bfd_section_* macros
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
2c703856 3007pi (const char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
21df382b 3034 || x->types[j].bitfield.sreg
09137c09
SP
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
252b5132
RH
3043 }
3044}
3045
3046static void
d3ce72d0 3047pte (insn_template *t)
252b5132 3048{
09137c09 3049 unsigned int j;
252b5132 3050 fprintf (stdout, " %d operands ", t->operands);
47926f60 3051 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3054 if (t->opcode_modifier.d)
252b5132 3055 fprintf (stdout, "D");
40fb9820 3056 if (t->opcode_modifier.w)
252b5132
RH
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
09137c09 3059 for (j = 0; j < t->operands; j++)
252b5132 3060 {
09137c09
SP
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
252b5132
RH
3063 fprintf (stdout, "\n");
3064 }
3065}
3066
3067static void
e3bb37b5 3068pe (expressionS *e)
252b5132 3069{
24eab124 3070 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085}
3086
3087static void
e3bb37b5 3088ps (symbolS *s)
252b5132
RH
3089{
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094}
3095
7b81dfbb 3096static struct type_name
252b5132 3097 {
40fb9820
L
3098 i386_operand_type mask;
3099 const char *name;
252b5132 3100 }
7b81dfbb 3101const type_names[] =
252b5132 3102{
40fb9820
L
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3131 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3135 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3138 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3139};
3140
3141static void
40fb9820 3142pt (i386_operand_type t)
252b5132 3143{
40fb9820 3144 unsigned int j;
c6fb90c8 3145 i386_operand_type a;
252b5132 3146
40fb9820 3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
2c703856 3150 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
252b5132
RH
3153 fflush (stdout);
3154}
3155
3156#endif /* DEBUG386 */
3157\f
252b5132 3158static bfd_reloc_code_real_type
3956db08 3159reloc (unsigned int size,
64e74474
AM
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
252b5132 3163{
47926f60 3164 if (other != NO_RELOC)
3956db08 3165 {
91d6fa6a 3166 reloc_howto_type *rel;
3956db08
JB
3167
3168 if (size == 8)
3169 switch (other)
3170 {
64e74474
AM
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
553d1284
L
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
64e74474
AM
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3956db08 3194 }
e05278af 3195
8ce3d284 3196#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
1ab668bf 3200 other = BFD_RELOC_SIZE64;
8fd4256d 3201 if (pcrel)
1ab668bf
AM
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
8fd4256d 3206 }
8ce3d284 3207#endif
8fd4256d 3208
e05278af 3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3211 sign = -1;
3212
91d6fa6a
NC
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3956db08 3215 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3216 else if (size != bfd_get_reloc_size (rel))
3956db08 3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3218 bfd_get_reloc_size (rel),
3956db08 3219 size);
91d6fa6a 3220 else if (pcrel && !rel->pc_relative)
3956db08 3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3223 && !sign)
91d6fa6a 3224 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3225 && sign > 0))
3956db08
JB
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
252b5132
RH
3231
3232 if (pcrel)
3233 {
3e73aa7c 3234 if (!sign)
3956db08 3235 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
d258b828 3240 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3241 case 8: return BFD_RELOC_64_PCREL;
252b5132 3242 }
3956db08 3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3244 }
3245 else
3246 {
3956db08 3247 if (sign > 0)
e5cb08ac 3248 switch (size)
3e73aa7c
JH
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3956db08
JB
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3262 }
3263
0cc9e1d3 3264 return NO_RELOC;
252b5132
RH
3265}
3266
47926f60
KH
3267/* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
252b5132 3272int
e3bb37b5 3273tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3274{
6d249963 3275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3276 if (!IS_ELF)
31312f95
AM
3277 return 1;
3278
a161fe53
AM
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
252b5132 3284 return 0;
31312f95 3285
8d01d9a9
AJ
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
8fd4256d
L
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
31312f95 3328#endif
252b5132
RH
3329 return 1;
3330}
252b5132 3331
b4cac588 3332static int
e3bb37b5 3333intel_float_operand (const char *mnemonic)
252b5132 3334{
9306ca4a
JB
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
252b5132 3381
9306ca4a 3382 return 1;
252b5132
RH
3383}
3384
c0f3af97
L
3385/* Build the VEX prefix. */
3386
3387static void
d3ce72d0 3388build_vex_prefix (const insn_template *t)
c0f3af97
L
3389{
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
03751133 3393 unsigned int w;
c0f3af97
L
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
43234a1e
L
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
c0f3af97
L
3402 else
3403 register_specifier = 0xf;
3404
79f0fa25
L
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
86fa6981 3409 && i.dir_encoding == dir_encoding_default
fa99fab2 3410 && i.operands == i.reg_operands
dbbc8b7e 3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3412 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
9c2799c2 3427 gas_assert (i.rm.mode == 3);
fa99fab2
L
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
dbbc8b7e
JB
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
fa99fab2
L
3439 }
3440
79dec6b7
JB
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
539f890d
L
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
10c17abd
JB
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
539f890d 3482 else
10c17abd 3483 {
56522fc5 3484 unsigned int op;
10c17abd 3485
c7213af9
L
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
10c17abd 3488 vector_length = 0;
56522fc5 3489 for (op = t->operands; op--;)
10c17abd
JB
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
c0f3af97
L
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
03751133
L
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
931d03b7 3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3524
c0f3af97 3525 /* Use 2-byte VEX prefix if possible. */
03751133
L
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
86fa6981 3528 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
03751133 3547 unsigned int m;
c0f3af97 3548
f88c9eb0 3549 i.vex.length = 3;
f88c9eb0 3550
7f399153 3551 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3552 {
7f399153
L
3553 case VEX0F:
3554 m = 0x1;
80de6e00 3555 i.vex.bytes[0] = 0xc4;
7f399153
L
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
80de6e00 3559 i.vex.bytes[0] = 0xc4;
7f399153
L
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
80de6e00 3563 i.vex.bytes[0] = 0xc4;
7f399153
L
3564 break;
3565 case XOP08:
5dd85c99
SP
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
7f399153
L
3568 break;
3569 case XOP09:
f88c9eb0
SP
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
7f399153
L
3572 break;
3573 case XOP0A:
f88c9eb0
SP
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
7f399153
L
3576 break;
3577 default:
3578 abort ();
f88c9eb0 3579 }
c0f3af97 3580
c0f3af97
L
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
c0f3af97
L
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590}
3591
e771e7c9
JB
3592static INLINE bfd_boolean
3593is_evex_encoding (const insn_template *t)
3594{
7091c612 3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3597 || t->opcode_modifier.sae;
e771e7c9
JB
3598}
3599
7a8655d2
JB
3600static INLINE bfd_boolean
3601is_any_vex_encoding (const insn_template *t)
3602{
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605}
3606
43234a1e
L
3607/* Build the EVEX prefix. */
3608
3609static void
3610build_evex_prefix (void)
3611{
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
6865c043
L
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
931d03b7 3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
e771e7c9
JB
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
56522fc5 3738 unsigned int op;
e771e7c9 3739
c7213af9
L
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
e771e7c9 3742 vec_length = 0;
56522fc5 3743 for (op = i.operands; op--;)
e771e7c9
JB
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
c7213af9
L
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
e771e7c9 3753 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
e771e7c9 3758 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
625cbd7a
JB
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
4a1b91ea 3765 switch (i.broadcast->bytes)
625cbd7a
JB
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
c7213af9 3777 abort ();
625cbd7a 3778 }
c7213af9 3779 break;
625cbd7a 3780 }
e771e7c9 3781 }
c7213af9 3782
56522fc5 3783 if (op >= MAX_OPERANDS)
c7213af9 3784 abort ();
e771e7c9
JB
3785 }
3786
43234a1e
L
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
d3d3c6db 3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820}
3821
65da13b5
L
3822static void
3823process_immext (void)
3824{
3825 expressionS *exp;
3826
4c692bc7
JB
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
65da13b5 3829 {
4c692bc7
JB
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
65da13b5
L
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
4c692bc7 3837 if (register_number (i.op[x].regs) != x)
65da13b5 3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
65da13b5
L
3843 }
3844
9916071f
AP
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
c0f3af97 3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
c1e679ec 3878 AVX instructions also use this encoding, for some of
c0f3af97 3879 3 argument instructions. */
65da13b5 3880
43234a1e 3881 gas_assert (i.imm_operands <= 1
7ab9ffdd 3882 && (i.operands <= 2
7a8655d2 3883 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3884 && i.operands <= 4)));
65da13b5
L
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893}
3894
42164a71
L
3895
3896static int
3897check_hle (void)
3898{
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
82c2def5 3903 case HLEPrefixNone:
165de32a
L
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
42164a71 3906 return 0;
82c2def5 3907 case HLEPrefixLock:
42164a71
L
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
165de32a 3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3911 return 0;
82c2def5 3912 case HLEPrefixAny:
42164a71 3913 return 1;
82c2def5 3914 case HLEPrefixRelease:
42164a71
L
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
8dc0818e 3921 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3922 {
3923 as_bad (_("memory destination needed for instruction `%s'"
3924 " after `xrelease'"), i.tm.name);
3925 return 0;
3926 }
3927 return 1;
3928 }
3929}
3930
b6f8c7c4
L
3931/* Try the shortest encoding by shortening operand size. */
3932
3933static void
3934optimize_encoding (void)
3935{
a0a1771e 3936 unsigned int j;
b6f8c7c4
L
3937
3938 if (optimize_for_space
3939 && i.reg_operands == 1
3940 && i.imm_operands == 1
3941 && !i.types[1].bitfield.byte
3942 && i.op[0].imms->X_op == O_constant
3943 && fits_in_imm7 (i.op[0].imms->X_add_number)
3944 && ((i.tm.base_opcode == 0xa8
3945 && i.tm.extension_opcode == None)
3946 || (i.tm.base_opcode == 0xf6
3947 && i.tm.extension_opcode == 0x0)))
3948 {
3949 /* Optimize: -Os:
3950 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3951 */
3952 unsigned int base_regnum = i.op[1].regs->reg_num;
3953 if (flag_code == CODE_64BIT || base_regnum < 4)
3954 {
3955 i.types[1].bitfield.byte = 1;
3956 /* Ignore the suffix. */
3957 i.suffix = 0;
3958 if (base_regnum >= 4
3959 && !(i.op[1].regs->reg_flags & RegRex))
3960 {
3961 /* Handle SP, BP, SI and DI registers. */
3962 if (i.types[1].bitfield.word)
3963 j = 16;
3964 else if (i.types[1].bitfield.dword)
3965 j = 32;
3966 else
3967 j = 48;
3968 i.op[1].regs -= j;
3969 }
3970 }
3971 }
3972 else if (flag_code == CODE_64BIT
d3d50934
L
3973 && ((i.types[1].bitfield.qword
3974 && i.reg_operands == 1
b6f8c7c4
L
3975 && i.imm_operands == 1
3976 && i.op[0].imms->X_op == O_constant
3977 && ((i.tm.base_opcode == 0xb0
3978 && i.tm.extension_opcode == None
3979 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3980 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3981 && (((i.tm.base_opcode == 0x24
3982 || i.tm.base_opcode == 0xa8)
3983 && i.tm.extension_opcode == None)
3984 || (i.tm.base_opcode == 0x80
3985 && i.tm.extension_opcode == 0x4)
3986 || ((i.tm.base_opcode == 0xf6
3987 || i.tm.base_opcode == 0xc6)
b8364fa7
JB
3988 && i.tm.extension_opcode == 0x0)))
3989 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3990 && i.tm.base_opcode == 0x83
3991 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3992 || (i.types[0].bitfield.qword
3993 && ((i.reg_operands == 2
3994 && i.op[0].regs == i.op[1].regs
3995 && ((i.tm.base_opcode == 0x30
3996 || i.tm.base_opcode == 0x28)
3997 && i.tm.extension_opcode == None))
3998 || (i.reg_operands == 1
3999 && i.operands == 1
4000 && i.tm.base_opcode == 0x30
4001 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4002 {
4003 /* Optimize: -O:
4004 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4005 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4006 testq $imm31, %r64 -> testl $imm31, %r32
4007 xorq %r64, %r64 -> xorl %r32, %r32
4008 subq %r64, %r64 -> subl %r32, %r32
4009 movq $imm31, %r64 -> movl $imm31, %r32
4010 movq $imm32, %r64 -> movl $imm32, %r32
4011 */
4012 i.tm.opcode_modifier.norex64 = 1;
4013 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4014 {
4015 /* Handle
4016 movq $imm31, %r64 -> movl $imm31, %r32
4017 movq $imm32, %r64 -> movl $imm32, %r32
4018 */
4019 i.tm.operand_types[0].bitfield.imm32 = 1;
4020 i.tm.operand_types[0].bitfield.imm32s = 0;
4021 i.tm.operand_types[0].bitfield.imm64 = 0;
4022 i.types[0].bitfield.imm32 = 1;
4023 i.types[0].bitfield.imm32s = 0;
4024 i.types[0].bitfield.imm64 = 0;
4025 i.types[1].bitfield.dword = 1;
4026 i.types[1].bitfield.qword = 0;
4027 if (i.tm.base_opcode == 0xc6)
4028 {
4029 /* Handle
4030 movq $imm31, %r64 -> movl $imm31, %r32
4031 */
4032 i.tm.base_opcode = 0xb0;
4033 i.tm.extension_opcode = None;
4034 i.tm.opcode_modifier.shortform = 1;
4035 i.tm.opcode_modifier.modrm = 0;
4036 }
4037 }
4038 }
5641ec01
JB
4039 else if (optimize > 1
4040 && !optimize_for_space
4041 && i.reg_operands == 2
4042 && i.op[0].regs == i.op[1].regs
4043 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4044 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4045 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4046 {
4047 /* Optimize: -O2:
4048 andb %rN, %rN -> testb %rN, %rN
4049 andw %rN, %rN -> testw %rN, %rN
4050 andq %rN, %rN -> testq %rN, %rN
4051 orb %rN, %rN -> testb %rN, %rN
4052 orw %rN, %rN -> testw %rN, %rN
4053 orq %rN, %rN -> testq %rN, %rN
4054
4055 and outside of 64-bit mode
4056
4057 andl %rN, %rN -> testl %rN, %rN
4058 orl %rN, %rN -> testl %rN, %rN
4059 */
4060 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4061 }
99112332 4062 else if (i.reg_operands == 3
b6f8c7c4
L
4063 && i.op[0].regs == i.op[1].regs
4064 && !i.types[2].bitfield.xmmword
4065 && (i.tm.opcode_modifier.vex
7a69eac3 4066 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4067 && !i.rounding
e771e7c9 4068 && is_evex_encoding (&i.tm)
80c34c38 4069 && (i.vec_encoding != vex_encoding_evex
dd22218c 4070 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4071 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4072 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4073 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4074 && ((i.tm.base_opcode == 0x55
4075 || i.tm.base_opcode == 0x6655
4076 || i.tm.base_opcode == 0x66df
4077 || i.tm.base_opcode == 0x57
4078 || i.tm.base_opcode == 0x6657
8305403a
L
4079 || i.tm.base_opcode == 0x66ef
4080 || i.tm.base_opcode == 0x66f8
4081 || i.tm.base_opcode == 0x66f9
4082 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4083 || i.tm.base_opcode == 0x66fb
4084 || i.tm.base_opcode == 0x42
4085 || i.tm.base_opcode == 0x6642
4086 || i.tm.base_opcode == 0x47
4087 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4088 && i.tm.extension_opcode == None))
4089 {
99112332 4090 /* Optimize: -O1:
8305403a
L
4091 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4092 vpsubq and vpsubw:
b6f8c7c4
L
4093 EVEX VOP %zmmM, %zmmM, %zmmN
4094 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4096 EVEX VOP %ymmM, %ymmM, %ymmN
4097 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4098 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4099 VEX VOP %ymmM, %ymmM, %ymmN
4100 -> VEX VOP %xmmM, %xmmM, %xmmN
4101 VOP, one of vpandn and vpxor:
4102 VEX VOP %ymmM, %ymmM, %ymmN
4103 -> VEX VOP %xmmM, %xmmM, %xmmN
4104 VOP, one of vpandnd and vpandnq:
4105 EVEX VOP %zmmM, %zmmM, %zmmN
