Remove _initialize_valarith
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
101/*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108typedef struct
109{
d3ce72d0
NC
110 const insn_template *start;
111 const insn_template *end;
6305a203
L
112}
113templates;
114
115/* 386 operand encoding bytes: see 386 book for details of this. */
116typedef struct
117{
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121}
122modrm_byte;
123
124/* x86-64 extension prefix. */
125typedef int rex_byte;
126
6305a203
L
127/* 386 opcode byte to code indirect addressing. */
128typedef struct
129{
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133}
134sib_byte;
135
6305a203
L
136/* x86 arch names, types and features */
137typedef struct
138{
139 const char *name; /* arch name */
8a2c8fef 140 unsigned int len; /* arch string length */
6305a203
L
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 143 unsigned int skip; /* show_arch should skip this. */
6305a203
L
144}
145arch_entry;
146
293f5f65
L
147/* Used to turn off indicated flags. */
148typedef struct
149{
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153}
154noarch_entry;
155
78f12dd3 156static void update_code_flag (int, int);
e3bb37b5
L
157static void set_code_flag (int);
158static void set_16bit_gcc_code_flag (int);
159static void set_intel_syntax (int);
1efbbeb4 160static void set_intel_mnemonic (int);
db51cc60 161static void set_allow_index_reg (int);
7bab8ab5 162static void set_check (int);
e3bb37b5 163static void set_cpu_arch (int);
6482c264 164#ifdef TE_PE
e3bb37b5 165static void pe_directive_secrel (int);
6482c264 166#endif
e3bb37b5
L
167static void signed_cons (int);
168static char *output_invalid (int c);
ee86248c
JB
169static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
a7619375 173static int i386_att_operand (char *);
e3bb37b5 174static int i386_intel_operand (char *, int);
ee86248c
JB
175static int i386_intel_simplify (expressionS *);
176static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
177static const reg_entry *parse_register (char *, char **);
178static char *parse_insn (char *, char *);
179static char *parse_operands (char *, const char *);
180static void swap_operands (void);
4d456e3d 181static void swap_2_operands (int, int);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
b4a3a7b4
L
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
252b5132 365 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 366 addressing modes of this insn are encoded. */
252b5132 367 modrm_byte rm;
3e73aa7c 368 rex_byte rex;
43234a1e 369 rex_byte vrex;
252b5132 370 sib_byte sib;
c0f3af97 371 vex_prefix vex;
b6169b20 372
43234a1e
L
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
86fa6981
L
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
64c49ab3
JB
390 dir_encoding_store,
391 dir_encoding_swap
86fa6981 392 } dir_encoding;
891edac4 393
a501d77e
L
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
f8a5c266 401
6b6b6807
L
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
b6f8c7c4
L
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
86fa6981
L
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
d5de92cf
L
417 /* REP prefix. */
418 const char *rep_prefix;
419
165de32a
L
420 /* HLE prefix. */
421 const char *hle_prefix;
42164a71 422
7e8b059b
L
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
04ef582a
L
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
891edac4 429 /* Error message. */
a65babc9 430 enum i386_error error;
252b5132
RH
431 };
432
433typedef struct _i386_insn i386_insn;
434
43234a1e
L
435/* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437struct RC_name
438{
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442};
443
444static const struct RC_name RC_NamesTable[] =
445{
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451};
452
252b5132
RH
453/* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 455const char extra_symbol_chars[] = "*%-([{}"
252b5132 456#ifdef LEX_AT
32137342
NC
457 "@"
458#endif
459#ifdef LEX_QM
460 "?"
252b5132 461#endif
32137342 462 ;
252b5132 463
29b0f896
AM
464#if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 466 && !defined (TE_GNU) \
29b0f896 467 && !defined (TE_LINUX) \
8d63c93e 468 && !defined (TE_NACL) \
29b0f896 469 && !defined (TE_FreeBSD) \
5b806d27 470 && !defined (TE_DragonFly) \
29b0f896 471 && !defined (TE_NetBSD)))
252b5132 472/* This array holds the chars that always start a comment. If the
b3b91714
AM
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475const char *i386_comment_chars = "#/";
476#define SVR4_COMMENT_CHARS 1
252b5132 477#define PREFIX_SEPARATOR '\\'
252b5132 478
b3b91714
AM
479#else
480const char *i386_comment_chars = "#";
481#define PREFIX_SEPARATOR '/'
482#endif
483
252b5132
RH
484/* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 488 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
252b5132 491 '/' isn't otherwise defined. */
b3b91714 492const char line_comment_chars[] = "#/";
252b5132 493
63a0b638 494const char line_separator_chars[] = ";";
252b5132 495
ce8a8b2f
AM
496/* Chars that can be used to separate mant from exp in floating point
497 nums. */
252b5132
RH
498const char EXP_CHARS[] = "eE";
499
ce8a8b2f
AM
500/* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
252b5132
RH
503const char FLT_CHARS[] = "fFdDxX";
504
ce8a8b2f 505/* Tables for lexical analysis. */
252b5132
RH
506static char mnemonic_chars[256];
507static char register_chars[256];
508static char operand_chars[256];
509static char identifier_chars[256];
510static char digit_chars[256];
511
ce8a8b2f 512/* Lexical macros. */
252b5132
RH
513#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514#define is_operand_char(x) (operand_chars[(unsigned char) x])
515#define is_register_char(x) (register_chars[(unsigned char) x])
516#define is_space_char(x) ((x) == ' ')
517#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518#define is_digit_char(x) (digit_chars[(unsigned char) x])
519
0234cb7c 520/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
521static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523/* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
47926f60 526 assembler instruction). */
252b5132 527static char save_stack[32];
ce8a8b2f 528static char *save_stack_p;
252b5132
RH
529#define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531#define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
47926f60 534/* The instruction we're assembling. */
252b5132
RH
535static i386_insn i;
536
537/* Possible templates for current insn. */
538static const templates *current_templates;
539
31b2323c
L
540/* Per instruction expressionS buffers: max displacements & immediates. */
541static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 543
47926f60 544/* Current operand we are working on. */
ee86248c 545static int this_operand = -1;
252b5132 546
3e73aa7c
JH
547/* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555static enum flag_code flag_code;
4fa24527 556static unsigned int object_64bit;
862be3fb 557static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
558static int use_rela_relocations = 0;
559
7af8ed2d
NC
560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
351f65ca
L
564/* The ELF ABI to use. */
565enum x86_elf_abi
566{
567 I386_ABI,
7f56bc95
L
568 X86_64_ABI,
569 X86_64_X32_ABI
351f65ca
L
570};
571
572static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 573#endif
351f65ca 574
167ad85b
TG
575#if defined (TE_PE) || defined (TE_PEP)
576/* Use big object file format. */
577static int use_big_obj = 0;
578#endif
579
8dcea932
L
580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581/* 1 if generating code for a shared library. */
582static int shared = 0;
583#endif
584
47926f60
KH
585/* 1 for intel syntax,
586 0 if att syntax. */
587static int intel_syntax = 0;
252b5132 588
e89c5eaa
L
589/* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591static int intel64;
592
1efbbeb4
L
593/* 1 for intel mnemonic,
594 0 if att mnemonic. */
595static int intel_mnemonic = !SYSV386_COMPAT;
596
a60de03c
JB
597/* 1 if pseudo registers are permitted. */
598static int allow_pseudo_reg = 0;
599
47926f60
KH
600/* 1 if register prefix % not required. */
601static int allow_naked_reg = 0;
252b5132 602
33eaf5de 603/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606static int add_bnd_prefix = 0;
607
ba104c83 608/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
609static int allow_index_reg = 0;
610
d022bddd
IT
611/* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613static int omit_lock_prefix = 0;
614
e4e00185
AS
615/* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617static int avoid_fence = 0;
618
0cb4071e
L
619/* 1 if the assembler should generate relax relocations. */
620
621static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
7bab8ab5 624static enum check_kind
daf50ae7 625 {
7bab8ab5
JB
626 check_none = 0,
627 check_warning,
628 check_error
daf50ae7 629 }
7bab8ab5 630sse_check, operand_check = check_warning;
daf50ae7 631
b6f8c7c4
L
632/* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637static int optimize = 0;
638
639/* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646static int optimize_for_space = 0;
647
2ca3ace5
L
648/* Register prefix used for error message. */
649static const char *register_prefix = "%";
650
47926f60
KH
651/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654static char stackop_size = '\0';
eecb386c 655
12b55ccc
L
656/* Non-zero to optimize code alignment. */
657int optimize_align_code = 1;
658
47926f60
KH
659/* Non-zero to quieten some warnings. */
660static int quiet_warnings = 0;
a38cf1db 661
47926f60
KH
662/* CPU name. */
663static const char *cpu_arch_name = NULL;
6305a203 664static char *cpu_sub_arch_name = NULL;
a38cf1db 665
47926f60 666/* CPU feature flags. */
40fb9820
L
667static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
ccc9c027
L
669/* If we have selected a cpu we are generating instructions for. */
670static int cpu_arch_tune_set = 0;
671
9103f4f4 672/* Cpu we are generating instructions for. */
fbf3f584 673enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
674
675/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 676static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 677
ccc9c027 678/* CPU instruction set architecture used. */
fbf3f584 679enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 680
9103f4f4 681/* CPU feature flags of instruction set architecture used. */
fbf3f584 682i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 683
fddf5b5b
AM
684/* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686static unsigned int no_cond_jump_promotion = 0;
687
c0f3af97
L
688/* Encode SSE instructions with VEX prefix. */
689static unsigned int sse2avx;
690
539f890d
L
691/* Encode scalar AVX instructions with specific vector length. */
692static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
03751133
L
698/* Encode VEX WIG instructions with specific vex.w. */
699static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
43234a1e
L
705/* Encode scalar EVEX LIG instructions with specific vector length. */
706static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713/* Encode EVEX WIG instructions with specific evex.w. */
714static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
d3d3c6db
IT
720/* Value to encode in EVEX RC bits, for SAE-only instructions. */
721static enum rc_type evexrcig = rne;
722
29b0f896 723/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 724static symbolS *GOT_symbol;
29b0f896 725
a4447b93
RH
726/* The dwarf2 return column, adjusted for 32 or 64 bit. */
727unsigned int x86_dwarf2_return_column;
728
729/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730int x86_cie_data_alignment;
731
252b5132 732/* Interface to relax_segment.
fddf5b5b
AM
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
252b5132 736
47926f60 737/* Types. */
93c2a809
AM
738#define UNCOND_JUMP 0
739#define COND_JUMP 1
740#define COND_JUMP86 2
fddf5b5b 741
47926f60 742/* Sizes. */
252b5132
RH
743#define CODE16 1
744#define SMALL 0
29b0f896 745#define SMALL16 (SMALL | CODE16)
252b5132 746#define BIG 2
29b0f896 747#define BIG16 (BIG | CODE16)
252b5132
RH
748
749#ifndef INLINE
750#ifdef __GNUC__
751#define INLINE __inline__
752#else
753#define INLINE
754#endif
755#endif
756
fddf5b5b
AM
757#define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759#define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761#define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
763
764/* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772const relax_typeS md_relax_table[] =
773{
24eab124
AM
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
93c2a809 777 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 778 4) which index into the table to try if we can't fit into this one. */
252b5132 779
fddf5b5b 780 /* UNCOND_JUMP states. */
93c2a809
AM
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
252b5132 785 {0, 0, 4, 0},
93c2a809
AM
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
788 {0, 0, 2, 0},
789
93c2a809
AM
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
fddf5b5b 796 /* word conditionals add 3 bytes to frag:
93c2a809
AM
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
252b5132
RH
809};
810
9103f4f4
L
811static const arch_entry cpu_arch[] =
812{
89507696
JB
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
8a2c8fef 815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 816 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 818 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 820 CPU_NONE_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 822 CPU_I186_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_I286_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 826 CPU_I386_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 828 CPU_I486_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 830 CPU_I586_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 832 CPU_I686_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 834 CPU_I586_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 836 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_P2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 840 CPU_P3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 842 CPU_P4_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 844 CPU_CORE_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 846 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 848 CPU_CORE_FLAGS, 1 },
8a2c8fef 849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 852 CPU_CORE2_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 854 CPU_CORE2_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 856 CPU_COREI7_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 858 CPU_L1OM_FLAGS, 0 },
7a9068fe 859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 860 CPU_K1OM_FLAGS, 0 },
81486035 861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 862 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 864 CPU_K6_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 866 CPU_K6_2_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 868 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 870 CPU_K8_FLAGS, 1 },
8a2c8fef 871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 872 CPU_K8_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 874 CPU_K8_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 876 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 878 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 880 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 882 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER4_FLAGS, 0 },
029f3522 885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 886 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
7b458c12 889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 890 CPU_BTVER1_FLAGS, 0 },
7b458c12 891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 892 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_8087_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_287_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_387_FLAGS, 0 },
1848e567
L
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
d871f3f4
L
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_MMX_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_SSE_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_SSE2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_SSE3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_AVX_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_AVX2_FLAGS, 0 },
43234a1e 925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_AVX512F_FLAGS, 0 },
43234a1e 927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX512CD_FLAGS, 0 },
43234a1e 929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX512ER_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_VMX_FLAGS, 0 },
8729a6f6 941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SMX_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_AES_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_F16C_FLAGS, 0 },
6c30d220 965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_FMA_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_FMA4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_XOP_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_LWP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_MOVBE_FLAGS, 0 },
60aa667e 977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_CX16_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_EPT_FLAGS, 0 },
6c30d220 981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_LZCNT_FLAGS, 0 },
42164a71 983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_HLE_FLAGS, 0 },
42164a71 985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_RTM_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_CLFLUSH_FLAGS, 0 },
22109423 991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_NOP_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SVME_FLAGS, 1 },
8a2c8fef 1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SVME_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_ABM_FLAGS, 0 },
87973e9f 1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_BMI_FLAGS, 0 },
2a2a0f38 1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_TBM_FLAGS, 0 },
e2e1fcde 1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ADX_FLAGS, 0 },
e2e1fcde 1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_SMAP_FLAGS, 0 },
7e8b059b 1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_MPX_FLAGS, 0 },
a0046408 1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_SHA_FLAGS, 0 },
963f3586 1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SE1_FLAGS, 0 },
c5e7287a 1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_CLZERO_FLAGS, 0 },
9916071f 1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_MWAITX_FLAGS, 0 },
8eab4136 1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_OSPKE_FLAGS, 0 },
8bc52696 1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
293f5f65
L
1085};
1086
1087static const noarch_entry cpu_noarch[] =
1088{
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
e413e4e9
AM
1125};
1126
704209c0 1127#ifdef I386COFF
a6c24e68
NC
1128/* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131static symbolS *
1132pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133{
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
7ab9ffdd 1138 if (needs_align
a6c24e68
NC
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
7ab9ffdd 1142
a6c24e68
NC
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160}
1161
704209c0 1162static void
a6c24e68
NC
1163pe_lcomm (int needs_align)
1164{
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166}
704209c0 1167#endif
a6c24e68 1168
29b0f896
AM
1169const pseudo_typeS md_pseudo_table[] =
1170{
1171#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173#else
1174 {"align", s_align_ptwo, 0},
1175#endif
1176 {"arch", set_cpu_arch, 0},
1177#ifndef I386COFF
1178 {"bss", s_bss, 0},
a6c24e68
NC
1179#else
1180 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1181#endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
d182319b 1186 {"slong", signed_cons, 4},
29b0f896
AM
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1192#ifdef BFD64
29b0f896 1193 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1194#endif
29b0f896
AM
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
3b22753a
L
1203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
07a53e5c 1205#else
68d20676 1206 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1209#endif
6482c264
NC
1210#ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212#endif
29b0f896
AM
1213 {0, 0, 0}
1214};
1215
1216/* For interface with expression (). */
1217extern char *input_line_pointer;
1218
1219/* Hash table for instruction mnemonic lookup. */
1220static struct hash_control *op_hash;
1221
1222/* Hash table for register lookup. */
1223static struct hash_control *reg_hash;
1224\f
ce8a8b2f
AM
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
62a02d25
L
1228static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1236static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1240static const unsigned char f16_3[] =
3ae729d5 1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1242static const unsigned char f16_4[] =
3ae729d5
L
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1250/* 32-bit NOPs patterns. */
1251static const unsigned char *const f32_patt[] = {
3ae729d5 1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1253};
1254/* 16-bit NOPs patterns. */
1255static const unsigned char *const f16_patt[] = {
3ae729d5 1256 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1257};
1258/* nopl (%[re]ax) */
1259static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261/* nopl 0(%[re]ax) */
1262static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264/* nopl 0(%[re]ax,%[re]ax,1) */
1265static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267/* nopw 0(%[re]ax,%[re]ax,1) */
1268static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270/* nopl 0L(%[re]ax) */
1271static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273/* nopl 0L(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276/* nopw 0L(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1282/* data16 nopw %cs:0L(%eax,%eax,1) */
1283static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1285/* 32-bit and 64-bit NOPs patterns. */
1286static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1288 alt_9, alt_10, alt_11
62a02d25
L
1289};
1290
1291/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294static void
1295i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298{
3ae729d5
L
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
62a02d25 1306 {
3ae729d5
L
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
62a02d25
L
1309 }
1310
3ae729d5
L
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
62a02d25
L
1332}
1333
3ae729d5
L
1334static INLINE int
1335fits_in_imm7 (offsetT num)
1336{
1337 return (num & 0x7f) == num;
1338}
1339
1340static INLINE int
1341fits_in_imm31 (offsetT num)
1342{
1343 return (num & 0x7fffffff) == num;
1344}
62a02d25
L
1345
1346/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349void
3ae729d5 1350i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1351{
3ae729d5 1352 const unsigned char *const *patt = NULL;
62a02d25 1353 int max_single_nop_size;
3ae729d5
L
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
62a02d25 1356
3ae729d5 1357 switch (fragP->fr_type)
62a02d25 1358 {
3ae729d5
L
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
62a02d25
L
1363 return;
1364 }
1365
ccc9c027
L
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
4eed87de 1368
76bc74dc
L
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
22109423 1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1375 be used.
ccc9c027
L
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
3ae729d5
L
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
252b5132 1386 }
33fef721 1387 else
ccc9c027 1388 {
fbf3f584 1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1398 patt = alt_patt;
ccc9c027
L
1399 else
1400 patt = f32_patt;
1401 break;
ccc9c027
L
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
ef05d495 1404 case PROCESSOR_CORE:
76bc74dc 1405 case PROCESSOR_CORE2:
bd5295b2 1406 case PROCESSOR_COREI7:
3632d14b 1407 case PROCESSOR_L1OM:
7a9068fe 1408 case PROCESSOR_K1OM:
76bc74dc 1409 case PROCESSOR_GENERIC64:
ccc9c027
L
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
4eed87de 1413 case PROCESSOR_AMDFAM10:
8aedb9fe 1414 case PROCESSOR_BD:
029f3522 1415 case PROCESSOR_ZNVER:
7b458c12 1416 case PROCESSOR_BT:
80b8656c 1417 patt = alt_patt;
ccc9c027 1418 break;
76bc74dc 1419 case PROCESSOR_I386:
ccc9c027
L
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
2dde1948 1422 case PROCESSOR_PENTIUMPRO:
81486035 1423 case PROCESSOR_IAMCU:
ccc9c027
L
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
4eed87de 1427 }
ccc9c027
L
1428 }
1429 else
1430 {
fbf3f584 1431 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1432 {
1433 case PROCESSOR_UNKNOWN:
e6a14101 1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
76bc74dc 1439 case PROCESSOR_I386:
ccc9c027
L
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
81486035 1442 case PROCESSOR_IAMCU:
ccc9c027
L
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
4eed87de 1446 case PROCESSOR_AMDFAM10:
8aedb9fe 1447 case PROCESSOR_BD:
029f3522 1448 case PROCESSOR_ZNVER:
7b458c12 1449 case PROCESSOR_BT:
ccc9c027
L
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1454 patt = alt_patt;
ccc9c027
L
1455 else
1456 patt = f32_patt;
1457 break;
76bc74dc
L
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
ef05d495 1462 case PROCESSOR_CORE2:
bd5295b2 1463 case PROCESSOR_COREI7:
3632d14b 1464 case PROCESSOR_L1OM:
7a9068fe 1465 case PROCESSOR_K1OM:
22109423 1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1467 patt = alt_patt;
ccc9c027
L
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
80b8656c 1472 patt = alt_patt;
ccc9c027 1473 break;
4eed87de 1474 }
ccc9c027
L
1475 }
1476
76bc74dc
L
1477 if (patt == f32_patt)
1478 {
3ae729d5
L
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
76bc74dc
L
1482 }
1483 else
1484 {
3ae729d5
L
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
76bc74dc 1547 }
ccc9c027 1548 }
3ae729d5
L
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
252b5132
RH
1552}
1553
c6fb90c8 1554static INLINE int
0dfbf9d7 1555operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1556{
0dfbf9d7 1557 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1558 {
1559 case 3:
0dfbf9d7 1560 if (x->array[2])
c6fb90c8 1561 return 0;
1a0670f3 1562 /* Fall through. */
c6fb90c8 1563 case 2:
0dfbf9d7 1564 if (x->array[1])
c6fb90c8 1565 return 0;
1a0670f3 1566 /* Fall through. */
c6fb90c8 1567 case 1:
0dfbf9d7 1568 return !x->array[0];
c6fb90c8
L
1569 default:
1570 abort ();
1571 }
40fb9820
L
1572}
1573
c6fb90c8 1574static INLINE void
0dfbf9d7 1575operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 x->array[2] = v;
1a0670f3 1581 /* Fall through. */
c6fb90c8 1582 case 2:
0dfbf9d7 1583 x->array[1] = v;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 x->array[0] = v;
1a0670f3 1587 /* Fall through. */
c6fb90c8
L
1588 break;
1589 default:
1590 abort ();
1591 }
1592}
40fb9820 1593
c6fb90c8 1594static INLINE int
0dfbf9d7
L
1595operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
c6fb90c8 1597{
0dfbf9d7 1598 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1599 {
1600 case 3:
0dfbf9d7 1601 if (x->array[2] != y->array[2])
c6fb90c8 1602 return 0;
1a0670f3 1603 /* Fall through. */
c6fb90c8 1604 case 2:
0dfbf9d7 1605 if (x->array[1] != y->array[1])
c6fb90c8 1606 return 0;
1a0670f3 1607 /* Fall through. */
c6fb90c8 1608 case 1:
0dfbf9d7 1609 return x->array[0] == y->array[0];
c6fb90c8
L
1610 break;
1611 default:
1612 abort ();
1613 }
1614}
40fb9820 1615
0dfbf9d7
L
1616static INLINE int
1617cpu_flags_all_zero (const union i386_cpu_flags *x)
1618{
1619 switch (ARRAY_SIZE(x->array))
1620 {
53467f57
IT
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
0dfbf9d7
L
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1a0670f3 1628 /* Fall through. */
0dfbf9d7
L
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638}
1639
0dfbf9d7
L
1640static INLINE int
1641cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643{
1644 switch (ARRAY_SIZE(x->array))
1645 {
53467f57
IT
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
0dfbf9d7
L
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1a0670f3 1653 /* Fall through. */
0dfbf9d7
L
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1a0670f3 1657 /* Fall through. */
0dfbf9d7
L
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664}
c6fb90c8
L
1665
1666static INLINE int
1667cpu_flags_check_cpu64 (i386_cpu_flags f)
1668{
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1671}
1672
c6fb90c8
L
1673static INLINE i386_cpu_flags
1674cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1675{
c6fb90c8
L
1676 switch (ARRAY_SIZE (x.array))
1677 {
53467f57
IT
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
c6fb90c8
L
1681 case 3:
1682 x.array [2] &= y.array [2];
1a0670f3 1683 /* Fall through. */
c6fb90c8
L
1684 case 2:
1685 x.array [1] &= y.array [1];
1a0670f3 1686 /* Fall through. */
c6fb90c8
L
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694}
40fb9820 1695
c6fb90c8
L
1696static INLINE i386_cpu_flags
1697cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1698{
c6fb90c8 1699 switch (ARRAY_SIZE (x.array))
40fb9820 1700 {
53467f57
IT
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
c6fb90c8
L
1704 case 3:
1705 x.array [2] |= y.array [2];
1a0670f3 1706 /* Fall through. */
c6fb90c8
L
1707 case 2:
1708 x.array [1] |= y.array [1];
1a0670f3 1709 /* Fall through. */
c6fb90c8
L
1710 case 1:
1711 x.array [0] |= y.array [0];
40fb9820
L
1712 break;
1713 default:
1714 abort ();
1715 }
40fb9820
L
1716 return x;
1717}
1718
309d3373
JB
1719static INLINE i386_cpu_flags
1720cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721{
1722 switch (ARRAY_SIZE (x.array))
1723 {
53467f57
IT
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
309d3373
JB
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1a0670f3 1729 /* Fall through. */
309d3373
JB
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1a0670f3 1732 /* Fall through. */
309d3373
JB
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740}
1741
c0f3af97
L
1742#define CPU_FLAGS_ARCH_MATCH 0x1
1743#define CPU_FLAGS_64BIT_MATCH 0x2
1744
c0f3af97 1745#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1747
1748/* Return CPU flags match bits. */
3629bb00 1749
40fb9820 1750static int
d3ce72d0 1751cpu_flags_match (const insn_template *t)
40fb9820 1752{
c0f3af97
L
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
0dfbf9d7 1759 if (cpu_flags_all_zero (&x))
c0f3af97
L
1760 {
1761 /* This instruction is available on all archs. */
db12e14e 1762 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1763 }
3629bb00
L
1764 else
1765 {
c0f3af97 1766 /* This instruction is available only on some archs. */
3629bb00
L
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
ab592e75
JB
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
3629bb00 1774 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
a5ff0eb2
L
1777 if (x.bitfield.cpuavx)
1778 {
929f69fa 1779 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1786 }
929f69fa
JB
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
a5ff0eb2 1796 else
db12e14e 1797 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1798 }
3629bb00 1799 }
c0f3af97 1800 return match;
40fb9820
L
1801}
1802
c6fb90c8
L
1803static INLINE i386_operand_type
1804operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1805{
c6fb90c8
L
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1a0670f3 1810 /* Fall through. */
c6fb90c8
L
1811 case 2:
1812 x.array [1] &= y.array [1];
1a0670f3 1813 /* Fall through. */
c6fb90c8
L
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
40fb9820
L
1821}
1822
73053c1f
JB
1823static INLINE i386_operand_type
1824operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825{
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841}
1842
c6fb90c8
L
1843static INLINE i386_operand_type
1844operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1845{
c6fb90c8 1846 switch (ARRAY_SIZE (x.array))
40fb9820 1847 {
c6fb90c8
L
1848 case 3:
1849 x.array [2] |= y.array [2];
1a0670f3 1850 /* Fall through. */
c6fb90c8
L
1851 case 2:
1852 x.array [1] |= y.array [1];
1a0670f3 1853 /* Fall through. */
c6fb90c8
L
1854 case 1:
1855 x.array [0] |= y.array [0];
40fb9820
L
1856 break;
1857 default:
1858 abort ();
1859 }
c6fb90c8
L
1860 return x;
1861}
40fb9820 1862
c6fb90c8
L
1863static INLINE i386_operand_type
1864operand_type_xor (i386_operand_type x, i386_operand_type y)
1865{
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1a0670f3 1870 /* Fall through. */
c6fb90c8
L
1871 case 2:
1872 x.array [1] ^= y.array [1];
1a0670f3 1873 /* Fall through. */
c6fb90c8
L
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
40fb9820
L
1880 return x;
1881}
1882
1883static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1885static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
40fb9820 1891static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1892static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1893static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1902static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1903
1904enum operand_type
1905{
1906 reg,
40fb9820
L
1907 imm,
1908 disp,
1909 anymem
1910};
1911
c6fb90c8 1912static INLINE int
40fb9820
L
1913operand_type_check (i386_operand_type t, enum operand_type c)
1914{
1915 switch (c)
1916 {
1917 case reg:
dc821c5f 1918 return t.bitfield.reg;
40fb9820 1919
40fb9820
L
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
2cfe26b6
AM
1946
1947 return 0;
40fb9820
L
1948}
1949
7a54636a
L
1950/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1952
1953static INLINE int
7a54636a
L
1954match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
5c07affc 1956{
3ac21baa
JB
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1967}
1968
dd40ce22
L
1969/* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1971
1972static INLINE int
dd40ce22
L
1973match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1b54b8d7 1975{
3ac21baa
JB
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1982}
1983
7a54636a
L
1984/* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
5c07affc
L
1986
1987static INLINE int
dd40ce22
L
1988match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
5c07affc 1990{
7a54636a 1991 return (match_operand_size (t, wanted, given)
3ac21baa 1992 && !((i.types[given].bitfield.unspecified
af508cb9 1993 && !i.broadcast
3ac21baa
JB
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
d6793fa1
JB
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
3ac21baa 2001 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2002 && !t->opcode_modifier.broadcast
3ac21baa
JB
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
5c07affc
L
2011}
2012
3ac21baa
JB
2013/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
5c07affc 2017
3ac21baa
JB
2018#define MATCH_STRAIGHT 1
2019#define MATCH_REVERSE 2
2020
2021static INLINE unsigned int
d3ce72d0 2022operand_size_match (const insn_template *t)
5c07affc 2023{
3ac21baa 2024 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
1b54b8d7
JB
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2038 continue;
2039
1b54b8d7 2040 if (t->operand_types[j].bitfield.reg
7a54636a 2041 && !match_operand_size (t, j, j))
5c07affc
L
2042 {
2043 match = 0;
2044 break;
2045 }
2046
1b54b8d7 2047 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2048 && !match_simd_size (t, j, j))
1b54b8d7
JB
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
7a54636a 2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2056 {
2057 match = 0;
2058 break;
2059 }
2060
c48dadc9 2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
3ac21baa 2068 if (!t->opcode_modifier.d)
891edac4
L
2069 {
2070mismatch:
3ac21baa
JB
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
891edac4 2074 }
5c07affc
L
2075
2076 /* Check reverse. */
f5eb1d70 2077 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2078
f5eb1d70 2079 for (j = 0; j < i.operands; j++)
5c07affc 2080 {
f5eb1d70
JB
2081 unsigned int given = i.operands - j - 1;
2082
dbbc8b7e 2083 if (t->operand_types[j].bitfield.reg
f5eb1d70 2084 && !match_operand_size (t, j, given))
891edac4 2085 goto mismatch;
5c07affc 2086
dbbc8b7e 2087 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2088 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2094 goto mismatch;
2095
f5eb1d70 2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2097 goto mismatch;
5c07affc
L
2098 }
2099
3ac21baa 2100 return match | MATCH_REVERSE;
5c07affc
L
2101}
2102
c6fb90c8 2103static INLINE int
40fb9820
L
2104operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106{
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
7d5e4556 2110 temp.bitfield.unspecified = 0;
5c07affc
L
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
c0f3af97 2118 temp.bitfield.ymmword = 0;
43234a1e 2119 temp.bitfield.zmmword = 0;
0dfbf9d7 2120 if (operand_type_all_zero (&temp))
891edac4 2121 goto mismatch;
40fb9820 2122
891edac4
L
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127mismatch:
a65babc9 2128 i.error = operand_type_mismatch;
891edac4 2129 return 0;
40fb9820
L
2130}
2131
7d5e4556 2132/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
40fb9820 2136
c6fb90c8 2137static INLINE int
dc821c5f 2138operand_type_register_match (i386_operand_type g0,
40fb9820 2139 i386_operand_type t0,
40fb9820
L
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142{
10c17abd
JB
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
40fb9820
L
2148 return 1;
2149
10c17abd
JB
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
40fb9820
L
2155 return 1;
2156
dc821c5f
JB
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2164 return 1;
2165
dc821c5f
JB
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2173 return 1;
2174
a65babc9 2175 i.error = register_type_mismatch;
891edac4
L
2176
2177 return 0;
40fb9820
L
2178}
2179
4c692bc7
JB
2180static INLINE unsigned int
2181register_number (const reg_entry *r)
2182{
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
200cbe0f
L
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
4c692bc7
JB
2191 return nr;
2192}
2193
252b5132 2194static INLINE unsigned int
40fb9820 2195mode_from_disp_size (i386_operand_type t)
252b5132 2196{
b5014f7a 2197 if (t.bitfield.disp8)
40fb9820
L
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
252b5132
RH
2205}
2206
2207static INLINE int
65879393 2208fits_in_signed_byte (addressT num)
252b5132 2209{
65879393 2210 return num + 0x80 <= 0xff;
47926f60 2211}
252b5132
RH
2212
2213static INLINE int
65879393 2214fits_in_unsigned_byte (addressT num)
252b5132 2215{
65879393 2216 return num <= 0xff;
47926f60 2217}
252b5132
RH
2218
2219static INLINE int
65879393 2220fits_in_unsigned_word (addressT num)
252b5132 2221{
65879393 2222 return num <= 0xffff;
47926f60 2223}
252b5132
RH
2224
2225static INLINE int
65879393 2226fits_in_signed_word (addressT num)
252b5132 2227{
65879393 2228 return num + 0x8000 <= 0xffff;
47926f60 2229}
2a962e6d 2230
3e73aa7c 2231static INLINE int
65879393 2232fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2233{
2234#ifndef BFD64
2235 return 1;
2236#else
65879393 2237 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2238#endif
2239} /* fits_in_signed_long() */
2a962e6d 2240
3e73aa7c 2241static INLINE int
65879393 2242fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2243{
2244#ifndef BFD64
2245 return 1;
2246#else
65879393 2247 return num <= 0xffffffff;
3e73aa7c
JH
2248#endif
2249} /* fits_in_unsigned_long() */
252b5132 2250
43234a1e 2251static INLINE int
b5014f7a 2252fits_in_disp8 (offsetT num)
43234a1e
L
2253{
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268}
2269
a683cc34
SP
2270static INLINE int
2271fits_in_imm4 (offsetT num)
2272{
2273 return (num & 0xf) == num;
2274}
2275
40fb9820 2276static i386_operand_type
e3bb37b5 2277smallest_imm_type (offsetT num)
252b5132 2278{
40fb9820 2279 i386_operand_type t;
7ab9ffdd 2280
0dfbf9d7 2281 operand_type_set (&t, 0);
40fb9820
L
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
40fb9820
L
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
47926f60 2328}
252b5132 2329
847f7ad4 2330static offsetT
e3bb37b5 2331offset_in_range (offsetT val, int size)
847f7ad4 2332{
508866be 2333 addressT mask;
ba2adb93 2334
847f7ad4
AM
2335 switch (size)
2336 {
508866be
L
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2340#ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342#endif
47926f60 2343 default: abort ();
847f7ad4
AM
2344 }
2345
9de868bf
L
2346#ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2352#endif
ba2adb93 2353
47926f60 2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363}
2364
c32fa91d
L
2365enum PREFIX_GROUP
2366{
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
04ef582a 2370 PREFIX_DS,
c32fa91d
L
2371 PREFIX_OTHER
2372};
2373
2374/* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2381 */
2382
2383static enum PREFIX_GROUP
e3bb37b5 2384add_prefix (unsigned int prefix)
252b5132 2385{
c32fa91d 2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2387 unsigned int q;
252b5132 2388
29b0f896
AM
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
b1905489 2391 {
161a04f6 2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2396 ret = PREFIX_EXIST;
b1905489
JB
2397 q = REX_PREFIX;
2398 }
3e73aa7c 2399 else
b1905489
JB
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
b1905489 2406 case DS_PREFIX_OPCODE:
04ef582a
L
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
b1905489
JB
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
c32fa91d
L
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
b1905489 2423 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
b1905489
JB
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
c32fa91d 2441 ret = PREFIX_EXIST;
b1905489 2442 }
252b5132 2443
b1905489 2444 if (ret)
252b5132 2445 {
b1905489
JB
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
252b5132 2449 }
b1905489
JB
2450 else
2451 as_bad (_("same type of prefix used twice"));
252b5132 2452
252b5132
RH
2453 return ret;
2454}
2455
2456static void
78f12dd3 2457update_code_flag (int value, int check)
eecb386c 2458{
78f12dd3
L
2459 PRINTF_LIKE ((*as_error));
2460
1e9cc1c2 2461 flag_code = (enum flag_code) value;
40fb9820
L
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2473 {
78f12dd3
L
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2480 }
40fb9820 2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2482 {
78f12dd3
L
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2489 }
eecb386c
AM
2490 stackop_size = '\0';
2491}
2492
78f12dd3
L
2493static void
2494set_code_flag (int value)
2495{
2496 update_code_flag (value, 0);
2497}
2498
eecb386c 2499static void
e3bb37b5 2500set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2501{
1e9cc1c2 2502 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2507 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2508}
2509
2510static void
e3bb37b5 2511set_intel_syntax (int syntax_flag)
252b5132
RH
2512{
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
29b0f896 2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2518 {
d02603dc
NC
2519 char *string;
2520 int e = get_symbol_name (&string);
252b5132 2521
47926f60 2522 if (strcmp (string, "prefix") == 0)
252b5132 2523 ask_naked_reg = 1;
47926f60 2524 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2525 ask_naked_reg = -1;
2526 else
d0b47220 2527 as_bad (_("bad argument to syntax directive."));
d02603dc 2528 (void) restore_line_pointer (e);
252b5132
RH
2529 }
2530 demand_empty_rest_of_line ();
c3332e24 2531
252b5132
RH
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
f86103b7
AM
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2539
ee86248c 2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2541
e4a3b5a4 2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2544 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2545}
2546
1efbbeb4
L
2547static void
2548set_intel_mnemonic (int mnemonic_flag)
2549{
e1d4d893 2550 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2551}
2552
db51cc60
L
2553static void
2554set_allow_index_reg (int flag)
2555{
2556 allow_index_reg = flag;
2557}
2558
cb19c032 2559static void
7bab8ab5 2560set_check (int what)
cb19c032 2561{
7bab8ab5
JB
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
cb19c032
L
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
d02603dc
NC
2580 char *string;
2581 int e = get_symbol_name (&string);
cb19c032
L
2582
2583 if (strcmp (string, "none") == 0)
7bab8ab5 2584 *kind = check_none;
cb19c032 2585 else if (strcmp (string, "warning") == 0)
7bab8ab5 2586 *kind = check_warning;
cb19c032 2587 else if (strcmp (string, "error") == 0)
7bab8ab5 2588 *kind = check_error;
cb19c032 2589 else
7bab8ab5 2590 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2591 (void) restore_line_pointer (e);
cb19c032
L
2592 }
2593 else
7bab8ab5 2594 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2595
2596 demand_empty_rest_of_line ();
2597}
2598
8a9036a4
L
2599static void
2600check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2602{
2603#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
81486035
L
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
3632d14b 2624 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2626 || new_flag.bitfield.cpul1om)
8a9036a4 2627 return;
76ba9986 2628
7a9068fe
L
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
8a9036a4
L
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635#endif
2636}
2637
e413e4e9 2638static void
e3bb37b5 2639set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2640{
47926f60 2641 SKIP_WHITESPACE ();
e413e4e9 2642
29b0f896 2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2644 {
d02603dc
NC
2645 char *string;
2646 int e = get_symbol_name (&string);
91d6fa6a 2647 unsigned int j;
40fb9820 2648 i386_cpu_flags flags;
e413e4e9 2649
91d6fa6a 2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2651 {
91d6fa6a 2652 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2653 {
91d6fa6a 2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2655
5c6af06e
JB
2656 if (*string != '.')
