Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
4a1b91ea
L
233
234 /* Number of bytes to broadcast. */
235 int bytes;
43234a1e
L
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
a65babc9
L
268 unsupported_with_intel_mnemonic,
269 unsupported_syntax,
6c30d220
L
270 unsupported,
271 invalid_vsib_address,
7bab8ab5 272 invalid_vector_register_set,
43234a1e
L
273 unsupported_vector_index_register,
274 unsupported_broadcast,
43234a1e
L
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
a65babc9
L
282 };
283
252b5132
RH
284struct _i386_insn
285 {
47926f60 286 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 287 insn_template tm;
252b5132 288
7d5e4556
L
289 /* SUFFIX holds the instruction size suffix for byte, word, dword
290 or qword, if given. */
252b5132
RH
291 char suffix;
292
47926f60 293 /* OPERANDS gives the number of given operands. */
252b5132
RH
294 unsigned int operands;
295
296 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
297 of given register, displacement, memory operands and immediate
47926f60 298 operands. */
252b5132
RH
299 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
300
301 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 302 use OP[i] for the corresponding operand. */
40fb9820 303 i386_operand_type types[MAX_OPERANDS];
252b5132 304
520dc8e8
AM
305 /* Displacement expression, immediate expression, or register for each
306 operand. */
307 union i386_op op[MAX_OPERANDS];
252b5132 308
3e73aa7c
JH
309 /* Flags for operands. */
310 unsigned int flags[MAX_OPERANDS];
311#define Operand_PCrel 1
312
252b5132 313 /* Relocation type for operand */
f86103b7 314 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 315
252b5132
RH
316 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
317 the base index byte below. */
318 const reg_entry *base_reg;
319 const reg_entry *index_reg;
320 unsigned int log2_scale_factor;
321
322 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 323 explicit segment overrides are given. */
ce8a8b2f 324 const seg_entry *seg[2];
252b5132 325
8325cc63
JB
326 /* Copied first memory operand string, for re-checking. */
327 char *memop1_string;
328
252b5132
RH
329 /* PREFIX holds all the given prefix opcodes (usually null).
330 PREFIXES is the number of prefix opcodes. */
331 unsigned int prefixes;
332 unsigned char prefix[MAX_PREFIXES];
333
334 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 335 addressing modes of this insn are encoded. */
252b5132 336 modrm_byte rm;
3e73aa7c 337 rex_byte rex;
43234a1e 338 rex_byte vrex;
252b5132 339 sib_byte sib;
c0f3af97 340 vex_prefix vex;
b6169b20 341
43234a1e
L
342 /* Masking attributes. */
343 struct Mask_Operation *mask;
344
345 /* Rounding control and SAE attributes. */
346 struct RC_Operation *rounding;
347
348 /* Broadcasting attributes. */
349 struct Broadcast_Operation *broadcast;
350
351 /* Compressed disp8*N attribute. */
352 unsigned int memshift;
353
86fa6981
L
354 /* Prefer load or store in encoding. */
355 enum
356 {
357 dir_encoding_default = 0,
358 dir_encoding_load,
359 dir_encoding_store
360 } dir_encoding;
891edac4 361
a501d77e
L
362 /* Prefer 8bit or 32bit displacement in encoding. */
363 enum
364 {
365 disp_encoding_default = 0,
366 disp_encoding_8bit,
367 disp_encoding_32bit
368 } disp_encoding;
f8a5c266 369
6b6b6807
L
370 /* Prefer the REX byte in encoding. */
371 bfd_boolean rex_encoding;
372
b6f8c7c4
L
373 /* Disable instruction size optimization. */
374 bfd_boolean no_optimize;
375
86fa6981
L
376 /* How to encode vector instructions. */
377 enum
378 {
379 vex_encoding_default = 0,
380 vex_encoding_vex2,
381 vex_encoding_vex3,
382 vex_encoding_evex
383 } vec_encoding;
384
d5de92cf
L
385 /* REP prefix. */
386 const char *rep_prefix;
387
165de32a
L
388 /* HLE prefix. */
389 const char *hle_prefix;
42164a71 390
7e8b059b
L
391 /* Have BND prefix. */
392 const char *bnd_prefix;
393
04ef582a
L
394 /* Have NOTRACK prefix. */
395 const char *notrack_prefix;
396
891edac4 397 /* Error message. */
a65babc9 398 enum i386_error error;
252b5132
RH
399 };
400
401typedef struct _i386_insn i386_insn;
402
43234a1e
L
403/* Link RC type with corresponding string, that'll be looked for in
404 asm. */
405struct RC_name
406{
407 enum rc_type type;
408 const char *name;
409 unsigned int len;
410};
411
412static const struct RC_name RC_NamesTable[] =
413{
414 { rne, STRING_COMMA_LEN ("rn-sae") },
415 { rd, STRING_COMMA_LEN ("rd-sae") },
416 { ru, STRING_COMMA_LEN ("ru-sae") },
417 { rz, STRING_COMMA_LEN ("rz-sae") },
418 { saeonly, STRING_COMMA_LEN ("sae") },
419};
420
252b5132
RH
421/* List of chars besides those in app.c:symbol_chars that can start an
422 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 423const char extra_symbol_chars[] = "*%-([{}"
252b5132 424#ifdef LEX_AT
32137342
NC
425 "@"
426#endif
427#ifdef LEX_QM
428 "?"
252b5132 429#endif
32137342 430 ;
252b5132 431
29b0f896
AM
432#if (defined (TE_I386AIX) \
433 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 434 && !defined (TE_GNU) \
29b0f896 435 && !defined (TE_LINUX) \
8d63c93e 436 && !defined (TE_NACL) \
29b0f896 437 && !defined (TE_FreeBSD) \
5b806d27 438 && !defined (TE_DragonFly) \
29b0f896 439 && !defined (TE_NetBSD)))
252b5132 440/* This array holds the chars that always start a comment. If the
b3b91714
AM
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443const char *i386_comment_chars = "#/";
444#define SVR4_COMMENT_CHARS 1
252b5132 445#define PREFIX_SEPARATOR '\\'
252b5132 446
b3b91714
AM
447#else
448const char *i386_comment_chars = "#";
449#define PREFIX_SEPARATOR '/'
450#endif
451
252b5132
RH
452/* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 456 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
252b5132 459 '/' isn't otherwise defined. */
b3b91714 460const char line_comment_chars[] = "#/";
252b5132 461
63a0b638 462const char line_separator_chars[] = ";";
252b5132 463
ce8a8b2f
AM
464/* Chars that can be used to separate mant from exp in floating point
465 nums. */
252b5132
RH
466const char EXP_CHARS[] = "eE";
467
ce8a8b2f
AM
468/* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
252b5132
RH
471const char FLT_CHARS[] = "fFdDxX";
472
ce8a8b2f 473/* Tables for lexical analysis. */
252b5132
RH
474static char mnemonic_chars[256];
475static char register_chars[256];
476static char operand_chars[256];
477static char identifier_chars[256];
478static char digit_chars[256];
479
ce8a8b2f 480/* Lexical macros. */
252b5132
RH
481#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482#define is_operand_char(x) (operand_chars[(unsigned char) x])
483#define is_register_char(x) (register_chars[(unsigned char) x])
484#define is_space_char(x) ((x) == ' ')
485#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486#define is_digit_char(x) (digit_chars[(unsigned char) x])
487
0234cb7c 488/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
489static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491/* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
47926f60 494 assembler instruction). */
252b5132 495static char save_stack[32];
ce8a8b2f 496static char *save_stack_p;
252b5132
RH
497#define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499#define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
47926f60 502/* The instruction we're assembling. */
252b5132
RH
503static i386_insn i;
504
505/* Possible templates for current insn. */
506static const templates *current_templates;
507
31b2323c
L
508/* Per instruction expressionS buffers: max displacements & immediates. */
509static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 511
47926f60 512/* Current operand we are working on. */
ee86248c 513static int this_operand = -1;
252b5132 514
3e73aa7c
JH
515/* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523static enum flag_code flag_code;
4fa24527 524static unsigned int object_64bit;
862be3fb 525static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
526static int use_rela_relocations = 0;
527
7af8ed2d
NC
528#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
351f65ca
L
532/* The ELF ABI to use. */
533enum x86_elf_abi
534{
535 I386_ABI,
7f56bc95
L
536 X86_64_ABI,
537 X86_64_X32_ABI
351f65ca
L
538};
539
540static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 541#endif
351f65ca 542
167ad85b
TG
543#if defined (TE_PE) || defined (TE_PEP)
544/* Use big object file format. */
545static int use_big_obj = 0;
546#endif
547
8dcea932
L
548#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549/* 1 if generating code for a shared library. */
550static int shared = 0;
551#endif
552
47926f60
KH
553/* 1 for intel syntax,
554 0 if att syntax. */
555static int intel_syntax = 0;
252b5132 556
e89c5eaa
L
557/* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559static int intel64;
560
1efbbeb4
L
561/* 1 for intel mnemonic,
562 0 if att mnemonic. */
563static int intel_mnemonic = !SYSV386_COMPAT;
564
a60de03c
JB
565/* 1 if pseudo registers are permitted. */
566static int allow_pseudo_reg = 0;
567
47926f60
KH
568/* 1 if register prefix % not required. */
569static int allow_naked_reg = 0;
252b5132 570
33eaf5de 571/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574static int add_bnd_prefix = 0;
575
ba104c83 576/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
577static int allow_index_reg = 0;
578
d022bddd
IT
579/* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581static int omit_lock_prefix = 0;
582
e4e00185
AS
583/* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585static int avoid_fence = 0;
586
0cb4071e
L
587/* 1 if the assembler should generate relax relocations. */
588
589static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
7bab8ab5 592static enum check_kind
daf50ae7 593 {
7bab8ab5
JB
594 check_none = 0,
595 check_warning,
596 check_error
daf50ae7 597 }
7bab8ab5 598sse_check, operand_check = check_warning;
daf50ae7 599
b6f8c7c4
L
600/* Optimization:
601 1. Clear the REX_W bit with register operand if possible.
602 2. Above plus use 128bit vector instruction to clear the full vector
603 register.
604 */
605static int optimize = 0;
606
607/* Optimization:
608 1. Clear the REX_W bit with register operand if possible.
609 2. Above plus use 128bit vector instruction to clear the full vector
610 register.
611 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
612 "testb $imm7,%r8".
613 */
614static int optimize_for_space = 0;
615
2ca3ace5
L
616/* Register prefix used for error message. */
617static const char *register_prefix = "%";
618
47926f60
KH
619/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
620 leave, push, and pop instructions so that gcc has the same stack
621 frame as in 32 bit mode. */
622static char stackop_size = '\0';
eecb386c 623
12b55ccc
L
624/* Non-zero to optimize code alignment. */
625int optimize_align_code = 1;
626
47926f60
KH
627/* Non-zero to quieten some warnings. */
628static int quiet_warnings = 0;
a38cf1db 629
47926f60
KH
630/* CPU name. */
631static const char *cpu_arch_name = NULL;
6305a203 632static char *cpu_sub_arch_name = NULL;
a38cf1db 633
47926f60 634/* CPU feature flags. */
40fb9820
L
635static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
636
ccc9c027
L
637/* If we have selected a cpu we are generating instructions for. */
638static int cpu_arch_tune_set = 0;
639
9103f4f4 640/* Cpu we are generating instructions for. */
fbf3f584 641enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
642
643/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 644static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 645
ccc9c027 646/* CPU instruction set architecture used. */
fbf3f584 647enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 648
9103f4f4 649/* CPU feature flags of instruction set architecture used. */
fbf3f584 650i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 651
fddf5b5b
AM
652/* If set, conditional jumps are not automatically promoted to handle
653 larger than a byte offset. */
654static unsigned int no_cond_jump_promotion = 0;
655
c0f3af97
L
656/* Encode SSE instructions with VEX prefix. */
657static unsigned int sse2avx;
658
539f890d
L
659/* Encode scalar AVX instructions with specific vector length. */
660static enum
661 {
662 vex128 = 0,
663 vex256
664 } avxscalar;
665
43234a1e
L
666/* Encode scalar EVEX LIG instructions with specific vector length. */
667static enum
668 {
669 evexl128 = 0,
670 evexl256,
671 evexl512
672 } evexlig;
673
674/* Encode EVEX WIG instructions with specific evex.w. */
675static enum
676 {
677 evexw0 = 0,
678 evexw1
679 } evexwig;
680
d3d3c6db
IT
681/* Value to encode in EVEX RC bits, for SAE-only instructions. */
682static enum rc_type evexrcig = rne;
683
29b0f896 684/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 685static symbolS *GOT_symbol;
29b0f896 686
a4447b93
RH
687/* The dwarf2 return column, adjusted for 32 or 64 bit. */
688unsigned int x86_dwarf2_return_column;
689
690/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
691int x86_cie_data_alignment;
692
252b5132 693/* Interface to relax_segment.
fddf5b5b
AM
694 There are 3 major relax states for 386 jump insns because the
695 different types of jumps add different sizes to frags when we're
696 figuring out what sort of jump to choose to reach a given label. */
252b5132 697
47926f60 698/* Types. */
93c2a809
AM
699#define UNCOND_JUMP 0
700#define COND_JUMP 1
701#define COND_JUMP86 2
fddf5b5b 702
47926f60 703/* Sizes. */
252b5132
RH
704#define CODE16 1
705#define SMALL 0
29b0f896 706#define SMALL16 (SMALL | CODE16)
252b5132 707#define BIG 2
29b0f896 708#define BIG16 (BIG | CODE16)
252b5132
RH
709
710#ifndef INLINE
711#ifdef __GNUC__
712#define INLINE __inline__
713#else
714#define INLINE
715#endif
716#endif
717
fddf5b5b
AM
718#define ENCODE_RELAX_STATE(type, size) \
719 ((relax_substateT) (((type) << 2) | (size)))
720#define TYPE_FROM_RELAX_STATE(s) \
721 ((s) >> 2)
722#define DISP_SIZE_FROM_RELAX_STATE(s) \
723 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
724
725/* This table is used by relax_frag to promote short jumps to long
726 ones where necessary. SMALL (short) jumps may be promoted to BIG
727 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
728 don't allow a short jump in a 32 bit code segment to be promoted to
729 a 16 bit offset jump because it's slower (requires data size
730 prefix), and doesn't work, unless the destination is in the bottom
731 64k of the code segment (The top 16 bits of eip are zeroed). */
732
733const relax_typeS md_relax_table[] =
734{
24eab124
AM
735 /* The fields are:
736 1) most positive reach of this state,
737 2) most negative reach of this state,
93c2a809 738 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 739 4) which index into the table to try if we can't fit into this one. */
252b5132 740
fddf5b5b 741 /* UNCOND_JUMP states. */
93c2a809
AM
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
743 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
744 /* dword jmp adds 4 bytes to frag:
745 0 extra opcode bytes, 4 displacement bytes. */
252b5132 746 {0, 0, 4, 0},
93c2a809
AM
747 /* word jmp adds 2 byte2 to frag:
748 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
749 {0, 0, 2, 0},
750
93c2a809
AM
751 /* COND_JUMP states. */
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
753 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
754 /* dword conditionals adds 5 bytes to frag:
755 1 extra opcode byte, 4 displacement bytes. */
756 {0, 0, 5, 0},
fddf5b5b 757 /* word conditionals add 3 bytes to frag:
93c2a809
AM
758 1 extra opcode byte, 2 displacement bytes. */
759 {0, 0, 3, 0},
760
761 /* COND_JUMP86 states. */
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
764 /* dword conditionals adds 5 bytes to frag:
765 1 extra opcode byte, 4 displacement bytes. */
766 {0, 0, 5, 0},
767 /* word conditionals add 4 bytes to frag:
768 1 displacement byte and a 3 byte long branch insn. */
769 {0, 0, 4, 0}
252b5132
RH
770};
771
9103f4f4
L
772static const arch_entry cpu_arch[] =
773{
89507696
JB
774 /* Do not replace the first two entries - i386_target_format()
775 relies on them being there in this order. */
8a2c8fef 776 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 777 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 779 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_NONE_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I186_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 785 CPU_I286_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 787 CPU_I386_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 789 CPU_I486_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 791 CPU_I586_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 793 CPU_I686_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 795 CPU_I586_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P2_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 801 CPU_P3_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 803 CPU_P4_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 805 CPU_CORE_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 807 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 1 },
8a2c8fef 810 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 1 },
8a2c8fef 814 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 815 CPU_CORE2_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 817 CPU_COREI7_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 819 CPU_L1OM_FLAGS, 0 },
7a9068fe 820 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 821 CPU_K1OM_FLAGS, 0 },
81486035 822 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 823 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 825 CPU_K6_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 827 CPU_K6_2_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 829 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 1 },
8a2c8fef 832 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 835 CPU_K8_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 837 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 840 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 842 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 844 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER4_FLAGS, 0 },
029f3522 846 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 847 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
848 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
849 CPU_ZNVER2_FLAGS, 0 },
7b458c12 850 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 851 CPU_BTVER1_FLAGS, 0 },
7b458c12 852 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 853 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_8087_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_287_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_387_FLAGS, 0 },
1848e567
L
860 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
861 CPU_687_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_MMX_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSE2_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE3_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX_FLAGS, 0 },
6c30d220 880 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX2_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512F_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512CD_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512ER_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 892 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_VMX_FLAGS, 0 },
8729a6f6 898 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_SMX_FLAGS, 0 },
8a2c8fef 902 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 904 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 906 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 908 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_AES_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 916 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 918 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 920 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_F16C_FLAGS, 0 },
6c30d220 922 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_BMI2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_FMA_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_FMA4_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_XOP_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_LWP_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_MOVBE_FLAGS, 0 },
60aa667e 934 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_CX16_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_EPT_FLAGS, 0 },
6c30d220 938 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_LZCNT_FLAGS, 0 },
42164a71 940 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_HLE_FLAGS, 0 },
42164a71 942 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_RTM_FLAGS, 0 },
6c30d220 944 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_CLFLUSH_FLAGS, 0 },
22109423 948 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_NOP_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SVME_FLAGS, 1 },
8a2c8fef 962 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_SVME_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 966 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_ABM_FLAGS, 0 },
87973e9f 968 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI_FLAGS, 0 },
2a2a0f38 970 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_TBM_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_ADX_FLAGS, 0 },
e2e1fcde 974 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_PRFCHW_FLAGS, 0 },
5c111e37 978 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_SMAP_FLAGS, 0 },
7e8b059b 980 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_MPX_FLAGS, 0 },
a0046408 982 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SHA_FLAGS, 0 },
963f3586 984 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 986 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 988 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_SE1_FLAGS, 0 },
c5e7287a 990 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 992 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 994 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
996 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
998 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1000 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1002 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1004 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1006 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1008 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_CLZERO_FLAGS, 0 },
9916071f 1010 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_MWAITX_FLAGS, 0 },
8eab4136 1012 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_OSPKE_FLAGS, 0 },
8bc52696 1014 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1016 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1017 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1018 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1019 CPU_IBT_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1021 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1022 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1023 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1024 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1025 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1026 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1027 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1028 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1029 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1030 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1031 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1032 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1033 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1034 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1035 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1036 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIRI_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1039 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1040};
1041
1042static const noarch_entry cpu_noarch[] =
1043{
1044 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1045 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1046 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1047 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1048 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1049 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1050 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1052 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1055 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1056 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1057 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1058 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1067 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1068 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1069 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1070 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1071 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1072 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1073 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1074 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1075 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1076 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1077};
1078
704209c0 1079#ifdef I386COFF
a6c24e68
NC
1080/* Like s_lcomm_internal in gas/read.c but the alignment string
1081 is allowed to be optional. */
1082
1083static symbolS *
1084pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1085{
1086 addressT align = 0;
1087
1088 SKIP_WHITESPACE ();
1089
7ab9ffdd 1090 if (needs_align
a6c24e68
NC
1091 && *input_line_pointer == ',')
1092 {
1093 align = parse_align (needs_align - 1);
7ab9ffdd 1094
a6c24e68
NC
1095 if (align == (addressT) -1)
1096 return NULL;
1097 }
1098 else
1099 {
1100 if (size >= 8)
1101 align = 3;
1102 else if (size >= 4)
1103 align = 2;
1104 else if (size >= 2)
1105 align = 1;
1106 else
1107 align = 0;
1108 }
1109
1110 bss_alloc (symbolP, size, align);
1111 return symbolP;
1112}
1113
704209c0 1114static void
a6c24e68
NC
1115pe_lcomm (int needs_align)
1116{
1117 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1118}
704209c0 1119#endif
a6c24e68 1120
29b0f896
AM
1121const pseudo_typeS md_pseudo_table[] =
1122{
1123#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1124 {"align", s_align_bytes, 0},
1125#else
1126 {"align", s_align_ptwo, 0},
1127#endif
1128 {"arch", set_cpu_arch, 0},
1129#ifndef I386COFF
1130 {"bss", s_bss, 0},
a6c24e68
NC
1131#else
1132 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1133#endif
1134 {"ffloat", float_cons, 'f'},
1135 {"dfloat", float_cons, 'd'},
1136 {"tfloat", float_cons, 'x'},
1137 {"value", cons, 2},
d182319b 1138 {"slong", signed_cons, 4},
29b0f896
AM
1139 {"noopt", s_ignore, 0},
1140 {"optim", s_ignore, 0},
1141 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1142 {"code16", set_code_flag, CODE_16BIT},
1143 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1144#ifdef BFD64
29b0f896 1145 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1146#endif
29b0f896
AM
1147 {"intel_syntax", set_intel_syntax, 1},
1148 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1149 {"intel_mnemonic", set_intel_mnemonic, 1},
1150 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1151 {"allow_index_reg", set_allow_index_reg, 1},
1152 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1153 {"sse_check", set_check, 0},
1154 {"operand_check", set_check, 1},
3b22753a
L
1155#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1156 {"largecomm", handle_large_common, 0},
07a53e5c 1157#else
68d20676 1158 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1159 {"loc", dwarf2_directive_loc, 0},
1160 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1161#endif
6482c264
NC
1162#ifdef TE_PE
1163 {"secrel32", pe_directive_secrel, 0},
1164#endif
29b0f896
AM
1165 {0, 0, 0}
1166};
1167
1168/* For interface with expression (). */
1169extern char *input_line_pointer;
1170
1171/* Hash table for instruction mnemonic lookup. */
1172static struct hash_control *op_hash;
1173
1174/* Hash table for register lookup. */
1175static struct hash_control *reg_hash;
1176\f
ce8a8b2f
AM
1177 /* Various efficient no-op patterns for aligning code labels.
1178 Note: Don't try to assemble the instructions in the comments.
1179 0L and 0w are not legal. */
62a02d25
L
1180static const unsigned char f32_1[] =
1181 {0x90}; /* nop */
1182static const unsigned char f32_2[] =
1183 {0x66,0x90}; /* xchg %ax,%ax */
1184static const unsigned char f32_3[] =
1185 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1186static const unsigned char f32_4[] =
1187 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1188static const unsigned char f32_6[] =
1189 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1190static const unsigned char f32_7[] =
1191 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1192static const unsigned char f16_3[] =
3ae729d5 1193 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1194static const unsigned char f16_4[] =
3ae729d5
L
1195 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1196static const unsigned char jump_disp8[] =
1197 {0xeb}; /* jmp disp8 */
1198static const unsigned char jump32_disp32[] =
1199 {0xe9}; /* jmp disp32 */
1200static const unsigned char jump16_disp32[] =
1201 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1202/* 32-bit NOPs patterns. */
1203static const unsigned char *const f32_patt[] = {
3ae729d5 1204 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1205};
1206/* 16-bit NOPs patterns. */
1207static const unsigned char *const f16_patt[] = {
3ae729d5 1208 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1209};
1210/* nopl (%[re]ax) */
1211static const unsigned char alt_3[] =
1212 {0x0f,0x1f,0x00};
1213/* nopl 0(%[re]ax) */
1214static const unsigned char alt_4[] =
1215 {0x0f,0x1f,0x40,0x00};
1216/* nopl 0(%[re]ax,%[re]ax,1) */
1217static const unsigned char alt_5[] =
1218 {0x0f,0x1f,0x44,0x00,0x00};
1219/* nopw 0(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_6[] =
1221 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1222/* nopl 0L(%[re]ax) */
1223static const unsigned char alt_7[] =
1224 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1225/* nopl 0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_8[] =
1227 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228/* nopw 0L(%[re]ax,%[re]ax,1) */
1229static const unsigned char alt_9[] =
1230 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1232static const unsigned char alt_10[] =
1233 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1234/* data16 nopw %cs:0L(%eax,%eax,1) */
1235static const unsigned char alt_11[] =
1236 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1237/* 32-bit and 64-bit NOPs patterns. */
1238static const unsigned char *const alt_patt[] = {
1239 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1240 alt_9, alt_10, alt_11
62a02d25
L
1241};
1242
1243/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1244 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1245
1246static void
1247i386_output_nops (char *where, const unsigned char *const *patt,
1248 int count, int max_single_nop_size)
1249
1250{
3ae729d5
L
1251 /* Place the longer NOP first. */
1252 int last;
1253 int offset;
1254 const unsigned char *nops = patt[max_single_nop_size - 1];
1255
1256 /* Use the smaller one if the requsted one isn't available. */
1257 if (nops == NULL)
62a02d25 1258 {
3ae729d5
L
1259 max_single_nop_size--;
1260 nops = patt[max_single_nop_size - 1];
62a02d25
L
1261 }
1262
3ae729d5
L
1263 last = count % max_single_nop_size;
1264
1265 count -= last;
1266 for (offset = 0; offset < count; offset += max_single_nop_size)
1267 memcpy (where + offset, nops, max_single_nop_size);
1268
1269 if (last)
1270 {
1271 nops = patt[last - 1];
1272 if (nops == NULL)
1273 {
1274 /* Use the smaller one plus one-byte NOP if the needed one
1275 isn't available. */
1276 last--;
1277 nops = patt[last - 1];
1278 memcpy (where + offset, nops, last);
1279 where[offset + last] = *patt[0];
1280 }
1281 else
1282 memcpy (where + offset, nops, last);
1283 }
62a02d25
L
1284}
1285
3ae729d5
L
1286static INLINE int
1287fits_in_imm7 (offsetT num)
1288{
1289 return (num & 0x7f) == num;
1290}
1291
1292static INLINE int
1293fits_in_imm31 (offsetT num)
1294{
1295 return (num & 0x7fffffff) == num;
1296}
62a02d25
L
1297
1298/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1299 single NOP instruction LIMIT. */
1300
1301void
3ae729d5 1302i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1303{
3ae729d5 1304 const unsigned char *const *patt = NULL;
62a02d25 1305 int max_single_nop_size;
3ae729d5
L
1306 /* Maximum number of NOPs before switching to jump over NOPs. */
1307 int max_number_of_nops;
62a02d25 1308
3ae729d5 1309 switch (fragP->fr_type)
62a02d25 1310 {
3ae729d5
L
1311 case rs_fill_nop:
1312 case rs_align_code:
1313 break;
1314 default:
62a02d25
L
1315 return;
1316 }
1317
ccc9c027
L
1318 /* We need to decide which NOP sequence to use for 32bit and
1319 64bit. When -mtune= is used:
4eed87de 1320
76bc74dc
L
1321 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1322 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1323 2. For the rest, alt_patt will be used.
1324
1325 When -mtune= isn't used, alt_patt will be used if
22109423 1326 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1327 be used.
ccc9c027
L
1328
1329 When -march= or .arch is used, we can't use anything beyond
1330 cpu_arch_isa_flags. */
1331
1332 if (flag_code == CODE_16BIT)
1333 {
3ae729d5
L
1334 patt = f16_patt;
1335 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1336 /* Limit number of NOPs to 2 in 16-bit mode. */
1337 max_number_of_nops = 2;
252b5132 1338 }
33fef721 1339 else
ccc9c027 1340 {
fbf3f584 1341 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1342 {
1343 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1344 switch (cpu_arch_tune)
1345 {
1346 case PROCESSOR_UNKNOWN:
1347 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1348 optimize with nops. */
1349 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1350 patt = alt_patt;
ccc9c027
L
1351 else
1352 patt = f32_patt;
1353 break;
ccc9c027
L
1354 case PROCESSOR_PENTIUM4:
1355 case PROCESSOR_NOCONA:
ef05d495 1356 case PROCESSOR_CORE:
76bc74dc 1357 case PROCESSOR_CORE2:
bd5295b2 1358 case PROCESSOR_COREI7:
3632d14b 1359 case PROCESSOR_L1OM:
7a9068fe 1360 case PROCESSOR_K1OM:
76bc74dc 1361 case PROCESSOR_GENERIC64:
ccc9c027
L
1362 case PROCESSOR_K6:
1363 case PROCESSOR_ATHLON:
1364 case PROCESSOR_K8:
4eed87de 1365 case PROCESSOR_AMDFAM10:
8aedb9fe 1366 case PROCESSOR_BD:
029f3522 1367 case PROCESSOR_ZNVER:
7b458c12 1368 case PROCESSOR_BT:
80b8656c 1369 patt = alt_patt;
ccc9c027 1370 break;
76bc74dc 1371 case PROCESSOR_I386:
ccc9c027
L
1372 case PROCESSOR_I486:
1373 case PROCESSOR_PENTIUM:
2dde1948 1374 case PROCESSOR_PENTIUMPRO:
81486035 1375 case PROCESSOR_IAMCU:
ccc9c027
L
1376 case PROCESSOR_GENERIC32:
1377 patt = f32_patt;
1378 break;
4eed87de 1379 }
ccc9c027
L
1380 }
1381 else
1382 {
fbf3f584 1383 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1384 {
1385 case PROCESSOR_UNKNOWN:
e6a14101 1386 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1387 PROCESSOR_UNKNOWN. */
1388 abort ();
1389 break;
1390
76bc74dc 1391 case PROCESSOR_I386:
ccc9c027
L
1392 case PROCESSOR_I486:
1393 case PROCESSOR_PENTIUM:
81486035 1394 case PROCESSOR_IAMCU:
ccc9c027
L
1395 case PROCESSOR_K6:
1396 case PROCESSOR_ATHLON:
1397 case PROCESSOR_K8:
4eed87de 1398 case PROCESSOR_AMDFAM10:
8aedb9fe 1399 case PROCESSOR_BD:
029f3522 1400 case PROCESSOR_ZNVER:
7b458c12 1401 case PROCESSOR_BT:
ccc9c027
L
1402 case PROCESSOR_GENERIC32:
1403 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1404 with nops. */
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1406 patt = alt_patt;
ccc9c027
L
1407 else
1408 patt = f32_patt;
1409 break;
76bc74dc
L
1410 case PROCESSOR_PENTIUMPRO:
1411 case PROCESSOR_PENTIUM4:
1412 case PROCESSOR_NOCONA:
1413 case PROCESSOR_CORE:
ef05d495 1414 case PROCESSOR_CORE2:
bd5295b2 1415 case PROCESSOR_COREI7:
3632d14b 1416 case PROCESSOR_L1OM:
7a9068fe 1417 case PROCESSOR_K1OM:
22109423 1418 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1419 patt = alt_patt;
ccc9c027
L
1420 else
1421 patt = f32_patt;
1422 break;
1423 case PROCESSOR_GENERIC64:
80b8656c 1424 patt = alt_patt;
ccc9c027 1425 break;
4eed87de 1426 }
ccc9c027
L
1427 }
1428
76bc74dc
L
1429 if (patt == f32_patt)
1430 {
3ae729d5
L
1431 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1432 /* Limit number of NOPs to 2 for older processors. */
1433 max_number_of_nops = 2;
76bc74dc
L
1434 }
1435 else
1436 {
3ae729d5
L
1437 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1438 /* Limit number of NOPs to 7 for newer processors. */
1439 max_number_of_nops = 7;
1440 }
1441 }
1442
1443 if (limit == 0)
1444 limit = max_single_nop_size;
1445
1446 if (fragP->fr_type == rs_fill_nop)
1447 {
1448 /* Output NOPs for .nop directive. */
1449 if (limit > max_single_nop_size)
1450 {
1451 as_bad_where (fragP->fr_file, fragP->fr_line,
1452 _("invalid single nop size: %d "
1453 "(expect within [0, %d])"),
1454 limit, max_single_nop_size);
1455 return;
1456 }
1457 }
1458 else
1459 fragP->fr_var = count;
1460
1461 if ((count / max_single_nop_size) > max_number_of_nops)
1462 {
1463 /* Generate jump over NOPs. */
1464 offsetT disp = count - 2;
1465 if (fits_in_imm7 (disp))
1466 {
1467 /* Use "jmp disp8" if possible. */
1468 count = disp;
1469 where[0] = jump_disp8[0];
1470 where[1] = count;
1471 where += 2;
1472 }
1473 else
1474 {
1475 unsigned int size_of_jump;
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 where[0] = jump16_disp32[0];
1480 where[1] = jump16_disp32[1];
1481 size_of_jump = 2;
1482 }
1483 else
1484 {
1485 where[0] = jump32_disp32[0];
1486 size_of_jump = 1;
1487 }
1488
1489 count -= size_of_jump + 4;
1490 if (!fits_in_imm31 (count))
1491 {
1492 as_bad_where (fragP->fr_file, fragP->fr_line,
1493 _("jump over nop padding out of range"));
1494 return;
1495 }
1496
1497 md_number_to_chars (where + size_of_jump, count, 4);
1498 where += size_of_jump + 4;
76bc74dc 1499 }
ccc9c027 1500 }
3ae729d5
L
1501
1502 /* Generate multiple NOPs. */
1503 i386_output_nops (where, patt, count, limit);
252b5132
RH
1504}
1505
c6fb90c8 1506static INLINE int
0dfbf9d7 1507operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1508{
0dfbf9d7 1509 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1510 {
1511 case 3:
0dfbf9d7 1512 if (x->array[2])
c6fb90c8 1513 return 0;
1a0670f3 1514 /* Fall through. */
c6fb90c8 1515 case 2:
0dfbf9d7 1516 if (x->array[1])
c6fb90c8 1517 return 0;
1a0670f3 1518 /* Fall through. */
c6fb90c8 1519 case 1:
0dfbf9d7 1520 return !x->array[0];
c6fb90c8
L
1521 default:
1522 abort ();
1523 }
40fb9820
L
1524}
1525
c6fb90c8 1526static INLINE void
0dfbf9d7 1527operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1528{
0dfbf9d7 1529 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1530 {
1531 case 3:
0dfbf9d7 1532 x->array[2] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8 1534 case 2:
0dfbf9d7 1535 x->array[1] = v;
1a0670f3 1536 /* Fall through. */
c6fb90c8 1537 case 1:
0dfbf9d7 1538 x->array[0] = v;
1a0670f3 1539 /* Fall through. */
c6fb90c8
L
1540 break;
1541 default:
1542 abort ();
1543 }
1544}
40fb9820 1545
c6fb90c8 1546static INLINE int
0dfbf9d7
L
1547operand_type_equal (const union i386_operand_type *x,
1548 const union i386_operand_type *y)
c6fb90c8 1549{
0dfbf9d7 1550 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1551 {
1552 case 3:
0dfbf9d7 1553 if (x->array[2] != y->array[2])
c6fb90c8 1554 return 0;
1a0670f3 1555 /* Fall through. */
c6fb90c8 1556 case 2:
0dfbf9d7 1557 if (x->array[1] != y->array[1])
c6fb90c8 1558 return 0;
1a0670f3 1559 /* Fall through. */
c6fb90c8 1560 case 1:
0dfbf9d7 1561 return x->array[0] == y->array[0];
c6fb90c8
L
1562 break;
1563 default:
1564 abort ();
1565 }
1566}
40fb9820 1567
0dfbf9d7
L
1568static INLINE int
1569cpu_flags_all_zero (const union i386_cpu_flags *x)
1570{
1571 switch (ARRAY_SIZE(x->array))
1572 {
53467f57
IT
1573 case 4:
1574 if (x->array[3])
1575 return 0;
1576 /* Fall through. */
0dfbf9d7
L
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1a0670f3 1580 /* Fall through. */
0dfbf9d7
L
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1a0670f3 1584 /* Fall through. */
0dfbf9d7
L
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590}
1591
0dfbf9d7
L
1592static INLINE int
1593cpu_flags_equal (const union i386_cpu_flags *x,
1594 const union i386_cpu_flags *y)
1595{
1596 switch (ARRAY_SIZE(x->array))
1597 {
53467f57
IT
1598 case 4:
1599 if (x->array[3] != y->array[3])
1600 return 0;
1601 /* Fall through. */
0dfbf9d7
L
1602 case 3:
1603 if (x->array[2] != y->array[2])
1604 return 0;
1a0670f3 1605 /* Fall through. */
0dfbf9d7
L
1606 case 2:
1607 if (x->array[1] != y->array[1])
1608 return 0;
1a0670f3 1609 /* Fall through. */
0dfbf9d7
L
1610 case 1:
1611 return x->array[0] == y->array[0];
1612 break;
1613 default:
1614 abort ();
1615 }
1616}
c6fb90c8
L
1617
1618static INLINE int
1619cpu_flags_check_cpu64 (i386_cpu_flags f)
1620{
1621 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1622 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1623}
1624
c6fb90c8
L
1625static INLINE i386_cpu_flags
1626cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1627{
c6fb90c8
L
1628 switch (ARRAY_SIZE (x.array))
1629 {
53467f57
IT
1630 case 4:
1631 x.array [3] &= y.array [3];
1632 /* Fall through. */
c6fb90c8
L
1633 case 3:
1634 x.array [2] &= y.array [2];
1a0670f3 1635 /* Fall through. */
c6fb90c8
L
1636 case 2:
1637 x.array [1] &= y.array [1];
1a0670f3 1638 /* Fall through. */
c6fb90c8
L
1639 case 1:
1640 x.array [0] &= y.array [0];
1641 break;
1642 default:
1643 abort ();
1644 }
1645 return x;
1646}
40fb9820 1647
c6fb90c8
L
1648static INLINE i386_cpu_flags
1649cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1650{
c6fb90c8 1651 switch (ARRAY_SIZE (x.array))
40fb9820 1652 {
53467f57
IT
1653 case 4:
1654 x.array [3] |= y.array [3];
1655 /* Fall through. */
c6fb90c8
L
1656 case 3:
1657 x.array [2] |= y.array [2];
1a0670f3 1658 /* Fall through. */
c6fb90c8
L
1659 case 2:
1660 x.array [1] |= y.array [1];
1a0670f3 1661 /* Fall through. */
c6fb90c8
L
1662 case 1:
1663 x.array [0] |= y.array [0];
40fb9820
L
1664 break;
1665 default:
1666 abort ();
1667 }
40fb9820
L
1668 return x;
1669}
1670
309d3373
JB
1671static INLINE i386_cpu_flags
1672cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1673{
1674 switch (ARRAY_SIZE (x.array))
1675 {
53467f57
IT
1676 case 4:
1677 x.array [3] &= ~y.array [3];
1678 /* Fall through. */
309d3373
JB
1679 case 3:
1680 x.array [2] &= ~y.array [2];
1a0670f3 1681 /* Fall through. */
309d3373
JB
1682 case 2:
1683 x.array [1] &= ~y.array [1];
1a0670f3 1684 /* Fall through. */
309d3373
JB
1685 case 1:
1686 x.array [0] &= ~y.array [0];
1687 break;
1688 default:
1689 abort ();
1690 }
1691 return x;
1692}
1693
c0f3af97
L
1694#define CPU_FLAGS_ARCH_MATCH 0x1
1695#define CPU_FLAGS_64BIT_MATCH 0x2
1696
c0f3af97 1697#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1698 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1699
1700/* Return CPU flags match bits. */
3629bb00 1701
40fb9820 1702static int
d3ce72d0 1703cpu_flags_match (const insn_template *t)
40fb9820 1704{
c0f3af97
L
1705 i386_cpu_flags x = t->cpu_flags;
1706 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1707
1708 x.bitfield.cpu64 = 0;
1709 x.bitfield.cpuno64 = 0;
1710
0dfbf9d7 1711 if (cpu_flags_all_zero (&x))
c0f3af97
L
1712 {
1713 /* This instruction is available on all archs. */
db12e14e 1714 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1715 }
3629bb00
L
1716 else
1717 {
c0f3af97 1718 /* This instruction is available only on some archs. */
3629bb00
L
1719 i386_cpu_flags cpu = cpu_arch_flags;
1720
ab592e75
JB
1721 /* AVX512VL is no standalone feature - match it and then strip it. */
1722 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1723 return match;
1724 x.bitfield.cpuavx512vl = 0;
1725
3629bb00 1726 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1727 if (!cpu_flags_all_zero (&cpu))
1728 {
a5ff0eb2
L
1729 if (x.bitfield.cpuavx)
1730 {
929f69fa 1731 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1732 if (cpu.bitfield.cpuavx
1733 && (!t->opcode_modifier.sse2avx || sse2avx)
1734 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1735 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1736 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1737 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1738 }
929f69fa
JB
1739 else if (x.bitfield.cpuavx512f)
1740 {
1741 /* We need to check a few extra flags with AVX512F. */
1742 if (cpu.bitfield.cpuavx512f
1743 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1744 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1745 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1746 match |= CPU_FLAGS_ARCH_MATCH;
1747 }
a5ff0eb2 1748 else
db12e14e 1749 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1750 }
3629bb00 1751 }
c0f3af97 1752 return match;
40fb9820
L
1753}
1754
c6fb90c8
L
1755static INLINE i386_operand_type
1756operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1757{
c6fb90c8
L
1758 switch (ARRAY_SIZE (x.array))
1759 {
1760 case 3:
1761 x.array [2] &= y.array [2];
1a0670f3 1762 /* Fall through. */
c6fb90c8
L
1763 case 2:
1764 x.array [1] &= y.array [1];
1a0670f3 1765 /* Fall through. */
c6fb90c8
L
1766 case 1:
1767 x.array [0] &= y.array [0];
1768 break;
1769 default:
1770 abort ();
1771 }
1772 return x;
40fb9820
L
1773}
1774
73053c1f
JB
1775static INLINE i386_operand_type
1776operand_type_and_not (i386_operand_type x, i386_operand_type y)
1777{
1778 switch (ARRAY_SIZE (x.array))
1779 {
1780 case 3:
1781 x.array [2] &= ~y.array [2];
1782 /* Fall through. */
1783 case 2:
1784 x.array [1] &= ~y.array [1];
1785 /* Fall through. */
1786 case 1:
1787 x.array [0] &= ~y.array [0];
1788 break;
1789 default:
1790 abort ();
1791 }
1792 return x;
1793}
1794
c6fb90c8
L
1795static INLINE i386_operand_type
1796operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1797{
c6fb90c8 1798 switch (ARRAY_SIZE (x.array))
40fb9820 1799 {
c6fb90c8
L
1800 case 3:
1801 x.array [2] |= y.array [2];
1a0670f3 1802 /* Fall through. */
c6fb90c8
L
1803 case 2:
1804 x.array [1] |= y.array [1];
1a0670f3 1805 /* Fall through. */
c6fb90c8
L
1806 case 1:
1807 x.array [0] |= y.array [0];
40fb9820
L
1808 break;
1809 default:
1810 abort ();
1811 }
c6fb90c8
L
1812 return x;
1813}
40fb9820 1814
c6fb90c8
L
1815static INLINE i386_operand_type
1816operand_type_xor (i386_operand_type x, i386_operand_type y)
1817{
1818 switch (ARRAY_SIZE (x.array))
1819 {
1820 case 3:
1821 x.array [2] ^= y.array [2];
1a0670f3 1822 /* Fall through. */
c6fb90c8
L
1823 case 2:
1824 x.array [1] ^= y.array [1];
1a0670f3 1825 /* Fall through. */
c6fb90c8
L
1826 case 1:
1827 x.array [0] ^= y.array [0];
1828 break;
1829 default:
1830 abort ();
1831 }
40fb9820
L
1832 return x;
1833}
1834
1835static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1836static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1837static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1838static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1839static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1840static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1841static const i386_operand_type anydisp
1842 = OPERAND_TYPE_ANYDISP;
40fb9820 1843static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1844static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1845static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1846static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1847static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1848static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1849static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1850static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1851static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1852static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1853static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1854static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1855
1856enum operand_type
1857{
1858 reg,
40fb9820
L
1859 imm,
1860 disp,
1861 anymem
1862};
1863
c6fb90c8 1864static INLINE int
40fb9820
L
1865operand_type_check (i386_operand_type t, enum operand_type c)
1866{
1867 switch (c)
1868 {
1869 case reg:
dc821c5f 1870 return t.bitfield.reg;
40fb9820 1871
40fb9820
L
1872 case imm:
1873 return (t.bitfield.imm8
1874 || t.bitfield.imm8s
1875 || t.bitfield.imm16
1876 || t.bitfield.imm32
1877 || t.bitfield.imm32s
1878 || t.bitfield.imm64);
1879
1880 case disp:
1881 return (t.bitfield.disp8
1882 || t.bitfield.disp16
1883 || t.bitfield.disp32
1884 || t.bitfield.disp32s
1885 || t.bitfield.disp64);
1886
1887 case anymem:
1888 return (t.bitfield.disp8
1889 || t.bitfield.disp16
1890 || t.bitfield.disp32
1891 || t.bitfield.disp32s
1892 || t.bitfield.disp64
1893 || t.bitfield.baseindex);
1894
1895 default:
1896 abort ();
1897 }
2cfe26b6
AM
1898
1899 return 0;
40fb9820
L
1900}
1901
7a54636a
L
1902/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1903 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1904
1905static INLINE int
7a54636a
L
1906match_operand_size (const insn_template *t, unsigned int wanted,
1907 unsigned int given)
5c07affc 1908{
3ac21baa
JB
1909 return !((i.types[given].bitfield.byte
1910 && !t->operand_types[wanted].bitfield.byte)
1911 || (i.types[given].bitfield.word
1912 && !t->operand_types[wanted].bitfield.word)
1913 || (i.types[given].bitfield.dword
1914 && !t->operand_types[wanted].bitfield.dword)
1915 || (i.types[given].bitfield.qword
1916 && !t->operand_types[wanted].bitfield.qword)
1917 || (i.types[given].bitfield.tbyte
1918 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1919}
1920
dd40ce22
L
1921/* Return 1 if there is no conflict in SIMD register between operand
1922 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1923
1924static INLINE int
dd40ce22
L
1925match_simd_size (const insn_template *t, unsigned int wanted,
1926 unsigned int given)
1b54b8d7 1927{
3ac21baa
JB
1928 return !((i.types[given].bitfield.xmmword
1929 && !t->operand_types[wanted].bitfield.xmmword)
1930 || (i.types[given].bitfield.ymmword
1931 && !t->operand_types[wanted].bitfield.ymmword)
1932 || (i.types[given].bitfield.zmmword
1933 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1934}
1935
7a54636a
L
1936/* Return 1 if there is no conflict in any size between operand GIVEN
1937 and opeand WANTED for instruction template T. */
5c07affc
L
1938
1939static INLINE int
dd40ce22
L
1940match_mem_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
5c07affc 1942{
7a54636a 1943 return (match_operand_size (t, wanted, given)
3ac21baa 1944 && !((i.types[given].bitfield.unspecified
af508cb9 1945 && !i.broadcast
3ac21baa
JB
1946 && !t->operand_types[wanted].bitfield.unspecified)
1947 || (i.types[given].bitfield.fword
1948 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1949 /* For scalar opcode templates to allow register and memory
1950 operands at the same time, some special casing is needed
d6793fa1
JB
1951 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1952 down-conversion vpmov*. */
3ac21baa 1953 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1954 && !t->opcode_modifier.broadcast
3ac21baa
JB
1955 && (t->operand_types[wanted].bitfield.byte
1956 || t->operand_types[wanted].bitfield.word
1957 || t->operand_types[wanted].bitfield.dword
1958 || t->operand_types[wanted].bitfield.qword))
1959 ? (i.types[given].bitfield.xmmword
1960 || i.types[given].bitfield.ymmword
1961 || i.types[given].bitfield.zmmword)
1962 : !match_simd_size(t, wanted, given))));
5c07affc
L
1963}
1964
3ac21baa
JB
1965/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1966 operands for instruction template T, and it has MATCH_REVERSE set if there
1967 is no size conflict on any operands for the template with operands reversed
1968 (and the template allows for reversing in the first place). */
5c07affc 1969
3ac21baa
JB
1970#define MATCH_STRAIGHT 1
1971#define MATCH_REVERSE 2
1972
1973static INLINE unsigned int
d3ce72d0 1974operand_size_match (const insn_template *t)
5c07affc 1975{
3ac21baa 1976 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
1977
1978 /* Don't check jump instructions. */
1979 if (t->opcode_modifier.jump
1980 || t->opcode_modifier.jumpbyte
1981 || t->opcode_modifier.jumpdword
1982 || t->opcode_modifier.jumpintersegment)
1983 return match;
1984
1985 /* Check memory and accumulator operand size. */
1986 for (j = 0; j < i.operands; j++)
1987 {
1b54b8d7
JB
1988 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1989 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1990 continue;
1991
1b54b8d7 1992 if (t->operand_types[j].bitfield.reg
7a54636a 1993 && !match_operand_size (t, j, j))
5c07affc
L
1994 {
1995 match = 0;
1996 break;
1997 }
1998
1b54b8d7 1999 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2000 && !match_simd_size (t, j, j))
1b54b8d7
JB
2001 {
2002 match = 0;
2003 break;
2004 }
2005
2006 if (t->operand_types[j].bitfield.acc
7a54636a 2007 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2008 {
2009 match = 0;
2010 break;
2011 }
2012
3ac21baa 2013 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
5c07affc
L
2014 {
2015 match = 0;
2016 break;
2017 }
2018 }
2019
3ac21baa 2020 if (!t->opcode_modifier.d)
891edac4
L
2021 {
2022mismatch:
3ac21baa
JB
2023 if (!match)
2024 i.error = operand_size_mismatch;
2025 return match;
891edac4 2026 }
5c07affc
L
2027
2028 /* Check reverse. */
9c2799c2 2029 gas_assert (i.operands == 2);
5c07affc 2030
5c07affc
L
2031 for (j = 0; j < 2; j++)
2032 {
dc821c5f
JB
2033 if ((t->operand_types[j].bitfield.reg
2034 || t->operand_types[j].bitfield.acc)
7a54636a 2035 && !match_operand_size (t, j, !j))
891edac4 2036 goto mismatch;
5c07affc 2037
3ac21baa
JB
2038 if (i.types[!j].bitfield.mem
2039 && !match_mem_size (t, j, !j))
891edac4 2040 goto mismatch;
5c07affc
L
2041 }
2042
3ac21baa 2043 return match | MATCH_REVERSE;
5c07affc
L
2044}
2045
c6fb90c8 2046static INLINE int
40fb9820
L
2047operand_type_match (i386_operand_type overlap,
2048 i386_operand_type given)
2049{
2050 i386_operand_type temp = overlap;
2051
2052 temp.bitfield.jumpabsolute = 0;
7d5e4556 2053 temp.bitfield.unspecified = 0;
5c07affc
L
2054 temp.bitfield.byte = 0;
2055 temp.bitfield.word = 0;
2056 temp.bitfield.dword = 0;
2057 temp.bitfield.fword = 0;
2058 temp.bitfield.qword = 0;
2059 temp.bitfield.tbyte = 0;
2060 temp.bitfield.xmmword = 0;
c0f3af97 2061 temp.bitfield.ymmword = 0;
43234a1e 2062 temp.bitfield.zmmword = 0;
0dfbf9d7 2063 if (operand_type_all_zero (&temp))
891edac4 2064 goto mismatch;
40fb9820 2065
891edac4
L
2066 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2067 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2068 return 1;
2069
2070mismatch:
a65babc9 2071 i.error = operand_type_mismatch;
891edac4 2072 return 0;
40fb9820
L
2073}
2074
7d5e4556 2075/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2076 unless the expected operand type register overlap is null.
