Make psymbols and psymtabs independent of the program space
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
4a1b91ea
L
233
234 /* Number of bytes to broadcast. */
235 int bytes;
43234a1e
L
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
a65babc9
L
268 unsupported_with_intel_mnemonic,
269 unsupported_syntax,
6c30d220
L
270 unsupported,
271 invalid_vsib_address,
7bab8ab5 272 invalid_vector_register_set,
43234a1e
L
273 unsupported_vector_index_register,
274 unsupported_broadcast,
43234a1e
L
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
a65babc9
L
282 };
283
252b5132
RH
284struct _i386_insn
285 {
47926f60 286 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 287 insn_template tm;
252b5132 288
7d5e4556
L
289 /* SUFFIX holds the instruction size suffix for byte, word, dword
290 or qword, if given. */
252b5132
RH
291 char suffix;
292
47926f60 293 /* OPERANDS gives the number of given operands. */
252b5132
RH
294 unsigned int operands;
295
296 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
297 of given register, displacement, memory operands and immediate
47926f60 298 operands. */
252b5132
RH
299 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
300
301 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 302 use OP[i] for the corresponding operand. */
40fb9820 303 i386_operand_type types[MAX_OPERANDS];
252b5132 304
520dc8e8
AM
305 /* Displacement expression, immediate expression, or register for each
306 operand. */
307 union i386_op op[MAX_OPERANDS];
252b5132 308
3e73aa7c
JH
309 /* Flags for operands. */
310 unsigned int flags[MAX_OPERANDS];
311#define Operand_PCrel 1
312
252b5132 313 /* Relocation type for operand */
f86103b7 314 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 315
252b5132
RH
316 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
317 the base index byte below. */
318 const reg_entry *base_reg;
319 const reg_entry *index_reg;
320 unsigned int log2_scale_factor;
321
322 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 323 explicit segment overrides are given. */
ce8a8b2f 324 const seg_entry *seg[2];
252b5132 325
8325cc63
JB
326 /* Copied first memory operand string, for re-checking. */
327 char *memop1_string;
328
252b5132
RH
329 /* PREFIX holds all the given prefix opcodes (usually null).
330 PREFIXES is the number of prefix opcodes. */
331 unsigned int prefixes;
332 unsigned char prefix[MAX_PREFIXES];
333
334 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 335 addressing modes of this insn are encoded. */
252b5132 336 modrm_byte rm;
3e73aa7c 337 rex_byte rex;
43234a1e 338 rex_byte vrex;
252b5132 339 sib_byte sib;
c0f3af97 340 vex_prefix vex;
b6169b20 341
43234a1e
L
342 /* Masking attributes. */
343 struct Mask_Operation *mask;
344
345 /* Rounding control and SAE attributes. */
346 struct RC_Operation *rounding;
347
348 /* Broadcasting attributes. */
349 struct Broadcast_Operation *broadcast;
350
351 /* Compressed disp8*N attribute. */
352 unsigned int memshift;
353
86fa6981
L
354 /* Prefer load or store in encoding. */
355 enum
356 {
357 dir_encoding_default = 0,
358 dir_encoding_load,
359 dir_encoding_store
360 } dir_encoding;
891edac4 361
a501d77e
L
362 /* Prefer 8bit or 32bit displacement in encoding. */
363 enum
364 {
365 disp_encoding_default = 0,
366 disp_encoding_8bit,
367 disp_encoding_32bit
368 } disp_encoding;
f8a5c266 369
6b6b6807
L
370 /* Prefer the REX byte in encoding. */
371 bfd_boolean rex_encoding;
372
b6f8c7c4
L
373 /* Disable instruction size optimization. */
374 bfd_boolean no_optimize;
375
86fa6981
L
376 /* How to encode vector instructions. */
377 enum
378 {
379 vex_encoding_default = 0,
380 vex_encoding_vex2,
381 vex_encoding_vex3,
382 vex_encoding_evex
383 } vec_encoding;
384
d5de92cf
L
385 /* REP prefix. */
386 const char *rep_prefix;
387
165de32a
L
388 /* HLE prefix. */
389 const char *hle_prefix;
42164a71 390
7e8b059b
L
391 /* Have BND prefix. */
392 const char *bnd_prefix;
393
04ef582a
L
394 /* Have NOTRACK prefix. */
395 const char *notrack_prefix;
396
891edac4 397 /* Error message. */
a65babc9 398 enum i386_error error;
252b5132
RH
399 };
400
401typedef struct _i386_insn i386_insn;
402
43234a1e
L
403/* Link RC type with corresponding string, that'll be looked for in
404 asm. */
405struct RC_name
406{
407 enum rc_type type;
408 const char *name;
409 unsigned int len;
410};
411
412static const struct RC_name RC_NamesTable[] =
413{
414 { rne, STRING_COMMA_LEN ("rn-sae") },
415 { rd, STRING_COMMA_LEN ("rd-sae") },
416 { ru, STRING_COMMA_LEN ("ru-sae") },
417 { rz, STRING_COMMA_LEN ("rz-sae") },
418 { saeonly, STRING_COMMA_LEN ("sae") },
419};
420
252b5132
RH
421/* List of chars besides those in app.c:symbol_chars that can start an
422 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 423const char extra_symbol_chars[] = "*%-([{}"
252b5132 424#ifdef LEX_AT
32137342
NC
425 "@"
426#endif
427#ifdef LEX_QM
428 "?"
252b5132 429#endif
32137342 430 ;
252b5132 431
29b0f896
AM
432#if (defined (TE_I386AIX) \
433 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 434 && !defined (TE_GNU) \
29b0f896 435 && !defined (TE_LINUX) \
8d63c93e 436 && !defined (TE_NACL) \
29b0f896 437 && !defined (TE_FreeBSD) \
5b806d27 438 && !defined (TE_DragonFly) \
29b0f896 439 && !defined (TE_NetBSD)))
252b5132 440/* This array holds the chars that always start a comment. If the
b3b91714
AM
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443const char *i386_comment_chars = "#/";
444#define SVR4_COMMENT_CHARS 1
252b5132 445#define PREFIX_SEPARATOR '\\'
252b5132 446
b3b91714
AM
447#else
448const char *i386_comment_chars = "#";
449#define PREFIX_SEPARATOR '/'
450#endif
451
252b5132
RH
452/* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 456 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
252b5132 459 '/' isn't otherwise defined. */
b3b91714 460const char line_comment_chars[] = "#/";
252b5132 461
63a0b638 462const char line_separator_chars[] = ";";
252b5132 463
ce8a8b2f
AM
464/* Chars that can be used to separate mant from exp in floating point
465 nums. */
252b5132
RH
466const char EXP_CHARS[] = "eE";
467
ce8a8b2f
AM
468/* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
252b5132
RH
471const char FLT_CHARS[] = "fFdDxX";
472
ce8a8b2f 473/* Tables for lexical analysis. */
252b5132
RH
474static char mnemonic_chars[256];
475static char register_chars[256];
476static char operand_chars[256];
477static char identifier_chars[256];
478static char digit_chars[256];
479
ce8a8b2f 480/* Lexical macros. */
252b5132
RH
481#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482#define is_operand_char(x) (operand_chars[(unsigned char) x])
483#define is_register_char(x) (register_chars[(unsigned char) x])
484#define is_space_char(x) ((x) == ' ')
485#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486#define is_digit_char(x) (digit_chars[(unsigned char) x])
487
0234cb7c 488/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
489static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491/* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
47926f60 494 assembler instruction). */
252b5132 495static char save_stack[32];
ce8a8b2f 496static char *save_stack_p;
252b5132
RH
497#define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499#define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
47926f60 502/* The instruction we're assembling. */
252b5132
RH
503static i386_insn i;
504
505/* Possible templates for current insn. */
506static const templates *current_templates;
507
31b2323c
L
508/* Per instruction expressionS buffers: max displacements & immediates. */
509static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 511
47926f60 512/* Current operand we are working on. */
ee86248c 513static int this_operand = -1;
252b5132 514
3e73aa7c
JH
515/* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523static enum flag_code flag_code;
4fa24527 524static unsigned int object_64bit;
862be3fb 525static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
526static int use_rela_relocations = 0;
527
7af8ed2d
NC
528#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
351f65ca
L
532/* The ELF ABI to use. */
533enum x86_elf_abi
534{
535 I386_ABI,
7f56bc95
L
536 X86_64_ABI,
537 X86_64_X32_ABI
351f65ca
L
538};
539
540static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 541#endif
351f65ca 542
167ad85b
TG
543#if defined (TE_PE) || defined (TE_PEP)
544/* Use big object file format. */
545static int use_big_obj = 0;
546#endif
547
8dcea932
L
548#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549/* 1 if generating code for a shared library. */
550static int shared = 0;
551#endif
552
47926f60
KH
553/* 1 for intel syntax,
554 0 if att syntax. */
555static int intel_syntax = 0;
252b5132 556
e89c5eaa
L
557/* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559static int intel64;
560
1efbbeb4
L
561/* 1 for intel mnemonic,
562 0 if att mnemonic. */
563static int intel_mnemonic = !SYSV386_COMPAT;
564
a60de03c
JB
565/* 1 if pseudo registers are permitted. */
566static int allow_pseudo_reg = 0;
567
47926f60
KH
568/* 1 if register prefix % not required. */
569static int allow_naked_reg = 0;
252b5132 570
33eaf5de 571/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574static int add_bnd_prefix = 0;
575
ba104c83 576/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
577static int allow_index_reg = 0;
578
d022bddd
IT
579/* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581static int omit_lock_prefix = 0;
582
e4e00185
AS
583/* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585static int avoid_fence = 0;
586
0cb4071e
L
587/* 1 if the assembler should generate relax relocations. */
588
589static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
7bab8ab5 592static enum check_kind
daf50ae7 593 {
7bab8ab5
JB
594 check_none = 0,
595 check_warning,
596 check_error
daf50ae7 597 }
7bab8ab5 598sse_check, operand_check = check_warning;
daf50ae7 599
b6f8c7c4
L
600/* Optimization:
601 1. Clear the REX_W bit with register operand if possible.
602 2. Above plus use 128bit vector instruction to clear the full vector
603 register.
604 */
605static int optimize = 0;
606
607/* Optimization:
608 1. Clear the REX_W bit with register operand if possible.
609 2. Above plus use 128bit vector instruction to clear the full vector
610 register.
611 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
612 "testb $imm7,%r8".
613 */
614static int optimize_for_space = 0;
615
2ca3ace5
L
616/* Register prefix used for error message. */
617static const char *register_prefix = "%";
618
47926f60
KH
619/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
620 leave, push, and pop instructions so that gcc has the same stack
621 frame as in 32 bit mode. */
622static char stackop_size = '\0';
eecb386c 623
12b55ccc
L
624/* Non-zero to optimize code alignment. */
625int optimize_align_code = 1;
626
47926f60
KH
627/* Non-zero to quieten some warnings. */
628static int quiet_warnings = 0;
a38cf1db 629
47926f60
KH
630/* CPU name. */
631static const char *cpu_arch_name = NULL;
6305a203 632static char *cpu_sub_arch_name = NULL;
a38cf1db 633
47926f60 634/* CPU feature flags. */
40fb9820
L
635static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
636
ccc9c027
L
637/* If we have selected a cpu we are generating instructions for. */
638static int cpu_arch_tune_set = 0;
639
9103f4f4 640/* Cpu we are generating instructions for. */
fbf3f584 641enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
642
643/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 644static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 645
ccc9c027 646/* CPU instruction set architecture used. */
fbf3f584 647enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 648
9103f4f4 649/* CPU feature flags of instruction set architecture used. */
fbf3f584 650i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 651
fddf5b5b
AM
652/* If set, conditional jumps are not automatically promoted to handle
653 larger than a byte offset. */
654static unsigned int no_cond_jump_promotion = 0;
655
c0f3af97
L
656/* Encode SSE instructions with VEX prefix. */
657static unsigned int sse2avx;
658
539f890d
L
659/* Encode scalar AVX instructions with specific vector length. */
660static enum
661 {
662 vex128 = 0,
663 vex256
664 } avxscalar;
665
43234a1e
L
666/* Encode scalar EVEX LIG instructions with specific vector length. */
667static enum
668 {
669 evexl128 = 0,
670 evexl256,
671 evexl512
672 } evexlig;
673
674/* Encode EVEX WIG instructions with specific evex.w. */
675static enum
676 {
677 evexw0 = 0,
678 evexw1
679 } evexwig;
680
d3d3c6db
IT
681/* Value to encode in EVEX RC bits, for SAE-only instructions. */
682static enum rc_type evexrcig = rne;
683
29b0f896 684/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 685static symbolS *GOT_symbol;
29b0f896 686
a4447b93
RH
687/* The dwarf2 return column, adjusted for 32 or 64 bit. */
688unsigned int x86_dwarf2_return_column;
689
690/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
691int x86_cie_data_alignment;
692
252b5132 693/* Interface to relax_segment.
fddf5b5b
AM
694 There are 3 major relax states for 386 jump insns because the
695 different types of jumps add different sizes to frags when we're
696 figuring out what sort of jump to choose to reach a given label. */
252b5132 697
47926f60 698/* Types. */
93c2a809
AM
699#define UNCOND_JUMP 0
700#define COND_JUMP 1
701#define COND_JUMP86 2
fddf5b5b 702
47926f60 703/* Sizes. */
252b5132
RH
704#define CODE16 1
705#define SMALL 0
29b0f896 706#define SMALL16 (SMALL | CODE16)
252b5132 707#define BIG 2
29b0f896 708#define BIG16 (BIG | CODE16)
252b5132
RH
709
710#ifndef INLINE
711#ifdef __GNUC__
712#define INLINE __inline__
713#else
714#define INLINE
715#endif
716#endif
717
fddf5b5b
AM
718#define ENCODE_RELAX_STATE(type, size) \
719 ((relax_substateT) (((type) << 2) | (size)))
720#define TYPE_FROM_RELAX_STATE(s) \
721 ((s) >> 2)
722#define DISP_SIZE_FROM_RELAX_STATE(s) \
723 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
724
725/* This table is used by relax_frag to promote short jumps to long
726 ones where necessary. SMALL (short) jumps may be promoted to BIG
727 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
728 don't allow a short jump in a 32 bit code segment to be promoted to
729 a 16 bit offset jump because it's slower (requires data size
730 prefix), and doesn't work, unless the destination is in the bottom
731 64k of the code segment (The top 16 bits of eip are zeroed). */
732
733const relax_typeS md_relax_table[] =
734{
24eab124
AM
735 /* The fields are:
736 1) most positive reach of this state,
737 2) most negative reach of this state,
93c2a809 738 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 739 4) which index into the table to try if we can't fit into this one. */
252b5132 740
fddf5b5b 741 /* UNCOND_JUMP states. */
93c2a809
AM
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
743 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
744 /* dword jmp adds 4 bytes to frag:
745 0 extra opcode bytes, 4 displacement bytes. */
252b5132 746 {0, 0, 4, 0},
93c2a809
AM
747 /* word jmp adds 2 byte2 to frag:
748 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
749 {0, 0, 2, 0},
750
93c2a809
AM
751 /* COND_JUMP states. */
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
753 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
754 /* dword conditionals adds 5 bytes to frag:
755 1 extra opcode byte, 4 displacement bytes. */
756 {0, 0, 5, 0},
fddf5b5b 757 /* word conditionals add 3 bytes to frag:
93c2a809
AM
758 1 extra opcode byte, 2 displacement bytes. */
759 {0, 0, 3, 0},
760
761 /* COND_JUMP86 states. */
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
764 /* dword conditionals adds 5 bytes to frag:
765 1 extra opcode byte, 4 displacement bytes. */
766 {0, 0, 5, 0},
767 /* word conditionals add 4 bytes to frag:
768 1 displacement byte and a 3 byte long branch insn. */
769 {0, 0, 4, 0}
252b5132
RH
770};
771
9103f4f4
L
772static const arch_entry cpu_arch[] =
773{
89507696
JB
774 /* Do not replace the first two entries - i386_target_format()
775 relies on them being there in this order. */
8a2c8fef 776 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 777 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 779 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_NONE_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I186_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 785 CPU_I286_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 787 CPU_I386_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 789 CPU_I486_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 791 CPU_I586_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 793 CPU_I686_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 795 CPU_I586_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P2_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 801 CPU_P3_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 803 CPU_P4_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 805 CPU_CORE_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 807 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 1 },
8a2c8fef 810 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 1 },
8a2c8fef 814 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 815 CPU_CORE2_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 817 CPU_COREI7_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 819 CPU_L1OM_FLAGS, 0 },
7a9068fe 820 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 821 CPU_K1OM_FLAGS, 0 },
81486035 822 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 823 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 825 CPU_K6_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 827 CPU_K6_2_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 829 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 1 },
8a2c8fef 832 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 835 CPU_K8_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 837 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 840 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 842 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 844 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER4_FLAGS, 0 },
029f3522 846 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 847 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
848 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
849 CPU_ZNVER2_FLAGS, 0 },
7b458c12 850 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 851 CPU_BTVER1_FLAGS, 0 },
7b458c12 852 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 853 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_8087_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_287_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_387_FLAGS, 0 },
1848e567
L
860 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
861 CPU_687_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_MMX_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSE2_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE3_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX_FLAGS, 0 },
6c30d220 880 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX2_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512F_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512CD_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512ER_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 892 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_VMX_FLAGS, 0 },
8729a6f6 898 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_SMX_FLAGS, 0 },
8a2c8fef 902 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 904 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 906 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 908 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_AES_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 916 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 918 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 920 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_F16C_FLAGS, 0 },
6c30d220 922 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_BMI2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_FMA_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_FMA4_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_XOP_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_LWP_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_MOVBE_FLAGS, 0 },
60aa667e 934 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_CX16_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_EPT_FLAGS, 0 },
6c30d220 938 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_LZCNT_FLAGS, 0 },
42164a71 940 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_HLE_FLAGS, 0 },
42164a71 942 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_RTM_FLAGS, 0 },
6c30d220 944 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_CLFLUSH_FLAGS, 0 },
22109423 948 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_NOP_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SVME_FLAGS, 1 },
8a2c8fef 962 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_SVME_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 966 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_ABM_FLAGS, 0 },
87973e9f 968 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI_FLAGS, 0 },
2a2a0f38 970 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_TBM_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_ADX_FLAGS, 0 },
e2e1fcde 974 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_PRFCHW_FLAGS, 0 },
5c111e37 978 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_SMAP_FLAGS, 0 },
7e8b059b 980 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_MPX_FLAGS, 0 },
a0046408 982 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SHA_FLAGS, 0 },
963f3586 984 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 986 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 988 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_SE1_FLAGS, 0 },
c5e7287a 990 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 992 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 994 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
996 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
998 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1000 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1002 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1004 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1006 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1008 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_CLZERO_FLAGS, 0 },
9916071f 1010 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_MWAITX_FLAGS, 0 },
8eab4136 1012 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_OSPKE_FLAGS, 0 },
8bc52696 1014 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1016 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1017 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1018 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1019 CPU_IBT_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1021 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1022 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1023 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1024 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1025 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1026 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1027 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1028 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1029 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1030 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1031 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1032 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1033 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1034 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1035 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1036 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIRI_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1039 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1040};
1041
1042static const noarch_entry cpu_noarch[] =
1043{
1044 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1045 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1046 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1047 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1048 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1049 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1050 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1052 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1055 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1056 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1057 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1058 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1067 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1068 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1069 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1070 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1071 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1072 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1073 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1074 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1075 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1076 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1077};
1078
704209c0 1079#ifdef I386COFF
a6c24e68
NC
1080/* Like s_lcomm_internal in gas/read.c but the alignment string
1081 is allowed to be optional. */
1082
1083static symbolS *
1084pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1085{
1086 addressT align = 0;
1087
1088 SKIP_WHITESPACE ();
1089
7ab9ffdd 1090 if (needs_align
a6c24e68
NC
1091 && *input_line_pointer == ',')
1092 {
1093 align = parse_align (needs_align - 1);
7ab9ffdd 1094
a6c24e68
NC
1095 if (align == (addressT) -1)
1096 return NULL;
1097 }
1098 else
1099 {
1100 if (size >= 8)
1101 align = 3;
1102 else if (size >= 4)
1103 align = 2;
1104 else if (size >= 2)
1105 align = 1;
1106 else
1107 align = 0;
1108 }
1109
1110 bss_alloc (symbolP, size, align);
1111 return symbolP;
1112}
1113
704209c0 1114static void
a6c24e68
NC
1115pe_lcomm (int needs_align)
1116{
1117 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1118}
704209c0 1119#endif
a6c24e68 1120
29b0f896
AM
1121const pseudo_typeS md_pseudo_table[] =
1122{
1123#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1124 {"align", s_align_bytes, 0},
1125#else
1126 {"align", s_align_ptwo, 0},
1127#endif
1128 {"arch", set_cpu_arch, 0},
1129#ifndef I386COFF
1130 {"bss", s_bss, 0},
a6c24e68
NC
1131#else
1132 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1133#endif
1134 {"ffloat", float_cons, 'f'},
1135 {"dfloat", float_cons, 'd'},
1136 {"tfloat", float_cons, 'x'},
1137 {"value", cons, 2},
d182319b 1138 {"slong", signed_cons, 4},
29b0f896
AM
1139 {"noopt", s_ignore, 0},
1140 {"optim", s_ignore, 0},
1141 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1142 {"code16", set_code_flag, CODE_16BIT},
1143 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1144#ifdef BFD64
29b0f896 1145 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1146#endif
29b0f896
AM
1147 {"intel_syntax", set_intel_syntax, 1},
1148 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1149 {"intel_mnemonic", set_intel_mnemonic, 1},
1150 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1151 {"allow_index_reg", set_allow_index_reg, 1},
1152 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1153 {"sse_check", set_check, 0},
1154 {"operand_check", set_check, 1},
3b22753a
L
1155#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1156 {"largecomm", handle_large_common, 0},
07a53e5c 1157#else
68d20676 1158 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1159 {"loc", dwarf2_directive_loc, 0},
1160 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1161#endif
6482c264
NC
1162#ifdef TE_PE
1163 {"secrel32", pe_directive_secrel, 0},
1164#endif
29b0f896
AM
1165 {0, 0, 0}
1166};
1167
1168/* For interface with expression (). */
1169extern char *input_line_pointer;
1170
1171/* Hash table for instruction mnemonic lookup. */
1172static struct hash_control *op_hash;
1173
1174/* Hash table for register lookup. */
1175static struct hash_control *reg_hash;
1176\f
ce8a8b2f
AM
1177 /* Various efficient no-op patterns for aligning code labels.
1178 Note: Don't try to assemble the instructions in the comments.
1179 0L and 0w are not legal. */
62a02d25
L
1180static const unsigned char f32_1[] =
1181 {0x90}; /* nop */
1182static const unsigned char f32_2[] =
1183 {0x66,0x90}; /* xchg %ax,%ax */
1184static const unsigned char f32_3[] =
1185 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1186static const unsigned char f32_4[] =
1187 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1188static const unsigned char f32_6[] =
1189 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1190static const unsigned char f32_7[] =
1191 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1192static const unsigned char f16_3[] =
3ae729d5 1193 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1194static const unsigned char f16_4[] =
3ae729d5
L
1195 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1196static const unsigned char jump_disp8[] =
1197 {0xeb}; /* jmp disp8 */
1198static const unsigned char jump32_disp32[] =
1199 {0xe9}; /* jmp disp32 */
1200static const unsigned char jump16_disp32[] =
1201 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1202/* 32-bit NOPs patterns. */
1203static const unsigned char *const f32_patt[] = {
3ae729d5 1204 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1205};
1206/* 16-bit NOPs patterns. */
1207static const unsigned char *const f16_patt[] = {
3ae729d5 1208 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1209};
1210/* nopl (%[re]ax) */
1211static const unsigned char alt_3[] =
1212 {0x0f,0x1f,0x00};
1213/* nopl 0(%[re]ax) */
1214static const unsigned char alt_4[] =
1215 {0x0f,0x1f,0x40,0x00};
1216/* nopl 0(%[re]ax,%[re]ax,1) */
1217static const unsigned char alt_5[] =
1218 {0x0f,0x1f,0x44,0x00,0x00};
1219/* nopw 0(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_6[] =
1221 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1222/* nopl 0L(%[re]ax) */
1223static const unsigned char alt_7[] =
1224 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1225/* nopl 0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_8[] =
1227 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228/* nopw 0L(%[re]ax,%[re]ax,1) */
1229static const unsigned char alt_9[] =
1230 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1232static const unsigned char alt_10[] =
1233 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1234/* data16 nopw %cs:0L(%eax,%eax,1) */
1235static const unsigned char alt_11[] =
1236 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1237/* 32-bit and 64-bit NOPs patterns. */
1238static const unsigned char *const alt_patt[] = {
1239 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1240 alt_9, alt_10, alt_11
62a02d25
L
1241};
1242
1243/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1244 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1245
1246static void
1247i386_output_nops (char *where, const unsigned char *const *patt,
1248 int count, int max_single_nop_size)
1249
1250{
3ae729d5
L
1251 /* Place the longer NOP first. */
1252 int last;
1253 int offset;
1254 const unsigned char *nops = patt[max_single_nop_size - 1];
1255
1256 /* Use the smaller one if the requsted one isn't available. */
1257 if (nops == NULL)
62a02d25 1258 {
3ae729d5
L
1259 max_single_nop_size--;
1260 nops = patt[max_single_nop_size - 1];
62a02d25
L
1261 }
1262
3ae729d5
L
1263 last = count % max_single_nop_size;
1264
1265 count -= last;
1266 for (offset = 0; offset < count; offset += max_single_nop_size)
1267 memcpy (where + offset, nops, max_single_nop_size);
1268
1269 if (last)
1270 {
1271 nops = patt[last - 1];
1272 if (nops == NULL)
1273 {
1274 /* Use the smaller one plus one-byte NOP if the needed one
1275 isn't available. */
1276 last--;
1277 nops = patt[last - 1];
1278 memcpy (where + offset, nops, last);
1279 where[offset + last] = *patt[0];
1280 }
1281 else
1282 memcpy (where + offset, nops, last);
1283 }
62a02d25
L
1284}
1285
3ae729d5
L
1286static INLINE int
1287fits_in_imm7 (offsetT num)
1288{
1289 return (num & 0x7f) == num;
1290}
1291
1292static INLINE int
1293fits_in_imm31 (offsetT num)
1294{
1295 return (num & 0x7fffffff) == num;
1296}
62a02d25
L
1297
1298/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1299 single NOP instruction LIMIT. */
1300
1301void
3ae729d5 1302i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1303{
3ae729d5 1304 const unsigned char *const *patt = NULL;
62a02d25 1305 int max_single_nop_size;
3ae729d5
L
1306 /* Maximum number of NOPs before switching to jump over NOPs. */
1307 int max_number_of_nops;
62a02d25 1308
3ae729d5 1309 switch (fragP->fr_type)
62a02d25 1310 {
3ae729d5
L
1311 case rs_fill_nop:
1312 case rs_align_code:
1313 break;
1314 default:
62a02d25
L
1315 return;
1316 }
1317
ccc9c027
L
1318 /* We need to decide which NOP sequence to use for 32bit and
1319 64bit. When -mtune= is used:
4eed87de 1320
76bc74dc
L
1321 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1322 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1323 2. For the rest, alt_patt will be used.
1324
1325 When -mtune= isn't used, alt_patt will be used if
22109423 1326 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1327 be used.
ccc9c027
L
1328
1329 When -march= or .arch is used, we can't use anything beyond
1330 cpu_arch_isa_flags. */
1331
1332 if (flag_code == CODE_16BIT)
1333 {
3ae729d5
L
1334 patt = f16_patt;
1335 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1336 /* Limit number of NOPs to 2 in 16-bit mode. */
1337 max_number_of_nops = 2;
252b5132 1338 }
33fef721 1339 else
ccc9c027 1340 {
fbf3f584 1341 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1342 {
1343 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1344 switch (cpu_arch_tune)
1345 {
1346 case PROCESSOR_UNKNOWN:
1347 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1348 optimize with nops. */
1349 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1350 patt = alt_patt;
ccc9c027
L
1351 else
1352 patt = f32_patt;
1353 break;
ccc9c027
L
1354 case PROCESSOR_PENTIUM4:
1355 case PROCESSOR_NOCONA:
ef05d495 1356 case PROCESSOR_CORE:
76bc74dc 1357 case PROCESSOR_CORE2:
bd5295b2 1358 case PROCESSOR_COREI7:
3632d14b 1359 case PROCESSOR_L1OM:
7a9068fe 1360 case PROCESSOR_K1OM:
76bc74dc 1361 case PROCESSOR_GENERIC64:
ccc9c027
L
1362 case PROCESSOR_K6:
1363 case PROCESSOR_ATHLON:
1364 case PROCESSOR_K8:
4eed87de 1365 case PROCESSOR_AMDFAM10:
8aedb9fe 1366 case PROCESSOR_BD:
029f3522 1367 case PROCESSOR_ZNVER:
7b458c12 1368 case PROCESSOR_BT:
80b8656c 1369 patt = alt_patt;
ccc9c027 1370 break;
76bc74dc 1371 case PROCESSOR_I386:
ccc9c027
L
1372 case PROCESSOR_I486:
1373 case PROCESSOR_PENTIUM:
2dde1948 1374 case PROCESSOR_PENTIUMPRO:
81486035 1375 case PROCESSOR_IAMCU:
ccc9c027
L
1376 case PROCESSOR_GENERIC32:
1377 patt = f32_patt;
1378 break;
4eed87de 1379 }
ccc9c027
L
1380 }
1381 else
1382 {
fbf3f584 1383 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1384 {
1385 case PROCESSOR_UNKNOWN:
e6a14101 1386 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1387 PROCESSOR_UNKNOWN. */
1388 abort ();
1389 break;
1390
76bc74dc 1391 case PROCESSOR_I386:
ccc9c027
L
1392 case PROCESSOR_I486:
1393 case PROCESSOR_PENTIUM:
81486035 1394 case PROCESSOR_IAMCU:
ccc9c027
L
1395 case PROCESSOR_K6:
1396 case PROCESSOR_ATHLON:
1397 case PROCESSOR_K8:
4eed87de 1398 case PROCESSOR_AMDFAM10:
8aedb9fe 1399 case PROCESSOR_BD:
029f3522 1400 case PROCESSOR_ZNVER:
7b458c12 1401 case PROCESSOR_BT:
ccc9c027
L
1402 case PROCESSOR_GENERIC32:
1403 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1404 with nops. */
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1406 patt = alt_patt;
ccc9c027
L
1407 else
1408 patt = f32_patt;
1409 break;
76bc74dc
L
1410 case PROCESSOR_PENTIUMPRO:
1411 case PROCESSOR_PENTIUM4:
1412 case PROCESSOR_NOCONA:
1413 case PROCESSOR_CORE:
ef05d495 1414 case PROCESSOR_CORE2:
bd5295b2 1415 case PROCESSOR_COREI7:
3632d14b 1416 case PROCESSOR_L1OM:
7a9068fe 1417 case PROCESSOR_K1OM:
22109423 1418 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1419 patt = alt_patt;
ccc9c027
L
1420 else
1421 patt = f32_patt;
1422 break;
1423 case PROCESSOR_GENERIC64:
80b8656c 1424 patt = alt_patt;
ccc9c027 1425 break;
4eed87de 1426 }
ccc9c027
L
1427 }
1428
76bc74dc
L
1429 if (patt == f32_patt)
1430 {
3ae729d5
L
1431 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1432 /* Limit number of NOPs to 2 for older processors. */
1433 max_number_of_nops = 2;
76bc74dc
L
1434 }
1435 else
1436 {
3ae729d5
L
1437 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1438 /* Limit number of NOPs to 7 for newer processors. */
1439 max_number_of_nops = 7;
1440 }
1441 }
1442
1443 if (limit == 0)
1444 limit = max_single_nop_size;
1445
1446 if (fragP->fr_type == rs_fill_nop)
1447 {
1448 /* Output NOPs for .nop directive. */
1449 if (limit > max_single_nop_size)
1450 {
1451 as_bad_where (fragP->fr_file, fragP->fr_line,
1452 _("invalid single nop size: %d "
1453 "(expect within [0, %d])"),
1454 limit, max_single_nop_size);
1455 return;
1456 }
1457 }
1458 else
1459 fragP->fr_var = count;
1460
1461 if ((count / max_single_nop_size) > max_number_of_nops)
1462 {
1463 /* Generate jump over NOPs. */
1464 offsetT disp = count - 2;
1465 if (fits_in_imm7 (disp))
1466 {
1467 /* Use "jmp disp8" if possible. */
1468 count = disp;
1469 where[0] = jump_disp8[0];
1470 where[1] = count;
1471 where += 2;
1472 }
1473 else
1474 {
1475 unsigned int size_of_jump;
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 where[0] = jump16_disp32[0];
1480 where[1] = jump16_disp32[1];
1481 size_of_jump = 2;
1482 }
1483 else
1484 {
1485 where[0] = jump32_disp32[0];
1486 size_of_jump = 1;
1487 }
1488
1489 count -= size_of_jump + 4;
1490 if (!fits_in_imm31 (count))
1491 {
1492 as_bad_where (fragP->fr_file, fragP->fr_line,
1493 _("jump over nop padding out of range"));
1494 return;
1495 }
1496
1497 md_number_to_chars (where + size_of_jump, count, 4);
1498 where += size_of_jump + 4;
76bc74dc 1499 }
ccc9c027 1500 }
3ae729d5
L
1501
1502 /* Generate multiple NOPs. */
1503 i386_output_nops (where, patt, count, limit);
252b5132
RH
1504}
1505
c6fb90c8 1506static INLINE int
0dfbf9d7 1507operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1508{
0dfbf9d7 1509 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1510 {
1511 case 3:
0dfbf9d7 1512 if (x->array[2])
c6fb90c8 1513 return 0;
1a0670f3 1514 /* Fall through. */
c6fb90c8 1515 case 2:
0dfbf9d7 1516 if (x->array[1])
c6fb90c8 1517 return 0;
1a0670f3 1518 /* Fall through. */
c6fb90c8 1519 case 1:
0dfbf9d7 1520 return !x->array[0];
c6fb90c8
L
1521 default:
1522 abort ();
1523 }
40fb9820
L
1524}
1525
c6fb90c8 1526static INLINE void
0dfbf9d7 1527operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1528{
0dfbf9d7 1529 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1530 {
1531 case 3:
0dfbf9d7 1532 x->array[2] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8 1534 case 2:
0dfbf9d7 1535 x->array[1] = v;
1a0670f3 1536 /* Fall through. */
c6fb90c8 1537 case 1:
0dfbf9d7 1538 x->array[0] = v;
1a0670f3 1539 /* Fall through. */
c6fb90c8
L
1540 break;
1541 default:
1542 abort ();
1543 }
1544}
40fb9820 1545
c6fb90c8 1546static INLINE int
0dfbf9d7
L
1547operand_type_equal (const union i386_operand_type *x,
1548 const union i386_operand_type *y)
c6fb90c8 1549{
0dfbf9d7 1550 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1551 {
1552 case 3:
0dfbf9d7 1553 if (x->array[2] != y->array[2])
c6fb90c8 1554 return 0;
1a0670f3 1555 /* Fall through. */
c6fb90c8 1556 case 2:
0dfbf9d7 1557 if (x->array[1] != y->array[1])
c6fb90c8 1558 return 0;
1a0670f3 1559 /* Fall through. */
c6fb90c8 1560 case 1:
0dfbf9d7 1561 return x->array[0] == y->array[0];
c6fb90c8
L
1562 break;
1563 default:
1564 abort ();
1565 }
1566}
40fb9820 1567
0dfbf9d7
L
1568static INLINE int
1569cpu_flags_all_zero (const union i386_cpu_flags *x)
1570{
1571 switch (ARRAY_SIZE(x->array))
1572 {
53467f57
IT
1573 case 4:
1574 if (x->array[3])
1575 return 0;
1576 /* Fall through. */
0dfbf9d7
L
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1a0670f3 1580 /* Fall through. */
0dfbf9d7
L
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1a0670f3 1584 /* Fall through. */
0dfbf9d7
L
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590}
1591
0dfbf9d7
L
1592static INLINE int
1593cpu_flags_equal (const union i386_cpu_flags *x,
1594 const union i386_cpu_flags *y)
1595{
1596 switch (ARRAY_SIZE(x->array))
1597 {
53467f57
IT
1598 case 4:
1599 if (x->array[3] != y->array[3])
1600 return 0;
1601 /* Fall through. */
0dfbf9d7
L
1602 case 3:
1603 if (x->array[2] != y->array[2])
1604 return 0;
1a0670f3 1605 /* Fall through. */
0dfbf9d7
L
1606 case 2:
1607 if (x->array[1] != y->array[1])
1608 return 0;
1a0670f3 1609 /* Fall through. */
0dfbf9d7
L
1610 case 1:
1611 return x->array[0] == y->array[0];
1612 break;
1613 default:
1614 abort ();
1615 }
1616}
c6fb90c8
L
1617
1618static INLINE int
1619cpu_flags_check_cpu64 (i386_cpu_flags f)
1620{
1621 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1622 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1623}
1624
c6fb90c8
L
1625static INLINE i386_cpu_flags
1626cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1627{
c6fb90c8
L
1628 switch (ARRAY_SIZE (x.array))
1629 {
53467f57
IT
1630 case 4:
1631 x.array [3] &= y.array [3];
1632 /* Fall through. */
c6fb90c8
L
1633 case 3:
1634 x.array [2] &= y.array [2];
1a0670f3 1635 /* Fall through. */
c6fb90c8
L
1636 case 2:
1637 x.array [1] &= y.array [1];
1a0670f3 1638 /* Fall through. */
c6fb90c8
L
1639 case 1:
1640 x.array [0] &= y.array [0];
1641 break;
1642 default:
1643 abort ();
1644 }
1645 return x;
1646}
40fb9820 1647
c6fb90c8
L
1648static INLINE i386_cpu_flags
1649cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1650{
c6fb90c8 1651 switch (ARRAY_SIZE (x.array))
40fb9820 1652 {
53467f57
IT
1653 case 4:
1654 x.array [3] |= y.array [3];
1655 /* Fall through. */
c6fb90c8
L
1656 case 3:
1657 x.array [2] |= y.array [2];
1a0670f3 1658 /* Fall through. */
c6fb90c8
L
1659 case 2:
1660 x.array [1] |= y.array [1];
1a0670f3 1661 /* Fall through. */
c6fb90c8
L
1662 case 1:
1663 x.array [0] |= y.array [0];
40fb9820
L
1664 break;
1665 default:
1666 abort ();
1667 }
40fb9820
L
1668 return x;
1669}
1670
309d3373
JB
1671static INLINE i386_cpu_flags
1672cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1673{
1674 switch (ARRAY_SIZE (x.array))
1675 {
53467f57
IT
1676 case 4:
1677 x.array [3] &= ~y.array [3];
1678 /* Fall through. */
309d3373
JB
1679 case 3:
1680 x.array [2] &= ~y.array [2];
1a0670f3 1681 /* Fall through. */
309d3373
JB
1682 case 2:
1683 x.array [1] &= ~y.array [1];
1a0670f3 1684 /* Fall through. */
309d3373
JB
1685 case 1:
1686 x.array [0] &= ~y.array [0];
1687 break;
1688 default:
1689 abort ();
1690 }
1691 return x;
1692}
1693
c0f3af97
L
1694#define CPU_FLAGS_ARCH_MATCH 0x1
1695#define CPU_FLAGS_64BIT_MATCH 0x2
1696
c0f3af97 1697#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1698 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1699
1700/* Return CPU flags match bits. */
3629bb00 1701
40fb9820 1702static int
d3ce72d0 1703cpu_flags_match (const insn_template *t)
40fb9820 1704{
c0f3af97
L
1705 i386_cpu_flags x = t->cpu_flags;
1706 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1707
1708 x.bitfield.cpu64 = 0;
1709 x.bitfield.cpuno64 = 0;
1710
0dfbf9d7 1711 if (cpu_flags_all_zero (&x))
c0f3af97
L
1712 {
1713 /* This instruction is available on all archs. */
db12e14e 1714 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1715 }
3629bb00
L
1716 else
1717 {
c0f3af97 1718 /* This instruction is available only on some archs. */
3629bb00
L
1719 i386_cpu_flags cpu = cpu_arch_flags;
1720
ab592e75
JB
1721 /* AVX512VL is no standalone feature - match it and then strip it. */
1722 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1723 return match;
1724 x.bitfield.cpuavx512vl = 0;
1725
3629bb00 1726 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1727 if (!cpu_flags_all_zero (&cpu))
1728 {
a5ff0eb2
L
1729 if (x.bitfield.cpuavx)
1730 {
929f69fa 1731 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1732 if (cpu.bitfield.cpuavx
1733 && (!t->opcode_modifier.sse2avx || sse2avx)
1734 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1735 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1736 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1737 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1738 }
929f69fa
JB
1739 else if (x.bitfield.cpuavx512f)
1740 {
1741 /* We need to check a few extra flags with AVX512F. */
1742 if (cpu.bitfield.cpuavx512f
1743 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1744 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1745 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1746 match |= CPU_FLAGS_ARCH_MATCH;
1747 }
a5ff0eb2 1748 else
db12e14e 1749 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1750 }
3629bb00 1751 }
c0f3af97 1752 return match;
40fb9820
L
1753}
1754
c6fb90c8
L
1755static INLINE i386_operand_type
1756operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1757{
c6fb90c8
L
1758 switch (ARRAY_SIZE (x.array))
1759 {
1760 case 3:
1761 x.array [2] &= y.array [2];
1a0670f3 1762 /* Fall through. */
c6fb90c8
L
1763 case 2:
1764 x.array [1] &= y.array [1];
1a0670f3 1765 /* Fall through. */
c6fb90c8
L
1766 case 1:
1767 x.array [0] &= y.array [0];
1768 break;
1769 default:
1770 abort ();
1771 }
1772 return x;
40fb9820
L
1773}
1774
73053c1f
JB
1775static INLINE i386_operand_type
1776operand_type_and_not (i386_operand_type x, i386_operand_type y)
1777{
1778 switch (ARRAY_SIZE (x.array))
1779 {
1780 case 3:
1781 x.array [2] &= ~y.array [2];
1782 /* Fall through. */
1783 case 2:
1784 x.array [1] &= ~y.array [1];
1785 /* Fall through. */
1786 case 1:
1787 x.array [0] &= ~y.array [0];
1788 break;
1789 default:
1790 abort ();
1791 }
1792 return x;
1793}
1794
c6fb90c8
L
1795static INLINE i386_operand_type
1796operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1797{
c6fb90c8 1798 switch (ARRAY_SIZE (x.array))
40fb9820 1799 {
c6fb90c8
L
1800 case 3:
1801 x.array [2] |= y.array [2];
1a0670f3 1802 /* Fall through. */
c6fb90c8
L
1803 case 2:
1804 x.array [1] |= y.array [1];
1a0670f3 1805 /* Fall through. */
c6fb90c8
L
1806 case 1:
1807 x.array [0] |= y.array [0];
40fb9820
L
1808 break;
1809 default:
1810 abort ();
1811 }
c6fb90c8
L
1812 return x;
1813}
40fb9820 1814
c6fb90c8
L
1815static INLINE i386_operand_type
1816operand_type_xor (i386_operand_type x, i386_operand_type y)
1817{
1818 switch (ARRAY_SIZE (x.array))
1819 {
1820 case 3:
1821 x.array [2] ^= y.array [2];
1a0670f3 1822 /* Fall through. */
c6fb90c8
L
1823 case 2:
1824 x.array [1] ^= y.array [1];
1a0670f3 1825 /* Fall through. */
c6fb90c8
L
1826 case 1:
1827 x.array [0] ^= y.array [0];
1828 break;
1829 default:
1830 abort ();
1831 }
40fb9820
L
1832 return x;
1833}
1834
1835static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1836static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1837static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1838static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1839static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1840static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1841static const i386_operand_type anydisp
1842 = OPERAND_TYPE_ANYDISP;
40fb9820 1843static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1844static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1845static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1846static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1847static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1848static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1849static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1850static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1851static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1852static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1853static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1854static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1855
1856enum operand_type
1857{
1858 reg,
40fb9820
L
1859 imm,
1860 disp,
1861 anymem
1862};
1863
c6fb90c8 1864static INLINE int
40fb9820
L
1865operand_type_check (i386_operand_type t, enum operand_type c)
1866{
1867 switch (c)
1868 {
1869 case reg:
dc821c5f 1870 return t.bitfield.reg;
40fb9820 1871
40fb9820
L
1872 case imm:
1873 return (t.bitfield.imm8
1874 || t.bitfield.imm8s
1875 || t.bitfield.imm16
1876 || t.bitfield.imm32
1877 || t.bitfield.imm32s
1878 || t.bitfield.imm64);
1879
1880 case disp:
1881 return (t.bitfield.disp8
1882 || t.bitfield.disp16
1883 || t.bitfield.disp32
1884 || t.bitfield.disp32s
1885 || t.bitfield.disp64);
1886
1887 case anymem:
1888 return (t.bitfield.disp8
1889 || t.bitfield.disp16
1890 || t.bitfield.disp32
1891 || t.bitfield.disp32s
1892 || t.bitfield.disp64
1893 || t.bitfield.baseindex);
1894
1895 default:
1896 abort ();
1897 }
2cfe26b6
AM
1898
1899 return 0;
40fb9820
L
1900}
1901
7a54636a
L
1902/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1903 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1904
1905static INLINE int
7a54636a
L
1906match_operand_size (const insn_template *t, unsigned int wanted,
1907 unsigned int given)
5c07affc 1908{
3ac21baa
JB
1909 return !((i.types[given].bitfield.byte
1910 && !t->operand_types[wanted].bitfield.byte)
1911 || (i.types[given].bitfield.word
1912 && !t->operand_types[wanted].bitfield.word)
1913 || (i.types[given].bitfield.dword
1914 && !t->operand_types[wanted].bitfield.dword)
1915 || (i.types[given].bitfield.qword
1916 && !t->operand_types[wanted].bitfield.qword)
1917 || (i.types[given].bitfield.tbyte
1918 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1919}
1920
dd40ce22
L
1921/* Return 1 if there is no conflict in SIMD register between operand
1922 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1923
1924static INLINE int
dd40ce22
L
1925match_simd_size (const insn_template *t, unsigned int wanted,
1926 unsigned int given)
1b54b8d7 1927{
3ac21baa
JB
1928 return !((i.types[given].bitfield.xmmword
1929 && !t->operand_types[wanted].bitfield.xmmword)
1930 || (i.types[given].bitfield.ymmword
1931 && !t->operand_types[wanted].bitfield.ymmword)
1932 || (i.types[given].bitfield.zmmword
1933 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1934}
1935
7a54636a
L
1936/* Return 1 if there is no conflict in any size between operand GIVEN
1937 and opeand WANTED for instruction template T. */
5c07affc
L
1938
1939static INLINE int
dd40ce22
L
1940match_mem_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
5c07affc 1942{
7a54636a 1943 return (match_operand_size (t, wanted, given)
3ac21baa 1944 && !((i.types[given].bitfield.unspecified
af508cb9 1945 && !i.broadcast
3ac21baa
JB
1946 && !t->operand_types[wanted].bitfield.unspecified)
1947 || (i.types[given].bitfield.fword
1948 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1949 /* For scalar opcode templates to allow register and memory
1950 operands at the same time, some special casing is needed
d6793fa1
JB
1951 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1952 down-conversion vpmov*. */
3ac21baa 1953 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1954 && !t->opcode_modifier.broadcast
3ac21baa
JB
1955 && (t->operand_types[wanted].bitfield.byte
1956 || t->operand_types[wanted].bitfield.word
1957 || t->operand_types[wanted].bitfield.dword
1958 || t->operand_types[wanted].bitfield.qword))
1959 ? (i.types[given].bitfield.xmmword
1960 || i.types[given].bitfield.ymmword
1961 || i.types[given].bitfield.zmmword)
1962 : !match_simd_size(t, wanted, given))));
5c07affc
L
1963}
1964
3ac21baa
JB
1965/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1966 operands for instruction template T, and it has MATCH_REVERSE set if there
1967 is no size conflict on any operands for the template with operands reversed
1968 (and the template allows for reversing in the first place). */
5c07affc 1969
3ac21baa
JB
1970#define MATCH_STRAIGHT 1
1971#define MATCH_REVERSE 2
1972
1973static INLINE unsigned int
d3ce72d0 1974operand_size_match (const insn_template *t)
5c07affc 1975{
3ac21baa 1976 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
1977
1978 /* Don't check jump instructions. */
1979 if (t->opcode_modifier.jump
1980 || t->opcode_modifier.jumpbyte
1981 || t->opcode_modifier.jumpdword
1982 || t->opcode_modifier.jumpintersegment)
1983 return match;
1984
1985 /* Check memory and accumulator operand size. */
1986 for (j = 0; j < i.operands; j++)
1987 {
1b54b8d7
JB
1988 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1989 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1990 continue;
1991
1b54b8d7 1992 if (t->operand_types[j].bitfield.reg
7a54636a 1993 && !match_operand_size (t, j, j))
5c07affc
L
1994 {
1995 match = 0;
1996 break;
1997 }
1998
1b54b8d7 1999 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2000 && !match_simd_size (t, j, j))
1b54b8d7
JB
2001 {
2002 match = 0;
2003 break;
2004 }
2005
2006 if (t->operand_types[j].bitfield.acc
7a54636a 2007 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2008 {
2009 match = 0;
2010 break;
2011 }
2012
3ac21baa 2013 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
5c07affc
L
2014 {
2015 match = 0;
2016 break;
2017 }
2018 }
2019
3ac21baa 2020 if (!t->opcode_modifier.d)
891edac4
L
2021 {
2022mismatch:
3ac21baa
JB
2023 if (!match)
2024 i.error = operand_size_mismatch;
2025 return match;
891edac4 2026 }
5c07affc
L
2027
2028 /* Check reverse. */
9c2799c2 2029 gas_assert (i.operands == 2);
5c07affc 2030
5c07affc
L
2031 for (j = 0; j < 2; j++)
2032 {
dc821c5f
JB
2033 if ((t->operand_types[j].bitfield.reg
2034 || t->operand_types[j].bitfield.acc)
7a54636a 2035 && !match_operand_size (t, j, !j))
891edac4 2036 goto mismatch;
5c07affc 2037
3ac21baa
JB
2038 if (i.types[!j].bitfield.mem
2039 && !match_mem_size (t, j, !j))
891edac4 2040 goto mismatch;
5c07affc
L
2041 }
2042
3ac21baa 2043 return match | MATCH_REVERSE;
5c07affc
L
2044}
2045
c6fb90c8 2046static INLINE int
40fb9820
L
2047operand_type_match (i386_operand_type overlap,
2048 i386_operand_type given)
2049{
2050 i386_operand_type temp = overlap;
2051
2052 temp.bitfield.jumpabsolute = 0;
7d5e4556 2053 temp.bitfield.unspecified = 0;
5c07affc
L
2054 temp.bitfield.byte = 0;
2055 temp.bitfield.word = 0;
2056 temp.bitfield.dword = 0;
2057 temp.bitfield.fword = 0;
2058 temp.bitfield.qword = 0;
2059 temp.bitfield.tbyte = 0;
2060 temp.bitfield.xmmword = 0;
c0f3af97 2061 temp.bitfield.ymmword = 0;
43234a1e 2062 temp.bitfield.zmmword = 0;
0dfbf9d7 2063 if (operand_type_all_zero (&temp))
891edac4 2064 goto mismatch;
40fb9820 2065
891edac4
L
2066 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2067 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2068 return 1;
2069
2070mismatch:
a65babc9 2071 i.error = operand_type_mismatch;
891edac4 2072 return 0;
40fb9820
L
2073}
2074
7d5e4556 2075/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2076 unless the expected operand type register overlap is null.