2657 {
91d6fa6a 2658 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2659 cpu_sub_arch_name = NULL;
91d6fa6a 2660 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
91d6fa6a
NC
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
5c6af06e
JB
2678 break;
2679 }
40fb9820 2680
293f5f65
L
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
81486035 2683
5b64d091 2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2685 {
6305a203
L
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
91d6fa6a 2690 cpu_arch[j].name,
1bf57e9f 2691 (const char *) NULL);
6305a203
L
2692 free (name);
2693 }
2694 else
91d6fa6a 2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2696 cpu_arch_flags = flags;
a586129e 2697 cpu_arch_isa_flags = flags;
5c6af06e 2698 }
0089dace
L
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
d02603dc 2703 (void) restore_line_pointer (e);
5c6af06e
JB
2704 demand_empty_rest_of_line ();
2705 return;
e413e4e9
AM
2706 }
2707 }
293f5f65
L
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
33eaf5de 2711 /* Disable an ISA extension. */
293f5f65
L
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
91d6fa6a 2739 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
fddf5b5b
AM
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
29b0f896 2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2750 {
d02603dc
NC
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
fddf5b5b
AM
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
d02603dc 2764 (void) restore_line_pointer (e);
fddf5b5b
AM
2765 }
2766
e413e4e9
AM
2767 demand_empty_rest_of_line ();
2768}
2769
8a9036a4
L
2770enum bfd_architecture
2771i386_arch (void)
2772{
3632d14b 2773 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
7a9068fe
L
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
81486035
L
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
8a9036a4
L
2794 else
2795 return bfd_arch_i386;
2796}
2797
b9d79e03 2798unsigned long
7016a5d5 2799i386_mach (void)
b9d79e03 2800{
351f65ca 2801 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2802 {
3632d14b 2803 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2804 {
351f65ca
L
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
8a9036a4
L
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
7a9068fe
L
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
351f65ca 2817 else if (default_arch[6] == '\0')
8a9036a4 2818 return bfd_mach_x86_64;
351f65ca
L
2819 else
2820 return bfd_mach_x64_32;
8a9036a4 2821 }
5197d474
L
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
81486035
L
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
b9d79e03 2834 else
2b5d6a91 2835 as_fatal (_("unknown architecture"));
b9d79e03 2836}
b9d79e03 2837\f
252b5132 2838void
7016a5d5 2839md_begin (void)
252b5132
RH
2840{
2841 const char *hash_err;
2842
86fa6981
L
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
47926f60 2846 /* Initialize op_hash hash table. */
252b5132
RH
2847 op_hash = hash_new ();
2848
2849 {
d3ce72d0 2850 const insn_template *optab;
29b0f896 2851 templates *core_optab;
252b5132 2852
47926f60
KH
2853 /* Setup for loop. */
2854 optab = i386_optab;
add39d23 2855 core_optab = XNEW (templates);
252b5132
RH
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
47926f60 2865 add to hash table; & begin anew. */
252b5132
RH
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
5a49b8ac 2869 (void *) core_optab);
252b5132
RH
2870 if (hash_err)
2871 {
b37df7c4 2872 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
add39d23 2878 core_optab = XNEW (templates);
252b5132
RH
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
47926f60 2884 /* Initialize reg_hash hash table. */
252b5132
RH
2885 reg_hash = hash_new ();
2886 {
29b0f896 2887 const reg_entry *regtab;
c3fe08fa 2888 unsigned int regtab_size = i386_regtab_size;
252b5132 2889
c3fe08fa 2890 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2891 {
5a49b8ac 2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2893 if (hash_err)
b37df7c4 2894 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2895 regtab->reg_name,
2896 hash_err);
252b5132
RH
2897 }
2898 }
2899
47926f60 2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2901 {
29b0f896
AM
2902 int c;
2903 char *p;
252b5132
RH
2904
2905 for (c = 0; c < 256; c++)
2906 {
3882b010 2907 if (ISDIGIT (c))
252b5132
RH
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
3882b010 2914 else if (ISLOWER (c))
252b5132
RH
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
3882b010 2920 else if (ISUPPER (c))
252b5132 2921 {
3882b010 2922 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
43234a1e 2926 else if (c == '{' || c == '}')
86fa6981
L
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
252b5132 2931
3882b010 2932 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941#ifdef LEX_AT
2942 identifier_chars['@'] = '@';
32137342
NC
2943#endif
2944#ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
252b5132 2947#endif
252b5132 2948 digit_chars['-'] = '-';
c0f3af97 2949 mnemonic_chars['_'] = '_';
791fe849 2950 mnemonic_chars['-'] = '-';
0003779b 2951 mnemonic_chars['.'] = '.';
252b5132
RH
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
a4447b93
RH
2959 if (flag_code == CODE_64BIT)
2960 {
ca19b261
KT
2961#if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964#else
a4447b93 2965 x86_dwarf2_return_column = 16;
ca19b261 2966#endif
61ff971f 2967 x86_cie_data_alignment = -8;
a4447b93
RH
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
252b5132
RH
2974}
2975
2976void
e3bb37b5 2977i386_print_statistics (FILE *file)
252b5132
RH
2978{
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981}
2982\f
252b5132
RH
2983#ifdef DEBUG386
2984
ce8a8b2f 2985/* Debugging routines for md_assemble. */
d3ce72d0 2986static void pte (insn_template *);
40fb9820 2987static void pt (i386_operand_type);
e3bb37b5
L
2988static void pe (expressionS *);
2989static void ps (symbolS *);
252b5132
RH
2990
2991static void
e3bb37b5 2992pi (char *line, i386_insn *x)
252b5132 2993{
09137c09 2994 unsigned int j;
252b5132
RH
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
09f131f2
JH
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3003 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
09137c09 3011 for (j = 0; j < x->operands; j++)
252b5132 3012 {
09137c09
SP
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
252b5132 3015 fprintf (stdout, "\n");
dc821c5f 3016 if (x->types[j].bitfield.reg
09137c09 3017 || x->types[j].bitfield.regmmx
1b54b8d7 3018 || x->types[j].bitfield.regsimd
09137c09
SP
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
252b5132
RH
3029 }
3030}
3031
3032static void
d3ce72d0 3033pte (insn_template *t)
252b5132 3034{
09137c09 3035 unsigned int j;
252b5132 3036 fprintf (stdout, " %d operands ", t->operands);
47926f60 3037 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3040 if (t->opcode_modifier.d)
252b5132 3041 fprintf (stdout, "D");
40fb9820 3042 if (t->opcode_modifier.w)
252b5132
RH
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
09137c09 3045 for (j = 0; j < t->operands; j++)
252b5132 3046 {
09137c09
SP
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
252b5132
RH
3049 fprintf (stdout, "\n");
3050 }
3051}
3052
3053static void
e3bb37b5 3054pe (expressionS *e)
252b5132 3055{
24eab124 3056 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071}
3072
3073static void
e3bb37b5 3074ps (symbolS *s)
252b5132
RH
3075{
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080}
3081
7b81dfbb 3082static struct type_name
252b5132 3083 {
40fb9820
L
3084 i386_operand_type mask;
3085 const char *name;
252b5132 3086 }
7b81dfbb 3087const type_names[] =
252b5132 3088{
40fb9820
L
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3119 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3122 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3123};
3124
3125static void
40fb9820 3126pt (i386_operand_type t)
252b5132 3127{
40fb9820 3128 unsigned int j;
c6fb90c8 3129 i386_operand_type a;
252b5132 3130
40fb9820 3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
0349dc08 3134 if (!operand_type_all_zero (&a))
c6fb90c8
L
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
252b5132
RH
3137 fflush (stdout);
3138}
3139
3140#endif /* DEBUG386 */
3141\f
252b5132 3142static bfd_reloc_code_real_type
3956db08 3143reloc (unsigned int size,
64e74474
AM
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
252b5132 3147{
47926f60 3148 if (other != NO_RELOC)
3956db08 3149 {
91d6fa6a 3150 reloc_howto_type *rel;
3956db08
JB
3151
3152 if (size == 8)
3153 switch (other)
3154 {
64e74474
AM
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
553d1284
L
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
64e74474
AM
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3956db08 3178 }
e05278af 3179
8ce3d284 3180#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
1ab668bf 3184 other = BFD_RELOC_SIZE64;
8fd4256d 3185 if (pcrel)
1ab668bf
AM
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
8fd4256d 3190 }
8ce3d284 3191#endif
8fd4256d 3192
e05278af 3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3195 sign = -1;
3196
91d6fa6a
NC
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3956db08 3199 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3200 else if (size != bfd_get_reloc_size (rel))
3956db08 3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3202 bfd_get_reloc_size (rel),
3956db08 3203 size);
91d6fa6a 3204 else if (pcrel && !rel->pc_relative)
3956db08 3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3207 && !sign)
91d6fa6a 3208 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3209 && sign > 0))
3956db08
JB
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
252b5132
RH
3215
3216 if (pcrel)
3217 {
3e73aa7c 3218 if (!sign)
3956db08 3219 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
d258b828 3224 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3225 case 8: return BFD_RELOC_64_PCREL;
252b5132 3226 }
3956db08 3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3228 }
3229 else
3230 {
3956db08 3231 if (sign > 0)
e5cb08ac 3232 switch (size)
3e73aa7c
JH
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3956db08
JB
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3246 }
3247
0cc9e1d3 3248 return NO_RELOC;
252b5132
RH
3249}
3250
47926f60
KH
3251/* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
252b5132 3256int
e3bb37b5 3257tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3258{
6d249963 3259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3260 if (!IS_ELF)
31312f95
AM
3261 return 1;
3262
a161fe53
AM
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
252b5132 3268 return 0;
31312f95 3269
8d01d9a9
AJ
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
8fd4256d
L
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
31312f95 3312#endif
252b5132
RH
3313 return 1;
3314}
252b5132 3315
b4cac588 3316static int
e3bb37b5 3317intel_float_operand (const char *mnemonic)
252b5132 3318{
9306ca4a
JB
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
252b5132 3365
9306ca4a 3366 return 1;
252b5132
RH
3367}
3368
c0f3af97
L
3369/* Build the VEX prefix. */
3370
3371static void
d3ce72d0 3372build_vex_prefix (const insn_template *t)
c0f3af97
L
3373{
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
03751133 3377 unsigned int w;
c0f3af97
L
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
43234a1e
L
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
c0f3af97
L
3386 else
3387 register_specifier = 0xf;
3388
79f0fa25
L
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
86fa6981 3393 && i.dir_encoding == dir_encoding_default
fa99fab2 3394 && i.operands == i.reg_operands
dbbc8b7e 3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3396 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
9c2799c2 3411 gas_assert (i.rm.mode == 3);
fa99fab2
L
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
dbbc8b7e
JB
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
fa99fab2
L
3423 }
3424
539f890d
L
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
10c17abd
JB
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
539f890d 3429 else
10c17abd 3430 {
56522fc5 3431 unsigned int op;
10c17abd 3432
c7213af9
L
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
10c17abd 3435 vector_length = 0;
56522fc5 3436 for (op = t->operands; op--;)
10c17abd
JB
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
c0f3af97
L
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
03751133
L
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
931d03b7 3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3471
c0f3af97 3472 /* Use 2-byte VEX prefix if possible. */
03751133
L
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
86fa6981 3475 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
03751133 3494 unsigned int m;
c0f3af97 3495
f88c9eb0 3496 i.vex.length = 3;
f88c9eb0 3497
7f399153 3498 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3499 {
7f399153
L
3500 case VEX0F:
3501 m = 0x1;
80de6e00 3502 i.vex.bytes[0] = 0xc4;
7f399153
L
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
80de6e00 3506 i.vex.bytes[0] = 0xc4;
7f399153
L
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
80de6e00 3510 i.vex.bytes[0] = 0xc4;
7f399153
L
3511 break;
3512 case XOP08:
5dd85c99
SP
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
7f399153
L
3515 break;
3516 case XOP09:
f88c9eb0
SP
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
7f399153
L
3519 break;
3520 case XOP0A:
f88c9eb0
SP
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
7f399153
L
3523 break;
3524 default:
3525 abort ();
f88c9eb0 3526 }
c0f3af97 3527
c0f3af97
L
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
c0f3af97
L
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537}
3538
e771e7c9
JB
3539static INLINE bfd_boolean
3540is_evex_encoding (const insn_template *t)
3541{
7091c612 3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545}
3546
7a8655d2
JB
3547static INLINE bfd_boolean
3548is_any_vex_encoding (const insn_template *t)
3549{
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552}
3553
43234a1e
L
3554/* Build the EVEX prefix. */
3555
3556static void
3557build_evex_prefix (void)
3558{
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
6865c043
L
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
931d03b7 3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
e771e7c9
JB
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
56522fc5 3685 unsigned int op;
e771e7c9 3686
c7213af9
L
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
e771e7c9 3689 vec_length = 0;
56522fc5 3690 for (op = i.operands; op--;)
e771e7c9
JB
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
c7213af9
L
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
e771e7c9 3700 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
e771e7c9 3705 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
625cbd7a
JB
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
4a1b91ea 3712 switch (i.broadcast->bytes)
625cbd7a
JB
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
c7213af9 3724 abort ();
625cbd7a 3725 }
c7213af9 3726 break;
625cbd7a 3727 }
e771e7c9 3728 }
c7213af9 3729
56522fc5 3730 if (op >= MAX_OPERANDS)
c7213af9 3731 abort ();
e771e7c9
JB
3732 }
3733
43234a1e
L
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
d3d3c6db 3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767}
3768
65da13b5
L
3769static void
3770process_immext (void)
3771{
3772 expressionS *exp;
3773
4c692bc7
JB
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
65da13b5 3776 {
4c692bc7
JB
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
65da13b5
L
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
4c692bc7 3784 if (register_number (i.op[x].regs) != x)
65da13b5 3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
65da13b5
L
3790 }
3791
9916071f
AP
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
c0f3af97 3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
c1e679ec 3825 AVX instructions also use this encoding, for some of
c0f3af97 3826 3 argument instructions. */
65da13b5 3827
43234a1e 3828 gas_assert (i.imm_operands <= 1
7ab9ffdd 3829 && (i.operands <= 2
7a8655d2 3830 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3831 && i.operands <= 4)));
65da13b5
L
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840}
3841
42164a71
L
3842
3843static int
3844check_hle (void)
3845{
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
82c2def5 3850 case HLEPrefixNone:
165de32a
L
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
42164a71 3853 return 0;
82c2def5 3854 case HLEPrefixLock:
42164a71
L
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
165de32a 3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3858 return 0;
82c2def5 3859 case HLEPrefixAny:
42164a71 3860 return 1;
82c2def5 3861 case HLEPrefixRelease:
42164a71
L
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877}
3878
b6f8c7c4
L
3879/* Try the shortest encoding by shortening operand size. */
3880
3881static void
3882optimize_encoding (void)
3883{
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
d3d50934
L
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
b6f8c7c4
L
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
99112332 3983 else if (i.reg_operands == 3
b6f8c7c4
L
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
7a69eac3 3987 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3988 && !i.rounding
e771e7c9 3989 && is_evex_encoding (&i.tm)
80c34c38 3990 && (i.vec_encoding != vex_encoding_evex
dd22218c 3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 3993 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 3994 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
8305403a
L
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4009 && i.tm.extension_opcode == None))
4010 {
99112332 4011 /* Optimize: -O1:
8305403a
L
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
b6f8c7c4
L
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4045 */
e771e7c9 4046 if (is_evex_encoding (&i.tm))
b6f8c7c4 4047 {
7b1d7ca1 4048 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
7b1d7ca1 4054 else if (optimize > 1)
dd22218c
L
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
b6f8c7c4 4058 }
1424ad86
JB
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
b6f8c7c4
L
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
392a5972 4074 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4075 && !i.types[0].bitfield.zmmword
392a5972 4076 && !i.types[1].bitfield.zmmword
97ed31ae
L
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
392a5972
L
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
97ed31ae
L
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
392a5972
L
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
b6f8c7c4
L
4141}
4142
252b5132
RH
4143/* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147void
65da13b5 4148md_assemble (char *line)
252b5132 4149{
40fb9820 4150 unsigned int j;
83b16ac6 4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4152 const insn_template *t;
252b5132 4153
47926f60 4154 /* Initialize globals. */
252b5132
RH
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4157 i.reloc[j] = NO_RELOC;
252b5132
RH
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4160 save_stack_p = save_stack;
252b5132
RH
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4164 start of a (possibly prefixed) mnemonic. */
252b5132 4165
29b0f896
AM
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
83b16ac6 4169 mnem_suffix = i.suffix;
252b5132 4170
29b0f896 4171 line = parse_operands (line, mnemonic);
ee86248c 4172 this_operand = -1;
8325cc63
JB
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
29b0f896
AM
4175 if (line == NULL)
4176 return;
252b5132 4177
29b0f896
AM
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
050dfa73 4184 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4185 if (intel_syntax
4186 && i.operands > 1
29b0f896 4187 && (strcmp (mnemonic, "bound") != 0)
30123838 4188 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4191 swap_operands ();
4192
ec56d5c0
JB
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
29b0f896
AM
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
b300c311
L
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
a501d77e 4206 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
29b0f896
AM
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
252b5132 4214
83b16ac6 4215 if (!(t = match_template (mnem_suffix)))
29b0f896 4216 return;
252b5132 4217
7bab8ab5 4218 if (sse_check != check_none
81f8a913 4219 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4220 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4230 {
7bab8ab5 4231 (sse_check == check_warning
daf50ae7
L
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
321fd21e
L
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4241 {
321fd21e
L
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
7ab9ffdd 4246 && intel_syntax)
321fd21e
L
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
cd61ebfe 4250 }
24eab124 4251
40fb9820 4252 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
252b5132 4255
d5de92cf
L
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
c1ba0266
L
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
c32fa91d
L
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
7a8655d2
JB
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
42164a71 4283 /* Check if HLE prefix is OK. */
165de32a 4284 if (i.hle_prefix && !check_hle ())
42164a71
L
4285 return;
4286
7e8b059b
L
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
04ef582a 4291 /* Check NOTRACK prefix. */
9fef80d6
L
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4294
327e8c42
JB
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
7e8b059b
L
4304
4305 /* Insert BND prefix. */
76d3a78a
JB
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
7e8b059b 4316
29b0f896 4317 /* Check string instruction segment overrides. */
40fb9820 4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4319 {
4320 if (!check_string ())
5dd0794d 4321 return;
fc0763e6 4322 i.disp_operands = 0;
29b0f896 4323 }
5dd0794d 4324
b6f8c7c4
L
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
29b0f896
AM
4328 if (!process_suffix ())
4329 return;
e413e4e9 4330
bc0844ae
L
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
29b0f896
AM
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
252b5132 4339
40fb9820 4340 if (i.types[0].bitfield.imm1)
29b0f896 4341 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4342
9afe6eb8
L
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
1b54b8d7 4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4350 i.reg_operands--;
40fb9820 4351
c0f3af97
L
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
65da13b5 4355 process_immext ();
252b5132 4356
29b0f896
AM
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
40fb9820 4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
252b5132 4368
7a8655d2 4369 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
c0f3af97 4377
9e5e5283
L
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
43234a1e 4383
5dd85c99
SP
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
252b5132 4394
40fb9820
L
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
252b5132 4406
40fb9820 4407 if (i.tm.opcode_modifier.rex64)
161a04f6 4408 i.rex |= REX_W;
252b5132 4409
29b0f896
AM
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
773f551c 4413
dc821c5f 4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4420 && i.rex != 0))
4421 {
4422 int x;
726c5dcd 4423
29b0f896
AM
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4430 {
29b0f896
AM
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
a540244d 4433 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4434 "instruction requiring REX prefix."),
a540244d 4435 register_prefix, i.op[x].regs->reg_name);
773f551c 4436
29b0f896
AM
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
773f551c 4442 }
29b0f896
AM
4443 }
4444 }
773f551c 4445
6b6b6807
L
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
7ab9ffdd 4466 if (i.rex != 0)
29b0f896
AM
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471}
4472
4473static char *
e3bb37b5 4474parse_insn (char *line, char *mnemonic)
29b0f896
AM
4475{
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
5c6af06e 4479 int supported;
d3ce72d0 4480 const insn_template *t;
b6169b20 4481 char *dot_p = NULL;
29b0f896 4482
29b0f896
AM
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
b6169b20
L
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
29b0f896
AM
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4492 {
29b0f896
AM
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
e44823cf
JB
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
29b0f896
AM
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
e44823cf 4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
45288df1 4516
29b0f896 4517 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4519
29b0f896
AM
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
40fb9820 4523 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4524 {
c6fb90c8 4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
29b0f896
AM
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4537 && flag_code != CODE_64BIT
673fe0f0 4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
45288df1 4544 }
86fa6981 4545 if (current_templates->start->opcode_length == 0)
29b0f896 4546 {
86fa6981
L
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
6b6b6807
L
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
b6f8c7c4
L
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
86fa6981
L
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4593 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4594 {
4e9ac44a
L
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
d777820b 4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
86fa6981 4611 }
29b0f896
AM
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
45288df1 4619
30a55f88 4620 if (!current_templates)
b6169b20 4621 {
07d5e953
JB
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
f8a5c266 4624 encoding. */
30a55f88 4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4626 i.dir_encoding = dir_encoding_swap;
8d63c93e 4627 else if (mnem_p - 3 == dot_p
a501d77e
L
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4631 else if (mnem_p - 4 == dot_p
f8a5c266
L
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
a501d77e 4635 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
d3ce72d0 4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4641 }
4642
29b0f896
AM
4643 if (!current_templates)
4644 {
b6169b20 4645check_suffix:
1c529385 4646 if (mnem_p > mnemonic)
29b0f896 4647 {
1c529385
LH
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
29b0f896 4650 {
1c529385
LH
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
1c529385
LH
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
29b0f896 4659 mnem_p[-1] = '\0';
d3ce72d0 4660 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
29b0f896 4687 }
29b0f896 4688 }
1c529385 4689
29b0f896
AM
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
252b5132 4696
40fb9820
L
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
252b5132 4729
29b0f896 4730 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
c0f3af97
L
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4739
548d0ee6
JB
4740 return l;
4741 }
29b0f896 4742 }
3629bb00 4743
548d0ee6
JB
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4754
548d0ee6 4755 return NULL;
29b0f896 4756}
252b5132 4757
29b0f896 4758static char *
e3bb37b5 4759parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4760{
4761 char *token_start;
3138f287 4762
29b0f896
AM
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
252b5132 4765
29b0f896
AM
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
d02603dc 4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
d02603dc 4781 token_start = l; /* After white space. */
29b0f896
AM
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
d02603dc 4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
9d46ce34 4833 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
1286ab78
L
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
29b0f896
AM
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
a7619375 4849 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
7f3f1ea2 4869
29b0f896
AM
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882}
7f3f1ea2 4883
050dfa73 4884static void
4d456e3d 4885swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4886{
4887 union i386_op temp_op;
40fb9820 4888 i386_operand_type temp_type;
c48dadc9 4889 unsigned int temp_flags;
050dfa73 4890 enum bfd_reloc_code_real temp_reloc;
4eed87de 4891
050dfa73
MM
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
c48dadc9
JB
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
050dfa73
MM
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
c48dadc9 4903
050dfa73
MM
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
050dfa73
MM
4929}
4930
29b0f896 4931static void
e3bb37b5 4932swap_operands (void)
29b0f896 4933{
b7c61d9a 4934 switch (i.operands)
050dfa73 4935 {
c0f3af97 4936 case 5:
b7c61d9a 4937 case 4:
4d456e3d 4938 swap_2_operands (1, i.operands - 2);
1a0670f3 4939 /* Fall through. */
b7c61d9a
L
4940 case 3:
4941 case 2:
4d456e3d 4942 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4943 break;
4944 default:
4945 abort ();
29b0f896 4946 }
29b0f896
AM
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955}
252b5132 4956
29b0f896
AM
4957/* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959static void
e3bb37b5 4960optimize_imm (void)
29b0f896
AM
4961{
4962 char guess_suffix = 0;
4963 int op;
252b5132 4964
29b0f896
AM
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
dc821c5f 4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4975 {
40fb9820
L
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
dc821c5f 4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4980 {
40fb9820
L
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
dc821c5f 4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
dc821c5f 4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4992 break;
252b5132 4993 }
29b0f896
AM
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
40fb9820 4999 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5000 {
5001 switch (i.op[op].imms->X_op)
252b5132 5002 {
29b0f896
AM
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
252b5132 5006 {
29b0f896 5007 case LONG_MNEM_SUFFIX:
40fb9820
L
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5010 break;
5011 case WORD_MNEM_SUFFIX:
40fb9820
L
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5016 break;
5017 case BYTE_MNEM_SUFFIX:
40fb9820
L
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
29b0f896 5024 break;
252b5132 5025 }
252b5132 5026
29b0f896
AM
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
40fb9820 5032 if ((i.types[op].bitfield.imm16)
29b0f896 5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5034 {
29b0f896
AM
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
a28def75
L
5038#ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5040 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
a28def75 5048#endif
40fb9820 5049 i.types[op]
c6fb90c8
L
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5052
29b0f896
AM
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5056 i.types[op].bitfield.imm32 = 0;
29b0f896 5057 break;
252b5132 5058
29b0f896
AM
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
9cd96992
JB
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
40fb9820 5069 i386_operand_type mask, allowed;
d3ce72d0 5070 const insn_template *t;
9cd96992 5071
0dfbf9d7
L
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
40fb9820 5074
4eed87de
AM
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
c6fb90c8
L
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
9cd96992
JB
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
40fb9820
L
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
9cd96992
JB
5085 break;
5086 case LONG_MNEM_SUFFIX:
40fb9820 5087 mask.bitfield.imm32 = 1;
9cd96992
JB
5088 break;
5089 case WORD_MNEM_SUFFIX:
40fb9820 5090 mask.bitfield.imm16 = 1;
9cd96992
JB
5091 break;
5092 case BYTE_MNEM_SUFFIX:
40fb9820 5093 mask.bitfield.imm8 = 1;
9cd96992
JB
5094 break;
5095 default:
9cd96992
JB
5096 break;
5097 }
c6fb90c8 5098 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5099 if (!operand_type_all_zero (&allowed))
c6fb90c8 5100 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5101 }
29b0f896 5102 break;
252b5132 5103 }
29b0f896
AM
5104 }
5105}
47926f60 5106
29b0f896
AM
5107/* Try to use the smallest displacement type too. */
5108static void
e3bb37b5 5109optimize_disp (void)
29b0f896
AM
5110{
5111 int op;
3e73aa7c 5112
29b0f896 5113 for (op = i.operands; --op >= 0;)
40fb9820 5114 if (operand_type_check (i.types[op], disp))
252b5132 5115 {
b300c311 5116 if (i.op[op].disps->X_op == O_constant)
252b5132 5117 {
91d6fa6a 5118 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5119
40fb9820 5120 if (i.types[op].bitfield.disp16
91d6fa6a 5121 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
91d6fa6a 5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5127 i.types[op].bitfield.disp64 = 0;
b300c311 5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5131 if (i.types[op].bitfield.disp32
91d6fa6a 5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
91d6fa6a
NC
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5139 i.types[op].bitfield.disp64 = 0;
b300c311 5140 }
a28def75 5141#endif
91d6fa6a 5142 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5143 {
40fb9820
L
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
b300c311
L
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
91d6fa6a 5154 if (fits_in_signed_long (op_disp))
28a9d8f5 5155 {
40fb9820
L
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5158 }
0e1147d9 5159 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5160 && fits_in_unsigned_long (op_disp))
40fb9820 5161 i.types[op].bitfield.disp32 = 1;
b300c311 5162 }
40fb9820
L
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
b5014f7a 5166 && fits_in_disp8 (op_disp))
40fb9820 5167 i.types[op].bitfield.disp8 = 1;
252b5132 5168 }
67a4f2b7
AO
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5179 }
5180 else
b300c311 5181 /* We only support 64bit displacement on constants. */
40fb9820 5182 i.types[op].bitfield.disp64 = 0;
252b5132 5183 }
29b0f896
AM
5184}
5185
4a1b91ea
L
5186/* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189static INLINE int
5190match_broadcast_size (const insn_template *t, unsigned int given)
5191{
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200}
5201
6c30d220
L
5202/* Check if operands are valid for the instruction. */
5203
5204static int
5205check_VecOperands (const insn_template *t)
5206{
43234a1e 5207 unsigned int op;
e2195274
JB
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
43234a1e 5232
6c30d220
L
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
1b54b8d7
JB
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
ad8ecc81
MZ
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
7bab8ab5
JB
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
6c30d220 5257 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5258 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5259 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5260 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5261 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5262 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
43234a1e
L
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
1b54b8d7
JB
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
43234a1e
L
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
8444f82a
MZ
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
1b54b8d7
JB
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
43234a1e 5311 }
7bab8ab5 5312
43234a1e
L
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
8e6e0792 5317 i386_operand_type type, overlap;
43234a1e
L
5318
5319 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5320 and its broadcast bytes match the memory operand. */
32546502 5321 op = i.broadcast->operand;
8e6e0792 5322 if (!t->opcode_modifier.broadcast
c48dadc9 5323 || !(i.flags[op] & Operand_Mem)
c39e5b26 5324 || (!i.types[op].bitfield.unspecified
4a1b91ea 5325 && !match_broadcast_size (t, op)))
43234a1e
L
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
8e6e0792 5331
4a1b91ea
L
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
8e6e0792 5334 operand_type_set (&type, 0);
4a1b91ea 5335 switch (i.broadcast->bytes)
8e6e0792 5336 {
4a1b91ea
L
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
8e6e0792
JB
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
e2195274 5367 type.bitfield.baseindex = 1;
8e6e0792
JB
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
43234a1e
L
