_long_patt;
ccc9c027
L
1255 else
1256 patt = f32_patt;
1257 break;
ccc9c027
L
1258 case PROCESSOR_PENTIUM4:
1259 case PROCESSOR_NOCONA:
ef05d495 1260 case PROCESSOR_CORE:
76bc74dc 1261 case PROCESSOR_CORE2:
bd5295b2 1262 case PROCESSOR_COREI7:
3632d14b 1263 case PROCESSOR_L1OM:
7a9068fe 1264 case PROCESSOR_K1OM:
76bc74dc
L
1265 case PROCESSOR_GENERIC64:
1266 patt = alt_long_patt;
1267 break;
ccc9c027
L
1268 case PROCESSOR_K6:
1269 case PROCESSOR_ATHLON:
1270 case PROCESSOR_K8:
4eed87de 1271 case PROCESSOR_AMDFAM10:
8aedb9fe 1272 case PROCESSOR_BD:
7b458c12 1273 case PROCESSOR_BT:
ccc9c027
L
1274 patt = alt_short_patt;
1275 break;
76bc74dc 1276 case PROCESSOR_I386:
ccc9c027
L
1277 case PROCESSOR_I486:
1278 case PROCESSOR_PENTIUM:
2dde1948 1279 case PROCESSOR_PENTIUMPRO:
ccc9c027
L
1280 case PROCESSOR_GENERIC32:
1281 patt = f32_patt;
1282 break;
4eed87de 1283 }
ccc9c027
L
1284 }
1285 else
1286 {
fbf3f584 1287 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1288 {
1289 case PROCESSOR_UNKNOWN:
e6a14101 1290 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1291 PROCESSOR_UNKNOWN. */
1292 abort ();
1293 break;
1294
76bc74dc 1295 case PROCESSOR_I386:
ccc9c027
L
1296 case PROCESSOR_I486:
1297 case PROCESSOR_PENTIUM:
ccc9c027
L
1298 case PROCESSOR_K6:
1299 case PROCESSOR_ATHLON:
1300 case PROCESSOR_K8:
4eed87de 1301 case PROCESSOR_AMDFAM10:
8aedb9fe 1302 case PROCESSOR_BD:
7b458c12 1303 case PROCESSOR_BT:
ccc9c027
L
1304 case PROCESSOR_GENERIC32:
1305 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1306 with nops. */
1307 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1308 patt = alt_short_patt;
1309 else
1310 patt = f32_patt;
1311 break;
76bc74dc
L
1312 case PROCESSOR_PENTIUMPRO:
1313 case PROCESSOR_PENTIUM4:
1314 case PROCESSOR_NOCONA:
1315 case PROCESSOR_CORE:
ef05d495 1316 case PROCESSOR_CORE2:
bd5295b2 1317 case PROCESSOR_COREI7:
3632d14b 1318 case PROCESSOR_L1OM:
7a9068fe 1319 case PROCESSOR_K1OM:
22109423 1320 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1321 patt = alt_long_patt;
1322 else
1323 patt = f32_patt;
1324 break;
1325 case PROCESSOR_GENERIC64:
76bc74dc 1326 patt = alt_long_patt;
ccc9c027 1327 break;
4eed87de 1328 }
ccc9c027
L
1329 }
1330
76bc74dc
L
1331 if (patt == f32_patt)
1332 {
1333 /* If the padding is less than 15 bytes, we use the normal
1334 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1335 its offset. */
1336 int limit;
76ba9986 1337
711eedef
L
1338 /* For 64bit, the limit is 3 bytes. */
1339 if (flag_code == CODE_64BIT
1340 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1341 limit = 3;
1342 else
1343 limit = 15;
1344 if (count < limit)
76bc74dc
L
1345 memcpy (fragP->fr_literal + fragP->fr_fix,
1346 patt[count - 1], count);
1347 else
1348 {
1349 memcpy (fragP->fr_literal + fragP->fr_fix,
1350 jump_31, count);
1351 /* Adjust jump offset. */
1352 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1353 }
1354 }
1355 else
1356 {
1357 /* Maximum length of an instruction is 15 byte. If the
1358 padding is greater than 15 bytes and we don't use jump,
1359 we have to break it into smaller pieces. */
1360 int padding = count;
1361 while (padding > 15)
1362 {
1363 padding -= 15;
1364 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1365 patt [14], 15);
1366 }
1367
1368 if (padding)
1369 memcpy (fragP->fr_literal + fragP->fr_fix,
1370 patt [padding - 1], padding);
1371 }
ccc9c027 1372 }
33fef721 1373 fragP->fr_var = count;
252b5132
RH
1374}
1375
c6fb90c8 1376static INLINE int
0dfbf9d7 1377operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1378{
0dfbf9d7 1379 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1380 {
1381 case 3:
0dfbf9d7 1382 if (x->array[2])
c6fb90c8
L
1383 return 0;
1384 case 2:
0dfbf9d7 1385 if (x->array[1])
c6fb90c8
L
1386 return 0;
1387 case 1:
0dfbf9d7 1388 return !x->array[0];
c6fb90c8
L
1389 default:
1390 abort ();
1391 }
40fb9820
L
1392}
1393
c6fb90c8 1394static INLINE void
0dfbf9d7 1395operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1396{
0dfbf9d7 1397 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1398 {
1399 case 3:
0dfbf9d7 1400 x->array[2] = v;
c6fb90c8 1401 case 2:
0dfbf9d7 1402 x->array[1] = v;
c6fb90c8 1403 case 1:
0dfbf9d7 1404 x->array[0] = v;
c6fb90c8
L
1405 break;
1406 default:
1407 abort ();
1408 }
1409}
40fb9820 1410
c6fb90c8 1411static INLINE int
0dfbf9d7
L
1412operand_type_equal (const union i386_operand_type *x,
1413 const union i386_operand_type *y)
c6fb90c8 1414{
0dfbf9d7 1415 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1416 {
1417 case 3:
0dfbf9d7 1418 if (x->array[2] != y->array[2])
c6fb90c8
L
1419 return 0;
1420 case 2:
0dfbf9d7 1421 if (x->array[1] != y->array[1])
c6fb90c8
L
1422 return 0;
1423 case 1:
0dfbf9d7 1424 return x->array[0] == y->array[0];
c6fb90c8
L
1425 break;
1426 default:
1427 abort ();
1428 }
1429}
40fb9820 1430
0dfbf9d7
L
1431static INLINE int
1432cpu_flags_all_zero (const union i386_cpu_flags *x)
1433{
1434 switch (ARRAY_SIZE(x->array))
1435 {
1436 case 3:
1437 if (x->array[2])
1438 return 0;
1439 case 2:
1440 if (x->array[1])
1441 return 0;
1442 case 1:
1443 return !x->array[0];
1444 default:
1445 abort ();
1446 }
1447}
1448
1449static INLINE void
1450cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1451{
1452 switch (ARRAY_SIZE(x->array))
1453 {
1454 case 3:
1455 x->array[2] = v;
1456 case 2:
1457 x->array[1] = v;
1458 case 1:
1459 x->array[0] = v;
1460 break;
1461 default:
1462 abort ();
1463 }
1464}
1465
1466static INLINE int
1467cpu_flags_equal (const union i386_cpu_flags *x,
1468 const union i386_cpu_flags *y)
1469{
1470 switch (ARRAY_SIZE(x->array))
1471 {
1472 case 3:
1473 if (x->array[2] != y->array[2])
1474 return 0;
1475 case 2:
1476 if (x->array[1] != y->array[1])
1477 return 0;
1478 case 1:
1479 return x->array[0] == y->array[0];
1480 break;
1481 default:
1482 abort ();
1483 }
1484}
c6fb90c8
L
1485
1486static INLINE int
1487cpu_flags_check_cpu64 (i386_cpu_flags f)
1488{
1489 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1490 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1491}
1492
c6fb90c8
L
1493static INLINE i386_cpu_flags
1494cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1495{
c6fb90c8
L
1496 switch (ARRAY_SIZE (x.array))
1497 {
1498 case 3:
1499 x.array [2] &= y.array [2];
1500 case 2:
1501 x.array [1] &= y.array [1];
1502 case 1:
1503 x.array [0] &= y.array [0];
1504 break;
1505 default:
1506 abort ();
1507 }
1508 return x;
1509}
40fb9820 1510
c6fb90c8
L
1511static INLINE i386_cpu_flags
1512cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1513{
c6fb90c8 1514 switch (ARRAY_SIZE (x.array))
40fb9820 1515 {
c6fb90c8
L
1516 case 3:
1517 x.array [2] |= y.array [2];
1518 case 2:
1519 x.array [1] |= y.array [1];
1520 case 1:
1521 x.array [0] |= y.array [0];
40fb9820
L
1522 break;
1523 default:
1524 abort ();
1525 }
40fb9820
L
1526 return x;
1527}
1528
309d3373
JB
1529static INLINE i386_cpu_flags
1530cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1531{
1532 switch (ARRAY_SIZE (x.array))
1533 {
1534 case 3:
1535 x.array [2] &= ~y.array [2];
1536 case 2:
1537 x.array [1] &= ~y.array [1];
1538 case 1:
1539 x.array [0] &= ~y.array [0];
1540 break;
1541 default:
1542 abort ();
1543 }
1544 return x;
1545}
1546
c0f3af97
L
1547#define CPU_FLAGS_ARCH_MATCH 0x1
1548#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1549#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1550#define CPU_FLAGS_PCLMUL_MATCH 0x8
1551#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1552
a5ff0eb2 1553#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1554 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1555 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1556#define CPU_FLAGS_PERFECT_MATCH \
1557 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1558
1559/* Return CPU flags match bits. */
3629bb00 1560
40fb9820 1561static int
d3ce72d0 1562cpu_flags_match (const insn_template *t)
40fb9820 1563{
c0f3af97
L
1564 i386_cpu_flags x = t->cpu_flags;
1565 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1566
1567 x.bitfield.cpu64 = 0;
1568 x.bitfield.cpuno64 = 0;
1569
0dfbf9d7 1570 if (cpu_flags_all_zero (&x))
c0f3af97
L
1571 {
1572 /* This instruction is available on all archs. */
1573 match |= CPU_FLAGS_32BIT_MATCH;
1574 }
3629bb00
L
1575 else
1576 {
c0f3af97 1577 /* This instruction is available only on some archs. */
3629bb00
L
1578 i386_cpu_flags cpu = cpu_arch_flags;
1579
1580 cpu.bitfield.cpu64 = 0;
1581 cpu.bitfield.cpuno64 = 0;
1582 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1583 if (!cpu_flags_all_zero (&cpu))
1584 {
a5ff0eb2
L
1585 if (x.bitfield.cpuavx)
1586 {
ce2f5b3c 1587 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1588 if (cpu.bitfield.cpuavx)
1589 {
1590 /* Check SSE2AVX. */
1591 if (!t->opcode_modifier.sse2avx|| sse2avx)
1592 {
1593 match |= (CPU_FLAGS_ARCH_MATCH
1594 | CPU_FLAGS_AVX_MATCH);
1595 /* Check AES. */
1596 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1597 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1598 /* Check PCLMUL. */
1599 if (!x.bitfield.cpupclmul
1600 || cpu.bitfield.cpupclmul)
1601 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1602 }
1603 }
1604 else
1605 match |= CPU_FLAGS_ARCH_MATCH;
1606 }
1607 else
c0f3af97
L
1608 match |= CPU_FLAGS_32BIT_MATCH;
1609 }
3629bb00 1610 }
c0f3af97 1611 return match;
40fb9820
L
1612}
1613
c6fb90c8
L
1614static INLINE i386_operand_type
1615operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1616{
c6fb90c8
L
1617 switch (ARRAY_SIZE (x.array))
1618 {
1619 case 3:
1620 x.array [2] &= y.array [2];
1621 case 2:
1622 x.array [1] &= y.array [1];
1623 case 1:
1624 x.array [0] &= y.array [0];
1625 break;
1626 default:
1627 abort ();
1628 }
1629 return x;
40fb9820
L
1630}
1631
c6fb90c8
L
1632static INLINE i386_operand_type
1633operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1634{
c6fb90c8 1635 switch (ARRAY_SIZE (x.array))
40fb9820 1636 {
c6fb90c8
L
1637 case 3:
1638 x.array [2] |= y.array [2];
1639 case 2:
1640 x.array [1] |= y.array [1];
1641 case 1:
1642 x.array [0] |= y.array [0];
40fb9820
L
1643 break;
1644 default:
1645 abort ();
1646 }
c6fb90c8
L
1647 return x;
1648}
40fb9820 1649
c6fb90c8
L
1650static INLINE i386_operand_type
1651operand_type_xor (i386_operand_type x, i386_operand_type y)
1652{
1653 switch (ARRAY_SIZE (x.array))
1654 {
1655 case 3:
1656 x.array [2] ^= y.array [2];
1657 case 2:
1658 x.array [1] ^= y.array [1];
1659 case 1:
1660 x.array [0] ^= y.array [0];
1661 break;
1662 default:
1663 abort ();
1664 }
40fb9820
L
1665 return x;
1666}
1667
1668static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1669static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1670static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1671static const i386_operand_type inoutportreg
1672 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1673static const i386_operand_type reg16_inoutportreg
1674 = OPERAND_TYPE_REG16_INOUTPORTREG;
1675static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1676static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1677static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1678static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1679static const i386_operand_type anydisp
1680 = OPERAND_TYPE_ANYDISP;
40fb9820 1681static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1682static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1683static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1684static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1685static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1686static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1687static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1688static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1689static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1690static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1691static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1692static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1693static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1694static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1695
1696enum operand_type
1697{
1698 reg,
40fb9820
L
1699 imm,
1700 disp,
1701 anymem
1702};
1703
c6fb90c8 1704static INLINE int
40fb9820
L
1705operand_type_check (i386_operand_type t, enum operand_type c)
1706{
1707 switch (c)
1708 {
1709 case reg:
1710 return (t.bitfield.reg8
1711 || t.bitfield.reg16
1712 || t.bitfield.reg32
1713 || t.bitfield.reg64);
1714
40fb9820
L
1715 case imm:
1716 return (t.bitfield.imm8
1717 || t.bitfield.imm8s
1718 || t.bitfield.imm16
1719 || t.bitfield.imm32
1720 || t.bitfield.imm32s
1721 || t.bitfield.imm64);
1722
1723 case disp:
1724 return (t.bitfield.disp8
1725 || t.bitfield.disp16
1726 || t.bitfield.disp32
1727 || t.bitfield.disp32s
1728 || t.bitfield.disp64);
1729
1730 case anymem:
1731 return (t.bitfield.disp8
1732 || t.bitfield.disp16
1733 || t.bitfield.disp32
1734 || t.bitfield.disp32s
1735 || t.bitfield.disp64
1736 || t.bitfield.baseindex);
1737
1738 default:
1739 abort ();
1740 }
2cfe26b6
AM
1741
1742 return 0;
40fb9820
L
1743}
1744
5c07affc
L
1745/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1746 operand J for instruction template T. */
1747
1748static INLINE int
d3ce72d0 1749match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1750{
1751 return !((i.types[j].bitfield.byte
1752 && !t->operand_types[j].bitfield.byte)
1753 || (i.types[j].bitfield.word
1754 && !t->operand_types[j].bitfield.word)
1755 || (i.types[j].bitfield.dword
1756 && !t->operand_types[j].bitfield.dword)
1757 || (i.types[j].bitfield.qword
1758 && !t->operand_types[j].bitfield.qword));
1759}
1760
1761/* Return 1 if there is no conflict in any size on operand J for
1762 instruction template T. */
1763
1764static INLINE int
d3ce72d0 1765match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1766{
1767 return (match_reg_size (t, j)
1768 && !((i.types[j].bitfield.unspecified
1769 && !t->operand_types[j].bitfield.unspecified)
1770 || (i.types[j].bitfield.fword
1771 && !t->operand_types[j].bitfield.fword)
1772 || (i.types[j].bitfield.tbyte
1773 && !t->operand_types[j].bitfield.tbyte)
1774 || (i.types[j].bitfield.xmmword
c0f3af97
L
1775 && !t->operand_types[j].bitfield.xmmword)
1776 || (i.types[j].bitfield.ymmword
43234a1e
L
1777 && !t->operand_types[j].bitfield.ymmword)
1778 || (i.types[j].bitfield.zmmword
1779 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1780}
1781
1782/* Return 1 if there is no size conflict on any operands for
1783 instruction template T. */
1784
1785static INLINE int
d3ce72d0 1786operand_size_match (const insn_template *t)
5c07affc
L
1787{
1788 unsigned int j;
1789 int match = 1;
1790
1791 /* Don't check jump instructions. */
1792 if (t->opcode_modifier.jump
1793 || t->opcode_modifier.jumpbyte
1794 || t->opcode_modifier.jumpdword
1795 || t->opcode_modifier.jumpintersegment)
1796 return match;
1797
1798 /* Check memory and accumulator operand size. */
1799 for (j = 0; j < i.operands; j++)
1800 {
1801 if (t->operand_types[j].bitfield.anysize)
1802 continue;
1803
1804 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1805 {
1806 match = 0;
1807 break;
1808 }
1809
1810 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1811 {
1812 match = 0;
1813 break;
1814 }
1815 }
1816
891edac4 1817 if (match)
5c07affc 1818 return match;
891edac4
L
1819 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1820 {
1821mismatch:
86e026a4 1822 i.error = operand_size_mismatch;
891edac4
L
1823 return 0;
1824 }
5c07affc
L
1825
1826 /* Check reverse. */
9c2799c2 1827 gas_assert (i.operands == 2);
5c07affc
L
1828
1829 match = 1;
1830 for (j = 0; j < 2; j++)
1831 {
1832 if (t->operand_types[j].bitfield.acc
1833 && !match_reg_size (t, j ? 0 : 1))
891edac4 1834 goto mismatch;
5c07affc
L
1835
1836 if (i.types[j].bitfield.mem
1837 && !match_mem_size (t, j ? 0 : 1))
891edac4 1838 goto mismatch;
5c07affc
L
1839 }
1840
1841 return match;
1842}
1843
c6fb90c8 1844static INLINE int
40fb9820
L
1845operand_type_match (i386_operand_type overlap,
1846 i386_operand_type given)
1847{
1848 i386_operand_type temp = overlap;
1849
1850 temp.bitfield.jumpabsolute = 0;
7d5e4556 1851 temp.bitfield.unspecified = 0;
5c07affc
L
1852 temp.bitfield.byte = 0;
1853 temp.bitfield.word = 0;
1854 temp.bitfield.dword = 0;
1855 temp.bitfield.fword = 0;
1856 temp.bitfield.qword = 0;
1857 temp.bitfield.tbyte = 0;
1858 temp.bitfield.xmmword = 0;
c0f3af97 1859 temp.bitfield.ymmword = 0;
43234a1e 1860 temp.bitfield.zmmword = 0;
0dfbf9d7 1861 if (operand_type_all_zero (&temp))
891edac4 1862 goto mismatch;
40fb9820 1863
891edac4
L
1864 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1865 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1866 return 1;
1867
1868mismatch:
a65babc9 1869 i.error = operand_type_mismatch;
891edac4 1870 return 0;
40fb9820
L
1871}
1872
7d5e4556 1873/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1874 unless the expected operand type register overlap is null.
1875 Note that Acc in a template matches every size of reg. */
1876
c6fb90c8 1877static INLINE int
40fb9820
L
1878operand_type_register_match (i386_operand_type m0,
1879 i386_operand_type g0,
1880 i386_operand_type t0,
1881 i386_operand_type m1,
1882 i386_operand_type g1,
1883 i386_operand_type t1)
1884{
1885 if (!operand_type_check (g0, reg))
1886 return 1;
1887
1888 if (!operand_type_check (g1, reg))
1889 return 1;
1890
1891 if (g0.bitfield.reg8 == g1.bitfield.reg8
1892 && g0.bitfield.reg16 == g1.bitfield.reg16
1893 && g0.bitfield.reg32 == g1.bitfield.reg32
1894 && g0.bitfield.reg64 == g1.bitfield.reg64)
1895 return 1;
1896
1897 if (m0.bitfield.acc)
1898 {
1899 t0.bitfield.reg8 = 1;
1900 t0.bitfield.reg16 = 1;
1901 t0.bitfield.reg32 = 1;
1902 t0.bitfield.reg64 = 1;
1903 }
1904
1905 if (m1.bitfield.acc)
1906 {
1907 t1.bitfield.reg8 = 1;
1908 t1.bitfield.reg16 = 1;
1909 t1.bitfield.reg32 = 1;
1910 t1.bitfield.reg64 = 1;
1911 }
1912
891edac4
L
1913 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1914 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1915 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1916 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1917 return 1;
1918
a65babc9 1919 i.error = register_type_mismatch;
891edac4
L
1920
1921 return 0;
40fb9820
L
1922}
1923
4c692bc7
JB
1924static INLINE unsigned int
1925register_number (const reg_entry *r)
1926{
1927 unsigned int nr = r->reg_num;
1928
1929 if (r->reg_flags & RegRex)
1930 nr += 8;
1931
1932 return nr;
1933}
1934
252b5132 1935static INLINE unsigned int
40fb9820 1936mode_from_disp_size (i386_operand_type t)
252b5132 1937{
43234a1e 1938 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1939 return 1;
1940 else if (t.bitfield.disp16
1941 || t.bitfield.disp32
1942 || t.bitfield.disp32s)
1943 return 2;
1944 else
1945 return 0;
252b5132
RH
1946}
1947
1948static INLINE int
65879393 1949fits_in_signed_byte (addressT num)
252b5132 1950{
65879393 1951 return num + 0x80 <= 0xff;
47926f60 1952}
252b5132
RH
1953
1954static INLINE int
65879393 1955fits_in_unsigned_byte (addressT num)
252b5132 1956{
65879393 1957 return num <= 0xff;
47926f60 1958}
252b5132
RH
1959
1960static INLINE int
65879393 1961fits_in_unsigned_word (addressT num)
252b5132 1962{
65879393 1963 return num <= 0xffff;
47926f60 1964}
252b5132
RH
1965
1966static INLINE int
65879393 1967fits_in_signed_word (addressT num)
252b5132 1968{
65879393 1969 return num + 0x8000 <= 0xffff;
47926f60 1970}
2a962e6d 1971
3e73aa7c 1972static INLINE int
65879393 1973fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1974{
1975#ifndef BFD64
1976 return 1;
1977#else
65879393 1978 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
1979#endif
1980} /* fits_in_signed_long() */
2a962e6d 1981
3e73aa7c 1982static INLINE int
65879393 1983fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1984{
1985#ifndef BFD64
1986 return 1;
1987#else
65879393 1988 return num <= 0xffffffff;
3e73aa7c
JH
1989#endif
1990} /* fits_in_unsigned_long() */
252b5132 1991
43234a1e
L
1992static INLINE int
1993fits_in_vec_disp8 (offsetT num)
1994{
1995 int shift = i.memshift;
1996 unsigned int mask;
1997
1998 if (shift == -1)
1999 abort ();
2000
2001 mask = (1 << shift) - 1;
2002
2003 /* Return 0 if NUM isn't properly aligned. */
2004 if ((num & mask))
2005 return 0;
2006
2007 /* Check if NUM will fit in 8bit after shift. */
2008 return fits_in_signed_byte (num >> shift);
2009}
2010
a683cc34
SP
2011static INLINE int
2012fits_in_imm4 (offsetT num)
2013{
2014 return (num & 0xf) == num;
2015}
2016
40fb9820 2017static i386_operand_type
e3bb37b5 2018smallest_imm_type (offsetT num)
252b5132 2019{
40fb9820 2020 i386_operand_type t;
7ab9ffdd 2021
0dfbf9d7 2022 operand_type_set (&t, 0);
40fb9820
L
2023 t.bitfield.imm64 = 1;
2024
2025 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2026 {
2027 /* This code is disabled on the 486 because all the Imm1 forms
2028 in the opcode table are slower on the i486. They're the
2029 versions with the implicitly specified single-position
2030 displacement, which has another syntax if you really want to
2031 use that form. */
40fb9820
L
2032 t.bitfield.imm1 = 1;
2033 t.bitfield.imm8 = 1;
2034 t.bitfield.imm8s = 1;
2035 t.bitfield.imm16 = 1;
2036 t.bitfield.imm32 = 1;
2037 t.bitfield.imm32s = 1;
2038 }
2039 else if (fits_in_signed_byte (num))
2040 {
2041 t.bitfield.imm8 = 1;
2042 t.bitfield.imm8s = 1;
2043 t.bitfield.imm16 = 1;
2044 t.bitfield.imm32 = 1;
2045 t.bitfield.imm32s = 1;
2046 }
2047 else if (fits_in_unsigned_byte (num))
2048 {
2049 t.bitfield.imm8 = 1;
2050 t.bitfield.imm16 = 1;
2051 t.bitfield.imm32 = 1;
2052 t.bitfield.imm32s = 1;
2053 }
2054 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2055 {
2056 t.bitfield.imm16 = 1;
2057 t.bitfield.imm32 = 1;
2058 t.bitfield.imm32s = 1;
2059 }
2060 else if (fits_in_signed_long (num))
2061 {
2062 t.bitfield.imm32 = 1;
2063 t.bitfield.imm32s = 1;
2064 }
2065 else if (fits_in_unsigned_long (num))
2066 t.bitfield.imm32 = 1;
2067
2068 return t;
47926f60 2069}
252b5132 2070
847f7ad4 2071static offsetT
e3bb37b5 2072offset_in_range (offsetT val, int size)
847f7ad4 2073{
508866be 2074 addressT mask;
ba2adb93 2075
847f7ad4
AM
2076 switch (size)
2077 {
508866be
L
2078 case 1: mask = ((addressT) 1 << 8) - 1; break;
2079 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2080 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2081#ifdef BFD64
2082 case 8: mask = ((addressT) 2 << 63) - 1; break;
2083#endif
47926f60 2084 default: abort ();
847f7ad4
AM
2085 }
2086
9de868bf
L
2087#ifdef BFD64
2088 /* If BFD64, sign extend val for 32bit address mode. */
2089 if (flag_code != CODE_64BIT
2090 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2091 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2092 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2093#endif
ba2adb93 2094
47926f60 2095 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2096 {
2097 char buf1[40], buf2[40];
2098
2099 sprint_value (buf1, val);
2100 sprint_value (buf2, val & mask);
2101 as_warn (_("%s shortened to %s"), buf1, buf2);
2102 }
2103 return val & mask;
2104}
2105
c32fa91d
L
2106enum PREFIX_GROUP
2107{
2108 PREFIX_EXIST = 0,
2109 PREFIX_LOCK,
2110 PREFIX_REP,
2111 PREFIX_OTHER
2112};
2113
2114/* Returns
2115 a. PREFIX_EXIST if attempting to add a prefix where one from the
2116 same class already exists.
2117 b. PREFIX_LOCK if lock prefix is added.
2118 c. PREFIX_REP if rep/repne prefix is added.
2119 d. PREFIX_OTHER if other prefix is added.
2120 */
2121
2122static enum PREFIX_GROUP
e3bb37b5 2123add_prefix (unsigned int prefix)
252b5132 2124{
c32fa91d 2125 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2126 unsigned int q;
252b5132 2127
29b0f896
AM
2128 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2129 && flag_code == CODE_64BIT)
b1905489 2130 {
161a04f6
L
2131 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2132 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2133 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2134 ret = PREFIX_EXIST;
b1905489
JB
2135 q = REX_PREFIX;
2136 }
3e73aa7c 2137 else
b1905489
JB
2138 {
2139 switch (prefix)
2140 {
2141 default:
2142 abort ();
2143
2144 case CS_PREFIX_OPCODE:
2145 case DS_PREFIX_OPCODE:
2146 case ES_PREFIX_OPCODE:
2147 case FS_PREFIX_OPCODE:
2148 case GS_PREFIX_OPCODE:
2149 case SS_PREFIX_OPCODE:
2150 q = SEG_PREFIX;
2151 break;
2152
2153 case REPNE_PREFIX_OPCODE:
2154 case REPE_PREFIX_OPCODE:
c32fa91d
L
2155 q = REP_PREFIX;
2156 ret = PREFIX_REP;
2157 break;
2158
b1905489 2159 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2160 q = LOCK_PREFIX;
2161 ret = PREFIX_LOCK;
b1905489
JB
2162 break;
2163
2164 case FWAIT_OPCODE:
2165 q = WAIT_PREFIX;
2166 break;
2167
2168 case ADDR_PREFIX_OPCODE:
2169 q = ADDR_PREFIX;
2170 break;
2171
2172 case DATA_PREFIX_OPCODE:
2173 q = DATA_PREFIX;
2174 break;
2175 }
2176 if (i.prefix[q] != 0)
c32fa91d 2177 ret = PREFIX_EXIST;
b1905489 2178 }
252b5132 2179
b1905489 2180 if (ret)
252b5132 2181 {
b1905489
JB
2182 if (!i.prefix[q])
2183 ++i.prefixes;
2184 i.prefix[q] |= prefix;
252b5132 2185 }
b1905489
JB
2186 else
2187 as_bad (_("same type of prefix used twice"));
252b5132 2188
252b5132
RH
2189 return ret;
2190}
2191
2192static void
78f12dd3 2193update_code_flag (int value, int check)
eecb386c 2194{
78f12dd3
L
2195 PRINTF_LIKE ((*as_error));
2196
1e9cc1c2 2197 flag_code = (enum flag_code) value;
40fb9820
L
2198 if (flag_code == CODE_64BIT)
2199 {
2200 cpu_arch_flags.bitfield.cpu64 = 1;
2201 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2202 }
2203 else
2204 {
2205 cpu_arch_flags.bitfield.cpu64 = 0;
2206 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2207 }
2208 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2209 {
78f12dd3
L
2210 if (check)
2211 as_error = as_fatal;
2212 else
2213 as_error = as_bad;
2214 (*as_error) (_("64bit mode not supported on `%s'."),
2215 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2216 }
40fb9820 2217 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2218 {
78f12dd3
L
2219 if (check)
2220 as_error = as_fatal;
2221 else
2222 as_error = as_bad;
2223 (*as_error) (_("32bit mode not supported on `%s'."),
2224 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2225 }
eecb386c
AM
2226 stackop_size = '\0';
2227}
2228
78f12dd3
L
2229static void
2230set_code_flag (int value)
2231{
2232 update_code_flag (value, 0);
2233}
2234
eecb386c 2235static void
e3bb37b5 2236set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2237{
1e9cc1c2 2238 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2239 if (flag_code != CODE_16BIT)
2240 abort ();
2241 cpu_arch_flags.bitfield.cpu64 = 0;
2242 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2243 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2244}
2245
2246static void
e3bb37b5 2247set_intel_syntax (int syntax_flag)
252b5132
RH
2248{
2249 /* Find out if register prefixing is specified. */
2250 int ask_naked_reg = 0;
2251
2252 SKIP_WHITESPACE ();
29b0f896 2253 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
2254 {
2255 char *string = input_line_pointer;
2256 int e = get_symbol_end ();
2257
47926f60 2258 if (strcmp (string, "prefix") == 0)
252b5132 2259 ask_naked_reg = 1;
47926f60 2260 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2261 ask_naked_reg = -1;
2262 else
d0b47220 2263 as_bad (_("bad argument to syntax directive."));
252b5132
RH
2264 *input_line_pointer = e;
2265 }
2266 demand_empty_rest_of_line ();
c3332e24 2267
252b5132
RH
2268 intel_syntax = syntax_flag;
2269
2270 if (ask_naked_reg == 0)
f86103b7
AM
2271 allow_naked_reg = (intel_syntax
2272 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2273 else
2274 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2275
ee86248c 2276 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2277
e4a3b5a4 2278 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2279 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2280 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2281}
2282
1efbbeb4
L
2283static void
2284set_intel_mnemonic (int mnemonic_flag)
2285{
e1d4d893 2286 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2287}
2288
db51cc60
L
2289static void
2290set_allow_index_reg (int flag)
2291{
2292 allow_index_reg = flag;
2293}
2294
cb19c032 2295static void
7bab8ab5 2296set_check (int what)
cb19c032 2297{
7bab8ab5
JB
2298 enum check_kind *kind;
2299 const char *str;
2300
2301 if (what)
2302 {
2303 kind = &operand_check;
2304 str = "operand";
2305 }
2306 else
2307 {
2308 kind = &sse_check;
2309 str = "sse";
2310 }
2311
cb19c032
L
2312 SKIP_WHITESPACE ();
2313
2314 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2315 {
2316 char *string = input_line_pointer;
2317 int e = get_symbol_end ();
2318
2319 if (strcmp (string, "none") == 0)
7bab8ab5 2320 *kind = check_none;
cb19c032 2321 else if (strcmp (string, "warning") == 0)
7bab8ab5 2322 *kind = check_warning;
cb19c032 2323 else if (strcmp (string, "error") == 0)
7bab8ab5 2324 *kind = check_error;
cb19c032 2325 else
7bab8ab5 2326 as_bad (_("bad argument to %s_check directive."), str);
cb19c032
L
2327 *input_line_pointer = e;
2328 }
2329 else
7bab8ab5 2330 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2331
2332 demand_empty_rest_of_line ();
2333}
2334
8a9036a4
L
2335static void
2336check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2337 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2338{
2339#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2340 static const char *arch;
2341
2342 /* Intel LIOM is only supported on ELF. */
2343 if (!IS_ELF)
2344 return;
2345
2346 if (!arch)
2347 {
2348 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2349 use default_arch. */
2350 arch = cpu_arch_name;
2351 if (!arch)
2352 arch = default_arch;
2353 }
2354
3632d14b 2355 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2356 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2357 || new_flag.bitfield.cpul1om)
8a9036a4 2358 return;
76ba9986 2359
7a9068fe
L
2360 /* If we are targeting Intel K1OM, we must enable it. */
2361 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2362 || new_flag.bitfield.cpuk1om)
2363 return;
2364
8a9036a4
L
2365 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2366#endif
2367}
2368
e413e4e9 2369static void
e3bb37b5 2370set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2371{
47926f60 2372 SKIP_WHITESPACE ();
e413e4e9 2373
29b0f896 2374 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
2375 {
2376 char *string = input_line_pointer;
2377 int e = get_symbol_end ();
91d6fa6a 2378 unsigned int j;
40fb9820 2379 i386_cpu_flags flags;
e413e4e9 2380
91d6fa6a 2381 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2382 {
91d6fa6a 2383 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2384 {
91d6fa6a 2385 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2386
5c6af06e
JB
2387 if (*string != '.')
