opcodes/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
d382c579
TG
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
47926f60 5 Free Software Foundation, Inc.
252b5132
RH
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
ec2655a6 11 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
252b5132 23
47926f60
KH
24/* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 26 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
252b5132 30
252b5132 31#include "as.h"
3882b010 32#include "safe-ctype.h"
252b5132 33#include "subsegs.h"
316e2c05 34#include "dwarf2dbg.h"
54cfded0 35#include "dw2gencfi.h"
d2b2c203 36#include "elf/x86-64.h"
40fb9820 37#include "opcodes/i386-init.h"
252b5132 38
252b5132
RH
39#ifndef REGISTER_WARNINGS
40#define REGISTER_WARNINGS 1
41#endif
42
c3332e24 43#ifndef INFER_ADDR_PREFIX
eecb386c 44#define INFER_ADDR_PREFIX 1
c3332e24
AM
45#endif
46
29b0f896
AM
47#ifndef DEFAULT_ARCH
48#define DEFAULT_ARCH "i386"
246fcdee 49#endif
252b5132 50
edde18a5
AM
51#ifndef INLINE
52#if __GNUC__ >= 2
53#define INLINE __inline__
54#else
55#define INLINE
56#endif
57#endif
58
6305a203
L
59/* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
64#define WAIT_PREFIX 0
65#define SEG_PREFIX 1
66#define ADDR_PREFIX 2
67#define DATA_PREFIX 3
c32fa91d 68#define REP_PREFIX 4
42164a71 69#define HLE_PREFIX REP_PREFIX
7e8b059b 70#define BND_PREFIX REP_PREFIX
c32fa91d
L
71#define LOCK_PREFIX 5
72#define REX_PREFIX 6 /* must come last. */
73#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
74
75/* we define the syntax here (modulo base,index,scale syntax) */
76#define REGISTER_PREFIX '%'
77#define IMMEDIATE_PREFIX '$'
78#define ABSOLUTE_PREFIX '*'
79
80/* these are the instruction mnemonic suffixes in AT&T syntax or
81 memory operand size in Intel syntax. */
82#define WORD_MNEM_SUFFIX 'w'
83#define BYTE_MNEM_SUFFIX 'b'
84#define SHORT_MNEM_SUFFIX 's'
85#define LONG_MNEM_SUFFIX 'l'
86#define QWORD_MNEM_SUFFIX 'q'
87#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 88#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 89#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
90/* Intel Syntax. Use a non-ascii letter since since it never appears
91 in instructions. */
92#define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
94#define END_OF_INSN '\0'
95
96/*
97 'templates' is for grouping together 'template' structures for opcodes
98 of the same name. This is only used for storing the insns in the grand
99 ole hash table of insns.
100 The templates themselves start at START and range up to (but not including)
101 END.
102 */
103typedef struct
104{
d3ce72d0
NC
105 const insn_template *start;
106 const insn_template *end;
6305a203
L
107}
108templates;
109
110/* 386 operand encoding bytes: see 386 book for details of this. */
111typedef struct
112{
113 unsigned int regmem; /* codes register or memory operand */
114 unsigned int reg; /* codes register operand (or extended opcode) */
115 unsigned int mode; /* how to interpret regmem & reg */
116}
117modrm_byte;
118
119/* x86-64 extension prefix. */
120typedef int rex_byte;
121
6305a203
L
122/* 386 opcode byte to code indirect addressing. */
123typedef struct
124{
125 unsigned base;
126 unsigned index;
127 unsigned scale;
128}
129sib_byte;
130
6305a203
L
131/* x86 arch names, types and features */
132typedef struct
133{
134 const char *name; /* arch name */
8a2c8fef 135 unsigned int len; /* arch string length */
6305a203
L
136 enum processor_type type; /* arch type */
137 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 138 unsigned int skip; /* show_arch should skip this. */
22109423 139 unsigned int negated; /* turn off indicated flags. */
6305a203
L
140}
141arch_entry;
142
78f12dd3 143static void update_code_flag (int, int);
e3bb37b5
L
144static void set_code_flag (int);
145static void set_16bit_gcc_code_flag (int);
146static void set_intel_syntax (int);
1efbbeb4 147static void set_intel_mnemonic (int);
db51cc60 148static void set_allow_index_reg (int);
7bab8ab5 149static void set_check (int);
e3bb37b5 150static void set_cpu_arch (int);
6482c264 151#ifdef TE_PE
e3bb37b5 152static void pe_directive_secrel (int);
6482c264 153#endif
e3bb37b5
L
154static void signed_cons (int);
155static char *output_invalid (int c);
ee86248c
JB
156static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
157 const char *);
158static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
159 const char *);
a7619375 160static int i386_att_operand (char *);
e3bb37b5 161static int i386_intel_operand (char *, int);
ee86248c
JB
162static int i386_intel_simplify (expressionS *);
163static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
164static const reg_entry *parse_register (char *, char **);
165static char *parse_insn (char *, char *);
166static char *parse_operands (char *, const char *);
167static void swap_operands (void);
4d456e3d 168static void swap_2_operands (int, int);
e3bb37b5
L
169static void optimize_imm (void);
170static void optimize_disp (void);
d3ce72d0 171static const insn_template *match_template (void);
e3bb37b5
L
172static int check_string (void);
173static int process_suffix (void);
174static int check_byte_reg (void);
175static int check_long_reg (void);
176static int check_qword_reg (void);
177static int check_word_reg (void);
178static int finalize_imm (void);
179static int process_operands (void);
180static const seg_entry *build_modrm_byte (void);
181static void output_insn (void);
182static void output_imm (fragS *, offsetT);
183static void output_disp (fragS *, offsetT);
29b0f896 184#ifndef I386COFF
e3bb37b5 185static void s_bss (int);
252b5132 186#endif
17d4e2a2
L
187#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
188static void handle_large_common (int small ATTRIBUTE_UNUSED);
189#endif
252b5132 190
a847613f 191static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 192
43234a1e
L
193/* This struct describes rounding control and SAE in the instruction. */
194struct RC_Operation
195{
196 enum rc_type
197 {
198 rne = 0,
199 rd,
200 ru,
201 rz,
202 saeonly
203 } type;
204 int operand;
205};
206
207static struct RC_Operation rc_op;
208
209/* The struct describes masking, applied to OPERAND in the instruction.
210 MASK is a pointer to the corresponding mask register. ZEROING tells
211 whether merging or zeroing mask is used. */
212struct Mask_Operation
213{
214 const reg_entry *mask;
215 unsigned int zeroing;
216 /* The operand where this operation is associated. */
217 int operand;
218};
219
220static struct Mask_Operation mask_op;
221
222/* The struct describes broadcasting, applied to OPERAND. FACTOR is
223 broadcast factor. */
224struct Broadcast_Operation
225{
226 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
227 int type;
228
229 /* Index of broadcasted operand. */
230 int operand;
231};
232
233static struct Broadcast_Operation broadcast_op;
234
c0f3af97
L
235/* VEX prefix. */
236typedef struct
237{
43234a1e
L
238 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
239 unsigned char bytes[4];
c0f3af97
L
240 unsigned int length;
241 /* Destination or source register specifier. */
242 const reg_entry *register_specifier;
243} vex_prefix;
244
252b5132 245/* 'md_assemble ()' gathers together information and puts it into a
47926f60 246 i386_insn. */
252b5132 247
520dc8e8
AM
248union i386_op
249 {
250 expressionS *disps;
251 expressionS *imms;
252 const reg_entry *regs;
253 };
254
a65babc9
L
255enum i386_error
256 {
86e026a4 257 operand_size_mismatch,
a65babc9
L
258 operand_type_mismatch,
259 register_type_mismatch,
260 number_of_operands_mismatch,
261 invalid_instruction_suffix,
262 bad_imm4,
263 old_gcc_only,
264 unsupported_with_intel_mnemonic,
265 unsupported_syntax,
6c30d220
L
266 unsupported,
267 invalid_vsib_address,
7bab8ab5 268 invalid_vector_register_set,
43234a1e
L
269 unsupported_vector_index_register,
270 unsupported_broadcast,
271 broadcast_not_on_src_operand,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 try_vector_disp8
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132
RH
323
324 /* PREFIX holds all the given prefix opcodes (usually null).
325 PREFIXES is the number of prefix opcodes. */
326 unsigned int prefixes;
327 unsigned char prefix[MAX_PREFIXES];
328
329 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 330 addressing modes of this insn are encoded. */
252b5132 331 modrm_byte rm;
3e73aa7c 332 rex_byte rex;
43234a1e 333 rex_byte vrex;
252b5132 334 sib_byte sib;
c0f3af97 335 vex_prefix vex;
b6169b20 336
43234a1e
L
337 /* Masking attributes. */
338 struct Mask_Operation *mask;
339
340 /* Rounding control and SAE attributes. */
341 struct RC_Operation *rounding;
342
343 /* Broadcasting attributes. */
344 struct Broadcast_Operation *broadcast;
345
346 /* Compressed disp8*N attribute. */
347 unsigned int memshift;
348
b6169b20 349 /* Swap operand in encoding. */
4473e004 350 unsigned int swap_operand;
891edac4 351
a501d77e
L
352 /* Prefer 8bit or 32bit displacement in encoding. */
353 enum
354 {
355 disp_encoding_default = 0,
356 disp_encoding_8bit,
357 disp_encoding_32bit
358 } disp_encoding;
f8a5c266 359
d5de92cf
L
360 /* REP prefix. */
361 const char *rep_prefix;
362
165de32a
L
363 /* HLE prefix. */
364 const char *hle_prefix;
42164a71 365
7e8b059b
L
366 /* Have BND prefix. */
367 const char *bnd_prefix;
368
43234a1e
L
369 /* Need VREX to support upper 16 registers. */
370 int need_vrex;
371
891edac4 372 /* Error message. */
a65babc9 373 enum i386_error error;
252b5132
RH
374 };
375
376typedef struct _i386_insn i386_insn;
377
43234a1e
L
378/* Link RC type with corresponding string, that'll be looked for in
379 asm. */
380struct RC_name
381{
382 enum rc_type type;
383 const char *name;
384 unsigned int len;
385};
386
387static const struct RC_name RC_NamesTable[] =
388{
389 { rne, STRING_COMMA_LEN ("rn-sae") },
390 { rd, STRING_COMMA_LEN ("rd-sae") },
391 { ru, STRING_COMMA_LEN ("ru-sae") },
392 { rz, STRING_COMMA_LEN ("rz-sae") },
393 { saeonly, STRING_COMMA_LEN ("sae") },
394};
395
252b5132
RH
396/* List of chars besides those in app.c:symbol_chars that can start an
397 operand. Used to prevent the scrubber eating vital white-space. */
43234a1e 398const char extra_symbol_chars[] = "*%-([{"
252b5132 399#ifdef LEX_AT
32137342
NC
400 "@"
401#endif
402#ifdef LEX_QM
403 "?"
252b5132 404#endif
32137342 405 ;
252b5132 406
29b0f896
AM
407#if (defined (TE_I386AIX) \
408 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 409 && !defined (TE_GNU) \
29b0f896 410 && !defined (TE_LINUX) \
8d63c93e
RM
411 && !defined (TE_NACL) \
412 && !defined (TE_NETWARE) \
29b0f896 413 && !defined (TE_FreeBSD) \
5b806d27 414 && !defined (TE_DragonFly) \
29b0f896 415 && !defined (TE_NetBSD)))
252b5132 416/* This array holds the chars that always start a comment. If the
b3b91714
AM
417 pre-processor is disabled, these aren't very useful. The option
418 --divide will remove '/' from this list. */
419const char *i386_comment_chars = "#/";
420#define SVR4_COMMENT_CHARS 1
252b5132 421#define PREFIX_SEPARATOR '\\'
252b5132 422
b3b91714
AM
423#else
424const char *i386_comment_chars = "#";
425#define PREFIX_SEPARATOR '/'
426#endif
427
252b5132
RH
428/* This array holds the chars that only start a comment at the beginning of
429 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
430 .line and .file directives will appear in the pre-processed output.
431 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 432 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
433 #NO_APP at the beginning of its output.
434 Also note that comments started like this one will always work if
252b5132 435 '/' isn't otherwise defined. */
b3b91714 436const char line_comment_chars[] = "#/";
252b5132 437
63a0b638 438const char line_separator_chars[] = ";";
252b5132 439
ce8a8b2f
AM
440/* Chars that can be used to separate mant from exp in floating point
441 nums. */
252b5132
RH
442const char EXP_CHARS[] = "eE";
443
ce8a8b2f
AM
444/* Chars that mean this number is a floating point constant
445 As in 0f12.456
446 or 0d1.2345e12. */
252b5132
RH
447const char FLT_CHARS[] = "fFdDxX";
448
ce8a8b2f 449/* Tables for lexical analysis. */
252b5132
RH
450static char mnemonic_chars[256];
451static char register_chars[256];
452static char operand_chars[256];
453static char identifier_chars[256];
454static char digit_chars[256];
455
ce8a8b2f 456/* Lexical macros. */
252b5132
RH
457#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
458#define is_operand_char(x) (operand_chars[(unsigned char) x])
459#define is_register_char(x) (register_chars[(unsigned char) x])
460#define is_space_char(x) ((x) == ' ')
461#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
462#define is_digit_char(x) (digit_chars[(unsigned char) x])
463
0234cb7c 464/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
465static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
466
467/* md_assemble() always leaves the strings it's passed unaltered. To
468 effect this we maintain a stack of saved characters that we've smashed
469 with '\0's (indicating end of strings for various sub-fields of the
47926f60 470 assembler instruction). */
252b5132 471static char save_stack[32];
ce8a8b2f 472static char *save_stack_p;
252b5132
RH
473#define END_STRING_AND_SAVE(s) \
474 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
475#define RESTORE_END_STRING(s) \
476 do { *(s) = *--save_stack_p; } while (0)
477
47926f60 478/* The instruction we're assembling. */
252b5132
RH
479static i386_insn i;
480
481/* Possible templates for current insn. */
482static const templates *current_templates;
483
31b2323c
L
484/* Per instruction expressionS buffers: max displacements & immediates. */
485static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
486static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 487
47926f60 488/* Current operand we are working on. */
ee86248c 489static int this_operand = -1;
252b5132 490
3e73aa7c
JH
491/* We support four different modes. FLAG_CODE variable is used to distinguish
492 these. */
493
494enum flag_code {
495 CODE_32BIT,
496 CODE_16BIT,
497 CODE_64BIT };
498
499static enum flag_code flag_code;
4fa24527 500static unsigned int object_64bit;
862be3fb 501static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
502static int use_rela_relocations = 0;
503
7af8ed2d
NC
504#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
505 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
506 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
507
351f65ca
L
508/* The ELF ABI to use. */
509enum x86_elf_abi
510{
511 I386_ABI,
7f56bc95
L
512 X86_64_ABI,
513 X86_64_X32_ABI
351f65ca
L
514};
515
516static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 517#endif
351f65ca 518
47926f60
KH
519/* 1 for intel syntax,
520 0 if att syntax. */
521static int intel_syntax = 0;
252b5132 522
1efbbeb4
L
523/* 1 for intel mnemonic,
524 0 if att mnemonic. */
525static int intel_mnemonic = !SYSV386_COMPAT;
526
5209009a 527/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
528static int old_gcc = OLDGCC_COMPAT;
529
a60de03c
JB
530/* 1 if pseudo registers are permitted. */
531static int allow_pseudo_reg = 0;
532
47926f60
KH
533/* 1 if register prefix % not required. */
534static int allow_naked_reg = 0;
252b5132 535
7e8b059b
L
536/* 1 if the assembler should add BND prefix for all control-tranferring
537 instructions supporting it, even if this prefix wasn't specified
538 explicitly. */
539static int add_bnd_prefix = 0;
540
ba104c83 541/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
542static int allow_index_reg = 0;
543
7bab8ab5 544static enum check_kind
daf50ae7 545 {
7bab8ab5
JB
546 check_none = 0,
547 check_warning,
548 check_error
daf50ae7 549 }
7bab8ab5 550sse_check, operand_check = check_warning;
daf50ae7 551
2ca3ace5
L
552/* Register prefix used for error message. */
553static const char *register_prefix = "%";
554
47926f60
KH
555/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
556 leave, push, and pop instructions so that gcc has the same stack
557 frame as in 32 bit mode. */
558static char stackop_size = '\0';
eecb386c 559
12b55ccc
L
560/* Non-zero to optimize code alignment. */
561int optimize_align_code = 1;
562
47926f60
KH
563/* Non-zero to quieten some warnings. */
564static int quiet_warnings = 0;
a38cf1db 565
47926f60
KH
566/* CPU name. */
567static const char *cpu_arch_name = NULL;
6305a203 568static char *cpu_sub_arch_name = NULL;
a38cf1db 569
47926f60 570/* CPU feature flags. */
40fb9820
L
571static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
572
ccc9c027
L
573/* If we have selected a cpu we are generating instructions for. */
574static int cpu_arch_tune_set = 0;
575
9103f4f4 576/* Cpu we are generating instructions for. */
fbf3f584 577enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
578
579/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 580static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 581
ccc9c027 582/* CPU instruction set architecture used. */
fbf3f584 583enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 584
9103f4f4 585/* CPU feature flags of instruction set architecture used. */
fbf3f584 586i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 587
fddf5b5b
AM
588/* If set, conditional jumps are not automatically promoted to handle
589 larger than a byte offset. */
590static unsigned int no_cond_jump_promotion = 0;
591
c0f3af97
L
592/* Encode SSE instructions with VEX prefix. */
593static unsigned int sse2avx;
594
539f890d
L
595/* Encode scalar AVX instructions with specific vector length. */
596static enum
597 {
598 vex128 = 0,
599 vex256
600 } avxscalar;
601
43234a1e
L
602/* Encode scalar EVEX LIG instructions with specific vector length. */
603static enum
604 {
605 evexl128 = 0,
606 evexl256,
607 evexl512
608 } evexlig;
609
610/* Encode EVEX WIG instructions with specific evex.w. */
611static enum
612 {
613 evexw0 = 0,
614 evexw1
615 } evexwig;
616
29b0f896 617/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 618static symbolS *GOT_symbol;
29b0f896 619
a4447b93
RH
620/* The dwarf2 return column, adjusted for 32 or 64 bit. */
621unsigned int x86_dwarf2_return_column;
622
623/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
624int x86_cie_data_alignment;
625
252b5132 626/* Interface to relax_segment.
fddf5b5b
AM
627 There are 3 major relax states for 386 jump insns because the
628 different types of jumps add different sizes to frags when we're
629 figuring out what sort of jump to choose to reach a given label. */
252b5132 630
47926f60 631/* Types. */
93c2a809
AM
632#define UNCOND_JUMP 0
633#define COND_JUMP 1
634#define COND_JUMP86 2
fddf5b5b 635
47926f60 636/* Sizes. */
252b5132
RH
637#define CODE16 1
638#define SMALL 0
29b0f896 639#define SMALL16 (SMALL | CODE16)
252b5132 640#define BIG 2
29b0f896 641#define BIG16 (BIG | CODE16)
252b5132
RH
642
643#ifndef INLINE
644#ifdef __GNUC__
645#define INLINE __inline__
646#else
647#define INLINE
648#endif
649#endif
650
fddf5b5b
AM
651#define ENCODE_RELAX_STATE(type, size) \
652 ((relax_substateT) (((type) << 2) | (size)))
653#define TYPE_FROM_RELAX_STATE(s) \
654 ((s) >> 2)
655#define DISP_SIZE_FROM_RELAX_STATE(s) \
656 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
657
658/* This table is used by relax_frag to promote short jumps to long
659 ones where necessary. SMALL (short) jumps may be promoted to BIG
660 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
661 don't allow a short jump in a 32 bit code segment to be promoted to
662 a 16 bit offset jump because it's slower (requires data size
663 prefix), and doesn't work, unless the destination is in the bottom
664 64k of the code segment (The top 16 bits of eip are zeroed). */
665
666const relax_typeS md_relax_table[] =
667{
24eab124
AM
668 /* The fields are:
669 1) most positive reach of this state,
670 2) most negative reach of this state,
93c2a809 671 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 672 4) which index into the table to try if we can't fit into this one. */
252b5132 673
fddf5b5b 674 /* UNCOND_JUMP states. */
93c2a809
AM
675 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
676 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
677 /* dword jmp adds 4 bytes to frag:
678 0 extra opcode bytes, 4 displacement bytes. */
252b5132 679 {0, 0, 4, 0},
93c2a809
AM
680 /* word jmp adds 2 byte2 to frag:
681 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
682 {0, 0, 2, 0},
683
93c2a809
AM
684 /* COND_JUMP states. */
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
686 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
687 /* dword conditionals adds 5 bytes to frag:
688 1 extra opcode byte, 4 displacement bytes. */
689 {0, 0, 5, 0},
fddf5b5b 690 /* word conditionals add 3 bytes to frag:
93c2a809
AM
691 1 extra opcode byte, 2 displacement bytes. */
692 {0, 0, 3, 0},
693
694 /* COND_JUMP86 states. */
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
696 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
697 /* dword conditionals adds 5 bytes to frag:
698 1 extra opcode byte, 4 displacement bytes. */
699 {0, 0, 5, 0},
700 /* word conditionals add 4 bytes to frag:
701 1 displacement byte and a 3 byte long branch insn. */
702 {0, 0, 4, 0}
252b5132
RH
703};
704
9103f4f4
L
705static const arch_entry cpu_arch[] =
706{
89507696
JB
707 /* Do not replace the first two entries - i386_target_format()
708 relies on them being there in this order. */
8a2c8fef 709 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 710 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 711 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 712 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 713 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 714 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 715 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 716 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 717 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 718 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 719 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 720 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 721 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 722 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 723 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 724 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 725 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 726 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 727 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 728 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 729 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 730 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 731 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 732 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 733 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 734 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 735 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 736 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 737 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 738 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 739 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 740 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 741 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 742 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 743 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 744 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 745 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 746 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 747 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 748 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 749 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 750 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 751 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 752 CPU_L1OM_FLAGS, 0, 0 },
7a9068fe
L
753 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
754 CPU_K1OM_FLAGS, 0, 0 },
8a2c8fef 755 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 756 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 757 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 758 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 759 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 760 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 761 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 762 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 763 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 764 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 766 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 767 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 768 CPU_AMDFAM10_FLAGS, 0, 0 },
8aedb9fe 769 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
22109423 770 CPU_BDVER1_FLAGS, 0, 0 },
8aedb9fe 771 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
af2f724e 772 CPU_BDVER2_FLAGS, 0, 0 },
5e5c50d3
NE
773 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
774 CPU_BDVER3_FLAGS, 0, 0 },
c7b0bd56
SE
775 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
776 CPU_BDVER4_FLAGS, 0, 0 },
7b458c12
L
777 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
778 CPU_BTVER1_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
780 CPU_BTVER2_FLAGS, 0, 0 },
8a2c8fef 781 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 782 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 783 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 784 CPU_287_FLAGS, 0, 0 },
8a2c8fef 785 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 786 CPU_387_FLAGS, 0, 0 },
8a2c8fef 787 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 788 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 789 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 790 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 791 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 792 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 793 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 794 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 795 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 796 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 797 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 798 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 799 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 800 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 801 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 802 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 803 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 804 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 805 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 806 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 807 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 808 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 809 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 810 CPU_AVX_FLAGS, 0, 0 },
6c30d220
L
811 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
812 CPU_AVX2_FLAGS, 0, 0 },
43234a1e
L
813 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
814 CPU_AVX512F_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
816 CPU_AVX512CD_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
818 CPU_AVX512ER_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
820 CPU_AVX512PF_FLAGS, 0, 0 },
8a2c8fef 821 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 822 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 823 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 824 CPU_VMX_FLAGS, 0, 0 },
8729a6f6
L
825 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
826 CPU_VMFUNC_FLAGS, 0, 0 },
8a2c8fef 827 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 828 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 829 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 830 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 831 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 832 CPU_XSAVEOPT_FLAGS, 0, 0 },
8a2c8fef 833 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 834 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 835 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 836 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 837 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 838 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 839 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 840 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 841 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 842 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 843 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 844 CPU_F16C_FLAGS, 0, 0 },
6c30d220
L
845 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
846 CPU_BMI2_FLAGS, 0, 0 },
8a2c8fef 847 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 848 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 849 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 850 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 852 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 854 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 855 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 856 CPU_MOVBE_FLAGS, 0, 0 },
60aa667e
L
857 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
858 CPU_CX16_FLAGS, 0, 0 },
8a2c8fef 859 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 860 CPU_EPT_FLAGS, 0, 0 },
6c30d220
L
861 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
862 CPU_LZCNT_FLAGS, 0, 0 },
42164a71
L
863 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
864 CPU_HLE_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
866 CPU_RTM_FLAGS, 0, 0 },
6c30d220
L
867 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
868 CPU_INVPCID_FLAGS, 0, 0 },
8a2c8fef 869 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
870 CPU_CLFLUSH_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
872 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 873 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 874 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 876 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 878 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 880 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 881 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 882 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 883 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 884 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 885 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 886 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 888 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 889 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 890 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
891 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
892 CPU_BMI_FLAGS, 0, 0 },
2a2a0f38
QN
893 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
894 CPU_TBM_FLAGS, 0, 0 },
e2e1fcde
L
895 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
896 CPU_ADX_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
898 CPU_RDSEED_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
900 CPU_PRFCHW_FLAGS, 0, 0 },
5c111e37
L
901 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
902 CPU_SMAP_FLAGS, 0, 0 },
7e8b059b
L
903 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
904 CPU_MPX_FLAGS, 0, 0 },
a0046408
L
905 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
906 CPU_SHA_FLAGS, 0, 0 },
e413e4e9
AM
907};
908
704209c0 909#ifdef I386COFF
a6c24e68
NC
910/* Like s_lcomm_internal in gas/read.c but the alignment string
911 is allowed to be optional. */
912
913static symbolS *
914pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
915{
916 addressT align = 0;
917
918 SKIP_WHITESPACE ();
919
7ab9ffdd 920 if (needs_align
a6c24e68
NC
921 && *input_line_pointer == ',')
922 {
923 align = parse_align (needs_align - 1);
7ab9ffdd 924
a6c24e68
NC
925 if (align == (addressT) -1)
926 return NULL;
927 }
928 else
929 {
930 if (size >= 8)
931 align = 3;
932 else if (size >= 4)
933 align = 2;
934 else if (size >= 2)
935 align = 1;
936 else
937 align = 0;
938 }
939
940 bss_alloc (symbolP, size, align);
941 return symbolP;
942}
943
704209c0 944static void
a6c24e68
NC
945pe_lcomm (int needs_align)
946{
947 s_comm_internal (needs_align * 2, pe_lcomm_internal);
948}
704209c0 949#endif
a6c24e68 950
29b0f896
AM
951const pseudo_typeS md_pseudo_table[] =
952{
953#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
954 {"align", s_align_bytes, 0},
955#else
956 {"align", s_align_ptwo, 0},
957#endif
958 {"arch", set_cpu_arch, 0},
959#ifndef I386COFF
960 {"bss", s_bss, 0},
a6c24e68
NC
961#else
962 {"lcomm", pe_lcomm, 1},
29b0f896
AM
963#endif
964 {"ffloat", float_cons, 'f'},
965 {"dfloat", float_cons, 'd'},
966 {"tfloat", float_cons, 'x'},
967 {"value", cons, 2},
d182319b 968 {"slong", signed_cons, 4},
29b0f896
AM
969 {"noopt", s_ignore, 0},
970 {"optim", s_ignore, 0},
971 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
972 {"code16", set_code_flag, CODE_16BIT},
973 {"code32", set_code_flag, CODE_32BIT},
974 {"code64", set_code_flag, CODE_64BIT},
975 {"intel_syntax", set_intel_syntax, 1},
976 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
977 {"intel_mnemonic", set_intel_mnemonic, 1},
978 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
979 {"allow_index_reg", set_allow_index_reg, 1},
980 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
981 {"sse_check", set_check, 0},
982 {"operand_check", set_check, 1},
3b22753a
L
983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
984 {"largecomm", handle_large_common, 0},
07a53e5c 985#else
e3bb37b5 986 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
987 {"loc", dwarf2_directive_loc, 0},
988 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 989#endif
6482c264
NC
990#ifdef TE_PE
991 {"secrel32", pe_directive_secrel, 0},
992#endif
29b0f896
AM
993 {0, 0, 0}
994};
995
996/* For interface with expression (). */
997extern char *input_line_pointer;
998
999/* Hash table for instruction mnemonic lookup. */
1000static struct hash_control *op_hash;
1001
1002/* Hash table for register lookup. */
1003static struct hash_control *reg_hash;
1004\f
252b5132 1005void
e3bb37b5 1006i386_align_code (fragS *fragP, int count)
252b5132 1007{
ce8a8b2f
AM
1008 /* Various efficient no-op patterns for aligning code labels.
1009 Note: Don't try to assemble the instructions in the comments.
1010 0L and 0w are not legal. */
252b5132
RH
1011 static const char f32_1[] =
1012 {0x90}; /* nop */
1013 static const char f32_2[] =
ccc9c027 1014 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
1015 static const char f32_3[] =
1016 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1017 static const char f32_4[] =
1018 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1019 static const char f32_5[] =
1020 {0x90, /* nop */
1021 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1022 static const char f32_6[] =
1023 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1024 static const char f32_7[] =
1025 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1026 static const char f32_8[] =
1027 {0x90, /* nop */
1028 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1029 static const char f32_9[] =
1030 {0x89,0xf6, /* movl %esi,%esi */
1031 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1032 static const char f32_10[] =
1033 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1034 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1035 static const char f32_11[] =
1036 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1037 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1038 static const char f32_12[] =
1039 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1040 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1041 static const char f32_13[] =
1042 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1043 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1044 static const char f32_14[] =
1045 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1046 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
1047 static const char f16_3[] =
1048 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
1049 static const char f16_4[] =
1050 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1051 static const char f16_5[] =
1052 {0x90, /* nop */
1053 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1054 static const char f16_6[] =
1055 {0x89,0xf6, /* mov %si,%si */
1056 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1057 static const char f16_7[] =
1058 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1059 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1060 static const char f16_8[] =
1061 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1062 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
1063 static const char jump_31[] =
1064 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1065 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1066 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1067 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
1068 static const char *const f32_patt[] = {
1069 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1070 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
1071 };
1072 static const char *const f16_patt[] = {
76bc74dc 1073 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1074 };
ccc9c027
L
1075 /* nopl (%[re]ax) */
1076 static const char alt_3[] =
1077 {0x0f,0x1f,0x00};
1078 /* nopl 0(%[re]ax) */
1079 static const char alt_4[] =
1080 {0x0f,0x1f,0x40,0x00};
1081 /* nopl 0(%[re]ax,%[re]ax,1) */
1082 static const char alt_5[] =
1083 {0x0f,0x1f,0x44,0x00,0x00};
1084 /* nopw 0(%[re]ax,%[re]ax,1) */
1085 static const char alt_6[] =
1086 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1087 /* nopl 0L(%[re]ax) */
1088 static const char alt_7[] =
1089 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1090 /* nopl 0L(%[re]ax,%[re]ax,1) */
1091 static const char alt_8[] =
1092 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1093 /* nopw 0L(%[re]ax,%[re]ax,1) */
1094 static const char alt_9[] =
1095 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1096 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1097 static const char alt_10[] =
1098 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1099 /* data16
1100 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1101 static const char alt_long_11[] =
1102 {0x66,
1103 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1104 /* data16
1105 data16
1106 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1107 static const char alt_long_12[] =
1108 {0x66,
1109 0x66,
1110 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1111 /* data16
1112 data16
1113 data16
1114 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1115 static const char alt_long_13[] =
1116 {0x66,
1117 0x66,
1118 0x66,
1119 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1120 /* data16
1121 data16
1122 data16
1123 data16
1124 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1125 static const char alt_long_14[] =
1126 {0x66,
1127 0x66,
1128 0x66,
1129 0x66,
1130 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1131 /* data16
1132 data16
1133 data16
1134 data16
1135 data16
1136 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_long_15[] =
1138 {0x66,
1139 0x66,
1140 0x66,
1141 0x66,
1142 0x66,
1143 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopl 0(%[re]ax,%[re]ax,1)
1145 nopw 0(%[re]ax,%[re]ax,1) */
1146 static const char alt_short_11[] =
1147 {0x0f,0x1f,0x44,0x00,0x00,
1148 0x66,0x0f,0x1f,0x44,0x00,0x00};
1149 /* nopw 0(%[re]ax,%[re]ax,1)
1150 nopw 0(%[re]ax,%[re]ax,1) */
1151 static const char alt_short_12[] =
1152 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1153 0x66,0x0f,0x1f,0x44,0x00,0x00};
1154 /* nopw 0(%[re]ax,%[re]ax,1)
1155 nopl 0L(%[re]ax) */
1156 static const char alt_short_13[] =
1157 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1158 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1159 /* nopl 0L(%[re]ax)
1160 nopl 0L(%[re]ax) */
1161 static const char alt_short_14[] =
1162 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1163 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1164 /* nopl 0L(%[re]ax)
1165 nopl 0L(%[re]ax,%[re]ax,1) */
1166 static const char alt_short_15[] =
1167 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1168 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1169 static const char *const alt_short_patt[] = {
1170 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1171 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1172 alt_short_14, alt_short_15
1173 };
1174 static const char *const alt_long_patt[] = {
1175 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1176 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1177 alt_long_14, alt_long_15
1178 };
252b5132 1179
76bc74dc
L
1180 /* Only align for at least a positive non-zero boundary. */
1181 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1182 return;
3e73aa7c 1183
ccc9c027
L
1184 /* We need to decide which NOP sequence to use for 32bit and
1185 64bit. When -mtune= is used:
4eed87de 1186
76bc74dc
L
1187 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1188 PROCESSOR_GENERIC32, f32_patt will be used.
1189 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
1190 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1191 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc 1192 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
7b458c12 1193 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
69dd9865 1194 will be used.
ccc9c027 1195
76bc74dc 1196 When -mtune= isn't used, alt_long_patt will be used if
22109423 1197 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1198 be used.