2077 Memory operand size of certain SIMD instructions is also being checked
2078 here. */
40fb9820 2079
c6fb90c8 2080static INLINE int
dc821c5f 2081operand_type_register_match (i386_operand_type g0,
40fb9820 2082 i386_operand_type t0,
40fb9820
L
2083 i386_operand_type g1,
2084 i386_operand_type t1)
2085{
10c17abd
JB
2086 if (!g0.bitfield.reg
2087 && !g0.bitfield.regsimd
2088 && (!operand_type_check (g0, anymem)
2089 || g0.bitfield.unspecified
2090 || !t0.bitfield.regsimd))
40fb9820
L
2091 return 1;
2092
10c17abd
JB
2093 if (!g1.bitfield.reg
2094 && !g1.bitfield.regsimd
2095 && (!operand_type_check (g1, anymem)
2096 || g1.bitfield.unspecified
2097 || !t1.bitfield.regsimd))
40fb9820
L
2098 return 1;
2099
dc821c5f
JB
2100 if (g0.bitfield.byte == g1.bitfield.byte
2101 && g0.bitfield.word == g1.bitfield.word
2102 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2103 && g0.bitfield.qword == g1.bitfield.qword
2104 && g0.bitfield.xmmword == g1.bitfield.xmmword
2105 && g0.bitfield.ymmword == g1.bitfield.ymmword
2106 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2107 return 1;
2108
dc821c5f
JB
2109 if (!(t0.bitfield.byte & t1.bitfield.byte)
2110 && !(t0.bitfield.word & t1.bitfield.word)
2111 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2112 && !(t0.bitfield.qword & t1.bitfield.qword)
2113 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2114 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2115 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2116 return 1;
2117
a65babc9 2118 i.error = register_type_mismatch;
891edac4
L
2119
2120 return 0;
40fb9820
L
2121}
2122
4c692bc7
JB
2123static INLINE unsigned int
2124register_number (const reg_entry *r)
2125{
2126 unsigned int nr = r->reg_num;
2127
2128 if (r->reg_flags & RegRex)
2129 nr += 8;
2130
200cbe0f
L
2131 if (r->reg_flags & RegVRex)
2132 nr += 16;
2133
4c692bc7
JB
2134 return nr;
2135}
2136
252b5132 2137static INLINE unsigned int
40fb9820 2138mode_from_disp_size (i386_operand_type t)
252b5132 2139{
b5014f7a 2140 if (t.bitfield.disp8)
40fb9820
L
2141 return 1;
2142 else if (t.bitfield.disp16
2143 || t.bitfield.disp32
2144 || t.bitfield.disp32s)
2145 return 2;
2146 else
2147 return 0;
252b5132
RH
2148}
2149
2150static INLINE int
65879393 2151fits_in_signed_byte (addressT num)
252b5132 2152{
65879393 2153 return num + 0x80 <= 0xff;
47926f60 2154}
252b5132
RH
2155
2156static INLINE int
65879393 2157fits_in_unsigned_byte (addressT num)
252b5132 2158{
65879393 2159 return num <= 0xff;
47926f60 2160}
252b5132
RH
2161
2162static INLINE int
65879393 2163fits_in_unsigned_word (addressT num)
252b5132 2164{
65879393 2165 return num <= 0xffff;
47926f60 2166}
252b5132
RH
2167
2168static INLINE int
65879393 2169fits_in_signed_word (addressT num)
252b5132 2170{
65879393 2171 return num + 0x8000 <= 0xffff;
47926f60 2172}
2a962e6d 2173
3e73aa7c 2174static INLINE int
65879393 2175fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2176{
2177#ifndef BFD64
2178 return 1;
2179#else
65879393 2180 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2181#endif
2182} /* fits_in_signed_long() */
2a962e6d 2183
3e73aa7c 2184static INLINE int
65879393 2185fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2186{
2187#ifndef BFD64
2188 return 1;
2189#else
65879393 2190 return num <= 0xffffffff;
3e73aa7c
JH
2191#endif
2192} /* fits_in_unsigned_long() */
252b5132 2193
43234a1e 2194static INLINE int
b5014f7a 2195fits_in_disp8 (offsetT num)
43234a1e
L
2196{
2197 int shift = i.memshift;
2198 unsigned int mask;
2199
2200 if (shift == -1)
2201 abort ();
2202
2203 mask = (1 << shift) - 1;
2204
2205 /* Return 0 if NUM isn't properly aligned. */
2206 if ((num & mask))
2207 return 0;
2208
2209 /* Check if NUM will fit in 8bit after shift. */
2210 return fits_in_signed_byte (num >> shift);
2211}
2212
a683cc34
SP
2213static INLINE int
2214fits_in_imm4 (offsetT num)
2215{
2216 return (num & 0xf) == num;
2217}
2218
40fb9820 2219static i386_operand_type
e3bb37b5 2220smallest_imm_type (offsetT num)
252b5132 2221{
40fb9820 2222 i386_operand_type t;
7ab9ffdd 2223
0dfbf9d7 2224 operand_type_set (&t, 0);
40fb9820
L
2225 t.bitfield.imm64 = 1;
2226
2227 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2228 {
2229 /* This code is disabled on the 486 because all the Imm1 forms
2230 in the opcode table are slower on the i486. They're the
2231 versions with the implicitly specified single-position
2232 displacement, which has another syntax if you really want to
2233 use that form. */
40fb9820
L
2234 t.bitfield.imm1 = 1;
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm8s = 1;
2237 t.bitfield.imm16 = 1;
2238 t.bitfield.imm32 = 1;
2239 t.bitfield.imm32s = 1;
2240 }
2241 else if (fits_in_signed_byte (num))
2242 {
2243 t.bitfield.imm8 = 1;
2244 t.bitfield.imm8s = 1;
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_unsigned_byte (num))
2250 {
2251 t.bitfield.imm8 = 1;
2252 t.bitfield.imm16 = 1;
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2257 {
2258 t.bitfield.imm16 = 1;
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_signed_long (num))
2263 {
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_unsigned_long (num))
2268 t.bitfield.imm32 = 1;
2269
2270 return t;
47926f60 2271}
252b5132 2272
847f7ad4 2273static offsetT
e3bb37b5 2274offset_in_range (offsetT val, int size)
847f7ad4 2275{
508866be 2276 addressT mask;
ba2adb93 2277
847f7ad4
AM
2278 switch (size)
2279 {
508866be
L
2280 case 1: mask = ((addressT) 1 << 8) - 1; break;
2281 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2282 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2283#ifdef BFD64
2284 case 8: mask = ((addressT) 2 << 63) - 1; break;
2285#endif
47926f60 2286 default: abort ();
847f7ad4
AM
2287 }
2288
9de868bf
L
2289#ifdef BFD64
2290 /* If BFD64, sign extend val for 32bit address mode. */
2291 if (flag_code != CODE_64BIT
2292 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2293 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2294 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2295#endif
ba2adb93 2296
47926f60 2297 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2298 {
2299 char buf1[40], buf2[40];
2300
2301 sprint_value (buf1, val);
2302 sprint_value (buf2, val & mask);
2303 as_warn (_("%s shortened to %s"), buf1, buf2);
2304 }
2305 return val & mask;
2306}
2307
c32fa91d
L
2308enum PREFIX_GROUP
2309{
2310 PREFIX_EXIST = 0,
2311 PREFIX_LOCK,
2312 PREFIX_REP,
04ef582a 2313 PREFIX_DS,
c32fa91d
L
2314 PREFIX_OTHER
2315};
2316
2317/* Returns
2318 a. PREFIX_EXIST if attempting to add a prefix where one from the
2319 same class already exists.
2320 b. PREFIX_LOCK if lock prefix is added.
2321 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2322 d. PREFIX_DS if ds prefix is added.
2323 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2324 */
2325
2326static enum PREFIX_GROUP
e3bb37b5 2327add_prefix (unsigned int prefix)
252b5132 2328{
c32fa91d 2329 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2330 unsigned int q;
252b5132 2331
29b0f896
AM
2332 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2333 && flag_code == CODE_64BIT)
b1905489 2334 {
161a04f6 2335 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2336 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2337 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2338 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2339 ret = PREFIX_EXIST;
b1905489
JB
2340 q = REX_PREFIX;
2341 }
3e73aa7c 2342 else
b1905489
JB
2343 {
2344 switch (prefix)
2345 {
2346 default:
2347 abort ();
2348
b1905489 2349 case DS_PREFIX_OPCODE:
04ef582a
L
2350 ret = PREFIX_DS;
2351 /* Fall through. */
2352 case CS_PREFIX_OPCODE:
b1905489
JB
2353 case ES_PREFIX_OPCODE:
2354 case FS_PREFIX_OPCODE:
2355 case GS_PREFIX_OPCODE:
2356 case SS_PREFIX_OPCODE:
2357 q = SEG_PREFIX;
2358 break;
2359
2360 case REPNE_PREFIX_OPCODE:
2361 case REPE_PREFIX_OPCODE:
c32fa91d
L
2362 q = REP_PREFIX;
2363 ret = PREFIX_REP;
2364 break;
2365
b1905489 2366 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2367 q = LOCK_PREFIX;
2368 ret = PREFIX_LOCK;
b1905489
JB
2369 break;
2370
2371 case FWAIT_OPCODE:
2372 q = WAIT_PREFIX;
2373 break;
2374
2375 case ADDR_PREFIX_OPCODE:
2376 q = ADDR_PREFIX;
2377 break;
2378
2379 case DATA_PREFIX_OPCODE:
2380 q = DATA_PREFIX;
2381 break;
2382 }
2383 if (i.prefix[q] != 0)
c32fa91d 2384 ret = PREFIX_EXIST;
b1905489 2385 }
252b5132 2386
b1905489 2387 if (ret)
252b5132 2388 {
b1905489
JB
2389 if (!i.prefix[q])
2390 ++i.prefixes;
2391 i.prefix[q] |= prefix;
252b5132 2392 }
b1905489
JB
2393 else
2394 as_bad (_("same type of prefix used twice"));
252b5132 2395
252b5132
RH
2396 return ret;
2397}
2398
2399static void
78f12dd3 2400update_code_flag (int value, int check)
eecb386c 2401{
78f12dd3
L
2402 PRINTF_LIKE ((*as_error));
2403
1e9cc1c2 2404 flag_code = (enum flag_code) value;
40fb9820
L
2405 if (flag_code == CODE_64BIT)
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 1;
2408 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2409 }
2410 else
2411 {
2412 cpu_arch_flags.bitfield.cpu64 = 0;
2413 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2414 }
2415 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2416 {
78f12dd3
L
2417 if (check)
2418 as_error = as_fatal;
2419 else
2420 as_error = as_bad;
2421 (*as_error) (_("64bit mode not supported on `%s'."),
2422 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2423 }
40fb9820 2424 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2425 {
78f12dd3
L
2426 if (check)
2427 as_error = as_fatal;
2428 else
2429 as_error = as_bad;
2430 (*as_error) (_("32bit mode not supported on `%s'."),
2431 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2432 }
eecb386c
AM
2433 stackop_size = '\0';
2434}
2435
78f12dd3
L
2436static void
2437set_code_flag (int value)
2438{
2439 update_code_flag (value, 0);
2440}
2441
eecb386c 2442static void
e3bb37b5 2443set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2444{
1e9cc1c2 2445 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2446 if (flag_code != CODE_16BIT)
2447 abort ();
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2450 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2451}
2452
2453static void
e3bb37b5 2454set_intel_syntax (int syntax_flag)
252b5132
RH
2455{
2456 /* Find out if register prefixing is specified. */
2457 int ask_naked_reg = 0;
2458
2459 SKIP_WHITESPACE ();
29b0f896 2460 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2461 {
d02603dc
NC
2462 char *string;
2463 int e = get_symbol_name (&string);
252b5132 2464
47926f60 2465 if (strcmp (string, "prefix") == 0)
252b5132 2466 ask_naked_reg = 1;
47926f60 2467 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2468 ask_naked_reg = -1;
2469 else
d0b47220 2470 as_bad (_("bad argument to syntax directive."));
d02603dc 2471 (void) restore_line_pointer (e);
252b5132
RH
2472 }
2473 demand_empty_rest_of_line ();
c3332e24 2474
252b5132
RH
2475 intel_syntax = syntax_flag;
2476
2477 if (ask_naked_reg == 0)
f86103b7
AM
2478 allow_naked_reg = (intel_syntax
2479 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2480 else
2481 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2482
ee86248c 2483 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2484
e4a3b5a4 2485 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2486 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2487 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2488}
2489
1efbbeb4
L
2490static void
2491set_intel_mnemonic (int mnemonic_flag)
2492{
e1d4d893 2493 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2494}
2495
db51cc60
L
2496static void
2497set_allow_index_reg (int flag)
2498{
2499 allow_index_reg = flag;
2500}
2501
cb19c032 2502static void
7bab8ab5 2503set_check (int what)
cb19c032 2504{
7bab8ab5
JB
2505 enum check_kind *kind;
2506 const char *str;
2507
2508 if (what)
2509 {
2510 kind = &operand_check;
2511 str = "operand";
2512 }
2513 else
2514 {
2515 kind = &sse_check;
2516 str = "sse";
2517 }
2518
cb19c032
L
2519 SKIP_WHITESPACE ();
2520
2521 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2522 {
d02603dc
NC
2523 char *string;
2524 int e = get_symbol_name (&string);
cb19c032
L
2525
2526 if (strcmp (string, "none") == 0)
7bab8ab5 2527 *kind = check_none;
cb19c032 2528 else if (strcmp (string, "warning") == 0)
7bab8ab5 2529 *kind = check_warning;
cb19c032 2530 else if (strcmp (string, "error") == 0)
7bab8ab5 2531 *kind = check_error;
cb19c032 2532 else
7bab8ab5 2533 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2534 (void) restore_line_pointer (e);
cb19c032
L
2535 }
2536 else
7bab8ab5 2537 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2538
2539 demand_empty_rest_of_line ();
2540}
2541
8a9036a4
L
2542static void
2543check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2544 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2545{
2546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2547 static const char *arch;
2548
2549 /* Intel LIOM is only supported on ELF. */
2550 if (!IS_ELF)
2551 return;
2552
2553 if (!arch)
2554 {
2555 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2556 use default_arch. */
2557 arch = cpu_arch_name;
2558 if (!arch)
2559 arch = default_arch;
2560 }
2561
81486035
L
2562 /* If we are targeting Intel MCU, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2564 || new_flag.bitfield.cpuiamcu)
2565 return;
2566
3632d14b 2567 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2569 || new_flag.bitfield.cpul1om)
8a9036a4 2570 return;
76ba9986 2571
7a9068fe
L
2572 /* If we are targeting Intel K1OM, we must enable it. */
2573 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2574 || new_flag.bitfield.cpuk1om)
2575 return;
2576
8a9036a4
L
2577 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2578#endif
2579}
2580
e413e4e9 2581static void
e3bb37b5 2582set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2583{
47926f60 2584 SKIP_WHITESPACE ();
e413e4e9 2585
29b0f896 2586 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2587 {
d02603dc
NC
2588 char *string;
2589 int e = get_symbol_name (&string);
91d6fa6a 2590 unsigned int j;
40fb9820 2591 i386_cpu_flags flags;
e413e4e9 2592
91d6fa6a 2593 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2594 {
91d6fa6a 2595 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2596 {
91d6fa6a 2597 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2598
5c6af06e
JB
2599 if (*string != '.')
2600 {
91d6fa6a 2601 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2602 cpu_sub_arch_name = NULL;
91d6fa6a 2603 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2604 if (flag_code == CODE_64BIT)
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 1;
2607 cpu_arch_flags.bitfield.cpuno64 = 0;
2608 }
2609 else
2610 {
2611 cpu_arch_flags.bitfield.cpu64 = 0;
2612 cpu_arch_flags.bitfield.cpuno64 = 1;
2613 }
91d6fa6a
NC
2614 cpu_arch_isa = cpu_arch[j].type;
2615 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2616 if (!cpu_arch_tune_set)
2617 {
2618 cpu_arch_tune = cpu_arch_isa;
2619 cpu_arch_tune_flags = cpu_arch_isa_flags;
2620 }
5c6af06e
JB
2621 break;
2622 }
40fb9820 2623
293f5f65
L
2624 flags = cpu_flags_or (cpu_arch_flags,
2625 cpu_arch[j].flags);
81486035 2626
5b64d091 2627 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2628 {
6305a203
L
2629 if (cpu_sub_arch_name)
2630 {
2631 char *name = cpu_sub_arch_name;
2632 cpu_sub_arch_name = concat (name,
91d6fa6a 2633 cpu_arch[j].name,
1bf57e9f 2634 (const char *) NULL);
6305a203
L
2635 free (name);
2636 }
2637 else
91d6fa6a 2638 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2639 cpu_arch_flags = flags;
a586129e 2640 cpu_arch_isa_flags = flags;
5c6af06e 2641 }
0089dace
L
2642 else
2643 cpu_arch_isa_flags
2644 = cpu_flags_or (cpu_arch_isa_flags,
2645 cpu_arch[j].flags);
d02603dc 2646 (void) restore_line_pointer (e);
5c6af06e
JB
2647 demand_empty_rest_of_line ();
2648 return;
e413e4e9
AM
2649 }
2650 }
293f5f65
L
2651
2652 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2653 {
33eaf5de 2654 /* Disable an ISA extension. */
293f5f65
L
2655 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2656 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2657 {
2658 flags = cpu_flags_and_not (cpu_arch_flags,
2659 cpu_noarch[j].flags);
2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2661 {
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name, string,
2666 (const char *) NULL);
2667 free (name);
2668 }
2669 else
2670 cpu_sub_arch_name = xstrdup (string);
2671 cpu_arch_flags = flags;
2672 cpu_arch_isa_flags = flags;
2673 }
2674 (void) restore_line_pointer (e);
2675 demand_empty_rest_of_line ();
2676 return;
2677 }
2678
2679 j = ARRAY_SIZE (cpu_arch);
2680 }
2681
91d6fa6a 2682 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2683 as_bad (_("no such architecture: `%s'"), string);
2684
2685 *input_line_pointer = e;
2686 }
2687 else
2688 as_bad (_("missing cpu architecture"));
2689
fddf5b5b
AM
2690 no_cond_jump_promotion = 0;
2691 if (*input_line_pointer == ','
29b0f896 2692 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2693 {
d02603dc
NC
2694 char *string;
2695 char e;
2696
2697 ++input_line_pointer;
2698 e = get_symbol_name (&string);
fddf5b5b
AM
2699
2700 if (strcmp (string, "nojumps") == 0)
2701 no_cond_jump_promotion = 1;
2702 else if (strcmp (string, "jumps") == 0)
2703 ;
2704 else
2705 as_bad (_("no such architecture modifier: `%s'"), string);
2706
d02603dc 2707 (void) restore_line_pointer (e);
fddf5b5b
AM
2708 }
2709
e413e4e9
AM
2710 demand_empty_rest_of_line ();
2711}
2712
8a9036a4
L
2713enum bfd_architecture
2714i386_arch (void)
2715{
3632d14b 2716 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code != CODE_64BIT)
2720 as_fatal (_("Intel L1OM is 64bit ELF only"));
2721 return bfd_arch_l1om;
2722 }
7a9068fe
L
2723 else if (cpu_arch_isa == PROCESSOR_K1OM)
2724 {
2725 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2726 || flag_code != CODE_64BIT)
2727 as_fatal (_("Intel K1OM is 64bit ELF only"));
2728 return bfd_arch_k1om;
2729 }
81486035
L
2730 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2731 {
2732 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2733 || flag_code == CODE_64BIT)
2734 as_fatal (_("Intel MCU is 32bit ELF only"));
2735 return bfd_arch_iamcu;
2736 }
8a9036a4
L
2737 else
2738 return bfd_arch_i386;
2739}
2740
b9d79e03 2741unsigned long
7016a5d5 2742i386_mach (void)
b9d79e03 2743{
351f65ca 2744 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2745 {
3632d14b 2746 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2747 {
351f65ca
L
2748 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2749 || default_arch[6] != '\0')
8a9036a4
L
2750 as_fatal (_("Intel L1OM is 64bit ELF only"));
2751 return bfd_mach_l1om;
2752 }
7a9068fe
L
2753 else if (cpu_arch_isa == PROCESSOR_K1OM)
2754 {
2755 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2756 || default_arch[6] != '\0')
2757 as_fatal (_("Intel K1OM is 64bit ELF only"));
2758 return bfd_mach_k1om;
2759 }
351f65ca 2760 else if (default_arch[6] == '\0')
8a9036a4 2761 return bfd_mach_x86_64;
351f65ca
L
2762 else
2763 return bfd_mach_x64_32;
8a9036a4 2764 }
5197d474
L
2765 else if (!strcmp (default_arch, "i386")
2766 || !strcmp (default_arch, "iamcu"))
81486035
L
2767 {
2768 if (cpu_arch_isa == PROCESSOR_IAMCU)
2769 {
2770 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2771 as_fatal (_("Intel MCU is 32bit ELF only"));
2772 return bfd_mach_i386_iamcu;
2773 }
2774 else
2775 return bfd_mach_i386_i386;
2776 }
b9d79e03 2777 else
2b5d6a91 2778 as_fatal (_("unknown architecture"));
b9d79e03 2779}
b9d79e03 2780\f
252b5132 2781void
7016a5d5 2782md_begin (void)
252b5132
RH
2783{
2784 const char *hash_err;
2785
86fa6981
L
2786 /* Support pseudo prefixes like {disp32}. */
2787 lex_type ['{'] = LEX_BEGIN_NAME;
2788
47926f60 2789 /* Initialize op_hash hash table. */
252b5132
RH
2790 op_hash = hash_new ();
2791
2792 {
d3ce72d0 2793 const insn_template *optab;
29b0f896 2794 templates *core_optab;
252b5132 2795
47926f60
KH
2796 /* Setup for loop. */
2797 optab = i386_optab;
add39d23 2798 core_optab = XNEW (templates);
252b5132
RH
2799 core_optab->start = optab;
2800
2801 while (1)
2802 {
2803 ++optab;
2804 if (optab->name == NULL
2805 || strcmp (optab->name, (optab - 1)->name) != 0)
2806 {
2807 /* different name --> ship out current template list;
47926f60 2808 add to hash table; & begin anew. */
252b5132
RH
2809 core_optab->end = optab;
2810 hash_err = hash_insert (op_hash,
2811 (optab - 1)->name,
5a49b8ac 2812 (void *) core_optab);
252b5132
RH
2813 if (hash_err)
2814 {
b37df7c4 2815 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2816 (optab - 1)->name,
2817 hash_err);
2818 }
2819 if (optab->name == NULL)
2820 break;
add39d23 2821 core_optab = XNEW (templates);
252b5132
RH
2822 core_optab->start = optab;
2823 }
2824 }
2825 }
2826
47926f60 2827 /* Initialize reg_hash hash table. */
252b5132
RH
2828 reg_hash = hash_new ();
2829 {
29b0f896 2830 const reg_entry *regtab;
c3fe08fa 2831 unsigned int regtab_size = i386_regtab_size;
252b5132 2832
c3fe08fa 2833 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2834 {
5a49b8ac 2835 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2836 if (hash_err)
b37df7c4 2837 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2838 regtab->reg_name,
2839 hash_err);
252b5132
RH
2840 }
2841 }
2842
47926f60 2843 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2844 {
29b0f896
AM
2845 int c;
2846 char *p;
252b5132
RH
2847
2848 for (c = 0; c < 256; c++)
2849 {
3882b010 2850 if (ISDIGIT (c))
252b5132
RH
2851 {
2852 digit_chars[c] = c;
2853 mnemonic_chars[c] = c;
2854 register_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
3882b010 2857 else if (ISLOWER (c))
252b5132
RH
2858 {
2859 mnemonic_chars[c] = c;
2860 register_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
3882b010 2863 else if (ISUPPER (c))
252b5132 2864 {
3882b010 2865 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2866 register_chars[c] = mnemonic_chars[c];
2867 operand_chars[c] = c;
2868 }
43234a1e 2869 else if (c == '{' || c == '}')
86fa6981
L
2870 {
2871 mnemonic_chars[c] = c;
2872 operand_chars[c] = c;
2873 }
252b5132 2874
3882b010 2875 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2876 identifier_chars[c] = c;
2877 else if (c >= 128)
2878 {
2879 identifier_chars[c] = c;
2880 operand_chars[c] = c;
2881 }
2882 }
2883
2884#ifdef LEX_AT
2885 identifier_chars['@'] = '@';
32137342
NC
2886#endif
2887#ifdef LEX_QM
2888 identifier_chars['?'] = '?';
2889 operand_chars['?'] = '?';
252b5132 2890#endif
252b5132 2891 digit_chars['-'] = '-';
c0f3af97 2892 mnemonic_chars['_'] = '_';
791fe849 2893 mnemonic_chars['-'] = '-';
0003779b 2894 mnemonic_chars['.'] = '.';
252b5132
RH
2895 identifier_chars['_'] = '_';
2896 identifier_chars['.'] = '.';
2897
2898 for (p = operand_special_chars; *p != '\0'; p++)
2899 operand_chars[(unsigned char) *p] = *p;
2900 }
2901
a4447b93
RH
2902 if (flag_code == CODE_64BIT)
2903 {
ca19b261
KT
2904#if defined (OBJ_COFF) && defined (TE_PE)
2905 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2906 ? 32 : 16);
2907#else
a4447b93 2908 x86_dwarf2_return_column = 16;
ca19b261 2909#endif
61ff971f 2910 x86_cie_data_alignment = -8;
a4447b93
RH
2911 }
2912 else
2913 {
2914 x86_dwarf2_return_column = 8;
2915 x86_cie_data_alignment = -4;
2916 }
252b5132
RH
2917}
2918
2919void
e3bb37b5 2920i386_print_statistics (FILE *file)
252b5132
RH
2921{
2922 hash_print_statistics (file, "i386 opcode", op_hash);
2923 hash_print_statistics (file, "i386 register", reg_hash);
2924}
2925\f
252b5132
RH
2926#ifdef DEBUG386
2927
ce8a8b2f 2928/* Debugging routines for md_assemble. */
d3ce72d0 2929static void pte (insn_template *);
40fb9820 2930static void pt (i386_operand_type);
e3bb37b5
L
2931static void pe (expressionS *);
2932static void ps (symbolS *);
252b5132
RH
2933
2934static void
e3bb37b5 2935pi (char *line, i386_insn *x)
252b5132 2936{
09137c09 2937 unsigned int j;
252b5132
RH
2938
2939 fprintf (stdout, "%s: template ", line);
2940 pte (&x->tm);
09f131f2
JH
2941 fprintf (stdout, " address: base %s index %s scale %x\n",
2942 x->base_reg ? x->base_reg->reg_name : "none",
2943 x->index_reg ? x->index_reg->reg_name : "none",
2944 x->log2_scale_factor);
2945 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2946 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2947 fprintf (stdout, " sib: base %x index %x scale %x\n",
2948 x->sib.base, x->sib.index, x->sib.scale);
2949 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2950 (x->rex & REX_W) != 0,
2951 (x->rex & REX_R) != 0,
2952 (x->rex & REX_X) != 0,
2953 (x->rex & REX_B) != 0);
09137c09 2954 for (j = 0; j < x->operands; j++)
252b5132 2955 {
09137c09
SP
2956 fprintf (stdout, " #%d: ", j + 1);
2957 pt (x->types[j]);
252b5132 2958 fprintf (stdout, "\n");
dc821c5f 2959 if (x->types[j].bitfield.reg
09137c09 2960 || x->types[j].bitfield.regmmx
1b54b8d7 2961 || x->types[j].bitfield.regsimd
09137c09
SP
2962 || x->types[j].bitfield.sreg2
2963 || x->types[j].bitfield.sreg3
2964 || x->types[j].bitfield.control
2965 || x->types[j].bitfield.debug
2966 || x->types[j].bitfield.test)
2967 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2968 if (operand_type_check (x->types[j], imm))
2969 pe (x->op[j].imms);
2970 if (operand_type_check (x->types[j], disp))
2971 pe (x->op[j].disps);
252b5132
RH
2972 }
2973}
2974
2975static void
d3ce72d0 2976pte (insn_template *t)
252b5132 2977{
09137c09 2978 unsigned int j;
252b5132 2979 fprintf (stdout, " %d operands ", t->operands);
47926f60 2980 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2981 if (t->extension_opcode != None)
2982 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2983 if (t->opcode_modifier.d)
252b5132 2984 fprintf (stdout, "D");
40fb9820 2985 if (t->opcode_modifier.w)
252b5132
RH
2986 fprintf (stdout, "W");
2987 fprintf (stdout, "\n");
09137c09 2988 for (j = 0; j < t->operands; j++)
252b5132 2989 {
09137c09
SP
2990 fprintf (stdout, " #%d type ", j + 1);
2991 pt (t->operand_types[j]);
252b5132
RH
2992 fprintf (stdout, "\n");
2993 }
2994}
2995
2996static void
e3bb37b5 2997pe (expressionS *e)
252b5132 2998{
24eab124 2999 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3000 fprintf (stdout, " add_number %ld (%lx)\n",
3001 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3002 if (e->X_add_symbol)
3003 {
3004 fprintf (stdout, " add_symbol ");
3005 ps (e->X_add_symbol);
3006 fprintf (stdout, "\n");
3007 }
3008 if (e->X_op_symbol)
3009 {
3010 fprintf (stdout, " op_symbol ");
3011 ps (e->X_op_symbol);
3012 fprintf (stdout, "\n");
3013 }
3014}
3015
3016static void
e3bb37b5 3017ps (symbolS *s)
252b5132
RH
3018{
3019 fprintf (stdout, "%s type %s%s",
3020 S_GET_NAME (s),
3021 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3022 segment_name (S_GET_SEGMENT (s)));
3023}
3024
7b81dfbb 3025static struct type_name
252b5132 3026 {
40fb9820
L
3027 i386_operand_type mask;
3028 const char *name;
252b5132 3029 }
7b81dfbb 3030const type_names[] =
252b5132 3031{
40fb9820
L
3032 { OPERAND_TYPE_REG8, "r8" },
3033 { OPERAND_TYPE_REG16, "r16" },
3034 { OPERAND_TYPE_REG32, "r32" },
3035 { OPERAND_TYPE_REG64, "r64" },
3036 { OPERAND_TYPE_IMM8, "i8" },
3037 { OPERAND_TYPE_IMM8, "i8s" },
3038 { OPERAND_TYPE_IMM16, "i16" },
3039 { OPERAND_TYPE_IMM32, "i32" },
3040 { OPERAND_TYPE_IMM32S, "i32s" },
3041 { OPERAND_TYPE_IMM64, "i64" },
3042 { OPERAND_TYPE_IMM1, "i1" },
3043 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3044 { OPERAND_TYPE_DISP8, "d8" },
3045 { OPERAND_TYPE_DISP16, "d16" },
3046 { OPERAND_TYPE_DISP32, "d32" },
3047 { OPERAND_TYPE_DISP32S, "d32s" },
3048 { OPERAND_TYPE_DISP64, "d64" },
3049 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3050 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3051 { OPERAND_TYPE_CONTROL, "control reg" },
3052 { OPERAND_TYPE_TEST, "test reg" },
3053 { OPERAND_TYPE_DEBUG, "debug reg" },
3054 { OPERAND_TYPE_FLOATREG, "FReg" },
3055 { OPERAND_TYPE_FLOATACC, "FAcc" },
3056 { OPERAND_TYPE_SREG2, "SReg2" },
3057 { OPERAND_TYPE_SREG3, "SReg3" },
3058 { OPERAND_TYPE_ACC, "Acc" },
3059 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3060 { OPERAND_TYPE_REGMMX, "rMMX" },
3061 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3062 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3063 { OPERAND_TYPE_REGZMM, "rZMM" },
3064 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3065 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3066};
3067
3068static void
40fb9820 3069pt (i386_operand_type t)
252b5132 3070{
40fb9820 3071 unsigned int j;
c6fb90c8 3072 i386_operand_type a;
252b5132 3073
40fb9820 3074 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3075 {
3076 a = operand_type_and (t, type_names[j].mask);
0349dc08 3077 if (!operand_type_all_zero (&a))
c6fb90c8
L
3078 fprintf (stdout, "%s, ", type_names[j].name);
3079 }
252b5132
RH
3080 fflush (stdout);
3081}
3082
3083#endif /* DEBUG386 */
3084\f
252b5132 3085static bfd_reloc_code_real_type
3956db08 3086reloc (unsigned int size,
64e74474
AM
3087 int pcrel,
3088 int sign,
3089 bfd_reloc_code_real_type other)
252b5132 3090{
47926f60 3091 if (other != NO_RELOC)
3956db08 3092 {
91d6fa6a 3093 reloc_howto_type *rel;
3956db08
JB
3094
3095 if (size == 8)
3096 switch (other)
3097 {
64e74474
AM
3098 case BFD_RELOC_X86_64_GOT32:
3099 return BFD_RELOC_X86_64_GOT64;
3100 break;
553d1284
L
3101 case BFD_RELOC_X86_64_GOTPLT64:
3102 return BFD_RELOC_X86_64_GOTPLT64;
3103 break;
64e74474
AM
3104 case BFD_RELOC_X86_64_PLTOFF64:
3105 return BFD_RELOC_X86_64_PLTOFF64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPC32:
3108 other = BFD_RELOC_X86_64_GOTPC64;
3109 break;
3110 case BFD_RELOC_X86_64_GOTPCREL:
3111 other = BFD_RELOC_X86_64_GOTPCREL64;
3112 break;
3113 case BFD_RELOC_X86_64_TPOFF32:
3114 other = BFD_RELOC_X86_64_TPOFF64;
3115 break;
3116 case BFD_RELOC_X86_64_DTPOFF32:
3117 other = BFD_RELOC_X86_64_DTPOFF64;
3118 break;
3119 default:
3120 break;
3956db08 3121 }
e05278af 3122
8ce3d284 3123#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3124 if (other == BFD_RELOC_SIZE32)
3125 {
3126 if (size == 8)
1ab668bf 3127 other = BFD_RELOC_SIZE64;
8fd4256d 3128 if (pcrel)
1ab668bf
AM
3129 {
3130 as_bad (_("there are no pc-relative size relocations"));
3131 return NO_RELOC;
3132 }
8fd4256d 3133 }
8ce3d284 3134#endif
8fd4256d 3135
e05278af 3136 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3137 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3138 sign = -1;
3139
91d6fa6a
NC
3140 rel = bfd_reloc_type_lookup (stdoutput, other);
3141 if (!rel)
3956db08 3142 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3143 else if (size != bfd_get_reloc_size (rel))
3956db08 3144 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3145 bfd_get_reloc_size (rel),
3956db08 3146 size);
91d6fa6a 3147 else if (pcrel && !rel->pc_relative)
3956db08 3148 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3149 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3150 && !sign)
91d6fa6a 3151 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3152 && sign > 0))
3956db08
JB
3153 as_bad (_("relocated field and relocation type differ in signedness"));
3154 else
3155 return other;
3156 return NO_RELOC;
3157 }
252b5132
RH
3158
3159 if (pcrel)
3160 {
3e73aa7c 3161 if (!sign)
3956db08 3162 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8_PCREL;
3166 case 2: return BFD_RELOC_16_PCREL;
d258b828 3167 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3168 case 8: return BFD_RELOC_64_PCREL;
252b5132 3169 }
3956db08 3170 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3171 }
3172 else
3173 {
3956db08 3174 if (sign > 0)
e5cb08ac 3175 switch (size)
3e73aa7c
JH
3176 {
3177 case 4: return BFD_RELOC_X86_64_32S;
3178 }
3179 else
3180 switch (size)
3181 {
3182 case 1: return BFD_RELOC_8;
3183 case 2: return BFD_RELOC_16;
3184 case 4: return BFD_RELOC_32;
3185 case 8: return BFD_RELOC_64;
3186 }
3956db08
JB
3187 as_bad (_("cannot do %s %u byte relocation"),
3188 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3189 }
3190
0cc9e1d3 3191 return NO_RELOC;
252b5132
RH
3192}
3193
47926f60
KH
3194/* Here we decide which fixups can be adjusted to make them relative to
3195 the beginning of the section instead of the symbol. Basically we need
3196 to make sure that the dynamic relocations are done correctly, so in
3197 some cases we force the original symbol to be used. */
3198
252b5132 3199int
e3bb37b5 3200tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3201{
6d249963 3202#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3203 if (!IS_ELF)
31312f95
AM
3204 return 1;
3205
a161fe53
AM
3206 /* Don't adjust pc-relative references to merge sections in 64-bit
3207 mode. */
3208 if (use_rela_relocations
3209 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3210 && fixP->fx_pcrel)
252b5132 3211 return 0;
31312f95 3212
8d01d9a9
AJ
3213 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3214 and changed later by validate_fix. */
3215 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3216 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3217 return 0;
3218
8fd4256d
L
3219 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3220 for size relocations. */
3221 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3222 || fixP->fx_r_type == BFD_RELOC_SIZE64
3223 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3224 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3225 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3226 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3235 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3236 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3245 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3250 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3251 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3252 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3253 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3254 return 0;
31312f95 3255#endif
252b5132
RH
3256 return 1;
3257}
252b5132 3258
b4cac588 3259static int
e3bb37b5 3260intel_float_operand (const char *mnemonic)
252b5132 3261{
9306ca4a
JB
3262 /* Note that the value returned is meaningful only for opcodes with (memory)
3263 operands, hence the code here is free to improperly handle opcodes that
3264 have no operands (for better performance and smaller code). */
3265
3266 if (mnemonic[0] != 'f')
3267 return 0; /* non-math */
3268
3269 switch (mnemonic[1])
3270 {
3271 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3272 the fs segment override prefix not currently handled because no
3273 call path can make opcodes without operands get here */
3274 case 'i':
3275 return 2 /* integer op */;
3276 case 'l':
3277 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3278 return 3; /* fldcw/fldenv */
3279 break;
3280 case 'n':
3281 if (mnemonic[2] != 'o' /* fnop */)
3282 return 3; /* non-waiting control op */
3283 break;
3284 case 'r':
3285 if (mnemonic[2] == 's')
3286 return 3; /* frstor/frstpm */
3287 break;
3288 case 's':
3289 if (mnemonic[2] == 'a')
3290 return 3; /* fsave */
3291 if (mnemonic[2] == 't')
3292 {
3293 switch (mnemonic[3])
3294 {
3295 case 'c': /* fstcw */
3296 case 'd': /* fstdw */
3297 case 'e': /* fstenv */
3298 case 's': /* fsts[gw] */
3299 return 3;
3300 }
3301 }
3302 break;
3303 case 'x':
3304 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3305 return 0; /* fxsave/fxrstor are not really math ops */
3306 break;
3307 }
252b5132 3308
9306ca4a 3309 return 1;
252b5132
RH
3310}
3311
c0f3af97
L
3312/* Build the VEX prefix. */
3313
3314static void
d3ce72d0 3315build_vex_prefix (const insn_template *t)
c0f3af97
L
3316{
3317 unsigned int register_specifier;
3318 unsigned int implied_prefix;
3319 unsigned int vector_length;
3320
3321 /* Check register specifier. */
3322 if (i.vex.register_specifier)
43234a1e
L
3323 {
3324 register_specifier =
3325 ~register_number (i.vex.register_specifier) & 0xf;
3326 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3327 }
c0f3af97
L
3328 else
3329 register_specifier = 0xf;
3330
33eaf5de 3331 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3332 operand. */
86fa6981
L
3333 if (i.vec_encoding != vex_encoding_vex3
3334 && i.dir_encoding == dir_encoding_default
fa99fab2 3335 && i.operands == i.reg_operands
7f399153 3336 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3337 && i.tm.opcode_modifier.load
fa99fab2
L
3338 && i.rex == REX_B)
3339 {
3340 unsigned int xchg = i.operands - 1;
3341 union i386_op temp_op;
3342 i386_operand_type temp_type;
3343
3344 temp_type = i.types[xchg];
3345 i.types[xchg] = i.types[0];
3346 i.types[0] = temp_type;
3347 temp_op = i.op[xchg];
3348 i.op[xchg] = i.op[0];
3349 i.op[0] = temp_op;
3350
9c2799c2 3351 gas_assert (i.rm.mode == 3);
fa99fab2
L
3352
3353 i.rex = REX_R;
3354 xchg = i.rm.regmem;
3355 i.rm.regmem = i.rm.reg;
3356 i.rm.reg = xchg;
3357
3358 /* Use the next insn. */
3359 i.tm = t[1];
3360 }
3361
539f890d
L
3362 if (i.tm.opcode_modifier.vex == VEXScalar)
3363 vector_length = avxscalar;
10c17abd
JB
3364 else if (i.tm.opcode_modifier.vex == VEX256)
3365 vector_length = 1;
539f890d 3366 else
10c17abd 3367 {
56522fc5 3368 unsigned int op;
10c17abd 3369
c7213af9
L
3370 /* Determine vector length from the last multi-length vector
3371 operand. */
10c17abd 3372 vector_length = 0;
56522fc5 3373 for (op = t->operands; op--;)
10c17abd
JB
3374 if (t->operand_types[op].bitfield.xmmword
3375 && t->operand_types[op].bitfield.ymmword
3376 && i.types[op].bitfield.ymmword)
3377 {
3378 vector_length = 1;
3379 break;
3380 }
3381 }
c0f3af97
L
3382
3383 switch ((i.tm.base_opcode >> 8) & 0xff)
3384 {
3385 case 0:
3386 implied_prefix = 0;
3387 break;
3388 case DATA_PREFIX_OPCODE:
3389 implied_prefix = 1;
3390 break;
3391 case REPE_PREFIX_OPCODE:
3392 implied_prefix = 2;
3393 break;
3394 case REPNE_PREFIX_OPCODE:
3395 implied_prefix = 3;
3396 break;
3397 default:
3398 abort ();
3399 }
3400
3401 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3402 if (i.vec_encoding != vex_encoding_vex3
3403 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3404 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3405 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3406 {
3407 /* 2-byte VEX prefix. */
3408 unsigned int r;
3409
3410 i.vex.length = 2;
3411 i.vex.bytes[0] = 0xc5;
3412
3413 /* Check the REX.R bit. */
3414 r = (i.rex & REX_R) ? 0 : 1;
3415 i.vex.bytes[1] = (r << 7
3416 | register_specifier << 3
3417 | vector_length << 2
3418 | implied_prefix);
3419 }
3420 else
3421 {
3422 /* 3-byte VEX prefix. */
3423 unsigned int m, w;
3424
f88c9eb0 3425 i.vex.length = 3;
f88c9eb0 3426
7f399153 3427 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3428 {
7f399153
L
3429 case VEX0F:
3430 m = 0x1;
80de6e00 3431 i.vex.bytes[0] = 0xc4;
7f399153
L
3432 break;
3433 case VEX0F38:
3434 m = 0x2;
80de6e00 3435 i.vex.bytes[0] = 0xc4;
7f399153
L
3436 break;
3437 case VEX0F3A:
3438 m = 0x3;
80de6e00 3439 i.vex.bytes[0] = 0xc4;
7f399153
L
3440 break;
3441 case XOP08:
5dd85c99
SP
3442 m = 0x8;
3443 i.vex.bytes[0] = 0x8f;
7f399153
L
3444 break;
3445 case XOP09:
f88c9eb0
SP
3446 m = 0x9;
3447 i.vex.bytes[0] = 0x8f;
7f399153
L
3448 break;
3449 case XOP0A:
f88c9eb0
SP
3450 m = 0xa;
3451 i.vex.bytes[0] = 0x8f;
7f399153
L
3452 break;
3453 default:
3454 abort ();
f88c9eb0 3455 }
c0f3af97 3456
c0f3af97
L
3457 /* The high 3 bits of the second VEX byte are 1's compliment
3458 of RXB bits from REX. */
3459 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3460
3461 /* Check the REX.W bit. */
3462 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3463 if (i.tm.opcode_modifier.vexw == VEXW1)
3464 w = 1;
c0f3af97
L
3465
3466 i.vex.bytes[2] = (w << 7
3467 | register_specifier << 3
3468 | vector_length << 2
3469 | implied_prefix);
3470 }
3471}
3472
e771e7c9
JB
3473static INLINE bfd_boolean
3474is_evex_encoding (const insn_template *t)
3475{
7091c612 3476 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3477 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3478 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3479}
3480
43234a1e
L
3481/* Build the EVEX prefix. */
3482
3483static void
3484build_evex_prefix (void)
3485{
3486 unsigned int register_specifier;
3487 unsigned int implied_prefix;
3488 unsigned int m, w;
3489 rex_byte vrex_used = 0;
3490
3491 /* Check register specifier. */
3492 if (i.vex.register_specifier)
3493 {
3494 gas_assert ((i.vrex & REX_X) == 0);
3495
3496 register_specifier = i.vex.register_specifier->reg_num;
3497 if ((i.vex.register_specifier->reg_flags & RegRex))
3498 register_specifier += 8;
3499 /* The upper 16 registers are encoded in the fourth byte of the
3500 EVEX prefix. */
3501 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3502 i.vex.bytes[3] = 0x8;
3503 register_specifier = ~register_specifier & 0xf;
3504 }
3505 else
3506 {
3507 register_specifier = 0xf;
3508
3509 /* Encode upper 16 vector index register in the fourth byte of
3510 the EVEX prefix. */
3511 if (!(i.vrex & REX_X))
3512 i.vex.bytes[3] = 0x8;
3513 else
3514 vrex_used |= REX_X;
3515 }
3516
3517 switch ((i.tm.base_opcode >> 8) & 0xff)
3518 {
3519 case 0:
3520 implied_prefix = 0;
3521 break;
3522 case DATA_PREFIX_OPCODE:
3523 implied_prefix = 1;
3524 break;
3525 case REPE_PREFIX_OPCODE:
3526 implied_prefix = 2;
3527 break;
3528 case REPNE_PREFIX_OPCODE:
3529 implied_prefix = 3;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
3535 /* 4 byte EVEX prefix. */
3536 i.vex.length = 4;
3537 i.vex.bytes[0] = 0x62;
3538
3539 /* mmmm bits. */
3540 switch (i.tm.opcode_modifier.vexopcode)
3541 {
3542 case VEX0F:
3543 m = 1;
3544 break;
3545 case VEX0F38:
3546 m = 2;
3547 break;
3548 case VEX0F3A:
3549 m = 3;
3550 break;
3551 default:
3552 abort ();
3553 break;
3554 }
3555
3556 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3557 bits from REX. */
3558 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3559
3560 /* The fifth bit of the second EVEX byte is 1's compliment of the
3561 REX_R bit in VREX. */
3562 if (!(i.vrex & REX_R))
3563 i.vex.bytes[1] |= 0x10;
3564 else
3565 vrex_used |= REX_R;
3566
3567 if ((i.reg_operands + i.imm_operands) == i.operands)
3568 {
3569 /* When all operands are registers, the REX_X bit in REX is not
3570 used. We reuse it to encode the upper 16 registers, which is
3571 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3572 as 1's compliment. */
3573 if ((i.vrex & REX_B))
3574 {
3575 vrex_used |= REX_B;
3576 i.vex.bytes[1] &= ~0x40;
3577 }
3578 }
3579
3580 /* EVEX instructions shouldn't need the REX prefix. */
3581 i.vrex &= ~vrex_used;
3582 gas_assert (i.vrex == 0);
3583
3584 /* Check the REX.W bit. */
3585 w = (i.rex & REX_W) ? 1 : 0;
3586 if (i.tm.opcode_modifier.vexw)
3587 {
3588 if (i.tm.opcode_modifier.vexw == VEXW1)
3589 w = 1;
3590 }
3591 /* If w is not set it means we are dealing with WIG instruction. */
3592 else if (!w)
3593 {
3594 if (evexwig == evexw1)
3595 w = 1;
3596 }
3597
3598 /* Encode the U bit. */
3599 implied_prefix |= 0x4;
3600
3601 /* The third byte of the EVEX prefix. */
3602 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3603
3604 /* The fourth byte of the EVEX prefix. */
3605 /* The zeroing-masking bit. */
3606 if (i.mask && i.mask->zeroing)
3607 i.vex.bytes[3] |= 0x80;
3608
3609 /* Don't always set the broadcast bit if there is no RC. */
3610 if (!i.rounding)
3611 {
3612 /* Encode the vector length. */
3613 unsigned int vec_length;
3614
e771e7c9
JB
3615 if (!i.tm.opcode_modifier.evex
3616 || i.tm.opcode_modifier.evex == EVEXDYN)
3617 {
56522fc5 3618 unsigned int op;
e771e7c9 3619
c7213af9
L
3620 /* Determine vector length from the last multi-length vector
3621 operand. */
e771e7c9 3622 vec_length = 0;
56522fc5 3623 for (op = i.operands; op--;)
e771e7c9
JB
3624 if (i.tm.operand_types[op].bitfield.xmmword
3625 + i.tm.operand_types[op].bitfield.ymmword
3626 + i.tm.operand_types[op].bitfield.zmmword > 1)
3627 {
3628 if (i.types[op].bitfield.zmmword)
c7213af9
L
3629 {
3630 i.tm.opcode_modifier.evex = EVEX512;
3631 break;
3632 }
e771e7c9 3633 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3634 {
3635 i.tm.opcode_modifier.evex = EVEX256;
3636 break;
3637 }
e771e7c9 3638 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3639 {
3640 i.tm.opcode_modifier.evex = EVEX128;
3641 break;
3642 }
625cbd7a
JB
3643 else if (i.broadcast && (int) op == i.broadcast->operand)
3644 {
4a1b91ea 3645 switch (i.broadcast->bytes)
625cbd7a
JB
3646 {
3647 case 64:
3648 i.tm.opcode_modifier.evex = EVEX512;
3649 break;
3650 case 32:
3651 i.tm.opcode_modifier.evex = EVEX256;
3652 break;
3653 case 16:
3654 i.tm.opcode_modifier.evex = EVEX128;
3655 break;
3656 default:
c7213af9 3657 abort ();
625cbd7a 3658 }
c7213af9 3659 break;
625cbd7a 3660 }
e771e7c9 3661 }
c7213af9 3662
56522fc5 3663 if (op >= MAX_OPERANDS)
c7213af9 3664 abort ();
e771e7c9
JB
3665 }
3666
43234a1e
L
3667 switch (i.tm.opcode_modifier.evex)
3668 {
3669 case EVEXLIG: /* LL' is ignored */
3670 vec_length = evexlig << 5;
3671 break;
3672 case EVEX128:
3673 vec_length = 0 << 5;
3674 break;
3675 case EVEX256:
3676 vec_length = 1 << 5;
3677 break;
3678 case EVEX512:
3679 vec_length = 2 << 5;
3680 break;
3681 default:
3682 abort ();
3683 break;
3684 }
3685 i.vex.bytes[3] |= vec_length;
3686 /* Encode the broadcast bit. */
3687 if (i.broadcast)
3688 i.vex.bytes[3] |= 0x10;
3689 }
3690 else
3691 {
3692 if (i.rounding->type != saeonly)
3693 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3694 else
d3d3c6db 3695 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3696 }
3697
3698 if (i.mask && i.mask->mask)
3699 i.vex.bytes[3] |= i.mask->mask->reg_num;
3700}
3701
65da13b5
L
3702static void
3703process_immext (void)
3704{
3705 expressionS *exp;
3706
4c692bc7
JB
3707 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3708 && i.operands > 0)
65da13b5 3709 {
4c692bc7
JB
3710 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3711 with an opcode suffix which is coded in the same place as an
3712 8-bit immediate field would be.