2388 {
91d6fa6a 2389 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2390 cpu_sub_arch_name = NULL;
91d6fa6a 2391 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2392 if (flag_code == CODE_64BIT)
2393 {
2394 cpu_arch_flags.bitfield.cpu64 = 1;
2395 cpu_arch_flags.bitfield.cpuno64 = 0;
2396 }
2397 else
2398 {
2399 cpu_arch_flags.bitfield.cpu64 = 0;
2400 cpu_arch_flags.bitfield.cpuno64 = 1;
2401 }
91d6fa6a
NC
2402 cpu_arch_isa = cpu_arch[j].type;
2403 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2404 if (!cpu_arch_tune_set)
2405 {
2406 cpu_arch_tune = cpu_arch_isa;
2407 cpu_arch_tune_flags = cpu_arch_isa_flags;
2408 }
5c6af06e
JB
2409 break;
2410 }
40fb9820 2411
22109423 2412 if (!cpu_arch[j].negated)
309d3373 2413 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2414 cpu_arch[j].flags);
309d3373
JB
2415 else
2416 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2417 cpu_arch[j].flags);
0dfbf9d7 2418 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2419 {
6305a203
L
2420 if (cpu_sub_arch_name)
2421 {
2422 char *name = cpu_sub_arch_name;
2423 cpu_sub_arch_name = concat (name,
91d6fa6a 2424 cpu_arch[j].name,
1bf57e9f 2425 (const char *) NULL);
6305a203
L
2426 free (name);
2427 }
2428 else
91d6fa6a 2429 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2430 cpu_arch_flags = flags;
a586129e 2431 cpu_arch_isa_flags = flags;
5c6af06e
JB
2432 }
2433 *input_line_pointer = e;
2434 demand_empty_rest_of_line ();
2435 return;
e413e4e9
AM
2436 }
2437 }
91d6fa6a 2438 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2439 as_bad (_("no such architecture: `%s'"), string);
2440
2441 *input_line_pointer = e;
2442 }
2443 else
2444 as_bad (_("missing cpu architecture"));
2445
fddf5b5b
AM
2446 no_cond_jump_promotion = 0;
2447 if (*input_line_pointer == ','
29b0f896 2448 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2449 {
2450 char *string = ++input_line_pointer;
2451 int e = get_symbol_end ();
2452
2453 if (strcmp (string, "nojumps") == 0)
2454 no_cond_jump_promotion = 1;
2455 else if (strcmp (string, "jumps") == 0)
2456 ;
2457 else
2458 as_bad (_("no such architecture modifier: `%s'"), string);
2459
2460 *input_line_pointer = e;
2461 }
2462
e413e4e9
AM
2463 demand_empty_rest_of_line ();
2464}
2465
8a9036a4
L
2466enum bfd_architecture
2467i386_arch (void)
2468{
3632d14b 2469 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2470 {
2471 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2472 || flag_code != CODE_64BIT)
2473 as_fatal (_("Intel L1OM is 64bit ELF only"));
2474 return bfd_arch_l1om;
2475 }
7a9068fe
L
2476 else if (cpu_arch_isa == PROCESSOR_K1OM)
2477 {
2478 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2479 || flag_code != CODE_64BIT)
2480 as_fatal (_("Intel K1OM is 64bit ELF only"));
2481 return bfd_arch_k1om;
2482 }
8a9036a4
L
2483 else
2484 return bfd_arch_i386;
2485}
2486
b9d79e03 2487unsigned long
7016a5d5 2488i386_mach (void)
b9d79e03 2489{
351f65ca 2490 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2491 {
3632d14b 2492 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2493 {
351f65ca
L
2494 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2495 || default_arch[6] != '\0')
8a9036a4
L
2496 as_fatal (_("Intel L1OM is 64bit ELF only"));
2497 return bfd_mach_l1om;
2498 }
7a9068fe
L
2499 else if (cpu_arch_isa == PROCESSOR_K1OM)
2500 {
2501 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2502 || default_arch[6] != '\0')
2503 as_fatal (_("Intel K1OM is 64bit ELF only"));
2504 return bfd_mach_k1om;
2505 }
351f65ca 2506 else if (default_arch[6] == '\0')
8a9036a4 2507 return bfd_mach_x86_64;
351f65ca
L
2508 else
2509 return bfd_mach_x64_32;
8a9036a4 2510 }
b9d79e03
JH
2511 else if (!strcmp (default_arch, "i386"))
2512 return bfd_mach_i386_i386;
2513 else
2b5d6a91 2514 as_fatal (_("unknown architecture"));
b9d79e03 2515}
b9d79e03 2516\f
252b5132 2517void
7016a5d5 2518md_begin (void)
252b5132
RH
2519{
2520 const char *hash_err;
2521
47926f60 2522 /* Initialize op_hash hash table. */
252b5132
RH
2523 op_hash = hash_new ();
2524
2525 {
d3ce72d0 2526 const insn_template *optab;
29b0f896 2527 templates *core_optab;
252b5132 2528
47926f60
KH
2529 /* Setup for loop. */
2530 optab = i386_optab;
252b5132
RH
2531 core_optab = (templates *) xmalloc (sizeof (templates));
2532 core_optab->start = optab;
2533
2534 while (1)
2535 {
2536 ++optab;
2537 if (optab->name == NULL
2538 || strcmp (optab->name, (optab - 1)->name) != 0)
2539 {
2540 /* different name --> ship out current template list;
47926f60 2541 add to hash table; & begin anew. */
252b5132
RH
2542 core_optab->end = optab;
2543 hash_err = hash_insert (op_hash,
2544 (optab - 1)->name,
5a49b8ac 2545 (void *) core_optab);
252b5132
RH
2546 if (hash_err)
2547 {
b37df7c4 2548 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2549 (optab - 1)->name,
2550 hash_err);
2551 }
2552 if (optab->name == NULL)
2553 break;
2554 core_optab = (templates *) xmalloc (sizeof (templates));
2555 core_optab->start = optab;
2556 }
2557 }
2558 }
2559
47926f60 2560 /* Initialize reg_hash hash table. */
252b5132
RH
2561 reg_hash = hash_new ();
2562 {
29b0f896 2563 const reg_entry *regtab;
c3fe08fa 2564 unsigned int regtab_size = i386_regtab_size;
252b5132 2565
c3fe08fa 2566 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2567 {
5a49b8ac 2568 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2569 if (hash_err)
b37df7c4 2570 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2571 regtab->reg_name,
2572 hash_err);
252b5132
RH
2573 }
2574 }
2575
47926f60 2576 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2577 {
29b0f896
AM
2578 int c;
2579 char *p;
252b5132
RH
2580
2581 for (c = 0; c < 256; c++)
2582 {
3882b010 2583 if (ISDIGIT (c))
252b5132
RH
2584 {
2585 digit_chars[c] = c;
2586 mnemonic_chars[c] = c;
2587 register_chars[c] = c;
2588 operand_chars[c] = c;
2589 }
3882b010 2590 else if (ISLOWER (c))
252b5132
RH
2591 {
2592 mnemonic_chars[c] = c;
2593 register_chars[c] = c;
2594 operand_chars[c] = c;
2595 }
3882b010 2596 else if (ISUPPER (c))
252b5132 2597 {
3882b010 2598 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2599 register_chars[c] = mnemonic_chars[c];
2600 operand_chars[c] = c;
2601 }
43234a1e
L
2602 else if (c == '{' || c == '}')
2603 operand_chars[c] = c;
252b5132 2604
3882b010 2605 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2606 identifier_chars[c] = c;
2607 else if (c >= 128)
2608 {
2609 identifier_chars[c] = c;
2610 operand_chars[c] = c;
2611 }
2612 }
2613
2614#ifdef LEX_AT
2615 identifier_chars['@'] = '@';
32137342
NC
2616#endif
2617#ifdef LEX_QM
2618 identifier_chars['?'] = '?';
2619 operand_chars['?'] = '?';
252b5132 2620#endif
252b5132 2621 digit_chars['-'] = '-';
c0f3af97 2622 mnemonic_chars['_'] = '_';
791fe849 2623 mnemonic_chars['-'] = '-';
0003779b 2624 mnemonic_chars['.'] = '.';
252b5132
RH
2625 identifier_chars['_'] = '_';
2626 identifier_chars['.'] = '.';
2627
2628 for (p = operand_special_chars; *p != '\0'; p++)
2629 operand_chars[(unsigned char) *p] = *p;
2630 }
2631
a4447b93
RH
2632 if (flag_code == CODE_64BIT)
2633 {
ca19b261
KT
2634#if defined (OBJ_COFF) && defined (TE_PE)
2635 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2636 ? 32 : 16);
2637#else
a4447b93 2638 x86_dwarf2_return_column = 16;
ca19b261 2639#endif
61ff971f 2640 x86_cie_data_alignment = -8;
a4447b93
RH
2641 }
2642 else
2643 {
2644 x86_dwarf2_return_column = 8;
2645 x86_cie_data_alignment = -4;
2646 }
252b5132
RH
2647}
2648
2649void
e3bb37b5 2650i386_print_statistics (FILE *file)
252b5132
RH
2651{
2652 hash_print_statistics (file, "i386 opcode", op_hash);
2653 hash_print_statistics (file, "i386 register", reg_hash);
2654}
2655\f
252b5132
RH
2656#ifdef DEBUG386
2657
ce8a8b2f 2658/* Debugging routines for md_assemble. */
d3ce72d0 2659static void pte (insn_template *);
40fb9820 2660static void pt (i386_operand_type);
e3bb37b5
L
2661static void pe (expressionS *);
2662static void ps (symbolS *);
252b5132
RH
2663
2664static void
e3bb37b5 2665pi (char *line, i386_insn *x)
252b5132 2666{
09137c09 2667 unsigned int j;
252b5132
RH
2668
2669 fprintf (stdout, "%s: template ", line);
2670 pte (&x->tm);
09f131f2
JH
2671 fprintf (stdout, " address: base %s index %s scale %x\n",
2672 x->base_reg ? x->base_reg->reg_name : "none",
2673 x->index_reg ? x->index_reg->reg_name : "none",
2674 x->log2_scale_factor);
2675 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2676 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2677 fprintf (stdout, " sib: base %x index %x scale %x\n",
2678 x->sib.base, x->sib.index, x->sib.scale);
2679 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2680 (x->rex & REX_W) != 0,
2681 (x->rex & REX_R) != 0,
2682 (x->rex & REX_X) != 0,
2683 (x->rex & REX_B) != 0);
09137c09 2684 for (j = 0; j < x->operands; j++)
252b5132 2685 {
09137c09
SP
2686 fprintf (stdout, " #%d: ", j + 1);
2687 pt (x->types[j]);
252b5132 2688 fprintf (stdout, "\n");
09137c09
SP
2689 if (x->types[j].bitfield.reg8
2690 || x->types[j].bitfield.reg16
2691 || x->types[j].bitfield.reg32
2692 || x->types[j].bitfield.reg64
2693 || x->types[j].bitfield.regmmx
2694 || x->types[j].bitfield.regxmm
2695 || x->types[j].bitfield.regymm
43234a1e 2696 || x->types[j].bitfield.regzmm
09137c09
SP
2697 || x->types[j].bitfield.sreg2
2698 || x->types[j].bitfield.sreg3
2699 || x->types[j].bitfield.control
2700 || x->types[j].bitfield.debug
2701 || x->types[j].bitfield.test)
2702 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2703 if (operand_type_check (x->types[j], imm))
2704 pe (x->op[j].imms);
2705 if (operand_type_check (x->types[j], disp))
2706 pe (x->op[j].disps);
252b5132
RH
2707 }
2708}
2709
2710static void
d3ce72d0 2711pte (insn_template *t)
252b5132 2712{
09137c09 2713 unsigned int j;
252b5132 2714 fprintf (stdout, " %d operands ", t->operands);
47926f60 2715 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2716 if (t->extension_opcode != None)
2717 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2718 if (t->opcode_modifier.d)
252b5132 2719 fprintf (stdout, "D");
40fb9820 2720 if (t->opcode_modifier.w)
252b5132
RH
2721 fprintf (stdout, "W");
2722 fprintf (stdout, "\n");
09137c09 2723 for (j = 0; j < t->operands; j++)
252b5132 2724 {
09137c09
SP
2725 fprintf (stdout, " #%d type ", j + 1);
2726 pt (t->operand_types[j]);
252b5132
RH
2727 fprintf (stdout, "\n");
2728 }
2729}
2730
2731static void
e3bb37b5 2732pe (expressionS *e)
252b5132 2733{
24eab124 2734 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2735 fprintf (stdout, " add_number %ld (%lx)\n",
2736 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2737 if (e->X_add_symbol)
2738 {
2739 fprintf (stdout, " add_symbol ");
2740 ps (e->X_add_symbol);
2741 fprintf (stdout, "\n");
2742 }
2743 if (e->X_op_symbol)
2744 {
2745 fprintf (stdout, " op_symbol ");
2746 ps (e->X_op_symbol);
2747 fprintf (stdout, "\n");
2748 }
2749}
2750
2751static void
e3bb37b5 2752ps (symbolS *s)
252b5132
RH
2753{
2754 fprintf (stdout, "%s type %s%s",
2755 S_GET_NAME (s),
2756 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2757 segment_name (S_GET_SEGMENT (s)));
2758}
2759
7b81dfbb 2760static struct type_name
252b5132 2761 {
40fb9820
L
2762 i386_operand_type mask;
2763 const char *name;
252b5132 2764 }
7b81dfbb 2765const type_names[] =
252b5132 2766{
40fb9820
L
2767 { OPERAND_TYPE_REG8, "r8" },
2768 { OPERAND_TYPE_REG16, "r16" },
2769 { OPERAND_TYPE_REG32, "r32" },
2770 { OPERAND_TYPE_REG64, "r64" },
2771 { OPERAND_TYPE_IMM8, "i8" },
2772 { OPERAND_TYPE_IMM8, "i8s" },
2773 { OPERAND_TYPE_IMM16, "i16" },
2774 { OPERAND_TYPE_IMM32, "i32" },
2775 { OPERAND_TYPE_IMM32S, "i32s" },
2776 { OPERAND_TYPE_IMM64, "i64" },
2777 { OPERAND_TYPE_IMM1, "i1" },
2778 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2779 { OPERAND_TYPE_DISP8, "d8" },
2780 { OPERAND_TYPE_DISP16, "d16" },
2781 { OPERAND_TYPE_DISP32, "d32" },
2782 { OPERAND_TYPE_DISP32S, "d32s" },
2783 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2784 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2785 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2786 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2787 { OPERAND_TYPE_CONTROL, "control reg" },
2788 { OPERAND_TYPE_TEST, "test reg" },
2789 { OPERAND_TYPE_DEBUG, "debug reg" },
2790 { OPERAND_TYPE_FLOATREG, "FReg" },
2791 { OPERAND_TYPE_FLOATACC, "FAcc" },
2792 { OPERAND_TYPE_SREG2, "SReg2" },
2793 { OPERAND_TYPE_SREG3, "SReg3" },
2794 { OPERAND_TYPE_ACC, "Acc" },
2795 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2796 { OPERAND_TYPE_REGMMX, "rMMX" },
2797 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2798 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2799 { OPERAND_TYPE_REGZMM, "rZMM" },
2800 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2801 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2802};
2803
2804static void
40fb9820 2805pt (i386_operand_type t)
252b5132 2806{
40fb9820 2807 unsigned int j;
c6fb90c8 2808 i386_operand_type a;
252b5132 2809
40fb9820 2810 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2811 {
2812 a = operand_type_and (t, type_names[j].mask);
0349dc08 2813 if (!operand_type_all_zero (&a))
c6fb90c8
L
2814 fprintf (stdout, "%s, ", type_names[j].name);
2815 }
252b5132
RH
2816 fflush (stdout);
2817}
2818
2819#endif /* DEBUG386 */
2820\f
252b5132 2821static bfd_reloc_code_real_type
3956db08 2822reloc (unsigned int size,
64e74474
AM
2823 int pcrel,
2824 int sign,
c3320543 2825 int bnd_prefix,
64e74474 2826 bfd_reloc_code_real_type other)
252b5132 2827{
47926f60 2828 if (other != NO_RELOC)
3956db08 2829 {
91d6fa6a 2830 reloc_howto_type *rel;
3956db08
JB
2831
2832 if (size == 8)
2833 switch (other)
2834 {
64e74474
AM
2835 case BFD_RELOC_X86_64_GOT32:
2836 return BFD_RELOC_X86_64_GOT64;
2837 break;
2838 case BFD_RELOC_X86_64_PLTOFF64:
2839 return BFD_RELOC_X86_64_PLTOFF64;
2840 break;
2841 case BFD_RELOC_X86_64_GOTPC32:
2842 other = BFD_RELOC_X86_64_GOTPC64;
2843 break;
2844 case BFD_RELOC_X86_64_GOTPCREL:
2845 other = BFD_RELOC_X86_64_GOTPCREL64;
2846 break;
2847 case BFD_RELOC_X86_64_TPOFF32:
2848 other = BFD_RELOC_X86_64_TPOFF64;
2849 break;
2850 case BFD_RELOC_X86_64_DTPOFF32:
2851 other = BFD_RELOC_X86_64_DTPOFF64;
2852 break;
2853 default:
2854 break;
3956db08 2855 }
e05278af 2856
8ce3d284 2857#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2858 if (other == BFD_RELOC_SIZE32)
2859 {
2860 if (size == 8)
1ab668bf 2861 other = BFD_RELOC_SIZE64;
8fd4256d 2862 if (pcrel)
1ab668bf
AM
2863 {
2864 as_bad (_("there are no pc-relative size relocations"));
2865 return NO_RELOC;
2866 }
8fd4256d 2867 }
8ce3d284 2868#endif
8fd4256d 2869
e05278af 2870 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2871 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2872 sign = -1;
2873
91d6fa6a
NC
2874 rel = bfd_reloc_type_lookup (stdoutput, other);
2875 if (!rel)
3956db08 2876 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2877 else if (size != bfd_get_reloc_size (rel))
3956db08 2878 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2879 bfd_get_reloc_size (rel),
3956db08 2880 size);
91d6fa6a 2881 else if (pcrel && !rel->pc_relative)
3956db08 2882 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2883 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2884 && !sign)
91d6fa6a 2885 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2886 && sign > 0))
3956db08
JB
2887 as_bad (_("relocated field and relocation type differ in signedness"));
2888 else
2889 return other;
2890 return NO_RELOC;
2891 }
252b5132
RH
2892
2893 if (pcrel)
2894 {
3e73aa7c 2895 if (!sign)
3956db08 2896 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2897 switch (size)
2898 {
2899 case 1: return BFD_RELOC_8_PCREL;
2900 case 2: return BFD_RELOC_16_PCREL;
c3320543
L
2901 case 4: return (bnd_prefix && object_64bit
2902 ? BFD_RELOC_X86_64_PC32_BND
2903 : BFD_RELOC_32_PCREL);
d6ab8113 2904 case 8: return BFD_RELOC_64_PCREL;
252b5132 2905 }
3956db08 2906 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2907 }
2908 else
2909 {
3956db08 2910 if (sign > 0)
e5cb08ac 2911 switch (size)
3e73aa7c
JH
2912 {
2913 case 4: return BFD_RELOC_X86_64_32S;
2914 }
2915 else
2916 switch (size)
2917 {
2918 case 1: return BFD_RELOC_8;
2919 case 2: return BFD_RELOC_16;
2920 case 4: return BFD_RELOC_32;
2921 case 8: return BFD_RELOC_64;
2922 }
3956db08
JB
2923 as_bad (_("cannot do %s %u byte relocation"),
2924 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2925 }
2926
0cc9e1d3 2927 return NO_RELOC;
252b5132
RH
2928}
2929
47926f60
KH
2930/* Here we decide which fixups can be adjusted to make them relative to
2931 the beginning of the section instead of the symbol. Basically we need
2932 to make sure that the dynamic relocations are done correctly, so in
2933 some cases we force the original symbol to be used. */
2934
252b5132 2935int
e3bb37b5 2936tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2937{
6d249963 2938#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2939 if (!IS_ELF)
31312f95
AM
2940 return 1;
2941
a161fe53
AM
2942 /* Don't adjust pc-relative references to merge sections in 64-bit
2943 mode. */
2944 if (use_rela_relocations
2945 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2946 && fixP->fx_pcrel)
252b5132 2947 return 0;
31312f95 2948
8d01d9a9
AJ
2949 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2950 and changed later by validate_fix. */
2951 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2952 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2953 return 0;
2954
8fd4256d
L
2955 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2956 for size relocations. */
2957 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2958 || fixP->fx_r_type == BFD_RELOC_SIZE64
2959 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
2960 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2961 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2962 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2963 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2964 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2965 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2966 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2967 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2968 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2969 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2970 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2971 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2972 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2973 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2974 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2975 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2976 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2977 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2978 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2979 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2980 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2981 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2982 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2983 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2984 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2985 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2986 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2987 return 0;
31312f95 2988#endif
252b5132
RH
2989 return 1;
2990}
252b5132 2991
b4cac588 2992static int
e3bb37b5 2993intel_float_operand (const char *mnemonic)
252b5132 2994{
9306ca4a
JB
2995 /* Note that the value returned is meaningful only for opcodes with (memory)
2996 operands, hence the code here is free to improperly handle opcodes that
2997 have no operands (for better performance and smaller code). */
2998
2999 if (mnemonic[0] != 'f')
3000 return 0; /* non-math */
3001
3002 switch (mnemonic[1])
3003 {
3004 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3005 the fs segment override prefix not currently handled because no
3006 call path can make opcodes without operands get here */
3007 case 'i':
3008 return 2 /* integer op */;
3009 case 'l':
3010 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3011 return 3; /* fldcw/fldenv */
3012 break;
3013 case 'n':
3014 if (mnemonic[2] != 'o' /* fnop */)
3015 return 3; /* non-waiting control op */
3016 break;
3017 case 'r':
3018 if (mnemonic[2] == 's')
3019 return 3; /* frstor/frstpm */
3020 break;
3021 case 's':
3022 if (mnemonic[2] == 'a')
3023 return 3; /* fsave */
3024 if (mnemonic[2] == 't')
3025 {
3026 switch (mnemonic[3])
3027 {
3028 case 'c': /* fstcw */
3029 case 'd': /* fstdw */
3030 case 'e': /* fstenv */
3031 case 's': /* fsts[gw] */
3032 return 3;
3033 }
3034 }
3035 break;
3036 case 'x':
3037 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3038 return 0; /* fxsave/fxrstor are not really math ops */
3039 break;
3040 }
252b5132 3041
9306ca4a 3042 return 1;
252b5132
RH
3043}
3044
c0f3af97
L
3045/* Build the VEX prefix. */
3046
3047static void
d3ce72d0 3048build_vex_prefix (const insn_template *t)
c0f3af97
L
3049{
3050 unsigned int register_specifier;
3051 unsigned int implied_prefix;
3052 unsigned int vector_length;
3053
3054 /* Check register specifier. */
3055 if (i.vex.register_specifier)
43234a1e
L
3056 {
3057 register_specifier =
3058 ~register_number (i.vex.register_specifier) & 0xf;
3059 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3060 }
c0f3af97
L
3061 else
3062 register_specifier = 0xf;
3063
fa99fab2
L
3064 /* Use 2-byte VEX prefix by swappping destination and source
3065 operand. */
3066 if (!i.swap_operand
3067 && i.operands == i.reg_operands
7f399153 3068 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
3069 && i.tm.opcode_modifier.s
3070 && i.rex == REX_B)
3071 {
3072 unsigned int xchg = i.operands - 1;
3073 union i386_op temp_op;
3074 i386_operand_type temp_type;
3075
3076 temp_type = i.types[xchg];
3077 i.types[xchg] = i.types[0];
3078 i.types[0] = temp_type;
3079 temp_op = i.op[xchg];
3080 i.op[xchg] = i.op[0];
3081 i.op[0] = temp_op;
3082
9c2799c2 3083 gas_assert (i.rm.mode == 3);
fa99fab2
L
3084
3085 i.rex = REX_R;
3086 xchg = i.rm.regmem;
3087 i.rm.regmem = i.rm.reg;
3088 i.rm.reg = xchg;
3089
3090 /* Use the next insn. */
3091 i.tm = t[1];
3092 }
3093
539f890d
L
3094 if (i.tm.opcode_modifier.vex == VEXScalar)
3095 vector_length = avxscalar;
3096 else
3097 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3098
3099 switch ((i.tm.base_opcode >> 8) & 0xff)
3100 {
3101 case 0:
3102 implied_prefix = 0;
3103 break;
3104 case DATA_PREFIX_OPCODE:
3105 implied_prefix = 1;
3106 break;
3107 case REPE_PREFIX_OPCODE:
3108 implied_prefix = 2;
3109 break;
3110 case REPNE_PREFIX_OPCODE:
3111 implied_prefix = 3;
3112 break;
3113 default:
3114 abort ();
3115 }
3116
3117 /* Use 2-byte VEX prefix if possible. */
7f399153 3118 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3119 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3120 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3121 {
3122 /* 2-byte VEX prefix. */
3123 unsigned int r;
3124
3125 i.vex.length = 2;
3126 i.vex.bytes[0] = 0xc5;
3127
3128 /* Check the REX.R bit. */
3129 r = (i.rex & REX_R) ? 0 : 1;
3130 i.vex.bytes[1] = (r << 7
3131 | register_specifier << 3
3132 | vector_length << 2
3133 | implied_prefix);
3134 }
3135 else
3136 {
3137 /* 3-byte VEX prefix. */
3138 unsigned int m, w;
3139
f88c9eb0 3140 i.vex.length = 3;
f88c9eb0 3141
7f399153 3142 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3143 {
7f399153
L
3144 case VEX0F:
3145 m = 0x1;
80de6e00 3146 i.vex.bytes[0] = 0xc4;
7f399153
L
3147 break;
3148 case VEX0F38:
3149 m = 0x2;
80de6e00 3150 i.vex.bytes[0] = 0xc4;
7f399153
L
3151 break;
3152 case VEX0F3A:
3153 m = 0x3;
80de6e00 3154 i.vex.bytes[0] = 0xc4;
7f399153
L
3155 break;
3156 case XOP08:
5dd85c99
SP
3157 m = 0x8;
3158 i.vex.bytes[0] = 0x8f;
7f399153
L
3159 break;
3160 case XOP09:
f88c9eb0
SP
3161 m = 0x9;
3162 i.vex.bytes[0] = 0x8f;
7f399153
L
3163 break;
3164 case XOP0A:
f88c9eb0
SP
3165 m = 0xa;
3166 i.vex.bytes[0] = 0x8f;
7f399153
L
3167 break;
3168 default:
3169 abort ();
f88c9eb0 3170 }
c0f3af97 3171
c0f3af97
L
3172 /* The high 3 bits of the second VEX byte are 1's compliment
3173 of RXB bits from REX. */
3174 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3175
3176 /* Check the REX.W bit. */
3177 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3178 if (i.tm.opcode_modifier.vexw == VEXW1)
3179 w = 1;
c0f3af97
L
3180
3181 i.vex.bytes[2] = (w << 7
3182 | register_specifier << 3
3183 | vector_length << 2
3184 | implied_prefix);
3185 }
3186}
3187
43234a1e
L
3188/* Build the EVEX prefix. */
3189
3190static void
3191build_evex_prefix (void)
3192{
3193 unsigned int register_specifier;
3194 unsigned int implied_prefix;
3195 unsigned int m, w;
3196 rex_byte vrex_used = 0;
3197
3198 /* Check register specifier. */
3199 if (i.vex.register_specifier)
3200 {
3201 gas_assert ((i.vrex & REX_X) == 0);
3202
3203 register_specifier = i.vex.register_specifier->reg_num;
3204 if ((i.vex.register_specifier->reg_flags & RegRex))
3205 register_specifier += 8;
3206 /* The upper 16 registers are encoded in the fourth byte of the
3207 EVEX prefix. */
3208 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3209 i.vex.bytes[3] = 0x8;
3210 register_specifier = ~register_specifier & 0xf;
3211 }
3212 else
3213 {
3214 register_specifier = 0xf;
3215
3216 /* Encode upper 16 vector index register in the fourth byte of
3217 the EVEX prefix. */
3218 if (!(i.vrex & REX_X))
3219 i.vex.bytes[3] = 0x8;
3220 else
3221 vrex_used |= REX_X;
3222 }
3223
3224 switch ((i.tm.base_opcode >> 8) & 0xff)
3225 {
3226 case 0:
3227 implied_prefix = 0;
3228 break;
3229 case DATA_PREFIX_OPCODE:
3230 implied_prefix = 1;
3231 break;
3232 case REPE_PREFIX_OPCODE:
3233 implied_prefix = 2;
3234 break;
3235 case REPNE_PREFIX_OPCODE:
3236 implied_prefix = 3;
3237 break;
3238 default:
3239 abort ();
3240 }
3241
3242 /* 4 byte EVEX prefix. */
3243 i.vex.length = 4;
3244 i.vex.bytes[0] = 0x62;
3245
3246 /* mmmm bits. */
3247 switch (i.tm.opcode_modifier.vexopcode)
3248 {
3249 case VEX0F:
3250 m = 1;
3251 break;
3252 case VEX0F38:
3253 m = 2;
3254 break;
3255 case VEX0F3A:
3256 m = 3;
3257 break;
3258 default:
3259 abort ();
3260 break;
3261 }
3262
3263 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3264 bits from REX. */
3265 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3266
3267 /* The fifth bit of the second EVEX byte is 1's compliment of the
3268 REX_R bit in VREX. */
3269 if (!(i.vrex & REX_R))
3270 i.vex.bytes[1] |= 0x10;
3271 else
3272 vrex_used |= REX_R;
3273
3274 if ((i.reg_operands + i.imm_operands) == i.operands)
3275 {
3276 /* When all operands are registers, the REX_X bit in REX is not
3277 used. We reuse it to encode the upper 16 registers, which is
3278 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3279 as 1's compliment. */
3280 if ((i.vrex & REX_B))
3281 {
3282 vrex_used |= REX_B;
3283 i.vex.bytes[1] &= ~0x40;
3284 }
3285 }
3286
3287 /* EVEX instructions shouldn't need the REX prefix. */
3288 i.vrex &= ~vrex_used;
3289 gas_assert (i.vrex == 0);
3290
3291 /* Check the REX.W bit. */
3292 w = (i.rex & REX_W) ? 1 : 0;
3293 if (i.tm.opcode_modifier.vexw)
3294 {
3295 if (i.tm.opcode_modifier.vexw == VEXW1)
3296 w = 1;
3297 }
3298 /* If w is not set it means we are dealing with WIG instruction. */
3299 else if (!w)
3300 {
3301 if (evexwig == evexw1)
3302 w = 1;
3303 }
3304
3305 /* Encode the U bit. */
3306 implied_prefix |= 0x4;
3307
3308 /* The third byte of the EVEX prefix. */
3309 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3310
3311 /* The fourth byte of the EVEX prefix. */
3312 /* The zeroing-masking bit. */
3313 if (i.mask && i.mask->zeroing)
3314 i.vex.bytes[3] |= 0x80;
3315
3316 /* Don't always set the broadcast bit if there is no RC. */
3317 if (!i.rounding)
3318 {
3319 /* Encode the vector length. */
3320 unsigned int vec_length;
3321
3322 switch (i.tm.opcode_modifier.evex)
3323 {
3324 case EVEXLIG: /* LL' is ignored */
3325 vec_length = evexlig << 5;
3326 break;
3327 case EVEX128:
3328 vec_length = 0 << 5;
3329 break;
3330 case EVEX256:
3331 vec_length = 1 << 5;
3332 break;
3333 case EVEX512:
3334 vec_length = 2 << 5;
3335 break;
3336 default:
3337 abort ();
3338 break;
3339 }
3340 i.vex.bytes[3] |= vec_length;
3341 /* Encode the broadcast bit. */
3342 if (i.broadcast)
3343 i.vex.bytes[3] |= 0x10;
3344 }
3345 else
3346 {
3347 if (i.rounding->type != saeonly)
3348 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3349 else
d3d3c6db 3350 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3351 }
3352
3353 if (i.mask && i.mask->mask)
3354 i.vex.bytes[3] |= i.mask->mask->reg_num;
3355}
3356
65da13b5
L
3357static void
3358process_immext (void)
3359{
3360 expressionS *exp;
3361
4c692bc7
JB
3362 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3363 && i.operands > 0)
65da13b5 3364 {
4c692bc7
JB
3365 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3366 with an opcode suffix which is coded in the same place as an
3367 8-bit immediate field would be.
3368 Here we check those operands and remove them afterwards. */
65da13b5
L
3369 unsigned int x;
3370
3371 for (x = 0; x < i.operands; x++)
4c692bc7 3372 if (register_number (i.op[x].regs) != x)
65da13b5 3373 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3374 register_prefix, i.op[x].regs->reg_name, x + 1,
3375 i.tm.name);
3376
3377 i.operands = 0;
65da13b5
L
3378 }
3379
c0f3af97 3380 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3381 which is coded in the same place as an 8-bit immediate field
3382 would be. Here we fake an 8-bit immediate operand from the
3383 opcode suffix stored in tm.extension_opcode.
3384
c1e679ec 3385 AVX instructions also use this encoding, for some of
c0f3af97 3386 3 argument instructions. */
65da13b5 3387
43234a1e 3388 gas_assert (i.imm_operands <= 1
7ab9ffdd 3389 && (i.operands <= 2
43234a1e
L
3390 || ((i.tm.opcode_modifier.vex
3391 || i.tm.opcode_modifier.evex)
7ab9ffdd 3392 && i.operands <= 4)));
65da13b5
L
3393
3394 exp = &im_expressions[i.imm_operands++];
3395 i.op[i.operands].imms = exp;
3396 i.types[i.operands] = imm8;
3397 i.operands++;
3398 exp->X_op = O_constant;
3399 exp->X_add_number = i.tm.extension_opcode;
3400 i.tm.extension_opcode = None;
3401}
3402
42164a71
L
3403
3404static int
3405check_hle (void)
3406{
3407 switch (i.tm.opcode_modifier.hleprefixok)
3408 {
3409 default:
3410 abort ();
82c2def5 3411 case HLEPrefixNone:
165de32a
L
3412 as_bad (_("invalid instruction `%s' after `%s'"),
3413 i.tm.name, i.hle_prefix);
42164a71 3414 return 0;
82c2def5 3415 case HLEPrefixLock:
42164a71
L
3416 if (i.prefix[LOCK_PREFIX])
3417 return 1;
165de32a 3418 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3419 return 0;
82c2def5 3420 case HLEPrefixAny:
42164a71 3421 return 1;
82c2def5 3422 case HLEPrefixRelease:
42164a71
L
3423 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3424 {
3425 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3426 i.tm.name);
3427 return 0;
3428 }
3429 if (i.mem_operands == 0
3430 || !operand_type_check (i.types[i.operands - 1], anymem))
3431 {
3432 as_bad (_("memory destination needed for instruction `%s'"
3433 " after `xrelease'"), i.tm.name);
3434 return 0;
3435 }
3436 return 1;
3437 }
3438}
3439
252b5132
RH
3440/* This is the guts of the machine-dependent assembler. LINE points to a
3441 machine dependent instruction. This function is supposed to emit
3442 the frags/bytes it assembles to. */
3443
3444void
65da13b5 3445md_assemble (char *line)
252b5132 3446{
40fb9820 3447 unsigned int j;
252b5132 3448 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 3449 const insn_template *t;
252b5132 3450
47926f60 3451 /* Initialize globals. */
252b5132
RH
3452 memset (&i, '\0', sizeof (i));
3453 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3454 i.reloc[j] = NO_RELOC;
252b5132
RH
3455 memset (disp_expressions, '\0', sizeof (disp_expressions));
3456 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3457 save_stack_p = save_stack;
252b5132
RH
3458
3459 /* First parse an instruction mnemonic & call i386_operand for the operands.
3460 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3461 start of a (possibly prefixed) mnemonic. */
252b5132 3462
29b0f896
AM
3463 line = parse_insn (line, mnemonic);
3464 if (line == NULL)
3465 return;
252b5132 3466
29b0f896 3467 line = parse_operands (line, mnemonic);
ee86248c 3468 this_operand = -1;
29b0f896
AM
3469 if (line == NULL)
3470 return;
252b5132 3471
29b0f896
AM
3472 /* Now we've parsed the mnemonic into a set of templates, and have the
3473 operands at hand. */
3474
3475 /* All intel opcodes have reversed operands except for "bound" and
3476 "enter". We also don't reverse intersegment "jmp" and "call"
3477 instructions with 2 immediate operands so that the immediate segment
050dfa73 3478 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3479 if (intel_syntax
3480 && i.operands > 1
29b0f896 3481 && (strcmp (mnemonic, "bound") != 0)
30123838 3482 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3483 && !(operand_type_check (i.types[0], imm)
3484 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3485 swap_operands ();
3486
ec56d5c0
JB
3487 /* The order of the immediates should be reversed
3488 for 2 immediates extrq and insertq instructions */
3489 if (i.imm_operands == 2
3490 && (strcmp (mnemonic, "extrq") == 0
3491 || strcmp (mnemonic, "insertq") == 0))
3492 swap_2_operands (0, 1);
3493
29b0f896
AM
3494 if (i.imm_operands)
3495 optimize_imm ();
3496
b300c311
L
3497 /* Don't optimize displacement for movabs since it only takes 64bit
3498 displacement. */
3499 if (i.disp_operands
a501d77e 3500 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3501 && (flag_code != CODE_64BIT
3502 || strcmp (mnemonic, "movabs") != 0))
3503 optimize_disp ();
29b0f896
AM
3504
3505 /* Next, we find a template that matches the given insn,
3506 making sure the overlap of the given operands types is consistent
3507 with the template operand types. */
252b5132 3508
fa99fab2 3509 if (!(t = match_template ()))
29b0f896 3510 return;
252b5132 3511
7bab8ab5 3512 if (sse_check != check_none
81f8a913 3513 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3514 && (i.tm.cpu_flags.bitfield.cpusse
3515 || i.tm.cpu_flags.bitfield.cpusse2
3516 || i.tm.cpu_flags.bitfield.cpusse3
3517 || i.tm.cpu_flags.bitfield.cpussse3
3518 || i.tm.cpu_flags.bitfield.cpusse4_1
3519 || i.tm.cpu_flags.bitfield.cpusse4_2))
3520 {
7bab8ab5 3521 (sse_check == check_warning
daf50ae7
L
3522 ? as_warn
3523 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3524 }
3525
321fd21e
L
3526 /* Zap movzx and movsx suffix. The suffix has been set from
3527 "word ptr" or "byte ptr" on the source operand in Intel syntax
3528 or extracted from mnemonic in AT&T syntax. But we'll use
3529 the destination register to choose the suffix for encoding. */
3530 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3531 {
321fd21e
L
3532 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3533 there is no suffix, the default will be byte extension. */
3534 if (i.reg_operands != 2
3535 && !i.suffix
7ab9ffdd 3536 && intel_syntax)
321fd21e
L
3537 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3538
3539 i.suffix = 0;
cd61ebfe 3540 }
24eab124 3541
40fb9820 3542 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3543 if (!add_prefix (FWAIT_OPCODE))
3544 return;
252b5132 3545
d5de92cf
L
3546 /* Check if REP prefix is OK. */
3547 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3548 {
3549 as_bad (_("invalid instruction `%s' after `%s'"),
3550 i.tm.name, i.rep_prefix);
3551 return;
3552 }
3553
c1ba0266
L
3554 /* Check for lock without a lockable instruction. Destination operand
3555 must be memory unless it is xchg (0x86). */
c32fa91d
L
3556 if (i.prefix[LOCK_PREFIX]
3557 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3558 || i.mem_operands == 0
3559 || (i.tm.base_opcode != 0x86
3560 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3561 {
3562 as_bad (_("expecting lockable instruction after `lock'"));
3563 return;
3564 }
3565
42164a71 3566 /* Check if HLE prefix is OK. */
165de32a 3567 if (i.hle_prefix && !check_hle ())
42164a71
L
3568 return;
3569
7e8b059b
L
3570 /* Check BND prefix. */
3571 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3572 as_bad (_("expecting valid branch instruction after `bnd'"));
3573
3574 if (i.tm.cpu_flags.bitfield.cpumpx
3575 && flag_code == CODE_64BIT
3576 && i.prefix[ADDR_PREFIX])
3577 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3578
3579 /* Insert BND prefix. */
3580 if (add_bnd_prefix
3581 && i.tm.opcode_modifier.bndprefixok
3582 && !i.prefix[BND_PREFIX])
3583 add_prefix (BND_PREFIX_OPCODE);
3584
29b0f896 3585 /* Check string instruction segment overrides. */
40fb9820 3586 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3587 {
3588 if (!check_string ())
5dd0794d 3589 return;
fc0763e6 3590 i.disp_operands = 0;
29b0f896 3591 }
5dd0794d 3592
29b0f896
AM
3593 if (!process_suffix ())
3594 return;
e413e4e9 3595
bc0844ae
L
3596 /* Update operand types. */
3597 for (j = 0; j < i.operands; j++)
3598 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3599
29b0f896
AM
3600 /* Make still unresolved immediate matches conform to size of immediate
3601 given in i.suffix. */
3602 if (!finalize_imm ())
3603 return;
252b5132 3604
40fb9820 3605 if (i.types[0].bitfield.imm1)
29b0f896 3606 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3607
9afe6eb8
L
3608 /* We only need to check those implicit registers for instructions
3609 with 3 operands or less. */
3610 if (i.operands <= 3)
3611 for (j = 0; j < i.operands; j++)
3612 if (i.types[j].bitfield.inoutportreg
3613 || i.types[j].bitfield.shiftcount
3614 || i.types[j].bitfield.acc
3615 || i.types[j].bitfield.floatacc)
3616 i.reg_operands--;
40fb9820 3617
c0f3af97
L
3618 /* ImmExt should be processed after SSE2AVX. */
3619 if (!i.tm.opcode_modifier.sse2avx
3620 && i.tm.opcode_modifier.immext)
65da13b5 3621 process_immext ();
252b5132 3622
29b0f896
AM
3623 /* For insns with operands there are more diddles to do to the opcode. */
3624 if (i.operands)
3625 {
3626 if (!process_operands ())
3627 return;
3628 }
40fb9820 3629 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3630 {
3631 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3632 as_warn (_("translating to `%sp'"), i.tm.name);
3633 }
252b5132 3634
9e5e5283
L
3635 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3636 {
3637 if (flag_code == CODE_16BIT)
3638 {
3639 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3640 i.tm.name);
3641 return;
3642 }
c0f3af97 3643
9e5e5283
L
3644 if (i.tm.opcode_modifier.vex)
3645 build_vex_prefix (t);
3646 else
3647 build_evex_prefix ();
3648 }
43234a1e 3649
5dd85c99
SP
3650 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3651 instructions may define INT_OPCODE as well, so avoid this corner
3652 case for those instructions that use MODRM. */
3653 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3654 && !i.tm.opcode_modifier.modrm
3655 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3656 {
3657 i.tm.base_opcode = INT3_OPCODE;
3658 i.imm_operands = 0;
3659 }
252b5132 3660
40fb9820
L
3661 if ((i.tm.opcode_modifier.jump
3662 || i.tm.opcode_modifier.jumpbyte
3663 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3664 && i.op[0].disps->X_op == O_constant)
3665 {
3666 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3667 the absolute address given by the constant. Since ix86 jumps and
3668 calls are pc relative, we need to generate a reloc. */
3669 i.op[0].disps->X_add_symbol = &abs_symbol;
3670 i.op[0].disps->X_op = O_symbol;
3671 }
252b5132 3672
40fb9820 3673 if (i.tm.opcode_modifier.rex64)
161a04f6 3674 i.rex |= REX_W;
252b5132 3675
29b0f896
AM
3676 /* For 8 bit registers we need an empty rex prefix. Also if the
3677 instruction already has a prefix, we need to convert old
3678 registers to new ones. */
773f551c 3679
40fb9820 3680 if ((i.types[0].bitfield.reg8
29b0f896 3681 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3682 || (i.types[1].bitfield.reg8
29b0f896 3683 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3684 || ((i.types[0].bitfield.reg8
3685 || i.types[1].bitfield.reg8)
29b0f896
AM
3686 && i.rex != 0))
3687 {
3688 int x;
726c5dcd 3689
29b0f896
AM
3690 i.rex |= REX_OPCODE;
3691 for (x = 0; x < 2; x++)
3692 {
3693 /* Look for 8 bit operand that uses old registers. */
40fb9820 3694 if (i.types[x].bitfield.reg8
29b0f896 3695 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3696 {
29b0f896
AM
3697 /* In case it is "hi" register, give up. */
3698 if (i.op[x].regs->reg_num > 3)
a540244d 3699 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3700 "instruction requiring REX prefix."),
a540244d 3701 register_prefix, i.op[x].regs->reg_name);
773f551c 3702
29b0f896
AM
3703 /* Otherwise it is equivalent to the extended register.