ccc9c027
L
1199
1200 When -march= or .arch is used, we can't use anything beyond
1201 cpu_arch_isa_flags. */
1202
1203 if (flag_code == CODE_16BIT)
1204 {
ccc9c027 1205 if (count > 8)
33fef721 1206 {
76bc74dc
L
1207 memcpy (fragP->fr_literal + fragP->fr_fix,
1208 jump_31, count);
1209 /* Adjust jump offset. */
1210 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1211 }
76bc74dc
L
1212 else
1213 memcpy (fragP->fr_literal + fragP->fr_fix,
1214 f16_patt[count - 1], count);
252b5132 1215 }
33fef721 1216 else
ccc9c027
L
1217 {
1218 const char *const *patt = NULL;
1219
fbf3f584 1220 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1221 {
1222 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1223 switch (cpu_arch_tune)
1224 {
1225 case PROCESSOR_UNKNOWN:
1226 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1227 optimize with nops. */
1228 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
76bc74dc 1229 patt = alt_long_patt;
ccc9c027
L
1230 else
1231 patt = f32_patt;
1232 break;
ccc9c027
L
1233 case PROCESSOR_PENTIUM4:
1234 case PROCESSOR_NOCONA:
ef05d495 1235 case PROCESSOR_CORE:
76bc74dc 1236 case PROCESSOR_CORE2:
bd5295b2 1237 case PROCESSOR_COREI7:
3632d14b 1238 case PROCESSOR_L1OM:
7a9068fe 1239 case PROCESSOR_K1OM:
76bc74dc
L
1240 case PROCESSOR_GENERIC64:
1241 patt = alt_long_patt;
1242 break;
ccc9c027
L
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
4eed87de 1246 case PROCESSOR_AMDFAM10:
8aedb9fe 1247 case PROCESSOR_BD:
7b458c12 1248 case PROCESSOR_BT:
ccc9c027
L
1249 patt = alt_short_patt;
1250 break;
76bc74dc 1251 case PROCESSOR_I386:
ccc9c027
L
1252 case PROCESSOR_I486:
1253 case PROCESSOR_PENTIUM:
2dde1948 1254 case PROCESSOR_PENTIUMPRO:
ccc9c027
L
1255 case PROCESSOR_GENERIC32:
1256 patt = f32_patt;
1257 break;
4eed87de 1258 }
ccc9c027
L
1259 }
1260 else
1261 {
fbf3f584 1262 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1263 {
1264 case PROCESSOR_UNKNOWN:
e6a14101 1265 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1266 PROCESSOR_UNKNOWN. */
1267 abort ();
1268 break;
1269
76bc74dc 1270 case PROCESSOR_I386:
ccc9c027
L
1271 case PROCESSOR_I486:
1272 case PROCESSOR_PENTIUM:
ccc9c027
L
1273 case PROCESSOR_K6:
1274 case PROCESSOR_ATHLON:
1275 case PROCESSOR_K8:
4eed87de 1276 case PROCESSOR_AMDFAM10:
8aedb9fe 1277 case PROCESSOR_BD:
7b458c12 1278 case PROCESSOR_BT:
ccc9c027
L
1279 case PROCESSOR_GENERIC32:
1280 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1281 with nops. */
1282 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1283 patt = alt_short_patt;
1284 else
1285 patt = f32_patt;
1286 break;
76bc74dc
L
1287 case PROCESSOR_PENTIUMPRO:
1288 case PROCESSOR_PENTIUM4:
1289 case PROCESSOR_NOCONA:
1290 case PROCESSOR_CORE:
ef05d495 1291 case PROCESSOR_CORE2:
bd5295b2 1292 case PROCESSOR_COREI7:
3632d14b 1293 case PROCESSOR_L1OM:
7a9068fe 1294 case PROCESSOR_K1OM:
22109423 1295 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1296 patt = alt_long_patt;
1297 else
1298 patt = f32_patt;
1299 break;
1300 case PROCESSOR_GENERIC64:
76bc74dc 1301 patt = alt_long_patt;
ccc9c027 1302 break;
4eed87de 1303 }
ccc9c027
L
1304 }
1305
76bc74dc
L
1306 if (patt == f32_patt)
1307 {
1308 /* If the padding is less than 15 bytes, we use the normal
1309 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1310 its offset. */
1311 int limit;
76ba9986 1312
711eedef
L
1313 /* For 64bit, the limit is 3 bytes. */
1314 if (flag_code == CODE_64BIT
1315 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1316 limit = 3;
1317 else
1318 limit = 15;
1319 if (count < limit)
76bc74dc
L
1320 memcpy (fragP->fr_literal + fragP->fr_fix,
1321 patt[count - 1], count);
1322 else
1323 {
1324 memcpy (fragP->fr_literal + fragP->fr_fix,
1325 jump_31, count);
1326 /* Adjust jump offset. */
1327 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1328 }
1329 }
1330 else
1331 {
1332 /* Maximum length of an instruction is 15 byte. If the
1333 padding is greater than 15 bytes and we don't use jump,
1334 we have to break it into smaller pieces. */
1335 int padding = count;
1336 while (padding > 15)
1337 {
1338 padding -= 15;
1339 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1340 patt [14], 15);
1341 }
1342
1343 if (padding)
1344 memcpy (fragP->fr_literal + fragP->fr_fix,
1345 patt [padding - 1], padding);
1346 }
ccc9c027 1347 }
33fef721 1348 fragP->fr_var = count;
252b5132
RH
1349}
1350
c6fb90c8 1351static INLINE int
0dfbf9d7 1352operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1353{
0dfbf9d7 1354 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1355 {
1356 case 3:
0dfbf9d7 1357 if (x->array[2])
c6fb90c8
L
1358 return 0;
1359 case 2:
0dfbf9d7 1360 if (x->array[1])
c6fb90c8
L
1361 return 0;
1362 case 1:
0dfbf9d7 1363 return !x->array[0];
c6fb90c8
L
1364 default:
1365 abort ();
1366 }
40fb9820
L
1367}
1368
c6fb90c8 1369static INLINE void
0dfbf9d7 1370operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1371{
0dfbf9d7 1372 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1373 {
1374 case 3:
0dfbf9d7 1375 x->array[2] = v;
c6fb90c8 1376 case 2:
0dfbf9d7 1377 x->array[1] = v;
c6fb90c8 1378 case 1:
0dfbf9d7 1379 x->array[0] = v;
c6fb90c8
L
1380 break;
1381 default:
1382 abort ();
1383 }
1384}
40fb9820 1385
c6fb90c8 1386static INLINE int
0dfbf9d7
L
1387operand_type_equal (const union i386_operand_type *x,
1388 const union i386_operand_type *y)
c6fb90c8 1389{
0dfbf9d7 1390 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1391 {
1392 case 3:
0dfbf9d7 1393 if (x->array[2] != y->array[2])
c6fb90c8
L
1394 return 0;
1395 case 2:
0dfbf9d7 1396 if (x->array[1] != y->array[1])
c6fb90c8
L
1397 return 0;
1398 case 1:
0dfbf9d7 1399 return x->array[0] == y->array[0];
c6fb90c8
L
1400 break;
1401 default:
1402 abort ();
1403 }
1404}
40fb9820 1405
0dfbf9d7
L
1406static INLINE int
1407cpu_flags_all_zero (const union i386_cpu_flags *x)
1408{
1409 switch (ARRAY_SIZE(x->array))
1410 {
1411 case 3:
1412 if (x->array[2])
1413 return 0;
1414 case 2:
1415 if (x->array[1])
1416 return 0;
1417 case 1:
1418 return !x->array[0];
1419 default:
1420 abort ();
1421 }
1422}
1423
1424static INLINE void
1425cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1426{
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 x->array[2] = v;
1431 case 2:
1432 x->array[1] = v;
1433 case 1:
1434 x->array[0] = v;
1435 break;
1436 default:
1437 abort ();
1438 }
1439}
1440
1441static INLINE int
1442cpu_flags_equal (const union i386_cpu_flags *x,
1443 const union i386_cpu_flags *y)
1444{
1445 switch (ARRAY_SIZE(x->array))
1446 {
1447 case 3:
1448 if (x->array[2] != y->array[2])
1449 return 0;
1450 case 2:
1451 if (x->array[1] != y->array[1])
1452 return 0;
1453 case 1:
1454 return x->array[0] == y->array[0];
1455 break;
1456 default:
1457 abort ();
1458 }
1459}
c6fb90c8
L
1460
1461static INLINE int
1462cpu_flags_check_cpu64 (i386_cpu_flags f)
1463{
1464 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1465 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1466}
1467
c6fb90c8
L
1468static INLINE i386_cpu_flags
1469cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1470{
c6fb90c8
L
1471 switch (ARRAY_SIZE (x.array))
1472 {
1473 case 3:
1474 x.array [2] &= y.array [2];
1475 case 2:
1476 x.array [1] &= y.array [1];
1477 case 1:
1478 x.array [0] &= y.array [0];
1479 break;
1480 default:
1481 abort ();
1482 }
1483 return x;
1484}
40fb9820 1485
c6fb90c8
L
1486static INLINE i386_cpu_flags
1487cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1488{
c6fb90c8 1489 switch (ARRAY_SIZE (x.array))
40fb9820 1490 {
c6fb90c8
L
1491 case 3:
1492 x.array [2] |= y.array [2];
1493 case 2:
1494 x.array [1] |= y.array [1];
1495 case 1:
1496 x.array [0] |= y.array [0];
40fb9820
L
1497 break;
1498 default:
1499 abort ();
1500 }
40fb9820
L
1501 return x;
1502}
1503
309d3373
JB
1504static INLINE i386_cpu_flags
1505cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1506{
1507 switch (ARRAY_SIZE (x.array))
1508 {
1509 case 3:
1510 x.array [2] &= ~y.array [2];
1511 case 2:
1512 x.array [1] &= ~y.array [1];
1513 case 1:
1514 x.array [0] &= ~y.array [0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 return x;
1520}
1521
c0f3af97
L
1522#define CPU_FLAGS_ARCH_MATCH 0x1
1523#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1524#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1525#define CPU_FLAGS_PCLMUL_MATCH 0x8
1526#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1527
a5ff0eb2 1528#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1529 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1530 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1531#define CPU_FLAGS_PERFECT_MATCH \
1532 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1533
1534/* Return CPU flags match bits. */
3629bb00 1535
40fb9820 1536static int
d3ce72d0 1537cpu_flags_match (const insn_template *t)
40fb9820 1538{
c0f3af97
L
1539 i386_cpu_flags x = t->cpu_flags;
1540 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1541
1542 x.bitfield.cpu64 = 0;
1543 x.bitfield.cpuno64 = 0;
1544
0dfbf9d7 1545 if (cpu_flags_all_zero (&x))
c0f3af97
L
1546 {
1547 /* This instruction is available on all archs. */
1548 match |= CPU_FLAGS_32BIT_MATCH;
1549 }
3629bb00
L
1550 else
1551 {
c0f3af97 1552 /* This instruction is available only on some archs. */
3629bb00
L
1553 i386_cpu_flags cpu = cpu_arch_flags;
1554
1555 cpu.bitfield.cpu64 = 0;
1556 cpu.bitfield.cpuno64 = 0;
1557 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1558 if (!cpu_flags_all_zero (&cpu))
1559 {
a5ff0eb2
L
1560 if (x.bitfield.cpuavx)
1561 {
ce2f5b3c 1562 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1563 if (cpu.bitfield.cpuavx)
1564 {
1565 /* Check SSE2AVX. */
1566 if (!t->opcode_modifier.sse2avx|| sse2avx)
1567 {
1568 match |= (CPU_FLAGS_ARCH_MATCH
1569 | CPU_FLAGS_AVX_MATCH);
1570 /* Check AES. */
1571 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1572 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1573 /* Check PCLMUL. */
1574 if (!x.bitfield.cpupclmul
1575 || cpu.bitfield.cpupclmul)
1576 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1577 }
1578 }
1579 else
1580 match |= CPU_FLAGS_ARCH_MATCH;
1581 }
1582 else
c0f3af97
L
1583 match |= CPU_FLAGS_32BIT_MATCH;
1584 }
3629bb00 1585 }
c0f3af97 1586 return match;
40fb9820
L
1587}
1588
c6fb90c8
L
1589static INLINE i386_operand_type
1590operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1591{
c6fb90c8
L
1592 switch (ARRAY_SIZE (x.array))
1593 {
1594 case 3:
1595 x.array [2] &= y.array [2];
1596 case 2:
1597 x.array [1] &= y.array [1];
1598 case 1:
1599 x.array [0] &= y.array [0];
1600 break;
1601 default:
1602 abort ();
1603 }
1604 return x;
40fb9820
L
1605}
1606
c6fb90c8
L
1607static INLINE i386_operand_type
1608operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1609{
c6fb90c8 1610 switch (ARRAY_SIZE (x.array))
40fb9820 1611 {
c6fb90c8
L
1612 case 3:
1613 x.array [2] |= y.array [2];
1614 case 2:
1615 x.array [1] |= y.array [1];
1616 case 1:
1617 x.array [0] |= y.array [0];
40fb9820
L
1618 break;
1619 default:
1620 abort ();
1621 }
c6fb90c8
L
1622 return x;
1623}
40fb9820 1624
c6fb90c8
L
1625static INLINE i386_operand_type
1626operand_type_xor (i386_operand_type x, i386_operand_type y)
1627{
1628 switch (ARRAY_SIZE (x.array))
1629 {
1630 case 3:
1631 x.array [2] ^= y.array [2];
1632 case 2:
1633 x.array [1] ^= y.array [1];
1634 case 1:
1635 x.array [0] ^= y.array [0];
1636 break;
1637 default:
1638 abort ();
1639 }
40fb9820
L
1640 return x;
1641}
1642
1643static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1644static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1645static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1646static const i386_operand_type inoutportreg
1647 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1648static const i386_operand_type reg16_inoutportreg
1649 = OPERAND_TYPE_REG16_INOUTPORTREG;
1650static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1651static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1652static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1653static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1654static const i386_operand_type anydisp
1655 = OPERAND_TYPE_ANYDISP;
40fb9820 1656static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1657static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1658static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1659static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1660static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1661static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1662static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1663static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1664static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1665static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1666static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1667static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1668static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1669static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
7e8b059b 1670static const i386_operand_type regbnd = OPERAND_TYPE_REGBND;
43234a1e 1671static const i386_operand_type vec_disp8 = OPERAND_TYPE_VEC_DISP8;
40fb9820
L
1672
1673enum operand_type
1674{
1675 reg,
40fb9820
L
1676 imm,
1677 disp,
1678 anymem
1679};
1680
c6fb90c8 1681static INLINE int
40fb9820
L
1682operand_type_check (i386_operand_type t, enum operand_type c)
1683{
1684 switch (c)
1685 {
1686 case reg:
1687 return (t.bitfield.reg8
1688 || t.bitfield.reg16
1689 || t.bitfield.reg32
1690 || t.bitfield.reg64);
1691
40fb9820
L
1692 case imm:
1693 return (t.bitfield.imm8
1694 || t.bitfield.imm8s
1695 || t.bitfield.imm16
1696 || t.bitfield.imm32
1697 || t.bitfield.imm32s
1698 || t.bitfield.imm64);
1699
1700 case disp:
1701 return (t.bitfield.disp8
1702 || t.bitfield.disp16
1703 || t.bitfield.disp32
1704 || t.bitfield.disp32s
1705 || t.bitfield.disp64);
1706
1707 case anymem:
1708 return (t.bitfield.disp8
1709 || t.bitfield.disp16
1710 || t.bitfield.disp32
1711 || t.bitfield.disp32s
1712 || t.bitfield.disp64
1713 || t.bitfield.baseindex);
1714
1715 default:
1716 abort ();
1717 }
2cfe26b6
AM
1718
1719 return 0;
40fb9820
L
1720}
1721
5c07affc
L
1722/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1723 operand J for instruction template T. */
1724
1725static INLINE int
d3ce72d0 1726match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1727{
1728 return !((i.types[j].bitfield.byte
1729 && !t->operand_types[j].bitfield.byte)
1730 || (i.types[j].bitfield.word
1731 && !t->operand_types[j].bitfield.word)
1732 || (i.types[j].bitfield.dword
1733 && !t->operand_types[j].bitfield.dword)
1734 || (i.types[j].bitfield.qword
1735 && !t->operand_types[j].bitfield.qword));
1736}
1737
1738/* Return 1 if there is no conflict in any size on operand J for
1739 instruction template T. */
1740
1741static INLINE int
d3ce72d0 1742match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1743{
1744 return (match_reg_size (t, j)
1745 && !((i.types[j].bitfield.unspecified
1746 && !t->operand_types[j].bitfield.unspecified)
1747 || (i.types[j].bitfield.fword
1748 && !t->operand_types[j].bitfield.fword)
1749 || (i.types[j].bitfield.tbyte
1750 && !t->operand_types[j].bitfield.tbyte)
1751 || (i.types[j].bitfield.xmmword
c0f3af97
L
1752 && !t->operand_types[j].bitfield.xmmword)
1753 || (i.types[j].bitfield.ymmword
43234a1e
L
1754 && !t->operand_types[j].bitfield.ymmword)
1755 || (i.types[j].bitfield.zmmword
1756 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1757}
1758
1759/* Return 1 if there is no size conflict on any operands for
1760 instruction template T. */
1761
1762static INLINE int
d3ce72d0 1763operand_size_match (const insn_template *t)
5c07affc
L
1764{
1765 unsigned int j;
1766 int match = 1;
1767
1768 /* Don't check jump instructions. */
1769 if (t->opcode_modifier.jump
1770 || t->opcode_modifier.jumpbyte
1771 || t->opcode_modifier.jumpdword
1772 || t->opcode_modifier.jumpintersegment)
1773 return match;
1774
1775 /* Check memory and accumulator operand size. */
1776 for (j = 0; j < i.operands; j++)
1777 {
1778 if (t->operand_types[j].bitfield.anysize)
1779 continue;
1780
1781 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1782 {
1783 match = 0;
1784 break;
1785 }
1786
1787 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1788 {
1789 match = 0;
1790 break;
1791 }
1792 }
1793
891edac4 1794 if (match)
5c07affc 1795 return match;
891edac4
L
1796 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1797 {
1798mismatch:
86e026a4 1799 i.error = operand_size_mismatch;
891edac4
L
1800 return 0;
1801 }
5c07affc
L
1802
1803 /* Check reverse. */
9c2799c2 1804 gas_assert (i.operands == 2);
5c07affc
L
1805
1806 match = 1;
1807 for (j = 0; j < 2; j++)
1808 {
1809 if (t->operand_types[j].bitfield.acc
1810 && !match_reg_size (t, j ? 0 : 1))
891edac4 1811 goto mismatch;
5c07affc
L
1812
1813 if (i.types[j].bitfield.mem
1814 && !match_mem_size (t, j ? 0 : 1))
891edac4 1815 goto mismatch;
5c07affc
L
1816 }
1817
1818 return match;
1819}
1820
c6fb90c8 1821static INLINE int
40fb9820
L
1822operand_type_match (i386_operand_type overlap,
1823 i386_operand_type given)
1824{
1825 i386_operand_type temp = overlap;
1826
1827 temp.bitfield.jumpabsolute = 0;
7d5e4556 1828 temp.bitfield.unspecified = 0;
5c07affc
L
1829 temp.bitfield.byte = 0;
1830 temp.bitfield.word = 0;
1831 temp.bitfield.dword = 0;
1832 temp.bitfield.fword = 0;
1833 temp.bitfield.qword = 0;
1834 temp.bitfield.tbyte = 0;
1835 temp.bitfield.xmmword = 0;
c0f3af97 1836 temp.bitfield.ymmword = 0;
43234a1e 1837 temp.bitfield.zmmword = 0;
0dfbf9d7 1838 if (operand_type_all_zero (&temp))
891edac4 1839 goto mismatch;
40fb9820 1840
891edac4
L
1841 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1842 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1843 return 1;
1844
1845mismatch:
a65babc9 1846 i.error = operand_type_mismatch;
891edac4 1847 return 0;
40fb9820
L
1848}
1849
7d5e4556 1850/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1851 unless the expected operand type register overlap is null.
1852 Note that Acc in a template matches every size of reg. */
1853
c6fb90c8 1854static INLINE int
40fb9820
L
1855operand_type_register_match (i386_operand_type m0,
1856 i386_operand_type g0,
1857 i386_operand_type t0,
1858 i386_operand_type m1,
1859 i386_operand_type g1,
1860 i386_operand_type t1)
1861{
1862 if (!operand_type_check (g0, reg))
1863 return 1;
1864
1865 if (!operand_type_check (g1, reg))
1866 return 1;
1867
1868 if (g0.bitfield.reg8 == g1.bitfield.reg8
1869 && g0.bitfield.reg16 == g1.bitfield.reg16
1870 && g0.bitfield.reg32 == g1.bitfield.reg32
1871 && g0.bitfield.reg64 == g1.bitfield.reg64)
1872 return 1;
1873
1874 if (m0.bitfield.acc)
1875 {
1876 t0.bitfield.reg8 = 1;
1877 t0.bitfield.reg16 = 1;
1878 t0.bitfield.reg32 = 1;
1879 t0.bitfield.reg64 = 1;
1880 }
1881
1882 if (m1.bitfield.acc)
1883 {
1884 t1.bitfield.reg8 = 1;
1885 t1.bitfield.reg16 = 1;
1886 t1.bitfield.reg32 = 1;
1887 t1.bitfield.reg64 = 1;
1888 }
1889
891edac4
L
1890 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1891 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1892 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1893 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1894 return 1;
1895
a65babc9 1896 i.error = register_type_mismatch;
891edac4
L
1897
1898 return 0;
40fb9820
L
1899}
1900
4c692bc7
JB
1901static INLINE unsigned int
1902register_number (const reg_entry *r)
1903{
1904 unsigned int nr = r->reg_num;
1905
1906 if (r->reg_flags & RegRex)
1907 nr += 8;
1908
1909 return nr;
1910}
1911
252b5132 1912static INLINE unsigned int
40fb9820 1913mode_from_disp_size (i386_operand_type t)
252b5132 1914{
43234a1e 1915 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1916 return 1;
1917 else if (t.bitfield.disp16
1918 || t.bitfield.disp32
1919 || t.bitfield.disp32s)
1920 return 2;
1921 else
1922 return 0;
252b5132
RH
1923}
1924
1925static INLINE int
e3bb37b5 1926fits_in_signed_byte (offsetT num)
252b5132
RH
1927{
1928 return (num >= -128) && (num <= 127);
47926f60 1929}
252b5132
RH
1930
1931static INLINE int
e3bb37b5 1932fits_in_unsigned_byte (offsetT num)
252b5132
RH
1933{
1934 return (num & 0xff) == num;
47926f60 1935}
252b5132
RH
1936
1937static INLINE int
e3bb37b5 1938fits_in_unsigned_word (offsetT num)
252b5132
RH
1939{
1940 return (num & 0xffff) == num;
47926f60 1941}
252b5132
RH
1942
1943static INLINE int
e3bb37b5 1944fits_in_signed_word (offsetT num)
252b5132
RH
1945{
1946 return (-32768 <= num) && (num <= 32767);
47926f60 1947}
2a962e6d 1948
3e73aa7c 1949static INLINE int
e3bb37b5 1950fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1951{
1952#ifndef BFD64
1953 return 1;
1954#else
1955 return (!(((offsetT) -1 << 31) & num)
1956 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1957#endif
1958} /* fits_in_signed_long() */
2a962e6d 1959
3e73aa7c 1960static INLINE int
e3bb37b5 1961fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1962{
1963#ifndef BFD64
1964 return 1;
1965#else
1966 return (num & (((offsetT) 2 << 31) - 1)) == num;
1967#endif
1968} /* fits_in_unsigned_long() */
252b5132 1969
43234a1e
L
1970static INLINE int
1971fits_in_vec_disp8 (offsetT num)
1972{
1973 int shift = i.memshift;
1974 unsigned int mask;
1975
1976 if (shift == -1)
1977 abort ();
1978
1979 mask = (1 << shift) - 1;
1980
1981 /* Return 0 if NUM isn't properly aligned. */
1982 if ((num & mask))
1983 return 0;
1984
1985 /* Check if NUM will fit in 8bit after shift. */
1986 return fits_in_signed_byte (num >> shift);
1987}
1988
a683cc34
SP
1989static INLINE int
1990fits_in_imm4 (offsetT num)
1991{
1992 return (num & 0xf) == num;
1993}
1994
40fb9820 1995static i386_operand_type
e3bb37b5 1996smallest_imm_type (offsetT num)
252b5132 1997{
40fb9820 1998 i386_operand_type t;
7ab9ffdd 1999
0dfbf9d7 2000 operand_type_set (&t, 0);
40fb9820
L
2001 t.bitfield.imm64 = 1;
2002
2003 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2004 {
2005 /* This code is disabled on the 486 because all the Imm1 forms
2006 in the opcode table are slower on the i486. They're the
2007 versions with the implicitly specified single-position
2008 displacement, which has another syntax if you really want to
2009 use that form. */
40fb9820
L
2010 t.bitfield.imm1 = 1;
2011 t.bitfield.imm8 = 1;
2012 t.bitfield.imm8s = 1;
2013 t.bitfield.imm16 = 1;
2014 t.bitfield.imm32 = 1;
2015 t.bitfield.imm32s = 1;
2016 }
2017 else if (fits_in_signed_byte (num))
2018 {
2019 t.bitfield.imm8 = 1;
2020 t.bitfield.imm8s = 1;
2021 t.bitfield.imm16 = 1;
2022 t.bitfield.imm32 = 1;
2023 t.bitfield.imm32s = 1;
2024 }
2025 else if (fits_in_unsigned_byte (num))
2026 {
2027 t.bitfield.imm8 = 1;
2028 t.bitfield.imm16 = 1;
2029 t.bitfield.imm32 = 1;
2030 t.bitfield.imm32s = 1;
2031 }
2032 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2033 {
2034 t.bitfield.imm16 = 1;
2035 t.bitfield.imm32 = 1;
2036 t.bitfield.imm32s = 1;
2037 }
2038 else if (fits_in_signed_long (num))
2039 {
2040 t.bitfield.imm32 = 1;
2041 t.bitfield.imm32s = 1;
2042 }
2043 else if (fits_in_unsigned_long (num))
2044 t.bitfield.imm32 = 1;
2045
2046 return t;
47926f60 2047}
252b5132 2048
847f7ad4 2049static offsetT
e3bb37b5 2050offset_in_range (offsetT val, int size)
847f7ad4 2051{
508866be 2052 addressT mask;
ba2adb93 2053
847f7ad4
AM
2054 switch (size)
2055 {
508866be
L
2056 case 1: mask = ((addressT) 1 << 8) - 1; break;
2057 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2058 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2059#ifdef BFD64
2060 case 8: mask = ((addressT) 2 << 63) - 1; break;
2061#endif
47926f60 2062 default: abort ();
847f7ad4
AM
2063 }
2064
9de868bf
L
2065#ifdef BFD64
2066 /* If BFD64, sign extend val for 32bit address mode. */
2067 if (flag_code != CODE_64BIT
2068 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2069 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2070 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2071#endif
ba2adb93 2072
47926f60 2073 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2074 {
2075 char buf1[40], buf2[40];
2076
2077 sprint_value (buf1, val);
2078 sprint_value (buf2, val & mask);
2079 as_warn (_("%s shortened to %s"), buf1, buf2);
2080 }
2081 return val & mask;
2082}
2083
c32fa91d
L
2084enum PREFIX_GROUP
2085{
2086 PREFIX_EXIST = 0,
2087 PREFIX_LOCK,
2088 PREFIX_REP,
2089 PREFIX_OTHER
2090};
2091
2092/* Returns
2093 a. PREFIX_EXIST if attempting to add a prefix where one from the
2094 same class already exists.
2095 b. PREFIX_LOCK if lock prefix is added.
2096 c. PREFIX_REP if rep/repne prefix is added.
2097 d. PREFIX_OTHER if other prefix is added.
2098 */
2099
2100static enum PREFIX_GROUP
e3bb37b5 2101add_prefix (unsigned int prefix)
252b5132 2102{
c32fa91d 2103 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2104 unsigned int q;
252b5132 2105
29b0f896
AM
2106 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2107 && flag_code == CODE_64BIT)
b1905489 2108 {
161a04f6
L
2109 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2110 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2111 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2112 ret = PREFIX_EXIST;
b1905489
JB
2113 q = REX_PREFIX;
2114 }
3e73aa7c 2115 else
b1905489
JB
2116 {
2117 switch (prefix)
2118 {
2119 default:
2120 abort ();
2121
2122 case CS_PREFIX_OPCODE:
2123 case DS_PREFIX_OPCODE:
2124 case ES_PREFIX_OPCODE:
2125 case FS_PREFIX_OPCODE:
2126 case GS_PREFIX_OPCODE:
2127 case SS_PREFIX_OPCODE:
2128 q = SEG_PREFIX;
2129 break;
2130
2131 case REPNE_PREFIX_OPCODE:
2132 case REPE_PREFIX_OPCODE:
c32fa91d
L
2133 q = REP_PREFIX;
2134 ret = PREFIX_REP;
2135 break;
2136
b1905489 2137 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2138 q = LOCK_PREFIX;
2139 ret = PREFIX_LOCK;
b1905489
JB
2140 break;
2141
2142 case FWAIT_OPCODE:
2143 q = WAIT_PREFIX;
2144 break;
2145
2146 case ADDR_PREFIX_OPCODE:
2147 q = ADDR_PREFIX;
2148 break;
2149
2150 case DATA_PREFIX_OPCODE:
2151 q = DATA_PREFIX;
2152 break;
2153 }
2154 if (i.prefix[q] != 0)
c32fa91d 2155 ret = PREFIX_EXIST;
b1905489 2156 }
252b5132 2157
b1905489 2158 if (ret)
252b5132 2159 {
b1905489
JB
2160 if (!i.prefix[q])
2161 ++i.prefixes;
2162 i.prefix[q] |= prefix;
252b5132 2163 }
b1905489
JB
2164 else
2165 as_bad (_("same type of prefix used twice"));
252b5132 2166
252b5132
RH
2167 return ret;
2168}
2169
2170static void
78f12dd3 2171update_code_flag (int value, int check)
eecb386c 2172{
78f12dd3
L
2173 PRINTF_LIKE ((*as_error));
2174
1e9cc1c2 2175 flag_code = (enum flag_code) value;
40fb9820
L
2176 if (flag_code == CODE_64BIT)
2177 {
2178 cpu_arch_flags.bitfield.cpu64 = 1;
2179 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2180 }
2181 else
2182 {
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2185 }
2186 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2187 {
78f12dd3
L
2188 if (check)
2189 as_error = as_fatal;
2190 else
2191 as_error = as_bad;
2192 (*as_error) (_("64bit mode not supported on `%s'."),
2193 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2194 }
40fb9820 2195 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2196 {
78f12dd3
L
2197 if (check)
2198 as_error = as_fatal;
2199 else
2200 as_error = as_bad;
2201 (*as_error) (_("32bit mode not supported on `%s'."),
2202 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2203 }
eecb386c
AM
2204 stackop_size = '\0';
2205}
2206
78f12dd3
L
2207static void
2208set_code_flag (int value)
2209{
2210 update_code_flag (value, 0);
2211}
2212
eecb386c 2213static void
e3bb37b5 2214set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2215{
1e9cc1c2 2216 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2217 if (flag_code != CODE_16BIT)
2218 abort ();
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2221 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2222}
2223
2224static void
e3bb37b5 2225set_intel_syntax (int syntax_flag)
252b5132
RH
2226{
2227 /* Find out if register prefixing is specified. */
2228 int ask_naked_reg = 0;
2229
2230 SKIP_WHITESPACE ();
29b0f896 2231 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
2232 {
2233 char *string = input_line_pointer;
2234 int e = get_symbol_end ();
2235
47926f60 2236 if (strcmp (string, "prefix") == 0)
252b5132 2237 ask_naked_reg = 1;
47926f60 2238 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2239 ask_naked_reg = -1;
2240 else
d0b47220 2241 as_bad (_("bad argument to syntax directive."));
252b5132
RH
2242 *input_line_pointer = e;
2243 }
2244 demand_empty_rest_of_line ();
c3332e24 2245
252b5132
RH
2246 intel_syntax = syntax_flag;
2247
2248 if (ask_naked_reg == 0)
f86103b7
AM
2249 allow_naked_reg = (intel_syntax
2250 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2251 else
2252 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2253
ee86248c 2254 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2255
e4a3b5a4 2256 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2257 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2258 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2259}
2260
1efbbeb4
L
2261static void
2262set_intel_mnemonic (int mnemonic_flag)
2263{
e1d4d893 2264 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2265}
2266
db51cc60
L
2267static void
2268set_allow_index_reg (int flag)
2269{
2270 allow_index_reg = flag;
2271}
2272
cb19c032 2273static void
7bab8ab5 2274set_check (int what)
cb19c032 2275{
7bab8ab5
JB
2276 enum check_kind *kind;
2277 const char *str;
2278
2279 if (what)
2280 {
2281 kind = &operand_check;
2282 str = "operand";
2283 }
2284 else
2285 {
2286 kind = &sse_check;
2287 str = "sse";
2288 }
2289
cb19c032
L
2290 SKIP_WHITESPACE ();
2291
2292 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2293 {
2294 char *string = input_line_pointer;
2295 int e = get_symbol_end ();
2296
2297 if (strcmp (string, "none") == 0)
7bab8ab5 2298 *kind = check_none;
cb19c032 2299 else if (strcmp (string, "warning") == 0)
7bab8ab5 2300 *kind = check_warning;
cb19c032 2301 else if (strcmp (string, "error") == 0)
7bab8ab5 2302 *kind = check_error;
cb19c032 2303 else
7bab8ab5 2304 as_bad (_("bad argument to %s_check directive."), str);
cb19c032
L
2305 *input_line_pointer = e;
2306 }
2307 else
7bab8ab5 2308 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2309
2310 demand_empty_rest_of_line ();
2311}
2312
8a9036a4
L
2313static void
2314check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2315 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2316{
2317#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2318 static const char *arch;
2319
2320 /* Intel LIOM is only supported on ELF. */
2321 if (!IS_ELF)
2322 return;
2323
2324 if (!arch)
2325 {
2326 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2327 use default_arch. */
2328 arch = cpu_arch_name;
2329 if (!arch)
2330 arch = default_arch;
2331 }
2332
3632d14b 2333 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2334 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2335 || new_flag.bitfield.cpul1om)
8a9036a4 2336 return;
76ba9986 2337
7a9068fe
L
2338 /* If we are targeting Intel K1OM, we must enable it. */
2339 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2340 || new_flag.bitfield.cpuk1om)
2341 return;
2342
8a9036a4
L
2343 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2344#endif
2345}
2346
e413e4e9 2347static void
e3bb37b5 2348set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2349{
47926f60 2350 SKIP_WHITESPACE ();
e413e4e9 2351
29b0f896 2352 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
2353 {
2354 char *string = input_line_pointer;
2355 int e = get_symbol_end ();
91d6fa6a 2356 unsigned int j;
40fb9820 2357 i386_cpu_flags flags;
e413e4e9 2358
91d6fa6a 2359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2360 {
91d6fa6a 2361 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2362 {
91d6fa6a 2363 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2364
5c6af06e
JB
2365 if (*string != '.')
2366 {
91d6fa6a 2367 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2368 cpu_sub_arch_name = NULL;
91d6fa6a 2369 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2370 if (flag_code == CODE_64BIT)
2371 {
2372 cpu_arch_flags.bitfield.cpu64 = 1;
2373 cpu_arch_flags.bitfield.cpuno64 = 0;
2374 }
2375 else
2376 {
2377 cpu_arch_flags.bitfield.cpu64 = 0;
2378 cpu_arch_flags.bitfield.cpuno64 = 1;
2379 }
91d6fa6a
NC
2380 cpu_arch_isa = cpu_arch[j].type;
2381 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2382 if (!cpu_arch_tune_set)
2383 {
2384 cpu_arch_tune = cpu_arch_isa;
2385 cpu_arch_tune_flags = cpu_arch_isa_flags;
2386 }
5c6af06e
JB
2387 break;
2388 }
40fb9820 2389
22109423 2390 if (!cpu_arch[j].negated)
309d3373 2391 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2392 cpu_arch[j].flags);
309d3373
JB
2393 else
2394 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2395 cpu_arch[j].flags);
0dfbf9d7 2396 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2397 {
6305a203
L
2398 if (cpu_sub_arch_name)
2399 {
2400 char *name = cpu_sub_arch_name;
2401 cpu_sub_arch_name = concat (name,
91d6fa6a 2402 cpu_arch[j].name,
1bf57e9f 2403 (const char *) NULL);
6305a203
L
2404 free (name);
2405 }
2406 else
91d6fa6a 2407 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2408 cpu_arch_flags = flags;
a586129e 2409 cpu_arch_isa_flags = flags;
5c6af06e
JB
2410 }
2411 *input_line_pointer = e;
2412 demand_empty_rest_of_line ();
2413 return;
e413e4e9
AM
2414 }
2415 }
91d6fa6a 2416 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2417 as_bad (_("no such architecture: `%s'"), string);
2418
2419 *input_line_pointer = e;
2420 }
2421 else
2422 as_bad (_("missing cpu architecture"));
2423
fddf5b5b
AM
2424 no_cond_jump_promotion = 0;
2425 if (*input_line_pointer == ','
29b0f896 2426 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2427 {
2428 char *string = ++input_line_pointer;
2429 int e = get_symbol_end ();
2430
2431 if (strcmp (string, "nojumps") == 0)
2432 no_cond_jump_promotion = 1;
2433 else if (strcmp (string, "jumps") == 0)
2434 ;
2435 else
2436 as_bad (_("no such architecture modifier: `%s'"), string);
2437
2438 *input_line_pointer = e;
2439 }
2440
e413e4e9
AM
2441 demand_empty_rest_of_line ();
2442}
2443
8a9036a4
L
2444enum bfd_architecture
2445i386_arch (void)
2446{
3632d14b 2447 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2448 {
2449 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2450 || flag_code != CODE_64BIT)
2451 as_fatal (_("Intel L1OM is 64bit ELF only"));
2452 return bfd_arch_l1om;
2453 }
7a9068fe
L
2454 else if (cpu_arch_isa == PROCESSOR_K1OM)
2455 {
2456 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2457 || flag_code != CODE_64BIT)
2458 as_fatal (_("Intel K1OM is 64bit ELF only"));
2459 return bfd_arch_k1om;
2460 }
8a9036a4
L
2461 else
2462 return bfd_arch_i386;
2463}
2464
b9d79e03 2465unsigned long
7016a5d5 2466i386_mach (void)
b9d79e03 2467{
351f65ca 2468 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2469 {
3632d14b 2470 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2471 {
351f65ca
L
2472 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2473 || default_arch[6] != '\0')
8a9036a4
L
2474 as_fatal (_("Intel L1OM is 64bit ELF only"));
2475 return bfd_mach_l1om;
2476 }
7a9068fe
L
2477 else if (cpu_arch_isa == PROCESSOR_K1OM)
2478 {
2479 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 || default_arch[6] != '\0')
2481 as_fatal (_("Intel K1OM is 64bit ELF only"));
2482 return bfd_mach_k1om;
2483 }
351f65ca 2484 else if (default_arch[6] == '\0')
8a9036a4 2485 return bfd_mach_x86_64;
351f65ca
L
2486 else
2487 return bfd_mach_x64_32;
8a9036a4 2488 }
b9d79e03
JH
2489 else if (!strcmp (default_arch, "i386"))
2490 return bfd_mach_i386_i386;
2491 else
2b5d6a91 2492 as_fatal (_("unknown architecture"));
b9d79e03 2493}
b9d79e03 2494\f
252b5132 2495void
7016a5d5 2496md_begin (void)
252b5132
RH
2497{
2498 const char *hash_err;
2499
47926f60 2500 /* Initialize op_hash hash table. */
252b5132
RH
2501 op_hash = hash_new ();
2502
2503 {
d3ce72d0 2504 const insn_template *optab;
29b0f896 2505 templates *core_optab;
252b5132 2506
47926f60
KH
2507 /* Setup for loop. */
2508 optab = i386_optab;
252b5132
RH
2509 core_optab = (templates *) xmalloc (sizeof (templates));
2510 core_optab->start = optab;
2511
2512 while (1)
2513 {
2514 ++optab;
2515 if (optab->name == NULL
2516 || strcmp (optab->name, (optab - 1)->name) != 0)
2517 {
2518 /* different name --> ship out current template list;
47926f60 2519 add to hash table; & begin anew. */
252b5132
RH
2520 core_optab->end = optab;
2521 hash_err = hash_insert (op_hash,
2522 (optab - 1)->name,
5a49b8ac 2523 (void *) core_optab);
252b5132
RH
2524 if (hash_err)
2525 {
b37df7c4 2526 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2527 (optab - 1)->name,
2528 hash_err);
2529 }
2530 if (optab->name == NULL)
2531 break;
2532 core_optab = (templates *) xmalloc (sizeof (templates));
2533 core_optab->start = optab;
2534 }
2535 }
2536 }
2537
47926f60 2538 /* Initialize reg_hash hash table. */
252b5132
RH
2539 reg_hash = hash_new ();
2540 {
29b0f896 2541 const reg_entry *regtab;
c3fe08fa 2542 unsigned int regtab_size = i386_regtab_size;
252b5132 2543
c3fe08fa 2544 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2545 {
5a49b8ac 2546 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2547 if (hash_err)
b37df7c4 2548 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2549 regtab->reg_name,
2550 hash_err);
252b5132
RH
2551 }
2552 }
2553
47926f60 2554 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2555 {
29b0f896
AM
2556 int c;
2557 char *p;
252b5132
RH
2558
2559 for (c = 0; c < 256; c++)
2560 {
3882b010 2561 if (ISDIGIT (c))
252b5132
RH
2562 {
2563 digit_chars[c] = c;
2564 mnemonic_chars[c] = c;
2565 register_chars[c] = c;
2566 operand_chars[c] = c;
2567 }
3882b010 2568 else if (ISLOWER (c))
252b5132
RH
2569 {
2570 mnemonic_chars[c] = c;
2571 register_chars[c] = c;
2572 operand_chars[c] = c;
2573 }
3882b010 2574 else if (ISUPPER (c))
252b5132 2575 {
3882b010 2576 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2577 register_chars[c] = mnemonic_chars[c];
2578 operand_chars[c] = c;
2579 }
43234a1e
L
2580 else if (c == '{' || c == '}')
2581 operand_chars[c] = c;
252b5132 2582
3882b010 2583 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2584 identifier_chars[c] = c;
2585 else if (c >= 128)
2586 {
2587 identifier_chars[c] = c;
2588 operand_chars[c] = c;
2589 }
2590 }
2591
2592#ifdef LEX_AT
2593 identifier_chars['@'] = '@';
32137342
NC
2594#endif
2595#ifdef LEX_QM
2596 identifier_chars['?'] = '?';
2597 operand_chars['?'] = '?';
252b5132 2598#endif
252b5132 2599 digit_chars['-'] = '-';
c0f3af97 2600 mnemonic_chars['_'] = '_';
791fe849 2601 mnemonic_chars['-'] = '-';
0003779b 2602 mnemonic_chars['.'] = '.';
252b5132
RH
2603 identifier_chars['_'] = '_';
2604 identifier_chars['.'] = '.';
2605
2606 for (p = operand_special_chars; *p != '\0'; p++)
2607 operand_chars[(unsigned char) *p] = *p;
2608 }
2609
a4447b93
RH
2610 if (flag_code == CODE_64BIT)
2611 {
ca19b261
KT
2612#if defined (OBJ_COFF) && defined (TE_PE)
2613 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2614 ? 32 : 16);
2615#else
a4447b93 2616 x86_dwarf2_return_column = 16;
ca19b261 2617#endif
61ff971f 2618 x86_cie_data_alignment = -8;
a4447b93
RH
2619 }
2620 else
2621 {
2622 x86_dwarf2_return_column = 8;
2623 x86_cie_data_alignment = -4;
2624 }
252b5132
RH
2625}
2626
2627void
e3bb37b5 2628i386_print_statistics (FILE *file)
252b5132
RH
2629{
2630 hash_print_statistics (file, "i386 opcode", op_hash);
2631 hash_print_statistics (file, "i386 register", reg_hash);
2632}
2633\f
252b5132
RH
2634#ifdef DEBUG386
2635
ce8a8b2f 2636/* Debugging routines for md_assemble. */
d3ce72d0 2637static void pte (insn_template *);
40fb9820 2638static void pt (i386_operand_type);
e3bb37b5
L
2639static void pe (expressionS *);
2640static void ps (symbolS *);
252b5132
RH
2641
2642static void
e3bb37b5 2643pi (char *line, i386_insn *x)
252b5132 2644{
09137c09 2645 unsigned int j;
252b5132
RH
2646
2647 fprintf (stdout, "%s: template ", line);
2648 pte (&x->tm);
09f131f2
JH
2649 fprintf (stdout, " address: base %s index %s scale %x\n",
2650 x->base_reg ? x->base_reg->reg_name : "none",
2651 x->index_reg ? x->index_reg->reg_name : "none",
2652 x->log2_scale_factor);
2653 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2654 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2655 fprintf (stdout, " sib: base %x index %x scale %x\n",
2656 x->sib.base, x->sib.index, x->sib.scale);
2657 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2658 (x->rex & REX_W) != 0,
2659 (x->rex & REX_R) != 0,
2660 (x->rex & REX_X) != 0,
2661 (x->rex & REX_B) != 0);
09137c09 2662 for (j = 0; j < x->operands; j++)
252b5132 2663 {
09137c09
SP
2664 fprintf (stdout, " #%d: ", j + 1);
2665 pt (x->types[j]);
252b5132 2666 fprintf (stdout, "\n");
09137c09
SP
2667 if (x->types[j].bitfield.reg8
2668 || x->types[j].bitfield.reg16
2669 || x->types[j].bitfield.reg32
2670 || x->types[j].bitfield.reg64
2671 || x->types[j].bitfield.regmmx
2672 || x->types[j].bitfield.regxmm
2673 || x->types[j].bitfield.regymm
43234a1e 2674 || x->types[j].bitfield.regzmm
09137c09
SP
2675 || x->types[j].bitfield.sreg2
2676 || x->types[j].bitfield.sreg3
2677 || x->types[j].bitfield.control
2678 || x->types[j].bitfield.debug
2679 || x->types[j].bitfield.test)
2680 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2681 if (operand_type_check (x->types[j], imm))
2682 pe (x->op[j].imms);
2683 if (operand_type_check (x->types[j], disp))
2684 pe (x->op[j].disps);
252b5132
RH
2685 }
2686}
2687
2688static void
d3ce72d0 2689pte (insn_template *t)
252b5132 2690{
09137c09 2691 unsigned int j;
252b5132 2692 fprintf (stdout, " %d operands ", t->operands);
47926f60 2693 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2694 if (t->extension_opcode != None)
2695 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2696 if (t->opcode_modifier.d)
252b5132 2697 fprintf (stdout, "D");
40fb9820 2698 if (t->opcode_modifier.w)