2077 Memory operand size of certain SIMD instructions is also being checked
2078 here. */
40fb9820 2079
c6fb90c8 2080static INLINE int
dc821c5f 2081operand_type_register_match (i386_operand_type g0,
40fb9820 2082 i386_operand_type t0,
40fb9820
L
2083 i386_operand_type g1,
2084 i386_operand_type t1)
2085{
10c17abd
JB
2086 if (!g0.bitfield.reg
2087 && !g0.bitfield.regsimd
2088 && (!operand_type_check (g0, anymem)
2089 || g0.bitfield.unspecified
2090 || !t0.bitfield.regsimd))
40fb9820
L
2091 return 1;
2092
10c17abd
JB
2093 if (!g1.bitfield.reg
2094 && !g1.bitfield.regsimd
2095 && (!operand_type_check (g1, anymem)
2096 || g1.bitfield.unspecified
2097 || !t1.bitfield.regsimd))
40fb9820
L
2098 return 1;
2099
dc821c5f
JB
2100 if (g0.bitfield.byte == g1.bitfield.byte
2101 && g0.bitfield.word == g1.bitfield.word
2102 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2103 && g0.bitfield.qword == g1.bitfield.qword
2104 && g0.bitfield.xmmword == g1.bitfield.xmmword
2105 && g0.bitfield.ymmword == g1.bitfield.ymmword
2106 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2107 return 1;
2108
dc821c5f
JB
2109 if (!(t0.bitfield.byte & t1.bitfield.byte)
2110 && !(t0.bitfield.word & t1.bitfield.word)
2111 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2112 && !(t0.bitfield.qword & t1.bitfield.qword)
2113 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2114 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2115 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2116 return 1;
2117
a65babc9 2118 i.error = register_type_mismatch;
891edac4
L
2119
2120 return 0;
40fb9820
L
2121}
2122
4c692bc7
JB
2123static INLINE unsigned int
2124register_number (const reg_entry *r)
2125{
2126 unsigned int nr = r->reg_num;
2127
2128 if (r->reg_flags & RegRex)
2129 nr += 8;
2130
200cbe0f
L
2131 if (r->reg_flags & RegVRex)
2132 nr += 16;
2133
4c692bc7
JB
2134 return nr;
2135}
2136
252b5132 2137static INLINE unsigned int
40fb9820 2138mode_from_disp_size (i386_operand_type t)
252b5132 2139{
b5014f7a 2140 if (t.bitfield.disp8)
40fb9820
L
2141 return 1;
2142 else if (t.bitfield.disp16
2143 || t.bitfield.disp32
2144 || t.bitfield.disp32s)
2145 return 2;
2146 else
2147 return 0;
252b5132
RH
2148}
2149
2150static INLINE int
65879393 2151fits_in_signed_byte (addressT num)
252b5132 2152{
65879393 2153 return num + 0x80 <= 0xff;
47926f60 2154}
252b5132
RH
2155
2156static INLINE int
65879393 2157fits_in_unsigned_byte (addressT num)
252b5132 2158{
65879393 2159 return num <= 0xff;
47926f60 2160}
252b5132
RH
2161
2162static INLINE int
65879393 2163fits_in_unsigned_word (addressT num)
252b5132 2164{
65879393 2165 return num <= 0xffff;
47926f60 2166}
252b5132
RH
2167
2168static INLINE int
65879393 2169fits_in_signed_word (addressT num)
252b5132 2170{
65879393 2171 return num + 0x8000 <= 0xffff;
47926f60 2172}
2a962e6d 2173
3e73aa7c 2174static INLINE int
65879393 2175fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2176{
2177#ifndef BFD64
2178 return 1;
2179#else
65879393 2180 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2181#endif
2182} /* fits_in_signed_long() */
2a962e6d 2183
3e73aa7c 2184static INLINE int
65879393 2185fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2186{
2187#ifndef BFD64
2188 return 1;
2189#else
65879393 2190 return num <= 0xffffffff;
3e73aa7c
JH
2191#endif
2192} /* fits_in_unsigned_long() */
252b5132 2193
43234a1e 2194static INLINE int
b5014f7a 2195fits_in_disp8 (offsetT num)
43234a1e
L
2196{
2197 int shift = i.memshift;
2198 unsigned int mask;
2199
2200 if (shift == -1)
2201 abort ();
2202
2203 mask = (1 << shift) - 1;
2204
2205 /* Return 0 if NUM isn't properly aligned. */
2206 if ((num & mask))
2207 return 0;
2208
2209 /* Check if NUM will fit in 8bit after shift. */
2210 return fits_in_signed_byte (num >> shift);
2211}
2212
a683cc34
SP
2213static INLINE int
2214fits_in_imm4 (offsetT num)
2215{
2216 return (num & 0xf) == num;
2217}
2218
40fb9820 2219static i386_operand_type
e3bb37b5 2220smallest_imm_type (offsetT num)
252b5132 2221{
40fb9820 2222 i386_operand_type t;
7ab9ffdd 2223
0dfbf9d7 2224 operand_type_set (&t, 0);
40fb9820
L
2225 t.bitfield.imm64 = 1;
2226
2227 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2228 {
2229 /* This code is disabled on the 486 because all the Imm1 forms
2230 in the opcode table are slower on the i486. They're the
2231 versions with the implicitly specified single-position
2232 displacement, which has another syntax if you really want to
2233 use that form. */
40fb9820
L
2234 t.bitfield.imm1 = 1;
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm8s = 1;
2237 t.bitfield.imm16 = 1;
2238 t.bitfield.imm32 = 1;
2239 t.bitfield.imm32s = 1;
2240 }
2241 else if (fits_in_signed_byte (num))
2242 {
2243 t.bitfield.imm8 = 1;
2244 t.bitfield.imm8s = 1;
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_unsigned_byte (num))
2250 {
2251 t.bitfield.imm8 = 1;
2252 t.bitfield.imm16 = 1;
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2257 {
2258 t.bitfield.imm16 = 1;
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_signed_long (num))
2263 {
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_unsigned_long (num))
2268 t.bitfield.imm32 = 1;
2269
2270 return t;
47926f60 2271}
252b5132 2272
847f7ad4 2273static offsetT
e3bb37b5 2274offset_in_range (offsetT val, int size)
847f7ad4 2275{
508866be 2276 addressT mask;
ba2adb93 2277
847f7ad4
AM
2278 switch (size)
2279 {
508866be
L
2280 case 1: mask = ((addressT) 1 << 8) - 1; break;
2281 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2282 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2283#ifdef BFD64
2284 case 8: mask = ((addressT) 2 << 63) - 1; break;
2285#endif
47926f60 2286 default: abort ();
847f7ad4
AM
2287 }
2288
9de868bf
L
2289#ifdef BFD64
2290 /* If BFD64, sign extend val for 32bit address mode. */
2291 if (flag_code != CODE_64BIT
2292 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2293 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2294 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2295#endif
ba2adb93 2296
47926f60 2297 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2298 {
2299 char buf1[40], buf2[40];
2300
2301 sprint_value (buf1, val);
2302 sprint_value (buf2, val & mask);
2303 as_warn (_("%s shortened to %s"), buf1, buf2);
2304 }
2305 return val & mask;
2306}
2307
c32fa91d
L
2308enum PREFIX_GROUP
2309{
2310 PREFIX_EXIST = 0,
2311 PREFIX_LOCK,
2312 PREFIX_REP,
04ef582a 2313 PREFIX_DS,
c32fa91d
L
2314 PREFIX_OTHER
2315};
2316
2317/* Returns
2318 a. PREFIX_EXIST if attempting to add a prefix where one from the
2319 same class already exists.
2320 b. PREFIX_LOCK if lock prefix is added.
2321 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2322 d. PREFIX_DS if ds prefix is added.
2323 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2324 */
2325
2326static enum PREFIX_GROUP
e3bb37b5 2327add_prefix (unsigned int prefix)
252b5132 2328{
c32fa91d 2329 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2330 unsigned int q;
252b5132 2331
29b0f896
AM
2332 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2333 && flag_code == CODE_64BIT)
b1905489 2334 {
161a04f6 2335 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2336 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2337 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2338 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2339 ret = PREFIX_EXIST;
b1905489
JB
2340 q = REX_PREFIX;
2341 }
3e73aa7c 2342 else
b1905489
JB
2343 {
2344 switch (prefix)
2345 {
2346 default:
2347 abort ();
2348
b1905489 2349 case DS_PREFIX_OPCODE:
04ef582a
L
2350 ret = PREFIX_DS;
2351 /* Fall through. */
2352 case CS_PREFIX_OPCODE:
b1905489
JB
2353 case ES_PREFIX_OPCODE:
2354 case FS_PREFIX_OPCODE:
2355 case GS_PREFIX_OPCODE:
2356 case SS_PREFIX_OPCODE:
2357 q = SEG_PREFIX;
2358 break;
2359
2360 case REPNE_PREFIX_OPCODE:
2361 case REPE_PREFIX_OPCODE:
c32fa91d
L
2362 q = REP_PREFIX;
2363 ret = PREFIX_REP;
2364 break;
2365
b1905489 2366 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2367 q = LOCK_PREFIX;
2368 ret = PREFIX_LOCK;
b1905489
JB
2369 break;
2370
2371 case FWAIT_OPCODE:
2372 q = WAIT_PREFIX;
2373 break;
2374
2375 case ADDR_PREFIX_OPCODE:
2376 q = ADDR_PREFIX;
2377 break;
2378
2379 case DATA_PREFIX_OPCODE:
2380 q = DATA_PREFIX;
2381 break;
2382 }
2383 if (i.prefix[q] != 0)
c32fa91d 2384 ret = PREFIX_EXIST;
b1905489 2385 }
252b5132 2386
b1905489 2387 if (ret)
252b5132 2388 {
b1905489
JB
2389 if (!i.prefix[q])
2390 ++i.prefixes;
2391 i.prefix[q] |= prefix;
252b5132 2392 }
b1905489
JB
2393 else
2394 as_bad (_("same type of prefix used twice"));
252b5132 2395
252b5132
RH
2396 return ret;
2397}
2398
2399static void
78f12dd3 2400update_code_flag (int value, int check)
eecb386c 2401{
78f12dd3
L
2402 PRINTF_LIKE ((*as_error));
2403
1e9cc1c2 2404 flag_code = (enum flag_code) value;
40fb9820
L
2405 if (flag_code == CODE_64BIT)
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 1;
2408 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2409 }
2410 else
2411 {
2412 cpu_arch_flags.bitfield.cpu64 = 0;
2413 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2414 }
2415 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2416 {
78f12dd3
L
2417 if (check)
2418 as_error = as_fatal;
2419 else
2420 as_error = as_bad;
2421 (*as_error) (_("64bit mode not supported on `%s'."),
2422 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2423 }
40fb9820 2424 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2425 {
78f12dd3
L
2426 if (check)
2427 as_error = as_fatal;
2428 else
2429 as_error = as_bad;
2430 (*as_error) (_("32bit mode not supported on `%s'."),
2431 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2432 }
eecb386c
AM
2433 stackop_size = '\0';
2434}
2435
78f12dd3
L
2436static void
2437set_code_flag (int value)
2438{
2439 update_code_flag (value, 0);
2440}
2441
eecb386c 2442static void
e3bb37b5 2443set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2444{
1e9cc1c2 2445 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2446 if (flag_code != CODE_16BIT)
2447 abort ();
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2450 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2451}
2452
2453static void
e3bb37b5 2454set_intel_syntax (int syntax_flag)
252b5132
RH
2455{
2456 /* Find out if register prefixing is specified. */
2457 int ask_naked_reg = 0;
2458
2459 SKIP_WHITESPACE ();
29b0f896 2460 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2461 {
d02603dc
NC
2462 char *string;
2463 int e = get_symbol_name (&string);
252b5132 2464
47926f60 2465 if (strcmp (string, "prefix") == 0)
252b5132 2466 ask_naked_reg = 1;
47926f60 2467 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2468 ask_naked_reg = -1;
2469 else
d0b47220 2470 as_bad (_("bad argument to syntax directive."));
d02603dc 2471 (void) restore_line_pointer (e);
252b5132
RH
2472 }
2473 demand_empty_rest_of_line ();
c3332e24 2474
252b5132
RH
2475 intel_syntax = syntax_flag;
2476
2477 if (ask_naked_reg == 0)
f86103b7
AM
2478 allow_naked_reg = (intel_syntax
2479 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2480 else
2481 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2482
ee86248c 2483 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2484
e4a3b5a4 2485 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2486 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2487 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2488}
2489
1efbbeb4
L
2490static void
2491set_intel_mnemonic (int mnemonic_flag)
2492{
e1d4d893 2493 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2494}
2495
db51cc60
L
2496static void
2497set_allow_index_reg (int flag)
2498{
2499 allow_index_reg = flag;
2500}
2501
cb19c032 2502static void
7bab8ab5 2503set_check (int what)
cb19c032 2504{
7bab8ab5
JB
2505 enum check_kind *kind;
2506 const char *str;
2507
2508 if (what)
2509 {
2510 kind = &operand_check;
2511 str = "operand";
2512 }
2513 else
2514 {
2515 kind = &sse_check;
2516 str = "sse";
2517 }
2518
cb19c032
L
2519 SKIP_WHITESPACE ();
2520
2521 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2522 {
d02603dc
NC
2523 char *string;
2524 int e = get_symbol_name (&string);
cb19c032
L
2525
2526 if (strcmp (string, "none") == 0)
7bab8ab5 2527 *kind = check_none;
cb19c032 2528 else if (strcmp (string, "warning") == 0)
7bab8ab5 2529 *kind = check_warning;
cb19c032 2530 else if (strcmp (string, "error") == 0)
7bab8ab5 2531 *kind = check_error;
cb19c032 2532 else
7bab8ab5 2533 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2534 (void) restore_line_pointer (e);
cb19c032
L
2535 }
2536 else
7bab8ab5 2537 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2538
2539 demand_empty_rest_of_line ();
2540}
2541
8a9036a4
L
2542static void
2543check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2544 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2545{
2546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2547 static const char *arch;
2548
2549 /* Intel LIOM is only supported on ELF. */
2550 if (!IS_ELF)
2551 return;
2552
2553 if (!arch)
2554 {
2555 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2556 use default_arch. */
2557 arch = cpu_arch_name;
2558 if (!arch)
2559 arch = default_arch;
2560 }
2561
81486035
L
2562 /* If we are targeting Intel MCU, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2564 || new_flag.bitfield.cpuiamcu)
2565 return;
2566
3632d14b 2567 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2569 || new_flag.bitfield.cpul1om)
8a9036a4 2570 return;
76ba9986 2571
7a9068fe
L
2572 /* If we are targeting Intel K1OM, we must enable it. */
2573 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2574 || new_flag.bitfield.cpuk1om)
2575 return;
2576
8a9036a4
L
2577 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2578#endif
2579}
2580
e413e4e9 2581static void
e3bb37b5 2582set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2583{
47926f60 2584 SKIP_WHITESPACE ();
e413e4e9 2585
29b0f896 2586 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2587 {
d02603dc
NC
2588 char *string;
2589 int e = get_symbol_name (&string);
91d6fa6a 2590 unsigned int j;
40fb9820 2591 i386_cpu_flags flags;
e413e4e9 2592
91d6fa6a 2593 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2594 {
91d6fa6a 2595 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2596 {
91d6fa6a 2597 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2598
5c6af06e
JB
2599 if (*string != '.')
2600 {
91d6fa6a 2601 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2602 cpu_sub_arch_name = NULL;
91d6fa6a 2603 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2604 if (flag_code == CODE_64BIT)
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 1;
2607 cpu_arch_flags.bitfield.cpuno64 = 0;
2608 }
2609 else
2610 {
2611 cpu_arch_flags.bitfield.cpu64 = 0;
2612 cpu_arch_flags.bitfield.cpuno64 = 1;
2613 }
91d6fa6a
NC
2614 cpu_arch_isa = cpu_arch[j].type;
2615 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2616 if (!cpu_arch_tune_set)
2617 {
2618 cpu_arch_tune = cpu_arch_isa;
2619 cpu_arch_tune_flags = cpu_arch_isa_flags;
2620 }
5c6af06e
JB
2621 break;
2622 }
40fb9820 2623
293f5f65
L
2624 flags = cpu_flags_or (cpu_arch_flags,
2625 cpu_arch[j].flags);
81486035 2626
5b64d091 2627 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2628 {
6305a203
L
2629 if (cpu_sub_arch_name)
2630 {
2631 char *name = cpu_sub_arch_name;
2632 cpu_sub_arch_name = concat (name,
91d6fa6a 2633 cpu_arch[j].name,
1bf57e9f 2634 (const char *) NULL);
6305a203
L
2635 free (name);
2636 }
2637 else
91d6fa6a 2638 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2639 cpu_arch_flags = flags;
a586129e 2640 cpu_arch_isa_flags = flags;
5c6af06e 2641 }
0089dace
L
2642 else
2643 cpu_arch_isa_flags
2644 = cpu_flags_or (cpu_arch_isa_flags,
2645 cpu_arch[j].flags);
d02603dc 2646 (void) restore_line_pointer (e);
5c6af06e
JB
2647 demand_empty_rest_of_line ();
2648 return;
e413e4e9
AM
2649 }
2650 }
293f5f65
L
2651
2652 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2653 {
33eaf5de 2654 /* Disable an ISA extension. */
293f5f65
L
2655 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2656 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2657 {
2658 flags = cpu_flags_and_not (cpu_arch_flags,
2659 cpu_noarch[j].flags);
2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2661 {
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name, string,
2666 (const char *) NULL);
2667 free (name);
2668 }
2669 else
2670 cpu_sub_arch_name = xstrdup (string);
2671 cpu_arch_flags = flags;
2672 cpu_arch_isa_flags = flags;
2673 }
2674 (void) restore_line_pointer (e);
2675 demand_empty_rest_of_line ();
2676 return;
2677 }
2678
2679 j = ARRAY_SIZE (cpu_arch);
2680 }
2681
91d6fa6a 2682 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2683 as_bad (_("no such architecture: `%s'"), string);
2684
2685 *input_line_pointer = e;
2686 }
2687 else
2688 as_bad (_("missing cpu architecture"));
2689
fddf5b5b
AM
2690 no_cond_jump_promotion = 0;
2691 if (*input_line_pointer == ','
29b0f896 2692 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2693 {
d02603dc
NC
2694 char *string;
2695 char e;
2696
2697 ++input_line_pointer;
2698 e = get_symbol_name (&string);
fddf5b5b
AM
2699
2700 if (strcmp (string, "nojumps") == 0)
2701 no_cond_jump_promotion = 1;
2702 else if (strcmp (string, "jumps") == 0)
2703 ;
2704 else
2705 as_bad (_("no such architecture modifier: `%s'"), string);
2706
d02603dc 2707 (void) restore_line_pointer (e);
fddf5b5b
AM
2708 }
2709
e413e4e9
AM
2710 demand_empty_rest_of_line ();
2711}
2712
8a9036a4
L
2713enum bfd_architecture
2714i386_arch (void)
2715{
3632d14b 2716 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code != CODE_64BIT)
2720 as_fatal (_("Intel L1OM is 64bit ELF only"));
2721 return bfd_arch_l1om;
2722 }
7a9068fe
L
2723 else if (cpu_arch_isa == PROCESSOR_K1OM)
2724 {
2725 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2726 || flag_code != CODE_64BIT)
2727 as_fatal (_("Intel K1OM is 64bit ELF only"));
2728 return bfd_arch_k1om;
2729 }
81486035
L
2730 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2731 {
2732 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2733 || flag_code == CODE_64BIT)
2734 as_fatal (_("Intel MCU is 32bit ELF only"));
2735 return bfd_arch_iamcu;
2736 }
8a9036a4
L
2737 else
2738 return bfd_arch_i386;
2739}
2740
b9d79e03 2741unsigned long
7016a5d5 2742i386_mach (void)
b9d79e03 2743{
351f65ca 2744 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2745 {
3632d14b 2746 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2747 {
351f65ca
L
2748 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2749 || default_arch[6] != '\0')
8a9036a4
L
2750 as_fatal (_("Intel L1OM is 64bit ELF only"));
2751 return bfd_mach_l1om;
2752 }
7a9068fe
L
2753 else if (cpu_arch_isa == PROCESSOR_K1OM)
2754 {
2755 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2756 || default_arch[6] != '\0')
2757 as_fatal (_("Intel K1OM is 64bit ELF only"));
2758 return bfd_mach_k1om;
2759 }
351f65ca 2760 else if (default_arch[6] == '\0')
8a9036a4 2761 return bfd_mach_x86_64;
351f65ca
L
2762 else
2763 return bfd_mach_x64_32;
8a9036a4 2764 }
5197d474
L
2765 else if (!strcmp (default_arch, "i386")
2766 || !strcmp (default_arch, "iamcu"))
81486035
L
2767 {
2768 if (cpu_arch_isa == PROCESSOR_IAMCU)
2769 {
2770 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2771 as_fatal (_("Intel MCU is 32bit ELF only"));
2772 return bfd_mach_i386_iamcu;
2773 }
2774 else
2775 return bfd_mach_i386_i386;
2776 }
b9d79e03 2777 else
2b5d6a91 2778 as_fatal (_("unknown architecture"));
b9d79e03 2779}
b9d79e03 2780\f
252b5132 2781void
7016a5d5 2782md_begin (void)
252b5132
RH
2783{
2784 const char *hash_err;
2785
86fa6981
L
2786 /* Support pseudo prefixes like {disp32}. */
2787 lex_type ['{'] = LEX_BEGIN_NAME;
2788
47926f60 2789 /* Initialize op_hash hash table. */
252b5132
RH
2790 op_hash = hash_new ();
2791
2792 {
d3ce72d0 2793 const insn_template *optab;
29b0f896 2794 templates *core_optab;
252b5132 2795
47926f60
KH
2796 /* Setup for loop. */
2797 optab = i386_optab;
add39d23 2798 core_optab = XNEW (templates);
252b5132
RH
2799 core_optab->start = optab;
2800
2801 while (1)
2802 {
2803 ++optab;
2804 if (optab->name == NULL
2805 || strcmp (optab->name, (optab - 1)->name) != 0)
2806 {
2807 /* different name --> ship out current template list;
47926f60 2808 add to hash table; & begin anew. */
252b5132
RH
2809 core_optab->end = optab;
2810 hash_err = hash_insert (op_hash,
2811 (optab - 1)->name,
5a49b8ac 2812 (void *) core_optab);
252b5132
RH
2813 if (hash_err)
2814 {
b37df7c4 2815 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2816 (optab - 1)->name,
2817 hash_err);
2818 }
2819 if (optab->name == NULL)
2820 break;
add39d23 2821 core_optab = XNEW (templates);
252b5132
RH
2822 core_optab->start = optab;
2823 }
2824 }
2825 }
2826
47926f60 2827 /* Initialize reg_hash hash table. */
252b5132
RH
2828 reg_hash = hash_new ();
2829 {
29b0f896 2830 const reg_entry *regtab;
c3fe08fa 2831 unsigned int regtab_size = i386_regtab_size;
252b5132 2832
c3fe08fa 2833 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2834 {
5a49b8ac 2835 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2836 if (hash_err)
b37df7c4 2837 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2838 regtab->reg_name,
2839 hash_err);
252b5132
RH
2840 }
2841 }
2842
47926f60 2843 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2844 {
29b0f896
AM
2845 int c;
2846 char *p;
252b5132
RH
2847
2848 for (c = 0; c < 256; c++)
2849 {
3882b010 2850 if (ISDIGIT (c))
252b5132
RH
2851 {
2852 digit_chars[c] = c;
2853 mnemonic_chars[c] = c;
2854 register_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
3882b010 2857 else if (ISLOWER (c))
252b5132
RH
2858 {
2859 mnemonic_chars[c] = c;
2860 register_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
3882b010 2863 else if (ISUPPER (c))
252b5132 2864 {
3882b010 2865 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2866 register_chars[c] = mnemonic_chars[c];
2867 operand_chars[c] = c;
2868 }
43234a1e 2869 else if (c == '{' || c == '}')
86fa6981
L
2870 {
2871 mnemonic_chars[c] = c;
2872 operand_chars[c] = c;
2873 }
252b5132 2874
3882b010 2875 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2876 identifier_chars[c] = c;
2877 else if (c >= 128)
2878 {
2879 identifier_chars[c] = c;
2880 operand_chars[c] = c;
2881 }
2882 }
2883
2884#ifdef LEX_AT
2885 identifier_chars['@'] = '@';
32137342
NC
2886#endif
2887#ifdef LEX_QM
2888 identifier_chars['?'] = '?';
2889 operand_chars['?'] = '?';
252b5132 2890#endif
252b5132 2891 digit_chars['-'] = '-';
c0f3af97 2892 mnemonic_chars['_'] = '_';
791fe849 2893 mnemonic_chars['-'] = '-';
0003779b 2894 mnemonic_chars['.'] = '.';
252b5132
RH
2895 identifier_chars['_'] = '_';
2896 identifier_chars['.'] = '.';
2897
2898 for (p = operand_special_chars; *p != '\0'; p++)
2899 operand_chars[(unsigned char) *p] = *p;
2900 }
2901
a4447b93
RH
2902 if (flag_code == CODE_64BIT)
2903 {
ca19b261
KT
2904#if defined (OBJ_COFF) && defined (TE_PE)
2905 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2906 ? 32 : 16);
2907#else
a4447b93 2908 x86_dwarf2_return_column = 16;
ca19b261 2909#endif
61ff971f 2910 x86_cie_data_alignment = -8;
a4447b93
RH
2911 }
2912 else
2913 {
2914 x86_dwarf2_return_column = 8;
2915 x86_cie_data_alignment = -4;
2916 }
252b5132
RH
2917}
2918
2919void
e3bb37b5 2920i386_print_statistics (FILE *file)
252b5132
RH
2921{
2922 hash_print_statistics (file, "i386 opcode", op_hash);
2923 hash_print_statistics (file, "i386 register", reg_hash);
2924}
2925\f
252b5132
RH
2926#ifdef DEBUG386
2927
ce8a8b2f 2928/* Debugging routines for md_assemble. */
d3ce72d0 2929static void pte (insn_template *);
40fb9820 2930static void pt (i386_operand_type);
e3bb37b5
L
2931static void pe (expressionS *);
2932static void ps (symbolS *);
252b5132
RH
2933
2934static void
e3bb37b5 2935pi (char *line, i386_insn *x)
252b5132 2936{
09137c09 2937 unsigned int j;
252b5132
RH
2938
2939 fprintf (stdout, "%s: template ", line);
2940 pte (&x->tm);
09f131f2
JH
2941 fprintf (stdout, " address: base %s index %s scale %x\n",
2942 x->base_reg ? x->base_reg->reg_name : "none",
2943 x->index_reg ? x->index_reg->reg_name : "none",
2944 x->log2_scale_factor);
2945 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2946 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2947 fprintf (stdout, " sib: base %x index %x scale %x\n",
2948 x->sib.base, x->sib.index, x->sib.scale);
2949 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2950 (x->rex & REX_W) != 0,
2951 (x->rex & REX_R) != 0,
2952 (x->rex & REX_X) != 0,
2953 (x->rex & REX_B) != 0);
09137c09 2954 for (j = 0; j < x->operands; j++)
252b5132 2955 {
09137c09
SP
2956 fprintf (stdout, " #%d: ", j + 1);
2957 pt (x->types[j]);
252b5132 2958 fprintf (stdout, "\n");
dc821c5f 2959 if (x->types[j].bitfield.reg
09137c09 2960 || x->types[j].bitfield.regmmx
1b54b8d7 2961 || x->types[j].bitfield.regsimd
09137c09
SP
2962 || x->types[j].bitfield.sreg2
2963 || x->types[j].bitfield.sreg3
2964 || x->types[j].bitfield.control
2965 || x->types[j].bitfield.debug
2966 || x->types[j].bitfield.test)
2967 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2968 if (operand_type_check (x->types[j], imm))
2969 pe (x->op[j].imms);
2970 if (operand_type_check (x->types[j], disp))
2971 pe (x->op[j].disps);
252b5132
RH
2972 }
2973}
2974
2975static void
d3ce72d0 2976pte (insn_template *t)
252b5132 2977{
09137c09 2978 unsigned int j;
252b5132 2979 fprintf (stdout, " %d operands ", t->operands);
47926f60 2980 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2981 if (t->extension_opcode != None)
2982 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2983 if (t->opcode_modifier.d)
252b5132 2984 fprintf (stdout, "D");
40fb9820 2985 if (t->opcode_modifier.w)
252b5132
RH
2986 fprintf (stdout, "W");
2987 fprintf (stdout, "\n");
09137c09 2988 for (j = 0; j < t->operands; j++)
252b5132 2989 {
09137c09
SP
2990 fprintf (stdout, " #%d type ", j + 1);
2991 pt (t->operand_types[j]);
252b5132
RH
2992 fprintf (stdout, "\n");
2993 }
2994}
2995
2996static void
e3bb37b5 2997pe (expressionS *e)
252b5132 2998{
24eab124 2999 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3000 fprintf (stdout, " add_number %ld (%lx)\n",
3001 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3002 if (e->X_add_symbol)
3003 {
3004 fprintf (stdout, " add_symbol ");
3005 ps (e->X_add_symbol);
3006 fprintf (stdout, "\n");
3007 }
3008 if (e->X_op_symbol)
3009 {
3010 fprintf (stdout, " op_symbol ");
3011 ps (e->X_op_symbol);
3012 fprintf (stdout, "\n");
3013 }
3014}
3015
3016static void
e3bb37b5 3017ps (symbolS *s)
252b5132
RH
3018{
3019 fprintf (stdout, "%s type %s%s",
3020 S_GET_NAME (s),
3021 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3022 segment_name (S_GET_SEGMENT (s)));
3023}
3024
7b81dfbb 3025static struct type_name
252b5132 3026 {
40fb9820
L
3027 i386_operand_type mask;
3028 const char *name;
252b5132 3029 }
7b81dfbb 3030const type_names[] =
252b5132 3031{
40fb9820
L
3032 { OPERAND_TYPE_REG8, "r8" },
3033 { OPERAND_TYPE_REG16, "r16" },
3034 { OPERAND_TYPE_REG32, "r32" },
3035 { OPERAND_TYPE_REG64, "r64" },
3036 { OPERAND_TYPE_IMM8, "i8" },
3037 { OPERAND_TYPE_IMM8, "i8s" },
3038 { OPERAND_TYPE_IMM16, "i16" },
3039 { OPERAND_TYPE_IMM32, "i32" },
3040 { OPERAND_TYPE_IMM32S, "i32s" },
3041 { OPERAND_TYPE_IMM64, "i64" },
3042 { OPERAND_TYPE_IMM1, "i1" },
3043 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3044 { OPERAND_TYPE_DISP8, "d8" },
3045 { OPERAND_TYPE_DISP16, "d16" },
3046 { OPERAND_TYPE_DISP32, "d32" },
3047 { OPERAND_TYPE_DISP32S, "d32s" },
3048 { OPERAND_TYPE_DISP64, "d64" },
3049 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3050 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3051 { OPERAND_TYPE_CONTROL, "control reg" },
3052 { OPERAND_TYPE_TEST, "test reg" },
3053 { OPERAND_TYPE_DEBUG, "debug reg" },
3054 { OPERAND_TYPE_FLOATREG, "FReg" },
3055 { OPERAND_TYPE_FLOATACC, "FAcc" },
3056 { OPERAND_TYPE_SREG2, "SReg2" },
3057 { OPERAND_TYPE_SREG3, "SReg3" },
3058 { OPERAND_TYPE_ACC, "Acc" },
3059 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3060 { OPERAND_TYPE_REGMMX, "rMMX" },
3061 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3062 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3063 { OPERAND_TYPE_REGZMM, "rZMM" },
3064 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3065 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3066};
3067
3068static void
40fb9820 3069pt (i386_operand_type t)
252b5132 3070{
40fb9820 3071 unsigned int j;
c6fb90c8 3072 i386_operand_type a;
252b5132 3073
40fb9820 3074 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3075 {
3076 a = operand_type_and (t, type_names[j].mask);
0349dc08 3077 if (!operand_type_all_zero (&a))
c6fb90c8
L
3078 fprintf (stdout, "%s, ", type_names[j].name);
3079 }
252b5132
RH
3080 fflush (stdout);
3081}
3082
3083#endif /* DEBUG386 */
3084\f
252b5132 3085static bfd_reloc_code_real_type
3956db08 3086reloc (unsigned int size,
64e74474
AM
3087 int pcrel,
3088 int sign,
3089 bfd_reloc_code_real_type other)
252b5132 3090{
47926f60 3091 if (other != NO_RELOC)
3956db08 3092 {
91d6fa6a 3093 reloc_howto_type *rel;
3956db08
JB
3094
3095 if (size == 8)
3096 switch (other)
3097 {
64e74474
AM
3098 case BFD_RELOC_X86_64_GOT32:
3099 return BFD_RELOC_X86_64_GOT64;
3100 break;
553d1284
L
3101 case BFD_RELOC_X86_64_GOTPLT64:
3102 return BFD_RELOC_X86_64_GOTPLT64;
3103 break;
64e74474
AM
3104 case BFD_RELOC_X86_64_PLTOFF64:
3105 return BFD_RELOC_X86_64_PLTOFF64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPC32:
3108 other = BFD_RELOC_X86_64_GOTPC64;
3109 break;
3110 case BFD_RELOC_X86_64_GOTPCREL:
3111 other = BFD_RELOC_X86_64_GOTPCREL64;
3112 break;
3113 case BFD_RELOC_X86_64_TPOFF32:
3114 other = BFD_RELOC_X86_64_TPOFF64;
3115 break;
3116 case BFD_RELOC_X86_64_DTPOFF32:
3117 other = BFD_RELOC_X86_64_DTPOFF64;
3118 break;
3119 default:
3120 break;
3956db08 3121 }
e05278af 3122
8ce3d284 3123#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3124 if (other == BFD_RELOC_SIZE32)
3125 {
3126 if (size == 8)
1ab668bf 3127 other = BFD_RELOC_SIZE64;
8fd4256d 3128 if (pcrel)
1ab668bf
AM
3129 {
3130 as_bad (_("there are no pc-relative size relocations"));
3131 return NO_RELOC;
3132 }
8fd4256d 3133 }
8ce3d284 3134#endif
8fd4256d 3135
e05278af 3136 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3137 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3138 sign = -1;
3139
91d6fa6a
NC
3140 rel = bfd_reloc_type_lookup (stdoutput, other);
3141 if (!rel)
3956db08 3142 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3143 else if (size != bfd_get_reloc_size (rel))
3956db08 3144 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3145 bfd_get_reloc_size (rel),
3956db08 3146 size);
91d6fa6a 3147 else if (pcrel && !rel->pc_relative)
3956db08 3148 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3149 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3150 && !sign)
91d6fa6a 3151 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3152 && sign > 0))
3956db08
JB
3153 as_bad (_("relocated field and relocation type differ in signedness"));
3154 else
3155 return other;
3156 return NO_RELOC;
3157 }
252b5132
RH
3158
3159 if (pcrel)
3160 {
3e73aa7c 3161 if (!sign)
3956db08 3162 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8_PCREL;
3166 case 2: return BFD_RELOC_16_PCREL;
d258b828 3167 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3168 case 8: return BFD_RELOC_64_PCREL;
252b5132 3169 }
3956db08 3170 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3171 }
3172 else
3173 {
3956db08 3174 if (sign > 0)
e5cb08ac 3175 switch (size)
3e73aa7c
JH
3176 {
3177 case 4: return BFD_RELOC_X86_64_32S;
3178 }
3179 else
3180 switch (size)
3181 {
3182 case 1: return BFD_RELOC_8;
3183 case 2: return BFD_RELOC_16;
3184 case 4: return BFD_RELOC_32;
3185 case 8: return BFD_RELOC_64;
3186 }
3956db08
JB
3187 as_bad (_("cannot do %s %u byte relocation"),
3188 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3189 }
3190
0cc9e1d3 3191 return NO_RELOC;
252b5132
RH
3192}
3193
47926f60
KH
3194/* Here we decide which fixups can be adjusted to make them relative to
3195 the beginning of the section instead of the symbol. Basically we need
3196 to make sure that the dynamic relocations are done correctly, so in
3197 some cases we force the original symbol to be used. */
3198
252b5132 3199int
e3bb37b5 3200tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3201{
6d249963 3202#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3203 if (!IS_ELF)
31312f95
AM
3204 return 1;
3205
a161fe53
AM
3206 /* Don't adjust pc-relative references to merge sections in 64-bit
3207 mode. */
3208 if (use_rela_relocations
3209 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3210 && fixP->fx_pcrel)
252b5132 3211 return 0;
31312f95 3212
8d01d9a9
AJ
3213 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3214 and changed later by validate_fix. */
3215 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3216 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3217 return 0;
3218
8fd4256d
L
3219 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3220 for size relocations. */
3221 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3222 || fixP->fx_r_type == BFD_RELOC_SIZE64
3223 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3224 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3225 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3226 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3235 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3236 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3245 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3250 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3251 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3252 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3253 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3254 return 0;
31312f95 3255#endif
252b5132
RH
3256 return 1;
3257}
252b5132 3258
b4cac588 3259static int
e3bb37b5 3260intel_float_operand (const char *mnemonic)
252b5132 3261{
9306ca4a
JB
3262 /* Note that the value returned is meaningful only for opcodes with (memory)
3263 operands, hence the code here is free to improperly handle opcodes that
3264 have no operands (for better performance and smaller code). */
3265
3266 if (mnemonic[0] != 'f')
3267 return 0; /* non-math */
3268
3269 switch (mnemonic[1])
3270 {
3271 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3272 the fs segment override prefix not currently handled because no
3273 call path can make opcodes without operands get here */
3274 case 'i':
3275 return 2 /* integer op */;
3276 case 'l':
3277 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3278 return 3; /* fldcw/fldenv */
3279 break;
3280 case 'n':
3281 if (mnemonic[2] != 'o' /* fnop */)
3282 return 3; /* non-waiting control op */
3283 break;
3284 case 'r':
3285 if (mnemonic[2] == 's')
3286 return 3; /* frstor/frstpm */
3287 break;
3288 case 's':
3289 if (mnemonic[2] == 'a')
3290 return 3; /* fsave */
3291 if (mnemonic[2] == 't')
3292 {
3293 switch (mnemonic[3])
3294 {
3295 case 'c': /* fstcw */
3296 case 'd': /* fstdw */
3297 case 'e': /* fstenv */
3298 case 's': /* fsts[gw] */
3299 return 3;
3300 }
3301 }
3302 break;
3303 case 'x':
3304 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3305 return 0; /* fxsave/fxrstor are not really math ops */
3306 break;
3307 }
252b5132 3308
9306ca4a 3309 return 1;
252b5132
RH
3310}
3311
c0f3af97
L
3312/* Build the VEX prefix. */
3313
3314static void
d3ce72d0 3315build_vex_prefix (const insn_template *t)
c0f3af97
L
3316{
3317 unsigned int register_specifier;
3318 unsigned int implied_prefix;
3319 unsigned int vector_length;
3320
3321 /* Check register specifier. */
3322 if (i.vex.register_specifier)
43234a1e
L
3323 {
3324 register_specifier =
3325 ~register_number (i.vex.register_specifier) & 0xf;
3326 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3327 }
c0f3af97
L
3328 else
3329 register_specifier = 0xf;
3330
33eaf5de 3331 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3332 operand. */
86fa6981
L
3333 if (i.vec_encoding != vex_encoding_vex3
3334 && i.dir_encoding == dir_encoding_default
fa99fab2 3335 && i.operands == i.reg_operands
7f399153 3336 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3337 && i.tm.opcode_modifier.load
fa99fab2
L
3338 && i.rex == REX_B)
3339 {
3340 unsigned int xchg = i.operands - 1;
3341 union i386_op temp_op;
3342 i386_operand_type temp_type;
3343
3344 temp_type = i.types[xchg];
3345 i.types[xchg] = i.types[0];
3346 i.types[0] = temp_type;
3347 temp_op = i.op[xchg];
3348 i.op[xchg] = i.op[0];
3349 i.op[0] = temp_op;
3350
9c2799c2 3351 gas_assert (i.rm.mode == 3);
fa99fab2
L
3352
3353 i.rex = REX_R;
3354 xchg = i.rm.regmem;
3355 i.rm.regmem = i.rm.reg;
3356 i.rm.reg = xchg;
3357
3358 /* Use the next insn. */
3359 i.tm = t[1];
3360 }
3361
539f890d
L
3362 if (i.tm.opcode_modifier.vex == VEXScalar)
3363 vector_length = avxscalar;
10c17abd
JB
3364 else if (i.tm.opcode_modifier.vex == VEX256)
3365 vector_length = 1;
539f890d 3366 else
10c17abd 3367 {
56522fc5 3368 unsigned int op;
10c17abd 3369
c7213af9
L
3370 /* Determine vector length from the last multi-length vector
3371 operand. */
10c17abd 3372 vector_length = 0;
56522fc5 3373 for (op = t->operands; op--;)
10c17abd
JB
3374 if (t->operand_types[op].bitfield.xmmword
3375 && t->operand_types[op].bitfield.ymmword
3376 && i.types[op].bitfield.ymmword)
3377 {
3378 vector_length = 1;
3379 break;
3380 }
3381 }
c0f3af97
L
3382
3383 switch ((i.tm.base_opcode >> 8) & 0xff)
3384 {
3385 case 0:
3386 implied_prefix = 0;
3387 break;
3388 case DATA_PREFIX_OPCODE:
3389 implied_prefix = 1;
3390 break;
3391 case REPE_PREFIX_OPCODE:
3392 implied_prefix = 2;
3393 break;
3394 case REPNE_PREFIX_OPCODE:
3395 implied_prefix = 3;
3396 break;
3397 default:
3398 abort ();
3399 }
3400
3401 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3402 if (i.vec_encoding != vex_encoding_vex3
3403 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3404 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3405 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3406 {
3407 /* 2-byte VEX prefix. */
3408 unsigned int r;
3409
3410 i.vex.length = 2;
3411 i.vex.bytes[0] = 0xc5;
3412
3413 /* Check the REX.R bit. */
3414 r = (i.rex & REX_R) ? 0 : 1;
3415 i.vex.bytes[1] = (r << 7
3416 | register_specifier << 3
3417 | vector_length << 2
3418 | implied_prefix);
3419 }
3420 else
3421 {
3422 /* 3-byte VEX prefix. */
3423 unsigned int m, w;
3424
f88c9eb0 3425 i.vex.length = 3;
f88c9eb0 3426
7f399153 3427 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3428 {
7f399153
L
3429 case VEX0F:
3430 m = 0x1;
80de6e00 3431 i.vex.bytes[0] = 0xc4;
7f399153
L
3432 break;
3433 case VEX0F38:
3434 m = 0x2;
80de6e00 3435 i.vex.bytes[0] = 0xc4;
7f399153
L
3436 break;
3437 case VEX0F3A:
3438 m = 0x3;
80de6e00 3439 i.vex.bytes[0] = 0xc4;
7f399153
L
3440 break;
3441 case XOP08:
5dd85c99
SP
3442 m = 0x8;
3443 i.vex.bytes[0] = 0x8f;
7f399153
L
3444 break;
3445 case XOP09:
f88c9eb0
SP
3446 m = 0x9;
3447 i.vex.bytes[0] = 0x8f;
7f399153
L
3448 break;
3449 case XOP0A:
f88c9eb0
SP
3450 m = 0xa;
3451 i.vex.bytes[0] = 0x8f;
7f399153
L
3452 break;
3453 default:
3454 abort ();
f88c9eb0 3455 }
c0f3af97 3456
c0f3af97
L
3457 /* The high 3 bits of the second VEX byte are 1's compliment
3458 of RXB bits from REX. */
3459 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3460
3461 /* Check the REX.W bit. */
3462 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3463 if (i.tm.opcode_modifier.vexw == VEXW1)
3464 w = 1;
c0f3af97
L
3465
3466 i.vex.bytes[2] = (w << 7
3467 | register_specifier << 3
3468 | vector_length << 2
3469 | implied_prefix);
3470 }
3471}
3472
e771e7c9
JB
3473static INLINE bfd_boolean
3474is_evex_encoding (const insn_template *t)
3475{
7091c612 3476 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3477 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3478 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3479}
3480
43234a1e
L
3481/* Build the EVEX prefix. */
3482
3483static void
3484build_evex_prefix (void)
3485{
3486 unsigned int register_specifier;
3487 unsigned int implied_prefix;
3488 unsigned int m, w;
3489 rex_byte vrex_used = 0;
3490
3491 /* Check register specifier. */
3492 if (i.vex.register_specifier)
3493 {
3494 gas_assert ((i.vrex & REX_X) == 0);
3495
3496 register_specifier = i.vex.register_specifier->reg_num;
3497 if ((i.vex.register_specifier->reg_flags & RegRex))
3498 register_specifier += 8;
3499 /* The upper 16 registers are encoded in the fourth byte of the
3500 EVEX prefix. */
3501 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3502 i.vex.bytes[3] = 0x8;
3503 register_specifier = ~register_specifier & 0xf;
3504 }
3505 else
3506 {
3507 register_specifier = 0xf;
3508
3509 /* Encode upper 16 vector index register in the fourth byte of
3510 the EVEX prefix. */
3511 if (!(i.vrex & REX_X))
3512 i.vex.bytes[3] = 0x8;
3513 else
3514 vrex_used |= REX_X;
3515 }
3516
3517 switch ((i.tm.base_opcode >> 8) & 0xff)
3518 {
3519 case 0:
3520 implied_prefix = 0;
3521 break;
3522 case DATA_PREFIX_OPCODE:
3523 implied_prefix = 1;
3524 break;
3525 case REPE_PREFIX_OPCODE:
3526 implied_prefix = 2;
3527 break;
3528 case REPNE_PREFIX_OPCODE:
3529 implied_prefix = 3;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
3535 /* 4 byte EVEX prefix. */
3536 i.vex.length = 4;
3537 i.vex.bytes[0] = 0x62;
3538
3539 /* mmmm bits. */
3540 switch (i.tm.opcode_modifier.vexopcode)
3541 {
3542 case VEX0F:
3543 m = 1;
3544 break;
3545 case VEX0F38:
3546 m = 2;
3547 break;
3548 case VEX0F3A:
3549 m = 3;
3550 break;
3551 default:
3552 abort ();
3553 break;
3554 }
3555
3556 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3557 bits from REX. */
3558 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3559
3560 /* The fifth bit of the second EVEX byte is 1's compliment of the
3561 REX_R bit in VREX. */
3562 if (!(i.vrex & REX_R))
3563 i.vex.bytes[1] |= 0x10;
3564 else
3565 vrex_used |= REX_R;
3566
3567 if ((i.reg_operands + i.imm_operands) == i.operands)
3568 {
3569 /* When all operands are registers, the REX_X bit in REX is not
3570 used. We reuse it to encode the upper 16 registers, which is
3571 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3572 as 1's compliment. */
3573 if ((i.vrex & REX_B))
3574 {
3575 vrex_used |= REX_B;
3576 i.vex.bytes[1] &= ~0x40;
3577 }
3578 }
3579
3580 /* EVEX instructions shouldn't need the REX prefix. */
3581 i.vrex &= ~vrex_used;
3582 gas_assert (i.vrex == 0);
3583
3584 /* Check the REX.W bit. */
3585 w = (i.rex & REX_W) ? 1 : 0;
3586 if (i.tm.opcode_modifier.vexw)
3587 {
3588 if (i.tm.opcode_modifier.vexw == VEXW1)
3589 w = 1;
3590 }
3591 /* If w is not set it means we are dealing with WIG instruction. */
3592 else if (!w)
3593 {
3594 if (evexwig == evexw1)
3595 w = 1;
3596 }
3597
3598 /* Encode the U bit. */
3599 implied_prefix |= 0x4;
3600
3601 /* The third byte of the EVEX prefix. */
3602 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3603
3604 /* The fourth byte of the EVEX prefix. */
3605 /* The zeroing-masking bit. */
3606 if (i.mask && i.mask->zeroing)
3607 i.vex.bytes[3] |= 0x80;
3608
3609 /* Don't always set the broadcast bit if there is no RC. */
3610 if (!i.rounding)
3611 {
3612 /* Encode the vector length. */
3613 unsigned int vec_length;
3614
e771e7c9
JB
3615 if (!i.tm.opcode_modifier.evex
3616 || i.tm.opcode_modifier.evex == EVEXDYN)
3617 {
56522fc5 3618 unsigned int op;
e771e7c9 3619
c7213af9
L
3620 /* Determine vector length from the last multi-length vector
3621 operand. */
e771e7c9 3622 vec_length = 0;
56522fc5 3623 for (op = i.operands; op--;)
e771e7c9
JB
3624 if (i.tm.operand_types[op].bitfield.xmmword
3625 + i.tm.operand_types[op].bitfield.ymmword
3626 + i.tm.operand_types[op].bitfield.zmmword > 1)
3627 {
3628 if (i.types[op].bitfield.zmmword)
c7213af9
L
3629 {
3630 i.tm.opcode_modifier.evex = EVEX512;
3631 break;
3632 }
e771e7c9 3633 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3634 {
3635 i.tm.opcode_modifier.evex = EVEX256;
3636 break;
3637 }
e771e7c9 3638 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3639 {
3640 i.tm.opcode_modifier.evex = EVEX128;
3641 break;
3642 }
625cbd7a
JB
3643 else if (i.broadcast && (int) op == i.broadcast->operand)
3644 {
4a1b91ea 3645 switch (i.broadcast->bytes)
625cbd7a
JB
3646 {
3647 case 64:
3648 i.tm.opcode_modifier.evex = EVEX512;
3649 break;
3650 case 32:
3651 i.tm.opcode_modifier.evex = EVEX256;
3652 break;
3653 case 16:
3654 i.tm.opcode_modifier.evex = EVEX128;
3655 break;
3656 default:
c7213af9 3657 abort ();
625cbd7a 3658 }
c7213af9 3659 break;
625cbd7a 3660 }
e771e7c9 3661 }
c7213af9 3662
56522fc5 3663 if (op >= MAX_OPERANDS)
c7213af9 3664 abort ();
e771e7c9
JB
3665 }
3666
43234a1e
L
3667 switch (i.tm.opcode_modifier.evex)
3668 {
3669 case EVEXLIG: /* LL' is ignored */
3670 vec_length = evexlig << 5;
3671 break;
3672 case EVEX128:
3673 vec_length = 0 << 5;
3674 break;
3675 case EVEX256:
3676 vec_length = 1 << 5;
3677 break;
3678 case EVEX512:
3679 vec_length = 2 << 5;
3680 break;
3681 default:
3682 abort ();
3683 break;
3684 }
3685 i.vex.bytes[3] |= vec_length;
3686 /* Encode the broadcast bit. */
3687 if (i.broadcast)
3688 i.vex.bytes[3] |= 0x10;
3689 }
3690 else
3691 {
3692 if (i.rounding->type != saeonly)
3693 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3694 else
d3d3c6db 3695 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3696 }
3697
3698 if (i.mask && i.mask->mask)
3699 i.vex.bytes[3] |= i.mask->mask->reg_num;
3700}
3701
65da13b5
L
3702static void
3703process_immext (void)
3704{
3705 expressionS *exp;
3706
4c692bc7
JB
3707 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3708 && i.operands > 0)
65da13b5 3709 {
4c692bc7
JB
3710 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3711 with an opcode suffix which is coded in the same place as an
3712 8-bit immediate field would be.