3704 Since the encoding doesn't change this is merely
3705 cosmetic cleanup for debug output. */
3706
3707 i.op[x].regs = i.op[x].regs + 8;
773f551c 3708 }
29b0f896
AM
3709 }
3710 }
773f551c 3711
7ab9ffdd 3712 if (i.rex != 0)
29b0f896
AM
3713 add_prefix (REX_OPCODE | i.rex);
3714
3715 /* We are ready to output the insn. */
3716 output_insn ();
3717}
3718
3719static char *
e3bb37b5 3720parse_insn (char *line, char *mnemonic)
29b0f896
AM
3721{
3722 char *l = line;
3723 char *token_start = l;
3724 char *mnem_p;
5c6af06e 3725 int supported;
d3ce72d0 3726 const insn_template *t;
b6169b20 3727 char *dot_p = NULL;
29b0f896 3728
29b0f896
AM
3729 while (1)
3730 {
3731 mnem_p = mnemonic;
3732 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3733 {
b6169b20
L
3734 if (*mnem_p == '.')
3735 dot_p = mnem_p;
29b0f896
AM
3736 mnem_p++;
3737 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3738 {
29b0f896
AM
3739 as_bad (_("no such instruction: `%s'"), token_start);
3740 return NULL;
3741 }
3742 l++;
3743 }
3744 if (!is_space_char (*l)
3745 && *l != END_OF_INSN
e44823cf
JB
3746 && (intel_syntax
3747 || (*l != PREFIX_SEPARATOR
3748 && *l != ',')))
29b0f896
AM
3749 {
3750 as_bad (_("invalid character %s in mnemonic"),
3751 output_invalid (*l));
3752 return NULL;
3753 }
3754 if (token_start == l)
3755 {
e44823cf 3756 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3757 as_bad (_("expecting prefix; got nothing"));
3758 else
3759 as_bad (_("expecting mnemonic; got nothing"));
3760 return NULL;
3761 }
45288df1 3762
29b0f896 3763 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3764 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3765
29b0f896
AM
3766 if (*l != END_OF_INSN
3767 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3768 && current_templates
40fb9820 3769 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3770 {
c6fb90c8 3771 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3772 {
3773 as_bad ((flag_code != CODE_64BIT
3774 ? _("`%s' is only supported in 64-bit mode")
3775 : _("`%s' is not supported in 64-bit mode")),
3776 current_templates->start->name);
3777 return NULL;
3778 }
29b0f896
AM
3779 /* If we are in 16-bit mode, do not allow addr16 or data16.
3780 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3781 if ((current_templates->start->opcode_modifier.size16
3782 || current_templates->start->opcode_modifier.size32)
29b0f896 3783 && flag_code != CODE_64BIT
40fb9820 3784 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3785 ^ (flag_code == CODE_16BIT)))
3786 {
3787 as_bad (_("redundant %s prefix"),
3788 current_templates->start->name);
3789 return NULL;
45288df1 3790 }
29b0f896
AM
3791 /* Add prefix, checking for repeated prefixes. */
3792 switch (add_prefix (current_templates->start->base_opcode))
3793 {
c32fa91d 3794 case PREFIX_EXIST:
29b0f896 3795 return NULL;
c32fa91d 3796 case PREFIX_REP:
42164a71 3797 if (current_templates->start->cpu_flags.bitfield.cpuhle)
165de32a 3798 i.hle_prefix = current_templates->start->name;
7e8b059b
L
3799 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3800 i.bnd_prefix = current_templates->start->name;
42164a71 3801 else
d5de92cf 3802 i.rep_prefix = current_templates->start->name;
29b0f896 3803 break;
c32fa91d
L
3804 default:
3805 break;
29b0f896
AM
3806 }
3807 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3808 token_start = ++l;
3809 }
3810 else
3811 break;
3812 }
45288df1 3813
30a55f88 3814 if (!current_templates)
b6169b20 3815 {
f8a5c266
L
3816 /* Check if we should swap operand or force 32bit displacement in
3817 encoding. */
30a55f88
L
3818 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3819 i.swap_operand = 1;
8d63c93e 3820 else if (mnem_p - 3 == dot_p
a501d77e
L
3821 && dot_p[1] == 'd'
3822 && dot_p[2] == '8')
3823 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3824 else if (mnem_p - 4 == dot_p
f8a5c266
L
3825 && dot_p[1] == 'd'
3826 && dot_p[2] == '3'
3827 && dot_p[3] == '2')
a501d77e 3828 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3829 else
3830 goto check_suffix;
3831 mnem_p = dot_p;
3832 *dot_p = '\0';
d3ce72d0 3833 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3834 }
3835
29b0f896
AM
3836 if (!current_templates)
3837 {
b6169b20 3838check_suffix:
29b0f896
AM
3839 /* See if we can get a match by trimming off a suffix. */
3840 switch (mnem_p[-1])
3841 {
3842 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3843 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3844 i.suffix = SHORT_MNEM_SUFFIX;
3845 else
29b0f896
AM
3846 case BYTE_MNEM_SUFFIX:
3847 case QWORD_MNEM_SUFFIX:
3848 i.suffix = mnem_p[-1];
3849 mnem_p[-1] = '\0';
d3ce72d0
NC
3850 current_templates = (const templates *) hash_find (op_hash,
3851 mnemonic);
29b0f896
AM
3852 break;
3853 case SHORT_MNEM_SUFFIX:
3854 case LONG_MNEM_SUFFIX:
3855 if (!intel_syntax)
3856 {
3857 i.suffix = mnem_p[-1];
3858 mnem_p[-1] = '\0';
d3ce72d0
NC
3859 current_templates = (const templates *) hash_find (op_hash,
3860 mnemonic);
29b0f896
AM
3861 }
3862 break;
252b5132 3863
29b0f896
AM
3864 /* Intel Syntax. */
3865 case 'd':
3866 if (intel_syntax)
3867 {
9306ca4a 3868 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3869 i.suffix = SHORT_MNEM_SUFFIX;
3870 else
3871 i.suffix = LONG_MNEM_SUFFIX;
3872 mnem_p[-1] = '\0';
d3ce72d0
NC
3873 current_templates = (const templates *) hash_find (op_hash,
3874 mnemonic);
29b0f896
AM
3875 }
3876 break;
3877 }
3878 if (!current_templates)
3879 {
3880 as_bad (_("no such instruction: `%s'"), token_start);
3881 return NULL;
3882 }
3883 }
252b5132 3884
40fb9820
L
3885 if (current_templates->start->opcode_modifier.jump
3886 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3887 {
3888 /* Check for a branch hint. We allow ",pt" and ",pn" for
3889 predict taken and predict not taken respectively.
3890 I'm not sure that branch hints actually do anything on loop
3891 and jcxz insns (JumpByte) for current Pentium4 chips. They
3892 may work in the future and it doesn't hurt to accept them
3893 now. */
3894 if (l[0] == ',' && l[1] == 'p')
3895 {
3896 if (l[2] == 't')
3897 {
3898 if (!add_prefix (DS_PREFIX_OPCODE))
3899 return NULL;
3900 l += 3;
3901 }
3902 else if (l[2] == 'n')
3903 {
3904 if (!add_prefix (CS_PREFIX_OPCODE))
3905 return NULL;
3906 l += 3;
3907 }
3908 }
3909 }
3910 /* Any other comma loses. */
3911 if (*l == ',')
3912 {
3913 as_bad (_("invalid character %s in mnemonic"),
3914 output_invalid (*l));
3915 return NULL;
3916 }
252b5132 3917
29b0f896 3918 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3919 supported = 0;
3920 for (t = current_templates->start; t < current_templates->end; ++t)
3921 {
c0f3af97
L
3922 supported |= cpu_flags_match (t);
3923 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3924 goto skip;
5c6af06e 3925 }
3629bb00 3926
c0f3af97 3927 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3928 {
3929 as_bad (flag_code == CODE_64BIT
3930 ? _("`%s' is not supported in 64-bit mode")
3931 : _("`%s' is only supported in 64-bit mode"),
3932 current_templates->start->name);
3933 return NULL;
3934 }
c0f3af97 3935 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3936 {
3629bb00 3937 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3938 current_templates->start->name,
41aacd83 3939 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3940 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3941 return NULL;
29b0f896 3942 }
3629bb00
L
3943
3944skip:
3945 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3946 && (flag_code != CODE_16BIT))
29b0f896
AM
3947 {
3948 as_warn (_("use .code16 to ensure correct addressing mode"));
3949 }
252b5132 3950
29b0f896
AM
3951 return l;
3952}
252b5132 3953
29b0f896 3954static char *
e3bb37b5 3955parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3956{
3957 char *token_start;
3138f287 3958
29b0f896
AM
3959 /* 1 if operand is pending after ','. */
3960 unsigned int expecting_operand = 0;
252b5132 3961
29b0f896
AM
3962 /* Non-zero if operand parens not balanced. */
3963 unsigned int paren_not_balanced;
3964
3965 while (*l != END_OF_INSN)
3966 {
3967 /* Skip optional white space before operand. */
3968 if (is_space_char (*l))
3969 ++l;
3970 if (!is_operand_char (*l) && *l != END_OF_INSN)
3971 {
3972 as_bad (_("invalid character %s before operand %d"),
3973 output_invalid (*l),
3974 i.operands + 1);
3975 return NULL;
3976 }
3977 token_start = l; /* after white space */
3978 paren_not_balanced = 0;
3979 while (paren_not_balanced || *l != ',')
3980 {
3981 if (*l == END_OF_INSN)
3982 {
3983 if (paren_not_balanced)
3984 {
3985 if (!intel_syntax)
3986 as_bad (_("unbalanced parenthesis in operand %d."),
3987 i.operands + 1);
3988 else
3989 as_bad (_("unbalanced brackets in operand %d."),
3990 i.operands + 1);
3991 return NULL;
3992 }
3993 else
3994 break; /* we are done */
3995 }
3996 else if (!is_operand_char (*l) && !is_space_char (*l))
3997 {
3998 as_bad (_("invalid character %s in operand %d"),
3999 output_invalid (*l),
4000 i.operands + 1);
4001 return NULL;
4002 }
4003 if (!intel_syntax)
4004 {
4005 if (*l == '(')
4006 ++paren_not_balanced;
4007 if (*l == ')')
4008 --paren_not_balanced;
4009 }
4010 else
4011 {
4012 if (*l == '[')
4013 ++paren_not_balanced;
4014 if (*l == ']')
4015 --paren_not_balanced;
4016 }
4017 l++;
4018 }
4019 if (l != token_start)
4020 { /* Yes, we've read in another operand. */
4021 unsigned int operand_ok;
4022 this_operand = i.operands++;
7d5e4556 4023 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4024 if (i.operands > MAX_OPERANDS)
4025 {
4026 as_bad (_("spurious operands; (%d operands/instruction max)"),
4027 MAX_OPERANDS);
4028 return NULL;
4029 }
4030 /* Now parse operand adding info to 'i' as we go along. */
4031 END_STRING_AND_SAVE (l);
4032
4033 if (intel_syntax)
4034 operand_ok =
4035 i386_intel_operand (token_start,
4036 intel_float_operand (mnemonic));
4037 else
a7619375 4038 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4039
4040 RESTORE_END_STRING (l);
4041 if (!operand_ok)
4042 return NULL;
4043 }
4044 else
4045 {
4046 if (expecting_operand)
4047 {
4048 expecting_operand_after_comma:
4049 as_bad (_("expecting operand after ','; got nothing"));
4050 return NULL;
4051 }
4052 if (*l == ',')
4053 {
4054 as_bad (_("expecting operand before ','; got nothing"));
4055 return NULL;
4056 }
4057 }
7f3f1ea2 4058
29b0f896
AM
4059 /* Now *l must be either ',' or END_OF_INSN. */
4060 if (*l == ',')
4061 {
4062 if (*++l == END_OF_INSN)
4063 {
4064 /* Just skip it, if it's \n complain. */
4065 goto expecting_operand_after_comma;
4066 }
4067 expecting_operand = 1;
4068 }
4069 }
4070 return l;
4071}
7f3f1ea2 4072
050dfa73 4073static void
4d456e3d 4074swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4075{
4076 union i386_op temp_op;
40fb9820 4077 i386_operand_type temp_type;
050dfa73 4078 enum bfd_reloc_code_real temp_reloc;
4eed87de 4079
050dfa73
MM
4080 temp_type = i.types[xchg2];
4081 i.types[xchg2] = i.types[xchg1];
4082 i.types[xchg1] = temp_type;
4083 temp_op = i.op[xchg2];
4084 i.op[xchg2] = i.op[xchg1];
4085 i.op[xchg1] = temp_op;
4086 temp_reloc = i.reloc[xchg2];
4087 i.reloc[xchg2] = i.reloc[xchg1];
4088 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4089
4090 if (i.mask)
4091 {
4092 if (i.mask->operand == xchg1)
4093 i.mask->operand = xchg2;
4094 else if (i.mask->operand == xchg2)
4095 i.mask->operand = xchg1;
4096 }
4097 if (i.broadcast)
4098 {
4099 if (i.broadcast->operand == xchg1)
4100 i.broadcast->operand = xchg2;
4101 else if (i.broadcast->operand == xchg2)
4102 i.broadcast->operand = xchg1;
4103 }
4104 if (i.rounding)
4105 {
4106 if (i.rounding->operand == xchg1)
4107 i.rounding->operand = xchg2;
4108 else if (i.rounding->operand == xchg2)
4109 i.rounding->operand = xchg1;
4110 }
050dfa73
MM
4111}
4112
29b0f896 4113static void
e3bb37b5 4114swap_operands (void)
29b0f896 4115{
b7c61d9a 4116 switch (i.operands)
050dfa73 4117 {
c0f3af97 4118 case 5:
b7c61d9a 4119 case 4:
4d456e3d 4120 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
4121 case 3:
4122 case 2:
4d456e3d 4123 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4124 break;
4125 default:
4126 abort ();
29b0f896 4127 }
29b0f896
AM
4128
4129 if (i.mem_operands == 2)
4130 {
4131 const seg_entry *temp_seg;
4132 temp_seg = i.seg[0];
4133 i.seg[0] = i.seg[1];
4134 i.seg[1] = temp_seg;
4135 }
4136}
252b5132 4137
29b0f896
AM
4138/* Try to ensure constant immediates are represented in the smallest
4139 opcode possible. */
4140static void
e3bb37b5 4141optimize_imm (void)
29b0f896
AM
4142{
4143 char guess_suffix = 0;
4144 int op;
252b5132 4145
29b0f896
AM
4146 if (i.suffix)
4147 guess_suffix = i.suffix;
4148 else if (i.reg_operands)
4149 {
4150 /* Figure out a suffix from the last register operand specified.
4151 We can't do this properly yet, ie. excluding InOutPortReg,
4152 but the following works for instructions with immediates.
4153 In any case, we can't set i.suffix yet. */
4154 for (op = i.operands; --op >= 0;)
40fb9820 4155 if (i.types[op].bitfield.reg8)
7ab9ffdd 4156 {
40fb9820
L
4157 guess_suffix = BYTE_MNEM_SUFFIX;
4158 break;
4159 }
4160 else if (i.types[op].bitfield.reg16)
252b5132 4161 {
40fb9820
L
4162 guess_suffix = WORD_MNEM_SUFFIX;
4163 break;
4164 }
4165 else if (i.types[op].bitfield.reg32)
4166 {
4167 guess_suffix = LONG_MNEM_SUFFIX;
4168 break;
4169 }
4170 else if (i.types[op].bitfield.reg64)
4171 {
4172 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4173 break;
252b5132 4174 }
29b0f896
AM
4175 }
4176 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4177 guess_suffix = WORD_MNEM_SUFFIX;
4178
4179 for (op = i.operands; --op >= 0;)
40fb9820 4180 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4181 {
4182 switch (i.op[op].imms->X_op)
252b5132 4183 {
29b0f896
AM
4184 case O_constant:
4185 /* If a suffix is given, this operand may be shortened. */
4186 switch (guess_suffix)
252b5132 4187 {
29b0f896 4188 case LONG_MNEM_SUFFIX:
40fb9820
L
4189 i.types[op].bitfield.imm32 = 1;
4190 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4191 break;
4192 case WORD_MNEM_SUFFIX:
40fb9820
L
4193 i.types[op].bitfield.imm16 = 1;
4194 i.types[op].bitfield.imm32 = 1;
4195 i.types[op].bitfield.imm32s = 1;
4196 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4197 break;
4198 case BYTE_MNEM_SUFFIX:
40fb9820
L
4199 i.types[op].bitfield.imm8 = 1;
4200 i.types[op].bitfield.imm8s = 1;
4201 i.types[op].bitfield.imm16 = 1;
4202 i.types[op].bitfield.imm32 = 1;
4203 i.types[op].bitfield.imm32s = 1;
4204 i.types[op].bitfield.imm64 = 1;
29b0f896 4205 break;
252b5132 4206 }
252b5132 4207
29b0f896
AM
4208 /* If this operand is at most 16 bits, convert it
4209 to a signed 16 bit number before trying to see
4210 whether it will fit in an even smaller size.
4211 This allows a 16-bit operand such as $0xffe0 to
4212 be recognised as within Imm8S range. */
40fb9820 4213 if ((i.types[op].bitfield.imm16)
29b0f896 4214 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4215 {
29b0f896
AM
4216 i.op[op].imms->X_add_number =
4217 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4218 }
40fb9820 4219 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4220 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4221 == 0))
4222 {
4223 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4224 ^ ((offsetT) 1 << 31))
4225 - ((offsetT) 1 << 31));
4226 }
40fb9820 4227 i.types[op]
c6fb90c8
L
4228 = operand_type_or (i.types[op],
4229 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4230
29b0f896
AM
4231 /* We must avoid matching of Imm32 templates when 64bit
4232 only immediate is available. */
4233 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4234 i.types[op].bitfield.imm32 = 0;
29b0f896 4235 break;
252b5132 4236
29b0f896
AM
4237 case O_absent:
4238 case O_register:
4239 abort ();
4240
4241 /* Symbols and expressions. */
4242 default:
9cd96992
JB
4243 /* Convert symbolic operand to proper sizes for matching, but don't
4244 prevent matching a set of insns that only supports sizes other
4245 than those matching the insn suffix. */
4246 {
40fb9820 4247 i386_operand_type mask, allowed;
d3ce72d0 4248 const insn_template *t;
9cd96992 4249
0dfbf9d7
L
4250 operand_type_set (&mask, 0);
4251 operand_type_set (&allowed, 0);
40fb9820 4252
4eed87de
AM
4253 for (t = current_templates->start;
4254 t < current_templates->end;
4255 ++t)
c6fb90c8
L
4256 allowed = operand_type_or (allowed,
4257 t->operand_types[op]);
9cd96992
JB
4258 switch (guess_suffix)
4259 {
4260 case QWORD_MNEM_SUFFIX:
40fb9820
L
4261 mask.bitfield.imm64 = 1;
4262 mask.bitfield.imm32s = 1;
9cd96992
JB
4263 break;
4264 case LONG_MNEM_SUFFIX:
40fb9820 4265 mask.bitfield.imm32 = 1;
9cd96992
JB
4266 break;
4267 case WORD_MNEM_SUFFIX:
40fb9820 4268 mask.bitfield.imm16 = 1;
9cd96992
JB
4269 break;
4270 case BYTE_MNEM_SUFFIX:
40fb9820 4271 mask.bitfield.imm8 = 1;
9cd96992
JB
4272 break;
4273 default:
9cd96992
JB
4274 break;
4275 }
c6fb90c8 4276 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4277 if (!operand_type_all_zero (&allowed))
c6fb90c8 4278 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4279 }
29b0f896 4280 break;
252b5132 4281 }
29b0f896
AM
4282 }
4283}
47926f60 4284
29b0f896
AM
4285/* Try to use the smallest displacement type too. */
4286static void
e3bb37b5 4287optimize_disp (void)
29b0f896
AM
4288{
4289 int op;
3e73aa7c 4290
29b0f896 4291 for (op = i.operands; --op >= 0;)
40fb9820 4292 if (operand_type_check (i.types[op], disp))
252b5132 4293 {
b300c311 4294 if (i.op[op].disps->X_op == O_constant)
252b5132 4295 {
91d6fa6a 4296 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4297
40fb9820 4298 if (i.types[op].bitfield.disp16
91d6fa6a 4299 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4300 {
4301 /* If this operand is at most 16 bits, convert
4302 to a signed 16 bit number and don't use 64bit
4303 displacement. */
91d6fa6a 4304 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4305 i.types[op].bitfield.disp64 = 0;
b300c311 4306 }
40fb9820 4307 if (i.types[op].bitfield.disp32
91d6fa6a 4308 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4309 {
4310 /* If this operand is at most 32 bits, convert
4311 to a signed 32 bit number and don't use 64bit
4312 displacement. */
91d6fa6a
NC
4313 op_disp &= (((offsetT) 2 << 31) - 1);
4314 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4315 i.types[op].bitfield.disp64 = 0;
b300c311 4316 }
91d6fa6a 4317 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4318 {
40fb9820
L
4319 i.types[op].bitfield.disp8 = 0;
4320 i.types[op].bitfield.disp16 = 0;
4321 i.types[op].bitfield.disp32 = 0;
4322 i.types[op].bitfield.disp32s = 0;
4323 i.types[op].bitfield.disp64 = 0;
b300c311
L
4324 i.op[op].disps = 0;
4325 i.disp_operands--;
4326 }
4327 else if (flag_code == CODE_64BIT)
4328 {
91d6fa6a 4329 if (fits_in_signed_long (op_disp))
28a9d8f5 4330 {
40fb9820
L
4331 i.types[op].bitfield.disp64 = 0;
4332 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4333 }
0e1147d9 4334 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4335 && fits_in_unsigned_long (op_disp))
40fb9820 4336 i.types[op].bitfield.disp32 = 1;
b300c311 4337 }
40fb9820
L
4338 if ((i.types[op].bitfield.disp32
4339 || i.types[op].bitfield.disp32s
4340 || i.types[op].bitfield.disp16)
91d6fa6a 4341 && fits_in_signed_byte (op_disp))
40fb9820 4342 i.types[op].bitfield.disp8 = 1;
252b5132 4343 }
67a4f2b7
AO
4344 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4345 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4346 {
4347 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4348 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4349 i.types[op].bitfield.disp8 = 0;
4350 i.types[op].bitfield.disp16 = 0;
4351 i.types[op].bitfield.disp32 = 0;
4352 i.types[op].bitfield.disp32s = 0;
4353 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4354 }
4355 else
b300c311 4356 /* We only support 64bit displacement on constants. */
40fb9820 4357 i.types[op].bitfield.disp64 = 0;
252b5132 4358 }
29b0f896
AM
4359}
4360
6c30d220
L
4361/* Check if operands are valid for the instruction. */
4362
4363static int
4364check_VecOperands (const insn_template *t)
4365{
43234a1e
L
4366 unsigned int op;
4367
6c30d220
L
4368 /* Without VSIB byte, we can't have a vector register for index. */
4369 if (!t->opcode_modifier.vecsib
4370 && i.index_reg
4371 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4372 || i.index_reg->reg_type.bitfield.regymm
4373 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4374 {
4375 i.error = unsupported_vector_index_register;
4376 return 1;
4377 }
4378
ad8ecc81
MZ
4379 /* Check if default mask is allowed. */
4380 if (t->opcode_modifier.nodefmask
4381 && (!i.mask || i.mask->mask->reg_num == 0))
4382 {
4383 i.error = no_default_mask;
4384 return 1;
4385 }
4386
7bab8ab5
JB
4387 /* For VSIB byte, we need a vector register for index, and all vector
4388 registers must be distinct. */
4389 if (t->opcode_modifier.vecsib)
4390 {
4391 if (!i.index_reg
6c30d220
L
4392 || !((t->opcode_modifier.vecsib == VecSIB128
4393 && i.index_reg->reg_type.bitfield.regxmm)
4394 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4395 && i.index_reg->reg_type.bitfield.regymm)
4396 || (t->opcode_modifier.vecsib == VecSIB512
4397 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4398 {
4399 i.error = invalid_vsib_address;
4400 return 1;
4401 }
4402
43234a1e
L
4403 gas_assert (i.reg_operands == 2 || i.mask);
4404 if (i.reg_operands == 2 && !i.mask)
4405 {
4406 gas_assert (i.types[0].bitfield.regxmm
7c84a0ca 4407 || i.types[0].bitfield.regymm);
43234a1e 4408 gas_assert (i.types[2].bitfield.regxmm
7c84a0ca 4409 || i.types[2].bitfield.regymm);
43234a1e
L
4410 if (operand_check == check_none)
4411 return 0;
4412 if (register_number (i.op[0].regs)
4413 != register_number (i.index_reg)
4414 && register_number (i.op[2].regs)
4415 != register_number (i.index_reg)
4416 && register_number (i.op[0].regs)
4417 != register_number (i.op[2].regs))
4418 return 0;
4419 if (operand_check == check_error)
4420 {
4421 i.error = invalid_vector_register_set;
4422 return 1;
4423 }
4424 as_warn (_("mask, index, and destination registers should be distinct"));
4425 }
8444f82a
MZ
4426 else if (i.reg_operands == 1 && i.mask)
4427 {
4428 if ((i.types[1].bitfield.regymm
4429 || i.types[1].bitfield.regzmm)
4430 && (register_number (i.op[1].regs)
4431 == register_number (i.index_reg)))
4432 {
4433 if (operand_check == check_error)
4434 {
4435 i.error = invalid_vector_register_set;
4436 return 1;
4437 }
4438 if (operand_check != check_none)
4439 as_warn (_("index and destination registers should be distinct"));
4440 }
4441 }
43234a1e 4442 }
7bab8ab5 4443
43234a1e
L
4444 /* Check if broadcast is supported by the instruction and is applied
4445 to the memory operand. */
4446 if (i.broadcast)
4447 {
4448 int broadcasted_opnd_size;
4449
4450 /* Check if specified broadcast is supported in this instruction,
4451 and it's applied to memory operand of DWORD or QWORD type,
4452 depending on VecESize. */
4453 if (i.broadcast->type != t->opcode_modifier.broadcast
4454 || !i.types[i.broadcast->operand].bitfield.mem
4455 || (t->opcode_modifier.vecesize == 0
4456 && !i.types[i.broadcast->operand].bitfield.dword
4457 && !i.types[i.broadcast->operand].bitfield.unspecified)
4458 || (t->opcode_modifier.vecesize == 1
4459 && !i.types[i.broadcast->operand].bitfield.qword
4460 && !i.types[i.broadcast->operand].bitfield.unspecified))
4461 goto bad_broadcast;
4462
4463 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4464 if (i.broadcast->type == BROADCAST_1TO16)
4465 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4466 else if (i.broadcast->type == BROADCAST_1TO8)
4467 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4468 else if (i.broadcast->type == BROADCAST_1TO4)
4469 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4470 else if (i.broadcast->type == BROADCAST_1TO2)
4471 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4472 else
4473 goto bad_broadcast;
4474
4475 if ((broadcasted_opnd_size == 256
4476 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4477 || (broadcasted_opnd_size == 512
4478 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4479 {
4480 bad_broadcast:
4481 i.error = unsupported_broadcast;
4482 return 1;
4483 }
4484 }
4485 /* If broadcast is supported in this instruction, we need to check if
4486 operand of one-element size isn't specified without broadcast. */
4487 else if (t->opcode_modifier.broadcast && i.mem_operands)
4488 {
4489 /* Find memory operand. */
4490 for (op = 0; op < i.operands; op++)
4491 if (operand_type_check (i.types[op], anymem))
4492 break;
4493 gas_assert (op < i.operands);
4494 /* Check size of the memory operand. */
4495 if ((t->opcode_modifier.vecesize == 0
4496 && i.types[op].bitfield.dword)
4497 || (t->opcode_modifier.vecesize == 1
4498 && i.types[op].bitfield.qword))
4499 {
4500 i.error = broadcast_needed;
4501 return 1;
4502 }
4503 }
4504
4505 /* Check if requested masking is supported. */
4506 if (i.mask
4507 && (!t->opcode_modifier.masking
4508 || (i.mask->zeroing
4509 && t->opcode_modifier.masking == MERGING_MASKING)))
4510 {
4511 i.error = unsupported_masking;
4512 return 1;
4513 }
4514
4515 /* Check if masking is applied to dest operand. */
4516 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4517 {
4518 i.error = mask_not_on_destination;
4519 return 1;
4520 }
4521
43234a1e
L
4522 /* Check RC/SAE. */
4523 if (i.rounding)
4524 {
4525 if ((i.rounding->type != saeonly
4526 && !t->opcode_modifier.staticrounding)
4527 || (i.rounding->type == saeonly
4528 && (t->opcode_modifier.staticrounding
4529 || !t->opcode_modifier.sae)))
4530 {
4531 i.error = unsupported_rc_sae;
4532 return 1;
4533 }
4534 /* If the instruction has several immediate operands and one of
4535 them is rounding, the rounding operand should be the last
4536 immediate operand. */
4537 if (i.imm_operands > 1
4538 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4539 {
43234a1e 4540 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4541 return 1;
4542 }
6c30d220
L
4543 }
4544
43234a1e
L
4545 /* Check vector Disp8 operand. */
4546 if (t->opcode_modifier.disp8memshift)
4547 {
4548 if (i.broadcast)
4549 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4550 else
4551 i.memshift = t->opcode_modifier.disp8memshift;
4552
4553 for (op = 0; op < i.operands; op++)
4554 if (operand_type_check (i.types[op], disp)
4555 && i.op[op].disps->X_op == O_constant)
4556 {
4557 offsetT value = i.op[op].disps->X_add_number;
4558 int vec_disp8_ok = fits_in_vec_disp8 (value);
4559 if (t->operand_types [op].bitfield.vec_disp8)
4560 {
4561 if (vec_disp8_ok)
4562 i.types[op].bitfield.vec_disp8 = 1;
4563 else
4564 {
4565 /* Vector insn can only have Vec_Disp8/Disp32 in
4566 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4567 mode. */
4568 i.types[op].bitfield.disp8 = 0;
4569 if (flag_code != CODE_16BIT)
4570 i.types[op].bitfield.disp16 = 0;
4571 }
4572 }
4573 else if (flag_code != CODE_16BIT)
4574 {
4575 /* One form of this instruction supports vector Disp8.