252b5132
RH
2699 fprintf (stdout, "W");
2700 fprintf (stdout, "\n");
09137c09 2701 for (j = 0; j < t->operands; j++)
252b5132 2702 {
09137c09
SP
2703 fprintf (stdout, " #%d type ", j + 1);
2704 pt (t->operand_types[j]);
252b5132
RH
2705 fprintf (stdout, "\n");
2706 }
2707}
2708
2709static void
e3bb37b5 2710pe (expressionS *e)
252b5132 2711{
24eab124 2712 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2713 fprintf (stdout, " add_number %ld (%lx)\n",
2714 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2715 if (e->X_add_symbol)
2716 {
2717 fprintf (stdout, " add_symbol ");
2718 ps (e->X_add_symbol);
2719 fprintf (stdout, "\n");
2720 }
2721 if (e->X_op_symbol)
2722 {
2723 fprintf (stdout, " op_symbol ");
2724 ps (e->X_op_symbol);
2725 fprintf (stdout, "\n");
2726 }
2727}
2728
2729static void
e3bb37b5 2730ps (symbolS *s)
252b5132
RH
2731{
2732 fprintf (stdout, "%s type %s%s",
2733 S_GET_NAME (s),
2734 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2735 segment_name (S_GET_SEGMENT (s)));
2736}
2737
7b81dfbb 2738static struct type_name
252b5132 2739 {
40fb9820
L
2740 i386_operand_type mask;
2741 const char *name;
252b5132 2742 }
7b81dfbb 2743const type_names[] =
252b5132 2744{
40fb9820
L
2745 { OPERAND_TYPE_REG8, "r8" },
2746 { OPERAND_TYPE_REG16, "r16" },
2747 { OPERAND_TYPE_REG32, "r32" },
2748 { OPERAND_TYPE_REG64, "r64" },
2749 { OPERAND_TYPE_IMM8, "i8" },
2750 { OPERAND_TYPE_IMM8, "i8s" },
2751 { OPERAND_TYPE_IMM16, "i16" },
2752 { OPERAND_TYPE_IMM32, "i32" },
2753 { OPERAND_TYPE_IMM32S, "i32s" },
2754 { OPERAND_TYPE_IMM64, "i64" },
2755 { OPERAND_TYPE_IMM1, "i1" },
2756 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2757 { OPERAND_TYPE_DISP8, "d8" },
2758 { OPERAND_TYPE_DISP16, "d16" },
2759 { OPERAND_TYPE_DISP32, "d32" },
2760 { OPERAND_TYPE_DISP32S, "d32s" },
2761 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2762 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2763 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2764 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2765 { OPERAND_TYPE_CONTROL, "control reg" },
2766 { OPERAND_TYPE_TEST, "test reg" },
2767 { OPERAND_TYPE_DEBUG, "debug reg" },
2768 { OPERAND_TYPE_FLOATREG, "FReg" },
2769 { OPERAND_TYPE_FLOATACC, "FAcc" },
2770 { OPERAND_TYPE_SREG2, "SReg2" },
2771 { OPERAND_TYPE_SREG3, "SReg3" },
2772 { OPERAND_TYPE_ACC, "Acc" },
2773 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2774 { OPERAND_TYPE_REGMMX, "rMMX" },
2775 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2776 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2777 { OPERAND_TYPE_REGZMM, "rZMM" },
2778 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2779 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2780};
2781
2782static void
40fb9820 2783pt (i386_operand_type t)
252b5132 2784{
40fb9820 2785 unsigned int j;
c6fb90c8 2786 i386_operand_type a;
252b5132 2787
40fb9820 2788 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2789 {
2790 a = operand_type_and (t, type_names[j].mask);
0349dc08 2791 if (!operand_type_all_zero (&a))
c6fb90c8
L
2792 fprintf (stdout, "%s, ", type_names[j].name);
2793 }
252b5132
RH
2794 fflush (stdout);
2795}
2796
2797#endif /* DEBUG386 */
2798\f
252b5132 2799static bfd_reloc_code_real_type
3956db08 2800reloc (unsigned int size,
64e74474
AM
2801 int pcrel,
2802 int sign,
2803 bfd_reloc_code_real_type other)
252b5132 2804{
47926f60 2805 if (other != NO_RELOC)
3956db08 2806 {
91d6fa6a 2807 reloc_howto_type *rel;
3956db08
JB
2808
2809 if (size == 8)
2810 switch (other)
2811 {
64e74474
AM
2812 case BFD_RELOC_X86_64_GOT32:
2813 return BFD_RELOC_X86_64_GOT64;
2814 break;
2815 case BFD_RELOC_X86_64_PLTOFF64:
2816 return BFD_RELOC_X86_64_PLTOFF64;
2817 break;
2818 case BFD_RELOC_X86_64_GOTPC32:
2819 other = BFD_RELOC_X86_64_GOTPC64;
2820 break;
2821 case BFD_RELOC_X86_64_GOTPCREL:
2822 other = BFD_RELOC_X86_64_GOTPCREL64;
2823 break;
2824 case BFD_RELOC_X86_64_TPOFF32:
2825 other = BFD_RELOC_X86_64_TPOFF64;
2826 break;
2827 case BFD_RELOC_X86_64_DTPOFF32:
2828 other = BFD_RELOC_X86_64_DTPOFF64;
2829 break;
2830 default:
2831 break;
3956db08 2832 }
e05278af 2833
8ce3d284 2834#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2835 if (other == BFD_RELOC_SIZE32)
2836 {
2837 if (size == 8)
2838 return BFD_RELOC_SIZE64;
2839 if (pcrel)
2840 as_bad (_("there are no pc-relative size relocations"));
2841 }
8ce3d284 2842#endif
8fd4256d 2843
e05278af 2844 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2845 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2846 sign = -1;
2847
91d6fa6a
NC
2848 rel = bfd_reloc_type_lookup (stdoutput, other);
2849 if (!rel)
3956db08 2850 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2851 else if (size != bfd_get_reloc_size (rel))
3956db08 2852 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2853 bfd_get_reloc_size (rel),
3956db08 2854 size);
91d6fa6a 2855 else if (pcrel && !rel->pc_relative)
3956db08 2856 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2857 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2858 && !sign)
91d6fa6a 2859 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2860 && sign > 0))
3956db08
JB
2861 as_bad (_("relocated field and relocation type differ in signedness"));
2862 else
2863 return other;
2864 return NO_RELOC;
2865 }
252b5132
RH
2866
2867 if (pcrel)
2868 {
3e73aa7c 2869 if (!sign)
3956db08 2870 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2871 switch (size)
2872 {
2873 case 1: return BFD_RELOC_8_PCREL;
2874 case 2: return BFD_RELOC_16_PCREL;
2875 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2876 case 8: return BFD_RELOC_64_PCREL;
252b5132 2877 }
3956db08 2878 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2879 }
2880 else
2881 {
3956db08 2882 if (sign > 0)
e5cb08ac 2883 switch (size)
3e73aa7c
JH
2884 {
2885 case 4: return BFD_RELOC_X86_64_32S;
2886 }
2887 else
2888 switch (size)
2889 {
2890 case 1: return BFD_RELOC_8;
2891 case 2: return BFD_RELOC_16;
2892 case 4: return BFD_RELOC_32;
2893 case 8: return BFD_RELOC_64;
2894 }
3956db08
JB
2895 as_bad (_("cannot do %s %u byte relocation"),
2896 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2897 }
2898
0cc9e1d3 2899 return NO_RELOC;
252b5132
RH
2900}
2901
47926f60
KH
2902/* Here we decide which fixups can be adjusted to make them relative to
2903 the beginning of the section instead of the symbol. Basically we need
2904 to make sure that the dynamic relocations are done correctly, so in
2905 some cases we force the original symbol to be used. */
2906
252b5132 2907int
e3bb37b5 2908tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2909{
6d249963 2910#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2911 if (!IS_ELF)
31312f95
AM
2912 return 1;
2913
a161fe53
AM
2914 /* Don't adjust pc-relative references to merge sections in 64-bit
2915 mode. */
2916 if (use_rela_relocations
2917 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2918 && fixP->fx_pcrel)
252b5132 2919 return 0;
31312f95 2920
8d01d9a9
AJ
2921 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2922 and changed later by validate_fix. */
2923 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2924 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2925 return 0;
2926
8fd4256d
L
2927 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2928 for size relocations. */
2929 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2930 || fixP->fx_r_type == BFD_RELOC_SIZE64
2931 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
2932 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2933 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2946 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2950 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2959 return 0;
31312f95 2960#endif
252b5132
RH
2961 return 1;
2962}
252b5132 2963
b4cac588 2964static int
e3bb37b5 2965intel_float_operand (const char *mnemonic)
252b5132 2966{
9306ca4a
JB
2967 /* Note that the value returned is meaningful only for opcodes with (memory)
2968 operands, hence the code here is free to improperly handle opcodes that
2969 have no operands (for better performance and smaller code). */
2970
2971 if (mnemonic[0] != 'f')
2972 return 0; /* non-math */
2973
2974 switch (mnemonic[1])
2975 {
2976 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2977 the fs segment override prefix not currently handled because no
2978 call path can make opcodes without operands get here */
2979 case 'i':
2980 return 2 /* integer op */;
2981 case 'l':
2982 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2983 return 3; /* fldcw/fldenv */
2984 break;
2985 case 'n':
2986 if (mnemonic[2] != 'o' /* fnop */)
2987 return 3; /* non-waiting control op */
2988 break;
2989 case 'r':
2990 if (mnemonic[2] == 's')
2991 return 3; /* frstor/frstpm */
2992 break;
2993 case 's':
2994 if (mnemonic[2] == 'a')
2995 return 3; /* fsave */
2996 if (mnemonic[2] == 't')
2997 {
2998 switch (mnemonic[3])
2999 {
3000 case 'c': /* fstcw */
3001 case 'd': /* fstdw */
3002 case 'e': /* fstenv */
3003 case 's': /* fsts[gw] */
3004 return 3;
3005 }
3006 }
3007 break;
3008 case 'x':
3009 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3010 return 0; /* fxsave/fxrstor are not really math ops */
3011 break;
3012 }
252b5132 3013
9306ca4a 3014 return 1;
252b5132
RH
3015}
3016
c0f3af97
L
3017/* Build the VEX prefix. */
3018
3019static void
d3ce72d0 3020build_vex_prefix (const insn_template *t)
c0f3af97
L
3021{
3022 unsigned int register_specifier;
3023 unsigned int implied_prefix;
3024 unsigned int vector_length;
3025
3026 /* Check register specifier. */
3027 if (i.vex.register_specifier)
43234a1e
L
3028 {
3029 register_specifier =
3030 ~register_number (i.vex.register_specifier) & 0xf;
3031 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3032 }
c0f3af97
L
3033 else
3034 register_specifier = 0xf;
3035
fa99fab2
L
3036 /* Use 2-byte VEX prefix by swappping destination and source
3037 operand. */
3038 if (!i.swap_operand
3039 && i.operands == i.reg_operands
7f399153 3040 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
3041 && i.tm.opcode_modifier.s
3042 && i.rex == REX_B)
3043 {
3044 unsigned int xchg = i.operands - 1;
3045 union i386_op temp_op;
3046 i386_operand_type temp_type;
3047
3048 temp_type = i.types[xchg];
3049 i.types[xchg] = i.types[0];
3050 i.types[0] = temp_type;
3051 temp_op = i.op[xchg];
3052 i.op[xchg] = i.op[0];
3053 i.op[0] = temp_op;
3054
9c2799c2 3055 gas_assert (i.rm.mode == 3);
fa99fab2
L
3056
3057 i.rex = REX_R;
3058 xchg = i.rm.regmem;
3059 i.rm.regmem = i.rm.reg;
3060 i.rm.reg = xchg;
3061
3062 /* Use the next insn. */
3063 i.tm = t[1];
3064 }
3065
539f890d
L
3066 if (i.tm.opcode_modifier.vex == VEXScalar)
3067 vector_length = avxscalar;
3068 else
3069 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3070
3071 switch ((i.tm.base_opcode >> 8) & 0xff)
3072 {
3073 case 0:
3074 implied_prefix = 0;
3075 break;
3076 case DATA_PREFIX_OPCODE:
3077 implied_prefix = 1;
3078 break;
3079 case REPE_PREFIX_OPCODE:
3080 implied_prefix = 2;
3081 break;
3082 case REPNE_PREFIX_OPCODE:
3083 implied_prefix = 3;
3084 break;
3085 default:
3086 abort ();
3087 }
3088
3089 /* Use 2-byte VEX prefix if possible. */
7f399153 3090 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3091 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3092 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3093 {
3094 /* 2-byte VEX prefix. */
3095 unsigned int r;
3096
3097 i.vex.length = 2;
3098 i.vex.bytes[0] = 0xc5;
3099
3100 /* Check the REX.R bit. */
3101 r = (i.rex & REX_R) ? 0 : 1;
3102 i.vex.bytes[1] = (r << 7
3103 | register_specifier << 3
3104 | vector_length << 2
3105 | implied_prefix);
3106 }
3107 else
3108 {
3109 /* 3-byte VEX prefix. */
3110 unsigned int m, w;
3111
f88c9eb0 3112 i.vex.length = 3;
f88c9eb0 3113
7f399153 3114 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3115 {
7f399153
L
3116 case VEX0F:
3117 m = 0x1;
80de6e00 3118 i.vex.bytes[0] = 0xc4;
7f399153
L
3119 break;
3120 case VEX0F38:
3121 m = 0x2;
80de6e00 3122 i.vex.bytes[0] = 0xc4;
7f399153
L
3123 break;
3124 case VEX0F3A:
3125 m = 0x3;
80de6e00 3126 i.vex.bytes[0] = 0xc4;
7f399153
L
3127 break;
3128 case XOP08:
5dd85c99
SP
3129 m = 0x8;
3130 i.vex.bytes[0] = 0x8f;
7f399153
L
3131 break;
3132 case XOP09:
f88c9eb0
SP
3133 m = 0x9;
3134 i.vex.bytes[0] = 0x8f;
7f399153
L
3135 break;
3136 case XOP0A:
f88c9eb0
SP
3137 m = 0xa;
3138 i.vex.bytes[0] = 0x8f;
7f399153
L
3139 break;
3140 default:
3141 abort ();
f88c9eb0 3142 }
c0f3af97 3143
c0f3af97
L
3144 /* The high 3 bits of the second VEX byte are 1's compliment
3145 of RXB bits from REX. */
3146 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3147
3148 /* Check the REX.W bit. */
3149 w = (i.rex & REX_W) ? 1 : 0;
1ef99a7b 3150 if (i.tm.opcode_modifier.vexw)
c0f3af97
L
3151 {
3152 if (w)
3153 abort ();
3154
1ef99a7b 3155 if (i.tm.opcode_modifier.vexw == VEXW1)
c0f3af97
L
3156 w = 1;
3157 }
3158
3159 i.vex.bytes[2] = (w << 7
3160 | register_specifier << 3
3161 | vector_length << 2
3162 | implied_prefix);
3163 }
3164}
3165
43234a1e
L
3166/* Build the EVEX prefix. */
3167
3168static void
3169build_evex_prefix (void)
3170{
3171 unsigned int register_specifier;
3172 unsigned int implied_prefix;
3173 unsigned int m, w;
3174 rex_byte vrex_used = 0;
3175
3176 /* Check register specifier. */
3177 if (i.vex.register_specifier)
3178 {
3179 gas_assert ((i.vrex & REX_X) == 0);
3180
3181 register_specifier = i.vex.register_specifier->reg_num;
3182 if ((i.vex.register_specifier->reg_flags & RegRex))
3183 register_specifier += 8;
3184 /* The upper 16 registers are encoded in the fourth byte of the
3185 EVEX prefix. */
3186 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3187 i.vex.bytes[3] = 0x8;
3188 register_specifier = ~register_specifier & 0xf;
3189 }
3190 else
3191 {
3192 register_specifier = 0xf;
3193
3194 /* Encode upper 16 vector index register in the fourth byte of
3195 the EVEX prefix. */
3196 if (!(i.vrex & REX_X))
3197 i.vex.bytes[3] = 0x8;
3198 else
3199 vrex_used |= REX_X;
3200 }
3201
3202 switch ((i.tm.base_opcode >> 8) & 0xff)
3203 {
3204 case 0:
3205 implied_prefix = 0;
3206 break;
3207 case DATA_PREFIX_OPCODE:
3208 implied_prefix = 1;
3209 break;
3210 case REPE_PREFIX_OPCODE:
3211 implied_prefix = 2;
3212 break;
3213 case REPNE_PREFIX_OPCODE:
3214 implied_prefix = 3;
3215 break;
3216 default:
3217 abort ();
3218 }
3219
3220 /* 4 byte EVEX prefix. */
3221 i.vex.length = 4;
3222 i.vex.bytes[0] = 0x62;
3223
3224 /* mmmm bits. */
3225 switch (i.tm.opcode_modifier.vexopcode)
3226 {
3227 case VEX0F:
3228 m = 1;
3229 break;
3230 case VEX0F38:
3231 m = 2;
3232 break;
3233 case VEX0F3A:
3234 m = 3;
3235 break;
3236 default:
3237 abort ();
3238 break;
3239 }
3240
3241 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3242 bits from REX. */
3243 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3244
3245 /* The fifth bit of the second EVEX byte is 1's compliment of the
3246 REX_R bit in VREX. */
3247 if (!(i.vrex & REX_R))
3248 i.vex.bytes[1] |= 0x10;
3249 else
3250 vrex_used |= REX_R;
3251
3252 if ((i.reg_operands + i.imm_operands) == i.operands)
3253 {
3254 /* When all operands are registers, the REX_X bit in REX is not
3255 used. We reuse it to encode the upper 16 registers, which is
3256 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3257 as 1's compliment. */
3258 if ((i.vrex & REX_B))
3259 {
3260 vrex_used |= REX_B;
3261 i.vex.bytes[1] &= ~0x40;
3262 }
3263 }
3264
3265 /* EVEX instructions shouldn't need the REX prefix. */
3266 i.vrex &= ~vrex_used;
3267 gas_assert (i.vrex == 0);
3268
3269 /* Check the REX.W bit. */
3270 w = (i.rex & REX_W) ? 1 : 0;
3271 if (i.tm.opcode_modifier.vexw)
3272 {
3273 if (i.tm.opcode_modifier.vexw == VEXW1)
3274 w = 1;
3275 }
3276 /* If w is not set it means we are dealing with WIG instruction. */
3277 else if (!w)
3278 {
3279 if (evexwig == evexw1)
3280 w = 1;
3281 }
3282
3283 /* Encode the U bit. */
3284 implied_prefix |= 0x4;
3285
3286 /* The third byte of the EVEX prefix. */
3287 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3288
3289 /* The fourth byte of the EVEX prefix. */
3290 /* The zeroing-masking bit. */
3291 if (i.mask && i.mask->zeroing)
3292 i.vex.bytes[3] |= 0x80;
3293
3294 /* Don't always set the broadcast bit if there is no RC. */
3295 if (!i.rounding)
3296 {
3297 /* Encode the vector length. */
3298 unsigned int vec_length;
3299
3300 switch (i.tm.opcode_modifier.evex)
3301 {
3302 case EVEXLIG: /* LL' is ignored */
3303 vec_length = evexlig << 5;
3304 break;
3305 case EVEX128:
3306 vec_length = 0 << 5;
3307 break;
3308 case EVEX256:
3309 vec_length = 1 << 5;
3310 break;
3311 case EVEX512:
3312 vec_length = 2 << 5;
3313 break;
3314 default:
3315 abort ();
3316 break;
3317 }
3318 i.vex.bytes[3] |= vec_length;
3319 /* Encode the broadcast bit. */
3320 if (i.broadcast)
3321 i.vex.bytes[3] |= 0x10;
3322 }
3323 else
3324 {
3325 if (i.rounding->type != saeonly)
3326 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3327 else
3328 i.vex.bytes[3] |= 0x10;
3329 }
3330
3331 if (i.mask && i.mask->mask)
3332 i.vex.bytes[3] |= i.mask->mask->reg_num;
3333}
3334
65da13b5
L
3335static void
3336process_immext (void)
3337{
3338 expressionS *exp;
3339
4c692bc7
JB
3340 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3341 && i.operands > 0)
65da13b5 3342 {
4c692bc7
JB
3343 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3344 with an opcode suffix which is coded in the same place as an
3345 8-bit immediate field would be.
3346 Here we check those operands and remove them afterwards. */
65da13b5
L
3347 unsigned int x;
3348
3349 for (x = 0; x < i.operands; x++)
4c692bc7 3350 if (register_number (i.op[x].regs) != x)
65da13b5 3351 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3352 register_prefix, i.op[x].regs->reg_name, x + 1,
3353 i.tm.name);
3354
3355 i.operands = 0;
65da13b5
L
3356 }
3357
c0f3af97 3358 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3359 which is coded in the same place as an 8-bit immediate field
3360 would be. Here we fake an 8-bit immediate operand from the
3361 opcode suffix stored in tm.extension_opcode.
3362
c1e679ec 3363 AVX instructions also use this encoding, for some of
c0f3af97 3364 3 argument instructions. */
65da13b5 3365
43234a1e 3366 gas_assert (i.imm_operands <= 1
7ab9ffdd 3367 && (i.operands <= 2
43234a1e
L
3368 || ((i.tm.opcode_modifier.vex
3369 || i.tm.opcode_modifier.evex)
7ab9ffdd 3370 && i.operands <= 4)));
65da13b5
L
3371
3372 exp = &im_expressions[i.imm_operands++];
3373 i.op[i.operands].imms = exp;
3374 i.types[i.operands] = imm8;
3375 i.operands++;
3376 exp->X_op = O_constant;
3377 exp->X_add_number = i.tm.extension_opcode;
3378 i.tm.extension_opcode = None;
3379}
3380
42164a71
L
3381
3382static int
3383check_hle (void)
3384{
3385 switch (i.tm.opcode_modifier.hleprefixok)
3386 {
3387 default:
3388 abort ();
82c2def5 3389 case HLEPrefixNone:
165de32a
L
3390 as_bad (_("invalid instruction `%s' after `%s'"),
3391 i.tm.name, i.hle_prefix);
42164a71 3392 return 0;
82c2def5 3393 case HLEPrefixLock:
42164a71
L
3394 if (i.prefix[LOCK_PREFIX])
3395 return 1;
165de32a 3396 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3397 return 0;
82c2def5 3398 case HLEPrefixAny:
42164a71 3399 return 1;
82c2def5 3400 case HLEPrefixRelease:
42164a71
L
3401 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3402 {
3403 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3404 i.tm.name);
3405 return 0;
3406 }
3407 if (i.mem_operands == 0
3408 || !operand_type_check (i.types[i.operands - 1], anymem))
3409 {
3410 as_bad (_("memory destination needed for instruction `%s'"
3411 " after `xrelease'"), i.tm.name);
3412 return 0;
3413 }
3414 return 1;
3415 }
3416}
3417
252b5132
RH
3418/* This is the guts of the machine-dependent assembler. LINE points to a
3419 machine dependent instruction. This function is supposed to emit
3420 the frags/bytes it assembles to. */
3421
3422void
65da13b5 3423md_assemble (char *line)
252b5132 3424{
40fb9820 3425 unsigned int j;
252b5132 3426 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 3427 const insn_template *t;
252b5132 3428
47926f60 3429 /* Initialize globals. */
252b5132
RH
3430 memset (&i, '\0', sizeof (i));
3431 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3432 i.reloc[j] = NO_RELOC;
252b5132
RH
3433 memset (disp_expressions, '\0', sizeof (disp_expressions));
3434 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3435 save_stack_p = save_stack;
252b5132
RH
3436
3437 /* First parse an instruction mnemonic & call i386_operand for the operands.
3438 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3439 start of a (possibly prefixed) mnemonic. */
252b5132 3440
29b0f896
AM
3441 line = parse_insn (line, mnemonic);
3442 if (line == NULL)
3443 return;
252b5132 3444
29b0f896 3445 line = parse_operands (line, mnemonic);
ee86248c 3446 this_operand = -1;
29b0f896
AM
3447 if (line == NULL)
3448 return;
252b5132 3449
29b0f896
AM
3450 /* Now we've parsed the mnemonic into a set of templates, and have the
3451 operands at hand. */
3452
3453 /* All intel opcodes have reversed operands except for "bound" and
3454 "enter". We also don't reverse intersegment "jmp" and "call"
3455 instructions with 2 immediate operands so that the immediate segment
050dfa73 3456 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3457 if (intel_syntax
3458 && i.operands > 1
29b0f896 3459 && (strcmp (mnemonic, "bound") != 0)
30123838 3460 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3461 && !(operand_type_check (i.types[0], imm)
3462 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3463 swap_operands ();
3464
ec56d5c0
JB
3465 /* The order of the immediates should be reversed
3466 for 2 immediates extrq and insertq instructions */
3467 if (i.imm_operands == 2
3468 && (strcmp (mnemonic, "extrq") == 0
3469 || strcmp (mnemonic, "insertq") == 0))
3470 swap_2_operands (0, 1);
3471
29b0f896
AM
3472 if (i.imm_operands)
3473 optimize_imm ();
3474
b300c311
L
3475 /* Don't optimize displacement for movabs since it only takes 64bit
3476 displacement. */
3477 if (i.disp_operands
a501d77e 3478 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3479 && (flag_code != CODE_64BIT
3480 || strcmp (mnemonic, "movabs") != 0))
3481 optimize_disp ();
29b0f896
AM
3482
3483 /* Next, we find a template that matches the given insn,
3484 making sure the overlap of the given operands types is consistent
3485 with the template operand types. */
252b5132 3486
fa99fab2 3487 if (!(t = match_template ()))
29b0f896 3488 return;
252b5132 3489
7bab8ab5 3490 if (sse_check != check_none
81f8a913 3491 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3492 && (i.tm.cpu_flags.bitfield.cpusse
3493 || i.tm.cpu_flags.bitfield.cpusse2
3494 || i.tm.cpu_flags.bitfield.cpusse3
3495 || i.tm.cpu_flags.bitfield.cpussse3
3496 || i.tm.cpu_flags.bitfield.cpusse4_1
3497 || i.tm.cpu_flags.bitfield.cpusse4_2))
3498 {
7bab8ab5 3499 (sse_check == check_warning
daf50ae7
L
3500 ? as_warn
3501 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3502 }
3503
321fd21e
L
3504 /* Zap movzx and movsx suffix. The suffix has been set from
3505 "word ptr" or "byte ptr" on the source operand in Intel syntax
3506 or extracted from mnemonic in AT&T syntax. But we'll use
3507 the destination register to choose the suffix for encoding. */
3508 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3509 {
321fd21e
L
3510 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3511 there is no suffix, the default will be byte extension. */
3512 if (i.reg_operands != 2
3513 && !i.suffix
7ab9ffdd 3514 && intel_syntax)
321fd21e
L
3515 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3516
3517 i.suffix = 0;
cd61ebfe 3518 }
24eab124 3519
40fb9820 3520 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3521 if (!add_prefix (FWAIT_OPCODE))
3522 return;
252b5132 3523
d5de92cf
L
3524 /* Check if REP prefix is OK. */
3525 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3526 {
3527 as_bad (_("invalid instruction `%s' after `%s'"),
3528 i.tm.name, i.rep_prefix);
3529 return;
3530 }
3531
c1ba0266
L
3532 /* Check for lock without a lockable instruction. Destination operand
3533 must be memory unless it is xchg (0x86). */
c32fa91d
L
3534 if (i.prefix[LOCK_PREFIX]
3535 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3536 || i.mem_operands == 0
3537 || (i.tm.base_opcode != 0x86
3538 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3539 {
3540 as_bad (_("expecting lockable instruction after `lock'"));
3541 return;
3542 }
3543
42164a71 3544 /* Check if HLE prefix is OK. */
165de32a 3545 if (i.hle_prefix && !check_hle ())
42164a71
L
3546 return;
3547
7e8b059b
L
3548 /* Check BND prefix. */
3549 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3550 as_bad (_("expecting valid branch instruction after `bnd'"));
3551
3552 if (i.tm.cpu_flags.bitfield.cpumpx
3553 && flag_code == CODE_64BIT
3554 && i.prefix[ADDR_PREFIX])
3555 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3556
3557 /* Insert BND prefix. */
3558 if (add_bnd_prefix
3559 && i.tm.opcode_modifier.bndprefixok
3560 && !i.prefix[BND_PREFIX])
3561 add_prefix (BND_PREFIX_OPCODE);
3562
29b0f896 3563 /* Check string instruction segment overrides. */
40fb9820 3564 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3565 {
3566 if (!check_string ())
5dd0794d 3567 return;
fc0763e6 3568 i.disp_operands = 0;
29b0f896 3569 }
5dd0794d 3570
29b0f896
AM
3571 if (!process_suffix ())
3572 return;
e413e4e9 3573
bc0844ae
L
3574 /* Update operand types. */
3575 for (j = 0; j < i.operands; j++)
3576 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3577
29b0f896
AM
3578 /* Make still unresolved immediate matches conform to size of immediate
3579 given in i.suffix. */
3580 if (!finalize_imm ())
3581 return;
252b5132 3582
40fb9820 3583 if (i.types[0].bitfield.imm1)
29b0f896 3584 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3585
9afe6eb8
L
3586 /* We only need to check those implicit registers for instructions
3587 with 3 operands or less. */
3588 if (i.operands <= 3)
3589 for (j = 0; j < i.operands; j++)
3590 if (i.types[j].bitfield.inoutportreg
3591 || i.types[j].bitfield.shiftcount
3592 || i.types[j].bitfield.acc
3593 || i.types[j].bitfield.floatacc)
3594 i.reg_operands--;
40fb9820 3595
c0f3af97
L
3596 /* ImmExt should be processed after SSE2AVX. */
3597 if (!i.tm.opcode_modifier.sse2avx
3598 && i.tm.opcode_modifier.immext)
65da13b5 3599 process_immext ();
252b5132 3600
29b0f896
AM
3601 /* For insns with operands there are more diddles to do to the opcode. */
3602 if (i.operands)
3603 {
3604 if (!process_operands ())
3605 return;
3606 }
40fb9820 3607 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3608 {
3609 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3610 as_warn (_("translating to `%sp'"), i.tm.name);
3611 }
252b5132 3612
c0f3af97 3613 if (i.tm.opcode_modifier.vex)
fa99fab2 3614 build_vex_prefix (t);
c0f3af97 3615
43234a1e
L
3616 if (i.tm.opcode_modifier.evex)
3617 build_evex_prefix ();
3618
5dd85c99
SP
3619 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3620 instructions may define INT_OPCODE as well, so avoid this corner
3621 case for those instructions that use MODRM. */
3622 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3623 && !i.tm.opcode_modifier.modrm
3624 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3625 {
3626 i.tm.base_opcode = INT3_OPCODE;
3627 i.imm_operands = 0;
3628 }
252b5132 3629
40fb9820
L
3630 if ((i.tm.opcode_modifier.jump
3631 || i.tm.opcode_modifier.jumpbyte
3632 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3633 && i.op[0].disps->X_op == O_constant)
3634 {
3635 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3636 the absolute address given by the constant. Since ix86 jumps and
3637 calls are pc relative, we need to generate a reloc. */
3638 i.op[0].disps->X_add_symbol = &abs_symbol;
3639 i.op[0].disps->X_op = O_symbol;
3640 }
252b5132 3641
40fb9820 3642 if (i.tm.opcode_modifier.rex64)
161a04f6 3643 i.rex |= REX_W;
252b5132 3644
29b0f896
AM
3645 /* For 8 bit registers we need an empty rex prefix. Also if the
3646 instruction already has a prefix, we need to convert old
3647 registers to new ones. */
773f551c 3648
40fb9820 3649 if ((i.types[0].bitfield.reg8
29b0f896 3650 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3651 || (i.types[1].bitfield.reg8
29b0f896 3652 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3653 || ((i.types[0].bitfield.reg8
3654 || i.types[1].bitfield.reg8)
29b0f896
AM
3655 && i.rex != 0))
3656 {
3657 int x;
726c5dcd 3658
29b0f896
AM
3659 i.rex |= REX_OPCODE;
3660 for (x = 0; x < 2; x++)
3661 {
3662 /* Look for 8 bit operand that uses old registers. */
40fb9820 3663 if (i.types[x].bitfield.reg8
29b0f896 3664 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3665 {
29b0f896
AM
3666 /* In case it is "hi" register, give up. */
3667 if (i.op[x].regs->reg_num > 3)
a540244d 3668 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3669 "instruction requiring REX prefix."),
a540244d 3670 register_prefix, i.op[x].regs->reg_name);
773f551c 3671
29b0f896
AM
3672 /* Otherwise it is equivalent to the extended register.
3673 Since the encoding doesn't change this is merely
3674 cosmetic cleanup for debug output. */
3675
3676 i.op[x].regs = i.op[x].regs + 8;
773f551c 3677 }
29b0f896
AM
3678 }
3679 }
773f551c 3680
7ab9ffdd 3681 if (i.rex != 0)
29b0f896
AM
3682 add_prefix (REX_OPCODE | i.rex);
3683
3684 /* We are ready to output the insn. */
3685 output_insn ();
3686}
3687
3688static char *
e3bb37b5 3689parse_insn (char *line, char *mnemonic)
29b0f896
AM
3690{
3691 char *l = line;
3692 char *token_start = l;
3693 char *mnem_p;
5c6af06e 3694 int supported;
d3ce72d0 3695 const insn_template *t;
b6169b20 3696 char *dot_p = NULL;
29b0f896 3697
29b0f896
AM
3698 while (1)
3699 {
3700 mnem_p = mnemonic;
3701 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3702 {
b6169b20
L
3703 if (*mnem_p == '.')
3704 dot_p = mnem_p;
29b0f896
AM
3705 mnem_p++;
3706 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3707 {
29b0f896
AM
3708 as_bad (_("no such instruction: `%s'"), token_start);
3709 return NULL;
3710 }
3711 l++;
3712 }
3713 if (!is_space_char (*l)
3714 && *l != END_OF_INSN
e44823cf
JB
3715 && (intel_syntax
3716 || (*l != PREFIX_SEPARATOR
3717 && *l != ',')))
29b0f896
AM
3718 {
3719 as_bad (_("invalid character %s in mnemonic"),
3720 output_invalid (*l));
3721 return NULL;
3722 }
3723 if (token_start == l)
3724 {
e44823cf 3725 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3726 as_bad (_("expecting prefix; got nothing"));
3727 else
3728 as_bad (_("expecting mnemonic; got nothing"));
3729 return NULL;
3730 }
45288df1 3731
29b0f896 3732 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3733 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3734
29b0f896
AM
3735 if (*l != END_OF_INSN
3736 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3737 && current_templates
40fb9820 3738 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3739 {
c6fb90c8 3740 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3741 {
3742 as_bad ((flag_code != CODE_64BIT
3743 ? _("`%s' is only supported in 64-bit mode")
3744 : _("`%s' is not supported in 64-bit mode")),
3745 current_templates->start->name);
3746 return NULL;
3747 }
29b0f896
AM
3748 /* If we are in 16-bit mode, do not allow addr16 or data16.
3749 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3750 if ((current_templates->start->opcode_modifier.size16
3751 || current_templates->start->opcode_modifier.size32)
29b0f896 3752 && flag_code != CODE_64BIT
40fb9820 3753 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3754 ^ (flag_code == CODE_16BIT)))
3755 {
3756 as_bad (_("redundant %s prefix"),
3757 current_templates->start->name);
3758 return NULL;
45288df1 3759 }
29b0f896
AM
3760 /* Add prefix, checking for repeated prefixes. */
3761 switch (add_prefix (current_templates->start->base_opcode))
3762 {
c32fa91d 3763 case PREFIX_EXIST:
29b0f896 3764 return NULL;
c32fa91d 3765 case PREFIX_REP:
42164a71 3766 if (current_templates->start->cpu_flags.bitfield.cpuhle)
165de32a 3767 i.hle_prefix = current_templates->start->name;
7e8b059b
L
3768 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3769 i.bnd_prefix = current_templates->start->name;
42164a71 3770 else
d5de92cf 3771 i.rep_prefix = current_templates->start->name;
29b0f896 3772 break;
c32fa91d
L
3773 default:
3774 break;
29b0f896
AM
3775 }
3776 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3777 token_start = ++l;
3778 }
3779 else
3780 break;
3781 }
45288df1 3782
30a55f88 3783 if (!current_templates)
b6169b20 3784 {
f8a5c266
L
3785 /* Check if we should swap operand or force 32bit displacement in
3786 encoding. */
30a55f88
L
3787 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3788 i.swap_operand = 1;
8d63c93e 3789 else if (mnem_p - 3 == dot_p
a501d77e
L
3790 && dot_p[1] == 'd'
3791 && dot_p[2] == '8')
3792 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3793 else if (mnem_p - 4 == dot_p
f8a5c266
L
3794 && dot_p[1] == 'd'
3795 && dot_p[2] == '3'
3796 && dot_p[3] == '2')
a501d77e 3797 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3798 else
3799 goto check_suffix;
3800 mnem_p = dot_p;
3801 *dot_p = '\0';
d3ce72d0 3802 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3803 }
3804
29b0f896
AM
3805 if (!current_templates)
3806 {
b6169b20 3807check_suffix:
29b0f896
AM
3808 /* See if we can get a match by trimming off a suffix. */
3809 switch (mnem_p[-1])
3810 {
3811 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3812 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3813 i.suffix = SHORT_MNEM_SUFFIX;
3814 else
29b0f896
AM
3815 case BYTE_MNEM_SUFFIX:
3816 case QWORD_MNEM_SUFFIX:
3817 i.suffix = mnem_p[-1];
3818 mnem_p[-1] = '\0';
d3ce72d0
NC
3819 current_templates = (const templates *) hash_find (op_hash,
3820 mnemonic);
29b0f896
AM
3821 break;
3822 case SHORT_MNEM_SUFFIX:
3823 case LONG_MNEM_SUFFIX:
3824 if (!intel_syntax)
3825 {
3826 i.suffix = mnem_p[-1];
3827 mnem_p[-1] = '\0';
d3ce72d0
NC
3828 current_templates = (const templates *) hash_find (op_hash,
3829 mnemonic);
29b0f896
AM
3830 }
3831 break;
252b5132 3832
29b0f896
AM
3833 /* Intel Syntax. */
3834 case 'd':
3835 if (intel_syntax)
3836 {
9306ca4a 3837 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3838 i.suffix = SHORT_MNEM_SUFFIX;
3839 else
3840 i.suffix = LONG_MNEM_SUFFIX;
3841 mnem_p[-1] = '\0';
d3ce72d0
NC
3842 current_templates = (const templates *) hash_find (op_hash,
3843 mnemonic);
29b0f896
AM
3844 }
3845 break;
3846 }
3847 if (!current_templates)
3848 {
3849 as_bad (_("no such instruction: `%s'"), token_start);
3850 return NULL;
3851 }
3852 }
252b5132 3853
40fb9820
L
3854 if (current_templates->start->opcode_modifier.jump
3855 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3856 {
3857 /* Check for a branch hint. We allow ",pt" and ",pn" for
3858 predict taken and predict not taken respectively.
3859 I'm not sure that branch hints actually do anything on loop
3860 and jcxz insns (JumpByte) for current Pentium4 chips. They
3861 may work in the future and it doesn't hurt to accept them
3862 now. */
3863 if (l[0] == ',' && l[1] == 'p')
3864 {
3865 if (l[2] == 't')
3866 {
3867 if (!add_prefix (DS_PREFIX_OPCODE))
3868 return NULL;
3869 l += 3;
3870 }
3871 else if (l[2] == 'n')
3872 {
3873 if (!add_prefix (CS_PREFIX_OPCODE))
3874 return NULL;
3875 l += 3;
3876 }
3877 }
3878 }
3879 /* Any other comma loses. */
3880 if (*l == ',')
3881 {
3882 as_bad (_("invalid character %s in mnemonic"),
3883 output_invalid (*l));
3884 return NULL;
3885 }
252b5132 3886
29b0f896 3887 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3888 supported = 0;
3889 for (t = current_templates->start; t < current_templates->end; ++t)
3890 {
c0f3af97
L
3891 supported |= cpu_flags_match (t);
3892 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3893 goto skip;
5c6af06e 3894 }
3629bb00 3895
c0f3af97 3896 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3897 {
3898 as_bad (flag_code == CODE_64BIT
3899 ? _("`%s' is not supported in 64-bit mode")
3900 : _("`%s' is only supported in 64-bit mode"),
3901 current_templates->start->name);
3902 return NULL;
3903 }
c0f3af97 3904 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3905 {
3629bb00 3906 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3907 current_templates->start->name,
41aacd83 3908 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3909 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3910 return NULL;
29b0f896 3911 }
3629bb00
L
3912
3913skip:
3914 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3915 && (flag_code != CODE_16BIT))
29b0f896
AM
3916 {
3917 as_warn (_("use .code16 to ensure correct addressing mode"));
3918 }
252b5132 3919
29b0f896
AM
3920 return l;
3921}
252b5132 3922
29b0f896 3923static char *
e3bb37b5 3924parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3925{
3926 char *token_start;
3138f287 3927
29b0f896
AM
3928 /* 1 if operand is pending after ','. */
3929 unsigned int expecting_operand = 0;
252b5132 3930
29b0f896
AM
3931 /* Non-zero if operand parens not balanced. */
3932 unsigned int paren_not_balanced;
3933
3934 while (*l != END_OF_INSN)
3935 {
3936 /* Skip optional white space before operand. */
3937 if (is_space_char (*l))
3938 ++l;
3939 if (!is_operand_char (*l) && *l != END_OF_INSN)
3940 {
3941 as_bad (_("invalid character %s before operand %d"),
3942 output_invalid (*l),
3943 i.operands + 1);
3944 return NULL;
3945 }
3946 token_start = l; /* after white space */
3947 paren_not_balanced = 0;
3948 while (paren_not_balanced || *l != ',')
3949 {
3950 if (*l == END_OF_INSN)
3951 {
3952 if (paren_not_balanced)
3953 {
3954 if (!intel_syntax)
3955 as_bad (_("unbalanced parenthesis in operand %d."),
3956 i.operands + 1);
3957 else
3958 as_bad (_("unbalanced brackets in operand %d."),
3959 i.operands + 1);
3960 return NULL;
3961 }
3962 else
3963 break; /* we are done */
3964 }
3965 else if (!is_operand_char (*l) && !is_space_char (*l))
3966 {
3967 as_bad (_("invalid character %s in operand %d"),
3968 output_invalid (*l),
3969 i.operands + 1);
3970 return NULL;
3971 }
3972 if (!intel_syntax)
3973 {
3974 if (*l == '(')
3975 ++paren_not_balanced;
3976 if (*l == ')')
3977 --paren_not_balanced;
3978 }
3979 else
3980 {
3981 if (*l == '[')
3982 ++paren_not_balanced;
3983 if (*l == ']')
3984 --paren_not_balanced;
3985 }
3986 l++;
3987 }
3988 if (l != token_start)
3989 { /* Yes, we've read in another operand. */
3990 unsigned int operand_ok;
3991 this_operand = i.operands++;
7d5e4556 3992 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
3993 if (i.operands > MAX_OPERANDS)
3994 {
3995 as_bad (_("spurious operands; (%d operands/instruction max)"),
3996 MAX_OPERANDS);
3997 return NULL;
3998 }
3999 /* Now parse operand adding info to 'i' as we go along. */
4000 END_STRING_AND_SAVE (l);
4001
4002 if (intel_syntax)
4003 operand_ok =
4004 i386_intel_operand (token_start,
4005 intel_float_operand (mnemonic));
4006 else
a7619375 4007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4008
4009 RESTORE_END_STRING (l);
4010 if (!operand_ok)
4011 return NULL;
4012 }
4013 else
4014 {
4015 if (expecting_operand)
4016 {
4017 expecting_operand_after_comma:
4018 as_bad (_("expecting operand after ','; got nothing"));
4019 return NULL;
4020 }
4021 if (*l == ',')
4022 {
4023 as_bad (_("expecting operand before ','; got nothing"));
4024 return NULL;
4025 }
4026 }
7f3f1ea2 4027
29b0f896
AM
4028 /* Now *l must be either ',' or END_OF_INSN. */
4029 if (*l == ',')
4030 {
4031 if (*++l == END_OF_INSN)
4032 {
4033 /* Just skip it, if it's \n complain. */
4034 goto expecting_operand_after_comma;
4035 }
4036 expecting_operand = 1;
4037 }
4038 }
4039 return l;
4040}
7f3f1ea2 4041
050dfa73 4042static void
4d456e3d 4043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4044{
4045 union i386_op temp_op;
40fb9820 4046 i386_operand_type temp_type;
050dfa73 4047 enum bfd_reloc_code_real temp_reloc;
4eed87de 4048
050dfa73
MM
4049 temp_type = i.types[xchg2];
4050 i.types[xchg2] = i.types[xchg1];
4051 i.types[xchg1] = temp_type;
4052 temp_op = i.op[xchg2];
4053 i.op[xchg2] = i.op[xchg1];
4054 i.op[xchg1] = temp_op;
4055 temp_reloc = i.reloc[xchg2];
4056 i.reloc[xchg2] = i.reloc[xchg1];
4057 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4058
4059 if (i.mask)
4060 {
4061 if (i.mask->operand == xchg1)
4062 i.mask->operand = xchg2;
4063 else if (i.mask->operand == xchg2)
4064 i.mask->operand = xchg1;
4065 }
4066 if (i.broadcast)
4067 {
4068 if (i.broadcast->operand == xchg1)
4069 i.broadcast->operand = xchg2;
4070 else if (i.broadcast->operand == xchg2)
4071 i.broadcast->operand = xchg1;
4072 }
4073 if (i.rounding)
4074 {
4075 if (i.rounding->operand == xchg1)
4076 i.rounding->operand = xchg2;
4077 else if (i.rounding->operand == xchg2)
4078 i.rounding->operand = xchg1;
4079 }
050dfa73
MM
4080}
4081
29b0f896 4082static void
e3bb37b5 4083swap_operands (void)
29b0f896 4084{
b7c61d9a 4085 switch (i.operands)
050dfa73 4086 {
c0f3af97 4087 case 5:
b7c61d9a 4088 case 4:
4d456e3d 4089 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
4090 case 3:
4091 case 2:
4d456e3d 4092 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4093 break;
4094 default:
4095 abort ();
29b0f896 4096 }
29b0f896
AM
4097
4098 if (i.mem_operands == 2)
4099 {
4100 const seg_entry *temp_seg;
4101 temp_seg = i.seg[0];
4102 i.seg[0] = i.seg[1];
4103 i.seg[1] = temp_seg;
4104 }
4105}
252b5132 4106
29b0f896
AM
4107/* Try to ensure constant immediates are represented in the smallest
4108 opcode possible. */
4109static void
e3bb37b5 4110optimize_imm (void)
29b0f896
AM
4111{
4112 char guess_suffix = 0;
4113 int op;
252b5132 4114
29b0f896
AM
4115 if (i.suffix)
4116 guess_suffix = i.suffix;
4117 else if (i.reg_operands)
4118 {
4119 /* Figure out a suffix from the last register operand specified.
4120 We can't do this properly yet, ie. excluding InOutPortReg,
4121 but the following works for instructions with immediates.