3713 Here we check those operands and remove them afterwards. */
65da13b5
L
3714 unsigned int x;
3715
3716 for (x = 0; x < i.operands; x++)
4c692bc7 3717 if (register_number (i.op[x].regs) != x)
65da13b5 3718 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3719 register_prefix, i.op[x].regs->reg_name, x + 1,
3720 i.tm.name);
3721
3722 i.operands = 0;
65da13b5
L
3723 }
3724
9916071f
AP
3725 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3726 {
3727 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3728 suffix which is coded in the same place as an 8-bit immediate
3729 field would be.
3730 Here we check those operands and remove them afterwards. */
3731 unsigned int x;
3732
3733 if (i.operands != 3)
3734 abort();
3735
3736 for (x = 0; x < 2; x++)
3737 if (register_number (i.op[x].regs) != x)
3738 goto bad_register_operand;
3739
3740 /* Check for third operand for mwaitx/monitorx insn. */
3741 if (register_number (i.op[x].regs)
3742 != (x + (i.tm.extension_opcode == 0xfb)))
3743 {
3744bad_register_operand:
3745 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3746 register_prefix, i.op[x].regs->reg_name, x+1,
3747 i.tm.name);
3748 }
3749
3750 i.operands = 0;
3751 }
3752
c0f3af97 3753 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3754 which is coded in the same place as an 8-bit immediate field
3755 would be. Here we fake an 8-bit immediate operand from the
3756 opcode suffix stored in tm.extension_opcode.
3757
c1e679ec 3758 AVX instructions also use this encoding, for some of
c0f3af97 3759 3 argument instructions. */
65da13b5 3760
43234a1e 3761 gas_assert (i.imm_operands <= 1
7ab9ffdd 3762 && (i.operands <= 2
43234a1e 3763 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3764 || i.tm.opcode_modifier.vexopcode
3765 || is_evex_encoding (&i.tm))
7ab9ffdd 3766 && i.operands <= 4)));
65da13b5
L
3767
3768 exp = &im_expressions[i.imm_operands++];
3769 i.op[i.operands].imms = exp;
3770 i.types[i.operands] = imm8;
3771 i.operands++;
3772 exp->X_op = O_constant;
3773 exp->X_add_number = i.tm.extension_opcode;
3774 i.tm.extension_opcode = None;
3775}
3776
42164a71
L
3777
3778static int
3779check_hle (void)
3780{
3781 switch (i.tm.opcode_modifier.hleprefixok)
3782 {
3783 default:
3784 abort ();
82c2def5 3785 case HLEPrefixNone:
165de32a
L
3786 as_bad (_("invalid instruction `%s' after `%s'"),
3787 i.tm.name, i.hle_prefix);
42164a71 3788 return 0;
82c2def5 3789 case HLEPrefixLock:
42164a71
L
3790 if (i.prefix[LOCK_PREFIX])
3791 return 1;
165de32a 3792 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3793 return 0;
82c2def5 3794 case HLEPrefixAny:
42164a71 3795 return 1;
82c2def5 3796 case HLEPrefixRelease:
42164a71
L
3797 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3798 {
3799 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3800 i.tm.name);
3801 return 0;
3802 }
3803 if (i.mem_operands == 0
3804 || !operand_type_check (i.types[i.operands - 1], anymem))
3805 {
3806 as_bad (_("memory destination needed for instruction `%s'"
3807 " after `xrelease'"), i.tm.name);
3808 return 0;
3809 }
3810 return 1;
3811 }
3812}
3813
b6f8c7c4
L
3814/* Try the shortest encoding by shortening operand size. */
3815
3816static void
3817optimize_encoding (void)
3818{
3819 int j;
3820
3821 if (optimize_for_space
3822 && i.reg_operands == 1
3823 && i.imm_operands == 1
3824 && !i.types[1].bitfield.byte
3825 && i.op[0].imms->X_op == O_constant
3826 && fits_in_imm7 (i.op[0].imms->X_add_number)
3827 && ((i.tm.base_opcode == 0xa8
3828 && i.tm.extension_opcode == None)
3829 || (i.tm.base_opcode == 0xf6
3830 && i.tm.extension_opcode == 0x0)))
3831 {
3832 /* Optimize: -Os:
3833 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3834 */
3835 unsigned int base_regnum = i.op[1].regs->reg_num;
3836 if (flag_code == CODE_64BIT || base_regnum < 4)
3837 {
3838 i.types[1].bitfield.byte = 1;
3839 /* Ignore the suffix. */
3840 i.suffix = 0;
3841 if (base_regnum >= 4
3842 && !(i.op[1].regs->reg_flags & RegRex))
3843 {
3844 /* Handle SP, BP, SI and DI registers. */
3845 if (i.types[1].bitfield.word)
3846 j = 16;
3847 else if (i.types[1].bitfield.dword)
3848 j = 32;
3849 else
3850 j = 48;
3851 i.op[1].regs -= j;
3852 }
3853 }
3854 }
3855 else if (flag_code == CODE_64BIT
d3d50934
L
3856 && ((i.types[1].bitfield.qword
3857 && i.reg_operands == 1
b6f8c7c4
L
3858 && i.imm_operands == 1
3859 && i.op[0].imms->X_op == O_constant
3860 && ((i.tm.base_opcode == 0xb0
3861 && i.tm.extension_opcode == None
3862 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3863 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3864 && (((i.tm.base_opcode == 0x24
3865 || i.tm.base_opcode == 0xa8)
3866 && i.tm.extension_opcode == None)
3867 || (i.tm.base_opcode == 0x80
3868 && i.tm.extension_opcode == 0x4)
3869 || ((i.tm.base_opcode == 0xf6
3870 || i.tm.base_opcode == 0xc6)
3871 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3872 || (i.types[0].bitfield.qword
3873 && ((i.reg_operands == 2
3874 && i.op[0].regs == i.op[1].regs
3875 && ((i.tm.base_opcode == 0x30
3876 || i.tm.base_opcode == 0x28)
3877 && i.tm.extension_opcode == None))
3878 || (i.reg_operands == 1
3879 && i.operands == 1
3880 && i.tm.base_opcode == 0x30
3881 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3882 {
3883 /* Optimize: -O:
3884 andq $imm31, %r64 -> andl $imm31, %r32
3885 testq $imm31, %r64 -> testl $imm31, %r32
3886 xorq %r64, %r64 -> xorl %r32, %r32
3887 subq %r64, %r64 -> subl %r32, %r32
3888 movq $imm31, %r64 -> movl $imm31, %r32
3889 movq $imm32, %r64 -> movl $imm32, %r32
3890 */
3891 i.tm.opcode_modifier.norex64 = 1;
3892 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3893 {
3894 /* Handle
3895 movq $imm31, %r64 -> movl $imm31, %r32
3896 movq $imm32, %r64 -> movl $imm32, %r32
3897 */
3898 i.tm.operand_types[0].bitfield.imm32 = 1;
3899 i.tm.operand_types[0].bitfield.imm32s = 0;
3900 i.tm.operand_types[0].bitfield.imm64 = 0;
3901 i.types[0].bitfield.imm32 = 1;
3902 i.types[0].bitfield.imm32s = 0;
3903 i.types[0].bitfield.imm64 = 0;
3904 i.types[1].bitfield.dword = 1;
3905 i.types[1].bitfield.qword = 0;
3906 if (i.tm.base_opcode == 0xc6)
3907 {
3908 /* Handle
3909 movq $imm31, %r64 -> movl $imm31, %r32
3910 */
3911 i.tm.base_opcode = 0xb0;
3912 i.tm.extension_opcode = None;
3913 i.tm.opcode_modifier.shortform = 1;
3914 i.tm.opcode_modifier.modrm = 0;
3915 }
3916 }
3917 }
3918 else if (optimize > 1
3919 && i.reg_operands == 3
3920 && i.op[0].regs == i.op[1].regs
3921 && !i.types[2].bitfield.xmmword
3922 && (i.tm.opcode_modifier.vex
7a69eac3 3923 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3924 && !i.rounding
e771e7c9 3925 && is_evex_encoding (&i.tm)
80c34c38
L
3926 && (i.vec_encoding != vex_encoding_evex
3927 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3928 || (i.tm.operand_types[2].bitfield.zmmword
3929 && i.types[2].bitfield.ymmword)
0089dace 3930 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3931 && ((i.tm.base_opcode == 0x55
3932 || i.tm.base_opcode == 0x6655
3933 || i.tm.base_opcode == 0x66df
3934 || i.tm.base_opcode == 0x57
3935 || i.tm.base_opcode == 0x6657
8305403a
L
3936 || i.tm.base_opcode == 0x66ef
3937 || i.tm.base_opcode == 0x66f8
3938 || i.tm.base_opcode == 0x66f9
3939 || i.tm.base_opcode == 0x66fa
3940 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3941 && i.tm.extension_opcode == None))
3942 {
3943 /* Optimize: -O2:
8305403a
L
3944 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3945 vpsubq and vpsubw:
b6f8c7c4
L
3946 EVEX VOP %zmmM, %zmmM, %zmmN
3947 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3948 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3949 EVEX VOP %ymmM, %ymmM, %ymmN
3950 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3951 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3952 VEX VOP %ymmM, %ymmM, %ymmN
3953 -> VEX VOP %xmmM, %xmmM, %xmmN
3954 VOP, one of vpandn and vpxor:
3955 VEX VOP %ymmM, %ymmM, %ymmN
3956 -> VEX VOP %xmmM, %xmmM, %xmmN
3957 VOP, one of vpandnd and vpandnq:
3958 EVEX VOP %zmmM, %zmmM, %zmmN
3959 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3960 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3961 EVEX VOP %ymmM, %ymmM, %ymmN
3962 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3963 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3964 VOP, one of vpxord and vpxorq:
3965 EVEX VOP %zmmM, %zmmM, %zmmN
3966 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3967 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3968 EVEX VOP %ymmM, %ymmM, %ymmN
3969 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3970 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3971 */
e771e7c9 3972 if (is_evex_encoding (&i.tm))
b6f8c7c4 3973 {
0089dace 3974 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3975 i.tm.opcode_modifier.evex = EVEX128;
3976 else
3977 {
3978 i.tm.opcode_modifier.vex = VEX128;
3979 i.tm.opcode_modifier.vexw = VEXW0;
3980 i.tm.opcode_modifier.evex = 0;
3981 }
3982 }
3983 else
3984 i.tm.opcode_modifier.vex = VEX128;
3985
3986 if (i.tm.opcode_modifier.vex)
3987 for (j = 0; j < 3; j++)
3988 {
3989 i.types[j].bitfield.xmmword = 1;
3990 i.types[j].bitfield.ymmword = 0;
3991 }
3992 }
3993}
3994
252b5132
RH
3995/* This is the guts of the machine-dependent assembler. LINE points to a
3996 machine dependent instruction. This function is supposed to emit
3997 the frags/bytes it assembles to. */
3998
3999void
65da13b5 4000md_assemble (char *line)
252b5132 4001{
40fb9820 4002 unsigned int j;
83b16ac6 4003 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4004 const insn_template *t;
252b5132 4005
47926f60 4006 /* Initialize globals. */
252b5132
RH
4007 memset (&i, '\0', sizeof (i));
4008 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4009 i.reloc[j] = NO_RELOC;
252b5132
RH
4010 memset (disp_expressions, '\0', sizeof (disp_expressions));
4011 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4012 save_stack_p = save_stack;
252b5132
RH
4013
4014 /* First parse an instruction mnemonic & call i386_operand for the operands.
4015 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4016 start of a (possibly prefixed) mnemonic. */
252b5132 4017
29b0f896
AM
4018 line = parse_insn (line, mnemonic);
4019 if (line == NULL)
4020 return;
83b16ac6 4021 mnem_suffix = i.suffix;
252b5132 4022
29b0f896 4023 line = parse_operands (line, mnemonic);
ee86248c 4024 this_operand = -1;
8325cc63
JB
4025 xfree (i.memop1_string);
4026 i.memop1_string = NULL;
29b0f896
AM
4027 if (line == NULL)
4028 return;
252b5132 4029
29b0f896
AM
4030 /* Now we've parsed the mnemonic into a set of templates, and have the
4031 operands at hand. */
4032
4033 /* All intel opcodes have reversed operands except for "bound" and
4034 "enter". We also don't reverse intersegment "jmp" and "call"
4035 instructions with 2 immediate operands so that the immediate segment
050dfa73 4036 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4037 if (intel_syntax
4038 && i.operands > 1
29b0f896 4039 && (strcmp (mnemonic, "bound") != 0)
30123838 4040 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4041 && !(operand_type_check (i.types[0], imm)
4042 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4043 swap_operands ();
4044
ec56d5c0
JB
4045 /* The order of the immediates should be reversed
4046 for 2 immediates extrq and insertq instructions */
4047 if (i.imm_operands == 2
4048 && (strcmp (mnemonic, "extrq") == 0
4049 || strcmp (mnemonic, "insertq") == 0))
4050 swap_2_operands (0, 1);
4051
29b0f896
AM
4052 if (i.imm_operands)
4053 optimize_imm ();
4054
b300c311
L
4055 /* Don't optimize displacement for movabs since it only takes 64bit
4056 displacement. */
4057 if (i.disp_operands
a501d77e 4058 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4059 && (flag_code != CODE_64BIT
4060 || strcmp (mnemonic, "movabs") != 0))
4061 optimize_disp ();
29b0f896
AM
4062
4063 /* Next, we find a template that matches the given insn,
4064 making sure the overlap of the given operands types is consistent
4065 with the template operand types. */
252b5132 4066
83b16ac6 4067 if (!(t = match_template (mnem_suffix)))
29b0f896 4068 return;
252b5132 4069
7bab8ab5 4070 if (sse_check != check_none
81f8a913 4071 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4072 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4073 && (i.tm.cpu_flags.bitfield.cpusse
4074 || i.tm.cpu_flags.bitfield.cpusse2
4075 || i.tm.cpu_flags.bitfield.cpusse3
4076 || i.tm.cpu_flags.bitfield.cpussse3
4077 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4078 || i.tm.cpu_flags.bitfield.cpusse4_2
4079 || i.tm.cpu_flags.bitfield.cpupclmul
4080 || i.tm.cpu_flags.bitfield.cpuaes
4081 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4082 {
7bab8ab5 4083 (sse_check == check_warning
daf50ae7
L
4084 ? as_warn
4085 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4086 }
4087
321fd21e
L
4088 /* Zap movzx and movsx suffix. The suffix has been set from
4089 "word ptr" or "byte ptr" on the source operand in Intel syntax
4090 or extracted from mnemonic in AT&T syntax. But we'll use
4091 the destination register to choose the suffix for encoding. */
4092 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4093 {
321fd21e
L
4094 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4095 there is no suffix, the default will be byte extension. */
4096 if (i.reg_operands != 2
4097 && !i.suffix
7ab9ffdd 4098 && intel_syntax)
321fd21e
L
4099 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4100
4101 i.suffix = 0;
cd61ebfe 4102 }
24eab124 4103
40fb9820 4104 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4105 if (!add_prefix (FWAIT_OPCODE))
4106 return;
252b5132 4107
d5de92cf
L
4108 /* Check if REP prefix is OK. */
4109 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4110 {
4111 as_bad (_("invalid instruction `%s' after `%s'"),
4112 i.tm.name, i.rep_prefix);
4113 return;
4114 }
4115
c1ba0266
L
4116 /* Check for lock without a lockable instruction. Destination operand
4117 must be memory unless it is xchg (0x86). */
c32fa91d
L
4118 if (i.prefix[LOCK_PREFIX]
4119 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4120 || i.mem_operands == 0
4121 || (i.tm.base_opcode != 0x86
4122 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4123 {
4124 as_bad (_("expecting lockable instruction after `lock'"));
4125 return;
4126 }
4127
42164a71 4128 /* Check if HLE prefix is OK. */
165de32a 4129 if (i.hle_prefix && !check_hle ())
42164a71
L
4130 return;
4131
7e8b059b
L
4132 /* Check BND prefix. */
4133 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4134 as_bad (_("expecting valid branch instruction after `bnd'"));
4135
04ef582a 4136 /* Check NOTRACK prefix. */
9fef80d6
L
4137 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4138 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4139
327e8c42
JB
4140 if (i.tm.cpu_flags.bitfield.cpumpx)
4141 {
4142 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4143 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4144 else if (flag_code != CODE_16BIT
4145 ? i.prefix[ADDR_PREFIX]
4146 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4147 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4148 }
7e8b059b
L
4149
4150 /* Insert BND prefix. */
76d3a78a
JB
4151 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4152 {
4153 if (!i.prefix[BND_PREFIX])
4154 add_prefix (BND_PREFIX_OPCODE);
4155 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4156 {
4157 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4158 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4159 }
4160 }
7e8b059b 4161
29b0f896 4162 /* Check string instruction segment overrides. */
40fb9820 4163 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4164 {
4165 if (!check_string ())
5dd0794d 4166 return;
fc0763e6 4167 i.disp_operands = 0;
29b0f896 4168 }
5dd0794d 4169
b6f8c7c4
L
4170 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4171 optimize_encoding ();
4172
29b0f896
AM
4173 if (!process_suffix ())
4174 return;
e413e4e9 4175
bc0844ae
L
4176 /* Update operand types. */
4177 for (j = 0; j < i.operands; j++)
4178 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4179
29b0f896
AM
4180 /* Make still unresolved immediate matches conform to size of immediate
4181 given in i.suffix. */
4182 if (!finalize_imm ())
4183 return;
252b5132 4184
40fb9820 4185 if (i.types[0].bitfield.imm1)
29b0f896 4186 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4187
9afe6eb8
L
4188 /* We only need to check those implicit registers for instructions
4189 with 3 operands or less. */
4190 if (i.operands <= 3)
4191 for (j = 0; j < i.operands; j++)
4192 if (i.types[j].bitfield.inoutportreg
4193 || i.types[j].bitfield.shiftcount
1b54b8d7 4194 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4195 i.reg_operands--;
40fb9820 4196
c0f3af97
L
4197 /* ImmExt should be processed after SSE2AVX. */
4198 if (!i.tm.opcode_modifier.sse2avx
4199 && i.tm.opcode_modifier.immext)
65da13b5 4200 process_immext ();
252b5132 4201
29b0f896
AM
4202 /* For insns with operands there are more diddles to do to the opcode. */
4203 if (i.operands)
4204 {
4205 if (!process_operands ())
4206 return;
4207 }
40fb9820 4208 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4209 {
4210 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4211 as_warn (_("translating to `%sp'"), i.tm.name);
4212 }
252b5132 4213
e771e7c9
JB
4214 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4215 || is_evex_encoding (&i.tm))
9e5e5283
L
4216 {
4217 if (flag_code == CODE_16BIT)
4218 {
4219 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4220 i.tm.name);
4221 return;
4222 }
c0f3af97 4223
9e5e5283
L
4224 if (i.tm.opcode_modifier.vex)
4225 build_vex_prefix (t);
4226 else
4227 build_evex_prefix ();
4228 }
43234a1e 4229
5dd85c99
SP
4230 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4231 instructions may define INT_OPCODE as well, so avoid this corner
4232 case for those instructions that use MODRM. */
4233 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4234 && !i.tm.opcode_modifier.modrm
4235 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4236 {
4237 i.tm.base_opcode = INT3_OPCODE;
4238 i.imm_operands = 0;
4239 }
252b5132 4240
40fb9820
L
4241 if ((i.tm.opcode_modifier.jump
4242 || i.tm.opcode_modifier.jumpbyte
4243 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4244 && i.op[0].disps->X_op == O_constant)
4245 {
4246 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4247 the absolute address given by the constant. Since ix86 jumps and
4248 calls are pc relative, we need to generate a reloc. */
4249 i.op[0].disps->X_add_symbol = &abs_symbol;
4250 i.op[0].disps->X_op = O_symbol;
4251 }
252b5132 4252
40fb9820 4253 if (i.tm.opcode_modifier.rex64)
161a04f6 4254 i.rex |= REX_W;
252b5132 4255
29b0f896
AM
4256 /* For 8 bit registers we need an empty rex prefix. Also if the
4257 instruction already has a prefix, we need to convert old
4258 registers to new ones. */
773f551c 4259
dc821c5f 4260 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4261 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4262 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4263 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4264 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4265 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4266 && i.rex != 0))
4267 {
4268 int x;
726c5dcd 4269
29b0f896
AM
4270 i.rex |= REX_OPCODE;
4271 for (x = 0; x < 2; x++)
4272 {
4273 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4274 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4275 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4276 {
29b0f896
AM
4277 /* In case it is "hi" register, give up. */
4278 if (i.op[x].regs->reg_num > 3)
a540244d 4279 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4280 "instruction requiring REX prefix."),
a540244d 4281 register_prefix, i.op[x].regs->reg_name);
773f551c 4282
29b0f896
AM
4283 /* Otherwise it is equivalent to the extended register.
4284 Since the encoding doesn't change this is merely
4285 cosmetic cleanup for debug output. */
4286
4287 i.op[x].regs = i.op[x].regs + 8;
773f551c 4288 }
29b0f896
AM
4289 }
4290 }
773f551c 4291
6b6b6807
L
4292 if (i.rex == 0 && i.rex_encoding)
4293 {
4294 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4295 that uses legacy register. If it is "hi" register, don't add
4296 the REX_OPCODE byte. */
4297 int x;
4298 for (x = 0; x < 2; x++)
4299 if (i.types[x].bitfield.reg
4300 && i.types[x].bitfield.byte
4301 && (i.op[x].regs->reg_flags & RegRex64) == 0
4302 && i.op[x].regs->reg_num > 3)
4303 {
4304 i.rex_encoding = FALSE;
4305 break;
4306 }
4307
4308 if (i.rex_encoding)
4309 i.rex = REX_OPCODE;
4310 }
4311
7ab9ffdd 4312 if (i.rex != 0)
29b0f896
AM
4313 add_prefix (REX_OPCODE | i.rex);
4314
4315 /* We are ready to output the insn. */
4316 output_insn ();
4317}
4318
4319static char *
e3bb37b5 4320parse_insn (char *line, char *mnemonic)
29b0f896
AM
4321{
4322 char *l = line;
4323 char *token_start = l;
4324 char *mnem_p;
5c6af06e 4325 int supported;
d3ce72d0 4326 const insn_template *t;
b6169b20 4327 char *dot_p = NULL;
29b0f896 4328
29b0f896
AM
4329 while (1)
4330 {
4331 mnem_p = mnemonic;
4332 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4333 {
b6169b20
L
4334 if (*mnem_p == '.')
4335 dot_p = mnem_p;
29b0f896
AM
4336 mnem_p++;
4337 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4338 {
29b0f896
AM
4339 as_bad (_("no such instruction: `%s'"), token_start);
4340 return NULL;
4341 }
4342 l++;
4343 }
4344 if (!is_space_char (*l)
4345 && *l != END_OF_INSN
e44823cf
JB
4346 && (intel_syntax
4347 || (*l != PREFIX_SEPARATOR
4348 && *l != ',')))
29b0f896
AM
4349 {
4350 as_bad (_("invalid character %s in mnemonic"),
4351 output_invalid (*l));
4352 return NULL;
4353 }
4354 if (token_start == l)
4355 {
e44823cf 4356 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4357 as_bad (_("expecting prefix; got nothing"));
4358 else
4359 as_bad (_("expecting mnemonic; got nothing"));
4360 return NULL;
4361 }
45288df1 4362
29b0f896 4363 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4364 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4365
29b0f896
AM
4366 if (*l != END_OF_INSN
4367 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4368 && current_templates
40fb9820 4369 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4370 {
c6fb90c8 4371 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4372 {
4373 as_bad ((flag_code != CODE_64BIT
4374 ? _("`%s' is only supported in 64-bit mode")
4375 : _("`%s' is not supported in 64-bit mode")),
4376 current_templates->start->name);
4377 return NULL;
4378 }
29b0f896
AM
4379 /* If we are in 16-bit mode, do not allow addr16 or data16.
4380 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4381 if ((current_templates->start->opcode_modifier.size16
4382 || current_templates->start->opcode_modifier.size32)
29b0f896 4383 && flag_code != CODE_64BIT
40fb9820 4384 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4385 ^ (flag_code == CODE_16BIT)))
4386 {
4387 as_bad (_("redundant %s prefix"),
4388 current_templates->start->name);
4389 return NULL;
45288df1 4390 }
86fa6981 4391 if (current_templates->start->opcode_length == 0)
29b0f896 4392 {
86fa6981
L
4393 /* Handle pseudo prefixes. */
4394 switch (current_templates->start->base_opcode)
4395 {
4396 case 0x0:
4397 /* {disp8} */
4398 i.disp_encoding = disp_encoding_8bit;
4399 break;
4400 case 0x1:
4401 /* {disp32} */
4402 i.disp_encoding = disp_encoding_32bit;
4403 break;
4404 case 0x2:
4405 /* {load} */
4406 i.dir_encoding = dir_encoding_load;
4407 break;
4408 case 0x3:
4409 /* {store} */
4410 i.dir_encoding = dir_encoding_store;
4411 break;
4412 case 0x4:
4413 /* {vex2} */
4414 i.vec_encoding = vex_encoding_vex2;
4415 break;
4416 case 0x5:
4417 /* {vex3} */
4418 i.vec_encoding = vex_encoding_vex3;
4419 break;
4420 case 0x6:
4421 /* {evex} */
4422 i.vec_encoding = vex_encoding_evex;
4423 break;
6b6b6807
L
4424 case 0x7:
4425 /* {rex} */
4426 i.rex_encoding = TRUE;
4427 break;
b6f8c7c4
L
4428 case 0x8:
4429 /* {nooptimize} */
4430 i.no_optimize = TRUE;
4431 break;
86fa6981
L
4432 default:
4433 abort ();
4434 }
4435 }
4436 else
4437 {
4438 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4439 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4440 {
4e9ac44a
L
4441 case PREFIX_EXIST:
4442 return NULL;
4443 case PREFIX_DS:
d777820b 4444 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4445 i.notrack_prefix = current_templates->start->name;
4446 break;
4447 case PREFIX_REP:
4448 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4449 i.hle_prefix = current_templates->start->name;
4450 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4451 i.bnd_prefix = current_templates->start->name;
4452 else
4453 i.rep_prefix = current_templates->start->name;
4454 break;
4455 default:
4456 break;
86fa6981 4457 }
29b0f896
AM
4458 }
4459 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4460 token_start = ++l;
4461 }
4462 else
4463 break;
4464 }
45288df1 4465
30a55f88 4466 if (!current_templates)
b6169b20 4467 {
f8a5c266
L
4468 /* Check if we should swap operand or force 32bit displacement in
4469 encoding. */
30a55f88 4470 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4471 i.dir_encoding = dir_encoding_store;
8d63c93e 4472 else if (mnem_p - 3 == dot_p
a501d77e
L
4473 && dot_p[1] == 'd'
4474 && dot_p[2] == '8')
4475 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4476 else if (mnem_p - 4 == dot_p
f8a5c266
L
4477 && dot_p[1] == 'd'
4478 && dot_p[2] == '3'
4479 && dot_p[3] == '2')
a501d77e 4480 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4481 else
4482 goto check_suffix;
4483 mnem_p = dot_p;
4484 *dot_p = '\0';
d3ce72d0 4485 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4486 }
4487
29b0f896
AM
4488 if (!current_templates)
4489 {
b6169b20 4490check_suffix:
29b0f896
AM
4491 /* See if we can get a match by trimming off a suffix. */
4492 switch (mnem_p[-1])
4493 {
4494 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4495 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4496 i.suffix = SHORT_MNEM_SUFFIX;
4497 else
1a0670f3 4498 /* Fall through. */
29b0f896
AM
4499 case BYTE_MNEM_SUFFIX:
4500 case QWORD_MNEM_SUFFIX:
4501 i.suffix = mnem_p[-1];
4502 mnem_p[-1] = '\0';
d3ce72d0
NC
4503 current_templates = (const templates *) hash_find (op_hash,
4504 mnemonic);
29b0f896
AM
4505 break;
4506 case SHORT_MNEM_SUFFIX:
4507 case LONG_MNEM_SUFFIX:
4508 if (!intel_syntax)
4509 {
4510 i.suffix = mnem_p[-1];
4511 mnem_p[-1] = '\0';
d3ce72d0
NC
4512 current_templates = (const templates *) hash_find (op_hash,
4513 mnemonic);
29b0f896
AM
4514 }
4515 break;
252b5132 4516
29b0f896
AM
4517 /* Intel Syntax. */
4518 case 'd':
4519 if (intel_syntax)
4520 {
9306ca4a 4521 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4522 i.suffix = SHORT_MNEM_SUFFIX;
4523 else
4524 i.suffix = LONG_MNEM_SUFFIX;
4525 mnem_p[-1] = '\0';
d3ce72d0
NC
4526 current_templates = (const templates *) hash_find (op_hash,
4527 mnemonic);
29b0f896
AM
4528 }
4529 break;
4530 }
4531 if (!current_templates)
4532 {
4533 as_bad (_("no such instruction: `%s'"), token_start);
4534 return NULL;
4535 }
4536 }
252b5132 4537
40fb9820
L
4538 if (current_templates->start->opcode_modifier.jump
4539 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4540 {
4541 /* Check for a branch hint. We allow ",pt" and ",pn" for
4542 predict taken and predict not taken respectively.
4543 I'm not sure that branch hints actually do anything on loop
4544 and jcxz insns (JumpByte) for current Pentium4 chips. They
4545 may work in the future and it doesn't hurt to accept them
4546 now. */
4547 if (l[0] == ',' && l[1] == 'p')
4548 {
4549 if (l[2] == 't')
4550 {
4551 if (!add_prefix (DS_PREFIX_OPCODE))
4552 return NULL;
4553 l += 3;
4554 }
4555 else if (l[2] == 'n')
4556 {
4557 if (!add_prefix (CS_PREFIX_OPCODE))
4558 return NULL;
4559 l += 3;
4560 }
4561 }
4562 }
4563 /* Any other comma loses. */
4564 if (*l == ',')
4565 {
4566 as_bad (_("invalid character %s in mnemonic"),
4567 output_invalid (*l));
4568 return NULL;
4569 }
252b5132 4570
29b0f896 4571 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4572 supported = 0;
4573 for (t = current_templates->start; t < current_templates->end; ++t)
4574 {
c0f3af97
L
4575 supported |= cpu_flags_match (t);
4576 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4577 {
4578 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4579 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4580
548d0ee6
JB
4581 return l;
4582 }
29b0f896 4583 }
3629bb00 4584
548d0ee6
JB
4585 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4586 as_bad (flag_code == CODE_64BIT
4587 ? _("`%s' is not supported in 64-bit mode")
4588 : _("`%s' is only supported in 64-bit mode"),
4589 current_templates->start->name);
4590 else
4591 as_bad (_("`%s' is not supported on `%s%s'"),
4592 current_templates->start->name,
4593 cpu_arch_name ? cpu_arch_name : default_arch,
4594 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4595
548d0ee6 4596 return NULL;
29b0f896 4597}
252b5132 4598
29b0f896 4599static char *
e3bb37b5 4600parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4601{
4602 char *token_start;
3138f287 4603
29b0f896
AM
4604 /* 1 if operand is pending after ','. */
4605 unsigned int expecting_operand = 0;
252b5132 4606
29b0f896
AM
4607 /* Non-zero if operand parens not balanced. */
4608 unsigned int paren_not_balanced;
4609
4610 while (*l != END_OF_INSN)
4611 {
4612 /* Skip optional white space before operand. */
4613 if (is_space_char (*l))
4614 ++l;
d02603dc 4615 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4616 {
4617 as_bad (_("invalid character %s before operand %d"),
4618 output_invalid (*l),
4619 i.operands + 1);
4620 return NULL;
4621 }
d02603dc 4622 token_start = l; /* After white space. */
29b0f896
AM
4623 paren_not_balanced = 0;
4624 while (paren_not_balanced || *l != ',')
4625 {
4626 if (*l == END_OF_INSN)
4627 {
4628 if (paren_not_balanced)
4629 {
4630 if (!intel_syntax)
4631 as_bad (_("unbalanced parenthesis in operand %d."),
4632 i.operands + 1);
4633 else
4634 as_bad (_("unbalanced brackets in operand %d."),
4635 i.operands + 1);
4636 return NULL;
4637 }
4638 else
4639 break; /* we are done */
4640 }
d02603dc 4641 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4642 {
4643 as_bad (_("invalid character %s in operand %d"),
4644 output_invalid (*l),
4645 i.operands + 1);
4646 return NULL;
4647 }
4648 if (!intel_syntax)
4649 {
4650 if (*l == '(')
4651 ++paren_not_balanced;
4652 if (*l == ')')
4653 --paren_not_balanced;
4654 }
4655 else
4656 {
4657 if (*l == '[')
4658 ++paren_not_balanced;
4659 if (*l == ']')
4660 --paren_not_balanced;
4661 }
4662 l++;
4663 }
4664 if (l != token_start)
4665 { /* Yes, we've read in another operand. */
4666 unsigned int operand_ok;
4667 this_operand = i.operands++;
4668 if (i.operands > MAX_OPERANDS)
4669 {
4670 as_bad (_("spurious operands; (%d operands/instruction max)"),
4671 MAX_OPERANDS);
4672 return NULL;
4673 }
9d46ce34 4674 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4675 /* Now parse operand adding info to 'i' as we go along. */
4676 END_STRING_AND_SAVE (l);
4677
4678 if (intel_syntax)
4679 operand_ok =
4680 i386_intel_operand (token_start,
4681 intel_float_operand (mnemonic));
4682 else
a7619375 4683 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4684
4685 RESTORE_END_STRING (l);
4686 if (!operand_ok)
4687 return NULL;
4688 }
4689 else
4690 {
4691 if (expecting_operand)
4692 {
4693 expecting_operand_after_comma:
4694 as_bad (_("expecting operand after ','; got nothing"));
4695 return NULL;
4696 }
4697 if (*l == ',')
4698 {
4699 as_bad (_("expecting operand before ','; got nothing"));
4700 return NULL;
4701 }
4702 }
7f3f1ea2 4703
29b0f896
AM
4704 /* Now *l must be either ',' or END_OF_INSN. */
4705 if (*l == ',')
4706 {
4707 if (*++l == END_OF_INSN)
4708 {
4709 /* Just skip it, if it's \n complain. */
4710 goto expecting_operand_after_comma;
4711 }
4712 expecting_operand = 1;
4713 }
4714 }
4715 return l;
4716}
7f3f1ea2 4717
050dfa73 4718static void
4d456e3d 4719swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4720{
4721 union i386_op temp_op;
40fb9820 4722 i386_operand_type temp_type;
050dfa73 4723 enum bfd_reloc_code_real temp_reloc;
4eed87de 4724
050dfa73
MM
4725 temp_type = i.types[xchg2];
4726 i.types[xchg2] = i.types[xchg1];
4727 i.types[xchg1] = temp_type;
4728 temp_op = i.op[xchg2];
4729 i.op[xchg2] = i.op[xchg1];
4730 i.op[xchg1] = temp_op;
4731 temp_reloc = i.reloc[xchg2];
4732 i.reloc[xchg2] = i.reloc[xchg1];
4733 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4734
4735 if (i.mask)
4736 {
4737 if (i.mask->operand == xchg1)
4738 i.mask->operand = xchg2;
4739 else if (i.mask->operand == xchg2)
4740 i.mask->operand = xchg1;
4741 }
4742 if (i.broadcast)
4743 {
4744 if (i.broadcast->operand == xchg1)
4745 i.broadcast->operand = xchg2;
4746 else if (i.broadcast->operand == xchg2)
4747 i.broadcast->operand = xchg1;
4748 }
4749 if (i.rounding)
4750 {
4751 if (i.rounding->operand == xchg1)
4752 i.rounding->operand = xchg2;
4753 else if (i.rounding->operand == xchg2)
4754 i.rounding->operand = xchg1;
4755 }
050dfa73
MM
4756}
4757
29b0f896 4758static void
e3bb37b5 4759swap_operands (void)
29b0f896 4760{
b7c61d9a 4761 switch (i.operands)
050dfa73 4762 {
c0f3af97 4763 case 5:
b7c61d9a 4764 case 4:
4d456e3d 4765 swap_2_operands (1, i.operands - 2);
1a0670f3 4766 /* Fall through. */
b7c61d9a
L
4767 case 3:
4768 case 2:
4d456e3d 4769 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4770 break;
4771 default:
4772 abort ();
29b0f896 4773 }
29b0f896
AM
4774
4775 if (i.mem_operands == 2)
4776 {
4777 const seg_entry *temp_seg;
4778 temp_seg = i.seg[0];
4779 i.seg[0] = i.seg[1];
4780 i.seg[1] = temp_seg;
4781 }
4782}
252b5132 4783
29b0f896
AM
4784/* Try to ensure constant immediates are represented in the smallest
4785 opcode possible. */
4786static void
e3bb37b5 4787optimize_imm (void)
29b0f896
AM
4788{
4789 char guess_suffix = 0;
4790 int op;
252b5132 4791
29b0f896
AM
4792 if (i.suffix)
4793 guess_suffix = i.suffix;
4794 else if (i.reg_operands)
4795 {
4796 /* Figure out a suffix from the last register operand specified.