4576 Try vector Disp8 if we need to use Disp32. */
4577 if (vec_disp8_ok && !fits_in_signed_byte (value))
4578 {
4579 i.error = try_vector_disp8;
4580 return 1;
4581 }
4582 }
4583 }
4584 }
4585 else
4586 i.memshift = -1;
4587
6c30d220
L
4588 return 0;
4589}
4590
43f3e2ee 4591/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4592 operand types. */
4593
4594static int
4595VEX_check_operands (const insn_template *t)
4596{
43234a1e
L
4597 /* VREX is only valid with EVEX prefix. */
4598 if (i.need_vrex && !t->opcode_modifier.evex)
4599 {
4600 i.error = invalid_register_operand;
4601 return 1;
4602 }
4603
a683cc34
SP
4604 if (!t->opcode_modifier.vex)
4605 return 0;
4606
4607 /* Only check VEX_Imm4, which must be the first operand. */
4608 if (t->operand_types[0].bitfield.vec_imm4)
4609 {
4610 if (i.op[0].imms->X_op != O_constant
4611 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4612 {
a65babc9 4613 i.error = bad_imm4;
891edac4
L
4614 return 1;
4615 }
a683cc34
SP
4616
4617 /* Turn off Imm8 so that update_imm won't complain. */
4618 i.types[0] = vec_imm4;
4619 }
4620
4621 return 0;
4622}
4623
d3ce72d0 4624static const insn_template *
e3bb37b5 4625match_template (void)
29b0f896
AM
4626{
4627 /* Points to template once we've found it. */
d3ce72d0 4628 const insn_template *t;
40fb9820 4629 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4630 i386_operand_type overlap4;
29b0f896 4631 unsigned int found_reverse_match;
40fb9820
L
4632 i386_opcode_modifier suffix_check;
4633 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4634 int addr_prefix_disp;
a5c311ca 4635 unsigned int j;
3629bb00 4636 unsigned int found_cpu_match;
45664ddb 4637 unsigned int check_register;
5614d22c 4638 enum i386_error specific_error = 0;
29b0f896 4639
c0f3af97
L
4640#if MAX_OPERANDS != 5
4641# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4642#endif
4643
29b0f896 4644 found_reverse_match = 0;
539e75ad 4645 addr_prefix_disp = -1;
40fb9820
L
4646
4647 memset (&suffix_check, 0, sizeof (suffix_check));
4648 if (i.suffix == BYTE_MNEM_SUFFIX)
4649 suffix_check.no_bsuf = 1;
4650 else if (i.suffix == WORD_MNEM_SUFFIX)
4651 suffix_check.no_wsuf = 1;
4652 else if (i.suffix == SHORT_MNEM_SUFFIX)
4653 suffix_check.no_ssuf = 1;
4654 else if (i.suffix == LONG_MNEM_SUFFIX)
4655 suffix_check.no_lsuf = 1;
4656 else if (i.suffix == QWORD_MNEM_SUFFIX)
4657 suffix_check.no_qsuf = 1;
4658 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4659 suffix_check.no_ldsuf = 1;
29b0f896 4660
01559ecc
L
4661 /* Must have right number of operands. */
4662 i.error = number_of_operands_mismatch;
4663
45aa61fe 4664 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4665 {
539e75ad
L
4666 addr_prefix_disp = -1;
4667
29b0f896
AM
4668 if (i.operands != t->operands)
4669 continue;
4670
50aecf8c 4671 /* Check processor support. */
a65babc9 4672 i.error = unsupported;
c0f3af97
L
4673 found_cpu_match = (cpu_flags_match (t)
4674 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4675 if (!found_cpu_match)
4676 continue;
4677
e1d4d893 4678 /* Check old gcc support. */
a65babc9 4679 i.error = old_gcc_only;
e1d4d893
L
4680 if (!old_gcc && t->opcode_modifier.oldgcc)
4681 continue;
4682
4683 /* Check AT&T mnemonic. */
a65babc9 4684 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4685 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4686 continue;
4687
891edac4 4688 /* Check AT&T/Intel syntax. */
a65babc9 4689 i.error = unsupported_syntax;
5c07affc
L
4690 if ((intel_syntax && t->opcode_modifier.attsyntax)
4691 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
4692 continue;
4693
20592a94 4694 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4695 i.error = invalid_instruction_suffix;
567e4e96
L
4696 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4697 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4698 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4699 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4700 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4701 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4702 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
4703 continue;
4704
5c07affc 4705 if (!operand_size_match (t))
7d5e4556 4706 continue;
539e75ad 4707
5c07affc
L
4708 for (j = 0; j < MAX_OPERANDS; j++)
4709 operand_types[j] = t->operand_types[j];
4710
45aa61fe
AM
4711 /* In general, don't allow 64-bit operands in 32-bit mode. */
4712 if (i.suffix == QWORD_MNEM_SUFFIX
4713 && flag_code != CODE_64BIT
4714 && (intel_syntax
40fb9820 4715 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4716 && !intel_float_operand (t->name))
4717 : intel_float_operand (t->name) != 2)
40fb9820 4718 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4719 && !operand_types[0].bitfield.regxmm
43234a1e
L
4720 && !operand_types[0].bitfield.regymm
4721 && !operand_types[0].bitfield.regzmm)
40fb9820 4722 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736
AM
4723 && operand_types[t->operands > 1].bitfield.regxmm
4724 && operand_types[t->operands > 1].bitfield.regymm
4725 && operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4726 && (t->base_opcode != 0x0fc7
4727 || t->extension_opcode != 1 /* cmpxchg8b */))
4728 continue;
4729
192dc9c6
JB
4730 /* In general, don't allow 32-bit operands on pre-386. */
4731 else if (i.suffix == LONG_MNEM_SUFFIX
4732 && !cpu_arch_flags.bitfield.cpui386
4733 && (intel_syntax
4734 ? (!t->opcode_modifier.ignoresize
4735 && !intel_float_operand (t->name))
4736 : intel_float_operand (t->name) != 2)
4737 && ((!operand_types[0].bitfield.regmmx
4738 && !operand_types[0].bitfield.regxmm)
4739 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736 4740 && operand_types[t->operands > 1].bitfield.regxmm)))
192dc9c6
JB
4741 continue;
4742
29b0f896 4743 /* Do not verify operands when there are none. */
50aecf8c 4744 else
29b0f896 4745 {
c6fb90c8 4746 if (!t->operands)
2dbab7d5
L
4747 /* We've found a match; break out of loop. */
4748 break;
29b0f896 4749 }
252b5132 4750
539e75ad
L
4751 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4752 into Disp32/Disp16/Disp32 operand. */
4753 if (i.prefix[ADDR_PREFIX] != 0)
4754 {
40fb9820 4755 /* There should be only one Disp operand. */
539e75ad
L
4756 switch (flag_code)
4757 {
4758 case CODE_16BIT:
40fb9820
L
4759 for (j = 0; j < MAX_OPERANDS; j++)
4760 {
4761 if (operand_types[j].bitfield.disp16)
4762 {
4763 addr_prefix_disp = j;
4764 operand_types[j].bitfield.disp32 = 1;
4765 operand_types[j].bitfield.disp16 = 0;
4766 break;
4767 }
4768 }
539e75ad
L
4769 break;
4770 case CODE_32BIT:
40fb9820
L
4771 for (j = 0; j < MAX_OPERANDS; j++)
4772 {
4773 if (operand_types[j].bitfield.disp32)
4774 {
4775 addr_prefix_disp = j;
4776 operand_types[j].bitfield.disp32 = 0;
4777 operand_types[j].bitfield.disp16 = 1;
4778 break;
4779 }
4780 }
539e75ad
L
4781 break;
4782 case CODE_64BIT:
40fb9820
L
4783 for (j = 0; j < MAX_OPERANDS; j++)
4784 {
4785 if (operand_types[j].bitfield.disp64)
4786 {
4787 addr_prefix_disp = j;
4788 operand_types[j].bitfield.disp64 = 0;
4789 operand_types[j].bitfield.disp32 = 1;
4790 break;
4791 }
4792 }
539e75ad
L
4793 break;
4794 }
539e75ad
L
4795 }
4796
56ffb741
L
4797 /* We check register size if needed. */
4798 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4799 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4800 switch (t->operands)
4801 {
4802 case 1:
40fb9820 4803 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4804 continue;
4805 break;
4806 case 2:
8b38ad71
L
4807 /* xchg %eax, %eax is a special case. It is an aliase for nop
4808 only in 32bit mode and we can use opcode 0x90. In 64bit
4809 mode, we can't use 0x90 for xchg %eax, %eax since it should
4810 zero-extend %eax to %rax. */
4811 if (flag_code == CODE_64BIT
4812 && t->base_opcode == 0x90
0dfbf9d7
L
4813 && operand_type_equal (&i.types [0], &acc32)
4814 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4815 continue;
b6169b20
L
4816 if (i.swap_operand)
4817 {
4818 /* If we swap operand in encoding, we either match
4819 the next one or reverse direction of operands. */
4820 if (t->opcode_modifier.s)
4821 continue;
4822 else if (t->opcode_modifier.d)
4823 goto check_reverse;
4824 }
4825
29b0f896 4826 case 3:
fa99fab2
L
4827 /* If we swap operand in encoding, we match the next one. */
4828 if (i.swap_operand && t->opcode_modifier.s)
4829 continue;
f48ff2ae 4830 case 4:
c0f3af97 4831 case 5:
c6fb90c8 4832 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4833 if (!operand_type_match (overlap0, i.types[0])
4834 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4835 || (check_register
4836 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4837 operand_types[0],
4838 overlap1, i.types[1],
4839 operand_types[1])))
29b0f896
AM
4840 {
4841 /* Check if other direction is valid ... */
40fb9820 4842 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4843 continue;
4844
b6169b20 4845check_reverse:
29b0f896 4846 /* Try reversing direction of operands. */
c6fb90c8
L
4847 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4848 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4849 if (!operand_type_match (overlap0, i.types[0])
4850 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4851 || (check_register
4852 && !operand_type_register_match (overlap0,
4853 i.types[0],
4854 operand_types[1],
4855 overlap1,
4856 i.types[1],
4857 operand_types[0])))
29b0f896
AM
4858 {
4859 /* Does not match either direction. */
4860 continue;
4861 }
4862 /* found_reverse_match holds which of D or FloatDR
4863 we've found. */
40fb9820 4864 if (t->opcode_modifier.d)
8a2ed489 4865 found_reverse_match = Opcode_D;
40fb9820 4866 else if (t->opcode_modifier.floatd)
8a2ed489
L
4867 found_reverse_match = Opcode_FloatD;
4868 else
4869 found_reverse_match = 0;
40fb9820 4870 if (t->opcode_modifier.floatr)
8a2ed489 4871 found_reverse_match |= Opcode_FloatR;
29b0f896 4872 }
f48ff2ae 4873 else
29b0f896 4874 {
f48ff2ae 4875 /* Found a forward 2 operand match here. */
d1cbb4db
L
4876 switch (t->operands)
4877 {
c0f3af97
L
4878 case 5:
4879 overlap4 = operand_type_and (i.types[4],
4880 operand_types[4]);
d1cbb4db 4881 case 4:
c6fb90c8
L
4882 overlap3 = operand_type_and (i.types[3],
4883 operand_types[3]);
d1cbb4db 4884 case 3:
c6fb90c8
L
4885 overlap2 = operand_type_and (i.types[2],
4886 operand_types[2]);
d1cbb4db
L
4887 break;
4888 }
29b0f896 4889
f48ff2ae
L
4890 switch (t->operands)
4891 {
c0f3af97
L
4892 case 5:
4893 if (!operand_type_match (overlap4, i.types[4])
4894 || !operand_type_register_match (overlap3,
4895 i.types[3],
4896 operand_types[3],
4897 overlap4,
4898 i.types[4],
4899 operand_types[4]))
4900 continue;
f48ff2ae 4901 case 4:
40fb9820 4902 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4903 || (check_register
4904 && !operand_type_register_match (overlap2,
4905 i.types[2],
4906 operand_types[2],
4907 overlap3,
4908 i.types[3],
4909 operand_types[3])))
f48ff2ae
L
4910 continue;
4911 case 3:
4912 /* Here we make use of the fact that there are no
4913 reverse match 3 operand instructions, and all 3
4914 operand instructions only need to be checked for
4915 register consistency between operands 2 and 3. */
40fb9820 4916 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4917 || (check_register
4918 && !operand_type_register_match (overlap1,
4919 i.types[1],
4920 operand_types[1],
4921 overlap2,
4922 i.types[2],
4923 operand_types[2])))
f48ff2ae
L
4924 continue;
4925 break;
4926 }
29b0f896 4927 }
f48ff2ae 4928 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4929 slip through to break. */
4930 }
3629bb00 4931 if (!found_cpu_match)
29b0f896
AM
4932 {
4933 found_reverse_match = 0;
4934 continue;
4935 }
c0f3af97 4936
5614d22c
JB
4937 /* Check if vector and VEX operands are valid. */
4938 if (check_VecOperands (t) || VEX_check_operands (t))
4939 {
4940 specific_error = i.error;
4941 continue;
4942 }
a683cc34 4943
29b0f896
AM
4944 /* We've found a match; break out of loop. */
4945 break;
4946 }
4947
4948 if (t == current_templates->end)
4949 {
4950 /* We found no match. */
a65babc9 4951 const char *err_msg;
5614d22c 4952 switch (specific_error ? specific_error : i.error)
a65babc9
L
4953 {
4954 default:
4955 abort ();
86e026a4 4956 case operand_size_mismatch:
a65babc9
L
4957 err_msg = _("operand size mismatch");
4958 break;
4959 case operand_type_mismatch:
4960 err_msg = _("operand type mismatch");
4961 break;
4962 case register_type_mismatch:
4963 err_msg = _("register type mismatch");
4964 break;
4965 case number_of_operands_mismatch:
4966 err_msg = _("number of operands mismatch");
4967 break;
4968 case invalid_instruction_suffix:
4969 err_msg = _("invalid instruction suffix");
4970 break;
4971 case bad_imm4:
4a2608e3 4972 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
4973 break;
4974 case old_gcc_only:
4975 err_msg = _("only supported with old gcc");
4976 break;
4977 case unsupported_with_intel_mnemonic:
4978 err_msg = _("unsupported with Intel mnemonic");
4979 break;
4980 case unsupported_syntax:
4981 err_msg = _("unsupported syntax");
4982 break;
4983 case unsupported:
35262a23 4984 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
4985 current_templates->start->name);
4986 return NULL;
6c30d220
L
4987 case invalid_vsib_address:
4988 err_msg = _("invalid VSIB address");
4989 break;
7bab8ab5
JB
4990 case invalid_vector_register_set:
4991 err_msg = _("mask, index, and destination registers must be distinct");
4992 break;
6c30d220
L
4993 case unsupported_vector_index_register:
4994 err_msg = _("unsupported vector index register");
4995 break;
43234a1e
L
4996 case unsupported_broadcast:
4997 err_msg = _("unsupported broadcast");
4998 break;
4999 case broadcast_not_on_src_operand:
5000 err_msg = _("broadcast not on source memory operand");
5001 break;
5002 case broadcast_needed:
5003 err_msg = _("broadcast is needed for operand of such type");
5004 break;
5005 case unsupported_masking:
5006 err_msg = _("unsupported masking");
5007 break;
5008 case mask_not_on_destination:
5009 err_msg = _("mask not on destination operand");
5010 break;
5011 case no_default_mask:
5012 err_msg = _("default mask isn't allowed");
5013 break;
5014 case unsupported_rc_sae:
5015 err_msg = _("unsupported static rounding/sae");
5016 break;
5017 case rc_sae_operand_not_last_imm:
5018 if (intel_syntax)
5019 err_msg = _("RC/SAE operand must precede immediate operands");
5020 else
5021 err_msg = _("RC/SAE operand must follow immediate operands");
5022 break;
5023 case invalid_register_operand:
5024 err_msg = _("invalid register operand");
5025 break;
a65babc9
L
5026 }
5027 as_bad (_("%s for `%s'"), err_msg,
891edac4 5028 current_templates->start->name);
fa99fab2 5029 return NULL;
29b0f896 5030 }
252b5132 5031
29b0f896
AM
5032 if (!quiet_warnings)
5033 {
5034 if (!intel_syntax
40fb9820
L
5035 && (i.types[0].bitfield.jumpabsolute
5036 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5037 {
5038 as_warn (_("indirect %s without `*'"), t->name);
5039 }
5040
40fb9820
L
5041 if (t->opcode_modifier.isprefix
5042 && t->opcode_modifier.ignoresize)
29b0f896
AM
5043 {
5044 /* Warn them that a data or address size prefix doesn't
5045 affect assembly of the next line of code. */
5046 as_warn (_("stand-alone `%s' prefix"), t->name);
5047 }
5048 }
5049
5050 /* Copy the template we found. */
5051 i.tm = *t;
539e75ad
L
5052
5053 if (addr_prefix_disp != -1)
5054 i.tm.operand_types[addr_prefix_disp]
5055 = operand_types[addr_prefix_disp];
5056
29b0f896
AM
5057 if (found_reverse_match)
5058 {
5059 /* If we found a reverse match we must alter the opcode
5060 direction bit. found_reverse_match holds bits to change
5061 (different for int & float insns). */
5062
5063 i.tm.base_opcode ^= found_reverse_match;
5064
539e75ad
L
5065 i.tm.operand_types[0] = operand_types[1];
5066 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5067 }
5068
fa99fab2 5069 return t;
29b0f896
AM
5070}
5071
5072static int
e3bb37b5 5073check_string (void)
29b0f896 5074{
40fb9820
L
5075 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5076 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5077 {
5078 if (i.seg[0] != NULL && i.seg[0] != &es)
5079 {
a87af027 5080 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5081 i.tm.name,
a87af027
JB
5082 mem_op + 1,
5083 register_prefix);
29b0f896
AM
5084 return 0;
5085 }
5086 /* There's only ever one segment override allowed per instruction.
5087 This instruction possibly has a legal segment override on the
5088 second operand, so copy the segment to where non-string
5089 instructions store it, allowing common code. */
5090 i.seg[0] = i.seg[1];
5091 }
40fb9820 5092 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5093 {
5094 if (i.seg[1] != NULL && i.seg[1] != &es)
5095 {
a87af027 5096 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5097 i.tm.name,
a87af027
JB
5098 mem_op + 2,
5099 register_prefix);
29b0f896
AM
5100 return 0;
5101 }
5102 }
5103 return 1;
5104}
5105
5106static int
543613e9 5107process_suffix (void)
29b0f896
AM
5108{
5109 /* If matched instruction specifies an explicit instruction mnemonic
5110 suffix, use it. */
40fb9820
L
5111 if (i.tm.opcode_modifier.size16)
5112 i.suffix = WORD_MNEM_SUFFIX;
5113 else if (i.tm.opcode_modifier.size32)
5114 i.suffix = LONG_MNEM_SUFFIX;
5115 else if (i.tm.opcode_modifier.size64)
5116 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5117 else if (i.reg_operands)
5118 {
5119 /* If there's no instruction mnemonic suffix we try to invent one
5120 based on register operands. */
5121 if (!i.suffix)
5122 {
5123 /* We take i.suffix from the last register operand specified,
5124 Destination register type is more significant than source
381d071f
L
5125 register type. crc32 in SSE4.2 prefers source register
5126 type. */
5127 if (i.tm.base_opcode == 0xf20f38f1)
5128 {
40fb9820
L
5129 if (i.types[0].bitfield.reg16)
5130 i.suffix = WORD_MNEM_SUFFIX;
5131 else if (i.types[0].bitfield.reg32)
5132 i.suffix = LONG_MNEM_SUFFIX;
5133 else if (i.types[0].bitfield.reg64)
5134 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5135 }
9344ff29 5136 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5137 {
40fb9820 5138 if (i.types[0].bitfield.reg8)
20592a94
L
5139 i.suffix = BYTE_MNEM_SUFFIX;
5140 }
381d071f
L
5141
5142 if (!i.suffix)
5143 {
5144 int op;
5145
20592a94
L
5146 if (i.tm.base_opcode == 0xf20f38f1
5147 || i.tm.base_opcode == 0xf20f38f0)
5148 {
5149 /* We have to know the operand size for crc32. */
5150 as_bad (_("ambiguous memory operand size for `%s`"),
5151 i.tm.name);
5152 return 0;
5153 }
5154
381d071f 5155 for (op = i.operands; --op >= 0;)
40fb9820 5156 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5157 {
40fb9820
L
5158 if (i.types[op].bitfield.reg8)
5159 {
5160 i.suffix = BYTE_MNEM_SUFFIX;
5161 break;
5162 }
5163 else if (i.types[op].bitfield.reg16)
5164 {
5165 i.suffix = WORD_MNEM_SUFFIX;
5166 break;
5167 }
5168 else if (i.types[op].bitfield.reg32)
5169 {
5170 i.suffix = LONG_MNEM_SUFFIX;
5171 break;
5172 }
5173 else if (i.types[op].bitfield.reg64)
5174 {
5175 i.suffix = QWORD_MNEM_SUFFIX;
5176 break;
5177 }
381d071f
L
5178 }
5179 }
29b0f896
AM
5180 }
5181 else if (i.suffix == BYTE_MNEM_SUFFIX)
5182 {
2eb952a4
L
5183 if (intel_syntax
5184 && i.tm.opcode_modifier.ignoresize
5185 && i.tm.opcode_modifier.no_bsuf)
5186 i.suffix = 0;
5187 else if (!check_byte_reg ())
29b0f896
AM
5188 return 0;
5189 }
5190 else if (i.suffix == LONG_MNEM_SUFFIX)
5191 {
2eb952a4
L
5192 if (intel_syntax
5193 && i.tm.opcode_modifier.ignoresize
5194 && i.tm.opcode_modifier.no_lsuf)
5195 i.suffix = 0;
5196 else if (!check_long_reg ())
29b0f896
AM
5197 return 0;
5198 }
5199 else if (i.suffix == QWORD_MNEM_SUFFIX)
5200 {
955e1e6a
L
5201 if (intel_syntax
5202 && i.tm.opcode_modifier.ignoresize
5203 && i.tm.opcode_modifier.no_qsuf)
5204 i.suffix = 0;
5205 else if (!check_qword_reg ())
29b0f896
AM
5206 return 0;
5207 }
5208 else if (i.suffix == WORD_MNEM_SUFFIX)
5209 {
2eb952a4
L
5210 if (intel_syntax
5211 && i.tm.opcode_modifier.ignoresize
5212 && i.tm.opcode_modifier.no_wsuf)
5213 i.suffix = 0;
5214 else if (!check_word_reg ())
29b0f896
AM
5215 return 0;
5216 }
c0f3af97 5217 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5218 || i.suffix == YMMWORD_MNEM_SUFFIX
5219 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5220 {
43234a1e 5221 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5222 should check if it is a valid suffix. */
5223 }
40fb9820 5224 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5225 /* Do nothing if the instruction is going to ignore the prefix. */
5226 ;
5227 else
5228 abort ();
5229 }
40fb9820 5230 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5231 && !i.suffix
5232 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5233 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5234 {
5235 i.suffix = stackop_size;
5236 }
9306ca4a
JB
5237 else if (intel_syntax
5238 && !i.suffix
40fb9820
L
5239 && (i.tm.operand_types[0].bitfield.jumpabsolute
5240 || i.tm.opcode_modifier.jumpbyte
5241 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5242 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5243 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5244 {
5245 switch (flag_code)
5246 {
5247 case CODE_64BIT:
40fb9820 5248 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5249 {
5250 i.suffix = QWORD_MNEM_SUFFIX;
5251 break;
5252 }
5253 case CODE_32BIT:
40fb9820 5254 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5255 i.suffix = LONG_MNEM_SUFFIX;
5256 break;
5257 case CODE_16BIT:
40fb9820 5258 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5259 i.suffix = WORD_MNEM_SUFFIX;
5260 break;
5261 }
5262 }
252b5132 5263
9306ca4a 5264 if (!i.suffix)
29b0f896 5265 {
9306ca4a
JB
5266 if (!intel_syntax)
5267 {
40fb9820 5268 if (i.tm.opcode_modifier.w)
9306ca4a 5269 {
4eed87de
AM
5270 as_bad (_("no instruction mnemonic suffix given and "
5271 "no register operands; can't size instruction"));
9306ca4a
JB
5272 return 0;
5273 }
5274 }
5275 else
5276 {
40fb9820 5277 unsigned int suffixes;
7ab9ffdd 5278
40fb9820
L
5279 suffixes = !i.tm.opcode_modifier.no_bsuf;
5280 if (!i.tm.opcode_modifier.no_wsuf)
5281 suffixes |= 1 << 1;
5282 if (!i.tm.opcode_modifier.no_lsuf)
5283 suffixes |= 1 << 2;
fc4adea1 5284 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5285 suffixes |= 1 << 3;
5286 if (!i.tm.opcode_modifier.no_ssuf)
5287 suffixes |= 1 << 4;
5288 if (!i.tm.opcode_modifier.no_qsuf)
5289 suffixes |= 1 << 5;
5290
5291 /* There are more than suffix matches. */
5292 if (i.tm.opcode_modifier.w
9306ca4a 5293 || ((suffixes & (suffixes - 1))
40fb9820
L
5294 && !i.tm.opcode_modifier.defaultsize
5295 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5296 {
5297 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5298 return 0;
5299 }
5300 }
29b0f896 5301 }
252b5132 5302
9306ca4a
JB
5303 /* Change the opcode based on the operand size given by i.suffix;
5304 We don't need to change things for byte insns. */
5305
582d5edd
L
5306 if (i.suffix
5307 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5308 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5309 && i.suffix != YMMWORD_MNEM_SUFFIX
5310 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5311 {
5312 /* It's not a byte, select word/dword operation. */
40fb9820 5313 if (i.tm.opcode_modifier.w)
29b0f896 5314 {
40fb9820 5315 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5316 i.tm.base_opcode |= 8;
5317 else
5318 i.tm.base_opcode |= 1;
5319 }
0f3f3d8b 5320
29b0f896
AM
5321 /* Now select between word & dword operations via the operand
5322 size prefix, except for instructions that will ignore this
5323 prefix anyway. */
ca61edf2 5324 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5325 {
ca61edf2
L
5326 /* The address size override prefix changes the size of the
5327 first operand. */
40fb9820
L
5328 if ((flag_code == CODE_32BIT
5329 && i.op->regs[0].reg_type.bitfield.reg16)
5330 || (flag_code != CODE_32BIT
5331 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5332 if (!add_prefix (ADDR_PREFIX_OPCODE))
5333 return 0;
5334 }
5335 else if (i.suffix != QWORD_MNEM_SUFFIX
5336 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5337 && !i.tm.opcode_modifier.ignoresize
5338 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5339 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5340 || (flag_code == CODE_64BIT
40fb9820 5341 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5342 {
5343 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5344
40fb9820 5345 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5346 prefix = ADDR_PREFIX_OPCODE;
252b5132 5347
29b0f896
AM
5348 if (!add_prefix (prefix))
5349 return 0;
24eab124 5350 }
252b5132 5351
29b0f896
AM
5352 /* Set mode64 for an operand. */
5353 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5354 && flag_code == CODE_64BIT
40fb9820 5355 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5356 {
5357 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5358 need rex64. cmpxchg8b is also a special case. */
5359 if (! (i.operands == 2
5360 && i.tm.base_opcode == 0x90
5361 && i.tm.extension_opcode == None
0dfbf9d7
L
5362 && operand_type_equal (&i.types [0], &acc64)
5363 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5364 && ! (i.operands == 1
5365 && i.tm.base_opcode == 0xfc7
5366 && i.tm.extension_opcode == 1
40fb9820
L
5367 && !operand_type_check (i.types [0], reg)
5368 && operand_type_check (i.types [0], anymem)))
f6bee062 5369 i.rex |= REX_W;
46e883c5 5370 }
3e73aa7c 5371
29b0f896
AM
5372 /* Size floating point instruction. */
5373 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5374 if (i.tm.opcode_modifier.floatmf)
543613e9 5375 i.tm.base_opcode ^= 4;
29b0f896 5376 }
7ecd2f8b 5377
29b0f896
AM
5378 return 1;
5379}
3e73aa7c 5380
29b0f896 5381static int
543613e9 5382check_byte_reg (void)
29b0f896
AM
5383{
5384 int op;
543613e9 5385
29b0f896
AM
5386 for (op = i.operands; --op >= 0;)
5387 {
5388 /* If this is an eight bit register, it's OK. If it's the 16 or
5389 32 bit version of an eight bit register, we will just use the
5390 low portion, and that's OK too. */
40fb9820 5391 if (i.types[op].bitfield.reg8)
29b0f896
AM
5392 continue;
5393
5a819eb9
JB
5394 /* I/O port address operands are OK too. */
5395 if (i.tm.operand_types[op].bitfield.inoutportreg)
5396 continue;
5397
9344ff29
L
5398 /* crc32 doesn't generate this warning. */
5399 if (i.tm.base_opcode == 0xf20f38f0)
5400 continue;
5401
40fb9820
L
5402 if ((i.types[op].bitfield.reg16
5403 || i.types[op].bitfield.reg32
5404 || i.types[op].bitfield.reg64)
5a819eb9
JB
5405 && i.op[op].regs->reg_num < 4
5406 /* Prohibit these changes in 64bit mode, since the lowering
5407 would be more complicated. */
5408 && flag_code != CODE_64BIT)
29b0f896 5409 {
29b0f896 5410#if REGISTER_WARNINGS
5a819eb9 5411 if (!quiet_warnings)
a540244d
L
5412 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5413 register_prefix,
40fb9820 5414 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5415 ? REGNAM_AL - REGNAM_AX
5416 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5417 register_prefix,
29b0f896
AM
5418 i.op[op].regs->reg_name,
5419 i.suffix);
5420#endif
5421 continue;
5422 }
5423 /* Any other register is bad. */
40fb9820
L
5424 if (i.types[op].bitfield.reg16
5425 || i.types[op].bitfield.reg32
5426 || i.types[op].bitfield.reg64
5427 || i.types[op].bitfield.regmmx
5428 || i.types[op].bitfield.regxmm
c0f3af97 5429 || i.types[op].bitfield.regymm
43234a1e 5430 || i.types[op].bitfield.regzmm
40fb9820
L
5431 || i.types[op].bitfield.sreg2
5432 || i.types[op].bitfield.sreg3
5433 || i.types[op].bitfield.control
5434 || i.types[op].bitfield.debug
5435 || i.types[op].bitfield.test
5436 || i.types[op].bitfield.floatreg
5437 || i.types[op].bitfield.floatacc)
29b0f896 5438 {
a540244d
L
5439 as_bad (_("`%s%s' not allowed with `%s%c'"),
5440 register_prefix,
29b0f896
AM
5441 i.op[op].regs->reg_name,
5442 i.tm.name,
5443 i.suffix);
5444 return 0;
5445 }
5446 }
5447 return 1;
5448}
5449
5450static int
e3bb37b5 5451check_long_reg (void)
29b0f896
AM
5452{
5453 int op;
5454
5455 for (op = i.operands; --op >= 0;)
5456 /* Reject eight bit registers, except where the template requires
5457 them. (eg. movzb) */
40fb9820
L
5458 if (i.types[op].bitfield.reg8
5459 && (i.tm.operand_types[op].bitfield.reg16
5460 || i.tm.operand_types[op].bitfield.reg32
5461 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5462 {
a540244d
L
5463 as_bad (_("`%s%s' not allowed with `%s%c'"),
5464 register_prefix,
29b0f896
AM
5465 i.op[op].regs->reg_name,
5466 i.tm.name,
5467 i.suffix);
5468 return 0;
5469 }
e4630f71 5470 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5471 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5472 && i.types[op].bitfield.reg16
5473 && (i.tm.operand_types[op].bitfield.reg32
5474 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5475 {
5476 /* Prohibit these changes in the 64bit mode, since the
5477 lowering is more complicated. */
5478 if (flag_code == CODE_64BIT)
252b5132 5479 {
2b5d6a91 5480 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5481 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5482 i.suffix);
5483 return 0;
252b5132 5484 }
29b0f896 5485#if REGISTER_WARNINGS
cecf1424
JB
5486 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5487 register_prefix,
5488 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5489 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5490#endif
252b5132 5491 }
e4630f71 5492 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5493 else if (i.types[op].bitfield.reg64
5494 && (i.tm.operand_types[op].bitfield.reg32
5495 || i.tm.operand_types[op].bitfield.acc))
252b5132 5496 {
34828aad 5497 if (intel_syntax
ca61edf2 5498 && i.tm.opcode_modifier.toqword
40fb9820 5499 && !i.types[0].bitfield.regxmm)
34828aad 5500 {
ca61edf2 5501 /* Convert to QWORD. We want REX byte. */
34828aad
L
5502 i.suffix = QWORD_MNEM_SUFFIX;
5503 }
5504 else
5505 {
2b5d6a91 5506 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5507 register_prefix, i.op[op].regs->reg_name,
5508 i.suffix);
5509 return 0;
5510 }
29b0f896
AM
5511 }
5512 return 1;
5513}
252b5132 5514
29b0f896 5515static int
e3bb37b5 5516check_qword_reg (void)
29b0f896
AM
5517{
5518 int op;
252b5132 5519
29b0f896
AM
5520 for (op = i.operands; --op >= 0; )
5521 /* Reject eight bit registers, except where the template requires
5522 them. (eg. movzb) */
40fb9820
L
5523 if (i.types[op].bitfield.reg8
5524 && (i.tm.operand_types[op].bitfield.reg16
5525 || i.tm.operand_types[op].bitfield.reg32
5526 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5527 {
a540244d
L
5528 as_bad (_("`%s%s' not allowed with `%s%c'"),
5529 register_prefix,
29b0f896
AM
5530 i.op[op].regs->reg_name,
5531 i.tm.name,
5532 i.suffix);
5533 return 0;
5534 }
e4630f71 5535 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5536 else if ((i.types[op].bitfield.reg16
5537 || i.types[op].bitfield.reg32)
5538 && (i.tm.operand_types[op].bitfield.reg32
5539 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5540 {
5541 /* Prohibit these changes in the 64bit mode, since the
5542 lowering is more complicated. */
34828aad 5543 if (intel_syntax
ca61edf2 5544 && i.tm.opcode_modifier.todword
40fb9820 5545 && !i.types[0].bitfield.regxmm)
34828aad 5546 {
ca61edf2 5547 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5548 i.suffix = LONG_MNEM_SUFFIX;
5549 }
5550 else
5551 {
2b5d6a91 5552 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5553 register_prefix, i.op[op].regs->reg_name,
5554 i.suffix);
5555 return 0;
5556 }
252b5132 5557 }
29b0f896
AM
5558 return 1;
5559}
252b5132 5560
29b0f896 5561static int
e3bb37b5 5562check_word_reg (void)
29b0f896
AM
5563{
5564 int op;
5565 for (op = i.operands; --op >= 0;)
5566 /* Reject eight bit registers, except where the template requires
5567 them. (eg. movzb) */
40fb9820
L
5568 if (i.types[op].bitfield.reg8
5569 && (i.tm.operand_types[op].bitfield.reg16
5570 || i.tm.operand_types[op].bitfield.reg32
5571 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5572 {
a540244d
L
5573 as_bad (_("`%s%s' not allowed with `%s%c'"),
5574 register_prefix,
29b0f896
AM
5575 i.op[op].regs->reg_name,
5576 i.tm.name,
5577 i.suffix);
5578 return 0;
5579 }
e4630f71 5580 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5581 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5582 && (i.types[op].bitfield.reg32
5583 || i.types[op].bitfield.reg64)
40fb9820
L
5584 && (i.tm.operand_types[op].bitfield.reg16
5585 || i.tm.operand_types[op].bitfield.acc))
252b5132 5586 {
29b0f896
AM
5587 /* Prohibit these changes in the 64bit mode, since the
5588 lowering is more complicated. */
5589 if (flag_code == CODE_64BIT)
252b5132 5590 {
2b5d6a91 5591 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5592 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5593 i.suffix);
5594 return 0;
252b5132 5595 }
29b0f896 5596#if REGISTER_WARNINGS
cecf1424
JB
5597 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5598 register_prefix,
5599 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5600 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5601#endif
5602 }
5603 return 1;
5604}
252b5132 5605
29b0f896 5606static int
40fb9820 5607update_imm (unsigned int j)
29b0f896 5608{
bc0844ae 5609 i386_operand_type overlap = i.types[j];
40fb9820
L
5610 if ((overlap.bitfield.imm8
5611 || overlap.bitfield.imm8s
5612 || overlap.bitfield.imm16
5613 || overlap.bitfield.imm32
5614 || overlap.bitfield.imm32s
5615 || overlap.bitfield.imm64)
0dfbf9d7
L
5616 && !operand_type_equal (&overlap, &imm8)
5617 && !operand_type_equal (&overlap, &imm8s)
5618 && !operand_type_equal (&overlap, &imm16)
5619 && !operand_type_equal (&overlap, &imm32)
5620 && !operand_type_equal (&overlap, &imm32s)
5621 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5622 {
5623 if (i.suffix)
5624 {
40fb9820
L
5625 i386_operand_type temp;
5626
0dfbf9d7 5627 operand_type_set (&temp, 0);
7ab9ffdd 5628 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5629 {
5630 temp.bitfield.imm8 = overlap.bitfield.imm8;
5631 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5632 }
5633 else if (i.suffix == WORD_MNEM_SUFFIX)
5634 temp.bitfield.imm16 = overlap.bitfield.imm16;
5635 else if (i.suffix == QWORD_MNEM_SUFFIX)
5636 {
5637 temp.bitfield.imm64 = overlap.bitfield.imm64;
5638 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5639 }
5640 else
5641 temp.bitfield.imm32 = overlap.bitfield.imm32;
5642 overlap = temp;
29b0f896 5643 }
0dfbf9d7
L
5644 else if (operand_type_equal (&overlap, &imm16_32_32s)
5645 || operand_type_equal (&overlap, &imm16_32)
5646 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5647 {
40fb9820 5648 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5649 overlap = imm16;
40fb9820 5650 else
65da13b5 5651 overlap = imm32s;
29b0f896 5652 }
0dfbf9d7
L
5653 if (!operand_type_equal (&overlap, &imm8)
5654 && !operand_type_equal (&overlap, &imm8s)
5655 && !operand_type_equal (&overlap, &imm16)
5656 && !operand_type_equal (&overlap, &imm32)
5657 && !operand_type_equal (&overlap, &imm32s)
5658 && !operand_type_equal (&overlap, &imm64))
29b0f896 5659 {
4eed87de
AM
5660 as_bad (_("no instruction mnemonic suffix given; "
5661 "can't determine immediate size"));
29b0f896
AM
5662 return 0;
5663 }
5664 }
40fb9820 5665 i.types[j] = overlap;
29b0f896 5666
40fb9820
L
5667 return 1;
5668}
5669
5670static int
5671finalize_imm (void)
5672{
bc0844ae 5673 unsigned int j, n;
29b0f896 5674
bc0844ae
L
5675 /* Update the first 2 immediate operands. */
5676 n = i.operands > 2 ? 2 : i.operands;
5677 if (n)
5678 {
5679 for (j = 0; j < n; j++)
5680 if (update_imm (j) == 0)
5681 return 0;
40fb9820 5682
bc0844ae
L
5683 /* The 3rd operand can't be immediate operand. */
5684 gas_assert (operand_type_check (i.types[2], imm) == 0);
5685 }
29b0f896
AM
5686
5687 return 1;
5688}
5689
c0f3af97
L
5690static int
5691bad_implicit_operand (int xmm)
5692{
91d6fa6a
NC
5693 const char *ireg = xmm ? "xmm0" : "ymm0";
5694
c0f3af97
L
5695 if (intel_syntax)
5696 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5697 i.tm.name, register_prefix, ireg);
c0f3af97
L
5698 else
5699 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5700 i.tm.name, register_prefix, ireg);
c0f3af97
L
5701 return 0;
5702}
5703
29b0f896 5704static int
e3bb37b5 5705process_operands (void)
29b0f896
AM
5706{
5707 /* Default segment register this instruction will use for memory
5708 accesses. 0 means unknown. This is only for optimizing out
5709 unnecessary segment overrides. */
5710 const seg_entry *default_seg = 0;
5711
2426c15f 5712 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5713 {
91d6fa6a
NC
5714 unsigned int dupl = i.operands;
5715 unsigned int dest = dupl - 1;
9fcfb3d7
L
5716 unsigned int j;
5717
c0f3af97 5718 /* The destination must be an xmm register. */
9c2799c2 5719 gas_assert (i.reg_operands
91d6fa6a 5720 && MAX_OPERANDS > dupl
7ab9ffdd 5721 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5722
5723 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5724 {
c0f3af97 5725 /* The first operand is implicit and must be xmm0. */
9c2799c2 5726 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5727 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5728 return bad_implicit_operand (1);
5729
8cd7925b 5730 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5731 {
5732 /* Keep xmm0 for instructions with VEX prefix and 3
5733 sources. */
5734 goto duplicate;
5735 }
e2ec9d29 5736 else
c0f3af97
L
5737 {
5738 /* We remove the first xmm0 and keep the number of
5739 operands unchanged, which in fact duplicates the
5740 destination. */
5741 for (j = 1; j < i.operands; j++)
5742 {
5743 i.op[j - 1] = i.op[j];
5744 i.types[j - 1] = i.types[j];
5745 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5746 }
5747 }
5748 }
5749 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5750 {
91d6fa6a 5751 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5752 && (i.tm.opcode_modifier.vexsources
5753 == VEX3SOURCES));
c0f3af97
L
5754
5755 /* Add the implicit xmm0 for instructions with VEX prefix
5756 and 3 sources. */
5757 for (j = i.operands; j > 0; j--)
5758 {
5759 i.op[j] = i.op[j - 1];
5760 i.types[j] = i.types[j - 1];
5761 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5762 }
5763 i.op[0].regs
5764 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5765 i.types[0] = regxmm;
c0f3af97
L
5766 i.tm.operand_types[0] = regxmm;
5767
5768 i.operands += 2;
5769 i.reg_operands += 2;
5770 i.tm.operands += 2;
5771
91d6fa6a 5772 dupl++;
c0f3af97 5773 dest++;
91d6fa6a
NC
5774 i.op[dupl] = i.op[dest];
5775 i.types[dupl] = i.types[dest];
5776 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5777 }
c0f3af97
L
5778 else
5779 {
5780duplicate:
5781 i.operands++;
5782 i.reg_operands++;
5783 i.tm.operands++;
5784
91d6fa6a
NC
5785 i.op[dupl] = i.op[dest];
5786 i.types[dupl] = i.types[dest];
5787 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5788 }
5789
5790 if (i.tm.opcode_modifier.immext)
5791 process_immext ();
5792 }
5793 else if (i.tm.opcode_modifier.firstxmm0)
5794 {
5795 unsigned int j;
5796
43234a1e 5797 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 5798 gas_assert (i.reg_operands
7ab9ffdd 5799 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
5800 || operand_type_equal (&i.types[0], &regymm)
5801 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 5802 if (register_number (i.op[0].regs) != 0)
c0f3af97 5803 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5804
5805 for (j = 1; j < i.operands; j++)
5806 {
5807 i.op[j - 1] = i.op[j];
5808 i.types[j - 1] = i.types[j];
5809
5810 /* We need to adjust fields in i.tm since they are used by
5811 build_modrm_byte. */
5812 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5813 }
5814
e2ec9d29
L
5815 i.operands--;
5816 i.reg_operands--;
e2ec9d29
L
5817 i.tm.operands--;
5818 }
5819 else if (i.tm.opcode_modifier.regkludge)
5820 {
5821 /* The imul $imm, %reg instruction is converted into
5822 imul $imm, %reg, %reg, and the clr %reg instruction
5823 is converted into xor %reg, %reg. */
5824
5825 unsigned int first_reg_op;
5826
5827 if (operand_type_check (i.types[0], reg))
5828 first_reg_op = 0;
5829 else
5830 first_reg_op = 1;
5831 /* Pretend we saw the extra register operand. */
9c2799c2 5832 gas_assert (i.reg_operands == 1
7ab9ffdd 5833 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5834 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5835 i.types[first_reg_op + 1] = i.types[first_reg_op];
5836 i.operands++;
5837 i.reg_operands++;
29b0f896
AM
5838 }
5839
40fb9820 5840 if (i.tm.opcode_modifier.shortform)
29b0f896 5841 {
40fb9820
L
5842 if (i.types[0].bitfield.sreg2
5843 || i.types[0].bitfield.sreg3)
29b0f896 5844 {
4eed87de
AM
5845 if (i.tm.base_opcode == POP_SEG_SHORT
5846 && i.op[0].regs->reg_num == 1)
29b0f896 5847 {
a87af027 5848 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5849 return 0;
29b0f896 5850 }
4eed87de
AM
5851 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5852 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5853 i.rex |= REX_B;
4eed87de
AM
5854 }
5855 else
5856 {
7ab9ffdd 5857 /* The register or float register operand is in operand
85f10a01 5858 0 or 1. */
40fb9820 5859 unsigned int op;
7ab9ffdd
L
5860
5861 if (i.types[0].bitfield.floatreg
5862 || operand_type_check (i.types[0], reg))
5863 op = 0;
5864 else
5865 op = 1;
4eed87de
AM
5866 /* Register goes in low 3 bits of opcode. */
5867 i.tm.base_opcode |= i.op[op].regs->reg_num;
5868 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5869 i.rex |= REX_B;
40fb9820 5870 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5871 {
4eed87de
AM
5872 /* Warn about some common errors, but press on regardless.