4122 In any case, we can't set i.suffix yet. */
4123 for (op = i.operands; --op >= 0;)
40fb9820 4124 if (i.types[op].bitfield.reg8)
7ab9ffdd 4125 {
40fb9820
L
4126 guess_suffix = BYTE_MNEM_SUFFIX;
4127 break;
4128 }
4129 else if (i.types[op].bitfield.reg16)
252b5132 4130 {
40fb9820
L
4131 guess_suffix = WORD_MNEM_SUFFIX;
4132 break;
4133 }
4134 else if (i.types[op].bitfield.reg32)
4135 {
4136 guess_suffix = LONG_MNEM_SUFFIX;
4137 break;
4138 }
4139 else if (i.types[op].bitfield.reg64)
4140 {
4141 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4142 break;
252b5132 4143 }
29b0f896
AM
4144 }
4145 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4146 guess_suffix = WORD_MNEM_SUFFIX;
4147
4148 for (op = i.operands; --op >= 0;)
40fb9820 4149 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4150 {
4151 switch (i.op[op].imms->X_op)
252b5132 4152 {
29b0f896
AM
4153 case O_constant:
4154 /* If a suffix is given, this operand may be shortened. */
4155 switch (guess_suffix)
252b5132 4156 {
29b0f896 4157 case LONG_MNEM_SUFFIX:
40fb9820
L
4158 i.types[op].bitfield.imm32 = 1;
4159 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4160 break;
4161 case WORD_MNEM_SUFFIX:
40fb9820
L
4162 i.types[op].bitfield.imm16 = 1;
4163 i.types[op].bitfield.imm32 = 1;
4164 i.types[op].bitfield.imm32s = 1;
4165 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4166 break;
4167 case BYTE_MNEM_SUFFIX:
40fb9820
L
4168 i.types[op].bitfield.imm8 = 1;
4169 i.types[op].bitfield.imm8s = 1;
4170 i.types[op].bitfield.imm16 = 1;
4171 i.types[op].bitfield.imm32 = 1;
4172 i.types[op].bitfield.imm32s = 1;
4173 i.types[op].bitfield.imm64 = 1;
29b0f896 4174 break;
252b5132 4175 }
252b5132 4176
29b0f896
AM
4177 /* If this operand is at most 16 bits, convert it
4178 to a signed 16 bit number before trying to see
4179 whether it will fit in an even smaller size.
4180 This allows a 16-bit operand such as $0xffe0 to
4181 be recognised as within Imm8S range. */
40fb9820 4182 if ((i.types[op].bitfield.imm16)
29b0f896 4183 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4184 {
29b0f896
AM
4185 i.op[op].imms->X_add_number =
4186 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4187 }
40fb9820 4188 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4189 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4190 == 0))
4191 {
4192 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4193 ^ ((offsetT) 1 << 31))
4194 - ((offsetT) 1 << 31));
4195 }
40fb9820 4196 i.types[op]
c6fb90c8
L
4197 = operand_type_or (i.types[op],
4198 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4199
29b0f896
AM
4200 /* We must avoid matching of Imm32 templates when 64bit
4201 only immediate is available. */
4202 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4203 i.types[op].bitfield.imm32 = 0;
29b0f896 4204 break;
252b5132 4205
29b0f896
AM
4206 case O_absent:
4207 case O_register:
4208 abort ();
4209
4210 /* Symbols and expressions. */
4211 default:
9cd96992
JB
4212 /* Convert symbolic operand to proper sizes for matching, but don't
4213 prevent matching a set of insns that only supports sizes other
4214 than those matching the insn suffix. */
4215 {
40fb9820 4216 i386_operand_type mask, allowed;
d3ce72d0 4217 const insn_template *t;
9cd96992 4218
0dfbf9d7
L
4219 operand_type_set (&mask, 0);
4220 operand_type_set (&allowed, 0);
40fb9820 4221
4eed87de
AM
4222 for (t = current_templates->start;
4223 t < current_templates->end;
4224 ++t)
c6fb90c8
L
4225 allowed = operand_type_or (allowed,
4226 t->operand_types[op]);
9cd96992
JB
4227 switch (guess_suffix)
4228 {
4229 case QWORD_MNEM_SUFFIX:
40fb9820
L
4230 mask.bitfield.imm64 = 1;
4231 mask.bitfield.imm32s = 1;
9cd96992
JB
4232 break;
4233 case LONG_MNEM_SUFFIX:
40fb9820 4234 mask.bitfield.imm32 = 1;
9cd96992
JB
4235 break;
4236 case WORD_MNEM_SUFFIX:
40fb9820 4237 mask.bitfield.imm16 = 1;
9cd96992
JB
4238 break;
4239 case BYTE_MNEM_SUFFIX:
40fb9820 4240 mask.bitfield.imm8 = 1;
9cd96992
JB
4241 break;
4242 default:
9cd96992
JB
4243 break;
4244 }
c6fb90c8 4245 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4246 if (!operand_type_all_zero (&allowed))
c6fb90c8 4247 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4248 }
29b0f896 4249 break;
252b5132 4250 }
29b0f896
AM
4251 }
4252}
47926f60 4253
29b0f896
AM
4254/* Try to use the smallest displacement type too. */
4255static void
e3bb37b5 4256optimize_disp (void)
29b0f896
AM
4257{
4258 int op;
3e73aa7c 4259
29b0f896 4260 for (op = i.operands; --op >= 0;)
40fb9820 4261 if (operand_type_check (i.types[op], disp))
252b5132 4262 {
b300c311 4263 if (i.op[op].disps->X_op == O_constant)
252b5132 4264 {
91d6fa6a 4265 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4266
40fb9820 4267 if (i.types[op].bitfield.disp16
91d6fa6a 4268 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4269 {
4270 /* If this operand is at most 16 bits, convert
4271 to a signed 16 bit number and don't use 64bit
4272 displacement. */
91d6fa6a 4273 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4274 i.types[op].bitfield.disp64 = 0;
b300c311 4275 }
40fb9820 4276 if (i.types[op].bitfield.disp32
91d6fa6a 4277 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4278 {
4279 /* If this operand is at most 32 bits, convert
4280 to a signed 32 bit number and don't use 64bit
4281 displacement. */
91d6fa6a
NC
4282 op_disp &= (((offsetT) 2 << 31) - 1);
4283 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4284 i.types[op].bitfield.disp64 = 0;
b300c311 4285 }
91d6fa6a 4286 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4287 {
40fb9820
L
4288 i.types[op].bitfield.disp8 = 0;
4289 i.types[op].bitfield.disp16 = 0;
4290 i.types[op].bitfield.disp32 = 0;
4291 i.types[op].bitfield.disp32s = 0;
4292 i.types[op].bitfield.disp64 = 0;
b300c311
L
4293 i.op[op].disps = 0;
4294 i.disp_operands--;
4295 }
4296 else if (flag_code == CODE_64BIT)
4297 {
91d6fa6a 4298 if (fits_in_signed_long (op_disp))
28a9d8f5 4299 {
40fb9820
L
4300 i.types[op].bitfield.disp64 = 0;
4301 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4302 }
0e1147d9 4303 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4304 && fits_in_unsigned_long (op_disp))
40fb9820 4305 i.types[op].bitfield.disp32 = 1;
b300c311 4306 }
40fb9820
L
4307 if ((i.types[op].bitfield.disp32
4308 || i.types[op].bitfield.disp32s
4309 || i.types[op].bitfield.disp16)
91d6fa6a 4310 && fits_in_signed_byte (op_disp))
40fb9820 4311 i.types[op].bitfield.disp8 = 1;
252b5132 4312 }
67a4f2b7
AO
4313 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4314 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4315 {
4316 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4317 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4318 i.types[op].bitfield.disp8 = 0;
4319 i.types[op].bitfield.disp16 = 0;
4320 i.types[op].bitfield.disp32 = 0;
4321 i.types[op].bitfield.disp32s = 0;
4322 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4323 }
4324 else
b300c311 4325 /* We only support 64bit displacement on constants. */
40fb9820 4326 i.types[op].bitfield.disp64 = 0;
252b5132 4327 }
29b0f896
AM
4328}
4329
6c30d220
L
4330/* Check if operands are valid for the instruction. */
4331
4332static int
4333check_VecOperands (const insn_template *t)
4334{
43234a1e
L
4335 unsigned int op;
4336
6c30d220
L
4337 /* Without VSIB byte, we can't have a vector register for index. */
4338 if (!t->opcode_modifier.vecsib
4339 && i.index_reg
4340 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4341 || i.index_reg->reg_type.bitfield.regymm
4342 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4343 {
4344 i.error = unsupported_vector_index_register;
4345 return 1;
4346 }
4347
7bab8ab5
JB
4348 /* For VSIB byte, we need a vector register for index, and all vector
4349 registers must be distinct. */
4350 if (t->opcode_modifier.vecsib)
4351 {
4352 if (!i.index_reg
6c30d220
L
4353 || !((t->opcode_modifier.vecsib == VecSIB128
4354 && i.index_reg->reg_type.bitfield.regxmm)
4355 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4356 && i.index_reg->reg_type.bitfield.regymm)
4357 || (t->opcode_modifier.vecsib == VecSIB512
4358 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4359 {
4360 i.error = invalid_vsib_address;
4361 return 1;
4362 }
4363
43234a1e
L
4364 gas_assert (i.reg_operands == 2 || i.mask);
4365 if (i.reg_operands == 2 && !i.mask)
4366 {
4367 gas_assert (i.types[0].bitfield.regxmm
4368 || i.types[0].bitfield.regymm
4369 || i.types[0].bitfield.regzmm);
4370 gas_assert (i.types[2].bitfield.regxmm
4371 || i.types[2].bitfield.regymm
4372 || i.types[2].bitfield.regzmm);
4373 if (operand_check == check_none)
4374 return 0;
4375 if (register_number (i.op[0].regs)
4376 != register_number (i.index_reg)
4377 && register_number (i.op[2].regs)
4378 != register_number (i.index_reg)
4379 && register_number (i.op[0].regs)
4380 != register_number (i.op[2].regs))
4381 return 0;
4382 if (operand_check == check_error)
4383 {
4384 i.error = invalid_vector_register_set;
4385 return 1;
4386 }
4387 as_warn (_("mask, index, and destination registers should be distinct"));
4388 }
4389 }
7bab8ab5 4390
43234a1e
L
4391 /* Check if broadcast is supported by the instruction and is applied
4392 to the memory operand. */
4393 if (i.broadcast)
4394 {
4395 int broadcasted_opnd_size;
4396
4397 /* Check if specified broadcast is supported in this instruction,
4398 and it's applied to memory operand of DWORD or QWORD type,
4399 depending on VecESize. */
4400 if (i.broadcast->type != t->opcode_modifier.broadcast
4401 || !i.types[i.broadcast->operand].bitfield.mem
4402 || (t->opcode_modifier.vecesize == 0
4403 && !i.types[i.broadcast->operand].bitfield.dword
4404 && !i.types[i.broadcast->operand].bitfield.unspecified)
4405 || (t->opcode_modifier.vecesize == 1
4406 && !i.types[i.broadcast->operand].bitfield.qword
4407 && !i.types[i.broadcast->operand].bitfield.unspecified))
4408 goto bad_broadcast;
4409
4410 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4411 if (i.broadcast->type == BROADCAST_1TO16)
4412 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4413 else if (i.broadcast->type == BROADCAST_1TO8)
4414 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4415 else
4416 goto bad_broadcast;
4417
4418 if ((broadcasted_opnd_size == 256
4419 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4420 || (broadcasted_opnd_size == 512
4421 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4422 {
4423 bad_broadcast:
4424 i.error = unsupported_broadcast;
4425 return 1;
4426 }
4427 }
4428 /* If broadcast is supported in this instruction, we need to check if
4429 operand of one-element size isn't specified without broadcast. */
4430 else if (t->opcode_modifier.broadcast && i.mem_operands)
4431 {
4432 /* Find memory operand. */
4433 for (op = 0; op < i.operands; op++)
4434 if (operand_type_check (i.types[op], anymem))
4435 break;
4436 gas_assert (op < i.operands);
4437 /* Check size of the memory operand. */
4438 if ((t->opcode_modifier.vecesize == 0
4439 && i.types[op].bitfield.dword)
4440 || (t->opcode_modifier.vecesize == 1
4441 && i.types[op].bitfield.qword))
4442 {
4443 i.error = broadcast_needed;
4444 return 1;
4445 }
4446 }
4447
4448 /* Check if requested masking is supported. */
4449 if (i.mask
4450 && (!t->opcode_modifier.masking
4451 || (i.mask->zeroing
4452 && t->opcode_modifier.masking == MERGING_MASKING)))
4453 {
4454 i.error = unsupported_masking;
4455 return 1;
4456 }
4457
4458 /* Check if masking is applied to dest operand. */
4459 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4460 {
4461 i.error = mask_not_on_destination;
4462 return 1;
4463 }
4464
4465 /* Check if default mask is allowed. */
4466 if (t->opcode_modifier.nodefmask
4467 && (!i.mask || i.mask->mask->reg_num == 0))
4468 {
4469 i.error = no_default_mask;
4470 return 1;
4471 }
4472
4473 /* Check RC/SAE. */
4474 if (i.rounding)
4475 {
4476 if ((i.rounding->type != saeonly
4477 && !t->opcode_modifier.staticrounding)
4478 || (i.rounding->type == saeonly
4479 && (t->opcode_modifier.staticrounding
4480 || !t->opcode_modifier.sae)))
4481 {
4482 i.error = unsupported_rc_sae;
4483 return 1;
4484 }
4485 /* If the instruction has several immediate operands and one of
4486 them is rounding, the rounding operand should be the last
4487 immediate operand. */
4488 if (i.imm_operands > 1
4489 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4490 {
43234a1e 4491 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4492 return 1;
4493 }
6c30d220
L
4494 }
4495
43234a1e
L
4496 /* Check vector Disp8 operand. */
4497 if (t->opcode_modifier.disp8memshift)
4498 {
4499 if (i.broadcast)
4500 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4501 else
4502 i.memshift = t->opcode_modifier.disp8memshift;
4503
4504 for (op = 0; op < i.operands; op++)
4505 if (operand_type_check (i.types[op], disp)
4506 && i.op[op].disps->X_op == O_constant)
4507 {
4508 offsetT value = i.op[op].disps->X_add_number;
4509 int vec_disp8_ok = fits_in_vec_disp8 (value);
4510 if (t->operand_types [op].bitfield.vec_disp8)
4511 {
4512 if (vec_disp8_ok)
4513 i.types[op].bitfield.vec_disp8 = 1;
4514 else
4515 {
4516 /* Vector insn can only have Vec_Disp8/Disp32 in
4517 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4518 mode. */
4519 i.types[op].bitfield.disp8 = 0;
4520 if (flag_code != CODE_16BIT)
4521 i.types[op].bitfield.disp16 = 0;
4522 }
4523 }
4524 else if (flag_code != CODE_16BIT)
4525 {
4526 /* One form of this instruction supports vector Disp8.
4527 Try vector Disp8 if we need to use Disp32. */
4528 if (vec_disp8_ok && !fits_in_signed_byte (value))
4529 {
4530 i.error = try_vector_disp8;
4531 return 1;
4532 }
4533 }
4534 }
4535 }
4536 else
4537 i.memshift = -1;
4538
6c30d220
L
4539 return 0;
4540}
4541
43f3e2ee 4542/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4543 operand types. */
4544
4545static int
4546VEX_check_operands (const insn_template *t)
4547{
43234a1e
L
4548 /* VREX is only valid with EVEX prefix. */
4549 if (i.need_vrex && !t->opcode_modifier.evex)
4550 {
4551 i.error = invalid_register_operand;
4552 return 1;
4553 }
4554
a683cc34
SP
4555 if (!t->opcode_modifier.vex)
4556 return 0;
4557
4558 /* Only check VEX_Imm4, which must be the first operand. */
4559 if (t->operand_types[0].bitfield.vec_imm4)
4560 {
4561 if (i.op[0].imms->X_op != O_constant
4562 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4563 {
a65babc9 4564 i.error = bad_imm4;
891edac4
L
4565 return 1;
4566 }
a683cc34
SP
4567
4568 /* Turn off Imm8 so that update_imm won't complain. */
4569 i.types[0] = vec_imm4;
4570 }
4571
4572 return 0;
4573}
4574
d3ce72d0 4575static const insn_template *
e3bb37b5 4576match_template (void)
29b0f896
AM
4577{
4578 /* Points to template once we've found it. */
d3ce72d0 4579 const insn_template *t;
40fb9820 4580 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4581 i386_operand_type overlap4;
29b0f896 4582 unsigned int found_reverse_match;
40fb9820
L
4583 i386_opcode_modifier suffix_check;
4584 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4585 int addr_prefix_disp;
a5c311ca 4586 unsigned int j;
3629bb00 4587 unsigned int found_cpu_match;
45664ddb 4588 unsigned int check_register;
5614d22c 4589 enum i386_error specific_error = 0;
29b0f896 4590
c0f3af97
L
4591#if MAX_OPERANDS != 5
4592# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4593#endif
4594
29b0f896 4595 found_reverse_match = 0;
539e75ad 4596 addr_prefix_disp = -1;
40fb9820
L
4597
4598 memset (&suffix_check, 0, sizeof (suffix_check));
4599 if (i.suffix == BYTE_MNEM_SUFFIX)
4600 suffix_check.no_bsuf = 1;
4601 else if (i.suffix == WORD_MNEM_SUFFIX)
4602 suffix_check.no_wsuf = 1;
4603 else if (i.suffix == SHORT_MNEM_SUFFIX)
4604 suffix_check.no_ssuf = 1;
4605 else if (i.suffix == LONG_MNEM_SUFFIX)
4606 suffix_check.no_lsuf = 1;
4607 else if (i.suffix == QWORD_MNEM_SUFFIX)
4608 suffix_check.no_qsuf = 1;
4609 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4610 suffix_check.no_ldsuf = 1;
29b0f896 4611
01559ecc
L
4612 /* Must have right number of operands. */
4613 i.error = number_of_operands_mismatch;
4614
45aa61fe 4615 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4616 {
539e75ad
L
4617 addr_prefix_disp = -1;
4618
29b0f896
AM
4619 if (i.operands != t->operands)
4620 continue;
4621
50aecf8c 4622 /* Check processor support. */
a65babc9 4623 i.error = unsupported;
c0f3af97
L
4624 found_cpu_match = (cpu_flags_match (t)
4625 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4626 if (!found_cpu_match)
4627 continue;
4628
e1d4d893 4629 /* Check old gcc support. */
a65babc9 4630 i.error = old_gcc_only;
e1d4d893
L
4631 if (!old_gcc && t->opcode_modifier.oldgcc)
4632 continue;
4633
4634 /* Check AT&T mnemonic. */
a65babc9 4635 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4636 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4637 continue;
4638
891edac4 4639 /* Check AT&T/Intel syntax. */
a65babc9 4640 i.error = unsupported_syntax;
5c07affc
L
4641 if ((intel_syntax && t->opcode_modifier.attsyntax)
4642 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
4643 continue;
4644
20592a94 4645 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4646 i.error = invalid_instruction_suffix;
567e4e96
L
4647 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4648 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4649 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4650 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4651 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4652 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4653 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
4654 continue;
4655
5c07affc 4656 if (!operand_size_match (t))
7d5e4556 4657 continue;
539e75ad 4658
5c07affc
L
4659 for (j = 0; j < MAX_OPERANDS; j++)
4660 operand_types[j] = t->operand_types[j];
4661
45aa61fe
AM
4662 /* In general, don't allow 64-bit operands in 32-bit mode. */
4663 if (i.suffix == QWORD_MNEM_SUFFIX
4664 && flag_code != CODE_64BIT
4665 && (intel_syntax
40fb9820 4666 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4667 && !intel_float_operand (t->name))
4668 : intel_float_operand (t->name) != 2)
40fb9820 4669 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4670 && !operand_types[0].bitfield.regxmm
43234a1e
L
4671 && !operand_types[0].bitfield.regymm
4672 && !operand_types[0].bitfield.regzmm)
40fb9820 4673 || (!operand_types[t->operands > 1].bitfield.regmmx
c0f3af97 4674 && !!operand_types[t->operands > 1].bitfield.regxmm
43234a1e
L
4675 && !!operand_types[t->operands > 1].bitfield.regymm
4676 && !!operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4677 && (t->base_opcode != 0x0fc7
4678 || t->extension_opcode != 1 /* cmpxchg8b */))
4679 continue;
4680
192dc9c6
JB
4681 /* In general, don't allow 32-bit operands on pre-386. */
4682 else if (i.suffix == LONG_MNEM_SUFFIX
4683 && !cpu_arch_flags.bitfield.cpui386
4684 && (intel_syntax
4685 ? (!t->opcode_modifier.ignoresize
4686 && !intel_float_operand (t->name))
4687 : intel_float_operand (t->name) != 2)
4688 && ((!operand_types[0].bitfield.regmmx
4689 && !operand_types[0].bitfield.regxmm)
4690 || (!operand_types[t->operands > 1].bitfield.regmmx
4691 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4692 continue;
4693
29b0f896 4694 /* Do not verify operands when there are none. */
50aecf8c 4695 else
29b0f896 4696 {
c6fb90c8 4697 if (!t->operands)
2dbab7d5
L
4698 /* We've found a match; break out of loop. */
4699 break;
29b0f896 4700 }
252b5132 4701
539e75ad
L
4702 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4703 into Disp32/Disp16/Disp32 operand. */
4704 if (i.prefix[ADDR_PREFIX] != 0)
4705 {
40fb9820 4706 /* There should be only one Disp operand. */
539e75ad
L
4707 switch (flag_code)
4708 {
4709 case CODE_16BIT:
40fb9820
L
4710 for (j = 0; j < MAX_OPERANDS; j++)
4711 {
4712 if (operand_types[j].bitfield.disp16)
4713 {
4714 addr_prefix_disp = j;
4715 operand_types[j].bitfield.disp32 = 1;
4716 operand_types[j].bitfield.disp16 = 0;
4717 break;
4718 }
4719 }
539e75ad
L
4720 break;
4721 case CODE_32BIT:
40fb9820
L
4722 for (j = 0; j < MAX_OPERANDS; j++)
4723 {
4724 if (operand_types[j].bitfield.disp32)
4725 {
4726 addr_prefix_disp = j;
4727 operand_types[j].bitfield.disp32 = 0;
4728 operand_types[j].bitfield.disp16 = 1;
4729 break;
4730 }
4731 }
539e75ad
L
4732 break;
4733 case CODE_64BIT:
40fb9820
L
4734 for (j = 0; j < MAX_OPERANDS; j++)
4735 {
4736 if (operand_types[j].bitfield.disp64)
4737 {
4738 addr_prefix_disp = j;
4739 operand_types[j].bitfield.disp64 = 0;
4740 operand_types[j].bitfield.disp32 = 1;
4741 break;
4742 }
4743 }
539e75ad
L
4744 break;
4745 }
539e75ad
L
4746 }
4747
56ffb741
L
4748 /* We check register size if needed. */
4749 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4750 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4751 switch (t->operands)
4752 {
4753 case 1:
40fb9820 4754 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4755 continue;
4756 break;
4757 case 2:
8b38ad71
L
4758 /* xchg %eax, %eax is a special case. It is an aliase for nop
4759 only in 32bit mode and we can use opcode 0x90. In 64bit
4760 mode, we can't use 0x90 for xchg %eax, %eax since it should
4761 zero-extend %eax to %rax. */
4762 if (flag_code == CODE_64BIT
4763 && t->base_opcode == 0x90
0dfbf9d7
L
4764 && operand_type_equal (&i.types [0], &acc32)
4765 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4766 continue;
b6169b20
L
4767 if (i.swap_operand)
4768 {
4769 /* If we swap operand in encoding, we either match
4770 the next one or reverse direction of operands. */
4771 if (t->opcode_modifier.s)
4772 continue;
4773 else if (t->opcode_modifier.d)
4774 goto check_reverse;
4775 }
4776
29b0f896 4777 case 3:
fa99fab2
L
4778 /* If we swap operand in encoding, we match the next one. */
4779 if (i.swap_operand && t->opcode_modifier.s)
4780 continue;
f48ff2ae 4781 case 4:
c0f3af97 4782 case 5:
c6fb90c8 4783 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4784 if (!operand_type_match (overlap0, i.types[0])
4785 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4786 || (check_register
4787 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4788 operand_types[0],
4789 overlap1, i.types[1],
4790 operand_types[1])))
29b0f896
AM
4791 {
4792 /* Check if other direction is valid ... */
40fb9820 4793 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4794 continue;
4795
b6169b20 4796check_reverse:
29b0f896 4797 /* Try reversing direction of operands. */
c6fb90c8
L
4798 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4799 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4800 if (!operand_type_match (overlap0, i.types[0])
4801 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4802 || (check_register
4803 && !operand_type_register_match (overlap0,
4804 i.types[0],
4805 operand_types[1],
4806 overlap1,
4807 i.types[1],
4808 operand_types[0])))
29b0f896
AM
4809 {
4810 /* Does not match either direction. */
4811 continue;
4812 }
4813 /* found_reverse_match holds which of D or FloatDR
4814 we've found. */
40fb9820 4815 if (t->opcode_modifier.d)
8a2ed489 4816 found_reverse_match = Opcode_D;
40fb9820 4817 else if (t->opcode_modifier.floatd)
8a2ed489
L
4818 found_reverse_match = Opcode_FloatD;
4819 else
4820 found_reverse_match = 0;
40fb9820 4821 if (t->opcode_modifier.floatr)
8a2ed489 4822 found_reverse_match |= Opcode_FloatR;
29b0f896 4823 }
f48ff2ae 4824 else
29b0f896 4825 {
f48ff2ae 4826 /* Found a forward 2 operand match here. */
d1cbb4db
L
4827 switch (t->operands)
4828 {
c0f3af97
L
4829 case 5:
4830 overlap4 = operand_type_and (i.types[4],
4831 operand_types[4]);
d1cbb4db 4832 case 4:
c6fb90c8
L
4833 overlap3 = operand_type_and (i.types[3],
4834 operand_types[3]);
d1cbb4db 4835 case 3:
c6fb90c8
L
4836 overlap2 = operand_type_and (i.types[2],
4837 operand_types[2]);
d1cbb4db
L
4838 break;
4839 }
29b0f896 4840
f48ff2ae
L
4841 switch (t->operands)
4842 {
c0f3af97
L
4843 case 5:
4844 if (!operand_type_match (overlap4, i.types[4])
4845 || !operand_type_register_match (overlap3,
4846 i.types[3],
4847 operand_types[3],
4848 overlap4,
4849 i.types[4],
4850 operand_types[4]))
4851 continue;
f48ff2ae 4852 case 4:
40fb9820 4853 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4854 || (check_register
4855 && !operand_type_register_match (overlap2,
4856 i.types[2],
4857 operand_types[2],
4858 overlap3,
4859 i.types[3],
4860 operand_types[3])))
f48ff2ae
L
4861 continue;
4862 case 3:
4863 /* Here we make use of the fact that there are no
4864 reverse match 3 operand instructions, and all 3
4865 operand instructions only need to be checked for
4866 register consistency between operands 2 and 3. */
40fb9820 4867 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4868 || (check_register
4869 && !operand_type_register_match (overlap1,
4870 i.types[1],
4871 operand_types[1],
4872 overlap2,
4873 i.types[2],
4874 operand_types[2])))
f48ff2ae
L
4875 continue;
4876 break;
4877 }
29b0f896 4878 }
f48ff2ae 4879 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4880 slip through to break. */
4881 }
3629bb00 4882 if (!found_cpu_match)
29b0f896
AM
4883 {
4884 found_reverse_match = 0;
4885 continue;
4886 }
c0f3af97 4887
5614d22c
JB
4888 /* Check if vector and VEX operands are valid. */
4889 if (check_VecOperands (t) || VEX_check_operands (t))
4890 {
4891 specific_error = i.error;
4892 continue;
4893 }
a683cc34 4894
29b0f896
AM
4895 /* We've found a match; break out of loop. */
4896 break;
4897 }
4898
4899 if (t == current_templates->end)
4900 {
4901 /* We found no match. */
a65babc9 4902 const char *err_msg;
5614d22c 4903 switch (specific_error ? specific_error : i.error)
a65babc9
L
4904 {
4905 default:
4906 abort ();
86e026a4 4907 case operand_size_mismatch:
a65babc9
L
4908 err_msg = _("operand size mismatch");
4909 break;
4910 case operand_type_mismatch:
4911 err_msg = _("operand type mismatch");
4912 break;
4913 case register_type_mismatch:
4914 err_msg = _("register type mismatch");
4915 break;
4916 case number_of_operands_mismatch:
4917 err_msg = _("number of operands mismatch");
4918 break;
4919 case invalid_instruction_suffix:
4920 err_msg = _("invalid instruction suffix");
4921 break;
4922 case bad_imm4:
4a2608e3 4923 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
4924 break;
4925 case old_gcc_only:
4926 err_msg = _("only supported with old gcc");
4927 break;
4928 case unsupported_with_intel_mnemonic:
4929 err_msg = _("unsupported with Intel mnemonic");
4930 break;
4931 case unsupported_syntax:
4932 err_msg = _("unsupported syntax");
4933 break;
4934 case unsupported:
35262a23 4935 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
4936 current_templates->start->name);
4937 return NULL;
6c30d220
L
4938 case invalid_vsib_address:
4939 err_msg = _("invalid VSIB address");
4940 break;
7bab8ab5
JB
4941 case invalid_vector_register_set:
4942 err_msg = _("mask, index, and destination registers must be distinct");
4943 break;
6c30d220
L
4944 case unsupported_vector_index_register:
4945 err_msg = _("unsupported vector index register");
4946 break;
43234a1e
L
4947 case unsupported_broadcast:
4948 err_msg = _("unsupported broadcast");
4949 break;
4950 case broadcast_not_on_src_operand:
4951 err_msg = _("broadcast not on source memory operand");
4952 break;
4953 case broadcast_needed:
4954 err_msg = _("broadcast is needed for operand of such type");
4955 break;
4956 case unsupported_masking:
4957 err_msg = _("unsupported masking");
4958 break;
4959 case mask_not_on_destination:
4960 err_msg = _("mask not on destination operand");
4961 break;
4962 case no_default_mask:
4963 err_msg = _("default mask isn't allowed");
4964 break;
4965 case unsupported_rc_sae:
4966 err_msg = _("unsupported static rounding/sae");
4967 break;
4968 case rc_sae_operand_not_last_imm:
4969 if (intel_syntax)
4970 err_msg = _("RC/SAE operand must precede immediate operands");
4971 else
4972 err_msg = _("RC/SAE operand must follow immediate operands");
4973 break;
4974 case invalid_register_operand:
4975 err_msg = _("invalid register operand");
4976 break;
a65babc9
L
4977 }
4978 as_bad (_("%s for `%s'"), err_msg,
891edac4 4979 current_templates->start->name);
fa99fab2 4980 return NULL;
29b0f896 4981 }
252b5132 4982
29b0f896
AM
4983 if (!quiet_warnings)
4984 {
4985 if (!intel_syntax
40fb9820
L
4986 && (i.types[0].bitfield.jumpabsolute
4987 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
4988 {
4989 as_warn (_("indirect %s without `*'"), t->name);
4990 }
4991
40fb9820
L
4992 if (t->opcode_modifier.isprefix
4993 && t->opcode_modifier.ignoresize)
29b0f896
AM
4994 {
4995 /* Warn them that a data or address size prefix doesn't
4996 affect assembly of the next line of code. */
4997 as_warn (_("stand-alone `%s' prefix"), t->name);
4998 }
4999 }
5000
5001 /* Copy the template we found. */
5002 i.tm = *t;
539e75ad
L
5003
5004 if (addr_prefix_disp != -1)
5005 i.tm.operand_types[addr_prefix_disp]
5006 = operand_types[addr_prefix_disp];
5007
29b0f896
AM
5008 if (found_reverse_match)
5009 {
5010 /* If we found a reverse match we must alter the opcode
5011 direction bit. found_reverse_match holds bits to change
5012 (different for int & float insns). */
5013
5014 i.tm.base_opcode ^= found_reverse_match;
5015
539e75ad
L
5016 i.tm.operand_types[0] = operand_types[1];
5017 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5018 }
5019
fa99fab2 5020 return t;
29b0f896
AM
5021}
5022
5023static int
e3bb37b5 5024check_string (void)
29b0f896 5025{
40fb9820
L
5026 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5027 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5028 {
5029 if (i.seg[0] != NULL && i.seg[0] != &es)
5030 {
a87af027 5031 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5032 i.tm.name,
a87af027
JB
5033 mem_op + 1,
5034 register_prefix);
29b0f896
AM
5035 return 0;
5036 }
5037 /* There's only ever one segment override allowed per instruction.