4797 We can't do this properly yet, ie. excluding InOutPortReg,
4798 but the following works for instructions with immediates.
4799 In any case, we can't set i.suffix yet. */
4800 for (op = i.operands; --op >= 0;)
dc821c5f 4801 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4802 {
40fb9820
L
4803 guess_suffix = BYTE_MNEM_SUFFIX;
4804 break;
4805 }
dc821c5f 4806 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4807 {
40fb9820
L
4808 guess_suffix = WORD_MNEM_SUFFIX;
4809 break;
4810 }
dc821c5f 4811 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4812 {
4813 guess_suffix = LONG_MNEM_SUFFIX;
4814 break;
4815 }
dc821c5f 4816 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4817 {
4818 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4819 break;
252b5132 4820 }
29b0f896
AM
4821 }
4822 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4823 guess_suffix = WORD_MNEM_SUFFIX;
4824
4825 for (op = i.operands; --op >= 0;)
40fb9820 4826 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4827 {
4828 switch (i.op[op].imms->X_op)
252b5132 4829 {
29b0f896
AM
4830 case O_constant:
4831 /* If a suffix is given, this operand may be shortened. */
4832 switch (guess_suffix)
252b5132 4833 {
29b0f896 4834 case LONG_MNEM_SUFFIX:
40fb9820
L
4835 i.types[op].bitfield.imm32 = 1;
4836 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4837 break;
4838 case WORD_MNEM_SUFFIX:
40fb9820
L
4839 i.types[op].bitfield.imm16 = 1;
4840 i.types[op].bitfield.imm32 = 1;
4841 i.types[op].bitfield.imm32s = 1;
4842 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4843 break;
4844 case BYTE_MNEM_SUFFIX:
40fb9820
L
4845 i.types[op].bitfield.imm8 = 1;
4846 i.types[op].bitfield.imm8s = 1;
4847 i.types[op].bitfield.imm16 = 1;
4848 i.types[op].bitfield.imm32 = 1;
4849 i.types[op].bitfield.imm32s = 1;
4850 i.types[op].bitfield.imm64 = 1;
29b0f896 4851 break;
252b5132 4852 }
252b5132 4853
29b0f896
AM
4854 /* If this operand is at most 16 bits, convert it
4855 to a signed 16 bit number before trying to see
4856 whether it will fit in an even smaller size.
4857 This allows a 16-bit operand such as $0xffe0 to
4858 be recognised as within Imm8S range. */
40fb9820 4859 if ((i.types[op].bitfield.imm16)
29b0f896 4860 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4861 {
29b0f896
AM
4862 i.op[op].imms->X_add_number =
4863 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4864 }
a28def75
L
4865#ifdef BFD64
4866 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4867 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4868 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4869 == 0))
4870 {
4871 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4872 ^ ((offsetT) 1 << 31))
4873 - ((offsetT) 1 << 31));
4874 }
a28def75 4875#endif
40fb9820 4876 i.types[op]
c6fb90c8
L
4877 = operand_type_or (i.types[op],
4878 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4879
29b0f896
AM
4880 /* We must avoid matching of Imm32 templates when 64bit
4881 only immediate is available. */
4882 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4883 i.types[op].bitfield.imm32 = 0;
29b0f896 4884 break;
252b5132 4885
29b0f896
AM
4886 case O_absent:
4887 case O_register:
4888 abort ();
4889
4890 /* Symbols and expressions. */
4891 default:
9cd96992
JB
4892 /* Convert symbolic operand to proper sizes for matching, but don't
4893 prevent matching a set of insns that only supports sizes other
4894 than those matching the insn suffix. */
4895 {
40fb9820 4896 i386_operand_type mask, allowed;
d3ce72d0 4897 const insn_template *t;
9cd96992 4898
0dfbf9d7
L
4899 operand_type_set (&mask, 0);
4900 operand_type_set (&allowed, 0);
40fb9820 4901
4eed87de
AM
4902 for (t = current_templates->start;
4903 t < current_templates->end;
4904 ++t)
c6fb90c8
L
4905 allowed = operand_type_or (allowed,
4906 t->operand_types[op]);
9cd96992
JB
4907 switch (guess_suffix)
4908 {
4909 case QWORD_MNEM_SUFFIX:
40fb9820
L
4910 mask.bitfield.imm64 = 1;
4911 mask.bitfield.imm32s = 1;
9cd96992
JB
4912 break;
4913 case LONG_MNEM_SUFFIX:
40fb9820 4914 mask.bitfield.imm32 = 1;
9cd96992
JB
4915 break;
4916 case WORD_MNEM_SUFFIX:
40fb9820 4917 mask.bitfield.imm16 = 1;
9cd96992
JB
4918 break;
4919 case BYTE_MNEM_SUFFIX:
40fb9820 4920 mask.bitfield.imm8 = 1;
9cd96992
JB
4921 break;
4922 default:
9cd96992
JB
4923 break;
4924 }
c6fb90c8 4925 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4926 if (!operand_type_all_zero (&allowed))
c6fb90c8 4927 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4928 }
29b0f896 4929 break;
252b5132 4930 }
29b0f896
AM
4931 }
4932}
47926f60 4933
29b0f896
AM
4934/* Try to use the smallest displacement type too. */
4935static void
e3bb37b5 4936optimize_disp (void)
29b0f896
AM
4937{
4938 int op;
3e73aa7c 4939
29b0f896 4940 for (op = i.operands; --op >= 0;)
40fb9820 4941 if (operand_type_check (i.types[op], disp))
252b5132 4942 {
b300c311 4943 if (i.op[op].disps->X_op == O_constant)
252b5132 4944 {
91d6fa6a 4945 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4946
40fb9820 4947 if (i.types[op].bitfield.disp16
91d6fa6a 4948 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4949 {
4950 /* If this operand is at most 16 bits, convert
4951 to a signed 16 bit number and don't use 64bit
4952 displacement. */
91d6fa6a 4953 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4954 i.types[op].bitfield.disp64 = 0;
b300c311 4955 }
a28def75
L
4956#ifdef BFD64
4957 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4958 if (i.types[op].bitfield.disp32
91d6fa6a 4959 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4960 {
4961 /* If this operand is at most 32 bits, convert
4962 to a signed 32 bit number and don't use 64bit
4963 displacement. */
91d6fa6a
NC
4964 op_disp &= (((offsetT) 2 << 31) - 1);
4965 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4966 i.types[op].bitfield.disp64 = 0;
b300c311 4967 }
a28def75 4968#endif
91d6fa6a 4969 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4970 {
40fb9820
L
4971 i.types[op].bitfield.disp8 = 0;
4972 i.types[op].bitfield.disp16 = 0;
4973 i.types[op].bitfield.disp32 = 0;
4974 i.types[op].bitfield.disp32s = 0;
4975 i.types[op].bitfield.disp64 = 0;
b300c311
L
4976 i.op[op].disps = 0;
4977 i.disp_operands--;
4978 }
4979 else if (flag_code == CODE_64BIT)
4980 {
91d6fa6a 4981 if (fits_in_signed_long (op_disp))
28a9d8f5 4982 {
40fb9820
L
4983 i.types[op].bitfield.disp64 = 0;
4984 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4985 }
0e1147d9 4986 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4987 && fits_in_unsigned_long (op_disp))
40fb9820 4988 i.types[op].bitfield.disp32 = 1;
b300c311 4989 }
40fb9820
L
4990 if ((i.types[op].bitfield.disp32
4991 || i.types[op].bitfield.disp32s
4992 || i.types[op].bitfield.disp16)
b5014f7a 4993 && fits_in_disp8 (op_disp))
40fb9820 4994 i.types[op].bitfield.disp8 = 1;
252b5132 4995 }
67a4f2b7
AO
4996 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4997 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4998 {
4999 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5000 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5001 i.types[op].bitfield.disp8 = 0;
5002 i.types[op].bitfield.disp16 = 0;
5003 i.types[op].bitfield.disp32 = 0;
5004 i.types[op].bitfield.disp32s = 0;
5005 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5006 }
5007 else
b300c311 5008 /* We only support 64bit displacement on constants. */
40fb9820 5009 i.types[op].bitfield.disp64 = 0;
252b5132 5010 }
29b0f896
AM
5011}
5012
4a1b91ea
L
5013/* Return 1 if there is a match in broadcast bytes between operand
5014 GIVEN and instruction template T. */
5015
5016static INLINE int
5017match_broadcast_size (const insn_template *t, unsigned int given)
5018{
5019 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5020 && i.types[given].bitfield.byte)
5021 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5022 && i.types[given].bitfield.word)
5023 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5024 && i.types[given].bitfield.dword)
5025 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5026 && i.types[given].bitfield.qword));
5027}
5028
6c30d220
L
5029/* Check if operands are valid for the instruction. */
5030
5031static int
5032check_VecOperands (const insn_template *t)
5033{
43234a1e 5034 unsigned int op;
e2195274
JB
5035 i386_cpu_flags cpu;
5036 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5037
5038 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5039 any one operand are implicity requiring AVX512VL support if the actual
5040 operand size is YMMword or XMMword. Since this function runs after
5041 template matching, there's no need to check for YMMword/XMMword in
5042 the template. */
5043 cpu = cpu_flags_and (t->cpu_flags, avx512);
5044 if (!cpu_flags_all_zero (&cpu)
5045 && !t->cpu_flags.bitfield.cpuavx512vl
5046 && !cpu_arch_flags.bitfield.cpuavx512vl)
5047 {
5048 for (op = 0; op < t->operands; ++op)
5049 {
5050 if (t->operand_types[op].bitfield.zmmword
5051 && (i.types[op].bitfield.ymmword
5052 || i.types[op].bitfield.xmmword))
5053 {
5054 i.error = unsupported;
5055 return 1;
5056 }
5057 }
5058 }
43234a1e 5059
6c30d220
L
5060 /* Without VSIB byte, we can't have a vector register for index. */
5061 if (!t->opcode_modifier.vecsib
5062 && i.index_reg
1b54b8d7
JB
5063 && (i.index_reg->reg_type.bitfield.xmmword
5064 || i.index_reg->reg_type.bitfield.ymmword
5065 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5066 {
5067 i.error = unsupported_vector_index_register;
5068 return 1;
5069 }
5070
ad8ecc81
MZ
5071 /* Check if default mask is allowed. */
5072 if (t->opcode_modifier.nodefmask
5073 && (!i.mask || i.mask->mask->reg_num == 0))
5074 {
5075 i.error = no_default_mask;
5076 return 1;
5077 }
5078
7bab8ab5
JB
5079 /* For VSIB byte, we need a vector register for index, and all vector
5080 registers must be distinct. */
5081 if (t->opcode_modifier.vecsib)
5082 {
5083 if (!i.index_reg
6c30d220 5084 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5085 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5086 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5087 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5088 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5089 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5090 {
5091 i.error = invalid_vsib_address;
5092 return 1;
5093 }
5094
43234a1e
L
5095 gas_assert (i.reg_operands == 2 || i.mask);
5096 if (i.reg_operands == 2 && !i.mask)
5097 {
1b54b8d7
JB
5098 gas_assert (i.types[0].bitfield.regsimd);
5099 gas_assert (i.types[0].bitfield.xmmword
5100 || i.types[0].bitfield.ymmword);
5101 gas_assert (i.types[2].bitfield.regsimd);
5102 gas_assert (i.types[2].bitfield.xmmword
5103 || i.types[2].bitfield.ymmword);
43234a1e
L
5104 if (operand_check == check_none)
5105 return 0;
5106 if (register_number (i.op[0].regs)
5107 != register_number (i.index_reg)
5108 && register_number (i.op[2].regs)
5109 != register_number (i.index_reg)
5110 && register_number (i.op[0].regs)
5111 != register_number (i.op[2].regs))
5112 return 0;
5113 if (operand_check == check_error)
5114 {
5115 i.error = invalid_vector_register_set;
5116 return 1;
5117 }
5118 as_warn (_("mask, index, and destination registers should be distinct"));
5119 }
8444f82a
MZ
5120 else if (i.reg_operands == 1 && i.mask)
5121 {
1b54b8d7
JB
5122 if (i.types[1].bitfield.regsimd
5123 && (i.types[1].bitfield.xmmword
5124 || i.types[1].bitfield.ymmword
5125 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5126 && (register_number (i.op[1].regs)
5127 == register_number (i.index_reg)))
5128 {
5129 if (operand_check == check_error)
5130 {
5131 i.error = invalid_vector_register_set;
5132 return 1;
5133 }
5134 if (operand_check != check_none)
5135 as_warn (_("index and destination registers should be distinct"));
5136 }
5137 }
43234a1e 5138 }
7bab8ab5 5139
43234a1e
L
5140 /* Check if broadcast is supported by the instruction and is applied
5141 to the memory operand. */
5142 if (i.broadcast)
5143 {
8e6e0792 5144 i386_operand_type type, overlap;
43234a1e
L
5145
5146 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5147 and its broadcast bytes match the memory operand. */
32546502 5148 op = i.broadcast->operand;
8e6e0792 5149 if (!t->opcode_modifier.broadcast
32546502 5150 || !i.types[op].bitfield.mem
c39e5b26 5151 || (!i.types[op].bitfield.unspecified
4a1b91ea 5152 && !match_broadcast_size (t, op)))
43234a1e
L
5153 {
5154 bad_broadcast:
5155 i.error = unsupported_broadcast;
5156 return 1;
5157 }
8e6e0792 5158
4a1b91ea
L
5159 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5160 * i.broadcast->type);
8e6e0792 5161 operand_type_set (&type, 0);
4a1b91ea 5162 switch (i.broadcast->bytes)
8e6e0792 5163 {
4a1b91ea
L
5164 case 2:
5165 type.bitfield.word = 1;
5166 break;
5167 case 4:
5168 type.bitfield.dword = 1;
5169 break;
8e6e0792
JB
5170 case 8:
5171 type.bitfield.qword = 1;
5172 break;
5173 case 16:
5174 type.bitfield.xmmword = 1;
5175 break;
5176 case 32:
5177 type.bitfield.ymmword = 1;
5178 break;
5179 case 64:
5180 type.bitfield.zmmword = 1;
5181 break;
5182 default:
5183 goto bad_broadcast;
5184 }
5185
5186 overlap = operand_type_and (type, t->operand_types[op]);
5187 if (operand_type_all_zero (&overlap))
5188 goto bad_broadcast;
5189
5190 if (t->opcode_modifier.checkregsize)
5191 {
5192 unsigned int j;
5193
e2195274 5194 type.bitfield.baseindex = 1;
8e6e0792
JB
5195 for (j = 0; j < i.operands; ++j)
5196 {
5197 if (j != op
5198 && !operand_type_register_match(i.types[j],
5199 t->operand_types[j],
5200 type,
5201 t->operand_types[op]))
5202 goto bad_broadcast;
5203 }
5204 }
43234a1e
L
5205 }
5206 /* If broadcast is supported in this instruction, we need to check if
5207 operand of one-element size isn't specified without broadcast. */
5208 else if (t->opcode_modifier.broadcast && i.mem_operands)
5209 {
5210 /* Find memory operand. */
5211 for (op = 0; op < i.operands; op++)
5212 if (operand_type_check (i.types[op], anymem))
5213 break;
5214 gas_assert (op < i.operands);
5215 /* Check size of the memory operand. */
4a1b91ea 5216 if (match_broadcast_size (t, op))
43234a1e
L
5217 {
5218 i.error = broadcast_needed;
5219 return 1;
5220 }
5221 }
c39e5b26
JB
5222 else
5223 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5224
5225 /* Check if requested masking is supported. */
5226 if (i.mask
5227 && (!t->opcode_modifier.masking
5228 || (i.mask->zeroing
5229 && t->opcode_modifier.masking == MERGING_MASKING)))
5230 {
5231 i.error = unsupported_masking;
5232 return 1;
5233 }
5234
5235 /* Check if masking is applied to dest operand. */
5236 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5237 {
5238 i.error = mask_not_on_destination;
5239 return 1;
5240 }
5241
43234a1e
L
5242 /* Check RC/SAE. */
5243 if (i.rounding)
5244 {
5245 if ((i.rounding->type != saeonly
5246 && !t->opcode_modifier.staticrounding)
5247 || (i.rounding->type == saeonly
5248 && (t->opcode_modifier.staticrounding
5249 || !t->opcode_modifier.sae)))
5250 {
5251 i.error = unsupported_rc_sae;
5252 return 1;
5253 }
5254 /* If the instruction has several immediate operands and one of
5255 them is rounding, the rounding operand should be the last
5256 immediate operand. */
5257 if (i.imm_operands > 1
5258 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5259 {
43234a1e 5260 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5261 return 1;
5262 }
6c30d220
L
5263 }
5264
43234a1e 5265 /* Check vector Disp8 operand. */
b5014f7a
JB
5266 if (t->opcode_modifier.disp8memshift
5267 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5268 {
5269 if (i.broadcast)
4a1b91ea 5270 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5271 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5272 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5273 else
5274 {
5275 const i386_operand_type *type = NULL;
5276
5277 i.memshift = 0;
5278 for (op = 0; op < i.operands; op++)
5279 if (operand_type_check (i.types[op], anymem))
5280 {
4174bfff
JB
5281 if (t->opcode_modifier.evex == EVEXLIG)
5282 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5283 else if (t->operand_types[op].bitfield.xmmword
5284 + t->operand_types[op].bitfield.ymmword
5285 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5286 type = &t->operand_types[op];
5287 else if (!i.types[op].bitfield.unspecified)
5288 type = &i.types[op];
5289 }
4174bfff
JB
5290 else if (i.types[op].bitfield.regsimd
5291 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5292 {
5293 if (i.types[op].bitfield.zmmword)
5294 i.memshift = 6;
5295 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5296 i.memshift = 5;
5297 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5298 i.memshift = 4;
5299 }
5300
5301 if (type)
5302 {
5303 if (type->bitfield.zmmword)
5304 i.memshift = 6;
5305 else if (type->bitfield.ymmword)
5306 i.memshift = 5;
5307 else if (type->bitfield.xmmword)
5308 i.memshift = 4;
5309 }
5310
5311 /* For the check in fits_in_disp8(). */
5312 if (i.memshift == 0)
5313 i.memshift = -1;
5314 }
43234a1e
L
5315
5316 for (op = 0; op < i.operands; op++)
5317 if (operand_type_check (i.types[op], disp)
5318 && i.op[op].disps->X_op == O_constant)
5319 {
b5014f7a 5320 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5321 {
b5014f7a
JB
5322 i.types[op].bitfield.disp8 = 1;
5323 return 0;
43234a1e 5324 }
b5014f7a 5325 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5326 }
5327 }
b5014f7a
JB
5328
5329 i.memshift = 0;
43234a1e 5330
6c30d220
L
5331 return 0;
5332}
5333
43f3e2ee 5334/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5335 operand types. */
5336
5337static int
5338VEX_check_operands (const insn_template *t)
5339{
86fa6981 5340 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5341 {
86fa6981 5342 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5343 if (!is_evex_encoding (t))
86fa6981
L
5344 {
5345 i.error = unsupported;
5346 return 1;
5347 }
5348 return 0;
43234a1e
L
5349 }
5350
a683cc34 5351 if (!t->opcode_modifier.vex)
86fa6981
L
5352 {
5353 /* This instruction template doesn't have VEX prefix. */
5354 if (i.vec_encoding != vex_encoding_default)
5355 {
5356 i.error = unsupported;
5357 return 1;
5358 }
5359 return 0;
5360 }
a683cc34
SP
5361
5362 /* Only check VEX_Imm4, which must be the first operand. */
5363 if (t->operand_types[0].bitfield.vec_imm4)
5364 {
5365 if (i.op[0].imms->X_op != O_constant
5366 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5367 {
a65babc9 5368 i.error = bad_imm4;
891edac4
L
5369 return 1;
5370 }
a683cc34
SP
5371
5372 /* Turn off Imm8 so that update_imm won't complain. */
5373 i.types[0] = vec_imm4;
5374 }
5375
5376 return 0;
5377}
5378
d3ce72d0 5379static const insn_template *
83b16ac6 5380match_template (char mnem_suffix)
29b0f896
AM
5381{
5382 /* Points to template once we've found it. */
d3ce72d0 5383 const insn_template *t;
40fb9820 5384 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5385 i386_operand_type overlap4;
29b0f896 5386 unsigned int found_reverse_match;
83b16ac6 5387 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5388 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5389 int addr_prefix_disp;
a5c311ca 5390 unsigned int j;
3ac21baa 5391 unsigned int found_cpu_match, size_match;
45664ddb 5392 unsigned int check_register;
5614d22c 5393 enum i386_error specific_error = 0;
29b0f896 5394
c0f3af97
L
5395#if MAX_OPERANDS != 5
5396# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5397#endif
5398
29b0f896 5399 found_reverse_match = 0;
539e75ad 5400 addr_prefix_disp = -1;
40fb9820
L
5401
5402 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5403 if (intel_syntax && i.broadcast)
5404 /* nothing */;
5405 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5406 suffix_check.no_bsuf = 1;
5407 else if (i.suffix == WORD_MNEM_SUFFIX)
5408 suffix_check.no_wsuf = 1;
5409 else if (i.suffix == SHORT_MNEM_SUFFIX)
5410 suffix_check.no_ssuf = 1;
5411 else if (i.suffix == LONG_MNEM_SUFFIX)
5412 suffix_check.no_lsuf = 1;
5413 else if (i.suffix == QWORD_MNEM_SUFFIX)
5414 suffix_check.no_qsuf = 1;
5415 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5416 suffix_check.no_ldsuf = 1;
29b0f896 5417
83b16ac6
JB
5418 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5419 if (intel_syntax)
5420 {
5421 switch (mnem_suffix)
5422 {
5423 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5424 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5425 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5426 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5427 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5428 }
5429 }
5430
01559ecc
L
5431 /* Must have right number of operands. */
5432 i.error = number_of_operands_mismatch;
5433
45aa61fe 5434 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5435 {
539e75ad
L
5436 addr_prefix_disp = -1;
5437
29b0f896
AM
5438 if (i.operands != t->operands)
5439 continue;
5440
50aecf8c 5441 /* Check processor support. */
a65babc9 5442 i.error = unsupported;
c0f3af97
L
5443 found_cpu_match = (cpu_flags_match (t)
5444 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5445 if (!found_cpu_match)
5446 continue;
5447
e1d4d893 5448 /* Check AT&T mnemonic. */
a65babc9 5449 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5450 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5451 continue;
5452
e92bae62 5453 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5454 i.error = unsupported_syntax;
5c07affc 5455 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5456 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5457 || (intel64 && t->opcode_modifier.amd64)
5458 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5459 continue;
5460
20592a94 5461 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5462 i.error = invalid_instruction_suffix;
567e4e96
L
5463 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5464 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5465 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5466 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5467 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5468 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5469 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5470 continue;
83b16ac6
JB
5471 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5472 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5473 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5474 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5475 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5476 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5477 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5478 continue;
29b0f896 5479
3ac21baa
JB
5480 size_match = operand_size_match (t);
5481 if (!size_match)
7d5e4556 5482 continue;
539e75ad 5483
5c07affc
L
5484 for (j = 0; j < MAX_OPERANDS; j++)
5485 operand_types[j] = t->operand_types[j];
5486
45aa61fe
AM
5487 /* In general, don't allow 64-bit operands in 32-bit mode. */
5488 if (i.suffix == QWORD_MNEM_SUFFIX
5489 && flag_code != CODE_64BIT
5490 && (intel_syntax
40fb9820 5491 ? (!t->opcode_modifier.ignoresize
625cbd7a 5492 && !t->opcode_modifier.broadcast
45aa61fe
AM
5493 && !intel_float_operand (t->name))
5494 : intel_float_operand (t->name) != 2)
40fb9820 5495 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5496 && !operand_types[0].bitfield.regsimd)
40fb9820 5497 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5498 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5499 && (t->base_opcode != 0x0fc7
5500 || t->extension_opcode != 1 /* cmpxchg8b */))
5501 continue;
5502
192dc9c6
JB
5503 /* In general, don't allow 32-bit operands on pre-386. */
5504 else if (i.suffix == LONG_MNEM_SUFFIX
5505 && !cpu_arch_flags.bitfield.cpui386
5506 && (intel_syntax
5507 ? (!t->opcode_modifier.ignoresize
5508 && !intel_float_operand (t->name))
5509 : intel_float_operand (t->name) != 2)
5510 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5511 && !operand_types[0].bitfield.regsimd)
192dc9c6 5512 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5513 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5514 continue;
5515
29b0f896 5516 /* Do not verify operands when there are none. */
50aecf8c 5517 else
29b0f896 5518 {
c6fb90c8 5519 if (!t->operands)
2dbab7d5
L
5520 /* We've found a match; break out of loop. */
5521 break;
29b0f896 5522 }
252b5132 5523
539e75ad
L
5524 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5525 into Disp32/Disp16/Disp32 operand. */
5526 if (i.prefix[ADDR_PREFIX] != 0)
5527 {
40fb9820 5528 /* There should be only one Disp operand. */
539e75ad
L
5529 switch (flag_code)
5530 {
5531 case CODE_16BIT:
40fb9820
L
5532 for (j = 0; j < MAX_OPERANDS; j++)
5533 {
5534 if (operand_types[j].bitfield.disp16)
5535 {
5536 addr_prefix_disp = j;
5537 operand_types[j].bitfield.disp32 = 1;
5538 operand_types[j].bitfield.disp16 = 0;
5539 break;
5540 }
5541 }
539e75ad
L
5542 break;
5543 case CODE_32BIT:
40fb9820
L
5544 for (j = 0; j < MAX_OPERANDS; j++)
5545 {
5546 if (operand_types[j].bitfield.disp32)
5547 {
5548 addr_prefix_disp = j;
5549 operand_types[j].bitfield.disp32 = 0;
5550 operand_types[j].bitfield.disp16 = 1;
5551 break;
5552 }
5553 }
539e75ad
L
5554 break;
5555 case CODE_64BIT:
40fb9820
L
5556 for (j = 0; j < MAX_OPERANDS; j++)
5557 {
5558 if (operand_types[j].bitfield.disp64)
5559 {
5560 addr_prefix_disp = j;
5561 operand_types[j].bitfield.disp64 = 0;
5562 operand_types[j].bitfield.disp32 = 1;
5563 break;
5564 }
5565 }
539e75ad
L
5566 break;
5567 }
539e75ad
L
5568 }
5569
02a86693
L
5570 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5571 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5572 continue;
5573
56ffb741 5574 /* We check register size if needed. */
e2195274
JB
5575 if (t->opcode_modifier.checkregsize)
5576 {
5577 check_register = (1 << t->operands) - 1;
5578 if (i.broadcast)
5579 check_register &= ~(1 << i.broadcast->operand);
5580 }
5581 else
5582 check_register = 0;
5583
c6fb90c8 5584 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5585 switch (t->operands)
5586 {
5587 case 1:
40fb9820 5588 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5589 continue;
5590 break;
5591 case 2:
33eaf5de 5592 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5593 only in 32bit mode and we can use opcode 0x90. In 64bit
5594 mode, we can't use 0x90 for xchg %eax, %eax since it should
5595 zero-extend %eax to %rax. */
5596 if (flag_code == CODE_64BIT
5597 && t->base_opcode == 0x90
0dfbf9d7
L
5598 && operand_type_equal (&i.types [0], &acc32)
5599 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5600 continue;
1212781b
JB
5601 /* xrelease mov %eax, <disp> is another special case. It must not
5602 match the accumulator-only encoding of mov. */
5603 if (flag_code != CODE_64BIT
5604 && i.hle_prefix
5605 && t->base_opcode == 0xa0
5606 && i.types[0].bitfield.acc
5607 && operand_type_check (i.types[1], anymem))
5608 continue;
3ac21baa
JB
5609 if (!(size_match & MATCH_STRAIGHT))
5610 goto check_reverse;
86fa6981
L
5611 /* If we want store form, we reverse direction of operands. */
5612 if (i.dir_encoding == dir_encoding_store
5613 && t->opcode_modifier.d)
5614 goto check_reverse;
1a0670f3 5615 /* Fall through. */
b6169b20 5616
29b0f896 5617 case 3:
86fa6981
L
5618 /* If we want store form, we skip the current load. */
5619 if (i.dir_encoding == dir_encoding_store
5620 && i.mem_operands == 0
5621 && t->opcode_modifier.load)
fa99fab2 5622 continue;
1a0670f3 5623 /* Fall through. */
f48ff2ae 5624 case 4:
c0f3af97 5625 case 5:
c6fb90c8 5626 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5627 if (!operand_type_match (overlap0, i.types[0])
5628 || !operand_type_match (overlap1, i.types[1])
e2195274 5629 || ((check_register & 3) == 3
dc821c5f 5630 && !operand_type_register_match (i.types[0],
40fb9820 5631 operand_types[0],
dc821c5f 5632 i.types[1],
40fb9820 5633 operand_types[1])))
29b0f896
AM
5634 {
5635 /* Check if other direction is valid ... */
38e314eb 5636 if (!t->opcode_modifier.d)
29b0f896
AM
5637 continue;
5638
b6169b20 5639check_reverse:
3ac21baa
JB
5640 if (!(size_match & MATCH_REVERSE))
5641 continue;
29b0f896 5642 /* Try reversing direction of operands. */
c6fb90c8
L
5643 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5644 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5645 if (!operand_type_match (overlap0, i.types[0])
5646 || !operand_type_match (overlap1, i.types[1])
45664ddb 5647 || (check_register
dc821c5f 5648 && !operand_type_register_match (i.types[0],
45664ddb 5649 operand_types[1],
45664ddb
L
5650 i.types[1],
5651 operand_types[0])))
29b0f896
AM
5652 {
5653 /* Does not match either direction. */
5654 continue;
5655 }
38e314eb 5656 /* found_reverse_match holds which of D or FloatR
29b0f896 5657 we've found. */
38e314eb
JB
5658 if (!t->opcode_modifier.d)
5659 found_reverse_match = 0;
5660 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5661 found_reverse_match = Opcode_FloatD;
5662 else
38e314eb 5663 found_reverse_match = Opcode_D;
40fb9820 5664 if (t->opcode_modifier.floatr)
8a2ed489 5665 found_reverse_match |= Opcode_FloatR;
29b0f896 5666 }
f48ff2ae 5667 else
29b0f896 5668 {
f48ff2ae 5669 /* Found a forward 2 operand match here. */
d1cbb4db
L
5670 switch (t->operands)
5671 {
c0f3af97
L
5672 case 5:
5673 overlap4 = operand_type_and (i.types[4],
5674 operand_types[4]);
1a0670f3 5675 /* Fall through. */
d1cbb4db 5676 case 4:
c6fb90c8
L
5677 overlap3 = operand_type_and (i.types[3],
5678 operand_types[3]);
1a0670f3 5679 /* Fall through. */
d1cbb4db 5680 case 3:
c6fb90c8
L
5681 overlap2 = operand_type_and (i.types[2],
5682 operand_types[2]);
d1cbb4db
L
5683 break;
5684 }
29b0f896 5685
f48ff2ae
L
5686 switch (t->operands)
5687 {
c0f3af97
L
5688 case 5:
5689 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5690 || !operand_type_register_match (i.types[3],
c0f3af97 5691 operand_types[3],
c0f3af97
L
5692 i.types[4],
5693 operand_types[4]))
5694 continue;
1a0670f3 5695 /* Fall through. */
f48ff2ae 5696 case 4:
40fb9820 5697 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5698 || ((check_register & 0xa) == 0xa
5699 && !operand_type_register_match (i.types[1],
f7768225
JB
5700 operand_types[1],
5701 i.types[3],
e2195274
JB
5702 operand_types[3]))
5703 || ((check_register & 0xc) == 0xc
5704 && !operand_type_register_match (i.types[2],
5705 operand_types[2],
5706 i.types[3],
5707 operand_types[3])))
f48ff2ae 5708 continue;
1a0670f3 5709 /* Fall through. */
f48ff2ae
L
5710 case 3:
5711 /* Here we make use of the fact that there are no
23e42951 5712 reverse match 3 operand instructions. */
40fb9820 5713 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5714 || ((check_register & 5) == 5
5715 && !operand_type_register_match (i.types[0],
23e42951
JB
5716 operand_types[0],
5717 i.types[2],
e2195274
JB
5718 operand_types[2]))
5719 || ((check_register & 6) == 6
5720 && !operand_type_register_match (i.types[1],
5721 operand_types[1],
5722 i.types[2],
5723 operand_types[2])))
f48ff2ae
L
5724 continue;
5725 break;
5726 }
29b0f896 5727 }
f48ff2ae 5728 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5729 slip through to break. */
5730 }
3629bb00 5731 if (!found_cpu_match)
29b0f896
AM
5732 {
5733 found_reverse_match = 0;
5734 continue;
5735 }
c0f3af97 5736
5614d22c
JB
5737 /* Check if vector and VEX operands are valid. */
5738 if (check_VecOperands (t) || VEX_check_operands (t))
5739 {
5740 specific_error = i.error;
5741 continue;
5742 }
a683cc34 5743
29b0f896
AM
5744 /* We've found a match; break out of loop. */
5745 break;
5746 }
5747
5748 if (t == current_templates->end)
5749 {
5750 /* We found no match. */
a65babc9 5751 const char *err_msg;
5614d22c 5752 switch (specific_error ? specific_error : i.error)
a65babc9
L
5753 {
5754 default:
5755 abort ();
86e026a4 5756 case operand_size_mismatch:
a65babc9
L
5757 err_msg = _("operand size mismatch");
5758 break;
5759 case operand_type_mismatch:
5760 err_msg = _("operand type mismatch");
5761 break;
5762 case register_type_mismatch:
5763 err_msg = _("register type mismatch");
5764 break;
5765 case number_of_operands_mismatch:
5766 err_msg = _("number of operands mismatch");
5767 break;
5768 case invalid_instruction_suffix:
5769 err_msg = _("invalid instruction suffix");
5770 break;
5771 case bad_imm4:
4a2608e3 5772 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5773 break;
a65babc9
L
5774 case unsupported_with_intel_mnemonic:
5775 err_msg = _("unsupported with Intel mnemonic");
5776 break;
5777 case unsupported_syntax:
5778 err_msg = _("unsupported syntax");
5779 break;
5780 case unsupported:
35262a23 5781 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5782 current_templates->start->name);
5783 return NULL;
6c30d220
L
5784 case invalid_vsib_address:
5785 err_msg = _("invalid VSIB address");
5786 break;
7bab8ab5
JB
5787 case invalid_vector_register_set:
5788 err_msg = _("mask, index, and destination registers must be distinct");
5789 break;
6c30d220
L
5790 case unsupported_vector_index_register:
5791 err_msg = _("unsupported vector index register");
5792 break;
43234a1e
L
5793 case unsupported_broadcast:
5794 err_msg = _("unsupported broadcast");
5795 break;
43234a1e
L
5796 case broadcast_needed:
5797 err_msg = _("broadcast is needed for operand of such type");
5798 break;
5799 case unsupported_masking:
5800 err_msg = _("unsupported masking");
5801 break;
5802 case mask_not_on_destination:
5803 err_msg = _("mask not on destination operand");
5804 break;
5805 case no_default_mask:
5806 err_msg = _("default mask isn't allowed");
5807 break;
5808 case unsupported_rc_sae:
5809 err_msg = _("unsupported static rounding/sae");
5810 break;
5811 case rc_sae_operand_not_last_imm:
5812 if (intel_syntax)
5813 err_msg = _("RC/SAE operand must precede immediate operands");
5814 else
5815 err_msg = _("RC/SAE operand must follow immediate operands");
5816 break;
5817 case invalid_register_operand:
5818 err_msg = _("invalid register operand");
5819 break;
a65babc9
L
5820 }
5821 as_bad (_("%s for `%s'"), err_msg,
891edac4 5822 current_templates->start->name);
fa99fab2 5823 return NULL;
29b0f896 5824 }
252b5132 5825
29b0f896
AM
5826 if (!quiet_warnings)
5827 {
5828 if (!intel_syntax
40fb9820
L
5829 && (i.types[0].bitfield.jumpabsolute
5830 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5831 {
5832 as_warn (_("indirect %s without `*'"), t->name);
5833 }
5834
40fb9820
L
5835 if (t->opcode_modifier.isprefix
5836 && t->opcode_modifier.ignoresize)
29b0f896
AM
5837 {
5838 /* Warn them that a data or address size prefix doesn't
5839 affect assembly of the next line of code. */
5840 as_warn (_("stand-alone `%s' prefix"), t->name);
5841 }
5842 }
5843
5844 /* Copy the template we found. */
5845 i.tm = *t;
539e75ad
L
5846
5847 if (addr_prefix_disp != -1)
5848 i.tm.operand_types[addr_prefix_disp]
5849 = operand_types[addr_prefix_disp];
5850
29b0f896
AM
5851 if (found_reverse_match)
5852 {
5853 /* If we found a reverse match we must alter the opcode
5854 direction bit. found_reverse_match holds bits to change
5855 (different for int & float insns). */
5856
5857 i.tm.base_opcode ^= found_reverse_match;
5858
539e75ad
L
5859 i.tm.operand_types[0] = operand_types[1];
5860 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5861 }
5862
fa99fab2 5863 return t;
29b0f896
AM
5864}
5865
5866static int
e3bb37b5 5867check_string (void)
29b0f896 5868{
40fb9820
L
5869 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5870 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5871 {
5872 if (i.seg[0] != NULL && i.seg[0] != &es)
5873 {
a87af027 5874 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5875 i.tm.name,
a87af027
JB
5876 mem_op + 1,
5877 register_prefix);
29b0f896
AM
5878 return 0;
5879 }
5880 /* There's only ever one segment override allowed per instruction.