5873 The first case can be generated by gcc (<= 2.8.1). */
5874 if (i.operands == 2)
5875 {
5876 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5877 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5878 register_prefix, i.op[!intel_syntax].regs->reg_name,
5879 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5880 }
5881 else
5882 {
5883 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5884 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5885 register_prefix, i.op[0].regs->reg_name);
4eed87de 5886 }
29b0f896
AM
5887 }
5888 }
5889 }
40fb9820 5890 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5891 {
5892 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5893 must be put into the modrm byte). Now, we make the modrm and
5894 index base bytes based on all the info we've collected. */
29b0f896
AM
5895
5896 default_seg = build_modrm_byte ();
5897 }
8a2ed489 5898 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5899 {
5900 default_seg = &ds;
5901 }
40fb9820 5902 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5903 {
5904 /* For the string instructions that allow a segment override
5905 on one of their operands, the default segment is ds. */
5906 default_seg = &ds;
5907 }
5908
75178d9d
L
5909 if (i.tm.base_opcode == 0x8d /* lea */
5910 && i.seg[0]
5911 && !quiet_warnings)
30123838 5912 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5913
5914 /* If a segment was explicitly specified, and the specified segment
5915 is not the default, use an opcode prefix to select it. If we
5916 never figured out what the default segment is, then default_seg
5917 will be zero at this point, and the specified segment prefix will
5918 always be used. */
29b0f896
AM
5919 if ((i.seg[0]) && (i.seg[0] != default_seg))
5920 {
5921 if (!add_prefix (i.seg[0]->seg_prefix))
5922 return 0;
5923 }
5924 return 1;
5925}
5926
5927static const seg_entry *
e3bb37b5 5928build_modrm_byte (void)
29b0f896
AM
5929{
5930 const seg_entry *default_seg = 0;
c0f3af97 5931 unsigned int source, dest;
8cd7925b 5932 int vex_3_sources;
c0f3af97
L
5933
5934 /* The first operand of instructions with VEX prefix and 3 sources
5935 must be VEX_Imm4. */
8cd7925b 5936 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5937 if (vex_3_sources)
5938 {
91d6fa6a 5939 unsigned int nds, reg_slot;
4c2c6516 5940 expressionS *exp;
c0f3af97 5941
922d8de8 5942 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5943 && i.tm.opcode_modifier.immext)
5944 {
5945 dest = i.operands - 2;
5946 gas_assert (dest == 3);
5947 }
922d8de8 5948 else
a683cc34 5949 dest = i.operands - 1;
c0f3af97 5950 nds = dest - 1;
922d8de8 5951
a683cc34
SP
5952 /* There are 2 kinds of instructions:
5953 1. 5 operands: 4 register operands or 3 register operands
5954 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
5955 VexW0 or VexW1. The destination must be either XMM, YMM or
5956 ZMM register.
a683cc34
SP
5957 2. 4 operands: 4 register operands or 3 register operands
5958 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5959 gas_assert ((i.reg_operands == 4
a683cc34
SP
5960 || (i.reg_operands == 3 && i.mem_operands == 1))
5961 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5962 && (i.tm.opcode_modifier.veximmext
5963 || (i.imm_operands == 1
5964 && i.types[0].bitfield.vec_imm4
5965 && (i.tm.opcode_modifier.vexw == VEXW0
5966 || i.tm.opcode_modifier.vexw == VEXW1)
5967 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
5968 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5969 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
5970
5971 if (i.imm_operands == 0)
5972 {
5973 /* When there is no immediate operand, generate an 8bit
5974 immediate operand to encode the first operand. */
5975 exp = &im_expressions[i.imm_operands++];
5976 i.op[i.operands].imms = exp;
5977 i.types[i.operands] = imm8;
5978 i.operands++;
5979 /* If VexW1 is set, the first operand is the source and
5980 the second operand is encoded in the immediate operand. */
5981 if (i.tm.opcode_modifier.vexw == VEXW1)
5982 {
5983 source = 0;
5984 reg_slot = 1;
5985 }
5986 else
5987 {
5988 source = 1;
5989 reg_slot = 0;
5990 }
5991
5992 /* FMA swaps REG and NDS. */
5993 if (i.tm.cpu_flags.bitfield.cpufma)
5994 {
5995 unsigned int tmp;
5996 tmp = reg_slot;
5997 reg_slot = nds;
5998 nds = tmp;
5999 }
6000
24981e7b
L
6001 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6002 &regxmm)
a683cc34 6003 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6004 &regymm)
6005 || operand_type_equal (&i.tm.operand_types[reg_slot],
6006 &regzmm));
a683cc34 6007 exp->X_op = O_constant;
4c692bc7 6008 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6009 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6010 }
922d8de8 6011 else
a683cc34
SP
6012 {
6013 unsigned int imm_slot;
6014
6015 if (i.tm.opcode_modifier.vexw == VEXW0)
6016 {
6017 /* If VexW0 is set, the third operand is the source and
6018 the second operand is encoded in the immediate
6019 operand. */
6020 source = 2;
6021 reg_slot = 1;
6022 }
6023 else
6024 {
6025 /* VexW1 is set, the second operand is the source and
6026 the third operand is encoded in the immediate
6027 operand. */
6028 source = 1;
6029 reg_slot = 2;
6030 }
6031
6032 if (i.tm.opcode_modifier.immext)
6033 {
6034 /* When ImmExt is set, the immdiate byte is the last
6035 operand. */
6036 imm_slot = i.operands - 1;
6037 source--;
6038 reg_slot--;
6039 }
6040 else
6041 {
6042 imm_slot = 0;
6043
6044 /* Turn on Imm8 so that output_imm will generate it. */
6045 i.types[imm_slot].bitfield.imm8 = 1;
6046 }
6047
24981e7b
L
6048 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6049 &regxmm)
6050 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6051 &regymm)
6052 || operand_type_equal (&i.tm.operand_types[reg_slot],
6053 &regzmm));
a683cc34 6054 i.op[imm_slot].imms->X_add_number
4c692bc7 6055 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6056 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6057 }
6058
6059 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6060 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6061 &regymm)
6062 || operand_type_equal (&i.tm.operand_types[nds],
6063 &regzmm));
dae39acc 6064 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6065 }
6066 else
6067 source = dest = 0;
29b0f896
AM
6068
6069 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6070 implicit registers do not count. If there are 3 register
6071 operands, it must be a instruction with VexNDS. For a
6072 instruction with VexNDD, the destination register is encoded
6073 in VEX prefix. If there are 4 register operands, it must be
6074 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6075 if (i.mem_operands == 0
6076 && ((i.reg_operands == 2
2426c15f 6077 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6078 || (i.reg_operands == 3
2426c15f 6079 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6080 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6081 {
cab737b9
L
6082 switch (i.operands)
6083 {
6084 case 2:
6085 source = 0;
6086 break;
6087 case 3:
c81128dc
L
6088 /* When there are 3 operands, one of them may be immediate,
6089 which may be the first or the last operand. Otherwise,
c0f3af97
L
6090 the first operand must be shift count register (cl) or it
6091 is an instruction with VexNDS. */
9c2799c2 6092 gas_assert (i.imm_operands == 1
7ab9ffdd 6093 || (i.imm_operands == 0
2426c15f 6094 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6095 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6096 if (operand_type_check (i.types[0], imm)
6097 || i.types[0].bitfield.shiftcount)
6098 source = 1;
6099 else
6100 source = 0;
cab737b9
L
6101 break;
6102 case 4:
368d64cc
L
6103 /* When there are 4 operands, the first two must be 8bit
6104 immediate operands. The source operand will be the 3rd
c0f3af97
L
6105 one.
6106
6107 For instructions with VexNDS, if the first operand
6108 an imm8, the source operand is the 2nd one. If the last
6109 operand is imm8, the source operand is the first one. */
9c2799c2 6110 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6111 && i.types[0].bitfield.imm8
6112 && i.types[1].bitfield.imm8)
2426c15f 6113 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6114 && i.imm_operands == 1
6115 && (i.types[0].bitfield.imm8
43234a1e
L
6116 || i.types[i.operands - 1].bitfield.imm8
6117 || i.rounding)));
9f2670f2
L
6118 if (i.imm_operands == 2)
6119 source = 2;
6120 else
c0f3af97
L
6121 {
6122 if (i.types[0].bitfield.imm8)
6123 source = 1;
6124 else
6125 source = 0;
6126 }
c0f3af97
L
6127 break;
6128 case 5:
43234a1e
L
6129 if (i.tm.opcode_modifier.evex)
6130 {
6131 /* For EVEX instructions, when there are 5 operands, the
6132 first one must be immediate operand. If the second one
6133 is immediate operand, the source operand is the 3th
6134 one. If the last one is immediate operand, the source
6135 operand is the 2nd one. */
6136 gas_assert (i.imm_operands == 2
6137 && i.tm.opcode_modifier.sae
6138 && operand_type_check (i.types[0], imm));
6139 if (operand_type_check (i.types[1], imm))
6140 source = 2;
6141 else if (operand_type_check (i.types[4], imm))
6142 source = 1;
6143 else
6144 abort ();
6145 }
cab737b9
L
6146 break;
6147 default:
6148 abort ();
6149 }
6150
c0f3af97
L
6151 if (!vex_3_sources)
6152 {
6153 dest = source + 1;
6154
43234a1e
L
6155 /* RC/SAE operand could be between DEST and SRC. That happens
6156 when one operand is GPR and the other one is XMM/YMM/ZMM
6157 register. */
6158 if (i.rounding && i.rounding->operand == (int) dest)
6159 dest++;
6160
2426c15f 6161 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6162 {
43234a1e
L
6163 /* For instructions with VexNDS, the register-only source
6164 operand must be 32/64bit integer, XMM, YMM or ZMM
6165 register. It is encoded in VEX prefix. We need to
6166 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6167
6168 i386_operand_type op;
6169 unsigned int vvvv;
6170
6171 /* Check register-only source operand when two source
6172 operands are swapped. */
6173 if (!i.tm.operand_types[source].bitfield.baseindex
6174 && i.tm.operand_types[dest].bitfield.baseindex)
6175 {
6176 vvvv = source;
6177 source = dest;
6178 }
6179 else
6180 vvvv = dest;
6181
6182 op = i.tm.operand_types[vvvv];
fa99fab2 6183 op.bitfield.regmem = 0;
c0f3af97 6184 if ((dest + 1) >= i.operands
ac4eb736
AM
6185 || (!op.bitfield.reg32
6186 && op.bitfield.reg64
f12dc422 6187 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6188 && !operand_type_equal (&op, &regymm)
6189 && !operand_type_equal (&op, &regzmm)
6190 && !operand_type_equal (&op, &regmask)))
c0f3af97 6191 abort ();
f12dc422 6192 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6193 dest++;
6194 }
6195 }
29b0f896
AM
6196
6197 i.rm.mode = 3;
6198 /* One of the register operands will be encoded in the i.tm.reg
6199 field, the other in the combined i.tm.mode and i.tm.regmem
6200 fields. If no form of this instruction supports a memory
6201 destination operand, then we assume the source operand may
6202 sometimes be a memory operand and so we need to store the
6203 destination in the i.rm.reg field. */
40fb9820
L
6204 if (!i.tm.operand_types[dest].bitfield.regmem
6205 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6206 {
6207 i.rm.reg = i.op[dest].regs->reg_num;
6208 i.rm.regmem = i.op[source].regs->reg_num;
6209 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6210 i.rex |= REX_R;
43234a1e
L
6211 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6212 i.vrex |= REX_R;
29b0f896 6213 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6214 i.rex |= REX_B;
43234a1e
L
6215 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6216 i.vrex |= REX_B;
29b0f896
AM
6217 }
6218 else
6219 {
6220 i.rm.reg = i.op[source].regs->reg_num;
6221 i.rm.regmem = i.op[dest].regs->reg_num;
6222 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6223 i.rex |= REX_B;
43234a1e
L
6224 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6225 i.vrex |= REX_B;
29b0f896 6226 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6227 i.rex |= REX_R;
43234a1e
L
6228 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6229 i.vrex |= REX_R;
29b0f896 6230 }
161a04f6 6231 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6232 {
40fb9820
L
6233 if (!i.types[0].bitfield.control
6234 && !i.types[1].bitfield.control)
c4a530c5 6235 abort ();
161a04f6 6236 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6237 add_prefix (LOCK_PREFIX_OPCODE);
6238 }
29b0f896
AM
6239 }
6240 else
6241 { /* If it's not 2 reg operands... */
c0f3af97
L
6242 unsigned int mem;
6243
29b0f896
AM
6244 if (i.mem_operands)
6245 {
6246 unsigned int fake_zero_displacement = 0;
99018f42 6247 unsigned int op;
4eed87de 6248
7ab9ffdd
L
6249 for (op = 0; op < i.operands; op++)
6250 if (operand_type_check (i.types[op], anymem))
6251 break;
7ab9ffdd 6252 gas_assert (op < i.operands);
29b0f896 6253
6c30d220
L
6254 if (i.tm.opcode_modifier.vecsib)
6255 {
6256 if (i.index_reg->reg_num == RegEiz
6257 || i.index_reg->reg_num == RegRiz)
6258 abort ();
6259
6260 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6261 if (!i.base_reg)
6262 {
6263 i.sib.base = NO_BASE_REGISTER;
6264 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6265 /* No Vec_Disp8 if there is no base. */
6266 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6267 i.types[op].bitfield.disp8 = 0;
6268 i.types[op].bitfield.disp16 = 0;
6269 i.types[op].bitfield.disp64 = 0;
6270 if (flag_code != CODE_64BIT)
6271 {
6272 /* Must be 32 bit */
6273 i.types[op].bitfield.disp32 = 1;
6274 i.types[op].bitfield.disp32s = 0;
6275 }
6276 else
6277 {
6278 i.types[op].bitfield.disp32 = 0;
6279 i.types[op].bitfield.disp32s = 1;
6280 }
6281 }
6282 i.sib.index = i.index_reg->reg_num;
6283 if ((i.index_reg->reg_flags & RegRex) != 0)
6284 i.rex |= REX_X;
43234a1e
L
6285 if ((i.index_reg->reg_flags & RegVRex) != 0)
6286 i.vrex |= REX_X;
6c30d220
L
6287 }
6288
29b0f896
AM
6289 default_seg = &ds;
6290
6291 if (i.base_reg == 0)
6292 {
6293 i.rm.mode = 0;
6294 if (!i.disp_operands)
6c30d220
L
6295 {
6296 fake_zero_displacement = 1;
6297 /* Instructions with VSIB byte need 32bit displacement
6298 if there is no base register. */
6299 if (i.tm.opcode_modifier.vecsib)
6300 i.types[op].bitfield.disp32 = 1;
6301 }
29b0f896
AM
6302 if (i.index_reg == 0)
6303 {
6c30d220 6304 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6305 /* Operand is just <disp> */
20f0a1fc 6306 if (flag_code == CODE_64BIT)
29b0f896
AM
6307 {
6308 /* 64bit mode overwrites the 32bit absolute
6309 addressing by RIP relative addressing and
6310 absolute addressing is encoded by one of the
6311 redundant SIB forms. */
6312 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6313 i.sib.base = NO_BASE_REGISTER;
6314 i.sib.index = NO_INDEX_REGISTER;
fc225355 6315 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6316 ? disp32s : disp32);
20f0a1fc 6317 }
fc225355
L
6318 else if ((flag_code == CODE_16BIT)
6319 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6320 {
6321 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6322 i.types[op] = disp16;
20f0a1fc
NC
6323 }
6324 else
6325 {
6326 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6327 i.types[op] = disp32;
29b0f896
AM
6328 }
6329 }
6c30d220 6330 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6331 {
6c30d220 6332 /* !i.base_reg && i.index_reg */
db51cc60
L
6333 if (i.index_reg->reg_num == RegEiz
6334 || i.index_reg->reg_num == RegRiz)
6335 i.sib.index = NO_INDEX_REGISTER;
6336 else
6337 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6338 i.sib.base = NO_BASE_REGISTER;
6339 i.sib.scale = i.log2_scale_factor;
6340 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6341 /* No Vec_Disp8 if there is no base. */
6342 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6343 i.types[op].bitfield.disp8 = 0;
6344 i.types[op].bitfield.disp16 = 0;
6345 i.types[op].bitfield.disp64 = 0;
29b0f896 6346 if (flag_code != CODE_64BIT)
40fb9820
L
6347 {
6348 /* Must be 32 bit */
6349 i.types[op].bitfield.disp32 = 1;
6350 i.types[op].bitfield.disp32s = 0;
6351 }
29b0f896 6352 else
40fb9820
L
6353 {
6354 i.types[op].bitfield.disp32 = 0;
6355 i.types[op].bitfield.disp32s = 1;
6356 }
29b0f896 6357 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6358 i.rex |= REX_X;
29b0f896
AM
6359 }
6360 }
6361 /* RIP addressing for 64bit mode. */
9a04903e
JB
6362 else if (i.base_reg->reg_num == RegRip ||
6363 i.base_reg->reg_num == RegEip)
29b0f896 6364 {
6c30d220 6365 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6366 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6367 i.types[op].bitfield.disp8 = 0;
6368 i.types[op].bitfield.disp16 = 0;
6369 i.types[op].bitfield.disp32 = 0;
6370 i.types[op].bitfield.disp32s = 1;
6371 i.types[op].bitfield.disp64 = 0;
43234a1e 6372 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6373 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6374 if (! i.disp_operands)
6375 fake_zero_displacement = 1;
29b0f896 6376 }
40fb9820 6377 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6378 {
6c30d220 6379 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6380 switch (i.base_reg->reg_num)
6381 {
6382 case 3: /* (%bx) */
6383 if (i.index_reg == 0)
6384 i.rm.regmem = 7;
6385 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6386 i.rm.regmem = i.index_reg->reg_num - 6;
6387 break;
6388 case 5: /* (%bp) */
6389 default_seg = &ss;
6390 if (i.index_reg == 0)
6391 {
6392 i.rm.regmem = 6;
40fb9820 6393 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6394 {
6395 /* fake (%bp) into 0(%bp) */
43234a1e
L
6396 if (i.tm.operand_types[op].bitfield.vec_disp8)
6397 i.types[op].bitfield.vec_disp8 = 1;
6398 else
6399 i.types[op].bitfield.disp8 = 1;
252b5132 6400 fake_zero_displacement = 1;
29b0f896
AM
6401 }
6402 }
6403 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6404 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6405 break;
6406 default: /* (%si) -> 4 or (%di) -> 5 */
6407 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6408 }
6409 i.rm.mode = mode_from_disp_size (i.types[op]);
6410 }
6411 else /* i.base_reg and 32/64 bit mode */
6412 {
6413 if (flag_code == CODE_64BIT
40fb9820
L
6414 && operand_type_check (i.types[op], disp))
6415 {
6416 i386_operand_type temp;
0dfbf9d7 6417 operand_type_set (&temp, 0);
40fb9820 6418 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6419 temp.bitfield.vec_disp8
6420 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6421 i.types[op] = temp;
6422 if (i.prefix[ADDR_PREFIX] == 0)
6423 i.types[op].bitfield.disp32s = 1;
6424 else
6425 i.types[op].bitfield.disp32 = 1;
6426 }
20f0a1fc 6427
6c30d220
L
6428 if (!i.tm.opcode_modifier.vecsib)
6429 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6430 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6431 i.rex |= REX_B;
29b0f896
AM
6432 i.sib.base = i.base_reg->reg_num;
6433 /* x86-64 ignores REX prefix bit here to avoid decoder
6434 complications. */
848930b2
JB
6435 if (!(i.base_reg->reg_flags & RegRex)
6436 && (i.base_reg->reg_num == EBP_REG_NUM
6437 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6438 default_seg = &ss;
848930b2 6439 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6440 {
848930b2 6441 fake_zero_displacement = 1;
43234a1e
L
6442 if (i.tm.operand_types [op].bitfield.vec_disp8)
6443 i.types[op].bitfield.vec_disp8 = 1;
6444 else
6445 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6446 }
6447 i.sib.scale = i.log2_scale_factor;
6448 if (i.index_reg == 0)
6449 {
6c30d220 6450 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6451 /* <disp>(%esp) becomes two byte modrm with no index
6452 register. We've already stored the code for esp
6453 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6454 Any base register besides %esp will not use the
6455 extra modrm byte. */
6456 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6457 }
6c30d220 6458 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6459 {
db51cc60
L
6460 if (i.index_reg->reg_num == RegEiz
6461 || i.index_reg->reg_num == RegRiz)
6462 i.sib.index = NO_INDEX_REGISTER;
6463 else
6464 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6465 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6466 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6467 i.rex |= REX_X;
29b0f896 6468 }
67a4f2b7
AO
6469
6470 if (i.disp_operands
6471 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6472 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6473 i.rm.mode = 0;
6474 else
a501d77e
L
6475 {
6476 if (!fake_zero_displacement
6477 && !i.disp_operands
6478 && i.disp_encoding)
6479 {
6480 fake_zero_displacement = 1;
6481 if (i.disp_encoding == disp_encoding_8bit)
6482 i.types[op].bitfield.disp8 = 1;
6483 else
6484 i.types[op].bitfield.disp32 = 1;
6485 }
6486 i.rm.mode = mode_from_disp_size (i.types[op]);
6487 }
29b0f896 6488 }
252b5132 6489
29b0f896
AM
6490 if (fake_zero_displacement)
6491 {
6492 /* Fakes a zero displacement assuming that i.types[op]
6493 holds the correct displacement size. */
6494 expressionS *exp;
6495
9c2799c2 6496 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6497 exp = &disp_expressions[i.disp_operands++];
6498 i.op[op].disps = exp;
6499 exp->X_op = O_constant;
6500 exp->X_add_number = 0;
6501 exp->X_add_symbol = (symbolS *) 0;
6502 exp->X_op_symbol = (symbolS *) 0;
6503 }
c0f3af97
L
6504
6505 mem = op;
29b0f896 6506 }
c0f3af97
L
6507 else
6508 mem = ~0;
252b5132 6509
8c43a48b 6510 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6511 {
6512 if (operand_type_check (i.types[0], imm))
6513 i.vex.register_specifier = NULL;
6514 else
6515 {
6516 /* VEX.vvvv encodes one of the sources when the first
6517 operand is not an immediate. */
1ef99a7b 6518 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6519 i.vex.register_specifier = i.op[0].regs;
6520 else
6521 i.vex.register_specifier = i.op[1].regs;
6522 }
6523
6524 /* Destination is a XMM register encoded in the ModRM.reg
6525 and VEX.R bit. */
6526 i.rm.reg = i.op[2].regs->reg_num;
6527 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6528 i.rex |= REX_R;
6529
6530 /* ModRM.rm and VEX.B encodes the other source. */
6531 if (!i.mem_operands)
6532 {
6533 i.rm.mode = 3;
6534
1ef99a7b 6535 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6536 i.rm.regmem = i.op[1].regs->reg_num;
6537 else
6538 i.rm.regmem = i.op[0].regs->reg_num;
6539
6540 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6541 i.rex |= REX_B;
6542 }
6543 }
2426c15f 6544 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6545 {
6546 i.vex.register_specifier = i.op[2].regs;
6547 if (!i.mem_operands)
6548 {
6549 i.rm.mode = 3;
6550 i.rm.regmem = i.op[1].regs->reg_num;
6551 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6552 i.rex |= REX_B;
6553 }
6554 }
29b0f896
AM
6555 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6556 (if any) based on i.tm.extension_opcode. Again, we must be
6557 careful to make sure that segment/control/debug/test/MMX
6558 registers are coded into the i.rm.reg field. */
f88c9eb0 6559 else if (i.reg_operands)
29b0f896 6560 {
99018f42 6561 unsigned int op;
7ab9ffdd
L
6562 unsigned int vex_reg = ~0;
6563
6564 for (op = 0; op < i.operands; op++)
6565 if (i.types[op].bitfield.reg8
6566 || i.types[op].bitfield.reg16
6567 || i.types[op].bitfield.reg32
6568 || i.types[op].bitfield.reg64
6569 || i.types[op].bitfield.regmmx
6570 || i.types[op].bitfield.regxmm
6571 || i.types[op].bitfield.regymm
7e8b059b 6572 || i.types[op].bitfield.regbnd
43234a1e
L
6573 || i.types[op].bitfield.regzmm
6574 || i.types[op].bitfield.regmask
7ab9ffdd
L
6575 || i.types[op].bitfield.sreg2
6576 || i.types[op].bitfield.sreg3
6577 || i.types[op].bitfield.control
6578 || i.types[op].bitfield.debug
6579 || i.types[op].bitfield.test)
6580 break;
c0209578 6581
7ab9ffdd
L
6582 if (vex_3_sources)
6583 op = dest;
2426c15f 6584 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6585 {
6586 /* For instructions with VexNDS, the register-only
6587 source operand is encoded in VEX prefix. */
6588 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6589
7ab9ffdd 6590 if (op > mem)
c0f3af97 6591 {
7ab9ffdd
L
6592 vex_reg = op++;
6593 gas_assert (op < i.operands);
c0f3af97
L
6594 }
6595 else
c0f3af97 6596 {
f12dc422
L
6597 /* Check register-only source operand when two source
6598 operands are swapped. */
6599 if (!i.tm.operand_types[op].bitfield.baseindex
6600 && i.tm.operand_types[op + 1].bitfield.baseindex)
6601 {
6602 vex_reg = op;
6603 op += 2;
6604 gas_assert (mem == (vex_reg + 1)
6605 && op < i.operands);
6606 }
6607 else
6608 {
6609 vex_reg = op + 1;
6610 gas_assert (vex_reg < i.operands);
6611 }
c0f3af97 6612 }
7ab9ffdd 6613 }
2426c15f 6614 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6615 {
f12dc422 6616 /* For instructions with VexNDD, the register destination
7ab9ffdd 6617 is encoded in VEX prefix. */
f12dc422
L
6618 if (i.mem_operands == 0)
6619 {
6620 /* There is no memory operand. */
6621 gas_assert ((op + 2) == i.operands);
6622 vex_reg = op + 1;
6623 }
6624 else
8d63c93e 6625 {
f12dc422
L
6626 /* There are only 2 operands. */
6627 gas_assert (op < 2 && i.operands == 2);
6628 vex_reg = 1;
6629 }
7ab9ffdd
L
6630 }
6631 else
6632 gas_assert (op < i.operands);
99018f42 6633
7ab9ffdd
L
6634 if (vex_reg != (unsigned int) ~0)
6635 {
f12dc422 6636 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6637
f12dc422
L
6638 if (type->bitfield.reg32 != 1
6639 && type->bitfield.reg64 != 1
6640 && !operand_type_equal (type, &regxmm)
43234a1e
L
6641 && !operand_type_equal (type, &regymm)
6642 && !operand_type_equal (type, &regzmm)
6643 && !operand_type_equal (type, &regmask))
7ab9ffdd 6644 abort ();
f88c9eb0 6645
7ab9ffdd
L
6646 i.vex.register_specifier = i.op[vex_reg].regs;
6647 }
6648
1b9f0c97
L
6649 /* Don't set OP operand twice. */
6650 if (vex_reg != op)
7ab9ffdd 6651 {
1b9f0c97
L
6652 /* If there is an extension opcode to put here, the
6653 register number must be put into the regmem field. */
6654 if (i.tm.extension_opcode != None)
6655 {
6656 i.rm.regmem = i.op[op].regs->reg_num;
6657 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6658 i.rex |= REX_B;
43234a1e
L
6659 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6660 i.vrex |= REX_B;
1b9f0c97
L
6661 }
6662 else
6663 {
6664 i.rm.reg = i.op[op].regs->reg_num;
6665 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6666 i.rex |= REX_R;
43234a1e
L
6667 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6668 i.vrex |= REX_R;
1b9f0c97 6669 }
7ab9ffdd 6670 }
252b5132 6671
29b0f896
AM
6672 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6673 must set it to 3 to indicate this is a register operand
6674 in the regmem field. */
6675 if (!i.mem_operands)
6676 i.rm.mode = 3;
6677 }
252b5132 6678
29b0f896 6679 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6680 if (i.tm.extension_opcode != None)
29b0f896
AM
6681 i.rm.reg = i.tm.extension_opcode;
6682 }
6683 return default_seg;
6684}
252b5132 6685
29b0f896 6686static void
e3bb37b5 6687output_branch (void)
29b0f896
AM
6688{
6689 char *p;
f8a5c266 6690 int size;
29b0f896
AM
6691 int code16;
6692 int prefix;
6693 relax_substateT subtype;
6694 symbolS *sym;
6695 offsetT off;
6696
f8a5c266 6697 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6698 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6699
6700 prefix = 0;
6701 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6702 {
29b0f896
AM
6703 prefix = 1;
6704 i.prefixes -= 1;
6705 code16 ^= CODE16;
252b5132 6706 }
29b0f896
AM
6707 /* Pentium4 branch hints. */
6708 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6709 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6710 {
29b0f896
AM
6711 prefix++;
6712 i.prefixes--;
6713 }
6714 if (i.prefix[REX_PREFIX] != 0)
6715 {
6716 prefix++;
6717 i.prefixes--;
2f66722d
AM
6718 }
6719
7e8b059b
L
6720 /* BND prefixed jump. */
6721 if (i.prefix[BND_PREFIX] != 0)
6722 {
6723 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6724 i.prefixes -= 1;
6725 }
6726
29b0f896
AM
6727 if (i.prefixes != 0 && !intel_syntax)
6728 as_warn (_("skipping prefixes on this instruction"));
6729
6730 /* It's always a symbol; End frag & setup for relax.
6731 Make sure there is enough room in this frag for the largest
6732 instruction we may generate in md_convert_frag. This is 2
6733 bytes for the opcode and room for the prefix and largest
6734 displacement. */
6735 frag_grow (prefix + 2 + 4);
6736 /* Prefix and 1 opcode byte go in fr_fix. */
6737 p = frag_more (prefix + 1);
6738 if (i.prefix[DATA_PREFIX] != 0)
6739 *p++ = DATA_PREFIX_OPCODE;
6740 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6741 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6742 *p++ = i.prefix[SEG_PREFIX];
6743 if (i.prefix[REX_PREFIX] != 0)
6744 *p++ = i.prefix[REX_PREFIX];
6745 *p = i.tm.base_opcode;
6746
6747 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6748 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6749 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6750 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6751 else
f8a5c266 6752 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6753 subtype |= code16;
3e73aa7c 6754
29b0f896
AM
6755 sym = i.op[0].disps->X_add_symbol;
6756 off = i.op[0].disps->X_add_number;
3e73aa7c 6757
29b0f896
AM
6758 if (i.op[0].disps->X_op != O_constant
6759 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6760 {
29b0f896
AM
6761 /* Handle complex expressions. */
6762 sym = make_expr_symbol (i.op[0].disps);
6763 off = 0;
6764 }
3e73aa7c 6765
29b0f896
AM
6766 /* 1 possible extra opcode + 4 byte displacement go in var part.
6767 Pass reloc in fr_var. */
c3320543
L
6768 frag_var (rs_machine_dependent, 5,
6769 ((!object_64bit
6770 || i.reloc[0] != NO_RELOC
6771 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6772 ? i.reloc[0]
6773 : BFD_RELOC_X86_64_PC32_BND),
6774 subtype, sym, off, p);
29b0f896 6775}
3e73aa7c 6776
29b0f896 6777static void
e3bb37b5 6778output_jump (void)
29b0f896
AM
6779{
6780 char *p;
6781 int size;
3e02c1cc 6782 fixS *fixP;
29b0f896 6783
40fb9820 6784 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6785 {
6786 /* This is a loop or jecxz type instruction. */
6787 size = 1;
6788 if (i.prefix[ADDR_PREFIX] != 0)
6789 {
6790 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6791 i.prefixes -= 1;
6792 }
6793 /* Pentium4 branch hints. */
6794 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6795 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6796 {
6797 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6798 i.prefixes--;
3e73aa7c
JH
6799 }
6800 }
29b0f896
AM
6801 else
6802 {
6803 int code16;
3e73aa7c 6804
29b0f896
AM
6805 code16 = 0;
6806 if (flag_code == CODE_16BIT)
6807 code16 = CODE16;
3e73aa7c 6808
29b0f896
AM
6809 if (i.prefix[DATA_PREFIX] != 0)
6810 {
6811 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6812 i.prefixes -= 1;
6813 code16 ^= CODE16;
6814 }
252b5132 6815
29b0f896
AM
6816 size = 4;
6817 if (code16)
6818 size = 2;
6819 }
9fcc94b6 6820
29b0f896
AM
6821 if (i.prefix[REX_PREFIX] != 0)
6822 {
6823 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6824 i.prefixes -= 1;
6825 }
252b5132 6826
7e8b059b
L
6827 /* BND prefixed jump. */
6828 if (i.prefix[BND_PREFIX] != 0)
6829 {
6830 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6831 i.prefixes -= 1;
6832 }
6833
29b0f896
AM
6834 if (i.prefixes != 0 && !intel_syntax)
6835 as_warn (_("skipping prefixes on this instruction"));
e0890092 6836
42164a71
L
6837 p = frag_more (i.tm.opcode_length + size);
6838 switch (i.tm.opcode_length)
6839 {
6840 case 2:
6841 *p++ = i.tm.base_opcode >> 8;
6842 case 1:
6843 *p++ = i.tm.base_opcode;
6844 break;
6845 default:
6846 abort ();
6847 }
e0890092 6848
3e02c1cc 6849 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
c3320543
L
6850 i.op[0].disps, 1, reloc (size, 1, 1,
6851 (i.bnd_prefix != NULL
6852 || add_bnd_prefix),
6853 i.reloc[0]));
3e02c1cc
AM
6854
6855 /* All jumps handled here are signed, but don't use a signed limit
6856 check for 32 and 16 bit jumps as we want to allow wrap around at
6857 4G and 64k respectively. */
6858 if (size == 1)
6859 fixP->fx_signed = 1;
29b0f896 6860}
e0890092 6861
29b0f896 6862static void
e3bb37b5 6863output_interseg_jump (void)
29b0f896
AM
6864{
6865 char *p;
6866 int size;
6867 int prefix;
6868 int code16;
252b5132 6869
29b0f896
AM
6870 code16 = 0;
6871 if (flag_code == CODE_16BIT)
6872 code16 = CODE16;
a217f122 6873
29b0f896
AM
6874 prefix = 0;
6875 if (i.prefix[DATA_PREFIX] != 0)
6876 {
6877 prefix = 1;
6878 i.prefixes -= 1;
6879 code16 ^= CODE16;
6880 }
6881 if (i.prefix[REX_PREFIX] != 0)
6882 {
6883 prefix++;
6884 i.prefixes -= 1;
6885 }
252b5132 6886
29b0f896
AM
6887 size = 4;
6888 if (code16)
6889 size = 2;
252b5132 6890
29b0f896
AM
6891 if (i.prefixes != 0 && !intel_syntax)
6892 as_warn (_("skipping prefixes on this instruction"));
252b5132 6893
29b0f896
AM
6894 /* 1 opcode; 2 segment; offset */
6895 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 6896
29b0f896
AM
6897 if (i.prefix[DATA_PREFIX] != 0)
6898 *p++ = DATA_PREFIX_OPCODE;
252b5132 6899
29b0f896
AM
6900 if (i.prefix[REX_PREFIX] != 0)
6901 *p++ = i.prefix[REX_PREFIX];
252b5132 6902
29b0f896
AM
6903 *p++ = i.tm.base_opcode;
6904 if (i.op[1].imms->X_op == O_constant)
6905 {
6906 offsetT n = i.op[1].imms->X_add_number;
252b5132 6907
29b0f896
AM
6908 if (size == 2
6909 && !fits_in_unsigned_word (n)
6910 && !fits_in_signed_word (n))
6911 {
6912 as_bad (_("16-bit jump out of range"));
6913 return;
6914 }
6915 md_number_to_chars (p, n, size);
6916 }
6917 else
6918 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
c3320543 6919 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
29b0f896
AM
6920 if (i.op[0].imms->X_op != O_constant)
6921 as_bad (_("can't handle non absolute segment in `%s'"),
6922 i.tm.name);
6923 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6924}
a217f122 6925
29b0f896 6926static void
e3bb37b5 6927output_insn (void)
29b0f896 6928{
2bbd9c25
JJ
6929 fragS *insn_start_frag;
6930 offsetT insn_start_off;
6931
29b0f896
AM
6932 /* Tie dwarf2 debug info to the address at the start of the insn.