4106 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4107 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4108 EVEX VOP %ymmM, %ymmM, %ymmN
4109 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4110 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4111 VOP, one of vpxord and vpxorq:
4112 EVEX VOP %zmmM, %zmmM, %zmmN
4113 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4114 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4115 EVEX VOP %ymmM, %ymmM, %ymmN
4116 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4117 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4118 VOP, one of kxord and kxorq:
4119 VEX VOP %kM, %kM, %kN
4120 -> VEX kxorw %kM, %kM, %kN
4121 VOP, one of kandnd and kandnq:
4122 VEX VOP %kM, %kM, %kN
4123 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4124 */
e771e7c9 4125 if (is_evex_encoding (&i.tm))
b6f8c7c4 4126 {
7b1d7ca1 4127 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4128 {
4129 i.tm.opcode_modifier.vex = VEX128;
4130 i.tm.opcode_modifier.vexw = VEXW0;
4131 i.tm.opcode_modifier.evex = 0;
4132 }
7b1d7ca1 4133 else if (optimize > 1)
dd22218c
L
4134 i.tm.opcode_modifier.evex = EVEX128;
4135 else
4136 return;
b6f8c7c4 4137 }
1424ad86
JB
4138 else if (i.tm.operand_types[0].bitfield.regmask)
4139 {
4140 i.tm.base_opcode &= 0xff;
4141 i.tm.opcode_modifier.vexw = VEXW0;
4142 }
b6f8c7c4
L
4143 else
4144 i.tm.opcode_modifier.vex = VEX128;
4145
4146 if (i.tm.opcode_modifier.vex)
4147 for (j = 0; j < 3; j++)
4148 {
4149 i.types[j].bitfield.xmmword = 1;
4150 i.types[j].bitfield.ymmword = 0;
4151 }
4152 }
392a5972 4153 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4154 && !i.types[0].bitfield.zmmword
392a5972 4155 && !i.types[1].bitfield.zmmword
97ed31ae 4156 && !i.mask
a0a1771e 4157 && !i.broadcast
97ed31ae 4158 && is_evex_encoding (&i.tm)
392a5972
L
4159 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4160 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4162 || (i.tm.base_opcode & ~4) == 0x66db
4163 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4164 && i.tm.extension_opcode == None)
4165 {
4166 /* Optimize: -O1:
4167 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4168 vmovdqu32 and vmovdqu64:
4169 EVEX VOP %xmmM, %xmmN
4170 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4171 EVEX VOP %ymmM, %ymmN
4172 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4173 EVEX VOP %xmmM, mem
4174 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4175 EVEX VOP %ymmM, mem
4176 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4177 EVEX VOP mem, %xmmN
4178 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4179 EVEX VOP mem, %ymmN
4180 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4181 VOP, one of vpand, vpandn, vpor, vpxor:
4182 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4183 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4184 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4185 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4186 EVEX VOP{d,q} mem, %xmmM, %xmmN
4187 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4188 EVEX VOP{d,q} mem, %ymmM, %ymmN
4189 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4190 */
a0a1771e 4191 for (j = 0; j < i.operands; j++)
392a5972
L
4192 if (operand_type_check (i.types[j], disp)
4193 && i.op[j].disps->X_op == O_constant)
4194 {
4195 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4196 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4197 bytes, we choose EVEX Disp8 over VEX Disp32. */
4198 int evex_disp8, vex_disp8;
4199 unsigned int memshift = i.memshift;
4200 offsetT n = i.op[j].disps->X_add_number;
4201
4202 evex_disp8 = fits_in_disp8 (n);
4203 i.memshift = 0;
4204 vex_disp8 = fits_in_disp8 (n);
4205 if (evex_disp8 != vex_disp8)
4206 {
4207 i.memshift = memshift;
4208 return;
4209 }
4210
4211 i.types[j].bitfield.disp8 = vex_disp8;
4212 break;
4213 }
4214 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4215 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4216 i.tm.opcode_modifier.vex
4217 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4218 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4219 /* VPAND, VPOR, and VPXOR are commutative. */
4220 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4221 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4222 i.tm.opcode_modifier.evex = 0;
4223 i.tm.opcode_modifier.masking = 0;
a0a1771e 4224 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4225 i.tm.opcode_modifier.disp8memshift = 0;
4226 i.memshift = 0;
a0a1771e
JB
4227 if (j < i.operands)
4228 i.types[j].bitfield.disp8
4229 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4230 }
b6f8c7c4
L
4231}
4232
252b5132
RH
4233/* This is the guts of the machine-dependent assembler. LINE points to a
4234 machine dependent instruction. This function is supposed to emit
4235 the frags/bytes it assembles to. */
4236
4237void
65da13b5 4238md_assemble (char *line)
252b5132 4239{
40fb9820 4240 unsigned int j;
83b16ac6 4241 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4242 const insn_template *t;
252b5132 4243
47926f60 4244 /* Initialize globals. */
252b5132
RH
4245 memset (&i, '\0', sizeof (i));
4246 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4247 i.reloc[j] = NO_RELOC;
252b5132
RH
4248 memset (disp_expressions, '\0', sizeof (disp_expressions));
4249 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4250 save_stack_p = save_stack;
252b5132
RH
4251
4252 /* First parse an instruction mnemonic & call i386_operand for the operands.
4253 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4254 start of a (possibly prefixed) mnemonic. */
252b5132 4255
29b0f896
AM
4256 line = parse_insn (line, mnemonic);
4257 if (line == NULL)
4258 return;
83b16ac6 4259 mnem_suffix = i.suffix;
252b5132 4260
29b0f896 4261 line = parse_operands (line, mnemonic);
ee86248c 4262 this_operand = -1;
8325cc63
JB
4263 xfree (i.memop1_string);
4264 i.memop1_string = NULL;
29b0f896
AM
4265 if (line == NULL)
4266 return;
252b5132 4267
29b0f896
AM
4268 /* Now we've parsed the mnemonic into a set of templates, and have the
4269 operands at hand. */
4270
4271 /* All intel opcodes have reversed operands except for "bound" and
4272 "enter". We also don't reverse intersegment "jmp" and "call"
4273 instructions with 2 immediate operands so that the immediate segment
050dfa73 4274 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4275 if (intel_syntax
4276 && i.operands > 1
29b0f896 4277 && (strcmp (mnemonic, "bound") != 0)
30123838 4278 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4279 && !(operand_type_check (i.types[0], imm)
4280 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4281 swap_operands ();
4282
ec56d5c0
JB
4283 /* The order of the immediates should be reversed
4284 for 2 immediates extrq and insertq instructions */
4285 if (i.imm_operands == 2
4286 && (strcmp (mnemonic, "extrq") == 0
4287 || strcmp (mnemonic, "insertq") == 0))
4288 swap_2_operands (0, 1);
4289
29b0f896
AM
4290 if (i.imm_operands)
4291 optimize_imm ();
4292
b300c311
L
4293 /* Don't optimize displacement for movabs since it only takes 64bit
4294 displacement. */
4295 if (i.disp_operands
a501d77e 4296 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4297 && (flag_code != CODE_64BIT
4298 || strcmp (mnemonic, "movabs") != 0))
4299 optimize_disp ();
29b0f896
AM
4300
4301 /* Next, we find a template that matches the given insn,
4302 making sure the overlap of the given operands types is consistent
4303 with the template operand types. */
252b5132 4304
83b16ac6 4305 if (!(t = match_template (mnem_suffix)))
29b0f896 4306 return;
252b5132 4307
7bab8ab5 4308 if (sse_check != check_none
81f8a913 4309 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4310 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4311 && (i.tm.cpu_flags.bitfield.cpusse
4312 || i.tm.cpu_flags.bitfield.cpusse2
4313 || i.tm.cpu_flags.bitfield.cpusse3
4314 || i.tm.cpu_flags.bitfield.cpussse3
4315 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4316 || i.tm.cpu_flags.bitfield.cpusse4_2
4317 || i.tm.cpu_flags.bitfield.cpupclmul
4318 || i.tm.cpu_flags.bitfield.cpuaes
4319 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4320 {
7bab8ab5 4321 (sse_check == check_warning
daf50ae7
L
4322 ? as_warn
4323 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4324 }
4325
321fd21e
L
4326 /* Zap movzx and movsx suffix. The suffix has been set from
4327 "word ptr" or "byte ptr" on the source operand in Intel syntax
4328 or extracted from mnemonic in AT&T syntax. But we'll use
4329 the destination register to choose the suffix for encoding. */
4330 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4331 {
321fd21e
L
4332 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4333 there is no suffix, the default will be byte extension. */
4334 if (i.reg_operands != 2
4335 && !i.suffix
7ab9ffdd 4336 && intel_syntax)
321fd21e
L
4337 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4338
4339 i.suffix = 0;
cd61ebfe 4340 }
24eab124 4341
40fb9820 4342 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4343 if (!add_prefix (FWAIT_OPCODE))
4344 return;
252b5132 4345
d5de92cf
L
4346 /* Check if REP prefix is OK. */
4347 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4348 {
4349 as_bad (_("invalid instruction `%s' after `%s'"),
4350 i.tm.name, i.rep_prefix);
4351 return;
4352 }
4353
c1ba0266
L
4354 /* Check for lock without a lockable instruction. Destination operand
4355 must be memory unless it is xchg (0x86). */
c32fa91d
L
4356 if (i.prefix[LOCK_PREFIX]
4357 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4358 || i.mem_operands == 0
4359 || (i.tm.base_opcode != 0x86
8dc0818e 4360 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4361 {
4362 as_bad (_("expecting lockable instruction after `lock'"));
4363 return;
4364 }
4365
7a8655d2
JB
4366 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4367 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4368 {
4369 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4370 return;
4371 }
4372
42164a71 4373 /* Check if HLE prefix is OK. */
165de32a 4374 if (i.hle_prefix && !check_hle ())
42164a71
L
4375 return;
4376
7e8b059b
L
4377 /* Check BND prefix. */
4378 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4379 as_bad (_("expecting valid branch instruction after `bnd'"));
4380
04ef582a 4381 /* Check NOTRACK prefix. */
9fef80d6
L
4382 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4383 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4384
327e8c42
JB
4385 if (i.tm.cpu_flags.bitfield.cpumpx)
4386 {
4387 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4388 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4389 else if (flag_code != CODE_16BIT
4390 ? i.prefix[ADDR_PREFIX]
4391 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4392 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4393 }
7e8b059b
L
4394
4395 /* Insert BND prefix. */
76d3a78a
JB
4396 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4397 {
4398 if (!i.prefix[BND_PREFIX])
4399 add_prefix (BND_PREFIX_OPCODE);
4400 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4401 {
4402 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4403 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4404 }
4405 }
7e8b059b 4406
29b0f896 4407 /* Check string instruction segment overrides. */
40fb9820 4408 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4409 {
4410 if (!check_string ())
5dd0794d 4411 return;
fc0763e6 4412 i.disp_operands = 0;
29b0f896 4413 }
5dd0794d 4414
b6f8c7c4
L
4415 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4416 optimize_encoding ();
4417
29b0f896
AM
4418 if (!process_suffix ())
4419 return;
e413e4e9 4420
bc0844ae
L
4421 /* Update operand types. */
4422 for (j = 0; j < i.operands; j++)
4423 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4424
29b0f896
AM
4425 /* Make still unresolved immediate matches conform to size of immediate
4426 given in i.suffix. */
4427 if (!finalize_imm ())
4428 return;
252b5132 4429
40fb9820 4430 if (i.types[0].bitfield.imm1)
29b0f896 4431 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4432
9afe6eb8
L
4433 /* We only need to check those implicit registers for instructions
4434 with 3 operands or less. */
4435 if (i.operands <= 3)
4436 for (j = 0; j < i.operands; j++)
4437 if (i.types[j].bitfield.inoutportreg
4438 || i.types[j].bitfield.shiftcount
1b54b8d7 4439 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4440 i.reg_operands--;
40fb9820 4441
c0f3af97
L
4442 /* ImmExt should be processed after SSE2AVX. */
4443 if (!i.tm.opcode_modifier.sse2avx
4444 && i.tm.opcode_modifier.immext)
65da13b5 4445 process_immext ();
252b5132 4446
29b0f896
AM
4447 /* For insns with operands there are more diddles to do to the opcode. */
4448 if (i.operands)
4449 {
4450 if (!process_operands ())
4451 return;
4452 }
40fb9820 4453 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4454 {
4455 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4456 as_warn (_("translating to `%sp'"), i.tm.name);
4457 }
252b5132 4458
7a8655d2 4459 if (is_any_vex_encoding (&i.tm))
9e5e5283 4460 {
c1dc7af5 4461 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4462 {
c1dc7af5 4463 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4464 i.tm.name);
4465 return;
4466 }
c0f3af97 4467
9e5e5283
L
4468 if (i.tm.opcode_modifier.vex)
4469 build_vex_prefix (t);
4470 else
4471 build_evex_prefix ();
4472 }
43234a1e 4473
5dd85c99
SP
4474 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4475 instructions may define INT_OPCODE as well, so avoid this corner
4476 case for those instructions that use MODRM. */
4477 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4478 && !i.tm.opcode_modifier.modrm
4479 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4480 {
4481 i.tm.base_opcode = INT3_OPCODE;
4482 i.imm_operands = 0;
4483 }
252b5132 4484
40fb9820
L
4485 if ((i.tm.opcode_modifier.jump
4486 || i.tm.opcode_modifier.jumpbyte
4487 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4488 && i.op[0].disps->X_op == O_constant)
4489 {
4490 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4491 the absolute address given by the constant. Since ix86 jumps and
4492 calls are pc relative, we need to generate a reloc. */
4493 i.op[0].disps->X_add_symbol = &abs_symbol;
4494 i.op[0].disps->X_op = O_symbol;
4495 }
252b5132 4496
40fb9820 4497 if (i.tm.opcode_modifier.rex64)
161a04f6 4498 i.rex |= REX_W;
252b5132 4499
29b0f896
AM
4500 /* For 8 bit registers we need an empty rex prefix. Also if the
4501 instruction already has a prefix, we need to convert old
4502 registers to new ones. */
773f551c 4503
dc821c5f 4504 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4505 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4506 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4507 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4508 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4509 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4510 && i.rex != 0))
4511 {
4512 int x;
726c5dcd 4513
29b0f896
AM
4514 i.rex |= REX_OPCODE;
4515 for (x = 0; x < 2; x++)
4516 {
4517 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4518 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4519 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4520 {
29b0f896
AM
4521 /* In case it is "hi" register, give up. */
4522 if (i.op[x].regs->reg_num > 3)
a540244d 4523 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4524 "instruction requiring REX prefix."),
a540244d 4525 register_prefix, i.op[x].regs->reg_name);
773f551c 4526
29b0f896
AM
4527 /* Otherwise it is equivalent to the extended register.
4528 Since the encoding doesn't change this is merely
4529 cosmetic cleanup for debug output. */
4530
4531 i.op[x].regs = i.op[x].regs + 8;
773f551c 4532 }
29b0f896
AM
4533 }
4534 }
773f551c 4535
6b6b6807
L
4536 if (i.rex == 0 && i.rex_encoding)
4537 {
4538 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4539 that uses legacy register. If it is "hi" register, don't add
4540 the REX_OPCODE byte. */
4541 int x;
4542 for (x = 0; x < 2; x++)
4543 if (i.types[x].bitfield.reg
4544 && i.types[x].bitfield.byte
4545 && (i.op[x].regs->reg_flags & RegRex64) == 0
4546 && i.op[x].regs->reg_num > 3)
4547 {
4548 i.rex_encoding = FALSE;
4549 break;
4550 }
4551
4552 if (i.rex_encoding)
4553 i.rex = REX_OPCODE;
4554 }
4555
7ab9ffdd 4556 if (i.rex != 0)
29b0f896
AM
4557 add_prefix (REX_OPCODE | i.rex);
4558
4559 /* We are ready to output the insn. */
4560 output_insn ();
4561}
4562
4563static char *
e3bb37b5 4564parse_insn (char *line, char *mnemonic)
29b0f896
AM
4565{
4566 char *l = line;
4567 char *token_start = l;
4568 char *mnem_p;
5c6af06e 4569 int supported;
d3ce72d0 4570 const insn_template *t;
b6169b20 4571 char *dot_p = NULL;
29b0f896 4572
29b0f896
AM
4573 while (1)
4574 {
4575 mnem_p = mnemonic;
4576 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4577 {
b6169b20
L
4578 if (*mnem_p == '.')