5038 This instruction possibly has a legal segment override on the
5039 second operand, so copy the segment to where non-string
5040 instructions store it, allowing common code. */
5041 i.seg[0] = i.seg[1];
5042 }
40fb9820 5043 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5044 {
5045 if (i.seg[1] != NULL && i.seg[1] != &es)
5046 {
a87af027 5047 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5048 i.tm.name,
a87af027
JB
5049 mem_op + 2,
5050 register_prefix);
29b0f896
AM
5051 return 0;
5052 }
5053 }
5054 return 1;
5055}
5056
5057static int
543613e9 5058process_suffix (void)
29b0f896
AM
5059{
5060 /* If matched instruction specifies an explicit instruction mnemonic
5061 suffix, use it. */
40fb9820
L
5062 if (i.tm.opcode_modifier.size16)
5063 i.suffix = WORD_MNEM_SUFFIX;
5064 else if (i.tm.opcode_modifier.size32)
5065 i.suffix = LONG_MNEM_SUFFIX;
5066 else if (i.tm.opcode_modifier.size64)
5067 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5068 else if (i.reg_operands)
5069 {
5070 /* If there's no instruction mnemonic suffix we try to invent one
5071 based on register operands. */
5072 if (!i.suffix)
5073 {
5074 /* We take i.suffix from the last register operand specified,
5075 Destination register type is more significant than source
381d071f
L
5076 register type. crc32 in SSE4.2 prefers source register
5077 type. */
5078 if (i.tm.base_opcode == 0xf20f38f1)
5079 {
40fb9820
L
5080 if (i.types[0].bitfield.reg16)
5081 i.suffix = WORD_MNEM_SUFFIX;
5082 else if (i.types[0].bitfield.reg32)
5083 i.suffix = LONG_MNEM_SUFFIX;
5084 else if (i.types[0].bitfield.reg64)
5085 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5086 }
9344ff29 5087 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5088 {
40fb9820 5089 if (i.types[0].bitfield.reg8)
20592a94
L
5090 i.suffix = BYTE_MNEM_SUFFIX;
5091 }
381d071f
L
5092
5093 if (!i.suffix)
5094 {
5095 int op;
5096
20592a94
L
5097 if (i.tm.base_opcode == 0xf20f38f1
5098 || i.tm.base_opcode == 0xf20f38f0)
5099 {
5100 /* We have to know the operand size for crc32. */
5101 as_bad (_("ambiguous memory operand size for `%s`"),
5102 i.tm.name);
5103 return 0;
5104 }
5105
381d071f 5106 for (op = i.operands; --op >= 0;)
40fb9820 5107 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5108 {
40fb9820
L
5109 if (i.types[op].bitfield.reg8)
5110 {
5111 i.suffix = BYTE_MNEM_SUFFIX;
5112 break;
5113 }
5114 else if (i.types[op].bitfield.reg16)
5115 {
5116 i.suffix = WORD_MNEM_SUFFIX;
5117 break;
5118 }
5119 else if (i.types[op].bitfield.reg32)
5120 {
5121 i.suffix = LONG_MNEM_SUFFIX;
5122 break;
5123 }
5124 else if (i.types[op].bitfield.reg64)
5125 {
5126 i.suffix = QWORD_MNEM_SUFFIX;
5127 break;
5128 }
381d071f
L
5129 }
5130 }
29b0f896
AM
5131 }
5132 else if (i.suffix == BYTE_MNEM_SUFFIX)
5133 {
2eb952a4
L
5134 if (intel_syntax
5135 && i.tm.opcode_modifier.ignoresize
5136 && i.tm.opcode_modifier.no_bsuf)
5137 i.suffix = 0;
5138 else if (!check_byte_reg ())
29b0f896
AM
5139 return 0;
5140 }
5141 else if (i.suffix == LONG_MNEM_SUFFIX)
5142 {
2eb952a4
L
5143 if (intel_syntax
5144 && i.tm.opcode_modifier.ignoresize
5145 && i.tm.opcode_modifier.no_lsuf)
5146 i.suffix = 0;
5147 else if (!check_long_reg ())
29b0f896
AM
5148 return 0;
5149 }
5150 else if (i.suffix == QWORD_MNEM_SUFFIX)
5151 {
955e1e6a
L
5152 if (intel_syntax
5153 && i.tm.opcode_modifier.ignoresize
5154 && i.tm.opcode_modifier.no_qsuf)
5155 i.suffix = 0;
5156 else if (!check_qword_reg ())
29b0f896
AM
5157 return 0;
5158 }
5159 else if (i.suffix == WORD_MNEM_SUFFIX)
5160 {
2eb952a4
L
5161 if (intel_syntax
5162 && i.tm.opcode_modifier.ignoresize
5163 && i.tm.opcode_modifier.no_wsuf)
5164 i.suffix = 0;
5165 else if (!check_word_reg ())
29b0f896
AM
5166 return 0;
5167 }
c0f3af97 5168 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5169 || i.suffix == YMMWORD_MNEM_SUFFIX
5170 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5171 {
43234a1e 5172 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5173 should check if it is a valid suffix. */
5174 }
40fb9820 5175 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5176 /* Do nothing if the instruction is going to ignore the prefix. */
5177 ;
5178 else
5179 abort ();
5180 }
40fb9820 5181 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5182 && !i.suffix
5183 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5184 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5185 {
5186 i.suffix = stackop_size;
5187 }
9306ca4a
JB
5188 else if (intel_syntax
5189 && !i.suffix
40fb9820
L
5190 && (i.tm.operand_types[0].bitfield.jumpabsolute
5191 || i.tm.opcode_modifier.jumpbyte
5192 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5193 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5194 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5195 {
5196 switch (flag_code)
5197 {
5198 case CODE_64BIT:
40fb9820 5199 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5200 {
5201 i.suffix = QWORD_MNEM_SUFFIX;
5202 break;
5203 }
5204 case CODE_32BIT:
40fb9820 5205 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5206 i.suffix = LONG_MNEM_SUFFIX;
5207 break;
5208 case CODE_16BIT:
40fb9820 5209 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5210 i.suffix = WORD_MNEM_SUFFIX;
5211 break;
5212 }
5213 }
252b5132 5214
9306ca4a 5215 if (!i.suffix)
29b0f896 5216 {
9306ca4a
JB
5217 if (!intel_syntax)
5218 {
40fb9820 5219 if (i.tm.opcode_modifier.w)
9306ca4a 5220 {
4eed87de
AM
5221 as_bad (_("no instruction mnemonic suffix given and "
5222 "no register operands; can't size instruction"));
9306ca4a
JB
5223 return 0;
5224 }
5225 }
5226 else
5227 {
40fb9820 5228 unsigned int suffixes;
7ab9ffdd 5229
40fb9820
L
5230 suffixes = !i.tm.opcode_modifier.no_bsuf;
5231 if (!i.tm.opcode_modifier.no_wsuf)
5232 suffixes |= 1 << 1;
5233 if (!i.tm.opcode_modifier.no_lsuf)
5234 suffixes |= 1 << 2;
fc4adea1 5235 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5236 suffixes |= 1 << 3;
5237 if (!i.tm.opcode_modifier.no_ssuf)
5238 suffixes |= 1 << 4;
5239 if (!i.tm.opcode_modifier.no_qsuf)
5240 suffixes |= 1 << 5;
5241
5242 /* There are more than suffix matches. */
5243 if (i.tm.opcode_modifier.w
9306ca4a 5244 || ((suffixes & (suffixes - 1))
40fb9820
L
5245 && !i.tm.opcode_modifier.defaultsize
5246 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5247 {
5248 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5249 return 0;
5250 }
5251 }
29b0f896 5252 }
252b5132 5253
9306ca4a
JB
5254 /* Change the opcode based on the operand size given by i.suffix;
5255 We don't need to change things for byte insns. */
5256
582d5edd
L
5257 if (i.suffix
5258 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5259 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5260 && i.suffix != YMMWORD_MNEM_SUFFIX
5261 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5262 {
5263 /* It's not a byte, select word/dword operation. */
40fb9820 5264 if (i.tm.opcode_modifier.w)
29b0f896 5265 {
40fb9820 5266 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5267 i.tm.base_opcode |= 8;
5268 else
5269 i.tm.base_opcode |= 1;
5270 }
0f3f3d8b 5271
29b0f896
AM
5272 /* Now select between word & dword operations via the operand
5273 size prefix, except for instructions that will ignore this
5274 prefix anyway. */
ca61edf2 5275 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5276 {
ca61edf2
L
5277 /* The address size override prefix changes the size of the
5278 first operand. */
40fb9820
L
5279 if ((flag_code == CODE_32BIT
5280 && i.op->regs[0].reg_type.bitfield.reg16)
5281 || (flag_code != CODE_32BIT
5282 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5283 if (!add_prefix (ADDR_PREFIX_OPCODE))
5284 return 0;
5285 }
5286 else if (i.suffix != QWORD_MNEM_SUFFIX
5287 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5288 && !i.tm.opcode_modifier.ignoresize
5289 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5290 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5291 || (flag_code == CODE_64BIT
40fb9820 5292 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5293 {
5294 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5295
40fb9820 5296 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5297 prefix = ADDR_PREFIX_OPCODE;
252b5132 5298
29b0f896
AM
5299 if (!add_prefix (prefix))
5300 return 0;
24eab124 5301 }
252b5132 5302
29b0f896
AM
5303 /* Set mode64 for an operand. */
5304 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5305 && flag_code == CODE_64BIT
40fb9820 5306 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5307 {
5308 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5309 need rex64. cmpxchg8b is also a special case. */
5310 if (! (i.operands == 2
5311 && i.tm.base_opcode == 0x90
5312 && i.tm.extension_opcode == None
0dfbf9d7
L
5313 && operand_type_equal (&i.types [0], &acc64)
5314 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5315 && ! (i.operands == 1
5316 && i.tm.base_opcode == 0xfc7
5317 && i.tm.extension_opcode == 1
40fb9820
L
5318 && !operand_type_check (i.types [0], reg)
5319 && operand_type_check (i.types [0], anymem)))
f6bee062 5320 i.rex |= REX_W;
46e883c5 5321 }
3e73aa7c 5322
29b0f896
AM
5323 /* Size floating point instruction. */
5324 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5325 if (i.tm.opcode_modifier.floatmf)
543613e9 5326 i.tm.base_opcode ^= 4;
29b0f896 5327 }
7ecd2f8b 5328
29b0f896
AM
5329 return 1;
5330}
3e73aa7c 5331
29b0f896 5332static int
543613e9 5333check_byte_reg (void)
29b0f896
AM
5334{
5335 int op;
543613e9 5336
29b0f896
AM
5337 for (op = i.operands; --op >= 0;)
5338 {
5339 /* If this is an eight bit register, it's OK. If it's the 16 or
5340 32 bit version of an eight bit register, we will just use the
5341 low portion, and that's OK too. */
40fb9820 5342 if (i.types[op].bitfield.reg8)
29b0f896
AM
5343 continue;
5344
5a819eb9
JB
5345 /* I/O port address operands are OK too. */
5346 if (i.tm.operand_types[op].bitfield.inoutportreg)
5347 continue;
5348
9344ff29
L
5349 /* crc32 doesn't generate this warning. */
5350 if (i.tm.base_opcode == 0xf20f38f0)
5351 continue;
5352
40fb9820
L
5353 if ((i.types[op].bitfield.reg16
5354 || i.types[op].bitfield.reg32
5355 || i.types[op].bitfield.reg64)
5a819eb9
JB
5356 && i.op[op].regs->reg_num < 4
5357 /* Prohibit these changes in 64bit mode, since the lowering
5358 would be more complicated. */
5359 && flag_code != CODE_64BIT)
29b0f896 5360 {
29b0f896 5361#if REGISTER_WARNINGS
5a819eb9 5362 if (!quiet_warnings)
a540244d
L
5363 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5364 register_prefix,
40fb9820 5365 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5366 ? REGNAM_AL - REGNAM_AX
5367 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5368 register_prefix,
29b0f896
AM
5369 i.op[op].regs->reg_name,
5370 i.suffix);
5371#endif
5372 continue;
5373 }
5374 /* Any other register is bad. */
40fb9820
L
5375 if (i.types[op].bitfield.reg16
5376 || i.types[op].bitfield.reg32
5377 || i.types[op].bitfield.reg64
5378 || i.types[op].bitfield.regmmx
5379 || i.types[op].bitfield.regxmm
c0f3af97 5380 || i.types[op].bitfield.regymm
43234a1e 5381 || i.types[op].bitfield.regzmm
40fb9820
L
5382 || i.types[op].bitfield.sreg2
5383 || i.types[op].bitfield.sreg3
5384 || i.types[op].bitfield.control
5385 || i.types[op].bitfield.debug
5386 || i.types[op].bitfield.test
5387 || i.types[op].bitfield.floatreg
5388 || i.types[op].bitfield.floatacc)
29b0f896 5389 {
a540244d
L
5390 as_bad (_("`%s%s' not allowed with `%s%c'"),
5391 register_prefix,
29b0f896
AM
5392 i.op[op].regs->reg_name,
5393 i.tm.name,
5394 i.suffix);
5395 return 0;
5396 }
5397 }
5398 return 1;
5399}
5400
5401static int
e3bb37b5 5402check_long_reg (void)
29b0f896
AM
5403{
5404 int op;
5405
5406 for (op = i.operands; --op >= 0;)
5407 /* Reject eight bit registers, except where the template requires
5408 them. (eg. movzb) */
40fb9820
L
5409 if (i.types[op].bitfield.reg8
5410 && (i.tm.operand_types[op].bitfield.reg16
5411 || i.tm.operand_types[op].bitfield.reg32
5412 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5413 {
a540244d
L
5414 as_bad (_("`%s%s' not allowed with `%s%c'"),
5415 register_prefix,
29b0f896
AM
5416 i.op[op].regs->reg_name,
5417 i.tm.name,
5418 i.suffix);
5419 return 0;
5420 }
5421 /* Warn if the e prefix on a general reg is missing. */
5422 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5423 && i.types[op].bitfield.reg16
5424 && (i.tm.operand_types[op].bitfield.reg32
5425 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5426 {
5427 /* Prohibit these changes in the 64bit mode, since the
5428 lowering is more complicated. */
5429 if (flag_code == CODE_64BIT)
252b5132 5430 {
2b5d6a91 5431 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5432 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5433 i.suffix);
5434 return 0;
252b5132 5435 }
29b0f896
AM
5436#if REGISTER_WARNINGS
5437 else
a540244d
L
5438 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5439 register_prefix,
29b0f896 5440 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
a540244d 5441 register_prefix,
29b0f896
AM
5442 i.op[op].regs->reg_name,
5443 i.suffix);
5444#endif
252b5132 5445 }
29b0f896 5446 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5447 else if (i.types[op].bitfield.reg64
5448 && (i.tm.operand_types[op].bitfield.reg32
5449 || i.tm.operand_types[op].bitfield.acc))
252b5132 5450 {
34828aad 5451 if (intel_syntax
ca61edf2 5452 && i.tm.opcode_modifier.toqword
40fb9820 5453 && !i.types[0].bitfield.regxmm)
34828aad 5454 {
ca61edf2 5455 /* Convert to QWORD. We want REX byte. */
34828aad
L
5456 i.suffix = QWORD_MNEM_SUFFIX;
5457 }
5458 else
5459 {
2b5d6a91 5460 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5461 register_prefix, i.op[op].regs->reg_name,
5462 i.suffix);
5463 return 0;
5464 }
29b0f896
AM
5465 }
5466 return 1;
5467}
252b5132 5468
29b0f896 5469static int
e3bb37b5 5470check_qword_reg (void)
29b0f896
AM
5471{
5472 int op;
252b5132 5473
29b0f896
AM
5474 for (op = i.operands; --op >= 0; )
5475 /* Reject eight bit registers, except where the template requires
5476 them. (eg. movzb) */
40fb9820
L
5477 if (i.types[op].bitfield.reg8
5478 && (i.tm.operand_types[op].bitfield.reg16
5479 || i.tm.operand_types[op].bitfield.reg32
5480 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5481 {
a540244d
L
5482 as_bad (_("`%s%s' not allowed with `%s%c'"),
5483 register_prefix,
29b0f896
AM
5484 i.op[op].regs->reg_name,
5485 i.tm.name,
5486 i.suffix);
5487 return 0;
5488 }
5489 /* Warn if the e prefix on a general reg is missing. */
40fb9820
L
5490 else if ((i.types[op].bitfield.reg16
5491 || i.types[op].bitfield.reg32)
5492 && (i.tm.operand_types[op].bitfield.reg32
5493 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5494 {
5495 /* Prohibit these changes in the 64bit mode, since the
5496 lowering is more complicated. */
34828aad 5497 if (intel_syntax
ca61edf2 5498 && i.tm.opcode_modifier.todword
40fb9820 5499 && !i.types[0].bitfield.regxmm)
34828aad 5500 {
ca61edf2 5501 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5502 i.suffix = LONG_MNEM_SUFFIX;
5503 }
5504 else
5505 {
2b5d6a91 5506 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5507 register_prefix, i.op[op].regs->reg_name,
5508 i.suffix);
5509 return 0;
5510 }
252b5132 5511 }
29b0f896
AM
5512 return 1;
5513}
252b5132 5514
29b0f896 5515static int
e3bb37b5 5516check_word_reg (void)
29b0f896
AM
5517{
5518 int op;
5519 for (op = i.operands; --op >= 0;)
5520 /* Reject eight bit registers, except where the template requires
5521 them. (eg. movzb) */
40fb9820
L
5522 if (i.types[op].bitfield.reg8
5523 && (i.tm.operand_types[op].bitfield.reg16
5524 || i.tm.operand_types[op].bitfield.reg32
5525 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5526 {
a540244d
L
5527 as_bad (_("`%s%s' not allowed with `%s%c'"),
5528 register_prefix,
29b0f896
AM
5529 i.op[op].regs->reg_name,
5530 i.tm.name,
5531 i.suffix);
5532 return 0;
5533 }
5534 /* Warn if the e prefix on a general reg is present. */
5535 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5536 && i.types[op].bitfield.reg32
5537 && (i.tm.operand_types[op].bitfield.reg16
5538 || i.tm.operand_types[op].bitfield.acc))
252b5132 5539 {
29b0f896
AM
5540 /* Prohibit these changes in the 64bit mode, since the
5541 lowering is more complicated. */
5542 if (flag_code == CODE_64BIT)
252b5132 5543 {
2b5d6a91 5544 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5545 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5546 i.suffix);
5547 return 0;
252b5132 5548 }
29b0f896
AM
5549 else
5550#if REGISTER_WARNINGS
a540244d
L
5551 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5552 register_prefix,
29b0f896 5553 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
a540244d 5554 register_prefix,
29b0f896
AM
5555 i.op[op].regs->reg_name,
5556 i.suffix);
5557#endif
5558 }
5559 return 1;
5560}
252b5132 5561
29b0f896 5562static int
40fb9820 5563update_imm (unsigned int j)
29b0f896 5564{
bc0844ae 5565 i386_operand_type overlap = i.types[j];
40fb9820
L
5566 if ((overlap.bitfield.imm8
5567 || overlap.bitfield.imm8s
5568 || overlap.bitfield.imm16
5569 || overlap.bitfield.imm32
5570 || overlap.bitfield.imm32s
5571 || overlap.bitfield.imm64)
0dfbf9d7
L
5572 && !operand_type_equal (&overlap, &imm8)
5573 && !operand_type_equal (&overlap, &imm8s)
5574 && !operand_type_equal (&overlap, &imm16)
5575 && !operand_type_equal (&overlap, &imm32)
5576 && !operand_type_equal (&overlap, &imm32s)
5577 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5578 {
5579 if (i.suffix)
5580 {
40fb9820
L
5581 i386_operand_type temp;
5582
0dfbf9d7 5583 operand_type_set (&temp, 0);
7ab9ffdd 5584 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5585 {
5586 temp.bitfield.imm8 = overlap.bitfield.imm8;
5587 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5588 }
5589 else if (i.suffix == WORD_MNEM_SUFFIX)
5590 temp.bitfield.imm16 = overlap.bitfield.imm16;
5591 else if (i.suffix == QWORD_MNEM_SUFFIX)
5592 {
5593 temp.bitfield.imm64 = overlap.bitfield.imm64;
5594 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5595 }
5596 else
5597 temp.bitfield.imm32 = overlap.bitfield.imm32;
5598 overlap = temp;
29b0f896 5599 }
0dfbf9d7
L
5600 else if (operand_type_equal (&overlap, &imm16_32_32s)
5601 || operand_type_equal (&overlap, &imm16_32)
5602 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5603 {
40fb9820 5604 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5605 overlap = imm16;
40fb9820 5606 else
65da13b5 5607 overlap = imm32s;
29b0f896 5608 }
0dfbf9d7
L
5609 if (!operand_type_equal (&overlap, &imm8)
5610 && !operand_type_equal (&overlap, &imm8s)
5611 && !operand_type_equal (&overlap, &imm16)
5612 && !operand_type_equal (&overlap, &imm32)
5613 && !operand_type_equal (&overlap, &imm32s)
5614 && !operand_type_equal (&overlap, &imm64))
29b0f896 5615 {
4eed87de
AM
5616 as_bad (_("no instruction mnemonic suffix given; "
5617 "can't determine immediate size"));
29b0f896
AM
5618 return 0;
5619 }
5620 }
40fb9820 5621 i.types[j] = overlap;
29b0f896 5622
40fb9820
L
5623 return 1;
5624}
5625
5626static int
5627finalize_imm (void)
5628{
bc0844ae 5629 unsigned int j, n;
29b0f896 5630
bc0844ae
L
5631 /* Update the first 2 immediate operands. */
5632 n = i.operands > 2 ? 2 : i.operands;
5633 if (n)
5634 {
5635 for (j = 0; j < n; j++)
5636 if (update_imm (j) == 0)
5637 return 0;
40fb9820 5638
bc0844ae
L
5639 /* The 3rd operand can't be immediate operand. */
5640 gas_assert (operand_type_check (i.types[2], imm) == 0);
5641 }
29b0f896
AM
5642
5643 return 1;
5644}
5645
c0f3af97
L
5646static int
5647bad_implicit_operand (int xmm)
5648{
91d6fa6a
NC
5649 const char *ireg = xmm ? "xmm0" : "ymm0";
5650
c0f3af97
L
5651 if (intel_syntax)
5652 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5653 i.tm.name, register_prefix, ireg);
c0f3af97
L
5654 else
5655 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5656 i.tm.name, register_prefix, ireg);
c0f3af97
L
5657 return 0;
5658}
5659
29b0f896 5660static int
e3bb37b5 5661process_operands (void)
29b0f896
AM
5662{
5663 /* Default segment register this instruction will use for memory
5664 accesses. 0 means unknown. This is only for optimizing out
5665 unnecessary segment overrides. */
5666 const seg_entry *default_seg = 0;
5667
2426c15f 5668 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5669 {
91d6fa6a
NC
5670 unsigned int dupl = i.operands;
5671 unsigned int dest = dupl - 1;
9fcfb3d7
L
5672 unsigned int j;
5673
c0f3af97 5674 /* The destination must be an xmm register. */
9c2799c2 5675 gas_assert (i.reg_operands
91d6fa6a 5676 && MAX_OPERANDS > dupl
7ab9ffdd 5677 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5678
5679 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5680 {
c0f3af97 5681 /* The first operand is implicit and must be xmm0. */
9c2799c2 5682 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5683 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5684 return bad_implicit_operand (1);
5685
8cd7925b 5686 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5687 {
5688 /* Keep xmm0 for instructions with VEX prefix and 3
5689 sources. */
5690 goto duplicate;
5691 }
e2ec9d29 5692 else
c0f3af97
L
5693 {
5694 /* We remove the first xmm0 and keep the number of
5695 operands unchanged, which in fact duplicates the
5696 destination. */
5697 for (j = 1; j < i.operands; j++)
5698 {
5699 i.op[j - 1] = i.op[j];
5700 i.types[j - 1] = i.types[j];
5701 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5702 }
5703 }
5704 }
5705 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5706 {
91d6fa6a 5707 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5708 && (i.tm.opcode_modifier.vexsources
5709 == VEX3SOURCES));
c0f3af97
L
5710
5711 /* Add the implicit xmm0 for instructions with VEX prefix
5712 and 3 sources. */
5713 for (j = i.operands; j > 0; j--)
5714 {
5715 i.op[j] = i.op[j - 1];
5716 i.types[j] = i.types[j - 1];
5717 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5718 }
5719 i.op[0].regs
5720 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5721 i.types[0] = regxmm;
c0f3af97
L
5722 i.tm.operand_types[0] = regxmm;
5723
5724 i.operands += 2;
5725 i.reg_operands += 2;
5726 i.tm.operands += 2;
5727
91d6fa6a 5728 dupl++;
c0f3af97 5729 dest++;
91d6fa6a
NC
5730 i.op[dupl] = i.op[dest];
5731 i.types[dupl] = i.types[dest];
5732 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5733 }
c0f3af97
L
5734 else
5735 {
5736duplicate:
5737 i.operands++;
5738 i.reg_operands++;
5739 i.tm.operands++;
5740
91d6fa6a
NC
5741 i.op[dupl] = i.op[dest];
5742 i.types[dupl] = i.types[dest];
5743 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5744 }
5745
5746 if (i.tm.opcode_modifier.immext)
5747 process_immext ();
5748 }
5749 else if (i.tm.opcode_modifier.firstxmm0)
5750 {
5751 unsigned int j;
5752
43234a1e 5753 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 5754 gas_assert (i.reg_operands
7ab9ffdd 5755 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
5756 || operand_type_equal (&i.types[0], &regymm)
5757 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 5758 if (register_number (i.op[0].regs) != 0)
c0f3af97 5759 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5760
5761 for (j = 1; j < i.operands; j++)
5762 {
5763 i.op[j - 1] = i.op[j];
5764 i.types[j - 1] = i.types[j];
5765
5766 /* We need to adjust fields in i.tm since they are used by
5767 build_modrm_byte. */
5768 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5769 }
5770
e2ec9d29
L
5771 i.operands--;
5772 i.reg_operands--;
e2ec9d29
L
5773 i.tm.operands--;
5774 }
5775 else if (i.tm.opcode_modifier.regkludge)
5776 {
5777 /* The imul $imm, %reg instruction is converted into
5778 imul $imm, %reg, %reg, and the clr %reg instruction
5779 is converted into xor %reg, %reg. */
5780
5781 unsigned int first_reg_op;
5782
5783 if (operand_type_check (i.types[0], reg))
5784 first_reg_op = 0;
5785 else
5786 first_reg_op = 1;
5787 /* Pretend we saw the extra register operand. */
9c2799c2 5788 gas_assert (i.reg_operands == 1
7ab9ffdd 5789 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5790 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5791 i.types[first_reg_op + 1] = i.types[first_reg_op];
5792 i.operands++;
5793 i.reg_operands++;
29b0f896
AM
5794 }
5795
40fb9820 5796 if (i.tm.opcode_modifier.shortform)
29b0f896 5797 {
40fb9820
L
5798 if (i.types[0].bitfield.sreg2
5799 || i.types[0].bitfield.sreg3)
29b0f896 5800 {
4eed87de
AM
5801 if (i.tm.base_opcode == POP_SEG_SHORT
5802 && i.op[0].regs->reg_num == 1)
29b0f896 5803 {
a87af027 5804 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5805 return 0;
29b0f896 5806 }
4eed87de
AM
5807 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5808 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5809 i.rex |= REX_B;
4eed87de
AM
5810 }
5811 else
5812 {
7ab9ffdd 5813 /* The register or float register operand is in operand
85f10a01 5814 0 or 1. */
40fb9820 5815 unsigned int op;
7ab9ffdd
L
5816
5817 if (i.types[0].bitfield.floatreg
5818 || operand_type_check (i.types[0], reg))
5819 op = 0;
5820 else
5821 op = 1;
4eed87de
AM
5822 /* Register goes in low 3 bits of opcode. */
5823 i.tm.base_opcode |= i.op[op].regs->reg_num;
5824 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5825 i.rex |= REX_B;
40fb9820 5826 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5827 {
4eed87de
AM
5828 /* Warn about some common errors, but press on regardless.
5829 The first case can be generated by gcc (<= 2.8.1). */
5830 if (i.operands == 2)
5831 {
5832 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5833 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5834 register_prefix, i.op[!intel_syntax].regs->reg_name,
5835 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5836 }
5837 else
5838 {
5839 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5840 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5841 register_prefix, i.op[0].regs->reg_name);
4eed87de 5842 }
29b0f896
AM
5843 }
5844 }
5845 }
40fb9820 5846 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5847 {
5848 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5849 must be put into the modrm byte). Now, we make the modrm and
5850 index base bytes based on all the info we've collected. */
29b0f896
AM
5851
5852 default_seg = build_modrm_byte ();
5853 }
8a2ed489 5854 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5855 {
5856 default_seg = &ds;
5857 }
40fb9820 5858 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5859 {
5860 /* For the string instructions that allow a segment override
5861 on one of their operands, the default segment is ds. */
5862 default_seg = &ds;
5863 }
5864
75178d9d
L
5865 if (i.tm.base_opcode == 0x8d /* lea */
5866 && i.seg[0]
5867 && !quiet_warnings)
30123838 5868 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5869
5870 /* If a segment was explicitly specified, and the specified segment
5871 is not the default, use an opcode prefix to select it. If we
5872 never figured out what the default segment is, then default_seg
5873 will be zero at this point, and the specified segment prefix will
5874 always be used. */
29b0f896
AM
5875 if ((i.seg[0]) && (i.seg[0] != default_seg))
5876 {
5877 if (!add_prefix (i.seg[0]->seg_prefix))
5878 return 0;
5879 }
5880 return 1;
5881}
5882
5883static const seg_entry *
e3bb37b5 5884build_modrm_byte (void)
29b0f896
AM
5885{
5886 const seg_entry *default_seg = 0;
c0f3af97 5887 unsigned int source, dest;
8cd7925b 5888 int vex_3_sources;
c0f3af97
L
5889
5890 /* The first operand of instructions with VEX prefix and 3 sources
5891 must be VEX_Imm4. */
8cd7925b 5892 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5893 if (vex_3_sources)
5894 {
91d6fa6a 5895 unsigned int nds, reg_slot;
4c2c6516 5896 expressionS *exp;
c0f3af97 5897
922d8de8 5898 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5899 && i.tm.opcode_modifier.immext)
5900 {
5901 dest = i.operands - 2;
5902 gas_assert (dest == 3);
5903 }
922d8de8 5904 else
a683cc34 5905 dest = i.operands - 1;
c0f3af97 5906 nds = dest - 1;
922d8de8 5907
a683cc34
SP
5908 /* There are 2 kinds of instructions:
5909 1. 5 operands: 4 register operands or 3 register operands
5910 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
5911 VexW0 or VexW1. The destination must be either XMM, YMM or
5912 ZMM register.
a683cc34
SP
5913 2. 4 operands: 4 register operands or 3 register operands
5914 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5915 gas_assert ((i.reg_operands == 4
a683cc34
SP
5916 || (i.reg_operands == 3 && i.mem_operands == 1))
5917 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5918 && (i.tm.opcode_modifier.veximmext
5919 || (i.imm_operands == 1
5920 && i.types[0].bitfield.vec_imm4
5921 && (i.tm.opcode_modifier.vexw == VEXW0
5922 || i.tm.opcode_modifier.vexw == VEXW1)
5923 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
5924 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5925 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
5926
5927 if (i.imm_operands == 0)
5928 {
5929 /* When there is no immediate operand, generate an 8bit
5930 immediate operand to encode the first operand. */
5931 exp = &im_expressions[i.imm_operands++];
5932 i.op[i.operands].imms = exp;
5933 i.types[i.operands] = imm8;
5934 i.operands++;
5935 /* If VexW1 is set, the first operand is the source and
5936 the second operand is encoded in the immediate operand. */
5937 if (i.tm.opcode_modifier.vexw == VEXW1)
5938 {
5939 source = 0;
5940 reg_slot = 1;
5941 }
5942 else
5943 {
5944 source = 1;
5945 reg_slot = 0;
5946 }
5947
5948 /* FMA swaps REG and NDS. */
5949 if (i.tm.cpu_flags.bitfield.cpufma)
5950 {
5951 unsigned int tmp;
5952 tmp = reg_slot;
5953 reg_slot = nds;
5954 nds = tmp;
5955 }
5956
24981e7b
L
5957 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5958 &regxmm)
a683cc34 5959 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
5960 &regymm)
5961 || operand_type_equal (&i.tm.operand_types[reg_slot],
5962 &regzmm));
a683cc34 5963 exp->X_op = O_constant;
4c692bc7 5964 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
5965 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5966 }
922d8de8 5967 else
a683cc34
SP
5968 {
5969 unsigned int imm_slot;
5970
5971 if (i.tm.opcode_modifier.vexw == VEXW0)
5972 {
5973 /* If VexW0 is set, the third operand is the source and
5974 the second operand is encoded in the immediate
5975 operand. */
5976 source = 2;
5977 reg_slot = 1;
5978 }
5979 else
5980 {
5981 /* VexW1 is set, the second operand is the source and
5982 the third operand is encoded in the immediate
5983 operand. */
5984 source = 1;
5985 reg_slot = 2;
5986 }
5987
5988 if (i.tm.opcode_modifier.immext)
5989 {
5990 /* When ImmExt is set, the immdiate byte is the last
5991 operand. */
5992 imm_slot = i.operands - 1;
5993 source--;
5994 reg_slot--;
5995 }
5996 else
5997 {
5998 imm_slot = 0;
5999
6000 /* Turn on Imm8 so that output_imm will generate it. */
6001 i.types[imm_slot].bitfield.imm8 = 1;
6002 }
6003
24981e7b
L
6004 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6005 &regxmm)
6006 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6007 &regymm)
6008 || operand_type_equal (&i.tm.operand_types[reg_slot],
6009 &regzmm));
a683cc34 6010 i.op[imm_slot].imms->X_add_number
4c692bc7 6011 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6012 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6013 }
6014
6015 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6016 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6017 &regymm)
6018 || operand_type_equal (&i.tm.operand_types[nds],
6019 &regzmm));
dae39acc 6020 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6021 }
6022 else
6023 source = dest = 0;
29b0f896
AM
6024
6025 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6026 implicit registers do not count. If there are 3 register
6027 operands, it must be a instruction with VexNDS. For a
6028 instruction with VexNDD, the destination register is encoded
6029 in VEX prefix. If there are 4 register operands, it must be
6030 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6031 if (i.mem_operands == 0
6032 && ((i.reg_operands == 2
2426c15f 6033 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6034 || (i.reg_operands == 3
2426c15f 6035 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6036 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6037 {
cab737b9
L
6038 switch (i.operands)
6039 {
6040 case 2:
6041 source = 0;
6042 break;
6043 case 3:
c81128dc
L
6044 /* When there are 3 operands, one of them may be immediate,
6045 which may be the first or the last operand. Otherwise,
c0f3af97
L
6046 the first operand must be shift count register (cl) or it
6047 is an instruction with VexNDS. */
9c2799c2 6048 gas_assert (i.imm_operands == 1
7ab9ffdd 6049 || (i.imm_operands == 0
2426c15f 6050 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6051 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6052 if (operand_type_check (i.types[0], imm)
6053 || i.types[0].bitfield.shiftcount)
6054 source = 1;
6055 else
6056 source = 0;
cab737b9
L
6057 break;
6058 case 4:
368d64cc
L
6059 /* When there are 4 operands, the first two must be 8bit
6060 immediate operands. The source operand will be the 3rd
c0f3af97
L
6061 one.
6062
6063 For instructions with VexNDS, if the first operand
6064 an imm8, the source operand is the 2nd one. If the last
6065 operand is imm8, the source operand is the first one. */
9c2799c2 6066 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6067 && i.types[0].bitfield.imm8
6068 && i.types[1].bitfield.imm8)
2426c15f 6069 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6070 && i.imm_operands == 1
6071 && (i.types[0].bitfield.imm8
43234a1e
L
6072 || i.types[i.operands - 1].bitfield.imm8
6073 || i.rounding)));
9f2670f2
L
6074 if (i.imm_operands == 2)
6075 source = 2;
6076 else
c0f3af97
L
6077 {
6078 if (i.types[0].bitfield.imm8)
6079 source = 1;
6080 else
6081 source = 0;
6082 }
c0f3af97
L
6083 break;
6084 case 5:
43234a1e
L
6085 if (i.tm.opcode_modifier.evex)
6086 {
6087 /* For EVEX instructions, when there are 5 operands, the
6088 first one must be immediate operand. If the second one
6089 is immediate operand, the source operand is the 3th
6090 one. If the last one is immediate operand, the source
6091 operand is the 2nd one. */
6092 gas_assert (i.imm_operands == 2
6093 && i.tm.opcode_modifier.sae
6094 && operand_type_check (i.types[0], imm));
6095 if (operand_type_check (i.types[1], imm))
6096 source = 2;
6097 else if (operand_type_check (i.types[4], imm))
6098 source = 1;
6099 else
6100 abort ();
6101 }
cab737b9
L
6102 break;
6103 default:
6104 abort ();
6105 }
6106
c0f3af97
L
6107 if (!vex_3_sources)
6108 {
6109 dest = source + 1;
6110
43234a1e
L
6111 /* RC/SAE operand could be between DEST and SRC. That happens
6112 when one operand is GPR and the other one is XMM/YMM/ZMM
6113 register. */
6114 if (i.rounding && i.rounding->operand == (int) dest)
6115 dest++;
6116
2426c15f 6117 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6118 {
43234a1e
L
6119 /* For instructions with VexNDS, the register-only source
6120 operand must be 32/64bit integer, XMM, YMM or ZMM
6121 register. It is encoded in VEX prefix. We need to
6122 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6123
6124 i386_operand_type op;
6125 unsigned int vvvv;
6126
6127 /* Check register-only source operand when two source
6128 operands are swapped. */
6129 if (!i.tm.operand_types[source].bitfield.baseindex
6130 && i.tm.operand_types[dest].bitfield.baseindex)
6131 {
6132 vvvv = source;
6133 source = dest;
6134 }
6135 else
6136 vvvv = dest;
6137
6138 op = i.tm.operand_types[vvvv];
fa99fab2 6139 op.bitfield.regmem = 0;
c0f3af97 6140 if ((dest + 1) >= i.operands
f12dc422
L
6141 || (op.bitfield.reg32 != 1
6142 && !op.bitfield.reg64 != 1
6143 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6144 && !operand_type_equal (&op, &regymm)
6145 && !operand_type_equal (&op, &regzmm)
6146 && !operand_type_equal (&op, &regmask)))
c0f3af97 6147 abort ();
f12dc422 6148 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6149 dest++;
6150 }
6151 }
29b0f896
AM
6152
6153 i.rm.mode = 3;
6154 /* One of the register operands will be encoded in the i.tm.reg
6155 field, the other in the combined i.tm.mode and i.tm.regmem
6156 fields. If no form of this instruction supports a memory
6157 destination operand, then we assume the source operand may
6158 sometimes be a memory operand and so we need to store the
6159 destination in the i.rm.reg field. */
40fb9820
L
6160 if (!i.tm.operand_types[dest].bitfield.regmem
6161 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6162 {
6163 i.rm.reg = i.op[dest].regs->reg_num;
6164 i.rm.regmem = i.op[source].regs->reg_num;
6165 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6166 i.rex |= REX_R;
43234a1e
L
6167 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6168 i.vrex |= REX_R;
29b0f896 6169 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6170 i.rex |= REX_B;
43234a1e
L
6171 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6172 i.vrex |= REX_B;
29b0f896
AM
6173 }
6174 else
6175 {
6176 i.rm.reg = i.op[source].regs->reg_num;
6177 i.rm.regmem = i.op[dest].regs->reg_num;
6178 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6179 i.rex |= REX_B;
43234a1e
L
6180 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6181 i.vrex |= REX_B;
29b0f896 6182 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6183 i.rex |= REX_R;
43234a1e
L
6184 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6185 i.vrex |= REX_R;
29b0f896 6186 }
161a04f6 6187 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6188 {
40fb9820
L
6189 if (!i.types[0].bitfield.control
6190 && !i.types[1].bitfield.control)
c4a530c5 6191 abort ();
161a04f6 6192 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6193 add_prefix (LOCK_PREFIX_OPCODE);
6194 }
29b0f896
AM
6195 }
6196 else
6197 { /* If it's not 2 reg operands... */
c0f3af97
L
6198 unsigned int mem;
6199
29b0f896
AM
6200 if (i.mem_operands)
6201 {
6202 unsigned int fake_zero_displacement = 0;
99018f42 6203 unsigned int op;
4eed87de 6204
7ab9ffdd
L
6205 for (op = 0; op < i.operands; op++)
6206 if (operand_type_check (i.types[op], anymem))
6207 break;
7ab9ffdd 6208 gas_assert (op < i.operands);
29b0f896 6209
6c30d220
L
6210 if (i.tm.opcode_modifier.vecsib)
6211 {
6212 if (i.index_reg->reg_num == RegEiz
6213 || i.index_reg->reg_num == RegRiz)
6214 abort ();
6215
6216 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6217 if (!i.base_reg)
6218 {
6219 i.sib.base = NO_BASE_REGISTER;
6220 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6221 /* No Vec_Disp8 if there is no base. */
6222 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6223 i.types[op].bitfield.disp8 = 0;
6224 i.types[op].bitfield.disp16 = 0;
6225 i.types[op].bitfield.disp64 = 0;
6226 if (flag_code != CODE_64BIT)
6227 {
6228 /* Must be 32 bit */
6229 i.types[op].bitfield.disp32 = 1;
6230 i.types[op].bitfield.disp32s = 0;
6231 }
6232 else
6233 {
6234 i.types[op].bitfield.disp32 = 0;
6235 i.types[op].bitfield.disp32s = 1;
6236 }
6237 }
6238 i.sib.index = i.index_reg->reg_num;
6239 if ((i.index_reg->reg_flags & RegRex) != 0)
6240 i.rex |= REX_X;
43234a1e
L
6241 if ((i.index_reg->reg_flags & RegVRex) != 0)
6242 i.vrex |= REX_X;
6c30d220
L
6243 }
6244
29b0f896
AM
6245 default_seg = &ds;
6246
6247 if (i.base_reg == 0)
6248 {
6249 i.rm.mode = 0;
6250 if (!i.disp_operands)
6c30d220
L
6251 {
6252 fake_zero_displacement = 1;
6253 /* Instructions with VSIB byte need 32bit displacement
6254 if there is no base register. */
6255 if (i.tm.opcode_modifier.vecsib)
6256 i.types[op].bitfield.disp32 = 1;
6257 }
29b0f896
AM
6258 if (i.index_reg == 0)
6259 {
6c30d220 6260 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6261 /* Operand is just <disp> */
20f0a1fc 6262 if (flag_code == CODE_64BIT)
29b0f896
AM
6263 {
6264 /* 64bit mode overwrites the 32bit absolute
6265 addressing by RIP relative addressing and
6266 absolute addressing is encoded by one of the
6267 redundant SIB forms. */
6268 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6269 i.sib.base = NO_BASE_REGISTER;
6270 i.sib.index = NO_INDEX_REGISTER;
fc225355 6271 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6272 ? disp32s : disp32);
20f0a1fc 6273 }
fc225355
L
6274 else if ((flag_code == CODE_16BIT)
6275 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6276 {
6277 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6278 i.types[op] = disp16;
20f0a1fc
NC
6279 }
6280 else
6281 {
6282 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6283 i.types[op] = disp32;
29b0f896
AM
6284 }
6285 }
6c30d220 6286 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6287 {
6c30d220 6288 /* !i.base_reg && i.index_reg */
db51cc60
L
6289 if (i.index_reg->reg_num == RegEiz
6290 || i.index_reg->reg_num == RegRiz)
6291 i.sib.index = NO_INDEX_REGISTER;
6292 else
6293 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6294 i.sib.base = NO_BASE_REGISTER;
6295 i.sib.scale = i.log2_scale_factor;
6296 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6297 /* No Vec_Disp8 if there is no base. */
6298 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6299 i.types[op].bitfield.disp8 = 0;
6300 i.types[op].bitfield.disp16 = 0;
6301 i.types[op].bitfield.disp64 = 0;
29b0f896 6302 if (flag_code != CODE_64BIT)
40fb9820
L
6303 {
6304 /* Must be 32 bit */
6305 i.types[op].bitfield.disp32 = 1;
6306 i.types[op].bitfield.disp32s = 0;
6307 }
29b0f896 6308 else
40fb9820
L
6309 {
6310 i.types[op].bitfield.disp32 = 0;
6311 i.types[op].bitfield.disp32s = 1;
6312 }
29b0f896 6313 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6314 i.rex |= REX_X;
29b0f896
AM
6315 }
6316 }
6317 /* RIP addressing for 64bit mode. */
9a04903e
JB
6318 else if (i.base_reg->reg_num == RegRip ||
6319 i.base_reg->reg_num == RegEip)
29b0f896 6320 {
6c30d220 6321 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6322 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6323 i.types[op].bitfield.disp8 = 0;
6324 i.types[op].bitfield.disp16 = 0;
6325 i.types[op].bitfield.disp32 = 0;
6326 i.types[op].bitfield.disp32s = 1;
6327 i.types[op].bitfield.disp64 = 0;
43234a1e 6328 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6329 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6330 if (! i.disp_operands)
6331 fake_zero_displacement = 1;
29b0f896 6332 }
40fb9820 6333 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6334 {
6c30d220 6335 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6336 switch (i.base_reg->reg_num)
6337 {
6338 case 3: /* (%bx) */
6339 if (i.index_reg == 0)
6340 i.rm.regmem = 7;
6341 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6342 i.rm.regmem = i.index_reg->reg_num - 6;
6343 break;
6344 case 5: /* (%bp) */
6345 default_seg = &ss;
6346 if (i.index_reg == 0)
6347 {
6348 i.rm.regmem = 6;
40fb9820 6349 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6350 {
6351 /* fake (%bp) into 0(%bp) */
43234a1e
L
6352 if (i.tm.operand_types[op].bitfield.vec_disp8)
6353 i.types[op].bitfield.vec_disp8 = 1;
6354 else
6355 i.types[op].bitfield.disp8 = 1;
252b5132 6356 fake_zero_displacement = 1;
29b0f896
AM
6357 }
6358 }
6359 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6360 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6361 break;
6362 default: /* (%si) -> 4 or (%di) -> 5 */
6363 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6364 }
6365 i.rm.mode = mode_from_disp_size (i.types[op]);
6366 }
6367 else /* i.base_reg and 32/64 bit mode */
6368 {
6369 if (flag_code == CODE_64BIT
40fb9820
L
6370 && operand_type_check (i.types[op], disp))
6371 {
6372 i386_operand_type temp;
0dfbf9d7 6373 operand_type_set (&temp, 0);
40fb9820 6374 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6375 temp.bitfield.vec_disp8
6376 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6377 i.types[op] = temp;
6378 if (i.prefix[ADDR_PREFIX] == 0)
6379 i.types[op].bitfield.disp32s = 1;
6380 else
6381 i.types[op].bitfield.disp32 = 1;
6382 }
20f0a1fc 6383
6c30d220
L
6384 if (!i.tm.opcode_modifier.vecsib)
6385 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6386 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6387 i.rex |= REX_B;
29b0f896
AM
6388 i.sib.base = i.base_reg->reg_num;
6389 /* x86-64 ignores REX prefix bit here to avoid decoder
6390 complications. */
848930b2
JB
6391 if (!(i.base_reg->reg_flags & RegRex)
6392 && (i.base_reg->reg_num == EBP_REG_NUM
6393 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6394 default_seg = &ss;
848930b2 6395 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6396 {
848930b2 6397 fake_zero_displacement = 1;
43234a1e
L
6398 if (i.tm.operand_types [op].bitfield.vec_disp8)
6399 i.types[op].bitfield.vec_disp8 = 1;
6400 else
6401 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6402 }
6403 i.sib.scale = i.log2_scale_factor;
6404 if (i.index_reg == 0)
6405 {
6c30d220 6406 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6407 /* <disp>(%esp) becomes two byte modrm with no index
6408 register. We've already stored the code for esp
6409 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6410 Any base register besides %esp will not use the
6411 extra modrm byte. */
6412 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6413 }
6c30d220 6414 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6415 {
db51cc60
L
6416 if (i.index_reg->reg_num == RegEiz
6417 || i.index_reg->reg_num == RegRiz)
6418 i.sib.index = NO_INDEX_REGISTER;
6419 else
6420 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6421 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6422 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6423 i.rex |= REX_X;
29b0f896 6424 }
67a4f2b7
AO
6425
6426 if (i.disp_operands
6427 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6428 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6429 i.rm.mode = 0;
6430 else
a501d77e
L
6431 {
6432 if (!fake_zero_displacement
6433 && !i.disp_operands
6434 && i.disp_encoding)
6435 {
6436 fake_zero_displacement = 1;
6437 if (i.disp_encoding == disp_encoding_8bit)
6438 i.types[op].bitfield.disp8 = 1;
6439 else
6440 i.types[op].bitfield.disp32 = 1;
6441 }
6442 i.rm.mode = mode_from_disp_size (i.types[op]);
6443 }
29b0f896 6444 }
252b5132 6445
29b0f896
AM
6446 if (fake_zero_displacement)
6447 {
6448 /* Fakes a zero displacement assuming that i.types[op]
6449 holds the correct displacement size. */
6450 expressionS *exp;
6451
9c2799c2 6452 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6453 exp = &disp_expressions[i.disp_operands++];
6454 i.op[op].disps = exp;
6455 exp->X_op = O_constant;
6456 exp->X_add_number = 0;
6457 exp->X_add_symbol = (symbolS *) 0;
6458 exp->X_op_symbol = (symbolS *) 0;
6459 }
c0f3af97
L
6460
6461 mem = op;
29b0f896 6462 }
c0f3af97
L
6463 else
6464 mem = ~0;
252b5132 6465
8c43a48b 6466 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6467 {
6468 if (operand_type_check (i.types[0], imm))
6469 i.vex.register_specifier = NULL;
6470 else
6471 {
6472 /* VEX.vvvv encodes one of the sources when the first
6473 operand is not an immediate. */
1ef99a7b 6474 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6475 i.vex.register_specifier = i.op[0].regs;
6476 else
6477 i.vex.register_specifier = i.op[1].regs;
6478 }
6479
6480 /* Destination is a XMM register encoded in the ModRM.reg
6481 and VEX.R bit. */
6482 i.rm.reg = i.op[2].regs->reg_num;
6483 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6484 i.rex |= REX_R;
6485
6486 /* ModRM.rm and VEX.B encodes the other source. */
6487 if (!i.mem_operands)
6488 {
6489 i.rm.mode = 3;
6490
1ef99a7b 6491 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6492 i.rm.regmem = i.op[1].regs->reg_num;
6493 else
6494 i.rm.regmem = i.op[0].regs->reg_num;
6495
6496 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6497 i.rex |= REX_B;
6498 }
6499 }
2426c15f 6500 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6501 {
6502 i.vex.register_specifier = i.op[2].regs;
6503 if (!i.mem_operands)
6504 {
6505 i.rm.mode = 3;
6506 i.rm.regmem = i.op[1].regs->reg_num;
6507 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6508 i.rex |= REX_B;
6509 }
6510 }
29b0f896
AM
6511 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6512 (if any) based on i.tm.extension_opcode. Again, we must be
6513 careful to make sure that segment/control/debug/test/MMX
6514 registers are coded into the i.rm.reg field. */
f88c9eb0 6515 else if (i.reg_operands)
29b0f896 6516 {
99018f42 6517 unsigned int op;
7ab9ffdd
L
6518 unsigned int vex_reg = ~0;
6519
6520 for (op = 0; op < i.operands; op++)
6521 if (i.types[op].bitfield.reg8
6522 || i.types[op].bitfield.reg16
6523 || i.types[op].bitfield.reg32
6524 || i.types[op].bitfield.reg64
6525 || i.types[op].bitfield.regmmx
6526 || i.types[op].bitfield.regxmm
6527 || i.types[op].bitfield.regymm
7e8b059b 6528 || i.types[op].bitfield.regbnd
43234a1e
L
6529 || i.types[op].bitfield.regzmm
6530 || i.types[op].bitfield.regmask
7ab9ffdd
L
6531 || i.types[op].bitfield.sreg2
6532 || i.types[op].bitfield.sreg3
6533 || i.types[op].bitfield.control
6534 || i.types[op].bitfield.debug
6535 || i.types[op].bitfield.test)
6536 break;
c0209578 6537
7ab9ffdd
L
6538 if (vex_3_sources)
6539 op = dest;
2426c15f 6540 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6541 {
6542 /* For instructions with VexNDS, the register-only
6543 source operand is encoded in VEX prefix. */
6544 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6545
7ab9ffdd 6546 if (op > mem)
c0f3af97 6547 {
7ab9ffdd
L
6548 vex_reg = op++;
6549 gas_assert (op < i.operands);
c0f3af97
L
6550 }
6551 else
c0f3af97 6552 {
f12dc422
L
6553 /* Check register-only source operand when two source
6554 operands are swapped. */
6555 if (!i.tm.operand_types[op].bitfield.baseindex
6556 && i.tm.operand_types[op + 1].bitfield.baseindex)
6557 {
6558 vex_reg = op;
6559 op += 2;
6560 gas_assert (mem == (vex_reg + 1)
6561 && op < i.operands);
6562 }
6563 else
6564 {
6565 vex_reg = op + 1;
6566 gas_assert (vex_reg < i.operands);
6567 }
c0f3af97 6568 }
7ab9ffdd 6569 }
2426c15f 6570 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6571 {
f12dc422 6572 /* For instructions with VexNDD, the register destination
7ab9ffdd 6573 is encoded in VEX prefix. */
f12dc422
L
6574 if (i.mem_operands == 0)
6575 {
6576 /* There is no memory operand. */
6577 gas_assert ((op + 2) == i.operands);
6578 vex_reg = op + 1;
6579 }
6580 else
8d63c93e 6581 {
f12dc422
L
6582 /* There are only 2 operands. */
6583 gas_assert (op < 2 && i.operands == 2);
6584 vex_reg = 1;
6585 }
7ab9ffdd
L
6586 }
6587 else
6588 gas_assert (op < i.operands);
99018f42 6589
7ab9ffdd
L
6590 if (vex_reg != (unsigned int) ~0)
6591 {
f12dc422 6592 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6593
f12dc422
L
6594 if (type->bitfield.reg32 != 1
6595 && type->bitfield.reg64 != 1
6596 && !operand_type_equal (type, &regxmm)
43234a1e
L
6597 && !operand_type_equal (type, &regymm)
6598 && !operand_type_equal (type, &regzmm)
6599 && !operand_type_equal (type, &regmask))
7ab9ffdd 6600 abort ();
f88c9eb0 6601
7ab9ffdd
L
6602 i.vex.register_specifier = i.op[vex_reg].regs;
6603 }
6604
1b9f0c97
L
6605 /* Don't set OP operand twice. */
6606 if (vex_reg != op)
7ab9ffdd 6607 {
1b9f0c97
L
6608 /* If there is an extension opcode to put here, the
6609 register number must be put into the regmem field. */
6610 if (i.tm.extension_opcode != None)
6611 {
6612 i.rm.regmem = i.op[op].regs->reg_num;
6613 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6614 i.rex |= REX_B;
43234a1e
L
6615 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6616 i.vrex |= REX_B;
1b9f0c97
L
6617 }
6618 else
6619 {
6620 i.rm.reg = i.op[op].regs->reg_num;
6621 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6622 i.rex |= REX_R;
43234a1e
L
6623 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6624 i.vrex |= REX_R;
1b9f0c97 6625 }
7ab9ffdd 6626 }
252b5132 6627
29b0f896
AM
6628 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6629 must set it to 3 to indicate this is a register operand
6630 in the regmem field. */
6631 if (!i.mem_operands)
6632 i.rm.mode = 3;
6633 }
252b5132 6634
29b0f896 6635 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6636 if (i.tm.extension_opcode != None)
29b0f896
AM
6637 i.rm.reg = i.tm.extension_opcode;
6638 }
6639 return default_seg;
6640}
252b5132 6641
29b0f896 6642static void
e3bb37b5 6643output_branch (void)
29b0f896
AM
6644{
6645 char *p;
f8a5c266 6646 int size;
29b0f896
AM
6647 int code16;
6648 int prefix;
6649 relax_substateT subtype;
6650 symbolS *sym;
6651 offsetT off;
6652
f8a5c266 6653 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6654 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6655
6656 prefix = 0;
6657 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6658 {
29b0f896
AM
6659 prefix = 1;
6660 i.prefixes -= 1;
6661 code16 ^= CODE16;
252b5132 6662 }
29b0f896
AM
6663 /* Pentium4 branch hints. */
6664 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6665 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6666 {
29b0f896
AM
6667 prefix++;
6668 i.prefixes--;
6669 }
6670 if (i.prefix[REX_PREFIX] != 0)
6671 {
6672 prefix++;
6673 i.prefixes--;
2f66722d
AM
6674 }
6675
7e8b059b
L
6676 /* BND prefixed jump. */
6677 if (i.prefix[BND_PREFIX] != 0)
6678 {
6679 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6680 i.prefixes -= 1;
6681 }
6682
29b0f896
AM
6683 if (i.prefixes != 0 && !intel_syntax)
6684 as_warn (_("skipping prefixes on this instruction"));
6685
6686 /* It's always a symbol; End frag & setup for relax.