3713 Here we check those operands and remove them afterwards. */
65da13b5
L
3714 unsigned int x;
3715
3716 for (x = 0; x < i.operands; x++)
4c692bc7 3717 if (register_number (i.op[x].regs) != x)
65da13b5 3718 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3719 register_prefix, i.op[x].regs->reg_name, x + 1,
3720 i.tm.name);
3721
3722 i.operands = 0;
65da13b5
L
3723 }
3724
9916071f
AP
3725 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3726 {
3727 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3728 suffix which is coded in the same place as an 8-bit immediate
3729 field would be.
3730 Here we check those operands and remove them afterwards. */
3731 unsigned int x;
3732
3733 if (i.operands != 3)
3734 abort();
3735
3736 for (x = 0; x < 2; x++)
3737 if (register_number (i.op[x].regs) != x)
3738 goto bad_register_operand;
3739
3740 /* Check for third operand for mwaitx/monitorx insn. */
3741 if (register_number (i.op[x].regs)
3742 != (x + (i.tm.extension_opcode == 0xfb)))
3743 {
3744bad_register_operand:
3745 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3746 register_prefix, i.op[x].regs->reg_name, x+1,
3747 i.tm.name);
3748 }
3749
3750 i.operands = 0;
3751 }
3752
c0f3af97 3753 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3754 which is coded in the same place as an 8-bit immediate field
3755 would be. Here we fake an 8-bit immediate operand from the
3756 opcode suffix stored in tm.extension_opcode.
3757
c1e679ec 3758 AVX instructions also use this encoding, for some of
c0f3af97 3759 3 argument instructions. */
65da13b5 3760
43234a1e 3761 gas_assert (i.imm_operands <= 1
7ab9ffdd 3762 && (i.operands <= 2
43234a1e 3763 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3764 || i.tm.opcode_modifier.vexopcode
3765 || is_evex_encoding (&i.tm))
7ab9ffdd 3766 && i.operands <= 4)));
65da13b5
L
3767
3768 exp = &im_expressions[i.imm_operands++];
3769 i.op[i.operands].imms = exp;
3770 i.types[i.operands] = imm8;
3771 i.operands++;
3772 exp->X_op = O_constant;
3773 exp->X_add_number = i.tm.extension_opcode;
3774 i.tm.extension_opcode = None;
3775}
3776
42164a71
L
3777
3778static int
3779check_hle (void)
3780{
3781 switch (i.tm.opcode_modifier.hleprefixok)
3782 {
3783 default:
3784 abort ();
82c2def5 3785 case HLEPrefixNone:
165de32a
L
3786 as_bad (_("invalid instruction `%s' after `%s'"),
3787 i.tm.name, i.hle_prefix);
42164a71 3788 return 0;
82c2def5 3789 case HLEPrefixLock:
42164a71
L
3790 if (i.prefix[LOCK_PREFIX])
3791 return 1;
165de32a 3792 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3793 return 0;
82c2def5 3794 case HLEPrefixAny:
42164a71 3795 return 1;
82c2def5 3796 case HLEPrefixRelease:
42164a71
L
3797 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3798 {
3799 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3800 i.tm.name);
3801 return 0;
3802 }
3803 if (i.mem_operands == 0
3804 || !operand_type_check (i.types[i.operands - 1], anymem))
3805 {
3806 as_bad (_("memory destination needed for instruction `%s'"
3807 " after `xrelease'"), i.tm.name);
3808 return 0;
3809 }
3810 return 1;
3811 }
3812}
3813
b6f8c7c4
L
3814/* Try the shortest encoding by shortening operand size. */
3815
3816static void
3817optimize_encoding (void)
3818{
3819 int j;
3820
3821 if (optimize_for_space
3822 && i.reg_operands == 1
3823 && i.imm_operands == 1
3824 && !i.types[1].bitfield.byte
3825 && i.op[0].imms->X_op == O_constant
3826 && fits_in_imm7 (i.op[0].imms->X_add_number)
3827 && ((i.tm.base_opcode == 0xa8
3828 && i.tm.extension_opcode == None)
3829 || (i.tm.base_opcode == 0xf6
3830 && i.tm.extension_opcode == 0x0)))
3831 {
3832 /* Optimize: -Os:
3833 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3834 */
3835 unsigned int base_regnum = i.op[1].regs->reg_num;
3836 if (flag_code == CODE_64BIT || base_regnum < 4)
3837 {
3838 i.types[1].bitfield.byte = 1;
3839 /* Ignore the suffix. */
3840 i.suffix = 0;
3841 if (base_regnum >= 4
3842 && !(i.op[1].regs->reg_flags & RegRex))
3843 {
3844 /* Handle SP, BP, SI and DI registers. */
3845 if (i.types[1].bitfield.word)
3846 j = 16;
3847 else if (i.types[1].bitfield.dword)
3848 j = 32;
3849 else
3850 j = 48;
3851 i.op[1].regs -= j;
3852 }
3853 }
3854 }
3855 else if (flag_code == CODE_64BIT
d3d50934
L
3856 && ((i.types[1].bitfield.qword
3857 && i.reg_operands == 1
b6f8c7c4
L
3858 && i.imm_operands == 1
3859 && i.op[0].imms->X_op == O_constant
3860 && ((i.tm.base_opcode == 0xb0
3861 && i.tm.extension_opcode == None
3862 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3863 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3864 && (((i.tm.base_opcode == 0x24
3865 || i.tm.base_opcode == 0xa8)
3866 && i.tm.extension_opcode == None)
3867 || (i.tm.base_opcode == 0x80
3868 && i.tm.extension_opcode == 0x4)
3869 || ((i.tm.base_opcode == 0xf6
3870 || i.tm.base_opcode == 0xc6)
3871 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3872 || (i.types[0].bitfield.qword
3873 && ((i.reg_operands == 2
3874 && i.op[0].regs == i.op[1].regs
3875 && ((i.tm.base_opcode == 0x30
3876 || i.tm.base_opcode == 0x28)
3877 && i.tm.extension_opcode == None))
3878 || (i.reg_operands == 1
3879 && i.operands == 1
3880 && i.tm.base_opcode == 0x30
3881 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3882 {
3883 /* Optimize: -O:
3884 andq $imm31, %r64 -> andl $imm31, %r32
3885 testq $imm31, %r64 -> testl $imm31, %r32
3886 xorq %r64, %r64 -> xorl %r32, %r32
3887 subq %r64, %r64 -> subl %r32, %r32
3888 movq $imm31, %r64 -> movl $imm31, %r32
3889 movq $imm32, %r64 -> movl $imm32, %r32
3890 */
3891 i.tm.opcode_modifier.norex64 = 1;
3892 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3893 {
3894 /* Handle
3895 movq $imm31, %r64 -> movl $imm31, %r32
3896 movq $imm32, %r64 -> movl $imm32, %r32
3897 */
3898 i.tm.operand_types[0].bitfield.imm32 = 1;
3899 i.tm.operand_types[0].bitfield.imm32s = 0;
3900 i.tm.operand_types[0].bitfield.imm64 = 0;
3901 i.types[0].bitfield.imm32 = 1;
3902 i.types[0].bitfield.imm32s = 0;
3903 i.types[0].bitfield.imm64 = 0;
3904 i.types[1].bitfield.dword = 1;
3905 i.types[1].bitfield.qword = 0;
3906 if (i.tm.base_opcode == 0xc6)
3907 {
3908 /* Handle
3909 movq $imm31, %r64 -> movl $imm31, %r32
3910 */
3911 i.tm.base_opcode = 0xb0;
3912 i.tm.extension_opcode = None;
3913 i.tm.opcode_modifier.shortform = 1;
3914 i.tm.opcode_modifier.modrm = 0;
3915 }
3916 }
3917 }
3918 else if (optimize > 1
3919 && i.reg_operands == 3
3920 && i.op[0].regs == i.op[1].regs
3921 && !i.types[2].bitfield.xmmword
3922 && (i.tm.opcode_modifier.vex
7a69eac3 3923 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3924 && !i.rounding
e771e7c9 3925 && is_evex_encoding (&i.tm)
80c34c38
L
3926 && (i.vec_encoding != vex_encoding_evex
3927 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3928 || (i.tm.operand_types[2].bitfield.zmmword
3929 && i.types[2].bitfield.ymmword)
0089dace 3930 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3931 && ((i.tm.base_opcode == 0x55
3932 || i.tm.base_opcode == 0x6655
3933 || i.tm.base_opcode == 0x66df
3934 || i.tm.base_opcode == 0x57
3935 || i.tm.base_opcode == 0x6657
8305403a
L
3936 || i.tm.base_opcode == 0x66ef
3937 || i.tm.base_opcode == 0x66f8
3938 || i.tm.base_opcode == 0x66f9
3939 || i.tm.base_opcode == 0x66fa
3940 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3941 && i.tm.extension_opcode == None))
3942 {
3943 /* Optimize: -O2:
8305403a
L
3944 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3945 vpsubq and vpsubw:
b6f8c7c4
L
3946 EVEX VOP %zmmM, %zmmM, %zmmN
3947 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3948 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3949 EVEX VOP %ymmM, %ymmM, %ymmN
3950 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3951 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3952 VEX VOP %ymmM, %ymmM, %ymmN
3953 -> VEX VOP %xmmM, %xmmM, %xmmN
3954 VOP, one of vpandn and vpxor:
3955 VEX VOP %ymmM, %ymmM, %ymmN
3956 -> VEX VOP %xmmM, %xmmM, %xmmN
3957 VOP, one of vpandnd and vpandnq:
3958 EVEX VOP %zmmM, %zmmM, %zmmN
3959 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3960 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3961 EVEX VOP %ymmM, %ymmM, %ymmN
3962 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3963 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3964 VOP, one of vpxord and vpxorq:
3965 EVEX VOP %zmmM, %zmmM, %zmmN
3966 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3967 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3968 EVEX VOP %ymmM, %ymmM, %ymmN
3969 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3970 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3971 */
e771e7c9 3972 if (is_evex_encoding (&i.tm))
b6f8c7c4 3973 {
0089dace 3974 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3975 i.tm.opcode_modifier.evex = EVEX128;
3976 else
3977 {
3978 i.tm.opcode_modifier.vex = VEX128;
3979 i.tm.opcode_modifier.vexw = VEXW0;
3980 i.tm.opcode_modifier.evex = 0;
3981 }
3982 }
3983 else
3984 i.tm.opcode_modifier.vex = VEX128;
3985
3986 if (i.tm.opcode_modifier.vex)
3987 for (j = 0; j < 3; j++)
3988 {
3989 i.types[j].bitfield.xmmword = 1;
3990 i.types[j].bitfield.ymmword = 0;
3991 }
3992 }
3993}
3994
252b5132
RH
3995/* This is the guts of the machine-dependent assembler. LINE points to a
3996 machine dependent instruction. This function is supposed to emit
3997 the frags/bytes it assembles to. */
3998
3999void
65da13b5 4000md_assemble (char *line)
252b5132 4001{
40fb9820 4002 unsigned int j;
83b16ac6 4003 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4004 const insn_template *t;
252b5132 4005
47926f60 4006 /* Initialize globals. */
252b5132
RH
4007 memset (&i, '\0', sizeof (i));
4008 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4009 i.reloc[j] = NO_RELOC;
252b5132
RH
4010 memset (disp_expressions, '\0', sizeof (disp_expressions));
4011 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4012 save_stack_p = save_stack;
252b5132
RH
4013
4014 /* First parse an instruction mnemonic & call i386_operand for the operands.
4015 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4016 start of a (possibly prefixed) mnemonic. */
252b5132 4017
29b0f896
AM
4018 line = parse_insn (line, mnemonic);
4019 if (line == NULL)
4020 return;
83b16ac6 4021 mnem_suffix = i.suffix;
252b5132 4022
29b0f896 4023 line = parse_operands (line, mnemonic);
ee86248c 4024 this_operand = -1;
8325cc63
JB
4025 xfree (i.memop1_string);
4026 i.memop1_string = NULL;
29b0f896
AM
4027 if (line == NULL)
4028 return;
252b5132 4029
29b0f896
AM
4030 /* Now we've parsed the mnemonic into a set of templates, and have the
4031 operands at hand. */
4032
4033 /* All intel opcodes have reversed operands except for "bound" and
4034 "enter". We also don't reverse intersegment "jmp" and "call"
4035 instructions with 2 immediate operands so that the immediate segment
050dfa73 4036 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4037 if (intel_syntax
4038 && i.operands > 1
29b0f896 4039 && (strcmp (mnemonic, "bound") != 0)
30123838 4040 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4041 && !(operand_type_check (i.types[0], imm)
4042 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4043 swap_operands ();
4044
ec56d5c0
JB
4045 /* The order of the immediates should be reversed
4046 for 2 immediates extrq and insertq instructions */
4047 if (i.imm_operands == 2
4048 && (strcmp (mnemonic, "extrq") == 0
4049 || strcmp (mnemonic, "insertq") == 0))
4050 swap_2_operands (0, 1);
4051
29b0f896
AM
4052 if (i.imm_operands)
4053 optimize_imm ();
4054
b300c311
L
4055 /* Don't optimize displacement for movabs since it only takes 64bit
4056 displacement. */
4057 if (i.disp_operands
a501d77e 4058 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4059 && (flag_code != CODE_64BIT
4060 || strcmp (mnemonic, "movabs") != 0))
4061 optimize_disp ();
29b0f896
AM
4062
4063 /* Next, we find a template that matches the given insn,
4064 making sure the overlap of the given operands types is consistent
4065 with the template operand types. */
252b5132 4066
83b16ac6 4067 if (!(t = match_template (mnem_suffix)))
29b0f896 4068 return;
252b5132 4069
7bab8ab5 4070 if (sse_check != check_none
81f8a913 4071 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4072 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4073 && (i.tm.cpu_flags.bitfield.cpusse
4074 || i.tm.cpu_flags.bitfield.cpusse2
4075 || i.tm.cpu_flags.bitfield.cpusse3
4076 || i.tm.cpu_flags.bitfield.cpussse3
4077 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4078 || i.tm.cpu_flags.bitfield.cpusse4_2
4079 || i.tm.cpu_flags.bitfield.cpupclmul
4080 || i.tm.cpu_flags.bitfield.cpuaes
4081 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4082 {
7bab8ab5 4083 (sse_check == check_warning
daf50ae7
L
4084 ? as_warn
4085 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4086 }
4087
321fd21e
L
4088 /* Zap movzx and movsx suffix. The suffix has been set from
4089 "word ptr" or "byte ptr" on the source operand in Intel syntax
4090 or extracted from mnemonic in AT&T syntax. But we'll use
4091 the destination register to choose the suffix for encoding. */
4092 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4093 {
321fd21e
L
4094 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4095 there is no suffix, the default will be byte extension. */
4096 if (i.reg_operands != 2
4097 && !i.suffix
7ab9ffdd 4098 && intel_syntax)
321fd21e
L
4099 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4100
4101 i.suffix = 0;
cd61ebfe 4102 }
24eab124 4103
40fb9820 4104 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4105 if (!add_prefix (FWAIT_OPCODE))
4106 return;
252b5132 4107
d5de92cf
L
4108 /* Check if REP prefix is OK. */
4109 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4110 {
4111 as_bad (_("invalid instruction `%s' after `%s'"),
4112 i.tm.name, i.rep_prefix);
4113 return;
4114 }
4115
c1ba0266
L
4116 /* Check for lock without a lockable instruction. Destination operand
4117 must be memory unless it is xchg (0x86). */
c32fa91d
L
4118 if (i.prefix[LOCK_PREFIX]
4119 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4120 || i.mem_operands == 0
4121 || (i.tm.base_opcode != 0x86
4122 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4123 {
4124 as_bad (_("expecting lockable instruction after `lock'"));
4125 return;
4126 }
4127
42164a71 4128 /* Check if HLE prefix is OK. */
165de32a 4129 if (i.hle_prefix && !check_hle ())
42164a71
L
4130 return;
4131
7e8b059b
L
4132 /* Check BND prefix. */
4133 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4134 as_bad (_("expecting valid branch instruction after `bnd'"));
4135
04ef582a 4136 /* Check NOTRACK prefix. */
9fef80d6
L
4137 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4138 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4139
327e8c42
JB
4140 if (i.tm.cpu_flags.bitfield.cpumpx)
4141 {
4142 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4143 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4144 else if (flag_code != CODE_16BIT
4145 ? i.prefix[ADDR_PREFIX]
4146 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4147 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4148 }
7e8b059b
L
4149
4150 /* Insert BND prefix. */
76d3a78a
JB
4151 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4152 {
4153 if (!i.prefix[BND_PREFIX])
4154 add_prefix (BND_PREFIX_OPCODE);
4155 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4156 {
4157 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4158 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4159 }
4160 }
7e8b059b 4161
29b0f896 4162 /* Check string instruction segment overrides. */
40fb9820 4163 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4164 {
4165 if (!check_string ())
5dd0794d 4166 return;
fc0763e6 4167 i.disp_operands = 0;
29b0f896 4168 }
5dd0794d 4169
b6f8c7c4
L
4170 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4171 optimize_encoding ();
4172
29b0f896
AM
4173 if (!process_suffix ())
4174 return;
e413e4e9 4175
bc0844ae
L
4176 /* Update operand types. */
4177 for (j = 0; j < i.operands; j++)
4178 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4179
29b0f896
AM
4180 /* Make still unresolved immediate matches conform to size of immediate
4181 given in i.suffix. */
4182 if (!finalize_imm ())
4183 return;
252b5132 4184
40fb9820 4185 if (i.types[0].bitfield.imm1)
29b0f896 4186 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4187
9afe6eb8
L
4188 /* We only need to check those implicit registers for instructions
4189 with 3 operands or less. */
4190 if (i.operands <= 3)
4191 for (j = 0; j < i.operands; j++)
4192 if (i.types[j].bitfield.inoutportreg
4193 || i.types[j].bitfield.shiftcount
1b54b8d7 4194 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4195 i.reg_operands--;
40fb9820 4196
c0f3af97
L
4197 /* ImmExt should be processed after SSE2AVX. */
4198 if (!i.tm.opcode_modifier.sse2avx
4199 && i.tm.opcode_modifier.immext)
65da13b5 4200 process_immext ();
252b5132 4201
29b0f896
AM
4202 /* For insns with operands there are more diddles to do to the opcode. */
4203 if (i.operands)
4204 {
4205 if (!process_operands ())
4206 return;
4207 }
40fb9820 4208 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4209 {
4210 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4211 as_warn (_("translating to `%sp'"), i.tm.name);
4212 }
252b5132 4213
e771e7c9
JB
4214 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4215 || is_evex_encoding (&i.tm))
9e5e5283
L
4216 {
4217 if (flag_code == CODE_16BIT)
4218 {
4219 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4220 i.tm.name);
4221 return;
4222 }
c0f3af97 4223
9e5e5283
L
4224 if (i.tm.opcode_modifier.vex)
4225 build_vex_prefix (t);
4226 else
4227 build_evex_prefix ();
4228 }
43234a1e 4229
5dd85c99
SP
4230 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4231 instructions may define INT_OPCODE as well, so avoid this corner
4232 case for those instructions that use MODRM. */
4233 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4234 && !i.tm.opcode_modifier.modrm
4235 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4236 {
4237 i.tm.base_opcode = INT3_OPCODE;
4238 i.imm_operands = 0;
4239 }
252b5132 4240
40fb9820
L
4241 if ((i.tm.opcode_modifier.jump
4242 || i.tm.opcode_modifier.jumpbyte
4243 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4244 && i.op[0].disps->X_op == O_constant)
4245 {
4246 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4247 the absolute address given by the constant. Since ix86 jumps and
4248 calls are pc relative, we need to generate a reloc. */
4249 i.op[0].disps->X_add_symbol = &abs_symbol;
4250 i.op[0].disps->X_op = O_symbol;
4251 }
252b5132 4252
40fb9820 4253 if (i.tm.opcode_modifier.rex64)
161a04f6 4254 i.rex |= REX_W;
252b5132 4255
29b0f896
AM
4256 /* For 8 bit registers we need an empty rex prefix. Also if the
4257 instruction already has a prefix, we need to convert old
4258 registers to new ones. */
773f551c 4259
dc821c5f 4260 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4261 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4262 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4263 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4264 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4265 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4266 && i.rex != 0))
4267 {
4268 int x;
726c5dcd 4269
29b0f896
AM
4270 i.rex |= REX_OPCODE;
4271 for (x = 0; x < 2; x++)
4272 {
4273 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4274 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4275 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4276 {
29b0f896
AM
4277 /* In case it is "hi" register, give up. */
4278 if (i.op[x].regs->reg_num > 3)
a540244d 4279 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4280 "instruction requiring REX prefix."),
a540244d 4281 register_prefix, i.op[x].regs->reg_name);
773f551c 4282
29b0f896
AM
4283 /* Otherwise it is equivalent to the extended register.
4284 Since the encoding doesn't change this is merely
4285 cosmetic cleanup for debug output. */
4286
4287 i.op[x].regs = i.op[x].regs + 8;
773f551c 4288 }
29b0f896
AM
4289 }
4290 }
773f551c 4291
6b6b6807
L
4292 if (i.rex == 0 && i.rex_encoding)
4293 {
4294 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4295 that uses legacy register. If it is "hi" register, don't add
4296 the REX_OPCODE byte. */
4297 int x;
4298 for (x = 0; x < 2; x++)
4299 if (i.types[x].bitfield.reg
4300 && i.types[x].bitfield.byte
4301 && (i.op[x].regs->reg_flags & RegRex64) == 0
4302 && i.op[x].regs->reg_num > 3)
4303 {
4304 i.rex_encoding = FALSE;
4305 break;
4306 }
4307
4308 if (i.rex_encoding)
4309 i.rex = REX_OPCODE;
4310 }
4311
7ab9ffdd 4312 if (i.rex != 0)
29b0f896
AM
4313 add_prefix (REX_OPCODE | i.rex);
4314
4315 /* We are ready to output the insn. */
4316 output_insn ();
4317}
4318
4319static char *
e3bb37b5 4320parse_insn (char *line, char *mnemonic)
29b0f896
AM
4321{
4322 char *l = line;
4323 char *token_start = l;
4324 char *mnem_p;
5c6af06e 4325 int supported;
d3ce72d0 4326 const insn_template *t;
b6169b20 4327 char *dot_p = NULL;
29b0f896 4328
29b0f896
AM
4329 while (1)
4330 {
4331 mnem_p = mnemonic;
4332 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4333 {
b6169b20
L
4334 if (*mnem_p == '.')
4335 dot_p = mnem_p;
29b0f896
AM
4336 mnem_p++;
4337 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4338 {
29b0f896
AM
4339 as_bad (_("no such instruction: `%s'"), token_start);
4340 return NULL;
4341 }
4342 l++;
4343 }
4344 if (!is_space_char (*l)
4345 && *l != END_OF_INSN
e44823cf
JB
4346 && (intel_syntax
4347 || (*l != PREFIX_SEPARATOR
4348 && *l != ',')))
29b0f896
AM
4349 {
4350 as_bad (_("invalid character %s in mnemonic"),
4351 output_invalid (*l));
4352 return NULL;
4353 }
4354 if (token_start == l)
4355 {
e44823cf 4356 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4357 as_bad (_("expecting prefix; got nothing"));
4358 else
4359 as_bad (_("expecting mnemonic; got nothing"));
4360 return NULL;
4361 }
45288df1 4362
29b0f896 4363 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4364 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4365
29b0f896
AM
4366 if (*l != END_OF_INSN
4367 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4368 && current_templates
40fb9820 4369 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4370 {
c6fb90c8 4371 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4372 {
4373 as_bad ((flag_code != CODE_64BIT
4374 ? _("`%s' is only supported in 64-bit mode")
4375 : _("`%s' is not supported in 64-bit mode")),
4376 current_templates->start->name);
4377 return NULL;
4378 }
29b0f896
AM
4379 /* If we are in 16-bit mode, do not allow addr16 or data16.
4380 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4381 if ((current_templates->start->opcode_modifier.size16
4382 || current_templates->start->opcode_modifier.size32)
29b0f896 4383 && flag_code != CODE_64BIT
40fb9820 4384 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4385 ^ (flag_code == CODE_16BIT)))
4386 {
4387 as_bad (_("redundant %s prefix"),
4388 current_templates->start->name);
4389 return NULL;
45288df1 4390 }
86fa6981 4391 if (current_templates->start->opcode_length == 0)
29b0f896 4392 {
86fa6981
L
4393 /* Handle pseudo prefixes. */
4394 switch (current_templates->start->base_opcode)
4395 {
4396 case 0x0:
4397 /* {disp8} */
4398 i.disp_encoding = disp_encoding_8bit;
4399 break;
4400 case 0x1:
4401 /* {disp32} */
4402 i.disp_encoding = disp_encoding_32bit;
4403 break;
4404 case 0x2:
4405 /* {load} */
4406 i.dir_encoding = dir_encoding_load;
4407 break;
4408 case 0x3:
4409 /* {store} */
4410 i.dir_encoding = dir_encoding_store;
4411 break;
4412 case 0x4:
4413 /* {vex2} */
4414 i.vec_encoding = vex_encoding_vex2;
4415 break;
4416 case 0x5:
4417 /* {vex3} */
4418 i.vec_encoding = vex_encoding_vex3;
4419 break;
4420 case 0x6:
4421 /* {evex} */
4422 i.vec_encoding = vex_encoding_evex;
4423 break;
6b6b6807
L
4424 case 0x7:
4425 /* {rex} */
4426 i.rex_encoding = TRUE;
4427 break;
b6f8c7c4
L
4428 case 0x8:
4429 /* {nooptimize} */
4430 i.no_optimize = TRUE;
4431 break;
86fa6981
L
4432 default:
4433 abort ();
4434 }
4435 }
4436 else
4437 {
4438 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4439 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4440 {
4e9ac44a
L
4441 case PREFIX_EXIST:
4442 return NULL;
4443 case PREFIX_DS:
d777820b 4444 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4445 i.notrack_prefix = current_templates->start->name;
4446 break;
4447 case PREFIX_REP:
4448 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4449 i.hle_prefix = current_templates->start->name;
4450 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4451 i.bnd_prefix = current_templates->start->name;
4452 else
4453 i.rep_prefix = current_templates->start->name;
4454 break;
4455 default:
4456 break;
86fa6981 4457 }
29b0f896
AM
4458 }
4459 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4460 token_start = ++l;
4461 }
4462 else
4463 break;
4464 }
45288df1 4465
30a55f88 4466 if (!current_templates)
b6169b20 4467 {
f8a5c266
L
4468 /* Check if we should swap operand or force 32bit displacement in
4469 encoding. */
30a55f88 4470 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4471 i.dir_encoding = dir_encoding_store;
8d63c93e 4472 else if (mnem_p - 3 == dot_p
a501d77e
L
4473 && dot_p[1] == 'd'
4474 && dot_p[2] == '8')
4475 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4476 else if (mnem_p - 4 == dot_p
f8a5c266
L
4477 && dot_p[1] == 'd'
4478 && dot_p[2] == '3'
4479 && dot_p[3] == '2')
a501d77e 4480 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4481 else
4482 goto check_suffix;
4483 mnem_p = dot_p;
4484 *dot_p = '\0';
d3ce72d0 4485 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4486 }
4487
29b0f896
AM
4488 if (!current_templates)
4489 {
b6169b20 4490check_suffix:
29b0f896
AM
4491 /* See if we can get a match by trimming off a suffix. */
4492 switch (mnem_p[-1])
4493 {
4494 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4495 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4496 i.suffix = SHORT_MNEM_SUFFIX;
4497 else
1a0670f3 4498 /* Fall through. */
29b0f896
AM
4499 case BYTE_MNEM_SUFFIX:
4500 case QWORD_MNEM_SUFFIX:
4501 i.suffix = mnem_p[-1];
4502 mnem_p[-1] = '\0';
d3ce72d0
NC
4503 current_templates = (const templates *) hash_find (op_hash,
4504 mnemonic);
29b0f896
AM
4505 break;
4506 case SHORT_MNEM_SUFFIX:
4507 case LONG_MNEM_SUFFIX:
4508 if (!intel_syntax)
4509 {
4510 i.suffix = mnem_p[-1];
4511 mnem_p[-1] = '\0';
d3ce72d0
NC
4512 current_templates = (const templates *) hash_find (op_hash,
4513 mnemonic);
29b0f896
AM
4514 }
4515 break;
252b5132 4516
29b0f896
AM
4517 /* Intel Syntax. */
4518 case 'd':
4519 if (intel_syntax)
4520 {
9306ca4a 4521 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4522 i.suffix = SHORT_MNEM_SUFFIX;
4523 else
4524 i.suffix = LONG_MNEM_SUFFIX;
4525 mnem_p[-1] = '\0';
d3ce72d0
NC
4526 current_templates = (const templates *) hash_find (op_hash,
4527 mnemonic);
29b0f896
AM
4528 }
4529 break;
4530 }
4531 if (!current_templates)
4532 {
4533 as_bad (_("no such instruction: `%s'"), token_start);
4534 return NULL;
4535 }
4536 }
252b5132 4537
40fb9820
L
4538 if (current_templates->start->opcode_modifier.jump
4539 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4540 {
4541 /* Check for a branch hint. We allow ",pt" and ",pn" for
4542 predict taken and predict not taken respectively.
4543 I'm not sure that branch hints actually do anything on loop
4544 and jcxz insns (JumpByte) for current Pentium4 chips. They
4545 may work in the future and it doesn't hurt to accept them
4546 now. */
4547 if (l[0] == ',' && l[1] == 'p')
4548 {
4549 if (l[2] == 't')
4550 {
4551 if (!add_prefix (DS_PREFIX_OPCODE))
4552 return NULL;
4553 l += 3;
4554 }
4555 else if (l[2] == 'n')
4556 {
4557 if (!add_prefix (CS_PREFIX_OPCODE))
4558 return NULL;
4559 l += 3;
4560 }
4561 }
4562 }
4563 /* Any other comma loses. */
4564 if (*l == ',')
4565 {
4566 as_bad (_("invalid character %s in mnemonic"),
4567 output_invalid (*l));
4568 return NULL;
4569 }
252b5132 4570
29b0f896 4571 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4572 supported = 0;
4573 for (t = current_templates->start; t < current_templates->end; ++t)
4574 {
c0f3af97
L
4575 supported |= cpu_flags_match (t);
4576 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4577 {
4578 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4579 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4580
548d0ee6
JB
4581 return l;
4582 }
29b0f896 4583 }
3629bb00 4584
548d0ee6
JB
4585 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4586 as_bad (flag_code == CODE_64BIT
4587 ? _("`%s' is not supported in 64-bit mode")
4588 : _("`%s' is only supported in 64-bit mode"),
4589 current_templates->start->name);
4590 else
4591 as_bad (_("`%s' is not supported on `%s%s'"),
4592 current_templates->start->name,
4593 cpu_arch_name ? cpu_arch_name : default_arch,
4594 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4595
548d0ee6 4596 return NULL;
29b0f896 4597}
252b5132 4598
29b0f896 4599static char *
e3bb37b5 4600parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4601{
4602 char *token_start;
3138f287 4603
29b0f896
AM
4604 /* 1 if operand is pending after ','. */
4605 unsigned int expecting_operand = 0;
252b5132 4606
29b0f896
AM
4607 /* Non-zero if operand parens not balanced. */
4608 unsigned int paren_not_balanced;
4609
4610 while (*l != END_OF_INSN)
4611 {
4612 /* Skip optional white space before operand. */
4613 if (is_space_char (*l))
4614 ++l;
d02603dc 4615 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4616 {
4617 as_bad (_("invalid character %s before operand %d"),
4618 output_invalid (*l),
4619 i.operands + 1);
4620 return NULL;
4621 }
d02603dc 4622 token_start = l; /* After white space. */
29b0f896
AM
4623 paren_not_balanced = 0;
4624 while (paren_not_balanced || *l != ',')
4625 {
4626 if (*l == END_OF_INSN)
4627 {
4628 if (paren_not_balanced)
4629 {
4630 if (!intel_syntax)
4631 as_bad (_("unbalanced parenthesis in operand %d."),
4632 i.operands + 1);
4633 else
4634 as_bad (_("unbalanced brackets in operand %d."),
4635 i.operands + 1);
4636 return NULL;
4637 }
4638 else
4639 break; /* we are done */
4640 }
d02603dc 4641 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4642 {
4643 as_bad (_("invalid character %s in operand %d"),
4644 output_invalid (*l),
4645 i.operands + 1);
4646 return NULL;
4647 }
4648 if (!intel_syntax)
4649 {
4650 if (*l == '(')
4651 ++paren_not_balanced;
4652 if (*l == ')')
4653 --paren_not_balanced;
4654 }
4655 else
4656 {
4657 if (*l == '[')
4658 ++paren_not_balanced;
4659 if (*l == ']')
4660 --paren_not_balanced;
4661 }
4662 l++;
4663 }
4664 if (l != token_start)
4665 { /* Yes, we've read in another operand. */
4666 unsigned int operand_ok;
4667 this_operand = i.operands++;
4668 if (i.operands > MAX_OPERANDS)
4669 {
4670 as_bad (_("spurious operands; (%d operands/instruction max)"),
4671 MAX_OPERANDS);
4672 return NULL;
4673 }
9d46ce34 4674 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4675 /* Now parse operand adding info to 'i' as we go along. */
4676 END_STRING_AND_SAVE (l);
4677
1286ab78
L
4678 if (i.mem_operands > 1)
4679 {
4680 as_bad (_("too many memory references for `%s'"),
4681 mnemonic);
4682 return 0;
4683 }
4684
29b0f896
AM
4685 if (intel_syntax)
4686 operand_ok =
4687 i386_intel_operand (token_start,
4688 intel_float_operand (mnemonic));
4689 else
a7619375 4690 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4691
4692 RESTORE_END_STRING (l);
4693 if (!operand_ok)
4694 return NULL;
4695 }
4696 else
4697 {
4698 if (expecting_operand)
4699 {
4700 expecting_operand_after_comma:
4701 as_bad (_("expecting operand after ','; got nothing"));
4702 return NULL;
4703 }
4704 if (*l == ',')
4705 {
4706 as_bad (_("expecting operand before ','; got nothing"));
4707 return NULL;
4708 }
4709 }
7f3f1ea2 4710
29b0f896
AM
4711 /* Now *l must be either ',' or END_OF_INSN. */
4712 if (*l == ',')
4713 {
4714 if (*++l == END_OF_INSN)
4715 {
4716 /* Just skip it, if it's \n complain. */
4717 goto expecting_operand_after_comma;
4718 }
4719 expecting_operand = 1;
4720 }
4721 }
4722 return l;
4723}
7f3f1ea2 4724
050dfa73 4725static void
4d456e3d 4726swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4727{
4728 union i386_op temp_op;
40fb9820 4729 i386_operand_type temp_type;
050dfa73 4730 enum bfd_reloc_code_real temp_reloc;
4eed87de 4731
050dfa73
MM
4732 temp_type = i.types[xchg2];
4733 i.types[xchg2] = i.types[xchg1];
4734 i.types[xchg1] = temp_type;
4735 temp_op = i.op[xchg2];
4736 i.op[xchg2] = i.op[xchg1];
4737 i.op[xchg1] = temp_op;
4738 temp_reloc = i.reloc[xchg2];
4739 i.reloc[xchg2] = i.reloc[xchg1];
4740 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4741
4742 if (i.mask)
4743 {
4744 if (i.mask->operand == xchg1)
4745 i.mask->operand = xchg2;
4746 else if (i.mask->operand == xchg2)
4747 i.mask->operand = xchg1;
4748 }
4749 if (i.broadcast)
4750 {
4751 if (i.broadcast->operand == xchg1)
4752 i.broadcast->operand = xchg2;
4753 else if (i.broadcast->operand == xchg2)
4754 i.broadcast->operand = xchg1;
4755 }
4756 if (i.rounding)
4757 {
4758 if (i.rounding->operand == xchg1)
4759 i.rounding->operand = xchg2;
4760 else if (i.rounding->operand == xchg2)
4761 i.rounding->operand = xchg1;
4762 }
050dfa73
MM
4763}
4764
29b0f896 4765static void
e3bb37b5 4766swap_operands (void)
29b0f896 4767{
b7c61d9a 4768 switch (i.operands)
050dfa73 4769 {
c0f3af97 4770 case 5:
b7c61d9a 4771 case 4:
4d456e3d 4772 swap_2_operands (1, i.operands - 2);
1a0670f3 4773 /* Fall through. */
b7c61d9a
L
4774 case 3:
4775 case 2:
4d456e3d 4776 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4777 break;
4778 default:
4779 abort ();
29b0f896 4780 }
29b0f896
AM
4781
4782 if (i.mem_operands == 2)
4783 {
4784 const seg_entry *temp_seg;
4785 temp_seg = i.seg[0];
4786 i.seg[0] = i.seg[1];
4787 i.seg[1] = temp_seg;
4788 }
4789}
252b5132 4790
29b0f896
AM
4791/* Try to ensure constant immediates are represented in the smallest
4792 opcode possible. */
4793static void
e3bb37b5 4794optimize_imm (void)
29b0f896
AM
4795{
4796 char guess_suffix = 0;
4797 int op;
252b5132 4798
29b0f896
AM
4799 if (i.suffix)
4800 guess_suffix = i.suffix;
4801 else if (i.reg_operands)
4802 {
4803 /* Figure out a suffix from the last register operand specified.