5881 This instruction possibly has a legal segment override on the
5882 second operand, so copy the segment to where non-string
5883 instructions store it, allowing common code. */
5884 i.seg[0] = i.seg[1];
5885 }
40fb9820 5886 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5887 {
5888 if (i.seg[1] != NULL && i.seg[1] != &es)
5889 {
a87af027 5890 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5891 i.tm.name,
a87af027
JB
5892 mem_op + 2,
5893 register_prefix);
29b0f896
AM
5894 return 0;
5895 }
5896 }
5897 return 1;
5898}
5899
5900static int
543613e9 5901process_suffix (void)
29b0f896
AM
5902{
5903 /* If matched instruction specifies an explicit instruction mnemonic
5904 suffix, use it. */
40fb9820
L
5905 if (i.tm.opcode_modifier.size16)
5906 i.suffix = WORD_MNEM_SUFFIX;
5907 else if (i.tm.opcode_modifier.size32)
5908 i.suffix = LONG_MNEM_SUFFIX;
5909 else if (i.tm.opcode_modifier.size64)
5910 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5911 else if (i.reg_operands)
5912 {
5913 /* If there's no instruction mnemonic suffix we try to invent one
5914 based on register operands. */
5915 if (!i.suffix)
5916 {
5917 /* We take i.suffix from the last register operand specified,
5918 Destination register type is more significant than source
381d071f
L
5919 register type. crc32 in SSE4.2 prefers source register
5920 type. */
5921 if (i.tm.base_opcode == 0xf20f38f1)
5922 {
dc821c5f 5923 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5924 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5925 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5926 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5927 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5928 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5929 }
9344ff29 5930 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5931 {
dc821c5f 5932 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5933 i.suffix = BYTE_MNEM_SUFFIX;
5934 }
381d071f
L
5935
5936 if (!i.suffix)
5937 {
5938 int op;
5939
20592a94
L
5940 if (i.tm.base_opcode == 0xf20f38f1
5941 || i.tm.base_opcode == 0xf20f38f0)
5942 {
5943 /* We have to know the operand size for crc32. */
5944 as_bad (_("ambiguous memory operand size for `%s`"),
5945 i.tm.name);
5946 return 0;
5947 }
5948
381d071f 5949 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5950 if (!i.tm.operand_types[op].bitfield.inoutportreg
5951 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5952 {
8819ada6
JB
5953 if (!i.types[op].bitfield.reg)
5954 continue;
5955 if (i.types[op].bitfield.byte)
5956 i.suffix = BYTE_MNEM_SUFFIX;
5957 else if (i.types[op].bitfield.word)
5958 i.suffix = WORD_MNEM_SUFFIX;
5959 else if (i.types[op].bitfield.dword)
5960 i.suffix = LONG_MNEM_SUFFIX;
5961 else if (i.types[op].bitfield.qword)
5962 i.suffix = QWORD_MNEM_SUFFIX;
5963 else
5964 continue;
5965 break;
381d071f
L
5966 }
5967 }
29b0f896
AM
5968 }
5969 else if (i.suffix == BYTE_MNEM_SUFFIX)
5970 {
2eb952a4
L
5971 if (intel_syntax
5972 && i.tm.opcode_modifier.ignoresize
5973 && i.tm.opcode_modifier.no_bsuf)
5974 i.suffix = 0;
5975 else if (!check_byte_reg ())
29b0f896
AM
5976 return 0;
5977 }
5978 else if (i.suffix == LONG_MNEM_SUFFIX)
5979 {
2eb952a4
L
5980 if (intel_syntax
5981 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5982 && i.tm.opcode_modifier.no_lsuf
5983 && !i.tm.opcode_modifier.todword
5984 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5985 i.suffix = 0;
5986 else if (!check_long_reg ())
29b0f896
AM
5987 return 0;
5988 }
5989 else if (i.suffix == QWORD_MNEM_SUFFIX)
5990 {
955e1e6a
L
5991 if (intel_syntax
5992 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5993 && i.tm.opcode_modifier.no_qsuf
5994 && !i.tm.opcode_modifier.todword
5995 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5996 i.suffix = 0;
5997 else if (!check_qword_reg ())
29b0f896
AM
5998 return 0;
5999 }
6000 else if (i.suffix == WORD_MNEM_SUFFIX)
6001 {
2eb952a4
L
6002 if (intel_syntax
6003 && i.tm.opcode_modifier.ignoresize
6004 && i.tm.opcode_modifier.no_wsuf)
6005 i.suffix = 0;
6006 else if (!check_word_reg ())
29b0f896
AM
6007 return 0;
6008 }
40fb9820 6009 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6010 /* Do nothing if the instruction is going to ignore the prefix. */
6011 ;
6012 else
6013 abort ();
6014 }
40fb9820 6015 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6016 && !i.suffix
6017 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6018 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6019 {
6020 i.suffix = stackop_size;
6021 }
9306ca4a
JB
6022 else if (intel_syntax
6023 && !i.suffix
40fb9820
L
6024 && (i.tm.operand_types[0].bitfield.jumpabsolute
6025 || i.tm.opcode_modifier.jumpbyte
6026 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6027 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6028 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6029 {
6030 switch (flag_code)
6031 {
6032 case CODE_64BIT:
40fb9820 6033 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6034 {
6035 i.suffix = QWORD_MNEM_SUFFIX;
6036 break;
6037 }
1a0670f3 6038 /* Fall through. */
9306ca4a 6039 case CODE_32BIT:
40fb9820 6040 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6041 i.suffix = LONG_MNEM_SUFFIX;
6042 break;
6043 case CODE_16BIT:
40fb9820 6044 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6045 i.suffix = WORD_MNEM_SUFFIX;
6046 break;
6047 }
6048 }
252b5132 6049
9306ca4a 6050 if (!i.suffix)
29b0f896 6051 {
9306ca4a
JB
6052 if (!intel_syntax)
6053 {
40fb9820 6054 if (i.tm.opcode_modifier.w)
9306ca4a 6055 {
4eed87de
AM
6056 as_bad (_("no instruction mnemonic suffix given and "
6057 "no register operands; can't size instruction"));
9306ca4a
JB
6058 return 0;
6059 }
6060 }
6061 else
6062 {
40fb9820 6063 unsigned int suffixes;
7ab9ffdd 6064
40fb9820
L
6065 suffixes = !i.tm.opcode_modifier.no_bsuf;
6066 if (!i.tm.opcode_modifier.no_wsuf)
6067 suffixes |= 1 << 1;
6068 if (!i.tm.opcode_modifier.no_lsuf)
6069 suffixes |= 1 << 2;
fc4adea1 6070 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6071 suffixes |= 1 << 3;
6072 if (!i.tm.opcode_modifier.no_ssuf)
6073 suffixes |= 1 << 4;
c2b9da16 6074 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6075 suffixes |= 1 << 5;
6076
6077 /* There are more than suffix matches. */
6078 if (i.tm.opcode_modifier.w
9306ca4a 6079 || ((suffixes & (suffixes - 1))
40fb9820
L
6080 && !i.tm.opcode_modifier.defaultsize
6081 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6082 {
6083 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6084 return 0;
6085 }
6086 }
29b0f896 6087 }
252b5132 6088
d2224064
JB
6089 /* Change the opcode based on the operand size given by i.suffix. */
6090 switch (i.suffix)
29b0f896 6091 {
d2224064
JB
6092 /* Size floating point instruction. */
6093 case LONG_MNEM_SUFFIX:
6094 if (i.tm.opcode_modifier.floatmf)
6095 {
6096 i.tm.base_opcode ^= 4;
6097 break;
6098 }
6099 /* fall through */
6100 case WORD_MNEM_SUFFIX:
6101 case QWORD_MNEM_SUFFIX:
29b0f896 6102 /* It's not a byte, select word/dword operation. */
40fb9820 6103 if (i.tm.opcode_modifier.w)
29b0f896 6104 {
40fb9820 6105 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6106 i.tm.base_opcode |= 8;
6107 else
6108 i.tm.base_opcode |= 1;
6109 }
d2224064
JB
6110 /* fall through */
6111 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6112 /* Now select between word & dword operations via the operand
6113 size prefix, except for instructions that will ignore this
6114 prefix anyway. */
75c0a438
L
6115 if (i.reg_operands > 0
6116 && i.types[0].bitfield.reg
6117 && i.tm.opcode_modifier.addrprefixopreg
6118 && (i.tm.opcode_modifier.immext
6119 || i.operands == 1))
cb712a9e 6120 {
ca61edf2
L
6121 /* The address size override prefix changes the size of the
6122 first operand. */
40fb9820 6123 if ((flag_code == CODE_32BIT
75c0a438 6124 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6125 || (flag_code != CODE_32BIT
75c0a438 6126 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6127 if (!add_prefix (ADDR_PREFIX_OPCODE))
6128 return 0;
6129 }
6130 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6131 && !i.tm.opcode_modifier.ignoresize
6132 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
6133 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6134 || (flag_code == CODE_64BIT
40fb9820 6135 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6136 {
6137 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6138
40fb9820 6139 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6140 prefix = ADDR_PREFIX_OPCODE;
252b5132 6141
29b0f896
AM
6142 if (!add_prefix (prefix))
6143 return 0;
24eab124 6144 }
252b5132 6145
29b0f896
AM
6146 /* Set mode64 for an operand. */
6147 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6148 && flag_code == CODE_64BIT
d2224064 6149 && !i.tm.opcode_modifier.norex64
46e883c5 6150 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6151 need rex64. */
6152 && ! (i.operands == 2
6153 && i.tm.base_opcode == 0x90
6154 && i.tm.extension_opcode == None
6155 && operand_type_equal (&i.types [0], &acc64)
6156 && operand_type_equal (&i.types [1], &acc64)))
6157 i.rex |= REX_W;
3e73aa7c 6158
d2224064 6159 break;
29b0f896 6160 }
7ecd2f8b 6161
c0a30a9f
L
6162 if (i.reg_operands != 0
6163 && i.operands > 1
6164 && i.tm.opcode_modifier.addrprefixopreg
6165 && !i.tm.opcode_modifier.immext)
6166 {
6167 /* Check invalid register operand when the address size override
6168 prefix changes the size of register operands. */
6169 unsigned int op;
6170 enum { need_word, need_dword, need_qword } need;
6171
6172 if (flag_code == CODE_32BIT)
6173 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6174 else
6175 {
6176 if (i.prefix[ADDR_PREFIX])
6177 need = need_dword;
6178 else
6179 need = flag_code == CODE_64BIT ? need_qword : need_word;
6180 }
6181
6182 for (op = 0; op < i.operands; op++)
6183 if (i.types[op].bitfield.reg
6184 && ((need == need_word
6185 && !i.op[op].regs->reg_type.bitfield.word)
6186 || (need == need_dword
6187 && !i.op[op].regs->reg_type.bitfield.dword)
6188 || (need == need_qword
6189 && !i.op[op].regs->reg_type.bitfield.qword)))
6190 {
6191 as_bad (_("invalid register operand size for `%s'"),
6192 i.tm.name);
6193 return 0;
6194 }
6195 }
6196
29b0f896
AM
6197 return 1;
6198}
3e73aa7c 6199
29b0f896 6200static int
543613e9 6201check_byte_reg (void)
29b0f896
AM
6202{
6203 int op;
543613e9 6204
29b0f896
AM
6205 for (op = i.operands; --op >= 0;)
6206 {
dc821c5f
JB
6207 /* Skip non-register operands. */
6208 if (!i.types[op].bitfield.reg)
6209 continue;
6210
29b0f896
AM
6211 /* If this is an eight bit register, it's OK. If it's the 16 or
6212 32 bit version of an eight bit register, we will just use the
6213 low portion, and that's OK too. */
dc821c5f 6214 if (i.types[op].bitfield.byte)
29b0f896
AM
6215 continue;
6216
5a819eb9
JB
6217 /* I/O port address operands are OK too. */
6218 if (i.tm.operand_types[op].bitfield.inoutportreg)
6219 continue;
6220
9344ff29
L
6221 /* crc32 doesn't generate this warning. */
6222 if (i.tm.base_opcode == 0xf20f38f0)
6223 continue;
6224
dc821c5f
JB
6225 if ((i.types[op].bitfield.word
6226 || i.types[op].bitfield.dword
6227 || i.types[op].bitfield.qword)
5a819eb9
JB
6228 && i.op[op].regs->reg_num < 4
6229 /* Prohibit these changes in 64bit mode, since the lowering
6230 would be more complicated. */
6231 && flag_code != CODE_64BIT)
29b0f896 6232 {
29b0f896 6233#if REGISTER_WARNINGS
5a819eb9 6234 if (!quiet_warnings)
a540244d
L
6235 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6236 register_prefix,
dc821c5f 6237 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6238 ? REGNAM_AL - REGNAM_AX
6239 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6240 register_prefix,
29b0f896
AM
6241 i.op[op].regs->reg_name,
6242 i.suffix);
6243#endif
6244 continue;
6245 }
6246 /* Any other register is bad. */
dc821c5f 6247 if (i.types[op].bitfield.reg
40fb9820 6248 || i.types[op].bitfield.regmmx
1b54b8d7 6249 || i.types[op].bitfield.regsimd
40fb9820
L
6250 || i.types[op].bitfield.sreg2
6251 || i.types[op].bitfield.sreg3
6252 || i.types[op].bitfield.control
6253 || i.types[op].bitfield.debug
ca0d63fe 6254 || i.types[op].bitfield.test)
29b0f896 6255 {
a540244d
L
6256 as_bad (_("`%s%s' not allowed with `%s%c'"),
6257 register_prefix,
29b0f896
AM
6258 i.op[op].regs->reg_name,
6259 i.tm.name,
6260 i.suffix);
6261 return 0;
6262 }
6263 }
6264 return 1;
6265}
6266
6267static int
e3bb37b5 6268check_long_reg (void)
29b0f896
AM
6269{
6270 int op;
6271
6272 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6273 /* Skip non-register operands. */
6274 if (!i.types[op].bitfield.reg)
6275 continue;
29b0f896
AM
6276 /* Reject eight bit registers, except where the template requires
6277 them. (eg. movzb) */
dc821c5f
JB
6278 else if (i.types[op].bitfield.byte
6279 && (i.tm.operand_types[op].bitfield.reg
6280 || i.tm.operand_types[op].bitfield.acc)
6281 && (i.tm.operand_types[op].bitfield.word
6282 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6283 {
a540244d
L
6284 as_bad (_("`%s%s' not allowed with `%s%c'"),
6285 register_prefix,
29b0f896
AM
6286 i.op[op].regs->reg_name,
6287 i.tm.name,
6288 i.suffix);
6289 return 0;
6290 }
e4630f71 6291 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6292 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6293 && i.types[op].bitfield.word
6294 && (i.tm.operand_types[op].bitfield.reg
6295 || i.tm.operand_types[op].bitfield.acc)
6296 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6297 {
6298 /* Prohibit these changes in the 64bit mode, since the
6299 lowering is more complicated. */
6300 if (flag_code == CODE_64BIT)
252b5132 6301 {
2b5d6a91 6302 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6303 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6304 i.suffix);
6305 return 0;
252b5132 6306 }
29b0f896 6307#if REGISTER_WARNINGS
cecf1424
JB
6308 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6309 register_prefix,
6310 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6311 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6312#endif
252b5132 6313 }
e4630f71 6314 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6315 else if (i.types[op].bitfield.qword
6316 && (i.tm.operand_types[op].bitfield.reg
6317 || i.tm.operand_types[op].bitfield.acc)
6318 && i.tm.operand_types[op].bitfield.dword)
252b5132 6319 {
34828aad 6320 if (intel_syntax
ca61edf2 6321 && i.tm.opcode_modifier.toqword
1b54b8d7 6322 && !i.types[0].bitfield.regsimd)
34828aad 6323 {
ca61edf2 6324 /* Convert to QWORD. We want REX byte. */
34828aad
L
6325 i.suffix = QWORD_MNEM_SUFFIX;
6326 }
6327 else
6328 {
2b5d6a91 6329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6330 register_prefix, i.op[op].regs->reg_name,
6331 i.suffix);
6332 return 0;
6333 }
29b0f896
AM
6334 }
6335 return 1;
6336}
252b5132 6337
29b0f896 6338static int
e3bb37b5 6339check_qword_reg (void)
29b0f896
AM
6340{
6341 int op;
252b5132 6342
29b0f896 6343 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6344 /* Skip non-register operands. */
6345 if (!i.types[op].bitfield.reg)
6346 continue;
29b0f896
AM
6347 /* Reject eight bit registers, except where the template requires
6348 them. (eg. movzb) */
dc821c5f
JB
6349 else if (i.types[op].bitfield.byte
6350 && (i.tm.operand_types[op].bitfield.reg
6351 || i.tm.operand_types[op].bitfield.acc)
6352 && (i.tm.operand_types[op].bitfield.word
6353 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6354 {
a540244d
L
6355 as_bad (_("`%s%s' not allowed with `%s%c'"),
6356 register_prefix,
29b0f896
AM
6357 i.op[op].regs->reg_name,
6358 i.tm.name,
6359 i.suffix);
6360 return 0;
6361 }
e4630f71 6362 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6363 else if ((i.types[op].bitfield.word
6364 || i.types[op].bitfield.dword)
6365 && (i.tm.operand_types[op].bitfield.reg
6366 || i.tm.operand_types[op].bitfield.acc)
6367 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6368 {
6369 /* Prohibit these changes in the 64bit mode, since the
6370 lowering is more complicated. */
34828aad 6371 if (intel_syntax
ca61edf2 6372 && i.tm.opcode_modifier.todword
1b54b8d7 6373 && !i.types[0].bitfield.regsimd)
34828aad 6374 {
ca61edf2 6375 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6376 i.suffix = LONG_MNEM_SUFFIX;
6377 }
6378 else
6379 {
2b5d6a91 6380 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6381 register_prefix, i.op[op].regs->reg_name,
6382 i.suffix);
6383 return 0;
6384 }
252b5132 6385 }
29b0f896
AM
6386 return 1;
6387}
252b5132 6388
29b0f896 6389static int
e3bb37b5 6390check_word_reg (void)
29b0f896
AM
6391{
6392 int op;
6393 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6394 /* Skip non-register operands. */
6395 if (!i.types[op].bitfield.reg)
6396 continue;
29b0f896
AM
6397 /* Reject eight bit registers, except where the template requires
6398 them. (eg. movzb) */
dc821c5f
JB
6399 else if (i.types[op].bitfield.byte
6400 && (i.tm.operand_types[op].bitfield.reg
6401 || i.tm.operand_types[op].bitfield.acc)
6402 && (i.tm.operand_types[op].bitfield.word
6403 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6404 {
a540244d
L
6405 as_bad (_("`%s%s' not allowed with `%s%c'"),
6406 register_prefix,
29b0f896
AM
6407 i.op[op].regs->reg_name,
6408 i.tm.name,
6409 i.suffix);
6410 return 0;
6411 }
e4630f71 6412 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6413 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6414 && (i.types[op].bitfield.dword
6415 || i.types[op].bitfield.qword)
6416 && (i.tm.operand_types[op].bitfield.reg
6417 || i.tm.operand_types[op].bitfield.acc)
6418 && i.tm.operand_types[op].bitfield.word)
252b5132 6419 {
29b0f896
AM
6420 /* Prohibit these changes in the 64bit mode, since the
6421 lowering is more complicated. */
6422 if (flag_code == CODE_64BIT)
252b5132 6423 {
2b5d6a91 6424 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6425 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6426 i.suffix);
6427 return 0;
252b5132 6428 }
29b0f896 6429#if REGISTER_WARNINGS
cecf1424
JB
6430 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6431 register_prefix,
6432 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6433 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6434#endif
6435 }
6436 return 1;
6437}
252b5132 6438
29b0f896 6439static int
40fb9820 6440update_imm (unsigned int j)
29b0f896 6441{
bc0844ae 6442 i386_operand_type overlap = i.types[j];
40fb9820
L
6443 if ((overlap.bitfield.imm8
6444 || overlap.bitfield.imm8s
6445 || overlap.bitfield.imm16
6446 || overlap.bitfield.imm32
6447 || overlap.bitfield.imm32s
6448 || overlap.bitfield.imm64)
0dfbf9d7
L
6449 && !operand_type_equal (&overlap, &imm8)
6450 && !operand_type_equal (&overlap, &imm8s)
6451 && !operand_type_equal (&overlap, &imm16)
6452 && !operand_type_equal (&overlap, &imm32)
6453 && !operand_type_equal (&overlap, &imm32s)
6454 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6455 {
6456 if (i.suffix)
6457 {
40fb9820
L
6458 i386_operand_type temp;
6459
0dfbf9d7 6460 operand_type_set (&temp, 0);
7ab9ffdd 6461 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6462 {
6463 temp.bitfield.imm8 = overlap.bitfield.imm8;
6464 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6465 }
6466 else if (i.suffix == WORD_MNEM_SUFFIX)
6467 temp.bitfield.imm16 = overlap.bitfield.imm16;
6468 else if (i.suffix == QWORD_MNEM_SUFFIX)
6469 {
6470 temp.bitfield.imm64 = overlap.bitfield.imm64;
6471 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6472 }
6473 else
6474 temp.bitfield.imm32 = overlap.bitfield.imm32;
6475 overlap = temp;
29b0f896 6476 }
0dfbf9d7
L
6477 else if (operand_type_equal (&overlap, &imm16_32_32s)
6478 || operand_type_equal (&overlap, &imm16_32)
6479 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6480 {
40fb9820 6481 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6482 overlap = imm16;
40fb9820 6483 else
65da13b5 6484 overlap = imm32s;
29b0f896 6485 }
0dfbf9d7
L
6486 if (!operand_type_equal (&overlap, &imm8)
6487 && !operand_type_equal (&overlap, &imm8s)
6488 && !operand_type_equal (&overlap, &imm16)
6489 && !operand_type_equal (&overlap, &imm32)
6490 && !operand_type_equal (&overlap, &imm32s)
6491 && !operand_type_equal (&overlap, &imm64))
29b0f896 6492 {
4eed87de
AM
6493 as_bad (_("no instruction mnemonic suffix given; "
6494 "can't determine immediate size"));
29b0f896
AM
6495 return 0;
6496 }
6497 }
40fb9820 6498 i.types[j] = overlap;
29b0f896 6499
40fb9820
L
6500 return 1;
6501}
6502
6503static int
6504finalize_imm (void)
6505{
bc0844ae 6506 unsigned int j, n;
29b0f896 6507
bc0844ae
L
6508 /* Update the first 2 immediate operands. */
6509 n = i.operands > 2 ? 2 : i.operands;
6510 if (n)
6511 {
6512 for (j = 0; j < n; j++)
6513 if (update_imm (j) == 0)
6514 return 0;
40fb9820 6515
bc0844ae
L
6516 /* The 3rd operand can't be immediate operand. */
6517 gas_assert (operand_type_check (i.types[2], imm) == 0);
6518 }
29b0f896
AM
6519
6520 return 1;
6521}
6522
6523static int
e3bb37b5 6524process_operands (void)
29b0f896
AM
6525{
6526 /* Default segment register this instruction will use for memory
6527 accesses. 0 means unknown. This is only for optimizing out
6528 unnecessary segment overrides. */
6529 const seg_entry *default_seg = 0;
6530
2426c15f 6531 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6532 {
91d6fa6a
NC
6533 unsigned int dupl = i.operands;
6534 unsigned int dest = dupl - 1;
9fcfb3d7
L
6535 unsigned int j;
6536
c0f3af97 6537 /* The destination must be an xmm register. */
9c2799c2 6538 gas_assert (i.reg_operands
91d6fa6a 6539 && MAX_OPERANDS > dupl
7ab9ffdd 6540 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6541
1b54b8d7
JB
6542 if (i.tm.operand_types[0].bitfield.acc
6543 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6544 {
8cd7925b 6545 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6546 {
6547 /* Keep xmm0 for instructions with VEX prefix and 3
6548 sources. */
1b54b8d7
JB
6549 i.tm.operand_types[0].bitfield.acc = 0;
6550 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6551 goto duplicate;
6552 }
e2ec9d29 6553 else
c0f3af97
L
6554 {
6555 /* We remove the first xmm0 and keep the number of
6556 operands unchanged, which in fact duplicates the
6557 destination. */
6558 for (j = 1; j < i.operands; j++)
6559 {
6560 i.op[j - 1] = i.op[j];
6561 i.types[j - 1] = i.types[j];
6562 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6563 }
6564 }
6565 }
6566 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6567 {
91d6fa6a 6568 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6569 && (i.tm.opcode_modifier.vexsources
6570 == VEX3SOURCES));
c0f3af97
L
6571
6572 /* Add the implicit xmm0 for instructions with VEX prefix
6573 and 3 sources. */
6574 for (j = i.operands; j > 0; j--)
6575 {
6576 i.op[j] = i.op[j - 1];
6577 i.types[j] = i.types[j - 1];
6578 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6579 }
6580 i.op[0].regs
6581 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6582 i.types[0] = regxmm;
c0f3af97
L
6583 i.tm.operand_types[0] = regxmm;
6584
6585 i.operands += 2;
6586 i.reg_operands += 2;
6587 i.tm.operands += 2;
6588
91d6fa6a 6589 dupl++;
c0f3af97 6590 dest++;
91d6fa6a
NC
6591 i.op[dupl] = i.op[dest];
6592 i.types[dupl] = i.types[dest];
6593 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6594 }
c0f3af97
L
6595 else
6596 {
6597duplicate:
6598 i.operands++;
6599 i.reg_operands++;
6600 i.tm.operands++;
6601
91d6fa6a
NC
6602 i.op[dupl] = i.op[dest];
6603 i.types[dupl] = i.types[dest];
6604 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6605 }
6606
6607 if (i.tm.opcode_modifier.immext)
6608 process_immext ();
6609 }
1b54b8d7
JB
6610 else if (i.tm.operand_types[0].bitfield.acc
6611 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6612 {
6613 unsigned int j;
6614
9fcfb3d7
L
6615 for (j = 1; j < i.operands; j++)
6616 {
6617 i.op[j - 1] = i.op[j];
6618 i.types[j - 1] = i.types[j];
6619
6620 /* We need to adjust fields in i.tm since they are used by
6621 build_modrm_byte. */
6622 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6623 }
6624
e2ec9d29
L
6625 i.operands--;
6626 i.reg_operands--;
e2ec9d29
L
6627 i.tm.operands--;
6628 }
920d2ddc
IT
6629 else if (i.tm.opcode_modifier.implicitquadgroup)
6630 {
a477a8c4
JB
6631 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6632
920d2ddc 6633 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6634 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6635 regnum = register_number (i.op[1].regs);
6636 first_reg_in_group = regnum & ~3;
6637 last_reg_in_group = first_reg_in_group + 3;
6638 if (regnum != first_reg_in_group)
6639 as_warn (_("source register `%s%s' implicitly denotes"
6640 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6641 register_prefix, i.op[1].regs->reg_name,
6642 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6643 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6644 i.tm.name);
6645 }
e2ec9d29
L
6646 else if (i.tm.opcode_modifier.regkludge)
6647 {
6648 /* The imul $imm, %reg instruction is converted into
6649 imul $imm, %reg, %reg, and the clr %reg instruction
6650 is converted into xor %reg, %reg. */
6651
6652 unsigned int first_reg_op;
6653
6654 if (operand_type_check (i.types[0], reg))
6655 first_reg_op = 0;
6656 else
6657 first_reg_op = 1;
6658 /* Pretend we saw the extra register operand. */
9c2799c2 6659 gas_assert (i.reg_operands == 1
7ab9ffdd 6660 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6661 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6662 i.types[first_reg_op + 1] = i.types[first_reg_op];
6663 i.operands++;
6664 i.reg_operands++;
29b0f896
AM
6665 }
6666
40fb9820 6667 if (i.tm.opcode_modifier.shortform)
29b0f896 6668 {
40fb9820
L
6669 if (i.types[0].bitfield.sreg2
6670 || i.types[0].bitfield.sreg3)
29b0f896 6671 {
4eed87de
AM
6672 if (i.tm.base_opcode == POP_SEG_SHORT
6673 && i.op[0].regs->reg_num == 1)
29b0f896 6674 {
a87af027 6675 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6676 return 0;
29b0f896 6677 }
4eed87de
AM
6678 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6679 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6680 i.rex |= REX_B;
4eed87de
AM
6681 }
6682 else
6683 {
7ab9ffdd 6684 /* The register or float register operand is in operand
85f10a01 6685 0 or 1. */
40fb9820 6686 unsigned int op;
7ab9ffdd 6687
ca0d63fe 6688 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6689 || operand_type_check (i.types[0], reg))
6690 op = 0;
6691 else
6692 op = 1;
4eed87de
AM
6693 /* Register goes in low 3 bits of opcode. */
6694 i.tm.base_opcode |= i.op[op].regs->reg_num;
6695 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6696 i.rex |= REX_B;
40fb9820 6697 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6698 {
4eed87de
AM
6699 /* Warn about some common errors, but press on regardless.
6700 The first case can be generated by gcc (<= 2.8.1). */
6701 if (i.operands == 2)
6702 {
6703 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6704 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6705 register_prefix, i.op[!intel_syntax].regs->reg_name,
6706 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6707 }
6708 else
6709 {
6710 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6711 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6712 register_prefix, i.op[0].regs->reg_name);
4eed87de 6713 }
29b0f896
AM
6714 }
6715 }
6716 }
40fb9820 6717 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6718 {
6719 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6720 must be put into the modrm byte). Now, we make the modrm and
6721 index base bytes based on all the info we've collected. */
29b0f896
AM
6722
6723 default_seg = build_modrm_byte ();
6724 }
8a2ed489 6725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6726 {
6727 default_seg = &ds;
6728 }
40fb9820 6729 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6730 {
6731 /* For the string instructions that allow a segment override
6732 on one of their operands, the default segment is ds. */
6733 default_seg = &ds;
6734 }
6735
75178d9d
L
6736 if (i.tm.base_opcode == 0x8d /* lea */
6737 && i.seg[0]
6738 && !quiet_warnings)
30123838 6739 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6740
6741 /* If a segment was explicitly specified, and the specified segment
6742 is not the default, use an opcode prefix to select it. If we
6743 never figured out what the default segment is, then default_seg
6744 will be zero at this point, and the specified segment prefix will
6745 always be used. */
29b0f896
AM
6746 if ((i.seg[0]) && (i.seg[0] != default_seg))
6747 {
6748 if (!add_prefix (i.seg[0]->seg_prefix))
6749 return 0;
6750 }
6751 return 1;
6752}
6753
6754static const seg_entry *
e3bb37b5 6755build_modrm_byte (void)
29b0f896
AM
6756{
6757 const seg_entry *default_seg = 0;
c0f3af97 6758 unsigned int source, dest;
8cd7925b 6759 int vex_3_sources;
c0f3af97 6760
8cd7925b 6761 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6762 if (vex_3_sources)
6763 {
91d6fa6a 6764 unsigned int nds, reg_slot;
4c2c6516 6765 expressionS *exp;
c0f3af97 6766
6b8d3588 6767 dest = i.operands - 1;
c0f3af97 6768 nds = dest - 1;
922d8de8 6769
a683cc34 6770 /* There are 2 kinds of instructions:
bed3d976
JB
6771 1. 5 operands: 4 register operands or 3 register operands
6772 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6773 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6774 ZMM register.
bed3d976 6775 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6776 plus 1 memory operand, with VexXDS. */
922d8de8 6777 gas_assert ((i.reg_operands == 4
bed3d976
JB
6778 || (i.reg_operands == 3 && i.mem_operands == 1))
6779 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6780 && i.tm.opcode_modifier.vexw
6781 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6782
48db9223
JB
6783 /* If VexW1 is set, the first non-immediate operand is the source and
6784 the second non-immediate one is encoded in the immediate operand. */
6785 if (i.tm.opcode_modifier.vexw == VEXW1)
6786 {
6787 source = i.imm_operands;
6788 reg_slot = i.imm_operands + 1;
6789 }
6790 else
6791 {
6792 source = i.imm_operands + 1;
6793 reg_slot = i.imm_operands;
6794 }
6795
a683cc34 6796 if (i.imm_operands == 0)
bed3d976
JB
6797 {
6798 /* When there is no immediate operand, generate an 8bit
6799 immediate operand to encode the first operand. */
6800 exp = &im_expressions[i.imm_operands++];
6801 i.op[i.operands].imms = exp;
6802 i.types[i.operands] = imm8;
6803 i.operands++;
6804
6805 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6806 exp->X_op = O_constant;
6807 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6808 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6809 }
922d8de8 6810 else
bed3d976
JB
6811 {
6812 unsigned int imm_slot;
a683cc34 6813
2f1bada2
JB
6814 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6815
bed3d976
JB
6816 if (i.tm.opcode_modifier.immext)
6817 {
6818 /* When ImmExt is set, the immediate byte is the last
6819 operand. */
6820 imm_slot = i.operands - 1;
6821 source--;
6822 reg_slot--;
6823 }
6824 else
6825 {
6826 imm_slot = 0;
6827
6828 /* Turn on Imm8 so that output_imm will generate it. */
6829 i.types[imm_slot].bitfield.imm8 = 1;
6830 }
6831
6832 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6833 i.op[imm_slot].imms->X_add_number
6834 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6835 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6836 }
a683cc34 6837
10c17abd 6838 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6839 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6840 }
6841 else
6842 source = dest = 0;
29b0f896
AM
6843
6844 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6845 implicit registers do not count. If there are 3 register
6846 operands, it must be a instruction with VexNDS. For a
6847 instruction with VexNDD, the destination register is encoded
6848 in VEX prefix. If there are 4 register operands, it must be
6849 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6850 if (i.mem_operands == 0
6851 && ((i.reg_operands == 2
2426c15f 6852 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6853 || (i.reg_operands == 3
2426c15f 6854 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6855 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6856 {
cab737b9
L
6857 switch (i.operands)
6858 {
6859 case 2:
6860 source = 0;
6861 break;
6862 case 3:
c81128dc
L
6863 /* When there are 3 operands, one of them may be immediate,
6864 which may be the first or the last operand. Otherwise,
c0f3af97
L
6865 the first operand must be shift count register (cl) or it
6866 is an instruction with VexNDS. */
9c2799c2 6867 gas_assert (i.imm_operands == 1
7ab9ffdd 6868 || (i.imm_operands == 0
2426c15f 6869 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6870 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6871 if (operand_type_check (i.types[0], imm)
6872 || i.types[0].bitfield.shiftcount)
6873 source = 1;
6874 else
6875 source = 0;
cab737b9
L
6876 break;
6877 case 4:
368d64cc
L
6878 /* When there are 4 operands, the first two must be 8bit
6879 immediate operands. The source operand will be the 3rd
c0f3af97
L
6880 one.
6881
6882 For instructions with VexNDS, if the first operand
6883 an imm8, the source operand is the 2nd one. If the last
6884 operand is imm8, the source operand is the first one. */
9c2799c2 6885 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6886 && i.types[0].bitfield.imm8
6887 && i.types[1].bitfield.imm8)
2426c15f 6888 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6889 && i.imm_operands == 1
6890 && (i.types[0].bitfield.imm8
43234a1e
L
6891 || i.types[i.operands - 1].bitfield.imm8
6892 || i.rounding)));
9f2670f2
L
6893 if (i.imm_operands == 2)
6894 source = 2;
6895 else
c0f3af97
L
6896 {
6897 if (i.types[0].bitfield.imm8)
6898 source = 1;
6899 else
6900 source = 0;
6901 }
c0f3af97
L
6902 break;
6903 case 5:
e771e7c9 6904 if (is_evex_encoding (&i.tm))
43234a1e
L
6905 {
6906 /* For EVEX instructions, when there are 5 operands, the
6907 first one must be immediate operand. If the second one
6908 is immediate operand, the source operand is the 3th
6909 one. If the last one is immediate operand, the source
6910 operand is the 2nd one. */
6911 gas_assert (i.imm_operands == 2
6912 && i.tm.opcode_modifier.sae
6913 && operand_type_check (i.types[0], imm));
6914 if (operand_type_check (i.types[1], imm))
6915 source = 2;
6916 else if (operand_type_check (i.types[4], imm))
6917 source = 1;
6918 else
6919 abort ();
6920 }
cab737b9
L
6921 break;
6922 default:
6923 abort ();
6924 }
6925
c0f3af97
L
6926 if (!vex_3_sources)
6927 {
6928 dest = source + 1;
6929
43234a1e
L
6930 /* RC/SAE operand could be between DEST and SRC. That happens
6931 when one operand is GPR and the other one is XMM/YMM/ZMM
6932 register. */
6933 if (i.rounding && i.rounding->operand == (int) dest)
6934 dest++;
6935
2426c15f 6936 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6937 {
43234a1e 6938 /* For instructions with VexNDS, the register-only source
c5d0745b 6939 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6940 register. It is encoded in VEX prefix. We need to
6941 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6942
6943 i386_operand_type op;
6944 unsigned int vvvv;
6945
6946 /* Check register-only source operand when two source
6947 operands are swapped. */
6948 if (!i.tm.operand_types[source].bitfield.baseindex
6949 && i.tm.operand_types[dest].bitfield.baseindex)
6950 {
6951 vvvv = source;
6952 source = dest;
6953 }
6954 else
6955 vvvv = dest;
6956
6957 op = i.tm.operand_types[vvvv];
fa99fab2 6958 op.bitfield.regmem = 0;
c0f3af97 6959 if ((dest + 1) >= i.operands
dc821c5f
JB
6960 || ((!op.bitfield.reg
6961 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6962 && !op.bitfield.regsimd
43234a1e 6963 && !operand_type_equal (&op, &regmask)))
c0f3af97 6964 abort ();
f12dc422 6965 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6966 dest++;
6967 }
6968 }
29b0f896
AM
6969
6970 i.rm.mode = 3;
6971 /* One of the register operands will be encoded in the i.tm.reg
6972 field, the other in the combined i.tm.mode and i.tm.regmem
6973 fields. If no form of this instruction supports a memory
6974 destination operand, then we assume the source operand may
6975 sometimes be a memory operand and so we need to store the
6976 destination in the i.rm.reg field. */
40fb9820
L
6977 if (!i.tm.operand_types[dest].bitfield.regmem
6978 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6979 {
6980 i.rm.reg = i.op[dest].regs->reg_num;
6981 i.rm.regmem = i.op[source].regs->reg_num;
6982 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6983 i.rex |= REX_R;
43234a1e
L
6984 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6985 i.vrex |= REX_R;
29b0f896 6986 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6987 i.rex |= REX_B;
43234a1e
L
6988 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6989 i.vrex |= REX_B;
29b0f896
AM
6990 }
6991 else
6992 {
6993 i.rm.reg = i.op[source].regs->reg_num;
6994 i.rm.regmem = i.op[dest].regs->reg_num;
6995 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6996 i.rex |= REX_B;
43234a1e
L
6997 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6998 i.vrex |= REX_B;
29b0f896 6999 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7000 i.rex |= REX_R;
43234a1e
L
7001 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7002 i.vrex |= REX_R;
29b0f896 7003 }
e0c7f900 7004 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7005 {
e0c7f900 7006 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7007 abort ();
e0c7f900 7008 i.rex &= ~REX_R;
c4a530c5
JB
7009 add_prefix (LOCK_PREFIX_OPCODE);
7010 }
29b0f896
AM
7011 }
7012 else
7013 { /* If it's not 2 reg operands... */
c0f3af97
L
7014 unsigned int mem;
7015
29b0f896
AM
7016 if (i.mem_operands)
7017 {
7018 unsigned int fake_zero_displacement = 0;
99018f42 7019 unsigned int op;
4eed87de 7020
7ab9ffdd
L
7021 for (op = 0; op < i.operands; op++)
7022 if (operand_type_check (i.types[op], anymem))
7023 break;
7ab9ffdd 7024 gas_assert (op < i.operands);
29b0f896 7025
6c30d220
L
7026 if (i.tm.opcode_modifier.vecsib)
7027 {
7028 if (i.index_reg->reg_num == RegEiz
7029 || i.index_reg->reg_num == RegRiz)
7030 abort ();
7031
7032 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7033 if (!i.base_reg)
7034 {
7035 i.sib.base = NO_BASE_REGISTER;
7036 i.sib.scale = i.log2_scale_factor;
7037 i.types[op].bitfield.disp8 = 0;
7038 i.types[op].bitfield.disp16 = 0;
7039 i.types[op].bitfield.disp64 = 0;
43083a50 7040 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7041 {
7042 /* Must be 32 bit */
7043 i.types[op].bitfield.disp32 = 1;
7044 i.types[op].bitfield.disp32s = 0;
7045 }
7046 else
7047 {
7048 i.types[op].bitfield.disp32 = 0;
7049 i.types[op].bitfield.disp32s = 1;
7050 }
7051 }
7052 i.sib.index = i.index_reg->reg_num;
7053 if ((i.index_reg->reg_flags & RegRex) != 0)
7054 i.rex |= REX_X;
43234a1e
L
7055 if ((i.index_reg->reg_flags & RegVRex) != 0)
7056 i.vrex |= REX_X;
6c30d220
L
7057 }
7058
29b0f896
AM
7059 default_seg = &ds;
7060
7061 if (i.base_reg == 0)
7062 {
7063 i.rm.mode = 0;
7064 if (!i.disp_operands)
9bb129e8 7065 fake_zero_displacement = 1;
29b0f896
AM
7066 if (i.index_reg == 0)
7067 {
73053c1f
JB
7068 i386_operand_type newdisp;
7069
6c30d220 7070 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7071 /* Operand is just <disp> */
20f0a1fc 7072 if (flag_code == CODE_64BIT)
29b0f896
AM
7073 {
7074 /* 64bit mode overwrites the 32bit absolute
7075 addressing by RIP relative addressing and
7076 absolute addressing is encoded by one of the
7077 redundant SIB forms. */
7078 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7079 i.sib.base = NO_BASE_REGISTER;
7080 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7081 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7082 }
fc225355
L
7083 else if ((flag_code == CODE_16BIT)
7084 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7085 {
7086 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7087 newdisp = disp16;
20f0a1fc
NC
7088 }
7089 else
7090 {
7091 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7092 newdisp = disp32;
29b0f896 7093 }
73053c1f
JB
7094 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7095 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7096 }
6c30d220 7097 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7098 {
6c30d220 7099 /* !i.base_reg && i.index_reg */
db51cc60
L
7100 if (i.index_reg->reg_num == RegEiz
7101 || i.index_reg->reg_num == RegRiz)
7102 i.sib.index = NO_INDEX_REGISTER;
7103 else
7104 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7105 i.sib.base = NO_BASE_REGISTER;
7106 i.sib.scale = i.log2_scale_factor;
7107 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7108 i.types[op].bitfield.disp8 = 0;
7109 i.types[op].bitfield.disp16 = 0;
7110 i.types[op].bitfield.disp64 = 0;
43083a50 7111 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7112 {
7113 /* Must be 32 bit */
7114 i.types[op].bitfield.disp32 = 1;
7115 i.types[op].bitfield.disp32s = 0;
7116 }
29b0f896 7117 else
40fb9820
L
7118 {
7119 i.types[op].bitfield.disp32 = 0;
7120 i.types[op].bitfield.disp32s = 1;
7121 }
29b0f896 7122 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7123 i.rex |= REX_X;
29b0f896
AM
7124 }
7125 }
7126 /* RIP addressing for 64bit mode. */
9a04903e
JB
7127 else if (i.base_reg->reg_num == RegRip ||
7128 i.base_reg->reg_num == RegEip)
29b0f896 7129 {
6c30d220 7130 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7131 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7132 i.types[op].bitfield.disp8 = 0;
7133 i.types[op].bitfield.disp16 = 0;
7134 i.types[op].bitfield.disp32 = 0;
7135 i.types[op].bitfield.disp32s = 1;
7136 i.types[op].bitfield.disp64 = 0;
71903a11 7137 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7138 if (! i.disp_operands)
7139 fake_zero_displacement = 1;
29b0f896 7140 }
dc821c5f 7141 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7142 {
6c30d220 7143 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7144 switch (i.base_reg->reg_num)
7145 {
7146 case 3: /* (%bx) */
7147 if (i.index_reg == 0)
7148 i.rm.regmem = 7;
7149 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7150 i.rm.regmem = i.index_reg->reg_num - 6;
7151 break;
7152 case 5: /* (%bp) */
7153 default_seg = &ss;
7154 if (i.index_reg == 0)
7155 {
7156 i.rm.regmem = 6;
40fb9820 7157 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7158 {
7159 /* fake (%bp) into 0(%bp) */
b5014f7a 7160 i.types[op].bitfield.disp8 = 1;
252b5132 7161 fake_zero_displacement = 1;
29b0f896
AM
7162 }
7163 }
7164 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7165 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7166 break;
7167 default: /* (%si) -> 4 or (%di) -> 5 */
7168 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7169 }
7170 i.rm.mode = mode_from_disp_size (i.types[op]);
7171 }
7172 else /* i.base_reg and 32/64 bit mode */
7173 {
7174 if (flag_code == CODE_64BIT
40fb9820
L
7175 && operand_type_check (i.types[op], disp))
7176 {
73053c1f
JB
7177 i.types[op].bitfield.disp16 = 0;
7178 i.types[op].bitfield.disp64 = 0;
40fb9820 7179 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7180 {
7181 i.types[op].bitfield.disp32 = 0;
7182 i.types[op].bitfield.disp32s = 1;
7183 }
40fb9820 7184 else
73053c1f
JB
7185 {
7186 i.types[op].bitfield.disp32 = 1;
7187 i.types[op].bitfield.disp32s = 0;
7188 }
40fb9820 7189 }
20f0a1fc 7190
6c30d220
L
7191 if (!i.tm.opcode_modifier.vecsib)
7192 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7193 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7194 i.rex |= REX_B;
29b0f896
AM
7195 i.sib.base = i.base_reg->reg_num;
7196 /* x86-64 ignores REX prefix bit here to avoid decoder
7197 complications. */
848930b2
JB
7198 if (!(i.base_reg->reg_flags & RegRex)
7199 && (i.base_reg->reg_num == EBP_REG_NUM
7200 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7201 default_seg = &ss;
848930b2 7202 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7203 {
848930b2 7204 fake_zero_displacement = 1;
b5014f7a 7205 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7206 }
7207 i.sib.scale = i.log2_scale_factor;
7208 if (i.index_reg == 0)
7209 {
6c30d220 7210 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7211 /* <disp>(%esp) becomes two byte modrm with no index
7212 register. We've already stored the code for esp
7213 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7214 Any base register besides %esp will not use the
7215 extra modrm byte. */
7216 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7217 }
6c30d220 7218 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7219 {
db51cc60
L
7220 if (i.index_reg->reg_num == RegEiz
7221 || i.index_reg->reg_num == RegRiz)
7222 i.sib.index = NO_INDEX_REGISTER;
7223 else
7224 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7225 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7226 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7227 i.rex |= REX_X;
29b0f896 7228 }
67a4f2b7
AO
7229
7230 if (i.disp_operands
7231 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7232 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7233 i.rm.mode = 0;
7234 else
a501d77e
L
7235 {
7236 if (!fake_zero_displacement
7237 && !i.disp_operands
7238 && i.disp_encoding)
7239 {
7240 fake_zero_displacement = 1;
7241 if (i.disp_encoding == disp_encoding_8bit)
7242 i.types[op].bitfield.disp8 = 1;
7243 else
7244 i.types[op].bitfield.disp32 = 1;
7245 }
7246 i.rm.mode = mode_from_disp_size (i.types[op]);
7247 }
29b0f896 7248 }
252b5132 7249
29b0f896
AM
7250 if (fake_zero_displacement)
7251 {
7252 /* Fakes a zero displacement assuming that i.types[op]
7253 holds the correct displacement size. */
7254 expressionS *exp;
7255
9c2799c2 7256 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7257 exp = &disp_expressions[i.disp_operands++];
7258 i.op[op].disps = exp;
7259 exp->X_op = O_constant;
7260 exp->X_add_number = 0;
7261 exp->X_add_symbol = (symbolS *) 0;
7262 exp->X_op_symbol = (symbolS *) 0;
7263 }
c0f3af97
L
7264
7265 mem = op;
29b0f896 7266 }
c0f3af97
L
7267 else
7268 mem = ~0;
252b5132 7269
8c43a48b 7270 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7271 {
7272 if (operand_type_check (i.types[0], imm))
7273 i.vex.register_specifier = NULL;
7274 else
7275 {
7276 /* VEX.vvvv encodes one of the sources when the first
7277 operand is not an immediate. */
1ef99a7b 7278 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7279 i.vex.register_specifier = i.op[0].regs;
7280 else
7281 i.vex.register_specifier = i.op[1].regs;
7282 }
7283
7284 /* Destination is a XMM register encoded in the ModRM.reg
7285 and VEX.R bit. */
7286 i.rm.reg = i.op[2].regs->reg_num;
7287 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7288 i.rex |= REX_R;
7289
7290 /* ModRM.rm and VEX.B encodes the other source. */
7291 if (!i.mem_operands)
7292 {
7293 i.rm.mode = 3;
7294
1ef99a7b 7295 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7296 i.rm.regmem = i.op[1].regs->reg_num;
7297 else
7298 i.rm.regmem = i.op[0].regs->reg_num;
7299
7300 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7301 i.rex |= REX_B;
7302 }
7303 }
2426c15f 7304 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7305 {
7306 i.vex.register_specifier = i.op[2].regs;
7307 if (!i.mem_operands)
7308 {
7309 i.rm.mode = 3;
7310 i.rm.regmem = i.op[1].regs->reg_num;
7311 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7312 i.rex |= REX_B;
7313 }
7314 }
29b0f896
AM
7315 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7316 (if any) based on i.tm.extension_opcode. Again, we must be
7317 careful to make sure that segment/control/debug/test/MMX
7318 registers are coded into the i.rm.reg field. */
f88c9eb0 7319 else if (i.reg_operands)
29b0f896 7320 {
99018f42 7321 unsigned int op;
7ab9ffdd
L
7322 unsigned int vex_reg = ~0;
7323
7324 for (op = 0; op < i.operands; op++)
dc821c5f 7325 if (i.types[op].bitfield.reg
7ab9ffdd 7326 || i.types[op].bitfield.regmmx
1b54b8d7 7327 || i.types[op].bitfield.regsimd
7e8b059b 7328 || i.types[op].bitfield.regbnd
43234a1e 7329 || i.types[op].bitfield.regmask
7ab9ffdd
L
7330 || i.types[op].bitfield.sreg2
7331 || i.types[op].bitfield.sreg3
7332 || i.types[op].bitfield.control
7333 || i.types[op].bitfield.debug
7334 || i.types[op].bitfield.test)
7335 break;
c0209578 7336
7ab9ffdd
L
7337 if (vex_3_sources)
7338 op = dest;
2426c15f 7339 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7340 {
7341 /* For instructions with VexNDS, the register-only
7342 source operand is encoded in VEX prefix. */
7343 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7344
7ab9ffdd 7345 if (op > mem)
c0f3af97 7346 {
7ab9ffdd
L
7347 vex_reg = op++;
7348 gas_assert (op < i.operands);
c0f3af97
L
7349 }
7350 else
c0f3af97 7351 {
f12dc422
L
7352 /* Check register-only source operand when two source
7353 operands are swapped. */
7354 if (!i.tm.operand_types[op].bitfield.baseindex
7355 && i.tm.operand_types[op + 1].bitfield.baseindex)
7356 {
7357 vex_reg = op;
7358 op += 2;
7359 gas_assert (mem == (vex_reg + 1)
7360 && op < i.operands);
7361 }
7362 else
7363 {
7364 vex_reg = op + 1;
7365 gas_assert (vex_reg < i.operands);
7366 }
c0f3af97 7367 }
7ab9ffdd 7368 }
2426c15f 7369 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7370 {
f12dc422 7371 /* For instructions with VexNDD, the register destination
7ab9ffdd 7372 is encoded in VEX prefix. */
f12dc422
L
7373 if (i.mem_operands == 0)
7374 {
7375 /* There is no memory operand. */
7376 gas_assert ((op + 2) == i.operands);
7377 vex_reg = op + 1;
7378 }
7379 else
8d63c93e 7380 {
ed438a93
JB
7381 /* There are only 2 non-immediate operands. */
7382 gas_assert (op < i.imm_operands + 2
7383 && i.operands == i.imm_operands + 2);
7384 vex_reg = i.imm_operands + 1;
f12dc422 7385 }
7ab9ffdd
L
7386 }
7387 else
7388 gas_assert (op < i.operands);
99018f42 7389
7ab9ffdd
L
7390 if (vex_reg != (unsigned int) ~0)
7391 {
f12dc422 7392 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7393
dc821c5f
JB
7394 if ((!type->bitfield.reg
7395 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7396 && !type->bitfield.regsimd
43234a1e 7397 && !operand_type_equal (type, &regmask))
7ab9ffdd 7398 abort ();
f88c9eb0 7399
7ab9ffdd
L
7400 i.vex.register_specifier = i.op[vex_reg].regs;
7401 }
7402
1b9f0c97
L
7403 /* Don't set OP operand twice. */
7404 if (vex_reg != op)
7ab9ffdd 7405 {
1b9f0c97
L
7406 /* If there is an extension opcode to put here, the
7407 register number must be put into the regmem field. */
7408 if (i.tm.extension_opcode != None)
7409 {
7410 i.rm.regmem = i.op[op].regs->reg_num;
7411 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7412 i.rex |= REX_B;
43234a1e
L
7413 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7414 i.vrex |= REX_B;
1b9f0c97
L
7415 }
7416 else
7417 {
7418 i.rm.reg = i.op[op].regs->reg_num;
7419 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7420 i.rex |= REX_R;
43234a1e
L
7421 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7422 i.vrex |= REX_R;
1b9f0c97 7423 }
7ab9ffdd 7424 }
252b5132 7425
29b0f896
AM
7426 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7427 must set it to 3 to indicate this is a register operand
7428 in the regmem field. */
7429 if (!i.mem_operands)
7430 i.rm.mode = 3;
7431 }
252b5132 7432
29b0f896 7433 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7434 if (i.tm.extension_opcode != None)
29b0f896
AM
7435 i.rm.reg = i.tm.extension_opcode;
7436 }
7437 return default_seg;
7438}
252b5132 7439
29b0f896 7440static void
e3bb37b5 7441output_branch (void)
29b0f896
AM
7442{
7443 char *p;
f8a5c266 7444 int size;
29b0f896
AM
7445 int code16;
7446 int prefix;
7447 relax_substateT subtype;
7448 symbolS *sym;
7449 offsetT off;
7450
f8a5c266 7451 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7452 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7453
7454 prefix = 0;
7455 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7456 {
29b0f896
AM
7457 prefix = 1;
7458 i.prefixes -= 1;
7459 code16 ^= CODE16;
252b5132 7460 }
29b0f896
AM
7461 /* Pentium4 branch hints. */
7462 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7463 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7464 {
29b0f896
AM
7465 prefix++;
7466 i.prefixes--;
7467 }
7468 if (i.prefix[REX_PREFIX] != 0)
7469 {
7470 prefix++;
7471 i.prefixes--;
2f66722d
AM
7472 }
7473
7e8b059b
L
7474 /* BND prefixed jump. */
7475 if (i.prefix[BND_PREFIX] != 0)
7476 {
7477 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7478 i.prefixes -= 1;
7479 }
7480
29b0f896
AM
7481 if (i.prefixes != 0 && !intel_syntax)
7482 as_warn (_("skipping prefixes on this instruction"));
7483
7484 /* It's always a symbol; End frag & setup for relax.