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
4a1b91ea 5389 if (match_broadcast_size (t, op))
43234a1e
L
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
c39e5b26
JB
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5397
5398 /* Check if requested masking is supported. */
ae2387fe 5399 if (i.mask)
43234a1e 5400 {
ae2387fe
JB
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
c48dadc9 5419 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
43234a1e
L
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
43234a1e
L
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5458 {
43234a1e 5459 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5460 return 1;
5461 }
6c30d220
L
5462 }
5463
43234a1e 5464 /* Check vector Disp8 operand. */
b5014f7a
JB
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5467 {
5468 if (i.broadcast)
4a1b91ea 5469 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5471 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
4174bfff
JB
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
4174bfff
JB
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
43234a1e
L
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
b5014f7a 5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5520 {
b5014f7a
JB
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
43234a1e 5523 }
b5014f7a 5524 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5525 }
5526 }
b5014f7a
JB
5527
5528 i.memshift = 0;
43234a1e 5529
6c30d220
L
5530 return 0;
5531}
5532
43f3e2ee 5533/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5534 operand types. */
5535
5536static int
5537VEX_check_operands (const insn_template *t)
5538{
86fa6981 5539 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5540 {
86fa6981 5541 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5542 if (!is_evex_encoding (t))
86fa6981
L
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
43234a1e
L
5548 }
5549
a683cc34 5550 if (!t->opcode_modifier.vex)
86fa6981
L
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
a683cc34
SP
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5566 {
a65babc9 5567 i.error = bad_imm4;
891edac4
L
5568 return 1;
5569 }
a683cc34
SP
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576}
5577
d3ce72d0 5578static const insn_template *
83b16ac6 5579match_template (char mnem_suffix)
29b0f896
AM
5580{
5581 /* Points to template once we've found it. */
d3ce72d0 5582 const insn_template *t;
40fb9820 5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5584 i386_operand_type overlap4;
29b0f896 5585 unsigned int found_reverse_match;
83b16ac6 5586 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5587 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5588 int addr_prefix_disp;
a5c311ca 5589 unsigned int j;
3ac21baa 5590 unsigned int found_cpu_match, size_match;
45664ddb 5591 unsigned int check_register;
5614d22c 5592 enum i386_error specific_error = 0;
29b0f896 5593
c0f3af97
L
5594#if MAX_OPERANDS != 5
5595# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5596#endif
5597
29b0f896 5598 found_reverse_match = 0;
539e75ad 5599 addr_prefix_disp = -1;
40fb9820
L
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5615 suffix_check.no_ldsuf = 1;
29b0f896 5616
83b16ac6
JB
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
01559ecc
L
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
45aa61fe 5633 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5634 {
539e75ad 5635 addr_prefix_disp = -1;
dbbc8b7e 5636 found_reverse_match = 0;
539e75ad 5637
29b0f896
AM
5638 if (i.operands != t->operands)
5639 continue;
5640
50aecf8c 5641 /* Check processor support. */
a65babc9 5642 i.error = unsupported;
c0f3af97
L
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5645 if (!found_cpu_match)
5646 continue;
5647
e1d4d893 5648 /* Check AT&T mnemonic. */
a65babc9 5649 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5651 continue;
5652
e92bae62 5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5654 i.error = unsupported_syntax;
5c07affc 5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5659 continue;
5660
20592a94 5661 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5662 i.error = invalid_instruction_suffix;
567e4e96
L
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5670 continue;
83b16ac6
JB
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
29b0f896 5679
3ac21baa
JB
5680 size_match = operand_size_match (t);
5681 if (!size_match)
7d5e4556 5682 continue;
539e75ad 5683
5c07affc
L
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
45aa61fe
AM
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
40fb9820 5691 ? (!t->opcode_modifier.ignoresize
625cbd7a 5692 && !t->opcode_modifier.broadcast
45aa61fe
AM
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
40fb9820 5695 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5696 && !operand_types[0].bitfield.regsimd)
40fb9820 5697 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5698 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
192dc9c6
JB
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5711 && !operand_types[0].bitfield.regsimd)
192dc9c6 5712 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5714 continue;
5715
29b0f896 5716 /* Do not verify operands when there are none. */
50aecf8c 5717 else
29b0f896 5718 {
c6fb90c8 5719 if (!t->operands)
2dbab7d5
L
5720 /* We've found a match; break out of loop. */
5721 break;
29b0f896 5722 }
252b5132 5723
539e75ad
L
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
40fb9820 5728 /* There should be only one Disp operand. */
539e75ad
L
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
40fb9820
L
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
539e75ad
L
5742 break;
5743 case CODE_32BIT:
40fb9820
L
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
539e75ad
L
5754 break;
5755 case CODE_64BIT:
40fb9820
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
539e75ad
L
5766 break;
5767 }
539e75ad
L
5768 }
5769
02a86693
L
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
56ffb741 5774 /* We check register size if needed. */
e2195274
JB
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
c6fb90c8 5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5785 switch (t->operands)
5786 {
5787 case 1:
40fb9820 5788 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5789 continue;
5790 break;
5791 case 2:
33eaf5de 5792 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
0dfbf9d7
L
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5800 continue;
1212781b
JB
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
f5eb1d70
JB
5809 /* Fall through. */
5810
5811 case 3:
3ac21baa
JB
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
64c49ab3
JB
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
86fa6981 5842 /* If we want store form, we skip the current load. */
64c49ab3
JB
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
fa99fab2 5847 continue;
1a0670f3 5848 /* Fall through. */
f48ff2ae 5849 case 4:
c0f3af97 5850 case 5:
c6fb90c8 5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
e2195274 5854 || ((check_register & 3) == 3
dc821c5f 5855 && !operand_type_register_match (i.types[0],
40fb9820 5856 operand_types[0],
dc821c5f 5857 i.types[1],
40fb9820 5858 operand_types[1])))
29b0f896
AM
5859 {
5860 /* Check if other direction is valid ... */
38e314eb 5861 if (!t->opcode_modifier.d)
29b0f896
AM
5862 continue;
5863
b6169b20 5864check_reverse:
3ac21baa
JB
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
29b0f896 5867 /* Try reversing direction of operands. */
f5eb1d70
JB
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5870 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5872 || (check_register
dc821c5f 5873 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
45664ddb 5876 operand_types[0])))
29b0f896
AM
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
38e314eb 5881 /* found_reverse_match holds which of D or FloatR
29b0f896 5882 we've found. */
38e314eb
JB
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5886 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5887 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5888 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5889 || operand_types[0].bitfield.regmmx
f5eb1d70 5890 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5894 else
38e314eb 5895 found_reverse_match = Opcode_D;
40fb9820 5896 if (t->opcode_modifier.floatr)
8a2ed489 5897 found_reverse_match |= Opcode_FloatR;
29b0f896 5898 }
f48ff2ae 5899 else
29b0f896 5900 {
f48ff2ae 5901 /* Found a forward 2 operand match here. */
d1cbb4db
L
5902 switch (t->operands)
5903 {
c0f3af97
L
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
1a0670f3 5907 /* Fall through. */
d1cbb4db 5908 case 4:
c6fb90c8
L
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
1a0670f3 5911 /* Fall through. */
d1cbb4db 5912 case 3:
c6fb90c8
L
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
d1cbb4db
L
5915 break;
5916 }
29b0f896 5917
f48ff2ae
L
5918 switch (t->operands)
5919 {
c0f3af97
L
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5922 || !operand_type_register_match (i.types[3],
c0f3af97 5923 operand_types[3],
c0f3af97
L
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
1a0670f3 5927 /* Fall through. */
f48ff2ae 5928 case 4:
40fb9820 5929 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
f7768225
JB
5932 operand_types[1],
5933 i.types[3],
e2195274
JB
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
f48ff2ae 5940 continue;
1a0670f3 5941 /* Fall through. */
f48ff2ae
L
5942 case 3:
5943 /* Here we make use of the fact that there are no
23e42951 5944 reverse match 3 operand instructions. */
40fb9820 5945 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
23e42951
JB
5948 operand_types[0],
5949 i.types[2],
e2195274
JB
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
f48ff2ae
L
5956 continue;
5957 break;
5958 }
29b0f896 5959 }
f48ff2ae 5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5961 slip through to break. */
5962 }
3629bb00 5963 if (!found_cpu_match)
dbbc8b7e 5964 continue;
c0f3af97 5965
5614d22c
JB
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
a683cc34 5972
29b0f896
AM
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
a65babc9 5980 const char *err_msg;
5614d22c 5981 switch (specific_error ? specific_error : i.error)
a65babc9
L
5982 {
5983 default:
5984 abort ();
86e026a4 5985 case operand_size_mismatch:
a65babc9
L
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
4a2608e3 6001 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6002 break;
a65babc9
L
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
35262a23 6010 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6011 current_templates->start->name);
6012 return NULL;
6c30d220
L
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
7bab8ab5
JB
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6c30d220
L
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
43234a1e
L
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
43234a1e
L
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
a65babc9
L
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
891edac4 6051 current_templates->start->name);
fa99fab2 6052 return NULL;
29b0f896 6053 }
252b5132 6054
29b0f896
AM
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
40fb9820
L
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
40fb9820
L
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
29b0f896
AM
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
539e75ad
L
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
29b0f896
AM
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
f5eb1d70
JB
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6090 }
6091
fa99fab2 6092 return t;
29b0f896
AM
6093}
6094
6095static int
e3bb37b5 6096check_string (void)
29b0f896 6097{
40fb9820
L
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
a87af027 6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6104 i.tm.name,
a87af027
JB
6105 mem_op + 1,
6106 register_prefix);
29b0f896
AM
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
40fb9820 6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
a87af027 6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6120 i.tm.name,
a87af027
JB
6121 mem_op + 2,
6122 register_prefix);
29b0f896
AM
6123 return 0;
6124 }
6125 }
6126 return 1;
6127}
6128
6129static int
543613e9 6130process_suffix (void)
29b0f896
AM
6131{
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
673fe0f0 6134 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6135 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6136 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6137 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6138 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6139 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
381d071f
L
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
556059dd 6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6151 {
556059dd
JB
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
40fb9820 6155 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6156 else if (i.types[0].bitfield.dword)
40fb9820 6157 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6158 else if (i.types[0].bitfield.qword)
40fb9820 6159 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
556059dd 6166 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
381d071f 6174 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6177 {
8819ada6
JB
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
381d071f
L
6191 }
6192 }
29b0f896
AM
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
2eb952a4
L
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
29b0f896
AM
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
2eb952a4
L
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
29b0f896
AM
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
955e1e6a
L
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
29b0f896
AM
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
2eb952a4
L
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
29b0f896
AM
6232 return 0;
6233 }
40fb9820 6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
40fb9820 6240 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6243 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6244 {
6245 i.suffix = stackop_size;
6246 }
9306ca4a
JB
6247 else if (intel_syntax
6248 && !i.suffix
40fb9820
L
6249 && (i.tm.operand_types[0].bitfield.jumpabsolute
6250 || i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6252 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6253 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6254 {
6255 switch (flag_code)
6256 {
6257 case CODE_64BIT:
40fb9820 6258 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6259 {
6260 i.suffix = QWORD_MNEM_SUFFIX;
6261 break;
6262 }
1a0670f3 6263 /* Fall through. */
9306ca4a 6264 case CODE_32BIT:
40fb9820 6265 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6266 i.suffix = LONG_MNEM_SUFFIX;
6267 break;
6268 case CODE_16BIT:
40fb9820 6269 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6270 i.suffix = WORD_MNEM_SUFFIX;
6271 break;
6272 }
6273 }
252b5132 6274
9306ca4a 6275 if (!i.suffix)
29b0f896 6276 {
9306ca4a
JB
6277 if (!intel_syntax)
6278 {
40fb9820 6279 if (i.tm.opcode_modifier.w)
9306ca4a 6280 {
4eed87de
AM
6281 as_bad (_("no instruction mnemonic suffix given and "
6282 "no register operands; can't size instruction"));
9306ca4a
JB
6283 return 0;
6284 }
6285 }
6286 else
6287 {
40fb9820 6288 unsigned int suffixes;
7ab9ffdd 6289
40fb9820
L
6290 suffixes = !i.tm.opcode_modifier.no_bsuf;
6291 if (!i.tm.opcode_modifier.no_wsuf)
6292 suffixes |= 1 << 1;
6293 if (!i.tm.opcode_modifier.no_lsuf)
6294 suffixes |= 1 << 2;
fc4adea1 6295 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6296 suffixes |= 1 << 3;
6297 if (!i.tm.opcode_modifier.no_ssuf)
6298 suffixes |= 1 << 4;
c2b9da16 6299 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6300 suffixes |= 1 << 5;
6301
6302 /* There are more than suffix matches. */
6303 if (i.tm.opcode_modifier.w
9306ca4a 6304 || ((suffixes & (suffixes - 1))
40fb9820
L
6305 && !i.tm.opcode_modifier.defaultsize
6306 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6307 {
6308 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6309 return 0;
6310 }
6311 }
29b0f896 6312 }
252b5132 6313
d2224064
JB
6314 /* Change the opcode based on the operand size given by i.suffix. */
6315 switch (i.suffix)
29b0f896 6316 {
d2224064
JB
6317 /* Size floating point instruction. */
6318 case LONG_MNEM_SUFFIX:
6319 if (i.tm.opcode_modifier.floatmf)
6320 {
6321 i.tm.base_opcode ^= 4;
6322 break;
6323 }
6324 /* fall through */
6325 case WORD_MNEM_SUFFIX:
6326 case QWORD_MNEM_SUFFIX:
29b0f896 6327 /* It's not a byte, select word/dword operation. */
40fb9820 6328 if (i.tm.opcode_modifier.w)
29b0f896 6329 {
40fb9820 6330 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6331 i.tm.base_opcode |= 8;
6332 else
6333 i.tm.base_opcode |= 1;
6334 }
d2224064
JB
6335 /* fall through */
6336 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6337 /* Now select between word & dword operations via the operand
6338 size prefix, except for instructions that will ignore this
6339 prefix anyway. */
75c0a438
L
6340 if (i.reg_operands > 0
6341 && i.types[0].bitfield.reg
6342 && i.tm.opcode_modifier.addrprefixopreg
6343 && (i.tm.opcode_modifier.immext
6344 || i.operands == 1))
cb712a9e 6345 {
ca61edf2
L
6346 /* The address size override prefix changes the size of the
6347 first operand. */
40fb9820 6348 if ((flag_code == CODE_32BIT
75c0a438 6349 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6350 || (flag_code != CODE_32BIT
75c0a438 6351 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6352 if (!add_prefix (ADDR_PREFIX_OPCODE))
6353 return 0;
6354 }
7cb22ff8
L
6355 /* stackop_size is set to LONG_MNEM_SUFFIX for the .code16gcc
6356 directive to support 16bit mode with 32-bit address. Since
6357 IRET (opcode 0xcf) in 16bit mode returns from an interrupt
6358 in 16bit mode, we shouldn't add DATA_PREFIX_OPCODE here. */
cb712a9e 6359 else if (i.suffix != QWORD_MNEM_SUFFIX
7cb22ff8
L
6360 && (stackop_size != LONG_MNEM_SUFFIX
6361 || i.tm.base_opcode != 0xcf)
40fb9820
L
6362 && !i.tm.opcode_modifier.ignoresize
6363 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6364 && !i.tm.opcode_modifier.vex
6365 && !i.tm.opcode_modifier.vexopcode
6366 && !is_evex_encoding (&i.tm)
cb712a9e
L
6367 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6368 || (flag_code == CODE_64BIT
40fb9820 6369 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6370 {
6371 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6372
40fb9820 6373 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6374 prefix = ADDR_PREFIX_OPCODE;
252b5132 6375
29b0f896
AM
6376 if (!add_prefix (prefix))
6377 return 0;
24eab124 6378 }
252b5132 6379
29b0f896
AM
6380 /* Set mode64 for an operand. */
6381 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6382 && flag_code == CODE_64BIT
d2224064 6383 && !i.tm.opcode_modifier.norex64
46e883c5 6384 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6385 need rex64. */
6386 && ! (i.operands == 2
6387 && i.tm.base_opcode == 0x90
6388 && i.tm.extension_opcode == None
6389 && operand_type_equal (&i.types [0], &acc64)
6390 && operand_type_equal (&i.types [1], &acc64)))
6391 i.rex |= REX_W;
3e73aa7c 6392
d2224064 6393 break;
29b0f896 6394 }
7ecd2f8b 6395
c0a30a9f
L
6396 if (i.reg_operands != 0
6397 && i.operands > 1
6398 && i.tm.opcode_modifier.addrprefixopreg
6399 && !i.tm.opcode_modifier.immext)
6400 {
6401 /* Check invalid register operand when the address size override
6402 prefix changes the size of register operands. */
6403 unsigned int op;
6404 enum { need_word, need_dword, need_qword } need;
6405
6406 if (flag_code == CODE_32BIT)
6407 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6408 else
6409 {
6410 if (i.prefix[ADDR_PREFIX])
6411 need = need_dword;
6412 else
6413 need = flag_code == CODE_64BIT ? need_qword : need_word;
6414 }
6415
6416 for (op = 0; op < i.operands; op++)
6417 if (i.types[op].bitfield.reg
6418 && ((need == need_word
6419 && !i.op[op].regs->reg_type.bitfield.word)
6420 || (need == need_dword
6421 && !i.op[op].regs->reg_type.bitfield.dword)
6422 || (need == need_qword
6423 && !i.op[op].regs->reg_type.bitfield.qword)))
6424 {
6425 as_bad (_("invalid register operand size for `%s'"),
6426 i.tm.name);
6427 return 0;
6428 }
6429 }
6430
29b0f896
AM
6431 return 1;
6432}
3e73aa7c 6433
29b0f896 6434static int
543613e9 6435check_byte_reg (void)
29b0f896
AM
6436{
6437 int op;
543613e9 6438
29b0f896
AM
6439 for (op = i.operands; --op >= 0;)
6440 {
dc821c5f
JB
6441 /* Skip non-register operands. */
6442 if (!i.types[op].bitfield.reg)
6443 continue;
6444
29b0f896
AM
6445 /* If this is an eight bit register, it's OK. If it's the 16 or
6446 32 bit version of an eight bit register, we will just use the
6447 low portion, and that's OK too. */
dc821c5f 6448 if (i.types[op].bitfield.byte)
29b0f896
AM
6449 continue;
6450
5a819eb9
JB
6451 /* I/O port address operands are OK too. */
6452 if (i.tm.operand_types[op].bitfield.inoutportreg)
6453 continue;
6454
9344ff29
L
6455 /* crc32 doesn't generate this warning. */
6456 if (i.tm.base_opcode == 0xf20f38f0)
6457 continue;
6458
dc821c5f
JB
6459 if ((i.types[op].bitfield.word
6460 || i.types[op].bitfield.dword
6461 || i.types[op].bitfield.qword)
5a819eb9
JB
6462 && i.op[op].regs->reg_num < 4
6463 /* Prohibit these changes in 64bit mode, since the lowering
6464 would be more complicated. */
6465 && flag_code != CODE_64BIT)
29b0f896 6466 {
29b0f896 6467#if REGISTER_WARNINGS
5a819eb9 6468 if (!quiet_warnings)
a540244d
L
6469 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6470 register_prefix,
dc821c5f 6471 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6472 ? REGNAM_AL - REGNAM_AX
6473 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6474 register_prefix,
29b0f896
AM
6475 i.op[op].regs->reg_name,
6476 i.suffix);
6477#endif
6478 continue;
6479 }
6480 /* Any other register is bad. */
dc821c5f 6481 if (i.types[op].bitfield.reg
40fb9820 6482 || i.types[op].bitfield.regmmx
1b54b8d7 6483 || i.types[op].bitfield.regsimd
40fb9820
L
6484 || i.types[op].bitfield.sreg2
6485 || i.types[op].bitfield.sreg3
6486 || i.types[op].bitfield.control
6487 || i.types[op].bitfield.debug
ca0d63fe 6488 || i.types[op].bitfield.test)
29b0f896 6489 {
a540244d
L
6490 as_bad (_("`%s%s' not allowed with `%s%c'"),
6491 register_prefix,
29b0f896
AM
6492 i.op[op].regs->reg_name,
6493 i.tm.name,
6494 i.suffix);
6495 return 0;
6496 }
6497 }
6498 return 1;
6499}
6500
6501static int
e3bb37b5 6502check_long_reg (void)
29b0f896
AM
6503{
6504 int op;
6505
6506 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6507 /* Skip non-register operands. */
6508 if (!i.types[op].bitfield.reg)
6509 continue;
29b0f896
AM
6510 /* Reject eight bit registers, except where the template requires
6511 them. (eg. movzb) */
dc821c5f
JB
6512 else if (i.types[op].bitfield.byte
6513 && (i.tm.operand_types[op].bitfield.reg
6514 || i.tm.operand_types[op].bitfield.acc)
6515 && (i.tm.operand_types[op].bitfield.word
6516 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6517 {
a540244d
L
6518 as_bad (_("`%s%s' not allowed with `%s%c'"),
6519 register_prefix,
29b0f896
AM
6520 i.op[op].regs->reg_name,
6521 i.tm.name,
6522 i.suffix);
6523 return 0;
6524 }
e4630f71 6525 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6526 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6527 && i.types[op].bitfield.word
6528 && (i.tm.operand_types[op].bitfield.reg
6529 || i.tm.operand_types[op].bitfield.acc)
6530 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6531 {
6532 /* Prohibit these changes in the 64bit mode, since the
6533 lowering is more complicated. */
6534 if (flag_code == CODE_64BIT)
252b5132 6535 {
2b5d6a91 6536 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6537 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6538 i.suffix);
6539 return 0;
252b5132 6540 }
29b0f896 6541#if REGISTER_WARNINGS
cecf1424
JB
6542 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6543 register_prefix,
6544 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6545 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6546#endif
252b5132 6547 }
e4630f71 6548 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6549 else if (i.types[op].bitfield.qword
6550 && (i.tm.operand_types[op].bitfield.reg
6551 || i.tm.operand_types[op].bitfield.acc)
6552 && i.tm.operand_types[op].bitfield.dword)
252b5132 6553 {
34828aad 6554 if (intel_syntax
ca61edf2 6555 && i.tm.opcode_modifier.toqword
1b54b8d7 6556 && !i.types[0].bitfield.regsimd)
34828aad 6557 {
ca61edf2 6558 /* Convert to QWORD. We want REX byte. */
34828aad
L
6559 i.suffix = QWORD_MNEM_SUFFIX;
6560 }
6561 else
6562 {
2b5d6a91 6563 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6564 register_prefix, i.op[op].regs->reg_name,
6565 i.suffix);
6566 return 0;
6567 }
29b0f896
AM
6568 }
6569 return 1;
6570}
252b5132 6571
29b0f896 6572static int
e3bb37b5 6573check_qword_reg (void)
29b0f896
AM
6574{
6575 int op;
252b5132 6576
29b0f896 6577 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6578 /* Skip non-register operands. */
6579 if (!i.types[op].bitfield.reg)
6580 continue;
29b0f896
AM
6581 /* Reject eight bit registers, except where the template requires
6582 them. (eg. movzb) */
dc821c5f
JB
6583 else if (i.types[op].bitfield.byte
6584 && (i.tm.operand_types[op].bitfield.reg
6585 || i.tm.operand_types[op].bitfield.acc)
6586 && (i.tm.operand_types[op].bitfield.word
6587 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6588 {
a540244d
L
6589 as_bad (_("`%s%s' not allowed with `%s%c'"),
6590 register_prefix,
29b0f896
AM
6591 i.op[op].regs->reg_name,
6592 i.tm.name,
6593 i.suffix);
6594 return 0;
6595 }
e4630f71 6596 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6597 else if ((i.types[op].bitfield.word
6598 || i.types[op].bitfield.dword)
6599 && (i.tm.operand_types[op].bitfield.reg
6600 || i.tm.operand_types[op].bitfield.acc)
6601 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6602 {
6603 /* Prohibit these changes in the 64bit mode, since the
6604 lowering is more complicated. */
34828aad 6605 if (intel_syntax
ca61edf2 6606 && i.tm.opcode_modifier.todword
1b54b8d7 6607 && !i.types[0].bitfield.regsimd)
34828aad 6608 {
ca61edf2 6609 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6610 i.suffix = LONG_MNEM_SUFFIX;
6611 }
6612 else
6613 {
2b5d6a91 6614 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6615 register_prefix, i.op[op].regs->reg_name,
6616 i.suffix);
6617 return 0;
6618 }
252b5132 6619 }
29b0f896
AM
6620 return 1;
6621}
252b5132 6622
29b0f896 6623static int
e3bb37b5 6624check_word_reg (void)
29b0f896
AM
6625{
6626 int op;
6627 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6628 /* Skip non-register operands. */
6629 if (!i.types[op].bitfield.reg)
6630 continue;
29b0f896
AM
6631 /* Reject eight bit registers, except where the template requires
6632 them. (eg. movzb) */
dc821c5f
JB
6633 else if (i.types[op].bitfield.byte
6634 && (i.tm.operand_types[op].bitfield.reg
6635 || i.tm.operand_types[op].bitfield.acc)
6636 && (i.tm.operand_types[op].bitfield.word
6637 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6638 {
a540244d
L
6639 as_bad (_("`%s%s' not allowed with `%s%c'"),
6640 register_prefix,
29b0f896
AM
6641 i.op[op].regs->reg_name,
6642 i.tm.name,
6643 i.suffix);
6644 return 0;
6645 }
e4630f71 6646 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6647 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6648 && (i.types[op].bitfield.dword
6649 || i.types[op].bitfield.qword)
6650 && (i.tm.operand_types[op].bitfield.reg
6651 || i.tm.operand_types[op].bitfield.acc)
6652 && i.tm.operand_types[op].bitfield.word)
252b5132 6653 {
29b0f896
AM
6654 /* Prohibit these changes in the 64bit mode, since the
6655 lowering is more complicated. */
6656 if (flag_code == CODE_64BIT)
252b5132 6657 {
2b5d6a91 6658 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6659 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6660 i.suffix);
6661 return 0;
252b5132 6662 }
29b0f896 6663#if REGISTER_WARNINGS
cecf1424
JB
6664 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6665 register_prefix,
6666 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6667 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6668#endif
6669 }
6670 return 1;
6671}
252b5132 6672
29b0f896 6673static int
40fb9820 6674update_imm (unsigned int j)
29b0f896 6675{
bc0844ae 6676 i386_operand_type overlap = i.types[j];
40fb9820
L
6677 if ((overlap.bitfield.imm8
6678 || overlap.bitfield.imm8s
6679 || overlap.bitfield.imm16
6680 || overlap.bitfield.imm32
6681 || overlap.bitfield.imm32s
6682 || overlap.bitfield.imm64)
0dfbf9d7
L
6683 && !operand_type_equal (&overlap, &imm8)
6684 && !operand_type_equal (&overlap, &imm8s)
6685 && !operand_type_equal (&overlap, &imm16)
6686 && !operand_type_equal (&overlap, &imm32)
6687 && !operand_type_equal (&overlap, &imm32s)
6688 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6689 {
6690 if (i.suffix)
6691 {
40fb9820
L
6692 i386_operand_type temp;
6693
0dfbf9d7 6694 operand_type_set (&temp, 0);
7ab9ffdd 6695 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6696 {
6697 temp.bitfield.imm8 = overlap.bitfield.imm8;
6698 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6699 }
6700 else if (i.suffix == WORD_MNEM_SUFFIX)
6701 temp.bitfield.imm16 = overlap.bitfield.imm16;
6702 else if (i.suffix == QWORD_MNEM_SUFFIX)
6703 {
6704 temp.bitfield.imm64 = overlap.bitfield.imm64;
6705 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6706 }
6707 else
6708 temp.bitfield.imm32 = overlap.bitfield.imm32;
6709 overlap = temp;
29b0f896 6710 }
0dfbf9d7
L
6711 else if (operand_type_equal (&overlap, &imm16_32_32s)
6712 || operand_type_equal (&overlap, &imm16_32)
6713 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6714 {
40fb9820 6715 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6716 overlap = imm16;
40fb9820 6717 else
65da13b5 6718 overlap = imm32s;
29b0f896 6719 }
0dfbf9d7
L
6720 if (!operand_type_equal (&overlap, &imm8)
6721 && !operand_type_equal (&overlap, &imm8s)
6722 && !operand_type_equal (&overlap, &imm16)
6723 && !operand_type_equal (&overlap, &imm32)
6724 && !operand_type_equal (&overlap, &imm32s)
6725 && !operand_type_equal (&overlap, &imm64))
29b0f896 6726 {
4eed87de
AM
6727 as_bad (_("no instruction mnemonic suffix given; "
6728 "can't determine immediate size"));
29b0f896
AM
6729 return 0;
6730 }
6731 }
40fb9820 6732 i.types[j] = overlap;
29b0f896 6733
40fb9820
L
6734 return 1;
6735}
6736
6737static int
6738finalize_imm (void)
6739{
bc0844ae 6740 unsigned int j, n;
29b0f896 6741
bc0844ae
L
6742 /* Update the first 2 immediate operands. */
6743 n = i.operands > 2 ? 2 : i.operands;
6744 if (n)
6745 {
6746 for (j = 0; j < n; j++)
6747 if (update_imm (j) == 0)
6748 return 0;
40fb9820 6749
bc0844ae
L
6750 /* The 3rd operand can't be immediate operand. */
6751 gas_assert (operand_type_check (i.types[2], imm) == 0);
6752 }
29b0f896
AM
6753
6754 return 1;
6755}
6756
6757static int
e3bb37b5 6758process_operands (void)
29b0f896
AM
6759{
6760 /* Default segment register this instruction will use for memory
6761 accesses. 0 means unknown. This is only for optimizing out
6762 unnecessary segment overrides. */
6763 const seg_entry *default_seg = 0;
6764
2426c15f 6765 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6766 {
91d6fa6a
NC
6767 unsigned int dupl = i.operands;
6768 unsigned int dest = dupl - 1;
9fcfb3d7
L
6769 unsigned int j;
6770
c0f3af97 6771 /* The destination must be an xmm register. */
9c2799c2 6772 gas_assert (i.reg_operands
91d6fa6a 6773 && MAX_OPERANDS > dupl
7ab9ffdd 6774 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6775
1b54b8d7
JB
6776 if (i.tm.operand_types[0].bitfield.acc
6777 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6778 {
8cd7925b 6779 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6780 {
6781 /* Keep xmm0 for instructions with VEX prefix and 3
6782 sources. */
1b54b8d7
JB
6783 i.tm.operand_types[0].bitfield.acc = 0;
6784 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6785 goto duplicate;
6786 }
e2ec9d29 6787 else
c0f3af97
L
6788 {
6789 /* We remove the first xmm0 and keep the number of
6790 operands unchanged, which in fact duplicates the
6791 destination. */
6792 for (j = 1; j < i.operands; j++)
6793 {
6794 i.op[j - 1] = i.op[j];
6795 i.types[j - 1] = i.types[j];
6796 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6797 }
6798 }
6799 }
6800 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6801 {
91d6fa6a 6802 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6803 && (i.tm.opcode_modifier.vexsources
6804 == VEX3SOURCES));
c0f3af97
L
6805
6806 /* Add the implicit xmm0 for instructions with VEX prefix
6807 and 3 sources. */
6808 for (j = i.operands; j > 0; j--)
6809 {
6810 i.op[j] = i.op[j - 1];
6811 i.types[j] = i.types[j - 1];
6812 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6813 }
6814 i.op[0].regs
6815 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6816 i.types[0] = regxmm;
c0f3af97
L
6817 i.tm.operand_types[0] = regxmm;
6818
6819 i.operands += 2;
6820 i.reg_operands += 2;
6821 i.tm.operands += 2;
6822
91d6fa6a 6823 dupl++;
c0f3af97 6824 dest++;
91d6fa6a
NC
6825 i.op[dupl] = i.op[dest];
6826 i.types[dupl] = i.types[dest];
6827 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6828 }
c0f3af97
L
6829 else
6830 {
6831duplicate:
6832 i.operands++;
6833 i.reg_operands++;
6834 i.tm.operands++;
6835
91d6fa6a
NC
6836 i.op[dupl] = i.op[dest];
6837 i.types[dupl] = i.types[dest];
6838 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6839 }
6840
6841 if (i.tm.opcode_modifier.immext)
6842 process_immext ();
6843 }
1b54b8d7
JB
6844 else if (i.tm.operand_types[0].bitfield.acc
6845 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6846 {
6847 unsigned int j;
6848
9fcfb3d7
L
6849 for (j = 1; j < i.operands; j++)
6850 {
6851 i.op[j - 1] = i.op[j];
6852 i.types[j - 1] = i.types[j];
6853
6854 /* We need to adjust fields in i.tm since they are used by
6855 build_modrm_byte. */
6856 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6857 }
6858
e2ec9d29
L
6859 i.operands--;
6860 i.reg_operands--;
e2ec9d29
L
6861 i.tm.operands--;
6862 }
920d2ddc
IT
6863 else if (i.tm.opcode_modifier.implicitquadgroup)
6864 {
a477a8c4
JB
6865 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6866
920d2ddc 6867 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6868 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6869 regnum = register_number (i.op[1].regs);
6870 first_reg_in_group = regnum & ~3;
6871 last_reg_in_group = first_reg_in_group + 3;
6872 if (regnum != first_reg_in_group)
6873 as_warn (_("source register `%s%s' implicitly denotes"
6874 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6875 register_prefix, i.op[1].regs->reg_name,
6876 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6877 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6878 i.tm.name);
6879 }
e2ec9d29
L
6880 else if (i.tm.opcode_modifier.regkludge)
6881 {
6882 /* The imul $imm, %reg instruction is converted into
6883 imul $imm, %reg, %reg, and the clr %reg instruction
6884 is converted into xor %reg, %reg. */
6885
6886 unsigned int first_reg_op;
6887
6888 if (operand_type_check (i.types[0], reg))
6889 first_reg_op = 0;
6890 else
6891 first_reg_op = 1;
6892 /* Pretend we saw the extra register operand. */
9c2799c2 6893 gas_assert (i.reg_operands == 1
7ab9ffdd 6894 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6895 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6896 i.types[first_reg_op + 1] = i.types[first_reg_op];
6897 i.operands++;
6898 i.reg_operands++;
29b0f896
AM
6899 }
6900
40fb9820 6901 if (i.tm.opcode_modifier.shortform)
29b0f896 6902 {
40fb9820
L
6903 if (i.types[0].bitfield.sreg2
6904 || i.types[0].bitfield.sreg3)
29b0f896 6905 {
4eed87de
AM
6906 if (i.tm.base_opcode == POP_SEG_SHORT
6907 && i.op[0].regs->reg_num == 1)
29b0f896 6908 {
a87af027 6909 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6910 return 0;
29b0f896 6911 }
4eed87de
AM
6912 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6913 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6914 i.rex |= REX_B;
4eed87de
AM
6915 }
6916 else
6917 {
7ab9ffdd 6918 /* The register or float register operand is in operand
85f10a01 6919 0 or 1. */
40fb9820 6920 unsigned int op;
7ab9ffdd 6921
ca0d63fe 6922 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6923 || operand_type_check (i.types[0], reg))
6924 op = 0;
6925 else
6926 op = 1;
4eed87de
AM
6927 /* Register goes in low 3 bits of opcode. */
6928 i.tm.base_opcode |= i.op[op].regs->reg_num;
6929 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6930 i.rex |= REX_B;
40fb9820 6931 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6932 {
4eed87de
AM
6933 /* Warn about some common errors, but press on regardless.