6687 Make sure there is enough room in this frag for the largest
6688 instruction we may generate in md_convert_frag. This is 2
6689 bytes for the opcode and room for the prefix and largest
6690 displacement. */
6691 frag_grow (prefix + 2 + 4);
6692 /* Prefix and 1 opcode byte go in fr_fix. */
6693 p = frag_more (prefix + 1);
6694 if (i.prefix[DATA_PREFIX] != 0)
6695 *p++ = DATA_PREFIX_OPCODE;
6696 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6697 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6698 *p++ = i.prefix[SEG_PREFIX];
6699 if (i.prefix[REX_PREFIX] != 0)
6700 *p++ = i.prefix[REX_PREFIX];
6701 *p = i.tm.base_opcode;
6702
6703 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6704 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6705 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6706 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6707 else
f8a5c266 6708 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6709 subtype |= code16;
3e73aa7c 6710
29b0f896
AM
6711 sym = i.op[0].disps->X_add_symbol;
6712 off = i.op[0].disps->X_add_number;
3e73aa7c 6713
29b0f896
AM
6714 if (i.op[0].disps->X_op != O_constant
6715 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6716 {
29b0f896
AM
6717 /* Handle complex expressions. */
6718 sym = make_expr_symbol (i.op[0].disps);
6719 off = 0;
6720 }
3e73aa7c 6721
29b0f896
AM
6722 /* 1 possible extra opcode + 4 byte displacement go in var part.
6723 Pass reloc in fr_var. */
6724 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6725}
3e73aa7c 6726
29b0f896 6727static void
e3bb37b5 6728output_jump (void)
29b0f896
AM
6729{
6730 char *p;
6731 int size;
3e02c1cc 6732 fixS *fixP;
29b0f896 6733
40fb9820 6734 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6735 {
6736 /* This is a loop or jecxz type instruction. */
6737 size = 1;
6738 if (i.prefix[ADDR_PREFIX] != 0)
6739 {
6740 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6741 i.prefixes -= 1;
6742 }
6743 /* Pentium4 branch hints. */
6744 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6745 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6746 {
6747 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6748 i.prefixes--;
3e73aa7c
JH
6749 }
6750 }
29b0f896
AM
6751 else
6752 {
6753 int code16;
3e73aa7c 6754
29b0f896
AM
6755 code16 = 0;
6756 if (flag_code == CODE_16BIT)
6757 code16 = CODE16;
3e73aa7c 6758
29b0f896
AM
6759 if (i.prefix[DATA_PREFIX] != 0)
6760 {
6761 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6762 i.prefixes -= 1;
6763 code16 ^= CODE16;
6764 }
252b5132 6765
29b0f896
AM
6766 size = 4;
6767 if (code16)
6768 size = 2;
6769 }
9fcc94b6 6770
29b0f896
AM
6771 if (i.prefix[REX_PREFIX] != 0)
6772 {
6773 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6774 i.prefixes -= 1;
6775 }
252b5132 6776
7e8b059b
L
6777 /* BND prefixed jump. */
6778 if (i.prefix[BND_PREFIX] != 0)
6779 {
6780 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6781 i.prefixes -= 1;
6782 }
6783
29b0f896
AM
6784 if (i.prefixes != 0 && !intel_syntax)
6785 as_warn (_("skipping prefixes on this instruction"));
e0890092 6786
42164a71
L
6787 p = frag_more (i.tm.opcode_length + size);
6788 switch (i.tm.opcode_length)
6789 {
6790 case 2:
6791 *p++ = i.tm.base_opcode >> 8;
6792 case 1:
6793 *p++ = i.tm.base_opcode;
6794 break;
6795 default:
6796 abort ();
6797 }
e0890092 6798
3e02c1cc
AM
6799 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6800 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6801
6802 /* All jumps handled here are signed, but don't use a signed limit
6803 check for 32 and 16 bit jumps as we want to allow wrap around at
6804 4G and 64k respectively. */
6805 if (size == 1)
6806 fixP->fx_signed = 1;
29b0f896 6807}
e0890092 6808
29b0f896 6809static void
e3bb37b5 6810output_interseg_jump (void)
29b0f896
AM
6811{
6812 char *p;
6813 int size;
6814 int prefix;
6815 int code16;
252b5132 6816
29b0f896
AM
6817 code16 = 0;
6818 if (flag_code == CODE_16BIT)
6819 code16 = CODE16;
a217f122 6820
29b0f896
AM
6821 prefix = 0;
6822 if (i.prefix[DATA_PREFIX] != 0)
6823 {
6824 prefix = 1;
6825 i.prefixes -= 1;
6826 code16 ^= CODE16;
6827 }
6828 if (i.prefix[REX_PREFIX] != 0)
6829 {
6830 prefix++;
6831 i.prefixes -= 1;
6832 }
252b5132 6833
29b0f896
AM
6834 size = 4;
6835 if (code16)
6836 size = 2;
252b5132 6837
29b0f896
AM
6838 if (i.prefixes != 0 && !intel_syntax)
6839 as_warn (_("skipping prefixes on this instruction"));
252b5132 6840
29b0f896
AM
6841 /* 1 opcode; 2 segment; offset */
6842 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 6843
29b0f896
AM
6844 if (i.prefix[DATA_PREFIX] != 0)
6845 *p++ = DATA_PREFIX_OPCODE;
252b5132 6846
29b0f896
AM
6847 if (i.prefix[REX_PREFIX] != 0)
6848 *p++ = i.prefix[REX_PREFIX];
252b5132 6849
29b0f896
AM
6850 *p++ = i.tm.base_opcode;
6851 if (i.op[1].imms->X_op == O_constant)
6852 {
6853 offsetT n = i.op[1].imms->X_add_number;
252b5132 6854
29b0f896
AM
6855 if (size == 2
6856 && !fits_in_unsigned_word (n)
6857 && !fits_in_signed_word (n))
6858 {
6859 as_bad (_("16-bit jump out of range"));
6860 return;
6861 }
6862 md_number_to_chars (p, n, size);
6863 }
6864 else
6865 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6866 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6867 if (i.op[0].imms->X_op != O_constant)
6868 as_bad (_("can't handle non absolute segment in `%s'"),
6869 i.tm.name);
6870 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6871}
a217f122 6872
29b0f896 6873static void
e3bb37b5 6874output_insn (void)
29b0f896 6875{
2bbd9c25
JJ
6876 fragS *insn_start_frag;
6877 offsetT insn_start_off;
6878
29b0f896
AM
6879 /* Tie dwarf2 debug info to the address at the start of the insn.
6880 We can't do this after the insn has been output as the current
6881 frag may have been closed off. eg. by frag_var. */
6882 dwarf2_emit_insn (0);
6883
2bbd9c25
JJ
6884 insn_start_frag = frag_now;
6885 insn_start_off = frag_now_fix ();
6886
29b0f896 6887 /* Output jumps. */
40fb9820 6888 if (i.tm.opcode_modifier.jump)
29b0f896 6889 output_branch ();
40fb9820
L
6890 else if (i.tm.opcode_modifier.jumpbyte
6891 || i.tm.opcode_modifier.jumpdword)
29b0f896 6892 output_jump ();
40fb9820 6893 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
6894 output_interseg_jump ();
6895 else
6896 {
6897 /* Output normal instructions here. */
6898 char *p;
6899 unsigned char *q;
47465058 6900 unsigned int j;
331d2d0d 6901 unsigned int prefix;
4dffcebc 6902
43234a1e
L
6903 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6904 don't need the explicit prefix. */
6905 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 6906 {
c0f3af97 6907 switch (i.tm.opcode_length)
bc4bd9ab 6908 {
c0f3af97
L
6909 case 3:
6910 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6911 {
c0f3af97
L
6912 prefix = (i.tm.base_opcode >> 24) & 0xff;
6913 goto check_prefix;
6914 }
6915 break;
6916 case 2:
6917 if ((i.tm.base_opcode & 0xff0000) != 0)
6918 {
6919 prefix = (i.tm.base_opcode >> 16) & 0xff;
6920 if (i.tm.cpu_flags.bitfield.cpupadlock)
6921 {
4dffcebc 6922check_prefix:
c0f3af97 6923 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6924 || (i.prefix[REP_PREFIX]
c0f3af97
L
6925 != REPE_PREFIX_OPCODE))
6926 add_prefix (prefix);
6927 }
6928 else
4dffcebc
L
6929 add_prefix (prefix);
6930 }
c0f3af97
L
6931 break;
6932 case 1:
6933 break;
6934 default:
6935 abort ();
bc4bd9ab 6936 }
c0f3af97
L
6937
6938 /* The prefix bytes. */
6939 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6940 if (*q)
6941 FRAG_APPEND_1_CHAR (*q);
0f10071e 6942 }
ae5c1c7b 6943 else
c0f3af97
L
6944 {
6945 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6946 if (*q)
6947 switch (j)
6948 {
6949 case REX_PREFIX:
6950 /* REX byte is encoded in VEX prefix. */
6951 break;
6952 case SEG_PREFIX:
6953 case ADDR_PREFIX:
6954 FRAG_APPEND_1_CHAR (*q);
6955 break;
6956 default:
6957 /* There should be no other prefixes for instructions
6958 with VEX prefix. */
6959 abort ();
6960 }
6961
43234a1e
L
6962 /* For EVEX instructions i.vrex should become 0 after
6963 build_evex_prefix. For VEX instructions upper 16 registers
6964 aren't available, so VREX should be 0. */
6965 if (i.vrex)
6966 abort ();
c0f3af97
L
6967 /* Now the VEX prefix. */
6968 p = frag_more (i.vex.length);
6969 for (j = 0; j < i.vex.length; j++)
6970 p[j] = i.vex.bytes[j];
6971 }
252b5132 6972
29b0f896 6973 /* Now the opcode; be careful about word order here! */
4dffcebc 6974 if (i.tm.opcode_length == 1)
29b0f896
AM
6975 {
6976 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6977 }
6978 else
6979 {
4dffcebc 6980 switch (i.tm.opcode_length)
331d2d0d 6981 {
43234a1e
L
6982 case 4:
6983 p = frag_more (4);
6984 *p++ = (i.tm.base_opcode >> 24) & 0xff;
6985 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6986 break;
4dffcebc 6987 case 3:
331d2d0d
L
6988 p = frag_more (3);
6989 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
6990 break;
6991 case 2:
6992 p = frag_more (2);
6993 break;
6994 default:
6995 abort ();
6996 break;
331d2d0d 6997 }
0f10071e 6998
29b0f896
AM
6999 /* Put out high byte first: can't use md_number_to_chars! */
7000 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7001 *p = i.tm.base_opcode & 0xff;
7002 }
3e73aa7c 7003
29b0f896 7004 /* Now the modrm byte and sib byte (if present). */
40fb9820 7005 if (i.tm.opcode_modifier.modrm)
29b0f896 7006 {
4a3523fa
L
7007 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7008 | i.rm.reg << 3
7009 | i.rm.mode << 6));
29b0f896
AM
7010 /* If i.rm.regmem == ESP (4)
7011 && i.rm.mode != (Register mode)
7012 && not 16 bit
7013 ==> need second modrm byte. */
7014 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7015 && i.rm.mode != 3
40fb9820 7016 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7017 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7018 | i.sib.index << 3
7019 | i.sib.scale << 6));
29b0f896 7020 }
3e73aa7c 7021
29b0f896 7022 if (i.disp_operands)
2bbd9c25 7023 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7024
29b0f896 7025 if (i.imm_operands)
2bbd9c25 7026 output_imm (insn_start_frag, insn_start_off);
29b0f896 7027 }
252b5132 7028
29b0f896
AM
7029#ifdef DEBUG386
7030 if (flag_debug)
7031 {
7b81dfbb 7032 pi ("" /*line*/, &i);
29b0f896
AM
7033 }
7034#endif /* DEBUG386 */
7035}
252b5132 7036
e205caa7
L
7037/* Return the size of the displacement operand N. */
7038
7039static int
7040disp_size (unsigned int n)
7041{
7042 int size = 4;
43234a1e
L
7043
7044 /* Vec_Disp8 has to be 8bit. */
7045 if (i.types[n].bitfield.vec_disp8)
7046 size = 1;
7047 else if (i.types[n].bitfield.disp64)
40fb9820
L
7048 size = 8;
7049 else if (i.types[n].bitfield.disp8)
7050 size = 1;
7051 else if (i.types[n].bitfield.disp16)
7052 size = 2;
e205caa7
L
7053 return size;
7054}
7055
7056/* Return the size of the immediate operand N. */
7057
7058static int
7059imm_size (unsigned int n)
7060{
7061 int size = 4;
40fb9820
L
7062 if (i.types[n].bitfield.imm64)
7063 size = 8;
7064 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7065 size = 1;
7066 else if (i.types[n].bitfield.imm16)
7067 size = 2;
e205caa7
L
7068 return size;
7069}
7070
29b0f896 7071static void
64e74474 7072output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7073{
7074 char *p;
7075 unsigned int n;
252b5132 7076
29b0f896
AM
7077 for (n = 0; n < i.operands; n++)
7078 {
43234a1e
L
7079 if (i.types[n].bitfield.vec_disp8
7080 || operand_type_check (i.types[n], disp))
29b0f896
AM
7081 {
7082 if (i.op[n].disps->X_op == O_constant)
7083 {
e205caa7 7084 int size = disp_size (n);
43234a1e 7085 offsetT val = i.op[n].disps->X_add_number;
252b5132 7086
43234a1e
L
7087 if (i.types[n].bitfield.vec_disp8)
7088 val >>= i.memshift;
7089 val = offset_in_range (val, size);
29b0f896
AM
7090 p = frag_more (size);
7091 md_number_to_chars (p, val, size);
7092 }
7093 else
7094 {
f86103b7 7095 enum bfd_reloc_code_real reloc_type;
e205caa7 7096 int size = disp_size (n);
40fb9820 7097 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
7098 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7099
e205caa7 7100 /* We can't have 8 bit displacement here. */
9c2799c2 7101 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7102
29b0f896
AM
7103 /* The PC relative address is computed relative
7104 to the instruction boundary, so in case immediate
7105 fields follows, we need to adjust the value. */
7106 if (pcrel && i.imm_operands)
7107 {
29b0f896 7108 unsigned int n1;
e205caa7 7109 int sz = 0;
252b5132 7110
29b0f896 7111 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7112 if (operand_type_check (i.types[n1], imm))
252b5132 7113 {
e205caa7
L
7114 /* Only one immediate is allowed for PC
7115 relative address. */
9c2799c2 7116 gas_assert (sz == 0);
e205caa7
L
7117 sz = imm_size (n1);
7118 i.op[n].disps->X_add_number -= sz;
252b5132 7119 }
29b0f896 7120 /* We should find the immediate. */
9c2799c2 7121 gas_assert (sz != 0);
29b0f896 7122 }
520dc8e8 7123
29b0f896 7124 p = frag_more (size);
2bbd9c25 7125 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7126 if (GOT_symbol
2bbd9c25 7127 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7128 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7129 || reloc_type == BFD_RELOC_X86_64_32S
7130 || (reloc_type == BFD_RELOC_64
7131 && object_64bit))
d6ab8113
JB
7132 && (i.op[n].disps->X_op == O_symbol
7133 || (i.op[n].disps->X_op == O_add
7134 && ((symbol_get_value_expression
7135 (i.op[n].disps->X_op_symbol)->X_op)
7136 == O_subtract))))
7137 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7138 {
7139 offsetT add;
7140
7141 if (insn_start_frag == frag_now)
7142 add = (p - frag_now->fr_literal) - insn_start_off;
7143 else
7144 {
7145 fragS *fr;
7146
7147 add = insn_start_frag->fr_fix - insn_start_off;
7148 for (fr = insn_start_frag->fr_next;
7149 fr && fr != frag_now; fr = fr->fr_next)
7150 add += fr->fr_fix;
7151 add += p - frag_now->fr_literal;
7152 }
7153
4fa24527 7154 if (!object_64bit)
7b81dfbb
AJ
7155 {
7156 reloc_type = BFD_RELOC_386_GOTPC;
7157 i.op[n].imms->X_add_number += add;
7158 }
7159 else if (reloc_type == BFD_RELOC_64)
7160 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7161 else
7b81dfbb
AJ
7162 /* Don't do the adjustment for x86-64, as there
7163 the pcrel addressing is relative to the _next_
7164 insn, and that is taken care of in other code. */
d6ab8113 7165 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7166 }
062cd5e7 7167 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 7168 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
7169 }
7170 }
7171 }
7172}
252b5132 7173
29b0f896 7174static void
64e74474 7175output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7176{
7177 char *p;
7178 unsigned int n;
252b5132 7179
29b0f896
AM
7180 for (n = 0; n < i.operands; n++)
7181 {
43234a1e
L
7182 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7183 if (i.rounding && (int) n == i.rounding->operand)
7184 continue;
7185
40fb9820 7186 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7187 {
7188 if (i.op[n].imms->X_op == O_constant)
7189 {
e205caa7 7190 int size = imm_size (n);
29b0f896 7191 offsetT val;
b4cac588 7192
29b0f896
AM
7193 val = offset_in_range (i.op[n].imms->X_add_number,
7194 size);
7195 p = frag_more (size);
7196 md_number_to_chars (p, val, size);
7197 }
7198 else
7199 {
7200 /* Not absolute_section.
7201 Need a 32-bit fixup (don't support 8bit
7202 non-absolute imms). Try to support other
7203 sizes ... */
f86103b7 7204 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7205 int size = imm_size (n);
7206 int sign;
29b0f896 7207
40fb9820 7208 if (i.types[n].bitfield.imm32s
a7d61044 7209 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7210 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7211 sign = 1;
e205caa7
L
7212 else
7213 sign = 0;
520dc8e8 7214
29b0f896
AM
7215 p = frag_more (size);
7216 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7217
2bbd9c25
JJ
7218 /* This is tough to explain. We end up with this one if we
7219 * have operands that look like
7220 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7221 * obtain the absolute address of the GOT, and it is strongly
7222 * preferable from a performance point of view to avoid using
7223 * a runtime relocation for this. The actual sequence of
7224 * instructions often look something like:
7225 *
7226 * call .L66
7227 * .L66:
7228 * popl %ebx
7229 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7230 *
7231 * The call and pop essentially return the absolute address
7232 * of the label .L66 and store it in %ebx. The linker itself
7233 * will ultimately change the first operand of the addl so
7234 * that %ebx points to the GOT, but to keep things simple, the
7235 * .o file must have this operand set so that it generates not
7236 * the absolute address of .L66, but the absolute address of
7237 * itself. This allows the linker itself simply treat a GOTPC
7238 * relocation as asking for a pcrel offset to the GOT to be
7239 * added in, and the addend of the relocation is stored in the
7240 * operand field for the instruction itself.
7241 *
7242 * Our job here is to fix the operand so that it would add
7243 * the correct offset so that %ebx would point to itself. The
7244 * thing that is tricky is that .-.L66 will point to the
7245 * beginning of the instruction, so we need to further modify
7246 * the operand so that it will point to itself. There are
7247 * other cases where you have something like:
7248 *
7249 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7250 *
7251 * and here no correction would be required. Internally in
7252 * the assembler we treat operands of this form as not being
7253 * pcrel since the '.' is explicitly mentioned, and I wonder
7254 * whether it would simplify matters to do it this way. Who
7255 * knows. In earlier versions of the PIC patches, the
7256 * pcrel_adjust field was used to store the correction, but
7257 * since the expression is not pcrel, I felt it would be
7258 * confusing to do it this way. */
7259
d6ab8113 7260 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7261 || reloc_type == BFD_RELOC_X86_64_32S
7262 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7263 && GOT_symbol
7264 && GOT_symbol == i.op[n].imms->X_add_symbol
7265 && (i.op[n].imms->X_op == O_symbol
7266 || (i.op[n].imms->X_op == O_add
7267 && ((symbol_get_value_expression
7268 (i.op[n].imms->X_op_symbol)->X_op)
7269 == O_subtract))))
7270 {
2bbd9c25
JJ
7271 offsetT add;
7272
7273 if (insn_start_frag == frag_now)
7274 add = (p - frag_now->fr_literal) - insn_start_off;
7275 else
7276 {
7277 fragS *fr;
7278
7279 add = insn_start_frag->fr_fix - insn_start_off;
7280 for (fr = insn_start_frag->fr_next;
7281 fr && fr != frag_now; fr = fr->fr_next)
7282 add += fr->fr_fix;
7283 add += p - frag_now->fr_literal;
7284 }
7285
4fa24527 7286 if (!object_64bit)
d6ab8113 7287 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7288 else if (size == 4)
d6ab8113 7289 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7290 else if (size == 8)
7291 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7292 i.op[n].imms->X_add_number += add;
29b0f896 7293 }
29b0f896
AM
7294 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7295 i.op[n].imms, 0, reloc_type);
7296 }
7297 }
7298 }
252b5132
RH
7299}
7300\f
d182319b
JB
7301/* x86_cons_fix_new is called via the expression parsing code when a
7302 reloc is needed. We use this hook to get the correct .got reloc. */
7303static enum bfd_reloc_code_real got_reloc = NO_RELOC;
7304static int cons_sign = -1;
7305
7306void
e3bb37b5 7307x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 7308 expressionS *exp)
d182319b
JB
7309{
7310 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
7311
7312 got_reloc = NO_RELOC;
7313
7314#ifdef TE_PE
7315 if (exp->X_op == O_secrel)
7316 {
7317 exp->X_op = O_symbol;
7318 r = BFD_RELOC_32_SECREL;
7319 }
7320#endif
7321
7322 fix_new_exp (frag, off, len, exp, 0, r);
7323}
7324
357d1bd8
L
7325/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7326 purpose of the `.dc.a' internal pseudo-op. */
7327
7328int
7329x86_address_bytes (void)
7330{
7331 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7332 return 4;
7333 return stdoutput->arch_info->bits_per_address / 8;
7334}
7335
d382c579
TG
7336#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7337 || defined (LEX_AT)
718ddfc0
JB
7338# define lex_got(reloc, adjust, types) NULL
7339#else
f3c180ae
AM
7340/* Parse operands of the form
7341 <symbol>@GOTOFF+<nnn>
7342 and similar .plt or .got references.
7343
7344 If we find one, set up the correct relocation in RELOC and copy the
7345 input string, minus the `@GOTOFF' into a malloc'd buffer for
7346 parsing by the calling routine. Return this buffer, and if ADJUST
7347 is non-null set it to the length of the string we removed from the
7348 input line. Otherwise return NULL. */
7349static char *
91d6fa6a 7350lex_got (enum bfd_reloc_code_real *rel,
64e74474 7351 int *adjust,
40fb9820 7352 i386_operand_type *types)
f3c180ae 7353{
7b81dfbb
AJ
7354 /* Some of the relocations depend on the size of what field is to
7355 be relocated. But in our callers i386_immediate and i386_displacement
7356 we don't yet know the operand size (this will be set by insn
7357 matching). Hence we record the word32 relocation here,
7358 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7359 static const struct {
7360 const char *str;
cff8d58a 7361 int len;
4fa24527 7362 const enum bfd_reloc_code_real rel[2];
40fb9820 7363 const i386_operand_type types64;
f3c180ae 7364 } gotrel[] = {
8ce3d284 7365#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7366 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7367 BFD_RELOC_SIZE32 },
7368 OPERAND_TYPE_IMM32_64 },
8ce3d284 7369#endif
cff8d58a
L
7370 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7371 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7372 OPERAND_TYPE_IMM64 },
cff8d58a
L
7373 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7374 BFD_RELOC_X86_64_PLT32 },
40fb9820 7375 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7376 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7377 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7378 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7379 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7380 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7381 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7382 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7383 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7384 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7385 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7386 BFD_RELOC_X86_64_TLSGD },
40fb9820 7387 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7388 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7389 _dummy_first_bfd_reloc_code_real },
40fb9820 7390 OPERAND_TYPE_NONE },
cff8d58a
L
7391 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7392 BFD_RELOC_X86_64_TLSLD },
40fb9820 7393 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7394 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7395 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7396 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7397 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7398 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7399 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7400 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7401 _dummy_first_bfd_reloc_code_real },
40fb9820 7402 OPERAND_TYPE_NONE },
cff8d58a
L
7403 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7404 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7405 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7406 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7407 _dummy_first_bfd_reloc_code_real },
40fb9820 7408 OPERAND_TYPE_NONE },
cff8d58a
L
7409 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7410 _dummy_first_bfd_reloc_code_real },
40fb9820 7411 OPERAND_TYPE_NONE },
cff8d58a
L
7412 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7413 BFD_RELOC_X86_64_GOT32 },
40fb9820 7414 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7415 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7416 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7417 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7418 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7419 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7420 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7421 };
7422 char *cp;
7423 unsigned int j;
7424
d382c579 7425#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7426 if (!IS_ELF)
7427 return NULL;
d382c579 7428#endif
718ddfc0 7429
f3c180ae 7430 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7431 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7432 return NULL;
7433
47465058 7434 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7435 {
cff8d58a 7436 int len = gotrel[j].len;
28f81592 7437 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7438 {
4fa24527 7439 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7440 {
28f81592
AM
7441 int first, second;
7442 char *tmpbuf, *past_reloc;
f3c180ae 7443
91d6fa6a 7444 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7445
3956db08
JB
7446 if (types)
7447 {
7448 if (flag_code != CODE_64BIT)
40fb9820
L
7449 {
7450 types->bitfield.imm32 = 1;
7451 types->bitfield.disp32 = 1;
7452 }
3956db08
JB
7453 else
7454 *types = gotrel[j].types64;
7455 }
7456
8fd4256d 7457 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7458 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7459
28f81592 7460 /* The length of the first part of our input line. */
f3c180ae 7461 first = cp - input_line_pointer;
28f81592
AM
7462
7463 /* The second part goes from after the reloc token until
67c11a9b 7464 (and including) an end_of_line char or comma. */
28f81592 7465 past_reloc = cp + 1 + len;
67c11a9b
AM
7466 cp = past_reloc;
7467 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7468 ++cp;
7469 second = cp + 1 - past_reloc;
28f81592
AM
7470
7471 /* Allocate and copy string. The trailing NUL shouldn't
7472 be necessary, but be safe. */
1e9cc1c2 7473 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 7474 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7475 if (second != 0 && *past_reloc != ' ')
7476 /* Replace the relocation token with ' ', so that
7477 errors like foo@GOTOFF1 will be detected. */
7478 tmpbuf[first++] = ' ';
af89796a
L
7479 else
7480 /* Increment length by 1 if the relocation token is
7481 removed. */
7482 len++;
7483 if (adjust)
7484 *adjust = len;
0787a12d
AM
7485 memcpy (tmpbuf + first, past_reloc, second);
7486 tmpbuf[first + second] = '\0';
f3c180ae
AM
7487 return tmpbuf;
7488 }
7489
4fa24527
JB
7490 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7491 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7492 return NULL;
7493 }
7494 }
7495
7496 /* Might be a symbol version string. Don't as_bad here. */
7497 return NULL;
7498}
4e4f7c87 7499#endif
f3c180ae 7500
a988325c
NC
7501#ifdef TE_PE
7502#ifdef lex_got
7503#undef lex_got
7504#endif
7505/* Parse operands of the form
7506 <symbol>@SECREL32+<nnn>
7507
7508 If we find one, set up the correct relocation in RELOC and copy the
7509 input string, minus the `@SECREL32' into a malloc'd buffer for
7510 parsing by the calling routine. Return this buffer, and if ADJUST
7511 is non-null set it to the length of the string we removed from the
34bca508
L
7512 input line. Otherwise return NULL.
7513
a988325c
NC
7514 This function is copied from the ELF version above adjusted for PE targets. */
7515
7516static char *
7517lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7518 int *adjust ATTRIBUTE_UNUSED,
7519 i386_operand_type *types ATTRIBUTE_UNUSED)
7520{
7521 static const struct
7522 {
7523 const char *str;
7524 int len;
7525 const enum bfd_reloc_code_real rel[2];
7526 const i386_operand_type types64;
7527 }
7528 gotrel[] =
7529 {
7530 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7531 BFD_RELOC_32_SECREL },
7532 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7533 };
7534
7535 char *cp;
7536 unsigned j;
7537
7538 for (cp = input_line_pointer; *cp != '@'; cp++)
7539 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7540 return NULL;
7541
7542 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7543 {
7544 int len = gotrel[j].len;
7545
7546 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7547 {
7548 if (gotrel[j].rel[object_64bit] != 0)
7549 {
7550 int first, second;
7551 char *tmpbuf, *past_reloc;
7552
7553 *rel = gotrel[j].rel[object_64bit];
7554 if (adjust)
7555 *adjust = len;
7556
7557 if (types)
7558 {
7559 if (flag_code != CODE_64BIT)
7560 {
7561 types->bitfield.imm32 = 1;
7562 types->bitfield.disp32 = 1;
7563 }
7564 else
7565 *types = gotrel[j].types64;
7566 }
7567
7568 /* The length of the first part of our input line. */
7569 first = cp - input_line_pointer;
7570
7571 /* The second part goes from after the reloc token until
7572 (and including) an end_of_line char or comma. */
7573 past_reloc = cp + 1 + len;
7574 cp = past_reloc;
7575 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7576 ++cp;
7577 second = cp + 1 - past_reloc;
7578
7579 /* Allocate and copy string. The trailing NUL shouldn't
7580 be necessary, but be safe. */
7581 tmpbuf = (char *) xmalloc (first + second + 2);
7582 memcpy (tmpbuf, input_line_pointer, first);
7583 if (second != 0 && *past_reloc != ' ')
7584 /* Replace the relocation token with ' ', so that
7585 errors like foo@SECLREL321 will be detected. */
7586 tmpbuf[first++] = ' ';
7587 memcpy (tmpbuf + first, past_reloc, second);
7588 tmpbuf[first + second] = '\0';
7589 return tmpbuf;
7590 }
7591
7592 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7593 gotrel[j].str, 1 << (5 + object_64bit));
7594 return NULL;
7595 }
7596 }
7597
7598 /* Might be a symbol version string. Don't as_bad here. */
7599 return NULL;
7600}
7601
7602#endif /* TE_PE */
7603
f3c180ae 7604void
e3bb37b5 7605x86_cons (expressionS *exp, int size)
f3c180ae 7606{
ee86248c
JB
7607 intel_syntax = -intel_syntax;
7608
3c7b9c2c 7609 exp->X_md = 0;
4fa24527 7610 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
7611 {
7612 /* Handle @GOTOFF and the like in an expression. */
7613 char *save;
7614 char *gotfree_input_line;
4a57f2cf 7615 int adjust = 0;
f3c180ae
AM
7616
7617 save = input_line_pointer;
3956db08 7618 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
7619 if (gotfree_input_line)
7620 input_line_pointer = gotfree_input_line;
7621
7622 expression (exp);
7623
7624 if (gotfree_input_line)
7625 {
7626 /* expression () has merrily parsed up to the end of line,
7627 or a comma - in the wrong buffer. Transfer how far
7628 input_line_pointer has moved to the right buffer. */
7629 input_line_pointer = (save
7630 + (input_line_pointer - gotfree_input_line)
7631 + adjust);
7632 free (gotfree_input_line);
3992d3b7
AM
7633 if (exp->X_op == O_constant
7634 || exp->X_op == O_absent
7635 || exp->X_op == O_illegal
0398aac5 7636 || exp->X_op == O_register
3992d3b7
AM
7637 || exp->X_op == O_big)
7638 {
7639 char c = *input_line_pointer;
7640 *input_line_pointer = 0;
7641 as_bad (_("missing or invalid expression `%s'"), save);
7642 *input_line_pointer = c;
7643 }
f3c180ae
AM
7644 }
7645 }
7646 else
7647 expression (exp);
ee86248c
JB
7648
7649 intel_syntax = -intel_syntax;
7650
7651 if (intel_syntax)
7652 i386_intel_simplify (exp);
f3c180ae 7653}
f3c180ae 7654
9f32dd5b
L
7655static void
7656signed_cons (int size)
6482c264 7657{
d182319b
JB
7658 if (flag_code == CODE_64BIT)
7659 cons_sign = 1;
7660 cons (size);
7661 cons_sign = -1;
6482c264
NC
7662}
7663
d182319b 7664#ifdef TE_PE
6482c264 7665static void
7016a5d5 7666pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
7667{
7668 expressionS exp;
7669
7670 do
7671 {
7672 expression (&exp);
7673 if (exp.X_op == O_symbol)
7674 exp.X_op = O_secrel;
7675
7676 emit_expr (&exp, 4);
7677 }
7678 while (*input_line_pointer++ == ',');
7679
7680 input_line_pointer--;
7681 demand_empty_rest_of_line ();
7682}
6482c264
NC
7683#endif
7684
43234a1e
L
7685/* Handle Vector operations. */
7686
7687static char *
7688check_VecOperations (char *op_string, char *op_end)
7689{
7690 const reg_entry *mask;
7691 const char *saved;
7692 char *end_op;
7693
7694 while (*op_string
7695 && (op_end == NULL || op_string < op_end))
7696 {
7697 saved = op_string;
7698 if (*op_string == '{')
7699 {
7700 op_string++;
7701
7702 /* Check broadcasts. */
7703 if (strncmp (op_string, "1to", 3) == 0)
7704 {
7705 int bcst_type;
7706
7707 if (i.broadcast)
7708 goto duplicated_vec_op;
7709
7710 op_string += 3;
7711 if (*op_string == '8')
7712 bcst_type = BROADCAST_1TO8;
7713 else if (*op_string == '1'
7714 && *(op_string+1) == '6')
7715 {
7716 bcst_type = BROADCAST_1TO16;
7717 op_string++;
7718 }
7719 else
7720 {
7721 as_bad (_("Unsupported broadcast: `%s'"), saved);
7722 return NULL;
7723 }
7724 op_string++;
7725
7726 broadcast_op.type = bcst_type;
7727 broadcast_op.operand = this_operand;
7728 i.broadcast = &broadcast_op;
7729 }
7730 /* Check masking operation. */
7731 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7732 {
7733 /* k0 can't be used for write mask. */
7734 if (mask->reg_num == 0)
7735 {
7736 as_bad (_("`%s' can't be used for write mask"),
7737 op_string);
7738 return NULL;
7739 }
7740
7741 if (!i.mask)
7742 {
7743 mask_op.mask = mask;
7744 mask_op.zeroing = 0;
7745 mask_op.operand = this_operand;
7746 i.mask = &mask_op;
7747 }
7748 else
7749 {
7750 if (i.mask->mask)
7751 goto duplicated_vec_op;
7752
7753 i.mask->mask = mask;
7754
7755 /* Only "{z}" is allowed here. No need to check
7756 zeroing mask explicitly. */
7757 if (i.mask->operand != this_operand)
7758 {
7759 as_bad (_("invalid write mask `%s'"), saved);
7760 return NULL;
7761 }
7762 }
7763
7764 op_string = end_op;
7765 }
7766 /* Check zeroing-flag for masking operation. */
7767 else if (*op_string == 'z')
7768 {
7769 if (!i.mask)
7770 {
7771 mask_op.mask = NULL;
7772 mask_op.zeroing = 1;
7773 mask_op.operand = this_operand;
7774 i.mask = &mask_op;
7775 }
7776 else
7777 {
7778 if (i.mask->zeroing)
7779 {
7780 duplicated_vec_op:
7781 as_bad (_("duplicated `%s'"), saved);
7782 return NULL;
7783 }
7784
7785 i.mask->zeroing = 1;
7786
7787 /* Only "{%k}" is allowed here. No need to check mask
7788 register explicitly. */
7789 if (i.mask->operand != this_operand)
7790 {
7791 as_bad (_("invalid zeroing-masking `%s'"),
7792 saved);
7793 return NULL;
7794 }
7795 }
7796
7797 op_string++;
7798 }
7799 else
7800 goto unknown_vec_op;
7801
7802 if (*op_string != '}')
7803 {
7804 as_bad (_("missing `}' in `%s'"), saved);
7805 return NULL;
7806 }
7807 op_string++;
7808 continue;
7809 }
7810 unknown_vec_op:
7811 /* We don't know this one. */
7812 as_bad (_("unknown vector operation: `%s'"), saved);
7813 return NULL;
7814 }
7815
7816 return op_string;
7817}
7818
252b5132 7819static int
70e41ade 7820i386_immediate (char *imm_start)
252b5132
RH
7821{
7822 char *save_input_line_pointer;
f3c180ae 7823 char *gotfree_input_line;
252b5132 7824 segT exp_seg = 0;
47926f60 7825 expressionS *exp;
40fb9820
L
7826 i386_operand_type types;
7827
0dfbf9d7 7828 operand_type_set (&types, ~0);
252b5132
RH
7829
7830 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7831 {
31b2323c
L
7832 as_bad (_("at most %d immediate operands are allowed"),
7833 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
7834 return 0;
7835 }
7836
7837 exp = &im_expressions[i.imm_operands++];
520dc8e8 7838 i.op[this_operand].imms = exp;
252b5132
RH
7839
7840 if (is_space_char (*imm_start))
7841 ++imm_start;
7842
7843 save_input_line_pointer = input_line_pointer;
7844 input_line_pointer = imm_start;
7845
3956db08 7846 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
7847 if (gotfree_input_line)
7848 input_line_pointer = gotfree_input_line;
252b5132
RH
7849
7850 exp_seg = expression (exp);
7851
83183c0c 7852 SKIP_WHITESPACE ();
43234a1e
L
7853
7854 /* Handle vector operations. */
7855 if (*input_line_pointer == '{')
7856 {
7857 input_line_pointer = check_VecOperations (input_line_pointer,
7858 NULL);
7859 if (input_line_pointer == NULL)
7860 return 0;
7861 }
7862
252b5132 7863 if (*input_line_pointer)
f3c180ae 7864 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
7865
7866 input_line_pointer = save_input_line_pointer;
f3c180ae 7867 if (gotfree_input_line)
ee86248c
JB
7868 {
7869 free (gotfree_input_line);
7870
7871 if (exp->X_op == O_constant || exp->X_op == O_register)
7872 exp->X_op = O_illegal;
7873 }
7874
7875 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7876}
252b5132 7877
ee86248c
JB
7878static int
7879i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7880 i386_operand_type types, const char *imm_start)
7881{
7882 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 7883 {
313c53d1
L
7884 if (imm_start)
7885 as_bad (_("missing or invalid immediate expression `%s'"),
7886 imm_start);
3992d3b7 7887 return 0;
252b5132 7888 }
3e73aa7c 7889 else if (exp->X_op == O_constant)
252b5132 7890 {
47926f60 7891 /* Size it properly later. */
40fb9820 7892 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
7893 /* If not 64bit, sign extend val. */
7894 if (flag_code != CODE_64BIT
4eed87de
AM
7895 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7896 exp->X_add_number
7897 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 7898 }
4c63da97 7899#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 7900 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 7901 && exp_seg != absolute_section
47926f60 7902 && exp_seg != text_section
24eab124
AM
7903 && exp_seg != data_section
7904 && exp_seg != bss_section
7905 && exp_seg != undefined_section
f86103b7 7906 && !bfd_is_com_section (exp_seg))
252b5132 7907 {
d0b47220 7908 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
7909 return 0;
7910 }
7911#endif
bb8f5920
L
7912 else if (!intel_syntax && exp->X_op == O_register)
7913 {
313c53d1
L
7914 if (imm_start)
7915 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
7916 return 0;
7917 }
252b5132
RH
7918 else
7919 {
7920 /* This is an address. The size of the address will be
24eab124 7921 determined later, depending on destination register,
3e73aa7c 7922 suffix, or the default for the section. */
40fb9820
L
7923 i.types[this_operand].bitfield.imm8 = 1;
7924 i.types[this_operand].bitfield.imm16 = 1;
7925 i.types[this_operand].bitfield.imm32 = 1;
7926 i.types[this_operand].bitfield.imm32s = 1;
7927 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
7928 i.types[this_operand] = operand_type_and (i.types[this_operand],
7929 types);
252b5132
RH
7930 }
7931
7932 return 1;
7933}
7934
551c1ca1 7935static char *
e3bb37b5 7936i386_scale (char *scale)
252b5132 7937{
551c1ca1
AM
7938 offsetT val;
7939 char *save = input_line_pointer;
252b5132 7940
551c1ca1
AM
7941 input_line_pointer = scale;
7942 val = get_absolute_expression ();
7943
7944 switch (val)
252b5132 7945 {
551c1ca1 7946 case 1:
252b5132
RH
7947 i.log2_scale_factor = 0;
7948 break;
551c1ca1 7949 case 2:
252b5132
RH
7950 i.log2_scale_factor = 1;
7951 break;
551c1ca1 7952 case 4:
252b5132
RH
7953 i.log2_scale_factor = 2;
7954 break;
551c1ca1 7955 case 8:
252b5132
RH
7956 i.log2_scale_factor = 3;
7957 break;
7958 default:
a724f0f4
JB
7959 {
7960 char sep = *input_line_pointer;
7961
7962 *input_line_pointer = '\0';
7963 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7964 scale);
7965 *input_line_pointer = sep;
7966 input_line_pointer = save;
7967 return NULL;
7968 }
252b5132 7969 }
29b0f896 7970 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
7971 {
7972 as_warn (_("scale factor of %d without an index register"),
24eab124 7973 1 << i.log2_scale_factor);
252b5132 7974 i.log2_scale_factor = 0;
252b5132 7975 }
551c1ca1
AM
7976 scale = input_line_pointer;
7977 input_line_pointer = save;
7978 return scale;
252b5132
RH
7979}
7980
252b5132 7981static int
e3bb37b5 7982i386_displacement (char *disp_start, char *disp_end)
252b5132 7983{
29b0f896 7984 expressionS *exp;
252b5132
RH
7985 segT exp_seg = 0;
7986 char *save_input_line_pointer;
f3c180ae 7987 char *gotfree_input_line;
40fb9820
L
7988 int override;
7989 i386_operand_type bigdisp, types = anydisp;
3992d3b7 7990 int ret;
252b5132 7991
31b2323c
L
7992 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7993 {
7994 as_bad (_("at most %d displacement operands are allowed"),
7995 MAX_MEMORY_OPERANDS);
7996 return 0;
7997 }
7998
0dfbf9d7 7999 operand_type_set (&bigdisp, 0);
40fb9820
L
8000 if ((i.types[this_operand].bitfield.jumpabsolute)
8001 || (!current_templates->start->opcode_modifier.jump
8002 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8003 {
40fb9820 8004 bigdisp.bitfield.disp32 = 1;
e05278af 8005 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8006 if (flag_code == CODE_64BIT)
8007 {
8008 if (!override)
8009 {
8010 bigdisp.bitfield.disp32s = 1;
8011 bigdisp.bitfield.disp64 = 1;
8012 }
8013 }
8014 else if ((flag_code == CODE_16BIT) ^ override)
8015 {
8016 bigdisp.bitfield.disp32 = 0;
8017 bigdisp.bitfield.disp16 = 1;
8018 }
e05278af
JB
8019 }
8020 else
8021 {
8022 /* For PC-relative branches, the width of the displacement
8023 is dependent upon data size, not address size. */
e05278af 8024 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8025 if (flag_code == CODE_64BIT)
8026 {
8027 if (override || i.suffix == WORD_MNEM_SUFFIX)
8028 bigdisp.bitfield.disp16 = 1;
8029 else
8030 {
8031 bigdisp.bitfield.disp32 = 1;
8032 bigdisp.bitfield.disp32s = 1;
8033 }
8034 }
8035 else
e05278af
JB
8036 {
8037 if (!override)
8038 override = (i.suffix == (flag_code != CODE_16BIT
8039 ? WORD_MNEM_SUFFIX
8040 : LONG_MNEM_SUFFIX));
40fb9820
L
8041 bigdisp.bitfield.disp32 = 1;
8042 if ((flag_code == CODE_16BIT) ^ override)
8043 {
8044 bigdisp.bitfield.disp32 = 0;
8045 bigdisp.bitfield.disp16 = 1;
8046 }
e05278af 8047 }
e05278af 8048 }
c6fb90c8
L
8049 i.types[this_operand] = operand_type_or (i.types[this_operand],
8050 bigdisp);
252b5132
RH
8051
8052 exp = &disp_expressions[i.disp_operands];
520dc8e8 8053 i.op[this_operand].disps = exp;
252b5132
RH
8054 i.disp_operands++;
8055 save_input_line_pointer = input_line_pointer;
8056 input_line_pointer = disp_start;
8057 END_STRING_AND_SAVE (disp_end);
8058
8059#ifndef GCC_ASM_O_HACK
8060#define GCC_ASM_O_HACK 0
8061#endif
8062#if GCC_ASM_O_HACK
8063 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8064 if (i.types[this_operand].bitfield.baseIndex
24eab124 8065 && displacement_string_end[-1] == '+')
252b5132
RH
8066 {
8067 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8068 constraint within gcc asm statements.