7485 Make sure there is enough room in this frag for the largest
7486 instruction we may generate in md_convert_frag. This is 2
7487 bytes for the opcode and room for the prefix and largest
7488 displacement. */
7489 frag_grow (prefix + 2 + 4);
7490 /* Prefix and 1 opcode byte go in fr_fix. */
7491 p = frag_more (prefix + 1);
7492 if (i.prefix[DATA_PREFIX] != 0)
7493 *p++ = DATA_PREFIX_OPCODE;
7494 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7495 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7496 *p++ = i.prefix[SEG_PREFIX];
7497 if (i.prefix[REX_PREFIX] != 0)
7498 *p++ = i.prefix[REX_PREFIX];
7499 *p = i.tm.base_opcode;
7500
7501 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7502 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7503 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7504 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7505 else
f8a5c266 7506 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7507 subtype |= code16;
3e73aa7c 7508
29b0f896
AM
7509 sym = i.op[0].disps->X_add_symbol;
7510 off = i.op[0].disps->X_add_number;
3e73aa7c 7511
29b0f896
AM
7512 if (i.op[0].disps->X_op != O_constant
7513 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7514 {
29b0f896
AM
7515 /* Handle complex expressions. */
7516 sym = make_expr_symbol (i.op[0].disps);
7517 off = 0;
7518 }
3e73aa7c 7519
29b0f896
AM
7520 /* 1 possible extra opcode + 4 byte displacement go in var part.
7521 Pass reloc in fr_var. */
d258b828 7522 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7523}
3e73aa7c 7524
bd7ab16b
L
7525#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7526/* Return TRUE iff PLT32 relocation should be used for branching to
7527 symbol S. */
7528
7529static bfd_boolean
7530need_plt32_p (symbolS *s)
7531{
7532 /* PLT32 relocation is ELF only. */
7533 if (!IS_ELF)
7534 return FALSE;
7535
7536 /* Since there is no need to prepare for PLT branch on x86-64, we
7537 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7538 be used as a marker for 32-bit PC-relative branches. */
7539 if (!object_64bit)
7540 return FALSE;
7541
7542 /* Weak or undefined symbol need PLT32 relocation. */
7543 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7544 return TRUE;
7545
7546 /* Non-global symbol doesn't need PLT32 relocation. */
7547 if (! S_IS_EXTERNAL (s))
7548 return FALSE;
7549
7550 /* Other global symbols need PLT32 relocation. NB: Symbol with
7551 non-default visibilities are treated as normal global symbol
7552 so that PLT32 relocation can be used as a marker for 32-bit
7553 PC-relative branches. It is useful for linker relaxation. */
7554 return TRUE;
7555}
7556#endif
7557
29b0f896 7558static void
e3bb37b5 7559output_jump (void)
29b0f896
AM
7560{
7561 char *p;
7562 int size;
3e02c1cc 7563 fixS *fixP;
bd7ab16b 7564 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7565
40fb9820 7566 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7567 {
7568 /* This is a loop or jecxz type instruction. */
7569 size = 1;
7570 if (i.prefix[ADDR_PREFIX] != 0)
7571 {
7572 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7573 i.prefixes -= 1;
7574 }
7575 /* Pentium4 branch hints. */
7576 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7577 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7578 {
7579 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7580 i.prefixes--;
3e73aa7c
JH
7581 }
7582 }
29b0f896
AM
7583 else
7584 {
7585 int code16;
3e73aa7c 7586
29b0f896
AM
7587 code16 = 0;
7588 if (flag_code == CODE_16BIT)
7589 code16 = CODE16;
3e73aa7c 7590
29b0f896
AM
7591 if (i.prefix[DATA_PREFIX] != 0)
7592 {
7593 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7594 i.prefixes -= 1;
7595 code16 ^= CODE16;
7596 }
252b5132 7597
29b0f896
AM
7598 size = 4;
7599 if (code16)
7600 size = 2;
7601 }
9fcc94b6 7602
29b0f896
AM
7603 if (i.prefix[REX_PREFIX] != 0)
7604 {
7605 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7606 i.prefixes -= 1;
7607 }
252b5132 7608
7e8b059b
L
7609 /* BND prefixed jump. */
7610 if (i.prefix[BND_PREFIX] != 0)
7611 {
7612 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7613 i.prefixes -= 1;
7614 }
7615
29b0f896
AM
7616 if (i.prefixes != 0 && !intel_syntax)
7617 as_warn (_("skipping prefixes on this instruction"));
e0890092 7618
42164a71
L
7619 p = frag_more (i.tm.opcode_length + size);
7620 switch (i.tm.opcode_length)
7621 {
7622 case 2:
7623 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7624 /* Fall through. */
42164a71
L
7625 case 1:
7626 *p++ = i.tm.base_opcode;
7627 break;
7628 default:
7629 abort ();
7630 }
e0890092 7631
bd7ab16b
L
7632#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7633 if (size == 4
7634 && jump_reloc == NO_RELOC
7635 && need_plt32_p (i.op[0].disps->X_add_symbol))
7636 jump_reloc = BFD_RELOC_X86_64_PLT32;
7637#endif
7638
7639 jump_reloc = reloc (size, 1, 1, jump_reloc);
7640
3e02c1cc 7641 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7642 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7643
7644 /* All jumps handled here are signed, but don't use a signed limit
7645 check for 32 and 16 bit jumps as we want to allow wrap around at
7646 4G and 64k respectively. */
7647 if (size == 1)
7648 fixP->fx_signed = 1;
29b0f896 7649}
e0890092 7650
29b0f896 7651static void
e3bb37b5 7652output_interseg_jump (void)
29b0f896
AM
7653{
7654 char *p;
7655 int size;
7656 int prefix;
7657 int code16;
252b5132 7658
29b0f896
AM
7659 code16 = 0;
7660 if (flag_code == CODE_16BIT)
7661 code16 = CODE16;
a217f122 7662
29b0f896
AM
7663 prefix = 0;
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 {
7666 prefix = 1;
7667 i.prefixes -= 1;
7668 code16 ^= CODE16;
7669 }
7670 if (i.prefix[REX_PREFIX] != 0)
7671 {
7672 prefix++;
7673 i.prefixes -= 1;
7674 }
252b5132 7675
29b0f896
AM
7676 size = 4;
7677 if (code16)
7678 size = 2;
252b5132 7679
29b0f896
AM
7680 if (i.prefixes != 0 && !intel_syntax)
7681 as_warn (_("skipping prefixes on this instruction"));
252b5132 7682
29b0f896
AM
7683 /* 1 opcode; 2 segment; offset */
7684 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7685
29b0f896
AM
7686 if (i.prefix[DATA_PREFIX] != 0)
7687 *p++ = DATA_PREFIX_OPCODE;
252b5132 7688
29b0f896
AM
7689 if (i.prefix[REX_PREFIX] != 0)
7690 *p++ = i.prefix[REX_PREFIX];
252b5132 7691
29b0f896
AM
7692 *p++ = i.tm.base_opcode;
7693 if (i.op[1].imms->X_op == O_constant)
7694 {
7695 offsetT n = i.op[1].imms->X_add_number;
252b5132 7696
29b0f896
AM
7697 if (size == 2
7698 && !fits_in_unsigned_word (n)
7699 && !fits_in_signed_word (n))
7700 {
7701 as_bad (_("16-bit jump out of range"));
7702 return;
7703 }
7704 md_number_to_chars (p, n, size);
7705 }
7706 else
7707 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7708 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7709 if (i.op[0].imms->X_op != O_constant)
7710 as_bad (_("can't handle non absolute segment in `%s'"),
7711 i.tm.name);
7712 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7713}
a217f122 7714
29b0f896 7715static void
e3bb37b5 7716output_insn (void)
29b0f896 7717{
2bbd9c25
JJ
7718 fragS *insn_start_frag;
7719 offsetT insn_start_off;
7720
29b0f896
AM
7721 /* Tie dwarf2 debug info to the address at the start of the insn.
7722 We can't do this after the insn has been output as the current
7723 frag may have been closed off. eg. by frag_var. */
7724 dwarf2_emit_insn (0);
7725
2bbd9c25
JJ
7726 insn_start_frag = frag_now;
7727 insn_start_off = frag_now_fix ();
7728
29b0f896 7729 /* Output jumps. */
40fb9820 7730 if (i.tm.opcode_modifier.jump)
29b0f896 7731 output_branch ();
40fb9820
L
7732 else if (i.tm.opcode_modifier.jumpbyte
7733 || i.tm.opcode_modifier.jumpdword)
29b0f896 7734 output_jump ();
40fb9820 7735 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7736 output_interseg_jump ();
7737 else
7738 {
7739 /* Output normal instructions here. */
7740 char *p;
7741 unsigned char *q;
47465058 7742 unsigned int j;
331d2d0d 7743 unsigned int prefix;
4dffcebc 7744
e4e00185
AS
7745 if (avoid_fence
7746 && i.tm.base_opcode == 0xfae
7747 && i.operands == 1
7748 && i.imm_operands == 1
7749 && (i.op[0].imms->X_add_number == 0xe8
7750 || i.op[0].imms->X_add_number == 0xf0
7751 || i.op[0].imms->X_add_number == 0xf8))
7752 {
7753 /* Encode lfence, mfence, and sfence as
7754 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7755 offsetT val = 0x240483f0ULL;
7756 p = frag_more (5);
7757 md_number_to_chars (p, val, 5);
7758 return;
7759 }
7760
d022bddd
IT
7761 /* Some processors fail on LOCK prefix. This options makes
7762 assembler ignore LOCK prefix and serves as a workaround. */
7763 if (omit_lock_prefix)
7764 {
7765 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7766 return;
7767 i.prefix[LOCK_PREFIX] = 0;
7768 }
7769
43234a1e
L
7770 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7771 don't need the explicit prefix. */
7772 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7773 {
c0f3af97 7774 switch (i.tm.opcode_length)
bc4bd9ab 7775 {
c0f3af97
L
7776 case 3:
7777 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7778 {
c0f3af97 7779 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 7780 add_prefix (prefix);
c0f3af97
L
7781 }
7782 break;
7783 case 2:
7784 if ((i.tm.base_opcode & 0xff0000) != 0)
7785 {
7786 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
7787 if (!i.tm.cpu_flags.bitfield.cpupadlock
7788 || prefix != REPE_PREFIX_OPCODE
7789 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
7790 add_prefix (prefix);
7791 }
c0f3af97
L
7792 break;
7793 case 1:
7794 break;
390c91cf
L
7795 case 0:
7796 /* Check for pseudo prefixes. */
7797 as_bad_where (insn_start_frag->fr_file,
7798 insn_start_frag->fr_line,
7799 _("pseudo prefix without instruction"));
7800 return;
c0f3af97
L
7801 default:
7802 abort ();
bc4bd9ab 7803 }
c0f3af97 7804
6d19a37a 7805#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7806 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7807 R_X86_64_GOTTPOFF relocation so that linker can safely
7808 perform IE->LE optimization. */
7809 if (x86_elf_abi == X86_64_X32_ABI
7810 && i.operands == 2
7811 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7812 && i.prefix[REX_PREFIX] == 0)
7813 add_prefix (REX_OPCODE);
6d19a37a 7814#endif
cf61b747 7815
c0f3af97
L
7816 /* The prefix bytes. */
7817 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7818 if (*q)
7819 FRAG_APPEND_1_CHAR (*q);
0f10071e 7820 }
ae5c1c7b 7821 else
c0f3af97
L
7822 {
7823 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7824 if (*q)
7825 switch (j)
7826 {
7827 case REX_PREFIX:
7828 /* REX byte is encoded in VEX prefix. */
7829 break;
7830 case SEG_PREFIX:
7831 case ADDR_PREFIX:
7832 FRAG_APPEND_1_CHAR (*q);
7833 break;
7834 default:
7835 /* There should be no other prefixes for instructions
7836 with VEX prefix. */
7837 abort ();
7838 }
7839
43234a1e
L
7840 /* For EVEX instructions i.vrex should become 0 after
7841 build_evex_prefix. For VEX instructions upper 16 registers
7842 aren't available, so VREX should be 0. */
7843 if (i.vrex)
7844 abort ();
c0f3af97
L
7845 /* Now the VEX prefix. */
7846 p = frag_more (i.vex.length);
7847 for (j = 0; j < i.vex.length; j++)
7848 p[j] = i.vex.bytes[j];
7849 }
252b5132 7850
29b0f896 7851 /* Now the opcode; be careful about word order here! */
4dffcebc 7852 if (i.tm.opcode_length == 1)
29b0f896
AM
7853 {
7854 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7855 }
7856 else
7857 {
4dffcebc 7858 switch (i.tm.opcode_length)
331d2d0d 7859 {
43234a1e
L
7860 case 4:
7861 p = frag_more (4);
7862 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7863 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7864 break;
4dffcebc 7865 case 3:
331d2d0d
L
7866 p = frag_more (3);
7867 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7868 break;
7869 case 2:
7870 p = frag_more (2);
7871 break;
7872 default:
7873 abort ();
7874 break;
331d2d0d 7875 }
0f10071e 7876
29b0f896
AM
7877 /* Put out high byte first: can't use md_number_to_chars! */
7878 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7879 *p = i.tm.base_opcode & 0xff;
7880 }
3e73aa7c 7881
29b0f896 7882 /* Now the modrm byte and sib byte (if present). */
40fb9820 7883 if (i.tm.opcode_modifier.modrm)
29b0f896 7884 {
4a3523fa
L
7885 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7886 | i.rm.reg << 3
7887 | i.rm.mode << 6));
29b0f896
AM
7888 /* If i.rm.regmem == ESP (4)
7889 && i.rm.mode != (Register mode)
7890 && not 16 bit
7891 ==> need second modrm byte. */
7892 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7893 && i.rm.mode != 3
dc821c5f 7894 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7895 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7896 | i.sib.index << 3
7897 | i.sib.scale << 6));
29b0f896 7898 }
3e73aa7c 7899
29b0f896 7900 if (i.disp_operands)
2bbd9c25 7901 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7902
29b0f896 7903 if (i.imm_operands)
2bbd9c25 7904 output_imm (insn_start_frag, insn_start_off);
29b0f896 7905 }
252b5132 7906
29b0f896
AM
7907#ifdef DEBUG386
7908 if (flag_debug)
7909 {
7b81dfbb 7910 pi ("" /*line*/, &i);
29b0f896
AM
7911 }
7912#endif /* DEBUG386 */
7913}
252b5132 7914
e205caa7
L
7915/* Return the size of the displacement operand N. */
7916
7917static int
7918disp_size (unsigned int n)
7919{
7920 int size = 4;
43234a1e 7921
b5014f7a 7922 if (i.types[n].bitfield.disp64)
40fb9820
L
7923 size = 8;
7924 else if (i.types[n].bitfield.disp8)
7925 size = 1;
7926 else if (i.types[n].bitfield.disp16)
7927 size = 2;
e205caa7
L
7928 return size;
7929}
7930
7931/* Return the size of the immediate operand N. */
7932
7933static int
7934imm_size (unsigned int n)
7935{
7936 int size = 4;
40fb9820
L
7937 if (i.types[n].bitfield.imm64)
7938 size = 8;
7939 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7940 size = 1;
7941 else if (i.types[n].bitfield.imm16)
7942 size = 2;
e205caa7
L
7943 return size;
7944}
7945
29b0f896 7946static void
64e74474 7947output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7948{
7949 char *p;
7950 unsigned int n;
252b5132 7951
29b0f896
AM
7952 for (n = 0; n < i.operands; n++)
7953 {
b5014f7a 7954 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7955 {
7956 if (i.op[n].disps->X_op == O_constant)
7957 {
e205caa7 7958 int size = disp_size (n);
43234a1e 7959 offsetT val = i.op[n].disps->X_add_number;
252b5132 7960
b5014f7a 7961 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7962 p = frag_more (size);
7963 md_number_to_chars (p, val, size);
7964 }
7965 else
7966 {
f86103b7 7967 enum bfd_reloc_code_real reloc_type;
e205caa7 7968 int size = disp_size (n);
40fb9820 7969 int sign = i.types[n].bitfield.disp32s;
29b0f896 7970 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7971 fixS *fixP;
29b0f896 7972
e205caa7 7973 /* We can't have 8 bit displacement here. */
9c2799c2 7974 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7975
29b0f896
AM
7976 /* The PC relative address is computed relative
7977 to the instruction boundary, so in case immediate
7978 fields follows, we need to adjust the value. */
7979 if (pcrel && i.imm_operands)
7980 {
29b0f896 7981 unsigned int n1;
e205caa7 7982 int sz = 0;
252b5132 7983
29b0f896 7984 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7985 if (operand_type_check (i.types[n1], imm))
252b5132 7986 {
e205caa7
L
7987 /* Only one immediate is allowed for PC
7988 relative address. */
9c2799c2 7989 gas_assert (sz == 0);
e205caa7
L
7990 sz = imm_size (n1);
7991 i.op[n].disps->X_add_number -= sz;
252b5132 7992 }
29b0f896 7993 /* We should find the immediate. */
9c2799c2 7994 gas_assert (sz != 0);
29b0f896 7995 }
520dc8e8 7996
29b0f896 7997 p = frag_more (size);
d258b828 7998 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7999 if (GOT_symbol
2bbd9c25 8000 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8001 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8002 || reloc_type == BFD_RELOC_X86_64_32S
8003 || (reloc_type == BFD_RELOC_64
8004 && object_64bit))
d6ab8113
JB
8005 && (i.op[n].disps->X_op == O_symbol
8006 || (i.op[n].disps->X_op == O_add
8007 && ((symbol_get_value_expression
8008 (i.op[n].disps->X_op_symbol)->X_op)
8009 == O_subtract))))
8010 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8011 {
8012 offsetT add;
8013
8014 if (insn_start_frag == frag_now)
8015 add = (p - frag_now->fr_literal) - insn_start_off;
8016 else
8017 {
8018 fragS *fr;
8019
8020 add = insn_start_frag->fr_fix - insn_start_off;
8021 for (fr = insn_start_frag->fr_next;
8022 fr && fr != frag_now; fr = fr->fr_next)
8023 add += fr->fr_fix;
8024 add += p - frag_now->fr_literal;
8025 }
8026
4fa24527 8027 if (!object_64bit)
7b81dfbb
AJ
8028 {
8029 reloc_type = BFD_RELOC_386_GOTPC;
8030 i.op[n].imms->X_add_number += add;
8031 }
8032 else if (reloc_type == BFD_RELOC_64)
8033 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8034 else
7b81dfbb
AJ
8035 /* Don't do the adjustment for x86-64, as there
8036 the pcrel addressing is relative to the _next_
8037 insn, and that is taken care of in other code. */
d6ab8113 8038 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8039 }
02a86693
L
8040 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8041 size, i.op[n].disps, pcrel,
8042 reloc_type);
8043 /* Check for "call/jmp *mem", "mov mem, %reg",
8044 "test %reg, mem" and "binop mem, %reg" where binop
8045 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8046 instructions. Always generate R_386_GOT32X for
8047 "sym*GOT" operand in 32-bit mode. */
8048 if ((generate_relax_relocations
8049 || (!object_64bit
8050 && i.rm.mode == 0
8051 && i.rm.regmem == 5))
8052 && (i.rm.mode == 2
8053 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8054 && ((i.operands == 1
8055 && i.tm.base_opcode == 0xff
8056 && (i.rm.reg == 2 || i.rm.reg == 4))
8057 || (i.operands == 2
8058 && (i.tm.base_opcode == 0x8b
8059 || i.tm.base_opcode == 0x85
8060 || (i.tm.base_opcode & 0xc7) == 0x03))))
8061 {
8062 if (object_64bit)
8063 {
8064 fixP->fx_tcbit = i.rex != 0;
8065 if (i.base_reg
8066 && (i.base_reg->reg_num == RegRip
8067 || i.base_reg->reg_num == RegEip))
8068 fixP->fx_tcbit2 = 1;
8069 }
8070 else
8071 fixP->fx_tcbit2 = 1;
8072 }
29b0f896
AM
8073 }
8074 }
8075 }
8076}
252b5132 8077
29b0f896 8078static void
64e74474 8079output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8080{
8081 char *p;
8082 unsigned int n;
252b5132 8083
29b0f896
AM
8084 for (n = 0; n < i.operands; n++)
8085 {
43234a1e
L
8086 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8087 if (i.rounding && (int) n == i.rounding->operand)
8088 continue;
8089
40fb9820 8090 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8091 {
8092 if (i.op[n].imms->X_op == O_constant)
8093 {
e205caa7 8094 int size = imm_size (n);
29b0f896 8095 offsetT val;
b4cac588 8096
29b0f896
AM
8097 val = offset_in_range (i.op[n].imms->X_add_number,
8098 size);
8099 p = frag_more (size);
8100 md_number_to_chars (p, val, size);
8101 }
8102 else
8103 {
8104 /* Not absolute_section.
8105 Need a 32-bit fixup (don't support 8bit
8106 non-absolute imms). Try to support other
8107 sizes ... */
f86103b7 8108 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8109 int size = imm_size (n);
8110 int sign;
29b0f896 8111
40fb9820 8112 if (i.types[n].bitfield.imm32s
a7d61044 8113 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8114 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8115 sign = 1;
e205caa7
L
8116 else
8117 sign = 0;
520dc8e8 8118
29b0f896 8119 p = frag_more (size);
d258b828 8120 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8121
2bbd9c25
JJ
8122 /* This is tough to explain. We end up with this one if we
8123 * have operands that look like
8124 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8125 * obtain the absolute address of the GOT, and it is strongly
8126 * preferable from a performance point of view to avoid using
8127 * a runtime relocation for this. The actual sequence of
8128 * instructions often look something like:
8129 *
8130 * call .L66
8131 * .L66:
8132 * popl %ebx
8133 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8134 *
8135 * The call and pop essentially return the absolute address
8136 * of the label .L66 and store it in %ebx. The linker itself
8137 * will ultimately change the first operand of the addl so
8138 * that %ebx points to the GOT, but to keep things simple, the
8139 * .o file must have this operand set so that it generates not
8140 * the absolute address of .L66, but the absolute address of
8141 * itself. This allows the linker itself simply treat a GOTPC
8142 * relocation as asking for a pcrel offset to the GOT to be
8143 * added in, and the addend of the relocation is stored in the
8144 * operand field for the instruction itself.
8145 *
8146 * Our job here is to fix the operand so that it would add
8147 * the correct offset so that %ebx would point to itself. The
8148 * thing that is tricky is that .-.L66 will point to the
8149 * beginning of the instruction, so we need to further modify
8150 * the operand so that it will point to itself. There are
8151 * other cases where you have something like:
8152 *
8153 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8154 *
8155 * and here no correction would be required. Internally in
8156 * the assembler we treat operands of this form as not being
8157 * pcrel since the '.' is explicitly mentioned, and I wonder
8158 * whether it would simplify matters to do it this way. Who
8159 * knows. In earlier versions of the PIC patches, the
8160 * pcrel_adjust field was used to store the correction, but
8161 * since the expression is not pcrel, I felt it would be
8162 * confusing to do it this way. */
8163
d6ab8113 8164 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8165 || reloc_type == BFD_RELOC_X86_64_32S
8166 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8167 && GOT_symbol
8168 && GOT_symbol == i.op[n].imms->X_add_symbol
8169 && (i.op[n].imms->X_op == O_symbol
8170 || (i.op[n].imms->X_op == O_add
8171 && ((symbol_get_value_expression
8172 (i.op[n].imms->X_op_symbol)->X_op)
8173 == O_subtract))))
8174 {
2bbd9c25
JJ
8175 offsetT add;
8176
8177 if (insn_start_frag == frag_now)
8178 add = (p - frag_now->fr_literal) - insn_start_off;
8179 else
8180 {
8181 fragS *fr;
8182
8183 add = insn_start_frag->fr_fix - insn_start_off;
8184 for (fr = insn_start_frag->fr_next;
8185 fr && fr != frag_now; fr = fr->fr_next)
8186 add += fr->fr_fix;
8187 add += p - frag_now->fr_literal;
8188 }
8189
4fa24527 8190 if (!object_64bit)
d6ab8113 8191 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8192 else if (size == 4)
d6ab8113 8193 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8194 else if (size == 8)
8195 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8196 i.op[n].imms->X_add_number += add;
29b0f896 8197 }
29b0f896
AM
8198 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8199 i.op[n].imms, 0, reloc_type);
8200 }
8201 }
8202 }
252b5132
RH
8203}
8204\f
d182319b
JB
8205/* x86_cons_fix_new is called via the expression parsing code when a
8206 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8207static int cons_sign = -1;
8208
8209void
e3bb37b5 8210x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8211 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8212{
d258b828 8213 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8214
8215#ifdef TE_PE
8216 if (exp->X_op == O_secrel)
8217 {
8218 exp->X_op = O_symbol;
8219 r = BFD_RELOC_32_SECREL;
8220 }
8221#endif
8222
8223 fix_new_exp (frag, off, len, exp, 0, r);
8224}
8225
357d1bd8
L
8226/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8227 purpose of the `.dc.a' internal pseudo-op. */
8228
8229int
8230x86_address_bytes (void)
8231{
8232 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8233 return 4;
8234 return stdoutput->arch_info->bits_per_address / 8;
8235}
8236
d382c579
TG
8237#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8238 || defined (LEX_AT)
d258b828 8239# define lex_got(reloc, adjust, types) NULL
718ddfc0 8240#else
f3c180ae
AM
8241/* Parse operands of the form
8242 <symbol>@GOTOFF+<nnn>
8243 and similar .plt or .got references.
8244
8245 If we find one, set up the correct relocation in RELOC and copy the
8246 input string, minus the `@GOTOFF' into a malloc'd buffer for
8247 parsing by the calling routine. Return this buffer, and if ADJUST
8248 is non-null set it to the length of the string we removed from the
8249 input line. Otherwise return NULL. */
8250static char *
91d6fa6a 8251lex_got (enum bfd_reloc_code_real *rel,
64e74474 8252 int *adjust,
d258b828 8253 i386_operand_type *types)
f3c180ae 8254{
7b81dfbb
AJ
8255 /* Some of the relocations depend on the size of what field is to
8256 be relocated. But in our callers i386_immediate and i386_displacement
8257 we don't yet know the operand size (this will be set by insn
8258 matching). Hence we record the word32 relocation here,
8259 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8260 static const struct {
8261 const char *str;
cff8d58a 8262 int len;
4fa24527 8263 const enum bfd_reloc_code_real rel[2];
40fb9820 8264 const i386_operand_type types64;
f3c180ae 8265 } gotrel[] = {
8ce3d284 8266#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8267 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8268 BFD_RELOC_SIZE32 },
8269 OPERAND_TYPE_IMM32_64 },
8ce3d284 8270#endif
cff8d58a
L
8271 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8272 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8273 OPERAND_TYPE_IMM64 },
cff8d58a
L
8274 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8275 BFD_RELOC_X86_64_PLT32 },
40fb9820 8276 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8277 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8278 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8279 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8280 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8281 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8282 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8283 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8284 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8285 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8286 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8287 BFD_RELOC_X86_64_TLSGD },
40fb9820 8288 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8289 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8290 _dummy_first_bfd_reloc_code_real },
40fb9820 8291 OPERAND_TYPE_NONE },
cff8d58a
L
8292 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8293 BFD_RELOC_X86_64_TLSLD },
40fb9820 8294 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8295 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8296 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8297 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8298 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8299 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8300 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8301 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8302 _dummy_first_bfd_reloc_code_real },
40fb9820 8303 OPERAND_TYPE_NONE },
cff8d58a
L
8304 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8305 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8306 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8307 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8308 _dummy_first_bfd_reloc_code_real },
40fb9820 8309 OPERAND_TYPE_NONE },
cff8d58a
L
8310 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8311 _dummy_first_bfd_reloc_code_real },
40fb9820 8312 OPERAND_TYPE_NONE },
cff8d58a
L
8313 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8314 BFD_RELOC_X86_64_GOT32 },
40fb9820 8315 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8316 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8317 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8318 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8319 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8320 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8321 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8322 };
8323 char *cp;
8324 unsigned int j;
8325
d382c579 8326#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8327 if (!IS_ELF)
8328 return NULL;
d382c579 8329#endif
718ddfc0 8330
f3c180ae 8331 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8332 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8333 return NULL;
8334
47465058 8335 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8336 {
cff8d58a 8337 int len = gotrel[j].len;
28f81592 8338 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8339 {
4fa24527 8340 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8341 {
28f81592
AM
8342 int first, second;
8343 char *tmpbuf, *past_reloc;
f3c180ae 8344
91d6fa6a 8345 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8346
3956db08
JB
8347 if (types)
8348 {
8349 if (flag_code != CODE_64BIT)
40fb9820
L
8350 {
8351 types->bitfield.imm32 = 1;
8352 types->bitfield.disp32 = 1;
8353 }
3956db08
JB
8354 else
8355 *types = gotrel[j].types64;
8356 }
8357
8fd4256d 8358 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8359 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8360
28f81592 8361 /* The length of the first part of our input line. */
f3c180ae 8362 first = cp - input_line_pointer;
28f81592
AM
8363
8364 /* The second part goes from after the reloc token until
67c11a9b 8365 (and including) an end_of_line char or comma. */
28f81592 8366 past_reloc = cp + 1 + len;
67c11a9b
AM
8367 cp = past_reloc;
8368 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8369 ++cp;
8370 second = cp + 1 - past_reloc;
28f81592
AM
8371
8372 /* Allocate and copy string. The trailing NUL shouldn't
8373 be necessary, but be safe. */
add39d23 8374 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8375 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8376 if (second != 0 && *past_reloc != ' ')
8377 /* Replace the relocation token with ' ', so that
8378 errors like foo@GOTOFF1 will be detected. */
8379 tmpbuf[first++] = ' ';
af89796a
L
8380 else
8381 /* Increment length by 1 if the relocation token is
8382 removed. */
8383 len++;
8384 if (adjust)
8385 *adjust = len;
0787a12d
AM
8386 memcpy (tmpbuf + first, past_reloc, second);
8387 tmpbuf[first + second] = '\0';
f3c180ae
AM
8388 return tmpbuf;
8389 }
8390
4fa24527
JB
8391 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8392 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8393 return NULL;
8394 }
8395 }
8396
8397 /* Might be a symbol version string. Don't as_bad here. */
8398 return NULL;
8399}
4e4f7c87 8400#endif
f3c180ae 8401
a988325c
NC
8402#ifdef TE_PE
8403#ifdef lex_got
8404#undef lex_got
8405#endif
8406/* Parse operands of the form
8407 <symbol>@SECREL32+<nnn>
8408
8409 If we find one, set up the correct relocation in RELOC and copy the
8410 input string, minus the `@SECREL32' into a malloc'd buffer for
8411 parsing by the calling routine. Return this buffer, and if ADJUST
8412 is non-null set it to the length of the string we removed from the
34bca508
L
8413 input line. Otherwise return NULL.
8414
a988325c
NC
8415 This function is copied from the ELF version above adjusted for PE targets. */
8416
8417static char *
8418lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8419 int *adjust ATTRIBUTE_UNUSED,
d258b828 8420 i386_operand_type *types)
a988325c
NC
8421{
8422 static const struct
8423 {
8424 const char *str;
8425 int len;
8426 const enum bfd_reloc_code_real rel[2];
8427 const i386_operand_type types64;
8428 }
8429 gotrel[] =
8430 {
8431 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8432 BFD_RELOC_32_SECREL },
8433 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8434 };
8435
8436 char *cp;
8437 unsigned j;
8438
8439 for (cp = input_line_pointer; *cp != '@'; cp++)
8440 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8441 return NULL;
8442
8443 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8444 {
8445 int len = gotrel[j].len;
8446
8447 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8448 {
8449 if (gotrel[j].rel[object_64bit] != 0)
8450 {
8451 int first, second;
8452 char *tmpbuf, *past_reloc;
8453
8454 *rel = gotrel[j].rel[object_64bit];
8455 if (adjust)
8456 *adjust = len;
8457
8458 if (types)
8459 {
8460 if (flag_code != CODE_64BIT)
8461 {
8462 types->bitfield.imm32 = 1;
8463 types->bitfield.disp32 = 1;
8464 }
8465 else
8466 *types = gotrel[j].types64;
8467 }
8468
8469 /* The length of the first part of our input line. */
8470 first = cp - input_line_pointer;
8471
8472 /* The second part goes from after the reloc token until
8473 (and including) an end_of_line char or comma. */
8474 past_reloc = cp + 1 + len;
8475 cp = past_reloc;
8476 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8477 ++cp;
8478 second = cp + 1 - past_reloc;
8479
8480 /* Allocate and copy string. The trailing NUL shouldn't
8481 be necessary, but be safe. */
add39d23 8482 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8483 memcpy (tmpbuf, input_line_pointer, first);
8484 if (second != 0 && *past_reloc != ' ')
8485 /* Replace the relocation token with ' ', so that
8486 errors like foo@SECLREL321 will be detected. */
8487 tmpbuf[first++] = ' ';
8488 memcpy (tmpbuf + first, past_reloc, second);
8489 tmpbuf[first + second] = '\0';
8490 return tmpbuf;
8491 }
8492
8493 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8494 gotrel[j].str, 1 << (5 + object_64bit));
8495 return NULL;
8496 }
8497 }
8498
8499 /* Might be a symbol version string. Don't as_bad here. */
8500 return NULL;
8501}
8502
8503#endif /* TE_PE */
8504
62ebcb5c 8505bfd_reloc_code_real_type
e3bb37b5 8506x86_cons (expressionS *exp, int size)
f3c180ae 8507{
62ebcb5c
AM
8508 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8509
ee86248c
JB
8510 intel_syntax = -intel_syntax;
8511
3c7b9c2c 8512 exp->X_md = 0;
4fa24527 8513 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8514 {
8515 /* Handle @GOTOFF and the like in an expression. */
8516 char *save;
8517 char *gotfree_input_line;
4a57f2cf 8518 int adjust = 0;
f3c180ae
AM
8519
8520 save = input_line_pointer;
d258b828 8521 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8522 if (gotfree_input_line)
8523 input_line_pointer = gotfree_input_line;
8524
8525 expression (exp);
8526
8527 if (gotfree_input_line)
8528 {
8529 /* expression () has merrily parsed up to the end of line,
8530 or a comma - in the wrong buffer. Transfer how far
8531 input_line_pointer has moved to the right buffer. */
8532 input_line_pointer = (save
8533 + (input_line_pointer - gotfree_input_line)
8534 + adjust);
8535 free (gotfree_input_line);
3992d3b7
AM
8536 if (exp->X_op == O_constant
8537 || exp->X_op == O_absent
8538 || exp->X_op == O_illegal
0398aac5 8539 || exp->X_op == O_register
3992d3b7
AM
8540 || exp->X_op == O_big)
8541 {
8542 char c = *input_line_pointer;
8543 *input_line_pointer = 0;
8544 as_bad (_("missing or invalid expression `%s'"), save);
8545 *input_line_pointer = c;
8546 }
f3c180ae
AM
8547 }
8548 }
8549 else
8550 expression (exp);
ee86248c
JB
8551
8552 intel_syntax = -intel_syntax;
8553
8554 if (intel_syntax)
8555 i386_intel_simplify (exp);
62ebcb5c
AM
8556
8557 return got_reloc;
f3c180ae 8558}
f3c180ae 8559
9f32dd5b
L
8560static void
8561signed_cons (int size)
6482c264 8562{
d182319b
JB
8563 if (flag_code == CODE_64BIT)
8564 cons_sign = 1;
8565 cons (size);
8566 cons_sign = -1;
6482c264
NC
8567}
8568
d182319b 8569#ifdef TE_PE
6482c264 8570static void
7016a5d5 8571pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8572{
8573 expressionS exp;
8574
8575 do
8576 {
8577 expression (&exp);
8578 if (exp.X_op == O_symbol)
8579 exp.X_op = O_secrel;
8580
8581 emit_expr (&exp, 4);
8582 }
8583 while (*input_line_pointer++ == ',');
8584
8585 input_line_pointer--;
8586 demand_empty_rest_of_line ();
8587}
6482c264
NC
8588#endif
8589
43234a1e
L
8590/* Handle Vector operations. */
8591
8592static char *
8593check_VecOperations (char *op_string, char *op_end)
8594{
8595 const reg_entry *mask;
8596 const char *saved;
8597 char *end_op;
8598
8599 while (*op_string
8600 && (op_end == NULL || op_string < op_end))
8601 {
8602 saved = op_string;
8603 if (*op_string == '{')
8604 {
8605 op_string++;
8606
8607 /* Check broadcasts. */
8608 if (strncmp (op_string, "1to", 3) == 0)
8609 {
8610 int bcst_type;
8611
8612 if (i.broadcast)
8613 goto duplicated_vec_op;
8614
8615 op_string += 3;
8616 if (*op_string == '8')
8e6e0792 8617 bcst_type = 8;
b28d1bda 8618 else if (*op_string == '4')
8e6e0792 8619 bcst_type = 4;
b28d1bda 8620 else if (*op_string == '2')
8e6e0792 8621 bcst_type = 2;
43234a1e
L
8622 else if (*op_string == '1'
8623 && *(op_string+1) == '6')
8624 {
8e6e0792 8625 bcst_type = 16;
43234a1e
L
8626 op_string++;
8627 }
8628 else
8629 {
8630 as_bad (_("Unsupported broadcast: `%s'"), saved);
8631 return NULL;
8632 }
8633 op_string++;
8634
8635 broadcast_op.type = bcst_type;
8636 broadcast_op.operand = this_operand;
8637 i.broadcast = &broadcast_op;
8638 }
8639 /* Check masking operation. */
8640 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8641 {
8642 /* k0 can't be used for write mask. */
6d2cd6b2 8643 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8644 {
6d2cd6b2
JB
8645 as_bad (_("`%s%s' can't be used for write mask"),
8646 register_prefix, mask->reg_name);
43234a1e
L
8647 return NULL;
8648 }
8649
8650 if (!i.mask)
8651 {
8652 mask_op.mask = mask;
8653 mask_op.zeroing = 0;
8654 mask_op.operand = this_operand;
8655 i.mask = &mask_op;
8656 }
8657 else
8658 {
8659 if (i.mask->mask)
8660 goto duplicated_vec_op;
8661
8662 i.mask->mask = mask;
8663
8664 /* Only "{z}" is allowed here. No need to check
8665 zeroing mask explicitly. */
8666 if (i.mask->operand != this_operand)
8667 {
8668 as_bad (_("invalid write mask `%s'"), saved);
8669 return NULL;
8670 }
8671 }
8672
8673 op_string = end_op;
8674 }
8675 /* Check zeroing-flag for masking operation. */
8676 else if (*op_string == 'z')
8677 {
8678 if (!i.mask)
8679 {
8680 mask_op.mask = NULL;
8681 mask_op.zeroing = 1;
8682 mask_op.operand = this_operand;
8683 i.mask = &mask_op;
8684 }
8685 else
8686 {
8687 if (i.mask->zeroing)
8688 {
8689 duplicated_vec_op:
8690 as_bad (_("duplicated `%s'"), saved);
8691 return NULL;
8692 }
8693
8694 i.mask->zeroing = 1;
8695
8696 /* Only "{%k}" is allowed here. No need to check mask
8697 register explicitly. */
8698 if (i.mask->operand != this_operand)
8699 {
8700 as_bad (_("invalid zeroing-masking `%s'"),
8701 saved);
8702 return NULL;
8703 }
8704 }
8705
8706 op_string++;
8707 }
8708 else
8709 goto unknown_vec_op;
8710
8711 if (*op_string != '}')
8712 {
8713 as_bad (_("missing `}' in `%s'"), saved);
8714 return NULL;
8715 }
8716 op_string++;
0ba3a731
L
8717
8718 /* Strip whitespace since the addition of pseudo prefixes
8719 changed how the scrubber treats '{'. */
8720 if (is_space_char (*op_string))
8721 ++op_string;
8722
43234a1e
L
8723 continue;
8724 }
8725 unknown_vec_op:
8726 /* We don't know this one. */
8727 as_bad (_("unknown vector operation: `%s'"), saved);
8728 return NULL;
8729 }
8730
6d2cd6b2
JB
8731 if (i.mask && i.mask->zeroing && !i.mask->mask)
8732 {
8733 as_bad (_("zeroing-masking only allowed with write mask"));
8734 return NULL;
8735 }
8736
43234a1e
L
8737 return op_string;
8738}
8739
252b5132 8740static int
70e41ade 8741i386_immediate (char *imm_start)
252b5132
RH
8742{
8743 char *save_input_line_pointer;
f3c180ae 8744 char *gotfree_input_line;
252b5132 8745 segT exp_seg = 0;
47926f60 8746 expressionS *exp;
40fb9820
L
8747 i386_operand_type types;
8748
0dfbf9d7 8749 operand_type_set (&types, ~0);
252b5132
RH
8750
8751 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8752 {
31b2323c
L
8753 as_bad (_("at most %d immediate operands are allowed"),
8754 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8755 return 0;
8756 }
8757
8758 exp = &im_expressions[i.imm_operands++];
520dc8e8 8759 i.op[this_operand].imms = exp;
252b5132
RH
8760
8761 if (is_space_char (*imm_start))
8762 ++imm_start;
8763
8764 save_input_line_pointer = input_line_pointer;
8765 input_line_pointer = imm_start;
8766
d258b828 8767 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8768 if (gotfree_input_line)
8769 input_line_pointer = gotfree_input_line;
252b5132
RH
8770
8771 exp_seg = expression (exp);
8772
83183c0c 8773 SKIP_WHITESPACE ();
43234a1e
L
8774
8775 /* Handle vector operations. */
8776 if (*input_line_pointer == '{')
8777 {
8778 input_line_pointer = check_VecOperations (input_line_pointer,
8779 NULL);
8780 if (input_line_pointer == NULL)
8781 return 0;
8782 }
8783
252b5132 8784 if (*input_line_pointer)
f3c180ae 8785 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8786
8787 input_line_pointer = save_input_line_pointer;
f3c180ae 8788 if (gotfree_input_line)
ee86248c
JB
8789 {
8790 free (gotfree_input_line);
8791
8792 if (exp->X_op == O_constant || exp->X_op == O_register)
8793 exp->X_op = O_illegal;
8794 }
8795
8796 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8797}
252b5132 8798
ee86248c
JB
8799static int
8800i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8801 i386_operand_type types, const char *imm_start)
8802{
8803 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8804 {
313c53d1
L
8805 if (imm_start)
8806 as_bad (_("missing or invalid immediate expression `%s'"),
8807 imm_start);
3992d3b7 8808 return 0;
252b5132 8809 }
3e73aa7c 8810 else if (exp->X_op == O_constant)
252b5132 8811 {
47926f60 8812 /* Size it properly later. */
40fb9820 8813 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8814 /* If not 64bit, sign extend val. */
8815 if (flag_code != CODE_64BIT
4eed87de
AM
8816 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8817 exp->X_add_number
8818 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8819 }
4c63da97 8820#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8821 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8822 && exp_seg != absolute_section
47926f60 8823 && exp_seg != text_section
24eab124
AM
8824 && exp_seg != data_section
8825 && exp_seg != bss_section
8826 && exp_seg != undefined_section
f86103b7 8827 && !bfd_is_com_section (exp_seg))
252b5132 8828 {
d0b47220 8829 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8830 return 0;
8831 }
8832#endif
a841bdf5 8833 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8834 {
313c53d1
L
8835 if (imm_start)
8836 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8837 return 0;
8838 }
252b5132
RH
8839 else
8840 {
8841 /* This is an address. The size of the address will be
24eab124 8842 determined later, depending on destination register,
3e73aa7c 8843 suffix, or the default for the section. */
40fb9820
L
8844 i.types[this_operand].bitfield.imm8 = 1;
8845 i.types[this_operand].bitfield.imm16 = 1;
8846 i.types[this_operand].bitfield.imm32 = 1;
8847 i.types[this_operand].bitfield.imm32s = 1;
8848 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8849 i.types[this_operand] = operand_type_and (i.types[this_operand],
8850 types);
252b5132
RH
8851 }
8852
8853 return 1;
8854}
8855
551c1ca1 8856static char *
e3bb37b5 8857i386_scale (char *scale)
252b5132 8858{
551c1ca1
AM
8859 offsetT val;
8860 char *save = input_line_pointer;
252b5132 8861
551c1ca1
AM
8862 input_line_pointer = scale;
8863 val = get_absolute_expression ();
8864
8865 switch (val)
252b5132 8866 {
551c1ca1 8867 case 1:
252b5132
RH
8868 i.log2_scale_factor = 0;
8869 break;
551c1ca1 8870 case 2:
252b5132
RH
8871 i.log2_scale_factor = 1;
8872 break;
551c1ca1 8873 case 4:
252b5132
RH
8874 i.log2_scale_factor = 2;
8875 break;
551c1ca1 8876 case 8:
252b5132
RH
8877 i.log2_scale_factor = 3;
8878 break;
8879 default:
a724f0f4
JB
8880 {
8881 char sep = *input_line_pointer;
8882
8883 *input_line_pointer = '\0';
8884 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8885 scale);
8886 *input_line_pointer = sep;
8887 input_line_pointer = save;
8888 return NULL;
8889 }
252b5132 8890 }
29b0f896 8891 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8892 {
8893 as_warn (_("scale factor of %d without an index register"),
24eab124 8894 1 << i.log2_scale_factor);
252b5132 8895 i.log2_scale_factor = 0;
252b5132 8896 }
551c1ca1
AM
8897 scale = input_line_pointer;
8898 input_line_pointer = save;
8899 return scale;
252b5132
RH
8900}
8901
252b5132 8902static int
e3bb37b5 8903i386_displacement (char *disp_start, char *disp_end)
252b5132 8904{
29b0f896 8905 expressionS *exp;
252b5132
RH
8906 segT exp_seg = 0;
8907 char *save_input_line_pointer;
f3c180ae 8908 char *gotfree_input_line;
40fb9820
L
8909 int override;
8910 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8911 int ret;
252b5132 8912
31b2323c
L
8913 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8914 {
8915 as_bad (_("at most %d displacement operands are allowed"),
8916 MAX_MEMORY_OPERANDS);
8917 return 0;
8918 }
8919
0dfbf9d7 8920 operand_type_set (&bigdisp, 0);
40fb9820
L
8921 if ((i.types[this_operand].bitfield.jumpabsolute)
8922 || (!current_templates->start->opcode_modifier.jump
8923 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8924 {
40fb9820 8925 bigdisp.bitfield.disp32 = 1;
e05278af 8926 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8927 if (flag_code == CODE_64BIT)
8928 {
8929 if (!override)
8930 {
8931 bigdisp.bitfield.disp32s = 1;
8932 bigdisp.bitfield.disp64 = 1;
8933 }
8934 }
8935 else if ((flag_code == CODE_16BIT) ^ override)
8936 {
8937 bigdisp.bitfield.disp32 = 0;
8938 bigdisp.bitfield.disp16 = 1;
8939 }
e05278af
JB
8940 }
8941 else
8942 {
8943 /* For PC-relative branches, the width of the displacement
8944 is dependent upon data size, not address size. */
e05278af 8945 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8946 if (flag_code == CODE_64BIT)
8947 {
8948 if (override || i.suffix == WORD_MNEM_SUFFIX)
8949 bigdisp.bitfield.disp16 = 1;
8950 else
8951 {
8952 bigdisp.bitfield.disp32 = 1;
8953 bigdisp.bitfield.disp32s = 1;
8954 }
8955 }
8956 else
e05278af
JB
8957 {
8958 if (!override)
8959 override = (i.suffix == (flag_code != CODE_16BIT
8960 ? WORD_MNEM_SUFFIX
8961 : LONG_MNEM_SUFFIX));
40fb9820
L
8962 bigdisp.bitfield.disp32 = 1;
8963 if ((flag_code == CODE_16BIT) ^ override)
8964 {
8965 bigdisp.bitfield.disp32 = 0;
8966 bigdisp.bitfield.disp16 = 1;
8967 }
e05278af 8968 }
e05278af 8969 }
c6fb90c8
L
8970 i.types[this_operand] = operand_type_or (i.types[this_operand],
8971 bigdisp);
252b5132
RH
8972
8973 exp = &disp_expressions[i.disp_operands];
520dc8e8 8974 i.op[this_operand].disps = exp;
252b5132
RH
8975 i.disp_operands++;
8976 save_input_line_pointer = input_line_pointer;
8977 input_line_pointer = disp_start;
8978 END_STRING_AND_SAVE (disp_end);
8979
8980#ifndef GCC_ASM_O_HACK
8981#define GCC_ASM_O_HACK 0
8982#endif
8983#if GCC_ASM_O_HACK
8984 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8985 if (i.types[this_operand].bitfield.baseIndex
24eab124 8986 && displacement_string_end[-1] == '+')
252b5132
RH
8987 {
8988 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8989 constraint within gcc asm statements.