6934 The first case can be generated by gcc (<= 2.8.1). */
6935 if (i.operands == 2)
6936 {
6937 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6938 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6939 register_prefix, i.op[!intel_syntax].regs->reg_name,
6940 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6941 }
6942 else
6943 {
6944 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6945 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6946 register_prefix, i.op[0].regs->reg_name);
4eed87de 6947 }
29b0f896
AM
6948 }
6949 }
6950 }
40fb9820 6951 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6952 {
6953 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6954 must be put into the modrm byte). Now, we make the modrm and
6955 index base bytes based on all the info we've collected. */
29b0f896
AM
6956
6957 default_seg = build_modrm_byte ();
6958 }
8a2ed489 6959 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6960 {
6961 default_seg = &ds;
6962 }
40fb9820 6963 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6964 {
6965 /* For the string instructions that allow a segment override
6966 on one of their operands, the default segment is ds. */
6967 default_seg = &ds;
6968 }
6969
75178d9d
L
6970 if (i.tm.base_opcode == 0x8d /* lea */
6971 && i.seg[0]
6972 && !quiet_warnings)
30123838 6973 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6974
6975 /* If a segment was explicitly specified, and the specified segment
6976 is not the default, use an opcode prefix to select it. If we
6977 never figured out what the default segment is, then default_seg
6978 will be zero at this point, and the specified segment prefix will
6979 always be used. */
29b0f896
AM
6980 if ((i.seg[0]) && (i.seg[0] != default_seg))
6981 {
6982 if (!add_prefix (i.seg[0]->seg_prefix))
6983 return 0;
6984 }
6985 return 1;
6986}
6987
6988static const seg_entry *
e3bb37b5 6989build_modrm_byte (void)
29b0f896
AM
6990{
6991 const seg_entry *default_seg = 0;
c0f3af97 6992 unsigned int source, dest;
8cd7925b 6993 int vex_3_sources;
c0f3af97 6994
8cd7925b 6995 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6996 if (vex_3_sources)
6997 {
91d6fa6a 6998 unsigned int nds, reg_slot;
4c2c6516 6999 expressionS *exp;
c0f3af97 7000
6b8d3588 7001 dest = i.operands - 1;
c0f3af97 7002 nds = dest - 1;
922d8de8 7003
a683cc34 7004 /* There are 2 kinds of instructions:
bed3d976
JB
7005 1. 5 operands: 4 register operands or 3 register operands
7006 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7007 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7008 ZMM register.
bed3d976 7009 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7010 plus 1 memory operand, with VexXDS. */
922d8de8 7011 gas_assert ((i.reg_operands == 4
bed3d976
JB
7012 || (i.reg_operands == 3 && i.mem_operands == 1))
7013 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7014 && i.tm.opcode_modifier.vexw
7015 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7016
48db9223
JB
7017 /* If VexW1 is set, the first non-immediate operand is the source and
7018 the second non-immediate one is encoded in the immediate operand. */
7019 if (i.tm.opcode_modifier.vexw == VEXW1)
7020 {
7021 source = i.imm_operands;
7022 reg_slot = i.imm_operands + 1;
7023 }
7024 else
7025 {
7026 source = i.imm_operands + 1;
7027 reg_slot = i.imm_operands;
7028 }
7029
a683cc34 7030 if (i.imm_operands == 0)
bed3d976
JB
7031 {
7032 /* When there is no immediate operand, generate an 8bit
7033 immediate operand to encode the first operand. */
7034 exp = &im_expressions[i.imm_operands++];
7035 i.op[i.operands].imms = exp;
7036 i.types[i.operands] = imm8;
7037 i.operands++;
7038
7039 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7040 exp->X_op = O_constant;
7041 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7042 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7043 }
922d8de8 7044 else
bed3d976
JB
7045 {
7046 unsigned int imm_slot;
a683cc34 7047
2f1bada2
JB
7048 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7049
bed3d976
JB
7050 if (i.tm.opcode_modifier.immext)
7051 {
7052 /* When ImmExt is set, the immediate byte is the last
7053 operand. */
7054 imm_slot = i.operands - 1;
7055 source--;
7056 reg_slot--;
7057 }
7058 else
7059 {
7060 imm_slot = 0;
7061
7062 /* Turn on Imm8 so that output_imm will generate it. */
7063 i.types[imm_slot].bitfield.imm8 = 1;
7064 }
7065
7066 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7067 i.op[imm_slot].imms->X_add_number
7068 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7069 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7070 }
a683cc34 7071
10c17abd 7072 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7073 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7074 }
7075 else
7076 source = dest = 0;
29b0f896
AM
7077
7078 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7079 implicit registers do not count. If there are 3 register
7080 operands, it must be a instruction with VexNDS. For a
7081 instruction with VexNDD, the destination register is encoded
7082 in VEX prefix. If there are 4 register operands, it must be
7083 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7084 if (i.mem_operands == 0
7085 && ((i.reg_operands == 2
2426c15f 7086 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7087 || (i.reg_operands == 3
2426c15f 7088 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7089 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7090 {
cab737b9
L
7091 switch (i.operands)
7092 {
7093 case 2:
7094 source = 0;
7095 break;
7096 case 3:
c81128dc
L
7097 /* When there are 3 operands, one of them may be immediate,
7098 which may be the first or the last operand. Otherwise,
c0f3af97
L
7099 the first operand must be shift count register (cl) or it
7100 is an instruction with VexNDS. */
9c2799c2 7101 gas_assert (i.imm_operands == 1
7ab9ffdd 7102 || (i.imm_operands == 0
2426c15f 7103 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7104 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7105 if (operand_type_check (i.types[0], imm)
7106 || i.types[0].bitfield.shiftcount)
7107 source = 1;
7108 else
7109 source = 0;
cab737b9
L
7110 break;
7111 case 4:
368d64cc
L
7112 /* When there are 4 operands, the first two must be 8bit
7113 immediate operands. The source operand will be the 3rd
c0f3af97
L
7114 one.
7115
7116 For instructions with VexNDS, if the first operand
7117 an imm8, the source operand is the 2nd one. If the last
7118 operand is imm8, the source operand is the first one. */
9c2799c2 7119 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7120 && i.types[0].bitfield.imm8
7121 && i.types[1].bitfield.imm8)
2426c15f 7122 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7123 && i.imm_operands == 1
7124 && (i.types[0].bitfield.imm8
43234a1e
L
7125 || i.types[i.operands - 1].bitfield.imm8
7126 || i.rounding)));
9f2670f2
L
7127 if (i.imm_operands == 2)
7128 source = 2;
7129 else
c0f3af97
L
7130 {
7131 if (i.types[0].bitfield.imm8)
7132 source = 1;
7133 else
7134 source = 0;
7135 }
c0f3af97
L
7136 break;
7137 case 5:
e771e7c9 7138 if (is_evex_encoding (&i.tm))
43234a1e
L
7139 {
7140 /* For EVEX instructions, when there are 5 operands, the
7141 first one must be immediate operand. If the second one
7142 is immediate operand, the source operand is the 3th
7143 one. If the last one is immediate operand, the source
7144 operand is the 2nd one. */
7145 gas_assert (i.imm_operands == 2
7146 && i.tm.opcode_modifier.sae
7147 && operand_type_check (i.types[0], imm));
7148 if (operand_type_check (i.types[1], imm))
7149 source = 2;
7150 else if (operand_type_check (i.types[4], imm))
7151 source = 1;
7152 else
7153 abort ();
7154 }
cab737b9
L
7155 break;
7156 default:
7157 abort ();
7158 }
7159
c0f3af97
L
7160 if (!vex_3_sources)
7161 {
7162 dest = source + 1;
7163
43234a1e
L
7164 /* RC/SAE operand could be between DEST and SRC. That happens
7165 when one operand is GPR and the other one is XMM/YMM/ZMM
7166 register. */
7167 if (i.rounding && i.rounding->operand == (int) dest)
7168 dest++;
7169
2426c15f 7170 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7171 {
43234a1e 7172 /* For instructions with VexNDS, the register-only source
c5d0745b 7173 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7174 register. It is encoded in VEX prefix. We need to
7175 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7176
7177 i386_operand_type op;
7178 unsigned int vvvv;
7179
7180 /* Check register-only source operand when two source
7181 operands are swapped. */
7182 if (!i.tm.operand_types[source].bitfield.baseindex
7183 && i.tm.operand_types[dest].bitfield.baseindex)
7184 {
7185 vvvv = source;
7186 source = dest;
7187 }
7188 else
7189 vvvv = dest;
7190
7191 op = i.tm.operand_types[vvvv];
fa99fab2 7192 op.bitfield.regmem = 0;
c0f3af97 7193 if ((dest + 1) >= i.operands
dc821c5f
JB
7194 || ((!op.bitfield.reg
7195 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7196 && !op.bitfield.regsimd
43234a1e 7197 && !operand_type_equal (&op, &regmask)))
c0f3af97 7198 abort ();
f12dc422 7199 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7200 dest++;
7201 }
7202 }
29b0f896
AM
7203
7204 i.rm.mode = 3;
7205 /* One of the register operands will be encoded in the i.tm.reg
7206 field, the other in the combined i.tm.mode and i.tm.regmem
7207 fields. If no form of this instruction supports a memory
7208 destination operand, then we assume the source operand may
7209 sometimes be a memory operand and so we need to store the
7210 destination in the i.rm.reg field. */
40fb9820
L
7211 if (!i.tm.operand_types[dest].bitfield.regmem
7212 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7213 {
7214 i.rm.reg = i.op[dest].regs->reg_num;
7215 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7216 if (i.op[dest].regs->reg_type.bitfield.regmmx
7217 || i.op[source].regs->reg_type.bitfield.regmmx)
7218 i.has_regmmx = TRUE;
7219 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7220 || i.op[source].regs->reg_type.bitfield.regsimd)
7221 {
7222 if (i.types[dest].bitfield.zmmword
7223 || i.types[source].bitfield.zmmword)
7224 i.has_regzmm = TRUE;
7225 else if (i.types[dest].bitfield.ymmword
7226 || i.types[source].bitfield.ymmword)
7227 i.has_regymm = TRUE;
7228 else
7229 i.has_regxmm = TRUE;
7230 }
29b0f896 7231 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7232 i.rex |= REX_R;
43234a1e
L
7233 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7234 i.vrex |= REX_R;
29b0f896 7235 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7236 i.rex |= REX_B;
43234a1e
L
7237 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7238 i.vrex |= REX_B;
29b0f896
AM
7239 }
7240 else
7241 {
7242 i.rm.reg = i.op[source].regs->reg_num;
7243 i.rm.regmem = i.op[dest].regs->reg_num;
7244 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7245 i.rex |= REX_B;
43234a1e
L
7246 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7247 i.vrex |= REX_B;
29b0f896 7248 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7249 i.rex |= REX_R;
43234a1e
L
7250 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7251 i.vrex |= REX_R;
29b0f896 7252 }
e0c7f900 7253 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7254 {
e0c7f900 7255 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7256 abort ();
e0c7f900 7257 i.rex &= ~REX_R;
c4a530c5
JB
7258 add_prefix (LOCK_PREFIX_OPCODE);
7259 }
29b0f896
AM
7260 }
7261 else
7262 { /* If it's not 2 reg operands... */
c0f3af97
L
7263 unsigned int mem;
7264
29b0f896
AM
7265 if (i.mem_operands)
7266 {
7267 unsigned int fake_zero_displacement = 0;
99018f42 7268 unsigned int op;
4eed87de 7269
7ab9ffdd
L
7270 for (op = 0; op < i.operands; op++)
7271 if (operand_type_check (i.types[op], anymem))
7272 break;
7ab9ffdd 7273 gas_assert (op < i.operands);
29b0f896 7274
6c30d220
L
7275 if (i.tm.opcode_modifier.vecsib)
7276 {
e968fc9b 7277 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7278 abort ();
7279
7280 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7281 if (!i.base_reg)
7282 {
7283 i.sib.base = NO_BASE_REGISTER;
7284 i.sib.scale = i.log2_scale_factor;
7285 i.types[op].bitfield.disp8 = 0;
7286 i.types[op].bitfield.disp16 = 0;
7287 i.types[op].bitfield.disp64 = 0;
43083a50 7288 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7289 {
7290 /* Must be 32 bit */
7291 i.types[op].bitfield.disp32 = 1;
7292 i.types[op].bitfield.disp32s = 0;
7293 }
7294 else
7295 {
7296 i.types[op].bitfield.disp32 = 0;
7297 i.types[op].bitfield.disp32s = 1;
7298 }
7299 }
7300 i.sib.index = i.index_reg->reg_num;
7301 if ((i.index_reg->reg_flags & RegRex) != 0)
7302 i.rex |= REX_X;
43234a1e
L
7303 if ((i.index_reg->reg_flags & RegVRex) != 0)
7304 i.vrex |= REX_X;
6c30d220
L
7305 }
7306
29b0f896
AM
7307 default_seg = &ds;
7308
7309 if (i.base_reg == 0)
7310 {
7311 i.rm.mode = 0;
7312 if (!i.disp_operands)
9bb129e8 7313 fake_zero_displacement = 1;
29b0f896
AM
7314 if (i.index_reg == 0)
7315 {
73053c1f
JB
7316 i386_operand_type newdisp;
7317
6c30d220 7318 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7319 /* Operand is just <disp> */
20f0a1fc 7320 if (flag_code == CODE_64BIT)
29b0f896
AM
7321 {
7322 /* 64bit mode overwrites the 32bit absolute
7323 addressing by RIP relative addressing and
7324 absolute addressing is encoded by one of the
7325 redundant SIB forms. */
7326 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7327 i.sib.base = NO_BASE_REGISTER;
7328 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7329 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7330 }
fc225355
L
7331 else if ((flag_code == CODE_16BIT)
7332 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7333 {
7334 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7335 newdisp = disp16;
20f0a1fc
NC
7336 }
7337 else
7338 {
7339 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7340 newdisp = disp32;
29b0f896 7341 }
73053c1f
JB
7342 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7343 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7344 }
6c30d220 7345 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7346 {
6c30d220 7347 /* !i.base_reg && i.index_reg */
e968fc9b 7348 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7349 i.sib.index = NO_INDEX_REGISTER;
7350 else
7351 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7352 i.sib.base = NO_BASE_REGISTER;
7353 i.sib.scale = i.log2_scale_factor;
7354 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7355 i.types[op].bitfield.disp8 = 0;
7356 i.types[op].bitfield.disp16 = 0;
7357 i.types[op].bitfield.disp64 = 0;
43083a50 7358 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7359 {
7360 /* Must be 32 bit */
7361 i.types[op].bitfield.disp32 = 1;
7362 i.types[op].bitfield.disp32s = 0;
7363 }
29b0f896 7364 else
40fb9820
L
7365 {
7366 i.types[op].bitfield.disp32 = 0;
7367 i.types[op].bitfield.disp32s = 1;
7368 }
29b0f896 7369 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7370 i.rex |= REX_X;
29b0f896
AM
7371 }
7372 }
7373 /* RIP addressing for 64bit mode. */
e968fc9b 7374 else if (i.base_reg->reg_num == RegIP)
29b0f896 7375 {
6c30d220 7376 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7377 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7378 i.types[op].bitfield.disp8 = 0;
7379 i.types[op].bitfield.disp16 = 0;
7380 i.types[op].bitfield.disp32 = 0;
7381 i.types[op].bitfield.disp32s = 1;
7382 i.types[op].bitfield.disp64 = 0;
71903a11 7383 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7384 if (! i.disp_operands)
7385 fake_zero_displacement = 1;
29b0f896 7386 }
dc821c5f 7387 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7388 {
6c30d220 7389 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7390 switch (i.base_reg->reg_num)
7391 {
7392 case 3: /* (%bx) */
7393 if (i.index_reg == 0)
7394 i.rm.regmem = 7;
7395 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7396 i.rm.regmem = i.index_reg->reg_num - 6;
7397 break;
7398 case 5: /* (%bp) */
7399 default_seg = &ss;
7400 if (i.index_reg == 0)
7401 {
7402 i.rm.regmem = 6;
40fb9820 7403 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7404 {
7405 /* fake (%bp) into 0(%bp) */
b5014f7a 7406 i.types[op].bitfield.disp8 = 1;
252b5132 7407 fake_zero_displacement = 1;
29b0f896
AM
7408 }
7409 }
7410 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7411 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7412 break;
7413 default: /* (%si) -> 4 or (%di) -> 5 */
7414 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7415 }
7416 i.rm.mode = mode_from_disp_size (i.types[op]);
7417 }
7418 else /* i.base_reg and 32/64 bit mode */
7419 {
7420 if (flag_code == CODE_64BIT
40fb9820
L
7421 && operand_type_check (i.types[op], disp))
7422 {
73053c1f
JB
7423 i.types[op].bitfield.disp16 = 0;
7424 i.types[op].bitfield.disp64 = 0;
40fb9820 7425 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7426 {
7427 i.types[op].bitfield.disp32 = 0;
7428 i.types[op].bitfield.disp32s = 1;
7429 }
40fb9820 7430 else
73053c1f
JB
7431 {
7432 i.types[op].bitfield.disp32 = 1;
7433 i.types[op].bitfield.disp32s = 0;
7434 }
40fb9820 7435 }
20f0a1fc 7436
6c30d220
L
7437 if (!i.tm.opcode_modifier.vecsib)
7438 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7439 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7440 i.rex |= REX_B;
29b0f896
AM
7441 i.sib.base = i.base_reg->reg_num;
7442 /* x86-64 ignores REX prefix bit here to avoid decoder
7443 complications. */
848930b2
JB
7444 if (!(i.base_reg->reg_flags & RegRex)
7445 && (i.base_reg->reg_num == EBP_REG_NUM
7446 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7447 default_seg = &ss;
848930b2 7448 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7449 {
848930b2 7450 fake_zero_displacement = 1;
b5014f7a 7451 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7452 }
7453 i.sib.scale = i.log2_scale_factor;
7454 if (i.index_reg == 0)
7455 {
6c30d220 7456 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7457 /* <disp>(%esp) becomes two byte modrm with no index
7458 register. We've already stored the code for esp
7459 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7460 Any base register besides %esp will not use the
7461 extra modrm byte. */
7462 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7463 }
6c30d220 7464 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7465 {
e968fc9b 7466 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7467 i.sib.index = NO_INDEX_REGISTER;
7468 else
7469 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7470 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7471 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7472 i.rex |= REX_X;
29b0f896 7473 }
67a4f2b7
AO
7474
7475 if (i.disp_operands
7476 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7477 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7478 i.rm.mode = 0;
7479 else
a501d77e
L
7480 {
7481 if (!fake_zero_displacement
7482 && !i.disp_operands
7483 && i.disp_encoding)
7484 {
7485 fake_zero_displacement = 1;
7486 if (i.disp_encoding == disp_encoding_8bit)
7487 i.types[op].bitfield.disp8 = 1;
7488 else
7489 i.types[op].bitfield.disp32 = 1;
7490 }
7491 i.rm.mode = mode_from_disp_size (i.types[op]);
7492 }
29b0f896 7493 }
252b5132 7494
29b0f896
AM
7495 if (fake_zero_displacement)
7496 {
7497 /* Fakes a zero displacement assuming that i.types[op]
7498 holds the correct displacement size. */
7499 expressionS *exp;
7500
9c2799c2 7501 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7502 exp = &disp_expressions[i.disp_operands++];
7503 i.op[op].disps = exp;
7504 exp->X_op = O_constant;
7505 exp->X_add_number = 0;
7506 exp->X_add_symbol = (symbolS *) 0;
7507 exp->X_op_symbol = (symbolS *) 0;
7508 }
c0f3af97
L
7509
7510 mem = op;
29b0f896 7511 }
c0f3af97
L
7512 else
7513 mem = ~0;
252b5132 7514
8c43a48b 7515 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7516 {
7517 if (operand_type_check (i.types[0], imm))
7518 i.vex.register_specifier = NULL;
7519 else
7520 {
7521 /* VEX.vvvv encodes one of the sources when the first
7522 operand is not an immediate. */
1ef99a7b 7523 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7524 i.vex.register_specifier = i.op[0].regs;
7525 else
7526 i.vex.register_specifier = i.op[1].regs;
7527 }
7528
7529 /* Destination is a XMM register encoded in the ModRM.reg
7530 and VEX.R bit. */
7531 i.rm.reg = i.op[2].regs->reg_num;
7532 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7533 i.rex |= REX_R;
7534
7535 /* ModRM.rm and VEX.B encodes the other source. */
7536 if (!i.mem_operands)
7537 {
7538 i.rm.mode = 3;
7539
1ef99a7b 7540 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7541 i.rm.regmem = i.op[1].regs->reg_num;
7542 else
7543 i.rm.regmem = i.op[0].regs->reg_num;
7544
7545 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7546 i.rex |= REX_B;
7547 }
7548 }
2426c15f 7549 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7550 {
7551 i.vex.register_specifier = i.op[2].regs;
7552 if (!i.mem_operands)
7553 {
7554 i.rm.mode = 3;
7555 i.rm.regmem = i.op[1].regs->reg_num;
7556 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7557 i.rex |= REX_B;
7558 }
7559 }
29b0f896
AM
7560 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7561 (if any) based on i.tm.extension_opcode. Again, we must be
7562 careful to make sure that segment/control/debug/test/MMX
7563 registers are coded into the i.rm.reg field. */
f88c9eb0 7564 else if (i.reg_operands)
29b0f896 7565 {
99018f42 7566 unsigned int op;
7ab9ffdd
L
7567 unsigned int vex_reg = ~0;
7568
7569 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7570 {
7571 if (i.types[op].bitfield.reg
7572 || i.types[op].bitfield.regbnd
7573 || i.types[op].bitfield.regmask
7574 || i.types[op].bitfield.sreg2
7575 || i.types[op].bitfield.sreg3
7576 || i.types[op].bitfield.control
7577 || i.types[op].bitfield.debug
7578 || i.types[op].bitfield.test)
7579 break;
7580 if (i.types[op].bitfield.regsimd)
7581 {
7582 if (i.types[op].bitfield.zmmword)
7583 i.has_regzmm = TRUE;
7584 else if (i.types[op].bitfield.ymmword)
7585 i.has_regymm = TRUE;
7586 else
7587 i.has_regxmm = TRUE;
7588 break;
7589 }
7590 if (i.types[op].bitfield.regmmx)
7591 {
7592 i.has_regmmx = TRUE;
7593 break;
7594 }
7595 }
c0209578 7596
7ab9ffdd
L
7597 if (vex_3_sources)
7598 op = dest;
2426c15f 7599 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7600 {
7601 /* For instructions with VexNDS, the register-only
7602 source operand is encoded in VEX prefix. */
7603 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7604
7ab9ffdd 7605 if (op > mem)
c0f3af97 7606 {
7ab9ffdd
L
7607 vex_reg = op++;
7608 gas_assert (op < i.operands);
c0f3af97
L
7609 }
7610 else
c0f3af97 7611 {
f12dc422
L
7612 /* Check register-only source operand when two source
7613 operands are swapped. */
7614 if (!i.tm.operand_types[op].bitfield.baseindex
7615 && i.tm.operand_types[op + 1].bitfield.baseindex)
7616 {
7617 vex_reg = op;
7618 op += 2;
7619 gas_assert (mem == (vex_reg + 1)
7620 && op < i.operands);
7621 }
7622 else
7623 {
7624 vex_reg = op + 1;
7625 gas_assert (vex_reg < i.operands);
7626 }
c0f3af97 7627 }
7ab9ffdd 7628 }
2426c15f 7629 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7630 {
f12dc422 7631 /* For instructions with VexNDD, the register destination
7ab9ffdd 7632 is encoded in VEX prefix. */
f12dc422
L
7633 if (i.mem_operands == 0)
7634 {
7635 /* There is no memory operand. */
7636 gas_assert ((op + 2) == i.operands);
7637 vex_reg = op + 1;
7638 }
7639 else
8d63c93e 7640 {
ed438a93
JB
7641 /* There are only 2 non-immediate operands. */
7642 gas_assert (op < i.imm_operands + 2
7643 && i.operands == i.imm_operands + 2);
7644 vex_reg = i.imm_operands + 1;
f12dc422 7645 }
7ab9ffdd
L
7646 }
7647 else
7648 gas_assert (op < i.operands);
99018f42 7649
7ab9ffdd
L
7650 if (vex_reg != (unsigned int) ~0)
7651 {
f12dc422 7652 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7653
dc821c5f
JB
7654 if ((!type->bitfield.reg
7655 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7656 && !type->bitfield.regsimd
43234a1e 7657 && !operand_type_equal (type, &regmask))
7ab9ffdd 7658 abort ();
f88c9eb0 7659
7ab9ffdd
L
7660 i.vex.register_specifier = i.op[vex_reg].regs;
7661 }
7662
1b9f0c97
L
7663 /* Don't set OP operand twice. */
7664 if (vex_reg != op)
7ab9ffdd 7665 {
1b9f0c97
L
7666 /* If there is an extension opcode to put here, the
7667 register number must be put into the regmem field. */
7668 if (i.tm.extension_opcode != None)
7669 {
7670 i.rm.regmem = i.op[op].regs->reg_num;
7671 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7672 i.rex |= REX_B;
43234a1e
L
7673 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7674 i.vrex |= REX_B;
1b9f0c97
L
7675 }
7676 else
7677 {
7678 i.rm.reg = i.op[op].regs->reg_num;
7679 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7680 i.rex |= REX_R;
43234a1e
L
7681 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7682 i.vrex |= REX_R;
1b9f0c97 7683 }
7ab9ffdd 7684 }
252b5132 7685
29b0f896
AM
7686 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7687 must set it to 3 to indicate this is a register operand
7688 in the regmem field. */
7689 if (!i.mem_operands)
7690 i.rm.mode = 3;
7691 }
252b5132 7692
29b0f896 7693 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7694 if (i.tm.extension_opcode != None)
29b0f896
AM
7695 i.rm.reg = i.tm.extension_opcode;
7696 }
7697 return default_seg;
7698}
252b5132 7699
29b0f896 7700static void
e3bb37b5 7701output_branch (void)
29b0f896
AM
7702{
7703 char *p;
f8a5c266 7704 int size;
29b0f896
AM
7705 int code16;
7706 int prefix;
7707 relax_substateT subtype;
7708 symbolS *sym;
7709 offsetT off;
7710
f8a5c266 7711 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7712 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7713
7714 prefix = 0;
7715 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7716 {
29b0f896
AM
7717 prefix = 1;
7718 i.prefixes -= 1;
7719 code16 ^= CODE16;
252b5132 7720 }
29b0f896
AM
7721 /* Pentium4 branch hints. */
7722 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7723 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7724 {
29b0f896
AM
7725 prefix++;
7726 i.prefixes--;
7727 }
7728 if (i.prefix[REX_PREFIX] != 0)
7729 {
7730 prefix++;
7731 i.prefixes--;
2f66722d
AM
7732 }
7733
7e8b059b
L
7734 /* BND prefixed jump. */
7735 if (i.prefix[BND_PREFIX] != 0)
7736 {
7737 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7738 i.prefixes -= 1;
7739 }
7740
29b0f896
AM
7741 if (i.prefixes != 0 && !intel_syntax)
7742 as_warn (_("skipping prefixes on this instruction"));
7743
7744 /* It's always a symbol; End frag & setup for relax.
7745 Make sure there is enough room in this frag for the largest
7746 instruction we may generate in md_convert_frag. This is 2
7747 bytes for the opcode and room for the prefix and largest
7748 displacement. */
7749 frag_grow (prefix + 2 + 4);
7750 /* Prefix and 1 opcode byte go in fr_fix. */
7751 p = frag_more (prefix + 1);
7752 if (i.prefix[DATA_PREFIX] != 0)
7753 *p++ = DATA_PREFIX_OPCODE;
7754 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7755 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7756 *p++ = i.prefix[SEG_PREFIX];
7757 if (i.prefix[REX_PREFIX] != 0)
7758 *p++ = i.prefix[REX_PREFIX];
7759 *p = i.tm.base_opcode;
7760
7761 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7762 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7763 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7764 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7765 else
f8a5c266 7766 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7767 subtype |= code16;
3e73aa7c 7768
29b0f896
AM
7769 sym = i.op[0].disps->X_add_symbol;
7770 off = i.op[0].disps->X_add_number;
3e73aa7c 7771
29b0f896
AM
7772 if (i.op[0].disps->X_op != O_constant
7773 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7774 {
29b0f896
AM
7775 /* Handle complex expressions. */
7776 sym = make_expr_symbol (i.op[0].disps);
7777 off = 0;
7778 }
3e73aa7c 7779
29b0f896
AM
7780 /* 1 possible extra opcode + 4 byte displacement go in var part.
7781 Pass reloc in fr_var. */
d258b828 7782 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7783}
3e73aa7c 7784
bd7ab16b
L
7785#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7786/* Return TRUE iff PLT32 relocation should be used for branching to
7787 symbol S. */
7788
7789static bfd_boolean
7790need_plt32_p (symbolS *s)
7791{
7792 /* PLT32 relocation is ELF only. */
7793 if (!IS_ELF)
7794 return FALSE;
7795
a5def729
RO
7796#ifdef TE_SOLARIS
7797 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7798 krtld support it. */
7799 return FALSE;
7800#endif
7801
bd7ab16b
L
7802 /* Since there is no need to prepare for PLT branch on x86-64, we
7803 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7804 be used as a marker for 32-bit PC-relative branches. */
7805 if (!object_64bit)
7806 return FALSE;
7807
7808 /* Weak or undefined symbol need PLT32 relocation. */
7809 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7810 return TRUE;
7811
7812 /* Non-global symbol doesn't need PLT32 relocation. */
7813 if (! S_IS_EXTERNAL (s))
7814 return FALSE;
7815
7816 /* Other global symbols need PLT32 relocation. NB: Symbol with
7817 non-default visibilities are treated as normal global symbol
7818 so that PLT32 relocation can be used as a marker for 32-bit
7819 PC-relative branches. It is useful for linker relaxation. */
7820 return TRUE;
7821}
7822#endif
7823
29b0f896 7824static void
e3bb37b5 7825output_jump (void)
29b0f896
AM
7826{
7827 char *p;
7828 int size;
3e02c1cc 7829 fixS *fixP;
bd7ab16b 7830 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7831
40fb9820 7832 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7833 {
7834 /* This is a loop or jecxz type instruction. */
7835 size = 1;
7836 if (i.prefix[ADDR_PREFIX] != 0)
7837 {
7838 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7839 i.prefixes -= 1;
7840 }
7841 /* Pentium4 branch hints. */
7842 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7843 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7844 {
7845 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7846 i.prefixes--;
3e73aa7c
JH
7847 }
7848 }
29b0f896
AM
7849 else
7850 {
7851 int code16;
3e73aa7c 7852
29b0f896
AM
7853 code16 = 0;
7854 if (flag_code == CODE_16BIT)
7855 code16 = CODE16;
3e73aa7c 7856
29b0f896
AM
7857 if (i.prefix[DATA_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7860 i.prefixes -= 1;
7861 code16 ^= CODE16;
7862 }
252b5132 7863
29b0f896
AM
7864 size = 4;
7865 if (code16)
7866 size = 2;
7867 }
9fcc94b6 7868
29b0f896
AM
7869 if (i.prefix[REX_PREFIX] != 0)
7870 {
7871 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7872 i.prefixes -= 1;
7873 }
252b5132 7874
7e8b059b
L
7875 /* BND prefixed jump. */
7876 if (i.prefix[BND_PREFIX] != 0)
7877 {
7878 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7879 i.prefixes -= 1;
7880 }
7881
29b0f896
AM
7882 if (i.prefixes != 0 && !intel_syntax)
7883 as_warn (_("skipping prefixes on this instruction"));
e0890092 7884
42164a71
L
7885 p = frag_more (i.tm.opcode_length + size);
7886 switch (i.tm.opcode_length)
7887 {
7888 case 2:
7889 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7890 /* Fall through. */
42164a71
L
7891 case 1:
7892 *p++ = i.tm.base_opcode;
7893 break;
7894 default:
7895 abort ();
7896 }
e0890092 7897
bd7ab16b
L
7898#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7899 if (size == 4
7900 && jump_reloc == NO_RELOC
7901 && need_plt32_p (i.op[0].disps->X_add_symbol))
7902 jump_reloc = BFD_RELOC_X86_64_PLT32;
7903#endif
7904
7905 jump_reloc = reloc (size, 1, 1, jump_reloc);
7906
3e02c1cc 7907 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7908 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7909
7910 /* All jumps handled here are signed, but don't use a signed limit
7911 check for 32 and 16 bit jumps as we want to allow wrap around at
7912 4G and 64k respectively. */
7913 if (size == 1)
7914 fixP->fx_signed = 1;
29b0f896 7915}
e0890092 7916
29b0f896 7917static void
e3bb37b5 7918output_interseg_jump (void)
29b0f896
AM
7919{
7920 char *p;
7921 int size;
7922 int prefix;
7923 int code16;
252b5132 7924
29b0f896
AM
7925 code16 = 0;
7926 if (flag_code == CODE_16BIT)
7927 code16 = CODE16;
a217f122 7928
29b0f896
AM
7929 prefix = 0;
7930 if (i.prefix[DATA_PREFIX] != 0)
7931 {
7932 prefix = 1;
7933 i.prefixes -= 1;
7934 code16 ^= CODE16;
7935 }
7936 if (i.prefix[REX_PREFIX] != 0)
7937 {
7938 prefix++;
7939 i.prefixes -= 1;
7940 }
252b5132 7941
29b0f896
AM
7942 size = 4;
7943 if (code16)
7944 size = 2;
252b5132 7945
29b0f896
AM
7946 if (i.prefixes != 0 && !intel_syntax)
7947 as_warn (_("skipping prefixes on this instruction"));
252b5132 7948
29b0f896
AM
7949 /* 1 opcode; 2 segment; offset */
7950 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7951
29b0f896
AM
7952 if (i.prefix[DATA_PREFIX] != 0)
7953 *p++ = DATA_PREFIX_OPCODE;
252b5132 7954
29b0f896
AM
7955 if (i.prefix[REX_PREFIX] != 0)
7956 *p++ = i.prefix[REX_PREFIX];
252b5132 7957
29b0f896
AM
7958 *p++ = i.tm.base_opcode;
7959 if (i.op[1].imms->X_op == O_constant)
7960 {
7961 offsetT n = i.op[1].imms->X_add_number;
252b5132 7962
29b0f896
AM
7963 if (size == 2
7964 && !fits_in_unsigned_word (n)
7965 && !fits_in_signed_word (n))
7966 {
7967 as_bad (_("16-bit jump out of range"));
7968 return;
7969 }
7970 md_number_to_chars (p, n, size);
7971 }
7972 else
7973 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7974 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7975 if (i.op[0].imms->X_op != O_constant)
7976 as_bad (_("can't handle non absolute segment in `%s'"),
7977 i.tm.name);
7978 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7979}
a217f122 7980
b4a3a7b4
L
7981#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7982void
7983x86_cleanup (void)
7984{
7985 char *p;
7986 asection *seg = now_seg;
7987 subsegT subseg = now_subseg;
7988 asection *sec;
7989 unsigned int alignment, align_size_1;
7990 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7991 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7992 unsigned int padding;
7993
7994 if (!IS_ELF || !x86_used_note)
7995 return;
7996
b4a3a7b4
L
7997 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7998
7999 /* The .note.gnu.property section layout:
8000
8001 Field Length Contents
8002 ---- ---- ----
8003 n_namsz 4 4
8004 n_descsz 4 The note descriptor size
8005 n_type 4 NT_GNU_PROPERTY_TYPE_0
8006 n_name 4 "GNU"
8007 n_desc n_descsz The program property array
8008 .... .... ....