8069 For instance:
8070
8071 #define _set_tssldt_desc(n,addr,limit,type) \
8072 __asm__ __volatile__ ( \
8073 "movw %w2,%0\n\t" \
8074 "movw %w1,2+%0\n\t" \
8075 "rorl $16,%1\n\t" \
8076 "movb %b1,4+%0\n\t" \
8077 "movb %4,5+%0\n\t" \
8078 "movb $0,6+%0\n\t" \
8079 "movb %h1,7+%0\n\t" \
8080 "rorl $16,%1" \
8081 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8082
8083 This works great except that the output assembler ends
8084 up looking a bit weird if it turns out that there is
8085 no offset. You end up producing code that looks like:
8086
8087 #APP
8088 movw $235,(%eax)
8089 movw %dx,2+(%eax)
8090 rorl $16,%edx
8091 movb %dl,4+(%eax)
8092 movb $137,5+(%eax)
8093 movb $0,6+(%eax)
8094 movb %dh,7+(%eax)
8095 rorl $16,%edx
8096 #NO_APP
8097
47926f60 8098 So here we provide the missing zero. */
24eab124
AM
8099
8100 *displacement_string_end = '0';
252b5132
RH
8101 }
8102#endif
3956db08 8103 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8104 if (gotfree_input_line)
8105 input_line_pointer = gotfree_input_line;
252b5132 8106
24eab124 8107 exp_seg = expression (exp);
252b5132 8108
636c26b0
AM
8109 SKIP_WHITESPACE ();
8110 if (*input_line_pointer)
8111 as_bad (_("junk `%s' after expression"), input_line_pointer);
8112#if GCC_ASM_O_HACK
8113 RESTORE_END_STRING (disp_end + 1);
8114#endif
636c26b0 8115 input_line_pointer = save_input_line_pointer;
636c26b0 8116 if (gotfree_input_line)
ee86248c
JB
8117 {
8118 free (gotfree_input_line);
8119
8120 if (exp->X_op == O_constant || exp->X_op == O_register)
8121 exp->X_op = O_illegal;
8122 }
8123
8124 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8125
8126 RESTORE_END_STRING (disp_end);
8127
8128 return ret;
8129}
8130
8131static int
8132i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8133 i386_operand_type types, const char *disp_start)
8134{
8135 i386_operand_type bigdisp;
8136 int ret = 1;
636c26b0 8137
24eab124
AM
8138 /* We do this to make sure that the section symbol is in
8139 the symbol table. We will ultimately change the relocation
47926f60 8140 to be relative to the beginning of the section. */
1ae12ab7 8141 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8142 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8143 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8144 {
636c26b0 8145 if (exp->X_op != O_symbol)
3992d3b7 8146 goto inv_disp;
636c26b0 8147
e5cb08ac 8148 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8149 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8150 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8151 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8152 exp->X_op = O_subtract;
8153 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8154 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8155 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8156 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8157 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8158 else
29b0f896 8159 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8160 }
252b5132 8161
3992d3b7
AM
8162 else if (exp->X_op == O_absent
8163 || exp->X_op == O_illegal
ee86248c 8164 || exp->X_op == O_big)
2daf4fd8 8165 {
3992d3b7
AM
8166 inv_disp:
8167 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8168 disp_start);
3992d3b7 8169 ret = 0;
2daf4fd8
AM
8170 }
8171
0e1147d9
L
8172 else if (flag_code == CODE_64BIT
8173 && !i.prefix[ADDR_PREFIX]
8174 && exp->X_op == O_constant)
8175 {
8176 /* Since displacement is signed extended to 64bit, don't allow
8177 disp32 and turn off disp32s if they are out of range. */
8178 i.types[this_operand].bitfield.disp32 = 0;
8179 if (!fits_in_signed_long (exp->X_add_number))
8180 {
8181 i.types[this_operand].bitfield.disp32s = 0;
8182 if (i.types[this_operand].bitfield.baseindex)
8183 {
8184 as_bad (_("0x%lx out range of signed 32bit displacement"),
8185 (long) exp->X_add_number);
8186 ret = 0;
8187 }
8188 }
8189 }
8190
4c63da97 8191#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8192 else if (exp->X_op != O_constant
8193 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8194 && exp_seg != absolute_section
8195 && exp_seg != text_section
8196 && exp_seg != data_section
8197 && exp_seg != bss_section
8198 && exp_seg != undefined_section
8199 && !bfd_is_com_section (exp_seg))
24eab124 8200 {
d0b47220 8201 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8202 ret = 0;
24eab124 8203 }
252b5132 8204#endif
3956db08 8205
40fb9820
L
8206 /* Check if this is a displacement only operand. */
8207 bigdisp = i.types[this_operand];
8208 bigdisp.bitfield.disp8 = 0;
8209 bigdisp.bitfield.disp16 = 0;
8210 bigdisp.bitfield.disp32 = 0;
8211 bigdisp.bitfield.disp32s = 0;
8212 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8213 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8214 i.types[this_operand] = operand_type_and (i.types[this_operand],
8215 types);
3956db08 8216
3992d3b7 8217 return ret;
252b5132
RH
8218}
8219
eecb386c 8220/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8221 Return 1 on success, 0 on a failure. */
8222
252b5132 8223static int
e3bb37b5 8224i386_index_check (const char *operand_string)
252b5132 8225{
fc0763e6 8226 const char *kind = "base/index";
be05d201
L
8227 enum flag_code addr_mode;
8228
8229 if (i.prefix[ADDR_PREFIX])
8230 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8231 else
8232 {
8233 addr_mode = flag_code;
8234
24eab124 8235#if INFER_ADDR_PREFIX
be05d201
L
8236 if (i.mem_operands == 0)
8237 {
8238 /* Infer address prefix from the first memory operand. */
8239 const reg_entry *addr_reg = i.base_reg;
8240
8241 if (addr_reg == NULL)
8242 addr_reg = i.index_reg;
eecb386c 8243
be05d201
L
8244 if (addr_reg)
8245 {
8246 if (addr_reg->reg_num == RegEip
8247 || addr_reg->reg_num == RegEiz
8248 || addr_reg->reg_type.bitfield.reg32)
8249 addr_mode = CODE_32BIT;
8250 else if (flag_code != CODE_64BIT
8251 && addr_reg->reg_type.bitfield.reg16)
8252 addr_mode = CODE_16BIT;
8253
8254 if (addr_mode != flag_code)
8255 {
8256 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8257 i.prefixes += 1;
8258 /* Change the size of any displacement too. At most one
8259 of Disp16 or Disp32 is set.
8260 FIXME. There doesn't seem to be any real need for
8261 separate Disp16 and Disp32 flags. The same goes for
8262 Imm16 and Imm32. Removing them would probably clean
8263 up the code quite a lot. */
8264 if (flag_code != CODE_64BIT
8265 && (i.types[this_operand].bitfield.disp16
8266 || i.types[this_operand].bitfield.disp32))
8267 i.types[this_operand]
8268 = operand_type_xor (i.types[this_operand], disp16_32);
8269 }
8270 }
8271 }
24eab124 8272#endif
be05d201
L
8273 }
8274
fc0763e6
JB
8275 if (current_templates->start->opcode_modifier.isstring
8276 && !current_templates->start->opcode_modifier.immext
8277 && (current_templates->end[-1].opcode_modifier.isstring
8278 || i.mem_operands))
8279 {
8280 /* Memory operands of string insns are special in that they only allow
8281 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8282 const reg_entry *expected_reg;
8283 static const char *di_si[][2] =
8284 {
8285 { "esi", "edi" },
8286 { "si", "di" },
8287 { "rsi", "rdi" }
8288 };
8289 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8290
8291 kind = "string address";
8292
8293 if (current_templates->start->opcode_modifier.w)
8294 {
8295 i386_operand_type type = current_templates->end[-1].operand_types[0];
8296
8297 if (!type.bitfield.baseindex
8298 || ((!i.mem_operands != !intel_syntax)
8299 && current_templates->end[-1].operand_types[1]
8300 .bitfield.baseindex))
8301 type = current_templates->end[-1].operand_types[1];
be05d201
L
8302 expected_reg = hash_find (reg_hash,
8303 di_si[addr_mode][type.bitfield.esseg]);
8304
fc0763e6
JB
8305 }
8306 else
be05d201 8307 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8308
be05d201
L
8309 if (i.base_reg != expected_reg
8310 || i.index_reg
fc0763e6 8311 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8312 {
be05d201
L
8313 /* The second memory operand must have the same size as
8314 the first one. */
8315 if (i.mem_operands
8316 && i.base_reg
8317 && !((addr_mode == CODE_64BIT
8318 && i.base_reg->reg_type.bitfield.reg64)
8319 || (addr_mode == CODE_32BIT
8320 ? i.base_reg->reg_type.bitfield.reg32
8321 : i.base_reg->reg_type.bitfield.reg16)))
8322 goto bad_address;
8323
fc0763e6
JB
8324 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8325 operand_string,
8326 intel_syntax ? '[' : '(',
8327 register_prefix,
be05d201 8328 expected_reg->reg_name,
fc0763e6 8329 intel_syntax ? ']' : ')');
be05d201 8330 return 1;
fc0763e6 8331 }
be05d201
L
8332 else
8333 return 1;
8334
8335bad_address:
8336 as_bad (_("`%s' is not a valid %s expression"),
8337 operand_string, kind);
8338 return 0;
3e73aa7c
JH
8339 }
8340 else
8341 {
be05d201
L
8342 if (addr_mode != CODE_16BIT)
8343 {
8344 /* 32-bit/64-bit checks. */
8345 if ((i.base_reg
8346 && (addr_mode == CODE_64BIT
8347 ? !i.base_reg->reg_type.bitfield.reg64
8348 : !i.base_reg->reg_type.bitfield.reg32)
8349 && (i.index_reg
8350 || (i.base_reg->reg_num
8351 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8352 || (i.index_reg
8353 && !i.index_reg->reg_type.bitfield.regxmm
8354 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8355 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8356 && ((addr_mode == CODE_64BIT
8357 ? !(i.index_reg->reg_type.bitfield.reg64
8358 || i.index_reg->reg_num == RegRiz)
8359 : !(i.index_reg->reg_type.bitfield.reg32
8360 || i.index_reg->reg_num == RegEiz))
8361 || !i.index_reg->reg_type.bitfield.baseindex)))
8362 goto bad_address;
8363 }
8364 else
3e73aa7c 8365 {
be05d201 8366 /* 16-bit checks. */
3e73aa7c 8367 if ((i.base_reg
40fb9820
L
8368 && (!i.base_reg->reg_type.bitfield.reg16
8369 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8370 || (i.index_reg
40fb9820
L
8371 && (!i.index_reg->reg_type.bitfield.reg16
8372 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8373 || !(i.base_reg
8374 && i.base_reg->reg_num < 6
8375 && i.index_reg->reg_num >= 6
8376 && i.log2_scale_factor == 0))))
be05d201 8377 goto bad_address;
3e73aa7c
JH
8378 }
8379 }
be05d201 8380 return 1;
24eab124 8381}
252b5132 8382
43234a1e
L
8383/* Handle vector immediates. */
8384
8385static int
8386RC_SAE_immediate (const char *imm_start)
8387{
8388 unsigned int match_found, j;
8389 const char *pstr = imm_start;
8390 expressionS *exp;
8391
8392 if (*pstr != '{')
8393 return 0;
8394
8395 pstr++;
8396 match_found = 0;
8397 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8398 {
8399 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8400 {
8401 if (!i.rounding)
8402 {
8403 rc_op.type = RC_NamesTable[j].type;
8404 rc_op.operand = this_operand;
8405 i.rounding = &rc_op;
8406 }
8407 else
8408 {
8409 as_bad (_("duplicated `%s'"), imm_start);
8410 return 0;
8411 }
8412 pstr += RC_NamesTable[j].len;
8413 match_found = 1;
8414 break;
8415 }
8416 }
8417 if (!match_found)
8418 return 0;
8419
8420 if (*pstr++ != '}')
8421 {
8422 as_bad (_("Missing '}': '%s'"), imm_start);
8423 return 0;
8424 }
8425 /* RC/SAE immediate string should contain nothing more. */;
8426 if (*pstr != 0)
8427 {
8428 as_bad (_("Junk after '}': '%s'"), imm_start);
8429 return 0;
8430 }
8431
8432 exp = &im_expressions[i.imm_operands++];
8433 i.op[this_operand].imms = exp;
8434
8435 exp->X_op = O_constant;
8436 exp->X_add_number = 0;
8437 exp->X_add_symbol = (symbolS *) 0;
8438 exp->X_op_symbol = (symbolS *) 0;
8439
8440 i.types[this_operand].bitfield.imm8 = 1;
8441 return 1;
8442}
8443
fc0763e6 8444/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8445 on error. */
252b5132 8446
252b5132 8447static int
a7619375 8448i386_att_operand (char *operand_string)
252b5132 8449{
af6bdddf
AM
8450 const reg_entry *r;
8451 char *end_op;
24eab124 8452 char *op_string = operand_string;
252b5132 8453
24eab124 8454 if (is_space_char (*op_string))
252b5132
RH
8455 ++op_string;
8456
24eab124 8457 /* We check for an absolute prefix (differentiating,
47926f60 8458 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8459 if (*op_string == ABSOLUTE_PREFIX)
8460 {
8461 ++op_string;
8462 if (is_space_char (*op_string))
8463 ++op_string;
40fb9820 8464 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8465 }
252b5132 8466
47926f60 8467 /* Check if operand is a register. */
4d1bb795 8468 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8469 {
40fb9820
L
8470 i386_operand_type temp;
8471
24eab124
AM
8472 /* Check for a segment override by searching for ':' after a
8473 segment register. */
8474 op_string = end_op;
8475 if (is_space_char (*op_string))
8476 ++op_string;
40fb9820
L
8477 if (*op_string == ':'
8478 && (r->reg_type.bitfield.sreg2
8479 || r->reg_type.bitfield.sreg3))
24eab124
AM
8480 {
8481 switch (r->reg_num)
8482 {
8483 case 0:
8484 i.seg[i.mem_operands] = &es;
8485 break;
8486 case 1:
8487 i.seg[i.mem_operands] = &cs;
8488 break;
8489 case 2:
8490 i.seg[i.mem_operands] = &ss;
8491 break;
8492 case 3:
8493 i.seg[i.mem_operands] = &ds;
8494 break;
8495 case 4:
8496 i.seg[i.mem_operands] = &fs;
8497 break;
8498 case 5:
8499 i.seg[i.mem_operands] = &gs;
8500 break;
8501 }
252b5132 8502
24eab124 8503 /* Skip the ':' and whitespace. */
252b5132
RH
8504 ++op_string;
8505 if (is_space_char (*op_string))
24eab124 8506 ++op_string;
252b5132 8507
24eab124
AM
8508 if (!is_digit_char (*op_string)
8509 && !is_identifier_char (*op_string)
8510 && *op_string != '('
8511 && *op_string != ABSOLUTE_PREFIX)
8512 {
8513 as_bad (_("bad memory operand `%s'"), op_string);
8514 return 0;
8515 }
47926f60 8516 /* Handle case of %es:*foo. */
24eab124
AM
8517 if (*op_string == ABSOLUTE_PREFIX)
8518 {
8519 ++op_string;
8520 if (is_space_char (*op_string))
8521 ++op_string;
40fb9820 8522 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8523 }
8524 goto do_memory_reference;
8525 }
43234a1e
L
8526
8527 /* Handle vector operations. */
8528 if (*op_string == '{')
8529 {
8530 op_string = check_VecOperations (op_string, NULL);
8531 if (op_string == NULL)
8532 return 0;
8533 }
8534
24eab124
AM
8535 if (*op_string)
8536 {
d0b47220 8537 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
8538 return 0;
8539 }
40fb9820
L
8540 temp = r->reg_type;
8541 temp.bitfield.baseindex = 0;
c6fb90c8
L
8542 i.types[this_operand] = operand_type_or (i.types[this_operand],
8543 temp);
7d5e4556 8544 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 8545 i.op[this_operand].regs = r;
24eab124
AM
8546 i.reg_operands++;
8547 }
af6bdddf
AM
8548 else if (*op_string == REGISTER_PREFIX)
8549 {
8550 as_bad (_("bad register name `%s'"), op_string);
8551 return 0;
8552 }
24eab124 8553 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 8554 {
24eab124 8555 ++op_string;
40fb9820 8556 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 8557 {
d0b47220 8558 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
8559 return 0;
8560 }
8561 if (!i386_immediate (op_string))
8562 return 0;
8563 }
43234a1e
L
8564 else if (RC_SAE_immediate (operand_string))
8565 {
8566 /* If it is a RC or SAE immediate, do nothing. */
8567 ;
8568 }
24eab124
AM
8569 else if (is_digit_char (*op_string)
8570 || is_identifier_char (*op_string)
e5cb08ac 8571 || *op_string == '(')
24eab124 8572 {
47926f60 8573 /* This is a memory reference of some sort. */
af6bdddf 8574 char *base_string;
252b5132 8575
47926f60 8576 /* Start and end of displacement string expression (if found). */
eecb386c
AM
8577 char *displacement_string_start;
8578 char *displacement_string_end;
43234a1e 8579 char *vop_start;
252b5132 8580
24eab124 8581 do_memory_reference:
24eab124 8582 if ((i.mem_operands == 1
40fb9820 8583 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
8584 || i.mem_operands == 2)
8585 {
8586 as_bad (_("too many memory references for `%s'"),
8587 current_templates->start->name);
8588 return 0;
8589 }
252b5132 8590
24eab124
AM
8591 /* Check for base index form. We detect the base index form by
8592 looking for an ')' at the end of the operand, searching
8593 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8594 after the '('. */
af6bdddf 8595 base_string = op_string + strlen (op_string);
c3332e24 8596
43234a1e
L
8597 /* Handle vector operations. */
8598 vop_start = strchr (op_string, '{');
8599 if (vop_start && vop_start < base_string)
8600 {
8601 if (check_VecOperations (vop_start, base_string) == NULL)
8602 return 0;
8603 base_string = vop_start;
8604 }
8605
af6bdddf
AM
8606 --base_string;
8607 if (is_space_char (*base_string))
8608 --base_string;
252b5132 8609
47926f60 8610 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
8611 displacement_string_start = op_string;
8612 displacement_string_end = base_string + 1;
252b5132 8613
24eab124
AM
8614 if (*base_string == ')')
8615 {
af6bdddf 8616 char *temp_string;
24eab124
AM
8617 unsigned int parens_balanced = 1;
8618 /* We've already checked that the number of left & right ()'s are
47926f60 8619 equal, so this loop will not be infinite. */
24eab124
AM
8620 do
8621 {
8622 base_string--;
8623 if (*base_string == ')')
8624 parens_balanced++;
8625 if (*base_string == '(')
8626 parens_balanced--;
8627 }
8628 while (parens_balanced);
c3332e24 8629
af6bdddf 8630 temp_string = base_string;
c3332e24 8631
24eab124 8632 /* Skip past '(' and whitespace. */
252b5132
RH
8633 ++base_string;
8634 if (is_space_char (*base_string))
24eab124 8635 ++base_string;
252b5132 8636
af6bdddf 8637 if (*base_string == ','
4eed87de
AM
8638 || ((i.base_reg = parse_register (base_string, &end_op))
8639 != NULL))
252b5132 8640 {
af6bdddf 8641 displacement_string_end = temp_string;
252b5132 8642
40fb9820 8643 i.types[this_operand].bitfield.baseindex = 1;
252b5132 8644
af6bdddf 8645 if (i.base_reg)
24eab124 8646 {
24eab124
AM
8647 base_string = end_op;
8648 if (is_space_char (*base_string))
8649 ++base_string;
af6bdddf
AM
8650 }
8651
8652 /* There may be an index reg or scale factor here. */
8653 if (*base_string == ',')
8654 {
8655 ++base_string;
8656 if (is_space_char (*base_string))
8657 ++base_string;
8658
4eed87de
AM
8659 if ((i.index_reg = parse_register (base_string, &end_op))
8660 != NULL)
24eab124 8661 {
af6bdddf 8662 base_string = end_op;
24eab124
AM
8663 if (is_space_char (*base_string))
8664 ++base_string;
af6bdddf
AM
8665 if (*base_string == ',')
8666 {
8667 ++base_string;
8668 if (is_space_char (*base_string))
8669 ++base_string;
8670 }
e5cb08ac 8671 else if (*base_string != ')')
af6bdddf 8672 {
4eed87de
AM
8673 as_bad (_("expecting `,' or `)' "
8674 "after index register in `%s'"),
af6bdddf
AM
8675 operand_string);
8676 return 0;
8677 }
24eab124 8678 }
af6bdddf 8679 else if (*base_string == REGISTER_PREFIX)
24eab124 8680 {
f76bf5e0
L
8681 end_op = strchr (base_string, ',');
8682 if (end_op)
8683 *end_op = '\0';
af6bdddf 8684 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
8685 return 0;
8686 }
252b5132 8687
47926f60 8688 /* Check for scale factor. */
551c1ca1 8689 if (*base_string != ')')
af6bdddf 8690 {
551c1ca1
AM
8691 char *end_scale = i386_scale (base_string);
8692
8693 if (!end_scale)
af6bdddf 8694 return 0;
24eab124 8695
551c1ca1 8696 base_string = end_scale;
af6bdddf
AM
8697 if (is_space_char (*base_string))
8698 ++base_string;
8699 if (*base_string != ')')
8700 {
4eed87de
AM
8701 as_bad (_("expecting `)' "
8702 "after scale factor in `%s'"),
af6bdddf
AM
8703 operand_string);
8704 return 0;
8705 }
8706 }
8707 else if (!i.index_reg)
24eab124 8708 {
4eed87de
AM
8709 as_bad (_("expecting index register or scale factor "
8710 "after `,'; got '%c'"),
af6bdddf 8711 *base_string);
24eab124
AM
8712 return 0;
8713 }
8714 }
af6bdddf 8715 else if (*base_string != ')')
24eab124 8716 {
4eed87de
AM
8717 as_bad (_("expecting `,' or `)' "
8718 "after base register in `%s'"),
af6bdddf 8719 operand_string);
24eab124
AM
8720 return 0;
8721 }
c3332e24 8722 }
af6bdddf 8723 else if (*base_string == REGISTER_PREFIX)
c3332e24 8724 {
f76bf5e0
L
8725 end_op = strchr (base_string, ',');
8726 if (end_op)
8727 *end_op = '\0';
af6bdddf 8728 as_bad (_("bad register name `%s'"), base_string);
24eab124 8729 return 0;
c3332e24 8730 }
24eab124
AM
8731 }
8732
8733 /* If there's an expression beginning the operand, parse it,
8734 assuming displacement_string_start and
8735 displacement_string_end are meaningful. */
8736 if (displacement_string_start != displacement_string_end)
8737 {
8738 if (!i386_displacement (displacement_string_start,
8739 displacement_string_end))
8740 return 0;
8741 }
8742
8743 /* Special case for (%dx) while doing input/output op. */
8744 if (i.base_reg
0dfbf9d7
L
8745 && operand_type_equal (&i.base_reg->reg_type,
8746 &reg16_inoutportreg)
24eab124
AM
8747 && i.index_reg == 0
8748 && i.log2_scale_factor == 0
8749 && i.seg[i.mem_operands] == 0
40fb9820 8750 && !operand_type_check (i.types[this_operand], disp))
24eab124 8751 {
65da13b5 8752 i.types[this_operand] = inoutportreg;
24eab124
AM
8753 return 1;
8754 }
8755
eecb386c
AM
8756 if (i386_index_check (operand_string) == 0)
8757 return 0;
5c07affc 8758 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
8759 i.mem_operands++;
8760 }
8761 else
ce8a8b2f
AM
8762 {
8763 /* It's not a memory operand; argh! */
24eab124
AM
8764 as_bad (_("invalid char %s beginning operand %d `%s'"),
8765 output_invalid (*op_string),
8766 this_operand + 1,
8767 op_string);
8768 return 0;
8769 }
47926f60 8770 return 1; /* Normal return. */
252b5132
RH
8771}
8772\f
fa94de6b
RM
8773/* Calculate the maximum variable size (i.e., excluding fr_fix)
8774 that an rs_machine_dependent frag may reach. */
8775
8776unsigned int
8777i386_frag_max_var (fragS *frag)
8778{
8779 /* The only relaxable frags are for jumps.
8780 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8781 gas_assert (frag->fr_type == rs_machine_dependent);
8782 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8783}
8784
ee7fcc42
AM
8785/* md_estimate_size_before_relax()
8786
8787 Called just before relax() for rs_machine_dependent frags. The x86
8788 assembler uses these frags to handle variable size jump
8789 instructions.
8790
8791 Any symbol that is now undefined will not become defined.
8792 Return the correct fr_subtype in the frag.
8793 Return the initial "guess for variable size of frag" to caller.
8794 The guess is actually the growth beyond the fixed part. Whatever
8795 we do to grow the fixed or variable part contributes to our
8796 returned value. */
8797
252b5132 8798int
7016a5d5 8799md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 8800{
252b5132 8801 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
8802 check for un-relaxable symbols. On an ELF system, we can't relax
8803 an externally visible symbol, because it may be overridden by a
8804 shared library. */
8805 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 8806#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8807 || (IS_ELF
31312f95 8808 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
8809 || S_IS_WEAK (fragP->fr_symbol)
8810 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8811 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
8812#endif
8813#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 8814 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 8815 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
8816#endif
8817 )
252b5132 8818 {
b98ef147
AM
8819 /* Symbol is undefined in this segment, or we need to keep a
8820 reloc so that weak symbols can be overridden. */
8821 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 8822 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
8823 unsigned char *opcode;
8824 int old_fr_fix;
f6af82bd 8825
ee7fcc42 8826 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 8827 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 8828 else if (size == 2)
f6af82bd
AM
8829 reloc_type = BFD_RELOC_16_PCREL;
8830 else
8831 reloc_type = BFD_RELOC_32_PCREL;
252b5132 8832
ee7fcc42
AM
8833 old_fr_fix = fragP->fr_fix;
8834 opcode = (unsigned char *) fragP->fr_opcode;
8835
fddf5b5b 8836 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 8837 {
fddf5b5b
AM
8838 case UNCOND_JUMP:
8839 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 8840 opcode[0] = 0xe9;
252b5132 8841 fragP->fr_fix += size;
062cd5e7
AS
8842 fix_new (fragP, old_fr_fix, size,
8843 fragP->fr_symbol,
8844 fragP->fr_offset, 1,
8845 reloc_type);
252b5132
RH
8846 break;
8847
fddf5b5b 8848 case COND_JUMP86:
412167cb
AM
8849 if (size == 2
8850 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
8851 {
8852 /* Negate the condition, and branch past an
8853 unconditional jump. */
8854 opcode[0] ^= 1;
8855 opcode[1] = 3;
8856 /* Insert an unconditional jump. */
8857 opcode[2] = 0xe9;
8858 /* We added two extra opcode bytes, and have a two byte
8859 offset. */
8860 fragP->fr_fix += 2 + 2;
062cd5e7
AS
8861 fix_new (fragP, old_fr_fix + 2, 2,
8862 fragP->fr_symbol,
8863 fragP->fr_offset, 1,
8864 reloc_type);
fddf5b5b
AM
8865 break;
8866 }
8867 /* Fall through. */
8868
8869 case COND_JUMP:
412167cb
AM
8870 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8871 {
3e02c1cc
AM
8872 fixS *fixP;
8873
412167cb 8874 fragP->fr_fix += 1;
3e02c1cc
AM
8875 fixP = fix_new (fragP, old_fr_fix, 1,
8876 fragP->fr_symbol,
8877 fragP->fr_offset, 1,
8878 BFD_RELOC_8_PCREL);
8879 fixP->fx_signed = 1;
412167cb
AM
8880 break;
8881 }
93c2a809 8882
24eab124 8883 /* This changes the byte-displacement jump 0x7N
fddf5b5b 8884 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 8885 opcode[1] = opcode[0] + 0x10;
f6af82bd 8886 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
8887 /* We've added an opcode byte. */
8888 fragP->fr_fix += 1 + size;
062cd5e7
AS
8889 fix_new (fragP, old_fr_fix + 1, size,
8890 fragP->fr_symbol,
8891 fragP->fr_offset, 1,
8892 reloc_type);
252b5132 8893 break;
fddf5b5b
AM
8894
8895 default:
8896 BAD_CASE (fragP->fr_subtype);
8897 break;
252b5132
RH
8898 }
8899 frag_wane (fragP);
ee7fcc42 8900 return fragP->fr_fix - old_fr_fix;
252b5132 8901 }
93c2a809 8902
93c2a809
AM
8903 /* Guess size depending on current relax state. Initially the relax
8904 state will correspond to a short jump and we return 1, because
8905 the variable part of the frag (the branch offset) is one byte
8906 long. However, we can relax a section more than once and in that
8907 case we must either set fr_subtype back to the unrelaxed state,
8908 or return the value for the appropriate branch. */
8909 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
8910}
8911
47926f60
KH
8912/* Called after relax() is finished.
8913
8914 In: Address of frag.
8915 fr_type == rs_machine_dependent.
8916 fr_subtype is what the address relaxed to.
8917
8918 Out: Any fixSs and constants are set up.
8919 Caller will turn frag into a ".space 0". */
8920
252b5132 8921void
7016a5d5
TG
8922md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8923 fragS *fragP)
252b5132 8924{
29b0f896 8925 unsigned char *opcode;
252b5132 8926 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
8927 offsetT target_address;
8928 offsetT opcode_address;
252b5132 8929 unsigned int extension = 0;
847f7ad4 8930 offsetT displacement_from_opcode_start;
252b5132
RH
8931
8932 opcode = (unsigned char *) fragP->fr_opcode;
8933
47926f60 8934 /* Address we want to reach in file space. */
252b5132 8935 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 8936
47926f60 8937 /* Address opcode resides at in file space. */
252b5132
RH
8938 opcode_address = fragP->fr_address + fragP->fr_fix;
8939
47926f60 8940 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
8941 displacement_from_opcode_start = target_address - opcode_address;
8942
fddf5b5b 8943 if ((fragP->fr_subtype & BIG) == 0)
252b5132 8944 {
47926f60
KH
8945 /* Don't have to change opcode. */
8946 extension = 1; /* 1 opcode + 1 displacement */
252b5132 8947 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
8948 }
8949 else
8950 {
8951 if (no_cond_jump_promotion
8952 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
8953 as_warn_where (fragP->fr_file, fragP->fr_line,
8954 _("long jump required"));
252b5132 8955
fddf5b5b
AM
8956 switch (fragP->fr_subtype)
8957 {
8958 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8959 extension = 4; /* 1 opcode + 4 displacement */
8960 opcode[0] = 0xe9;
8961 where_to_put_displacement = &opcode[1];
8962 break;
252b5132 8963
fddf5b5b
AM
8964 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8965 extension = 2; /* 1 opcode + 2 displacement */
8966 opcode[0] = 0xe9;
8967 where_to_put_displacement = &opcode[1];
8968 break;
252b5132 8969
fddf5b5b
AM
8970 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8971 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8972 extension = 5; /* 2 opcode + 4 displacement */
8973 opcode[1] = opcode[0] + 0x10;
8974 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8975 where_to_put_displacement = &opcode[2];
8976 break;
252b5132 8977
fddf5b5b
AM
8978 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8979 extension = 3; /* 2 opcode + 2 displacement */
8980 opcode[1] = opcode[0] + 0x10;
8981 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8982 where_to_put_displacement = &opcode[2];
8983 break;
252b5132 8984
fddf5b5b
AM
8985 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8986 extension = 4;
8987 opcode[0] ^= 1;
8988 opcode[1] = 3;
8989 opcode[2] = 0xe9;
8990 where_to_put_displacement = &opcode[3];
8991 break;
8992
8993 default:
8994 BAD_CASE (fragP->fr_subtype);
8995 break;
8996 }
252b5132 8997 }
fddf5b5b 8998
7b81dfbb
AJ
8999 /* If size if less then four we are sure that the operand fits,
9000 but if it's 4, then it could be that the displacement is larger
9001 then -/+ 2GB. */
9002 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9003 && object_64bit
9004 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9005 + ((addressT) 1 << 31))
9006 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9007 {
9008 as_bad_where (fragP->fr_file, fragP->fr_line,
9009 _("jump target out of range"));
9010 /* Make us emit 0. */
9011 displacement_from_opcode_start = extension;
9012 }
47926f60 9013 /* Now put displacement after opcode. */
252b5132
RH
9014 md_number_to_chars ((char *) where_to_put_displacement,
9015 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9016 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9017 fragP->fr_fix += extension;
9018}
9019\f
7016a5d5 9020/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9021 by our caller that we have all the info we need to fix it up.
9022
7016a5d5
TG
9023 Parameter valP is the pointer to the value of the bits.
9024
252b5132
RH
9025 On the 386, immediates, displacements, and data pointers are all in
9026 the same (little-endian) format, so we don't need to care about which
9027 we are handling. */
9028
94f592af 9029void
7016a5d5 9030md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9031{
94f592af 9032 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9033 valueT value = *valP;
252b5132 9034
f86103b7 9035#if !defined (TE_Mach)
93382f6d
AM
9036 if (fixP->fx_pcrel)
9037 {
9038 switch (fixP->fx_r_type)
9039 {
5865bb77
ILT
9040 default:
9041 break;
9042
d6ab8113
JB
9043 case BFD_RELOC_64:
9044 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9045 break;
93382f6d 9046 case BFD_RELOC_32:
ae8887b5 9047 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9048 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9049 break;
9050 case BFD_RELOC_16:
9051 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9052 break;
9053 case BFD_RELOC_8:
9054 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9055 break;
9056 }
9057 }
252b5132 9058
a161fe53 9059 if (fixP->fx_addsy != NULL
31312f95 9060 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9061 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
9062 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9063 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9064 && !use_rela_relocations)
252b5132 9065 {
31312f95
AM
9066 /* This is a hack. There should be a better way to handle this.
9067 This covers for the fact that bfd_install_relocation will
9068 subtract the current location (for partial_inplace, PC relative
9069 relocations); see more below. */
252b5132 9070#ifndef OBJ_AOUT
718ddfc0 9071 if (IS_ELF
252b5132
RH
9072#ifdef TE_PE
9073 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9074#endif
9075 )
9076 value += fixP->fx_where + fixP->fx_frag->fr_address;
9077#endif
9078#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9079 if (IS_ELF)
252b5132 9080 {
6539b54b 9081 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9082
6539b54b 9083 if ((sym_seg == seg
2f66722d 9084 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9085 && sym_seg != absolute_section))
af65af87 9086 && !generic_force_reloc (fixP))
2f66722d
AM
9087 {
9088 /* Yes, we add the values in twice. This is because
6539b54b
AM
9089 bfd_install_relocation subtracts them out again. I think
9090 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9091 it. FIXME. */
9092 value += fixP->fx_where + fixP->fx_frag->fr_address;
9093 }
252b5132
RH
9094 }
9095#endif
9096#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9097 /* For some reason, the PE format does not store a
9098 section address offset for a PC relative symbol. */
9099 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9100 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9101 value += md_pcrel_from (fixP);
9102#endif
9103 }
fbeb56a4
DK
9104#if defined (OBJ_COFF) && defined (TE_PE)
9105 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9106 {
9107 value -= S_GET_VALUE (fixP->fx_addsy);
9108 }
9109#endif
252b5132
RH
9110
9111 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9112 and we must not disappoint it. */
252b5132 9113#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9114 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9115 switch (fixP->fx_r_type)
9116 {
9117 case BFD_RELOC_386_PLT32:
3e73aa7c 9118 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9119 /* Make the jump instruction point to the address of the operand. At
9120 runtime we merely add the offset to the actual PLT entry. */
9121 value = -4;
9122 break;
31312f95 9123
13ae64f3
JJ
9124 case BFD_RELOC_386_TLS_GD:
9125 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9126 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9127 case BFD_RELOC_386_TLS_IE:
9128 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9129 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9130 case BFD_RELOC_X86_64_TLSGD:
9131 case BFD_RELOC_X86_64_TLSLD:
9132 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9133 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9134 value = 0; /* Fully resolved at runtime. No addend. */
9135 /* Fallthrough */
9136 case BFD_RELOC_386_TLS_LE:
9137 case BFD_RELOC_386_TLS_LDO_32:
9138 case BFD_RELOC_386_TLS_LE_32:
9139 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9140 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9141 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9142 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9143 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9144 break;
9145
67a4f2b7
AO
9146 case BFD_RELOC_386_TLS_DESC_CALL:
9147 case BFD_RELOC_X86_64_TLSDESC_CALL:
9148 value = 0; /* Fully resolved at runtime. No addend. */
9149 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9150 fixP->fx_done = 0;
9151 return;
9152
00f7efb6
JJ
9153 case BFD_RELOC_386_GOT32:
9154 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
9155 value = 0; /* Fully resolved at runtime. No addend. */
9156 break;
47926f60
KH
9157
9158 case BFD_RELOC_VTABLE_INHERIT:
9159 case BFD_RELOC_VTABLE_ENTRY:
9160 fixP->fx_done = 0;
94f592af 9161 return;
47926f60
KH
9162
9163 default:
9164 break;
9165 }
9166#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9167 *valP = value;
f86103b7 9168#endif /* !defined (TE_Mach) */
3e73aa7c 9169
3e73aa7c 9170 /* Are we finished with this relocation now? */
c6682705 9171 if (fixP->fx_addsy == NULL)
3e73aa7c 9172 fixP->fx_done = 1;
fbeb56a4
DK
9173#if defined (OBJ_COFF) && defined (TE_PE)
9174 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9175 {
9176 fixP->fx_done = 0;
9177 /* Remember value for tc_gen_reloc. */
9178 fixP->fx_addnumber = value;
9179 /* Clear out the frag for now. */
9180 value = 0;
9181 }
9182#endif
3e73aa7c
JH
9183 else if (use_rela_relocations)
9184 {
9185 fixP->fx_no_overflow = 1;
062cd5e7
AS
9186 /* Remember value for tc_gen_reloc. */
9187 fixP->fx_addnumber = value;
3e73aa7c
JH
9188 value = 0;
9189 }
f86103b7 9190
94f592af 9191 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9192}
252b5132 9193\f
252b5132 9194char *
499ac353 9195md_atof (int type, char *litP, int *sizeP)
252b5132 9196{
499ac353
NC
9197 /* This outputs the LITTLENUMs in REVERSE order;
9198 in accord with the bigendian 386. */
9199 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9200}
9201\f
2d545b82 9202static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9203
252b5132 9204static char *
e3bb37b5 9205output_invalid (int c)
252b5132 9206{
3882b010 9207 if (ISPRINT (c))
f9f21a03
L
9208 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9209 "'%c'", c);
252b5132 9210 else
f9f21a03 9211 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9212 "(0x%x)", (unsigned char) c);
252b5132
RH
9213 return output_invalid_buf;
9214}
9215
af6bdddf 9216/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9217
9218static const reg_entry *
4d1bb795 9219parse_real_register (char *reg_string, char **end_op)
252b5132 9220{
af6bdddf
AM
9221 char *s = reg_string;
9222 char *p;
252b5132
RH
9223 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9224 const reg_entry *r;
9225
9226 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9227 if (*s == REGISTER_PREFIX)
9228 ++s;
9229
9230 if (is_space_char (*s))
9231 ++s;
9232
9233 p = reg_name_given;
af6bdddf 9234 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9235 {
9236 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9237 return (const reg_entry *) NULL;
9238 s++;
252b5132
RH
9239 }
9240
6588847e
DN
9241 /* For naked regs, make sure that we are not dealing with an identifier.