4579 dot_p = mnem_p;
29b0f896
AM
4580 mnem_p++;
4581 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4582 {
29b0f896
AM
4583 as_bad (_("no such instruction: `%s'"), token_start);
4584 return NULL;
4585 }
4586 l++;
4587 }
4588 if (!is_space_char (*l)
4589 && *l != END_OF_INSN
e44823cf
JB
4590 && (intel_syntax
4591 || (*l != PREFIX_SEPARATOR
4592 && *l != ',')))
29b0f896
AM
4593 {
4594 as_bad (_("invalid character %s in mnemonic"),
4595 output_invalid (*l));
4596 return NULL;
4597 }
4598 if (token_start == l)
4599 {
e44823cf 4600 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4601 as_bad (_("expecting prefix; got nothing"));
4602 else
4603 as_bad (_("expecting mnemonic; got nothing"));
4604 return NULL;
4605 }
45288df1 4606
29b0f896 4607 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4608 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4609
29b0f896
AM
4610 if (*l != END_OF_INSN
4611 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4612 && current_templates
40fb9820 4613 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4614 {
c6fb90c8 4615 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4616 {
4617 as_bad ((flag_code != CODE_64BIT
4618 ? _("`%s' is only supported in 64-bit mode")
4619 : _("`%s' is not supported in 64-bit mode")),
4620 current_templates->start->name);
4621 return NULL;
4622 }
29b0f896
AM
4623 /* If we are in 16-bit mode, do not allow addr16 or data16.
4624 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4625 if ((current_templates->start->opcode_modifier.size == SIZE16
4626 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4627 && flag_code != CODE_64BIT
673fe0f0 4628 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4629 ^ (flag_code == CODE_16BIT)))
4630 {
4631 as_bad (_("redundant %s prefix"),
4632 current_templates->start->name);
4633 return NULL;
45288df1 4634 }
86fa6981 4635 if (current_templates->start->opcode_length == 0)
29b0f896 4636 {
86fa6981
L
4637 /* Handle pseudo prefixes. */
4638 switch (current_templates->start->base_opcode)
4639 {
4640 case 0x0:
4641 /* {disp8} */
4642 i.disp_encoding = disp_encoding_8bit;
4643 break;
4644 case 0x1:
4645 /* {disp32} */
4646 i.disp_encoding = disp_encoding_32bit;
4647 break;
4648 case 0x2:
4649 /* {load} */
4650 i.dir_encoding = dir_encoding_load;
4651 break;
4652 case 0x3:
4653 /* {store} */
4654 i.dir_encoding = dir_encoding_store;
4655 break;
4656 case 0x4:
4657 /* {vex2} */
4658 i.vec_encoding = vex_encoding_vex2;
4659 break;
4660 case 0x5:
4661 /* {vex3} */
4662 i.vec_encoding = vex_encoding_vex3;
4663 break;
4664 case 0x6:
4665 /* {evex} */
4666 i.vec_encoding = vex_encoding_evex;
4667 break;
6b6b6807
L
4668 case 0x7:
4669 /* {rex} */
4670 i.rex_encoding = TRUE;
4671 break;
b6f8c7c4
L
4672 case 0x8:
4673 /* {nooptimize} */
4674 i.no_optimize = TRUE;
4675 break;
86fa6981
L
4676 default:
4677 abort ();
4678 }
4679 }
4680 else
4681 {
4682 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4683 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4684 {
4e9ac44a
L
4685 case PREFIX_EXIST:
4686 return NULL;
4687 case PREFIX_DS:
d777820b 4688 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4689 i.notrack_prefix = current_templates->start->name;
4690 break;
4691 case PREFIX_REP:
4692 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4693 i.hle_prefix = current_templates->start->name;
4694 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4695 i.bnd_prefix = current_templates->start->name;
4696 else
4697 i.rep_prefix = current_templates->start->name;
4698 break;
4699 default:
4700 break;
86fa6981 4701 }
29b0f896
AM
4702 }
4703 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4704 token_start = ++l;
4705 }
4706 else
4707 break;
4708 }
45288df1 4709
30a55f88 4710 if (!current_templates)
b6169b20 4711 {
07d5e953
JB
4712 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4713 Check if we should swap operand or force 32bit displacement in
f8a5c266 4714 encoding. */
30a55f88 4715 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4716 i.dir_encoding = dir_encoding_swap;
8d63c93e 4717 else if (mnem_p - 3 == dot_p
a501d77e
L
4718 && dot_p[1] == 'd'
4719 && dot_p[2] == '8')
4720 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4721 else if (mnem_p - 4 == dot_p
f8a5c266
L
4722 && dot_p[1] == 'd'
4723 && dot_p[2] == '3'
4724 && dot_p[3] == '2')
a501d77e 4725 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4726 else
4727 goto check_suffix;
4728 mnem_p = dot_p;
4729 *dot_p = '\0';
d3ce72d0 4730 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4731 }
4732
29b0f896
AM
4733 if (!current_templates)
4734 {
b6169b20 4735check_suffix:
1c529385 4736 if (mnem_p > mnemonic)
29b0f896 4737 {
1c529385
LH
4738 /* See if we can get a match by trimming off a suffix. */
4739 switch (mnem_p[-1])
29b0f896 4740 {
1c529385
LH
4741 case WORD_MNEM_SUFFIX:
4742 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4743 i.suffix = SHORT_MNEM_SUFFIX;
4744 else
1c529385
LH
4745 /* Fall through. */
4746 case BYTE_MNEM_SUFFIX:
4747 case QWORD_MNEM_SUFFIX:
4748 i.suffix = mnem_p[-1];
29b0f896 4749 mnem_p[-1] = '\0';
d3ce72d0 4750 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4751 mnemonic);
4752 break;
4753 case SHORT_MNEM_SUFFIX:
4754 case LONG_MNEM_SUFFIX:
4755 if (!intel_syntax)
4756 {
4757 i.suffix = mnem_p[-1];
4758 mnem_p[-1] = '\0';
4759 current_templates = (const templates *) hash_find (op_hash,
4760 mnemonic);
4761 }
4762 break;
4763
4764 /* Intel Syntax. */
4765 case 'd':
4766 if (intel_syntax)
4767 {
4768 if (intel_float_operand (mnemonic) == 1)
4769 i.suffix = SHORT_MNEM_SUFFIX;
4770 else
4771 i.suffix = LONG_MNEM_SUFFIX;
4772 mnem_p[-1] = '\0';
4773 current_templates = (const templates *) hash_find (op_hash,
4774 mnemonic);
4775 }
4776 break;
29b0f896 4777 }
29b0f896 4778 }
1c529385 4779
29b0f896
AM
4780 if (!current_templates)
4781 {
4782 as_bad (_("no such instruction: `%s'"), token_start);
4783 return NULL;
4784 }
4785 }
252b5132 4786
40fb9820
L
4787 if (current_templates->start->opcode_modifier.jump
4788 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4789 {
4790 /* Check for a branch hint. We allow ",pt" and ",pn" for
4791 predict taken and predict not taken respectively.
4792 I'm not sure that branch hints actually do anything on loop
4793 and jcxz insns (JumpByte) for current Pentium4 chips. They
4794 may work in the future and it doesn't hurt to accept them
4795 now. */
4796 if (l[0] == ',' && l[1] == 'p')
4797 {
4798 if (l[2] == 't')
4799 {
4800 if (!add_prefix (DS_PREFIX_OPCODE))
4801 return NULL;
4802 l += 3;
4803 }
4804 else if (l[2] == 'n')
4805 {
4806 if (!add_prefix (CS_PREFIX_OPCODE))
4807 return NULL;
4808 l += 3;
4809 }
4810 }
4811 }
4812 /* Any other comma loses. */
4813 if (*l == ',')
4814 {
4815 as_bad (_("invalid character %s in mnemonic"),
4816 output_invalid (*l));
4817 return NULL;
4818 }
252b5132 4819
29b0f896 4820 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4821 supported = 0;
4822 for (t = current_templates->start; t < current_templates->end; ++t)
4823 {
c0f3af97
L
4824 supported |= cpu_flags_match (t);
4825 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4826 {
4827 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4828 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4829
548d0ee6
JB
4830 return l;
4831 }
29b0f896 4832 }
3629bb00 4833
548d0ee6
JB
4834 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4835 as_bad (flag_code == CODE_64BIT
4836 ? _("`%s' is not supported in 64-bit mode")
4837 : _("`%s' is only supported in 64-bit mode"),
4838 current_templates->start->name);
4839 else
4840 as_bad (_("`%s' is not supported on `%s%s'"),
4841 current_templates->start->name,
4842 cpu_arch_name ? cpu_arch_name : default_arch,
4843 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4844
548d0ee6 4845 return NULL;
29b0f896 4846}
252b5132 4847
29b0f896 4848static char *
e3bb37b5 4849parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4850{
4851 char *token_start;
3138f287 4852
29b0f896
AM
4853 /* 1 if operand is pending after ','. */
4854 unsigned int expecting_operand = 0;
252b5132 4855
29b0f896
AM
4856 /* Non-zero if operand parens not balanced. */
4857 unsigned int paren_not_balanced;
4858
4859 while (*l != END_OF_INSN)
4860 {
4861 /* Skip optional white space before operand. */
4862 if (is_space_char (*l))
4863 ++l;
d02603dc 4864 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4865 {
4866 as_bad (_("invalid character %s before operand %d"),
4867 output_invalid (*l),
4868 i.operands + 1);
4869 return NULL;
4870 }
d02603dc 4871 token_start = l; /* After white space. */
29b0f896
AM
4872 paren_not_balanced = 0;
4873 while (paren_not_balanced || *l != ',')
4874 {
4875 if (*l == END_OF_INSN)
4876 {
4877 if (paren_not_balanced)
4878 {
4879 if (!intel_syntax)
4880 as_bad (_("unbalanced parenthesis in operand %d."),
4881 i.operands + 1);
4882 else
4883 as_bad (_("unbalanced brackets in operand %d."),
4884 i.operands + 1);
4885 return NULL;
4886 }
4887 else
4888 break; /* we are done */
4889 }
d02603dc 4890 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4891 {
4892 as_bad (_("invalid character %s in operand %d"),
4893 output_invalid (*l),
4894 i.operands + 1);
4895 return NULL;
4896 }
4897 if (!intel_syntax)
4898 {
4899 if (*l == '(')
4900 ++paren_not_balanced;
4901 if (*l == ')')
4902 --paren_not_balanced;
4903 }
4904 else
4905 {
4906 if (*l == '[')
4907 ++paren_not_balanced;
4908 if (*l == ']')
4909 --paren_not_balanced;
4910 }
4911 l++;
4912 }
4913 if (l != token_start)
4914 { /* Yes, we've read in another operand. */
4915 unsigned int operand_ok;
4916 this_operand = i.operands++;
4917 if (i.operands > MAX_OPERANDS)
4918 {
4919 as_bad (_("spurious operands; (%d operands/instruction max)"),
4920 MAX_OPERANDS);
4921 return NULL;
4922 }
9d46ce34 4923 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4924 /* Now parse operand adding info to 'i' as we go along. */
4925 END_STRING_AND_SAVE (l);
4926
1286ab78
L
4927 if (i.mem_operands > 1)
4928 {
4929 as_bad (_("too many memory references for `%s'"),
4930 mnemonic);
4931 return 0;
4932 }
4933
29b0f896
AM
4934 if (intel_syntax)
4935 operand_ok =
4936 i386_intel_operand (token_start,
4937 intel_float_operand (mnemonic));
4938 else
a7619375 4939 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4940
4941 RESTORE_END_STRING (l);
4942 if (!operand_ok)
4943 return NULL;
4944 }
4945 else
4946 {
4947 if (expecting_operand)
4948 {
4949 expecting_operand_after_comma:
4950 as_bad (_("expecting operand after ','; got nothing"));
4951 return NULL;
4952 }
4953 if (*l == ',')
4954 {
4955 as_bad (_("expecting operand before ','; got nothing"));
4956 return NULL;
4957 }
4958 }
7f3f1ea2 4959
29b0f896
AM
4960 /* Now *l must be either ',' or END_OF_INSN. */
4961 if (*l == ',')
4962 {
4963 if (*++l == END_OF_INSN)
4964 {
4965 /* Just skip it, if it's \n complain. */
4966 goto expecting_operand_after_comma;
4967 }
4968 expecting_operand = 1;
4969 }
4970 }
4971 return l;
4972}
7f3f1ea2 4973
050dfa73 4974static void
4d456e3d 4975swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4976{
4977 union i386_op temp_op;
40fb9820 4978 i386_operand_type temp_type;
c48dadc9 4979 unsigned int temp_flags;
050dfa73 4980 enum bfd_reloc_code_real temp_reloc;
4eed87de 4981
050dfa73
MM
4982 temp_type = i.types[xchg2];
4983 i.types[xchg2] = i.types[xchg1];
4984 i.types[xchg1] = temp_type;
c48dadc9
JB
4985
4986 temp_flags = i.flags[xchg2];
4987 i.flags[xchg2] = i.flags[xchg1];
4988 i.flags[xchg1] = temp_flags;
4989
050dfa73
MM
4990 temp_op = i.op[xchg2];
4991 i.op[xchg2] = i.op[xchg1];
4992 i.op[xchg1] = temp_op;
c48dadc9 4993
050dfa73
MM
4994 temp_reloc = i.reloc[xchg2];
4995 i.reloc[xchg2] = i.reloc[xchg1];
4996 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4997
4998 if (i.mask)
4999 {
5000 if (i.mask->operand == xchg1)
5001 i.mask->operand = xchg2;
5002 else if (i.mask->operand == xchg2)
5003 i.mask->operand = xchg1;
5004 }
5005 if (i.broadcast)
5006 {
5007 if (i.broadcast->operand == xchg1)
5008 i.broadcast->operand = xchg2;
5009 else if (i.broadcast->operand == xchg2)
5010 i.broadcast->operand = xchg1;
5011 }
5012 if (i.rounding)
5013 {
5014 if (i.rounding->operand == xchg1)
5015 i.rounding->operand = xchg2;
5016 else if (i.rounding->operand == xchg2)
5017 i.rounding->operand = xchg1;
5018 }
050dfa73
MM
5019}
5020
29b0f896 5021static void
e3bb37b5 5022swap_operands (void)
29b0f896 5023{
b7c61d9a 5024 switch (i.operands)
050dfa73 5025 {
c0f3af97 5026 case 5:
b7c61d9a 5027 case 4:
4d456e3d 5028 swap_2_operands (1, i.operands - 2);
1a0670f3 5029 /* Fall through. */
b7c61d9a
L
5030 case 3:
5031 case 2:
4d456e3d 5032 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5033 break;
5034 default:
5035 abort ();
29b0f896 5036 }
29b0f896
AM
5037
5038 if (i.mem_operands == 2)
5039 {
5040 const seg_entry *temp_seg;
5041 temp_seg = i.seg[0];
5042 i.seg[0] = i.seg[1];
5043 i.seg[1] = temp_seg;
5044 }
5045}
252b5132 5046
29b0f896
AM
5047/* Try to ensure constant immediates are represented in the smallest
5048 opcode possible. */
5049static void
e3bb37b5 5050optimize_imm (void)
29b0f896
AM
5051{
5052 char guess_suffix = 0;
5053 int op;
252b5132 5054
29b0f896
AM
5055 if (i.suffix)
5056 guess_suffix = i.suffix;
5057 else if (i.reg_operands)
5058 {
5059 /* Figure out a suffix from the last register operand specified.
5060 We can't do this properly yet, ie. excluding InOutPortReg,
5061 but the following works for instructions with immediates.