8990 For instance:
8991
8992 #define _set_tssldt_desc(n,addr,limit,type) \
8993 __asm__ __volatile__ ( \
8994 "movw %w2,%0\n\t" \
8995 "movw %w1,2+%0\n\t" \
8996 "rorl $16,%1\n\t" \
8997 "movb %b1,4+%0\n\t" \
8998 "movb %4,5+%0\n\t" \
8999 "movb $0,6+%0\n\t" \
9000 "movb %h1,7+%0\n\t" \
9001 "rorl $16,%1" \
9002 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9003
9004 This works great except that the output assembler ends
9005 up looking a bit weird if it turns out that there is
9006 no offset. You end up producing code that looks like:
9007
9008 #APP
9009 movw $235,(%eax)
9010 movw %dx,2+(%eax)
9011 rorl $16,%edx
9012 movb %dl,4+(%eax)
9013 movb $137,5+(%eax)
9014 movb $0,6+(%eax)
9015 movb %dh,7+(%eax)
9016 rorl $16,%edx
9017 #NO_APP
9018
47926f60 9019 So here we provide the missing zero. */
24eab124
AM
9020
9021 *displacement_string_end = '0';
252b5132
RH
9022 }
9023#endif
d258b828 9024 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9025 if (gotfree_input_line)
9026 input_line_pointer = gotfree_input_line;
252b5132 9027
24eab124 9028 exp_seg = expression (exp);
252b5132 9029
636c26b0
AM
9030 SKIP_WHITESPACE ();
9031 if (*input_line_pointer)
9032 as_bad (_("junk `%s' after expression"), input_line_pointer);
9033#if GCC_ASM_O_HACK
9034 RESTORE_END_STRING (disp_end + 1);
9035#endif
636c26b0 9036 input_line_pointer = save_input_line_pointer;
636c26b0 9037 if (gotfree_input_line)
ee86248c
JB
9038 {
9039 free (gotfree_input_line);
9040
9041 if (exp->X_op == O_constant || exp->X_op == O_register)
9042 exp->X_op = O_illegal;
9043 }
9044
9045 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9046
9047 RESTORE_END_STRING (disp_end);
9048
9049 return ret;
9050}
9051
9052static int
9053i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9054 i386_operand_type types, const char *disp_start)
9055{
9056 i386_operand_type bigdisp;
9057 int ret = 1;
636c26b0 9058
24eab124
AM
9059 /* We do this to make sure that the section symbol is in
9060 the symbol table. We will ultimately change the relocation
47926f60 9061 to be relative to the beginning of the section. */
1ae12ab7 9062 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9063 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9064 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9065 {
636c26b0 9066 if (exp->X_op != O_symbol)
3992d3b7 9067 goto inv_disp;
636c26b0 9068
e5cb08ac 9069 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9070 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9071 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9072 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9073 exp->X_op = O_subtract;
9074 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9075 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9076 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9077 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9078 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9079 else
29b0f896 9080 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9081 }
252b5132 9082
3992d3b7
AM
9083 else if (exp->X_op == O_absent
9084 || exp->X_op == O_illegal
ee86248c 9085 || exp->X_op == O_big)
2daf4fd8 9086 {
3992d3b7
AM
9087 inv_disp:
9088 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9089 disp_start);
3992d3b7 9090 ret = 0;
2daf4fd8
AM
9091 }
9092
0e1147d9
L
9093 else if (flag_code == CODE_64BIT
9094 && !i.prefix[ADDR_PREFIX]
9095 && exp->X_op == O_constant)
9096 {
9097 /* Since displacement is signed extended to 64bit, don't allow
9098 disp32 and turn off disp32s if they are out of range. */
9099 i.types[this_operand].bitfield.disp32 = 0;
9100 if (!fits_in_signed_long (exp->X_add_number))
9101 {
9102 i.types[this_operand].bitfield.disp32s = 0;
9103 if (i.types[this_operand].bitfield.baseindex)
9104 {
9105 as_bad (_("0x%lx out range of signed 32bit displacement"),
9106 (long) exp->X_add_number);
9107 ret = 0;
9108 }
9109 }
9110 }
9111
4c63da97 9112#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9113 else if (exp->X_op != O_constant
9114 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9115 && exp_seg != absolute_section
9116 && exp_seg != text_section
9117 && exp_seg != data_section
9118 && exp_seg != bss_section
9119 && exp_seg != undefined_section
9120 && !bfd_is_com_section (exp_seg))
24eab124 9121 {
d0b47220 9122 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9123 ret = 0;
24eab124 9124 }
252b5132 9125#endif
3956db08 9126
40fb9820
L
9127 /* Check if this is a displacement only operand. */
9128 bigdisp = i.types[this_operand];
9129 bigdisp.bitfield.disp8 = 0;
9130 bigdisp.bitfield.disp16 = 0;
9131 bigdisp.bitfield.disp32 = 0;
9132 bigdisp.bitfield.disp32s = 0;
9133 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9134 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9135 i.types[this_operand] = operand_type_and (i.types[this_operand],
9136 types);
3956db08 9137
3992d3b7 9138 return ret;
252b5132
RH
9139}
9140
2abc2bec
JB
9141/* Return the active addressing mode, taking address override and
9142 registers forming the address into consideration. Update the
9143 address override prefix if necessary. */
47926f60 9144
2abc2bec
JB
9145static enum flag_code
9146i386_addressing_mode (void)
252b5132 9147{
be05d201
L
9148 enum flag_code addr_mode;
9149
9150 if (i.prefix[ADDR_PREFIX])
9151 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9152 else
9153 {
9154 addr_mode = flag_code;
9155
24eab124 9156#if INFER_ADDR_PREFIX
be05d201
L
9157 if (i.mem_operands == 0)
9158 {
9159 /* Infer address prefix from the first memory operand. */
9160 const reg_entry *addr_reg = i.base_reg;
9161
9162 if (addr_reg == NULL)
9163 addr_reg = i.index_reg;
eecb386c 9164
be05d201
L
9165 if (addr_reg)
9166 {
9167 if (addr_reg->reg_num == RegEip
9168 || addr_reg->reg_num == RegEiz
dc821c5f 9169 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9170 addr_mode = CODE_32BIT;
9171 else if (flag_code != CODE_64BIT
dc821c5f 9172 && addr_reg->reg_type.bitfield.word)
be05d201
L
9173 addr_mode = CODE_16BIT;
9174
9175 if (addr_mode != flag_code)
9176 {
9177 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9178 i.prefixes += 1;
9179 /* Change the size of any displacement too. At most one
9180 of Disp16 or Disp32 is set.
9181 FIXME. There doesn't seem to be any real need for
9182 separate Disp16 and Disp32 flags. The same goes for
9183 Imm16 and Imm32. Removing them would probably clean
9184 up the code quite a lot. */
9185 if (flag_code != CODE_64BIT
9186 && (i.types[this_operand].bitfield.disp16
9187 || i.types[this_operand].bitfield.disp32))
9188 i.types[this_operand]
9189 = operand_type_xor (i.types[this_operand], disp16_32);
9190 }
9191 }
9192 }
24eab124 9193#endif
be05d201
L
9194 }
9195
2abc2bec
JB
9196 return addr_mode;
9197}
9198
9199/* Make sure the memory operand we've been dealt is valid.
9200 Return 1 on success, 0 on a failure. */
9201
9202static int
9203i386_index_check (const char *operand_string)
9204{
9205 const char *kind = "base/index";
9206 enum flag_code addr_mode = i386_addressing_mode ();
9207
fc0763e6
JB
9208 if (current_templates->start->opcode_modifier.isstring
9209 && !current_templates->start->opcode_modifier.immext
9210 && (current_templates->end[-1].opcode_modifier.isstring
9211 || i.mem_operands))
9212 {
9213 /* Memory operands of string insns are special in that they only allow
9214 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9215 const reg_entry *expected_reg;
9216 static const char *di_si[][2] =
9217 {
9218 { "esi", "edi" },
9219 { "si", "di" },
9220 { "rsi", "rdi" }
9221 };
9222 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9223
9224 kind = "string address";
9225
8325cc63 9226 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9227 {
9228 i386_operand_type type = current_templates->end[-1].operand_types[0];
9229
9230 if (!type.bitfield.baseindex
9231 || ((!i.mem_operands != !intel_syntax)
9232 && current_templates->end[-1].operand_types[1]
9233 .bitfield.baseindex))
9234 type = current_templates->end[-1].operand_types[1];
be05d201
L
9235 expected_reg = hash_find (reg_hash,
9236 di_si[addr_mode][type.bitfield.esseg]);
9237
fc0763e6
JB
9238 }
9239 else
be05d201 9240 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9241
be05d201
L
9242 if (i.base_reg != expected_reg
9243 || i.index_reg
fc0763e6 9244 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9245 {
be05d201
L
9246 /* The second memory operand must have the same size as
9247 the first one. */
9248 if (i.mem_operands
9249 && i.base_reg
9250 && !((addr_mode == CODE_64BIT
dc821c5f 9251 && i.base_reg->reg_type.bitfield.qword)
be05d201 9252 || (addr_mode == CODE_32BIT
dc821c5f
JB
9253 ? i.base_reg->reg_type.bitfield.dword
9254 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9255 goto bad_address;
9256
fc0763e6
JB
9257 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9258 operand_string,
9259 intel_syntax ? '[' : '(',
9260 register_prefix,
be05d201 9261 expected_reg->reg_name,
fc0763e6 9262 intel_syntax ? ']' : ')');
be05d201 9263 return 1;
fc0763e6 9264 }
be05d201
L
9265 else
9266 return 1;
9267
9268bad_address:
9269 as_bad (_("`%s' is not a valid %s expression"),
9270 operand_string, kind);
9271 return 0;
3e73aa7c
JH
9272 }
9273 else
9274 {
be05d201
L
9275 if (addr_mode != CODE_16BIT)
9276 {
9277 /* 32-bit/64-bit checks. */
9278 if ((i.base_reg
9279 && (addr_mode == CODE_64BIT
dc821c5f
JB
9280 ? !i.base_reg->reg_type.bitfield.qword
9281 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9282 && (i.index_reg
9283 || (i.base_reg->reg_num
9284 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9285 || (i.index_reg
1b54b8d7
JB
9286 && !i.index_reg->reg_type.bitfield.xmmword
9287 && !i.index_reg->reg_type.bitfield.ymmword
9288 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9289 && ((addr_mode == CODE_64BIT
dc821c5f 9290 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9291 || i.index_reg->reg_num == RegRiz)
dc821c5f 9292 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9293 || i.index_reg->reg_num == RegEiz))
9294 || !i.index_reg->reg_type.bitfield.baseindex)))
9295 goto bad_address;
8178be5b
JB
9296
9297 /* bndmk, bndldx, and bndstx have special restrictions. */
9298 if (current_templates->start->base_opcode == 0xf30f1b
9299 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9300 {
9301 /* They cannot use RIP-relative addressing. */
9302 if (i.base_reg && i.base_reg->reg_num == RegRip)
9303 {
9304 as_bad (_("`%s' cannot be used here"), operand_string);
9305 return 0;
9306 }
9307
9308 /* bndldx and bndstx ignore their scale factor. */
9309 if (current_templates->start->base_opcode != 0xf30f1b
9310 && i.log2_scale_factor)
9311 as_warn (_("register scaling is being ignored here"));
9312 }
be05d201
L
9313 }
9314 else
3e73aa7c 9315 {
be05d201 9316 /* 16-bit checks. */
3e73aa7c 9317 if ((i.base_reg
dc821c5f 9318 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9319 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9320 || (i.index_reg
dc821c5f 9321 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9322 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9323 || !(i.base_reg
9324 && i.base_reg->reg_num < 6
9325 && i.index_reg->reg_num >= 6
9326 && i.log2_scale_factor == 0))))
be05d201 9327 goto bad_address;
3e73aa7c
JH
9328 }
9329 }
be05d201 9330 return 1;
24eab124 9331}
252b5132 9332
43234a1e
L
9333/* Handle vector immediates. */
9334
9335static int
9336RC_SAE_immediate (const char *imm_start)
9337{
9338 unsigned int match_found, j;
9339 const char *pstr = imm_start;
9340 expressionS *exp;
9341
9342 if (*pstr != '{')
9343 return 0;
9344
9345 pstr++;
9346 match_found = 0;
9347 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9348 {
9349 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9350 {
9351 if (!i.rounding)
9352 {
9353 rc_op.type = RC_NamesTable[j].type;
9354 rc_op.operand = this_operand;
9355 i.rounding = &rc_op;
9356 }
9357 else
9358 {
9359 as_bad (_("duplicated `%s'"), imm_start);
9360 return 0;
9361 }
9362 pstr += RC_NamesTable[j].len;
9363 match_found = 1;
9364 break;
9365 }
9366 }
9367 if (!match_found)
9368 return 0;
9369
9370 if (*pstr++ != '}')
9371 {
9372 as_bad (_("Missing '}': '%s'"), imm_start);
9373 return 0;
9374 }
9375 /* RC/SAE immediate string should contain nothing more. */;
9376 if (*pstr != 0)
9377 {
9378 as_bad (_("Junk after '}': '%s'"), imm_start);
9379 return 0;
9380 }
9381
9382 exp = &im_expressions[i.imm_operands++];
9383 i.op[this_operand].imms = exp;
9384
9385 exp->X_op = O_constant;
9386 exp->X_add_number = 0;
9387 exp->X_add_symbol = (symbolS *) 0;
9388 exp->X_op_symbol = (symbolS *) 0;
9389
9390 i.types[this_operand].bitfield.imm8 = 1;
9391 return 1;
9392}
9393
8325cc63
JB
9394/* Only string instructions can have a second memory operand, so
9395 reduce current_templates to just those if it contains any. */
9396static int
9397maybe_adjust_templates (void)
9398{
9399 const insn_template *t;
9400
9401 gas_assert (i.mem_operands == 1);
9402
9403 for (t = current_templates->start; t < current_templates->end; ++t)
9404 if (t->opcode_modifier.isstring)
9405 break;
9406
9407 if (t < current_templates->end)
9408 {
9409 static templates aux_templates;
9410 bfd_boolean recheck;
9411
9412 aux_templates.start = t;
9413 for (; t < current_templates->end; ++t)
9414 if (!t->opcode_modifier.isstring)
9415 break;
9416 aux_templates.end = t;
9417
9418 /* Determine whether to re-check the first memory operand. */
9419 recheck = (aux_templates.start != current_templates->start
9420 || t != current_templates->end);
9421
9422 current_templates = &aux_templates;
9423
9424 if (recheck)
9425 {
9426 i.mem_operands = 0;
9427 if (i.memop1_string != NULL
9428 && i386_index_check (i.memop1_string) == 0)
9429 return 0;
9430 i.mem_operands = 1;
9431 }
9432 }
9433
9434 return 1;
9435}
9436
fc0763e6 9437/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9438 on error. */
252b5132 9439
252b5132 9440static int
a7619375 9441i386_att_operand (char *operand_string)
252b5132 9442{
af6bdddf
AM
9443 const reg_entry *r;
9444 char *end_op;
24eab124 9445 char *op_string = operand_string;
252b5132 9446
24eab124 9447 if (is_space_char (*op_string))
252b5132
RH
9448 ++op_string;
9449
24eab124 9450 /* We check for an absolute prefix (differentiating,
47926f60 9451 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9452 if (*op_string == ABSOLUTE_PREFIX)
9453 {
9454 ++op_string;
9455 if (is_space_char (*op_string))
9456 ++op_string;
40fb9820 9457 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9458 }
252b5132 9459
47926f60 9460 /* Check if operand is a register. */
4d1bb795 9461 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9462 {
40fb9820
L
9463 i386_operand_type temp;
9464
24eab124
AM
9465 /* Check for a segment override by searching for ':' after a
9466 segment register. */
9467 op_string = end_op;
9468 if (is_space_char (*op_string))
9469 ++op_string;
40fb9820
L
9470 if (*op_string == ':'
9471 && (r->reg_type.bitfield.sreg2
9472 || r->reg_type.bitfield.sreg3))
24eab124
AM
9473 {
9474 switch (r->reg_num)
9475 {
9476 case 0:
9477 i.seg[i.mem_operands] = &es;
9478 break;
9479 case 1:
9480 i.seg[i.mem_operands] = &cs;
9481 break;
9482 case 2:
9483 i.seg[i.mem_operands] = &ss;
9484 break;
9485 case 3:
9486 i.seg[i.mem_operands] = &ds;
9487 break;
9488 case 4:
9489 i.seg[i.mem_operands] = &fs;
9490 break;
9491 case 5:
9492 i.seg[i.mem_operands] = &gs;
9493 break;
9494 }
252b5132 9495
24eab124 9496 /* Skip the ':' and whitespace. */
252b5132
RH
9497 ++op_string;
9498 if (is_space_char (*op_string))
24eab124 9499 ++op_string;
252b5132 9500
24eab124
AM
9501 if (!is_digit_char (*op_string)
9502 && !is_identifier_char (*op_string)
9503 && *op_string != '('
9504 && *op_string != ABSOLUTE_PREFIX)
9505 {
9506 as_bad (_("bad memory operand `%s'"), op_string);
9507 return 0;
9508 }
47926f60 9509 /* Handle case of %es:*foo. */
24eab124
AM
9510 if (*op_string == ABSOLUTE_PREFIX)
9511 {
9512 ++op_string;
9513 if (is_space_char (*op_string))
9514 ++op_string;
40fb9820 9515 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9516 }
9517 goto do_memory_reference;
9518 }
43234a1e
L
9519
9520 /* Handle vector operations. */
9521 if (*op_string == '{')
9522 {
9523 op_string = check_VecOperations (op_string, NULL);
9524 if (op_string == NULL)
9525 return 0;
9526 }
9527
24eab124
AM
9528 if (*op_string)
9529 {
d0b47220 9530 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9531 return 0;
9532 }
40fb9820
L
9533 temp = r->reg_type;
9534 temp.bitfield.baseindex = 0;
c6fb90c8
L
9535 i.types[this_operand] = operand_type_or (i.types[this_operand],
9536 temp);
7d5e4556 9537 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9538 i.op[this_operand].regs = r;
24eab124
AM
9539 i.reg_operands++;
9540 }
af6bdddf
AM
9541 else if (*op_string == REGISTER_PREFIX)
9542 {
9543 as_bad (_("bad register name `%s'"), op_string);
9544 return 0;
9545 }
24eab124 9546 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9547 {
24eab124 9548 ++op_string;
40fb9820 9549 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9550 {
d0b47220 9551 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9552 return 0;
9553 }
9554 if (!i386_immediate (op_string))
9555 return 0;
9556 }
43234a1e
L
9557 else if (RC_SAE_immediate (operand_string))
9558 {
9559 /* If it is a RC or SAE immediate, do nothing. */
9560 ;
9561 }
24eab124
AM
9562 else if (is_digit_char (*op_string)
9563 || is_identifier_char (*op_string)
d02603dc 9564 || *op_string == '"'
e5cb08ac 9565 || *op_string == '(')
24eab124 9566 {
47926f60 9567 /* This is a memory reference of some sort. */
af6bdddf 9568 char *base_string;
252b5132 9569
47926f60 9570 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9571 char *displacement_string_start;
9572 char *displacement_string_end;
43234a1e 9573 char *vop_start;
252b5132 9574
24eab124 9575 do_memory_reference:
8325cc63
JB
9576 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9577 return 0;
24eab124 9578 if ((i.mem_operands == 1
40fb9820 9579 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9580 || i.mem_operands == 2)
9581 {
9582 as_bad (_("too many memory references for `%s'"),
9583 current_templates->start->name);
9584 return 0;
9585 }
252b5132 9586
24eab124
AM
9587 /* Check for base index form. We detect the base index form by
9588 looking for an ')' at the end of the operand, searching
9589 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9590 after the '('. */
af6bdddf 9591 base_string = op_string + strlen (op_string);
c3332e24 9592
43234a1e
L
9593 /* Handle vector operations. */
9594 vop_start = strchr (op_string, '{');
9595 if (vop_start && vop_start < base_string)
9596 {
9597 if (check_VecOperations (vop_start, base_string) == NULL)
9598 return 0;
9599 base_string = vop_start;
9600 }
9601
af6bdddf
AM
9602 --base_string;
9603 if (is_space_char (*base_string))
9604 --base_string;
252b5132 9605
47926f60 9606 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9607 displacement_string_start = op_string;
9608 displacement_string_end = base_string + 1;
252b5132 9609
24eab124
AM
9610 if (*base_string == ')')
9611 {
af6bdddf 9612 char *temp_string;
24eab124
AM
9613 unsigned int parens_balanced = 1;
9614 /* We've already checked that the number of left & right ()'s are
47926f60 9615 equal, so this loop will not be infinite. */
24eab124
AM
9616 do
9617 {
9618 base_string--;
9619 if (*base_string == ')')
9620 parens_balanced++;
9621 if (*base_string == '(')
9622 parens_balanced--;
9623 }
9624 while (parens_balanced);
c3332e24 9625
af6bdddf 9626 temp_string = base_string;
c3332e24 9627
24eab124 9628 /* Skip past '(' and whitespace. */
252b5132
RH
9629 ++base_string;
9630 if (is_space_char (*base_string))
24eab124 9631 ++base_string;
252b5132 9632
af6bdddf 9633 if (*base_string == ','
4eed87de
AM
9634 || ((i.base_reg = parse_register (base_string, &end_op))
9635 != NULL))
252b5132 9636 {
af6bdddf 9637 displacement_string_end = temp_string;
252b5132 9638
40fb9820 9639 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9640
af6bdddf 9641 if (i.base_reg)
24eab124 9642 {
24eab124
AM
9643 base_string = end_op;
9644 if (is_space_char (*base_string))
9645 ++base_string;
af6bdddf
AM
9646 }
9647
9648 /* There may be an index reg or scale factor here. */
9649 if (*base_string == ',')
9650 {
9651 ++base_string;
9652 if (is_space_char (*base_string))
9653 ++base_string;
9654
4eed87de
AM
9655 if ((i.index_reg = parse_register (base_string, &end_op))
9656 != NULL)
24eab124 9657 {
af6bdddf 9658 base_string = end_op;
24eab124
AM
9659 if (is_space_char (*base_string))
9660 ++base_string;
af6bdddf
AM
9661 if (*base_string == ',')
9662 {
9663 ++base_string;
9664 if (is_space_char (*base_string))
9665 ++base_string;
9666 }
e5cb08ac 9667 else if (*base_string != ')')
af6bdddf 9668 {
4eed87de
AM
9669 as_bad (_("expecting `,' or `)' "
9670 "after index register in `%s'"),
af6bdddf
AM
9671 operand_string);
9672 return 0;
9673 }
24eab124 9674 }
af6bdddf 9675 else if (*base_string == REGISTER_PREFIX)
24eab124 9676 {
f76bf5e0
L
9677 end_op = strchr (base_string, ',');
9678 if (end_op)
9679 *end_op = '\0';
af6bdddf 9680 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9681 return 0;
9682 }
252b5132 9683
47926f60 9684 /* Check for scale factor. */
551c1ca1 9685 if (*base_string != ')')
af6bdddf 9686 {
551c1ca1
AM
9687 char *end_scale = i386_scale (base_string);
9688
9689 if (!end_scale)
af6bdddf 9690 return 0;
24eab124 9691
551c1ca1 9692 base_string = end_scale;
af6bdddf
AM
9693 if (is_space_char (*base_string))
9694 ++base_string;
9695 if (*base_string != ')')
9696 {
4eed87de
AM
9697 as_bad (_("expecting `)' "
9698 "after scale factor in `%s'"),
af6bdddf
AM
9699 operand_string);
9700 return 0;
9701 }
9702 }
9703 else if (!i.index_reg)
24eab124 9704 {
4eed87de
AM
9705 as_bad (_("expecting index register or scale factor "
9706 "after `,'; got '%c'"),
af6bdddf 9707 *base_string);
24eab124
AM
9708 return 0;
9709 }
9710 }
af6bdddf 9711 else if (*base_string != ')')
24eab124 9712 {
4eed87de
AM
9713 as_bad (_("expecting `,' or `)' "
9714 "after base register in `%s'"),
af6bdddf 9715 operand_string);
24eab124
AM
9716 return 0;
9717 }
c3332e24 9718 }
af6bdddf 9719 else if (*base_string == REGISTER_PREFIX)
c3332e24 9720 {
f76bf5e0
L
9721 end_op = strchr (base_string, ',');
9722 if (end_op)
9723 *end_op = '\0';
af6bdddf 9724 as_bad (_("bad register name `%s'"), base_string);
24eab124 9725 return 0;
c3332e24 9726 }
24eab124
AM
9727 }
9728
9729 /* If there's an expression beginning the operand, parse it,
9730 assuming displacement_string_start and
9731 displacement_string_end are meaningful. */
9732 if (displacement_string_start != displacement_string_end)
9733 {
9734 if (!i386_displacement (displacement_string_start,
9735 displacement_string_end))
9736 return 0;
9737 }
9738
9739 /* Special case for (%dx) while doing input/output op. */
9740 if (i.base_reg
2fb5be8d 9741 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
9742 && i.index_reg == 0
9743 && i.log2_scale_factor == 0
9744 && i.seg[i.mem_operands] == 0
40fb9820 9745 && !operand_type_check (i.types[this_operand], disp))
24eab124 9746 {
2fb5be8d 9747 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
9748 return 1;
9749 }
9750
eecb386c
AM
9751 if (i386_index_check (operand_string) == 0)
9752 return 0;
5c07affc 9753 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9754 if (i.mem_operands == 0)
9755 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9756 i.mem_operands++;
9757 }
9758 else
ce8a8b2f
AM
9759 {
9760 /* It's not a memory operand; argh! */
24eab124
AM
9761 as_bad (_("invalid char %s beginning operand %d `%s'"),
9762 output_invalid (*op_string),
9763 this_operand + 1,
9764 op_string);
9765 return 0;
9766 }
47926f60 9767 return 1; /* Normal return. */
252b5132
RH
9768}
9769\f
fa94de6b
RM
9770/* Calculate the maximum variable size (i.e., excluding fr_fix)
9771 that an rs_machine_dependent frag may reach. */
9772
9773unsigned int
9774i386_frag_max_var (fragS *frag)
9775{
9776 /* The only relaxable frags are for jumps.
9777 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9778 gas_assert (frag->fr_type == rs_machine_dependent);
9779 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9780}
9781
b084df0b
L
9782#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9783static int
8dcea932 9784elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9785{
9786 /* STT_GNU_IFUNC symbol must go through PLT. */
9787 if ((symbol_get_bfdsym (fr_symbol)->flags
9788 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9789 return 0;
9790
9791 if (!S_IS_EXTERNAL (fr_symbol))
9792 /* Symbol may be weak or local. */
9793 return !S_IS_WEAK (fr_symbol);
9794
8dcea932
L
9795 /* Global symbols with non-default visibility can't be preempted. */
9796 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9797 return 1;
9798
9799 if (fr_var != NO_RELOC)
9800 switch ((enum bfd_reloc_code_real) fr_var)
9801 {
9802 case BFD_RELOC_386_PLT32:
9803 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9804 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9805 return 0;
9806 default:
9807 abort ();
9808 }
9809
b084df0b
L
9810 /* Global symbols with default visibility in a shared library may be
9811 preempted by another definition. */
8dcea932 9812 return !shared;
b084df0b
L
9813}
9814#endif
9815
ee7fcc42
AM
9816/* md_estimate_size_before_relax()
9817
9818 Called just before relax() for rs_machine_dependent frags. The x86
9819 assembler uses these frags to handle variable size jump
9820 instructions.
9821
9822 Any symbol that is now undefined will not become defined.
9823 Return the correct fr_subtype in the frag.
9824 Return the initial "guess for variable size of frag" to caller.
9825 The guess is actually the growth beyond the fixed part. Whatever
9826 we do to grow the fixed or variable part contributes to our
9827 returned value. */
9828
252b5132 9829int
7016a5d5 9830md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9831{
252b5132 9832 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9833 check for un-relaxable symbols. On an ELF system, we can't relax
9834 an externally visible symbol, because it may be overridden by a
9835 shared library. */
9836 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9837#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9838 || (IS_ELF
8dcea932
L
9839 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9840 fragP->fr_var))
fbeb56a4
DK
9841#endif
9842#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9843 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9844 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9845#endif
9846 )
252b5132 9847 {
b98ef147
AM
9848 /* Symbol is undefined in this segment, or we need to keep a
9849 reloc so that weak symbols can be overridden. */
9850 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9851 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9852 unsigned char *opcode;
9853 int old_fr_fix;
f6af82bd 9854
ee7fcc42 9855 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9856 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9857 else if (size == 2)
f6af82bd 9858 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9859#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9860 else if (need_plt32_p (fragP->fr_symbol))
9861 reloc_type = BFD_RELOC_X86_64_PLT32;
9862#endif
f6af82bd
AM
9863 else
9864 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9865
ee7fcc42
AM
9866 old_fr_fix = fragP->fr_fix;
9867 opcode = (unsigned char *) fragP->fr_opcode;
9868
fddf5b5b 9869 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9870 {
fddf5b5b
AM
9871 case UNCOND_JUMP:
9872 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9873 opcode[0] = 0xe9;
252b5132 9874 fragP->fr_fix += size;
062cd5e7
AS
9875 fix_new (fragP, old_fr_fix, size,
9876 fragP->fr_symbol,
9877 fragP->fr_offset, 1,
9878 reloc_type);
252b5132
RH
9879 break;
9880
fddf5b5b 9881 case COND_JUMP86:
412167cb
AM
9882 if (size == 2
9883 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9884 {
9885 /* Negate the condition, and branch past an
9886 unconditional jump. */
9887 opcode[0] ^= 1;
9888 opcode[1] = 3;
9889 /* Insert an unconditional jump. */
9890 opcode[2] = 0xe9;
9891 /* We added two extra opcode bytes, and have a two byte
9892 offset. */
9893 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9894 fix_new (fragP, old_fr_fix + 2, 2,
9895 fragP->fr_symbol,
9896 fragP->fr_offset, 1,
9897 reloc_type);
fddf5b5b
AM
9898 break;
9899 }
9900 /* Fall through. */
9901
9902 case COND_JUMP:
412167cb
AM
9903 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9904 {
3e02c1cc
AM
9905 fixS *fixP;
9906
412167cb 9907 fragP->fr_fix += 1;
3e02c1cc
AM
9908 fixP = fix_new (fragP, old_fr_fix, 1,
9909 fragP->fr_symbol,
9910 fragP->fr_offset, 1,
9911 BFD_RELOC_8_PCREL);
9912 fixP->fx_signed = 1;
412167cb
AM
9913 break;
9914 }
93c2a809 9915
24eab124 9916 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9917 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9918 opcode[1] = opcode[0] + 0x10;
f6af82bd 9919 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9920 /* We've added an opcode byte. */
9921 fragP->fr_fix += 1 + size;
062cd5e7
AS
9922 fix_new (fragP, old_fr_fix + 1, size,
9923 fragP->fr_symbol,
9924 fragP->fr_offset, 1,
9925 reloc_type);
252b5132 9926 break;
fddf5b5b
AM
9927
9928 default:
9929 BAD_CASE (fragP->fr_subtype);
9930 break;
252b5132
RH
9931 }
9932 frag_wane (fragP);
ee7fcc42 9933 return fragP->fr_fix - old_fr_fix;
252b5132 9934 }
93c2a809 9935
93c2a809
AM
9936 /* Guess size depending on current relax state. Initially the relax
9937 state will correspond to a short jump and we return 1, because
9938 the variable part of the frag (the branch offset) is one byte
9939 long. However, we can relax a section more than once and in that
9940 case we must either set fr_subtype back to the unrelaxed state,
9941 or return the value for the appropriate branch. */
9942 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9943}
9944
47926f60
KH
9945/* Called after relax() is finished.
9946
9947 In: Address of frag.
9948 fr_type == rs_machine_dependent.
9949 fr_subtype is what the address relaxed to.
9950
9951 Out: Any fixSs and constants are set up.
9952 Caller will turn frag into a ".space 0". */
9953
252b5132 9954void
7016a5d5
TG
9955md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9956 fragS *fragP)
252b5132 9957{
29b0f896 9958 unsigned char *opcode;
252b5132 9959 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9960 offsetT target_address;
9961 offsetT opcode_address;
252b5132 9962 unsigned int extension = 0;
847f7ad4 9963 offsetT displacement_from_opcode_start;
252b5132
RH
9964
9965 opcode = (unsigned char *) fragP->fr_opcode;
9966
47926f60 9967 /* Address we want to reach in file space. */
252b5132 9968 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9969
47926f60 9970 /* Address opcode resides at in file space. */
252b5132
RH
9971 opcode_address = fragP->fr_address + fragP->fr_fix;
9972
47926f60 9973 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9974 displacement_from_opcode_start = target_address - opcode_address;
9975
fddf5b5b 9976 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9977 {
47926f60
KH
9978 /* Don't have to change opcode. */
9979 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9980 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9981 }
9982 else
9983 {
9984 if (no_cond_jump_promotion
9985 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9986 as_warn_where (fragP->fr_file, fragP->fr_line,
9987 _("long jump required"));
252b5132 9988
fddf5b5b
AM
9989 switch (fragP->fr_subtype)
9990 {
9991 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9992 extension = 4; /* 1 opcode + 4 displacement */
9993 opcode[0] = 0xe9;
9994 where_to_put_displacement = &opcode[1];
9995 break;
252b5132 9996
fddf5b5b
AM
9997 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9998 extension = 2; /* 1 opcode + 2 displacement */
9999 opcode[0] = 0xe9;
10000 where_to_put_displacement = &opcode[1];
10001 break;
252b5132 10002
fddf5b5b
AM
10003 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10004 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10005 extension = 5; /* 2 opcode + 4 displacement */
10006 opcode[1] = opcode[0] + 0x10;
10007 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10008 where_to_put_displacement = &opcode[2];
10009 break;
252b5132 10010
fddf5b5b
AM
10011 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10012 extension = 3; /* 2 opcode + 2 displacement */
10013 opcode[1] = opcode[0] + 0x10;
10014 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10015 where_to_put_displacement = &opcode[2];
10016 break;
252b5132 10017
fddf5b5b
AM
10018 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10019 extension = 4;
10020 opcode[0] ^= 1;
10021 opcode[1] = 3;
10022 opcode[2] = 0xe9;
10023 where_to_put_displacement = &opcode[3];
10024 break;
10025
10026 default:
10027 BAD_CASE (fragP->fr_subtype);
10028 break;
10029 }
252b5132 10030 }
fddf5b5b 10031
7b81dfbb
AJ
10032 /* If size if less then four we are sure that the operand fits,
10033 but if it's 4, then it could be that the displacement is larger
10034 then -/+ 2GB. */
10035 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10036 && object_64bit
10037 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10038 + ((addressT) 1 << 31))
10039 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10040 {
10041 as_bad_where (fragP->fr_file, fragP->fr_line,
10042 _("jump target out of range"));
10043 /* Make us emit 0. */
10044 displacement_from_opcode_start = extension;
10045 }
47926f60 10046 /* Now put displacement after opcode. */
252b5132
RH
10047 md_number_to_chars ((char *) where_to_put_displacement,
10048 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10049 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10050 fragP->fr_fix += extension;
10051}
10052\f
7016a5d5 10053/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10054 by our caller that we have all the info we need to fix it up.
10055
7016a5d5
TG
10056 Parameter valP is the pointer to the value of the bits.
10057
252b5132
RH
10058 On the 386, immediates, displacements, and data pointers are all in
10059 the same (little-endian) format, so we don't need to care about which
10060 we are handling. */
10061
94f592af 10062void
7016a5d5 10063md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10064{
94f592af 10065 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10066 valueT value = *valP;
252b5132 10067
f86103b7 10068#if !defined (TE_Mach)
93382f6d
AM
10069 if (fixP->fx_pcrel)
10070 {
10071 switch (fixP->fx_r_type)
10072 {
5865bb77
ILT
10073 default:
10074 break;
10075
d6ab8113
JB
10076 case BFD_RELOC_64:
10077 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10078 break;
93382f6d 10079 case BFD_RELOC_32:
ae8887b5 10080 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10081 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10082 break;
10083 case BFD_RELOC_16:
10084 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10085 break;
10086 case BFD_RELOC_8:
10087 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10088 break;
10089 }
10090 }
252b5132 10091
a161fe53 10092 if (fixP->fx_addsy != NULL
31312f95 10093 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10094 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10095 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10096 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10097 && !use_rela_relocations)
252b5132 10098 {
31312f95
AM
10099 /* This is a hack. There should be a better way to handle this.
10100 This covers for the fact that bfd_install_relocation will
10101 subtract the current location (for partial_inplace, PC relative
10102 relocations); see more below. */
252b5132 10103#ifndef OBJ_AOUT
718ddfc0 10104 if (IS_ELF
252b5132
RH
10105#ifdef TE_PE
10106 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10107#endif
10108 )
10109 value += fixP->fx_where + fixP->fx_frag->fr_address;
10110#endif
10111#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10112 if (IS_ELF)
252b5132 10113 {
6539b54b 10114 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10115
6539b54b 10116 if ((sym_seg == seg
2f66722d 10117 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10118 && sym_seg != absolute_section))
af65af87 10119 && !generic_force_reloc (fixP))
2f66722d
AM
10120 {
10121 /* Yes, we add the values in twice. This is because
6539b54b
AM
10122 bfd_install_relocation subtracts them out again. I think
10123 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10124 it. FIXME. */
10125 value += fixP->fx_where + fixP->fx_frag->fr_address;
10126 }
252b5132
RH
10127 }
10128#endif
10129#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10130 /* For some reason, the PE format does not store a
10131 section address offset for a PC relative symbol. */
10132 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10133 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10134 value += md_pcrel_from (fixP);
10135#endif
10136 }
fbeb56a4 10137#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10138 if (fixP->fx_addsy != NULL
10139 && S_IS_WEAK (fixP->fx_addsy)
10140 /* PR 16858: Do not modify weak function references. */
10141 && ! fixP->fx_pcrel)
fbeb56a4 10142 {
296a8689
NC
10143#if !defined (TE_PEP)
10144 /* For x86 PE weak function symbols are neither PC-relative
10145 nor do they set S_IS_FUNCTION. So the only reliable way
10146 to detect them is to check the flags of their containing
10147 section. */
10148 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10149 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10150 ;
10151 else
10152#endif
fbeb56a4
DK
10153 value -= S_GET_VALUE (fixP->fx_addsy);
10154 }
10155#endif
252b5132
RH
10156
10157 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10158 and we must not disappoint it. */
252b5132 10159#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10160 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10161 switch (fixP->fx_r_type)
10162 {
10163 case BFD_RELOC_386_PLT32:
3e73aa7c 10164 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10165 /* Make the jump instruction point to the address of the operand. At
10166 runtime we merely add the offset to the actual PLT entry. */
10167 value = -4;
10168 break;
31312f95 10169
13ae64f3
JJ
10170 case BFD_RELOC_386_TLS_GD:
10171 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10172 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10173 case BFD_RELOC_386_TLS_IE:
10174 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10175 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10176 case BFD_RELOC_X86_64_TLSGD:
10177 case BFD_RELOC_X86_64_TLSLD:
10178 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10179 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10180 value = 0; /* Fully resolved at runtime. No addend. */
10181 /* Fallthrough */
10182 case BFD_RELOC_386_TLS_LE:
10183 case BFD_RELOC_386_TLS_LDO_32:
10184 case BFD_RELOC_386_TLS_LE_32:
10185 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10186 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10187 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10188 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10189 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10190 break;
10191
67a4f2b7
AO
10192 case BFD_RELOC_386_TLS_DESC_CALL:
10193 case BFD_RELOC_X86_64_TLSDESC_CALL:
10194 value = 0; /* Fully resolved at runtime. No addend. */
10195 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10196 fixP->fx_done = 0;
10197 return;
10198
47926f60
KH
10199 case BFD_RELOC_VTABLE_INHERIT:
10200 case BFD_RELOC_VTABLE_ENTRY:
10201 fixP->fx_done = 0;
94f592af 10202 return;
47926f60
KH
10203
10204 default:
10205 break;
10206 }
10207#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10208 *valP = value;
f86103b7 10209#endif /* !defined (TE_Mach) */
3e73aa7c 10210
3e73aa7c 10211 /* Are we finished with this relocation now? */
c6682705 10212 if (fixP->fx_addsy == NULL)
3e73aa7c 10213 fixP->fx_done = 1;
fbeb56a4
DK
10214#if defined (OBJ_COFF) && defined (TE_PE)
10215 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10216 {
10217 fixP->fx_done = 0;
10218 /* Remember value for tc_gen_reloc. */
10219 fixP->fx_addnumber = value;
10220 /* Clear out the frag for now. */
10221 value = 0;
10222 }
10223#endif
3e73aa7c
JH
10224 else if (use_rela_relocations)
10225 {
10226 fixP->fx_no_overflow = 1;
062cd5e7
AS
10227 /* Remember value for tc_gen_reloc. */
10228 fixP->fx_addnumber = value;
3e73aa7c
JH
10229 value = 0;
10230 }
f86103b7 10231
94f592af 10232 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10233}
252b5132 10234\f
6d4af3c2 10235const char *
499ac353 10236md_atof (int type, char *litP, int *sizeP)
252b5132 10237{
499ac353
NC
10238 /* This outputs the LITTLENUMs in REVERSE order;
10239 in accord with the bigendian 386. */
10240 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10241}
10242\f
2d545b82 10243static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10244
252b5132 10245static char *
e3bb37b5 10246output_invalid (int c)
252b5132 10247{
3882b010 10248 if (ISPRINT (c))
f9f21a03
L
10249 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10250 "'%c'", c);
252b5132 10251 else
f9f21a03 10252 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10253 "(0x%x)", (unsigned char) c);
252b5132
RH
10254 return output_invalid_buf;
10255}
10256
af6bdddf 10257/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10258
10259static const reg_entry *
4d1bb795 10260parse_real_register (char *reg_string, char **end_op)
252b5132 10261{
af6bdddf
AM
10262 char *s = reg_string;
10263 char *p;
252b5132
RH
10264 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10265 const reg_entry *r;
10266
10267 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10268 if (*s == REGISTER_PREFIX)
10269 ++s;
10270
10271 if (is_space_char (*s))
10272 ++s;
10273
10274 p = reg_name_given;
af6bdddf 10275 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10276 {
10277 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10278 return (const reg_entry *) NULL;
10279 s++;
252b5132
RH
10280 }
10281
6588847e
DN
10282 /* For naked regs, make sure that we are not dealing with an identifier.