4804 We can't do this properly yet, ie. excluding InOutPortReg,
4805 but the following works for instructions with immediates.
4806 In any case, we can't set i.suffix yet. */
4807 for (op = i.operands; --op >= 0;)
dc821c5f 4808 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4809 {
40fb9820
L
4810 guess_suffix = BYTE_MNEM_SUFFIX;
4811 break;
4812 }
dc821c5f 4813 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4814 {
40fb9820
L
4815 guess_suffix = WORD_MNEM_SUFFIX;
4816 break;
4817 }
dc821c5f 4818 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4819 {
4820 guess_suffix = LONG_MNEM_SUFFIX;
4821 break;
4822 }
dc821c5f 4823 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4824 {
4825 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4826 break;
252b5132 4827 }
29b0f896
AM
4828 }
4829 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4830 guess_suffix = WORD_MNEM_SUFFIX;
4831
4832 for (op = i.operands; --op >= 0;)
40fb9820 4833 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4834 {
4835 switch (i.op[op].imms->X_op)
252b5132 4836 {
29b0f896
AM
4837 case O_constant:
4838 /* If a suffix is given, this operand may be shortened. */
4839 switch (guess_suffix)
252b5132 4840 {
29b0f896 4841 case LONG_MNEM_SUFFIX:
40fb9820
L
4842 i.types[op].bitfield.imm32 = 1;
4843 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4844 break;
4845 case WORD_MNEM_SUFFIX:
40fb9820
L
4846 i.types[op].bitfield.imm16 = 1;
4847 i.types[op].bitfield.imm32 = 1;
4848 i.types[op].bitfield.imm32s = 1;
4849 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4850 break;
4851 case BYTE_MNEM_SUFFIX:
40fb9820
L
4852 i.types[op].bitfield.imm8 = 1;
4853 i.types[op].bitfield.imm8s = 1;
4854 i.types[op].bitfield.imm16 = 1;
4855 i.types[op].bitfield.imm32 = 1;
4856 i.types[op].bitfield.imm32s = 1;
4857 i.types[op].bitfield.imm64 = 1;
29b0f896 4858 break;
252b5132 4859 }
252b5132 4860
29b0f896
AM
4861 /* If this operand is at most 16 bits, convert it
4862 to a signed 16 bit number before trying to see
4863 whether it will fit in an even smaller size.
4864 This allows a 16-bit operand such as $0xffe0 to
4865 be recognised as within Imm8S range. */
40fb9820 4866 if ((i.types[op].bitfield.imm16)
29b0f896 4867 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4868 {
29b0f896
AM
4869 i.op[op].imms->X_add_number =
4870 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4871 }
a28def75
L
4872#ifdef BFD64
4873 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4874 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4875 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4876 == 0))
4877 {
4878 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4879 ^ ((offsetT) 1 << 31))
4880 - ((offsetT) 1 << 31));
4881 }
a28def75 4882#endif
40fb9820 4883 i.types[op]
c6fb90c8
L
4884 = operand_type_or (i.types[op],
4885 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4886
29b0f896
AM
4887 /* We must avoid matching of Imm32 templates when 64bit
4888 only immediate is available. */
4889 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4890 i.types[op].bitfield.imm32 = 0;
29b0f896 4891 break;
252b5132 4892
29b0f896
AM
4893 case O_absent:
4894 case O_register:
4895 abort ();
4896
4897 /* Symbols and expressions. */
4898 default:
9cd96992
JB
4899 /* Convert symbolic operand to proper sizes for matching, but don't
4900 prevent matching a set of insns that only supports sizes other
4901 than those matching the insn suffix. */
4902 {
40fb9820 4903 i386_operand_type mask, allowed;
d3ce72d0 4904 const insn_template *t;
9cd96992 4905
0dfbf9d7
L
4906 operand_type_set (&mask, 0);
4907 operand_type_set (&allowed, 0);
40fb9820 4908
4eed87de
AM
4909 for (t = current_templates->start;
4910 t < current_templates->end;
4911 ++t)
c6fb90c8
L
4912 allowed = operand_type_or (allowed,
4913 t->operand_types[op]);
9cd96992
JB
4914 switch (guess_suffix)
4915 {
4916 case QWORD_MNEM_SUFFIX:
40fb9820
L
4917 mask.bitfield.imm64 = 1;
4918 mask.bitfield.imm32s = 1;
9cd96992
JB
4919 break;
4920 case LONG_MNEM_SUFFIX:
40fb9820 4921 mask.bitfield.imm32 = 1;
9cd96992
JB
4922 break;
4923 case WORD_MNEM_SUFFIX:
40fb9820 4924 mask.bitfield.imm16 = 1;
9cd96992
JB
4925 break;
4926 case BYTE_MNEM_SUFFIX:
40fb9820 4927 mask.bitfield.imm8 = 1;
9cd96992
JB
4928 break;
4929 default:
9cd96992
JB
4930 break;
4931 }
c6fb90c8 4932 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4933 if (!operand_type_all_zero (&allowed))
c6fb90c8 4934 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4935 }
29b0f896 4936 break;
252b5132 4937 }
29b0f896
AM
4938 }
4939}
47926f60 4940
29b0f896
AM
4941/* Try to use the smallest displacement type too. */
4942static void
e3bb37b5 4943optimize_disp (void)
29b0f896
AM
4944{
4945 int op;
3e73aa7c 4946
29b0f896 4947 for (op = i.operands; --op >= 0;)
40fb9820 4948 if (operand_type_check (i.types[op], disp))
252b5132 4949 {
b300c311 4950 if (i.op[op].disps->X_op == O_constant)
252b5132 4951 {
91d6fa6a 4952 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4953
40fb9820 4954 if (i.types[op].bitfield.disp16
91d6fa6a 4955 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4956 {
4957 /* If this operand is at most 16 bits, convert
4958 to a signed 16 bit number and don't use 64bit
4959 displacement. */
91d6fa6a 4960 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4961 i.types[op].bitfield.disp64 = 0;
b300c311 4962 }
a28def75
L
4963#ifdef BFD64
4964 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4965 if (i.types[op].bitfield.disp32
91d6fa6a 4966 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4967 {
4968 /* If this operand is at most 32 bits, convert
4969 to a signed 32 bit number and don't use 64bit
4970 displacement. */
91d6fa6a
NC
4971 op_disp &= (((offsetT) 2 << 31) - 1);
4972 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4973 i.types[op].bitfield.disp64 = 0;
b300c311 4974 }
a28def75 4975#endif
91d6fa6a 4976 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4977 {
40fb9820
L
4978 i.types[op].bitfield.disp8 = 0;
4979 i.types[op].bitfield.disp16 = 0;
4980 i.types[op].bitfield.disp32 = 0;
4981 i.types[op].bitfield.disp32s = 0;
4982 i.types[op].bitfield.disp64 = 0;
b300c311
L
4983 i.op[op].disps = 0;
4984 i.disp_operands--;
4985 }
4986 else if (flag_code == CODE_64BIT)
4987 {
91d6fa6a 4988 if (fits_in_signed_long (op_disp))
28a9d8f5 4989 {
40fb9820
L
4990 i.types[op].bitfield.disp64 = 0;
4991 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4992 }
0e1147d9 4993 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4994 && fits_in_unsigned_long (op_disp))
40fb9820 4995 i.types[op].bitfield.disp32 = 1;
b300c311 4996 }
40fb9820
L
4997 if ((i.types[op].bitfield.disp32
4998 || i.types[op].bitfield.disp32s
4999 || i.types[op].bitfield.disp16)
b5014f7a 5000 && fits_in_disp8 (op_disp))
40fb9820 5001 i.types[op].bitfield.disp8 = 1;
252b5132 5002 }
67a4f2b7
AO
5003 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5004 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5005 {
5006 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5007 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5008 i.types[op].bitfield.disp8 = 0;
5009 i.types[op].bitfield.disp16 = 0;
5010 i.types[op].bitfield.disp32 = 0;
5011 i.types[op].bitfield.disp32s = 0;
5012 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5013 }
5014 else
b300c311 5015 /* We only support 64bit displacement on constants. */
40fb9820 5016 i.types[op].bitfield.disp64 = 0;
252b5132 5017 }
29b0f896
AM
5018}
5019
4a1b91ea
L
5020/* Return 1 if there is a match in broadcast bytes between operand
5021 GIVEN and instruction template T. */
5022
5023static INLINE int
5024match_broadcast_size (const insn_template *t, unsigned int given)
5025{
5026 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5027 && i.types[given].bitfield.byte)
5028 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5029 && i.types[given].bitfield.word)
5030 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5031 && i.types[given].bitfield.dword)
5032 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5033 && i.types[given].bitfield.qword));
5034}
5035
6c30d220
L
5036/* Check if operands are valid for the instruction. */
5037
5038static int
5039check_VecOperands (const insn_template *t)
5040{
43234a1e 5041 unsigned int op;
e2195274
JB
5042 i386_cpu_flags cpu;
5043 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5044
5045 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5046 any one operand are implicity requiring AVX512VL support if the actual
5047 operand size is YMMword or XMMword. Since this function runs after
5048 template matching, there's no need to check for YMMword/XMMword in
5049 the template. */
5050 cpu = cpu_flags_and (t->cpu_flags, avx512);
5051 if (!cpu_flags_all_zero (&cpu)
5052 && !t->cpu_flags.bitfield.cpuavx512vl
5053 && !cpu_arch_flags.bitfield.cpuavx512vl)
5054 {
5055 for (op = 0; op < t->operands; ++op)
5056 {
5057 if (t->operand_types[op].bitfield.zmmword
5058 && (i.types[op].bitfield.ymmword
5059 || i.types[op].bitfield.xmmword))
5060 {
5061 i.error = unsupported;
5062 return 1;
5063 }
5064 }
5065 }
43234a1e 5066
6c30d220
L
5067 /* Without VSIB byte, we can't have a vector register for index. */
5068 if (!t->opcode_modifier.vecsib
5069 && i.index_reg
1b54b8d7
JB
5070 && (i.index_reg->reg_type.bitfield.xmmword
5071 || i.index_reg->reg_type.bitfield.ymmword
5072 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5073 {
5074 i.error = unsupported_vector_index_register;
5075 return 1;
5076 }
5077
ad8ecc81
MZ
5078 /* Check if default mask is allowed. */
5079 if (t->opcode_modifier.nodefmask
5080 && (!i.mask || i.mask->mask->reg_num == 0))
5081 {
5082 i.error = no_default_mask;
5083 return 1;
5084 }
5085
7bab8ab5
JB
5086 /* For VSIB byte, we need a vector register for index, and all vector
5087 registers must be distinct. */
5088 if (t->opcode_modifier.vecsib)
5089 {
5090 if (!i.index_reg
6c30d220 5091 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5092 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5093 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5094 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5095 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5096 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5097 {
5098 i.error = invalid_vsib_address;
5099 return 1;
5100 }
5101
43234a1e
L
5102 gas_assert (i.reg_operands == 2 || i.mask);
5103 if (i.reg_operands == 2 && !i.mask)
5104 {
1b54b8d7
JB
5105 gas_assert (i.types[0].bitfield.regsimd);
5106 gas_assert (i.types[0].bitfield.xmmword
5107 || i.types[0].bitfield.ymmword);
5108 gas_assert (i.types[2].bitfield.regsimd);
5109 gas_assert (i.types[2].bitfield.xmmword
5110 || i.types[2].bitfield.ymmword);
43234a1e
L
5111 if (operand_check == check_none)
5112 return 0;
5113 if (register_number (i.op[0].regs)
5114 != register_number (i.index_reg)
5115 && register_number (i.op[2].regs)
5116 != register_number (i.index_reg)
5117 && register_number (i.op[0].regs)
5118 != register_number (i.op[2].regs))
5119 return 0;
5120 if (operand_check == check_error)
5121 {
5122 i.error = invalid_vector_register_set;
5123 return 1;
5124 }
5125 as_warn (_("mask, index, and destination registers should be distinct"));
5126 }
8444f82a
MZ
5127 else if (i.reg_operands == 1 && i.mask)
5128 {
1b54b8d7
JB
5129 if (i.types[1].bitfield.regsimd
5130 && (i.types[1].bitfield.xmmword
5131 || i.types[1].bitfield.ymmword
5132 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5133 && (register_number (i.op[1].regs)
5134 == register_number (i.index_reg)))
5135 {
5136 if (operand_check == check_error)
5137 {
5138 i.error = invalid_vector_register_set;
5139 return 1;
5140 }
5141 if (operand_check != check_none)
5142 as_warn (_("index and destination registers should be distinct"));
5143 }
5144 }
43234a1e 5145 }
7bab8ab5 5146
43234a1e
L
5147 /* Check if broadcast is supported by the instruction and is applied
5148 to the memory operand. */
5149 if (i.broadcast)
5150 {
8e6e0792 5151 i386_operand_type type, overlap;
43234a1e
L
5152
5153 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5154 and its broadcast bytes match the memory operand. */
32546502 5155 op = i.broadcast->operand;
8e6e0792 5156 if (!t->opcode_modifier.broadcast
32546502 5157 || !i.types[op].bitfield.mem
c39e5b26 5158 || (!i.types[op].bitfield.unspecified
4a1b91ea 5159 && !match_broadcast_size (t, op)))
43234a1e
L
5160 {
5161 bad_broadcast:
5162 i.error = unsupported_broadcast;
5163 return 1;
5164 }
8e6e0792 5165
4a1b91ea
L
5166 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5167 * i.broadcast->type);
8e6e0792 5168 operand_type_set (&type, 0);
4a1b91ea 5169 switch (i.broadcast->bytes)
8e6e0792 5170 {
4a1b91ea
L
5171 case 2:
5172 type.bitfield.word = 1;
5173 break;
5174 case 4:
5175 type.bitfield.dword = 1;
5176 break;
8e6e0792
JB
5177 case 8:
5178 type.bitfield.qword = 1;
5179 break;
5180 case 16:
5181 type.bitfield.xmmword = 1;
5182 break;
5183 case 32:
5184 type.bitfield.ymmword = 1;
5185 break;
5186 case 64:
5187 type.bitfield.zmmword = 1;
5188 break;
5189 default:
5190 goto bad_broadcast;
5191 }
5192
5193 overlap = operand_type_and (type, t->operand_types[op]);
5194 if (operand_type_all_zero (&overlap))
5195 goto bad_broadcast;
5196
5197 if (t->opcode_modifier.checkregsize)
5198 {
5199 unsigned int j;
5200
e2195274 5201 type.bitfield.baseindex = 1;
8e6e0792
JB
5202 for (j = 0; j < i.operands; ++j)
5203 {
5204 if (j != op
5205 && !operand_type_register_match(i.types[j],
5206 t->operand_types[j],
5207 type,
5208 t->operand_types[op]))
5209 goto bad_broadcast;
5210 }
5211 }
43234a1e
L
5212 }
5213 /* If broadcast is supported in this instruction, we need to check if
5214 operand of one-element size isn't specified without broadcast. */
5215 else if (t->opcode_modifier.broadcast && i.mem_operands)
5216 {
5217 /* Find memory operand. */
5218 for (op = 0; op < i.operands; op++)
5219 if (operand_type_check (i.types[op], anymem))
5220 break;
5221 gas_assert (op < i.operands);
5222 /* Check size of the memory operand. */
4a1b91ea 5223 if (match_broadcast_size (t, op))
43234a1e
L
5224 {
5225 i.error = broadcast_needed;
5226 return 1;
5227 }
5228 }
c39e5b26
JB
5229 else
5230 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5231
5232 /* Check if requested masking is supported. */
5233 if (i.mask
5234 && (!t->opcode_modifier.masking
5235 || (i.mask->zeroing
5236 && t->opcode_modifier.masking == MERGING_MASKING)))
5237 {
5238 i.error = unsupported_masking;
5239 return 1;
5240 }
5241
5242 /* Check if masking is applied to dest operand. */
5243 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5244 {
5245 i.error = mask_not_on_destination;
5246 return 1;
5247 }
5248
43234a1e
L
5249 /* Check RC/SAE. */
5250 if (i.rounding)
5251 {
5252 if ((i.rounding->type != saeonly
5253 && !t->opcode_modifier.staticrounding)
5254 || (i.rounding->type == saeonly
5255 && (t->opcode_modifier.staticrounding
5256 || !t->opcode_modifier.sae)))
5257 {
5258 i.error = unsupported_rc_sae;
5259 return 1;
5260 }
5261 /* If the instruction has several immediate operands and one of
5262 them is rounding, the rounding operand should be the last
5263 immediate operand. */
5264 if (i.imm_operands > 1
5265 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5266 {
43234a1e 5267 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5268 return 1;
5269 }
6c30d220
L
5270 }
5271
43234a1e 5272 /* Check vector Disp8 operand. */
b5014f7a
JB
5273 if (t->opcode_modifier.disp8memshift
5274 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5275 {
5276 if (i.broadcast)
4a1b91ea 5277 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5278 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5279 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5280 else
5281 {
5282 const i386_operand_type *type = NULL;
5283
5284 i.memshift = 0;
5285 for (op = 0; op < i.operands; op++)
5286 if (operand_type_check (i.types[op], anymem))
5287 {
4174bfff
JB
5288 if (t->opcode_modifier.evex == EVEXLIG)
5289 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5290 else if (t->operand_types[op].bitfield.xmmword
5291 + t->operand_types[op].bitfield.ymmword
5292 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5293 type = &t->operand_types[op];
5294 else if (!i.types[op].bitfield.unspecified)
5295 type = &i.types[op];
5296 }
4174bfff
JB
5297 else if (i.types[op].bitfield.regsimd
5298 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5299 {
5300 if (i.types[op].bitfield.zmmword)
5301 i.memshift = 6;
5302 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5303 i.memshift = 5;
5304 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5305 i.memshift = 4;
5306 }
5307
5308 if (type)
5309 {
5310 if (type->bitfield.zmmword)
5311 i.memshift = 6;
5312 else if (type->bitfield.ymmword)
5313 i.memshift = 5;
5314 else if (type->bitfield.xmmword)
5315 i.memshift = 4;
5316 }
5317
5318 /* For the check in fits_in_disp8(). */
5319 if (i.memshift == 0)
5320 i.memshift = -1;
5321 }
43234a1e
L
5322
5323 for (op = 0; op < i.operands; op++)
5324 if (operand_type_check (i.types[op], disp)
5325 && i.op[op].disps->X_op == O_constant)
5326 {
b5014f7a 5327 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5328 {
b5014f7a
JB
5329 i.types[op].bitfield.disp8 = 1;
5330 return 0;
43234a1e 5331 }
b5014f7a 5332 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5333 }
5334 }
b5014f7a
JB
5335
5336 i.memshift = 0;
43234a1e 5337
6c30d220
L
5338 return 0;
5339}
5340
43f3e2ee 5341/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5342 operand types. */
5343
5344static int
5345VEX_check_operands (const insn_template *t)
5346{
86fa6981 5347 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5348 {
86fa6981 5349 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5350 if (!is_evex_encoding (t))
86fa6981
L
5351 {
5352 i.error = unsupported;
5353 return 1;
5354 }
5355 return 0;
43234a1e
L
5356 }
5357
a683cc34 5358 if (!t->opcode_modifier.vex)
86fa6981
L
5359 {
5360 /* This instruction template doesn't have VEX prefix. */
5361 if (i.vec_encoding != vex_encoding_default)
5362 {
5363 i.error = unsupported;
5364 return 1;
5365 }
5366 return 0;
5367 }
a683cc34
SP
5368
5369 /* Only check VEX_Imm4, which must be the first operand. */
5370 if (t->operand_types[0].bitfield.vec_imm4)
5371 {
5372 if (i.op[0].imms->X_op != O_constant
5373 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5374 {
a65babc9 5375 i.error = bad_imm4;
891edac4
L
5376 return 1;
5377 }
a683cc34
SP
5378
5379 /* Turn off Imm8 so that update_imm won't complain. */
5380 i.types[0] = vec_imm4;
5381 }
5382
5383 return 0;
5384}
5385
d3ce72d0 5386static const insn_template *
83b16ac6 5387match_template (char mnem_suffix)
29b0f896
AM
5388{
5389 /* Points to template once we've found it. */
d3ce72d0 5390 const insn_template *t;
40fb9820 5391 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5392 i386_operand_type overlap4;
29b0f896 5393 unsigned int found_reverse_match;
83b16ac6 5394 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5395 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5396 int addr_prefix_disp;
a5c311ca 5397 unsigned int j;
3ac21baa 5398 unsigned int found_cpu_match, size_match;
45664ddb 5399 unsigned int check_register;
5614d22c 5400 enum i386_error specific_error = 0;
29b0f896 5401
c0f3af97
L
5402#if MAX_OPERANDS != 5
5403# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5404#endif
5405
29b0f896 5406 found_reverse_match = 0;
539e75ad 5407 addr_prefix_disp = -1;
40fb9820
L
5408
5409 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5410 if (intel_syntax && i.broadcast)
5411 /* nothing */;
5412 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5413 suffix_check.no_bsuf = 1;
5414 else if (i.suffix == WORD_MNEM_SUFFIX)
5415 suffix_check.no_wsuf = 1;
5416 else if (i.suffix == SHORT_MNEM_SUFFIX)
5417 suffix_check.no_ssuf = 1;
5418 else if (i.suffix == LONG_MNEM_SUFFIX)
5419 suffix_check.no_lsuf = 1;
5420 else if (i.suffix == QWORD_MNEM_SUFFIX)
5421 suffix_check.no_qsuf = 1;
5422 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5423 suffix_check.no_ldsuf = 1;
29b0f896 5424
83b16ac6
JB
5425 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5426 if (intel_syntax)
5427 {
5428 switch (mnem_suffix)
5429 {
5430 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5431 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5432 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5433 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5434 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5435 }
5436 }
5437
01559ecc
L
5438 /* Must have right number of operands. */
5439 i.error = number_of_operands_mismatch;
5440
45aa61fe 5441 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5442 {
539e75ad
L
5443 addr_prefix_disp = -1;
5444
29b0f896
AM
5445 if (i.operands != t->operands)
5446 continue;
5447
50aecf8c 5448 /* Check processor support. */
a65babc9 5449 i.error = unsupported;
c0f3af97
L
5450 found_cpu_match = (cpu_flags_match (t)
5451 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5452 if (!found_cpu_match)
5453 continue;
5454
e1d4d893 5455 /* Check AT&T mnemonic. */
a65babc9 5456 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5457 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5458 continue;
5459
e92bae62 5460 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5461 i.error = unsupported_syntax;
5c07affc 5462 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5463 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5464 || (intel64 && t->opcode_modifier.amd64)
5465 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5466 continue;
5467
20592a94 5468 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5469 i.error = invalid_instruction_suffix;
567e4e96
L
5470 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5471 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5472 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5473 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5474 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5475 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5476 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5477 continue;
83b16ac6
JB
5478 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5479 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5480 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5481 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5482 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5483 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5484 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5485 continue;
29b0f896 5486
3ac21baa
JB
5487 size_match = operand_size_match (t);
5488 if (!size_match)
7d5e4556 5489 continue;
539e75ad 5490
5c07affc
L
5491 for (j = 0; j < MAX_OPERANDS; j++)
5492 operand_types[j] = t->operand_types[j];
5493
45aa61fe
AM
5494 /* In general, don't allow 64-bit operands in 32-bit mode. */
5495 if (i.suffix == QWORD_MNEM_SUFFIX
5496 && flag_code != CODE_64BIT
5497 && (intel_syntax
40fb9820 5498 ? (!t->opcode_modifier.ignoresize
625cbd7a 5499 && !t->opcode_modifier.broadcast
45aa61fe
AM
5500 && !intel_float_operand (t->name))
5501 : intel_float_operand (t->name) != 2)
40fb9820 5502 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5503 && !operand_types[0].bitfield.regsimd)
40fb9820 5504 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5505 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5506 && (t->base_opcode != 0x0fc7
5507 || t->extension_opcode != 1 /* cmpxchg8b */))
5508 continue;
5509
192dc9c6
JB
5510 /* In general, don't allow 32-bit operands on pre-386. */
5511 else if (i.suffix == LONG_MNEM_SUFFIX
5512 && !cpu_arch_flags.bitfield.cpui386
5513 && (intel_syntax
5514 ? (!t->opcode_modifier.ignoresize
5515 && !intel_float_operand (t->name))
5516 : intel_float_operand (t->name) != 2)
5517 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5518 && !operand_types[0].bitfield.regsimd)
192dc9c6 5519 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5520 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5521 continue;
5522
29b0f896 5523 /* Do not verify operands when there are none. */
50aecf8c 5524 else
29b0f896 5525 {
c6fb90c8 5526 if (!t->operands)
2dbab7d5
L
5527 /* We've found a match; break out of loop. */
5528 break;
29b0f896 5529 }
252b5132 5530
539e75ad
L
5531 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5532 into Disp32/Disp16/Disp32 operand. */
5533 if (i.prefix[ADDR_PREFIX] != 0)
5534 {
40fb9820 5535 /* There should be only one Disp operand. */
539e75ad
L
5536 switch (flag_code)
5537 {
5538 case CODE_16BIT:
40fb9820
L
5539 for (j = 0; j < MAX_OPERANDS; j++)
5540 {
5541 if (operand_types[j].bitfield.disp16)
5542 {
5543 addr_prefix_disp = j;
5544 operand_types[j].bitfield.disp32 = 1;
5545 operand_types[j].bitfield.disp16 = 0;
5546 break;
5547 }
5548 }
539e75ad
L
5549 break;
5550 case CODE_32BIT:
40fb9820
L
5551 for (j = 0; j < MAX_OPERANDS; j++)
5552 {
5553 if (operand_types[j].bitfield.disp32)
5554 {
5555 addr_prefix_disp = j;
5556 operand_types[j].bitfield.disp32 = 0;
5557 operand_types[j].bitfield.disp16 = 1;
5558 break;
5559 }
5560 }
539e75ad
L
5561 break;
5562 case CODE_64BIT:
40fb9820
L
5563 for (j = 0; j < MAX_OPERANDS; j++)
5564 {
5565 if (operand_types[j].bitfield.disp64)
5566 {
5567 addr_prefix_disp = j;
5568 operand_types[j].bitfield.disp64 = 0;
5569 operand_types[j].bitfield.disp32 = 1;
5570 break;
5571 }
5572 }
539e75ad
L
5573 break;
5574 }
539e75ad
L
5575 }
5576
02a86693
L
5577 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5578 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5579 continue;
5580
56ffb741 5581 /* We check register size if needed. */
e2195274
JB
5582 if (t->opcode_modifier.checkregsize)
5583 {
5584 check_register = (1 << t->operands) - 1;
5585 if (i.broadcast)
5586 check_register &= ~(1 << i.broadcast->operand);
5587 }
5588 else
5589 check_register = 0;
5590
c6fb90c8 5591 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5592 switch (t->operands)
5593 {
5594 case 1:
40fb9820 5595 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5596 continue;
5597 break;
5598 case 2:
33eaf5de 5599 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5600 only in 32bit mode and we can use opcode 0x90. In 64bit
5601 mode, we can't use 0x90 for xchg %eax, %eax since it should
5602 zero-extend %eax to %rax. */
5603 if (flag_code == CODE_64BIT
5604 && t->base_opcode == 0x90
0dfbf9d7
L
5605 && operand_type_equal (&i.types [0], &acc32)
5606 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5607 continue;
1212781b
JB
5608 /* xrelease mov %eax, <disp> is another special case. It must not
5609 match the accumulator-only encoding of mov. */
5610 if (flag_code != CODE_64BIT
5611 && i.hle_prefix
5612 && t->base_opcode == 0xa0
5613 && i.types[0].bitfield.acc
5614 && operand_type_check (i.types[1], anymem))
5615 continue;
3ac21baa
JB
5616 if (!(size_match & MATCH_STRAIGHT))
5617 goto check_reverse;
86fa6981
L
5618 /* If we want store form, we reverse direction of operands. */
5619 if (i.dir_encoding == dir_encoding_store
5620 && t->opcode_modifier.d)
5621 goto check_reverse;
1a0670f3 5622 /* Fall through. */
b6169b20 5623
29b0f896 5624 case 3:
86fa6981
L
5625 /* If we want store form, we skip the current load. */
5626 if (i.dir_encoding == dir_encoding_store
5627 && i.mem_operands == 0
5628 && t->opcode_modifier.load)
fa99fab2 5629 continue;
1a0670f3 5630 /* Fall through. */
f48ff2ae 5631 case 4:
c0f3af97 5632 case 5:
c6fb90c8 5633 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5634 if (!operand_type_match (overlap0, i.types[0])
5635 || !operand_type_match (overlap1, i.types[1])
e2195274 5636 || ((check_register & 3) == 3
dc821c5f 5637 && !operand_type_register_match (i.types[0],
40fb9820 5638 operand_types[0],
dc821c5f 5639 i.types[1],
40fb9820 5640 operand_types[1])))
29b0f896
AM
5641 {
5642 /* Check if other direction is valid ... */
38e314eb 5643 if (!t->opcode_modifier.d)
29b0f896
AM
5644 continue;
5645
b6169b20 5646check_reverse:
3ac21baa
JB
5647 if (!(size_match & MATCH_REVERSE))
5648 continue;
29b0f896 5649 /* Try reversing direction of operands. */
c6fb90c8
L
5650 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5651 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5652 if (!operand_type_match (overlap0, i.types[0])
5653 || !operand_type_match (overlap1, i.types[1])
45664ddb 5654 || (check_register
dc821c5f 5655 && !operand_type_register_match (i.types[0],
45664ddb 5656 operand_types[1],
45664ddb
L
5657 i.types[1],
5658 operand_types[0])))
29b0f896
AM
5659 {
5660 /* Does not match either direction. */
5661 continue;
5662 }
38e314eb 5663 /* found_reverse_match holds which of D or FloatR
29b0f896 5664 we've found. */
38e314eb
JB
5665 if (!t->opcode_modifier.d)
5666 found_reverse_match = 0;
5667 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5668 found_reverse_match = Opcode_FloatD;
5669 else
38e314eb 5670 found_reverse_match = Opcode_D;
40fb9820 5671 if (t->opcode_modifier.floatr)
8a2ed489 5672 found_reverse_match |= Opcode_FloatR;
29b0f896 5673 }
f48ff2ae 5674 else
29b0f896 5675 {
f48ff2ae 5676 /* Found a forward 2 operand match here. */
d1cbb4db
L
5677 switch (t->operands)
5678 {
c0f3af97
L
5679 case 5:
5680 overlap4 = operand_type_and (i.types[4],
5681 operand_types[4]);
1a0670f3 5682 /* Fall through. */
d1cbb4db 5683 case 4:
c6fb90c8
L
5684 overlap3 = operand_type_and (i.types[3],
5685 operand_types[3]);
1a0670f3 5686 /* Fall through. */
d1cbb4db 5687 case 3:
c6fb90c8
L
5688 overlap2 = operand_type_and (i.types[2],
5689 operand_types[2]);
d1cbb4db
L
5690 break;
5691 }
29b0f896 5692
f48ff2ae
L
5693 switch (t->operands)
5694 {
c0f3af97
L
5695 case 5:
5696 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5697 || !operand_type_register_match (i.types[3],
c0f3af97 5698 operand_types[3],
c0f3af97
L
5699 i.types[4],
5700 operand_types[4]))
5701 continue;
1a0670f3 5702 /* Fall through. */
f48ff2ae 5703 case 4:
40fb9820 5704 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5705 || ((check_register & 0xa) == 0xa
5706 && !operand_type_register_match (i.types[1],
f7768225
JB
5707 operand_types[1],
5708 i.types[3],
e2195274
JB
5709 operand_types[3]))
5710 || ((check_register & 0xc) == 0xc
5711 && !operand_type_register_match (i.types[2],
5712 operand_types[2],
5713 i.types[3],
5714 operand_types[3])))
f48ff2ae 5715 continue;
1a0670f3 5716 /* Fall through. */
f48ff2ae
L
5717 case 3:
5718 /* Here we make use of the fact that there are no
23e42951 5719 reverse match 3 operand instructions. */
40fb9820 5720 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5721 || ((check_register & 5) == 5
5722 && !operand_type_register_match (i.types[0],
23e42951
JB
5723 operand_types[0],
5724 i.types[2],
e2195274
JB
5725 operand_types[2]))
5726 || ((check_register & 6) == 6
5727 && !operand_type_register_match (i.types[1],
5728 operand_types[1],
5729 i.types[2],
5730 operand_types[2])))
f48ff2ae
L
5731 continue;
5732 break;
5733 }
29b0f896 5734 }
f48ff2ae 5735 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5736 slip through to break. */
5737 }
3629bb00 5738 if (!found_cpu_match)
29b0f896
AM
5739 {
5740 found_reverse_match = 0;
5741 continue;
5742 }
c0f3af97 5743
5614d22c
JB
5744 /* Check if vector and VEX operands are valid. */
5745 if (check_VecOperands (t) || VEX_check_operands (t))
5746 {
5747 specific_error = i.error;
5748 continue;
5749 }
a683cc34 5750
29b0f896
AM
5751 /* We've found a match; break out of loop. */
5752 break;
5753 }
5754
5755 if (t == current_templates->end)
5756 {
5757 /* We found no match. */
a65babc9 5758 const char *err_msg;
5614d22c 5759 switch (specific_error ? specific_error : i.error)
a65babc9
L
5760 {
5761 default:
5762 abort ();
86e026a4 5763 case operand_size_mismatch:
a65babc9
L
5764 err_msg = _("operand size mismatch");
5765 break;
5766 case operand_type_mismatch:
5767 err_msg = _("operand type mismatch");
5768 break;
5769 case register_type_mismatch:
5770 err_msg = _("register type mismatch");
5771 break;
5772 case number_of_operands_mismatch:
5773 err_msg = _("number of operands mismatch");
5774 break;
5775 case invalid_instruction_suffix:
5776 err_msg = _("invalid instruction suffix");
5777 break;
5778 case bad_imm4:
4a2608e3 5779 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5780 break;
a65babc9
L
5781 case unsupported_with_intel_mnemonic:
5782 err_msg = _("unsupported with Intel mnemonic");
5783 break;
5784 case unsupported_syntax:
5785 err_msg = _("unsupported syntax");
5786 break;
5787 case unsupported:
35262a23 5788 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5789 current_templates->start->name);
5790 return NULL;
6c30d220
L
5791 case invalid_vsib_address:
5792 err_msg = _("invalid VSIB address");
5793 break;
7bab8ab5
JB
5794 case invalid_vector_register_set:
5795 err_msg = _("mask, index, and destination registers must be distinct");
5796 break;
6c30d220
L
5797 case unsupported_vector_index_register:
5798 err_msg = _("unsupported vector index register");
5799 break;
43234a1e
L
5800 case unsupported_broadcast:
5801 err_msg = _("unsupported broadcast");
5802 break;
43234a1e
L
5803 case broadcast_needed:
5804 err_msg = _("broadcast is needed for operand of such type");
5805 break;
5806 case unsupported_masking:
5807 err_msg = _("unsupported masking");
5808 break;
5809 case mask_not_on_destination:
5810 err_msg = _("mask not on destination operand");
5811 break;
5812 case no_default_mask:
5813 err_msg = _("default mask isn't allowed");
5814 break;
5815 case unsupported_rc_sae:
5816 err_msg = _("unsupported static rounding/sae");
5817 break;
5818 case rc_sae_operand_not_last_imm:
5819 if (intel_syntax)
5820 err_msg = _("RC/SAE operand must precede immediate operands");
5821 else
5822 err_msg = _("RC/SAE operand must follow immediate operands");
5823 break;
5824 case invalid_register_operand:
5825 err_msg = _("invalid register operand");
5826 break;
a65babc9
L
5827 }
5828 as_bad (_("%s for `%s'"), err_msg,
891edac4 5829 current_templates->start->name);
fa99fab2 5830 return NULL;
29b0f896 5831 }
252b5132 5832
29b0f896
AM
5833 if (!quiet_warnings)
5834 {
5835 if (!intel_syntax
40fb9820
L
5836 && (i.types[0].bitfield.jumpabsolute
5837 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5838 {
5839 as_warn (_("indirect %s without `*'"), t->name);
5840 }
5841
40fb9820
L
5842 if (t->opcode_modifier.isprefix
5843 && t->opcode_modifier.ignoresize)
29b0f896
AM
5844 {
5845 /* Warn them that a data or address size prefix doesn't
5846 affect assembly of the next line of code. */
5847 as_warn (_("stand-alone `%s' prefix"), t->name);
5848 }
5849 }
5850
5851 /* Copy the template we found. */
5852 i.tm = *t;
539e75ad
L
5853
5854 if (addr_prefix_disp != -1)
5855 i.tm.operand_types[addr_prefix_disp]
5856 = operand_types[addr_prefix_disp];
5857
29b0f896
AM
5858 if (found_reverse_match)
5859 {
5860 /* If we found a reverse match we must alter the opcode
5861 direction bit. found_reverse_match holds bits to change
5862 (different for int & float insns). */
5863
5864 i.tm.base_opcode ^= found_reverse_match;
5865
539e75ad
L
5866 i.tm.operand_types[0] = operand_types[1];
5867 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5868 }
5869
fa99fab2 5870 return t;
29b0f896
AM
5871}
5872
5873static int
e3bb37b5 5874check_string (void)
29b0f896 5875{
40fb9820
L
5876 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5877 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5878 {
5879 if (i.seg[0] != NULL && i.seg[0] != &es)
5880 {
a87af027 5881 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5882 i.tm.name,
a87af027
JB
5883 mem_op + 1,
5884 register_prefix);
29b0f896
AM
5885 return 0;
5886 }
5887 /* There's only ever one segment override allowed per instruction.