5062 In any case, we can't set i.suffix yet. */
5063 for (op = i.operands; --op >= 0;)
dc821c5f 5064 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5065 {
40fb9820
L
5066 guess_suffix = BYTE_MNEM_SUFFIX;
5067 break;
5068 }
dc821c5f 5069 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5070 {
40fb9820
L
5071 guess_suffix = WORD_MNEM_SUFFIX;
5072 break;
5073 }
dc821c5f 5074 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5075 {
5076 guess_suffix = LONG_MNEM_SUFFIX;
5077 break;
5078 }
dc821c5f 5079 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5080 {
5081 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5082 break;
252b5132 5083 }
29b0f896
AM
5084 }
5085 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5086 guess_suffix = WORD_MNEM_SUFFIX;
5087
5088 for (op = i.operands; --op >= 0;)
40fb9820 5089 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5090 {
5091 switch (i.op[op].imms->X_op)
252b5132 5092 {
29b0f896
AM
5093 case O_constant:
5094 /* If a suffix is given, this operand may be shortened. */
5095 switch (guess_suffix)
252b5132 5096 {
29b0f896 5097 case LONG_MNEM_SUFFIX:
40fb9820
L
5098 i.types[op].bitfield.imm32 = 1;
5099 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5100 break;
5101 case WORD_MNEM_SUFFIX:
40fb9820
L
5102 i.types[op].bitfield.imm16 = 1;
5103 i.types[op].bitfield.imm32 = 1;
5104 i.types[op].bitfield.imm32s = 1;
5105 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5106 break;
5107 case BYTE_MNEM_SUFFIX:
40fb9820
L
5108 i.types[op].bitfield.imm8 = 1;
5109 i.types[op].bitfield.imm8s = 1;
5110 i.types[op].bitfield.imm16 = 1;
5111 i.types[op].bitfield.imm32 = 1;
5112 i.types[op].bitfield.imm32s = 1;
5113 i.types[op].bitfield.imm64 = 1;
29b0f896 5114 break;
252b5132 5115 }
252b5132 5116
29b0f896
AM
5117 /* If this operand is at most 16 bits, convert it
5118 to a signed 16 bit number before trying to see
5119 whether it will fit in an even smaller size.
5120 This allows a 16-bit operand such as $0xffe0 to
5121 be recognised as within Imm8S range. */
40fb9820 5122 if ((i.types[op].bitfield.imm16)
29b0f896 5123 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5124 {
29b0f896
AM
5125 i.op[op].imms->X_add_number =
5126 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5127 }
a28def75
L
5128#ifdef BFD64
5129 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5130 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5131 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5132 == 0))
5133 {
5134 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5135 ^ ((offsetT) 1 << 31))
5136 - ((offsetT) 1 << 31));
5137 }
a28def75 5138#endif
40fb9820 5139 i.types[op]
c6fb90c8
L
5140 = operand_type_or (i.types[op],
5141 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5142
29b0f896
AM
5143 /* We must avoid matching of Imm32 templates when 64bit
5144 only immediate is available. */
5145 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5146 i.types[op].bitfield.imm32 = 0;
29b0f896 5147 break;
252b5132 5148
29b0f896
AM
5149 case O_absent:
5150 case O_register:
5151 abort ();
5152
5153 /* Symbols and expressions. */
5154 default:
9cd96992
JB
5155 /* Convert symbolic operand to proper sizes for matching, but don't
5156 prevent matching a set of insns that only supports sizes other
5157 than those matching the insn suffix. */
5158 {
40fb9820 5159 i386_operand_type mask, allowed;
d3ce72d0 5160 const insn_template *t;
9cd96992 5161
0dfbf9d7
L
5162 operand_type_set (&mask, 0);
5163 operand_type_set (&allowed, 0);
40fb9820 5164
4eed87de
AM
5165 for (t = current_templates->start;
5166 t < current_templates->end;
5167 ++t)
c6fb90c8
L
5168 allowed = operand_type_or (allowed,
5169 t->operand_types[op]);
9cd96992
JB
5170 switch (guess_suffix)
5171 {
5172 case QWORD_MNEM_SUFFIX:
40fb9820
L
5173 mask.bitfield.imm64 = 1;
5174 mask.bitfield.imm32s = 1;
9cd96992
JB
5175 break;
5176 case LONG_MNEM_SUFFIX:
40fb9820 5177 mask.bitfield.imm32 = 1;
9cd96992
JB
5178 break;
5179 case WORD_MNEM_SUFFIX:
40fb9820 5180 mask.bitfield.imm16 = 1;
9cd96992
JB
5181 break;
5182 case BYTE_MNEM_SUFFIX:
40fb9820 5183 mask.bitfield.imm8 = 1;
9cd96992
JB
5184 break;
5185 default:
9cd96992
JB
5186 break;
5187 }
c6fb90c8 5188 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5189 if (!operand_type_all_zero (&allowed))
c6fb90c8 5190 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5191 }
29b0f896 5192 break;
252b5132 5193 }
29b0f896
AM
5194 }
5195}
47926f60 5196
29b0f896
AM
5197/* Try to use the smallest displacement type too. */
5198static void
e3bb37b5 5199optimize_disp (void)
29b0f896
AM
5200{
5201 int op;
3e73aa7c 5202
29b0f896 5203 for (op = i.operands; --op >= 0;)
40fb9820 5204 if (operand_type_check (i.types[op], disp))
252b5132 5205 {
b300c311 5206 if (i.op[op].disps->X_op == O_constant)
252b5132 5207 {
91d6fa6a 5208 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5209
40fb9820 5210 if (i.types[op].bitfield.disp16
91d6fa6a 5211 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5212 {
5213 /* If this operand is at most 16 bits, convert
5214 to a signed 16 bit number and don't use 64bit
5215 displacement. */
91d6fa6a 5216 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5217 i.types[op].bitfield.disp64 = 0;
b300c311 5218 }
a28def75
L
5219#ifdef BFD64
5220 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5221 if (i.types[op].bitfield.disp32
91d6fa6a 5222 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5223 {
5224 /* If this operand is at most 32 bits, convert
5225 to a signed 32 bit number and don't use 64bit
5226 displacement. */
91d6fa6a
NC
5227 op_disp &= (((offsetT) 2 << 31) - 1);
5228 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5229 i.types[op].bitfield.disp64 = 0;
b300c311 5230 }
a28def75 5231#endif
91d6fa6a 5232 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5233 {
40fb9820
L
5234 i.types[op].bitfield.disp8 = 0;
5235 i.types[op].bitfield.disp16 = 0;
5236 i.types[op].bitfield.disp32 = 0;
5237 i.types[op].bitfield.disp32s = 0;
5238 i.types[op].bitfield.disp64 = 0;
b300c311
L
5239 i.op[op].disps = 0;
5240 i.disp_operands--;
5241 }
5242 else if (flag_code == CODE_64BIT)
5243 {
91d6fa6a 5244 if (fits_in_signed_long (op_disp))
28a9d8f5 5245 {
40fb9820
L
5246 i.types[op].bitfield.disp64 = 0;
5247 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5248 }
0e1147d9 5249 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5250 && fits_in_unsigned_long (op_disp))
40fb9820 5251 i.types[op].bitfield.disp32 = 1;
b300c311 5252 }
40fb9820
L
5253 if ((i.types[op].bitfield.disp32
5254 || i.types[op].bitfield.disp32s
5255 || i.types[op].bitfield.disp16)
b5014f7a 5256 && fits_in_disp8 (op_disp))
40fb9820 5257 i.types[op].bitfield.disp8 = 1;
252b5132 5258 }
67a4f2b7
AO
5259 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5260 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5261 {
5262 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5263 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5264 i.types[op].bitfield.disp8 = 0;
5265 i.types[op].bitfield.disp16 = 0;
5266 i.types[op].bitfield.disp32 = 0;
5267 i.types[op].bitfield.disp32s = 0;
5268 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5269 }
5270 else
b300c311 5271 /* We only support 64bit displacement on constants. */
40fb9820 5272 i.types[op].bitfield.disp64 = 0;
252b5132 5273 }
29b0f896
AM
5274}
5275
4a1b91ea
L
5276/* Return 1 if there is a match in broadcast bytes between operand
5277 GIVEN and instruction template T. */
5278
5279static INLINE int
5280match_broadcast_size (const insn_template *t, unsigned int given)
5281{
5282 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5283 && i.types[given].bitfield.byte)
5284 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5285 && i.types[given].bitfield.word)
5286 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5287 && i.types[given].bitfield.dword)
5288 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5289 && i.types[given].bitfield.qword));
5290}
5291
6c30d220
L
5292/* Check if operands are valid for the instruction. */
5293
5294static int
5295check_VecOperands (const insn_template *t)
5296{
43234a1e 5297 unsigned int op;
e2195274
JB
5298 i386_cpu_flags cpu;
5299 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5300
5301 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5302 any one operand are implicity requiring AVX512VL support if the actual
5303 operand size is YMMword or XMMword. Since this function runs after
5304 template matching, there's no need to check for YMMword/XMMword in
5305 the template. */
5306 cpu = cpu_flags_and (t->cpu_flags, avx512);
5307 if (!cpu_flags_all_zero (&cpu)
5308 && !t->cpu_flags.bitfield.cpuavx512vl
5309 && !cpu_arch_flags.bitfield.cpuavx512vl)
5310 {
5311 for (op = 0; op < t->operands; ++op)
5312 {
5313 if (t->operand_types[op].bitfield.zmmword
5314 && (i.types[op].bitfield.ymmword
5315 || i.types[op].bitfield.xmmword))
5316 {
5317 i.error = unsupported;
5318 return 1;
5319 }
5320 }
5321 }
43234a1e 5322
6c30d220
L
5323 /* Without VSIB byte, we can't have a vector register for index. */
5324 if (!t->opcode_modifier.vecsib
5325 && i.index_reg
1b54b8d7
JB
5326 && (i.index_reg->reg_type.bitfield.xmmword
5327 || i.index_reg->reg_type.bitfield.ymmword
5328 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5329 {
5330 i.error = unsupported_vector_index_register;
5331 return 1;
5332 }
5333
ad8ecc81
MZ
5334 /* Check if default mask is allowed. */
5335 if (t->opcode_modifier.nodefmask
5336 && (!i.mask || i.mask->mask->reg_num == 0))
5337 {
5338 i.error = no_default_mask;
5339 return 1;
5340 }
5341
7bab8ab5
JB
5342 /* For VSIB byte, we need a vector register for index, and all vector
5343 registers must be distinct. */
5344 if (t->opcode_modifier.vecsib)
5345 {
5346 if (!i.index_reg
6c30d220 5347 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5348 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5349 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5350 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5351 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5352 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5353 {
5354 i.error = invalid_vsib_address;
5355 return 1;
5356 }
5357
43234a1e
L
5358 gas_assert (i.reg_operands == 2 || i.mask);
5359 if (i.reg_operands == 2 && !i.mask)
5360 {
1b54b8d7
JB
5361 gas_assert (i.types[0].bitfield.regsimd);
5362 gas_assert (i.types[0].bitfield.xmmword
5363 || i.types[0].bitfield.ymmword);
5364 gas_assert (i.types[2].bitfield.regsimd);
5365 gas_assert (i.types[2].bitfield.xmmword
5366 || i.types[2].bitfield.ymmword);
43234a1e
L
5367 if (operand_check == check_none)
5368 return 0;
5369 if (register_number (i.op[0].regs)
5370 != register_number (i.index_reg)
5371 && register_number (i.op[2].regs)
5372 != register_number (i.index_reg)
5373 && register_number (i.op[0].regs)
5374 != register_number (i.op[2].regs))
5375 return 0;
5376 if (operand_check == check_error)
5377 {
5378 i.error = invalid_vector_register_set;
5379 return 1;
5380 }
5381 as_warn (_("mask, index, and destination registers should be distinct"));
5382 }
8444f82a
MZ
5383 else if (i.reg_operands == 1 && i.mask)
5384 {
1b54b8d7
JB
5385 if (i.types[1].bitfield.regsimd
5386 && (i.types[1].bitfield.xmmword
5387 || i.types[1].bitfield.ymmword
5388 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5389 && (register_number (i.op[1].regs)
5390 == register_number (i.index_reg)))
5391 {
5392 if (operand_check == check_error)
5393 {
5394 i.error = invalid_vector_register_set;
5395 return 1;
5396 }
5397 if (operand_check != check_none)
5398 as_warn (_("index and destination registers should be distinct"));
5399 }
5400 }
43234a1e 5401 }
7bab8ab5 5402
43234a1e
L
5403 /* Check if broadcast is supported by the instruction and is applied
5404 to the memory operand. */
5405 if (i.broadcast)
5406 {
8e6e0792 5407 i386_operand_type type, overlap;
43234a1e
L
5408
5409 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5410 and its broadcast bytes match the memory operand. */
32546502 5411 op = i.broadcast->operand;
8e6e0792 5412 if (!t->opcode_modifier.broadcast
c48dadc9 5413 || !(i.flags[op] & Operand_Mem)
c39e5b26 5414 || (!i.types[op].bitfield.unspecified
4a1b91ea 5415 && !match_broadcast_size (t, op)))
43234a1e
L
5416 {
5417 bad_broadcast:
5418 i.error = unsupported_broadcast;
5419 return 1;
5420 }
8e6e0792 5421
4a1b91ea
L
5422 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5423 * i.broadcast->type);
8e6e0792 5424 operand_type_set (&type, 0);
4a1b91ea 5425 switch (i.broadcast->bytes)
8e6e0792 5426 {
4a1b91ea
L
5427 case 2:
5428 type.bitfield.word = 1;
5429 break;
5430 case 4:
5431 type.bitfield.dword = 1;
5432 break;
8e6e0792
JB
5433 case 8:
5434 type.bitfield.qword = 1;
5435 break;
5436 case 16:
5437 type.bitfield.xmmword = 1;
5438 break;
5439 case 32:
5440 type.bitfield.ymmword = 1;
5441 break;
5442 case 64:
5443 type.bitfield.zmmword = 1;
5444 break;
5445 default:
5446 goto bad_broadcast;
5447 }
5448
5449 overlap = operand_type_and (type, t->operand_types[op]);
5450 if (operand_type_all_zero (&overlap))
5451 goto bad_broadcast;
5452
5453 if (t->opcode_modifier.checkregsize)
5454 {
5455 unsigned int j;
5456
e2195274 5457 type.bitfield.baseindex = 1;
8e6e0792
JB
5458 for (j = 0; j < i.operands; ++j)
5459 {
5460 if (j != op
5461 && !operand_type_register_match(i.types[j],
5462 t->operand_types[j],
5463 type,
5464 t->operand_types[op]))
5465 goto bad_broadcast;
5466 }
5467 }
43234a1e
L
5468 }
5469 /* If broadcast is supported in this instruction, we need to check if
5470 operand of one-element size isn't specified without broadcast. */
5471 else if (t->opcode_modifier.broadcast && i.mem_operands)
5472 {
5473 /* Find memory operand. */
5474 for (op = 0; op < i.operands; op++)
8dc0818e 5475 if (i.flags[op] & Operand_Mem)
43234a1e
L
5476 break;
5477 gas_assert (op < i.operands);
5478 /* Check size of the memory operand. */
4a1b91ea 5479 if (match_broadcast_size (t, op))
43234a1e
L
5480 {
5481 i.error = broadcast_needed;
5482 return 1;
5483 }
5484 }
c39e5b26
JB
5485 else
5486 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5487
5488 /* Check if requested masking is supported. */
ae2387fe 5489 if (i.mask)
43234a1e 5490 {
ae2387fe
JB
5491 switch (t->opcode_modifier.masking)
5492 {
5493 case BOTH_MASKING:
5494 break;
5495 case MERGING_MASKING:
5496 if (i.mask->zeroing)
5497 {
5498 case 0:
5499 i.error = unsupported_masking;
5500 return 1;
5501 }
5502 break;
5503 case DYNAMIC_MASKING:
5504 /* Memory destinations allow only merging masking. */
5505 if (i.mask->zeroing && i.mem_operands)
5506 {
5507 /* Find memory operand. */
5508 for (op = 0; op < i.operands; op++)
c48dadc9 5509 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5510 break;
5511 gas_assert (op < i.operands);
5512 if (op == i.operands - 1)
5513 {
5514 i.error = unsupported_masking;
5515 return 1;
5516 }
5517 }
5518 break;
5519 default:
5520 abort ();
5521 }
43234a1e
L
5522 }
5523
5524 /* Check if masking is applied to dest operand. */
5525 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5526 {
5527 i.error = mask_not_on_destination;
5528 return 1;
5529 }
5530
43234a1e
L
5531 /* Check RC/SAE. */
5532 if (i.rounding)
5533 {
a80195f1
JB
5534 if (!t->opcode_modifier.sae
5535 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5536 {
5537 i.error = unsupported_rc_sae;
5538 return 1;
5539 }
5540 /* If the instruction has several immediate operands and one of
5541 them is rounding, the rounding operand should be the last
5542 immediate operand. */
5543 if (i.imm_operands > 1
5544 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5545 {
43234a1e 5546 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5547 return 1;
5548 }
6c30d220
L
5549 }
5550
43234a1e 5551 /* Check vector Disp8 operand. */
b5014f7a
JB
5552 if (t->opcode_modifier.disp8memshift
5553 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5554 {
5555 if (i.broadcast)
4a1b91ea 5556 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5557 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5558 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5559 else
5560 {
5561 const i386_operand_type *type = NULL;
5562
5563 i.memshift = 0;
5564 for (op = 0; op < i.operands; op++)
8dc0818e 5565 if (i.flags[op] & Operand_Mem)
7091c612 5566 {
4174bfff
JB
5567 if (t->opcode_modifier.evex == EVEXLIG)