6933 We can't do this after the insn has been output as the current
6934 frag may have been closed off. eg. by frag_var. */
6935 dwarf2_emit_insn (0);
6936
2bbd9c25
JJ
6937 insn_start_frag = frag_now;
6938 insn_start_off = frag_now_fix ();
6939
29b0f896 6940 /* Output jumps. */
40fb9820 6941 if (i.tm.opcode_modifier.jump)
29b0f896 6942 output_branch ();
40fb9820
L
6943 else if (i.tm.opcode_modifier.jumpbyte
6944 || i.tm.opcode_modifier.jumpdword)
29b0f896 6945 output_jump ();
40fb9820 6946 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
6947 output_interseg_jump ();
6948 else
6949 {
6950 /* Output normal instructions here. */
6951 char *p;
6952 unsigned char *q;
47465058 6953 unsigned int j;
331d2d0d 6954 unsigned int prefix;
4dffcebc 6955
d022bddd
IT
6956 /* Some processors fail on LOCK prefix. This options makes
6957 assembler ignore LOCK prefix and serves as a workaround. */
6958 if (omit_lock_prefix)
6959 {
6960 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6961 return;
6962 i.prefix[LOCK_PREFIX] = 0;
6963 }
6964
43234a1e
L
6965 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6966 don't need the explicit prefix. */
6967 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 6968 {
c0f3af97 6969 switch (i.tm.opcode_length)
bc4bd9ab 6970 {
c0f3af97
L
6971 case 3:
6972 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6973 {
c0f3af97
L
6974 prefix = (i.tm.base_opcode >> 24) & 0xff;
6975 goto check_prefix;
6976 }
6977 break;
6978 case 2:
6979 if ((i.tm.base_opcode & 0xff0000) != 0)
6980 {
6981 prefix = (i.tm.base_opcode >> 16) & 0xff;
6982 if (i.tm.cpu_flags.bitfield.cpupadlock)
6983 {
4dffcebc 6984check_prefix:
c0f3af97 6985 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6986 || (i.prefix[REP_PREFIX]
c0f3af97
L
6987 != REPE_PREFIX_OPCODE))
6988 add_prefix (prefix);
6989 }
6990 else
4dffcebc
L
6991 add_prefix (prefix);
6992 }
c0f3af97
L
6993 break;
6994 case 1:
6995 break;
6996 default:
6997 abort ();
bc4bd9ab 6998 }
c0f3af97 6999
6d19a37a 7000#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7001 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7002 R_X86_64_GOTTPOFF relocation so that linker can safely
7003 perform IE->LE optimization. */
7004 if (x86_elf_abi == X86_64_X32_ABI
7005 && i.operands == 2
7006 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7007 && i.prefix[REX_PREFIX] == 0)
7008 add_prefix (REX_OPCODE);
6d19a37a 7009#endif
cf61b747 7010
c0f3af97
L
7011 /* The prefix bytes. */
7012 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7013 if (*q)
7014 FRAG_APPEND_1_CHAR (*q);
0f10071e 7015 }
ae5c1c7b 7016 else
c0f3af97
L
7017 {
7018 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7019 if (*q)
7020 switch (j)
7021 {
7022 case REX_PREFIX:
7023 /* REX byte is encoded in VEX prefix. */
7024 break;
7025 case SEG_PREFIX:
7026 case ADDR_PREFIX:
7027 FRAG_APPEND_1_CHAR (*q);
7028 break;
7029 default:
7030 /* There should be no other prefixes for instructions
7031 with VEX prefix. */
7032 abort ();
7033 }
7034
43234a1e
L
7035 /* For EVEX instructions i.vrex should become 0 after
7036 build_evex_prefix. For VEX instructions upper 16 registers
7037 aren't available, so VREX should be 0. */
7038 if (i.vrex)
7039 abort ();
c0f3af97
L
7040 /* Now the VEX prefix. */
7041 p = frag_more (i.vex.length);
7042 for (j = 0; j < i.vex.length; j++)
7043 p[j] = i.vex.bytes[j];
7044 }
252b5132 7045
29b0f896 7046 /* Now the opcode; be careful about word order here! */
4dffcebc 7047 if (i.tm.opcode_length == 1)
29b0f896
AM
7048 {
7049 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7050 }
7051 else
7052 {
4dffcebc 7053 switch (i.tm.opcode_length)
331d2d0d 7054 {
43234a1e
L
7055 case 4:
7056 p = frag_more (4);
7057 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7058 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7059 break;
4dffcebc 7060 case 3:
331d2d0d
L
7061 p = frag_more (3);
7062 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7063 break;
7064 case 2:
7065 p = frag_more (2);
7066 break;
7067 default:
7068 abort ();
7069 break;
331d2d0d 7070 }
0f10071e 7071
29b0f896
AM
7072 /* Put out high byte first: can't use md_number_to_chars! */
7073 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7074 *p = i.tm.base_opcode & 0xff;
7075 }
3e73aa7c 7076
29b0f896 7077 /* Now the modrm byte and sib byte (if present). */
40fb9820 7078 if (i.tm.opcode_modifier.modrm)
29b0f896 7079 {
4a3523fa
L
7080 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7081 | i.rm.reg << 3
7082 | i.rm.mode << 6));
29b0f896
AM
7083 /* If i.rm.regmem == ESP (4)
7084 && i.rm.mode != (Register mode)
7085 && not 16 bit
7086 ==> need second modrm byte. */
7087 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7088 && i.rm.mode != 3
40fb9820 7089 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7090 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7091 | i.sib.index << 3
7092 | i.sib.scale << 6));
29b0f896 7093 }
3e73aa7c 7094
29b0f896 7095 if (i.disp_operands)
2bbd9c25 7096 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7097
29b0f896 7098 if (i.imm_operands)
2bbd9c25 7099 output_imm (insn_start_frag, insn_start_off);
29b0f896 7100 }
252b5132 7101
29b0f896
AM
7102#ifdef DEBUG386
7103 if (flag_debug)
7104 {
7b81dfbb 7105 pi ("" /*line*/, &i);
29b0f896
AM
7106 }
7107#endif /* DEBUG386 */
7108}
252b5132 7109
e205caa7
L
7110/* Return the size of the displacement operand N. */
7111
7112static int
7113disp_size (unsigned int n)
7114{
7115 int size = 4;
43234a1e
L
7116
7117 /* Vec_Disp8 has to be 8bit. */
7118 if (i.types[n].bitfield.vec_disp8)
7119 size = 1;
7120 else if (i.types[n].bitfield.disp64)
40fb9820
L
7121 size = 8;
7122 else if (i.types[n].bitfield.disp8)
7123 size = 1;
7124 else if (i.types[n].bitfield.disp16)
7125 size = 2;
e205caa7
L
7126 return size;
7127}
7128
7129/* Return the size of the immediate operand N. */
7130
7131static int
7132imm_size (unsigned int n)
7133{
7134 int size = 4;
40fb9820
L
7135 if (i.types[n].bitfield.imm64)
7136 size = 8;
7137 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7138 size = 1;
7139 else if (i.types[n].bitfield.imm16)
7140 size = 2;
e205caa7
L
7141 return size;
7142}
7143
29b0f896 7144static void
64e74474 7145output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7146{
7147 char *p;
7148 unsigned int n;
252b5132 7149
29b0f896
AM
7150 for (n = 0; n < i.operands; n++)
7151 {
43234a1e
L
7152 if (i.types[n].bitfield.vec_disp8
7153 || operand_type_check (i.types[n], disp))
29b0f896
AM
7154 {
7155 if (i.op[n].disps->X_op == O_constant)
7156 {
e205caa7 7157 int size = disp_size (n);
43234a1e 7158 offsetT val = i.op[n].disps->X_add_number;
252b5132 7159
43234a1e
L
7160 if (i.types[n].bitfield.vec_disp8)
7161 val >>= i.memshift;
7162 val = offset_in_range (val, size);
29b0f896
AM
7163 p = frag_more (size);
7164 md_number_to_chars (p, val, size);
7165 }
7166 else
7167 {
f86103b7 7168 enum bfd_reloc_code_real reloc_type;
e205caa7 7169 int size = disp_size (n);
40fb9820 7170 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
7171 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7172
e205caa7 7173 /* We can't have 8 bit displacement here. */
9c2799c2 7174 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7175
29b0f896
AM
7176 /* The PC relative address is computed relative
7177 to the instruction boundary, so in case immediate
7178 fields follows, we need to adjust the value. */
7179 if (pcrel && i.imm_operands)
7180 {
29b0f896 7181 unsigned int n1;
e205caa7 7182 int sz = 0;
252b5132 7183
29b0f896 7184 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7185 if (operand_type_check (i.types[n1], imm))
252b5132 7186 {
e205caa7
L
7187 /* Only one immediate is allowed for PC
7188 relative address. */
9c2799c2 7189 gas_assert (sz == 0);
e205caa7
L
7190 sz = imm_size (n1);
7191 i.op[n].disps->X_add_number -= sz;
252b5132 7192 }
29b0f896 7193 /* We should find the immediate. */
9c2799c2 7194 gas_assert (sz != 0);
29b0f896 7195 }
520dc8e8 7196
29b0f896 7197 p = frag_more (size);
c3320543
L
7198 reloc_type = reloc (size, pcrel, sign,
7199 (i.bnd_prefix != NULL
7200 || add_bnd_prefix),
7201 i.reloc[n]);
d6ab8113 7202 if (GOT_symbol
2bbd9c25 7203 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7204 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7205 || reloc_type == BFD_RELOC_X86_64_32S
7206 || (reloc_type == BFD_RELOC_64
7207 && object_64bit))
d6ab8113
JB
7208 && (i.op[n].disps->X_op == O_symbol
7209 || (i.op[n].disps->X_op == O_add
7210 && ((symbol_get_value_expression
7211 (i.op[n].disps->X_op_symbol)->X_op)
7212 == O_subtract))))
7213 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7214 {
7215 offsetT add;
7216
7217 if (insn_start_frag == frag_now)
7218 add = (p - frag_now->fr_literal) - insn_start_off;
7219 else
7220 {
7221 fragS *fr;
7222
7223 add = insn_start_frag->fr_fix - insn_start_off;
7224 for (fr = insn_start_frag->fr_next;
7225 fr && fr != frag_now; fr = fr->fr_next)
7226 add += fr->fr_fix;
7227 add += p - frag_now->fr_literal;
7228 }
7229
4fa24527 7230 if (!object_64bit)
7b81dfbb
AJ
7231 {
7232 reloc_type = BFD_RELOC_386_GOTPC;
7233 i.op[n].imms->X_add_number += add;
7234 }
7235 else if (reloc_type == BFD_RELOC_64)
7236 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7237 else
7b81dfbb
AJ
7238 /* Don't do the adjustment for x86-64, as there
7239 the pcrel addressing is relative to the _next_
7240 insn, and that is taken care of in other code. */
d6ab8113 7241 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7242 }
062cd5e7 7243 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 7244 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
7245 }
7246 }
7247 }
7248}
252b5132 7249
29b0f896 7250static void
64e74474 7251output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7252{
7253 char *p;
7254 unsigned int n;
252b5132 7255
29b0f896
AM
7256 for (n = 0; n < i.operands; n++)
7257 {
43234a1e
L
7258 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7259 if (i.rounding && (int) n == i.rounding->operand)
7260 continue;
7261
40fb9820 7262 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7263 {
7264 if (i.op[n].imms->X_op == O_constant)
7265 {
e205caa7 7266 int size = imm_size (n);
29b0f896 7267 offsetT val;
b4cac588 7268
29b0f896
AM
7269 val = offset_in_range (i.op[n].imms->X_add_number,
7270 size);
7271 p = frag_more (size);
7272 md_number_to_chars (p, val, size);
7273 }
7274 else
7275 {
7276 /* Not absolute_section.
7277 Need a 32-bit fixup (don't support 8bit
7278 non-absolute imms). Try to support other
7279 sizes ... */
f86103b7 7280 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7281 int size = imm_size (n);
7282 int sign;
29b0f896 7283
40fb9820 7284 if (i.types[n].bitfield.imm32s
a7d61044 7285 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7286 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7287 sign = 1;
e205caa7
L
7288 else
7289 sign = 0;
520dc8e8 7290
29b0f896 7291 p = frag_more (size);
c3320543 7292 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
f86103b7 7293
2bbd9c25
JJ
7294 /* This is tough to explain. We end up with this one if we
7295 * have operands that look like
7296 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7297 * obtain the absolute address of the GOT, and it is strongly
7298 * preferable from a performance point of view to avoid using
7299 * a runtime relocation for this. The actual sequence of
7300 * instructions often look something like:
7301 *
7302 * call .L66
7303 * .L66:
7304 * popl %ebx
7305 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7306 *
7307 * The call and pop essentially return the absolute address
7308 * of the label .L66 and store it in %ebx. The linker itself
7309 * will ultimately change the first operand of the addl so
7310 * that %ebx points to the GOT, but to keep things simple, the
7311 * .o file must have this operand set so that it generates not
7312 * the absolute address of .L66, but the absolute address of
7313 * itself. This allows the linker itself simply treat a GOTPC
7314 * relocation as asking for a pcrel offset to the GOT to be
7315 * added in, and the addend of the relocation is stored in the
7316 * operand field for the instruction itself.
7317 *
7318 * Our job here is to fix the operand so that it would add
7319 * the correct offset so that %ebx would point to itself. The
7320 * thing that is tricky is that .-.L66 will point to the
7321 * beginning of the instruction, so we need to further modify
7322 * the operand so that it will point to itself. There are
7323 * other cases where you have something like:
7324 *
7325 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7326 *
7327 * and here no correction would be required. Internally in
7328 * the assembler we treat operands of this form as not being
7329 * pcrel since the '.' is explicitly mentioned, and I wonder
7330 * whether it would simplify matters to do it this way. Who
7331 * knows. In earlier versions of the PIC patches, the
7332 * pcrel_adjust field was used to store the correction, but
7333 * since the expression is not pcrel, I felt it would be
7334 * confusing to do it this way. */
7335
d6ab8113 7336 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7337 || reloc_type == BFD_RELOC_X86_64_32S
7338 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7339 && GOT_symbol
7340 && GOT_symbol == i.op[n].imms->X_add_symbol
7341 && (i.op[n].imms->X_op == O_symbol
7342 || (i.op[n].imms->X_op == O_add
7343 && ((symbol_get_value_expression
7344 (i.op[n].imms->X_op_symbol)->X_op)
7345 == O_subtract))))
7346 {
2bbd9c25
JJ
7347 offsetT add;
7348
7349 if (insn_start_frag == frag_now)
7350 add = (p - frag_now->fr_literal) - insn_start_off;
7351 else
7352 {
7353 fragS *fr;
7354
7355 add = insn_start_frag->fr_fix - insn_start_off;
7356 for (fr = insn_start_frag->fr_next;
7357 fr && fr != frag_now; fr = fr->fr_next)
7358 add += fr->fr_fix;
7359 add += p - frag_now->fr_literal;
7360 }
7361
4fa24527 7362 if (!object_64bit)
d6ab8113 7363 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7364 else if (size == 4)
d6ab8113 7365 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7366 else if (size == 8)
7367 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7368 i.op[n].imms->X_add_number += add;
29b0f896 7369 }
29b0f896
AM
7370 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7371 i.op[n].imms, 0, reloc_type);
7372 }
7373 }
7374 }
252b5132
RH
7375}
7376\f
d182319b
JB
7377/* x86_cons_fix_new is called via the expression parsing code when a
7378 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7379static int cons_sign = -1;
7380
7381void
e3bb37b5 7382x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7383 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7384{
62ebcb5c 7385 r = reloc (len, 0, cons_sign, 0, r);
d182319b
JB
7386
7387#ifdef TE_PE
7388 if (exp->X_op == O_secrel)
7389 {
7390 exp->X_op = O_symbol;
7391 r = BFD_RELOC_32_SECREL;
7392 }
7393#endif
7394
7395 fix_new_exp (frag, off, len, exp, 0, r);
7396}
7397
357d1bd8
L
7398/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7399 purpose of the `.dc.a' internal pseudo-op. */
7400
7401int
7402x86_address_bytes (void)
7403{
7404 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7405 return 4;
7406 return stdoutput->arch_info->bits_per_address / 8;
7407}
7408
d382c579
TG
7409#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7410 || defined (LEX_AT)
c06ec724 7411# define lex_got(reloc, adjust, types, bnd_prefix) NULL
718ddfc0 7412#else
f3c180ae
AM
7413/* Parse operands of the form
7414 <symbol>@GOTOFF+<nnn>
7415 and similar .plt or .got references.
7416
7417 If we find one, set up the correct relocation in RELOC and copy the
7418 input string, minus the `@GOTOFF' into a malloc'd buffer for
7419 parsing by the calling routine. Return this buffer, and if ADJUST
7420 is non-null set it to the length of the string we removed from the
7421 input line. Otherwise return NULL. */
7422static char *
91d6fa6a 7423lex_got (enum bfd_reloc_code_real *rel,
64e74474 7424 int *adjust,
c3320543
L
7425 i386_operand_type *types,
7426 int bnd_prefix)
f3c180ae 7427{
7b81dfbb
AJ
7428 /* Some of the relocations depend on the size of what field is to
7429 be relocated. But in our callers i386_immediate and i386_displacement
7430 we don't yet know the operand size (this will be set by insn
7431 matching). Hence we record the word32 relocation here,
7432 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7433 static const struct {
7434 const char *str;
cff8d58a 7435 int len;
4fa24527 7436 const enum bfd_reloc_code_real rel[2];
40fb9820 7437 const i386_operand_type types64;
f3c180ae 7438 } gotrel[] = {
8ce3d284 7439#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7440 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7441 BFD_RELOC_SIZE32 },
7442 OPERAND_TYPE_IMM32_64 },
8ce3d284 7443#endif
cff8d58a
L
7444 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7445 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7446 OPERAND_TYPE_IMM64 },
cff8d58a
L
7447 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7448 BFD_RELOC_X86_64_PLT32 },
40fb9820 7449 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7450 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7451 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7452 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7453 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7454 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7455 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7456 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7457 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7458 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7459 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7460 BFD_RELOC_X86_64_TLSGD },
40fb9820 7461 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7462 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7463 _dummy_first_bfd_reloc_code_real },
40fb9820 7464 OPERAND_TYPE_NONE },
cff8d58a
L
7465 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7466 BFD_RELOC_X86_64_TLSLD },
40fb9820 7467 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7468 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7469 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7470 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7471 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7472 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7473 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7474 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7475 _dummy_first_bfd_reloc_code_real },
40fb9820 7476 OPERAND_TYPE_NONE },
cff8d58a
L
7477 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7478 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7479 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7480 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7481 _dummy_first_bfd_reloc_code_real },
40fb9820 7482 OPERAND_TYPE_NONE },
cff8d58a
L
7483 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7484 _dummy_first_bfd_reloc_code_real },
40fb9820 7485 OPERAND_TYPE_NONE },
cff8d58a
L
7486 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7487 BFD_RELOC_X86_64_GOT32 },
40fb9820 7488 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7489 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7490 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7491 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7492 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7493 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7494 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7495 };
7496 char *cp;
7497 unsigned int j;
7498
d382c579 7499#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7500 if (!IS_ELF)
7501 return NULL;
d382c579 7502#endif
718ddfc0 7503
f3c180ae 7504 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7505 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7506 return NULL;
7507
47465058 7508 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7509 {
cff8d58a 7510 int len = gotrel[j].len;
28f81592 7511 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7512 {
4fa24527 7513 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7514 {
28f81592
AM
7515 int first, second;
7516 char *tmpbuf, *past_reloc;
f3c180ae 7517
91d6fa6a 7518 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7519
3956db08
JB
7520 if (types)
7521 {
7522 if (flag_code != CODE_64BIT)
40fb9820
L
7523 {
7524 types->bitfield.imm32 = 1;
7525 types->bitfield.disp32 = 1;
7526 }
3956db08
JB
7527 else
7528 *types = gotrel[j].types64;
7529 }
7530
8fd4256d 7531 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7532 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7533
28f81592 7534 /* The length of the first part of our input line. */
f3c180ae 7535 first = cp - input_line_pointer;
28f81592
AM
7536
7537 /* The second part goes from after the reloc token until
67c11a9b 7538 (and including) an end_of_line char or comma. */
28f81592 7539 past_reloc = cp + 1 + len;
67c11a9b
AM
7540 cp = past_reloc;
7541 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7542 ++cp;
7543 second = cp + 1 - past_reloc;
28f81592
AM
7544
7545 /* Allocate and copy string. The trailing NUL shouldn't
7546 be necessary, but be safe. */
1e9cc1c2 7547 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 7548 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7549 if (second != 0 && *past_reloc != ' ')
7550 /* Replace the relocation token with ' ', so that
7551 errors like foo@GOTOFF1 will be detected. */
7552 tmpbuf[first++] = ' ';
af89796a
L
7553 else
7554 /* Increment length by 1 if the relocation token is
7555 removed. */
7556 len++;
7557 if (adjust)
7558 *adjust = len;
0787a12d
AM
7559 memcpy (tmpbuf + first, past_reloc, second);
7560 tmpbuf[first + second] = '\0';
c3320543
L
7561 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7562 *rel = BFD_RELOC_X86_64_PLT32_BND;
f3c180ae
AM
7563 return tmpbuf;
7564 }
7565
4fa24527
JB
7566 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7567 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7568 return NULL;
7569 }
7570 }
7571
7572 /* Might be a symbol version string. Don't as_bad here. */
7573 return NULL;
7574}
4e4f7c87 7575#endif
f3c180ae 7576
a988325c
NC
7577#ifdef TE_PE
7578#ifdef lex_got
7579#undef lex_got
7580#endif
7581/* Parse operands of the form
7582 <symbol>@SECREL32+<nnn>
7583
7584 If we find one, set up the correct relocation in RELOC and copy the
7585 input string, minus the `@SECREL32' into a malloc'd buffer for
7586 parsing by the calling routine. Return this buffer, and if ADJUST
7587 is non-null set it to the length of the string we removed from the
34bca508
L
7588 input line. Otherwise return NULL.
7589
a988325c
NC
7590 This function is copied from the ELF version above adjusted for PE targets. */
7591
7592static char *
7593lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7594 int *adjust ATTRIBUTE_UNUSED,
c06ec724
L
7595 i386_operand_type *types,
7596 int bnd_prefix ATTRIBUTE_UNUSED)
a988325c
NC
7597{
7598 static const struct
7599 {
7600 const char *str;
7601 int len;
7602 const enum bfd_reloc_code_real rel[2];
7603 const i386_operand_type types64;
7604 }
7605 gotrel[] =
7606 {
7607 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7608 BFD_RELOC_32_SECREL },
7609 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7610 };
7611
7612 char *cp;
7613 unsigned j;
7614
7615 for (cp = input_line_pointer; *cp != '@'; cp++)
7616 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7617 return NULL;
7618
7619 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7620 {
7621 int len = gotrel[j].len;
7622
7623 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7624 {
7625 if (gotrel[j].rel[object_64bit] != 0)
7626 {
7627 int first, second;
7628 char *tmpbuf, *past_reloc;
7629
7630 *rel = gotrel[j].rel[object_64bit];
7631 if (adjust)
7632 *adjust = len;
7633
7634 if (types)
7635 {
7636 if (flag_code != CODE_64BIT)
7637 {
7638 types->bitfield.imm32 = 1;
7639 types->bitfield.disp32 = 1;
7640 }
7641 else
7642 *types = gotrel[j].types64;
7643 }
7644
7645 /* The length of the first part of our input line. */
7646 first = cp - input_line_pointer;
7647
7648 /* The second part goes from after the reloc token until
7649 (and including) an end_of_line char or comma. */
7650 past_reloc = cp + 1 + len;
7651 cp = past_reloc;
7652 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7653 ++cp;
7654 second = cp + 1 - past_reloc;
7655
7656 /* Allocate and copy string. The trailing NUL shouldn't
7657 be necessary, but be safe. */
7658 tmpbuf = (char *) xmalloc (first + second + 2);
7659 memcpy (tmpbuf, input_line_pointer, first);
7660 if (second != 0 && *past_reloc != ' ')
7661 /* Replace the relocation token with ' ', so that
7662 errors like foo@SECLREL321 will be detected. */
7663 tmpbuf[first++] = ' ';
7664 memcpy (tmpbuf + first, past_reloc, second);
7665 tmpbuf[first + second] = '\0';
7666 return tmpbuf;
7667 }
7668
7669 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7670 gotrel[j].str, 1 << (5 + object_64bit));
7671 return NULL;
7672 }
7673 }
7674
7675 /* Might be a symbol version string. Don't as_bad here. */
7676 return NULL;
7677}
7678
7679#endif /* TE_PE */
7680
62ebcb5c 7681bfd_reloc_code_real_type
e3bb37b5 7682x86_cons (expressionS *exp, int size)
f3c180ae 7683{
62ebcb5c
AM
7684 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7685
ee86248c
JB
7686 intel_syntax = -intel_syntax;
7687
3c7b9c2c 7688 exp->X_md = 0;
4fa24527 7689 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
7690 {
7691 /* Handle @GOTOFF and the like in an expression. */
7692 char *save;
7693 char *gotfree_input_line;
4a57f2cf 7694 int adjust = 0;
f3c180ae
AM
7695
7696 save = input_line_pointer;
c3320543 7697 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
f3c180ae
AM
7698 if (gotfree_input_line)
7699 input_line_pointer = gotfree_input_line;
7700
7701 expression (exp);
7702
7703 if (gotfree_input_line)
7704 {
7705 /* expression () has merrily parsed up to the end of line,
7706 or a comma - in the wrong buffer. Transfer how far
7707 input_line_pointer has moved to the right buffer. */
7708 input_line_pointer = (save
7709 + (input_line_pointer - gotfree_input_line)
7710 + adjust);
7711 free (gotfree_input_line);
3992d3b7
AM
7712 if (exp->X_op == O_constant
7713 || exp->X_op == O_absent
7714 || exp->X_op == O_illegal
0398aac5 7715 || exp->X_op == O_register
3992d3b7
AM
7716 || exp->X_op == O_big)
7717 {
7718 char c = *input_line_pointer;
7719 *input_line_pointer = 0;
7720 as_bad (_("missing or invalid expression `%s'"), save);
7721 *input_line_pointer = c;
7722 }
f3c180ae
AM
7723 }
7724 }
7725 else
7726 expression (exp);
ee86248c
JB
7727
7728 intel_syntax = -intel_syntax;
7729
7730 if (intel_syntax)
7731 i386_intel_simplify (exp);
62ebcb5c
AM
7732
7733 return got_reloc;
f3c180ae 7734}
f3c180ae 7735
9f32dd5b
L
7736static void
7737signed_cons (int size)
6482c264 7738{
d182319b
JB
7739 if (flag_code == CODE_64BIT)
7740 cons_sign = 1;
7741 cons (size);
7742 cons_sign = -1;
6482c264
NC
7743}
7744
d182319b 7745#ifdef TE_PE
6482c264 7746static void
7016a5d5 7747pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
7748{
7749 expressionS exp;
7750
7751 do
7752 {
7753 expression (&exp);
7754 if (exp.X_op == O_symbol)
7755 exp.X_op = O_secrel;
7756
7757 emit_expr (&exp, 4);
7758 }
7759 while (*input_line_pointer++ == ',');
7760
7761 input_line_pointer--;
7762 demand_empty_rest_of_line ();
7763}
6482c264
NC
7764#endif
7765
43234a1e
L
7766/* Handle Vector operations. */
7767
7768static char *
7769check_VecOperations (char *op_string, char *op_end)
7770{
7771 const reg_entry *mask;
7772 const char *saved;
7773 char *end_op;
7774
7775 while (*op_string
7776 && (op_end == NULL || op_string < op_end))
7777 {
7778 saved = op_string;
7779 if (*op_string == '{')
7780 {
7781 op_string++;
7782
7783 /* Check broadcasts. */
7784 if (strncmp (op_string, "1to", 3) == 0)
7785 {
7786 int bcst_type;
7787
7788 if (i.broadcast)
7789 goto duplicated_vec_op;
7790
7791 op_string += 3;
7792 if (*op_string == '8')
7793 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
7794 else if (*op_string == '4')
7795 bcst_type = BROADCAST_1TO4;
7796 else if (*op_string == '2')
7797 bcst_type = BROADCAST_1TO2;
43234a1e
L
7798 else if (*op_string == '1'
7799 && *(op_string+1) == '6')
7800 {
7801 bcst_type = BROADCAST_1TO16;
7802 op_string++;
7803 }
7804 else
7805 {
7806 as_bad (_("Unsupported broadcast: `%s'"), saved);
7807 return NULL;
7808 }
7809 op_string++;
7810
7811 broadcast_op.type = bcst_type;
7812 broadcast_op.operand = this_operand;
7813 i.broadcast = &broadcast_op;
7814 }
7815 /* Check masking operation. */
7816 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7817 {
7818 /* k0 can't be used for write mask. */
7819 if (mask->reg_num == 0)
7820 {
7821 as_bad (_("`%s' can't be used for write mask"),
7822 op_string);
7823 return NULL;
7824 }
7825
7826 if (!i.mask)
7827 {
7828 mask_op.mask = mask;
7829 mask_op.zeroing = 0;
7830 mask_op.operand = this_operand;
7831 i.mask = &mask_op;
7832 }
7833 else
7834 {
7835 if (i.mask->mask)
7836 goto duplicated_vec_op;
7837
7838 i.mask->mask = mask;
7839
7840 /* Only "{z}" is allowed here. No need to check
7841 zeroing mask explicitly. */
7842 if (i.mask->operand != this_operand)
7843 {
7844 as_bad (_("invalid write mask `%s'"), saved);
7845 return NULL;
7846 }
7847 }
7848
7849 op_string = end_op;
7850 }
7851 /* Check zeroing-flag for masking operation. */
7852 else if (*op_string == 'z')
7853 {
7854 if (!i.mask)
7855 {
7856 mask_op.mask = NULL;
7857 mask_op.zeroing = 1;
7858 mask_op.operand = this_operand;
7859 i.mask = &mask_op;
7860 }
7861 else
7862 {
7863 if (i.mask->zeroing)
7864 {
7865 duplicated_vec_op:
7866 as_bad (_("duplicated `%s'"), saved);
7867 return NULL;
7868 }
7869
7870 i.mask->zeroing = 1;
7871
7872 /* Only "{%k}" is allowed here. No need to check mask
7873 register explicitly. */
7874 if (i.mask->operand != this_operand)
7875 {
7876 as_bad (_("invalid zeroing-masking `%s'"),
7877 saved);
7878 return NULL;
7879 }
7880 }
7881
7882 op_string++;
7883 }
7884 else
7885 goto unknown_vec_op;
7886
7887 if (*op_string != '}')
7888 {
7889 as_bad (_("missing `}' in `%s'"), saved);
7890 return NULL;
7891 }
7892 op_string++;
7893 continue;
7894 }
7895 unknown_vec_op:
7896 /* We don't know this one. */
7897 as_bad (_("unknown vector operation: `%s'"), saved);
7898 return NULL;
7899 }
7900
7901 return op_string;
7902}
7903
252b5132 7904static int
70e41ade 7905i386_immediate (char *imm_start)
252b5132
RH
7906{
7907 char *save_input_line_pointer;
f3c180ae 7908 char *gotfree_input_line;
252b5132 7909 segT exp_seg = 0;
47926f60 7910 expressionS *exp;
40fb9820
L
7911 i386_operand_type types;
7912
0dfbf9d7 7913 operand_type_set (&types, ~0);
252b5132
RH
7914
7915 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7916 {
31b2323c
L
7917 as_bad (_("at most %d immediate operands are allowed"),
7918 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
7919 return 0;
7920 }
7921
7922 exp = &im_expressions[i.imm_operands++];
520dc8e8 7923 i.op[this_operand].imms = exp;
252b5132
RH
7924
7925 if (is_space_char (*imm_start))
7926 ++imm_start;
7927
7928 save_input_line_pointer = input_line_pointer;
7929 input_line_pointer = imm_start;
7930
c3320543
L
7931 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7932 (i.bnd_prefix != NULL
7933 || add_bnd_prefix));
f3c180ae
AM
7934 if (gotfree_input_line)
7935 input_line_pointer = gotfree_input_line;
252b5132
RH
7936
7937 exp_seg = expression (exp);
7938
83183c0c 7939 SKIP_WHITESPACE ();
43234a1e
L
7940
7941 /* Handle vector operations. */
7942 if (*input_line_pointer == '{')
7943 {
7944 input_line_pointer = check_VecOperations (input_line_pointer,
7945 NULL);
7946 if (input_line_pointer == NULL)
7947 return 0;
7948 }
7949
252b5132 7950 if (*input_line_pointer)
f3c180ae 7951 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
7952
7953 input_line_pointer = save_input_line_pointer;
f3c180ae 7954 if (gotfree_input_line)
ee86248c
JB
7955 {
7956 free (gotfree_input_line);
7957
7958 if (exp->X_op == O_constant || exp->X_op == O_register)
7959 exp->X_op = O_illegal;
7960 }
7961
7962 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7963}
252b5132 7964
ee86248c
JB
7965static int
7966i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7967 i386_operand_type types, const char *imm_start)
7968{
7969 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 7970 {
313c53d1
L
7971 if (imm_start)
7972 as_bad (_("missing or invalid immediate expression `%s'"),
7973 imm_start);
3992d3b7 7974 return 0;
252b5132 7975 }
3e73aa7c 7976 else if (exp->X_op == O_constant)
252b5132 7977 {
47926f60 7978 /* Size it properly later. */
40fb9820 7979 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
7980 /* If not 64bit, sign extend val. */
7981 if (flag_code != CODE_64BIT
4eed87de
AM
7982 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7983 exp->X_add_number
7984 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 7985 }
4c63da97 7986#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 7987 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 7988 && exp_seg != absolute_section
47926f60 7989 && exp_seg != text_section
24eab124
AM
7990 && exp_seg != data_section
7991 && exp_seg != bss_section
7992 && exp_seg != undefined_section
f86103b7 7993 && !bfd_is_com_section (exp_seg))
252b5132 7994 {
d0b47220 7995 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
7996 return 0;
7997 }
7998#endif
a841bdf5 7999 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8000 {
313c53d1
L
8001 if (imm_start)
8002 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8003 return 0;
8004 }
252b5132
RH
8005 else
8006 {
8007 /* This is an address. The size of the address will be
24eab124 8008 determined later, depending on destination register,
3e73aa7c 8009 suffix, or the default for the section. */
40fb9820
L
8010 i.types[this_operand].bitfield.imm8 = 1;
8011 i.types[this_operand].bitfield.imm16 = 1;
8012 i.types[this_operand].bitfield.imm32 = 1;
8013 i.types[this_operand].bitfield.imm32s = 1;
8014 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8015 i.types[this_operand] = operand_type_and (i.types[this_operand],
8016 types);
252b5132
RH
8017 }
8018
8019 return 1;
8020}
8021
551c1ca1 8022static char *
e3bb37b5 8023i386_scale (char *scale)
252b5132 8024{
551c1ca1
AM
8025 offsetT val;
8026 char *save = input_line_pointer;
252b5132 8027
551c1ca1
AM
8028 input_line_pointer = scale;
8029 val = get_absolute_expression ();
8030
8031 switch (val)
252b5132 8032 {
551c1ca1 8033 case 1:
252b5132
RH
8034 i.log2_scale_factor = 0;
8035 break;
551c1ca1 8036 case 2:
252b5132
RH
8037 i.log2_scale_factor = 1;
8038 break;
551c1ca1 8039 case 4:
252b5132
RH
8040 i.log2_scale_factor = 2;
8041 break;
551c1ca1 8042 case 8:
252b5132
RH
8043 i.log2_scale_factor = 3;
8044 break;
8045 default:
a724f0f4
JB
8046 {
8047 char sep = *input_line_pointer;
8048
8049 *input_line_pointer = '\0';
8050 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8051 scale);
8052 *input_line_pointer = sep;
8053 input_line_pointer = save;
8054 return NULL;
8055 }
252b5132 8056 }
29b0f896 8057 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8058 {
8059 as_warn (_("scale factor of %d without an index register"),
24eab124 8060 1 << i.log2_scale_factor);
252b5132 8061 i.log2_scale_factor = 0;
252b5132 8062 }
551c1ca1
AM
8063 scale = input_line_pointer;
8064 input_line_pointer = save;
8065 return scale;
252b5132
RH
8066}
8067
252b5132 8068static int
e3bb37b5 8069i386_displacement (char *disp_start, char *disp_end)
252b5132 8070{
29b0f896 8071 expressionS *exp;
252b5132
RH
8072 segT exp_seg = 0;
8073 char *save_input_line_pointer;
f3c180ae 8074 char *gotfree_input_line;
40fb9820
L
8075 int override;
8076 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8077 int ret;
252b5132 8078
31b2323c
L
8079 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8080 {
8081 as_bad (_("at most %d displacement operands are allowed"),
8082 MAX_MEMORY_OPERANDS);
8083 return 0;
8084 }
8085
0dfbf9d7 8086 operand_type_set (&bigdisp, 0);
40fb9820
L
8087 if ((i.types[this_operand].bitfield.jumpabsolute)
8088 || (!current_templates->start->opcode_modifier.jump
8089 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8090 {
40fb9820 8091 bigdisp.bitfield.disp32 = 1;
e05278af 8092 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8093 if (flag_code == CODE_64BIT)
8094 {
8095 if (!override)
8096 {
8097 bigdisp.bitfield.disp32s = 1;
8098 bigdisp.bitfield.disp64 = 1;
8099 }
8100 }
8101 else if ((flag_code == CODE_16BIT) ^ override)
8102 {
8103 bigdisp.bitfield.disp32 = 0;
8104 bigdisp.bitfield.disp16 = 1;
8105 }
e05278af
JB
8106 }
8107 else
8108 {
8109 /* For PC-relative branches, the width of the displacement
8110 is dependent upon data size, not address size. */
e05278af 8111 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8112 if (flag_code == CODE_64BIT)
8113 {
8114 if (override || i.suffix == WORD_MNEM_SUFFIX)
8115 bigdisp.bitfield.disp16 = 1;
8116 else
8117 {
8118 bigdisp.bitfield.disp32 = 1;
8119 bigdisp.bitfield.disp32s = 1;
8120 }
8121 }
8122 else
e05278af
JB
8123 {
8124 if (!override)
8125 override = (i.suffix == (flag_code != CODE_16BIT
8126 ? WORD_MNEM_SUFFIX
8127 : LONG_MNEM_SUFFIX));
40fb9820
L
8128 bigdisp.bitfield.disp32 = 1;
8129 if ((flag_code == CODE_16BIT) ^ override)
8130 {
8131 bigdisp.bitfield.disp32 = 0;
8132 bigdisp.bitfield.disp16 = 1;
8133 }
e05278af 8134 }
e05278af 8135 }
c6fb90c8
L
8136 i.types[this_operand] = operand_type_or (i.types[this_operand],
8137 bigdisp);
252b5132
RH
8138
8139 exp = &disp_expressions[i.disp_operands];
520dc8e8 8140 i.op[this_operand].disps = exp;
252b5132
RH
8141 i.disp_operands++;
8142 save_input_line_pointer = input_line_pointer;
8143 input_line_pointer = disp_start;
8144 END_STRING_AND_SAVE (disp_end);
8145
8146#ifndef GCC_ASM_O_HACK
8147#define GCC_ASM_O_HACK 0
8148#endif
8149#if GCC_ASM_O_HACK
8150 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8151 if (i.types[this_operand].bitfield.baseIndex
24eab124 8152 && displacement_string_end[-1] == '+')
252b5132
RH
8153 {
8154 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8155 constraint within gcc asm statements.
8156 For instance:
8157
8158 #define _set_tssldt_desc(n,addr,limit,type) \
8159 __asm__ __volatile__ ( \
8160 "movw %w2,%0\n\t" \
8161 "movw %w1,2+%0\n\t" \
8162 "rorl $16,%1\n\t" \
8163 "movb %b1,4+%0\n\t" \
8164 "movb %4,5+%0\n\t" \
8165 "movb $0,6+%0\n\t" \
8166 "movb %h1,7+%0\n\t" \
8167 "rorl $16,%1" \
8168 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8169
8170 This works great except that the output assembler ends
8171 up looking a bit weird if it turns out that there is
8172 no offset. You end up producing code that looks like:
8173
8174 #APP
8175 movw $235,(%eax)
8176 movw %dx,2+(%eax)
8177 rorl $16,%edx
8178 movb %dl,4+(%eax)
8179 movb $137,5+(%eax)
8180 movb $0,6+(%eax)
8181 movb %dh,7+(%eax)
8182 rorl $16,%edx
8183 #NO_APP
8184
47926f60 8185 So here we provide the missing zero. */
24eab124
AM
8186
8187 *displacement_string_end = '0';
252b5132
RH
8188 }
8189#endif
c3320543
L
8190 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8191 (i.bnd_prefix != NULL
8192 || add_bnd_prefix));
f3c180ae
AM
8193 if (gotfree_input_line)
8194 input_line_pointer = gotfree_input_line;
252b5132 8195
24eab124 8196 exp_seg = expression (exp);
252b5132 8197
636c26b0
AM
8198 SKIP_WHITESPACE ();
8199 if (*input_line_pointer)
8200 as_bad (_("junk `%s' after expression"), input_line_pointer);
8201#if GCC_ASM_O_HACK
8202 RESTORE_END_STRING (disp_end + 1);
8203#endif
636c26b0 8204 input_line_pointer = save_input_line_pointer;
636c26b0 8205 if (gotfree_input_line)
ee86248c
JB
8206 {
8207 free (gotfree_input_line);
8208
8209 if (exp->X_op == O_constant || exp->X_op == O_register)
8210 exp->X_op = O_illegal;
8211 }
8212
8213 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8214
8215 RESTORE_END_STRING (disp_end);
8216
8217 return ret;
8218}
8219
8220static int
8221i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8222 i386_operand_type types, const char *disp_start)
8223{
8224 i386_operand_type bigdisp;
8225 int ret = 1;
636c26b0 8226
24eab124
AM
8227 /* We do this to make sure that the section symbol is in
8228 the symbol table. We will ultimately change the relocation
47926f60 8229 to be relative to the beginning of the section. */
1ae12ab7 8230 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8231 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8232 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8233 {
636c26b0 8234 if (exp->X_op != O_symbol)
3992d3b7 8235 goto inv_disp;
636c26b0 8236
e5cb08ac 8237 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8238 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8239 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8240 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8241 exp->X_op = O_subtract;
8242 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8243 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8244 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8245 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8246 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8247 else
29b0f896 8248 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8249 }
252b5132 8250
3992d3b7
AM
8251 else if (exp->X_op == O_absent
8252 || exp->X_op == O_illegal
ee86248c 8253 || exp->X_op == O_big)
2daf4fd8 8254 {
3992d3b7
AM
8255 inv_disp:
8256 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8257 disp_start);
3992d3b7 8258 ret = 0;
2daf4fd8
AM
8259 }
8260
0e1147d9
L
8261 else if (flag_code == CODE_64BIT
8262 && !i.prefix[ADDR_PREFIX]
8263 && exp->X_op == O_constant)
8264 {
8265 /* Since displacement is signed extended to 64bit, don't allow
8266 disp32 and turn off disp32s if they are out of range. */
8267 i.types[this_operand].bitfield.disp32 = 0;
8268 if (!fits_in_signed_long (exp->X_add_number))
8269 {
8270 i.types[this_operand].bitfield.disp32s = 0;
8271 if (i.types[this_operand].bitfield.baseindex)
8272 {
8273 as_bad (_("0x%lx out range of signed 32bit displacement"),
8274 (long) exp->X_add_number);
8275 ret = 0;
8276 }
8277 }
8278 }
8279
4c63da97 8280#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8281 else if (exp->X_op != O_constant
8282 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8283 && exp_seg != absolute_section
8284 && exp_seg != text_section
8285 && exp_seg != data_section
8286 && exp_seg != bss_section
8287 && exp_seg != undefined_section
8288 && !bfd_is_com_section (exp_seg))
24eab124 8289 {
d0b47220 8290 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8291 ret = 0;
24eab124 8292 }
252b5132 8293#endif
3956db08 8294
40fb9820
L
8295 /* Check if this is a displacement only operand. */
8296 bigdisp = i.types[this_operand];
8297 bigdisp.bitfield.disp8 = 0;
8298 bigdisp.bitfield.disp16 = 0;
8299 bigdisp.bitfield.disp32 = 0;
8300 bigdisp.bitfield.disp32s = 0;
8301 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8302 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8303 i.types[this_operand] = operand_type_and (i.types[this_operand],
8304 types);
3956db08 8305
3992d3b7 8306 return ret;
252b5132
RH
8307}
8308
eecb386c 8309/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8310 Return 1 on success, 0 on a failure. */
8311
252b5132 8312static int
e3bb37b5 8313i386_index_check (const char *operand_string)
252b5132 8314{
fc0763e6 8315 const char *kind = "base/index";
be05d201
L
8316 enum flag_code addr_mode;
8317
8318 if (i.prefix[ADDR_PREFIX])
8319 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8320 else
8321 {
8322 addr_mode = flag_code;
8323
24eab124 8324#if INFER_ADDR_PREFIX
be05d201
L
8325 if (i.mem_operands == 0)
8326 {
8327 /* Infer address prefix from the first memory operand. */
8328 const reg_entry *addr_reg = i.base_reg;
8329
8330 if (addr_reg == NULL)
8331 addr_reg = i.index_reg;
eecb386c 8332
be05d201
L
8333 if (addr_reg)
8334 {
8335 if (addr_reg->reg_num == RegEip
8336 || addr_reg->reg_num == RegEiz
8337 || addr_reg->reg_type.bitfield.reg32)
8338 addr_mode = CODE_32BIT;
8339 else if (flag_code != CODE_64BIT
8340 && addr_reg->reg_type.bitfield.reg16)
8341 addr_mode = CODE_16BIT;
8342
8343 if (addr_mode != flag_code)
8344 {
8345 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8346 i.prefixes += 1;
8347 /* Change the size of any displacement too. At most one
8348 of Disp16 or Disp32 is set.