5888 This instruction possibly has a legal segment override on the
5889 second operand, so copy the segment to where non-string
5890 instructions store it, allowing common code. */
5891 i.seg[0] = i.seg[1];
5892 }
40fb9820 5893 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5894 {
5895 if (i.seg[1] != NULL && i.seg[1] != &es)
5896 {
a87af027 5897 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5898 i.tm.name,
a87af027
JB
5899 mem_op + 2,
5900 register_prefix);
29b0f896
AM
5901 return 0;
5902 }
5903 }
5904 return 1;
5905}
5906
5907static int
543613e9 5908process_suffix (void)
29b0f896
AM
5909{
5910 /* If matched instruction specifies an explicit instruction mnemonic
5911 suffix, use it. */
40fb9820
L
5912 if (i.tm.opcode_modifier.size16)
5913 i.suffix = WORD_MNEM_SUFFIX;
5914 else if (i.tm.opcode_modifier.size32)
5915 i.suffix = LONG_MNEM_SUFFIX;
5916 else if (i.tm.opcode_modifier.size64)
5917 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5918 else if (i.reg_operands)
5919 {
5920 /* If there's no instruction mnemonic suffix we try to invent one
5921 based on register operands. */
5922 if (!i.suffix)
5923 {
5924 /* We take i.suffix from the last register operand specified,
5925 Destination register type is more significant than source
381d071f
L
5926 register type. crc32 in SSE4.2 prefers source register
5927 type. */
5928 if (i.tm.base_opcode == 0xf20f38f1)
5929 {
dc821c5f 5930 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5931 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5932 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5933 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5934 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5935 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5936 }
9344ff29 5937 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5938 {
dc821c5f 5939 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5940 i.suffix = BYTE_MNEM_SUFFIX;
5941 }
381d071f
L
5942
5943 if (!i.suffix)
5944 {
5945 int op;
5946
20592a94
L
5947 if (i.tm.base_opcode == 0xf20f38f1
5948 || i.tm.base_opcode == 0xf20f38f0)
5949 {
5950 /* We have to know the operand size for crc32. */
5951 as_bad (_("ambiguous memory operand size for `%s`"),
5952 i.tm.name);
5953 return 0;
5954 }
5955
381d071f 5956 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5957 if (!i.tm.operand_types[op].bitfield.inoutportreg
5958 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5959 {
8819ada6
JB
5960 if (!i.types[op].bitfield.reg)
5961 continue;
5962 if (i.types[op].bitfield.byte)
5963 i.suffix = BYTE_MNEM_SUFFIX;
5964 else if (i.types[op].bitfield.word)
5965 i.suffix = WORD_MNEM_SUFFIX;
5966 else if (i.types[op].bitfield.dword)
5967 i.suffix = LONG_MNEM_SUFFIX;
5968 else if (i.types[op].bitfield.qword)
5969 i.suffix = QWORD_MNEM_SUFFIX;
5970 else
5971 continue;
5972 break;
381d071f
L
5973 }
5974 }
29b0f896
AM
5975 }
5976 else if (i.suffix == BYTE_MNEM_SUFFIX)
5977 {
2eb952a4
L
5978 if (intel_syntax
5979 && i.tm.opcode_modifier.ignoresize
5980 && i.tm.opcode_modifier.no_bsuf)
5981 i.suffix = 0;
5982 else if (!check_byte_reg ())
29b0f896
AM
5983 return 0;
5984 }
5985 else if (i.suffix == LONG_MNEM_SUFFIX)
5986 {
2eb952a4
L
5987 if (intel_syntax
5988 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5989 && i.tm.opcode_modifier.no_lsuf
5990 && !i.tm.opcode_modifier.todword
5991 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5992 i.suffix = 0;
5993 else if (!check_long_reg ())
29b0f896
AM
5994 return 0;
5995 }
5996 else if (i.suffix == QWORD_MNEM_SUFFIX)
5997 {
955e1e6a
L
5998 if (intel_syntax
5999 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6000 && i.tm.opcode_modifier.no_qsuf
6001 && !i.tm.opcode_modifier.todword
6002 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6003 i.suffix = 0;
6004 else if (!check_qword_reg ())
29b0f896
AM
6005 return 0;
6006 }
6007 else if (i.suffix == WORD_MNEM_SUFFIX)
6008 {
2eb952a4
L
6009 if (intel_syntax
6010 && i.tm.opcode_modifier.ignoresize
6011 && i.tm.opcode_modifier.no_wsuf)
6012 i.suffix = 0;
6013 else if (!check_word_reg ())
29b0f896
AM
6014 return 0;
6015 }
40fb9820 6016 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6017 /* Do nothing if the instruction is going to ignore the prefix. */
6018 ;
6019 else
6020 abort ();
6021 }
40fb9820 6022 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6023 && !i.suffix
6024 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6025 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6026 {
6027 i.suffix = stackop_size;
6028 }
9306ca4a
JB
6029 else if (intel_syntax
6030 && !i.suffix
40fb9820
L
6031 && (i.tm.operand_types[0].bitfield.jumpabsolute
6032 || i.tm.opcode_modifier.jumpbyte
6033 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6034 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6035 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6036 {
6037 switch (flag_code)
6038 {
6039 case CODE_64BIT:
40fb9820 6040 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6041 {
6042 i.suffix = QWORD_MNEM_SUFFIX;
6043 break;
6044 }
1a0670f3 6045 /* Fall through. */
9306ca4a 6046 case CODE_32BIT:
40fb9820 6047 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6048 i.suffix = LONG_MNEM_SUFFIX;
6049 break;
6050 case CODE_16BIT:
40fb9820 6051 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6052 i.suffix = WORD_MNEM_SUFFIX;
6053 break;
6054 }
6055 }
252b5132 6056
9306ca4a 6057 if (!i.suffix)
29b0f896 6058 {
9306ca4a
JB
6059 if (!intel_syntax)
6060 {
40fb9820 6061 if (i.tm.opcode_modifier.w)
9306ca4a 6062 {
4eed87de
AM
6063 as_bad (_("no instruction mnemonic suffix given and "
6064 "no register operands; can't size instruction"));
9306ca4a
JB
6065 return 0;
6066 }
6067 }
6068 else
6069 {
40fb9820 6070 unsigned int suffixes;
7ab9ffdd 6071
40fb9820
L
6072 suffixes = !i.tm.opcode_modifier.no_bsuf;
6073 if (!i.tm.opcode_modifier.no_wsuf)
6074 suffixes |= 1 << 1;
6075 if (!i.tm.opcode_modifier.no_lsuf)
6076 suffixes |= 1 << 2;
fc4adea1 6077 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6078 suffixes |= 1 << 3;
6079 if (!i.tm.opcode_modifier.no_ssuf)
6080 suffixes |= 1 << 4;
c2b9da16 6081 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6082 suffixes |= 1 << 5;
6083
6084 /* There are more than suffix matches. */
6085 if (i.tm.opcode_modifier.w
9306ca4a 6086 || ((suffixes & (suffixes - 1))
40fb9820
L
6087 && !i.tm.opcode_modifier.defaultsize
6088 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6089 {
6090 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6091 return 0;
6092 }
6093 }
29b0f896 6094 }
252b5132 6095
d2224064
JB
6096 /* Change the opcode based on the operand size given by i.suffix. */
6097 switch (i.suffix)
29b0f896 6098 {
d2224064
JB
6099 /* Size floating point instruction. */
6100 case LONG_MNEM_SUFFIX:
6101 if (i.tm.opcode_modifier.floatmf)
6102 {
6103 i.tm.base_opcode ^= 4;
6104 break;
6105 }
6106 /* fall through */
6107 case WORD_MNEM_SUFFIX:
6108 case QWORD_MNEM_SUFFIX:
29b0f896 6109 /* It's not a byte, select word/dword operation. */
40fb9820 6110 if (i.tm.opcode_modifier.w)
29b0f896 6111 {
40fb9820 6112 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6113 i.tm.base_opcode |= 8;
6114 else
6115 i.tm.base_opcode |= 1;
6116 }
d2224064
JB
6117 /* fall through */
6118 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6119 /* Now select between word & dword operations via the operand
6120 size prefix, except for instructions that will ignore this
6121 prefix anyway. */
75c0a438
L
6122 if (i.reg_operands > 0
6123 && i.types[0].bitfield.reg
6124 && i.tm.opcode_modifier.addrprefixopreg
6125 && (i.tm.opcode_modifier.immext
6126 || i.operands == 1))
cb712a9e 6127 {
ca61edf2
L
6128 /* The address size override prefix changes the size of the
6129 first operand. */
40fb9820 6130 if ((flag_code == CODE_32BIT
75c0a438 6131 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6132 || (flag_code != CODE_32BIT
75c0a438 6133 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6134 if (!add_prefix (ADDR_PREFIX_OPCODE))
6135 return 0;
6136 }
6137 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6138 && !i.tm.opcode_modifier.ignoresize
6139 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
6140 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6141 || (flag_code == CODE_64BIT
40fb9820 6142 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6143 {
6144 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6145
40fb9820 6146 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6147 prefix = ADDR_PREFIX_OPCODE;
252b5132 6148
29b0f896
AM
6149 if (!add_prefix (prefix))
6150 return 0;
24eab124 6151 }
252b5132 6152
29b0f896
AM
6153 /* Set mode64 for an operand. */
6154 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6155 && flag_code == CODE_64BIT
d2224064 6156 && !i.tm.opcode_modifier.norex64
46e883c5 6157 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6158 need rex64. */
6159 && ! (i.operands == 2
6160 && i.tm.base_opcode == 0x90
6161 && i.tm.extension_opcode == None
6162 && operand_type_equal (&i.types [0], &acc64)
6163 && operand_type_equal (&i.types [1], &acc64)))
6164 i.rex |= REX_W;
3e73aa7c 6165
d2224064 6166 break;
29b0f896 6167 }
7ecd2f8b 6168
c0a30a9f
L
6169 if (i.reg_operands != 0
6170 && i.operands > 1
6171 && i.tm.opcode_modifier.addrprefixopreg
6172 && !i.tm.opcode_modifier.immext)
6173 {
6174 /* Check invalid register operand when the address size override
6175 prefix changes the size of register operands. */
6176 unsigned int op;
6177 enum { need_word, need_dword, need_qword } need;
6178
6179 if (flag_code == CODE_32BIT)
6180 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6181 else
6182 {
6183 if (i.prefix[ADDR_PREFIX])
6184 need = need_dword;
6185 else
6186 need = flag_code == CODE_64BIT ? need_qword : need_word;
6187 }
6188
6189 for (op = 0; op < i.operands; op++)
6190 if (i.types[op].bitfield.reg
6191 && ((need == need_word
6192 && !i.op[op].regs->reg_type.bitfield.word)
6193 || (need == need_dword
6194 && !i.op[op].regs->reg_type.bitfield.dword)
6195 || (need == need_qword
6196 && !i.op[op].regs->reg_type.bitfield.qword)))
6197 {
6198 as_bad (_("invalid register operand size for `%s'"),
6199 i.tm.name);
6200 return 0;
6201 }
6202 }
6203
29b0f896
AM
6204 return 1;
6205}
3e73aa7c 6206
29b0f896 6207static int
543613e9 6208check_byte_reg (void)
29b0f896
AM
6209{
6210 int op;
543613e9 6211
29b0f896
AM
6212 for (op = i.operands; --op >= 0;)
6213 {
dc821c5f
JB
6214 /* Skip non-register operands. */
6215 if (!i.types[op].bitfield.reg)
6216 continue;
6217
29b0f896
AM
6218 /* If this is an eight bit register, it's OK. If it's the 16 or
6219 32 bit version of an eight bit register, we will just use the
6220 low portion, and that's OK too. */
dc821c5f 6221 if (i.types[op].bitfield.byte)
29b0f896
AM
6222 continue;
6223
5a819eb9
JB
6224 /* I/O port address operands are OK too. */
6225 if (i.tm.operand_types[op].bitfield.inoutportreg)
6226 continue;
6227
9344ff29
L
6228 /* crc32 doesn't generate this warning. */
6229 if (i.tm.base_opcode == 0xf20f38f0)
6230 continue;
6231
dc821c5f
JB
6232 if ((i.types[op].bitfield.word
6233 || i.types[op].bitfield.dword
6234 || i.types[op].bitfield.qword)
5a819eb9
JB
6235 && i.op[op].regs->reg_num < 4
6236 /* Prohibit these changes in 64bit mode, since the lowering
6237 would be more complicated. */
6238 && flag_code != CODE_64BIT)
29b0f896 6239 {
29b0f896 6240#if REGISTER_WARNINGS
5a819eb9 6241 if (!quiet_warnings)
a540244d
L
6242 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6243 register_prefix,
dc821c5f 6244 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6245 ? REGNAM_AL - REGNAM_AX
6246 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6247 register_prefix,
29b0f896
AM
6248 i.op[op].regs->reg_name,
6249 i.suffix);
6250#endif
6251 continue;
6252 }
6253 /* Any other register is bad. */
dc821c5f 6254 if (i.types[op].bitfield.reg
40fb9820 6255 || i.types[op].bitfield.regmmx
1b54b8d7 6256 || i.types[op].bitfield.regsimd
40fb9820
L
6257 || i.types[op].bitfield.sreg2
6258 || i.types[op].bitfield.sreg3
6259 || i.types[op].bitfield.control
6260 || i.types[op].bitfield.debug
ca0d63fe 6261 || i.types[op].bitfield.test)
29b0f896 6262 {
a540244d
L
6263 as_bad (_("`%s%s' not allowed with `%s%c'"),
6264 register_prefix,
29b0f896
AM
6265 i.op[op].regs->reg_name,
6266 i.tm.name,
6267 i.suffix);
6268 return 0;
6269 }
6270 }
6271 return 1;
6272}
6273
6274static int
e3bb37b5 6275check_long_reg (void)
29b0f896
AM
6276{
6277 int op;
6278
6279 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6280 /* Skip non-register operands. */
6281 if (!i.types[op].bitfield.reg)
6282 continue;
29b0f896
AM
6283 /* Reject eight bit registers, except where the template requires
6284 them. (eg. movzb) */
dc821c5f
JB
6285 else if (i.types[op].bitfield.byte
6286 && (i.tm.operand_types[op].bitfield.reg
6287 || i.tm.operand_types[op].bitfield.acc)
6288 && (i.tm.operand_types[op].bitfield.word
6289 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6290 {
a540244d
L
6291 as_bad (_("`%s%s' not allowed with `%s%c'"),
6292 register_prefix,
29b0f896
AM
6293 i.op[op].regs->reg_name,
6294 i.tm.name,
6295 i.suffix);
6296 return 0;
6297 }
e4630f71 6298 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6299 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6300 && i.types[op].bitfield.word
6301 && (i.tm.operand_types[op].bitfield.reg
6302 || i.tm.operand_types[op].bitfield.acc)
6303 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6304 {
6305 /* Prohibit these changes in the 64bit mode, since the
6306 lowering is more complicated. */
6307 if (flag_code == CODE_64BIT)
252b5132 6308 {
2b5d6a91 6309 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6310 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6311 i.suffix);
6312 return 0;
252b5132 6313 }
29b0f896 6314#if REGISTER_WARNINGS
cecf1424
JB
6315 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6316 register_prefix,
6317 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6318 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6319#endif
252b5132 6320 }
e4630f71 6321 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6322 else if (i.types[op].bitfield.qword
6323 && (i.tm.operand_types[op].bitfield.reg
6324 || i.tm.operand_types[op].bitfield.acc)
6325 && i.tm.operand_types[op].bitfield.dword)
252b5132 6326 {
34828aad 6327 if (intel_syntax
ca61edf2 6328 && i.tm.opcode_modifier.toqword
1b54b8d7 6329 && !i.types[0].bitfield.regsimd)
34828aad 6330 {
ca61edf2 6331 /* Convert to QWORD. We want REX byte. */
34828aad
L
6332 i.suffix = QWORD_MNEM_SUFFIX;
6333 }
6334 else
6335 {
2b5d6a91 6336 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6337 register_prefix, i.op[op].regs->reg_name,
6338 i.suffix);
6339 return 0;
6340 }
29b0f896
AM
6341 }
6342 return 1;
6343}
252b5132 6344
29b0f896 6345static int
e3bb37b5 6346check_qword_reg (void)
29b0f896
AM
6347{
6348 int op;
252b5132 6349
29b0f896 6350 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6351 /* Skip non-register operands. */
6352 if (!i.types[op].bitfield.reg)
6353 continue;
29b0f896
AM
6354 /* Reject eight bit registers, except where the template requires
6355 them. (eg. movzb) */
dc821c5f
JB
6356 else if (i.types[op].bitfield.byte
6357 && (i.tm.operand_types[op].bitfield.reg
6358 || i.tm.operand_types[op].bitfield.acc)
6359 && (i.tm.operand_types[op].bitfield.word
6360 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6361 {
a540244d
L
6362 as_bad (_("`%s%s' not allowed with `%s%c'"),
6363 register_prefix,
29b0f896
AM
6364 i.op[op].regs->reg_name,
6365 i.tm.name,
6366 i.suffix);
6367 return 0;
6368 }
e4630f71 6369 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6370 else if ((i.types[op].bitfield.word
6371 || i.types[op].bitfield.dword)
6372 && (i.tm.operand_types[op].bitfield.reg
6373 || i.tm.operand_types[op].bitfield.acc)
6374 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6375 {
6376 /* Prohibit these changes in the 64bit mode, since the
6377 lowering is more complicated. */
34828aad 6378 if (intel_syntax
ca61edf2 6379 && i.tm.opcode_modifier.todword
1b54b8d7 6380 && !i.types[0].bitfield.regsimd)
34828aad 6381 {
ca61edf2 6382 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6383 i.suffix = LONG_MNEM_SUFFIX;
6384 }
6385 else
6386 {
2b5d6a91 6387 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6388 register_prefix, i.op[op].regs->reg_name,
6389 i.suffix);
6390 return 0;
6391 }
252b5132 6392 }
29b0f896
AM
6393 return 1;
6394}
252b5132 6395
29b0f896 6396static int
e3bb37b5 6397check_word_reg (void)
29b0f896
AM
6398{
6399 int op;
6400 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6401 /* Skip non-register operands. */
6402 if (!i.types[op].bitfield.reg)
6403 continue;
29b0f896
AM
6404 /* Reject eight bit registers, except where the template requires
6405 them. (eg. movzb) */
dc821c5f
JB
6406 else if (i.types[op].bitfield.byte
6407 && (i.tm.operand_types[op].bitfield.reg
6408 || i.tm.operand_types[op].bitfield.acc)
6409 && (i.tm.operand_types[op].bitfield.word
6410 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6411 {
a540244d
L
6412 as_bad (_("`%s%s' not allowed with `%s%c'"),
6413 register_prefix,
29b0f896
AM
6414 i.op[op].regs->reg_name,
6415 i.tm.name,
6416 i.suffix);
6417 return 0;
6418 }
e4630f71 6419 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6420 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6421 && (i.types[op].bitfield.dword
6422 || i.types[op].bitfield.qword)
6423 && (i.tm.operand_types[op].bitfield.reg
6424 || i.tm.operand_types[op].bitfield.acc)
6425 && i.tm.operand_types[op].bitfield.word)
252b5132 6426 {
29b0f896
AM
6427 /* Prohibit these changes in the 64bit mode, since the
6428 lowering is more complicated. */
6429 if (flag_code == CODE_64BIT)
252b5132 6430 {
2b5d6a91 6431 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6432 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6433 i.suffix);
6434 return 0;
252b5132 6435 }
29b0f896 6436#if REGISTER_WARNINGS
cecf1424
JB
6437 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6438 register_prefix,
6439 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6440 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6441#endif
6442 }
6443 return 1;
6444}
252b5132 6445
29b0f896 6446static int
40fb9820 6447update_imm (unsigned int j)
29b0f896 6448{
bc0844ae 6449 i386_operand_type overlap = i.types[j];
40fb9820
L
6450 if ((overlap.bitfield.imm8
6451 || overlap.bitfield.imm8s
6452 || overlap.bitfield.imm16
6453 || overlap.bitfield.imm32
6454 || overlap.bitfield.imm32s
6455 || overlap.bitfield.imm64)
0dfbf9d7
L
6456 && !operand_type_equal (&overlap, &imm8)
6457 && !operand_type_equal (&overlap, &imm8s)
6458 && !operand_type_equal (&overlap, &imm16)
6459 && !operand_type_equal (&overlap, &imm32)
6460 && !operand_type_equal (&overlap, &imm32s)
6461 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6462 {
6463 if (i.suffix)
6464 {
40fb9820
L
6465 i386_operand_type temp;
6466
0dfbf9d7 6467 operand_type_set (&temp, 0);
7ab9ffdd 6468 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6469 {
6470 temp.bitfield.imm8 = overlap.bitfield.imm8;
6471 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6472 }
6473 else if (i.suffix == WORD_MNEM_SUFFIX)
6474 temp.bitfield.imm16 = overlap.bitfield.imm16;
6475 else if (i.suffix == QWORD_MNEM_SUFFIX)
6476 {
6477 temp.bitfield.imm64 = overlap.bitfield.imm64;
6478 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6479 }
6480 else
6481 temp.bitfield.imm32 = overlap.bitfield.imm32;
6482 overlap = temp;
29b0f896 6483 }
0dfbf9d7
L
6484 else if (operand_type_equal (&overlap, &imm16_32_32s)
6485 || operand_type_equal (&overlap, &imm16_32)
6486 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6487 {
40fb9820 6488 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6489 overlap = imm16;
40fb9820 6490 else
65da13b5 6491 overlap = imm32s;
29b0f896 6492 }
0dfbf9d7
L
6493 if (!operand_type_equal (&overlap, &imm8)
6494 && !operand_type_equal (&overlap, &imm8s)
6495 && !operand_type_equal (&overlap, &imm16)
6496 && !operand_type_equal (&overlap, &imm32)
6497 && !operand_type_equal (&overlap, &imm32s)
6498 && !operand_type_equal (&overlap, &imm64))
29b0f896 6499 {
4eed87de
AM
6500 as_bad (_("no instruction mnemonic suffix given; "
6501 "can't determine immediate size"));
29b0f896
AM
6502 return 0;
6503 }
6504 }
40fb9820 6505 i.types[j] = overlap;
29b0f896 6506
40fb9820
L
6507 return 1;
6508}
6509
6510static int
6511finalize_imm (void)
6512{
bc0844ae 6513 unsigned int j, n;
29b0f896 6514
bc0844ae
L
6515 /* Update the first 2 immediate operands. */
6516 n = i.operands > 2 ? 2 : i.operands;
6517 if (n)
6518 {
6519 for (j = 0; j < n; j++)
6520 if (update_imm (j) == 0)
6521 return 0;
40fb9820 6522
bc0844ae
L
6523 /* The 3rd operand can't be immediate operand. */
6524 gas_assert (operand_type_check (i.types[2], imm) == 0);
6525 }
29b0f896
AM
6526
6527 return 1;
6528}
6529
6530static int
e3bb37b5 6531process_operands (void)
29b0f896
AM
6532{
6533 /* Default segment register this instruction will use for memory
6534 accesses. 0 means unknown. This is only for optimizing out
6535 unnecessary segment overrides. */
6536 const seg_entry *default_seg = 0;
6537
2426c15f 6538 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6539 {
91d6fa6a
NC
6540 unsigned int dupl = i.operands;
6541 unsigned int dest = dupl - 1;
9fcfb3d7
L
6542 unsigned int j;
6543
c0f3af97 6544 /* The destination must be an xmm register. */
9c2799c2 6545 gas_assert (i.reg_operands
91d6fa6a 6546 && MAX_OPERANDS > dupl
7ab9ffdd 6547 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6548
1b54b8d7
JB
6549 if (i.tm.operand_types[0].bitfield.acc
6550 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6551 {
8cd7925b 6552 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6553 {
6554 /* Keep xmm0 for instructions with VEX prefix and 3
6555 sources. */
1b54b8d7
JB
6556 i.tm.operand_types[0].bitfield.acc = 0;
6557 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6558 goto duplicate;
6559 }
e2ec9d29 6560 else
c0f3af97
L
6561 {
6562 /* We remove the first xmm0 and keep the number of
6563 operands unchanged, which in fact duplicates the
6564 destination. */
6565 for (j = 1; j < i.operands; j++)
6566 {
6567 i.op[j - 1] = i.op[j];
6568 i.types[j - 1] = i.types[j];
6569 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6570 }
6571 }
6572 }
6573 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6574 {
91d6fa6a 6575 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6576 && (i.tm.opcode_modifier.vexsources
6577 == VEX3SOURCES));
c0f3af97
L
6578
6579 /* Add the implicit xmm0 for instructions with VEX prefix
6580 and 3 sources. */
6581 for (j = i.operands; j > 0; j--)
6582 {
6583 i.op[j] = i.op[j - 1];
6584 i.types[j] = i.types[j - 1];
6585 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6586 }
6587 i.op[0].regs
6588 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6589 i.types[0] = regxmm;
c0f3af97
L
6590 i.tm.operand_types[0] = regxmm;
6591
6592 i.operands += 2;
6593 i.reg_operands += 2;
6594 i.tm.operands += 2;
6595
91d6fa6a 6596 dupl++;
c0f3af97 6597 dest++;
91d6fa6a
NC
6598 i.op[dupl] = i.op[dest];
6599 i.types[dupl] = i.types[dest];
6600 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6601 }
c0f3af97
L
6602 else
6603 {
6604duplicate:
6605 i.operands++;
6606 i.reg_operands++;
6607 i.tm.operands++;
6608
91d6fa6a
NC
6609 i.op[dupl] = i.op[dest];
6610 i.types[dupl] = i.types[dest];
6611 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6612 }
6613
6614 if (i.tm.opcode_modifier.immext)
6615 process_immext ();
6616 }
1b54b8d7
JB
6617 else if (i.tm.operand_types[0].bitfield.acc
6618 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6619 {
6620 unsigned int j;
6621
9fcfb3d7
L
6622 for (j = 1; j < i.operands; j++)
6623 {
6624 i.op[j - 1] = i.op[j];
6625 i.types[j - 1] = i.types[j];
6626
6627 /* We need to adjust fields in i.tm since they are used by
6628 build_modrm_byte. */
6629 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6630 }
6631
e2ec9d29
L
6632 i.operands--;
6633 i.reg_operands--;
e2ec9d29
L
6634 i.tm.operands--;
6635 }
920d2ddc
IT
6636 else if (i.tm.opcode_modifier.implicitquadgroup)
6637 {
a477a8c4
JB
6638 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6639
920d2ddc 6640 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6641 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6642 regnum = register_number (i.op[1].regs);
6643 first_reg_in_group = regnum & ~3;
6644 last_reg_in_group = first_reg_in_group + 3;
6645 if (regnum != first_reg_in_group)
6646 as_warn (_("source register `%s%s' implicitly denotes"
6647 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6648 register_prefix, i.op[1].regs->reg_name,
6649 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6650 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6651 i.tm.name);
6652 }
e2ec9d29
L
6653 else if (i.tm.opcode_modifier.regkludge)
6654 {
6655 /* The imul $imm, %reg instruction is converted into
6656 imul $imm, %reg, %reg, and the clr %reg instruction
6657 is converted into xor %reg, %reg. */
6658
6659 unsigned int first_reg_op;
6660
6661 if (operand_type_check (i.types[0], reg))
6662 first_reg_op = 0;
6663 else
6664 first_reg_op = 1;
6665 /* Pretend we saw the extra register operand. */
9c2799c2 6666 gas_assert (i.reg_operands == 1
7ab9ffdd 6667 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6668 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6669 i.types[first_reg_op + 1] = i.types[first_reg_op];
6670 i.operands++;
6671 i.reg_operands++;
29b0f896
AM
6672 }
6673
40fb9820 6674 if (i.tm.opcode_modifier.shortform)
29b0f896 6675 {
40fb9820
L
6676 if (i.types[0].bitfield.sreg2
6677 || i.types[0].bitfield.sreg3)
29b0f896 6678 {
4eed87de
AM
6679 if (i.tm.base_opcode == POP_SEG_SHORT
6680 && i.op[0].regs->reg_num == 1)
29b0f896 6681 {
a87af027 6682 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6683 return 0;
29b0f896 6684 }
4eed87de
AM
6685 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6686 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6687 i.rex |= REX_B;
4eed87de
AM
6688 }
6689 else
6690 {
7ab9ffdd 6691 /* The register or float register operand is in operand
85f10a01 6692 0 or 1. */
40fb9820 6693 unsigned int op;
7ab9ffdd 6694
ca0d63fe 6695 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6696 || operand_type_check (i.types[0], reg))
6697 op = 0;
6698 else
6699 op = 1;
4eed87de
AM
6700 /* Register goes in low 3 bits of opcode. */
6701 i.tm.base_opcode |= i.op[op].regs->reg_num;
6702 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6703 i.rex |= REX_B;
40fb9820 6704 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6705 {
4eed87de
AM
6706 /* Warn about some common errors, but press on regardless.
6707 The first case can be generated by gcc (<= 2.8.1). */
6708 if (i.operands == 2)
6709 {
6710 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6711 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6712 register_prefix, i.op[!intel_syntax].regs->reg_name,
6713 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6714 }
6715 else
6716 {
6717 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6718 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6719 register_prefix, i.op[0].regs->reg_name);
4eed87de 6720 }
29b0f896
AM
6721 }
6722 }
6723 }
40fb9820 6724 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6725 {
6726 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6727 must be put into the modrm byte). Now, we make the modrm and
6728 index base bytes based on all the info we've collected. */
29b0f896
AM
6729
6730 default_seg = build_modrm_byte ();
6731 }
8a2ed489 6732 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6733 {
6734 default_seg = &ds;
6735 }
40fb9820 6736 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6737 {
6738 /* For the string instructions that allow a segment override
6739 on one of their operands, the default segment is ds. */
6740 default_seg = &ds;
6741 }
6742
75178d9d
L
6743 if (i.tm.base_opcode == 0x8d /* lea */
6744 && i.seg[0]
6745 && !quiet_warnings)
30123838 6746 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6747
6748 /* If a segment was explicitly specified, and the specified segment
6749 is not the default, use an opcode prefix to select it. If we
6750 never figured out what the default segment is, then default_seg
6751 will be zero at this point, and the specified segment prefix will
6752 always be used. */
29b0f896
AM
6753 if ((i.seg[0]) && (i.seg[0] != default_seg))
6754 {
6755 if (!add_prefix (i.seg[0]->seg_prefix))
6756 return 0;
6757 }
6758 return 1;
6759}
6760
6761static const seg_entry *
e3bb37b5 6762build_modrm_byte (void)
29b0f896
AM
6763{
6764 const seg_entry *default_seg = 0;
c0f3af97 6765 unsigned int source, dest;
8cd7925b 6766 int vex_3_sources;
c0f3af97 6767
8cd7925b 6768 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6769 if (vex_3_sources)
6770 {
91d6fa6a 6771 unsigned int nds, reg_slot;
4c2c6516 6772 expressionS *exp;
c0f3af97 6773
6b8d3588 6774 dest = i.operands - 1;
c0f3af97 6775 nds = dest - 1;
922d8de8 6776
a683cc34 6777 /* There are 2 kinds of instructions:
bed3d976
JB
6778 1. 5 operands: 4 register operands or 3 register operands
6779 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6780 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6781 ZMM register.
bed3d976 6782 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6783 plus 1 memory operand, with VexXDS. */
922d8de8 6784 gas_assert ((i.reg_operands == 4
bed3d976
JB
6785 || (i.reg_operands == 3 && i.mem_operands == 1))
6786 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6787 && i.tm.opcode_modifier.vexw
6788 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6789
48db9223
JB
6790 /* If VexW1 is set, the first non-immediate operand is the source and
6791 the second non-immediate one is encoded in the immediate operand. */
6792 if (i.tm.opcode_modifier.vexw == VEXW1)
6793 {
6794 source = i.imm_operands;
6795 reg_slot = i.imm_operands + 1;
6796 }
6797 else
6798 {
6799 source = i.imm_operands + 1;
6800 reg_slot = i.imm_operands;
6801 }
6802
a683cc34 6803 if (i.imm_operands == 0)
bed3d976
JB
6804 {
6805 /* When there is no immediate operand, generate an 8bit
6806 immediate operand to encode the first operand. */
6807 exp = &im_expressions[i.imm_operands++];
6808 i.op[i.operands].imms = exp;
6809 i.types[i.operands] = imm8;
6810 i.operands++;
6811
6812 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6813 exp->X_op = O_constant;
6814 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6815 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6816 }
922d8de8 6817 else
bed3d976
JB
6818 {
6819 unsigned int imm_slot;
a683cc34 6820
2f1bada2
JB
6821 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6822
bed3d976
JB
6823 if (i.tm.opcode_modifier.immext)
6824 {
6825 /* When ImmExt is set, the immediate byte is the last
6826 operand. */
6827 imm_slot = i.operands - 1;
6828 source--;
6829 reg_slot--;
6830 }
6831 else
6832 {
6833 imm_slot = 0;
6834
6835 /* Turn on Imm8 so that output_imm will generate it. */
6836 i.types[imm_slot].bitfield.imm8 = 1;
6837 }
6838
6839 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6840 i.op[imm_slot].imms->X_add_number
6841 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6842 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6843 }
a683cc34 6844
10c17abd 6845 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6846 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6847 }
6848 else
6849 source = dest = 0;
29b0f896
AM
6850
6851 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6852 implicit registers do not count. If there are 3 register
6853 operands, it must be a instruction with VexNDS. For a
6854 instruction with VexNDD, the destination register is encoded
6855 in VEX prefix. If there are 4 register operands, it must be
6856 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6857 if (i.mem_operands == 0
6858 && ((i.reg_operands == 2
2426c15f 6859 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6860 || (i.reg_operands == 3
2426c15f 6861 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6862 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6863 {
cab737b9
L
6864 switch (i.operands)
6865 {
6866 case 2:
6867 source = 0;
6868 break;
6869 case 3:
c81128dc
L
6870 /* When there are 3 operands, one of them may be immediate,
6871 which may be the first or the last operand. Otherwise,
c0f3af97
L
6872 the first operand must be shift count register (cl) or it
6873 is an instruction with VexNDS. */
9c2799c2 6874 gas_assert (i.imm_operands == 1
7ab9ffdd 6875 || (i.imm_operands == 0
2426c15f 6876 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6877 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6878 if (operand_type_check (i.types[0], imm)
6879 || i.types[0].bitfield.shiftcount)
6880 source = 1;
6881 else
6882 source = 0;
cab737b9
L
6883 break;
6884 case 4:
368d64cc
L
6885 /* When there are 4 operands, the first two must be 8bit
6886 immediate operands. The source operand will be the 3rd
c0f3af97
L
6887 one.
6888
6889 For instructions with VexNDS, if the first operand
6890 an imm8, the source operand is the 2nd one. If the last
6891 operand is imm8, the source operand is the first one. */
9c2799c2 6892 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6893 && i.types[0].bitfield.imm8
6894 && i.types[1].bitfield.imm8)
2426c15f 6895 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6896 && i.imm_operands == 1
6897 && (i.types[0].bitfield.imm8
43234a1e
L
6898 || i.types[i.operands - 1].bitfield.imm8
6899 || i.rounding)));
9f2670f2
L
6900 if (i.imm_operands == 2)
6901 source = 2;
6902 else
c0f3af97
L
6903 {
6904 if (i.types[0].bitfield.imm8)
6905 source = 1;
6906 else
6907 source = 0;
6908 }
c0f3af97
L
6909 break;
6910 case 5:
e771e7c9 6911 if (is_evex_encoding (&i.tm))
43234a1e
L
6912 {
6913 /* For EVEX instructions, when there are 5 operands, the
6914 first one must be immediate operand. If the second one
6915 is immediate operand, the source operand is the 3th
6916 one. If the last one is immediate operand, the source
6917 operand is the 2nd one. */
6918 gas_assert (i.imm_operands == 2
6919 && i.tm.opcode_modifier.sae
6920 && operand_type_check (i.types[0], imm));
6921 if (operand_type_check (i.types[1], imm))
6922 source = 2;
6923 else if (operand_type_check (i.types[4], imm))
6924 source = 1;
6925 else
6926 abort ();
6927 }
cab737b9
L
6928 break;
6929 default:
6930 abort ();
6931 }
6932
c0f3af97
L
6933 if (!vex_3_sources)
6934 {
6935 dest = source + 1;
6936
43234a1e
L
6937 /* RC/SAE operand could be between DEST and SRC. That happens
6938 when one operand is GPR and the other one is XMM/YMM/ZMM
6939 register. */
6940 if (i.rounding && i.rounding->operand == (int) dest)
6941 dest++;
6942
2426c15f 6943 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6944 {
43234a1e 6945 /* For instructions with VexNDS, the register-only source
c5d0745b 6946 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6947 register. It is encoded in VEX prefix. We need to
6948 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6949
6950 i386_operand_type op;
6951 unsigned int vvvv;
6952
6953 /* Check register-only source operand when two source
6954 operands are swapped. */
6955 if (!i.tm.operand_types[source].bitfield.baseindex
6956 && i.tm.operand_types[dest].bitfield.baseindex)
6957 {
6958 vvvv = source;
6959 source = dest;
6960 }
6961 else
6962 vvvv = dest;
6963
6964 op = i.tm.operand_types[vvvv];
fa99fab2 6965 op.bitfield.regmem = 0;
c0f3af97 6966 if ((dest + 1) >= i.operands
dc821c5f
JB
6967 || ((!op.bitfield.reg
6968 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6969 && !op.bitfield.regsimd
43234a1e 6970 && !operand_type_equal (&op, &regmask)))
c0f3af97 6971 abort ();
f12dc422 6972 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6973 dest++;
6974 }
6975 }
29b0f896
AM
6976
6977 i.rm.mode = 3;
6978 /* One of the register operands will be encoded in the i.tm.reg
6979 field, the other in the combined i.tm.mode and i.tm.regmem
6980 fields. If no form of this instruction supports a memory
6981 destination operand, then we assume the source operand may
6982 sometimes be a memory operand and so we need to store the
6983 destination in the i.rm.reg field. */
40fb9820
L
6984 if (!i.tm.operand_types[dest].bitfield.regmem
6985 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6986 {
6987 i.rm.reg = i.op[dest].regs->reg_num;
6988 i.rm.regmem = i.op[source].regs->reg_num;
6989 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6990 i.rex |= REX_R;
43234a1e
L
6991 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6992 i.vrex |= REX_R;
29b0f896 6993 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6994 i.rex |= REX_B;
43234a1e
L
6995 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6996 i.vrex |= REX_B;
29b0f896
AM
6997 }
6998 else
6999 {
7000 i.rm.reg = i.op[source].regs->reg_num;
7001 i.rm.regmem = i.op[dest].regs->reg_num;
7002 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7003 i.rex |= REX_B;
43234a1e
L
7004 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7005 i.vrex |= REX_B;
29b0f896 7006 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7007 i.rex |= REX_R;
43234a1e
L
7008 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7009 i.vrex |= REX_R;
29b0f896 7010 }
e0c7f900 7011 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7012 {
e0c7f900 7013 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7014 abort ();
e0c7f900 7015 i.rex &= ~REX_R;
c4a530c5
JB
7016 add_prefix (LOCK_PREFIX_OPCODE);
7017 }
29b0f896
AM
7018 }
7019 else
7020 { /* If it's not 2 reg operands... */
c0f3af97
L
7021 unsigned int mem;
7022
29b0f896
AM
7023 if (i.mem_operands)
7024 {
7025 unsigned int fake_zero_displacement = 0;
99018f42 7026 unsigned int op;
4eed87de 7027
7ab9ffdd
L
7028 for (op = 0; op < i.operands; op++)
7029 if (operand_type_check (i.types[op], anymem))
7030 break;
7ab9ffdd 7031 gas_assert (op < i.operands);
29b0f896 7032
6c30d220
L
7033 if (i.tm.opcode_modifier.vecsib)
7034 {
7035 if (i.index_reg->reg_num == RegEiz
7036 || i.index_reg->reg_num == RegRiz)
7037 abort ();
7038
7039 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7040 if (!i.base_reg)
7041 {
7042 i.sib.base = NO_BASE_REGISTER;
7043 i.sib.scale = i.log2_scale_factor;
7044 i.types[op].bitfield.disp8 = 0;
7045 i.types[op].bitfield.disp16 = 0;
7046 i.types[op].bitfield.disp64 = 0;
43083a50 7047 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7048 {
7049 /* Must be 32 bit */
7050 i.types[op].bitfield.disp32 = 1;
7051 i.types[op].bitfield.disp32s = 0;
7052 }
7053 else
7054 {
7055 i.types[op].bitfield.disp32 = 0;
7056 i.types[op].bitfield.disp32s = 1;
7057 }
7058 }
7059 i.sib.index = i.index_reg->reg_num;
7060 if ((i.index_reg->reg_flags & RegRex) != 0)
7061 i.rex |= REX_X;
43234a1e
L
7062 if ((i.index_reg->reg_flags & RegVRex) != 0)
7063 i.vrex |= REX_X;
6c30d220
L
7064 }
7065
29b0f896
AM
7066 default_seg = &ds;
7067
7068 if (i.base_reg == 0)
7069 {
7070 i.rm.mode = 0;
7071 if (!i.disp_operands)
9bb129e8 7072 fake_zero_displacement = 1;
29b0f896
AM
7073 if (i.index_reg == 0)
7074 {
73053c1f
JB
7075 i386_operand_type newdisp;
7076
6c30d220 7077 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7078 /* Operand is just <disp> */
20f0a1fc 7079 if (flag_code == CODE_64BIT)
29b0f896
AM
7080 {
7081 /* 64bit mode overwrites the 32bit absolute
7082 addressing by RIP relative addressing and
7083 absolute addressing is encoded by one of the
7084 redundant SIB forms. */
7085 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7086 i.sib.base = NO_BASE_REGISTER;
7087 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7088 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7089 }
fc225355
L
7090 else if ((flag_code == CODE_16BIT)
7091 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7092 {
7093 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7094 newdisp = disp16;
20f0a1fc
NC
7095 }
7096 else
7097 {
7098 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7099 newdisp = disp32;
29b0f896 7100 }
73053c1f
JB
7101 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7102 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7103 }
6c30d220 7104 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7105 {
6c30d220 7106 /* !i.base_reg && i.index_reg */
db51cc60
L
7107 if (i.index_reg->reg_num == RegEiz
7108 || i.index_reg->reg_num == RegRiz)
7109 i.sib.index = NO_INDEX_REGISTER;
7110 else
7111 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7112 i.sib.base = NO_BASE_REGISTER;
7113 i.sib.scale = i.log2_scale_factor;
7114 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7115 i.types[op].bitfield.disp8 = 0;
7116 i.types[op].bitfield.disp16 = 0;
7117 i.types[op].bitfield.disp64 = 0;
43083a50 7118 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7119 {
7120 /* Must be 32 bit */
7121 i.types[op].bitfield.disp32 = 1;
7122 i.types[op].bitfield.disp32s = 0;
7123 }
29b0f896 7124 else
40fb9820
L
7125 {
7126 i.types[op].bitfield.disp32 = 0;
7127 i.types[op].bitfield.disp32s = 1;
7128 }
29b0f896 7129 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7130 i.rex |= REX_X;
29b0f896
AM
7131 }
7132 }
7133 /* RIP addressing for 64bit mode. */
9a04903e
JB
7134 else if (i.base_reg->reg_num == RegRip ||
7135 i.base_reg->reg_num == RegEip)
29b0f896 7136 {
6c30d220 7137 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7138 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7139 i.types[op].bitfield.disp8 = 0;
7140 i.types[op].bitfield.disp16 = 0;
7141 i.types[op].bitfield.disp32 = 0;
7142 i.types[op].bitfield.disp32s = 1;
7143 i.types[op].bitfield.disp64 = 0;
71903a11 7144 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7145 if (! i.disp_operands)
7146 fake_zero_displacement = 1;
29b0f896 7147 }
dc821c5f 7148 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7149 {
6c30d220 7150 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7151 switch (i.base_reg->reg_num)
7152 {
7153 case 3: /* (%bx) */
7154 if (i.index_reg == 0)
7155 i.rm.regmem = 7;
7156 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7157 i.rm.regmem = i.index_reg->reg_num - 6;
7158 break;
7159 case 5: /* (%bp) */
7160 default_seg = &ss;
7161 if (i.index_reg == 0)
7162 {
7163 i.rm.regmem = 6;
40fb9820 7164 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7165 {
7166 /* fake (%bp) into 0(%bp) */
b5014f7a 7167 i.types[op].bitfield.disp8 = 1;
252b5132 7168 fake_zero_displacement = 1;
29b0f896
AM
7169 }
7170 }
7171 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7172 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7173 break;
7174 default: /* (%si) -> 4 or (%di) -> 5 */
7175 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7176 }
7177 i.rm.mode = mode_from_disp_size (i.types[op]);
7178 }
7179 else /* i.base_reg and 32/64 bit mode */
7180 {
7181 if (flag_code == CODE_64BIT
40fb9820
L
7182 && operand_type_check (i.types[op], disp))
7183 {
73053c1f
JB
7184 i.types[op].bitfield.disp16 = 0;
7185 i.types[op].bitfield.disp64 = 0;
40fb9820 7186 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7187 {
7188 i.types[op].bitfield.disp32 = 0;
7189 i.types[op].bitfield.disp32s = 1;
7190 }
40fb9820 7191 else
73053c1f
JB
7192 {
7193 i.types[op].bitfield.disp32 = 1;
7194 i.types[op].bitfield.disp32s = 0;
7195 }
40fb9820 7196 }
20f0a1fc 7197
6c30d220
L
7198 if (!i.tm.opcode_modifier.vecsib)
7199 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7200 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7201 i.rex |= REX_B;
29b0f896
AM
7202 i.sib.base = i.base_reg->reg_num;
7203 /* x86-64 ignores REX prefix bit here to avoid decoder
7204 complications. */
848930b2
JB
7205 if (!(i.base_reg->reg_flags & RegRex)
7206 && (i.base_reg->reg_num == EBP_REG_NUM
7207 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7208 default_seg = &ss;
848930b2 7209 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7210 {
848930b2 7211 fake_zero_displacement = 1;
b5014f7a 7212 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7213 }
7214 i.sib.scale = i.log2_scale_factor;
7215 if (i.index_reg == 0)
7216 {
6c30d220 7217 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7218 /* <disp>(%esp) becomes two byte modrm with no index
7219 register. We've already stored the code for esp
7220 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7221 Any base register besides %esp will not use the
7222 extra modrm byte. */
7223 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7224 }
6c30d220 7225 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7226 {
db51cc60
L
7227 if (i.index_reg->reg_num == RegEiz
7228 || i.index_reg->reg_num == RegRiz)
7229 i.sib.index = NO_INDEX_REGISTER;
7230 else
7231 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7232 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7233 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7234 i.rex |= REX_X;
29b0f896 7235 }
67a4f2b7
AO
7236
7237 if (i.disp_operands
7238 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7239 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7240 i.rm.mode = 0;
7241 else
a501d77e
L
7242 {
7243 if (!fake_zero_displacement
7244 && !i.disp_operands
7245 && i.disp_encoding)
7246 {
7247 fake_zero_displacement = 1;
7248 if (i.disp_encoding == disp_encoding_8bit)
7249 i.types[op].bitfield.disp8 = 1;
7250 else
7251 i.types[op].bitfield.disp32 = 1;
7252 }
7253 i.rm.mode = mode_from_disp_size (i.types[op]);
7254 }
29b0f896 7255 }
252b5132 7256
29b0f896
AM
7257 if (fake_zero_displacement)
7258 {
7259 /* Fakes a zero displacement assuming that i.types[op]
7260 holds the correct displacement size. */
7261 expressionS *exp;
7262
9c2799c2 7263 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7264 exp = &disp_expressions[i.disp_operands++];
7265 i.op[op].disps = exp;
7266 exp->X_op = O_constant;
7267 exp->X_add_number = 0;
7268 exp->X_add_symbol = (symbolS *) 0;
7269 exp->X_op_symbol = (symbolS *) 0;
7270 }
c0f3af97
L
7271
7272 mem = op;
29b0f896 7273 }
c0f3af97
L
7274 else
7275 mem = ~0;
252b5132 7276
8c43a48b 7277 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7278 {
7279 if (operand_type_check (i.types[0], imm))
7280 i.vex.register_specifier = NULL;
7281 else
7282 {
7283 /* VEX.vvvv encodes one of the sources when the first
7284 operand is not an immediate. */
1ef99a7b 7285 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7286 i.vex.register_specifier = i.op[0].regs;
7287 else
7288 i.vex.register_specifier = i.op[1].regs;
7289 }
7290
7291 /* Destination is a XMM register encoded in the ModRM.reg
7292 and VEX.R bit. */
7293 i.rm.reg = i.op[2].regs->reg_num;
7294 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7295 i.rex |= REX_R;
7296
7297 /* ModRM.rm and VEX.B encodes the other source. */
7298 if (!i.mem_operands)
7299 {
7300 i.rm.mode = 3;
7301
1ef99a7b 7302 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7303 i.rm.regmem = i.op[1].regs->reg_num;
7304 else
7305 i.rm.regmem = i.op[0].regs->reg_num;
7306
7307 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7308 i.rex |= REX_B;
7309 }
7310 }
2426c15f 7311 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7312 {
7313 i.vex.register_specifier = i.op[2].regs;
7314 if (!i.mem_operands)
7315 {
7316 i.rm.mode = 3;
7317 i.rm.regmem = i.op[1].regs->reg_num;
7318 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7319 i.rex |= REX_B;
7320 }
7321 }
29b0f896
AM
7322 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7323 (if any) based on i.tm.extension_opcode. Again, we must be
7324 careful to make sure that segment/control/debug/test/MMX
7325 registers are coded into the i.rm.reg field. */
f88c9eb0 7326 else if (i.reg_operands)
29b0f896 7327 {
99018f42 7328 unsigned int op;
7ab9ffdd
L
7329 unsigned int vex_reg = ~0;
7330
7331 for (op = 0; op < i.operands; op++)
dc821c5f 7332 if (i.types[op].bitfield.reg
7ab9ffdd 7333 || i.types[op].bitfield.regmmx
1b54b8d7 7334 || i.types[op].bitfield.regsimd
7e8b059b 7335 || i.types[op].bitfield.regbnd
43234a1e 7336 || i.types[op].bitfield.regmask
7ab9ffdd
L
7337 || i.types[op].bitfield.sreg2
7338 || i.types[op].bitfield.sreg3
7339 || i.types[op].bitfield.control
7340 || i.types[op].bitfield.debug
7341 || i.types[op].bitfield.test)
7342 break;
c0209578 7343
7ab9ffdd
L
7344 if (vex_3_sources)
7345 op = dest;
2426c15f 7346 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7347 {
7348 /* For instructions with VexNDS, the register-only
7349 source operand is encoded in VEX prefix. */
7350 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7351
7ab9ffdd 7352 if (op > mem)
c0f3af97 7353 {
7ab9ffdd
L
7354 vex_reg = op++;
7355 gas_assert (op < i.operands);
c0f3af97
L
7356 }
7357 else
c0f3af97 7358 {
f12dc422
L
7359 /* Check register-only source operand when two source
7360 operands are swapped. */
7361 if (!i.tm.operand_types[op].bitfield.baseindex
7362 && i.tm.operand_types[op + 1].bitfield.baseindex)
7363 {
7364 vex_reg = op;
7365 op += 2;
7366 gas_assert (mem == (vex_reg + 1)
7367 && op < i.operands);
7368 }
7369 else
7370 {
7371 vex_reg = op + 1;
7372 gas_assert (vex_reg < i.operands);
7373 }
c0f3af97 7374 }
7ab9ffdd 7375 }
2426c15f 7376 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7377 {
f12dc422 7378 /* For instructions with VexNDD, the register destination
7ab9ffdd 7379 is encoded in VEX prefix. */
f12dc422
L
7380 if (i.mem_operands == 0)
7381 {
7382 /* There is no memory operand. */
7383 gas_assert ((op + 2) == i.operands);
7384 vex_reg = op + 1;
7385 }
7386 else
8d63c93e 7387 {
ed438a93
JB
7388 /* There are only 2 non-immediate operands. */
7389 gas_assert (op < i.imm_operands + 2
7390 && i.operands == i.imm_operands + 2);
7391 vex_reg = i.imm_operands + 1;
f12dc422 7392 }
7ab9ffdd
L
7393 }
7394 else
7395 gas_assert (op < i.operands);
99018f42 7396
7ab9ffdd
L
7397 if (vex_reg != (unsigned int) ~0)
7398 {
f12dc422 7399 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7400
dc821c5f
JB
7401 if ((!type->bitfield.reg
7402 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7403 && !type->bitfield.regsimd
43234a1e 7404 && !operand_type_equal (type, &regmask))
7ab9ffdd 7405 abort ();
f88c9eb0 7406
7ab9ffdd
L
7407 i.vex.register_specifier = i.op[vex_reg].regs;
7408 }
7409
1b9f0c97
L
7410 /* Don't set OP operand twice. */
7411 if (vex_reg != op)
7ab9ffdd 7412 {
1b9f0c97
L
7413 /* If there is an extension opcode to put here, the
7414 register number must be put into the regmem field. */
7415 if (i.tm.extension_opcode != None)
7416 {
7417 i.rm.regmem = i.op[op].regs->reg_num;
7418 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7419 i.rex |= REX_B;
43234a1e
L
7420 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7421 i.vrex |= REX_B;
1b9f0c97
L
7422 }
7423 else
7424 {
7425 i.rm.reg = i.op[op].regs->reg_num;
7426 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7427 i.rex |= REX_R;
43234a1e
L
7428 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7429 i.vrex |= REX_R;
1b9f0c97 7430 }
7ab9ffdd 7431 }
252b5132 7432
29b0f896
AM
7433 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7434 must set it to 3 to indicate this is a register operand
7435 in the regmem field. */
7436 if (!i.mem_operands)
7437 i.rm.mode = 3;
7438 }
252b5132 7439
29b0f896 7440 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7441 if (i.tm.extension_opcode != None)
29b0f896
AM
7442 i.rm.reg = i.tm.extension_opcode;
7443 }
7444 return default_seg;
7445}
252b5132 7446
29b0f896 7447static void
e3bb37b5 7448output_branch (void)
29b0f896
AM
7449{
7450 char *p;
f8a5c266 7451 int size;
29b0f896
AM
7452 int code16;
7453 int prefix;
7454 relax_substateT subtype;
7455 symbolS *sym;
7456 offsetT off;
7457
f8a5c266 7458 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7459 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7460
7461 prefix = 0;
7462 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7463 {
29b0f896
AM
7464 prefix = 1;
7465 i.prefixes -= 1;
7466 code16 ^= CODE16;
252b5132 7467 }
29b0f896
AM
7468 /* Pentium4 branch hints. */
7469 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7470 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7471 {
29b0f896
AM
7472 prefix++;
7473 i.prefixes--;
7474 }
7475 if (i.prefix[REX_PREFIX] != 0)
7476 {
7477 prefix++;
7478 i.prefixes--;
2f66722d
AM
7479 }
7480
7e8b059b
L
7481 /* BND prefixed jump. */
7482 if (i.prefix[BND_PREFIX] != 0)
7483 {
7484 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7485 i.prefixes -= 1;
7486 }
7487
29b0f896
AM
7488 if (i.prefixes != 0 && !intel_syntax)
7489 as_warn (_("skipping prefixes on this instruction"));
7490
7491 /* It's always a symbol; End frag & setup for relax.