5568 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5569 else if (t->operand_types[op].bitfield.xmmword
5570 + t->operand_types[op].bitfield.ymmword
5571 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5572 type = &t->operand_types[op];
5573 else if (!i.types[op].bitfield.unspecified)
5574 type = &i.types[op];
5575 }
4174bfff
JB
5576 else if (i.types[op].bitfield.regsimd
5577 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5578 {
5579 if (i.types[op].bitfield.zmmword)
5580 i.memshift = 6;
5581 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5582 i.memshift = 5;
5583 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5584 i.memshift = 4;
5585 }
5586
5587 if (type)
5588 {
5589 if (type->bitfield.zmmword)
5590 i.memshift = 6;
5591 else if (type->bitfield.ymmword)
5592 i.memshift = 5;
5593 else if (type->bitfield.xmmword)
5594 i.memshift = 4;
5595 }
5596
5597 /* For the check in fits_in_disp8(). */
5598 if (i.memshift == 0)
5599 i.memshift = -1;
5600 }
43234a1e
L
5601
5602 for (op = 0; op < i.operands; op++)
5603 if (operand_type_check (i.types[op], disp)
5604 && i.op[op].disps->X_op == O_constant)
5605 {
b5014f7a 5606 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5607 {
b5014f7a
JB
5608 i.types[op].bitfield.disp8 = 1;
5609 return 0;
43234a1e 5610 }
b5014f7a 5611 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5612 }
5613 }
b5014f7a
JB
5614
5615 i.memshift = 0;
43234a1e 5616
6c30d220
L
5617 return 0;
5618}
5619
43f3e2ee 5620/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5621 operand types. */
5622
5623static int
5624VEX_check_operands (const insn_template *t)
5625{
86fa6981 5626 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5627 {
86fa6981 5628 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5629 if (!is_evex_encoding (t))
86fa6981
L
5630 {
5631 i.error = unsupported;
5632 return 1;
5633 }
5634 return 0;
43234a1e
L
5635 }
5636
a683cc34 5637 if (!t->opcode_modifier.vex)
86fa6981
L
5638 {
5639 /* This instruction template doesn't have VEX prefix. */
5640 if (i.vec_encoding != vex_encoding_default)
5641 {
5642 i.error = unsupported;
5643 return 1;
5644 }
5645 return 0;
5646 }
a683cc34 5647
9d3bf266
JB
5648 /* Check the special Imm4 cases; must be the first operand. */
5649 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5650 {
5651 if (i.op[0].imms->X_op != O_constant
5652 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5653 {
a65babc9 5654 i.error = bad_imm4;
891edac4
L
5655 return 1;
5656 }
a683cc34 5657
9d3bf266
JB
5658 /* Turn off Imm<N> so that update_imm won't complain. */
5659 operand_type_set (&i.types[0], 0);
a683cc34
SP
5660 }
5661
5662 return 0;
5663}
5664
d3ce72d0 5665static const insn_template *
83b16ac6 5666match_template (char mnem_suffix)
29b0f896
AM
5667{
5668 /* Points to template once we've found it. */
d3ce72d0 5669 const insn_template *t;
40fb9820 5670 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5671 i386_operand_type overlap4;
29b0f896 5672 unsigned int found_reverse_match;
83b16ac6 5673 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5674 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5675 int addr_prefix_disp;
a5c311ca 5676 unsigned int j;
3ac21baa 5677 unsigned int found_cpu_match, size_match;
45664ddb 5678 unsigned int check_register;
5614d22c 5679 enum i386_error specific_error = 0;
29b0f896 5680
c0f3af97
L
5681#if MAX_OPERANDS != 5
5682# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5683#endif
5684
29b0f896 5685 found_reverse_match = 0;
539e75ad 5686 addr_prefix_disp = -1;
40fb9820
L
5687
5688 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5689 if (intel_syntax && i.broadcast)
5690 /* nothing */;
5691 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5692 suffix_check.no_bsuf = 1;
5693 else if (i.suffix == WORD_MNEM_SUFFIX)
5694 suffix_check.no_wsuf = 1;
5695 else if (i.suffix == SHORT_MNEM_SUFFIX)
5696 suffix_check.no_ssuf = 1;
5697 else if (i.suffix == LONG_MNEM_SUFFIX)
5698 suffix_check.no_lsuf = 1;
5699 else if (i.suffix == QWORD_MNEM_SUFFIX)
5700 suffix_check.no_qsuf = 1;
5701 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5702 suffix_check.no_ldsuf = 1;
29b0f896 5703
83b16ac6
JB
5704 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5705 if (intel_syntax)
5706 {
5707 switch (mnem_suffix)
5708 {
5709 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5710 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5711 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5712 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5713 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5714 }
5715 }
5716
01559ecc
L
5717 /* Must have right number of operands. */
5718 i.error = number_of_operands_mismatch;
5719
45aa61fe 5720 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5721 {
539e75ad 5722 addr_prefix_disp = -1;
dbbc8b7e 5723 found_reverse_match = 0;
539e75ad 5724
29b0f896
AM
5725 if (i.operands != t->operands)
5726 continue;
5727
50aecf8c 5728 /* Check processor support. */
a65babc9 5729 i.error = unsupported;
c0f3af97
L
5730 found_cpu_match = (cpu_flags_match (t)
5731 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5732 if (!found_cpu_match)
5733 continue;
5734
e1d4d893 5735 /* Check AT&T mnemonic. */
a65babc9 5736 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5737 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5738 continue;
5739
e92bae62 5740 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5741 i.error = unsupported_syntax;
5c07affc 5742 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5743 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5744 || (intel64 && t->opcode_modifier.amd64)
5745 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5746 continue;
5747
20592a94 5748 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5749 i.error = invalid_instruction_suffix;
567e4e96
L
5750 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5751 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5752 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5753 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5754 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5755 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5756 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5757 continue;
83b16ac6
JB
5758 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5759 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5760 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5761 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5762 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5763 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5764 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5765 continue;
29b0f896 5766
3ac21baa
JB
5767 size_match = operand_size_match (t);
5768 if (!size_match)
7d5e4556 5769 continue;
539e75ad 5770
5c07affc
L
5771 for (j = 0; j < MAX_OPERANDS; j++)
5772 operand_types[j] = t->operand_types[j];
5773
45aa61fe
AM
5774 /* In general, don't allow 64-bit operands in 32-bit mode. */
5775 if (i.suffix == QWORD_MNEM_SUFFIX
5776 && flag_code != CODE_64BIT
5777 && (intel_syntax
40fb9820 5778 ? (!t->opcode_modifier.ignoresize
625cbd7a 5779 && !t->opcode_modifier.broadcast
45aa61fe
AM
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
40fb9820 5782 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5783 && !operand_types[0].bitfield.regsimd)
40fb9820 5784 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5785 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5786 && (t->base_opcode != 0x0fc7
5787 || t->extension_opcode != 1 /* cmpxchg8b */))
5788 continue;
5789
192dc9c6
JB
5790 /* In general, don't allow 32-bit operands on pre-386. */
5791 else if (i.suffix == LONG_MNEM_SUFFIX
5792 && !cpu_arch_flags.bitfield.cpui386
5793 && (intel_syntax
5794 ? (!t->opcode_modifier.ignoresize
5795 && !intel_float_operand (t->name))
5796 : intel_float_operand (t->name) != 2)
5797 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5798 && !operand_types[0].bitfield.regsimd)
192dc9c6 5799 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5800 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5801 continue;
5802
29b0f896 5803 /* Do not verify operands when there are none. */
50aecf8c 5804 else
29b0f896 5805 {
c6fb90c8 5806 if (!t->operands)
2dbab7d5
L
5807 /* We've found a match; break out of loop. */
5808 break;
29b0f896 5809 }
252b5132 5810
539e75ad
L
5811 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5812 into Disp32/Disp16/Disp32 operand. */
5813 if (i.prefix[ADDR_PREFIX] != 0)
5814 {
40fb9820 5815 /* There should be only one Disp operand. */
539e75ad
L
5816 switch (flag_code)
5817 {
5818 case CODE_16BIT:
40fb9820
L
5819 for (j = 0; j < MAX_OPERANDS; j++)
5820 {
5821 if (operand_types[j].bitfield.disp16)
5822 {
5823 addr_prefix_disp = j;
5824 operand_types[j].bitfield.disp32 = 1;
5825 operand_types[j].bitfield.disp16 = 0;
5826 break;
5827 }
5828 }
539e75ad
L
5829 break;
5830 case CODE_32BIT:
40fb9820
L
5831 for (j = 0; j < MAX_OPERANDS; j++)
5832 {
5833 if (operand_types[j].bitfield.disp32)
5834 {
5835 addr_prefix_disp = j;
5836 operand_types[j].bitfield.disp32 = 0;
5837 operand_types[j].bitfield.disp16 = 1;
5838 break;
5839 }
5840 }
539e75ad
L
5841 break;
5842 case CODE_64BIT:
40fb9820
L
5843 for (j = 0; j < MAX_OPERANDS; j++)
5844 {
5845 if (operand_types[j].bitfield.disp64)
5846 {
5847 addr_prefix_disp = j;
5848 operand_types[j].bitfield.disp64 = 0;
5849 operand_types[j].bitfield.disp32 = 1;
5850 break;
5851 }
5852 }
539e75ad
L
5853 break;
5854 }
539e75ad
L
5855 }
5856
02a86693
L
5857 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5858 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5859 continue;
5860
56ffb741 5861 /* We check register size if needed. */
e2195274
JB
5862 if (t->opcode_modifier.checkregsize)
5863 {
5864 check_register = (1 << t->operands) - 1;
5865 if (i.broadcast)
5866 check_register &= ~(1 << i.broadcast->operand);
5867 }
5868 else
5869 check_register = 0;
5870
c6fb90c8 5871 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5872 switch (t->operands)
5873 {
5874 case 1:
40fb9820 5875 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5876 continue;
5877 break;
5878 case 2:
33eaf5de 5879 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5880 only in 32bit mode and we can use opcode 0x90. In 64bit
5881 mode, we can't use 0x90 for xchg %eax, %eax since it should
5882 zero-extend %eax to %rax. */
5883 if (flag_code == CODE_64BIT
5884 && t->base_opcode == 0x90
2c703856
JB
5885 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5886 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5887 continue;
1212781b
JB
5888 /* xrelease mov %eax, <disp> is another special case. It must not
5889 match the accumulator-only encoding of mov. */
5890 if (flag_code != CODE_64BIT
5891 && i.hle_prefix
5892 && t->base_opcode == 0xa0
5893 && i.types[0].bitfield.acc
8dc0818e 5894 && (i.flags[1] & Operand_Mem))
1212781b 5895 continue;
f5eb1d70
JB
5896 /* Fall through. */
5897
5898 case 3:
3ac21baa
JB
5899 if (!(size_match & MATCH_STRAIGHT))
5900 goto check_reverse;
64c49ab3
JB
5901 /* Reverse direction of operands if swapping is possible in the first
5902 place (operands need to be symmetric) and
5903 - the load form is requested, and the template is a store form,
5904 - the store form is requested, and the template is a load form,
5905 - the non-default (swapped) form is requested. */
5906 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5907 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5908 && !operand_type_all_zero (&overlap1))
5909 switch (i.dir_encoding)
5910 {
5911 case dir_encoding_load:
5912 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5913 || t->opcode_modifier.regmem)
64c49ab3
JB
5914 goto check_reverse;
5915 break;
5916
5917 case dir_encoding_store:
5918 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5919 && !t->opcode_modifier.regmem)
64c49ab3
JB
5920 goto check_reverse;
5921 break;
5922
5923 case dir_encoding_swap:
5924 goto check_reverse;
5925
5926 case dir_encoding_default:
5927 break;
5928 }
86fa6981 5929 /* If we want store form, we skip the current load. */
64c49ab3
JB
5930 if ((i.dir_encoding == dir_encoding_store
5931 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5932 && i.mem_operands == 0
5933 && t->opcode_modifier.load)
fa99fab2 5934 continue;
1a0670f3 5935 /* Fall through. */
f48ff2ae 5936 case 4:
c0f3af97 5937 case 5:
c6fb90c8 5938 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5939 if (!operand_type_match (overlap0, i.types[0])
5940 || !operand_type_match (overlap1, i.types[1])
e2195274 5941 || ((check_register & 3) == 3
dc821c5f 5942 && !operand_type_register_match (i.types[0],
40fb9820 5943 operand_types[0],
dc821c5f 5944 i.types[1],
40fb9820 5945 operand_types[1])))
29b0f896
AM
5946 {
5947 /* Check if other direction is valid ... */
38e314eb 5948 if (!t->opcode_modifier.d)
29b0f896
AM
5949 continue;
5950
b6169b20 5951check_reverse:
3ac21baa
JB
5952 if (!(size_match & MATCH_REVERSE))
5953 continue;
29b0f896 5954 /* Try reversing direction of operands. */
f5eb1d70
JB
5955 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5956 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5957 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5958 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5959 || (check_register
dc821c5f 5960 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5961 operand_types[i.operands - 1],
5962 i.types[i.operands - 1],
45664ddb 5963 operand_types[0])))
29b0f896
AM
5964 {
5965 /* Does not match either direction. */
5966 continue;
5967 }
38e314eb 5968 /* found_reverse_match holds which of D or FloatR
29b0f896 5969 we've found. */
38e314eb
JB
5970 if (!t->opcode_modifier.d)
5971 found_reverse_match = 0;
5972 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5973 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5974 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5975 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5976 || operand_types[0].bitfield.regmmx
f5eb1d70 5977 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5978 || is_any_vex_encoding(t))
5979 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5980 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5981 else
38e314eb 5982 found_reverse_match = Opcode_D;
40fb9820 5983 if (t->opcode_modifier.floatr)
8a2ed489 5984 found_reverse_match |= Opcode_FloatR;
29b0f896 5985 }
f48ff2ae 5986 else
29b0f896 5987 {
f48ff2ae 5988 /* Found a forward 2 operand match here. */
d1cbb4db
L
5989 switch (t->operands)
5990 {
c0f3af97
L
5991 case 5:
5992 overlap4 = operand_type_and (i.types[4],
5993 operand_types[4]);
1a0670f3 5994 /* Fall through. */
d1cbb4db 5995 case 4:
c6fb90c8
L
5996 overlap3 = operand_type_and (i.types[3],
5997 operand_types[3]);
1a0670f3 5998 /* Fall through. */
d1cbb4db 5999 case 3:
c6fb90c8
L
6000 overlap2 = operand_type_and (i.types[2],
6001 operand_types[2]);
d1cbb4db
L
6002 break;
6003 }
29b0f896 6004
f48ff2ae
L
6005 switch (t->operands)
6006 {
c0f3af97
L
6007 case 5:
6008 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6009 || !operand_type_register_match (i.types[3],
c0f3af97 6010 operand_types[3],
c0f3af97
L
6011 i.types[4],
6012 operand_types[4]))
6013 continue;
1a0670f3 6014 /* Fall through. */
f48ff2ae 6015 case 4:
40fb9820 6016 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6017 || ((check_register & 0xa) == 0xa
6018 && !operand_type_register_match (i.types[1],
f7768225
JB
6019 operand_types[1],
6020 i.types[3],
e2195274
JB
6021 operand_types[3]))
6022 || ((check_register & 0xc) == 0xc
6023 && !operand_type_register_match (i.types[2],
6024 operand_types[2],
6025 i.types[3],
6026 operand_types[3])))
f48ff2ae 6027 continue;
1a0670f3 6028 /* Fall through. */
f48ff2ae
L
6029 case 3:
6030 /* Here we make use of the fact that there are no
23e42951 6031 reverse match 3 operand instructions. */
40fb9820 6032 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6033 || ((check_register & 5) == 5
6034 && !operand_type_register_match (i.types[0],
23e42951
JB
6035 operand_types[0],
6036 i.types[2],
e2195274
JB
6037 operand_types[2]))
6038 || ((check_register & 6) == 6
6039 && !operand_type_register_match (i.types[1],
6040 operand_types[1],
6041 i.types[2],
6042 operand_types[2])))
f48ff2ae
L
6043 continue;
6044 break;
6045 }
29b0f896 6046 }