8009 */
8010
8011 /* Create the .note.gnu.property section. */
8012 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8013 bfd_set_section_flags (stdoutput, sec,
8014 (SEC_ALLOC
8015 | SEC_LOAD
8016 | SEC_DATA
8017 | SEC_HAS_CONTENTS
8018 | SEC_READONLY));
8019
8020 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8021 {
8022 align_size_1 = 7;
8023 alignment = 3;
8024 }
8025 else
8026 {
8027 align_size_1 = 3;
8028 alignment = 2;
8029 }
8030
8031 bfd_set_section_alignment (stdoutput, sec, alignment);
8032 elf_section_type (sec) = SHT_NOTE;
8033
8034 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8035 + 4-byte data */
8036 isa_1_descsz_raw = 4 + 4 + 4;
8037 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8038 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8039
8040 feature_2_descsz_raw = isa_1_descsz;
8041 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8042 + 4-byte data */
8043 feature_2_descsz_raw += 4 + 4 + 4;
8044 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8045 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8046 & ~align_size_1);
8047
8048 descsz = feature_2_descsz;
8049 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8050 p = frag_more (4 + 4 + 4 + 4 + descsz);
8051
8052 /* Write n_namsz. */
8053 md_number_to_chars (p, (valueT) 4, 4);
8054
8055 /* Write n_descsz. */
8056 md_number_to_chars (p + 4, (valueT) descsz, 4);
8057
8058 /* Write n_type. */
8059 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8060
8061 /* Write n_name. */
8062 memcpy (p + 4 * 3, "GNU", 4);
8063
8064 /* Write 4-byte type. */
8065 md_number_to_chars (p + 4 * 4,
8066 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8067
8068 /* Write 4-byte data size. */
8069 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8070
8071 /* Write 4-byte data. */
8072 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8073
8074 /* Zero out paddings. */
8075 padding = isa_1_descsz - isa_1_descsz_raw;
8076 if (padding)
8077 memset (p + 4 * 7, 0, padding);
8078
8079 /* Write 4-byte type. */
8080 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8081 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8082
8083 /* Write 4-byte data size. */
8084 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8085
8086 /* Write 4-byte data. */
8087 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8088 (valueT) x86_feature_2_used, 4);
8089
8090 /* Zero out paddings. */
8091 padding = feature_2_descsz - feature_2_descsz_raw;
8092 if (padding)
8093 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8094
8095 /* We probably can't restore the current segment, for there likely
8096 isn't one yet... */
8097 if (seg && subseg)
8098 subseg_set (seg, subseg);
8099}
8100#endif
8101
29b0f896 8102static void
e3bb37b5 8103output_insn (void)
29b0f896 8104{
2bbd9c25
JJ
8105 fragS *insn_start_frag;
8106 offsetT insn_start_off;
8107
b4a3a7b4
L
8108#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8109 if (IS_ELF && x86_used_note)
8110 {
8111 if (i.tm.cpu_flags.bitfield.cpucmov)
8112 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8113 if (i.tm.cpu_flags.bitfield.cpusse)
8114 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8115 if (i.tm.cpu_flags.bitfield.cpusse2)
8116 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8117 if (i.tm.cpu_flags.bitfield.cpusse3)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8119 if (i.tm.cpu_flags.bitfield.cpussse3)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8121 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8123 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8125 if (i.tm.cpu_flags.bitfield.cpuavx)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8127 if (i.tm.cpu_flags.bitfield.cpuavx2)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8129 if (i.tm.cpu_flags.bitfield.cpufma)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8131 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8133 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8135 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8147 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8149 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8150 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8151 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8152 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8153 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8154 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8155 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8156 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8157 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8158 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8159 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8160 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8161
8162 if (i.tm.cpu_flags.bitfield.cpu8087
8163 || i.tm.cpu_flags.bitfield.cpu287
8164 || i.tm.cpu_flags.bitfield.cpu387
8165 || i.tm.cpu_flags.bitfield.cpu687
8166 || i.tm.cpu_flags.bitfield.cpufisttp)
8167 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8168 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8169 Xfence instructions. */
8170 if (i.tm.base_opcode != 0xf18
8171 && i.tm.base_opcode != 0xf0d
8172 && i.tm.base_opcode != 0xfae
8173 && (i.has_regmmx
8174 || i.tm.cpu_flags.bitfield.cpummx
8175 || i.tm.cpu_flags.bitfield.cpua3dnow
8176 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8177 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8178 if (i.has_regxmm)
8179 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8180 if (i.has_regymm)
8181 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8182 if (i.has_regzmm)
8183 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8184 if (i.tm.cpu_flags.bitfield.cpufxsr)
8185 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8186 if (i.tm.cpu_flags.bitfield.cpuxsave)
8187 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8188 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8189 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8190 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8192 }
8193#endif
8194
29b0f896
AM
8195 /* Tie dwarf2 debug info to the address at the start of the insn.
8196 We can't do this after the insn has been output as the current
8197 frag may have been closed off. eg. by frag_var. */
8198 dwarf2_emit_insn (0);
8199
2bbd9c25
JJ
8200 insn_start_frag = frag_now;
8201 insn_start_off = frag_now_fix ();
8202
29b0f896 8203 /* Output jumps. */
40fb9820 8204 if (i.tm.opcode_modifier.jump)
29b0f896 8205 output_branch ();
40fb9820
L
8206 else if (i.tm.opcode_modifier.jumpbyte
8207 || i.tm.opcode_modifier.jumpdword)
29b0f896 8208 output_jump ();
40fb9820 8209 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8210 output_interseg_jump ();
8211 else
8212 {
8213 /* Output normal instructions here. */
8214 char *p;
8215 unsigned char *q;
47465058 8216 unsigned int j;
331d2d0d 8217 unsigned int prefix;
4dffcebc 8218
e4e00185
AS
8219 if (avoid_fence
8220 && i.tm.base_opcode == 0xfae
8221 && i.operands == 1
8222 && i.imm_operands == 1
8223 && (i.op[0].imms->X_add_number == 0xe8
8224 || i.op[0].imms->X_add_number == 0xf0
8225 || i.op[0].imms->X_add_number == 0xf8))
8226 {
8227 /* Encode lfence, mfence, and sfence as
8228 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8229 offsetT val = 0x240483f0ULL;
8230 p = frag_more (5);
8231 md_number_to_chars (p, val, 5);
8232 return;
8233 }
8234
d022bddd
IT
8235 /* Some processors fail on LOCK prefix. This options makes
8236 assembler ignore LOCK prefix and serves as a workaround. */
8237 if (omit_lock_prefix)
8238 {
8239 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8240 return;
8241 i.prefix[LOCK_PREFIX] = 0;
8242 }
8243
43234a1e
L
8244 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8245 don't need the explicit prefix. */
8246 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8247 {
c0f3af97 8248 switch (i.tm.opcode_length)
bc4bd9ab 8249 {
c0f3af97
L
8250 case 3:
8251 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8252 {
c0f3af97 8253 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8254 add_prefix (prefix);
c0f3af97
L
8255 }
8256 break;
8257 case 2:
8258 if ((i.tm.base_opcode & 0xff0000) != 0)
8259 {
8260 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8261 if (!i.tm.cpu_flags.bitfield.cpupadlock
8262 || prefix != REPE_PREFIX_OPCODE
8263 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8264 add_prefix (prefix);
8265 }
c0f3af97
L
8266 break;
8267 case 1:
8268 break;
390c91cf
L
8269 case 0:
8270 /* Check for pseudo prefixes. */
8271 as_bad_where (insn_start_frag->fr_file,
8272 insn_start_frag->fr_line,
8273 _("pseudo prefix without instruction"));
8274 return;
c0f3af97
L
8275 default:
8276 abort ();
bc4bd9ab 8277 }
c0f3af97 8278
6d19a37a 8279#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8280 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8281 R_X86_64_GOTTPOFF relocation so that linker can safely
8282 perform IE->LE optimization. */
8283 if (x86_elf_abi == X86_64_X32_ABI
8284 && i.operands == 2
8285 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8286 && i.prefix[REX_PREFIX] == 0)
8287 add_prefix (REX_OPCODE);
6d19a37a 8288#endif
cf61b747 8289
c0f3af97
L
8290 /* The prefix bytes. */
8291 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8292 if (*q)
8293 FRAG_APPEND_1_CHAR (*q);
0f10071e 8294 }
ae5c1c7b 8295 else
c0f3af97
L
8296 {
8297 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8298 if (*q)
8299 switch (j)
8300 {
8301 case REX_PREFIX:
8302 /* REX byte is encoded in VEX prefix. */
8303 break;
8304 case SEG_PREFIX:
8305 case ADDR_PREFIX:
8306 FRAG_APPEND_1_CHAR (*q);
8307 break;
8308 default:
8309 /* There should be no other prefixes for instructions
8310 with VEX prefix. */
8311 abort ();
8312 }
8313
43234a1e
L
8314 /* For EVEX instructions i.vrex should become 0 after
8315 build_evex_prefix. For VEX instructions upper 16 registers
8316 aren't available, so VREX should be 0. */
8317 if (i.vrex)
8318 abort ();
c0f3af97
L
8319 /* Now the VEX prefix. */
8320 p = frag_more (i.vex.length);
8321 for (j = 0; j < i.vex.length; j++)
8322 p[j] = i.vex.bytes[j];
8323 }
252b5132 8324
29b0f896 8325 /* Now the opcode; be careful about word order here! */
4dffcebc 8326 if (i.tm.opcode_length == 1)
29b0f896
AM
8327 {
8328 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8329 }
8330 else
8331 {
4dffcebc 8332 switch (i.tm.opcode_length)
331d2d0d 8333 {
43234a1e
L
8334 case 4:
8335 p = frag_more (4);
8336 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8337 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8338 break;
4dffcebc 8339 case 3:
331d2d0d
L
8340 p = frag_more (3);
8341 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8342 break;
8343 case 2:
8344 p = frag_more (2);
8345 break;
8346 default:
8347 abort ();
8348 break;
331d2d0d 8349 }
0f10071e 8350
29b0f896
AM
8351 /* Put out high byte first: can't use md_number_to_chars! */
8352 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8353 *p = i.tm.base_opcode & 0xff;
8354 }
3e73aa7c 8355
29b0f896 8356 /* Now the modrm byte and sib byte (if present). */
40fb9820 8357 if (i.tm.opcode_modifier.modrm)
29b0f896 8358 {
4a3523fa
L
8359 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8360 | i.rm.reg << 3
8361 | i.rm.mode << 6));
29b0f896
AM
8362 /* If i.rm.regmem == ESP (4)
8363 && i.rm.mode != (Register mode)
8364 && not 16 bit
8365 ==> need second modrm byte. */
8366 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8367 && i.rm.mode != 3
dc821c5f 8368 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8369 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8370 | i.sib.index << 3
8371 | i.sib.scale << 6));
29b0f896 8372 }
3e73aa7c 8373
29b0f896 8374 if (i.disp_operands)
2bbd9c25 8375 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8376
29b0f896 8377 if (i.imm_operands)
2bbd9c25 8378 output_imm (insn_start_frag, insn_start_off);
29b0f896 8379 }
252b5132 8380
29b0f896
AM
8381#ifdef DEBUG386
8382 if (flag_debug)
8383 {
7b81dfbb 8384 pi ("" /*line*/, &i);
29b0f896
AM
8385 }
8386#endif /* DEBUG386 */
8387}
252b5132 8388
e205caa7
L
8389/* Return the size of the displacement operand N. */
8390
8391static int
8392disp_size (unsigned int n)
8393{
8394 int size = 4;
43234a1e 8395
b5014f7a 8396 if (i.types[n].bitfield.disp64)
40fb9820
L
8397 size = 8;
8398 else if (i.types[n].bitfield.disp8)
8399 size = 1;
8400 else if (i.types[n].bitfield.disp16)
8401 size = 2;
e205caa7
L
8402 return size;
8403}
8404
8405/* Return the size of the immediate operand N. */
8406
8407static int
8408imm_size (unsigned int n)
8409{
8410 int size = 4;
40fb9820
L
8411 if (i.types[n].bitfield.imm64)
8412 size = 8;
8413 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8414 size = 1;
8415 else if (i.types[n].bitfield.imm16)
8416 size = 2;
e205caa7
L
8417 return size;
8418}
8419
29b0f896 8420static void
64e74474 8421output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8422{
8423 char *p;
8424 unsigned int n;
252b5132 8425
29b0f896
AM
8426 for (n = 0; n < i.operands; n++)
8427 {
b5014f7a 8428 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8429 {
8430 if (i.op[n].disps->X_op == O_constant)
8431 {
e205caa7 8432 int size = disp_size (n);
43234a1e 8433 offsetT val = i.op[n].disps->X_add_number;
252b5132 8434
629cfaf1
JB
8435 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8436 size);
29b0f896
AM
8437 p = frag_more (size);
8438 md_number_to_chars (p, val, size);
8439 }
8440 else
8441 {
f86103b7 8442 enum bfd_reloc_code_real reloc_type;
e205caa7 8443 int size = disp_size (n);
40fb9820 8444 int sign = i.types[n].bitfield.disp32s;
29b0f896 8445 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8446 fixS *fixP;
29b0f896 8447
e205caa7 8448 /* We can't have 8 bit displacement here. */
9c2799c2 8449 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8450
29b0f896
AM
8451 /* The PC relative address is computed relative
8452 to the instruction boundary, so in case immediate
8453 fields follows, we need to adjust the value. */
8454 if (pcrel && i.imm_operands)
8455 {
29b0f896 8456 unsigned int n1;
e205caa7 8457 int sz = 0;
252b5132 8458
29b0f896 8459 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8460 if (operand_type_check (i.types[n1], imm))
252b5132 8461 {
e205caa7
L
8462 /* Only one immediate is allowed for PC
8463 relative address. */
9c2799c2 8464 gas_assert (sz == 0);
e205caa7
L
8465 sz = imm_size (n1);
8466 i.op[n].disps->X_add_number -= sz;
252b5132 8467 }
29b0f896 8468 /* We should find the immediate. */
9c2799c2 8469 gas_assert (sz != 0);
29b0f896 8470 }
520dc8e8 8471
29b0f896 8472 p = frag_more (size);
d258b828 8473 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8474 if (GOT_symbol
2bbd9c25 8475 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8476 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8477 || reloc_type == BFD_RELOC_X86_64_32S
8478 || (reloc_type == BFD_RELOC_64
8479 && object_64bit))
d6ab8113
JB
8480 && (i.op[n].disps->X_op == O_symbol
8481 || (i.op[n].disps->X_op == O_add
8482 && ((symbol_get_value_expression
8483 (i.op[n].disps->X_op_symbol)->X_op)
8484 == O_subtract))))
8485 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8486 {
8487 offsetT add;
8488
8489 if (insn_start_frag == frag_now)
8490 add = (p - frag_now->fr_literal) - insn_start_off;
8491 else
8492 {
8493 fragS *fr;
8494
8495 add = insn_start_frag->fr_fix - insn_start_off;
8496 for (fr = insn_start_frag->fr_next;
8497 fr && fr != frag_now; fr = fr->fr_next)
8498 add += fr->fr_fix;
8499 add += p - frag_now->fr_literal;
8500 }
8501
4fa24527 8502 if (!object_64bit)
7b81dfbb
AJ
8503 {
8504 reloc_type = BFD_RELOC_386_GOTPC;
8505 i.op[n].imms->X_add_number += add;
8506 }
8507 else if (reloc_type == BFD_RELOC_64)
8508 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8509 else
7b81dfbb
AJ
8510 /* Don't do the adjustment for x86-64, as there
8511 the pcrel addressing is relative to the _next_
8512 insn, and that is taken care of in other code. */
d6ab8113 8513 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8514 }
02a86693
L
8515 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8516 size, i.op[n].disps, pcrel,
8517 reloc_type);
8518 /* Check for "call/jmp *mem", "mov mem, %reg",
8519 "test %reg, mem" and "binop mem, %reg" where binop
8520 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8521 instructions without data prefix. Always generate
8522 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8523 if (i.prefix[DATA_PREFIX] == 0
8524 && (generate_relax_relocations
8525 || (!object_64bit
8526 && i.rm.mode == 0
8527 && i.rm.regmem == 5))
0cb4071e
L
8528 && (i.rm.mode == 2
8529 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8530 && ((i.operands == 1
8531 && i.tm.base_opcode == 0xff
8532 && (i.rm.reg == 2 || i.rm.reg == 4))
8533 || (i.operands == 2
8534 && (i.tm.base_opcode == 0x8b
8535 || i.tm.base_opcode == 0x85
8536 || (i.tm.base_opcode & 0xc7) == 0x03))))
8537 {
8538 if (object_64bit)
8539 {
8540 fixP->fx_tcbit = i.rex != 0;
8541 if (i.base_reg
e968fc9b 8542 && (i.base_reg->reg_num == RegIP))
02a86693
L
8543 fixP->fx_tcbit2 = 1;
8544 }
8545 else
8546 fixP->fx_tcbit2 = 1;
8547 }
29b0f896
AM
8548 }
8549 }
8550 }
8551}
252b5132 8552
29b0f896 8553static void
64e74474 8554output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8555{
8556 char *p;
8557 unsigned int n;
252b5132 8558
29b0f896
AM
8559 for (n = 0; n < i.operands; n++)
8560 {
43234a1e
L
8561 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8562 if (i.rounding && (int) n == i.rounding->operand)
8563 continue;
8564
40fb9820 8565 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8566 {
8567 if (i.op[n].imms->X_op == O_constant)
8568 {
e205caa7 8569 int size = imm_size (n);
29b0f896 8570 offsetT val;
b4cac588 8571
29b0f896
AM
8572 val = offset_in_range (i.op[n].imms->X_add_number,
8573 size);
8574 p = frag_more (size);
8575 md_number_to_chars (p, val, size);
8576 }
8577 else
8578 {
8579 /* Not absolute_section.
8580 Need a 32-bit fixup (don't support 8bit
8581 non-absolute imms). Try to support other
8582 sizes ... */
f86103b7 8583 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8584 int size = imm_size (n);
8585 int sign;
29b0f896 8586
40fb9820 8587 if (i.types[n].bitfield.imm32s
a7d61044 8588 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8589 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8590 sign = 1;
e205caa7
L
8591 else
8592 sign = 0;
520dc8e8 8593
29b0f896 8594 p = frag_more (size);
d258b828 8595 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8596
2bbd9c25
JJ
8597 /* This is tough to explain. We end up with this one if we
8598 * have operands that look like
8599 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8600 * obtain the absolute address of the GOT, and it is strongly
8601 * preferable from a performance point of view to avoid using
8602 * a runtime relocation for this. The actual sequence of
8603 * instructions often look something like:
8604 *
8605 * call .L66
8606 * .L66:
8607 * popl %ebx
8608 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8609 *
8610 * The call and pop essentially return the absolute address
8611 * of the label .L66 and store it in %ebx. The linker itself
8612 * will ultimately change the first operand of the addl so
8613 * that %ebx points to the GOT, but to keep things simple, the
8614 * .o file must have this operand set so that it generates not
8615 * the absolute address of .L66, but the absolute address of
8616 * itself. This allows the linker itself simply treat a GOTPC
8617 * relocation as asking for a pcrel offset to the GOT to be
8618 * added in, and the addend of the relocation is stored in the
8619 * operand field for the instruction itself.
8620 *
8621 * Our job here is to fix the operand so that it would add
8622 * the correct offset so that %ebx would point to itself. The
8623 * thing that is tricky is that .-.L66 will point to the
8624 * beginning of the instruction, so we need to further modify
8625 * the operand so that it will point to itself. There are
8626 * other cases where you have something like:
8627 *
8628 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8629 *
8630 * and here no correction would be required. Internally in
8631 * the assembler we treat operands of this form as not being
8632 * pcrel since the '.' is explicitly mentioned, and I wonder
8633 * whether it would simplify matters to do it this way. Who
8634 * knows. In earlier versions of the PIC patches, the
8635 * pcrel_adjust field was used to store the correction, but
8636 * since the expression is not pcrel, I felt it would be
8637 * confusing to do it this way. */
8638
d6ab8113 8639 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8640 || reloc_type == BFD_RELOC_X86_64_32S
8641 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8642 && GOT_symbol
8643 && GOT_symbol == i.op[n].imms->X_add_symbol
8644 && (i.op[n].imms->X_op == O_symbol
8645 || (i.op[n].imms->X_op == O_add
8646 && ((symbol_get_value_expression
8647 (i.op[n].imms->X_op_symbol)->X_op)
8648 == O_subtract))))
8649 {
2bbd9c25
JJ
8650 offsetT add;
8651
8652 if (insn_start_frag == frag_now)
8653 add = (p - frag_now->fr_literal) - insn_start_off;
8654 else
8655 {
8656 fragS *fr;
8657
8658 add = insn_start_frag->fr_fix - insn_start_off;
8659 for (fr = insn_start_frag->fr_next;
8660 fr && fr != frag_now; fr = fr->fr_next)
8661 add += fr->fr_fix;
8662 add += p - frag_now->fr_literal;
8663 }
8664
4fa24527 8665 if (!object_64bit)
d6ab8113 8666 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8667 else if (size == 4)
d6ab8113 8668 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8669 else if (size == 8)
8670 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8671 i.op[n].imms->X_add_number += add;
29b0f896 8672 }
29b0f896
AM
8673 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8674 i.op[n].imms, 0, reloc_type);
8675 }
8676 }
8677 }
252b5132
RH
8678}
8679\f
d182319b
JB
8680/* x86_cons_fix_new is called via the expression parsing code when a
8681 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8682static int cons_sign = -1;
8683
8684void
e3bb37b5 8685x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8686 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8687{
d258b828 8688 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8689
8690#ifdef TE_PE
8691 if (exp->X_op == O_secrel)
8692 {
8693 exp->X_op = O_symbol;
8694 r = BFD_RELOC_32_SECREL;
8695 }
8696#endif
8697
8698 fix_new_exp (frag, off, len, exp, 0, r);
8699}
8700
357d1bd8
L
8701/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8702 purpose of the `.dc.a' internal pseudo-op. */
8703
8704int
8705x86_address_bytes (void)
8706{
8707 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8708 return 4;
8709 return stdoutput->arch_info->bits_per_address / 8;
8710}
8711
d382c579
TG
8712#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8713 || defined (LEX_AT)
d258b828 8714# define lex_got(reloc, adjust, types) NULL
718ddfc0 8715#else
f3c180ae
AM
8716/* Parse operands of the form
8717 <symbol>@GOTOFF+<nnn>
8718 and similar .plt or .got references.
8719
8720 If we find one, set up the correct relocation in RELOC and copy the
8721 input string, minus the `@GOTOFF' into a malloc'd buffer for
8722 parsing by the calling routine. Return this buffer, and if ADJUST
8723 is non-null set it to the length of the string we removed from the
8724 input line. Otherwise return NULL. */
8725static char *
91d6fa6a 8726lex_got (enum bfd_reloc_code_real *rel,
64e74474 8727 int *adjust,
d258b828 8728 i386_operand_type *types)
f3c180ae 8729{
7b81dfbb
AJ
8730 /* Some of the relocations depend on the size of what field is to
8731 be relocated. But in our callers i386_immediate and i386_displacement
8732 we don't yet know the operand size (this will be set by insn
8733 matching). Hence we record the word32 relocation here,
8734 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8735 static const struct {
8736 const char *str;
cff8d58a 8737 int len;
4fa24527 8738 const enum bfd_reloc_code_real rel[2];
40fb9820 8739 const i386_operand_type types64;
f3c180ae 8740 } gotrel[] = {
8ce3d284 8741#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8742 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8743 BFD_RELOC_SIZE32 },
8744 OPERAND_TYPE_IMM32_64 },
8ce3d284 8745#endif
cff8d58a
L
8746 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8747 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8748 OPERAND_TYPE_IMM64 },
cff8d58a
L
8749 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8750 BFD_RELOC_X86_64_PLT32 },
40fb9820 8751 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8752 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8753 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8754 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8755 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8756 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8757 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8758 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8759 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8760 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8761 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8762 BFD_RELOC_X86_64_TLSGD },
40fb9820 8763 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8764 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8765 _dummy_first_bfd_reloc_code_real },
40fb9820 8766 OPERAND_TYPE_NONE },
cff8d58a
L
8767 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8768 BFD_RELOC_X86_64_TLSLD },
40fb9820 8769 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8770 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8771 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8772 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8773 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8774 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8775 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8776 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8777 _dummy_first_bfd_reloc_code_real },
40fb9820 8778 OPERAND_TYPE_NONE },
cff8d58a
L
8779 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8780 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8781 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8782 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8783 _dummy_first_bfd_reloc_code_real },
40fb9820 8784 OPERAND_TYPE_NONE },
cff8d58a
L
8785 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8786 _dummy_first_bfd_reloc_code_real },
40fb9820 8787 OPERAND_TYPE_NONE },
cff8d58a
L
8788 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8789 BFD_RELOC_X86_64_GOT32 },
40fb9820 8790 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8791 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8792 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8793 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8794 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8795 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8796 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8797 };
8798 char *cp;
8799 unsigned int j;
8800
d382c579 8801#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8802 if (!IS_ELF)
8803 return NULL;
d382c579 8804#endif
718ddfc0 8805
f3c180ae 8806 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8807 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8808 return NULL;
8809
47465058 8810 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8811 {
cff8d58a 8812 int len = gotrel[j].len;
28f81592 8813 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8814 {
4fa24527 8815 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8816 {
28f81592
AM
8817 int first, second;
8818 char *tmpbuf, *past_reloc;
f3c180ae 8819
91d6fa6a 8820 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8821
3956db08
JB
8822 if (types)
8823 {
8824 if (flag_code != CODE_64BIT)
40fb9820
L
8825 {
8826 types->bitfield.imm32 = 1;
8827 types->bitfield.disp32 = 1;
8828 }
3956db08
JB
8829 else
8830 *types = gotrel[j].types64;
8831 }
8832
8fd4256d 8833 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8834 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8835
28f81592 8836 /* The length of the first part of our input line. */
f3c180ae 8837 first = cp - input_line_pointer;
28f81592
AM
8838
8839 /* The second part goes from after the reloc token until
67c11a9b 8840 (and including) an end_of_line char or comma. */
28f81592 8841 past_reloc = cp + 1 + len;
67c11a9b
AM
8842 cp = past_reloc;
8843 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8844 ++cp;
8845 second = cp + 1 - past_reloc;
28f81592
AM
8846
8847 /* Allocate and copy string. The trailing NUL shouldn't
8848 be necessary, but be safe. */
add39d23 8849 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8850 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8851 if (second != 0 && *past_reloc != ' ')
8852 /* Replace the relocation token with ' ', so that
8853 errors like foo@GOTOFF1 will be detected. */
8854 tmpbuf[first++] = ' ';
af89796a
L
8855 else
8856 /* Increment length by 1 if the relocation token is
8857 removed. */
8858 len++;
8859 if (adjust)
8860 *adjust = len;
0787a12d
AM
8861 memcpy (tmpbuf + first, past_reloc, second);
8862 tmpbuf[first + second] = '\0';
f3c180ae
AM
8863 return tmpbuf;
8864 }
8865
4fa24527
JB
8866 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8867 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8868 return NULL;
8869 }
8870 }
8871
8872 /* Might be a symbol version string. Don't as_bad here. */
8873 return NULL;
8874}
4e4f7c87 8875#endif
f3c180ae 8876
a988325c
NC
8877#ifdef TE_PE
8878#ifdef lex_got
8879#undef lex_got
8880#endif
8881/* Parse operands of the form
8882 <symbol>@SECREL32+<nnn>
8883
8884 If we find one, set up the correct relocation in RELOC and copy the
8885 input string, minus the `@SECREL32' into a malloc'd buffer for
8886 parsing by the calling routine. Return this buffer, and if ADJUST
8887 is non-null set it to the length of the string we removed from the
34bca508
L
8888 input line. Otherwise return NULL.