7492 Make sure there is enough room in this frag for the largest
7493 instruction we may generate in md_convert_frag. This is 2
7494 bytes for the opcode and room for the prefix and largest
7495 displacement. */
7496 frag_grow (prefix + 2 + 4);
7497 /* Prefix and 1 opcode byte go in fr_fix. */
7498 p = frag_more (prefix + 1);
7499 if (i.prefix[DATA_PREFIX] != 0)
7500 *p++ = DATA_PREFIX_OPCODE;
7501 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7502 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7503 *p++ = i.prefix[SEG_PREFIX];
7504 if (i.prefix[REX_PREFIX] != 0)
7505 *p++ = i.prefix[REX_PREFIX];
7506 *p = i.tm.base_opcode;
7507
7508 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7509 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7510 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7511 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7512 else
f8a5c266 7513 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7514 subtype |= code16;
3e73aa7c 7515
29b0f896
AM
7516 sym = i.op[0].disps->X_add_symbol;
7517 off = i.op[0].disps->X_add_number;
3e73aa7c 7518
29b0f896
AM
7519 if (i.op[0].disps->X_op != O_constant
7520 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7521 {
29b0f896
AM
7522 /* Handle complex expressions. */
7523 sym = make_expr_symbol (i.op[0].disps);
7524 off = 0;
7525 }
3e73aa7c 7526
29b0f896
AM
7527 /* 1 possible extra opcode + 4 byte displacement go in var part.
7528 Pass reloc in fr_var. */
d258b828 7529 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7530}
3e73aa7c 7531
bd7ab16b
L
7532#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7533/* Return TRUE iff PLT32 relocation should be used for branching to
7534 symbol S. */
7535
7536static bfd_boolean
7537need_plt32_p (symbolS *s)
7538{
7539 /* PLT32 relocation is ELF only. */
7540 if (!IS_ELF)
7541 return FALSE;
7542
7543 /* Since there is no need to prepare for PLT branch on x86-64, we
7544 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7545 be used as a marker for 32-bit PC-relative branches. */
7546 if (!object_64bit)
7547 return FALSE;
7548
7549 /* Weak or undefined symbol need PLT32 relocation. */
7550 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7551 return TRUE;
7552
7553 /* Non-global symbol doesn't need PLT32 relocation. */
7554 if (! S_IS_EXTERNAL (s))
7555 return FALSE;
7556
7557 /* Other global symbols need PLT32 relocation. NB: Symbol with
7558 non-default visibilities are treated as normal global symbol
7559 so that PLT32 relocation can be used as a marker for 32-bit
7560 PC-relative branches. It is useful for linker relaxation. */
7561 return TRUE;
7562}
7563#endif
7564
29b0f896 7565static void
e3bb37b5 7566output_jump (void)
29b0f896
AM
7567{
7568 char *p;
7569 int size;
3e02c1cc 7570 fixS *fixP;
bd7ab16b 7571 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7572
40fb9820 7573 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7574 {
7575 /* This is a loop or jecxz type instruction. */
7576 size = 1;
7577 if (i.prefix[ADDR_PREFIX] != 0)
7578 {
7579 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7580 i.prefixes -= 1;
7581 }
7582 /* Pentium4 branch hints. */
7583 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7584 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7585 {
7586 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7587 i.prefixes--;
3e73aa7c
JH
7588 }
7589 }
29b0f896
AM
7590 else
7591 {
7592 int code16;
3e73aa7c 7593
29b0f896
AM
7594 code16 = 0;
7595 if (flag_code == CODE_16BIT)
7596 code16 = CODE16;
3e73aa7c 7597
29b0f896
AM
7598 if (i.prefix[DATA_PREFIX] != 0)
7599 {
7600 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7601 i.prefixes -= 1;
7602 code16 ^= CODE16;
7603 }
252b5132 7604
29b0f896
AM
7605 size = 4;
7606 if (code16)
7607 size = 2;
7608 }
9fcc94b6 7609
29b0f896
AM
7610 if (i.prefix[REX_PREFIX] != 0)
7611 {
7612 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7613 i.prefixes -= 1;
7614 }
252b5132 7615
7e8b059b
L
7616 /* BND prefixed jump. */
7617 if (i.prefix[BND_PREFIX] != 0)
7618 {
7619 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7620 i.prefixes -= 1;
7621 }
7622
29b0f896
AM
7623 if (i.prefixes != 0 && !intel_syntax)
7624 as_warn (_("skipping prefixes on this instruction"));
e0890092 7625
42164a71
L
7626 p = frag_more (i.tm.opcode_length + size);
7627 switch (i.tm.opcode_length)
7628 {
7629 case 2:
7630 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7631 /* Fall through. */
42164a71
L
7632 case 1:
7633 *p++ = i.tm.base_opcode;
7634 break;
7635 default:
7636 abort ();
7637 }
e0890092 7638
bd7ab16b
L
7639#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7640 if (size == 4
7641 && jump_reloc == NO_RELOC
7642 && need_plt32_p (i.op[0].disps->X_add_symbol))
7643 jump_reloc = BFD_RELOC_X86_64_PLT32;
7644#endif
7645
7646 jump_reloc = reloc (size, 1, 1, jump_reloc);
7647
3e02c1cc 7648 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7649 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7650
7651 /* All jumps handled here are signed, but don't use a signed limit
7652 check for 32 and 16 bit jumps as we want to allow wrap around at
7653 4G and 64k respectively. */
7654 if (size == 1)
7655 fixP->fx_signed = 1;
29b0f896 7656}
e0890092 7657
29b0f896 7658static void
e3bb37b5 7659output_interseg_jump (void)
29b0f896
AM
7660{
7661 char *p;
7662 int size;
7663 int prefix;
7664 int code16;
252b5132 7665
29b0f896
AM
7666 code16 = 0;
7667 if (flag_code == CODE_16BIT)
7668 code16 = CODE16;
a217f122 7669
29b0f896
AM
7670 prefix = 0;
7671 if (i.prefix[DATA_PREFIX] != 0)
7672 {
7673 prefix = 1;
7674 i.prefixes -= 1;
7675 code16 ^= CODE16;
7676 }
7677 if (i.prefix[REX_PREFIX] != 0)
7678 {
7679 prefix++;
7680 i.prefixes -= 1;
7681 }
252b5132 7682
29b0f896
AM
7683 size = 4;
7684 if (code16)
7685 size = 2;
252b5132 7686
29b0f896
AM
7687 if (i.prefixes != 0 && !intel_syntax)
7688 as_warn (_("skipping prefixes on this instruction"));
252b5132 7689
29b0f896
AM
7690 /* 1 opcode; 2 segment; offset */
7691 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7692
29b0f896
AM
7693 if (i.prefix[DATA_PREFIX] != 0)
7694 *p++ = DATA_PREFIX_OPCODE;
252b5132 7695
29b0f896
AM
7696 if (i.prefix[REX_PREFIX] != 0)
7697 *p++ = i.prefix[REX_PREFIX];
252b5132 7698
29b0f896
AM
7699 *p++ = i.tm.base_opcode;
7700 if (i.op[1].imms->X_op == O_constant)
7701 {
7702 offsetT n = i.op[1].imms->X_add_number;
252b5132 7703
29b0f896
AM
7704 if (size == 2
7705 && !fits_in_unsigned_word (n)
7706 && !fits_in_signed_word (n))
7707 {
7708 as_bad (_("16-bit jump out of range"));
7709 return;
7710 }
7711 md_number_to_chars (p, n, size);
7712 }
7713 else
7714 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7715 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7716 if (i.op[0].imms->X_op != O_constant)
7717 as_bad (_("can't handle non absolute segment in `%s'"),
7718 i.tm.name);
7719 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7720}
a217f122 7721
29b0f896 7722static void
e3bb37b5 7723output_insn (void)
29b0f896 7724{
2bbd9c25
JJ
7725 fragS *insn_start_frag;
7726 offsetT insn_start_off;
7727
29b0f896
AM
7728 /* Tie dwarf2 debug info to the address at the start of the insn.
7729 We can't do this after the insn has been output as the current
7730 frag may have been closed off. eg. by frag_var. */
7731 dwarf2_emit_insn (0);
7732
2bbd9c25
JJ
7733 insn_start_frag = frag_now;
7734 insn_start_off = frag_now_fix ();
7735
29b0f896 7736 /* Output jumps. */
40fb9820 7737 if (i.tm.opcode_modifier.jump)
29b0f896 7738 output_branch ();
40fb9820
L
7739 else if (i.tm.opcode_modifier.jumpbyte
7740 || i.tm.opcode_modifier.jumpdword)
29b0f896 7741 output_jump ();
40fb9820 7742 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7743 output_interseg_jump ();
7744 else
7745 {
7746 /* Output normal instructions here. */
7747 char *p;
7748 unsigned char *q;
47465058 7749 unsigned int j;
331d2d0d 7750 unsigned int prefix;
4dffcebc 7751
e4e00185
AS
7752 if (avoid_fence
7753 && i.tm.base_opcode == 0xfae
7754 && i.operands == 1
7755 && i.imm_operands == 1
7756 && (i.op[0].imms->X_add_number == 0xe8
7757 || i.op[0].imms->X_add_number == 0xf0
7758 || i.op[0].imms->X_add_number == 0xf8))
7759 {
7760 /* Encode lfence, mfence, and sfence as
7761 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7762 offsetT val = 0x240483f0ULL;
7763 p = frag_more (5);
7764 md_number_to_chars (p, val, 5);
7765 return;
7766 }
7767
d022bddd
IT
7768 /* Some processors fail on LOCK prefix. This options makes
7769 assembler ignore LOCK prefix and serves as a workaround. */
7770 if (omit_lock_prefix)
7771 {
7772 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7773 return;
7774 i.prefix[LOCK_PREFIX] = 0;
7775 }
7776
43234a1e
L
7777 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7778 don't need the explicit prefix. */
7779 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7780 {
c0f3af97 7781 switch (i.tm.opcode_length)
bc4bd9ab 7782 {
c0f3af97
L
7783 case 3:
7784 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7785 {
c0f3af97 7786 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 7787 add_prefix (prefix);
c0f3af97
L
7788 }
7789 break;
7790 case 2:
7791 if ((i.tm.base_opcode & 0xff0000) != 0)
7792 {
7793 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
7794 if (!i.tm.cpu_flags.bitfield.cpupadlock
7795 || prefix != REPE_PREFIX_OPCODE
7796 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
7797 add_prefix (prefix);
7798 }
c0f3af97
L
7799 break;
7800 case 1:
7801 break;
390c91cf
L
7802 case 0:
7803 /* Check for pseudo prefixes. */
7804 as_bad_where (insn_start_frag->fr_file,
7805 insn_start_frag->fr_line,
7806 _("pseudo prefix without instruction"));
7807 return;
c0f3af97
L
7808 default:
7809 abort ();
bc4bd9ab 7810 }
c0f3af97 7811
6d19a37a 7812#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7813 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7814 R_X86_64_GOTTPOFF relocation so that linker can safely
7815 perform IE->LE optimization. */
7816 if (x86_elf_abi == X86_64_X32_ABI
7817 && i.operands == 2
7818 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7819 && i.prefix[REX_PREFIX] == 0)
7820 add_prefix (REX_OPCODE);
6d19a37a 7821#endif
cf61b747 7822
c0f3af97
L
7823 /* The prefix bytes. */
7824 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7825 if (*q)
7826 FRAG_APPEND_1_CHAR (*q);
0f10071e 7827 }
ae5c1c7b 7828 else
c0f3af97
L
7829 {
7830 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7831 if (*q)
7832 switch (j)
7833 {
7834 case REX_PREFIX:
7835 /* REX byte is encoded in VEX prefix. */
7836 break;
7837 case SEG_PREFIX:
7838 case ADDR_PREFIX:
7839 FRAG_APPEND_1_CHAR (*q);
7840 break;
7841 default:
7842 /* There should be no other prefixes for instructions
7843 with VEX prefix. */
7844 abort ();
7845 }
7846
43234a1e
L
7847 /* For EVEX instructions i.vrex should become 0 after
7848 build_evex_prefix. For VEX instructions upper 16 registers
7849 aren't available, so VREX should be 0. */
7850 if (i.vrex)
7851 abort ();
c0f3af97
L
7852 /* Now the VEX prefix. */
7853 p = frag_more (i.vex.length);
7854 for (j = 0; j < i.vex.length; j++)
7855 p[j] = i.vex.bytes[j];
7856 }
252b5132 7857
29b0f896 7858 /* Now the opcode; be careful about word order here! */
4dffcebc 7859 if (i.tm.opcode_length == 1)
29b0f896
AM
7860 {
7861 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7862 }
7863 else
7864 {
4dffcebc 7865 switch (i.tm.opcode_length)
331d2d0d 7866 {
43234a1e
L
7867 case 4:
7868 p = frag_more (4);
7869 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7870 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7871 break;
4dffcebc 7872 case 3:
331d2d0d
L
7873 p = frag_more (3);
7874 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7875 break;
7876 case 2:
7877 p = frag_more (2);
7878 break;
7879 default:
7880 abort ();
7881 break;
331d2d0d 7882 }
0f10071e 7883
29b0f896
AM
7884 /* Put out high byte first: can't use md_number_to_chars! */
7885 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7886 *p = i.tm.base_opcode & 0xff;
7887 }
3e73aa7c 7888
29b0f896 7889 /* Now the modrm byte and sib byte (if present). */
40fb9820 7890 if (i.tm.opcode_modifier.modrm)
29b0f896 7891 {
4a3523fa
L
7892 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7893 | i.rm.reg << 3
7894 | i.rm.mode << 6));
29b0f896
AM
7895 /* If i.rm.regmem == ESP (4)
7896 && i.rm.mode != (Register mode)
7897 && not 16 bit
7898 ==> need second modrm byte. */
7899 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7900 && i.rm.mode != 3
dc821c5f 7901 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7902 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7903 | i.sib.index << 3
7904 | i.sib.scale << 6));
29b0f896 7905 }
3e73aa7c 7906
29b0f896 7907 if (i.disp_operands)
2bbd9c25 7908 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7909
29b0f896 7910 if (i.imm_operands)
2bbd9c25 7911 output_imm (insn_start_frag, insn_start_off);
29b0f896 7912 }
252b5132 7913
29b0f896
AM
7914#ifdef DEBUG386
7915 if (flag_debug)
7916 {
7b81dfbb 7917 pi ("" /*line*/, &i);
29b0f896
AM
7918 }
7919#endif /* DEBUG386 */
7920}
252b5132 7921
e205caa7
L
7922/* Return the size of the displacement operand N. */
7923
7924static int
7925disp_size (unsigned int n)
7926{
7927 int size = 4;
43234a1e 7928
b5014f7a 7929 if (i.types[n].bitfield.disp64)
40fb9820
L
7930 size = 8;
7931 else if (i.types[n].bitfield.disp8)
7932 size = 1;
7933 else if (i.types[n].bitfield.disp16)
7934 size = 2;
e205caa7
L
7935 return size;
7936}
7937
7938/* Return the size of the immediate operand N. */
7939
7940static int
7941imm_size (unsigned int n)
7942{
7943 int size = 4;
40fb9820
L
7944 if (i.types[n].bitfield.imm64)
7945 size = 8;
7946 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7947 size = 1;
7948 else if (i.types[n].bitfield.imm16)
7949 size = 2;
e205caa7
L
7950 return size;
7951}
7952
29b0f896 7953static void
64e74474 7954output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7955{
7956 char *p;
7957 unsigned int n;
252b5132 7958
29b0f896
AM
7959 for (n = 0; n < i.operands; n++)
7960 {
b5014f7a 7961 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7962 {
7963 if (i.op[n].disps->X_op == O_constant)
7964 {
e205caa7 7965 int size = disp_size (n);
43234a1e 7966 offsetT val = i.op[n].disps->X_add_number;
252b5132 7967
629cfaf1
JB
7968 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
7969 size);
29b0f896
AM
7970 p = frag_more (size);
7971 md_number_to_chars (p, val, size);
7972 }
7973 else
7974 {
f86103b7 7975 enum bfd_reloc_code_real reloc_type;
e205caa7 7976 int size = disp_size (n);
40fb9820 7977 int sign = i.types[n].bitfield.disp32s;
29b0f896 7978 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7979 fixS *fixP;
29b0f896 7980
e205caa7 7981 /* We can't have 8 bit displacement here. */
9c2799c2 7982 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7983
29b0f896
AM
7984 /* The PC relative address is computed relative
7985 to the instruction boundary, so in case immediate
7986 fields follows, we need to adjust the value. */
7987 if (pcrel && i.imm_operands)
7988 {
29b0f896 7989 unsigned int n1;
e205caa7 7990 int sz = 0;
252b5132 7991
29b0f896 7992 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7993 if (operand_type_check (i.types[n1], imm))
252b5132 7994 {
e205caa7
L
7995 /* Only one immediate is allowed for PC
7996 relative address. */
9c2799c2 7997 gas_assert (sz == 0);
e205caa7
L
7998 sz = imm_size (n1);
7999 i.op[n].disps->X_add_number -= sz;
252b5132 8000 }
29b0f896 8001 /* We should find the immediate. */
9c2799c2 8002 gas_assert (sz != 0);
29b0f896 8003 }
520dc8e8 8004
29b0f896 8005 p = frag_more (size);
d258b828 8006 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8007 if (GOT_symbol
2bbd9c25 8008 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8009 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8010 || reloc_type == BFD_RELOC_X86_64_32S
8011 || (reloc_type == BFD_RELOC_64
8012 && object_64bit))
d6ab8113
JB
8013 && (i.op[n].disps->X_op == O_symbol
8014 || (i.op[n].disps->X_op == O_add
8015 && ((symbol_get_value_expression
8016 (i.op[n].disps->X_op_symbol)->X_op)
8017 == O_subtract))))
8018 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8019 {
8020 offsetT add;
8021
8022 if (insn_start_frag == frag_now)
8023 add = (p - frag_now->fr_literal) - insn_start_off;
8024 else
8025 {
8026 fragS *fr;
8027
8028 add = insn_start_frag->fr_fix - insn_start_off;
8029 for (fr = insn_start_frag->fr_next;
8030 fr && fr != frag_now; fr = fr->fr_next)
8031 add += fr->fr_fix;
8032 add += p - frag_now->fr_literal;
8033 }
8034
4fa24527 8035 if (!object_64bit)
7b81dfbb
AJ
8036 {
8037 reloc_type = BFD_RELOC_386_GOTPC;
8038 i.op[n].imms->X_add_number += add;
8039 }
8040 else if (reloc_type == BFD_RELOC_64)
8041 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8042 else
7b81dfbb
AJ
8043 /* Don't do the adjustment for x86-64, as there
8044 the pcrel addressing is relative to the _next_
8045 insn, and that is taken care of in other code. */
d6ab8113 8046 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8047 }
02a86693
L
8048 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8049 size, i.op[n].disps, pcrel,
8050 reloc_type);
8051 /* Check for "call/jmp *mem", "mov mem, %reg",
8052 "test %reg, mem" and "binop mem, %reg" where binop
8053 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8054 instructions. Always generate R_386_GOT32X for
8055 "sym*GOT" operand in 32-bit mode. */
8056 if ((generate_relax_relocations
8057 || (!object_64bit
8058 && i.rm.mode == 0
8059 && i.rm.regmem == 5))
8060 && (i.rm.mode == 2
8061 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8062 && ((i.operands == 1
8063 && i.tm.base_opcode == 0xff
8064 && (i.rm.reg == 2 || i.rm.reg == 4))
8065 || (i.operands == 2
8066 && (i.tm.base_opcode == 0x8b
8067 || i.tm.base_opcode == 0x85
8068 || (i.tm.base_opcode & 0xc7) == 0x03))))
8069 {
8070 if (object_64bit)
8071 {
8072 fixP->fx_tcbit = i.rex != 0;
8073 if (i.base_reg
8074 && (i.base_reg->reg_num == RegRip
8075 || i.base_reg->reg_num == RegEip))
8076 fixP->fx_tcbit2 = 1;
8077 }
8078 else
8079 fixP->fx_tcbit2 = 1;
8080 }
29b0f896
AM
8081 }
8082 }
8083 }
8084}
252b5132 8085
29b0f896 8086static void
64e74474 8087output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8088{
8089 char *p;
8090 unsigned int n;
252b5132 8091
29b0f896
AM
8092 for (n = 0; n < i.operands; n++)
8093 {
43234a1e
L
8094 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8095 if (i.rounding && (int) n == i.rounding->operand)
8096 continue;
8097
40fb9820 8098 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8099 {
8100 if (i.op[n].imms->X_op == O_constant)
8101 {
e205caa7 8102 int size = imm_size (n);
29b0f896 8103 offsetT val;
b4cac588 8104
29b0f896
AM
8105 val = offset_in_range (i.op[n].imms->X_add_number,
8106 size);
8107 p = frag_more (size);
8108 md_number_to_chars (p, val, size);
8109 }
8110 else
8111 {
8112 /* Not absolute_section.
8113 Need a 32-bit fixup (don't support 8bit
8114 non-absolute imms). Try to support other
8115 sizes ... */
f86103b7 8116 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8117 int size = imm_size (n);
8118 int sign;
29b0f896 8119
40fb9820 8120 if (i.types[n].bitfield.imm32s
a7d61044 8121 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8122 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8123 sign = 1;
e205caa7
L
8124 else
8125 sign = 0;
520dc8e8 8126
29b0f896 8127 p = frag_more (size);
d258b828 8128 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8129
2bbd9c25
JJ
8130 /* This is tough to explain. We end up with this one if we
8131 * have operands that look like
8132 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8133 * obtain the absolute address of the GOT, and it is strongly
8134 * preferable from a performance point of view to avoid using
8135 * a runtime relocation for this. The actual sequence of
8136 * instructions often look something like:
8137 *
8138 * call .L66
8139 * .L66:
8140 * popl %ebx
8141 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8142 *
8143 * The call and pop essentially return the absolute address
8144 * of the label .L66 and store it in %ebx. The linker itself
8145 * will ultimately change the first operand of the addl so
8146 * that %ebx points to the GOT, but to keep things simple, the
8147 * .o file must have this operand set so that it generates not
8148 * the absolute address of .L66, but the absolute address of
8149 * itself. This allows the linker itself simply treat a GOTPC
8150 * relocation as asking for a pcrel offset to the GOT to be
8151 * added in, and the addend of the relocation is stored in the
8152 * operand field for the instruction itself.
8153 *
8154 * Our job here is to fix the operand so that it would add
8155 * the correct offset so that %ebx would point to itself. The
8156 * thing that is tricky is that .-.L66 will point to the
8157 * beginning of the instruction, so we need to further modify
8158 * the operand so that it will point to itself. There are
8159 * other cases where you have something like:
8160 *
8161 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8162 *
8163 * and here no correction would be required. Internally in
8164 * the assembler we treat operands of this form as not being
8165 * pcrel since the '.' is explicitly mentioned, and I wonder
8166 * whether it would simplify matters to do it this way. Who
8167 * knows. In earlier versions of the PIC patches, the
8168 * pcrel_adjust field was used to store the correction, but
8169 * since the expression is not pcrel, I felt it would be
8170 * confusing to do it this way. */
8171
d6ab8113 8172 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8173 || reloc_type == BFD_RELOC_X86_64_32S
8174 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8175 && GOT_symbol
8176 && GOT_symbol == i.op[n].imms->X_add_symbol
8177 && (i.op[n].imms->X_op == O_symbol
8178 || (i.op[n].imms->X_op == O_add
8179 && ((symbol_get_value_expression
8180 (i.op[n].imms->X_op_symbol)->X_op)
8181 == O_subtract))))
8182 {
2bbd9c25
JJ
8183 offsetT add;
8184
8185 if (insn_start_frag == frag_now)
8186 add = (p - frag_now->fr_literal) - insn_start_off;
8187 else
8188 {
8189 fragS *fr;
8190
8191 add = insn_start_frag->fr_fix - insn_start_off;
8192 for (fr = insn_start_frag->fr_next;
8193 fr && fr != frag_now; fr = fr->fr_next)
8194 add += fr->fr_fix;
8195 add += p - frag_now->fr_literal;
8196 }
8197
4fa24527 8198 if (!object_64bit)
d6ab8113 8199 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8200 else if (size == 4)
d6ab8113 8201 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8202 else if (size == 8)
8203 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8204 i.op[n].imms->X_add_number += add;
29b0f896 8205 }
29b0f896
AM
8206 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8207 i.op[n].imms, 0, reloc_type);
8208 }
8209 }
8210 }
252b5132
RH
8211}
8212\f
d182319b
JB
8213/* x86_cons_fix_new is called via the expression parsing code when a
8214 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8215static int cons_sign = -1;
8216
8217void
e3bb37b5 8218x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8219 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8220{
d258b828 8221 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8222
8223#ifdef TE_PE
8224 if (exp->X_op == O_secrel)
8225 {
8226 exp->X_op = O_symbol;
8227 r = BFD_RELOC_32_SECREL;
8228 }
8229#endif
8230
8231 fix_new_exp (frag, off, len, exp, 0, r);
8232}
8233
357d1bd8
L
8234/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8235 purpose of the `.dc.a' internal pseudo-op. */
8236
8237int
8238x86_address_bytes (void)
8239{
8240 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8241 return 4;
8242 return stdoutput->arch_info->bits_per_address / 8;
8243}
8244
d382c579
TG
8245#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8246 || defined (LEX_AT)
d258b828 8247# define lex_got(reloc, adjust, types) NULL
718ddfc0 8248#else
f3c180ae
AM
8249/* Parse operands of the form
8250 <symbol>@GOTOFF+<nnn>
8251 and similar .plt or .got references.
8252
8253 If we find one, set up the correct relocation in RELOC and copy the
8254 input string, minus the `@GOTOFF' into a malloc'd buffer for
8255 parsing by the calling routine. Return this buffer, and if ADJUST
8256 is non-null set it to the length of the string we removed from the
8257 input line. Otherwise return NULL. */
8258static char *
91d6fa6a 8259lex_got (enum bfd_reloc_code_real *rel,
64e74474 8260 int *adjust,
d258b828 8261 i386_operand_type *types)
f3c180ae 8262{
7b81dfbb
AJ
8263 /* Some of the relocations depend on the size of what field is to
8264 be relocated. But in our callers i386_immediate and i386_displacement
8265 we don't yet know the operand size (this will be set by insn
8266 matching). Hence we record the word32 relocation here,
8267 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8268 static const struct {
8269 const char *str;
cff8d58a 8270 int len;
4fa24527 8271 const enum bfd_reloc_code_real rel[2];
40fb9820 8272 const i386_operand_type types64;
f3c180ae 8273 } gotrel[] = {
8ce3d284 8274#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8275 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8276 BFD_RELOC_SIZE32 },
8277 OPERAND_TYPE_IMM32_64 },
8ce3d284 8278#endif
cff8d58a
L
8279 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8280 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8281 OPERAND_TYPE_IMM64 },
cff8d58a
L
8282 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8283 BFD_RELOC_X86_64_PLT32 },
40fb9820 8284 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8285 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8286 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8287 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8288 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8289 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8290 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8291 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8292 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8293 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8294 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8295 BFD_RELOC_X86_64_TLSGD },
40fb9820 8296 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8297 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8298 _dummy_first_bfd_reloc_code_real },
40fb9820 8299 OPERAND_TYPE_NONE },
cff8d58a
L
8300 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8301 BFD_RELOC_X86_64_TLSLD },
40fb9820 8302 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8303 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8304 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8305 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8306 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8307 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8308 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8309 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8310 _dummy_first_bfd_reloc_code_real },
40fb9820 8311 OPERAND_TYPE_NONE },
cff8d58a
L
8312 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8313 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8314 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8315 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8316 _dummy_first_bfd_reloc_code_real },
40fb9820 8317 OPERAND_TYPE_NONE },
cff8d58a
L
8318 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8319 _dummy_first_bfd_reloc_code_real },
40fb9820 8320 OPERAND_TYPE_NONE },
cff8d58a
L
8321 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8322 BFD_RELOC_X86_64_GOT32 },
40fb9820 8323 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8324 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8325 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8326 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8327 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8328 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8329 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8330 };
8331 char *cp;
8332 unsigned int j;
8333
d382c579 8334#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8335 if (!IS_ELF)
8336 return NULL;
d382c579 8337#endif
718ddfc0 8338
f3c180ae 8339 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8340 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8341 return NULL;
8342
47465058 8343 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8344 {
cff8d58a 8345 int len = gotrel[j].len;
28f81592 8346 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8347 {
4fa24527 8348 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8349 {
28f81592
AM
8350 int first, second;
8351 char *tmpbuf, *past_reloc;
f3c180ae 8352
91d6fa6a 8353 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8354
3956db08
JB
8355 if (types)
8356 {
8357 if (flag_code != CODE_64BIT)
40fb9820
L
8358 {
8359 types->bitfield.imm32 = 1;
8360 types->bitfield.disp32 = 1;
8361 }
3956db08
JB
8362 else
8363 *types = gotrel[j].types64;
8364 }
8365
8fd4256d 8366 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8367 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8368
28f81592 8369 /* The length of the first part of our input line. */
f3c180ae 8370 first = cp - input_line_pointer;
28f81592
AM
8371
8372 /* The second part goes from after the reloc token until
67c11a9b 8373 (and including) an end_of_line char or comma. */
28f81592 8374 past_reloc = cp + 1 + len;
67c11a9b
AM
8375 cp = past_reloc;
8376 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8377 ++cp;
8378 second = cp + 1 - past_reloc;
28f81592
AM
8379
8380 /* Allocate and copy string. The trailing NUL shouldn't
8381 be necessary, but be safe. */
add39d23 8382 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8383 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8384 if (second != 0 && *past_reloc != ' ')
8385 /* Replace the relocation token with ' ', so that
8386 errors like foo@GOTOFF1 will be detected. */
8387 tmpbuf[first++] = ' ';
af89796a
L
8388 else
8389 /* Increment length by 1 if the relocation token is
8390 removed. */
8391 len++;
8392 if (adjust)
8393 *adjust = len;
0787a12d
AM
8394 memcpy (tmpbuf + first, past_reloc, second);
8395 tmpbuf[first + second] = '\0';
f3c180ae
AM
8396 return tmpbuf;
8397 }
8398
4fa24527
JB
8399 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8400 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8401 return NULL;
8402 }
8403 }
8404
8405 /* Might be a symbol version string. Don't as_bad here. */
8406 return NULL;
8407}
4e4f7c87 8408#endif
f3c180ae 8409
a988325c
NC
8410#ifdef TE_PE
8411#ifdef lex_got
8412#undef lex_got
8413#endif
8414/* Parse operands of the form
8415 <symbol>@SECREL32+<nnn>
8416
8417 If we find one, set up the correct relocation in RELOC and copy the
8418 input string, minus the `@SECREL32' into a malloc'd buffer for
8419 parsing by the calling routine. Return this buffer, and if ADJUST
8420 is non-null set it to the length of the string we removed from the
34bca508
L
8421 input line. Otherwise return NULL.
8422
a988325c
NC
8423 This function is copied from the ELF version above adjusted for PE targets. */
8424
8425static char *
8426lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8427 int *adjust ATTRIBUTE_UNUSED,
d258b828 8428 i386_operand_type *types)
a988325c
NC
8429{
8430 static const struct
8431 {
8432 const char *str;
8433 int len;
8434 const enum bfd_reloc_code_real rel[2];
8435 const i386_operand_type types64;
8436 }
8437 gotrel[] =
8438 {
8439 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8440 BFD_RELOC_32_SECREL },
8441 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8442 };
8443
8444 char *cp;
8445 unsigned j;
8446
8447 for (cp = input_line_pointer; *cp != '@'; cp++)
8448 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8449 return NULL;
8450
8451 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8452 {
8453 int len = gotrel[j].len;
8454
8455 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8456 {
8457 if (gotrel[j].rel[object_64bit] != 0)
8458 {
8459 int first, second;
8460 char *tmpbuf, *past_reloc;
8461
8462 *rel = gotrel[j].rel[object_64bit];
8463 if (adjust)
8464 *adjust = len;
8465
8466 if (types)
8467 {
8468 if (flag_code != CODE_64BIT)
8469 {
8470 types->bitfield.imm32 = 1;
8471 types->bitfield.disp32 = 1;
8472 }
8473 else
8474 *types = gotrel[j].types64;
8475 }
8476
8477 /* The length of the first part of our input line. */
8478 first = cp - input_line_pointer;
8479
8480 /* The second part goes from after the reloc token until
8481 (and including) an end_of_line char or comma. */
8482 past_reloc = cp + 1 + len;
8483 cp = past_reloc;
8484 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8485 ++cp;
8486 second = cp + 1 - past_reloc;
8487
8488 /* Allocate and copy string. The trailing NUL shouldn't
8489 be necessary, but be safe. */
add39d23 8490 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8491 memcpy (tmpbuf, input_line_pointer, first);
8492 if (second != 0 && *past_reloc != ' ')
8493 /* Replace the relocation token with ' ', so that
8494 errors like foo@SECLREL321 will be detected. */
8495 tmpbuf[first++] = ' ';
8496 memcpy (tmpbuf + first, past_reloc, second);
8497 tmpbuf[first + second] = '\0';
8498 return tmpbuf;
8499 }
8500
8501 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8502 gotrel[j].str, 1 << (5 + object_64bit));
8503 return NULL;
8504 }
8505 }
8506
8507 /* Might be a symbol version string. Don't as_bad here. */
8508 return NULL;
8509}
8510
8511#endif /* TE_PE */
8512
62ebcb5c 8513bfd_reloc_code_real_type
e3bb37b5 8514x86_cons (expressionS *exp, int size)
f3c180ae 8515{
62ebcb5c
AM
8516 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8517
ee86248c
JB
8518 intel_syntax = -intel_syntax;
8519
3c7b9c2c 8520 exp->X_md = 0;
4fa24527 8521 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8522 {
8523 /* Handle @GOTOFF and the like in an expression. */
8524 char *save;
8525 char *gotfree_input_line;
4a57f2cf 8526 int adjust = 0;
f3c180ae
AM
8527
8528 save = input_line_pointer;
d258b828 8529 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8530 if (gotfree_input_line)
8531 input_line_pointer = gotfree_input_line;
8532
8533 expression (exp);
8534
8535 if (gotfree_input_line)
8536 {
8537 /* expression () has merrily parsed up to the end of line,
8538 or a comma - in the wrong buffer. Transfer how far
8539 input_line_pointer has moved to the right buffer. */
8540 input_line_pointer = (save
8541 + (input_line_pointer - gotfree_input_line)
8542 + adjust);
8543 free (gotfree_input_line);
3992d3b7
AM
8544 if (exp->X_op == O_constant
8545 || exp->X_op == O_absent
8546 || exp->X_op == O_illegal
0398aac5 8547 || exp->X_op == O_register
3992d3b7
AM
8548 || exp->X_op == O_big)
8549 {
8550 char c = *input_line_pointer;
8551 *input_line_pointer = 0;
8552 as_bad (_("missing or invalid expression `%s'"), save);
8553 *input_line_pointer = c;
8554 }
f3c180ae
AM
8555 }
8556 }
8557 else
8558 expression (exp);
ee86248c
JB
8559
8560 intel_syntax = -intel_syntax;
8561
8562 if (intel_syntax)
8563 i386_intel_simplify (exp);
62ebcb5c
AM
8564
8565 return got_reloc;
f3c180ae 8566}
f3c180ae 8567
9f32dd5b
L
8568static void
8569signed_cons (int size)
6482c264 8570{
d182319b
JB
8571 if (flag_code == CODE_64BIT)
8572 cons_sign = 1;
8573 cons (size);
8574 cons_sign = -1;
6482c264
NC
8575}
8576
d182319b 8577#ifdef TE_PE
6482c264 8578static void
7016a5d5 8579pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8580{
8581 expressionS exp;
8582
8583 do
8584 {
8585 expression (&exp);
8586 if (exp.X_op == O_symbol)
8587 exp.X_op = O_secrel;
8588
8589 emit_expr (&exp, 4);
8590 }
8591 while (*input_line_pointer++ == ',');
8592
8593 input_line_pointer--;
8594 demand_empty_rest_of_line ();
8595}
6482c264
NC
8596#endif
8597
43234a1e
L
8598/* Handle Vector operations. */
8599
8600static char *
8601check_VecOperations (char *op_string, char *op_end)
8602{
8603 const reg_entry *mask;
8604 const char *saved;
8605 char *end_op;
8606
8607 while (*op_string
8608 && (op_end == NULL || op_string < op_end))
8609 {
8610 saved = op_string;
8611 if (*op_string == '{')
8612 {
8613 op_string++;
8614
8615 /* Check broadcasts. */
8616 if (strncmp (op_string, "1to", 3) == 0)
8617 {
8618 int bcst_type;
8619
8620 if (i.broadcast)
8621 goto duplicated_vec_op;
8622
8623 op_string += 3;
8624 if (*op_string == '8')
8e6e0792 8625 bcst_type = 8;
b28d1bda 8626 else if (*op_string == '4')
8e6e0792 8627 bcst_type = 4;
b28d1bda 8628 else if (*op_string == '2')
8e6e0792 8629 bcst_type = 2;
43234a1e
L
8630 else if (*op_string == '1'
8631 && *(op_string+1) == '6')
8632 {
8e6e0792 8633 bcst_type = 16;
43234a1e
L
8634 op_string++;
8635 }
8636 else
8637 {
8638 as_bad (_("Unsupported broadcast: `%s'"), saved);
8639 return NULL;
8640 }
8641 op_string++;
8642
8643 broadcast_op.type = bcst_type;
8644 broadcast_op.operand = this_operand;
1f75763a 8645 broadcast_op.bytes = 0;
43234a1e
L
8646 i.broadcast = &broadcast_op;
8647 }
8648 /* Check masking operation. */
8649 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8650 {
8651 /* k0 can't be used for write mask. */
6d2cd6b2 8652 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8653 {
6d2cd6b2
JB
8654 as_bad (_("`%s%s' can't be used for write mask"),
8655 register_prefix, mask->reg_name);
43234a1e
L
8656 return NULL;
8657 }
8658
8659 if (!i.mask)
8660 {
8661 mask_op.mask = mask;
8662 mask_op.zeroing = 0;
8663 mask_op.operand = this_operand;
8664 i.mask = &mask_op;
8665 }
8666 else
8667 {
8668 if (i.mask->mask)
8669 goto duplicated_vec_op;
8670
8671 i.mask->mask = mask;
8672
8673 /* Only "{z}" is allowed here. No need to check
8674 zeroing mask explicitly. */
8675 if (i.mask->operand != this_operand)
8676 {
8677 as_bad (_("invalid write mask `%s'"), saved);
8678 return NULL;
8679 }
8680 }
8681
8682 op_string = end_op;
8683 }
8684 /* Check zeroing-flag for masking operation. */
8685 else if (*op_string == 'z')
8686 {
8687 if (!i.mask)
8688 {
8689 mask_op.mask = NULL;
8690 mask_op.zeroing = 1;
8691 mask_op.operand = this_operand;
8692 i.mask = &mask_op;
8693 }
8694 else
8695 {
8696 if (i.mask->zeroing)
8697 {
8698 duplicated_vec_op:
8699 as_bad (_("duplicated `%s'"), saved);
8700 return NULL;
8701 }
8702
8703 i.mask->zeroing = 1;
8704
8705 /* Only "{%k}" is allowed here. No need to check mask
8706 register explicitly. */
8707 if (i.mask->operand != this_operand)
8708 {
8709 as_bad (_("invalid zeroing-masking `%s'"),
8710 saved);
8711 return NULL;
8712 }
8713 }
8714
8715 op_string++;
8716 }
8717 else
8718 goto unknown_vec_op;
8719
8720 if (*op_string != '}')
8721 {
8722 as_bad (_("missing `}' in `%s'"), saved);
8723 return NULL;
8724 }
8725 op_string++;
0ba3a731
L
8726
8727 /* Strip whitespace since the addition of pseudo prefixes
8728 changed how the scrubber treats '{'. */
8729 if (is_space_char (*op_string))
8730 ++op_string;
8731
43234a1e
L
8732 continue;
8733 }
8734 unknown_vec_op:
8735 /* We don't know this one. */
8736 as_bad (_("unknown vector operation: `%s'"), saved);
8737 return NULL;
8738 }
8739
6d2cd6b2
JB
8740 if (i.mask && i.mask->zeroing && !i.mask->mask)
8741 {
8742 as_bad (_("zeroing-masking only allowed with write mask"));
8743 return NULL;
8744 }
8745
43234a1e
L
8746 return op_string;
8747}
8748
252b5132 8749static int
70e41ade 8750i386_immediate (char *imm_start)
252b5132
RH
8751{
8752 char *save_input_line_pointer;
f3c180ae 8753 char *gotfree_input_line;
252b5132 8754 segT exp_seg = 0;
47926f60 8755 expressionS *exp;
40fb9820
L
8756 i386_operand_type types;
8757
0dfbf9d7 8758 operand_type_set (&types, ~0);
252b5132
RH
8759
8760 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8761 {
31b2323c
L
8762 as_bad (_("at most %d immediate operands are allowed"),
8763 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8764 return 0;
8765 }
8766
8767 exp = &im_expressions[i.imm_operands++];
520dc8e8 8768 i.op[this_operand].imms = exp;
252b5132
RH
8769
8770 if (is_space_char (*imm_start))
8771 ++imm_start;
8772
8773 save_input_line_pointer = input_line_pointer;
8774 input_line_pointer = imm_start;
8775
d258b828 8776 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8777 if (gotfree_input_line)
8778 input_line_pointer = gotfree_input_line;
252b5132
RH
8779
8780 exp_seg = expression (exp);
8781
83183c0c 8782 SKIP_WHITESPACE ();
43234a1e
L
8783
8784 /* Handle vector operations. */
8785 if (*input_line_pointer == '{')
8786 {
8787 input_line_pointer = check_VecOperations (input_line_pointer,
8788 NULL);
8789 if (input_line_pointer == NULL)
8790 return 0;
8791 }
8792
252b5132 8793 if (*input_line_pointer)
f3c180ae 8794 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8795
8796 input_line_pointer = save_input_line_pointer;
f3c180ae 8797 if (gotfree_input_line)
ee86248c
JB
8798 {
8799 free (gotfree_input_line);
8800
8801 if (exp->X_op == O_constant || exp->X_op == O_register)
8802 exp->X_op = O_illegal;
8803 }
8804
8805 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8806}
252b5132 8807
ee86248c
JB
8808static int
8809i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8810 i386_operand_type types, const char *imm_start)
8811{
8812 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8813 {
313c53d1
L
8814 if (imm_start)
8815 as_bad (_("missing or invalid immediate expression `%s'"),
8816 imm_start);
3992d3b7 8817 return 0;
252b5132 8818 }
3e73aa7c 8819 else if (exp->X_op == O_constant)
252b5132 8820 {
47926f60 8821 /* Size it properly later. */
40fb9820 8822 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8823 /* If not 64bit, sign extend val. */
8824 if (flag_code != CODE_64BIT
4eed87de
AM
8825 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8826 exp->X_add_number
8827 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8828 }
4c63da97 8829#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8830 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8831 && exp_seg != absolute_section
47926f60 8832 && exp_seg != text_section
24eab124
AM
8833 && exp_seg != data_section
8834 && exp_seg != bss_section
8835 && exp_seg != undefined_section
f86103b7 8836 && !bfd_is_com_section (exp_seg))
252b5132 8837 {
d0b47220 8838 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8839 return 0;
8840 }
8841#endif
a841bdf5 8842 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8843 {
313c53d1
L
8844 if (imm_start)
8845 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8846 return 0;
8847 }
252b5132
RH
8848 else
8849 {
8850 /* This is an address. The size of the address will be
24eab124 8851 determined later, depending on destination register,
3e73aa7c 8852 suffix, or the default for the section. */
40fb9820
L
8853 i.types[this_operand].bitfield.imm8 = 1;
8854 i.types[this_operand].bitfield.imm16 = 1;
8855 i.types[this_operand].bitfield.imm32 = 1;
8856 i.types[this_operand].bitfield.imm32s = 1;
8857 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8858 i.types[this_operand] = operand_type_and (i.types[this_operand],
8859 types);
252b5132
RH
8860 }
8861
8862 return 1;
8863}
8864
551c1ca1 8865static char *
e3bb37b5 8866i386_scale (char *scale)
252b5132 8867{
551c1ca1
AM
8868 offsetT val;
8869 char *save = input_line_pointer;
252b5132 8870
551c1ca1
AM
8871 input_line_pointer = scale;
8872 val = get_absolute_expression ();
8873
8874 switch (val)
252b5132 8875 {
551c1ca1 8876 case 1:
252b5132
RH
8877 i.log2_scale_factor = 0;
8878 break;
551c1ca1 8879 case 2:
252b5132
RH
8880 i.log2_scale_factor = 1;
8881 break;
551c1ca1 8882 case 4:
252b5132
RH
8883 i.log2_scale_factor = 2;
8884 break;
551c1ca1 8885 case 8:
252b5132
RH
8886 i.log2_scale_factor = 3;
8887 break;
8888 default:
a724f0f4
JB
8889 {
8890 char sep = *input_line_pointer;
8891
8892 *input_line_pointer = '\0';
8893 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8894 scale);
8895 *input_line_pointer = sep;
8896 input_line_pointer = save;
8897 return NULL;
8898 }
252b5132 8899 }
29b0f896 8900 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8901 {
8902 as_warn (_("scale factor of %d without an index register"),
24eab124 8903 1 << i.log2_scale_factor);
252b5132 8904 i.log2_scale_factor = 0;
252b5132 8905 }
551c1ca1
AM
8906 scale = input_line_pointer;
8907 input_line_pointer = save;
8908 return scale;
252b5132
RH
8909}
8910
252b5132 8911static int
e3bb37b5 8912i386_displacement (char *disp_start, char *disp_end)
252b5132 8913{
29b0f896 8914 expressionS *exp;
252b5132
RH
8915 segT exp_seg = 0;
8916 char *save_input_line_pointer;
f3c180ae 8917 char *gotfree_input_line;
40fb9820
L
8918 int override;
8919 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8920 int ret;
252b5132 8921
31b2323c
L
8922 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8923 {
8924 as_bad (_("at most %d displacement operands are allowed"),
8925 MAX_MEMORY_OPERANDS);
8926 return 0;
8927 }
8928
0dfbf9d7 8929 operand_type_set (&bigdisp, 0);
40fb9820
L
8930 if ((i.types[this_operand].bitfield.jumpabsolute)
8931 || (!current_templates->start->opcode_modifier.jump
8932 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8933 {
40fb9820 8934 bigdisp.bitfield.disp32 = 1;
e05278af 8935 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8936 if (flag_code == CODE_64BIT)
8937 {
8938 if (!override)
8939 {
8940 bigdisp.bitfield.disp32s = 1;
8941 bigdisp.bitfield.disp64 = 1;
8942 }
8943 }
8944 else if ((flag_code == CODE_16BIT) ^ override)
8945 {
8946 bigdisp.bitfield.disp32 = 0;
8947 bigdisp.bitfield.disp16 = 1;
8948 }
e05278af
JB
8949 }
8950 else
8951 {
8952 /* For PC-relative branches, the width of the displacement
8953 is dependent upon data size, not address size. */
e05278af 8954 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8955 if (flag_code == CODE_64BIT)
8956 {
8957 if (override || i.suffix == WORD_MNEM_SUFFIX)
8958 bigdisp.bitfield.disp16 = 1;
8959 else
8960 {
8961 bigdisp.bitfield.disp32 = 1;
8962 bigdisp.bitfield.disp32s = 1;
8963 }
8964 }
8965 else
e05278af
JB
8966 {
8967 if (!override)
8968 override = (i.suffix == (flag_code != CODE_16BIT
8969 ? WORD_MNEM_SUFFIX
8970 : LONG_MNEM_SUFFIX));
40fb9820
L
8971 bigdisp.bitfield.disp32 = 1;
8972 if ((flag_code == CODE_16BIT) ^ override)
8973 {
8974 bigdisp.bitfield.disp32 = 0;
8975 bigdisp.bitfield.disp16 = 1;
8976 }
e05278af 8977 }
e05278af 8978 }
c6fb90c8
L
8979 i.types[this_operand] = operand_type_or (i.types[this_operand],
8980 bigdisp);
252b5132
RH
8981
8982 exp = &disp_expressions[i.disp_operands];
520dc8e8 8983 i.op[this_operand].disps = exp;
252b5132
RH
8984 i.disp_operands++;
8985 save_input_line_pointer = input_line_pointer;
8986 input_line_pointer = disp_start;
8987 END_STRING_AND_SAVE (disp_end);
8988
8989#ifndef GCC_ASM_O_HACK
8990#define GCC_ASM_O_HACK 0
8991#endif
8992#if GCC_ASM_O_HACK
8993 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8994 if (i.types[this_operand].bitfield.baseIndex
24eab124 8995 && displacement_string_end[-1] == '+')
252b5132
RH
8996 {
8997 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8998 constraint within gcc asm statements.