f48ff2ae 6047 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6048 slip through to break. */
6049 }
3629bb00 6050 if (!found_cpu_match)
dbbc8b7e 6051 continue;
c0f3af97 6052
5614d22c
JB
6053 /* Check if vector and VEX operands are valid. */
6054 if (check_VecOperands (t) || VEX_check_operands (t))
6055 {
6056 specific_error = i.error;
6057 continue;
6058 }
a683cc34 6059
29b0f896
AM
6060 /* We've found a match; break out of loop. */
6061 break;
6062 }
6063
6064 if (t == current_templates->end)
6065 {
6066 /* We found no match. */
a65babc9 6067 const char *err_msg;
5614d22c 6068 switch (specific_error ? specific_error : i.error)
a65babc9
L
6069 {
6070 default:
6071 abort ();
86e026a4 6072 case operand_size_mismatch:
a65babc9
L
6073 err_msg = _("operand size mismatch");
6074 break;
6075 case operand_type_mismatch:
6076 err_msg = _("operand type mismatch");
6077 break;
6078 case register_type_mismatch:
6079 err_msg = _("register type mismatch");
6080 break;
6081 case number_of_operands_mismatch:
6082 err_msg = _("number of operands mismatch");
6083 break;
6084 case invalid_instruction_suffix:
6085 err_msg = _("invalid instruction suffix");
6086 break;
6087 case bad_imm4:
4a2608e3 6088 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6089 break;
a65babc9
L
6090 case unsupported_with_intel_mnemonic:
6091 err_msg = _("unsupported with Intel mnemonic");
6092 break;
6093 case unsupported_syntax:
6094 err_msg = _("unsupported syntax");
6095 break;
6096 case unsupported:
35262a23 6097 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6098 current_templates->start->name);
6099 return NULL;
6c30d220
L
6100 case invalid_vsib_address:
6101 err_msg = _("invalid VSIB address");
6102 break;
7bab8ab5
JB
6103 case invalid_vector_register_set:
6104 err_msg = _("mask, index, and destination registers must be distinct");
6105 break;
6c30d220
L
6106 case unsupported_vector_index_register:
6107 err_msg = _("unsupported vector index register");
6108 break;
43234a1e
L
6109 case unsupported_broadcast:
6110 err_msg = _("unsupported broadcast");
6111 break;
43234a1e
L
6112 case broadcast_needed:
6113 err_msg = _("broadcast is needed for operand of such type");
6114 break;
6115 case unsupported_masking:
6116 err_msg = _("unsupported masking");
6117 break;
6118 case mask_not_on_destination:
6119 err_msg = _("mask not on destination operand");
6120 break;
6121 case no_default_mask:
6122 err_msg = _("default mask isn't allowed");
6123 break;
6124 case unsupported_rc_sae:
6125 err_msg = _("unsupported static rounding/sae");
6126 break;
6127 case rc_sae_operand_not_last_imm:
6128 if (intel_syntax)
6129 err_msg = _("RC/SAE operand must precede immediate operands");
6130 else
6131 err_msg = _("RC/SAE operand must follow immediate operands");
6132 break;
6133 case invalid_register_operand:
6134 err_msg = _("invalid register operand");
6135 break;
a65babc9
L
6136 }
6137 as_bad (_("%s for `%s'"), err_msg,
891edac4 6138 current_templates->start->name);
fa99fab2 6139 return NULL;
29b0f896 6140 }
252b5132 6141
29b0f896
AM
6142 if (!quiet_warnings)
6143 {
6144 if (!intel_syntax
40fb9820
L
6145 && (i.types[0].bitfield.jumpabsolute
6146 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6147 {
6148 as_warn (_("indirect %s without `*'"), t->name);
6149 }
6150
40fb9820
L
6151 if (t->opcode_modifier.isprefix
6152 && t->opcode_modifier.ignoresize)
29b0f896
AM
6153 {
6154 /* Warn them that a data or address size prefix doesn't
6155 affect assembly of the next line of code. */
6156 as_warn (_("stand-alone `%s' prefix"), t->name);
6157 }
6158 }
6159
6160 /* Copy the template we found. */
6161 i.tm = *t;
539e75ad
L
6162
6163 if (addr_prefix_disp != -1)
6164 i.tm.operand_types[addr_prefix_disp]
6165 = operand_types[addr_prefix_disp];
6166
29b0f896
AM
6167 if (found_reverse_match)
6168 {
dfd69174
JB
6169 /* If we found a reverse match we must alter the opcode direction
6170 bit and clear/flip the regmem modifier one. found_reverse_match
6171 holds bits to change (different for int & float insns). */
29b0f896
AM
6172
6173 i.tm.base_opcode ^= found_reverse_match;
6174
f5eb1d70
JB
6175 i.tm.operand_types[0] = operand_types[i.operands - 1];
6176 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6177
6178 /* Certain SIMD insns have their load forms specified in the opcode
6179 table, and hence we need to _set_ RegMem instead of clearing it.
6180 We need to avoid setting the bit though on insns like KMOVW. */
6181 i.tm.opcode_modifier.regmem
6182 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6183 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6184 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6185 }
6186
fa99fab2 6187 return t;
29b0f896
AM
6188}
6189
6190static int
e3bb37b5 6191check_string (void)
29b0f896 6192{
8dc0818e
JB
6193 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6194
40fb9820 6195 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6196 {
6197 if (i.seg[0] != NULL && i.seg[0] != &es)
6198 {
a87af027 6199 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6200 i.tm.name,
a87af027
JB
6201 mem_op + 1,
6202 register_prefix);
29b0f896
AM
6203 return 0;
6204 }
6205 /* There's only ever one segment override allowed per instruction.
6206 This instruction possibly has a legal segment override on the
6207 second operand, so copy the segment to where non-string
6208 instructions store it, allowing common code. */
6209 i.seg[0] = i.seg[1];
6210 }
40fb9820 6211 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6212 {
6213 if (i.seg[1] != NULL && i.seg[1] != &es)
6214 {
a87af027 6215 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6216 i.tm.name,
a87af027
JB
6217 mem_op + 2,
6218 register_prefix);
29b0f896
AM
6219 return 0;
6220 }
6221 }
6222 return 1;
6223}
6224
6225static int
543613e9 6226process_suffix (void)
29b0f896
AM
6227{
6228 /* If matched instruction specifies an explicit instruction mnemonic
6229 suffix, use it. */
673fe0f0 6230 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6231 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6232 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6233 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6234 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6235 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6236 else if (i.reg_operands)
6237 {
6238 /* If there's no instruction mnemonic suffix we try to invent one
6239 based on register operands. */
6240 if (!i.suffix)
6241 {
6242 /* We take i.suffix from the last register operand specified,
6243 Destination register type is more significant than source
381d071f
L
6244 register type. crc32 in SSE4.2 prefers source register
6245 type. */
556059dd 6246 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6247 {
556059dd
JB
6248 if (i.types[0].bitfield.byte)
6249 i.suffix = BYTE_MNEM_SUFFIX;
6250 else if (i.types[0].bitfield.word)
40fb9820 6251 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6252 else if (i.types[0].bitfield.dword)
40fb9820 6253 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6254 else if (i.types[0].bitfield.qword)
40fb9820 6255 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6256 }
6257
6258 if (!i.suffix)
6259 {
6260 int op;
6261
556059dd 6262 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6263 {
6264 /* We have to know the operand size for crc32. */
6265 as_bad (_("ambiguous memory operand size for `%s`"),
6266 i.tm.name);
6267 return 0;
6268 }
6269
381d071f 6270 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6271 if (!i.tm.operand_types[op].bitfield.inoutportreg
6272 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6273 {
8819ada6
JB
6274 if (!i.types[op].bitfield.reg)
6275 continue;
6276 if (i.types[op].bitfield.byte)
6277 i.suffix = BYTE_MNEM_SUFFIX;
6278 else if (i.types[op].bitfield.word)
6279 i.suffix = WORD_MNEM_SUFFIX;
6280 else if (i.types[op].bitfield.dword)
6281 i.suffix = LONG_MNEM_SUFFIX;
6282 else if (i.types[op].bitfield.qword)
6283 i.suffix = QWORD_MNEM_SUFFIX;
6284 else
6285 continue;
6286 break;
381d071f
L
6287 }
6288 }
29b0f896
AM
6289 }
6290 else if (i.suffix == BYTE_MNEM_SUFFIX)
6291 {
2eb952a4
L
6292 if (intel_syntax
6293 && i.tm.opcode_modifier.ignoresize
6294 && i.tm.opcode_modifier.no_bsuf)
6295 i.suffix = 0;
6296 else if (!check_byte_reg ())
29b0f896
AM
6297 return 0;
6298 }
6299 else if (i.suffix == LONG_MNEM_SUFFIX)
6300 {
2eb952a4
L
6301 if (intel_syntax
6302 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6303 && i.tm.opcode_modifier.no_lsuf
6304 && !i.tm.opcode_modifier.todword
6305 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6306 i.suffix = 0;
6307 else if (!check_long_reg ())
29b0f896
AM
6308 return 0;
6309 }
6310 else if (i.suffix == QWORD_MNEM_SUFFIX)
6311 {
955e1e6a
L
6312 if (intel_syntax
6313 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6314 && i.tm.opcode_modifier.no_qsuf
6315 && !i.tm.opcode_modifier.todword
6316 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6317 i.suffix = 0;
6318 else if (!check_qword_reg ())
29b0f896
AM
6319 return 0;
6320 }
6321 else if (i.suffix == WORD_MNEM_SUFFIX)
6322 {
2eb952a4
L
6323 if (intel_syntax
6324 && i.tm.opcode_modifier.ignoresize
6325 && i.tm.opcode_modifier.no_wsuf)
6326 i.suffix = 0;
6327 else if (!check_word_reg ())
29b0f896
AM
6328 return 0;
6329 }
40fb9820 6330 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6331 /* Do nothing if the instruction is going to ignore the prefix. */
6332 ;
6333 else
6334 abort ();
6335 }
40fb9820 6336 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6337 && !i.suffix
6338 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6339 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6340 {
06f74c5c
L
6341 if (stackop_size == LONG_MNEM_SUFFIX
6342 && i.tm.base_opcode == 0xcf)
6343 {
6344 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6345 .code16gcc directive to support 16-bit mode with
6346 32-bit address. For IRET without a suffix, generate
6347 16-bit IRET (opcode 0xcf) to return from an interrupt
6348 handler. */
6349 i.suffix = WORD_MNEM_SUFFIX;
6350 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6351 }
6352 else
6353 i.suffix = stackop_size;
29b0f896 6354 }
9306ca4a
JB
6355 else if (intel_syntax
6356 && !i.suffix
40fb9820
L
6357 && (i.tm.operand_types[0].bitfield.jumpabsolute
6358 || i.tm.opcode_modifier.jumpbyte
6359 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6360 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6361 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6362 {
6363 switch (flag_code)
6364 {
6365 case CODE_64BIT:
40fb9820 6366 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6367 {
6368 i.suffix = QWORD_MNEM_SUFFIX;
6369 break;
6370 }
1a0670f3 6371 /* Fall through. */
9306ca4a 6372 case CODE_32BIT:
40fb9820 6373 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6374 i.suffix = LONG_MNEM_SUFFIX;
6375 break;
6376 case CODE_16BIT:
40fb9820 6377 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6378 i.suffix = WORD_MNEM_SUFFIX;
6379 break;
6380 }
6381 }
252b5132 6382
9306ca4a 6383 if (!i.suffix)
29b0f896 6384 {
9306ca4a
JB
6385 if (!intel_syntax)
6386 {
40fb9820 6387 if (i.tm.opcode_modifier.w)
9306ca4a 6388 {
4eed87de
AM
6389 as_bad (_("no instruction mnemonic suffix given and "
6390 "no register operands; can't size instruction"));
9306ca4a
JB
6391 return 0;
6392 }
6393 }
6394 else
6395 {
40fb9820 6396 unsigned int suffixes;
7ab9ffdd 6397
40fb9820
L
6398 suffixes = !i.tm.opcode_modifier.no_bsuf;
6399 if (!i.tm.opcode_modifier.no_wsuf)
6400 suffixes |= 1 << 1;
6401 if (!i.tm.opcode_modifier.no_lsuf)
6402 suffixes |= 1 << 2;
fc4adea1 6403 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6404 suffixes |= 1 << 3;
6405 if (!i.tm.opcode_modifier.no_ssuf)
6406 suffixes |= 1 << 4;
c2b9da16 6407 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6408 suffixes |= 1 << 5;
6409
6410 /* There are more than suffix matches. */
6411 if (i.tm.opcode_modifier.w
9306ca4a 6412 || ((suffixes & (suffixes - 1))
40fb9820
L
6413 && !i.tm.opcode_modifier.defaultsize
6414 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6415 {
6416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6417 return 0;
6418 }
6419 }
29b0f896 6420 }
252b5132 6421
d2224064
JB
6422 /* Change the opcode based on the operand size given by i.suffix. */
6423 switch (i.suffix)
29b0f896 6424 {
d2224064
JB
6425 /* Size floating point instruction. */
6426 case LONG_MNEM_SUFFIX:
6427 if (i.tm.opcode_modifier.floatmf)
6428 {
6429 i.tm.base_opcode ^= 4;
6430 break;
6431 }
6432 /* fall through */
6433 case WORD_MNEM_SUFFIX:
6434 case QWORD_MNEM_SUFFIX:
29b0f896 6435 /* It's not a byte, select word/dword operation. */
40fb9820 6436 if (i.tm.opcode_modifier.w)
29b0f896 6437 {
40fb9820 6438 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6439 i.tm.base_opcode |= 8;
6440 else
6441 i.tm.base_opcode |= 1;
6442 }
d2224064
JB
6443 /* fall through */
6444 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6445 /* Now select between word & dword operations via the operand
6446 size prefix, except for instructions that will ignore this
6447 prefix anyway. */
75c0a438
L
6448 if (i.reg_operands > 0
6449 && i.types[0].bitfield.reg
6450 && i.tm.opcode_modifier.addrprefixopreg
6451 && (i.tm.opcode_modifier.immext
6452 || i.operands == 1))
cb712a9e 6453 {
ca61edf2
L
6454 /* The address size override prefix changes the size of the
6455 first operand. */
40fb9820 6456 if ((flag_code == CODE_32BIT
75c0a438 6457 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6458 || (flag_code != CODE_32BIT
75c0a438 6459 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6460 if (!add_prefix (ADDR_PREFIX_OPCODE))
6461 return 0;
6462 }
6463 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6464 && !i.tm.opcode_modifier.ignoresize
6465 && !i.tm.opcode_modifier.floatmf
a38d7118 6466 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6467 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6468 || (flag_code == CODE_64BIT
40fb9820 6469 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6470 {
6471 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6472
40fb9820 6473 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6474 prefix = ADDR_PREFIX_OPCODE;
252b5132 6475
29b0f896
AM
6476 if (!add_prefix (prefix))
6477 return 0;
24eab124 6478 }
252b5132 6479
29b0f896
AM
6480 /* Set mode64 for an operand. */
6481 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6482 && flag_code == CODE_64BIT
d2224064 6483 && !i.tm.opcode_modifier.norex64
46e883c5 6484 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6485 need rex64. */
6486 && ! (i.operands == 2
6487 && i.tm.base_opcode == 0x90
6488 && i.tm.extension_opcode == None
2c703856
JB
6489 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6490 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6491 i.rex |= REX_W;
3e73aa7c 6492
d2224064 6493 break;
29b0f896 6494 }
7ecd2f8b 6495
c0a30a9f
L
6496 if (i.reg_operands != 0
6497 && i.operands > 1
6498 && i.tm.opcode_modifier.addrprefixopreg
6499 && !i.tm.opcode_modifier.immext)
6500 {
6501 /* Check invalid register operand when the address size override
6502 prefix changes the size of register operands. */
6503 unsigned int op;
6504 enum { need_word, need_dword, need_qword } need;
6505
6506 if (flag_code == CODE_32BIT)
6507 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6508 else
6509 {
6510 if (i.prefix[ADDR_PREFIX])
6511 need = need_dword;
6512 else
6513 need = flag_code == CODE_64BIT ? need_qword : need_word;
6514 }
6515
6516 for (op = 0; op < i.operands; op++)
6517 if (i.types[op].bitfield.reg
6518 && ((need == need_word
6519 && !i.op[op].regs->reg_type.bitfield.word)
6520 || (need == need_dword
6521 && !i.op[op].regs->reg_type.bitfield.dword)
6522 || (need == need_qword
6523 && !i.op[op].regs->reg_type.bitfield.qword)))
6524 {
6525 as_bad (_("invalid register operand size for `%s'"),
6526 i.tm.name);
6527 return 0;
6528 }
6529 }
6530
29b0f896
AM
6531 return 1;
6532}
3e73aa7c 6533
29b0f896 6534static int
543613e9 6535check_byte_reg (void)
29b0f896
AM
6536{
6537 int op;
543613e9 6538
29b0f896
AM
6539 for (op = i.operands; --op >= 0;)
6540 {
dc821c5f
JB
6541 /* Skip non-register operands. */
6542 if (!i.types[op].bitfield.reg)
6543 continue;
6544
29b0f896
AM
6545 /* If this is an eight bit register, it's OK. If it's the 16 or
6546 32 bit version of an eight bit register, we will just use the
6547 low portion, and that's OK too. */