9242 This prevents confusing an identifier like `eax_var' with register
9243 `eax'. */
9244 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9245 return (const reg_entry *) NULL;
9246
af6bdddf 9247 *end_op = s;
252b5132
RH
9248
9249 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9250
5f47d35b 9251 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9252 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9253 {
5f47d35b
AM
9254 if (is_space_char (*s))
9255 ++s;
9256 if (*s == '(')
9257 {
af6bdddf 9258 ++s;
5f47d35b
AM
9259 if (is_space_char (*s))
9260 ++s;
9261 if (*s >= '0' && *s <= '7')
9262 {
db557034 9263 int fpr = *s - '0';
af6bdddf 9264 ++s;
5f47d35b
AM
9265 if (is_space_char (*s))
9266 ++s;
9267 if (*s == ')')
9268 {
9269 *end_op = s + 1;
1e9cc1c2 9270 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9271 know (r);
9272 return r + fpr;
5f47d35b 9273 }
5f47d35b 9274 }
47926f60 9275 /* We have "%st(" then garbage. */
5f47d35b
AM
9276 return (const reg_entry *) NULL;
9277 }
9278 }
9279
a60de03c
JB
9280 if (r == NULL || allow_pseudo_reg)
9281 return r;
9282
0dfbf9d7 9283 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9284 return (const reg_entry *) NULL;
9285
192dc9c6
JB
9286 if ((r->reg_type.bitfield.reg32
9287 || r->reg_type.bitfield.sreg3
9288 || r->reg_type.bitfield.control
9289 || r->reg_type.bitfield.debug
9290 || r->reg_type.bitfield.test)
9291 && !cpu_arch_flags.bitfield.cpui386)
9292 return (const reg_entry *) NULL;
9293
309d3373
JB
9294 if (r->reg_type.bitfield.floatreg
9295 && !cpu_arch_flags.bitfield.cpu8087
9296 && !cpu_arch_flags.bitfield.cpu287
9297 && !cpu_arch_flags.bitfield.cpu387)
9298 return (const reg_entry *) NULL;
9299
192dc9c6
JB
9300 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9301 return (const reg_entry *) NULL;
9302
9303 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9304 return (const reg_entry *) NULL;
9305
40f12533
L
9306 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9307 return (const reg_entry *) NULL;
9308
43234a1e
L
9309 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9310 && !cpu_arch_flags.bitfield.cpuavx512f)
9311 return (const reg_entry *) NULL;
9312
db51cc60 9313 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9314 if (!allow_index_reg
db51cc60
L
9315 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9316 return (const reg_entry *) NULL;
9317
43234a1e
L
9318 /* Upper 16 vector register is only available with VREX in 64bit
9319 mode. */
9320 if ((r->reg_flags & RegVRex))
9321 {
9322 if (!cpu_arch_flags.bitfield.cpuvrex
9323 || flag_code != CODE_64BIT)
9324 return (const reg_entry *) NULL;
9325
9326 i.need_vrex = 1;
9327 }
9328
a60de03c
JB
9329 if (((r->reg_flags & (RegRex64 | RegRex))
9330 || r->reg_type.bitfield.reg64)
40fb9820 9331 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9332 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9333 && flag_code != CODE_64BIT)
20f0a1fc 9334 return (const reg_entry *) NULL;
1ae00879 9335
b7240065
JB
9336 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9337 return (const reg_entry *) NULL;
9338
252b5132
RH
9339 return r;
9340}
4d1bb795
JB
9341
9342/* REG_STRING starts *before* REGISTER_PREFIX. */
9343
9344static const reg_entry *
9345parse_register (char *reg_string, char **end_op)
9346{
9347 const reg_entry *r;
9348
9349 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9350 r = parse_real_register (reg_string, end_op);
9351 else
9352 r = NULL;
9353 if (!r)
9354 {
9355 char *save = input_line_pointer;
9356 char c;
9357 symbolS *symbolP;
9358
9359 input_line_pointer = reg_string;
9360 c = get_symbol_end ();
9361 symbolP = symbol_find (reg_string);
9362 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9363 {
9364 const expressionS *e = symbol_get_value_expression (symbolP);
9365
0398aac5 9366 know (e->X_op == O_register);
4eed87de 9367 know (e->X_add_number >= 0
c3fe08fa 9368 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
9369 r = i386_regtab + e->X_add_number;
9370 *end_op = input_line_pointer;
9371 }
9372 *input_line_pointer = c;
9373 input_line_pointer = save;
9374 }
9375 return r;
9376}
9377
9378int
9379i386_parse_name (char *name, expressionS *e, char *nextcharP)
9380{
9381 const reg_entry *r;
9382 char *end = input_line_pointer;
9383
9384 *end = *nextcharP;
9385 r = parse_register (name, &input_line_pointer);
9386 if (r && end <= input_line_pointer)
9387 {
9388 *nextcharP = *input_line_pointer;
9389 *input_line_pointer = 0;
9390 e->X_op = O_register;
9391 e->X_add_number = r - i386_regtab;
9392 return 1;
9393 }
9394 input_line_pointer = end;
9395 *end = 0;
ee86248c 9396 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9397}
9398
9399void
9400md_operand (expressionS *e)
9401{
ee86248c
JB
9402 char *end;
9403 const reg_entry *r;
4d1bb795 9404
ee86248c
JB
9405 switch (*input_line_pointer)
9406 {
9407 case REGISTER_PREFIX:
9408 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9409 if (r)
9410 {
9411 e->X_op = O_register;
9412 e->X_add_number = r - i386_regtab;
9413 input_line_pointer = end;
9414 }
ee86248c
JB
9415 break;
9416
9417 case '[':
9c2799c2 9418 gas_assert (intel_syntax);
ee86248c
JB
9419 end = input_line_pointer++;
9420 expression (e);
9421 if (*input_line_pointer == ']')
9422 {
9423 ++input_line_pointer;
9424 e->X_op_symbol = make_expr_symbol (e);
9425 e->X_add_symbol = NULL;
9426 e->X_add_number = 0;
9427 e->X_op = O_index;
9428 }
9429 else
9430 {
9431 e->X_op = O_absent;
9432 input_line_pointer = end;
9433 }
9434 break;
4d1bb795
JB
9435 }
9436}
9437
252b5132 9438\f
4cc782b5 9439#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9440const char *md_shortopts = "kVQ:sqn";
252b5132 9441#else
12b55ccc 9442const char *md_shortopts = "qn";
252b5132 9443#endif
6e0b89ee 9444
3e73aa7c 9445#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9446#define OPTION_64 (OPTION_MD_BASE + 1)
9447#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9448#define OPTION_MARCH (OPTION_MD_BASE + 3)
9449#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9450#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9451#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9452#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9453#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9454#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9455#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9456#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9457#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9458#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9459#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9460#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9461#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9462#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
b3b91714 9463
99ad8390
NC
9464struct option md_longopts[] =
9465{
3e73aa7c 9466 {"32", no_argument, NULL, OPTION_32},
321098a5 9467#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9468 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9469 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9470#endif
9471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9472 {"x32", no_argument, NULL, OPTION_X32},
6e0b89ee 9473#endif
b3b91714 9474 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9475 {"march", required_argument, NULL, OPTION_MARCH},
9476 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
9477 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9478 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9479 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9480 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9481 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 9482 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 9483 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 9484 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 9485 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 9486 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
9487 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9488 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
252b5132
RH
9489 {NULL, no_argument, NULL, 0}
9490};
9491size_t md_longopts_size = sizeof (md_longopts);
9492
9493int
9103f4f4 9494md_parse_option (int c, char *arg)
252b5132 9495{
91d6fa6a 9496 unsigned int j;
6305a203 9497 char *arch, *next;
9103f4f4 9498
252b5132
RH
9499 switch (c)
9500 {
12b55ccc
L
9501 case 'n':
9502 optimize_align_code = 0;
9503 break;
9504
a38cf1db
AM
9505 case 'q':
9506 quiet_warnings = 1;
252b5132
RH
9507 break;
9508
9509#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
9510 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9511 should be emitted or not. FIXME: Not implemented. */
9512 case 'Q':
252b5132
RH
9513 break;
9514
9515 /* -V: SVR4 argument to print version ID. */
9516 case 'V':
9517 print_version_id ();
9518 break;
9519
a38cf1db
AM
9520 /* -k: Ignore for FreeBSD compatibility. */
9521 case 'k':
252b5132 9522 break;
4cc782b5
ILT
9523
9524 case 's':
9525 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 9526 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 9527 break;
99ad8390 9528#endif
321098a5 9529#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
9531 case OPTION_64:
9532 {
9533 const char **list, **l;
9534
3e73aa7c
JH
9535 list = bfd_target_list ();
9536 for (l = list; *l != NULL; l++)
8620418b 9537 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
9538 || strcmp (*l, "coff-x86-64") == 0
9539 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
9540 || strcmp (*l, "pei-x86-64") == 0
9541 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
9542 {
9543 default_arch = "x86_64";
9544 break;
9545 }
3e73aa7c 9546 if (*l == NULL)
2b5d6a91 9547 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
9548 free (list);
9549 }
9550 break;
9551#endif
252b5132 9552
351f65ca 9553#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9554 case OPTION_X32:
351f65ca
L
9555 if (IS_ELF)
9556 {
9557 const char **list, **l;
9558
9559 list = bfd_target_list ();
9560 for (l = list; *l != NULL; l++)
9561 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9562 {
9563 default_arch = "x86_64:32";
9564 break;
9565 }
9566 if (*l == NULL)
2b5d6a91 9567 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
9568 free (list);
9569 }
9570 else
9571 as_fatal (_("32bit x86_64 is only supported for ELF"));
9572 break;
9573#endif
9574
6e0b89ee
AM
9575 case OPTION_32:
9576 default_arch = "i386";
9577 break;
9578
b3b91714
AM
9579 case OPTION_DIVIDE:
9580#ifdef SVR4_COMMENT_CHARS
9581 {
9582 char *n, *t;
9583 const char *s;
9584
9585 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9586 t = n;
9587 for (s = i386_comment_chars; *s != '\0'; s++)
9588 if (*s != '/')
9589 *t++ = *s;
9590 *t = '\0';
9591 i386_comment_chars = n;
9592 }
9593#endif
9594 break;
9595
9103f4f4 9596 case OPTION_MARCH:
6305a203
L
9597 arch = xstrdup (arg);
9598 do
9103f4f4 9599 {
6305a203 9600 if (*arch == '.')
2b5d6a91 9601 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9602 next = strchr (arch, '+');
9603 if (next)
9604 *next++ = '\0';
91d6fa6a 9605 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9606 {
91d6fa6a 9607 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 9608 {
6305a203 9609 /* Processor. */
1ded5609
JB
9610 if (! cpu_arch[j].flags.bitfield.cpui386)
9611 continue;
9612
91d6fa6a 9613 cpu_arch_name = cpu_arch[j].name;
6305a203 9614 cpu_sub_arch_name = NULL;
91d6fa6a
NC
9615 cpu_arch_flags = cpu_arch[j].flags;
9616 cpu_arch_isa = cpu_arch[j].type;
9617 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
9618 if (!cpu_arch_tune_set)
9619 {
9620 cpu_arch_tune = cpu_arch_isa;
9621 cpu_arch_tune_flags = cpu_arch_isa_flags;
9622 }
9623 break;
9624 }
91d6fa6a
NC
9625 else if (*cpu_arch [j].name == '.'
9626 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
9627 {
9628 /* ISA entension. */
9629 i386_cpu_flags flags;
309d3373 9630
49021df2 9631 if (!cpu_arch[j].negated)
309d3373 9632 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 9633 cpu_arch[j].flags);
309d3373
JB
9634 else
9635 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 9636 cpu_arch[j].flags);
0dfbf9d7 9637 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
9638 {
9639 if (cpu_sub_arch_name)
9640 {
9641 char *name = cpu_sub_arch_name;
9642 cpu_sub_arch_name = concat (name,
91d6fa6a 9643 cpu_arch[j].name,
1bf57e9f 9644 (const char *) NULL);
6305a203
L
9645 free (name);
9646 }
9647 else
91d6fa6a 9648 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 9649 cpu_arch_flags = flags;
a586129e 9650 cpu_arch_isa_flags = flags;
6305a203
L
9651 }
9652 break;
ccc9c027 9653 }
9103f4f4 9654 }
6305a203 9655
91d6fa6a 9656 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9657 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9658
9659 arch = next;
9103f4f4 9660 }
6305a203 9661 while (next != NULL );
9103f4f4
L
9662 break;
9663
9664 case OPTION_MTUNE:
9665 if (*arg == '.')
2b5d6a91 9666 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 9667 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9668 {
91d6fa6a 9669 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 9670 {
ccc9c027 9671 cpu_arch_tune_set = 1;
91d6fa6a
NC
9672 cpu_arch_tune = cpu_arch [j].type;
9673 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
9674 break;
9675 }
9676 }
91d6fa6a 9677 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 9678 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
9679 break;
9680
1efbbeb4
L
9681 case OPTION_MMNEMONIC:
9682 if (strcasecmp (arg, "att") == 0)
9683 intel_mnemonic = 0;
9684 else if (strcasecmp (arg, "intel") == 0)
9685 intel_mnemonic = 1;
9686 else
2b5d6a91 9687 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
9688 break;
9689
9690 case OPTION_MSYNTAX:
9691 if (strcasecmp (arg, "att") == 0)
9692 intel_syntax = 0;
9693 else if (strcasecmp (arg, "intel") == 0)
9694 intel_syntax = 1;
9695 else
2b5d6a91 9696 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
9697 break;
9698
9699 case OPTION_MINDEX_REG:
9700 allow_index_reg = 1;
9701 break;
9702
9703 case OPTION_MNAKED_REG:
9704 allow_naked_reg = 1;
9705 break;
9706
9707 case OPTION_MOLD_GCC:
9708 old_gcc = 1;
1efbbeb4
L
9709 break;
9710
c0f3af97
L
9711 case OPTION_MSSE2AVX:
9712 sse2avx = 1;
9713 break;
9714
daf50ae7
L
9715 case OPTION_MSSE_CHECK:
9716 if (strcasecmp (arg, "error") == 0)
7bab8ab5 9717 sse_check = check_error;
daf50ae7 9718 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 9719 sse_check = check_warning;
daf50ae7 9720 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 9721 sse_check = check_none;
daf50ae7 9722 else
2b5d6a91 9723 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
9724 break;
9725
7bab8ab5
JB
9726 case OPTION_MOPERAND_CHECK:
9727 if (strcasecmp (arg, "error") == 0)
9728 operand_check = check_error;
9729 else if (strcasecmp (arg, "warning") == 0)
9730 operand_check = check_warning;
9731 else if (strcasecmp (arg, "none") == 0)
9732 operand_check = check_none;
9733 else
9734 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9735 break;
9736
539f890d
L
9737 case OPTION_MAVXSCALAR:
9738 if (strcasecmp (arg, "128") == 0)
9739 avxscalar = vex128;
9740 else if (strcasecmp (arg, "256") == 0)
9741 avxscalar = vex256;
9742 else
2b5d6a91 9743 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
9744 break;
9745
7e8b059b
L
9746 case OPTION_MADD_BND_PREFIX:
9747 add_bnd_prefix = 1;
9748 break;
9749
43234a1e
L
9750 case OPTION_MEVEXLIG:
9751 if (strcmp (arg, "128") == 0)
9752 evexlig = evexl128;
9753 else if (strcmp (arg, "256") == 0)
9754 evexlig = evexl256;
9755 else if (strcmp (arg, "512") == 0)
9756 evexlig = evexl512;
9757 else
9758 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9759 break;
9760
9761 case OPTION_MEVEXWIG:
9762 if (strcmp (arg, "0") == 0)
9763 evexwig = evexw0;
9764 else if (strcmp (arg, "1") == 0)
9765 evexwig = evexw1;
9766 else
9767 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9768 break;
9769
252b5132
RH
9770 default:
9771 return 0;
9772 }
9773 return 1;
9774}
9775
8a2c8fef
L
9776#define MESSAGE_TEMPLATE \
9777" "
9778
9779static void
1ded5609 9780show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
9781{
9782 static char message[] = MESSAGE_TEMPLATE;
9783 char *start = message + 27;
9784 char *p;
9785 int size = sizeof (MESSAGE_TEMPLATE);
9786 int left;
9787 const char *name;
9788 int len;
9789 unsigned int j;
9790
9791 p = start;
9792 left = size - (start - message);
9793 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9794 {
9795 /* Should it be skipped? */
9796 if (cpu_arch [j].skip)
9797 continue;
9798
9799 name = cpu_arch [j].name;
9800 len = cpu_arch [j].len;
9801 if (*name == '.')
9802 {
9803 /* It is an extension. Skip if we aren't asked to show it. */
9804 if (ext)
9805 {
9806 name++;
9807 len--;
9808 }
9809 else
9810 continue;
9811 }
9812 else if (ext)
9813 {
9814 /* It is an processor. Skip if we show only extension. */
9815 continue;
9816 }
1ded5609
JB
9817 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9818 {
9819 /* It is an impossible processor - skip. */
9820 continue;
9821 }
8a2c8fef
L
9822
9823 /* Reserve 2 spaces for ", " or ",\0" */
9824 left -= len + 2;
9825
9826 /* Check if there is any room. */
9827 if (left >= 0)
9828 {
9829 if (p != start)
9830 {
9831 *p++ = ',';
9832 *p++ = ' ';
9833 }
9834 p = mempcpy (p, name, len);
9835 }
9836 else
9837 {
9838 /* Output the current message now and start a new one. */
9839 *p++ = ',';
9840 *p = '\0';
9841 fprintf (stream, "%s\n", message);
9842 p = start;
9843 left = size - (start - message) - len - 2;
8d63c93e 9844
8a2c8fef
L
9845 gas_assert (left >= 0);
9846
9847 p = mempcpy (p, name, len);
9848 }
9849 }
9850
9851 *p = '\0';
9852 fprintf (stream, "%s\n", message);
9853}
9854
252b5132 9855void
8a2c8fef 9856md_show_usage (FILE *stream)
252b5132 9857{
4cc782b5
ILT
9858#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9859 fprintf (stream, _("\
a38cf1db
AM
9860 -Q ignored\n\
9861 -V print assembler version number\n\
b3b91714
AM
9862 -k ignored\n"));
9863#endif
9864 fprintf (stream, _("\
12b55ccc 9865 -n Do not optimize code alignment\n\
b3b91714
AM
9866 -q quieten some warnings\n"));
9867#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9868 fprintf (stream, _("\
a38cf1db 9869 -s ignored\n"));
b3b91714 9870#endif
321098a5
L
9871#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9872 || defined (TE_PE) || defined (TE_PEP))
751d281c 9873 fprintf (stream, _("\
570561f7 9874 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 9875#endif
b3b91714
AM
9876#ifdef SVR4_COMMENT_CHARS
9877 fprintf (stream, _("\
9878 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
9879#else
9880 fprintf (stream, _("\
b3b91714 9881 --divide ignored\n"));
4cc782b5 9882#endif
9103f4f4 9883 fprintf (stream, _("\
6305a203 9884 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 9885 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 9886 show_arch (stream, 0, 1);
8a2c8fef
L
9887 fprintf (stream, _("\
9888 EXTENSION is combination of:\n"));
1ded5609 9889 show_arch (stream, 1, 0);
6305a203 9890 fprintf (stream, _("\
8a2c8fef 9891 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 9892 show_arch (stream, 0, 0);
ba104c83 9893 fprintf (stream, _("\
c0f3af97
L
9894 -msse2avx encode SSE instructions with VEX prefix\n"));
9895 fprintf (stream, _("\
daf50ae7
L
9896 -msse-check=[none|error|warning]\n\
9897 check SSE instructions\n"));
9898 fprintf (stream, _("\
7bab8ab5
JB
9899 -moperand-check=[none|error|warning]\n\
9900 check operand combinations for validity\n"));
9901 fprintf (stream, _("\
539f890d
L
9902 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9903 length\n"));
9904 fprintf (stream, _("\
43234a1e
L
9905 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9906 length\n"));
9907 fprintf (stream, _("\
9908 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9909 for EVEX.W bit ignored instructions\n"));
9910 fprintf (stream, _("\
ba104c83
L
9911 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9912 fprintf (stream, _("\
9913 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9914 fprintf (stream, _("\
9915 -mindex-reg support pseudo index registers\n"));
9916 fprintf (stream, _("\
9917 -mnaked-reg don't require `%%' prefix for registers\n"));
9918 fprintf (stream, _("\
9919 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
9920 fprintf (stream, _("\
9921 -madd-bnd-prefix add BND prefix for all valid branches\n"));
252b5132
RH
9922}
9923
3e73aa7c 9924#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 9925 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 9926 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
9927
9928/* Pick the target format to use. */
9929
47926f60 9930const char *
e3bb37b5 9931i386_target_format (void)
252b5132 9932{
351f65ca
L
9933 if (!strncmp (default_arch, "x86_64", 6))
9934 {
9935 update_code_flag (CODE_64BIT, 1);
9936 if (default_arch[6] == '\0')
7f56bc95 9937 x86_elf_abi = X86_64_ABI;
351f65ca 9938 else
7f56bc95 9939 x86_elf_abi = X86_64_X32_ABI;
351f65ca 9940 }
3e73aa7c 9941 else if (!strcmp (default_arch, "i386"))
78f12dd3 9942 update_code_flag (CODE_32BIT, 1);
3e73aa7c 9943 else
2b5d6a91 9944 as_fatal (_("unknown architecture"));
89507696
JB
9945
9946 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9947 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9948 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
9949 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9950
252b5132
RH
9951 switch (OUTPUT_FLAVOR)
9952 {
9384f2ff 9953#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 9954 case bfd_target_aout_flavour:
47926f60 9955 return AOUT_TARGET_FORMAT;
4c63da97 9956#endif
9384f2ff
AM
9957#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9958# if defined (TE_PE) || defined (TE_PEP)
9959 case bfd_target_coff_flavour:
9960 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9961# elif defined (TE_GO32)
0561d57c
JK
9962 case bfd_target_coff_flavour:
9963 return "coff-go32";
9384f2ff 9964# else
252b5132
RH
9965 case bfd_target_coff_flavour:
9966 return "coff-i386";
9384f2ff 9967# endif
4c63da97 9968#endif
3e73aa7c 9969#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 9970 case bfd_target_elf_flavour:
3e73aa7c 9971 {
351f65ca
L
9972 const char *format;
9973
9974 switch (x86_elf_abi)
4fa24527 9975 {
351f65ca
L
9976 default:
9977 format = ELF_TARGET_FORMAT;
9978 break;
7f56bc95 9979 case X86_64_ABI:
351f65ca 9980 use_rela_relocations = 1;
4fa24527 9981 object_64bit = 1;
351f65ca
L
9982 format = ELF_TARGET_FORMAT64;
9983 break;
7f56bc95 9984 case X86_64_X32_ABI:
4fa24527 9985 use_rela_relocations = 1;
351f65ca 9986 object_64bit = 1;
862be3fb 9987 disallow_64bit_reloc = 1;
351f65ca
L
9988 format = ELF_TARGET_FORMAT32;
9989 break;
4fa24527 9990 }
3632d14b 9991 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 9992 {
7f56bc95 9993 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
9994 as_fatal (_("Intel L1OM is 64bit only"));
9995 return ELF_TARGET_L1OM_FORMAT;
9996 }
7a9068fe
L
9997 if (cpu_arch_isa == PROCESSOR_K1OM)
9998 {
9999 if (x86_elf_abi != X86_64_ABI)
10000 as_fatal (_("Intel K1OM is 64bit only"));
10001 return ELF_TARGET_K1OM_FORMAT;
10002 }
8a9036a4 10003 else
351f65ca 10004 return format;
3e73aa7c 10005 }
e57f8c65
TG
10006#endif
10007#if defined (OBJ_MACH_O)
10008 case bfd_target_mach_o_flavour:
d382c579
TG
10009 if (flag_code == CODE_64BIT)
10010 {
10011 use_rela_relocations = 1;
10012 object_64bit = 1;
10013 return "mach-o-x86-64";
10014 }
10015 else
10016 return "mach-o-i386";
4c63da97 10017#endif
252b5132
RH
10018 default:
10019 abort ();
10020 return NULL;
10021 }
10022}
10023
47926f60 10024#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
10025
10026#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
10027void
10028i386_elf_emit_arch_note (void)
a847613f 10029{
718ddfc0 10030 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
10031 {
10032 char *p;
10033 asection *seg = now_seg;
10034 subsegT subseg = now_subseg;
10035 Elf_Internal_Note i_note;
10036 Elf_External_Note e_note;
10037 asection *note_secp;
10038 int len;
10039
10040 /* Create the .note section. */
10041 note_secp = subseg_new (".note", 0);
10042 bfd_set_section_flags (stdoutput,
10043 note_secp,
10044 SEC_HAS_CONTENTS | SEC_READONLY);
10045
10046 /* Process the arch string. */
10047 len = strlen (cpu_arch_name);
10048
10049 i_note.namesz = len + 1;
10050 i_note.descsz = 0;
10051 i_note.type = NT_ARCH;
10052 p = frag_more (sizeof (e_note.namesz));
10053 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10054 p = frag_more (sizeof (e_note.descsz));
10055 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10056 p = frag_more (sizeof (e_note.type));
10057 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10058 p = frag_more (len + 1);
10059 strcpy (p, cpu_arch_name);
10060
10061 frag_align (2, 0, 0);
10062
10063 subseg_set (seg, subseg);
10064 }
10065}
10066#endif
252b5132 10067\f
252b5132 10068symbolS *
7016a5d5 10069md_undefined_symbol (char *name)
252b5132 10070{
18dc2407
ILT
10071 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10072 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10073 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10074 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10075 {
10076 if (!GOT_symbol)
10077 {
10078 if (symbol_find (name))
10079 as_bad (_("GOT already in symbol table"));
10080 GOT_symbol = symbol_new (name, undefined_section,
10081 (valueT) 0, &zero_address_frag);
10082 };
10083 return GOT_symbol;
10084 }
252b5132
RH
10085 return 0;
10086}
10087
10088/* Round up a section size to the appropriate boundary. */
47926f60 10089
252b5132 10090valueT
7016a5d5 10091md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10092{
4c63da97
AM
10093#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10094 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10095 {
10096 /* For a.out, force the section size to be aligned. If we don't do
10097 this, BFD will align it for us, but it will not write out the
10098 final bytes of the section. This may be a bug in BFD, but it is
10099 easier to fix it here since that is how the other a.out targets
10100 work. */
10101 int align;
10102
10103 align = bfd_get_section_alignment (stdoutput, segment);
10104 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10105 }
252b5132
RH
10106#endif
10107
10108 return size;
10109}
10110
10111/* On the i386, PC-relative offsets are relative to the start of the
10112 next instruction. That is, the address of the offset, plus its
10113 size, since the offset is always the last part of the insn. */
10114
10115long
e3bb37b5 10116md_pcrel_from (fixS *fixP)
252b5132
RH
10117{
10118 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10119}
10120
10121#ifndef I386COFF
10122
10123static void
e3bb37b5 10124s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10125{
29b0f896 10126 int temp;
252b5132 10127
8a75718c
JB
10128#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10129 if (IS_ELF)
10130 obj_elf_section_change_hook ();
10131#endif
252b5132
RH
10132 temp = get_absolute_expression ();
10133 subseg_set (bss_section, (subsegT) temp);
10134 demand_empty_rest_of_line ();
10135}
10136
10137#endif
10138
252b5132 10139void
e3bb37b5 10140i386_validate_fix (fixS *fixp)
252b5132
RH
10141{
10142 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10143 {
23df1078
JH
10144 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10145 {
4fa24527 10146 if (!object_64bit)
23df1078
JH
10147 abort ();
10148 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10149 }
10150 else
10151 {
4fa24527 10152 if (!object_64bit)
d6ab8113
JB
10153 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10154 else
10155 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 10156 }
252b5132
RH
10157 fixp->fx_subsy = 0;
10158 }
10159}
10160
252b5132 10161arelent *
7016a5d5 10162tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10163{
10164 arelent *rel;
10165 bfd_reloc_code_real_type code;
10166
10167 switch (fixp->fx_r_type)
10168 {
8ce3d284 10169#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10170 case BFD_RELOC_SIZE32:
10171 case BFD_RELOC_SIZE64:
10172 if (S_IS_DEFINED (fixp->fx_addsy)
10173 && !S_IS_EXTERNAL (fixp->fx_addsy))
10174 {
10175 /* Resolve size relocation against local symbol to size of
10176 the symbol plus addend. */
10177 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10178 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10179 && !fits_in_unsigned_long (value))
10180 as_bad_where (fixp->fx_file, fixp->fx_line,
10181 _("symbol size computation overflow"));
10182 fixp->fx_addsy = NULL;
10183 fixp->fx_subsy = NULL;
10184 md_apply_fix (fixp, (valueT *) &value, NULL);
10185 return NULL;
10186 }
8ce3d284 10187#endif
8fd4256d 10188
3e73aa7c
JH
10189 case BFD_RELOC_X86_64_PLT32:
10190 case BFD_RELOC_X86_64_GOT32:
10191 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
10192 case BFD_RELOC_386_PLT32:
10193 case BFD_RELOC_386_GOT32:
10194 case BFD_RELOC_386_GOTOFF:
10195 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10196 case BFD_RELOC_386_TLS_GD:
10197 case BFD_RELOC_386_TLS_LDM:
10198 case BFD_RELOC_386_TLS_LDO_32:
10199 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10200 case BFD_RELOC_386_TLS_IE:
10201 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10202 case BFD_RELOC_386_TLS_LE_32:
10203 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10204 case BFD_RELOC_386_TLS_GOTDESC:
10205 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10206 case BFD_RELOC_X86_64_TLSGD:
10207 case BFD_RELOC_X86_64_TLSLD:
10208 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10209 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10210 case BFD_RELOC_X86_64_GOTTPOFF:
10211 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10212 case BFD_RELOC_X86_64_TPOFF64:
10213 case BFD_RELOC_X86_64_GOTOFF64:
10214 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10215 case BFD_RELOC_X86_64_GOT64:
10216 case BFD_RELOC_X86_64_GOTPCREL64:
10217 case BFD_RELOC_X86_64_GOTPC64:
10218 case BFD_RELOC_X86_64_GOTPLT64:
10219 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10220 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10221 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10222 case BFD_RELOC_RVA:
10223 case BFD_RELOC_VTABLE_ENTRY:
10224 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10225#ifdef TE_PE
10226 case BFD_RELOC_32_SECREL:
10227#endif
252b5132
RH
10228 code = fixp->fx_r_type;
10229 break;
dbbaec26
L
10230 case BFD_RELOC_X86_64_32S:
10231 if (!fixp->fx_pcrel)
10232 {
10233 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10234 code = fixp->fx_r_type;
10235 break;
10236 }
252b5132 10237 default:
93382f6d 10238 if (fixp->fx_pcrel)
252b5132 10239 {
93382f6d
AM
10240 switch (fixp->fx_size)
10241 {
10242 default:
b091f402
AM
10243 as_bad_where (fixp->fx_file, fixp->fx_line,
10244 _("can not do %d byte pc-relative relocation"),
10245 fixp->fx_size);
93382f6d
AM
10246 code = BFD_RELOC_32_PCREL;
10247 break;
10248 case 1: code = BFD_RELOC_8_PCREL; break;
10249 case 2: code = BFD_RELOC_16_PCREL; break;
10250 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10251#ifdef BFD64
10252 case 8: code = BFD_RELOC_64_PCREL; break;
10253#endif
93382f6d
AM
10254 }
10255 }
10256 else
10257 {
10258 switch (fixp->fx_size)
10259 {
10260 default:
b091f402
AM
10261 as_bad_where (fixp->fx_file, fixp->fx_line,
10262 _("can not do %d byte relocation"),
10263 fixp->fx_size);
93382f6d
AM
10264 code = BFD_RELOC_32;
10265 break;
10266 case 1: code = BFD_RELOC_8; break;
10267 case 2: code = BFD_RELOC_16; break;
10268 case 4: code = BFD_RELOC_32; break;
937149dd 10269#ifdef BFD64
3e73aa7c 10270 case 8: code = BFD_RELOC_64; break;
937149dd 10271#endif
93382f6d 10272 }
252b5132
RH
10273 }
10274 break;
10275 }
252b5132 10276
d182319b
JB
10277 if ((code == BFD_RELOC_32
10278 || code == BFD_RELOC_32_PCREL
10279 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10280 && GOT_symbol
10281 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10282 {
4fa24527 10283 if (!object_64bit)
d6ab8113
JB
10284 code = BFD_RELOC_386_GOTPC;
10285 else
10286 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10287 }
7b81dfbb
AJ
10288 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10289 && GOT_symbol
10290 && fixp->fx_addsy == GOT_symbol)
10291 {
10292 code = BFD_RELOC_X86_64_GOTPC64;
10293 }
252b5132
RH
10294
10295 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
10296 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10297 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10298
10299 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10300
3e73aa7c
JH
10301 if (!use_rela_relocations)
10302 {
10303 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10304 vtable entry to be used in the relocation's section offset. */
10305 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10306 rel->address = fixp->fx_offset;
fbeb56a4
DK
10307#if defined (OBJ_COFF) && defined (TE_PE)
10308 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10309 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10310 else
10311#endif
c6682705 10312 rel->addend = 0;
3e73aa7c
JH
10313 }
10314 /* Use the rela in 64bit mode. */
252b5132 10315 else
3e73aa7c 10316 {
862be3fb
L
10317 if (disallow_64bit_reloc)
10318 switch (code)
10319 {
862be3fb
L
10320 case BFD_RELOC_X86_64_DTPOFF64:
10321 case BFD_RELOC_X86_64_TPOFF64:
10322 case BFD_RELOC_64_PCREL:
10323 case BFD_RELOC_X86_64_GOTOFF64:
10324 case BFD_RELOC_X86_64_GOT64:
10325 case BFD_RELOC_X86_64_GOTPCREL64:
10326 case BFD_RELOC_X86_64_GOTPC64:
10327 case BFD_RELOC_X86_64_GOTPLT64:
10328 case BFD_RELOC_X86_64_PLTOFF64:
10329 as_bad_where (fixp->fx_file, fixp->fx_line,
10330 _("cannot represent relocation type %s in x32 mode"),
10331 bfd_get_reloc_code_name (code));
10332 break;
10333 default:
10334 break;
10335 }
10336
062cd5e7
AS
10337 if (!fixp->fx_pcrel)
10338 rel->addend = fixp->fx_offset;
10339 else
10340 switch (code)
10341 {
10342 case BFD_RELOC_X86_64_PLT32:
10343 case BFD_RELOC_X86_64_GOT32:
10344 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
10345 case BFD_RELOC_X86_64_TLSGD:
10346 case BFD_RELOC_X86_64_TLSLD:
10347 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
10348 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10349 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
10350 rel->addend = fixp->fx_offset - fixp->fx_size;
10351 break;
10352 default:
10353 rel->addend = (section->vma
10354 - fixp->fx_size
10355 + fixp->fx_addnumber
10356 + md_pcrel_from (fixp));
10357 break;
10358 }
3e73aa7c
JH
10359 }
10360
252b5132
RH
10361 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10362 if (rel->howto == NULL)
10363 {
10364 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 10365 _("cannot represent relocation type %s"),
252b5132
RH
10366 bfd_get_reloc_code_name (code));
10367 /* Set howto to a garbage value so that we can keep going. */
10368 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 10369 gas_assert (rel->howto != NULL);
252b5132
RH
10370 }
10371
10372 return rel;
10373}
10374
ee86248c 10375#include "tc-i386-intel.c"
54cfded0 10376
a60de03c
JB
10377void
10378tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 10379{
a60de03c
JB
10380 int saved_naked_reg;
10381 char saved_register_dot;
54cfded0 10382
a60de03c
JB
10383 saved_naked_reg = allow_naked_reg;
10384 allow_naked_reg = 1;
10385 saved_register_dot = register_chars['.'];
10386 register_chars['.'] = '.';
10387 allow_pseudo_reg = 1;
10388 expression_and_evaluate (exp);
10389 allow_pseudo_reg = 0;
10390 register_chars['.'] = saved_register_dot;
10391 allow_naked_reg = saved_naked_reg;
10392
e96d56a1 10393 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 10394 {
a60de03c
JB
10395 if ((addressT) exp->X_add_number < i386_regtab_size)
10396 {
10397 exp->X_op = O_constant;
10398 exp->X_add_number = i386_regtab[exp->X_add_number]
10399 .dw2_regnum[flag_code >> 1];
10400 }
10401 else
10402 exp->X_op = O_illegal;
54cfded0 10403 }
54cfded0
AM
10404}
10405
10406void
10407tc_x86_frame_initial_instructions (void)
10408{
a60de03c
JB
10409 static unsigned int sp_regno[2];
10410
10411 if (!sp_regno[flag_code >> 1])
10412 {
10413 char *saved_input = input_line_pointer;
10414 char sp[][4] = {"esp", "rsp"};
10415 expressionS exp;
a4447b93 10416
a60de03c
JB
10417 input_line_pointer = sp[flag_code >> 1];
10418 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 10419 gas_assert (exp.X_op == O_constant);
a60de03c
JB
10420 sp_regno[flag_code >> 1] = exp.X_add_number;
10421 input_line_pointer = saved_input;
10422 }
a4447b93 10423
61ff971f
L
10424 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10425 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 10426}
d2b2c203 10427
d7921315
L
10428int
10429x86_dwarf2_addr_size (void)
10430{
10431#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10432 if (x86_elf_abi == X86_64_X32_ABI)
10433 return 4;
10434#endif
10435 return bfd_arch_bits_per_address (stdoutput) / 8;
10436}
10437
d2b2c203
DJ
10438int
10439i386_elf_section_type (const char *str, size_t len)
10440{
10441 if (flag_code == CODE_64BIT
10442 && len == sizeof ("unwind") - 1
10443 && strncmp (str, "unwind", 6) == 0)
10444 return SHT_X86_64_UNWIND;
10445
10446 return -1;
10447}
bb41ade5 10448
ad5fec3b
EB
10449#ifdef TE_SOLARIS
10450void
10451i386_solaris_fix_up_eh_frame (segT sec)
10452{
10453 if (flag_code == CODE_64BIT)
10454 elf_section_type (sec) = SHT_X86_64_UNWIND;
10455}
10456#endif
10457
bb41ade5
AM
10458#ifdef TE_PE
10459void
10460tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10461{
91d6fa6a 10462 expressionS exp;
bb41ade5 10463
91d6fa6a
NC
10464 exp.X_op = O_secrel;
10465 exp.X_add_symbol = symbol;
10466 exp.X_add_number = 0;
10467 emit_expr (&exp, size);
bb41ade5
AM
10468}
10469#endif
3b22753a
L
10470
10471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10472/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10473
01e1a5bc 10474bfd_vma
3b22753a
L
10475x86_64_section_letter (int letter, char **ptr_msg)
10476{
10477 if (flag_code == CODE_64BIT)
10478 {
10479 if (letter == 'l')
10480 return SHF_X86_64_LARGE;
10481
8f3bae45 10482 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 10483 }
3b22753a 10484 else
8f3bae45 10485 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
10486 return -1;
10487}
10488
01e1a5bc 10489bfd_vma
3b22753a
L
10490x86_64_section_word (char *str, size_t len)
10491{
8620418b 10492 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
10493 return SHF_X86_64_LARGE;
10494
10495 return -1;
10496}
10497
10498static void
10499handle_large_common (int small ATTRIBUTE_UNUSED)
10500{
10501 if (flag_code != CODE_64BIT)
10502 {
10503 s_comm_internal (0, elf_common_parse);
10504 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10505 }
10506 else
10507 {
10508 static segT lbss_section;
10509 asection *saved_com_section_ptr = elf_com_section_ptr;
10510 asection *saved_bss_section = bss_section;
10511
10512 if (lbss_section == NULL)
10513 {
10514 flagword applicable;
10515 segT seg = now_seg;
10516 subsegT subseg = now_subseg;
10517
10518 /* The .lbss section is for local .largecomm symbols. */
10519 lbss_section = subseg_new (".lbss", 0);
10520 applicable = bfd_applicable_section_flags (stdoutput);
10521 bfd_set_section_flags (stdoutput, lbss_section,
10522 applicable & SEC_ALLOC);
10523 seg_info (lbss_section)->bss = 1;
10524
10525 subseg_set (seg, subseg);
10526 }
10527
10528 elf_com_section_ptr = &_bfd_elf_large_com_section;
10529 bss_section = lbss_section;
10530
10531 s_comm_internal (0, elf_common_parse);
10532
10533 elf_com_section_ptr = saved_com_section_ptr;
10534 bss_section = saved_bss_section;
10535 }
10536}
10537#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.683469 seconds and 4 git commands to generate.