8999 For instance:
9000
9001 #define _set_tssldt_desc(n,addr,limit,type) \
9002 __asm__ __volatile__ ( \
9003 "movw %w2,%0\n\t" \
9004 "movw %w1,2+%0\n\t" \
9005 "rorl $16,%1\n\t" \
9006 "movb %b1,4+%0\n\t" \
9007 "movb %4,5+%0\n\t" \
9008 "movb $0,6+%0\n\t" \
9009 "movb %h1,7+%0\n\t" \
9010 "rorl $16,%1" \
9011 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9012
9013 This works great except that the output assembler ends
9014 up looking a bit weird if it turns out that there is
9015 no offset. You end up producing code that looks like:
9016
9017 #APP
9018 movw $235,(%eax)
9019 movw %dx,2+(%eax)
9020 rorl $16,%edx
9021 movb %dl,4+(%eax)
9022 movb $137,5+(%eax)
9023 movb $0,6+(%eax)
9024 movb %dh,7+(%eax)
9025 rorl $16,%edx
9026 #NO_APP
9027
47926f60 9028 So here we provide the missing zero. */
24eab124
AM
9029
9030 *displacement_string_end = '0';
252b5132
RH
9031 }
9032#endif
d258b828 9033 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9034 if (gotfree_input_line)
9035 input_line_pointer = gotfree_input_line;
252b5132 9036
24eab124 9037 exp_seg = expression (exp);
252b5132 9038
636c26b0
AM
9039 SKIP_WHITESPACE ();
9040 if (*input_line_pointer)
9041 as_bad (_("junk `%s' after expression"), input_line_pointer);
9042#if GCC_ASM_O_HACK
9043 RESTORE_END_STRING (disp_end + 1);
9044#endif
636c26b0 9045 input_line_pointer = save_input_line_pointer;
636c26b0 9046 if (gotfree_input_line)
ee86248c
JB
9047 {
9048 free (gotfree_input_line);
9049
9050 if (exp->X_op == O_constant || exp->X_op == O_register)
9051 exp->X_op = O_illegal;
9052 }
9053
9054 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9055
9056 RESTORE_END_STRING (disp_end);
9057
9058 return ret;
9059}
9060
9061static int
9062i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9063 i386_operand_type types, const char *disp_start)
9064{
9065 i386_operand_type bigdisp;
9066 int ret = 1;
636c26b0 9067
24eab124
AM
9068 /* We do this to make sure that the section symbol is in
9069 the symbol table. We will ultimately change the relocation
47926f60 9070 to be relative to the beginning of the section. */
1ae12ab7 9071 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9072 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9073 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9074 {
636c26b0 9075 if (exp->X_op != O_symbol)
3992d3b7 9076 goto inv_disp;
636c26b0 9077
e5cb08ac 9078 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9079 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9080 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9081 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9082 exp->X_op = O_subtract;
9083 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9084 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9085 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9086 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9087 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9088 else
29b0f896 9089 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9090 }
252b5132 9091
3992d3b7
AM
9092 else if (exp->X_op == O_absent
9093 || exp->X_op == O_illegal
ee86248c 9094 || exp->X_op == O_big)
2daf4fd8 9095 {
3992d3b7
AM
9096 inv_disp:
9097 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9098 disp_start);
3992d3b7 9099 ret = 0;
2daf4fd8
AM
9100 }
9101
0e1147d9
L
9102 else if (flag_code == CODE_64BIT
9103 && !i.prefix[ADDR_PREFIX]
9104 && exp->X_op == O_constant)
9105 {
9106 /* Since displacement is signed extended to 64bit, don't allow
9107 disp32 and turn off disp32s if they are out of range. */
9108 i.types[this_operand].bitfield.disp32 = 0;
9109 if (!fits_in_signed_long (exp->X_add_number))
9110 {
9111 i.types[this_operand].bitfield.disp32s = 0;
9112 if (i.types[this_operand].bitfield.baseindex)
9113 {
9114 as_bad (_("0x%lx out range of signed 32bit displacement"),
9115 (long) exp->X_add_number);
9116 ret = 0;
9117 }
9118 }
9119 }
9120
4c63da97 9121#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9122 else if (exp->X_op != O_constant
9123 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9124 && exp_seg != absolute_section
9125 && exp_seg != text_section
9126 && exp_seg != data_section
9127 && exp_seg != bss_section
9128 && exp_seg != undefined_section
9129 && !bfd_is_com_section (exp_seg))
24eab124 9130 {
d0b47220 9131 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9132 ret = 0;
24eab124 9133 }
252b5132 9134#endif
3956db08 9135
40fb9820
L
9136 /* Check if this is a displacement only operand. */
9137 bigdisp = i.types[this_operand];
9138 bigdisp.bitfield.disp8 = 0;
9139 bigdisp.bitfield.disp16 = 0;
9140 bigdisp.bitfield.disp32 = 0;
9141 bigdisp.bitfield.disp32s = 0;
9142 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9143 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9144 i.types[this_operand] = operand_type_and (i.types[this_operand],
9145 types);
3956db08 9146
3992d3b7 9147 return ret;
252b5132
RH
9148}
9149
2abc2bec
JB
9150/* Return the active addressing mode, taking address override and
9151 registers forming the address into consideration. Update the
9152 address override prefix if necessary. */
47926f60 9153
2abc2bec
JB
9154static enum flag_code
9155i386_addressing_mode (void)
252b5132 9156{
be05d201
L
9157 enum flag_code addr_mode;
9158
9159 if (i.prefix[ADDR_PREFIX])
9160 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9161 else
9162 {
9163 addr_mode = flag_code;
9164
24eab124 9165#if INFER_ADDR_PREFIX
be05d201
L
9166 if (i.mem_operands == 0)
9167 {
9168 /* Infer address prefix from the first memory operand. */
9169 const reg_entry *addr_reg = i.base_reg;
9170
9171 if (addr_reg == NULL)
9172 addr_reg = i.index_reg;
eecb386c 9173
be05d201
L
9174 if (addr_reg)
9175 {
9176 if (addr_reg->reg_num == RegEip
9177 || addr_reg->reg_num == RegEiz
dc821c5f 9178 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9179 addr_mode = CODE_32BIT;
9180 else if (flag_code != CODE_64BIT
dc821c5f 9181 && addr_reg->reg_type.bitfield.word)
be05d201
L
9182 addr_mode = CODE_16BIT;
9183
9184 if (addr_mode != flag_code)
9185 {
9186 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9187 i.prefixes += 1;
9188 /* Change the size of any displacement too. At most one
9189 of Disp16 or Disp32 is set.
9190 FIXME. There doesn't seem to be any real need for
9191 separate Disp16 and Disp32 flags. The same goes for
9192 Imm16 and Imm32. Removing them would probably clean
9193 up the code quite a lot. */
9194 if (flag_code != CODE_64BIT
9195 && (i.types[this_operand].bitfield.disp16
9196 || i.types[this_operand].bitfield.disp32))
9197 i.types[this_operand]
9198 = operand_type_xor (i.types[this_operand], disp16_32);
9199 }
9200 }
9201 }
24eab124 9202#endif
be05d201
L
9203 }
9204
2abc2bec
JB
9205 return addr_mode;
9206}
9207
9208/* Make sure the memory operand we've been dealt is valid.
9209 Return 1 on success, 0 on a failure. */
9210
9211static int
9212i386_index_check (const char *operand_string)
9213{
9214 const char *kind = "base/index";
9215 enum flag_code addr_mode = i386_addressing_mode ();
9216
fc0763e6
JB
9217 if (current_templates->start->opcode_modifier.isstring
9218 && !current_templates->start->opcode_modifier.immext
9219 && (current_templates->end[-1].opcode_modifier.isstring
9220 || i.mem_operands))
9221 {
9222 /* Memory operands of string insns are special in that they only allow
9223 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9224 const reg_entry *expected_reg;
9225 static const char *di_si[][2] =
9226 {
9227 { "esi", "edi" },
9228 { "si", "di" },
9229 { "rsi", "rdi" }
9230 };
9231 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9232
9233 kind = "string address";
9234
8325cc63 9235 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9236 {
9237 i386_operand_type type = current_templates->end[-1].operand_types[0];
9238
9239 if (!type.bitfield.baseindex
9240 || ((!i.mem_operands != !intel_syntax)
9241 && current_templates->end[-1].operand_types[1]
9242 .bitfield.baseindex))
9243 type = current_templates->end[-1].operand_types[1];
be05d201
L
9244 expected_reg = hash_find (reg_hash,
9245 di_si[addr_mode][type.bitfield.esseg]);
9246
fc0763e6
JB
9247 }
9248 else
be05d201 9249 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9250
be05d201
L
9251 if (i.base_reg != expected_reg
9252 || i.index_reg
fc0763e6 9253 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9254 {
be05d201
L
9255 /* The second memory operand must have the same size as
9256 the first one. */
9257 if (i.mem_operands
9258 && i.base_reg
9259 && !((addr_mode == CODE_64BIT
dc821c5f 9260 && i.base_reg->reg_type.bitfield.qword)
be05d201 9261 || (addr_mode == CODE_32BIT
dc821c5f
JB
9262 ? i.base_reg->reg_type.bitfield.dword
9263 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9264 goto bad_address;
9265
fc0763e6
JB
9266 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9267 operand_string,
9268 intel_syntax ? '[' : '(',
9269 register_prefix,
be05d201 9270 expected_reg->reg_name,
fc0763e6 9271 intel_syntax ? ']' : ')');
be05d201 9272 return 1;
fc0763e6 9273 }
be05d201
L
9274 else
9275 return 1;
9276
9277bad_address:
9278 as_bad (_("`%s' is not a valid %s expression"),
9279 operand_string, kind);
9280 return 0;
3e73aa7c
JH
9281 }
9282 else
9283 {
be05d201
L
9284 if (addr_mode != CODE_16BIT)
9285 {
9286 /* 32-bit/64-bit checks. */
9287 if ((i.base_reg
9288 && (addr_mode == CODE_64BIT
dc821c5f
JB
9289 ? !i.base_reg->reg_type.bitfield.qword
9290 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9291 && (i.index_reg
9292 || (i.base_reg->reg_num
9293 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9294 || (i.index_reg
1b54b8d7
JB
9295 && !i.index_reg->reg_type.bitfield.xmmword
9296 && !i.index_reg->reg_type.bitfield.ymmword
9297 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9298 && ((addr_mode == CODE_64BIT
dc821c5f 9299 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9300 || i.index_reg->reg_num == RegRiz)
dc821c5f 9301 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9302 || i.index_reg->reg_num == RegEiz))
9303 || !i.index_reg->reg_type.bitfield.baseindex)))
9304 goto bad_address;
8178be5b
JB
9305
9306 /* bndmk, bndldx, and bndstx have special restrictions. */
9307 if (current_templates->start->base_opcode == 0xf30f1b
9308 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9309 {
9310 /* They cannot use RIP-relative addressing. */
9311 if (i.base_reg && i.base_reg->reg_num == RegRip)
9312 {
9313 as_bad (_("`%s' cannot be used here"), operand_string);
9314 return 0;
9315 }
9316
9317 /* bndldx and bndstx ignore their scale factor. */
9318 if (current_templates->start->base_opcode != 0xf30f1b
9319 && i.log2_scale_factor)
9320 as_warn (_("register scaling is being ignored here"));
9321 }
be05d201
L
9322 }
9323 else
3e73aa7c 9324 {
be05d201 9325 /* 16-bit checks. */
3e73aa7c 9326 if ((i.base_reg
dc821c5f 9327 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9328 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9329 || (i.index_reg
dc821c5f 9330 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9331 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9332 || !(i.base_reg
9333 && i.base_reg->reg_num < 6
9334 && i.index_reg->reg_num >= 6
9335 && i.log2_scale_factor == 0))))
be05d201 9336 goto bad_address;
3e73aa7c
JH
9337 }
9338 }
be05d201 9339 return 1;
24eab124 9340}
252b5132 9341
43234a1e
L
9342/* Handle vector immediates. */
9343
9344static int
9345RC_SAE_immediate (const char *imm_start)
9346{
9347 unsigned int match_found, j;
9348 const char *pstr = imm_start;
9349 expressionS *exp;
9350
9351 if (*pstr != '{')
9352 return 0;
9353
9354 pstr++;
9355 match_found = 0;
9356 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9357 {
9358 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9359 {
9360 if (!i.rounding)
9361 {
9362 rc_op.type = RC_NamesTable[j].type;
9363 rc_op.operand = this_operand;
9364 i.rounding = &rc_op;
9365 }
9366 else
9367 {
9368 as_bad (_("duplicated `%s'"), imm_start);
9369 return 0;
9370 }
9371 pstr += RC_NamesTable[j].len;
9372 match_found = 1;
9373 break;
9374 }
9375 }
9376 if (!match_found)
9377 return 0;
9378
9379 if (*pstr++ != '}')
9380 {
9381 as_bad (_("Missing '}': '%s'"), imm_start);
9382 return 0;
9383 }
9384 /* RC/SAE immediate string should contain nothing more. */;
9385 if (*pstr != 0)
9386 {
9387 as_bad (_("Junk after '}': '%s'"), imm_start);
9388 return 0;
9389 }
9390
9391 exp = &im_expressions[i.imm_operands++];
9392 i.op[this_operand].imms = exp;
9393
9394 exp->X_op = O_constant;
9395 exp->X_add_number = 0;
9396 exp->X_add_symbol = (symbolS *) 0;
9397 exp->X_op_symbol = (symbolS *) 0;
9398
9399 i.types[this_operand].bitfield.imm8 = 1;
9400 return 1;
9401}
9402
8325cc63
JB
9403/* Only string instructions can have a second memory operand, so
9404 reduce current_templates to just those if it contains any. */
9405static int
9406maybe_adjust_templates (void)
9407{
9408 const insn_template *t;
9409
9410 gas_assert (i.mem_operands == 1);
9411
9412 for (t = current_templates->start; t < current_templates->end; ++t)
9413 if (t->opcode_modifier.isstring)
9414 break;
9415
9416 if (t < current_templates->end)
9417 {
9418 static templates aux_templates;
9419 bfd_boolean recheck;
9420
9421 aux_templates.start = t;
9422 for (; t < current_templates->end; ++t)
9423 if (!t->opcode_modifier.isstring)
9424 break;
9425 aux_templates.end = t;
9426
9427 /* Determine whether to re-check the first memory operand. */
9428 recheck = (aux_templates.start != current_templates->start
9429 || t != current_templates->end);
9430
9431 current_templates = &aux_templates;
9432
9433 if (recheck)
9434 {
9435 i.mem_operands = 0;
9436 if (i.memop1_string != NULL
9437 && i386_index_check (i.memop1_string) == 0)
9438 return 0;
9439 i.mem_operands = 1;
9440 }
9441 }
9442
9443 return 1;
9444}
9445
fc0763e6 9446/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9447 on error. */
252b5132 9448
252b5132 9449static int
a7619375 9450i386_att_operand (char *operand_string)
252b5132 9451{
af6bdddf
AM
9452 const reg_entry *r;
9453 char *end_op;
24eab124 9454 char *op_string = operand_string;
252b5132 9455
24eab124 9456 if (is_space_char (*op_string))
252b5132
RH
9457 ++op_string;
9458
24eab124 9459 /* We check for an absolute prefix (differentiating,
47926f60 9460 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9461 if (*op_string == ABSOLUTE_PREFIX)
9462 {
9463 ++op_string;
9464 if (is_space_char (*op_string))
9465 ++op_string;
40fb9820 9466 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9467 }
252b5132 9468
47926f60 9469 /* Check if operand is a register. */
4d1bb795 9470 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9471 {
40fb9820
L
9472 i386_operand_type temp;
9473
24eab124
AM
9474 /* Check for a segment override by searching for ':' after a
9475 segment register. */
9476 op_string = end_op;
9477 if (is_space_char (*op_string))
9478 ++op_string;
40fb9820
L
9479 if (*op_string == ':'
9480 && (r->reg_type.bitfield.sreg2
9481 || r->reg_type.bitfield.sreg3))
24eab124
AM
9482 {
9483 switch (r->reg_num)
9484 {
9485 case 0:
9486 i.seg[i.mem_operands] = &es;
9487 break;
9488 case 1:
9489 i.seg[i.mem_operands] = &cs;
9490 break;
9491 case 2:
9492 i.seg[i.mem_operands] = &ss;
9493 break;
9494 case 3:
9495 i.seg[i.mem_operands] = &ds;
9496 break;
9497 case 4:
9498 i.seg[i.mem_operands] = &fs;
9499 break;
9500 case 5:
9501 i.seg[i.mem_operands] = &gs;
9502 break;
9503 }
252b5132 9504
24eab124 9505 /* Skip the ':' and whitespace. */
252b5132
RH
9506 ++op_string;
9507 if (is_space_char (*op_string))
24eab124 9508 ++op_string;
252b5132 9509
24eab124
AM
9510 if (!is_digit_char (*op_string)
9511 && !is_identifier_char (*op_string)
9512 && *op_string != '('
9513 && *op_string != ABSOLUTE_PREFIX)
9514 {
9515 as_bad (_("bad memory operand `%s'"), op_string);
9516 return 0;
9517 }
47926f60 9518 /* Handle case of %es:*foo. */
24eab124
AM
9519 if (*op_string == ABSOLUTE_PREFIX)
9520 {
9521 ++op_string;
9522 if (is_space_char (*op_string))
9523 ++op_string;
40fb9820 9524 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9525 }
9526 goto do_memory_reference;
9527 }
43234a1e
L
9528
9529 /* Handle vector operations. */
9530 if (*op_string == '{')
9531 {
9532 op_string = check_VecOperations (op_string, NULL);
9533 if (op_string == NULL)
9534 return 0;
9535 }
9536
24eab124
AM
9537 if (*op_string)
9538 {
d0b47220 9539 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9540 return 0;
9541 }
40fb9820
L
9542 temp = r->reg_type;
9543 temp.bitfield.baseindex = 0;
c6fb90c8
L
9544 i.types[this_operand] = operand_type_or (i.types[this_operand],
9545 temp);
7d5e4556 9546 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9547 i.op[this_operand].regs = r;
24eab124
AM
9548 i.reg_operands++;
9549 }
af6bdddf
AM
9550 else if (*op_string == REGISTER_PREFIX)
9551 {
9552 as_bad (_("bad register name `%s'"), op_string);
9553 return 0;
9554 }
24eab124 9555 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9556 {
24eab124 9557 ++op_string;
40fb9820 9558 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9559 {
d0b47220 9560 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9561 return 0;
9562 }
9563 if (!i386_immediate (op_string))
9564 return 0;
9565 }
43234a1e
L
9566 else if (RC_SAE_immediate (operand_string))
9567 {
9568 /* If it is a RC or SAE immediate, do nothing. */
9569 ;
9570 }
24eab124
AM
9571 else if (is_digit_char (*op_string)
9572 || is_identifier_char (*op_string)
d02603dc 9573 || *op_string == '"'
e5cb08ac 9574 || *op_string == '(')
24eab124 9575 {
47926f60 9576 /* This is a memory reference of some sort. */
af6bdddf 9577 char *base_string;
252b5132 9578
47926f60 9579 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9580 char *displacement_string_start;
9581 char *displacement_string_end;
43234a1e 9582 char *vop_start;
252b5132 9583
24eab124 9584 do_memory_reference:
8325cc63
JB
9585 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9586 return 0;
24eab124 9587 if ((i.mem_operands == 1
40fb9820 9588 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9589 || i.mem_operands == 2)
9590 {
9591 as_bad (_("too many memory references for `%s'"),
9592 current_templates->start->name);
9593 return 0;
9594 }
252b5132 9595
24eab124
AM
9596 /* Check for base index form. We detect the base index form by
9597 looking for an ')' at the end of the operand, searching
9598 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9599 after the '('. */
af6bdddf 9600 base_string = op_string + strlen (op_string);
c3332e24 9601
43234a1e
L
9602 /* Handle vector operations. */
9603 vop_start = strchr (op_string, '{');
9604 if (vop_start && vop_start < base_string)
9605 {
9606 if (check_VecOperations (vop_start, base_string) == NULL)
9607 return 0;
9608 base_string = vop_start;
9609 }
9610
af6bdddf
AM
9611 --base_string;
9612 if (is_space_char (*base_string))
9613 --base_string;
252b5132 9614
47926f60 9615 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9616 displacement_string_start = op_string;
9617 displacement_string_end = base_string + 1;
252b5132 9618
24eab124
AM
9619 if (*base_string == ')')
9620 {
af6bdddf 9621 char *temp_string;
24eab124
AM
9622 unsigned int parens_balanced = 1;
9623 /* We've already checked that the number of left & right ()'s are
47926f60 9624 equal, so this loop will not be infinite. */
24eab124
AM
9625 do
9626 {
9627 base_string--;
9628 if (*base_string == ')')
9629 parens_balanced++;
9630 if (*base_string == '(')
9631 parens_balanced--;
9632 }
9633 while (parens_balanced);
c3332e24 9634
af6bdddf 9635 temp_string = base_string;
c3332e24 9636
24eab124 9637 /* Skip past '(' and whitespace. */
252b5132
RH
9638 ++base_string;
9639 if (is_space_char (*base_string))
24eab124 9640 ++base_string;
252b5132 9641
af6bdddf 9642 if (*base_string == ','
4eed87de
AM
9643 || ((i.base_reg = parse_register (base_string, &end_op))
9644 != NULL))
252b5132 9645 {
af6bdddf 9646 displacement_string_end = temp_string;
252b5132 9647
40fb9820 9648 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9649
af6bdddf 9650 if (i.base_reg)
24eab124 9651 {
24eab124
AM
9652 base_string = end_op;
9653 if (is_space_char (*base_string))
9654 ++base_string;
af6bdddf
AM
9655 }
9656
9657 /* There may be an index reg or scale factor here. */
9658 if (*base_string == ',')
9659 {
9660 ++base_string;
9661 if (is_space_char (*base_string))
9662 ++base_string;
9663
4eed87de
AM
9664 if ((i.index_reg = parse_register (base_string, &end_op))
9665 != NULL)
24eab124 9666 {
af6bdddf 9667 base_string = end_op;
24eab124
AM
9668 if (is_space_char (*base_string))
9669 ++base_string;
af6bdddf
AM
9670 if (*base_string == ',')
9671 {
9672 ++base_string;
9673 if (is_space_char (*base_string))
9674 ++base_string;
9675 }
e5cb08ac 9676 else if (*base_string != ')')
af6bdddf 9677 {
4eed87de
AM
9678 as_bad (_("expecting `,' or `)' "
9679 "after index register in `%s'"),
af6bdddf
AM
9680 operand_string);
9681 return 0;
9682 }
24eab124 9683 }
af6bdddf 9684 else if (*base_string == REGISTER_PREFIX)
24eab124 9685 {
f76bf5e0
L
9686 end_op = strchr (base_string, ',');
9687 if (end_op)
9688 *end_op = '\0';
af6bdddf 9689 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9690 return 0;
9691 }
252b5132 9692
47926f60 9693 /* Check for scale factor. */
551c1ca1 9694 if (*base_string != ')')
af6bdddf 9695 {
551c1ca1
AM
9696 char *end_scale = i386_scale (base_string);
9697
9698 if (!end_scale)
af6bdddf 9699 return 0;
24eab124 9700
551c1ca1 9701 base_string = end_scale;
af6bdddf
AM
9702 if (is_space_char (*base_string))
9703 ++base_string;
9704 if (*base_string != ')')
9705 {
4eed87de
AM
9706 as_bad (_("expecting `)' "
9707 "after scale factor in `%s'"),
af6bdddf
AM
9708 operand_string);
9709 return 0;
9710 }
9711 }
9712 else if (!i.index_reg)
24eab124 9713 {
4eed87de
AM
9714 as_bad (_("expecting index register or scale factor "
9715 "after `,'; got '%c'"),
af6bdddf 9716 *base_string);
24eab124
AM
9717 return 0;
9718 }
9719 }
af6bdddf 9720 else if (*base_string != ')')
24eab124 9721 {
4eed87de
AM
9722 as_bad (_("expecting `,' or `)' "
9723 "after base register in `%s'"),
af6bdddf 9724 operand_string);
24eab124
AM
9725 return 0;
9726 }
c3332e24 9727 }
af6bdddf 9728 else if (*base_string == REGISTER_PREFIX)
c3332e24 9729 {
f76bf5e0
L
9730 end_op = strchr (base_string, ',');
9731 if (end_op)
9732 *end_op = '\0';
af6bdddf 9733 as_bad (_("bad register name `%s'"), base_string);
24eab124 9734 return 0;
c3332e24 9735 }
24eab124
AM
9736 }
9737
9738 /* If there's an expression beginning the operand, parse it,
9739 assuming displacement_string_start and
9740 displacement_string_end are meaningful. */
9741 if (displacement_string_start != displacement_string_end)
9742 {
9743 if (!i386_displacement (displacement_string_start,
9744 displacement_string_end))
9745 return 0;
9746 }
9747
9748 /* Special case for (%dx) while doing input/output op. */
9749 if (i.base_reg
2fb5be8d 9750 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
9751 && i.index_reg == 0
9752 && i.log2_scale_factor == 0
9753 && i.seg[i.mem_operands] == 0
40fb9820 9754 && !operand_type_check (i.types[this_operand], disp))
24eab124 9755 {
2fb5be8d 9756 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
9757 return 1;
9758 }
9759
eecb386c
AM
9760 if (i386_index_check (operand_string) == 0)
9761 return 0;
5c07affc 9762 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9763 if (i.mem_operands == 0)
9764 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9765 i.mem_operands++;
9766 }
9767 else
ce8a8b2f
AM
9768 {
9769 /* It's not a memory operand; argh! */
24eab124
AM
9770 as_bad (_("invalid char %s beginning operand %d `%s'"),
9771 output_invalid (*op_string),
9772 this_operand + 1,
9773 op_string);
9774 return 0;
9775 }
47926f60 9776 return 1; /* Normal return. */
252b5132
RH
9777}
9778\f
fa94de6b
RM
9779/* Calculate the maximum variable size (i.e., excluding fr_fix)
9780 that an rs_machine_dependent frag may reach. */
9781
9782unsigned int
9783i386_frag_max_var (fragS *frag)
9784{
9785 /* The only relaxable frags are for jumps.
9786 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9787 gas_assert (frag->fr_type == rs_machine_dependent);
9788 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9789}
9790
b084df0b
L
9791#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9792static int
8dcea932 9793elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9794{
9795 /* STT_GNU_IFUNC symbol must go through PLT. */
9796 if ((symbol_get_bfdsym (fr_symbol)->flags
9797 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9798 return 0;
9799
9800 if (!S_IS_EXTERNAL (fr_symbol))
9801 /* Symbol may be weak or local. */
9802 return !S_IS_WEAK (fr_symbol);
9803
8dcea932
L
9804 /* Global symbols with non-default visibility can't be preempted. */
9805 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9806 return 1;
9807
9808 if (fr_var != NO_RELOC)
9809 switch ((enum bfd_reloc_code_real) fr_var)
9810 {
9811 case BFD_RELOC_386_PLT32:
9812 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9813 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9814 return 0;
9815 default:
9816 abort ();
9817 }
9818
b084df0b
L
9819 /* Global symbols with default visibility in a shared library may be
9820 preempted by another definition. */
8dcea932 9821 return !shared;
b084df0b
L
9822}
9823#endif
9824
ee7fcc42
AM
9825/* md_estimate_size_before_relax()
9826
9827 Called just before relax() for rs_machine_dependent frags. The x86
9828 assembler uses these frags to handle variable size jump
9829 instructions.
9830
9831 Any symbol that is now undefined will not become defined.
9832 Return the correct fr_subtype in the frag.
9833 Return the initial "guess for variable size of frag" to caller.
9834 The guess is actually the growth beyond the fixed part. Whatever
9835 we do to grow the fixed or variable part contributes to our
9836 returned value. */
9837
252b5132 9838int
7016a5d5 9839md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9840{
252b5132 9841 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9842 check for un-relaxable symbols. On an ELF system, we can't relax
9843 an externally visible symbol, because it may be overridden by a
9844 shared library. */
9845 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9846#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9847 || (IS_ELF
8dcea932
L
9848 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9849 fragP->fr_var))
fbeb56a4
DK
9850#endif
9851#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9852 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9853 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9854#endif
9855 )
252b5132 9856 {
b98ef147
AM
9857 /* Symbol is undefined in this segment, or we need to keep a
9858 reloc so that weak symbols can be overridden. */
9859 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9860 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9861 unsigned char *opcode;
9862 int old_fr_fix;
f6af82bd 9863
ee7fcc42 9864 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9865 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9866 else if (size == 2)
f6af82bd 9867 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9868#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9869 else if (need_plt32_p (fragP->fr_symbol))
9870 reloc_type = BFD_RELOC_X86_64_PLT32;
9871#endif
f6af82bd
AM
9872 else
9873 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9874
ee7fcc42
AM
9875 old_fr_fix = fragP->fr_fix;
9876 opcode = (unsigned char *) fragP->fr_opcode;
9877
fddf5b5b 9878 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9879 {
fddf5b5b
AM
9880 case UNCOND_JUMP:
9881 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9882 opcode[0] = 0xe9;
252b5132 9883 fragP->fr_fix += size;
062cd5e7
AS
9884 fix_new (fragP, old_fr_fix, size,
9885 fragP->fr_symbol,
9886 fragP->fr_offset, 1,
9887 reloc_type);
252b5132
RH
9888 break;
9889
fddf5b5b 9890 case COND_JUMP86:
412167cb
AM
9891 if (size == 2
9892 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9893 {
9894 /* Negate the condition, and branch past an
9895 unconditional jump. */
9896 opcode[0] ^= 1;
9897 opcode[1] = 3;
9898 /* Insert an unconditional jump. */
9899 opcode[2] = 0xe9;
9900 /* We added two extra opcode bytes, and have a two byte
9901 offset. */
9902 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9903 fix_new (fragP, old_fr_fix + 2, 2,
9904 fragP->fr_symbol,
9905 fragP->fr_offset, 1,
9906 reloc_type);
fddf5b5b
AM
9907 break;
9908 }
9909 /* Fall through. */
9910
9911 case COND_JUMP:
412167cb
AM
9912 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9913 {
3e02c1cc
AM
9914 fixS *fixP;
9915
412167cb 9916 fragP->fr_fix += 1;
3e02c1cc
AM
9917 fixP = fix_new (fragP, old_fr_fix, 1,
9918 fragP->fr_symbol,
9919 fragP->fr_offset, 1,
9920 BFD_RELOC_8_PCREL);
9921 fixP->fx_signed = 1;
412167cb
AM
9922 break;
9923 }
93c2a809 9924
24eab124 9925 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9926 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9927 opcode[1] = opcode[0] + 0x10;
f6af82bd 9928 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9929 /* We've added an opcode byte. */
9930 fragP->fr_fix += 1 + size;
062cd5e7
AS
9931 fix_new (fragP, old_fr_fix + 1, size,
9932 fragP->fr_symbol,
9933 fragP->fr_offset, 1,
9934 reloc_type);
252b5132 9935 break;
fddf5b5b
AM
9936
9937 default:
9938 BAD_CASE (fragP->fr_subtype);
9939 break;
252b5132
RH
9940 }
9941 frag_wane (fragP);
ee7fcc42 9942 return fragP->fr_fix - old_fr_fix;
252b5132 9943 }
93c2a809 9944
93c2a809
AM
9945 /* Guess size depending on current relax state. Initially the relax
9946 state will correspond to a short jump and we return 1, because
9947 the variable part of the frag (the branch offset) is one byte
9948 long. However, we can relax a section more than once and in that
9949 case we must either set fr_subtype back to the unrelaxed state,
9950 or return the value for the appropriate branch. */
9951 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9952}
9953
47926f60
KH
9954/* Called after relax() is finished.
9955
9956 In: Address of frag.
9957 fr_type == rs_machine_dependent.
9958 fr_subtype is what the address relaxed to.
9959
9960 Out: Any fixSs and constants are set up.
9961 Caller will turn frag into a ".space 0". */
9962
252b5132 9963void
7016a5d5
TG
9964md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9965 fragS *fragP)
252b5132 9966{
29b0f896 9967 unsigned char *opcode;
252b5132 9968 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9969 offsetT target_address;
9970 offsetT opcode_address;
252b5132 9971 unsigned int extension = 0;
847f7ad4 9972 offsetT displacement_from_opcode_start;
252b5132
RH
9973
9974 opcode = (unsigned char *) fragP->fr_opcode;
9975
47926f60 9976 /* Address we want to reach in file space. */
252b5132 9977 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9978
47926f60 9979 /* Address opcode resides at in file space. */
252b5132
RH
9980 opcode_address = fragP->fr_address + fragP->fr_fix;
9981
47926f60 9982 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9983 displacement_from_opcode_start = target_address - opcode_address;
9984
fddf5b5b 9985 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9986 {
47926f60
KH
9987 /* Don't have to change opcode. */
9988 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9989 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9990 }
9991 else
9992 {
9993 if (no_cond_jump_promotion
9994 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9995 as_warn_where (fragP->fr_file, fragP->fr_line,
9996 _("long jump required"));
252b5132 9997
fddf5b5b
AM
9998 switch (fragP->fr_subtype)
9999 {
10000 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10001 extension = 4; /* 1 opcode + 4 displacement */
10002 opcode[0] = 0xe9;
10003 where_to_put_displacement = &opcode[1];
10004 break;
252b5132 10005
fddf5b5b
AM
10006 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10007 extension = 2; /* 1 opcode + 2 displacement */
10008 opcode[0] = 0xe9;
10009 where_to_put_displacement = &opcode[1];
10010 break;
252b5132 10011
fddf5b5b
AM
10012 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10013 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10014 extension = 5; /* 2 opcode + 4 displacement */
10015 opcode[1] = opcode[0] + 0x10;
10016 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10017 where_to_put_displacement = &opcode[2];
10018 break;
252b5132 10019
fddf5b5b
AM
10020 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10021 extension = 3; /* 2 opcode + 2 displacement */
10022 opcode[1] = opcode[0] + 0x10;
10023 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10024 where_to_put_displacement = &opcode[2];
10025 break;
252b5132 10026
fddf5b5b
AM
10027 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10028 extension = 4;
10029 opcode[0] ^= 1;
10030 opcode[1] = 3;
10031 opcode[2] = 0xe9;
10032 where_to_put_displacement = &opcode[3];
10033 break;
10034
10035 default:
10036 BAD_CASE (fragP->fr_subtype);
10037 break;
10038 }
252b5132 10039 }
fddf5b5b 10040
7b81dfbb
AJ
10041 /* If size if less then four we are sure that the operand fits,
10042 but if it's 4, then it could be that the displacement is larger
10043 then -/+ 2GB. */
10044 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10045 && object_64bit
10046 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10047 + ((addressT) 1 << 31))
10048 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10049 {
10050 as_bad_where (fragP->fr_file, fragP->fr_line,
10051 _("jump target out of range"));
10052 /* Make us emit 0. */
10053 displacement_from_opcode_start = extension;
10054 }
47926f60 10055 /* Now put displacement after opcode. */
252b5132
RH
10056 md_number_to_chars ((char *) where_to_put_displacement,
10057 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10058 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10059 fragP->fr_fix += extension;
10060}
10061\f
7016a5d5 10062/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10063 by our caller that we have all the info we need to fix it up.
10064
7016a5d5
TG
10065 Parameter valP is the pointer to the value of the bits.
10066
252b5132
RH
10067 On the 386, immediates, displacements, and data pointers are all in
10068 the same (little-endian) format, so we don't need to care about which
10069 we are handling. */
10070
94f592af 10071void
7016a5d5 10072md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10073{
94f592af 10074 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10075 valueT value = *valP;
252b5132 10076
f86103b7 10077#if !defined (TE_Mach)
93382f6d
AM
10078 if (fixP->fx_pcrel)
10079 {
10080 switch (fixP->fx_r_type)
10081 {
5865bb77
ILT
10082 default:
10083 break;
10084
d6ab8113
JB
10085 case BFD_RELOC_64:
10086 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10087 break;
93382f6d 10088 case BFD_RELOC_32:
ae8887b5 10089 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10090 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10091 break;
10092 case BFD_RELOC_16:
10093 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10094 break;
10095 case BFD_RELOC_8:
10096 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10097 break;
10098 }
10099 }
252b5132 10100
a161fe53 10101 if (fixP->fx_addsy != NULL
31312f95 10102 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10103 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10104 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10105 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10106 && !use_rela_relocations)
252b5132 10107 {
31312f95
AM
10108 /* This is a hack. There should be a better way to handle this.
10109 This covers for the fact that bfd_install_relocation will
10110 subtract the current location (for partial_inplace, PC relative
10111 relocations); see more below. */
252b5132 10112#ifndef OBJ_AOUT
718ddfc0 10113 if (IS_ELF
252b5132
RH
10114#ifdef TE_PE
10115 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10116#endif
10117 )
10118 value += fixP->fx_where + fixP->fx_frag->fr_address;
10119#endif
10120#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10121 if (IS_ELF)
252b5132 10122 {
6539b54b 10123 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10124
6539b54b 10125 if ((sym_seg == seg
2f66722d 10126 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10127 && sym_seg != absolute_section))
af65af87 10128 && !generic_force_reloc (fixP))
2f66722d
AM
10129 {
10130 /* Yes, we add the values in twice. This is because
6539b54b
AM
10131 bfd_install_relocation subtracts them out again. I think
10132 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10133 it. FIXME. */
10134 value += fixP->fx_where + fixP->fx_frag->fr_address;
10135 }
252b5132
RH
10136 }
10137#endif
10138#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10139 /* For some reason, the PE format does not store a
10140 section address offset for a PC relative symbol. */
10141 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10142 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10143 value += md_pcrel_from (fixP);
10144#endif
10145 }
fbeb56a4 10146#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10147 if (fixP->fx_addsy != NULL
10148 && S_IS_WEAK (fixP->fx_addsy)
10149 /* PR 16858: Do not modify weak function references. */
10150 && ! fixP->fx_pcrel)
fbeb56a4 10151 {
296a8689
NC
10152#if !defined (TE_PEP)
10153 /* For x86 PE weak function symbols are neither PC-relative
10154 nor do they set S_IS_FUNCTION. So the only reliable way
10155 to detect them is to check the flags of their containing
10156 section. */
10157 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10158 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10159 ;
10160 else
10161#endif
fbeb56a4
DK
10162 value -= S_GET_VALUE (fixP->fx_addsy);
10163 }
10164#endif
252b5132
RH
10165
10166 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10167 and we must not disappoint it. */
252b5132 10168#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10169 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10170 switch (fixP->fx_r_type)
10171 {
10172 case BFD_RELOC_386_PLT32:
3e73aa7c 10173 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10174 /* Make the jump instruction point to the address of the operand. At
10175 runtime we merely add the offset to the actual PLT entry. */
10176 value = -4;
10177 break;
31312f95 10178
13ae64f3
JJ
10179 case BFD_RELOC_386_TLS_GD:
10180 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10181 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10182 case BFD_RELOC_386_TLS_IE:
10183 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10184 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10185 case BFD_RELOC_X86_64_TLSGD:
10186 case BFD_RELOC_X86_64_TLSLD:
10187 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10188 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10189 value = 0; /* Fully resolved at runtime. No addend. */
10190 /* Fallthrough */
10191 case BFD_RELOC_386_TLS_LE:
10192 case BFD_RELOC_386_TLS_LDO_32:
10193 case BFD_RELOC_386_TLS_LE_32:
10194 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10195 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10196 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10197 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10198 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10199 break;
10200
67a4f2b7
AO
10201 case BFD_RELOC_386_TLS_DESC_CALL:
10202 case BFD_RELOC_X86_64_TLSDESC_CALL:
10203 value = 0; /* Fully resolved at runtime. No addend. */
10204 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10205 fixP->fx_done = 0;
10206 return;
10207
47926f60
KH
10208 case BFD_RELOC_VTABLE_INHERIT:
10209 case BFD_RELOC_VTABLE_ENTRY:
10210 fixP->fx_done = 0;
94f592af 10211 return;
47926f60
KH
10212
10213 default:
10214 break;
10215 }
10216#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10217 *valP = value;
f86103b7 10218#endif /* !defined (TE_Mach) */
3e73aa7c 10219
3e73aa7c 10220 /* Are we finished with this relocation now? */
c6682705 10221 if (fixP->fx_addsy == NULL)
3e73aa7c 10222 fixP->fx_done = 1;
fbeb56a4
DK
10223#if defined (OBJ_COFF) && defined (TE_PE)
10224 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10225 {
10226 fixP->fx_done = 0;
10227 /* Remember value for tc_gen_reloc. */
10228 fixP->fx_addnumber = value;
10229 /* Clear out the frag for now. */
10230 value = 0;
10231 }
10232#endif
3e73aa7c
JH
10233 else if (use_rela_relocations)
10234 {
10235 fixP->fx_no_overflow = 1;
062cd5e7
AS
10236 /* Remember value for tc_gen_reloc. */
10237 fixP->fx_addnumber = value;
3e73aa7c
JH
10238 value = 0;
10239 }
f86103b7 10240
94f592af 10241 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10242}
252b5132 10243\f
6d4af3c2 10244const char *
499ac353 10245md_atof (int type, char *litP, int *sizeP)
252b5132 10246{
499ac353
NC
10247 /* This outputs the LITTLENUMs in REVERSE order;
10248 in accord with the bigendian 386. */
10249 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10250}
10251\f
2d545b82 10252static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10253
252b5132 10254static char *
e3bb37b5 10255output_invalid (int c)
252b5132 10256{
3882b010 10257 if (ISPRINT (c))
f9f21a03
L
10258 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10259 "'%c'", c);
252b5132 10260 else
f9f21a03 10261 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10262 "(0x%x)", (unsigned char) c);
252b5132
RH
10263 return output_invalid_buf;
10264}
10265
af6bdddf 10266/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10267
10268static const reg_entry *
4d1bb795 10269parse_real_register (char *reg_string, char **end_op)
252b5132 10270{
af6bdddf
AM
10271 char *s = reg_string;
10272 char *p;
252b5132
RH
10273 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10274 const reg_entry *r;
10275
10276 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10277 if (*s == REGISTER_PREFIX)
10278 ++s;
10279
10280 if (is_space_char (*s))
10281 ++s;
10282
10283 p = reg_name_given;
af6bdddf 10284 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10285 {
10286 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10287 return (const reg_entry *) NULL;
10288 s++;
252b5132
RH
10289 }
10290
6588847e
DN
10291 /* For naked regs, make sure that we are not dealing with an identifier.