dc821c5f 6548 if (i.types[op].bitfield.byte)
29b0f896
AM
6549 continue;
6550
5a819eb9
JB
6551 /* I/O port address operands are OK too. */
6552 if (i.tm.operand_types[op].bitfield.inoutportreg)
6553 continue;
6554
9344ff29
L
6555 /* crc32 doesn't generate this warning. */
6556 if (i.tm.base_opcode == 0xf20f38f0)
6557 continue;
6558
dc821c5f
JB
6559 if ((i.types[op].bitfield.word
6560 || i.types[op].bitfield.dword
6561 || i.types[op].bitfield.qword)
5a819eb9
JB
6562 && i.op[op].regs->reg_num < 4
6563 /* Prohibit these changes in 64bit mode, since the lowering
6564 would be more complicated. */
6565 && flag_code != CODE_64BIT)
29b0f896 6566 {
29b0f896 6567#if REGISTER_WARNINGS
5a819eb9 6568 if (!quiet_warnings)
a540244d
L
6569 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6570 register_prefix,
dc821c5f 6571 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6572 ? REGNAM_AL - REGNAM_AX
6573 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6574 register_prefix,
29b0f896
AM
6575 i.op[op].regs->reg_name,
6576 i.suffix);
6577#endif
6578 continue;
6579 }
6580 /* Any other register is bad. */
dc821c5f 6581 if (i.types[op].bitfield.reg
40fb9820 6582 || i.types[op].bitfield.regmmx
1b54b8d7 6583 || i.types[op].bitfield.regsimd
21df382b 6584 || i.types[op].bitfield.sreg
40fb9820
L
6585 || i.types[op].bitfield.control
6586 || i.types[op].bitfield.debug
ca0d63fe 6587 || i.types[op].bitfield.test)
29b0f896 6588 {
a540244d
L
6589 as_bad (_("`%s%s' not allowed with `%s%c'"),
6590 register_prefix,
29b0f896
AM
6591 i.op[op].regs->reg_name,
6592 i.tm.name,
6593 i.suffix);
6594 return 0;
6595 }
6596 }
6597 return 1;
6598}
6599
6600static int
e3bb37b5 6601check_long_reg (void)
29b0f896
AM
6602{
6603 int op;
6604
6605 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6606 /* Skip non-register operands. */
6607 if (!i.types[op].bitfield.reg)
6608 continue;
29b0f896
AM
6609 /* Reject eight bit registers, except where the template requires
6610 them. (eg. movzb) */
dc821c5f
JB
6611 else if (i.types[op].bitfield.byte
6612 && (i.tm.operand_types[op].bitfield.reg
6613 || i.tm.operand_types[op].bitfield.acc)
6614 && (i.tm.operand_types[op].bitfield.word
6615 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6616 {
a540244d
L
6617 as_bad (_("`%s%s' not allowed with `%s%c'"),
6618 register_prefix,
29b0f896
AM
6619 i.op[op].regs->reg_name,
6620 i.tm.name,
6621 i.suffix);
6622 return 0;
6623 }
e4630f71 6624 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6625 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6626 && i.types[op].bitfield.word
6627 && (i.tm.operand_types[op].bitfield.reg
6628 || i.tm.operand_types[op].bitfield.acc)
6629 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6630 {
6631 /* Prohibit these changes in the 64bit mode, since the
6632 lowering is more complicated. */
6633 if (flag_code == CODE_64BIT)
252b5132 6634 {
2b5d6a91 6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6636 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6637 i.suffix);
6638 return 0;
252b5132 6639 }
29b0f896 6640#if REGISTER_WARNINGS
cecf1424
JB
6641 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6642 register_prefix,
6643 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6644 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6645#endif
252b5132 6646 }
e4630f71 6647 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6648 else if (i.types[op].bitfield.qword
6649 && (i.tm.operand_types[op].bitfield.reg
6650 || i.tm.operand_types[op].bitfield.acc)
6651 && i.tm.operand_types[op].bitfield.dword)
252b5132 6652 {
34828aad 6653 if (intel_syntax
ca61edf2 6654 && i.tm.opcode_modifier.toqword
1b54b8d7 6655 && !i.types[0].bitfield.regsimd)
34828aad 6656 {
ca61edf2 6657 /* Convert to QWORD. We want REX byte. */
34828aad
L
6658 i.suffix = QWORD_MNEM_SUFFIX;
6659 }
6660 else
6661 {
2b5d6a91 6662 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6663 register_prefix, i.op[op].regs->reg_name,
6664 i.suffix);
6665 return 0;
6666 }
29b0f896
AM
6667 }
6668 return 1;
6669}
252b5132 6670
29b0f896 6671static int
e3bb37b5 6672check_qword_reg (void)
29b0f896
AM
6673{
6674 int op;
252b5132 6675
29b0f896 6676 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6677 /* Skip non-register operands. */
6678 if (!i.types[op].bitfield.reg)
6679 continue;
29b0f896
AM
6680 /* Reject eight bit registers, except where the template requires
6681 them. (eg. movzb) */
dc821c5f
JB
6682 else if (i.types[op].bitfield.byte
6683 && (i.tm.operand_types[op].bitfield.reg
6684 || i.tm.operand_types[op].bitfield.acc)
6685 && (i.tm.operand_types[op].bitfield.word
6686 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6687 {
a540244d
L
6688 as_bad (_("`%s%s' not allowed with `%s%c'"),
6689 register_prefix,
29b0f896
AM
6690 i.op[op].regs->reg_name,
6691 i.tm.name,
6692 i.suffix);
6693 return 0;
6694 }
e4630f71 6695 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6696 else if ((i.types[op].bitfield.word
6697 || i.types[op].bitfield.dword)
6698 && (i.tm.operand_types[op].bitfield.reg
6699 || i.tm.operand_types[op].bitfield.acc)
6700 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6701 {
6702 /* Prohibit these changes in the 64bit mode, since the
6703 lowering is more complicated. */
34828aad 6704 if (intel_syntax
ca61edf2 6705 && i.tm.opcode_modifier.todword
1b54b8d7 6706 && !i.types[0].bitfield.regsimd)
34828aad 6707 {
ca61edf2 6708 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6709 i.suffix = LONG_MNEM_SUFFIX;
6710 }
6711 else
6712 {
2b5d6a91 6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
252b5132 6718 }
29b0f896
AM
6719 return 1;
6720}
252b5132 6721
29b0f896 6722static int
e3bb37b5 6723check_word_reg (void)
29b0f896
AM
6724{
6725 int op;
6726 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6727 /* Skip non-register operands. */
6728 if (!i.types[op].bitfield.reg)
6729 continue;
29b0f896
AM
6730 /* Reject eight bit registers, except where the template requires
6731 them. (eg. movzb) */
dc821c5f
JB
6732 else if (i.types[op].bitfield.byte
6733 && (i.tm.operand_types[op].bitfield.reg
6734 || i.tm.operand_types[op].bitfield.acc)
6735 && (i.tm.operand_types[op].bitfield.word
6736 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6737 {
a540244d
L
6738 as_bad (_("`%s%s' not allowed with `%s%c'"),
6739 register_prefix,
29b0f896
AM
6740 i.op[op].regs->reg_name,
6741 i.tm.name,
6742 i.suffix);
6743 return 0;
6744 }
e4630f71 6745 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6746 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6747 && (i.types[op].bitfield.dword
6748 || i.types[op].bitfield.qword)
6749 && (i.tm.operand_types[op].bitfield.reg
6750 || i.tm.operand_types[op].bitfield.acc)
6751 && i.tm.operand_types[op].bitfield.word)
252b5132 6752 {
29b0f896
AM
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
6755 if (flag_code == CODE_64BIT)
252b5132 6756 {
2b5d6a91 6757 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6758 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6759 i.suffix);
6760 return 0;
252b5132 6761 }
29b0f896 6762#if REGISTER_WARNINGS
cecf1424
JB
6763 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6764 register_prefix,
6765 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6766 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6767#endif
6768 }
6769 return 1;
6770}
252b5132 6771
29b0f896 6772static int
40fb9820 6773update_imm (unsigned int j)
29b0f896 6774{
bc0844ae 6775 i386_operand_type overlap = i.types[j];
40fb9820
L
6776 if ((overlap.bitfield.imm8
6777 || overlap.bitfield.imm8s
6778 || overlap.bitfield.imm16
6779 || overlap.bitfield.imm32
6780 || overlap.bitfield.imm32s
6781 || overlap.bitfield.imm64)
0dfbf9d7
L
6782 && !operand_type_equal (&overlap, &imm8)
6783 && !operand_type_equal (&overlap, &imm8s)
6784 && !operand_type_equal (&overlap, &imm16)
6785 && !operand_type_equal (&overlap, &imm32)
6786 && !operand_type_equal (&overlap, &imm32s)
6787 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6788 {
6789 if (i.suffix)
6790 {
40fb9820
L
6791 i386_operand_type temp;
6792
0dfbf9d7 6793 operand_type_set (&temp, 0);
7ab9ffdd 6794 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6795 {
6796 temp.bitfield.imm8 = overlap.bitfield.imm8;
6797 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6798 }
6799 else if (i.suffix == WORD_MNEM_SUFFIX)
6800 temp.bitfield.imm16 = overlap.bitfield.imm16;
6801 else if (i.suffix == QWORD_MNEM_SUFFIX)
6802 {
6803 temp.bitfield.imm64 = overlap.bitfield.imm64;
6804 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6805 }
6806 else
6807 temp.bitfield.imm32 = overlap.bitfield.imm32;
6808 overlap = temp;
29b0f896 6809 }
0dfbf9d7
L
6810 else if (operand_type_equal (&overlap, &imm16_32_32s)
6811 || operand_type_equal (&overlap, &imm16_32)
6812 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6813 {
40fb9820 6814 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6815 overlap = imm16;
40fb9820 6816 else
65da13b5 6817 overlap = imm32s;
29b0f896 6818 }
0dfbf9d7
L
6819 if (!operand_type_equal (&overlap, &imm8)
6820 && !operand_type_equal (&overlap, &imm8s)
6821 && !operand_type_equal (&overlap, &imm16)
6822 && !operand_type_equal (&overlap, &imm32)
6823 && !operand_type_equal (&overlap, &imm32s)
6824 && !operand_type_equal (&overlap, &imm64))
29b0f896 6825 {
4eed87de
AM
6826 as_bad (_("no instruction mnemonic suffix given; "
6827 "can't determine immediate size"));
29b0f896
AM
6828 return 0;
6829 }
6830 }
40fb9820 6831 i.types[j] = overlap;
29b0f896 6832
40fb9820
L
6833 return 1;
6834}
6835
6836static int
6837finalize_imm (void)
6838{
bc0844ae 6839 unsigned int j, n;
29b0f896 6840
bc0844ae
L
6841 /* Update the first 2 immediate operands. */
6842 n = i.operands > 2 ? 2 : i.operands;
6843 if (n)
6844 {
6845 for (j = 0; j < n; j++)
6846 if (update_imm (j) == 0)
6847 return 0;
40fb9820 6848
bc0844ae
L
6849 /* The 3rd operand can't be immediate operand. */
6850 gas_assert (operand_type_check (i.types[2], imm) == 0);
6851 }
29b0f896
AM
6852
6853 return 1;
6854}
6855
6856static int
e3bb37b5 6857process_operands (void)
29b0f896
AM
6858{
6859 /* Default segment register this instruction will use for memory
6860 accesses. 0 means unknown. This is only for optimizing out
6861 unnecessary segment overrides. */
6862 const seg_entry *default_seg = 0;
6863
2426c15f 6864 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6865 {
91d6fa6a
NC
6866 unsigned int dupl = i.operands;
6867 unsigned int dest = dupl - 1;
9fcfb3d7
L
6868 unsigned int j;
6869
c0f3af97 6870 /* The destination must be an xmm register. */
9c2799c2 6871 gas_assert (i.reg_operands
91d6fa6a 6872 && MAX_OPERANDS > dupl
7ab9ffdd 6873 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6874
1b54b8d7
JB
6875 if (i.tm.operand_types[0].bitfield.acc
6876 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6877 {
8cd7925b 6878 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6879 {
6880 /* Keep xmm0 for instructions with VEX prefix and 3
6881 sources. */
1b54b8d7
JB
6882 i.tm.operand_types[0].bitfield.acc = 0;
6883 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6884 goto duplicate;
6885 }
e2ec9d29 6886 else
c0f3af97
L
6887 {
6888 /* We remove the first xmm0 and keep the number of
6889 operands unchanged, which in fact duplicates the
6890 destination. */
6891 for (j = 1; j < i.operands; j++)
6892 {
6893 i.op[j - 1] = i.op[j];
6894 i.types[j - 1] = i.types[j];
6895 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6896 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6897 }
6898 }
6899 }
6900 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6901 {
91d6fa6a 6902 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6903 && (i.tm.opcode_modifier.vexsources
6904 == VEX3SOURCES));
c0f3af97
L
6905
6906 /* Add the implicit xmm0 for instructions with VEX prefix
6907 and 3 sources. */
6908 for (j = i.operands; j > 0; j--)
6909 {
6910 i.op[j] = i.op[j - 1];
6911 i.types[j] = i.types[j - 1];
6912 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6913 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6914 }
6915 i.op[0].regs
6916 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6917 i.types[0] = regxmm;
c0f3af97
L
6918 i.tm.operand_types[0] = regxmm;
6919
6920 i.operands += 2;
6921 i.reg_operands += 2;
6922 i.tm.operands += 2;
6923
91d6fa6a 6924 dupl++;
c0f3af97 6925 dest++;
91d6fa6a
NC
6926 i.op[dupl] = i.op[dest];
6927 i.types[dupl] = i.types[dest];
6928 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6929 i.flags[dupl] = i.flags[dest];
e2ec9d29 6930 }
c0f3af97
L
6931 else
6932 {
6933duplicate:
6934 i.operands++;
6935 i.reg_operands++;
6936 i.tm.operands++;
6937
91d6fa6a
NC
6938 i.op[dupl] = i.op[dest];
6939 i.types[dupl] = i.types[dest];
6940 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6941 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6942 }
6943
6944 if (i.tm.opcode_modifier.immext)
6945 process_immext ();
6946 }
1b54b8d7
JB
6947 else if (i.tm.operand_types[0].bitfield.acc
6948 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6949 {
6950 unsigned int j;
6951
9fcfb3d7
L
6952 for (j = 1; j < i.operands; j++)
6953 {
6954 i.op[j - 1] = i.op[j];
6955 i.types[j - 1] = i.types[j];
6956
6957 /* We need to adjust fields in i.tm since they are used by
6958 build_modrm_byte. */
6959 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6960
6961 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6962 }
6963
e2ec9d29
L
6964 i.operands--;
6965 i.reg_operands--;
e2ec9d29
L
6966 i.tm.operands--;
6967 }
920d2ddc
IT
6968 else if (i.tm.opcode_modifier.implicitquadgroup)
6969 {
a477a8c4
JB
6970 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6971
920d2ddc 6972 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6973 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6974 regnum = register_number (i.op[1].regs);
6975 first_reg_in_group = regnum & ~3;
6976 last_reg_in_group = first_reg_in_group + 3;
6977 if (regnum != first_reg_in_group)
6978 as_warn (_("source register `%s%s' implicitly denotes"
6979 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6980 register_prefix, i.op[1].regs->reg_name,
6981 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6982 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6983 i.tm.name);
6984 }
e2ec9d29
L
6985 else if (i.tm.opcode_modifier.regkludge)
6986 {
6987 /* The imul $imm, %reg instruction is converted into
6988 imul $imm, %reg, %reg, and the clr %reg instruction
6989 is converted into xor %reg, %reg. */
6990
6991 unsigned int first_reg_op;
6992
6993 if (operand_type_check (i.types[0], reg))
6994 first_reg_op = 0;
6995 else
6996 first_reg_op = 1;
6997 /* Pretend we saw the extra register operand. */
9c2799c2 6998 gas_assert (i.reg_operands == 1
7ab9ffdd 6999 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7000 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7001 i.types[first_reg_op + 1] = i.types[first_reg_op];
7002 i.operands++;
7003 i.reg_operands++;
29b0f896
AM
7004 }
7005
40fb9820 7006 if (i.tm.opcode_modifier.shortform)
29b0f896 7007 {
21df382b 7008 if (i.types[0].bitfield.sreg)
29b0f896 7009 {
21df382b
JB
7010 if (flag_code != CODE_64BIT
7011 ? i.tm.base_opcode == POP_SEG_SHORT
7012 && i.op[0].regs->reg_num == 1
7013 : (i.tm.base_opcode | 1) == POP_SEG_SHORT
7014 && i.op[0].regs->reg_num < 4)
29b0f896 7015 {
21df382b
JB
7016 as_bad (_("you can't `%s %s%s'"),
7017 i.tm.name, register_prefix, i.op[0].regs->reg_name);
4eed87de 7018 return 0;
29b0f896 7019 }
21df382b
JB
7020 if ( i.op[0].regs->reg_num > 3 )
7021 {
7022 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7023 i.tm.opcode_length = 2;
7024 }
4eed87de 7025 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4eed87de
AM
7026 }
7027 else
7028 {
7ab9ffdd 7029 /* The register or float register operand is in operand
85f10a01 7030 0 or 1. */
40fb9820 7031 unsigned int op;
7ab9ffdd 7032
ca0d63fe 7033 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
7034 || operand_type_check (i.types[0], reg))
7035 op = 0;
7036 else
7037 op = 1;
4eed87de
AM
7038 /* Register goes in low 3 bits of opcode. */
7039 i.tm.base_opcode |= i.op[op].regs->reg_num;
7040 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 7041 i.rex |= REX_B;
40fb9820 7042 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 7043 {
4eed87de
AM
7044 /* Warn about some common errors, but press on regardless.