8889
a988325c
NC
8890 This function is copied from the ELF version above adjusted for PE targets. */
8891
8892static char *
8893lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8894 int *adjust ATTRIBUTE_UNUSED,
d258b828 8895 i386_operand_type *types)
a988325c
NC
8896{
8897 static const struct
8898 {
8899 const char *str;
8900 int len;
8901 const enum bfd_reloc_code_real rel[2];
8902 const i386_operand_type types64;
8903 }
8904 gotrel[] =
8905 {
8906 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8907 BFD_RELOC_32_SECREL },
8908 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8909 };
8910
8911 char *cp;
8912 unsigned j;
8913
8914 for (cp = input_line_pointer; *cp != '@'; cp++)
8915 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8916 return NULL;
8917
8918 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8919 {
8920 int len = gotrel[j].len;
8921
8922 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8923 {
8924 if (gotrel[j].rel[object_64bit] != 0)
8925 {
8926 int first, second;
8927 char *tmpbuf, *past_reloc;
8928
8929 *rel = gotrel[j].rel[object_64bit];
8930 if (adjust)
8931 *adjust = len;
8932
8933 if (types)
8934 {
8935 if (flag_code != CODE_64BIT)
8936 {
8937 types->bitfield.imm32 = 1;
8938 types->bitfield.disp32 = 1;
8939 }
8940 else
8941 *types = gotrel[j].types64;
8942 }
8943
8944 /* The length of the first part of our input line. */
8945 first = cp - input_line_pointer;
8946
8947 /* The second part goes from after the reloc token until
8948 (and including) an end_of_line char or comma. */
8949 past_reloc = cp + 1 + len;
8950 cp = past_reloc;
8951 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8952 ++cp;
8953 second = cp + 1 - past_reloc;
8954
8955 /* Allocate and copy string. The trailing NUL shouldn't
8956 be necessary, but be safe. */
add39d23 8957 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8958 memcpy (tmpbuf, input_line_pointer, first);
8959 if (second != 0 && *past_reloc != ' ')
8960 /* Replace the relocation token with ' ', so that
8961 errors like foo@SECLREL321 will be detected. */
8962 tmpbuf[first++] = ' ';
8963 memcpy (tmpbuf + first, past_reloc, second);
8964 tmpbuf[first + second] = '\0';
8965 return tmpbuf;
8966 }
8967
8968 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8969 gotrel[j].str, 1 << (5 + object_64bit));
8970 return NULL;
8971 }
8972 }
8973
8974 /* Might be a symbol version string. Don't as_bad here. */
8975 return NULL;
8976}
8977
8978#endif /* TE_PE */
8979
62ebcb5c 8980bfd_reloc_code_real_type
e3bb37b5 8981x86_cons (expressionS *exp, int size)
f3c180ae 8982{
62ebcb5c
AM
8983 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8984
ee86248c
JB
8985 intel_syntax = -intel_syntax;
8986
3c7b9c2c 8987 exp->X_md = 0;
4fa24527 8988 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8989 {
8990 /* Handle @GOTOFF and the like in an expression. */
8991 char *save;
8992 char *gotfree_input_line;
4a57f2cf 8993 int adjust = 0;
f3c180ae
AM
8994
8995 save = input_line_pointer;
d258b828 8996 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8997 if (gotfree_input_line)
8998 input_line_pointer = gotfree_input_line;
8999
9000 expression (exp);
9001
9002 if (gotfree_input_line)
9003 {
9004 /* expression () has merrily parsed up to the end of line,
9005 or a comma - in the wrong buffer. Transfer how far
9006 input_line_pointer has moved to the right buffer. */
9007 input_line_pointer = (save
9008 + (input_line_pointer - gotfree_input_line)
9009 + adjust);
9010 free (gotfree_input_line);
3992d3b7
AM
9011 if (exp->X_op == O_constant
9012 || exp->X_op == O_absent
9013 || exp->X_op == O_illegal
0398aac5 9014 || exp->X_op == O_register
3992d3b7
AM
9015 || exp->X_op == O_big)
9016 {
9017 char c = *input_line_pointer;
9018 *input_line_pointer = 0;
9019 as_bad (_("missing or invalid expression `%s'"), save);
9020 *input_line_pointer = c;
9021 }
b9519cfe
L
9022 else if ((got_reloc == BFD_RELOC_386_PLT32
9023 || got_reloc == BFD_RELOC_X86_64_PLT32)
9024 && exp->X_op != O_symbol)
9025 {
9026 char c = *input_line_pointer;
9027 *input_line_pointer = 0;
9028 as_bad (_("invalid PLT expression `%s'"), save);
9029 *input_line_pointer = c;
9030 }
f3c180ae
AM
9031 }
9032 }
9033 else
9034 expression (exp);
ee86248c
JB
9035
9036 intel_syntax = -intel_syntax;
9037
9038 if (intel_syntax)
9039 i386_intel_simplify (exp);
62ebcb5c
AM
9040
9041 return got_reloc;
f3c180ae 9042}
f3c180ae 9043
9f32dd5b
L
9044static void
9045signed_cons (int size)
6482c264 9046{
d182319b
JB
9047 if (flag_code == CODE_64BIT)
9048 cons_sign = 1;
9049 cons (size);
9050 cons_sign = -1;
6482c264
NC
9051}
9052
d182319b 9053#ifdef TE_PE
6482c264 9054static void
7016a5d5 9055pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9056{
9057 expressionS exp;
9058
9059 do
9060 {
9061 expression (&exp);
9062 if (exp.X_op == O_symbol)
9063 exp.X_op = O_secrel;
9064
9065 emit_expr (&exp, 4);
9066 }
9067 while (*input_line_pointer++ == ',');
9068
9069 input_line_pointer--;
9070 demand_empty_rest_of_line ();
9071}
6482c264
NC
9072#endif
9073
43234a1e
L
9074/* Handle Vector operations. */
9075
9076static char *
9077check_VecOperations (char *op_string, char *op_end)
9078{
9079 const reg_entry *mask;
9080 const char *saved;
9081 char *end_op;
9082
9083 while (*op_string
9084 && (op_end == NULL || op_string < op_end))
9085 {
9086 saved = op_string;
9087 if (*op_string == '{')
9088 {
9089 op_string++;
9090
9091 /* Check broadcasts. */
9092 if (strncmp (op_string, "1to", 3) == 0)
9093 {
9094 int bcst_type;
9095
9096 if (i.broadcast)
9097 goto duplicated_vec_op;
9098
9099 op_string += 3;
9100 if (*op_string == '8')
8e6e0792 9101 bcst_type = 8;
b28d1bda 9102 else if (*op_string == '4')
8e6e0792 9103 bcst_type = 4;
b28d1bda 9104 else if (*op_string == '2')
8e6e0792 9105 bcst_type = 2;
43234a1e
L
9106 else if (*op_string == '1'
9107 && *(op_string+1) == '6')
9108 {
8e6e0792 9109 bcst_type = 16;
43234a1e
L
9110 op_string++;
9111 }
9112 else
9113 {
9114 as_bad (_("Unsupported broadcast: `%s'"), saved);
9115 return NULL;
9116 }
9117 op_string++;
9118
9119 broadcast_op.type = bcst_type;
9120 broadcast_op.operand = this_operand;
1f75763a 9121 broadcast_op.bytes = 0;
43234a1e
L
9122 i.broadcast = &broadcast_op;
9123 }
9124 /* Check masking operation. */
9125 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9126 {
9127 /* k0 can't be used for write mask. */
6d2cd6b2 9128 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9129 {
6d2cd6b2
JB
9130 as_bad (_("`%s%s' can't be used for write mask"),
9131 register_prefix, mask->reg_name);
43234a1e
L
9132 return NULL;
9133 }
9134
9135 if (!i.mask)
9136 {
9137 mask_op.mask = mask;
9138 mask_op.zeroing = 0;
9139 mask_op.operand = this_operand;
9140 i.mask = &mask_op;
9141 }
9142 else
9143 {
9144 if (i.mask->mask)
9145 goto duplicated_vec_op;
9146
9147 i.mask->mask = mask;
9148
9149 /* Only "{z}" is allowed here. No need to check
9150 zeroing mask explicitly. */
9151 if (i.mask->operand != this_operand)
9152 {
9153 as_bad (_("invalid write mask `%s'"), saved);
9154 return NULL;
9155 }
9156 }
9157
9158 op_string = end_op;
9159 }
9160 /* Check zeroing-flag for masking operation. */
9161 else if (*op_string == 'z')
9162 {
9163 if (!i.mask)
9164 {
9165 mask_op.mask = NULL;
9166 mask_op.zeroing = 1;
9167 mask_op.operand = this_operand;
9168 i.mask = &mask_op;
9169 }
9170 else
9171 {
9172 if (i.mask->zeroing)
9173 {
9174 duplicated_vec_op:
9175 as_bad (_("duplicated `%s'"), saved);
9176 return NULL;
9177 }
9178
9179 i.mask->zeroing = 1;
9180
9181 /* Only "{%k}" is allowed here. No need to check mask
9182 register explicitly. */
9183 if (i.mask->operand != this_operand)
9184 {
9185 as_bad (_("invalid zeroing-masking `%s'"),
9186 saved);
9187 return NULL;
9188 }
9189 }
9190
9191 op_string++;
9192 }
9193 else
9194 goto unknown_vec_op;
9195
9196 if (*op_string != '}')
9197 {
9198 as_bad (_("missing `}' in `%s'"), saved);
9199 return NULL;
9200 }
9201 op_string++;
0ba3a731
L
9202
9203 /* Strip whitespace since the addition of pseudo prefixes
9204 changed how the scrubber treats '{'. */
9205 if (is_space_char (*op_string))
9206 ++op_string;
9207
43234a1e
L
9208 continue;
9209 }
9210 unknown_vec_op:
9211 /* We don't know this one. */
9212 as_bad (_("unknown vector operation: `%s'"), saved);
9213 return NULL;
9214 }
9215
6d2cd6b2
JB
9216 if (i.mask && i.mask->zeroing && !i.mask->mask)
9217 {
9218 as_bad (_("zeroing-masking only allowed with write mask"));
9219 return NULL;
9220 }
9221
43234a1e
L
9222 return op_string;
9223}
9224
252b5132 9225static int
70e41ade 9226i386_immediate (char *imm_start)
252b5132
RH
9227{
9228 char *save_input_line_pointer;
f3c180ae 9229 char *gotfree_input_line;
252b5132 9230 segT exp_seg = 0;
47926f60 9231 expressionS *exp;
40fb9820
L
9232 i386_operand_type types;
9233
0dfbf9d7 9234 operand_type_set (&types, ~0);
252b5132
RH
9235
9236 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9237 {
31b2323c
L
9238 as_bad (_("at most %d immediate operands are allowed"),
9239 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9240 return 0;
9241 }
9242
9243 exp = &im_expressions[i.imm_operands++];
520dc8e8 9244 i.op[this_operand].imms = exp;
252b5132
RH
9245
9246 if (is_space_char (*imm_start))
9247 ++imm_start;
9248
9249 save_input_line_pointer = input_line_pointer;
9250 input_line_pointer = imm_start;
9251
d258b828 9252 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9253 if (gotfree_input_line)
9254 input_line_pointer = gotfree_input_line;
252b5132
RH
9255
9256 exp_seg = expression (exp);
9257
83183c0c 9258 SKIP_WHITESPACE ();
43234a1e
L
9259
9260 /* Handle vector operations. */
9261 if (*input_line_pointer == '{')
9262 {
9263 input_line_pointer = check_VecOperations (input_line_pointer,
9264 NULL);
9265 if (input_line_pointer == NULL)
9266 return 0;
9267 }
9268
252b5132 9269 if (*input_line_pointer)
f3c180ae 9270 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9271
9272 input_line_pointer = save_input_line_pointer;
f3c180ae 9273 if (gotfree_input_line)
ee86248c
JB
9274 {
9275 free (gotfree_input_line);
9276
9277 if (exp->X_op == O_constant || exp->X_op == O_register)
9278 exp->X_op = O_illegal;
9279 }
9280
9281 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9282}
252b5132 9283
ee86248c
JB
9284static int
9285i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9286 i386_operand_type types, const char *imm_start)
9287{
9288 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9289 {
313c53d1
L
9290 if (imm_start)
9291 as_bad (_("missing or invalid immediate expression `%s'"),
9292 imm_start);
3992d3b7 9293 return 0;
252b5132 9294 }
3e73aa7c 9295 else if (exp->X_op == O_constant)
252b5132 9296 {
47926f60 9297 /* Size it properly later. */
40fb9820 9298 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9299 /* If not 64bit, sign extend val. */
9300 if (flag_code != CODE_64BIT
4eed87de
AM
9301 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9302 exp->X_add_number
9303 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9304 }
4c63da97 9305#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9306 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9307 && exp_seg != absolute_section
47926f60 9308 && exp_seg != text_section
24eab124
AM
9309 && exp_seg != data_section
9310 && exp_seg != bss_section
9311 && exp_seg != undefined_section
f86103b7 9312 && !bfd_is_com_section (exp_seg))
252b5132 9313 {
d0b47220 9314 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9315 return 0;
9316 }
9317#endif
a841bdf5 9318 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9319 {
313c53d1
L
9320 if (imm_start)
9321 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9322 return 0;
9323 }
252b5132
RH
9324 else
9325 {
9326 /* This is an address. The size of the address will be
24eab124 9327 determined later, depending on destination register,
3e73aa7c 9328 suffix, or the default for the section. */
40fb9820
L
9329 i.types[this_operand].bitfield.imm8 = 1;
9330 i.types[this_operand].bitfield.imm16 = 1;
9331 i.types[this_operand].bitfield.imm32 = 1;
9332 i.types[this_operand].bitfield.imm32s = 1;
9333 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9334 i.types[this_operand] = operand_type_and (i.types[this_operand],
9335 types);
252b5132
RH
9336 }
9337
9338 return 1;
9339}
9340
551c1ca1 9341static char *
e3bb37b5 9342i386_scale (char *scale)
252b5132 9343{
551c1ca1
AM
9344 offsetT val;
9345 char *save = input_line_pointer;
252b5132 9346
551c1ca1
AM
9347 input_line_pointer = scale;
9348 val = get_absolute_expression ();
9349
9350 switch (val)
252b5132 9351 {
551c1ca1 9352 case 1:
252b5132
RH
9353 i.log2_scale_factor = 0;
9354 break;
551c1ca1 9355 case 2:
252b5132
RH
9356 i.log2_scale_factor = 1;
9357 break;
551c1ca1 9358 case 4:
252b5132
RH
9359 i.log2_scale_factor = 2;
9360 break;
551c1ca1 9361 case 8:
252b5132
RH
9362 i.log2_scale_factor = 3;
9363 break;
9364 default:
a724f0f4
JB
9365 {
9366 char sep = *input_line_pointer;
9367
9368 *input_line_pointer = '\0';
9369 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9370 scale);
9371 *input_line_pointer = sep;
9372 input_line_pointer = save;
9373 return NULL;
9374 }
252b5132 9375 }
29b0f896 9376 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9377 {
9378 as_warn (_("scale factor of %d without an index register"),
24eab124 9379 1 << i.log2_scale_factor);
252b5132 9380 i.log2_scale_factor = 0;
252b5132 9381 }
551c1ca1
AM
9382 scale = input_line_pointer;
9383 input_line_pointer = save;
9384 return scale;
252b5132
RH
9385}
9386
252b5132 9387static int
e3bb37b5 9388i386_displacement (char *disp_start, char *disp_end)
252b5132 9389{
29b0f896 9390 expressionS *exp;
252b5132
RH
9391 segT exp_seg = 0;
9392 char *save_input_line_pointer;
f3c180ae 9393 char *gotfree_input_line;
40fb9820
L
9394 int override;
9395 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9396 int ret;
252b5132 9397
31b2323c
L
9398 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9399 {
9400 as_bad (_("at most %d displacement operands are allowed"),
9401 MAX_MEMORY_OPERANDS);
9402 return 0;
9403 }
9404
0dfbf9d7 9405 operand_type_set (&bigdisp, 0);
40fb9820
L
9406 if ((i.types[this_operand].bitfield.jumpabsolute)
9407 || (!current_templates->start->opcode_modifier.jump
9408 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9409 {
40fb9820 9410 bigdisp.bitfield.disp32 = 1;
e05278af 9411 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9412 if (flag_code == CODE_64BIT)
9413 {
9414 if (!override)
9415 {
9416 bigdisp.bitfield.disp32s = 1;
9417 bigdisp.bitfield.disp64 = 1;
9418 }
9419 }
9420 else if ((flag_code == CODE_16BIT) ^ override)
9421 {
9422 bigdisp.bitfield.disp32 = 0;
9423 bigdisp.bitfield.disp16 = 1;
9424 }
e05278af
JB
9425 }
9426 else
9427 {
9428 /* For PC-relative branches, the width of the displacement
9429 is dependent upon data size, not address size. */
e05278af 9430 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9431 if (flag_code == CODE_64BIT)
9432 {
9433 if (override || i.suffix == WORD_MNEM_SUFFIX)
9434 bigdisp.bitfield.disp16 = 1;
9435 else
9436 {
9437 bigdisp.bitfield.disp32 = 1;
9438 bigdisp.bitfield.disp32s = 1;
9439 }
9440 }
9441 else
e05278af
JB
9442 {
9443 if (!override)
9444 override = (i.suffix == (flag_code != CODE_16BIT
9445 ? WORD_MNEM_SUFFIX
9446 : LONG_MNEM_SUFFIX));
40fb9820
L
9447 bigdisp.bitfield.disp32 = 1;
9448 if ((flag_code == CODE_16BIT) ^ override)
9449 {
9450 bigdisp.bitfield.disp32 = 0;
9451 bigdisp.bitfield.disp16 = 1;
9452 }
e05278af 9453 }
e05278af 9454 }
c6fb90c8
L
9455 i.types[this_operand] = operand_type_or (i.types[this_operand],
9456 bigdisp);
252b5132
RH
9457
9458 exp = &disp_expressions[i.disp_operands];
520dc8e8 9459 i.op[this_operand].disps = exp;
252b5132
RH
9460 i.disp_operands++;
9461 save_input_line_pointer = input_line_pointer;
9462 input_line_pointer = disp_start;
9463 END_STRING_AND_SAVE (disp_end);
9464
9465#ifndef GCC_ASM_O_HACK
9466#define GCC_ASM_O_HACK 0
9467#endif
9468#if GCC_ASM_O_HACK
9469 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9470 if (i.types[this_operand].bitfield.baseIndex
24eab124 9471 && displacement_string_end[-1] == '+')
252b5132
RH
9472 {
9473 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9474 constraint within gcc asm statements.
9475 For instance:
9476
9477 #define _set_tssldt_desc(n,addr,limit,type) \
9478 __asm__ __volatile__ ( \
9479 "movw %w2,%0\n\t" \
9480 "movw %w1,2+%0\n\t" \
9481 "rorl $16,%1\n\t" \
9482 "movb %b1,4+%0\n\t" \
9483 "movb %4,5+%0\n\t" \
9484 "movb $0,6+%0\n\t" \
9485 "movb %h1,7+%0\n\t" \
9486 "rorl $16,%1" \
9487 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9488
9489 This works great except that the output assembler ends
9490 up looking a bit weird if it turns out that there is
9491 no offset. You end up producing code that looks like:
9492
9493 #APP
9494 movw $235,(%eax)
9495 movw %dx,2+(%eax)
9496 rorl $16,%edx
9497 movb %dl,4+(%eax)
9498 movb $137,5+(%eax)
9499 movb $0,6+(%eax)
9500 movb %dh,7+(%eax)
9501 rorl $16,%edx
9502 #NO_APP
9503
47926f60 9504 So here we provide the missing zero. */
24eab124
AM
9505
9506 *displacement_string_end = '0';
252b5132
RH
9507 }
9508#endif
d258b828 9509 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9510 if (gotfree_input_line)
9511 input_line_pointer = gotfree_input_line;
252b5132 9512
24eab124 9513 exp_seg = expression (exp);
252b5132 9514
636c26b0
AM
9515 SKIP_WHITESPACE ();
9516 if (*input_line_pointer)
9517 as_bad (_("junk `%s' after expression"), input_line_pointer);
9518#if GCC_ASM_O_HACK
9519 RESTORE_END_STRING (disp_end + 1);
9520#endif
636c26b0 9521 input_line_pointer = save_input_line_pointer;
636c26b0 9522 if (gotfree_input_line)
ee86248c
JB
9523 {
9524 free (gotfree_input_line);
9525
9526 if (exp->X_op == O_constant || exp->X_op == O_register)
9527 exp->X_op = O_illegal;
9528 }
9529
9530 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9531
9532 RESTORE_END_STRING (disp_end);
9533
9534 return ret;
9535}
9536
9537static int
9538i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9539 i386_operand_type types, const char *disp_start)
9540{
9541 i386_operand_type bigdisp;
9542 int ret = 1;
636c26b0 9543
24eab124
AM
9544 /* We do this to make sure that the section symbol is in
9545 the symbol table. We will ultimately change the relocation
47926f60 9546 to be relative to the beginning of the section. */
1ae12ab7 9547 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9548 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9549 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9550 {
636c26b0 9551 if (exp->X_op != O_symbol)
3992d3b7 9552 goto inv_disp;
636c26b0 9553
e5cb08ac 9554 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9555 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9556 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9557 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9558 exp->X_op = O_subtract;
9559 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9560 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9561 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9562 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9563 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9564 else
29b0f896 9565 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9566 }
252b5132 9567
3992d3b7
AM
9568 else if (exp->X_op == O_absent
9569 || exp->X_op == O_illegal
ee86248c 9570 || exp->X_op == O_big)
2daf4fd8 9571 {
3992d3b7
AM
9572 inv_disp:
9573 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9574 disp_start);
3992d3b7 9575 ret = 0;
2daf4fd8
AM
9576 }
9577
0e1147d9
L
9578 else if (flag_code == CODE_64BIT
9579 && !i.prefix[ADDR_PREFIX]
9580 && exp->X_op == O_constant)
9581 {
9582 /* Since displacement is signed extended to 64bit, don't allow
9583 disp32 and turn off disp32s if they are out of range. */
9584 i.types[this_operand].bitfield.disp32 = 0;
9585 if (!fits_in_signed_long (exp->X_add_number))
9586 {
9587 i.types[this_operand].bitfield.disp32s = 0;
9588 if (i.types[this_operand].bitfield.baseindex)
9589 {
9590 as_bad (_("0x%lx out range of signed 32bit displacement"),
9591 (long) exp->X_add_number);
9592 ret = 0;
9593 }
9594 }
9595 }
9596
4c63da97 9597#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9598 else if (exp->X_op != O_constant
9599 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9600 && exp_seg != absolute_section
9601 && exp_seg != text_section
9602 && exp_seg != data_section
9603 && exp_seg != bss_section
9604 && exp_seg != undefined_section
9605 && !bfd_is_com_section (exp_seg))
24eab124 9606 {
d0b47220 9607 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9608 ret = 0;
24eab124 9609 }
252b5132 9610#endif
3956db08 9611
40fb9820
L
9612 /* Check if this is a displacement only operand. */
9613 bigdisp = i.types[this_operand];
9614 bigdisp.bitfield.disp8 = 0;
9615 bigdisp.bitfield.disp16 = 0;
9616 bigdisp.bitfield.disp32 = 0;
9617 bigdisp.bitfield.disp32s = 0;
9618 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9619 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9620 i.types[this_operand] = operand_type_and (i.types[this_operand],
9621 types);
3956db08 9622
3992d3b7 9623 return ret;
252b5132
RH
9624}
9625
2abc2bec
JB
9626/* Return the active addressing mode, taking address override and
9627 registers forming the address into consideration. Update the
9628 address override prefix if necessary. */
47926f60 9629
2abc2bec
JB
9630static enum flag_code
9631i386_addressing_mode (void)
252b5132 9632{
be05d201
L
9633 enum flag_code addr_mode;
9634
9635 if (i.prefix[ADDR_PREFIX])
9636 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9637 else
9638 {
9639 addr_mode = flag_code;
9640
24eab124 9641#if INFER_ADDR_PREFIX
be05d201
L
9642 if (i.mem_operands == 0)
9643 {
9644 /* Infer address prefix from the first memory operand. */
9645 const reg_entry *addr_reg = i.base_reg;
9646
9647 if (addr_reg == NULL)
9648 addr_reg = i.index_reg;
eecb386c 9649
be05d201
L
9650 if (addr_reg)
9651 {
e968fc9b 9652 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9653 addr_mode = CODE_32BIT;
9654 else if (flag_code != CODE_64BIT
dc821c5f 9655 && addr_reg->reg_type.bitfield.word)
be05d201
L
9656 addr_mode = CODE_16BIT;
9657
9658 if (addr_mode != flag_code)
9659 {
9660 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9661 i.prefixes += 1;
9662 /* Change the size of any displacement too. At most one
9663 of Disp16 or Disp32 is set.
9664 FIXME. There doesn't seem to be any real need for
9665 separate Disp16 and Disp32 flags. The same goes for
9666 Imm16 and Imm32. Removing them would probably clean
9667 up the code quite a lot. */
9668 if (flag_code != CODE_64BIT
9669 && (i.types[this_operand].bitfield.disp16
9670 || i.types[this_operand].bitfield.disp32))
9671 i.types[this_operand]
9672 = operand_type_xor (i.types[this_operand], disp16_32);
9673 }
9674 }
9675 }
24eab124 9676#endif
be05d201
L
9677 }
9678
2abc2bec
JB
9679 return addr_mode;
9680}
9681
9682/* Make sure the memory operand we've been dealt is valid.
9683 Return 1 on success, 0 on a failure. */
9684
9685static int
9686i386_index_check (const char *operand_string)
9687{
9688 const char *kind = "base/index";
9689 enum flag_code addr_mode = i386_addressing_mode ();
9690
fc0763e6
JB
9691 if (current_templates->start->opcode_modifier.isstring
9692 && !current_templates->start->opcode_modifier.immext
9693 && (current_templates->end[-1].opcode_modifier.isstring
9694 || i.mem_operands))
9695 {
9696 /* Memory operands of string insns are special in that they only allow
9697 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9698 const reg_entry *expected_reg;
9699 static const char *di_si[][2] =
9700 {
9701 { "esi", "edi" },
9702 { "si", "di" },
9703 { "rsi", "rdi" }
9704 };
9705 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9706
9707 kind = "string address";
9708
8325cc63 9709 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9710 {
9711 i386_operand_type type = current_templates->end[-1].operand_types[0];
9712
9713 if (!type.bitfield.baseindex
9714 || ((!i.mem_operands != !intel_syntax)
9715 && current_templates->end[-1].operand_types[1]
9716 .bitfield.baseindex))
9717 type = current_templates->end[-1].operand_types[1];
be05d201
L
9718 expected_reg = hash_find (reg_hash,
9719 di_si[addr_mode][type.bitfield.esseg]);
9720
fc0763e6
JB
9721 }
9722 else
be05d201 9723 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9724
be05d201
L
9725 if (i.base_reg != expected_reg
9726 || i.index_reg
fc0763e6 9727 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9728 {
be05d201
L
9729 /* The second memory operand must have the same size as
9730 the first one. */
9731 if (i.mem_operands
9732 && i.base_reg
9733 && !((addr_mode == CODE_64BIT
dc821c5f 9734 && i.base_reg->reg_type.bitfield.qword)
be05d201 9735 || (addr_mode == CODE_32BIT
dc821c5f
JB
9736 ? i.base_reg->reg_type.bitfield.dword
9737 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9738 goto bad_address;
9739
fc0763e6
JB
9740 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9741 operand_string,
9742 intel_syntax ? '[' : '(',
9743 register_prefix,
be05d201 9744 expected_reg->reg_name,
fc0763e6 9745 intel_syntax ? ']' : ')');
be05d201 9746 return 1;
fc0763e6 9747 }
be05d201
L
9748 else
9749 return 1;
9750
9751bad_address:
9752 as_bad (_("`%s' is not a valid %s expression"),
9753 operand_string, kind);
9754 return 0;
3e73aa7c
JH
9755 }
9756 else
9757 {
be05d201
L
9758 if (addr_mode != CODE_16BIT)
9759 {
9760 /* 32-bit/64-bit checks. */
9761 if ((i.base_reg
e968fc9b
JB
9762 && ((addr_mode == CODE_64BIT
9763 ? !i.base_reg->reg_type.bitfield.qword
9764 : !i.base_reg->reg_type.bitfield.dword)
9765 || (i.index_reg && i.base_reg->reg_num == RegIP)
9766 || i.base_reg->reg_num == RegIZ))
be05d201 9767 || (i.index_reg
1b54b8d7
JB
9768 && !i.index_reg->reg_type.bitfield.xmmword
9769 && !i.index_reg->reg_type.bitfield.ymmword
9770 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9771 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9772 ? !i.index_reg->reg_type.bitfield.qword
9773 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9774 || !i.index_reg->reg_type.bitfield.baseindex)))
9775 goto bad_address;
8178be5b
JB
9776
9777 /* bndmk, bndldx, and bndstx have special restrictions. */
9778 if (current_templates->start->base_opcode == 0xf30f1b
9779 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9780 {
9781 /* They cannot use RIP-relative addressing. */
e968fc9b 9782 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9783 {
9784 as_bad (_("`%s' cannot be used here"), operand_string);
9785 return 0;
9786 }
9787
9788 /* bndldx and bndstx ignore their scale factor. */
9789 if (current_templates->start->base_opcode != 0xf30f1b
9790 && i.log2_scale_factor)
9791 as_warn (_("register scaling is being ignored here"));
9792 }
be05d201
L
9793 }
9794 else
3e73aa7c 9795 {
be05d201 9796 /* 16-bit checks. */
3e73aa7c 9797 if ((i.base_reg
dc821c5f 9798 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9799 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9800 || (i.index_reg
dc821c5f 9801 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9802 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9803 || !(i.base_reg
9804 && i.base_reg->reg_num < 6
9805 && i.index_reg->reg_num >= 6
9806 && i.log2_scale_factor == 0))))
be05d201 9807 goto bad_address;
3e73aa7c
JH
9808 }
9809 }
be05d201 9810 return 1;
24eab124 9811}
252b5132 9812
43234a1e
L
9813/* Handle vector immediates. */
9814
9815static int
9816RC_SAE_immediate (const char *imm_start)
9817{
9818 unsigned int match_found, j;
9819 const char *pstr = imm_start;
9820 expressionS *exp;
9821
9822 if (*pstr != '{')
9823 return 0;
9824
9825 pstr++;
9826 match_found = 0;
9827 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9828 {
9829 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9830 {
9831 if (!i.rounding)
9832 {
9833 rc_op.type = RC_NamesTable[j].type;
9834 rc_op.operand = this_operand;
9835 i.rounding = &rc_op;
9836 }
9837 else
9838 {
9839 as_bad (_("duplicated `%s'"), imm_start);
9840 return 0;
9841 }
9842 pstr += RC_NamesTable[j].len;
9843 match_found = 1;
9844 break;
9845 }
9846 }
9847 if (!match_found)
9848 return 0;
9849
9850 if (*pstr++ != '}')
9851 {
9852 as_bad (_("Missing '}': '%s'"), imm_start);
9853 return 0;
9854 }
9855 /* RC/SAE immediate string should contain nothing more. */;
9856 if (*pstr != 0)
9857 {
9858 as_bad (_("Junk after '}': '%s'"), imm_start);
9859 return 0;
9860 }
9861
9862 exp = &im_expressions[i.imm_operands++];
9863 i.op[this_operand].imms = exp;
9864
9865 exp->X_op = O_constant;
9866 exp->X_add_number = 0;
9867 exp->X_add_symbol = (symbolS *) 0;
9868 exp->X_op_symbol = (symbolS *) 0;
9869
9870 i.types[this_operand].bitfield.imm8 = 1;
9871 return 1;
9872}
9873
8325cc63
JB
9874/* Only string instructions can have a second memory operand, so
9875 reduce current_templates to just those if it contains any. */
9876static int
9877maybe_adjust_templates (void)
9878{
9879 const insn_template *t;
9880
9881 gas_assert (i.mem_operands == 1);
9882
9883 for (t = current_templates->start; t < current_templates->end; ++t)
9884 if (t->opcode_modifier.isstring)
9885 break;
9886
9887 if (t < current_templates->end)
9888 {
9889 static templates aux_templates;
9890 bfd_boolean recheck;
9891
9892 aux_templates.start = t;
9893 for (; t < current_templates->end; ++t)
9894 if (!t->opcode_modifier.isstring)
9895 break;
9896 aux_templates.end = t;
9897
9898 /* Determine whether to re-check the first memory operand. */
9899 recheck = (aux_templates.start != current_templates->start
9900 || t != current_templates->end);
9901
9902 current_templates = &aux_templates;
9903
9904 if (recheck)
9905 {
9906 i.mem_operands = 0;
9907 if (i.memop1_string != NULL
9908 && i386_index_check (i.memop1_string) == 0)
9909 return 0;
9910 i.mem_operands = 1;
9911 }
9912 }
9913
9914 return 1;
9915}
9916
fc0763e6 9917/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9918 on error. */
252b5132 9919
252b5132 9920static int
a7619375 9921i386_att_operand (char *operand_string)
252b5132 9922{
af6bdddf
AM
9923 const reg_entry *r;
9924 char *end_op;
24eab124 9925 char *op_string = operand_string;
252b5132 9926
24eab124 9927 if (is_space_char (*op_string))
252b5132
RH
9928 ++op_string;
9929
24eab124 9930 /* We check for an absolute prefix (differentiating,
47926f60 9931 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9932 if (*op_string == ABSOLUTE_PREFIX)
9933 {
9934 ++op_string;
9935 if (is_space_char (*op_string))
9936 ++op_string;
40fb9820 9937 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9938 }
252b5132 9939
47926f60 9940 /* Check if operand is a register. */
4d1bb795 9941 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9942 {
40fb9820
L
9943 i386_operand_type temp;
9944
24eab124
AM
9945 /* Check for a segment override by searching for ':' after a
9946 segment register. */
9947 op_string = end_op;
9948 if (is_space_char (*op_string))
9949 ++op_string;
40fb9820
L
9950 if (*op_string == ':'
9951 && (r->reg_type.bitfield.sreg2
9952 || r->reg_type.bitfield.sreg3))
24eab124
AM
9953 {
9954 switch (r->reg_num)
9955 {
9956 case 0:
9957 i.seg[i.mem_operands] = &es;
9958 break;
9959 case 1:
9960 i.seg[i.mem_operands] = &cs;
9961 break;
9962 case 2:
9963 i.seg[i.mem_operands] = &ss;
9964 break;
9965 case 3:
9966 i.seg[i.mem_operands] = &ds;
9967 break;
9968 case 4:
9969 i.seg[i.mem_operands] = &fs;
9970 break;
9971 case 5:
9972 i.seg[i.mem_operands] = &gs;
9973 break;
9974 }
252b5132 9975
24eab124 9976 /* Skip the ':' and whitespace. */
252b5132
RH
9977 ++op_string;
9978 if (is_space_char (*op_string))
24eab124 9979 ++op_string;
252b5132 9980
24eab124
AM
9981 if (!is_digit_char (*op_string)
9982 && !is_identifier_char (*op_string)
9983 && *op_string != '('
9984 && *op_string != ABSOLUTE_PREFIX)
9985 {
9986 as_bad (_("bad memory operand `%s'"), op_string);
9987 return 0;
9988 }
47926f60 9989 /* Handle case of %es:*foo. */
24eab124
AM
9990 if (*op_string == ABSOLUTE_PREFIX)
9991 {
9992 ++op_string;
9993 if (is_space_char (*op_string))
9994 ++op_string;
40fb9820 9995 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9996 }
9997 goto do_memory_reference;
9998 }
43234a1e
L
9999
10000 /* Handle vector operations. */
10001 if (*op_string == '{')
10002 {
10003 op_string = check_VecOperations (op_string, NULL);
10004 if (op_string == NULL)
10005 return 0;
10006 }
10007
24eab124
AM
10008 if (*op_string)
10009 {
d0b47220 10010 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10011 return 0;
10012 }
40fb9820
L
10013 temp = r->reg_type;
10014 temp.bitfield.baseindex = 0;
c6fb90c8
L
10015 i.types[this_operand] = operand_type_or (i.types[this_operand],
10016 temp);
7d5e4556 10017 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10018 i.op[this_operand].regs = r;
24eab124
AM
10019 i.reg_operands++;
10020 }
af6bdddf
AM
10021 else if (*op_string == REGISTER_PREFIX)
10022 {
10023 as_bad (_("bad register name `%s'"), op_string);
10024 return 0;
10025 }
24eab124 10026 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10027 {
24eab124 10028 ++op_string;
40fb9820 10029 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10030 {
d0b47220 10031 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10032 return 0;
10033 }
10034 if (!i386_immediate (op_string))
10035 return 0;
10036 }
43234a1e
L
10037 else if (RC_SAE_immediate (operand_string))
10038 {
10039 /* If it is a RC or SAE immediate, do nothing. */
10040 ;
10041 }
24eab124
AM
10042 else if (is_digit_char (*op_string)
10043 || is_identifier_char (*op_string)
d02603dc 10044 || *op_string == '"'
e5cb08ac 10045 || *op_string == '(')
24eab124 10046 {
47926f60 10047 /* This is a memory reference of some sort. */
af6bdddf 10048 char *base_string;
252b5132 10049
47926f60 10050 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10051 char *displacement_string_start;
10052 char *displacement_string_end;
43234a1e 10053 char *vop_start;
252b5132 10054
24eab124 10055 do_memory_reference:
8325cc63
JB
10056 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10057 return 0;
24eab124 10058 if ((i.mem_operands == 1
40fb9820 10059 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10060 || i.mem_operands == 2)
10061 {
10062 as_bad (_("too many memory references for `%s'"),
10063 current_templates->start->name);
10064 return 0;
10065 }
252b5132 10066
24eab124
AM
10067 /* Check for base index form. We detect the base index form by
10068 looking for an ')' at the end of the operand, searching
10069 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10070 after the '('. */
af6bdddf 10071 base_string = op_string + strlen (op_string);
c3332e24 10072
43234a1e
L
10073 /* Handle vector operations. */
10074 vop_start = strchr (op_string, '{');
10075 if (vop_start && vop_start < base_string)
10076 {
10077 if (check_VecOperations (vop_start, base_string) == NULL)
10078 return 0;
10079 base_string = vop_start;
10080 }
10081
af6bdddf
AM
10082 --base_string;
10083 if (is_space_char (*base_string))
10084 --base_string;
252b5132 10085
47926f60 10086 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10087 displacement_string_start = op_string;
10088 displacement_string_end = base_string + 1;
252b5132 10089
24eab124
AM
10090 if (*base_string == ')')
10091 {
af6bdddf 10092 char *temp_string;
24eab124
AM
10093 unsigned int parens_balanced = 1;
10094 /* We've already checked that the number of left & right ()'s are
47926f60 10095 equal, so this loop will not be infinite. */
24eab124
AM
10096 do
10097 {
10098 base_string--;
10099 if (*base_string == ')')
10100 parens_balanced++;
10101 if (*base_string == '(')
10102 parens_balanced--;
10103 }
10104 while (parens_balanced);
c3332e24 10105
af6bdddf 10106 temp_string = base_string;
c3332e24 10107
24eab124 10108 /* Skip past '(' and whitespace. */
252b5132
RH
10109 ++base_string;
10110 if (is_space_char (*base_string))
24eab124 10111 ++base_string;
252b5132 10112
af6bdddf 10113 if (*base_string == ','
4eed87de
AM
10114 || ((i.base_reg = parse_register (base_string, &end_op))
10115 != NULL))
252b5132 10116 {
af6bdddf 10117 displacement_string_end = temp_string;
252b5132 10118
40fb9820 10119 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10120
af6bdddf 10121 if (i.base_reg)
24eab124 10122 {
24eab124
AM
10123 base_string = end_op;
10124 if (is_space_char (*base_string))
10125 ++base_string;
af6bdddf
AM
10126 }
10127
10128 /* There may be an index reg or scale factor here. */
10129 if (*base_string == ',')
10130 {
10131 ++base_string;
10132 if (is_space_char (*base_string))
10133 ++base_string;
10134
4eed87de
AM
10135 if ((i.index_reg = parse_register (base_string, &end_op))
10136 != NULL)
24eab124 10137 {
af6bdddf 10138 base_string = end_op;
24eab124
AM
10139 if (is_space_char (*base_string))
10140 ++base_string;
af6bdddf
AM
10141 if (*base_string == ',')
10142 {
10143 ++base_string;
10144 if (is_space_char (*base_string))
10145 ++base_string;
10146 }
e5cb08ac 10147 else if (*base_string != ')')
af6bdddf 10148 {
4eed87de
AM
10149 as_bad (_("expecting `,' or `)' "
10150 "after index register in `%s'"),
af6bdddf
AM
10151 operand_string);
10152 return 0;
10153 }
24eab124 10154 }
af6bdddf 10155 else if (*base_string == REGISTER_PREFIX)
24eab124 10156 {
f76bf5e0
L
10157 end_op = strchr (base_string, ',');
10158 if (end_op)
10159 *end_op = '\0';
af6bdddf 10160 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10161 return 0;
10162 }
252b5132 10163
47926f60 10164 /* Check for scale factor. */
551c1ca1 10165 if (*base_string != ')')
af6bdddf 10166 {
551c1ca1
AM
10167 char *end_scale = i386_scale (base_string);
10168
10169 if (!end_scale)
af6bdddf 10170 return 0;
24eab124 10171
551c1ca1 10172 base_string = end_scale;
af6bdddf
AM
10173 if (is_space_char (*base_string))
10174 ++base_string;
10175 if (*base_string != ')')
10176 {
4eed87de
AM
10177 as_bad (_("expecting `)' "
10178 "after scale factor in `%s'"),
af6bdddf
AM
10179 operand_string);
10180 return 0;
10181 }
10182 }
10183 else if (!i.index_reg)
24eab124 10184 {
4eed87de
AM
10185 as_bad (_("expecting index register or scale factor "
10186 "after `,'; got '%c'"),
af6bdddf 10187 *base_string);
24eab124
AM
10188 return 0;
10189 }
10190 }
af6bdddf 10191 else if (*base_string != ')')
24eab124 10192 {
4eed87de
AM
10193 as_bad (_("expecting `,' or `)' "
10194 "after base register in `%s'"),
af6bdddf 10195 operand_string);
24eab124
AM
10196 return 0;
10197 }
c3332e24 10198 }
af6bdddf 10199 else if (*base_string == REGISTER_PREFIX)
c3332e24 10200 {
f76bf5e0
L
10201 end_op = strchr (base_string, ',');
10202 if (end_op)
10203 *end_op = '\0';
af6bdddf 10204 as_bad (_("bad register name `%s'"), base_string);
24eab124 10205 return 0;
c3332e24 10206 }
24eab124
AM
10207 }
10208
10209 /* If there's an expression beginning the operand, parse it,
10210 assuming displacement_string_start and
10211 displacement_string_end are meaningful. */
10212 if (displacement_string_start != displacement_string_end)
10213 {
10214 if (!i386_displacement (displacement_string_start,
10215 displacement_string_end))
10216 return 0;
10217 }
10218
10219 /* Special case for (%dx) while doing input/output op. */
10220 if (i.base_reg
2fb5be8d 10221 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10222 && i.index_reg == 0
10223 && i.log2_scale_factor == 0
10224 && i.seg[i.mem_operands] == 0
40fb9820 10225 && !operand_type_check (i.types[this_operand], disp))
24eab124 10226 {
2fb5be8d 10227 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10228 return 1;
10229 }
10230
eecb386c
AM
10231 if (i386_index_check (operand_string) == 0)
10232 return 0;
c48dadc9 10233 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10234 if (i.mem_operands == 0)
10235 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10236 i.mem_operands++;
10237 }
10238 else
ce8a8b2f
AM
10239 {
10240 /* It's not a memory operand; argh! */
24eab124
AM
10241 as_bad (_("invalid char %s beginning operand %d `%s'"),
10242 output_invalid (*op_string),
10243 this_operand + 1,
10244 op_string);
10245 return 0;
10246 }
47926f60 10247 return 1; /* Normal return. */
252b5132
RH
10248}
10249\f
fa94de6b
RM
10250/* Calculate the maximum variable size (i.e., excluding fr_fix)
10251 that an rs_machine_dependent frag may reach. */
10252
10253unsigned int
10254i386_frag_max_var (fragS *frag)
10255{
10256 /* The only relaxable frags are for jumps.