10292 This prevents confusing an identifier like `eax_var' with register
10293 `eax'. */
10294 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10295 return (const reg_entry *) NULL;
10296
af6bdddf 10297 *end_op = s;
252b5132
RH
10298
10299 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10300
5f47d35b 10301 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10302 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10303 {
0e0eea78
JB
10304 if (!cpu_arch_flags.bitfield.cpu8087
10305 && !cpu_arch_flags.bitfield.cpu287
10306 && !cpu_arch_flags.bitfield.cpu387)
10307 return (const reg_entry *) NULL;
10308
5f47d35b
AM
10309 if (is_space_char (*s))
10310 ++s;
10311 if (*s == '(')
10312 {
af6bdddf 10313 ++s;
5f47d35b
AM
10314 if (is_space_char (*s))
10315 ++s;
10316 if (*s >= '0' && *s <= '7')
10317 {
db557034 10318 int fpr = *s - '0';
af6bdddf 10319 ++s;
5f47d35b
AM
10320 if (is_space_char (*s))
10321 ++s;
10322 if (*s == ')')
10323 {
10324 *end_op = s + 1;
1e9cc1c2 10325 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10326 know (r);
10327 return r + fpr;
5f47d35b 10328 }
5f47d35b 10329 }
47926f60 10330 /* We have "%st(" then garbage. */
5f47d35b
AM
10331 return (const reg_entry *) NULL;
10332 }
10333 }
10334
a60de03c
JB
10335 if (r == NULL || allow_pseudo_reg)
10336 return r;
10337
0dfbf9d7 10338 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10339 return (const reg_entry *) NULL;
10340
dc821c5f 10341 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10342 || r->reg_type.bitfield.sreg3
10343 || r->reg_type.bitfield.control
10344 || r->reg_type.bitfield.debug
10345 || r->reg_type.bitfield.test)
10346 && !cpu_arch_flags.bitfield.cpui386)
10347 return (const reg_entry *) NULL;
10348
6e041cf4 10349 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10350 return (const reg_entry *) NULL;
10351
6e041cf4
JB
10352 if (!cpu_arch_flags.bitfield.cpuavx512f)
10353 {
10354 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10355 return (const reg_entry *) NULL;
40f12533 10356
6e041cf4
JB
10357 if (!cpu_arch_flags.bitfield.cpuavx)
10358 {
10359 if (r->reg_type.bitfield.ymmword)
10360 return (const reg_entry *) NULL;
1848e567 10361
6e041cf4
JB
10362 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10363 return (const reg_entry *) NULL;
10364 }
10365 }
43234a1e 10366
1adf7f56
JB
10367 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10368 return (const reg_entry *) NULL;
10369
db51cc60 10370 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10371 if (!allow_index_reg
db51cc60
L
10372 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10373 return (const reg_entry *) NULL;
10374
1d3f8286
JB
10375 /* Upper 16 vector registers are only available with VREX in 64bit
10376 mode, and require EVEX encoding. */
10377 if (r->reg_flags & RegVRex)
43234a1e
L
10378 {
10379 if (!cpu_arch_flags.bitfield.cpuvrex
10380 || flag_code != CODE_64BIT)
10381 return (const reg_entry *) NULL;
1d3f8286
JB
10382
10383 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10384 }
10385
4787f4a5
JB
10386 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10387 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10388 && flag_code != CODE_64BIT)
20f0a1fc 10389 return (const reg_entry *) NULL;
1ae00879 10390
b7240065
JB
10391 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10392 return (const reg_entry *) NULL;
10393
252b5132
RH
10394 return r;
10395}
4d1bb795
JB
10396
10397/* REG_STRING starts *before* REGISTER_PREFIX. */
10398
10399static const reg_entry *
10400parse_register (char *reg_string, char **end_op)
10401{
10402 const reg_entry *r;
10403
10404 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10405 r = parse_real_register (reg_string, end_op);
10406 else
10407 r = NULL;
10408 if (!r)
10409 {
10410 char *save = input_line_pointer;
10411 char c;
10412 symbolS *symbolP;
10413
10414 input_line_pointer = reg_string;
d02603dc 10415 c = get_symbol_name (&reg_string);
4d1bb795
JB
10416 symbolP = symbol_find (reg_string);
10417 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10418 {
10419 const expressionS *e = symbol_get_value_expression (symbolP);
10420
0398aac5 10421 know (e->X_op == O_register);
4eed87de 10422 know (e->X_add_number >= 0
c3fe08fa 10423 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10424 r = i386_regtab + e->X_add_number;
d3bb6b49 10425 if ((r->reg_flags & RegVRex))
86fa6981 10426 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10427 *end_op = input_line_pointer;
10428 }
10429 *input_line_pointer = c;
10430 input_line_pointer = save;
10431 }
10432 return r;
10433}
10434
10435int
10436i386_parse_name (char *name, expressionS *e, char *nextcharP)
10437{
10438 const reg_entry *r;
10439 char *end = input_line_pointer;
10440
10441 *end = *nextcharP;
10442 r = parse_register (name, &input_line_pointer);
10443 if (r && end <= input_line_pointer)
10444 {
10445 *nextcharP = *input_line_pointer;
10446 *input_line_pointer = 0;
10447 e->X_op = O_register;
10448 e->X_add_number = r - i386_regtab;
10449 return 1;
10450 }
10451 input_line_pointer = end;
10452 *end = 0;
ee86248c 10453 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10454}
10455
10456void
10457md_operand (expressionS *e)
10458{
ee86248c
JB
10459 char *end;
10460 const reg_entry *r;
4d1bb795 10461
ee86248c
JB
10462 switch (*input_line_pointer)
10463 {
10464 case REGISTER_PREFIX:
10465 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10466 if (r)
10467 {
10468 e->X_op = O_register;
10469 e->X_add_number = r - i386_regtab;
10470 input_line_pointer = end;
10471 }
ee86248c
JB
10472 break;
10473
10474 case '[':
9c2799c2 10475 gas_assert (intel_syntax);
ee86248c
JB
10476 end = input_line_pointer++;
10477 expression (e);
10478 if (*input_line_pointer == ']')
10479 {
10480 ++input_line_pointer;
10481 e->X_op_symbol = make_expr_symbol (e);
10482 e->X_add_symbol = NULL;
10483 e->X_add_number = 0;
10484 e->X_op = O_index;
10485 }
10486 else
10487 {
10488 e->X_op = O_absent;
10489 input_line_pointer = end;
10490 }
10491 break;
4d1bb795
JB
10492 }
10493}
10494
252b5132 10495\f
4cc782b5 10496#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10497const char *md_shortopts = "kVQ:sqnO::";
252b5132 10498#else
b6f8c7c4 10499const char *md_shortopts = "qnO::";
252b5132 10500#endif
6e0b89ee 10501
3e73aa7c 10502#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10503#define OPTION_64 (OPTION_MD_BASE + 1)
10504#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10505#define OPTION_MARCH (OPTION_MD_BASE + 3)
10506#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10507#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10508#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10509#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10510#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10511#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10512#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10513#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10514#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10515#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10516#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10517#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10518#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10519#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10520#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10521#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10522#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10523#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10524#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10525#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10526#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10527
99ad8390
NC
10528struct option md_longopts[] =
10529{
3e73aa7c 10530 {"32", no_argument, NULL, OPTION_32},
321098a5 10531#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10532 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10533 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10534#endif
10535#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10536 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10537 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10538#endif
b3b91714 10539 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10540 {"march", required_argument, NULL, OPTION_MARCH},
10541 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10542 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10543 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10544 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10545 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10546 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10547 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10548 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10549 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10550 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10551 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10552 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10553# if defined (TE_PE) || defined (TE_PEP)
10554 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10555#endif
d1982f93 10556 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10557 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10558 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10559 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10560 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10561 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10562 {NULL, no_argument, NULL, 0}
10563};
10564size_t md_longopts_size = sizeof (md_longopts);
10565
10566int
17b9d67d 10567md_parse_option (int c, const char *arg)
252b5132 10568{
91d6fa6a 10569 unsigned int j;
293f5f65 10570 char *arch, *next, *saved;
9103f4f4 10571
252b5132
RH
10572 switch (c)
10573 {
12b55ccc
L
10574 case 'n':
10575 optimize_align_code = 0;
10576 break;
10577
a38cf1db
AM
10578 case 'q':
10579 quiet_warnings = 1;
252b5132
RH
10580 break;
10581
10582#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10583 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10584 should be emitted or not. FIXME: Not implemented. */
10585 case 'Q':
252b5132
RH
10586 break;
10587
10588 /* -V: SVR4 argument to print version ID. */
10589 case 'V':
10590 print_version_id ();
10591 break;
10592
a38cf1db
AM
10593 /* -k: Ignore for FreeBSD compatibility. */
10594 case 'k':
252b5132 10595 break;
4cc782b5
ILT
10596
10597 case 's':
10598 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10599 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10600 break;
8dcea932
L
10601
10602 case OPTION_MSHARED:
10603 shared = 1;
10604 break;
99ad8390 10605#endif
321098a5 10606#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10607 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10608 case OPTION_64:
10609 {
10610 const char **list, **l;
10611
3e73aa7c
JH
10612 list = bfd_target_list ();
10613 for (l = list; *l != NULL; l++)
8620418b 10614 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10615 || strcmp (*l, "coff-x86-64") == 0
10616 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10617 || strcmp (*l, "pei-x86-64") == 0
10618 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10619 {
10620 default_arch = "x86_64";
10621 break;
10622 }
3e73aa7c 10623 if (*l == NULL)
2b5d6a91 10624 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10625 free (list);
10626 }
10627 break;
10628#endif
252b5132 10629
351f65ca 10630#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10631 case OPTION_X32:
351f65ca
L
10632 if (IS_ELF)
10633 {
10634 const char **list, **l;
10635
10636 list = bfd_target_list ();
10637 for (l = list; *l != NULL; l++)
10638 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10639 {
10640 default_arch = "x86_64:32";
10641 break;
10642 }
10643 if (*l == NULL)
2b5d6a91 10644 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10645 free (list);
10646 }
10647 else
10648 as_fatal (_("32bit x86_64 is only supported for ELF"));
10649 break;
10650#endif
10651
6e0b89ee
AM
10652 case OPTION_32:
10653 default_arch = "i386";
10654 break;
10655
b3b91714
AM
10656 case OPTION_DIVIDE:
10657#ifdef SVR4_COMMENT_CHARS
10658 {
10659 char *n, *t;
10660 const char *s;
10661
add39d23 10662 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10663 t = n;
10664 for (s = i386_comment_chars; *s != '\0'; s++)
10665 if (*s != '/')
10666 *t++ = *s;
10667 *t = '\0';
10668 i386_comment_chars = n;
10669 }
10670#endif
10671 break;
10672
9103f4f4 10673 case OPTION_MARCH:
293f5f65
L
10674 saved = xstrdup (arg);
10675 arch = saved;
10676 /* Allow -march=+nosse. */
10677 if (*arch == '+')
10678 arch++;
6305a203 10679 do
9103f4f4 10680 {
6305a203 10681 if (*arch == '.')
2b5d6a91 10682 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10683 next = strchr (arch, '+');
10684 if (next)
10685 *next++ = '\0';
91d6fa6a 10686 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10687 {
91d6fa6a 10688 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10689 {
6305a203 10690 /* Processor. */
1ded5609
JB
10691 if (! cpu_arch[j].flags.bitfield.cpui386)
10692 continue;
10693
91d6fa6a 10694 cpu_arch_name = cpu_arch[j].name;
6305a203 10695 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10696 cpu_arch_flags = cpu_arch[j].flags;
10697 cpu_arch_isa = cpu_arch[j].type;
10698 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10699 if (!cpu_arch_tune_set)
10700 {
10701 cpu_arch_tune = cpu_arch_isa;
10702 cpu_arch_tune_flags = cpu_arch_isa_flags;
10703 }
10704 break;
10705 }
91d6fa6a
NC
10706 else if (*cpu_arch [j].name == '.'
10707 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10708 {
33eaf5de 10709 /* ISA extension. */
6305a203 10710 i386_cpu_flags flags;
309d3373 10711
293f5f65
L
10712 flags = cpu_flags_or (cpu_arch_flags,
10713 cpu_arch[j].flags);
81486035 10714
5b64d091 10715 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10716 {
10717 if (cpu_sub_arch_name)
10718 {
10719 char *name = cpu_sub_arch_name;
10720 cpu_sub_arch_name = concat (name,
91d6fa6a 10721 cpu_arch[j].name,
1bf57e9f 10722 (const char *) NULL);
6305a203
L
10723 free (name);
10724 }
10725 else
91d6fa6a 10726 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10727 cpu_arch_flags = flags;
a586129e 10728 cpu_arch_isa_flags = flags;
6305a203 10729 }
0089dace
L
10730 else
10731 cpu_arch_isa_flags
10732 = cpu_flags_or (cpu_arch_isa_flags,
10733 cpu_arch[j].flags);
6305a203 10734 break;
ccc9c027 10735 }
9103f4f4 10736 }
6305a203 10737
293f5f65
L
10738 if (j >= ARRAY_SIZE (cpu_arch))
10739 {
33eaf5de 10740 /* Disable an ISA extension. */
293f5f65
L
10741 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10742 if (strcmp (arch, cpu_noarch [j].name) == 0)
10743 {
10744 i386_cpu_flags flags;
10745
10746 flags = cpu_flags_and_not (cpu_arch_flags,
10747 cpu_noarch[j].flags);
10748 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10749 {
10750 if (cpu_sub_arch_name)
10751 {
10752 char *name = cpu_sub_arch_name;
10753 cpu_sub_arch_name = concat (arch,
10754 (const char *) NULL);
10755 free (name);
10756 }
10757 else
10758 cpu_sub_arch_name = xstrdup (arch);
10759 cpu_arch_flags = flags;
10760 cpu_arch_isa_flags = flags;
10761 }
10762 break;
10763 }
10764
10765 if (j >= ARRAY_SIZE (cpu_noarch))
10766 j = ARRAY_SIZE (cpu_arch);
10767 }
10768
91d6fa6a 10769 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10770 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10771
10772 arch = next;
9103f4f4 10773 }
293f5f65
L
10774 while (next != NULL);
10775 free (saved);
9103f4f4
L
10776 break;
10777
10778 case OPTION_MTUNE:
10779 if (*arg == '.')
2b5d6a91 10780 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10781 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10782 {
91d6fa6a 10783 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10784 {
ccc9c027 10785 cpu_arch_tune_set = 1;
91d6fa6a
NC
10786 cpu_arch_tune = cpu_arch [j].type;
10787 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10788 break;
10789 }
10790 }
91d6fa6a 10791 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10792 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10793 break;
10794
1efbbeb4
L
10795 case OPTION_MMNEMONIC:
10796 if (strcasecmp (arg, "att") == 0)
10797 intel_mnemonic = 0;
10798 else if (strcasecmp (arg, "intel") == 0)
10799 intel_mnemonic = 1;
10800 else
2b5d6a91 10801 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10802 break;
10803
10804 case OPTION_MSYNTAX:
10805 if (strcasecmp (arg, "att") == 0)
10806 intel_syntax = 0;
10807 else if (strcasecmp (arg, "intel") == 0)
10808 intel_syntax = 1;
10809 else
2b5d6a91 10810 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10811 break;
10812
10813 case OPTION_MINDEX_REG:
10814 allow_index_reg = 1;
10815 break;
10816
10817 case OPTION_MNAKED_REG:
10818 allow_naked_reg = 1;
10819 break;
10820
c0f3af97
L
10821 case OPTION_MSSE2AVX:
10822 sse2avx = 1;
10823 break;
10824
daf50ae7
L
10825 case OPTION_MSSE_CHECK:
10826 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10827 sse_check = check_error;
daf50ae7 10828 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10829 sse_check = check_warning;
daf50ae7 10830 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10831 sse_check = check_none;
daf50ae7 10832 else
2b5d6a91 10833 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10834 break;
10835
7bab8ab5
JB
10836 case OPTION_MOPERAND_CHECK:
10837 if (strcasecmp (arg, "error") == 0)
10838 operand_check = check_error;
10839 else if (strcasecmp (arg, "warning") == 0)
10840 operand_check = check_warning;
10841 else if (strcasecmp (arg, "none") == 0)
10842 operand_check = check_none;
10843 else
10844 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10845 break;
10846
539f890d
L
10847 case OPTION_MAVXSCALAR:
10848 if (strcasecmp (arg, "128") == 0)
10849 avxscalar = vex128;
10850 else if (strcasecmp (arg, "256") == 0)
10851 avxscalar = vex256;
10852 else
2b5d6a91 10853 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10854 break;
10855
7e8b059b
L
10856 case OPTION_MADD_BND_PREFIX:
10857 add_bnd_prefix = 1;
10858 break;
10859
43234a1e
L
10860 case OPTION_MEVEXLIG:
10861 if (strcmp (arg, "128") == 0)
10862 evexlig = evexl128;
10863 else if (strcmp (arg, "256") == 0)
10864 evexlig = evexl256;
10865 else if (strcmp (arg, "512") == 0)
10866 evexlig = evexl512;
10867 else
10868 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10869 break;
10870
d3d3c6db
IT
10871 case OPTION_MEVEXRCIG:
10872 if (strcmp (arg, "rne") == 0)
10873 evexrcig = rne;
10874 else if (strcmp (arg, "rd") == 0)
10875 evexrcig = rd;
10876 else if (strcmp (arg, "ru") == 0)
10877 evexrcig = ru;
10878 else if (strcmp (arg, "rz") == 0)
10879 evexrcig = rz;
10880 else
10881 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10882 break;
10883
43234a1e
L
10884 case OPTION_MEVEXWIG:
10885 if (strcmp (arg, "0") == 0)
10886 evexwig = evexw0;
10887 else if (strcmp (arg, "1") == 0)
10888 evexwig = evexw1;
10889 else
10890 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10891 break;
10892
167ad85b
TG
10893# if defined (TE_PE) || defined (TE_PEP)
10894 case OPTION_MBIG_OBJ:
10895 use_big_obj = 1;
10896 break;
10897#endif
10898
d1982f93 10899 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10900 if (strcasecmp (arg, "yes") == 0)
10901 omit_lock_prefix = 1;
10902 else if (strcasecmp (arg, "no") == 0)
10903 omit_lock_prefix = 0;
10904 else
10905 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10906 break;
10907
e4e00185
AS
10908 case OPTION_MFENCE_AS_LOCK_ADD:
10909 if (strcasecmp (arg, "yes") == 0)
10910 avoid_fence = 1;
10911 else if (strcasecmp (arg, "no") == 0)
10912 avoid_fence = 0;
10913 else
10914 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10915 break;
10916
0cb4071e
L
10917 case OPTION_MRELAX_RELOCATIONS:
10918 if (strcasecmp (arg, "yes") == 0)
10919 generate_relax_relocations = 1;
10920 else if (strcasecmp (arg, "no") == 0)
10921 generate_relax_relocations = 0;
10922 else
10923 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10924 break;
10925
5db04b09 10926 case OPTION_MAMD64:
e89c5eaa 10927 intel64 = 0;
5db04b09
L
10928 break;
10929
10930 case OPTION_MINTEL64:
e89c5eaa 10931 intel64 = 1;
5db04b09
L
10932 break;
10933
b6f8c7c4
L
10934 case 'O':
10935 if (arg == NULL)
10936 {
10937 optimize = 1;
10938 /* Turn off -Os. */
10939 optimize_for_space = 0;
10940 }
10941 else if (*arg == 's')
10942 {
10943 optimize_for_space = 1;
10944 /* Turn on all encoding optimizations. */
10945 optimize = -1;
10946 }
10947 else
10948 {
10949 optimize = atoi (arg);
10950 /* Turn off -Os. */
10951 optimize_for_space = 0;
10952 }
10953 break;
10954
252b5132
RH
10955 default:
10956 return 0;
10957 }
10958 return 1;
10959}
10960
8a2c8fef
L
10961#define MESSAGE_TEMPLATE \
10962" "
10963
293f5f65
L
10964static char *
10965output_message (FILE *stream, char *p, char *message, char *start,
10966 int *left_p, const char *name, int len)
10967{
10968 int size = sizeof (MESSAGE_TEMPLATE);
10969 int left = *left_p;
10970
10971 /* Reserve 2 spaces for ", " or ",\0" */
10972 left -= len + 2;
10973
10974 /* Check if there is any room. */
10975 if (left >= 0)
10976 {
10977 if (p != start)
10978 {
10979 *p++ = ',';
10980 *p++ = ' ';
10981 }
10982 p = mempcpy (p, name, len);
10983 }
10984 else
10985 {
10986 /* Output the current message now and start a new one. */
10987 *p++ = ',';
10988 *p = '\0';
10989 fprintf (stream, "%s\n", message);
10990 p = start;
10991 left = size - (start - message) - len - 2;
10992
10993 gas_assert (left >= 0);
10994
10995 p = mempcpy (p, name, len);
10996 }
10997
10998 *left_p = left;
10999 return p;
11000}
11001
8a2c8fef 11002static void
1ded5609 11003show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11004{
11005 static char message[] = MESSAGE_TEMPLATE;
11006 char *start = message + 27;
11007 char *p;
11008 int size = sizeof (MESSAGE_TEMPLATE);
11009 int left;
11010 const char *name;
11011 int len;
11012 unsigned int j;
11013
11014 p = start;
11015 left = size - (start - message);
11016 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11017 {
11018 /* Should it be skipped? */
11019 if (cpu_arch [j].skip)
11020 continue;
11021
11022 name = cpu_arch [j].name;
11023 len = cpu_arch [j].len;
11024 if (*name == '.')
11025 {
11026 /* It is an extension. Skip if we aren't asked to show it. */
11027 if (ext)
11028 {
11029 name++;
11030 len--;
11031 }
11032 else
11033 continue;
11034 }
11035 else if (ext)
11036 {
11037 /* It is an processor. Skip if we show only extension. */
11038 continue;
11039 }
1ded5609
JB
11040 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11041 {
11042 /* It is an impossible processor - skip. */
11043 continue;
11044 }
8a2c8fef 11045
293f5f65 11046 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11047 }
11048
293f5f65
L
11049 /* Display disabled extensions. */
11050 if (ext)
11051 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11052 {
11053 name = cpu_noarch [j].name;
11054 len = cpu_noarch [j].len;
11055 p = output_message (stream, p, message, start, &left, name,
11056 len);
11057 }
11058
8a2c8fef
L
11059 *p = '\0';
11060 fprintf (stream, "%s\n", message);
11061}
11062
252b5132 11063void
8a2c8fef 11064md_show_usage (FILE *stream)
252b5132 11065{
4cc782b5
ILT
11066#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11067 fprintf (stream, _("\
a38cf1db
AM
11068 -Q ignored\n\
11069 -V print assembler version number\n\
b3b91714
AM
11070 -k ignored\n"));
11071#endif
11072 fprintf (stream, _("\
12b55ccc 11073 -n Do not optimize code alignment\n\
b3b91714
AM
11074 -q quieten some warnings\n"));
11075#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11076 fprintf (stream, _("\
a38cf1db 11077 -s ignored\n"));
b3b91714 11078#endif
321098a5
L
11079#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11080 || defined (TE_PE) || defined (TE_PEP))
751d281c 11081 fprintf (stream, _("\
570561f7 11082 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11083#endif
b3b91714
AM
11084#ifdef SVR4_COMMENT_CHARS
11085 fprintf (stream, _("\
11086 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11087#else
11088 fprintf (stream, _("\
b3b91714 11089 --divide ignored\n"));
4cc782b5 11090#endif
9103f4f4 11091 fprintf (stream, _("\
6305a203 11092 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11093 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11094 show_arch (stream, 0, 1);
8a2c8fef
L
11095 fprintf (stream, _("\
11096 EXTENSION is combination of:\n"));
1ded5609 11097 show_arch (stream, 1, 0);
6305a203 11098 fprintf (stream, _("\
8a2c8fef 11099 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11100 show_arch (stream, 0, 0);
ba104c83 11101 fprintf (stream, _("\
c0f3af97
L
11102 -msse2avx encode SSE instructions with VEX prefix\n"));
11103 fprintf (stream, _("\
daf50ae7
L
11104 -msse-check=[none|error|warning]\n\
11105 check SSE instructions\n"));
11106 fprintf (stream, _("\
7bab8ab5
JB
11107 -moperand-check=[none|error|warning]\n\
11108 check operand combinations for validity\n"));
11109 fprintf (stream, _("\
539f890d
L
11110 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11111 length\n"));
11112 fprintf (stream, _("\
43234a1e
L
11113 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11114 length\n"));
11115 fprintf (stream, _("\
11116 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11117 for EVEX.W bit ignored instructions\n"));
11118 fprintf (stream, _("\
d3d3c6db
IT
11119 -mevexrcig=[rne|rd|ru|rz]\n\
11120 encode EVEX instructions with specific EVEX.RC value\n\
11121 for SAE-only ignored instructions\n"));
11122 fprintf (stream, _("\
ba104c83
L
11123 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11124 fprintf (stream, _("\
11125 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11126 fprintf (stream, _("\
11127 -mindex-reg support pseudo index registers\n"));
11128 fprintf (stream, _("\
11129 -mnaked-reg don't require `%%' prefix for registers\n"));
11130 fprintf (stream, _("\
7e8b059b 11131 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
11132 fprintf (stream, _("\
11133 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
11134# if defined (TE_PE) || defined (TE_PEP)
11135 fprintf (stream, _("\
11136 -mbig-obj generate big object files\n"));
11137#endif
d022bddd
IT
11138 fprintf (stream, _("\
11139 -momit-lock-prefix=[no|yes]\n\
11140 strip all lock prefixes\n"));
5db04b09 11141 fprintf (stream, _("\
e4e00185
AS
11142 -mfence-as-lock-add=[no|yes]\n\
11143 encode lfence, mfence and sfence as\n\
11144 lock addl $0x0, (%%{re}sp)\n"));
11145 fprintf (stream, _("\
0cb4071e
L
11146 -mrelax-relocations=[no|yes]\n\
11147 generate relax relocations\n"));
11148 fprintf (stream, _("\
5db04b09
L
11149 -mamd64 accept only AMD64 ISA\n"));
11150 fprintf (stream, _("\
11151 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11152}
11153
3e73aa7c 11154#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11155 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11156 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11157
11158/* Pick the target format to use. */
11159
47926f60 11160const char *
e3bb37b5 11161i386_target_format (void)
252b5132 11162{
351f65ca
L
11163 if (!strncmp (default_arch, "x86_64", 6))
11164 {
11165 update_code_flag (CODE_64BIT, 1);
11166 if (default_arch[6] == '\0')
7f56bc95 11167 x86_elf_abi = X86_64_ABI;
351f65ca 11168 else
7f56bc95 11169 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11170 }
3e73aa7c 11171 else if (!strcmp (default_arch, "i386"))
78f12dd3 11172 update_code_flag (CODE_32BIT, 1);
5197d474
L
11173 else if (!strcmp (default_arch, "iamcu"))
11174 {
11175 update_code_flag (CODE_32BIT, 1);
11176 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11177 {
11178 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11179 cpu_arch_name = "iamcu";
11180 cpu_sub_arch_name = NULL;
11181 cpu_arch_flags = iamcu_flags;
11182 cpu_arch_isa = PROCESSOR_IAMCU;
11183 cpu_arch_isa_flags = iamcu_flags;
11184 if (!cpu_arch_tune_set)
11185 {
11186 cpu_arch_tune = cpu_arch_isa;
11187 cpu_arch_tune_flags = cpu_arch_isa_flags;
11188 }
11189 }
8d471ec1 11190 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11191 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11192 cpu_arch_name);
11193 }
3e73aa7c 11194 else
2b5d6a91 11195 as_fatal (_("unknown architecture"));
89507696
JB
11196
11197 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11198 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11199 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11200 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11201
252b5132
RH
11202 switch (OUTPUT_FLAVOR)
11203 {
9384f2ff 11204#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11205 case bfd_target_aout_flavour:
47926f60 11206 return AOUT_TARGET_FORMAT;
4c63da97 11207#endif
9384f2ff
AM
11208#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11209# if defined (TE_PE) || defined (TE_PEP)
11210 case bfd_target_coff_flavour:
167ad85b
TG
11211 if (flag_code == CODE_64BIT)
11212 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11213 else
11214 return "pe-i386";
9384f2ff 11215# elif defined (TE_GO32)
0561d57c
JK
11216 case bfd_target_coff_flavour:
11217 return "coff-go32";
9384f2ff 11218# else
252b5132
RH
11219 case bfd_target_coff_flavour:
11220 return "coff-i386";
9384f2ff 11221# endif
4c63da97 11222#endif
3e73aa7c 11223#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11224 case bfd_target_elf_flavour:
3e73aa7c 11225 {
351f65ca
L
11226 const char *format;
11227
11228 switch (x86_elf_abi)
4fa24527 11229 {
351f65ca
L
11230 default:
11231 format = ELF_TARGET_FORMAT;
11232 break;
7f56bc95 11233 case X86_64_ABI:
351f65ca 11234 use_rela_relocations = 1;
4fa24527 11235 object_64bit = 1;
351f65ca
L
11236 format = ELF_TARGET_FORMAT64;
11237 break;
7f56bc95 11238 case X86_64_X32_ABI:
4fa24527 11239 use_rela_relocations = 1;
351f65ca 11240 object_64bit = 1;
862be3fb 11241 disallow_64bit_reloc = 1;
351f65ca
L
11242 format = ELF_TARGET_FORMAT32;
11243 break;
4fa24527 11244 }
3632d14b 11245 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11246 {
7f56bc95 11247 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11248 as_fatal (_("Intel L1OM is 64bit only"));
11249 return ELF_TARGET_L1OM_FORMAT;
11250 }
b49f93f6 11251 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11252 {
11253 if (x86_elf_abi != X86_64_ABI)
11254 as_fatal (_("Intel K1OM is 64bit only"));
11255 return ELF_TARGET_K1OM_FORMAT;
11256 }
81486035
L
11257 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11258 {
11259 if (x86_elf_abi != I386_ABI)
11260 as_fatal (_("Intel MCU is 32bit only"));
11261 return ELF_TARGET_IAMCU_FORMAT;
11262 }
8a9036a4 11263 else
351f65ca 11264 return format;
3e73aa7c 11265 }
e57f8c65
TG
11266#endif
11267#if defined (OBJ_MACH_O)
11268 case bfd_target_mach_o_flavour:
d382c579
TG
11269 if (flag_code == CODE_64BIT)
11270 {
11271 use_rela_relocations = 1;
11272 object_64bit = 1;
11273 return "mach-o-x86-64";
11274 }
11275 else
11276 return "mach-o-i386";
4c63da97 11277#endif
252b5132
RH
11278 default:
11279 abort ();
11280 return NULL;
11281 }
11282}
11283
47926f60 11284#endif /* OBJ_MAYBE_ more than one */
252b5132 11285\f
252b5132 11286symbolS *
7016a5d5 11287md_undefined_symbol (char *name)
252b5132 11288{
18dc2407
ILT
11289 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11290 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11291 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11292 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11293 {
11294 if (!GOT_symbol)
11295 {
11296 if (symbol_find (name))
11297 as_bad (_("GOT already in symbol table"));
11298 GOT_symbol = symbol_new (name, undefined_section,
11299 (valueT) 0, &zero_address_frag);
11300 };
11301 return GOT_symbol;
11302 }
252b5132
RH
11303 return 0;
11304}
11305
11306/* Round up a section size to the appropriate boundary. */
47926f60 11307
252b5132 11308valueT
7016a5d5 11309md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11310{
4c63da97
AM
11311#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11312 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11313 {
11314 /* For a.out, force the section size to be aligned. If we don't do
11315 this, BFD will align it for us, but it will not write out the
11316 final bytes of the section. This may be a bug in BFD, but it is
11317 easier to fix it here since that is how the other a.out targets
11318 work. */
11319 int align;
11320
11321 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11322 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11323 }
252b5132
RH
11324#endif
11325
11326 return size;
11327}
11328
11329/* On the i386, PC-relative offsets are relative to the start of the
11330 next instruction. That is, the address of the offset, plus its
11331 size, since the offset is always the last part of the insn. */
11332
11333long
e3bb37b5 11334md_pcrel_from (fixS *fixP)
252b5132
RH
11335{
11336 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11337}
11338
11339#ifndef I386COFF
11340
11341static void
e3bb37b5 11342s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11343{
29b0f896 11344 int temp;
252b5132 11345
8a75718c
JB
11346#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11347 if (IS_ELF)
11348 obj_elf_section_change_hook ();
11349#endif
252b5132
RH
11350 temp = get_absolute_expression ();
11351 subseg_set (bss_section, (subsegT) temp);
11352 demand_empty_rest_of_line ();
11353}
11354
11355#endif
11356
252b5132 11357void
e3bb37b5 11358i386_validate_fix (fixS *fixp)
252b5132 11359{
02a86693 11360 if (fixp->fx_subsy)
252b5132 11361 {
02a86693 11362 if (fixp->fx_subsy == GOT_symbol)
23df1078 11363 {
02a86693
L
11364 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11365 {
11366 if (!object_64bit)
11367 abort ();
11368#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11369 if (fixp->fx_tcbit2)
56ceb5b5
L
11370 fixp->fx_r_type = (fixp->fx_tcbit
11371 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11372 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11373 else
11374#endif
11375 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11376 }
d6ab8113 11377 else
02a86693
L
11378 {
11379 if (!object_64bit)
11380 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11381 else
11382 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11383 }
11384 fixp->fx_subsy = 0;
23df1078 11385 }
252b5132 11386 }
02a86693
L
11387#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11388 else if (!object_64bit)
11389 {
11390 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11391 && fixp->fx_tcbit2)
11392 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11393 }
11394#endif
252b5132
RH
11395}
11396
252b5132 11397arelent *
7016a5d5 11398tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11399{
11400 arelent *rel;
11401 bfd_reloc_code_real_type code;
11402
11403 switch (fixp->fx_r_type)
11404 {
8ce3d284 11405#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11406 case BFD_RELOC_SIZE32:
11407 case BFD_RELOC_SIZE64:
11408 if (S_IS_DEFINED (fixp->fx_addsy)
11409 && !S_IS_EXTERNAL (fixp->fx_addsy))
11410 {
11411 /* Resolve size relocation against local symbol to size of
11412 the symbol plus addend. */
11413 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11414 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11415 && !fits_in_unsigned_long (value))
11416 as_bad_where (fixp->fx_file, fixp->fx_line,
11417 _("symbol size computation overflow"));
11418 fixp->fx_addsy = NULL;
11419 fixp->fx_subsy = NULL;
11420 md_apply_fix (fixp, (valueT *) &value, NULL);
11421 return NULL;
11422 }
8ce3d284 11423#endif
1a0670f3 11424 /* Fall through. */
8fd4256d 11425
3e73aa7c
JH
11426 case BFD_RELOC_X86_64_PLT32:
11427 case BFD_RELOC_X86_64_GOT32:
11428 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11429 case BFD_RELOC_X86_64_GOTPCRELX:
11430 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11431 case BFD_RELOC_386_PLT32:
11432 case BFD_RELOC_386_GOT32:
02a86693 11433 case BFD_RELOC_386_GOT32X:
252b5132
RH
11434 case BFD_RELOC_386_GOTOFF:
11435 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11436 case BFD_RELOC_386_TLS_GD:
11437 case BFD_RELOC_386_TLS_LDM:
11438 case BFD_RELOC_386_TLS_LDO_32:
11439 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11440 case BFD_RELOC_386_TLS_IE:
11441 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11442 case BFD_RELOC_386_TLS_LE_32:
11443 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11444 case BFD_RELOC_386_TLS_GOTDESC:
11445 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11446 case BFD_RELOC_X86_64_TLSGD:
11447 case BFD_RELOC_X86_64_TLSLD:
11448 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11449 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11450 case BFD_RELOC_X86_64_GOTTPOFF:
11451 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11452 case BFD_RELOC_X86_64_TPOFF64:
11453 case BFD_RELOC_X86_64_GOTOFF64:
11454 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11455 case BFD_RELOC_X86_64_GOT64:
11456 case BFD_RELOC_X86_64_GOTPCREL64:
11457 case BFD_RELOC_X86_64_GOTPC64:
11458 case BFD_RELOC_X86_64_GOTPLT64:
11459 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11460 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11461 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11462 case BFD_RELOC_RVA:
11463 case BFD_RELOC_VTABLE_ENTRY:
11464 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11465#ifdef TE_PE
11466 case BFD_RELOC_32_SECREL:
11467#endif
252b5132
RH
11468 code = fixp->fx_r_type;
11469 break;
dbbaec26
L
11470 case BFD_RELOC_X86_64_32S:
11471 if (!fixp->fx_pcrel)
11472 {
11473 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11474 code = fixp->fx_r_type;
11475 break;
11476 }
1a0670f3 11477 /* Fall through. */
252b5132 11478 default:
93382f6d 11479 if (fixp->fx_pcrel)
252b5132 11480 {
93382f6d
AM
11481 switch (fixp->fx_size)
11482 {
11483 default:
b091f402
AM
11484 as_bad_where (fixp->fx_file, fixp->fx_line,
11485 _("can not do %d byte pc-relative relocation"),
11486 fixp->fx_size);
93382f6d
AM
11487 code = BFD_RELOC_32_PCREL;
11488 break;
11489 case 1: code = BFD_RELOC_8_PCREL; break;
11490 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11491 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11492#ifdef BFD64
11493 case 8: code = BFD_RELOC_64_PCREL; break;
11494#endif
93382f6d
AM
11495 }
11496 }
11497 else
11498 {
11499 switch (fixp->fx_size)
11500 {
11501 default:
b091f402
AM
11502 as_bad_where (fixp->fx_file, fixp->fx_line,
11503 _("can not do %d byte relocation"),
11504 fixp->fx_size);
93382f6d
AM
11505 code = BFD_RELOC_32;
11506 break;
11507 case 1: code = BFD_RELOC_8; break;
11508 case 2: code = BFD_RELOC_16; break;
11509 case 4: code = BFD_RELOC_32; break;
937149dd 11510#ifdef BFD64
3e73aa7c 11511 case 8: code = BFD_RELOC_64; break;
937149dd 11512#endif
93382f6d 11513 }
252b5132
RH
11514 }
11515 break;
11516 }
252b5132 11517
d182319b
JB
11518 if ((code == BFD_RELOC_32
11519 || code == BFD_RELOC_32_PCREL
11520 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11521 && GOT_symbol
11522 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11523 {
4fa24527 11524 if (!object_64bit)
d6ab8113
JB
11525 code = BFD_RELOC_386_GOTPC;
11526 else
11527 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11528 }
7b81dfbb
AJ
11529 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11530 && GOT_symbol
11531 && fixp->fx_addsy == GOT_symbol)
11532 {
11533 code = BFD_RELOC_X86_64_GOTPC64;
11534 }
252b5132 11535
add39d23
TS
11536 rel = XNEW (arelent);
11537 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11538 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11539
11540 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11541
3e73aa7c
JH
11542 if (!use_rela_relocations)
11543 {
11544 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11545 vtable entry to be used in the relocation's section offset. */
11546 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11547 rel->address = fixp->fx_offset;
fbeb56a4
DK
11548#if defined (OBJ_COFF) && defined (TE_PE)
11549 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11550 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11551 else
11552#endif
c6682705 11553 rel->addend = 0;
3e73aa7c
JH
11554 }
11555 /* Use the rela in 64bit mode. */
252b5132 11556 else
3e73aa7c 11557 {
862be3fb
L
11558 if (disallow_64bit_reloc)
11559 switch (code)
11560 {
862be3fb
L
11561 case BFD_RELOC_X86_64_DTPOFF64:
11562 case BFD_RELOC_X86_64_TPOFF64:
11563 case BFD_RELOC_64_PCREL:
11564 case BFD_RELOC_X86_64_GOTOFF64:
11565 case BFD_RELOC_X86_64_GOT64:
11566 case BFD_RELOC_X86_64_GOTPCREL64:
11567 case BFD_RELOC_X86_64_GOTPC64:
11568 case BFD_RELOC_X86_64_GOTPLT64:
11569 case BFD_RELOC_X86_64_PLTOFF64:
11570 as_bad_where (fixp->fx_file, fixp->fx_line,
11571 _("cannot represent relocation type %s in x32 mode"),
11572 bfd_get_reloc_code_name (code));
11573 break;
11574 default:
11575 break;
11576 }
11577
062cd5e7
AS
11578 if (!fixp->fx_pcrel)
11579 rel->addend = fixp->fx_offset;
11580 else
11581 switch (code)
11582 {
11583 case BFD_RELOC_X86_64_PLT32:
11584 case BFD_RELOC_X86_64_GOT32:
11585 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11586 case BFD_RELOC_X86_64_GOTPCRELX:
11587 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11588 case BFD_RELOC_X86_64_TLSGD:
11589 case BFD_RELOC_X86_64_TLSLD:
11590 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11591 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11592 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11593 rel->addend = fixp->fx_offset - fixp->fx_size;
11594 break;
11595 default:
11596 rel->addend = (section->vma
11597 - fixp->fx_size
11598 + fixp->fx_addnumber
11599 + md_pcrel_from (fixp));
11600 break;
11601 }
3e73aa7c
JH
11602 }
11603
252b5132
RH
11604 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11605 if (rel->howto == NULL)
11606 {
11607 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11608 _("cannot represent relocation type %s"),
252b5132
RH
11609 bfd_get_reloc_code_name (code));
11610 /* Set howto to a garbage value so that we can keep going. */
11611 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11612 gas_assert (rel->howto != NULL);
252b5132
RH
11613 }
11614
11615 return rel;
11616}
11617
ee86248c 11618#include "tc-i386-intel.c"
54cfded0 11619
a60de03c
JB
11620void
11621tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11622{
a60de03c
JB
11623 int saved_naked_reg;
11624 char saved_register_dot;
54cfded0 11625
a60de03c
JB
11626 saved_naked_reg = allow_naked_reg;
11627 allow_naked_reg = 1;
11628 saved_register_dot = register_chars['.'];
11629 register_chars['.'] = '.';
11630 allow_pseudo_reg = 1;
11631 expression_and_evaluate (exp);
11632 allow_pseudo_reg = 0;
11633 register_chars['.'] = saved_register_dot;
11634 allow_naked_reg = saved_naked_reg;
11635
e96d56a1 11636 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11637 {
a60de03c
JB
11638 if ((addressT) exp->X_add_number < i386_regtab_size)
11639 {
11640 exp->X_op = O_constant;
11641 exp->X_add_number = i386_regtab[exp->X_add_number]
11642 .dw2_regnum[flag_code >> 1];
11643 }
11644 else
11645 exp->X_op = O_illegal;
54cfded0 11646 }
54cfded0
AM
11647}
11648
11649void
11650tc_x86_frame_initial_instructions (void)
11651{
a60de03c
JB
11652 static unsigned int sp_regno[2];
11653
11654 if (!sp_regno[flag_code >> 1])
11655 {
11656 char *saved_input = input_line_pointer;
11657 char sp[][4] = {"esp", "rsp"};
11658 expressionS exp;
a4447b93 11659
a60de03c
JB
11660 input_line_pointer = sp[flag_code >> 1];
11661 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11662 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11663 sp_regno[flag_code >> 1] = exp.X_add_number;
11664 input_line_pointer = saved_input;
11665 }
a4447b93 11666
61ff971f
L
11667 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11668 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11669}
d2b2c203 11670
d7921315
L
11671int
11672x86_dwarf2_addr_size (void)
11673{
11674#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11675 if (x86_elf_abi == X86_64_X32_ABI)
11676 return 4;
11677#endif
11678 return bfd_arch_bits_per_address (stdoutput) / 8;
11679}
11680
d2b2c203
DJ
11681int
11682i386_elf_section_type (const char *str, size_t len)
11683{
11684 if (flag_code == CODE_64BIT
11685 && len == sizeof ("unwind") - 1
11686 && strncmp (str, "unwind", 6) == 0)
11687 return SHT_X86_64_UNWIND;
11688
11689 return -1;
11690}
bb41ade5 11691
ad5fec3b
EB
11692#ifdef TE_SOLARIS
11693void
11694i386_solaris_fix_up_eh_frame (segT sec)
11695{
11696 if (flag_code == CODE_64BIT)
11697 elf_section_type (sec) = SHT_X86_64_UNWIND;
11698}
11699#endif
11700
bb41ade5
AM
11701#ifdef TE_PE
11702void
11703tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11704{
91d6fa6a 11705 expressionS exp;
bb41ade5 11706
91d6fa6a
NC
11707 exp.X_op = O_secrel;
11708 exp.X_add_symbol = symbol;
11709 exp.X_add_number = 0;
11710 emit_expr (&exp, size);
bb41ade5
AM
11711}
11712#endif
3b22753a
L
11713
11714#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11715/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11716
01e1a5bc 11717bfd_vma
6d4af3c2 11718x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11719{
11720 if (flag_code == CODE_64BIT)
11721 {
11722 if (letter == 'l')
11723 return SHF_X86_64_LARGE;
11724
8f3bae45 11725 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11726 }
3b22753a 11727 else
8f3bae45 11728 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11729 return -1;
11730}
11731
01e1a5bc 11732bfd_vma
3b22753a
L
11733x86_64_section_word (char *str, size_t len)
11734{
8620418b 11735 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11736 return SHF_X86_64_LARGE;
11737
11738 return -1;
11739}
11740
11741static void
11742handle_large_common (int small ATTRIBUTE_UNUSED)
11743{
11744 if (flag_code != CODE_64BIT)
11745 {
11746 s_comm_internal (0, elf_common_parse);
11747 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11748 }
11749 else
11750 {
11751 static segT lbss_section;
11752 asection *saved_com_section_ptr = elf_com_section_ptr;
11753 asection *saved_bss_section = bss_section;
11754
11755 if (lbss_section == NULL)
11756 {
11757 flagword applicable;
11758 segT seg = now_seg;
11759 subsegT subseg = now_subseg;
11760
11761 /* The .lbss section is for local .largecomm symbols. */
11762 lbss_section = subseg_new (".lbss", 0);
11763 applicable = bfd_applicable_section_flags (stdoutput);
11764 bfd_set_section_flags (stdoutput, lbss_section,
11765 applicable & SEC_ALLOC);
11766 seg_info (lbss_section)->bss = 1;
11767
11768 subseg_set (seg, subseg);
11769 }
11770
11771 elf_com_section_ptr = &_bfd_elf_large_com_section;
11772 bss_section = lbss_section;
11773
11774 s_comm_internal (0, elf_common_parse);
11775
11776 elf_com_section_ptr = saved_com_section_ptr;
11777 bss_section = saved_bss_section;
11778 }
11779}
11780#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.769399 seconds and 4 git commands to generate.