8349 FIXME. There doesn't seem to be any real need for
8350 separate Disp16 and Disp32 flags. The same goes for
8351 Imm16 and Imm32. Removing them would probably clean
8352 up the code quite a lot. */
8353 if (flag_code != CODE_64BIT
8354 && (i.types[this_operand].bitfield.disp16
8355 || i.types[this_operand].bitfield.disp32))
8356 i.types[this_operand]
8357 = operand_type_xor (i.types[this_operand], disp16_32);
8358 }
8359 }
8360 }
24eab124 8361#endif
be05d201
L
8362 }
8363
fc0763e6
JB
8364 if (current_templates->start->opcode_modifier.isstring
8365 && !current_templates->start->opcode_modifier.immext
8366 && (current_templates->end[-1].opcode_modifier.isstring
8367 || i.mem_operands))
8368 {
8369 /* Memory operands of string insns are special in that they only allow
8370 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8371 const reg_entry *expected_reg;
8372 static const char *di_si[][2] =
8373 {
8374 { "esi", "edi" },
8375 { "si", "di" },
8376 { "rsi", "rdi" }
8377 };
8378 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8379
8380 kind = "string address";
8381
8382 if (current_templates->start->opcode_modifier.w)
8383 {
8384 i386_operand_type type = current_templates->end[-1].operand_types[0];
8385
8386 if (!type.bitfield.baseindex
8387 || ((!i.mem_operands != !intel_syntax)
8388 && current_templates->end[-1].operand_types[1]
8389 .bitfield.baseindex))
8390 type = current_templates->end[-1].operand_types[1];
be05d201
L
8391 expected_reg = hash_find (reg_hash,
8392 di_si[addr_mode][type.bitfield.esseg]);
8393
fc0763e6
JB
8394 }
8395 else
be05d201 8396 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8397
be05d201
L
8398 if (i.base_reg != expected_reg
8399 || i.index_reg
fc0763e6 8400 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8401 {
be05d201
L
8402 /* The second memory operand must have the same size as
8403 the first one. */
8404 if (i.mem_operands
8405 && i.base_reg
8406 && !((addr_mode == CODE_64BIT
8407 && i.base_reg->reg_type.bitfield.reg64)
8408 || (addr_mode == CODE_32BIT
8409 ? i.base_reg->reg_type.bitfield.reg32
8410 : i.base_reg->reg_type.bitfield.reg16)))
8411 goto bad_address;
8412
fc0763e6
JB
8413 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8414 operand_string,
8415 intel_syntax ? '[' : '(',
8416 register_prefix,
be05d201 8417 expected_reg->reg_name,
fc0763e6 8418 intel_syntax ? ']' : ')');
be05d201 8419 return 1;
fc0763e6 8420 }
be05d201
L
8421 else
8422 return 1;
8423
8424bad_address:
8425 as_bad (_("`%s' is not a valid %s expression"),
8426 operand_string, kind);
8427 return 0;
3e73aa7c
JH
8428 }
8429 else
8430 {
be05d201
L
8431 if (addr_mode != CODE_16BIT)
8432 {
8433 /* 32-bit/64-bit checks. */
8434 if ((i.base_reg
8435 && (addr_mode == CODE_64BIT
8436 ? !i.base_reg->reg_type.bitfield.reg64
8437 : !i.base_reg->reg_type.bitfield.reg32)
8438 && (i.index_reg
8439 || (i.base_reg->reg_num
8440 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8441 || (i.index_reg
8442 && !i.index_reg->reg_type.bitfield.regxmm
8443 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8444 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8445 && ((addr_mode == CODE_64BIT
8446 ? !(i.index_reg->reg_type.bitfield.reg64
8447 || i.index_reg->reg_num == RegRiz)
8448 : !(i.index_reg->reg_type.bitfield.reg32
8449 || i.index_reg->reg_num == RegEiz))
8450 || !i.index_reg->reg_type.bitfield.baseindex)))
8451 goto bad_address;
8452 }
8453 else
3e73aa7c 8454 {
be05d201 8455 /* 16-bit checks. */
3e73aa7c 8456 if ((i.base_reg
40fb9820
L
8457 && (!i.base_reg->reg_type.bitfield.reg16
8458 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8459 || (i.index_reg
40fb9820
L
8460 && (!i.index_reg->reg_type.bitfield.reg16
8461 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8462 || !(i.base_reg
8463 && i.base_reg->reg_num < 6
8464 && i.index_reg->reg_num >= 6
8465 && i.log2_scale_factor == 0))))
be05d201 8466 goto bad_address;
3e73aa7c
JH
8467 }
8468 }
be05d201 8469 return 1;
24eab124 8470}
252b5132 8471
43234a1e
L
8472/* Handle vector immediates. */
8473
8474static int
8475RC_SAE_immediate (const char *imm_start)
8476{
8477 unsigned int match_found, j;
8478 const char *pstr = imm_start;
8479 expressionS *exp;
8480
8481 if (*pstr != '{')
8482 return 0;
8483
8484 pstr++;
8485 match_found = 0;
8486 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8487 {
8488 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8489 {
8490 if (!i.rounding)
8491 {
8492 rc_op.type = RC_NamesTable[j].type;
8493 rc_op.operand = this_operand;
8494 i.rounding = &rc_op;
8495 }
8496 else
8497 {
8498 as_bad (_("duplicated `%s'"), imm_start);
8499 return 0;
8500 }
8501 pstr += RC_NamesTable[j].len;
8502 match_found = 1;
8503 break;
8504 }
8505 }
8506 if (!match_found)
8507 return 0;
8508
8509 if (*pstr++ != '}')
8510 {
8511 as_bad (_("Missing '}': '%s'"), imm_start);
8512 return 0;
8513 }
8514 /* RC/SAE immediate string should contain nothing more. */;
8515 if (*pstr != 0)
8516 {
8517 as_bad (_("Junk after '}': '%s'"), imm_start);
8518 return 0;
8519 }
8520
8521 exp = &im_expressions[i.imm_operands++];
8522 i.op[this_operand].imms = exp;
8523
8524 exp->X_op = O_constant;
8525 exp->X_add_number = 0;
8526 exp->X_add_symbol = (symbolS *) 0;
8527 exp->X_op_symbol = (symbolS *) 0;
8528
8529 i.types[this_operand].bitfield.imm8 = 1;
8530 return 1;
8531}
8532
fc0763e6 8533/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8534 on error. */
252b5132 8535
252b5132 8536static int
a7619375 8537i386_att_operand (char *operand_string)
252b5132 8538{
af6bdddf
AM
8539 const reg_entry *r;
8540 char *end_op;
24eab124 8541 char *op_string = operand_string;
252b5132 8542
24eab124 8543 if (is_space_char (*op_string))
252b5132
RH
8544 ++op_string;
8545
24eab124 8546 /* We check for an absolute prefix (differentiating,
47926f60 8547 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8548 if (*op_string == ABSOLUTE_PREFIX)
8549 {
8550 ++op_string;
8551 if (is_space_char (*op_string))
8552 ++op_string;
40fb9820 8553 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8554 }
252b5132 8555
47926f60 8556 /* Check if operand is a register. */
4d1bb795 8557 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8558 {
40fb9820
L
8559 i386_operand_type temp;
8560
24eab124
AM
8561 /* Check for a segment override by searching for ':' after a
8562 segment register. */
8563 op_string = end_op;
8564 if (is_space_char (*op_string))
8565 ++op_string;
40fb9820
L
8566 if (*op_string == ':'
8567 && (r->reg_type.bitfield.sreg2
8568 || r->reg_type.bitfield.sreg3))
24eab124
AM
8569 {
8570 switch (r->reg_num)
8571 {
8572 case 0:
8573 i.seg[i.mem_operands] = &es;
8574 break;
8575 case 1:
8576 i.seg[i.mem_operands] = &cs;
8577 break;
8578 case 2:
8579 i.seg[i.mem_operands] = &ss;
8580 break;
8581 case 3:
8582 i.seg[i.mem_operands] = &ds;
8583 break;
8584 case 4:
8585 i.seg[i.mem_operands] = &fs;
8586 break;
8587 case 5:
8588 i.seg[i.mem_operands] = &gs;
8589 break;
8590 }
252b5132 8591
24eab124 8592 /* Skip the ':' and whitespace. */
252b5132
RH
8593 ++op_string;
8594 if (is_space_char (*op_string))
24eab124 8595 ++op_string;
252b5132 8596
24eab124
AM
8597 if (!is_digit_char (*op_string)
8598 && !is_identifier_char (*op_string)
8599 && *op_string != '('
8600 && *op_string != ABSOLUTE_PREFIX)
8601 {
8602 as_bad (_("bad memory operand `%s'"), op_string);
8603 return 0;
8604 }
47926f60 8605 /* Handle case of %es:*foo. */
24eab124
AM
8606 if (*op_string == ABSOLUTE_PREFIX)
8607 {
8608 ++op_string;
8609 if (is_space_char (*op_string))
8610 ++op_string;
40fb9820 8611 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8612 }
8613 goto do_memory_reference;
8614 }
43234a1e
L
8615
8616 /* Handle vector operations. */
8617 if (*op_string == '{')
8618 {
8619 op_string = check_VecOperations (op_string, NULL);
8620 if (op_string == NULL)
8621 return 0;
8622 }
8623
24eab124
AM
8624 if (*op_string)
8625 {
d0b47220 8626 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
8627 return 0;
8628 }
40fb9820
L
8629 temp = r->reg_type;
8630 temp.bitfield.baseindex = 0;
c6fb90c8
L
8631 i.types[this_operand] = operand_type_or (i.types[this_operand],
8632 temp);
7d5e4556 8633 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 8634 i.op[this_operand].regs = r;
24eab124
AM
8635 i.reg_operands++;
8636 }
af6bdddf
AM
8637 else if (*op_string == REGISTER_PREFIX)
8638 {
8639 as_bad (_("bad register name `%s'"), op_string);
8640 return 0;
8641 }
24eab124 8642 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 8643 {
24eab124 8644 ++op_string;
40fb9820 8645 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 8646 {
d0b47220 8647 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
8648 return 0;
8649 }
8650 if (!i386_immediate (op_string))
8651 return 0;
8652 }
43234a1e
L
8653 else if (RC_SAE_immediate (operand_string))
8654 {
8655 /* If it is a RC or SAE immediate, do nothing. */
8656 ;
8657 }
24eab124
AM
8658 else if (is_digit_char (*op_string)
8659 || is_identifier_char (*op_string)
e5cb08ac 8660 || *op_string == '(')
24eab124 8661 {
47926f60 8662 /* This is a memory reference of some sort. */
af6bdddf 8663 char *base_string;
252b5132 8664
47926f60 8665 /* Start and end of displacement string expression (if found). */
eecb386c
AM
8666 char *displacement_string_start;
8667 char *displacement_string_end;
43234a1e 8668 char *vop_start;
252b5132 8669
24eab124 8670 do_memory_reference:
24eab124 8671 if ((i.mem_operands == 1
40fb9820 8672 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
8673 || i.mem_operands == 2)
8674 {
8675 as_bad (_("too many memory references for `%s'"),
8676 current_templates->start->name);
8677 return 0;
8678 }
252b5132 8679
24eab124
AM
8680 /* Check for base index form. We detect the base index form by
8681 looking for an ')' at the end of the operand, searching
8682 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8683 after the '('. */
af6bdddf 8684 base_string = op_string + strlen (op_string);
c3332e24 8685
43234a1e
L
8686 /* Handle vector operations. */
8687 vop_start = strchr (op_string, '{');
8688 if (vop_start && vop_start < base_string)
8689 {
8690 if (check_VecOperations (vop_start, base_string) == NULL)
8691 return 0;
8692 base_string = vop_start;
8693 }
8694
af6bdddf
AM
8695 --base_string;
8696 if (is_space_char (*base_string))
8697 --base_string;
252b5132 8698
47926f60 8699 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
8700 displacement_string_start = op_string;
8701 displacement_string_end = base_string + 1;
252b5132 8702
24eab124
AM
8703 if (*base_string == ')')
8704 {
af6bdddf 8705 char *temp_string;
24eab124
AM
8706 unsigned int parens_balanced = 1;
8707 /* We've already checked that the number of left & right ()'s are
47926f60 8708 equal, so this loop will not be infinite. */
24eab124
AM
8709 do
8710 {
8711 base_string--;
8712 if (*base_string == ')')
8713 parens_balanced++;
8714 if (*base_string == '(')
8715 parens_balanced--;
8716 }
8717 while (parens_balanced);
c3332e24 8718
af6bdddf 8719 temp_string = base_string;
c3332e24 8720
24eab124 8721 /* Skip past '(' and whitespace. */
252b5132
RH
8722 ++base_string;
8723 if (is_space_char (*base_string))
24eab124 8724 ++base_string;
252b5132 8725
af6bdddf 8726 if (*base_string == ','
4eed87de
AM
8727 || ((i.base_reg = parse_register (base_string, &end_op))
8728 != NULL))
252b5132 8729 {
af6bdddf 8730 displacement_string_end = temp_string;
252b5132 8731
40fb9820 8732 i.types[this_operand].bitfield.baseindex = 1;
252b5132 8733
af6bdddf 8734 if (i.base_reg)
24eab124 8735 {
24eab124
AM
8736 base_string = end_op;
8737 if (is_space_char (*base_string))
8738 ++base_string;
af6bdddf
AM
8739 }
8740
8741 /* There may be an index reg or scale factor here. */
8742 if (*base_string == ',')
8743 {
8744 ++base_string;
8745 if (is_space_char (*base_string))
8746 ++base_string;
8747
4eed87de
AM
8748 if ((i.index_reg = parse_register (base_string, &end_op))
8749 != NULL)
24eab124 8750 {
af6bdddf 8751 base_string = end_op;
24eab124
AM
8752 if (is_space_char (*base_string))
8753 ++base_string;
af6bdddf
AM
8754 if (*base_string == ',')
8755 {
8756 ++base_string;
8757 if (is_space_char (*base_string))
8758 ++base_string;
8759 }
e5cb08ac 8760 else if (*base_string != ')')
af6bdddf 8761 {
4eed87de
AM
8762 as_bad (_("expecting `,' or `)' "
8763 "after index register in `%s'"),
af6bdddf
AM
8764 operand_string);
8765 return 0;
8766 }
24eab124 8767 }
af6bdddf 8768 else if (*base_string == REGISTER_PREFIX)
24eab124 8769 {
f76bf5e0
L
8770 end_op = strchr (base_string, ',');
8771 if (end_op)
8772 *end_op = '\0';
af6bdddf 8773 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
8774 return 0;
8775 }
252b5132 8776
47926f60 8777 /* Check for scale factor. */
551c1ca1 8778 if (*base_string != ')')
af6bdddf 8779 {
551c1ca1
AM
8780 char *end_scale = i386_scale (base_string);
8781
8782 if (!end_scale)
af6bdddf 8783 return 0;
24eab124 8784
551c1ca1 8785 base_string = end_scale;
af6bdddf
AM
8786 if (is_space_char (*base_string))
8787 ++base_string;
8788 if (*base_string != ')')
8789 {
4eed87de
AM
8790 as_bad (_("expecting `)' "
8791 "after scale factor in `%s'"),
af6bdddf
AM
8792 operand_string);
8793 return 0;
8794 }
8795 }
8796 else if (!i.index_reg)
24eab124 8797 {
4eed87de
AM
8798 as_bad (_("expecting index register or scale factor "
8799 "after `,'; got '%c'"),
af6bdddf 8800 *base_string);
24eab124
AM
8801 return 0;
8802 }
8803 }
af6bdddf 8804 else if (*base_string != ')')
24eab124 8805 {
4eed87de
AM
8806 as_bad (_("expecting `,' or `)' "
8807 "after base register in `%s'"),
af6bdddf 8808 operand_string);
24eab124
AM
8809 return 0;
8810 }
c3332e24 8811 }
af6bdddf 8812 else if (*base_string == REGISTER_PREFIX)
c3332e24 8813 {
f76bf5e0
L
8814 end_op = strchr (base_string, ',');
8815 if (end_op)
8816 *end_op = '\0';
af6bdddf 8817 as_bad (_("bad register name `%s'"), base_string);
24eab124 8818 return 0;
c3332e24 8819 }
24eab124
AM
8820 }
8821
8822 /* If there's an expression beginning the operand, parse it,
8823 assuming displacement_string_start and
8824 displacement_string_end are meaningful. */
8825 if (displacement_string_start != displacement_string_end)
8826 {
8827 if (!i386_displacement (displacement_string_start,
8828 displacement_string_end))
8829 return 0;
8830 }
8831
8832 /* Special case for (%dx) while doing input/output op. */
8833 if (i.base_reg
0dfbf9d7
L
8834 && operand_type_equal (&i.base_reg->reg_type,
8835 &reg16_inoutportreg)
24eab124
AM
8836 && i.index_reg == 0
8837 && i.log2_scale_factor == 0
8838 && i.seg[i.mem_operands] == 0
40fb9820 8839 && !operand_type_check (i.types[this_operand], disp))
24eab124 8840 {
65da13b5 8841 i.types[this_operand] = inoutportreg;
24eab124
AM
8842 return 1;
8843 }
8844
eecb386c
AM
8845 if (i386_index_check (operand_string) == 0)
8846 return 0;
5c07affc 8847 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
8848 i.mem_operands++;
8849 }
8850 else
ce8a8b2f
AM
8851 {
8852 /* It's not a memory operand; argh! */
24eab124
AM
8853 as_bad (_("invalid char %s beginning operand %d `%s'"),
8854 output_invalid (*op_string),
8855 this_operand + 1,
8856 op_string);
8857 return 0;
8858 }
47926f60 8859 return 1; /* Normal return. */
252b5132
RH
8860}
8861\f
fa94de6b
RM
8862/* Calculate the maximum variable size (i.e., excluding fr_fix)
8863 that an rs_machine_dependent frag may reach. */
8864
8865unsigned int
8866i386_frag_max_var (fragS *frag)
8867{
8868 /* The only relaxable frags are for jumps.
8869 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8870 gas_assert (frag->fr_type == rs_machine_dependent);
8871 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8872}
8873
ee7fcc42
AM
8874/* md_estimate_size_before_relax()
8875
8876 Called just before relax() for rs_machine_dependent frags. The x86
8877 assembler uses these frags to handle variable size jump
8878 instructions.
8879
8880 Any symbol that is now undefined will not become defined.
8881 Return the correct fr_subtype in the frag.
8882 Return the initial "guess for variable size of frag" to caller.
8883 The guess is actually the growth beyond the fixed part. Whatever
8884 we do to grow the fixed or variable part contributes to our
8885 returned value. */
8886
252b5132 8887int
7016a5d5 8888md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 8889{
252b5132 8890 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
8891 check for un-relaxable symbols. On an ELF system, we can't relax
8892 an externally visible symbol, because it may be overridden by a
8893 shared library. */
8894 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 8895#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8896 || (IS_ELF
31312f95 8897 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
8898 || S_IS_WEAK (fragP->fr_symbol)
8899 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8900 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
8901#endif
8902#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 8903 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 8904 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
8905#endif
8906 )
252b5132 8907 {
b98ef147
AM
8908 /* Symbol is undefined in this segment, or we need to keep a
8909 reloc so that weak symbols can be overridden. */
8910 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 8911 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
8912 unsigned char *opcode;
8913 int old_fr_fix;
f6af82bd 8914
ee7fcc42 8915 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 8916 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 8917 else if (size == 2)
f6af82bd
AM
8918 reloc_type = BFD_RELOC_16_PCREL;
8919 else
8920 reloc_type = BFD_RELOC_32_PCREL;
252b5132 8921
ee7fcc42
AM
8922 old_fr_fix = fragP->fr_fix;
8923 opcode = (unsigned char *) fragP->fr_opcode;
8924
fddf5b5b 8925 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 8926 {
fddf5b5b
AM
8927 case UNCOND_JUMP:
8928 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 8929 opcode[0] = 0xe9;
252b5132 8930 fragP->fr_fix += size;
062cd5e7
AS
8931 fix_new (fragP, old_fr_fix, size,
8932 fragP->fr_symbol,
8933 fragP->fr_offset, 1,
8934 reloc_type);
252b5132
RH
8935 break;
8936
fddf5b5b 8937 case COND_JUMP86:
412167cb
AM
8938 if (size == 2
8939 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
8940 {
8941 /* Negate the condition, and branch past an
8942 unconditional jump. */
8943 opcode[0] ^= 1;
8944 opcode[1] = 3;
8945 /* Insert an unconditional jump. */
8946 opcode[2] = 0xe9;
8947 /* We added two extra opcode bytes, and have a two byte
8948 offset. */
8949 fragP->fr_fix += 2 + 2;
062cd5e7
AS
8950 fix_new (fragP, old_fr_fix + 2, 2,
8951 fragP->fr_symbol,
8952 fragP->fr_offset, 1,
8953 reloc_type);
fddf5b5b
AM
8954 break;
8955 }
8956 /* Fall through. */
8957
8958 case COND_JUMP:
412167cb
AM
8959 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8960 {
3e02c1cc
AM
8961 fixS *fixP;
8962
412167cb 8963 fragP->fr_fix += 1;
3e02c1cc
AM
8964 fixP = fix_new (fragP, old_fr_fix, 1,
8965 fragP->fr_symbol,
8966 fragP->fr_offset, 1,
8967 BFD_RELOC_8_PCREL);
8968 fixP->fx_signed = 1;
412167cb
AM
8969 break;
8970 }
93c2a809 8971
24eab124 8972 /* This changes the byte-displacement jump 0x7N
fddf5b5b 8973 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 8974 opcode[1] = opcode[0] + 0x10;
f6af82bd 8975 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
8976 /* We've added an opcode byte. */
8977 fragP->fr_fix += 1 + size;
062cd5e7
AS
8978 fix_new (fragP, old_fr_fix + 1, size,
8979 fragP->fr_symbol,
8980 fragP->fr_offset, 1,
8981 reloc_type);
252b5132 8982 break;
fddf5b5b
AM
8983
8984 default:
8985 BAD_CASE (fragP->fr_subtype);
8986 break;
252b5132
RH
8987 }
8988 frag_wane (fragP);
ee7fcc42 8989 return fragP->fr_fix - old_fr_fix;
252b5132 8990 }
93c2a809 8991
93c2a809
AM
8992 /* Guess size depending on current relax state. Initially the relax
8993 state will correspond to a short jump and we return 1, because
8994 the variable part of the frag (the branch offset) is one byte
8995 long. However, we can relax a section more than once and in that
8996 case we must either set fr_subtype back to the unrelaxed state,
8997 or return the value for the appropriate branch. */
8998 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
8999}
9000
47926f60
KH
9001/* Called after relax() is finished.
9002
9003 In: Address of frag.
9004 fr_type == rs_machine_dependent.
9005 fr_subtype is what the address relaxed to.
9006
9007 Out: Any fixSs and constants are set up.
9008 Caller will turn frag into a ".space 0". */
9009
252b5132 9010void
7016a5d5
TG
9011md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9012 fragS *fragP)
252b5132 9013{
29b0f896 9014 unsigned char *opcode;
252b5132 9015 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9016 offsetT target_address;
9017 offsetT opcode_address;
252b5132 9018 unsigned int extension = 0;
847f7ad4 9019 offsetT displacement_from_opcode_start;
252b5132
RH
9020
9021 opcode = (unsigned char *) fragP->fr_opcode;
9022
47926f60 9023 /* Address we want to reach in file space. */
252b5132 9024 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9025
47926f60 9026 /* Address opcode resides at in file space. */
252b5132
RH
9027 opcode_address = fragP->fr_address + fragP->fr_fix;
9028
47926f60 9029 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9030 displacement_from_opcode_start = target_address - opcode_address;
9031
fddf5b5b 9032 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9033 {
47926f60
KH
9034 /* Don't have to change opcode. */
9035 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9036 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9037 }
9038 else
9039 {
9040 if (no_cond_jump_promotion
9041 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9042 as_warn_where (fragP->fr_file, fragP->fr_line,
9043 _("long jump required"));
252b5132 9044
fddf5b5b
AM
9045 switch (fragP->fr_subtype)
9046 {
9047 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9048 extension = 4; /* 1 opcode + 4 displacement */
9049 opcode[0] = 0xe9;
9050 where_to_put_displacement = &opcode[1];
9051 break;
252b5132 9052
fddf5b5b
AM
9053 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9054 extension = 2; /* 1 opcode + 2 displacement */
9055 opcode[0] = 0xe9;
9056 where_to_put_displacement = &opcode[1];
9057 break;
252b5132 9058
fddf5b5b
AM
9059 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9060 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9061 extension = 5; /* 2 opcode + 4 displacement */
9062 opcode[1] = opcode[0] + 0x10;
9063 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9064 where_to_put_displacement = &opcode[2];
9065 break;
252b5132 9066
fddf5b5b
AM
9067 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9068 extension = 3; /* 2 opcode + 2 displacement */
9069 opcode[1] = opcode[0] + 0x10;
9070 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9071 where_to_put_displacement = &opcode[2];
9072 break;
252b5132 9073
fddf5b5b
AM
9074 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9075 extension = 4;
9076 opcode[0] ^= 1;
9077 opcode[1] = 3;
9078 opcode[2] = 0xe9;
9079 where_to_put_displacement = &opcode[3];
9080 break;
9081
9082 default:
9083 BAD_CASE (fragP->fr_subtype);
9084 break;
9085 }
252b5132 9086 }
fddf5b5b 9087
7b81dfbb
AJ
9088 /* If size if less then four we are sure that the operand fits,
9089 but if it's 4, then it could be that the displacement is larger
9090 then -/+ 2GB. */
9091 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9092 && object_64bit
9093 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9094 + ((addressT) 1 << 31))
9095 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9096 {
9097 as_bad_where (fragP->fr_file, fragP->fr_line,
9098 _("jump target out of range"));
9099 /* Make us emit 0. */
9100 displacement_from_opcode_start = extension;
9101 }
47926f60 9102 /* Now put displacement after opcode. */
252b5132
RH
9103 md_number_to_chars ((char *) where_to_put_displacement,
9104 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9105 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9106 fragP->fr_fix += extension;
9107}
9108\f
7016a5d5 9109/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9110 by our caller that we have all the info we need to fix it up.
9111
7016a5d5
TG
9112 Parameter valP is the pointer to the value of the bits.
9113
252b5132
RH
9114 On the 386, immediates, displacements, and data pointers are all in
9115 the same (little-endian) format, so we don't need to care about which
9116 we are handling. */
9117
94f592af 9118void
7016a5d5 9119md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9120{
94f592af 9121 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9122 valueT value = *valP;
252b5132 9123
f86103b7 9124#if !defined (TE_Mach)
93382f6d
AM
9125 if (fixP->fx_pcrel)
9126 {
9127 switch (fixP->fx_r_type)
9128 {
5865bb77
ILT
9129 default:
9130 break;
9131
d6ab8113
JB
9132 case BFD_RELOC_64:
9133 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9134 break;
93382f6d 9135 case BFD_RELOC_32:
ae8887b5 9136 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9137 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9138 break;
9139 case BFD_RELOC_16:
9140 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9141 break;
9142 case BFD_RELOC_8:
9143 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9144 break;
9145 }
9146 }
252b5132 9147
a161fe53 9148 if (fixP->fx_addsy != NULL
31312f95 9149 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9150 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9151 || fixP->fx_r_type == BFD_RELOC_16_PCREL
c3320543
L
9152 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9153 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
31312f95 9154 && !use_rela_relocations)
252b5132 9155 {
31312f95
AM
9156 /* This is a hack. There should be a better way to handle this.
9157 This covers for the fact that bfd_install_relocation will
9158 subtract the current location (for partial_inplace, PC relative
9159 relocations); see more below. */
252b5132 9160#ifndef OBJ_AOUT
718ddfc0 9161 if (IS_ELF
252b5132
RH
9162#ifdef TE_PE
9163 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9164#endif
9165 )
9166 value += fixP->fx_where + fixP->fx_frag->fr_address;
9167#endif
9168#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9169 if (IS_ELF)
252b5132 9170 {
6539b54b 9171 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9172
6539b54b 9173 if ((sym_seg == seg
2f66722d 9174 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9175 && sym_seg != absolute_section))
af65af87 9176 && !generic_force_reloc (fixP))
2f66722d
AM
9177 {
9178 /* Yes, we add the values in twice. This is because
6539b54b
AM
9179 bfd_install_relocation subtracts them out again. I think
9180 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9181 it. FIXME. */
9182 value += fixP->fx_where + fixP->fx_frag->fr_address;
9183 }
252b5132
RH
9184 }
9185#endif
9186#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9187 /* For some reason, the PE format does not store a
9188 section address offset for a PC relative symbol. */
9189 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9190 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9191 value += md_pcrel_from (fixP);
9192#endif
9193 }
fbeb56a4 9194#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9195 if (fixP->fx_addsy != NULL
9196 && S_IS_WEAK (fixP->fx_addsy)
9197 /* PR 16858: Do not modify weak function references. */
9198 && ! fixP->fx_pcrel)
fbeb56a4 9199 {
296a8689
NC
9200#if !defined (TE_PEP)
9201 /* For x86 PE weak function symbols are neither PC-relative
9202 nor do they set S_IS_FUNCTION. So the only reliable way
9203 to detect them is to check the flags of their containing
9204 section. */
9205 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9206 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9207 ;
9208 else
9209#endif
fbeb56a4
DK
9210 value -= S_GET_VALUE (fixP->fx_addsy);
9211 }
9212#endif
252b5132
RH
9213
9214 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9215 and we must not disappoint it. */
252b5132 9216#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9217 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9218 switch (fixP->fx_r_type)
9219 {
9220 case BFD_RELOC_386_PLT32:
3e73aa7c 9221 case BFD_RELOC_X86_64_PLT32:
c3320543 9222 case BFD_RELOC_X86_64_PLT32_BND:
47926f60
KH
9223 /* Make the jump instruction point to the address of the operand. At
9224 runtime we merely add the offset to the actual PLT entry. */
9225 value = -4;
9226 break;
31312f95 9227
13ae64f3
JJ
9228 case BFD_RELOC_386_TLS_GD:
9229 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9230 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9231 case BFD_RELOC_386_TLS_IE:
9232 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9233 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9234 case BFD_RELOC_X86_64_TLSGD:
9235 case BFD_RELOC_X86_64_TLSLD:
9236 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9237 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9238 value = 0; /* Fully resolved at runtime. No addend. */
9239 /* Fallthrough */
9240 case BFD_RELOC_386_TLS_LE:
9241 case BFD_RELOC_386_TLS_LDO_32:
9242 case BFD_RELOC_386_TLS_LE_32:
9243 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9244 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9245 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9246 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9247 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9248 break;
9249
67a4f2b7
AO
9250 case BFD_RELOC_386_TLS_DESC_CALL:
9251 case BFD_RELOC_X86_64_TLSDESC_CALL:
9252 value = 0; /* Fully resolved at runtime. No addend. */
9253 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9254 fixP->fx_done = 0;
9255 return;
9256
00f7efb6
JJ
9257 case BFD_RELOC_386_GOT32:
9258 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
9259 value = 0; /* Fully resolved at runtime. No addend. */
9260 break;
47926f60
KH
9261
9262 case BFD_RELOC_VTABLE_INHERIT:
9263 case BFD_RELOC_VTABLE_ENTRY:
9264 fixP->fx_done = 0;
94f592af 9265 return;
47926f60
KH
9266
9267 default:
9268 break;
9269 }
9270#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9271 *valP = value;
f86103b7 9272#endif /* !defined (TE_Mach) */
3e73aa7c 9273
3e73aa7c 9274 /* Are we finished with this relocation now? */
c6682705 9275 if (fixP->fx_addsy == NULL)
3e73aa7c 9276 fixP->fx_done = 1;
fbeb56a4
DK
9277#if defined (OBJ_COFF) && defined (TE_PE)
9278 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9279 {
9280 fixP->fx_done = 0;
9281 /* Remember value for tc_gen_reloc. */
9282 fixP->fx_addnumber = value;
9283 /* Clear out the frag for now. */
9284 value = 0;
9285 }
9286#endif
3e73aa7c
JH
9287 else if (use_rela_relocations)
9288 {
9289 fixP->fx_no_overflow = 1;
062cd5e7
AS
9290 /* Remember value for tc_gen_reloc. */
9291 fixP->fx_addnumber = value;
3e73aa7c
JH
9292 value = 0;
9293 }
f86103b7 9294
94f592af 9295 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9296}
252b5132 9297\f
252b5132 9298char *
499ac353 9299md_atof (int type, char *litP, int *sizeP)
252b5132 9300{
499ac353
NC
9301 /* This outputs the LITTLENUMs in REVERSE order;
9302 in accord with the bigendian 386. */
9303 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9304}
9305\f
2d545b82 9306static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9307
252b5132 9308static char *
e3bb37b5 9309output_invalid (int c)
252b5132 9310{
3882b010 9311 if (ISPRINT (c))
f9f21a03
L
9312 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9313 "'%c'", c);
252b5132 9314 else
f9f21a03 9315 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9316 "(0x%x)", (unsigned char) c);
252b5132
RH
9317 return output_invalid_buf;
9318}
9319
af6bdddf 9320/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9321
9322static const reg_entry *
4d1bb795 9323parse_real_register (char *reg_string, char **end_op)
252b5132 9324{
af6bdddf
AM
9325 char *s = reg_string;
9326 char *p;
252b5132
RH
9327 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9328 const reg_entry *r;
9329
9330 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9331 if (*s == REGISTER_PREFIX)
9332 ++s;
9333
9334 if (is_space_char (*s))
9335 ++s;
9336
9337 p = reg_name_given;
af6bdddf 9338 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9339 {
9340 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9341 return (const reg_entry *) NULL;
9342 s++;
252b5132
RH
9343 }
9344
6588847e
DN
9345 /* For naked regs, make sure that we are not dealing with an identifier.