10257 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10258 gas_assert (frag->fr_type == rs_machine_dependent);
10259 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10260}
10261
b084df0b
L
10262#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10263static int
8dcea932 10264elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10265{
10266 /* STT_GNU_IFUNC symbol must go through PLT. */
10267 if ((symbol_get_bfdsym (fr_symbol)->flags
10268 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10269 return 0;
10270
10271 if (!S_IS_EXTERNAL (fr_symbol))
10272 /* Symbol may be weak or local. */
10273 return !S_IS_WEAK (fr_symbol);
10274
8dcea932
L
10275 /* Global symbols with non-default visibility can't be preempted. */
10276 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10277 return 1;
10278
10279 if (fr_var != NO_RELOC)
10280 switch ((enum bfd_reloc_code_real) fr_var)
10281 {
10282 case BFD_RELOC_386_PLT32:
10283 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10284 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10285 return 0;
10286 default:
10287 abort ();
10288 }
10289
b084df0b
L
10290 /* Global symbols with default visibility in a shared library may be
10291 preempted by another definition. */
8dcea932 10292 return !shared;
b084df0b
L
10293}
10294#endif
10295
ee7fcc42
AM
10296/* md_estimate_size_before_relax()
10297
10298 Called just before relax() for rs_machine_dependent frags. The x86
10299 assembler uses these frags to handle variable size jump
10300 instructions.
10301
10302 Any symbol that is now undefined will not become defined.
10303 Return the correct fr_subtype in the frag.
10304 Return the initial "guess for variable size of frag" to caller.
10305 The guess is actually the growth beyond the fixed part. Whatever
10306 we do to grow the fixed or variable part contributes to our
10307 returned value. */
10308
252b5132 10309int
7016a5d5 10310md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10311{
252b5132 10312 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10313 check for un-relaxable symbols. On an ELF system, we can't relax
10314 an externally visible symbol, because it may be overridden by a
10315 shared library. */
10316 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10317#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10318 || (IS_ELF
8dcea932
L
10319 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10320 fragP->fr_var))
fbeb56a4
DK
10321#endif
10322#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10323 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10324 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10325#endif
10326 )
252b5132 10327 {
b98ef147
AM
10328 /* Symbol is undefined in this segment, or we need to keep a
10329 reloc so that weak symbols can be overridden. */
10330 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10331 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10332 unsigned char *opcode;
10333 int old_fr_fix;
f6af82bd 10334
ee7fcc42 10335 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10336 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10337 else if (size == 2)
f6af82bd 10338 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10339#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10340 else if (need_plt32_p (fragP->fr_symbol))
10341 reloc_type = BFD_RELOC_X86_64_PLT32;
10342#endif
f6af82bd
AM
10343 else
10344 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10345
ee7fcc42
AM
10346 old_fr_fix = fragP->fr_fix;
10347 opcode = (unsigned char *) fragP->fr_opcode;
10348
fddf5b5b 10349 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10350 {
fddf5b5b
AM
10351 case UNCOND_JUMP:
10352 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10353 opcode[0] = 0xe9;
252b5132 10354 fragP->fr_fix += size;
062cd5e7
AS
10355 fix_new (fragP, old_fr_fix, size,
10356 fragP->fr_symbol,
10357 fragP->fr_offset, 1,
10358 reloc_type);
252b5132
RH
10359 break;
10360
fddf5b5b 10361 case COND_JUMP86:
412167cb
AM
10362 if (size == 2
10363 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10364 {
10365 /* Negate the condition, and branch past an
10366 unconditional jump. */
10367 opcode[0] ^= 1;
10368 opcode[1] = 3;
10369 /* Insert an unconditional jump. */
10370 opcode[2] = 0xe9;
10371 /* We added two extra opcode bytes, and have a two byte
10372 offset. */
10373 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10374 fix_new (fragP, old_fr_fix + 2, 2,
10375 fragP->fr_symbol,
10376 fragP->fr_offset, 1,
10377 reloc_type);
fddf5b5b
AM
10378 break;
10379 }
10380 /* Fall through. */
10381
10382 case COND_JUMP:
412167cb
AM
10383 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10384 {
3e02c1cc
AM
10385 fixS *fixP;
10386
412167cb 10387 fragP->fr_fix += 1;
3e02c1cc
AM
10388 fixP = fix_new (fragP, old_fr_fix, 1,
10389 fragP->fr_symbol,
10390 fragP->fr_offset, 1,
10391 BFD_RELOC_8_PCREL);
10392 fixP->fx_signed = 1;
412167cb
AM
10393 break;
10394 }
93c2a809 10395
24eab124 10396 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10397 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10398 opcode[1] = opcode[0] + 0x10;
f6af82bd 10399 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10400 /* We've added an opcode byte. */
10401 fragP->fr_fix += 1 + size;
062cd5e7
AS
10402 fix_new (fragP, old_fr_fix + 1, size,
10403 fragP->fr_symbol,
10404 fragP->fr_offset, 1,
10405 reloc_type);
252b5132 10406 break;
fddf5b5b
AM
10407
10408 default:
10409 BAD_CASE (fragP->fr_subtype);
10410 break;
252b5132
RH
10411 }
10412 frag_wane (fragP);
ee7fcc42 10413 return fragP->fr_fix - old_fr_fix;
252b5132 10414 }
93c2a809 10415
93c2a809
AM
10416 /* Guess size depending on current relax state. Initially the relax
10417 state will correspond to a short jump and we return 1, because
10418 the variable part of the frag (the branch offset) is one byte
10419 long. However, we can relax a section more than once and in that
10420 case we must either set fr_subtype back to the unrelaxed state,
10421 or return the value for the appropriate branch. */
10422 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10423}
10424
47926f60
KH
10425/* Called after relax() is finished.
10426
10427 In: Address of frag.
10428 fr_type == rs_machine_dependent.
10429 fr_subtype is what the address relaxed to.
10430
10431 Out: Any fixSs and constants are set up.
10432 Caller will turn frag into a ".space 0". */
10433
252b5132 10434void
7016a5d5
TG
10435md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10436 fragS *fragP)
252b5132 10437{
29b0f896 10438 unsigned char *opcode;
252b5132 10439 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10440 offsetT target_address;
10441 offsetT opcode_address;
252b5132 10442 unsigned int extension = 0;
847f7ad4 10443 offsetT displacement_from_opcode_start;
252b5132
RH
10444
10445 opcode = (unsigned char *) fragP->fr_opcode;
10446
47926f60 10447 /* Address we want to reach in file space. */
252b5132 10448 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10449
47926f60 10450 /* Address opcode resides at in file space. */
252b5132
RH
10451 opcode_address = fragP->fr_address + fragP->fr_fix;
10452
47926f60 10453 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10454 displacement_from_opcode_start = target_address - opcode_address;
10455
fddf5b5b 10456 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10457 {
47926f60
KH
10458 /* Don't have to change opcode. */
10459 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10460 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10461 }
10462 else
10463 {
10464 if (no_cond_jump_promotion
10465 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10466 as_warn_where (fragP->fr_file, fragP->fr_line,
10467 _("long jump required"));
252b5132 10468
fddf5b5b
AM
10469 switch (fragP->fr_subtype)
10470 {
10471 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10472 extension = 4; /* 1 opcode + 4 displacement */
10473 opcode[0] = 0xe9;
10474 where_to_put_displacement = &opcode[1];
10475 break;
252b5132 10476
fddf5b5b
AM
10477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10478 extension = 2; /* 1 opcode + 2 displacement */
10479 opcode[0] = 0xe9;
10480 where_to_put_displacement = &opcode[1];
10481 break;
252b5132 10482
fddf5b5b
AM
10483 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10485 extension = 5; /* 2 opcode + 4 displacement */
10486 opcode[1] = opcode[0] + 0x10;
10487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10488 where_to_put_displacement = &opcode[2];
10489 break;
252b5132 10490
fddf5b5b
AM
10491 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10492 extension = 3; /* 2 opcode + 2 displacement */
10493 opcode[1] = opcode[0] + 0x10;
10494 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10495 where_to_put_displacement = &opcode[2];
10496 break;
252b5132 10497
fddf5b5b
AM
10498 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10499 extension = 4;
10500 opcode[0] ^= 1;
10501 opcode[1] = 3;
10502 opcode[2] = 0xe9;
10503 where_to_put_displacement = &opcode[3];
10504 break;
10505
10506 default:
10507 BAD_CASE (fragP->fr_subtype);
10508 break;
10509 }
252b5132 10510 }
fddf5b5b 10511
7b81dfbb
AJ
10512 /* If size if less then four we are sure that the operand fits,
10513 but if it's 4, then it could be that the displacement is larger
10514 then -/+ 2GB. */
10515 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10516 && object_64bit
10517 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10518 + ((addressT) 1 << 31))
10519 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10520 {
10521 as_bad_where (fragP->fr_file, fragP->fr_line,
10522 _("jump target out of range"));
10523 /* Make us emit 0. */
10524 displacement_from_opcode_start = extension;
10525 }
47926f60 10526 /* Now put displacement after opcode. */
252b5132
RH
10527 md_number_to_chars ((char *) where_to_put_displacement,
10528 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10529 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10530 fragP->fr_fix += extension;
10531}
10532\f
7016a5d5 10533/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10534 by our caller that we have all the info we need to fix it up.
10535
7016a5d5
TG
10536 Parameter valP is the pointer to the value of the bits.
10537
252b5132
RH
10538 On the 386, immediates, displacements, and data pointers are all in
10539 the same (little-endian) format, so we don't need to care about which
10540 we are handling. */
10541
94f592af 10542void
7016a5d5 10543md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10544{
94f592af 10545 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10546 valueT value = *valP;
252b5132 10547
f86103b7 10548#if !defined (TE_Mach)
93382f6d
AM
10549 if (fixP->fx_pcrel)
10550 {
10551 switch (fixP->fx_r_type)
10552 {
5865bb77
ILT
10553 default:
10554 break;
10555
d6ab8113
JB
10556 case BFD_RELOC_64:
10557 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10558 break;
93382f6d 10559 case BFD_RELOC_32:
ae8887b5 10560 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10561 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10562 break;
10563 case BFD_RELOC_16:
10564 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10565 break;
10566 case BFD_RELOC_8:
10567 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10568 break;
10569 }
10570 }
252b5132 10571
a161fe53 10572 if (fixP->fx_addsy != NULL
31312f95 10573 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10574 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10575 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10576 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10577 && !use_rela_relocations)
252b5132 10578 {
31312f95
AM
10579 /* This is a hack. There should be a better way to handle this.
10580 This covers for the fact that bfd_install_relocation will
10581 subtract the current location (for partial_inplace, PC relative
10582 relocations); see more below. */
252b5132 10583#ifndef OBJ_AOUT
718ddfc0 10584 if (IS_ELF
252b5132
RH
10585#ifdef TE_PE
10586 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10587#endif
10588 )
10589 value += fixP->fx_where + fixP->fx_frag->fr_address;
10590#endif
10591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10592 if (IS_ELF)
252b5132 10593 {
6539b54b 10594 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10595
6539b54b 10596 if ((sym_seg == seg
2f66722d 10597 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10598 && sym_seg != absolute_section))
af65af87 10599 && !generic_force_reloc (fixP))
2f66722d
AM
10600 {
10601 /* Yes, we add the values in twice. This is because
6539b54b
AM
10602 bfd_install_relocation subtracts them out again. I think
10603 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10604 it. FIXME. */
10605 value += fixP->fx_where + fixP->fx_frag->fr_address;
10606 }
252b5132
RH
10607 }
10608#endif
10609#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10610 /* For some reason, the PE format does not store a
10611 section address offset for a PC relative symbol. */
10612 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10613 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10614 value += md_pcrel_from (fixP);
10615#endif
10616 }
fbeb56a4 10617#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10618 if (fixP->fx_addsy != NULL
10619 && S_IS_WEAK (fixP->fx_addsy)
10620 /* PR 16858: Do not modify weak function references. */
10621 && ! fixP->fx_pcrel)
fbeb56a4 10622 {
296a8689
NC
10623#if !defined (TE_PEP)
10624 /* For x86 PE weak function symbols are neither PC-relative
10625 nor do they set S_IS_FUNCTION. So the only reliable way
10626 to detect them is to check the flags of their containing
10627 section. */
10628 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10629 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10630 ;
10631 else
10632#endif
fbeb56a4
DK
10633 value -= S_GET_VALUE (fixP->fx_addsy);
10634 }
10635#endif
252b5132
RH
10636
10637 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10638 and we must not disappoint it. */
252b5132 10639#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10640 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10641 switch (fixP->fx_r_type)
10642 {
10643 case BFD_RELOC_386_PLT32:
3e73aa7c 10644 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10645 /* Make the jump instruction point to the address of the operand.
10646 At runtime we merely add the offset to the actual PLT entry.
10647 NB: Subtract the offset size only for jump instructions. */
10648 if (fixP->fx_pcrel)
10649 value = -4;
47926f60 10650 break;
31312f95 10651
13ae64f3
JJ
10652 case BFD_RELOC_386_TLS_GD:
10653 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10654 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10655 case BFD_RELOC_386_TLS_IE:
10656 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10657 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10658 case BFD_RELOC_X86_64_TLSGD:
10659 case BFD_RELOC_X86_64_TLSLD:
10660 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10661 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10662 value = 0; /* Fully resolved at runtime. No addend. */
10663 /* Fallthrough */
10664 case BFD_RELOC_386_TLS_LE:
10665 case BFD_RELOC_386_TLS_LDO_32:
10666 case BFD_RELOC_386_TLS_LE_32:
10667 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10668 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10669 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10670 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10671 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10672 break;
10673
67a4f2b7
AO
10674 case BFD_RELOC_386_TLS_DESC_CALL:
10675 case BFD_RELOC_X86_64_TLSDESC_CALL:
10676 value = 0; /* Fully resolved at runtime. No addend. */
10677 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10678 fixP->fx_done = 0;
10679 return;
10680
47926f60
KH
10681 case BFD_RELOC_VTABLE_INHERIT:
10682 case BFD_RELOC_VTABLE_ENTRY:
10683 fixP->fx_done = 0;
94f592af 10684 return;
47926f60
KH
10685
10686 default:
10687 break;
10688 }
10689#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10690 *valP = value;
f86103b7 10691#endif /* !defined (TE_Mach) */
3e73aa7c 10692
3e73aa7c 10693 /* Are we finished with this relocation now? */
c6682705 10694 if (fixP->fx_addsy == NULL)
3e73aa7c 10695 fixP->fx_done = 1;
fbeb56a4
DK
10696#if defined (OBJ_COFF) && defined (TE_PE)
10697 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10698 {
10699 fixP->fx_done = 0;
10700 /* Remember value for tc_gen_reloc. */
10701 fixP->fx_addnumber = value;
10702 /* Clear out the frag for now. */
10703 value = 0;
10704 }
10705#endif
3e73aa7c
JH
10706 else if (use_rela_relocations)
10707 {
10708 fixP->fx_no_overflow = 1;
062cd5e7
AS
10709 /* Remember value for tc_gen_reloc. */
10710 fixP->fx_addnumber = value;
3e73aa7c
JH
10711 value = 0;
10712 }
f86103b7 10713
94f592af 10714 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10715}
252b5132 10716\f
6d4af3c2 10717const char *
499ac353 10718md_atof (int type, char *litP, int *sizeP)
252b5132 10719{
499ac353
NC
10720 /* This outputs the LITTLENUMs in REVERSE order;
10721 in accord with the bigendian 386. */
10722 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10723}
10724\f
2d545b82 10725static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10726
252b5132 10727static char *
e3bb37b5 10728output_invalid (int c)
252b5132 10729{
3882b010 10730 if (ISPRINT (c))
f9f21a03
L
10731 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10732 "'%c'", c);
252b5132 10733 else
f9f21a03 10734 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10735 "(0x%x)", (unsigned char) c);
252b5132
RH
10736 return output_invalid_buf;
10737}
10738
af6bdddf 10739/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10740
10741static const reg_entry *
4d1bb795 10742parse_real_register (char *reg_string, char **end_op)
252b5132 10743{
af6bdddf
AM
10744 char *s = reg_string;
10745 char *p;
252b5132
RH
10746 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10747 const reg_entry *r;
10748
10749 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10750 if (*s == REGISTER_PREFIX)
10751 ++s;
10752
10753 if (is_space_char (*s))
10754 ++s;
10755
10756 p = reg_name_given;
af6bdddf 10757 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10758 {
10759 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10760 return (const reg_entry *) NULL;
10761 s++;
252b5132
RH
10762 }
10763
6588847e
DN
10764 /* For naked regs, make sure that we are not dealing with an identifier.
10765 This prevents confusing an identifier like `eax_var' with register
10766 `eax'. */
10767 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10768 return (const reg_entry *) NULL;
10769
af6bdddf 10770 *end_op = s;
252b5132
RH
10771
10772 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10773
5f47d35b 10774 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10775 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10776 {
0e0eea78
JB
10777 if (!cpu_arch_flags.bitfield.cpu8087
10778 && !cpu_arch_flags.bitfield.cpu287
10779 && !cpu_arch_flags.bitfield.cpu387)
10780 return (const reg_entry *) NULL;
10781
5f47d35b
AM
10782 if (is_space_char (*s))
10783 ++s;
10784 if (*s == '(')
10785 {
af6bdddf 10786 ++s;
5f47d35b
AM
10787 if (is_space_char (*s))
10788 ++s;
10789 if (*s >= '0' && *s <= '7')
10790 {
db557034 10791 int fpr = *s - '0';
af6bdddf 10792 ++s;
5f47d35b
AM
10793 if (is_space_char (*s))
10794 ++s;
10795 if (*s == ')')
10796 {
10797 *end_op = s + 1;
1e9cc1c2 10798 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10799 know (r);
10800 return r + fpr;
5f47d35b 10801 }
5f47d35b 10802 }
47926f60 10803 /* We have "%st(" then garbage. */
5f47d35b
AM
10804 return (const reg_entry *) NULL;
10805 }
10806 }
10807
a60de03c
JB
10808 if (r == NULL || allow_pseudo_reg)
10809 return r;
10810
0dfbf9d7 10811 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10812 return (const reg_entry *) NULL;
10813
dc821c5f 10814 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10815 || r->reg_type.bitfield.sreg3
10816 || r->reg_type.bitfield.control
10817 || r->reg_type.bitfield.debug
10818 || r->reg_type.bitfield.test)
10819 && !cpu_arch_flags.bitfield.cpui386)
10820 return (const reg_entry *) NULL;
10821
6e041cf4 10822 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10823 return (const reg_entry *) NULL;
10824
6e041cf4
JB
10825 if (!cpu_arch_flags.bitfield.cpuavx512f)
10826 {
10827 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10828 return (const reg_entry *) NULL;
40f12533 10829
6e041cf4
JB
10830 if (!cpu_arch_flags.bitfield.cpuavx)
10831 {
10832 if (r->reg_type.bitfield.ymmword)
10833 return (const reg_entry *) NULL;
1848e567 10834
6e041cf4
JB
10835 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10836 return (const reg_entry *) NULL;
10837 }
10838 }
43234a1e 10839
1adf7f56
JB
10840 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10841 return (const reg_entry *) NULL;
10842
db51cc60 10843 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10844 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10845 return (const reg_entry *) NULL;
10846
1d3f8286
JB
10847 /* Upper 16 vector registers are only available with VREX in 64bit
10848 mode, and require EVEX encoding. */
10849 if (r->reg_flags & RegVRex)
43234a1e 10850 {
e951d5ca 10851 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10852 || flag_code != CODE_64BIT)
10853 return (const reg_entry *) NULL;
1d3f8286
JB
10854
10855 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10856 }
10857
4787f4a5
JB
10858 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10859 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10860 && flag_code != CODE_64BIT)
20f0a1fc 10861 return (const reg_entry *) NULL;
1ae00879 10862
b7240065
JB
10863 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10864 return (const reg_entry *) NULL;
10865
252b5132
RH
10866 return r;
10867}
4d1bb795
JB
10868
10869/* REG_STRING starts *before* REGISTER_PREFIX. */
10870
10871static const reg_entry *
10872parse_register (char *reg_string, char **end_op)
10873{
10874 const reg_entry *r;
10875
10876 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10877 r = parse_real_register (reg_string, end_op);
10878 else
10879 r = NULL;
10880 if (!r)
10881 {
10882 char *save = input_line_pointer;
10883 char c;
10884 symbolS *symbolP;
10885
10886 input_line_pointer = reg_string;
d02603dc 10887 c = get_symbol_name (&reg_string);
4d1bb795
JB
10888 symbolP = symbol_find (reg_string);
10889 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10890 {
10891 const expressionS *e = symbol_get_value_expression (symbolP);
10892
0398aac5 10893 know (e->X_op == O_register);
4eed87de 10894 know (e->X_add_number >= 0
c3fe08fa 10895 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10896 r = i386_regtab + e->X_add_number;
d3bb6b49 10897 if ((r->reg_flags & RegVRex))
86fa6981 10898 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10899 *end_op = input_line_pointer;
10900 }
10901 *input_line_pointer = c;
10902 input_line_pointer = save;
10903 }
10904 return r;
10905}
10906
10907int
10908i386_parse_name (char *name, expressionS *e, char *nextcharP)
10909{
10910 const reg_entry *r;
10911 char *end = input_line_pointer;
10912
10913 *end = *nextcharP;
10914 r = parse_register (name, &input_line_pointer);
10915 if (r && end <= input_line_pointer)
10916 {
10917 *nextcharP = *input_line_pointer;
10918 *input_line_pointer = 0;
10919 e->X_op = O_register;
10920 e->X_add_number = r - i386_regtab;
10921 return 1;
10922 }
10923 input_line_pointer = end;
10924 *end = 0;
ee86248c 10925 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10926}
10927
10928void
10929md_operand (expressionS *e)
10930{
ee86248c
JB
10931 char *end;
10932 const reg_entry *r;
4d1bb795 10933
ee86248c
JB
10934 switch (*input_line_pointer)
10935 {
10936 case REGISTER_PREFIX:
10937 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10938 if (r)
10939 {
10940 e->X_op = O_register;
10941 e->X_add_number = r - i386_regtab;
10942 input_line_pointer = end;
10943 }
ee86248c
JB
10944 break;
10945
10946 case '[':
9c2799c2 10947 gas_assert (intel_syntax);
ee86248c
JB
10948 end = input_line_pointer++;
10949 expression (e);
10950 if (*input_line_pointer == ']')
10951 {
10952 ++input_line_pointer;
10953 e->X_op_symbol = make_expr_symbol (e);
10954 e->X_add_symbol = NULL;
10955 e->X_add_number = 0;
10956 e->X_op = O_index;
10957 }
10958 else
10959 {
10960 e->X_op = O_absent;
10961 input_line_pointer = end;
10962 }
10963 break;
4d1bb795
JB
10964 }
10965}
10966
252b5132 10967\f
4cc782b5 10968#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10969const char *md_shortopts = "kVQ:sqnO::";
252b5132 10970#else
b6f8c7c4 10971const char *md_shortopts = "qnO::";
252b5132 10972#endif
6e0b89ee 10973
3e73aa7c 10974#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10975#define OPTION_64 (OPTION_MD_BASE + 1)
10976#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10977#define OPTION_MARCH (OPTION_MD_BASE + 3)
10978#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10979#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10980#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10981#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10982#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10983#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10984#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10985#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10986#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10987#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10988#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10989#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10990#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10991#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10992#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10993#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10994#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10995#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10996#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10997#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10998#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10999#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11000#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11001
99ad8390
NC
11002struct option md_longopts[] =
11003{
3e73aa7c 11004 {"32", no_argument, NULL, OPTION_32},
321098a5 11005#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11006 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11007 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11008#endif
11009#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11010 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11011 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11012 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11013#endif
b3b91714 11014 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11015 {"march", required_argument, NULL, OPTION_MARCH},
11016 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11017 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11018 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11019 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11020 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11021 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11022 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11023 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11024 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11025 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11026 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11027 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11028 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11029# if defined (TE_PE) || defined (TE_PEP)
11030 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11031#endif
d1982f93 11032 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11033 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11034 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11035 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11036 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11037 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11038 {NULL, no_argument, NULL, 0}
11039};
11040size_t md_longopts_size = sizeof (md_longopts);
11041
11042int
17b9d67d 11043md_parse_option (int c, const char *arg)
252b5132 11044{
91d6fa6a 11045 unsigned int j;
293f5f65 11046 char *arch, *next, *saved;
9103f4f4 11047
252b5132
RH
11048 switch (c)
11049 {
12b55ccc
L
11050 case 'n':
11051 optimize_align_code = 0;
11052 break;
11053
a38cf1db
AM
11054 case 'q':
11055 quiet_warnings = 1;
252b5132
RH
11056 break;
11057
11058#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11059 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11060 should be emitted or not. FIXME: Not implemented. */
11061 case 'Q':
252b5132
RH
11062 break;
11063
11064 /* -V: SVR4 argument to print version ID. */
11065 case 'V':
11066 print_version_id ();
11067 break;
11068
a38cf1db
AM
11069 /* -k: Ignore for FreeBSD compatibility. */
11070 case 'k':
252b5132 11071 break;
4cc782b5
ILT
11072
11073 case 's':
11074 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11075 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11076 break;
8dcea932
L
11077
11078 case OPTION_MSHARED:
11079 shared = 1;
11080 break;
b4a3a7b4
L
11081
11082 case OPTION_X86_USED_NOTE:
11083 if (strcasecmp (arg, "yes") == 0)
11084 x86_used_note = 1;
11085 else if (strcasecmp (arg, "no") == 0)
11086 x86_used_note = 0;
11087 else
11088 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11089 break;
11090
11091
99ad8390 11092#endif
321098a5 11093#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11094 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11095 case OPTION_64:
11096 {
11097 const char **list, **l;
11098
3e73aa7c
JH
11099 list = bfd_target_list ();
11100 for (l = list; *l != NULL; l++)
8620418b 11101 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11102 || strcmp (*l, "coff-x86-64") == 0
11103 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11104 || strcmp (*l, "pei-x86-64") == 0
11105 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11106 {
11107 default_arch = "x86_64";
11108 break;
11109 }
3e73aa7c 11110 if (*l == NULL)
2b5d6a91 11111 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11112 free (list);
11113 }
11114 break;
11115#endif
252b5132 11116
351f65ca 11117#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11118 case OPTION_X32:
351f65ca
L
11119 if (IS_ELF)
11120 {
11121 const char **list, **l;
11122
11123 list = bfd_target_list ();
11124 for (l = list; *l != NULL; l++)
11125 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11126 {
11127 default_arch = "x86_64:32";
11128 break;
11129 }
11130 if (*l == NULL)
2b5d6a91 11131 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11132 free (list);
11133 }
11134 else
11135 as_fatal (_("32bit x86_64 is only supported for ELF"));
11136 break;
11137#endif
11138
6e0b89ee
AM
11139 case OPTION_32:
11140 default_arch = "i386";
11141 break;
11142
b3b91714
AM
11143 case OPTION_DIVIDE:
11144#ifdef SVR4_COMMENT_CHARS
11145 {
11146 char *n, *t;
11147 const char *s;
11148
add39d23 11149 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11150 t = n;
11151 for (s = i386_comment_chars; *s != '\0'; s++)
11152 if (*s != '/')
11153 *t++ = *s;
11154 *t = '\0';
11155 i386_comment_chars = n;
11156 }
11157#endif
11158 break;
11159
9103f4f4 11160 case OPTION_MARCH:
293f5f65
L
11161 saved = xstrdup (arg);
11162 arch = saved;
11163 /* Allow -march=+nosse. */
11164 if (*arch == '+')
11165 arch++;
6305a203 11166 do
9103f4f4 11167 {
6305a203 11168 if (*arch == '.')
2b5d6a91 11169 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11170 next = strchr (arch, '+');
11171 if (next)
11172 *next++ = '\0';
91d6fa6a 11173 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11174 {
91d6fa6a 11175 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11176 {
6305a203 11177 /* Processor. */
1ded5609
JB
11178 if (! cpu_arch[j].flags.bitfield.cpui386)
11179 continue;
11180
91d6fa6a 11181 cpu_arch_name = cpu_arch[j].name;
6305a203 11182 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11183 cpu_arch_flags = cpu_arch[j].flags;
11184 cpu_arch_isa = cpu_arch[j].type;
11185 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11186 if (!cpu_arch_tune_set)
11187 {
11188 cpu_arch_tune = cpu_arch_isa;
11189 cpu_arch_tune_flags = cpu_arch_isa_flags;
11190 }
11191 break;
11192 }
91d6fa6a
NC
11193 else if (*cpu_arch [j].name == '.'
11194 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11195 {
33eaf5de 11196 /* ISA extension. */
6305a203 11197 i386_cpu_flags flags;
309d3373 11198
293f5f65
L
11199 flags = cpu_flags_or (cpu_arch_flags,
11200 cpu_arch[j].flags);
81486035 11201
5b64d091 11202 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11203 {
11204 if (cpu_sub_arch_name)
11205 {
11206 char *name = cpu_sub_arch_name;
11207 cpu_sub_arch_name = concat (name,
91d6fa6a 11208 cpu_arch[j].name,
1bf57e9f 11209 (const char *) NULL);
6305a203
L
11210 free (name);
11211 }
11212 else
91d6fa6a 11213 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11214 cpu_arch_flags = flags;
a586129e 11215 cpu_arch_isa_flags = flags;
6305a203 11216 }
0089dace
L
11217 else
11218 cpu_arch_isa_flags
11219 = cpu_flags_or (cpu_arch_isa_flags,
11220 cpu_arch[j].flags);
6305a203 11221 break;
ccc9c027 11222 }
9103f4f4 11223 }
6305a203 11224
293f5f65
L
11225 if (j >= ARRAY_SIZE (cpu_arch))
11226 {
33eaf5de 11227 /* Disable an ISA extension. */
293f5f65
L
11228 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11229 if (strcmp (arch, cpu_noarch [j].name) == 0)
11230 {
11231 i386_cpu_flags flags;
11232
11233 flags = cpu_flags_and_not (cpu_arch_flags,
11234 cpu_noarch[j].flags);
11235 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11236 {
11237 if (cpu_sub_arch_name)
11238 {
11239 char *name = cpu_sub_arch_name;
11240 cpu_sub_arch_name = concat (arch,
11241 (const char *) NULL);
11242 free (name);
11243 }
11244 else
11245 cpu_sub_arch_name = xstrdup (arch);
11246 cpu_arch_flags = flags;
11247 cpu_arch_isa_flags = flags;
11248 }
11249 break;
11250 }
11251
11252 if (j >= ARRAY_SIZE (cpu_noarch))
11253 j = ARRAY_SIZE (cpu_arch);
11254 }
11255
91d6fa6a 11256 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11257 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11258
11259 arch = next;
9103f4f4 11260 }
293f5f65
L
11261 while (next != NULL);
11262 free (saved);
9103f4f4
L
11263 break;
11264
11265 case OPTION_MTUNE:
11266 if (*arg == '.')