10283 This prevents confusing an identifier like `eax_var' with register
10284 `eax'. */
10285 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10286 return (const reg_entry *) NULL;
10287
af6bdddf 10288 *end_op = s;
252b5132
RH
10289
10290 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10291
5f47d35b 10292 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10293 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10294 {
0e0eea78
JB
10295 if (!cpu_arch_flags.bitfield.cpu8087
10296 && !cpu_arch_flags.bitfield.cpu287
10297 && !cpu_arch_flags.bitfield.cpu387)
10298 return (const reg_entry *) NULL;
10299
5f47d35b
AM
10300 if (is_space_char (*s))
10301 ++s;
10302 if (*s == '(')
10303 {
af6bdddf 10304 ++s;
5f47d35b
AM
10305 if (is_space_char (*s))
10306 ++s;
10307 if (*s >= '0' && *s <= '7')
10308 {
db557034 10309 int fpr = *s - '0';
af6bdddf 10310 ++s;
5f47d35b
AM
10311 if (is_space_char (*s))
10312 ++s;
10313 if (*s == ')')
10314 {
10315 *end_op = s + 1;
1e9cc1c2 10316 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10317 know (r);
10318 return r + fpr;
5f47d35b 10319 }
5f47d35b 10320 }
47926f60 10321 /* We have "%st(" then garbage. */
5f47d35b
AM
10322 return (const reg_entry *) NULL;
10323 }
10324 }
10325
a60de03c
JB
10326 if (r == NULL || allow_pseudo_reg)
10327 return r;
10328
0dfbf9d7 10329 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10330 return (const reg_entry *) NULL;
10331
dc821c5f 10332 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10333 || r->reg_type.bitfield.sreg3
10334 || r->reg_type.bitfield.control
10335 || r->reg_type.bitfield.debug
10336 || r->reg_type.bitfield.test)
10337 && !cpu_arch_flags.bitfield.cpui386)
10338 return (const reg_entry *) NULL;
10339
6e041cf4 10340 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10341 return (const reg_entry *) NULL;
10342
6e041cf4
JB
10343 if (!cpu_arch_flags.bitfield.cpuavx512f)
10344 {
10345 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10346 return (const reg_entry *) NULL;
40f12533 10347
6e041cf4
JB
10348 if (!cpu_arch_flags.bitfield.cpuavx)
10349 {
10350 if (r->reg_type.bitfield.ymmword)
10351 return (const reg_entry *) NULL;
1848e567 10352
6e041cf4
JB
10353 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10354 return (const reg_entry *) NULL;
10355 }
10356 }
43234a1e 10357
1adf7f56
JB
10358 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10359 return (const reg_entry *) NULL;
10360
db51cc60 10361 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10362 if (!allow_index_reg
db51cc60
L
10363 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10364 return (const reg_entry *) NULL;
10365
1d3f8286
JB
10366 /* Upper 16 vector registers are only available with VREX in 64bit
10367 mode, and require EVEX encoding. */
10368 if (r->reg_flags & RegVRex)
43234a1e
L
10369 {
10370 if (!cpu_arch_flags.bitfield.cpuvrex
10371 || flag_code != CODE_64BIT)
10372 return (const reg_entry *) NULL;
1d3f8286
JB
10373
10374 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10375 }
10376
4787f4a5
JB
10377 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10378 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10379 && flag_code != CODE_64BIT)
20f0a1fc 10380 return (const reg_entry *) NULL;
1ae00879 10381
b7240065
JB
10382 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10383 return (const reg_entry *) NULL;
10384
252b5132
RH
10385 return r;
10386}
4d1bb795
JB
10387
10388/* REG_STRING starts *before* REGISTER_PREFIX. */
10389
10390static const reg_entry *
10391parse_register (char *reg_string, char **end_op)
10392{
10393 const reg_entry *r;
10394
10395 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10396 r = parse_real_register (reg_string, end_op);
10397 else
10398 r = NULL;
10399 if (!r)
10400 {
10401 char *save = input_line_pointer;
10402 char c;
10403 symbolS *symbolP;
10404
10405 input_line_pointer = reg_string;
d02603dc 10406 c = get_symbol_name (&reg_string);
4d1bb795
JB
10407 symbolP = symbol_find (reg_string);
10408 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10409 {
10410 const expressionS *e = symbol_get_value_expression (symbolP);
10411
0398aac5 10412 know (e->X_op == O_register);
4eed87de 10413 know (e->X_add_number >= 0
c3fe08fa 10414 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10415 r = i386_regtab + e->X_add_number;
d3bb6b49 10416 if ((r->reg_flags & RegVRex))
86fa6981 10417 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10418 *end_op = input_line_pointer;
10419 }
10420 *input_line_pointer = c;
10421 input_line_pointer = save;
10422 }
10423 return r;
10424}
10425
10426int
10427i386_parse_name (char *name, expressionS *e, char *nextcharP)
10428{
10429 const reg_entry *r;
10430 char *end = input_line_pointer;
10431
10432 *end = *nextcharP;
10433 r = parse_register (name, &input_line_pointer);
10434 if (r && end <= input_line_pointer)
10435 {
10436 *nextcharP = *input_line_pointer;
10437 *input_line_pointer = 0;
10438 e->X_op = O_register;
10439 e->X_add_number = r - i386_regtab;
10440 return 1;
10441 }
10442 input_line_pointer = end;
10443 *end = 0;
ee86248c 10444 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10445}
10446
10447void
10448md_operand (expressionS *e)
10449{
ee86248c
JB
10450 char *end;
10451 const reg_entry *r;
4d1bb795 10452
ee86248c
JB
10453 switch (*input_line_pointer)
10454 {
10455 case REGISTER_PREFIX:
10456 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10457 if (r)
10458 {
10459 e->X_op = O_register;
10460 e->X_add_number = r - i386_regtab;
10461 input_line_pointer = end;
10462 }
ee86248c
JB
10463 break;
10464
10465 case '[':
9c2799c2 10466 gas_assert (intel_syntax);
ee86248c
JB
10467 end = input_line_pointer++;
10468 expression (e);
10469 if (*input_line_pointer == ']')
10470 {
10471 ++input_line_pointer;
10472 e->X_op_symbol = make_expr_symbol (e);
10473 e->X_add_symbol = NULL;
10474 e->X_add_number = 0;
10475 e->X_op = O_index;
10476 }
10477 else
10478 {
10479 e->X_op = O_absent;
10480 input_line_pointer = end;
10481 }
10482 break;
4d1bb795
JB
10483 }
10484}
10485
252b5132 10486\f
4cc782b5 10487#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10488const char *md_shortopts = "kVQ:sqnO::";
252b5132 10489#else
b6f8c7c4 10490const char *md_shortopts = "qnO::";
252b5132 10491#endif
6e0b89ee 10492
3e73aa7c 10493#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10494#define OPTION_64 (OPTION_MD_BASE + 1)
10495#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10496#define OPTION_MARCH (OPTION_MD_BASE + 3)
10497#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10498#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10499#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10500#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10501#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10502#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10503#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10504#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10505#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10506#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10507#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10508#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10509#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10510#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10511#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10512#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10513#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10514#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10515#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10516#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10517#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10518
99ad8390
NC
10519struct option md_longopts[] =
10520{
3e73aa7c 10521 {"32", no_argument, NULL, OPTION_32},
321098a5 10522#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10523 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10524 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10525#endif
10526#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10527 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10528 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10529#endif
b3b91714 10530 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10531 {"march", required_argument, NULL, OPTION_MARCH},
10532 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10533 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10534 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10535 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10536 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10537 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10538 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10539 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10540 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10541 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10542 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10543 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10544# if defined (TE_PE) || defined (TE_PEP)
10545 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10546#endif
d1982f93 10547 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10548 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10549 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10550 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10551 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10552 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10553 {NULL, no_argument, NULL, 0}
10554};
10555size_t md_longopts_size = sizeof (md_longopts);
10556
10557int
17b9d67d 10558md_parse_option (int c, const char *arg)
252b5132 10559{
91d6fa6a 10560 unsigned int j;
293f5f65 10561 char *arch, *next, *saved;
9103f4f4 10562
252b5132
RH
10563 switch (c)
10564 {
12b55ccc
L
10565 case 'n':
10566 optimize_align_code = 0;
10567 break;
10568
a38cf1db
AM
10569 case 'q':
10570 quiet_warnings = 1;
252b5132
RH
10571 break;
10572
10573#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10574 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10575 should be emitted or not. FIXME: Not implemented. */
10576 case 'Q':
252b5132
RH
10577 break;
10578
10579 /* -V: SVR4 argument to print version ID. */
10580 case 'V':
10581 print_version_id ();
10582 break;
10583
a38cf1db
AM
10584 /* -k: Ignore for FreeBSD compatibility. */
10585 case 'k':
252b5132 10586 break;
4cc782b5
ILT
10587
10588 case 's':
10589 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10590 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10591 break;
8dcea932
L
10592
10593 case OPTION_MSHARED:
10594 shared = 1;
10595 break;
99ad8390 10596#endif
321098a5 10597#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10598 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10599 case OPTION_64:
10600 {
10601 const char **list, **l;
10602
3e73aa7c
JH
10603 list = bfd_target_list ();
10604 for (l = list; *l != NULL; l++)
8620418b 10605 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10606 || strcmp (*l, "coff-x86-64") == 0
10607 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10608 || strcmp (*l, "pei-x86-64") == 0
10609 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10610 {
10611 default_arch = "x86_64";
10612 break;
10613 }
3e73aa7c 10614 if (*l == NULL)
2b5d6a91 10615 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10616 free (list);
10617 }
10618 break;
10619#endif
252b5132 10620
351f65ca 10621#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10622 case OPTION_X32:
351f65ca
L
10623 if (IS_ELF)
10624 {
10625 const char **list, **l;
10626
10627 list = bfd_target_list ();
10628 for (l = list; *l != NULL; l++)
10629 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10630 {
10631 default_arch = "x86_64:32";
10632 break;
10633 }
10634 if (*l == NULL)
2b5d6a91 10635 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10636 free (list);
10637 }
10638 else
10639 as_fatal (_("32bit x86_64 is only supported for ELF"));
10640 break;
10641#endif
10642
6e0b89ee
AM
10643 case OPTION_32:
10644 default_arch = "i386";
10645 break;
10646
b3b91714
AM
10647 case OPTION_DIVIDE:
10648#ifdef SVR4_COMMENT_CHARS
10649 {
10650 char *n, *t;
10651 const char *s;
10652
add39d23 10653 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10654 t = n;
10655 for (s = i386_comment_chars; *s != '\0'; s++)
10656 if (*s != '/')
10657 *t++ = *s;
10658 *t = '\0';
10659 i386_comment_chars = n;
10660 }
10661#endif
10662 break;
10663
9103f4f4 10664 case OPTION_MARCH:
293f5f65
L
10665 saved = xstrdup (arg);
10666 arch = saved;
10667 /* Allow -march=+nosse. */
10668 if (*arch == '+')
10669 arch++;
6305a203 10670 do
9103f4f4 10671 {
6305a203 10672 if (*arch == '.')
2b5d6a91 10673 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10674 next = strchr (arch, '+');
10675 if (next)
10676 *next++ = '\0';
91d6fa6a 10677 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10678 {
91d6fa6a 10679 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10680 {
6305a203 10681 /* Processor. */
1ded5609
JB
10682 if (! cpu_arch[j].flags.bitfield.cpui386)
10683 continue;
10684
91d6fa6a 10685 cpu_arch_name = cpu_arch[j].name;
6305a203 10686 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10687 cpu_arch_flags = cpu_arch[j].flags;
10688 cpu_arch_isa = cpu_arch[j].type;
10689 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10690 if (!cpu_arch_tune_set)
10691 {
10692 cpu_arch_tune = cpu_arch_isa;
10693 cpu_arch_tune_flags = cpu_arch_isa_flags;
10694 }
10695 break;
10696 }
91d6fa6a
NC
10697 else if (*cpu_arch [j].name == '.'
10698 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10699 {
33eaf5de 10700 /* ISA extension. */
6305a203 10701 i386_cpu_flags flags;
309d3373 10702
293f5f65
L
10703 flags = cpu_flags_or (cpu_arch_flags,
10704 cpu_arch[j].flags);
81486035 10705
5b64d091 10706 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10707 {
10708 if (cpu_sub_arch_name)
10709 {
10710 char *name = cpu_sub_arch_name;
10711 cpu_sub_arch_name = concat (name,
91d6fa6a 10712 cpu_arch[j].name,
1bf57e9f 10713 (const char *) NULL);
6305a203
L
10714 free (name);
10715 }
10716 else
91d6fa6a 10717 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10718 cpu_arch_flags = flags;
a586129e 10719 cpu_arch_isa_flags = flags;
6305a203 10720 }
0089dace
L
10721 else
10722 cpu_arch_isa_flags
10723 = cpu_flags_or (cpu_arch_isa_flags,
10724 cpu_arch[j].flags);
6305a203 10725 break;
ccc9c027 10726 }
9103f4f4 10727 }
6305a203 10728
293f5f65
L
10729 if (j >= ARRAY_SIZE (cpu_arch))
10730 {
33eaf5de 10731 /* Disable an ISA extension. */
293f5f65
L
10732 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10733 if (strcmp (arch, cpu_noarch [j].name) == 0)
10734 {
10735 i386_cpu_flags flags;
10736
10737 flags = cpu_flags_and_not (cpu_arch_flags,
10738 cpu_noarch[j].flags);
10739 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10740 {
10741 if (cpu_sub_arch_name)
10742 {
10743 char *name = cpu_sub_arch_name;
10744 cpu_sub_arch_name = concat (arch,
10745 (const char *) NULL);
10746 free (name);
10747 }
10748 else
10749 cpu_sub_arch_name = xstrdup (arch);
10750 cpu_arch_flags = flags;
10751 cpu_arch_isa_flags = flags;
10752 }
10753 break;
10754 }
10755
10756 if (j >= ARRAY_SIZE (cpu_noarch))
10757 j = ARRAY_SIZE (cpu_arch);
10758 }
10759
91d6fa6a 10760 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10761 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10762
10763 arch = next;
9103f4f4 10764 }
293f5f65
L
10765 while (next != NULL);
10766 free (saved);
9103f4f4
L
10767 break;
10768
10769 case OPTION_MTUNE:
10770 if (*arg == '.')
2b5d6a91 10771 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10772 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10773 {
91d6fa6a 10774 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10775 {
ccc9c027 10776 cpu_arch_tune_set = 1;
91d6fa6a
NC
10777 cpu_arch_tune = cpu_arch [j].type;
10778 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10779 break;
10780 }
10781 }
91d6fa6a 10782 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10783 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10784 break;
10785
1efbbeb4
L
10786 case OPTION_MMNEMONIC:
10787 if (strcasecmp (arg, "att") == 0)
10788 intel_mnemonic = 0;
10789 else if (strcasecmp (arg, "intel") == 0)
10790 intel_mnemonic = 1;
10791 else
2b5d6a91 10792 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10793 break;
10794
10795 case OPTION_MSYNTAX:
10796 if (strcasecmp (arg, "att") == 0)
10797 intel_syntax = 0;
10798 else if (strcasecmp (arg, "intel") == 0)
10799 intel_syntax = 1;
10800 else
2b5d6a91 10801 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10802 break;
10803
10804 case OPTION_MINDEX_REG:
10805 allow_index_reg = 1;
10806 break;
10807
10808 case OPTION_MNAKED_REG:
10809 allow_naked_reg = 1;
10810 break;
10811
c0f3af97
L
10812 case OPTION_MSSE2AVX:
10813 sse2avx = 1;
10814 break;
10815
daf50ae7
L
10816 case OPTION_MSSE_CHECK:
10817 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10818 sse_check = check_error;
daf50ae7 10819 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10820 sse_check = check_warning;
daf50ae7 10821 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10822 sse_check = check_none;
daf50ae7 10823 else
2b5d6a91 10824 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10825 break;
10826
7bab8ab5
JB
10827 case OPTION_MOPERAND_CHECK:
10828 if (strcasecmp (arg, "error") == 0)
10829 operand_check = check_error;
10830 else if (strcasecmp (arg, "warning") == 0)
10831 operand_check = check_warning;
10832 else if (strcasecmp (arg, "none") == 0)
10833 operand_check = check_none;
10834 else
10835 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10836 break;
10837
539f890d
L
10838 case OPTION_MAVXSCALAR:
10839 if (strcasecmp (arg, "128") == 0)
10840 avxscalar = vex128;
10841 else if (strcasecmp (arg, "256") == 0)
10842 avxscalar = vex256;
10843 else
2b5d6a91 10844 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10845 break;
10846
7e8b059b
L
10847 case OPTION_MADD_BND_PREFIX:
10848 add_bnd_prefix = 1;
10849 break;
10850
43234a1e
L
10851 case OPTION_MEVEXLIG:
10852 if (strcmp (arg, "128") == 0)
10853 evexlig = evexl128;
10854 else if (strcmp (arg, "256") == 0)
10855 evexlig = evexl256;
10856 else if (strcmp (arg, "512") == 0)
10857 evexlig = evexl512;
10858 else
10859 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10860 break;
10861
d3d3c6db
IT
10862 case OPTION_MEVEXRCIG:
10863 if (strcmp (arg, "rne") == 0)
10864 evexrcig = rne;
10865 else if (strcmp (arg, "rd") == 0)
10866 evexrcig = rd;
10867 else if (strcmp (arg, "ru") == 0)
10868 evexrcig = ru;
10869 else if (strcmp (arg, "rz") == 0)
10870 evexrcig = rz;
10871 else
10872 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10873 break;
10874
43234a1e
L
10875 case OPTION_MEVEXWIG:
10876 if (strcmp (arg, "0") == 0)
10877 evexwig = evexw0;
10878 else if (strcmp (arg, "1") == 0)
10879 evexwig = evexw1;
10880 else
10881 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10882 break;
10883
167ad85b
TG
10884# if defined (TE_PE) || defined (TE_PEP)
10885 case OPTION_MBIG_OBJ:
10886 use_big_obj = 1;
10887 break;
10888#endif
10889
d1982f93 10890 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10891 if (strcasecmp (arg, "yes") == 0)
10892 omit_lock_prefix = 1;
10893 else if (strcasecmp (arg, "no") == 0)
10894 omit_lock_prefix = 0;
10895 else
10896 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10897 break;
10898
e4e00185
AS
10899 case OPTION_MFENCE_AS_LOCK_ADD:
10900 if (strcasecmp (arg, "yes") == 0)
10901 avoid_fence = 1;
10902 else if (strcasecmp (arg, "no") == 0)
10903 avoid_fence = 0;
10904 else
10905 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10906 break;
10907
0cb4071e
L
10908 case OPTION_MRELAX_RELOCATIONS:
10909 if (strcasecmp (arg, "yes") == 0)
10910 generate_relax_relocations = 1;
10911 else if (strcasecmp (arg, "no") == 0)
10912 generate_relax_relocations = 0;
10913 else
10914 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10915 break;
10916
5db04b09 10917 case OPTION_MAMD64:
e89c5eaa 10918 intel64 = 0;
5db04b09
L
10919 break;
10920
10921 case OPTION_MINTEL64:
e89c5eaa 10922 intel64 = 1;
5db04b09
L
10923 break;
10924
b6f8c7c4
L
10925 case 'O':
10926 if (arg == NULL)
10927 {
10928 optimize = 1;
10929 /* Turn off -Os. */
10930 optimize_for_space = 0;
10931 }
10932 else if (*arg == 's')
10933 {
10934 optimize_for_space = 1;
10935 /* Turn on all encoding optimizations. */
10936 optimize = -1;
10937 }
10938 else
10939 {
10940 optimize = atoi (arg);
10941 /* Turn off -Os. */
10942 optimize_for_space = 0;
10943 }
10944 break;
10945
252b5132
RH
10946 default:
10947 return 0;
10948 }
10949 return 1;
10950}
10951
8a2c8fef
L
10952#define MESSAGE_TEMPLATE \
10953" "
10954
293f5f65
L
10955static char *
10956output_message (FILE *stream, char *p, char *message, char *start,
10957 int *left_p, const char *name, int len)
10958{
10959 int size = sizeof (MESSAGE_TEMPLATE);
10960 int left = *left_p;
10961
10962 /* Reserve 2 spaces for ", " or ",\0" */
10963 left -= len + 2;
10964
10965 /* Check if there is any room. */
10966 if (left >= 0)
10967 {
10968 if (p != start)
10969 {
10970 *p++ = ',';
10971 *p++ = ' ';
10972 }
10973 p = mempcpy (p, name, len);
10974 }
10975 else
10976 {
10977 /* Output the current message now and start a new one. */
10978 *p++ = ',';
10979 *p = '\0';
10980 fprintf (stream, "%s\n", message);
10981 p = start;
10982 left = size - (start - message) - len - 2;
10983
10984 gas_assert (left >= 0);
10985
10986 p = mempcpy (p, name, len);
10987 }
10988
10989 *left_p = left;
10990 return p;
10991}
10992
8a2c8fef 10993static void
1ded5609 10994show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10995{
10996 static char message[] = MESSAGE_TEMPLATE;
10997 char *start = message + 27;
10998 char *p;
10999 int size = sizeof (MESSAGE_TEMPLATE);
11000 int left;
11001 const char *name;
11002 int len;
11003 unsigned int j;
11004
11005 p = start;
11006 left = size - (start - message);
11007 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11008 {
11009 /* Should it be skipped? */
11010 if (cpu_arch [j].skip)
11011 continue;
11012
11013 name = cpu_arch [j].name;
11014 len = cpu_arch [j].len;
11015 if (*name == '.')
11016 {
11017 /* It is an extension. Skip if we aren't asked to show it. */
11018 if (ext)
11019 {
11020 name++;
11021 len--;
11022 }
11023 else
11024 continue;
11025 }
11026 else if (ext)
11027 {
11028 /* It is an processor. Skip if we show only extension. */
11029 continue;
11030 }
1ded5609
JB
11031 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11032 {
11033 /* It is an impossible processor - skip. */
11034 continue;
11035 }
8a2c8fef 11036
293f5f65 11037 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11038 }
11039
293f5f65
L
11040 /* Display disabled extensions. */
11041 if (ext)
11042 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11043 {
11044 name = cpu_noarch [j].name;
11045 len = cpu_noarch [j].len;
11046 p = output_message (stream, p, message, start, &left, name,
11047 len);
11048 }
11049
8a2c8fef
L
11050 *p = '\0';
11051 fprintf (stream, "%s\n", message);
11052}
11053
252b5132 11054void
8a2c8fef 11055md_show_usage (FILE *stream)
252b5132 11056{
4cc782b5
ILT
11057#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11058 fprintf (stream, _("\
a38cf1db
AM
11059 -Q ignored\n\
11060 -V print assembler version number\n\
b3b91714
AM
11061 -k ignored\n"));
11062#endif
11063 fprintf (stream, _("\
12b55ccc 11064 -n Do not optimize code alignment\n\
b3b91714
AM
11065 -q quieten some warnings\n"));
11066#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11067 fprintf (stream, _("\
a38cf1db 11068 -s ignored\n"));
b3b91714 11069#endif
321098a5
L
11070#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11071 || defined (TE_PE) || defined (TE_PEP))
751d281c 11072 fprintf (stream, _("\
570561f7 11073 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11074#endif
b3b91714
AM
11075#ifdef SVR4_COMMENT_CHARS
11076 fprintf (stream, _("\
11077 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11078#else
11079 fprintf (stream, _("\
b3b91714 11080 --divide ignored\n"));
4cc782b5 11081#endif
9103f4f4 11082 fprintf (stream, _("\
6305a203 11083 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11084 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11085 show_arch (stream, 0, 1);
8a2c8fef
L
11086 fprintf (stream, _("\
11087 EXTENSION is combination of:\n"));
1ded5609 11088 show_arch (stream, 1, 0);
6305a203 11089 fprintf (stream, _("\
8a2c8fef 11090 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11091 show_arch (stream, 0, 0);
ba104c83 11092 fprintf (stream, _("\
c0f3af97
L
11093 -msse2avx encode SSE instructions with VEX prefix\n"));
11094 fprintf (stream, _("\
daf50ae7
L
11095 -msse-check=[none|error|warning]\n\
11096 check SSE instructions\n"));
11097 fprintf (stream, _("\
7bab8ab5
JB
11098 -moperand-check=[none|error|warning]\n\
11099 check operand combinations for validity\n"));
11100 fprintf (stream, _("\
539f890d
L
11101 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11102 length\n"));
11103 fprintf (stream, _("\
43234a1e
L
11104 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11105 length\n"));
11106 fprintf (stream, _("\
11107 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11108 for EVEX.W bit ignored instructions\n"));
11109 fprintf (stream, _("\
d3d3c6db
IT
11110 -mevexrcig=[rne|rd|ru|rz]\n\
11111 encode EVEX instructions with specific EVEX.RC value\n\
11112 for SAE-only ignored instructions\n"));
11113 fprintf (stream, _("\
ba104c83
L
11114 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11115 fprintf (stream, _("\
11116 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11117 fprintf (stream, _("\
11118 -mindex-reg support pseudo index registers\n"));
11119 fprintf (stream, _("\
11120 -mnaked-reg don't require `%%' prefix for registers\n"));
11121 fprintf (stream, _("\
7e8b059b 11122 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
11123 fprintf (stream, _("\
11124 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
11125# if defined (TE_PE) || defined (TE_PEP)
11126 fprintf (stream, _("\
11127 -mbig-obj generate big object files\n"));
11128#endif
d022bddd
IT
11129 fprintf (stream, _("\
11130 -momit-lock-prefix=[no|yes]\n\
11131 strip all lock prefixes\n"));
5db04b09 11132 fprintf (stream, _("\
e4e00185
AS
11133 -mfence-as-lock-add=[no|yes]\n\
11134 encode lfence, mfence and sfence as\n\
11135 lock addl $0x0, (%%{re}sp)\n"));
11136 fprintf (stream, _("\
0cb4071e
L
11137 -mrelax-relocations=[no|yes]\n\
11138 generate relax relocations\n"));
11139 fprintf (stream, _("\
5db04b09
L
11140 -mamd64 accept only AMD64 ISA\n"));
11141 fprintf (stream, _("\
11142 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11143}
11144
3e73aa7c 11145#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11146 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11147 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11148
11149/* Pick the target format to use. */
11150
47926f60 11151const char *
e3bb37b5 11152i386_target_format (void)
252b5132 11153{
351f65ca
L
11154 if (!strncmp (default_arch, "x86_64", 6))
11155 {
11156 update_code_flag (CODE_64BIT, 1);
11157 if (default_arch[6] == '\0')
7f56bc95 11158 x86_elf_abi = X86_64_ABI;
351f65ca 11159 else
7f56bc95 11160 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11161 }
3e73aa7c 11162 else if (!strcmp (default_arch, "i386"))
78f12dd3 11163 update_code_flag (CODE_32BIT, 1);
5197d474
L
11164 else if (!strcmp (default_arch, "iamcu"))
11165 {
11166 update_code_flag (CODE_32BIT, 1);
11167 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11168 {
11169 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11170 cpu_arch_name = "iamcu";
11171 cpu_sub_arch_name = NULL;
11172 cpu_arch_flags = iamcu_flags;
11173 cpu_arch_isa = PROCESSOR_IAMCU;
11174 cpu_arch_isa_flags = iamcu_flags;
11175 if (!cpu_arch_tune_set)
11176 {
11177 cpu_arch_tune = cpu_arch_isa;
11178 cpu_arch_tune_flags = cpu_arch_isa_flags;
11179 }
11180 }
8d471ec1 11181 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11182 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11183 cpu_arch_name);
11184 }
3e73aa7c 11185 else
2b5d6a91 11186 as_fatal (_("unknown architecture"));
89507696
JB
11187
11188 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11189 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11190 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11191 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11192
252b5132
RH
11193 switch (OUTPUT_FLAVOR)
11194 {
9384f2ff 11195#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11196 case bfd_target_aout_flavour:
47926f60 11197 return AOUT_TARGET_FORMAT;
4c63da97 11198#endif
9384f2ff
AM
11199#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11200# if defined (TE_PE) || defined (TE_PEP)
11201 case bfd_target_coff_flavour:
167ad85b
TG
11202 if (flag_code == CODE_64BIT)
11203 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11204 else
11205 return "pe-i386";
9384f2ff 11206# elif defined (TE_GO32)
0561d57c
JK
11207 case bfd_target_coff_flavour:
11208 return "coff-go32";
9384f2ff 11209# else
252b5132
RH
11210 case bfd_target_coff_flavour:
11211 return "coff-i386";
9384f2ff 11212# endif
4c63da97 11213#endif
3e73aa7c 11214#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11215 case bfd_target_elf_flavour:
3e73aa7c 11216 {
351f65ca
L
11217 const char *format;
11218
11219 switch (x86_elf_abi)
4fa24527 11220 {
351f65ca
L
11221 default:
11222 format = ELF_TARGET_FORMAT;
11223 break;
7f56bc95 11224 case X86_64_ABI:
351f65ca 11225 use_rela_relocations = 1;
4fa24527 11226 object_64bit = 1;
351f65ca
L
11227 format = ELF_TARGET_FORMAT64;
11228 break;
7f56bc95 11229 case X86_64_X32_ABI:
4fa24527 11230 use_rela_relocations = 1;
351f65ca 11231 object_64bit = 1;
862be3fb 11232 disallow_64bit_reloc = 1;
351f65ca
L
11233 format = ELF_TARGET_FORMAT32;
11234 break;
4fa24527 11235 }
3632d14b 11236 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11237 {
7f56bc95 11238 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11239 as_fatal (_("Intel L1OM is 64bit only"));
11240 return ELF_TARGET_L1OM_FORMAT;
11241 }
b49f93f6 11242 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11243 {
11244 if (x86_elf_abi != X86_64_ABI)
11245 as_fatal (_("Intel K1OM is 64bit only"));
11246 return ELF_TARGET_K1OM_FORMAT;
11247 }
81486035
L
11248 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11249 {
11250 if (x86_elf_abi != I386_ABI)
11251 as_fatal (_("Intel MCU is 32bit only"));
11252 return ELF_TARGET_IAMCU_FORMAT;
11253 }
8a9036a4 11254 else
351f65ca 11255 return format;
3e73aa7c 11256 }
e57f8c65
TG
11257#endif
11258#if defined (OBJ_MACH_O)
11259 case bfd_target_mach_o_flavour:
d382c579
TG
11260 if (flag_code == CODE_64BIT)
11261 {
11262 use_rela_relocations = 1;
11263 object_64bit = 1;
11264 return "mach-o-x86-64";
11265 }
11266 else
11267 return "mach-o-i386";
4c63da97 11268#endif
252b5132
RH
11269 default:
11270 abort ();
11271 return NULL;
11272 }
11273}
11274
47926f60 11275#endif /* OBJ_MAYBE_ more than one */
252b5132 11276\f
252b5132 11277symbolS *
7016a5d5 11278md_undefined_symbol (char *name)
252b5132 11279{
18dc2407
ILT
11280 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11281 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11282 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11283 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11284 {
11285 if (!GOT_symbol)
11286 {
11287 if (symbol_find (name))
11288 as_bad (_("GOT already in symbol table"));
11289 GOT_symbol = symbol_new (name, undefined_section,
11290 (valueT) 0, &zero_address_frag);
11291 };
11292 return GOT_symbol;
11293 }
252b5132
RH
11294 return 0;
11295}
11296
11297/* Round up a section size to the appropriate boundary. */
47926f60 11298
252b5132 11299valueT
7016a5d5 11300md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11301{
4c63da97
AM
11302#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11303 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11304 {
11305 /* For a.out, force the section size to be aligned. If we don't do
11306 this, BFD will align it for us, but it will not write out the
11307 final bytes of the section. This may be a bug in BFD, but it is
11308 easier to fix it here since that is how the other a.out targets
11309 work. */
11310 int align;
11311
11312 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11313 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11314 }
252b5132
RH
11315#endif
11316
11317 return size;
11318}
11319
11320/* On the i386, PC-relative offsets are relative to the start of the
11321 next instruction. That is, the address of the offset, plus its
11322 size, since the offset is always the last part of the insn. */
11323
11324long
e3bb37b5 11325md_pcrel_from (fixS *fixP)
252b5132
RH
11326{
11327 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11328}
11329
11330#ifndef I386COFF
11331
11332static void
e3bb37b5 11333s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11334{
29b0f896 11335 int temp;
252b5132 11336
8a75718c
JB
11337#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11338 if (IS_ELF)
11339 obj_elf_section_change_hook ();
11340#endif
252b5132
RH
11341 temp = get_absolute_expression ();
11342 subseg_set (bss_section, (subsegT) temp);
11343 demand_empty_rest_of_line ();
11344}
11345
11346#endif
11347
252b5132 11348void
e3bb37b5 11349i386_validate_fix (fixS *fixp)
252b5132 11350{
02a86693 11351 if (fixp->fx_subsy)
252b5132 11352 {
02a86693 11353 if (fixp->fx_subsy == GOT_symbol)
23df1078 11354 {
02a86693
L
11355 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11356 {
11357 if (!object_64bit)
11358 abort ();
11359#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11360 if (fixp->fx_tcbit2)
56ceb5b5
L
11361 fixp->fx_r_type = (fixp->fx_tcbit
11362 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11363 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11364 else
11365#endif
11366 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11367 }
d6ab8113 11368 else
02a86693
L
11369 {
11370 if (!object_64bit)
11371 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11372 else
11373 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11374 }
11375 fixp->fx_subsy = 0;
23df1078 11376 }
252b5132 11377 }
02a86693
L
11378#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11379 else if (!object_64bit)
11380 {
11381 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11382 && fixp->fx_tcbit2)
11383 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11384 }
11385#endif
252b5132
RH
11386}
11387
252b5132 11388arelent *
7016a5d5 11389tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11390{
11391 arelent *rel;
11392 bfd_reloc_code_real_type code;
11393
11394 switch (fixp->fx_r_type)
11395 {
8ce3d284 11396#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11397 case BFD_RELOC_SIZE32:
11398 case BFD_RELOC_SIZE64:
11399 if (S_IS_DEFINED (fixp->fx_addsy)
11400 && !S_IS_EXTERNAL (fixp->fx_addsy))
11401 {
11402 /* Resolve size relocation against local symbol to size of
11403 the symbol plus addend. */
11404 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11405 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11406 && !fits_in_unsigned_long (value))
11407 as_bad_where (fixp->fx_file, fixp->fx_line,
11408 _("symbol size computation overflow"));
11409 fixp->fx_addsy = NULL;
11410 fixp->fx_subsy = NULL;
11411 md_apply_fix (fixp, (valueT *) &value, NULL);
11412 return NULL;
11413 }
8ce3d284 11414#endif
1a0670f3 11415 /* Fall through. */
8fd4256d 11416
3e73aa7c
JH
11417 case BFD_RELOC_X86_64_PLT32:
11418 case BFD_RELOC_X86_64_GOT32:
11419 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11420 case BFD_RELOC_X86_64_GOTPCRELX:
11421 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11422 case BFD_RELOC_386_PLT32:
11423 case BFD_RELOC_386_GOT32:
02a86693 11424 case BFD_RELOC_386_GOT32X:
252b5132
RH
11425 case BFD_RELOC_386_GOTOFF:
11426 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11427 case BFD_RELOC_386_TLS_GD:
11428 case BFD_RELOC_386_TLS_LDM:
11429 case BFD_RELOC_386_TLS_LDO_32:
11430 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11431 case BFD_RELOC_386_TLS_IE:
11432 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11433 case BFD_RELOC_386_TLS_LE_32:
11434 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11435 case BFD_RELOC_386_TLS_GOTDESC:
11436 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11437 case BFD_RELOC_X86_64_TLSGD:
11438 case BFD_RELOC_X86_64_TLSLD:
11439 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11440 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11441 case BFD_RELOC_X86_64_GOTTPOFF:
11442 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11443 case BFD_RELOC_X86_64_TPOFF64:
11444 case BFD_RELOC_X86_64_GOTOFF64:
11445 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11446 case BFD_RELOC_X86_64_GOT64:
11447 case BFD_RELOC_X86_64_GOTPCREL64:
11448 case BFD_RELOC_X86_64_GOTPC64:
11449 case BFD_RELOC_X86_64_GOTPLT64:
11450 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11451 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11452 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11453 case BFD_RELOC_RVA:
11454 case BFD_RELOC_VTABLE_ENTRY:
11455 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11456#ifdef TE_PE
11457 case BFD_RELOC_32_SECREL:
11458#endif
252b5132
RH
11459 code = fixp->fx_r_type;
11460 break;
dbbaec26
L
11461 case BFD_RELOC_X86_64_32S:
11462 if (!fixp->fx_pcrel)
11463 {
11464 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11465 code = fixp->fx_r_type;
11466 break;
11467 }
1a0670f3 11468 /* Fall through. */
252b5132 11469 default:
93382f6d 11470 if (fixp->fx_pcrel)
252b5132 11471 {
93382f6d
AM
11472 switch (fixp->fx_size)
11473 {
11474 default:
b091f402
AM
11475 as_bad_where (fixp->fx_file, fixp->fx_line,
11476 _("can not do %d byte pc-relative relocation"),
11477 fixp->fx_size);
93382f6d
AM
11478 code = BFD_RELOC_32_PCREL;
11479 break;
11480 case 1: code = BFD_RELOC_8_PCREL; break;
11481 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11482 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11483#ifdef BFD64
11484 case 8: code = BFD_RELOC_64_PCREL; break;
11485#endif
93382f6d
AM
11486 }
11487 }
11488 else
11489 {
11490 switch (fixp->fx_size)
11491 {
11492 default:
b091f402
AM
11493 as_bad_where (fixp->fx_file, fixp->fx_line,
11494 _("can not do %d byte relocation"),
11495 fixp->fx_size);
93382f6d
AM
11496 code = BFD_RELOC_32;
11497 break;
11498 case 1: code = BFD_RELOC_8; break;
11499 case 2: code = BFD_RELOC_16; break;
11500 case 4: code = BFD_RELOC_32; break;
937149dd 11501#ifdef BFD64
3e73aa7c 11502 case 8: code = BFD_RELOC_64; break;
937149dd 11503#endif
93382f6d 11504 }
252b5132
RH
11505 }
11506 break;
11507 }
252b5132 11508
d182319b
JB
11509 if ((code == BFD_RELOC_32
11510 || code == BFD_RELOC_32_PCREL
11511 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11512 && GOT_symbol
11513 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11514 {
4fa24527 11515 if (!object_64bit)
d6ab8113
JB
11516 code = BFD_RELOC_386_GOTPC;
11517 else
11518 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11519 }
7b81dfbb
AJ
11520 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11521 && GOT_symbol
11522 && fixp->fx_addsy == GOT_symbol)
11523 {
11524 code = BFD_RELOC_X86_64_GOTPC64;
11525 }
252b5132 11526
add39d23
TS
11527 rel = XNEW (arelent);
11528 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11529 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11530
11531 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11532
3e73aa7c
JH
11533 if (!use_rela_relocations)
11534 {
11535 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11536 vtable entry to be used in the relocation's section offset. */
11537 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11538 rel->address = fixp->fx_offset;
fbeb56a4
DK
11539#if defined (OBJ_COFF) && defined (TE_PE)
11540 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11541 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11542 else
11543#endif
c6682705 11544 rel->addend = 0;
3e73aa7c
JH
11545 }
11546 /* Use the rela in 64bit mode. */
252b5132 11547 else
3e73aa7c 11548 {
862be3fb
L
11549 if (disallow_64bit_reloc)
11550 switch (code)
11551 {
862be3fb
L
11552 case BFD_RELOC_X86_64_DTPOFF64:
11553 case BFD_RELOC_X86_64_TPOFF64:
11554 case BFD_RELOC_64_PCREL:
11555 case BFD_RELOC_X86_64_GOTOFF64:
11556 case BFD_RELOC_X86_64_GOT64:
11557 case BFD_RELOC_X86_64_GOTPCREL64:
11558 case BFD_RELOC_X86_64_GOTPC64:
11559 case BFD_RELOC_X86_64_GOTPLT64:
11560 case BFD_RELOC_X86_64_PLTOFF64:
11561 as_bad_where (fixp->fx_file, fixp->fx_line,
11562 _("cannot represent relocation type %s in x32 mode"),
11563 bfd_get_reloc_code_name (code));
11564 break;
11565 default:
11566 break;
11567 }
11568
062cd5e7
AS
11569 if (!fixp->fx_pcrel)
11570 rel->addend = fixp->fx_offset;
11571 else
11572 switch (code)
11573 {
11574 case BFD_RELOC_X86_64_PLT32:
11575 case BFD_RELOC_X86_64_GOT32:
11576 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11577 case BFD_RELOC_X86_64_GOTPCRELX:
11578 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11579 case BFD_RELOC_X86_64_TLSGD:
11580 case BFD_RELOC_X86_64_TLSLD:
11581 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11582 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11583 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11584 rel->addend = fixp->fx_offset - fixp->fx_size;
11585 break;
11586 default:
11587 rel->addend = (section->vma
11588 - fixp->fx_size
11589 + fixp->fx_addnumber
11590 + md_pcrel_from (fixp));
11591 break;
11592 }
3e73aa7c
JH
11593 }
11594
252b5132
RH
11595 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11596 if (rel->howto == NULL)
11597 {
11598 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11599 _("cannot represent relocation type %s"),
252b5132
RH
11600 bfd_get_reloc_code_name (code));
11601 /* Set howto to a garbage value so that we can keep going. */
11602 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11603 gas_assert (rel->howto != NULL);
252b5132
RH
11604 }
11605
11606 return rel;
11607}
11608
ee86248c 11609#include "tc-i386-intel.c"
54cfded0 11610
a60de03c
JB
11611void
11612tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11613{
a60de03c
JB
11614 int saved_naked_reg;
11615 char saved_register_dot;
54cfded0 11616
a60de03c
JB
11617 saved_naked_reg = allow_naked_reg;
11618 allow_naked_reg = 1;
11619 saved_register_dot = register_chars['.'];
11620 register_chars['.'] = '.';
11621 allow_pseudo_reg = 1;
11622 expression_and_evaluate (exp);
11623 allow_pseudo_reg = 0;
11624 register_chars['.'] = saved_register_dot;
11625 allow_naked_reg = saved_naked_reg;
11626
e96d56a1 11627 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11628 {
a60de03c
JB
11629 if ((addressT) exp->X_add_number < i386_regtab_size)
11630 {
11631 exp->X_op = O_constant;
11632 exp->X_add_number = i386_regtab[exp->X_add_number]
11633 .dw2_regnum[flag_code >> 1];
11634 }
11635 else
11636 exp->X_op = O_illegal;
54cfded0 11637 }
54cfded0
AM
11638}
11639
11640void
11641tc_x86_frame_initial_instructions (void)
11642{
a60de03c
JB
11643 static unsigned int sp_regno[2];
11644
11645 if (!sp_regno[flag_code >> 1])
11646 {
11647 char *saved_input = input_line_pointer;
11648 char sp[][4] = {"esp", "rsp"};
11649 expressionS exp;
a4447b93 11650
a60de03c
JB
11651 input_line_pointer = sp[flag_code >> 1];
11652 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11653 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11654 sp_regno[flag_code >> 1] = exp.X_add_number;
11655 input_line_pointer = saved_input;
11656 }
a4447b93 11657
61ff971f
L
11658 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11659 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11660}
d2b2c203 11661
d7921315
L
11662int
11663x86_dwarf2_addr_size (void)
11664{
11665#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11666 if (x86_elf_abi == X86_64_X32_ABI)
11667 return 4;
11668#endif
11669 return bfd_arch_bits_per_address (stdoutput) / 8;
11670}
11671
d2b2c203
DJ
11672int
11673i386_elf_section_type (const char *str, size_t len)
11674{
11675 if (flag_code == CODE_64BIT
11676 && len == sizeof ("unwind") - 1
11677 && strncmp (str, "unwind", 6) == 0)
11678 return SHT_X86_64_UNWIND;
11679
11680 return -1;
11681}
bb41ade5 11682
ad5fec3b
EB
11683#ifdef TE_SOLARIS
11684void
11685i386_solaris_fix_up_eh_frame (segT sec)
11686{
11687 if (flag_code == CODE_64BIT)
11688 elf_section_type (sec) = SHT_X86_64_UNWIND;
11689}
11690#endif
11691
bb41ade5
AM
11692#ifdef TE_PE
11693void
11694tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11695{
91d6fa6a 11696 expressionS exp;
bb41ade5 11697
91d6fa6a
NC
11698 exp.X_op = O_secrel;
11699 exp.X_add_symbol = symbol;
11700 exp.X_add_number = 0;
11701 emit_expr (&exp, size);
bb41ade5
AM
11702}
11703#endif
3b22753a
L
11704
11705#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11706/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11707
01e1a5bc 11708bfd_vma
6d4af3c2 11709x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11710{
11711 if (flag_code == CODE_64BIT)
11712 {
11713 if (letter == 'l')
11714 return SHF_X86_64_LARGE;
11715
8f3bae45 11716 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11717 }
3b22753a 11718 else
8f3bae45 11719 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11720 return -1;
11721}
11722
01e1a5bc 11723bfd_vma
3b22753a
L
11724x86_64_section_word (char *str, size_t len)
11725{
8620418b 11726 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11727 return SHF_X86_64_LARGE;
11728
11729 return -1;
11730}
11731
11732static void
11733handle_large_common (int small ATTRIBUTE_UNUSED)
11734{
11735 if (flag_code != CODE_64BIT)
11736 {
11737 s_comm_internal (0, elf_common_parse);
11738 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11739 }
11740 else
11741 {
11742 static segT lbss_section;
11743 asection *saved_com_section_ptr = elf_com_section_ptr;
11744 asection *saved_bss_section = bss_section;
11745
11746 if (lbss_section == NULL)
11747 {
11748 flagword applicable;
11749 segT seg = now_seg;
11750 subsegT subseg = now_subseg;
11751
11752 /* The .lbss section is for local .largecomm symbols. */
11753 lbss_section = subseg_new (".lbss", 0);
11754 applicable = bfd_applicable_section_flags (stdoutput);
11755 bfd_set_section_flags (stdoutput, lbss_section,
11756 applicable & SEC_ALLOC);
11757 seg_info (lbss_section)->bss = 1;
11758
11759 subseg_set (seg, subseg);
11760 }
11761
11762 elf_com_section_ptr = &_bfd_elf_large_com_section;
11763 bss_section = lbss_section;
11764
11765 s_comm_internal (0, elf_common_parse);
11766
11767 elf_com_section_ptr = saved_com_section_ptr;
11768 bss_section = saved_bss_section;
11769 }
11770}
11771#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.631586 seconds and 4 git commands to generate.