9346 This prevents confusing an identifier like `eax_var' with register
9347 `eax'. */
9348 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9349 return (const reg_entry *) NULL;
9350
af6bdddf 9351 *end_op = s;
252b5132
RH
9352
9353 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9354
5f47d35b 9355 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9356 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9357 {
5f47d35b
AM
9358 if (is_space_char (*s))
9359 ++s;
9360 if (*s == '(')
9361 {
af6bdddf 9362 ++s;
5f47d35b
AM
9363 if (is_space_char (*s))
9364 ++s;
9365 if (*s >= '0' && *s <= '7')
9366 {
db557034 9367 int fpr = *s - '0';
af6bdddf 9368 ++s;
5f47d35b
AM
9369 if (is_space_char (*s))
9370 ++s;
9371 if (*s == ')')
9372 {
9373 *end_op = s + 1;
1e9cc1c2 9374 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9375 know (r);
9376 return r + fpr;
5f47d35b 9377 }
5f47d35b 9378 }
47926f60 9379 /* We have "%st(" then garbage. */
5f47d35b
AM
9380 return (const reg_entry *) NULL;
9381 }
9382 }
9383
a60de03c
JB
9384 if (r == NULL || allow_pseudo_reg)
9385 return r;
9386
0dfbf9d7 9387 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9388 return (const reg_entry *) NULL;
9389
192dc9c6
JB
9390 if ((r->reg_type.bitfield.reg32
9391 || r->reg_type.bitfield.sreg3
9392 || r->reg_type.bitfield.control
9393 || r->reg_type.bitfield.debug
9394 || r->reg_type.bitfield.test)
9395 && !cpu_arch_flags.bitfield.cpui386)
9396 return (const reg_entry *) NULL;
9397
309d3373
JB
9398 if (r->reg_type.bitfield.floatreg
9399 && !cpu_arch_flags.bitfield.cpu8087
9400 && !cpu_arch_flags.bitfield.cpu287
9401 && !cpu_arch_flags.bitfield.cpu387)
9402 return (const reg_entry *) NULL;
9403
192dc9c6
JB
9404 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9405 return (const reg_entry *) NULL;
9406
9407 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9408 return (const reg_entry *) NULL;
9409
40f12533
L
9410 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9411 return (const reg_entry *) NULL;
9412
43234a1e
L
9413 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9414 && !cpu_arch_flags.bitfield.cpuavx512f)
9415 return (const reg_entry *) NULL;
9416
db51cc60 9417 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9418 if (!allow_index_reg
db51cc60
L
9419 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9420 return (const reg_entry *) NULL;
9421
43234a1e
L
9422 /* Upper 16 vector register is only available with VREX in 64bit
9423 mode. */
9424 if ((r->reg_flags & RegVRex))
9425 {
9426 if (!cpu_arch_flags.bitfield.cpuvrex
9427 || flag_code != CODE_64BIT)
9428 return (const reg_entry *) NULL;
9429
9430 i.need_vrex = 1;
9431 }
9432
a60de03c
JB
9433 if (((r->reg_flags & (RegRex64 | RegRex))
9434 || r->reg_type.bitfield.reg64)
40fb9820 9435 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9436 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9437 && flag_code != CODE_64BIT)
20f0a1fc 9438 return (const reg_entry *) NULL;
1ae00879 9439
b7240065
JB
9440 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9441 return (const reg_entry *) NULL;
9442
252b5132
RH
9443 return r;
9444}
4d1bb795
JB
9445
9446/* REG_STRING starts *before* REGISTER_PREFIX. */
9447
9448static const reg_entry *
9449parse_register (char *reg_string, char **end_op)
9450{
9451 const reg_entry *r;
9452
9453 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9454 r = parse_real_register (reg_string, end_op);
9455 else
9456 r = NULL;
9457 if (!r)
9458 {
9459 char *save = input_line_pointer;
9460 char c;
9461 symbolS *symbolP;
9462
9463 input_line_pointer = reg_string;
9464 c = get_symbol_end ();
9465 symbolP = symbol_find (reg_string);
9466 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9467 {
9468 const expressionS *e = symbol_get_value_expression (symbolP);
9469
0398aac5 9470 know (e->X_op == O_register);
4eed87de 9471 know (e->X_add_number >= 0
c3fe08fa 9472 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9473 r = i386_regtab + e->X_add_number;
d3bb6b49
IT
9474 if ((r->reg_flags & RegVRex))
9475 i.need_vrex = 1;
4d1bb795
JB
9476 *end_op = input_line_pointer;
9477 }
9478 *input_line_pointer = c;
9479 input_line_pointer = save;
9480 }
9481 return r;
9482}
9483
9484int
9485i386_parse_name (char *name, expressionS *e, char *nextcharP)
9486{
9487 const reg_entry *r;
9488 char *end = input_line_pointer;
9489
9490 *end = *nextcharP;
9491 r = parse_register (name, &input_line_pointer);
9492 if (r && end <= input_line_pointer)
9493 {
9494 *nextcharP = *input_line_pointer;
9495 *input_line_pointer = 0;
9496 e->X_op = O_register;
9497 e->X_add_number = r - i386_regtab;
9498 return 1;
9499 }
9500 input_line_pointer = end;
9501 *end = 0;
ee86248c 9502 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9503}
9504
9505void
9506md_operand (expressionS *e)
9507{
ee86248c
JB
9508 char *end;
9509 const reg_entry *r;
4d1bb795 9510
ee86248c
JB
9511 switch (*input_line_pointer)
9512 {
9513 case REGISTER_PREFIX:
9514 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9515 if (r)
9516 {
9517 e->X_op = O_register;
9518 e->X_add_number = r - i386_regtab;
9519 input_line_pointer = end;
9520 }
ee86248c
JB
9521 break;
9522
9523 case '[':
9c2799c2 9524 gas_assert (intel_syntax);
ee86248c
JB
9525 end = input_line_pointer++;
9526 expression (e);
9527 if (*input_line_pointer == ']')
9528 {
9529 ++input_line_pointer;
9530 e->X_op_symbol = make_expr_symbol (e);
9531 e->X_add_symbol = NULL;
9532 e->X_add_number = 0;
9533 e->X_op = O_index;
9534 }
9535 else
9536 {
9537 e->X_op = O_absent;
9538 input_line_pointer = end;
9539 }
9540 break;
4d1bb795
JB
9541 }
9542}
9543
252b5132 9544\f
4cc782b5 9545#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9546const char *md_shortopts = "kVQ:sqn";
252b5132 9547#else
12b55ccc 9548const char *md_shortopts = "qn";
252b5132 9549#endif
6e0b89ee 9550
3e73aa7c 9551#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9552#define OPTION_64 (OPTION_MD_BASE + 1)
9553#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9554#define OPTION_MARCH (OPTION_MD_BASE + 3)
9555#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9556#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9557#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9558#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9559#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9560#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9561#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9562#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9563#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9564#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9565#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9566#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9567#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9568#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 9569#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
a5094208 9570#define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 9571#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
b3b91714 9572
99ad8390
NC
9573struct option md_longopts[] =
9574{
3e73aa7c 9575 {"32", no_argument, NULL, OPTION_32},
321098a5 9576#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9577 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9578 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9579#endif
9580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9581 {"x32", no_argument, NULL, OPTION_X32},
6e0b89ee 9582#endif
b3b91714 9583 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9584 {"march", required_argument, NULL, OPTION_MARCH},
9585 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
9586 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9587 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9588 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9589 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9590 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 9591 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 9592 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 9593 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 9594 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 9595 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
9596 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9597 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
9598# if defined (TE_PE) || defined (TE_PEP)
9599 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9600#endif
a5094208 9601 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
d3d3c6db 9602 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
252b5132
RH
9603 {NULL, no_argument, NULL, 0}
9604};
9605size_t md_longopts_size = sizeof (md_longopts);
9606
9607int
9103f4f4 9608md_parse_option (int c, char *arg)
252b5132 9609{
91d6fa6a 9610 unsigned int j;
6305a203 9611 char *arch, *next;
9103f4f4 9612
252b5132
RH
9613 switch (c)
9614 {
12b55ccc
L
9615 case 'n':
9616 optimize_align_code = 0;
9617 break;
9618
a38cf1db
AM
9619 case 'q':
9620 quiet_warnings = 1;
252b5132
RH
9621 break;
9622
9623#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
9624 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9625 should be emitted or not. FIXME: Not implemented. */
9626 case 'Q':
252b5132
RH
9627 break;
9628
9629 /* -V: SVR4 argument to print version ID. */
9630 case 'V':
9631 print_version_id ();
9632 break;
9633
a38cf1db
AM
9634 /* -k: Ignore for FreeBSD compatibility. */
9635 case 'k':
252b5132 9636 break;
4cc782b5
ILT
9637
9638 case 's':
9639 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 9640 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 9641 break;
99ad8390 9642#endif
321098a5 9643#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9644 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
9645 case OPTION_64:
9646 {
9647 const char **list, **l;
9648
3e73aa7c
JH
9649 list = bfd_target_list ();
9650 for (l = list; *l != NULL; l++)
8620418b 9651 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
9652 || strcmp (*l, "coff-x86-64") == 0
9653 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
9654 || strcmp (*l, "pei-x86-64") == 0
9655 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
9656 {
9657 default_arch = "x86_64";
9658 break;
9659 }
3e73aa7c 9660 if (*l == NULL)
2b5d6a91 9661 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
9662 free (list);
9663 }
9664 break;
9665#endif
252b5132 9666
351f65ca 9667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9668 case OPTION_X32:
351f65ca
L
9669 if (IS_ELF)
9670 {
9671 const char **list, **l;
9672
9673 list = bfd_target_list ();
9674 for (l = list; *l != NULL; l++)
9675 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9676 {
9677 default_arch = "x86_64:32";
9678 break;
9679 }
9680 if (*l == NULL)
2b5d6a91 9681 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
9682 free (list);
9683 }
9684 else
9685 as_fatal (_("32bit x86_64 is only supported for ELF"));
9686 break;
9687#endif
9688
6e0b89ee
AM
9689 case OPTION_32:
9690 default_arch = "i386";
9691 break;
9692
b3b91714
AM
9693 case OPTION_DIVIDE:
9694#ifdef SVR4_COMMENT_CHARS
9695 {
9696 char *n, *t;
9697 const char *s;
9698
9699 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9700 t = n;
9701 for (s = i386_comment_chars; *s != '\0'; s++)
9702 if (*s != '/')
9703 *t++ = *s;
9704 *t = '\0';
9705 i386_comment_chars = n;
9706 }
9707#endif
9708 break;
9709
9103f4f4 9710 case OPTION_MARCH:
6305a203
L
9711 arch = xstrdup (arg);
9712 do
9103f4f4 9713 {
6305a203 9714 if (*arch == '.')
2b5d6a91 9715 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9716 next = strchr (arch, '+');
9717 if (next)
9718 *next++ = '\0';
91d6fa6a 9719 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9720 {
91d6fa6a 9721 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 9722 {
6305a203 9723 /* Processor. */
1ded5609
JB
9724 if (! cpu_arch[j].flags.bitfield.cpui386)
9725 continue;
9726
91d6fa6a 9727 cpu_arch_name = cpu_arch[j].name;
6305a203 9728 cpu_sub_arch_name = NULL;
91d6fa6a
NC
9729 cpu_arch_flags = cpu_arch[j].flags;
9730 cpu_arch_isa = cpu_arch[j].type;
9731 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
9732 if (!cpu_arch_tune_set)
9733 {
9734 cpu_arch_tune = cpu_arch_isa;
9735 cpu_arch_tune_flags = cpu_arch_isa_flags;
9736 }
9737 break;
9738 }
91d6fa6a
NC
9739 else if (*cpu_arch [j].name == '.'
9740 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
9741 {
9742 /* ISA entension. */
9743 i386_cpu_flags flags;
309d3373 9744
49021df2 9745 if (!cpu_arch[j].negated)
309d3373 9746 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 9747 cpu_arch[j].flags);
309d3373
JB
9748 else
9749 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 9750 cpu_arch[j].flags);
0dfbf9d7 9751 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
9752 {
9753 if (cpu_sub_arch_name)
9754 {
9755 char *name = cpu_sub_arch_name;
9756 cpu_sub_arch_name = concat (name,
91d6fa6a 9757 cpu_arch[j].name,
1bf57e9f 9758 (const char *) NULL);
6305a203
L
9759 free (name);
9760 }
9761 else
91d6fa6a 9762 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 9763 cpu_arch_flags = flags;
a586129e 9764 cpu_arch_isa_flags = flags;
6305a203
L
9765 }
9766 break;
ccc9c027 9767 }
9103f4f4 9768 }
6305a203 9769
91d6fa6a 9770 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9771 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9772
9773 arch = next;
9103f4f4 9774 }
6305a203 9775 while (next != NULL );
9103f4f4
L
9776 break;
9777
9778 case OPTION_MTUNE:
9779 if (*arg == '.')
2b5d6a91 9780 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 9781 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9782 {
91d6fa6a 9783 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 9784 {
ccc9c027 9785 cpu_arch_tune_set = 1;
91d6fa6a
NC
9786 cpu_arch_tune = cpu_arch [j].type;
9787 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
9788 break;
9789 }
9790 }
91d6fa6a 9791 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9792 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
9793 break;
9794
1efbbeb4
L
9795 case OPTION_MMNEMONIC:
9796 if (strcasecmp (arg, "att") == 0)
9797 intel_mnemonic = 0;
9798 else if (strcasecmp (arg, "intel") == 0)
9799 intel_mnemonic = 1;
9800 else
2b5d6a91 9801 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
9802 break;
9803
9804 case OPTION_MSYNTAX:
9805 if (strcasecmp (arg, "att") == 0)
9806 intel_syntax = 0;
9807 else if (strcasecmp (arg, "intel") == 0)
9808 intel_syntax = 1;
9809 else
2b5d6a91 9810 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
9811 break;
9812
9813 case OPTION_MINDEX_REG:
9814 allow_index_reg = 1;
9815 break;
9816
9817 case OPTION_MNAKED_REG:
9818 allow_naked_reg = 1;
9819 break;
9820
9821 case OPTION_MOLD_GCC:
9822 old_gcc = 1;
1efbbeb4
L
9823 break;
9824
c0f3af97
L
9825 case OPTION_MSSE2AVX:
9826 sse2avx = 1;
9827 break;
9828
daf50ae7
L
9829 case OPTION_MSSE_CHECK:
9830 if (strcasecmp (arg, "error") == 0)
7bab8ab5 9831 sse_check = check_error;
daf50ae7 9832 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 9833 sse_check = check_warning;
daf50ae7 9834 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 9835 sse_check = check_none;
daf50ae7 9836 else
2b5d6a91 9837 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
9838 break;
9839
7bab8ab5
JB
9840 case OPTION_MOPERAND_CHECK:
9841 if (strcasecmp (arg, "error") == 0)
9842 operand_check = check_error;
9843 else if (strcasecmp (arg, "warning") == 0)
9844 operand_check = check_warning;
9845 else if (strcasecmp (arg, "none") == 0)
9846 operand_check = check_none;
9847 else
9848 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9849 break;
9850
539f890d
L
9851 case OPTION_MAVXSCALAR:
9852 if (strcasecmp (arg, "128") == 0)
9853 avxscalar = vex128;
9854 else if (strcasecmp (arg, "256") == 0)
9855 avxscalar = vex256;
9856 else
2b5d6a91 9857 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
9858 break;
9859
7e8b059b
L
9860 case OPTION_MADD_BND_PREFIX:
9861 add_bnd_prefix = 1;
9862 break;
9863
43234a1e
L
9864 case OPTION_MEVEXLIG:
9865 if (strcmp (arg, "128") == 0)
9866 evexlig = evexl128;
9867 else if (strcmp (arg, "256") == 0)
9868 evexlig = evexl256;
9869 else if (strcmp (arg, "512") == 0)
9870 evexlig = evexl512;
9871 else
9872 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9873 break;
9874
d3d3c6db
IT
9875 case OPTION_MEVEXRCIG:
9876 if (strcmp (arg, "rne") == 0)
9877 evexrcig = rne;
9878 else if (strcmp (arg, "rd") == 0)
9879 evexrcig = rd;
9880 else if (strcmp (arg, "ru") == 0)
9881 evexrcig = ru;
9882 else if (strcmp (arg, "rz") == 0)
9883 evexrcig = rz;
9884 else
9885 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9886 break;
9887
43234a1e
L
9888 case OPTION_MEVEXWIG:
9889 if (strcmp (arg, "0") == 0)
9890 evexwig = evexw0;
9891 else if (strcmp (arg, "1") == 0)
9892 evexwig = evexw1;
9893 else
9894 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9895 break;
9896
167ad85b
TG
9897# if defined (TE_PE) || defined (TE_PEP)
9898 case OPTION_MBIG_OBJ:
9899 use_big_obj = 1;
9900 break;
9901#endif
9902
a5094208 9903 case OPTION_OMIT_LOCK_PREFIX:
d022bddd
IT
9904 if (strcasecmp (arg, "yes") == 0)
9905 omit_lock_prefix = 1;
9906 else if (strcasecmp (arg, "no") == 0)
9907 omit_lock_prefix = 0;
9908 else
9909 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9910 break;
9911
252b5132
RH
9912 default:
9913 return 0;
9914 }
9915 return 1;
9916}
9917
8a2c8fef
L
9918#define MESSAGE_TEMPLATE \
9919" "
9920
9921static void
1ded5609 9922show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
9923{
9924 static char message[] = MESSAGE_TEMPLATE;
9925 char *start = message + 27;
9926 char *p;
9927 int size = sizeof (MESSAGE_TEMPLATE);
9928 int left;
9929 const char *name;
9930 int len;
9931 unsigned int j;
9932
9933 p = start;
9934 left = size - (start - message);
9935 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9936 {
9937 /* Should it be skipped? */
9938 if (cpu_arch [j].skip)
9939 continue;
9940
9941 name = cpu_arch [j].name;
9942 len = cpu_arch [j].len;
9943 if (*name == '.')
9944 {
9945 /* It is an extension. Skip if we aren't asked to show it. */
9946 if (ext)
9947 {
9948 name++;
9949 len--;
9950 }
9951 else
9952 continue;
9953 }
9954 else if (ext)
9955 {
9956 /* It is an processor. Skip if we show only extension. */
9957 continue;
9958 }
1ded5609
JB
9959 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9960 {
9961 /* It is an impossible processor - skip. */
9962 continue;
9963 }
8a2c8fef
L
9964
9965 /* Reserve 2 spaces for ", " or ",\0" */
9966 left -= len + 2;
9967
9968 /* Check if there is any room. */
9969 if (left >= 0)
9970 {
9971 if (p != start)
9972 {
9973 *p++ = ',';
9974 *p++ = ' ';
9975 }
9976 p = mempcpy (p, name, len);
9977 }
9978 else
9979 {
9980 /* Output the current message now and start a new one. */
9981 *p++ = ',';
9982 *p = '\0';
9983 fprintf (stream, "%s\n", message);
9984 p = start;
9985 left = size - (start - message) - len - 2;
8d63c93e 9986
8a2c8fef
L
9987 gas_assert (left >= 0);
9988
9989 p = mempcpy (p, name, len);
9990 }
9991 }
9992
9993 *p = '\0';
9994 fprintf (stream, "%s\n", message);
9995}
9996
252b5132 9997void
8a2c8fef 9998md_show_usage (FILE *stream)
252b5132 9999{
4cc782b5
ILT
10000#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10001 fprintf (stream, _("\
a38cf1db
AM
10002 -Q ignored\n\
10003 -V print assembler version number\n\
b3b91714
AM
10004 -k ignored\n"));
10005#endif
10006 fprintf (stream, _("\
12b55ccc 10007 -n Do not optimize code alignment\n\
b3b91714
AM
10008 -q quieten some warnings\n"));
10009#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10010 fprintf (stream, _("\
a38cf1db 10011 -s ignored\n"));
b3b91714 10012#endif
321098a5
L
10013#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10014 || defined (TE_PE) || defined (TE_PEP))
751d281c 10015 fprintf (stream, _("\
570561f7 10016 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10017#endif
b3b91714
AM
10018#ifdef SVR4_COMMENT_CHARS
10019 fprintf (stream, _("\
10020 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10021#else
10022 fprintf (stream, _("\
b3b91714 10023 --divide ignored\n"));
4cc782b5 10024#endif
9103f4f4 10025 fprintf (stream, _("\
6305a203 10026 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10027 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10028 show_arch (stream, 0, 1);
8a2c8fef
L
10029 fprintf (stream, _("\
10030 EXTENSION is combination of:\n"));
1ded5609 10031 show_arch (stream, 1, 0);
6305a203 10032 fprintf (stream, _("\
8a2c8fef 10033 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10034 show_arch (stream, 0, 0);
ba104c83 10035 fprintf (stream, _("\
c0f3af97
L
10036 -msse2avx encode SSE instructions with VEX prefix\n"));
10037 fprintf (stream, _("\
daf50ae7
L
10038 -msse-check=[none|error|warning]\n\
10039 check SSE instructions\n"));
10040 fprintf (stream, _("\
7bab8ab5
JB
10041 -moperand-check=[none|error|warning]\n\
10042 check operand combinations for validity\n"));
10043 fprintf (stream, _("\
539f890d
L
10044 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10045 length\n"));
10046 fprintf (stream, _("\
43234a1e
L
10047 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10048 length\n"));
10049 fprintf (stream, _("\
10050 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10051 for EVEX.W bit ignored instructions\n"));
10052 fprintf (stream, _("\
d3d3c6db
IT
10053 -mevexrcig=[rne|rd|ru|rz]\n\
10054 encode EVEX instructions with specific EVEX.RC value\n\
10055 for SAE-only ignored instructions\n"));
10056 fprintf (stream, _("\
ba104c83
L
10057 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10058 fprintf (stream, _("\
10059 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10060 fprintf (stream, _("\
10061 -mindex-reg support pseudo index registers\n"));
10062 fprintf (stream, _("\
10063 -mnaked-reg don't require `%%' prefix for registers\n"));
10064 fprintf (stream, _("\
10065 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10066 fprintf (stream, _("\
10067 -madd-bnd-prefix add BND prefix for all valid branches\n"));
167ad85b
TG
10068# if defined (TE_PE) || defined (TE_PEP)
10069 fprintf (stream, _("\
10070 -mbig-obj generate big object files\n"));
10071#endif
d022bddd
IT
10072 fprintf (stream, _("\
10073 -momit-lock-prefix=[no|yes]\n\
10074 strip all lock prefixes\n"));
252b5132
RH
10075}
10076
3e73aa7c 10077#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10078 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10079 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10080
10081/* Pick the target format to use. */
10082
47926f60 10083const char *
e3bb37b5 10084i386_target_format (void)
252b5132 10085{
351f65ca
L
10086 if (!strncmp (default_arch, "x86_64", 6))
10087 {
10088 update_code_flag (CODE_64BIT, 1);
10089 if (default_arch[6] == '\0')
7f56bc95 10090 x86_elf_abi = X86_64_ABI;
351f65ca 10091 else
7f56bc95 10092 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10093 }
3e73aa7c 10094 else if (!strcmp (default_arch, "i386"))
78f12dd3 10095 update_code_flag (CODE_32BIT, 1);
3e73aa7c 10096 else
2b5d6a91 10097 as_fatal (_("unknown architecture"));
89507696
JB
10098
10099 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10100 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10101 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10102 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10103
252b5132
RH
10104 switch (OUTPUT_FLAVOR)
10105 {
9384f2ff 10106#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10107 case bfd_target_aout_flavour:
47926f60 10108 return AOUT_TARGET_FORMAT;
4c63da97 10109#endif
9384f2ff
AM
10110#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10111# if defined (TE_PE) || defined (TE_PEP)
10112 case bfd_target_coff_flavour:
167ad85b
TG
10113 if (flag_code == CODE_64BIT)
10114 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10115 else
10116 return "pe-i386";
9384f2ff 10117# elif defined (TE_GO32)
0561d57c
JK
10118 case bfd_target_coff_flavour:
10119 return "coff-go32";
9384f2ff 10120# else
252b5132
RH
10121 case bfd_target_coff_flavour:
10122 return "coff-i386";
9384f2ff 10123# endif
4c63da97 10124#endif
3e73aa7c 10125#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10126 case bfd_target_elf_flavour:
3e73aa7c 10127 {
351f65ca
L
10128 const char *format;
10129
10130 switch (x86_elf_abi)
4fa24527 10131 {
351f65ca
L
10132 default:
10133 format = ELF_TARGET_FORMAT;
10134 break;
7f56bc95 10135 case X86_64_ABI:
351f65ca 10136 use_rela_relocations = 1;
4fa24527 10137 object_64bit = 1;
351f65ca
L
10138 format = ELF_TARGET_FORMAT64;
10139 break;
7f56bc95 10140 case X86_64_X32_ABI:
4fa24527 10141 use_rela_relocations = 1;
351f65ca 10142 object_64bit = 1;
862be3fb 10143 disallow_64bit_reloc = 1;
351f65ca
L
10144 format = ELF_TARGET_FORMAT32;
10145 break;
4fa24527 10146 }
3632d14b 10147 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10148 {
7f56bc95 10149 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10150 as_fatal (_("Intel L1OM is 64bit only"));
10151 return ELF_TARGET_L1OM_FORMAT;
10152 }
7a9068fe
L
10153 if (cpu_arch_isa == PROCESSOR_K1OM)
10154 {
10155 if (x86_elf_abi != X86_64_ABI)
10156 as_fatal (_("Intel K1OM is 64bit only"));
10157 return ELF_TARGET_K1OM_FORMAT;
10158 }
8a9036a4 10159 else
351f65ca 10160 return format;
3e73aa7c 10161 }
e57f8c65
TG
10162#endif
10163#if defined (OBJ_MACH_O)
10164 case bfd_target_mach_o_flavour:
d382c579
TG
10165 if (flag_code == CODE_64BIT)
10166 {
10167 use_rela_relocations = 1;
10168 object_64bit = 1;
10169 return "mach-o-x86-64";
10170 }
10171 else
10172 return "mach-o-i386";
4c63da97 10173#endif
252b5132
RH
10174 default:
10175 abort ();
10176 return NULL;
10177 }
10178}
10179
47926f60 10180#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
10181
10182#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
10183void
10184i386_elf_emit_arch_note (void)
a847613f 10185{
718ddfc0 10186 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
10187 {
10188 char *p;
10189 asection *seg = now_seg;
10190 subsegT subseg = now_subseg;
10191 Elf_Internal_Note i_note;
10192 Elf_External_Note e_note;
10193 asection *note_secp;
10194 int len;
10195
10196 /* Create the .note section. */
10197 note_secp = subseg_new (".note", 0);
10198 bfd_set_section_flags (stdoutput,
10199 note_secp,
10200 SEC_HAS_CONTENTS | SEC_READONLY);
10201
10202 /* Process the arch string. */
10203 len = strlen (cpu_arch_name);
10204
10205 i_note.namesz = len + 1;
10206 i_note.descsz = 0;
10207 i_note.type = NT_ARCH;
10208 p = frag_more (sizeof (e_note.namesz));
10209 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10210 p = frag_more (sizeof (e_note.descsz));
10211 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10212 p = frag_more (sizeof (e_note.type));
10213 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10214 p = frag_more (len + 1);
10215 strcpy (p, cpu_arch_name);
10216
10217 frag_align (2, 0, 0);
10218
10219 subseg_set (seg, subseg);
10220 }
10221}
10222#endif
252b5132 10223\f
252b5132 10224symbolS *
7016a5d5 10225md_undefined_symbol (char *name)
252b5132 10226{
18dc2407
ILT
10227 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10228 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10229 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10230 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10231 {
10232 if (!GOT_symbol)
10233 {
10234 if (symbol_find (name))
10235 as_bad (_("GOT already in symbol table"));
10236 GOT_symbol = symbol_new (name, undefined_section,
10237 (valueT) 0, &zero_address_frag);
10238 };
10239 return GOT_symbol;
10240 }
252b5132
RH
10241 return 0;
10242}
10243
10244/* Round up a section size to the appropriate boundary. */
47926f60 10245
252b5132 10246valueT
7016a5d5 10247md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10248{
4c63da97
AM
10249#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10250 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10251 {
10252 /* For a.out, force the section size to be aligned. If we don't do
10253 this, BFD will align it for us, but it will not write out the
10254 final bytes of the section. This may be a bug in BFD, but it is
10255 easier to fix it here since that is how the other a.out targets
10256 work. */
10257 int align;
10258
10259 align = bfd_get_section_alignment (stdoutput, segment);
10260 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10261 }
252b5132
RH
10262#endif
10263
10264 return size;
10265}
10266
10267/* On the i386, PC-relative offsets are relative to the start of the
10268 next instruction. That is, the address of the offset, plus its
10269 size, since the offset is always the last part of the insn. */
10270
10271long
e3bb37b5 10272md_pcrel_from (fixS *fixP)
252b5132
RH
10273{
10274 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10275}
10276
10277#ifndef I386COFF
10278
10279static void
e3bb37b5 10280s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10281{
29b0f896 10282 int temp;
252b5132 10283
8a75718c
JB
10284#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10285 if (IS_ELF)
10286 obj_elf_section_change_hook ();
10287#endif
252b5132
RH
10288 temp = get_absolute_expression ();
10289 subseg_set (bss_section, (subsegT) temp);
10290 demand_empty_rest_of_line ();
10291}
10292
10293#endif
10294
252b5132 10295void
e3bb37b5 10296i386_validate_fix (fixS *fixp)
252b5132
RH
10297{
10298 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10299 {
23df1078
JH
10300 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10301 {
4fa24527 10302 if (!object_64bit)
23df1078
JH
10303 abort ();
10304 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10305 }
10306 else
10307 {
4fa24527 10308 if (!object_64bit)
d6ab8113
JB
10309 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10310 else
10311 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 10312 }
252b5132
RH
10313 fixp->fx_subsy = 0;
10314 }
10315}
10316
252b5132 10317arelent *
7016a5d5 10318tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10319{
10320 arelent *rel;
10321 bfd_reloc_code_real_type code;
10322
10323 switch (fixp->fx_r_type)
10324 {
8ce3d284 10325#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10326 case BFD_RELOC_SIZE32:
10327 case BFD_RELOC_SIZE64:
10328 if (S_IS_DEFINED (fixp->fx_addsy)
10329 && !S_IS_EXTERNAL (fixp->fx_addsy))
10330 {
10331 /* Resolve size relocation against local symbol to size of
10332 the symbol plus addend. */
10333 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10334 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10335 && !fits_in_unsigned_long (value))
10336 as_bad_where (fixp->fx_file, fixp->fx_line,
10337 _("symbol size computation overflow"));
10338 fixp->fx_addsy = NULL;
10339 fixp->fx_subsy = NULL;
10340 md_apply_fix (fixp, (valueT *) &value, NULL);
10341 return NULL;
10342 }
8ce3d284 10343#endif
8fd4256d 10344
3e73aa7c 10345 case BFD_RELOC_X86_64_PLT32:
c3320543 10346 case BFD_RELOC_X86_64_PLT32_BND:
3e73aa7c
JH
10347 case BFD_RELOC_X86_64_GOT32:
10348 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
10349 case BFD_RELOC_386_PLT32:
10350 case BFD_RELOC_386_GOT32:
10351 case BFD_RELOC_386_GOTOFF:
10352 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10353 case BFD_RELOC_386_TLS_GD:
10354 case BFD_RELOC_386_TLS_LDM:
10355 case BFD_RELOC_386_TLS_LDO_32:
10356 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10357 case BFD_RELOC_386_TLS_IE:
10358 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10359 case BFD_RELOC_386_TLS_LE_32:
10360 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10361 case BFD_RELOC_386_TLS_GOTDESC:
10362 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10363 case BFD_RELOC_X86_64_TLSGD:
10364 case BFD_RELOC_X86_64_TLSLD:
10365 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10366 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10367 case BFD_RELOC_X86_64_GOTTPOFF:
10368 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10369 case BFD_RELOC_X86_64_TPOFF64:
10370 case BFD_RELOC_X86_64_GOTOFF64:
10371 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10372 case BFD_RELOC_X86_64_GOT64:
10373 case BFD_RELOC_X86_64_GOTPCREL64:
10374 case BFD_RELOC_X86_64_GOTPC64:
10375 case BFD_RELOC_X86_64_GOTPLT64:
10376 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10377 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10378 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10379 case BFD_RELOC_RVA:
10380 case BFD_RELOC_VTABLE_ENTRY:
10381 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10382#ifdef TE_PE
10383 case BFD_RELOC_32_SECREL:
10384#endif
252b5132
RH
10385 code = fixp->fx_r_type;
10386 break;
dbbaec26
L
10387 case BFD_RELOC_X86_64_32S:
10388 if (!fixp->fx_pcrel)
10389 {
10390 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10391 code = fixp->fx_r_type;
10392 break;
10393 }
252b5132 10394 default:
93382f6d 10395 if (fixp->fx_pcrel)
252b5132 10396 {
93382f6d
AM
10397 switch (fixp->fx_size)
10398 {
10399 default:
b091f402
AM
10400 as_bad_where (fixp->fx_file, fixp->fx_line,
10401 _("can not do %d byte pc-relative relocation"),
10402 fixp->fx_size);
93382f6d
AM
10403 code = BFD_RELOC_32_PCREL;
10404 break;
10405 case 1: code = BFD_RELOC_8_PCREL; break;
10406 case 2: code = BFD_RELOC_16_PCREL; break;
c3320543
L
10407 case 4:
10408 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10409 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10410 break;
d6ab8113
JB
10411#ifdef BFD64
10412 case 8: code = BFD_RELOC_64_PCREL; break;
10413#endif
93382f6d
AM
10414 }
10415 }
10416 else
10417 {
10418 switch (fixp->fx_size)
10419 {
10420 default:
b091f402
AM
10421 as_bad_where (fixp->fx_file, fixp->fx_line,
10422 _("can not do %d byte relocation"),
10423 fixp->fx_size);
93382f6d
AM
10424 code = BFD_RELOC_32;
10425 break;
10426 case 1: code = BFD_RELOC_8; break;
10427 case 2: code = BFD_RELOC_16; break;
10428 case 4: code = BFD_RELOC_32; break;
937149dd 10429#ifdef BFD64
3e73aa7c 10430 case 8: code = BFD_RELOC_64; break;
937149dd 10431#endif
93382f6d 10432 }
252b5132
RH
10433 }
10434 break;
10435 }
252b5132 10436
d182319b
JB
10437 if ((code == BFD_RELOC_32
10438 || code == BFD_RELOC_32_PCREL
10439 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10440 && GOT_symbol
10441 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10442 {
4fa24527 10443 if (!object_64bit)
d6ab8113
JB
10444 code = BFD_RELOC_386_GOTPC;
10445 else
10446 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10447 }
7b81dfbb
AJ
10448 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10449 && GOT_symbol
10450 && fixp->fx_addsy == GOT_symbol)
10451 {
10452 code = BFD_RELOC_X86_64_GOTPC64;
10453 }
252b5132
RH
10454
10455 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
10456 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10457 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10458
10459 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10460
3e73aa7c
JH
10461 if (!use_rela_relocations)
10462 {
10463 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10464 vtable entry to be used in the relocation's section offset. */
10465 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10466 rel->address = fixp->fx_offset;
fbeb56a4
DK
10467#if defined (OBJ_COFF) && defined (TE_PE)
10468 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10469 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10470 else
10471#endif
c6682705 10472 rel->addend = 0;
3e73aa7c
JH
10473 }
10474 /* Use the rela in 64bit mode. */
252b5132 10475 else
3e73aa7c 10476 {
862be3fb
L
10477 if (disallow_64bit_reloc)
10478 switch (code)
10479 {
862be3fb
L
10480 case BFD_RELOC_X86_64_DTPOFF64:
10481 case BFD_RELOC_X86_64_TPOFF64:
10482 case BFD_RELOC_64_PCREL:
10483 case BFD_RELOC_X86_64_GOTOFF64:
10484 case BFD_RELOC_X86_64_GOT64:
10485 case BFD_RELOC_X86_64_GOTPCREL64:
10486 case BFD_RELOC_X86_64_GOTPC64:
10487 case BFD_RELOC_X86_64_GOTPLT64:
10488 case BFD_RELOC_X86_64_PLTOFF64:
10489 as_bad_where (fixp->fx_file, fixp->fx_line,
10490 _("cannot represent relocation type %s in x32 mode"),
10491 bfd_get_reloc_code_name (code));
10492 break;
10493 default:
10494 break;
10495 }
10496
062cd5e7
AS
10497 if (!fixp->fx_pcrel)
10498 rel->addend = fixp->fx_offset;
10499 else
10500 switch (code)
10501 {
10502 case BFD_RELOC_X86_64_PLT32:
c3320543 10503 case BFD_RELOC_X86_64_PLT32_BND:
062cd5e7
AS
10504 case BFD_RELOC_X86_64_GOT32:
10505 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
10506 case BFD_RELOC_X86_64_TLSGD:
10507 case BFD_RELOC_X86_64_TLSLD:
10508 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
10509 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10510 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
10511 rel->addend = fixp->fx_offset - fixp->fx_size;
10512 break;
10513 default:
10514 rel->addend = (section->vma
10515 - fixp->fx_size
10516 + fixp->fx_addnumber
10517 + md_pcrel_from (fixp));
10518 break;
10519 }
3e73aa7c
JH
10520 }
10521
252b5132
RH
10522 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10523 if (rel->howto == NULL)
10524 {
10525 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 10526 _("cannot represent relocation type %s"),
252b5132
RH
10527 bfd_get_reloc_code_name (code));
10528 /* Set howto to a garbage value so that we can keep going. */
10529 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 10530 gas_assert (rel->howto != NULL);
252b5132
RH
10531 }
10532
10533 return rel;
10534}
10535
ee86248c 10536#include "tc-i386-intel.c"
54cfded0 10537
a60de03c
JB
10538void
10539tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 10540{
a60de03c
JB
10541 int saved_naked_reg;
10542 char saved_register_dot;
54cfded0 10543
a60de03c
JB
10544 saved_naked_reg = allow_naked_reg;
10545 allow_naked_reg = 1;
10546 saved_register_dot = register_chars['.'];
10547 register_chars['.'] = '.';
10548 allow_pseudo_reg = 1;
10549 expression_and_evaluate (exp);
10550 allow_pseudo_reg = 0;
10551 register_chars['.'] = saved_register_dot;
10552 allow_naked_reg = saved_naked_reg;
10553
e96d56a1 10554 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 10555 {
a60de03c
JB
10556 if ((addressT) exp->X_add_number < i386_regtab_size)
10557 {
10558 exp->X_op = O_constant;
10559 exp->X_add_number = i386_regtab[exp->X_add_number]
10560 .dw2_regnum[flag_code >> 1];
10561 }
10562 else
10563 exp->X_op = O_illegal;
54cfded0 10564 }
54cfded0
AM
10565}
10566
10567void
10568tc_x86_frame_initial_instructions (void)
10569{
a60de03c
JB
10570 static unsigned int sp_regno[2];
10571
10572 if (!sp_regno[flag_code >> 1])
10573 {
10574 char *saved_input = input_line_pointer;
10575 char sp[][4] = {"esp", "rsp"};
10576 expressionS exp;
a4447b93 10577
a60de03c
JB
10578 input_line_pointer = sp[flag_code >> 1];
10579 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 10580 gas_assert (exp.X_op == O_constant);
a60de03c
JB
10581 sp_regno[flag_code >> 1] = exp.X_add_number;
10582 input_line_pointer = saved_input;
10583 }
a4447b93 10584
61ff971f
L
10585 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10586 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 10587}
d2b2c203 10588
d7921315
L
10589int
10590x86_dwarf2_addr_size (void)
10591{
10592#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10593 if (x86_elf_abi == X86_64_X32_ABI)
10594 return 4;
10595#endif
10596 return bfd_arch_bits_per_address (stdoutput) / 8;
10597}
10598
d2b2c203
DJ
10599int
10600i386_elf_section_type (const char *str, size_t len)
10601{
10602 if (flag_code == CODE_64BIT
10603 && len == sizeof ("unwind") - 1
10604 && strncmp (str, "unwind", 6) == 0)
10605 return SHT_X86_64_UNWIND;
10606
10607 return -1;
10608}
bb41ade5 10609
ad5fec3b
EB
10610#ifdef TE_SOLARIS
10611void
10612i386_solaris_fix_up_eh_frame (segT sec)
10613{
10614 if (flag_code == CODE_64BIT)
10615 elf_section_type (sec) = SHT_X86_64_UNWIND;
10616}
10617#endif
10618
bb41ade5
AM
10619#ifdef TE_PE
10620void
10621tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10622{
91d6fa6a 10623 expressionS exp;
bb41ade5 10624
91d6fa6a
NC
10625 exp.X_op = O_secrel;
10626 exp.X_add_symbol = symbol;
10627 exp.X_add_number = 0;
10628 emit_expr (&exp, size);
bb41ade5
AM
10629}
10630#endif
3b22753a
L
10631
10632#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10633/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10634
01e1a5bc 10635bfd_vma
3b22753a
L
10636x86_64_section_letter (int letter, char **ptr_msg)
10637{
10638 if (flag_code == CODE_64BIT)
10639 {
10640 if (letter == 'l')
10641 return SHF_X86_64_LARGE;
10642
8f3bae45 10643 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 10644 }
3b22753a 10645 else
8f3bae45 10646 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
10647 return -1;
10648}
10649
01e1a5bc 10650bfd_vma
3b22753a
L
10651x86_64_section_word (char *str, size_t len)
10652{
8620418b 10653 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
10654 return SHF_X86_64_LARGE;
10655
10656 return -1;
10657}
10658
10659static void
10660handle_large_common (int small ATTRIBUTE_UNUSED)
10661{
10662 if (flag_code != CODE_64BIT)
10663 {
10664 s_comm_internal (0, elf_common_parse);
10665 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10666 }
10667 else
10668 {
10669 static segT lbss_section;
10670 asection *saved_com_section_ptr = elf_com_section_ptr;
10671 asection *saved_bss_section = bss_section;
10672
10673 if (lbss_section == NULL)
10674 {
10675 flagword applicable;
10676 segT seg = now_seg;
10677 subsegT subseg = now_subseg;
10678
10679 /* The .lbss section is for local .largecomm symbols. */
10680 lbss_section = subseg_new (".lbss", 0);
10681 applicable = bfd_applicable_section_flags (stdoutput);
10682 bfd_set_section_flags (stdoutput, lbss_section,
10683 applicable & SEC_ALLOC);
10684 seg_info (lbss_section)->bss = 1;
10685
10686 subseg_set (seg, subseg);
10687 }
10688
10689 elf_com_section_ptr = &_bfd_elf_large_com_section;
10690 bss_section = lbss_section;
10691
10692 s_comm_internal (0, elf_common_parse);
10693
10694 elf_com_section_ptr = saved_com_section_ptr;
10695 bss_section = saved_bss_section;
10696 }
10697}
10698#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.849843 seconds and 4 git commands to generate.