2b5d6a91 11267 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11268 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11269 {
91d6fa6a 11270 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11271 {
ccc9c027 11272 cpu_arch_tune_set = 1;
91d6fa6a
NC
11273 cpu_arch_tune = cpu_arch [j].type;
11274 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11275 break;
11276 }
11277 }
91d6fa6a 11278 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11279 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11280 break;
11281
1efbbeb4
L
11282 case OPTION_MMNEMONIC:
11283 if (strcasecmp (arg, "att") == 0)
11284 intel_mnemonic = 0;
11285 else if (strcasecmp (arg, "intel") == 0)
11286 intel_mnemonic = 1;
11287 else
2b5d6a91 11288 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11289 break;
11290
11291 case OPTION_MSYNTAX:
11292 if (strcasecmp (arg, "att") == 0)
11293 intel_syntax = 0;
11294 else if (strcasecmp (arg, "intel") == 0)
11295 intel_syntax = 1;
11296 else
2b5d6a91 11297 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11298 break;
11299
11300 case OPTION_MINDEX_REG:
11301 allow_index_reg = 1;
11302 break;
11303
11304 case OPTION_MNAKED_REG:
11305 allow_naked_reg = 1;
11306 break;
11307
c0f3af97
L
11308 case OPTION_MSSE2AVX:
11309 sse2avx = 1;
11310 break;
11311
daf50ae7
L
11312 case OPTION_MSSE_CHECK:
11313 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11314 sse_check = check_error;
daf50ae7 11315 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11316 sse_check = check_warning;
daf50ae7 11317 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11318 sse_check = check_none;
daf50ae7 11319 else
2b5d6a91 11320 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11321 break;
11322
7bab8ab5
JB
11323 case OPTION_MOPERAND_CHECK:
11324 if (strcasecmp (arg, "error") == 0)
11325 operand_check = check_error;
11326 else if (strcasecmp (arg, "warning") == 0)
11327 operand_check = check_warning;
11328 else if (strcasecmp (arg, "none") == 0)
11329 operand_check = check_none;
11330 else
11331 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11332 break;
11333
539f890d
L
11334 case OPTION_MAVXSCALAR:
11335 if (strcasecmp (arg, "128") == 0)
11336 avxscalar = vex128;
11337 else if (strcasecmp (arg, "256") == 0)
11338 avxscalar = vex256;
11339 else
2b5d6a91 11340 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11341 break;
11342
03751133
L
11343 case OPTION_MVEXWIG:
11344 if (strcmp (arg, "0") == 0)
11345 vexwig = evexw0;
11346 else if (strcmp (arg, "1") == 0)
11347 vexwig = evexw1;
11348 else
11349 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11350 break;
11351
7e8b059b
L
11352 case OPTION_MADD_BND_PREFIX:
11353 add_bnd_prefix = 1;
11354 break;
11355
43234a1e
L
11356 case OPTION_MEVEXLIG:
11357 if (strcmp (arg, "128") == 0)
11358 evexlig = evexl128;
11359 else if (strcmp (arg, "256") == 0)
11360 evexlig = evexl256;
11361 else if (strcmp (arg, "512") == 0)
11362 evexlig = evexl512;
11363 else
11364 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11365 break;
11366
d3d3c6db
IT
11367 case OPTION_MEVEXRCIG:
11368 if (strcmp (arg, "rne") == 0)
11369 evexrcig = rne;
11370 else if (strcmp (arg, "rd") == 0)
11371 evexrcig = rd;
11372 else if (strcmp (arg, "ru") == 0)
11373 evexrcig = ru;
11374 else if (strcmp (arg, "rz") == 0)
11375 evexrcig = rz;
11376 else
11377 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11378 break;
11379
43234a1e
L
11380 case OPTION_MEVEXWIG:
11381 if (strcmp (arg, "0") == 0)
11382 evexwig = evexw0;
11383 else if (strcmp (arg, "1") == 0)
11384 evexwig = evexw1;
11385 else
11386 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11387 break;
11388
167ad85b
TG
11389# if defined (TE_PE) || defined (TE_PEP)
11390 case OPTION_MBIG_OBJ:
11391 use_big_obj = 1;
11392 break;
11393#endif
11394
d1982f93 11395 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11396 if (strcasecmp (arg, "yes") == 0)
11397 omit_lock_prefix = 1;
11398 else if (strcasecmp (arg, "no") == 0)
11399 omit_lock_prefix = 0;
11400 else
11401 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11402 break;
11403
e4e00185
AS
11404 case OPTION_MFENCE_AS_LOCK_ADD:
11405 if (strcasecmp (arg, "yes") == 0)
11406 avoid_fence = 1;
11407 else if (strcasecmp (arg, "no") == 0)
11408 avoid_fence = 0;
11409 else
11410 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11411 break;
11412
0cb4071e
L
11413 case OPTION_MRELAX_RELOCATIONS:
11414 if (strcasecmp (arg, "yes") == 0)
11415 generate_relax_relocations = 1;
11416 else if (strcasecmp (arg, "no") == 0)
11417 generate_relax_relocations = 0;
11418 else
11419 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11420 break;
11421
5db04b09 11422 case OPTION_MAMD64:
e89c5eaa 11423 intel64 = 0;
5db04b09
L
11424 break;
11425
11426 case OPTION_MINTEL64:
e89c5eaa 11427 intel64 = 1;
5db04b09
L
11428 break;
11429
b6f8c7c4
L
11430 case 'O':
11431 if (arg == NULL)
11432 {
11433 optimize = 1;
11434 /* Turn off -Os. */
11435 optimize_for_space = 0;
11436 }
11437 else if (*arg == 's')
11438 {
11439 optimize_for_space = 1;
11440 /* Turn on all encoding optimizations. */
41fd2579 11441 optimize = INT_MAX;
b6f8c7c4
L
11442 }
11443 else
11444 {
11445 optimize = atoi (arg);
11446 /* Turn off -Os. */
11447 optimize_for_space = 0;
11448 }
11449 break;
11450
252b5132
RH
11451 default:
11452 return 0;
11453 }
11454 return 1;
11455}
11456
8a2c8fef
L
11457#define MESSAGE_TEMPLATE \
11458" "
11459
293f5f65
L
11460static char *
11461output_message (FILE *stream, char *p, char *message, char *start,
11462 int *left_p, const char *name, int len)
11463{
11464 int size = sizeof (MESSAGE_TEMPLATE);
11465 int left = *left_p;
11466
11467 /* Reserve 2 spaces for ", " or ",\0" */
11468 left -= len + 2;
11469
11470 /* Check if there is any room. */
11471 if (left >= 0)
11472 {
11473 if (p != start)
11474 {
11475 *p++ = ',';
11476 *p++ = ' ';
11477 }
11478 p = mempcpy (p, name, len);
11479 }
11480 else
11481 {
11482 /* Output the current message now and start a new one. */
11483 *p++ = ',';
11484 *p = '\0';
11485 fprintf (stream, "%s\n", message);
11486 p = start;
11487 left = size - (start - message) - len - 2;
11488
11489 gas_assert (left >= 0);
11490
11491 p = mempcpy (p, name, len);
11492 }
11493
11494 *left_p = left;
11495 return p;
11496}
11497
8a2c8fef 11498static void
1ded5609 11499show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11500{
11501 static char message[] = MESSAGE_TEMPLATE;
11502 char *start = message + 27;
11503 char *p;
11504 int size = sizeof (MESSAGE_TEMPLATE);
11505 int left;
11506 const char *name;
11507 int len;
11508 unsigned int j;
11509
11510 p = start;
11511 left = size - (start - message);
11512 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11513 {
11514 /* Should it be skipped? */
11515 if (cpu_arch [j].skip)
11516 continue;
11517
11518 name = cpu_arch [j].name;
11519 len = cpu_arch [j].len;
11520 if (*name == '.')
11521 {
11522 /* It is an extension. Skip if we aren't asked to show it. */
11523 if (ext)
11524 {
11525 name++;
11526 len--;
11527 }
11528 else
11529 continue;
11530 }
11531 else if (ext)
11532 {
11533 /* It is an processor. Skip if we show only extension. */
11534 continue;
11535 }
1ded5609
JB
11536 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11537 {
11538 /* It is an impossible processor - skip. */
11539 continue;
11540 }
8a2c8fef 11541
293f5f65 11542 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11543 }
11544
293f5f65
L
11545 /* Display disabled extensions. */
11546 if (ext)
11547 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11548 {
11549 name = cpu_noarch [j].name;
11550 len = cpu_noarch [j].len;
11551 p = output_message (stream, p, message, start, &left, name,
11552 len);
11553 }
11554
8a2c8fef
L
11555 *p = '\0';
11556 fprintf (stream, "%s\n", message);
11557}
11558
252b5132 11559void
8a2c8fef 11560md_show_usage (FILE *stream)
252b5132 11561{
4cc782b5
ILT
11562#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11563 fprintf (stream, _("\
a38cf1db
AM
11564 -Q ignored\n\
11565 -V print assembler version number\n\
b3b91714
AM
11566 -k ignored\n"));
11567#endif
11568 fprintf (stream, _("\
12b55ccc 11569 -n Do not optimize code alignment\n\
b3b91714
AM
11570 -q quieten some warnings\n"));
11571#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11572 fprintf (stream, _("\
a38cf1db 11573 -s ignored\n"));
b3b91714 11574#endif
d7f449c0
L
11575#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11576 || defined (TE_PE) || defined (TE_PEP))
751d281c 11577 fprintf (stream, _("\
570561f7 11578 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11579#endif
b3b91714
AM
11580#ifdef SVR4_COMMENT_CHARS
11581 fprintf (stream, _("\
11582 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11583#else
11584 fprintf (stream, _("\
b3b91714 11585 --divide ignored\n"));
4cc782b5 11586#endif
9103f4f4 11587 fprintf (stream, _("\
6305a203 11588 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11589 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11590 show_arch (stream, 0, 1);
8a2c8fef
L
11591 fprintf (stream, _("\
11592 EXTENSION is combination of:\n"));
1ded5609 11593 show_arch (stream, 1, 0);
6305a203 11594 fprintf (stream, _("\
8a2c8fef 11595 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11596 show_arch (stream, 0, 0);
ba104c83 11597 fprintf (stream, _("\
c0f3af97
L
11598 -msse2avx encode SSE instructions with VEX prefix\n"));
11599 fprintf (stream, _("\
7c5c05ef 11600 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11601 check SSE instructions\n"));
11602 fprintf (stream, _("\
7c5c05ef 11603 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11604 check operand combinations for validity\n"));
11605 fprintf (stream, _("\
7c5c05ef
L
11606 -mavxscalar=[128|256] (default: 128)\n\
11607 encode scalar AVX instructions with specific vector\n\
539f890d
L
11608 length\n"));
11609 fprintf (stream, _("\
03751133
L
11610 -mvexwig=[0|1] (default: 0)\n\
11611 encode VEX instructions with specific VEX.W value\n\
11612 for VEX.W bit ignored instructions\n"));
11613 fprintf (stream, _("\
7c5c05ef
L
11614 -mevexlig=[128|256|512] (default: 128)\n\
11615 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11616 length\n"));
11617 fprintf (stream, _("\
7c5c05ef
L
11618 -mevexwig=[0|1] (default: 0)\n\
11619 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11620 for EVEX.W bit ignored instructions\n"));
11621 fprintf (stream, _("\
7c5c05ef 11622 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11623 encode EVEX instructions with specific EVEX.RC value\n\
11624 for SAE-only ignored instructions\n"));
11625 fprintf (stream, _("\
7c5c05ef
L
11626 -mmnemonic=[att|intel] "));
11627 if (SYSV386_COMPAT)
11628 fprintf (stream, _("(default: att)\n"));
11629 else
11630 fprintf (stream, _("(default: intel)\n"));
11631 fprintf (stream, _("\
11632 use AT&T/Intel mnemonic\n"));
ba104c83 11633 fprintf (stream, _("\
7c5c05ef
L
11634 -msyntax=[att|intel] (default: att)\n\
11635 use AT&T/Intel syntax\n"));
ba104c83
L
11636 fprintf (stream, _("\
11637 -mindex-reg support pseudo index registers\n"));
11638 fprintf (stream, _("\
11639 -mnaked-reg don't require `%%' prefix for registers\n"));
11640 fprintf (stream, _("\
7e8b059b 11641 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11642#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11643 fprintf (stream, _("\
11644 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11645 fprintf (stream, _("\
11646 -mx86-used-note=[no|yes] "));
11647 if (DEFAULT_X86_USED_NOTE)
11648 fprintf (stream, _("(default: yes)\n"));
11649 else
11650 fprintf (stream, _("(default: no)\n"));
11651 fprintf (stream, _("\
11652 generate x86 used ISA and feature properties\n"));
11653#endif
11654#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11655 fprintf (stream, _("\
11656 -mbig-obj generate big object files\n"));
11657#endif
d022bddd 11658 fprintf (stream, _("\
7c5c05ef 11659 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11660 strip all lock prefixes\n"));
5db04b09 11661 fprintf (stream, _("\
7c5c05ef 11662 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11663 encode lfence, mfence and sfence as\n\
11664 lock addl $0x0, (%%{re}sp)\n"));
11665 fprintf (stream, _("\
7c5c05ef
L
11666 -mrelax-relocations=[no|yes] "));
11667 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11668 fprintf (stream, _("(default: yes)\n"));
11669 else
11670 fprintf (stream, _("(default: no)\n"));
11671 fprintf (stream, _("\
0cb4071e
L
11672 generate relax relocations\n"));
11673 fprintf (stream, _("\
7c5c05ef 11674 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11675 fprintf (stream, _("\
11676 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11677}
11678
3e73aa7c 11679#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11680 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11681 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11682
11683/* Pick the target format to use. */
11684
47926f60 11685const char *
e3bb37b5 11686i386_target_format (void)
252b5132 11687{
351f65ca
L
11688 if (!strncmp (default_arch, "x86_64", 6))
11689 {
11690 update_code_flag (CODE_64BIT, 1);
11691 if (default_arch[6] == '\0')
7f56bc95 11692 x86_elf_abi = X86_64_ABI;
351f65ca 11693 else
7f56bc95 11694 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11695 }
3e73aa7c 11696 else if (!strcmp (default_arch, "i386"))
78f12dd3 11697 update_code_flag (CODE_32BIT, 1);
5197d474
L
11698 else if (!strcmp (default_arch, "iamcu"))
11699 {
11700 update_code_flag (CODE_32BIT, 1);
11701 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11702 {
11703 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11704 cpu_arch_name = "iamcu";
11705 cpu_sub_arch_name = NULL;
11706 cpu_arch_flags = iamcu_flags;
11707 cpu_arch_isa = PROCESSOR_IAMCU;
11708 cpu_arch_isa_flags = iamcu_flags;
11709 if (!cpu_arch_tune_set)
11710 {
11711 cpu_arch_tune = cpu_arch_isa;
11712 cpu_arch_tune_flags = cpu_arch_isa_flags;
11713 }
11714 }
8d471ec1 11715 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11716 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11717 cpu_arch_name);
11718 }
3e73aa7c 11719 else
2b5d6a91 11720 as_fatal (_("unknown architecture"));
89507696
JB
11721
11722 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11723 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11724 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11725 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11726
252b5132
RH
11727 switch (OUTPUT_FLAVOR)
11728 {
9384f2ff 11729#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11730 case bfd_target_aout_flavour:
47926f60 11731 return AOUT_TARGET_FORMAT;
4c63da97 11732#endif
9384f2ff
AM
11733#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11734# if defined (TE_PE) || defined (TE_PEP)
11735 case bfd_target_coff_flavour:
167ad85b
TG
11736 if (flag_code == CODE_64BIT)
11737 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11738 else
11739 return "pe-i386";
9384f2ff 11740# elif defined (TE_GO32)
0561d57c
JK
11741 case bfd_target_coff_flavour:
11742 return "coff-go32";
9384f2ff 11743# else
252b5132
RH
11744 case bfd_target_coff_flavour:
11745 return "coff-i386";
9384f2ff 11746# endif
4c63da97 11747#endif
3e73aa7c 11748#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11749 case bfd_target_elf_flavour:
3e73aa7c 11750 {
351f65ca
L
11751 const char *format;
11752
11753 switch (x86_elf_abi)
4fa24527 11754 {
351f65ca
L
11755 default:
11756 format = ELF_TARGET_FORMAT;
11757 break;
7f56bc95 11758 case X86_64_ABI:
351f65ca 11759 use_rela_relocations = 1;
4fa24527 11760 object_64bit = 1;
351f65ca
L
11761 format = ELF_TARGET_FORMAT64;
11762 break;
7f56bc95 11763 case X86_64_X32_ABI:
4fa24527 11764 use_rela_relocations = 1;
351f65ca 11765 object_64bit = 1;
862be3fb 11766 disallow_64bit_reloc = 1;
351f65ca
L
11767 format = ELF_TARGET_FORMAT32;
11768 break;
4fa24527 11769 }
3632d14b 11770 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11771 {
7f56bc95 11772 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11773 as_fatal (_("Intel L1OM is 64bit only"));
11774 return ELF_TARGET_L1OM_FORMAT;
11775 }
b49f93f6 11776 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11777 {
11778 if (x86_elf_abi != X86_64_ABI)
11779 as_fatal (_("Intel K1OM is 64bit only"));
11780 return ELF_TARGET_K1OM_FORMAT;
11781 }
81486035
L
11782 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11783 {
11784 if (x86_elf_abi != I386_ABI)
11785 as_fatal (_("Intel MCU is 32bit only"));
11786 return ELF_TARGET_IAMCU_FORMAT;
11787 }
8a9036a4 11788 else
351f65ca 11789 return format;
3e73aa7c 11790 }
e57f8c65
TG
11791#endif
11792#if defined (OBJ_MACH_O)
11793 case bfd_target_mach_o_flavour:
d382c579
TG
11794 if (flag_code == CODE_64BIT)
11795 {
11796 use_rela_relocations = 1;
11797 object_64bit = 1;
11798 return "mach-o-x86-64";
11799 }
11800 else
11801 return "mach-o-i386";
4c63da97 11802#endif
252b5132
RH
11803 default:
11804 abort ();
11805 return NULL;
11806 }
11807}
11808
47926f60 11809#endif /* OBJ_MAYBE_ more than one */
252b5132 11810\f
252b5132 11811symbolS *
7016a5d5 11812md_undefined_symbol (char *name)
252b5132 11813{
18dc2407
ILT
11814 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11815 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11816 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11817 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11818 {
11819 if (!GOT_symbol)
11820 {
11821 if (symbol_find (name))
11822 as_bad (_("GOT already in symbol table"));
11823 GOT_symbol = symbol_new (name, undefined_section,
11824 (valueT) 0, &zero_address_frag);
11825 };
11826 return GOT_symbol;
11827 }
252b5132
RH
11828 return 0;
11829}
11830
11831/* Round up a section size to the appropriate boundary. */
47926f60 11832
252b5132 11833valueT
7016a5d5 11834md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11835{
4c63da97
AM
11836#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11837 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11838 {
11839 /* For a.out, force the section size to be aligned. If we don't do
11840 this, BFD will align it for us, but it will not write out the
11841 final bytes of the section. This may be a bug in BFD, but it is
11842 easier to fix it here since that is how the other a.out targets
11843 work. */
11844 int align;
11845
11846 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11847 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11848 }
252b5132
RH
11849#endif
11850
11851 return size;
11852}
11853
11854/* On the i386, PC-relative offsets are relative to the start of the
11855 next instruction. That is, the address of the offset, plus its
11856 size, since the offset is always the last part of the insn. */
11857
11858long
e3bb37b5 11859md_pcrel_from (fixS *fixP)
252b5132
RH
11860{
11861 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11862}
11863
11864#ifndef I386COFF
11865
11866static void
e3bb37b5 11867s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11868{
29b0f896 11869 int temp;
252b5132 11870
8a75718c
JB
11871#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11872 if (IS_ELF)
11873 obj_elf_section_change_hook ();
11874#endif
252b5132
RH
11875 temp = get_absolute_expression ();
11876 subseg_set (bss_section, (subsegT) temp);
11877 demand_empty_rest_of_line ();
11878}
11879
11880#endif
11881
252b5132 11882void
e3bb37b5 11883i386_validate_fix (fixS *fixp)
252b5132 11884{
02a86693 11885 if (fixp->fx_subsy)
252b5132 11886 {
02a86693 11887 if (fixp->fx_subsy == GOT_symbol)
23df1078 11888 {
02a86693
L
11889 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11890 {
11891 if (!object_64bit)
11892 abort ();
11893#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11894 if (fixp->fx_tcbit2)
56ceb5b5
L
11895 fixp->fx_r_type = (fixp->fx_tcbit
11896 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11897 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11898 else
11899#endif
11900 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11901 }
d6ab8113 11902 else
02a86693
L
11903 {
11904 if (!object_64bit)
11905 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11906 else
11907 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11908 }
11909 fixp->fx_subsy = 0;
23df1078 11910 }
252b5132 11911 }
02a86693
L
11912#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11913 else if (!object_64bit)
11914 {
11915 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11916 && fixp->fx_tcbit2)
11917 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11918 }
11919#endif
252b5132
RH
11920}
11921
252b5132 11922arelent *
7016a5d5 11923tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11924{
11925 arelent *rel;
11926 bfd_reloc_code_real_type code;
11927
11928 switch (fixp->fx_r_type)
11929 {
8ce3d284 11930#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11931 case BFD_RELOC_SIZE32:
11932 case BFD_RELOC_SIZE64:
11933 if (S_IS_DEFINED (fixp->fx_addsy)
11934 && !S_IS_EXTERNAL (fixp->fx_addsy))
11935 {
11936 /* Resolve size relocation against local symbol to size of
11937 the symbol plus addend. */
11938 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11939 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11940 && !fits_in_unsigned_long (value))
11941 as_bad_where (fixp->fx_file, fixp->fx_line,
11942 _("symbol size computation overflow"));
11943 fixp->fx_addsy = NULL;
11944 fixp->fx_subsy = NULL;
11945 md_apply_fix (fixp, (valueT *) &value, NULL);
11946 return NULL;
11947 }
8ce3d284 11948#endif
1a0670f3 11949 /* Fall through. */
8fd4256d 11950
3e73aa7c
JH
11951 case BFD_RELOC_X86_64_PLT32:
11952 case BFD_RELOC_X86_64_GOT32:
11953 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11954 case BFD_RELOC_X86_64_GOTPCRELX:
11955 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11956 case BFD_RELOC_386_PLT32:
11957 case BFD_RELOC_386_GOT32:
02a86693 11958 case BFD_RELOC_386_GOT32X:
252b5132
RH
11959 case BFD_RELOC_386_GOTOFF:
11960 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11961 case BFD_RELOC_386_TLS_GD:
11962 case BFD_RELOC_386_TLS_LDM:
11963 case BFD_RELOC_386_TLS_LDO_32:
11964 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11965 case BFD_RELOC_386_TLS_IE:
11966 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11967 case BFD_RELOC_386_TLS_LE_32:
11968 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11969 case BFD_RELOC_386_TLS_GOTDESC:
11970 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11971 case BFD_RELOC_X86_64_TLSGD:
11972 case BFD_RELOC_X86_64_TLSLD:
11973 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11974 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11975 case BFD_RELOC_X86_64_GOTTPOFF:
11976 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11977 case BFD_RELOC_X86_64_TPOFF64:
11978 case BFD_RELOC_X86_64_GOTOFF64:
11979 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11980 case BFD_RELOC_X86_64_GOT64:
11981 case BFD_RELOC_X86_64_GOTPCREL64:
11982 case BFD_RELOC_X86_64_GOTPC64:
11983 case BFD_RELOC_X86_64_GOTPLT64:
11984 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11985 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11986 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11987 case BFD_RELOC_RVA:
11988 case BFD_RELOC_VTABLE_ENTRY:
11989 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11990#ifdef TE_PE
11991 case BFD_RELOC_32_SECREL:
11992#endif
252b5132
RH
11993 code = fixp->fx_r_type;
11994 break;
dbbaec26
L
11995 case BFD_RELOC_X86_64_32S:
11996 if (!fixp->fx_pcrel)
11997 {
11998 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11999 code = fixp->fx_r_type;
12000 break;
12001 }
1a0670f3 12002 /* Fall through. */
252b5132 12003 default:
93382f6d 12004 if (fixp->fx_pcrel)
252b5132 12005 {
93382f6d
AM
12006 switch (fixp->fx_size)
12007 {
12008 default:
b091f402
AM
12009 as_bad_where (fixp->fx_file, fixp->fx_line,
12010 _("can not do %d byte pc-relative relocation"),
12011 fixp->fx_size);
93382f6d
AM
12012 code = BFD_RELOC_32_PCREL;
12013 break;
12014 case 1: code = BFD_RELOC_8_PCREL; break;
12015 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12016 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12017#ifdef BFD64
12018 case 8: code = BFD_RELOC_64_PCREL; break;
12019#endif
93382f6d
AM
12020 }
12021 }
12022 else
12023 {
12024 switch (fixp->fx_size)
12025 {
12026 default:
b091f402
AM
12027 as_bad_where (fixp->fx_file, fixp->fx_line,
12028 _("can not do %d byte relocation"),
12029 fixp->fx_size);
93382f6d
AM
12030 code = BFD_RELOC_32;
12031 break;
12032 case 1: code = BFD_RELOC_8; break;
12033 case 2: code = BFD_RELOC_16; break;
12034 case 4: code = BFD_RELOC_32; break;
937149dd 12035#ifdef BFD64
3e73aa7c 12036 case 8: code = BFD_RELOC_64; break;
937149dd 12037#endif
93382f6d 12038 }
252b5132
RH
12039 }
12040 break;
12041 }
252b5132 12042
d182319b
JB
12043 if ((code == BFD_RELOC_32
12044 || code == BFD_RELOC_32_PCREL
12045 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12046 && GOT_symbol
12047 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12048 {
4fa24527 12049 if (!object_64bit)
d6ab8113
JB
12050 code = BFD_RELOC_386_GOTPC;
12051 else
12052 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12053 }
7b81dfbb
AJ
12054 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12055 && GOT_symbol
12056 && fixp->fx_addsy == GOT_symbol)
12057 {
12058 code = BFD_RELOC_X86_64_GOTPC64;
12059 }
252b5132 12060
add39d23
TS
12061 rel = XNEW (arelent);
12062 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12063 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12064
12065 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12066
3e73aa7c
JH
12067 if (!use_rela_relocations)
12068 {
12069 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12070 vtable entry to be used in the relocation's section offset. */
12071 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12072 rel->address = fixp->fx_offset;
fbeb56a4
DK
12073#if defined (OBJ_COFF) && defined (TE_PE)
12074 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12075 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12076 else
12077#endif
c6682705 12078 rel->addend = 0;
3e73aa7c
JH
12079 }
12080 /* Use the rela in 64bit mode. */
252b5132 12081 else
3e73aa7c 12082 {
862be3fb
L
12083 if (disallow_64bit_reloc)
12084 switch (code)
12085 {
862be3fb
L
12086 case BFD_RELOC_X86_64_DTPOFF64:
12087 case BFD_RELOC_X86_64_TPOFF64:
12088 case BFD_RELOC_64_PCREL:
12089 case BFD_RELOC_X86_64_GOTOFF64:
12090 case BFD_RELOC_X86_64_GOT64:
12091 case BFD_RELOC_X86_64_GOTPCREL64:
12092 case BFD_RELOC_X86_64_GOTPC64:
12093 case BFD_RELOC_X86_64_GOTPLT64:
12094 case BFD_RELOC_X86_64_PLTOFF64:
12095 as_bad_where (fixp->fx_file, fixp->fx_line,
12096 _("cannot represent relocation type %s in x32 mode"),
12097 bfd_get_reloc_code_name (code));
12098 break;
12099 default:
12100 break;
12101 }
12102
062cd5e7
AS
12103 if (!fixp->fx_pcrel)
12104 rel->addend = fixp->fx_offset;
12105 else
12106 switch (code)
12107 {
12108 case BFD_RELOC_X86_64_PLT32:
12109 case BFD_RELOC_X86_64_GOT32:
12110 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12111 case BFD_RELOC_X86_64_GOTPCRELX:
12112 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12113 case BFD_RELOC_X86_64_TLSGD:
12114 case BFD_RELOC_X86_64_TLSLD:
12115 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12116 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12117 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12118 rel->addend = fixp->fx_offset - fixp->fx_size;
12119 break;
12120 default:
12121 rel->addend = (section->vma
12122 - fixp->fx_size
12123 + fixp->fx_addnumber
12124 + md_pcrel_from (fixp));
12125 break;
12126 }
3e73aa7c
JH
12127 }
12128
252b5132
RH
12129 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12130 if (rel->howto == NULL)
12131 {
12132 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12133 _("cannot represent relocation type %s"),
252b5132
RH
12134 bfd_get_reloc_code_name (code));
12135 /* Set howto to a garbage value so that we can keep going. */
12136 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12137 gas_assert (rel->howto != NULL);
252b5132
RH
12138 }
12139
12140 return rel;
12141}
12142
ee86248c 12143#include "tc-i386-intel.c"
54cfded0 12144
a60de03c
JB
12145void
12146tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12147{
a60de03c
JB
12148 int saved_naked_reg;
12149 char saved_register_dot;
54cfded0 12150
a60de03c
JB
12151 saved_naked_reg = allow_naked_reg;
12152 allow_naked_reg = 1;
12153 saved_register_dot = register_chars['.'];
12154 register_chars['.'] = '.';
12155 allow_pseudo_reg = 1;
12156 expression_and_evaluate (exp);
12157 allow_pseudo_reg = 0;
12158 register_chars['.'] = saved_register_dot;
12159 allow_naked_reg = saved_naked_reg;
12160
e96d56a1 12161 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12162 {
a60de03c
JB
12163 if ((addressT) exp->X_add_number < i386_regtab_size)
12164 {
12165 exp->X_op = O_constant;
12166 exp->X_add_number = i386_regtab[exp->X_add_number]
12167 .dw2_regnum[flag_code >> 1];
12168 }
12169 else
12170 exp->X_op = O_illegal;
54cfded0 12171 }
54cfded0
AM
12172}
12173
12174void
12175tc_x86_frame_initial_instructions (void)
12176{
a60de03c
JB
12177 static unsigned int sp_regno[2];
12178
12179 if (!sp_regno[flag_code >> 1])
12180 {
12181 char *saved_input = input_line_pointer;
12182 char sp[][4] = {"esp", "rsp"};
12183 expressionS exp;
a4447b93 12184
a60de03c
JB
12185 input_line_pointer = sp[flag_code >> 1];
12186 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12187 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12188 sp_regno[flag_code >> 1] = exp.X_add_number;
12189 input_line_pointer = saved_input;
12190 }
a4447b93 12191
61ff971f
L
12192 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12193 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12194}
d2b2c203 12195
d7921315
L
12196int
12197x86_dwarf2_addr_size (void)
12198{
12199#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12200 if (x86_elf_abi == X86_64_X32_ABI)
12201 return 4;
12202#endif
12203 return bfd_arch_bits_per_address (stdoutput) / 8;
12204}
12205
d2b2c203
DJ
12206int
12207i386_elf_section_type (const char *str, size_t len)
12208{
12209 if (flag_code == CODE_64BIT
12210 && len == sizeof ("unwind") - 1
12211 && strncmp (str, "unwind", 6) == 0)
12212 return SHT_X86_64_UNWIND;
12213
12214 return -1;
12215}
bb41ade5 12216
ad5fec3b
EB
12217#ifdef TE_SOLARIS
12218void
12219i386_solaris_fix_up_eh_frame (segT sec)
12220{
12221 if (flag_code == CODE_64BIT)
12222 elf_section_type (sec) = SHT_X86_64_UNWIND;
12223}
12224#endif
12225
bb41ade5
AM
12226#ifdef TE_PE
12227void
12228tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12229{
91d6fa6a 12230 expressionS exp;
bb41ade5 12231
91d6fa6a
NC
12232 exp.X_op = O_secrel;
12233 exp.X_add_symbol = symbol;
12234 exp.X_add_number = 0;
12235 emit_expr (&exp, size);
bb41ade5
AM
12236}
12237#endif
3b22753a
L
12238
12239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12240/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12241
01e1a5bc 12242bfd_vma
6d4af3c2 12243x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12244{
12245 if (flag_code == CODE_64BIT)
12246 {
12247 if (letter == 'l')
12248 return SHF_X86_64_LARGE;
12249
8f3bae45 12250 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12251 }
3b22753a 12252 else
8f3bae45 12253 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12254 return -1;
12255}
12256
01e1a5bc 12257bfd_vma
3b22753a
L
12258x86_64_section_word (char *str, size_t len)
12259{
8620418b 12260 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12261 return SHF_X86_64_LARGE;
12262
12263 return -1;
12264}
12265
12266static void
12267handle_large_common (int small ATTRIBUTE_UNUSED)
12268{
12269 if (flag_code != CODE_64BIT)
12270 {
12271 s_comm_internal (0, elf_common_parse);
12272 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12273 }
12274 else
12275 {
12276 static segT lbss_section;
12277 asection *saved_com_section_ptr = elf_com_section_ptr;
12278 asection *saved_bss_section = bss_section;
12279
12280 if (lbss_section == NULL)
12281 {
12282 flagword applicable;
12283 segT seg = now_seg;
12284 subsegT subseg = now_subseg;
12285
12286 /* The .lbss section is for local .largecomm symbols. */
12287 lbss_section = subseg_new (".lbss", 0);
12288 applicable = bfd_applicable_section_flags (stdoutput);
12289 bfd_set_section_flags (stdoutput, lbss_section,
12290 applicable & SEC_ALLOC);
12291 seg_info (lbss_section)->bss = 1;
12292
12293 subseg_set (seg, subseg);
12294 }
12295
12296 elf_com_section_ptr = &_bfd_elf_large_com_section;
12297 bss_section = lbss_section;
12298
12299 s_comm_internal (0, elf_common_parse);
12300
12301 elf_com_section_ptr = saved_com_section_ptr;
12302 bss_section = saved_bss_section;
12303 }
12304}
12305#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.719673 seconds and 4 git commands to generate.