7045 The first case can be generated by gcc (<= 2.8.1). */
7046 if (i.operands == 2)
7047 {
7048 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 7049 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
7050 register_prefix, i.op[!intel_syntax].regs->reg_name,
7051 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
7052 }
7053 else
7054 {
7055 /* Extraneous `l' suffix on fp insn. */
a540244d
L
7056 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7057 register_prefix, i.op[0].regs->reg_name);
4eed87de 7058 }
29b0f896
AM
7059 }
7060 }
7061 }
40fb9820 7062 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7063 {
7064 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7065 must be put into the modrm byte). Now, we make the modrm and
7066 index base bytes based on all the info we've collected. */
29b0f896
AM
7067
7068 default_seg = build_modrm_byte ();
7069 }
8a2ed489 7070 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7071 {
7072 default_seg = &ds;
7073 }
40fb9820 7074 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7075 {
7076 /* For the string instructions that allow a segment override
7077 on one of their operands, the default segment is ds. */
7078 default_seg = &ds;
7079 }
7080
75178d9d
L
7081 if (i.tm.base_opcode == 0x8d /* lea */
7082 && i.seg[0]
7083 && !quiet_warnings)
30123838 7084 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7085
7086 /* If a segment was explicitly specified, and the specified segment
7087 is not the default, use an opcode prefix to select it. If we
7088 never figured out what the default segment is, then default_seg
7089 will be zero at this point, and the specified segment prefix will
7090 always be used. */
29b0f896
AM
7091 if ((i.seg[0]) && (i.seg[0] != default_seg))
7092 {
7093 if (!add_prefix (i.seg[0]->seg_prefix))
7094 return 0;
7095 }
7096 return 1;
7097}
7098
7099static const seg_entry *
e3bb37b5 7100build_modrm_byte (void)
29b0f896
AM
7101{
7102 const seg_entry *default_seg = 0;
c0f3af97 7103 unsigned int source, dest;
8cd7925b 7104 int vex_3_sources;
c0f3af97 7105
8cd7925b 7106 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7107 if (vex_3_sources)
7108 {
91d6fa6a 7109 unsigned int nds, reg_slot;
4c2c6516 7110 expressionS *exp;
c0f3af97 7111
6b8d3588 7112 dest = i.operands - 1;
c0f3af97 7113 nds = dest - 1;
922d8de8 7114
a683cc34 7115 /* There are 2 kinds of instructions:
bed3d976 7116 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7117 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7118 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7119 ZMM register.
bed3d976 7120 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7121 plus 1 memory operand, with VexXDS. */
922d8de8 7122 gas_assert ((i.reg_operands == 4
bed3d976
JB
7123 || (i.reg_operands == 3 && i.mem_operands == 1))
7124 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7125 && i.tm.opcode_modifier.vexw
7126 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7127
48db9223
JB
7128 /* If VexW1 is set, the first non-immediate operand is the source and
7129 the second non-immediate one is encoded in the immediate operand. */
7130 if (i.tm.opcode_modifier.vexw == VEXW1)
7131 {
7132 source = i.imm_operands;
7133 reg_slot = i.imm_operands + 1;
7134 }
7135 else
7136 {
7137 source = i.imm_operands + 1;
7138 reg_slot = i.imm_operands;
7139 }
7140
a683cc34 7141 if (i.imm_operands == 0)
bed3d976
JB
7142 {
7143 /* When there is no immediate operand, generate an 8bit
7144 immediate operand to encode the first operand. */
7145 exp = &im_expressions[i.imm_operands++];
7146 i.op[i.operands].imms = exp;
7147 i.types[i.operands] = imm8;
7148 i.operands++;
7149
7150 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7151 exp->X_op = O_constant;
7152 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7153 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7154 }
922d8de8 7155 else
bed3d976 7156 {
9d3bf266
JB
7157 gas_assert (i.imm_operands == 1);
7158 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7159 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7160
9d3bf266
JB
7161 /* Turn on Imm8 again so that output_imm will generate it. */
7162 i.types[0].bitfield.imm8 = 1;
bed3d976
JB
7163
7164 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
9d3bf266 7165 i.op[0].imms->X_add_number
bed3d976 7166 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7167 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7168 }
a683cc34 7169
10c17abd 7170 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7171 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7172 }
7173 else
7174 source = dest = 0;
29b0f896
AM
7175
7176 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7177 implicit registers do not count. If there are 3 register
7178 operands, it must be a instruction with VexNDS. For a
7179 instruction with VexNDD, the destination register is encoded
7180 in VEX prefix. If there are 4 register operands, it must be
7181 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7182 if (i.mem_operands == 0
7183 && ((i.reg_operands == 2
2426c15f 7184 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7185 || (i.reg_operands == 3
2426c15f 7186 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7187 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7188 {
cab737b9
L
7189 switch (i.operands)
7190 {
7191 case 2:
7192 source = 0;
7193 break;
7194 case 3:
c81128dc
L
7195 /* When there are 3 operands, one of them may be immediate,
7196 which may be the first or the last operand. Otherwise,
c0f3af97
L
7197 the first operand must be shift count register (cl) or it
7198 is an instruction with VexNDS. */
9c2799c2 7199 gas_assert (i.imm_operands == 1
7ab9ffdd 7200 || (i.imm_operands == 0
2426c15f 7201 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7202 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7203 if (operand_type_check (i.types[0], imm)
7204 || i.types[0].bitfield.shiftcount)
7205 source = 1;
7206 else
7207 source = 0;
cab737b9
L
7208 break;
7209 case 4:
368d64cc
L
7210 /* When there are 4 operands, the first two must be 8bit
7211 immediate operands. The source operand will be the 3rd
c0f3af97
L
7212 one.
7213
7214 For instructions with VexNDS, if the first operand
7215 an imm8, the source operand is the 2nd one. If the last
7216 operand is imm8, the source operand is the first one. */
9c2799c2 7217 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7218 && i.types[0].bitfield.imm8
7219 && i.types[1].bitfield.imm8)
2426c15f 7220 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7221 && i.imm_operands == 1
7222 && (i.types[0].bitfield.imm8
43234a1e
L
7223 || i.types[i.operands - 1].bitfield.imm8
7224 || i.rounding)));
9f2670f2
L
7225 if (i.imm_operands == 2)
7226 source = 2;
7227 else
c0f3af97
L
7228 {
7229 if (i.types[0].bitfield.imm8)
7230 source = 1;
7231 else
7232 source = 0;
7233 }
c0f3af97
L
7234 break;
7235 case 5:
e771e7c9 7236 if (is_evex_encoding (&i.tm))
43234a1e
L
7237 {
7238 /* For EVEX instructions, when there are 5 operands, the
7239 first one must be immediate operand. If the second one
7240 is immediate operand, the source operand is the 3th
7241 one. If the last one is immediate operand, the source
7242 operand is the 2nd one. */
7243 gas_assert (i.imm_operands == 2
7244 && i.tm.opcode_modifier.sae
7245 && operand_type_check (i.types[0], imm));
7246 if (operand_type_check (i.types[1], imm))
7247 source = 2;
7248 else if (operand_type_check (i.types[4], imm))
7249 source = 1;
7250 else
7251 abort ();
7252 }
cab737b9
L
7253 break;
7254 default:
7255 abort ();
7256 }
7257
c0f3af97
L
7258 if (!vex_3_sources)
7259 {
7260 dest = source + 1;
7261
43234a1e
L
7262 /* RC/SAE operand could be between DEST and SRC. That happens
7263 when one operand is GPR and the other one is XMM/YMM/ZMM
7264 register. */
7265 if (i.rounding && i.rounding->operand == (int) dest)
7266 dest++;
7267
2426c15f 7268 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7269 {
43234a1e 7270 /* For instructions with VexNDS, the register-only source
c5d0745b 7271 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7272 register. It is encoded in VEX prefix. */
f12dc422
L
7273
7274 i386_operand_type op;
7275 unsigned int vvvv;
7276
7277 /* Check register-only source operand when two source
7278 operands are swapped. */
7279 if (!i.tm.operand_types[source].bitfield.baseindex
7280 && i.tm.operand_types[dest].bitfield.baseindex)
7281 {
7282 vvvv = source;
7283 source = dest;
7284 }
7285 else
7286 vvvv = dest;
7287
7288 op = i.tm.operand_types[vvvv];
c0f3af97 7289 if ((dest + 1) >= i.operands
dc821c5f
JB
7290 || ((!op.bitfield.reg
7291 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7292 && !op.bitfield.regsimd
43234a1e 7293 && !operand_type_equal (&op, &regmask)))
c0f3af97 7294 abort ();
f12dc422 7295 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7296 dest++;
7297 }
7298 }
29b0f896
AM
7299
7300 i.rm.mode = 3;
dfd69174
JB
7301 /* One of the register operands will be encoded in the i.rm.reg
7302 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7303 fields. If no form of this instruction supports a memory
7304 destination operand, then we assume the source operand may
7305 sometimes be a memory operand and so we need to store the
7306 destination in the i.rm.reg field. */
dfd69174 7307 if (!i.tm.opcode_modifier.regmem
40fb9820 7308 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7309 {
7310 i.rm.reg = i.op[dest].regs->reg_num;
7311 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7312 if (i.op[dest].regs->reg_type.bitfield.regmmx
7313 || i.op[source].regs->reg_type.bitfield.regmmx)
7314 i.has_regmmx = TRUE;
7315 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7316 || i.op[source].regs->reg_type.bitfield.regsimd)
7317 {
7318 if (i.types[dest].bitfield.zmmword
7319 || i.types[source].bitfield.zmmword)
7320 i.has_regzmm = TRUE;
7321 else if (i.types[dest].bitfield.ymmword
7322 || i.types[source].bitfield.ymmword)
7323 i.has_regymm = TRUE;
7324 else
7325 i.has_regxmm = TRUE;
7326 }
29b0f896 7327 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7328 i.rex |= REX_R;
43234a1e
L
7329 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7330 i.vrex |= REX_R;
29b0f896 7331 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7332 i.rex |= REX_B;
43234a1e
L
7333 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7334 i.vrex |= REX_B;
29b0f896
AM
7335 }
7336 else
7337 {
7338 i.rm.reg = i.op[source].regs->reg_num;
7339 i.rm.regmem = i.op[dest].regs->reg_num;
7340 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7341 i.rex |= REX_B;
43234a1e
L
7342 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7343 i.vrex |= REX_B;
29b0f896 7344 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7345 i.rex |= REX_R;
43234a1e
L
7346 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7347 i.vrex |= REX_R;
29b0f896 7348 }
e0c7f900 7349 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7350 {
dfd69174 7351 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
c4a530c5 7352 abort ();
e0c7f900 7353 i.rex &= ~REX_R;
c4a530c5
JB
7354 add_prefix (LOCK_PREFIX_OPCODE);
7355 }
29b0f896
AM
7356 }
7357 else
7358 { /* If it's not 2 reg operands... */
c0f3af97
L
7359 unsigned int mem;
7360
29b0f896
AM
7361 if (i.mem_operands)
7362 {
7363 unsigned int fake_zero_displacement = 0;
99018f42 7364 unsigned int op;
4eed87de 7365
7ab9ffdd 7366 for (op = 0; op < i.operands; op++)
8dc0818e 7367 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7368 break;
7ab9ffdd 7369 gas_assert (op < i.operands);
29b0f896 7370
6c30d220
L
7371 if (i.tm.opcode_modifier.vecsib)
7372 {
e968fc9b 7373 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7374 abort ();
7375
7376 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7377 if (!i.base_reg)
7378 {
7379 i.sib.base = NO_BASE_REGISTER;
7380 i.sib.scale = i.log2_scale_factor;
7381 i.types[op].bitfield.disp8 = 0;
7382 i.types[op].bitfield.disp16 = 0;
7383 i.types[op].bitfield.disp64 = 0;
43083a50 7384 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7385 {
7386 /* Must be 32 bit */
7387 i.types[op].bitfield.disp32 = 1;
7388 i.types[op].bitfield.disp32s = 0;
7389 }
7390 else
7391 {
7392 i.types[op].bitfield.disp32 = 0;
7393 i.types[op].bitfield.disp32s = 1;
7394 }
7395 }
7396 i.sib.index = i.index_reg->reg_num;
7397 if ((i.index_reg->reg_flags & RegRex) != 0)
7398 i.rex |= REX_X;
43234a1e
L
7399 if ((i.index_reg->reg_flags & RegVRex) != 0)
7400 i.vrex |= REX_X;
6c30d220
L
7401 }
7402
29b0f896
AM
7403 default_seg = &ds;
7404
7405 if (i.base_reg == 0)
7406 {
7407 i.rm.mode = 0;
7408 if (!i.disp_operands)
9bb129e8 7409 fake_zero_displacement = 1;
29b0f896
AM
7410 if (i.index_reg == 0)
7411 {
73053c1f
JB
7412 i386_operand_type newdisp;
7413
6c30d220 7414 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7415 /* Operand is just <disp> */
20f0a1fc 7416 if (flag_code == CODE_64BIT)
29b0f896
AM
7417 {
7418 /* 64bit mode overwrites the 32bit absolute
7419 addressing by RIP relative addressing and
7420 absolute addressing is encoded by one of the
7421 redundant SIB forms. */
7422 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7423 i.sib.base = NO_BASE_REGISTER;
7424 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7425 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7426 }
fc225355
L
7427 else if ((flag_code == CODE_16BIT)
7428 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7429 {
7430 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7431 newdisp = disp16;
20f0a1fc
NC
7432 }
7433 else
7434 {
7435 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7436 newdisp = disp32;
29b0f896 7437 }
73053c1f
JB
7438 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7439 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7440 }
6c30d220 7441 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7442 {
6c30d220 7443 /* !i.base_reg && i.index_reg */
e968fc9b 7444 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7445 i.sib.index = NO_INDEX_REGISTER;
7446 else
7447 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7448 i.sib.base = NO_BASE_REGISTER;
7449 i.sib.scale = i.log2_scale_factor;
7450 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7451 i.types[op].bitfield.disp8 = 0;
7452 i.types[op].bitfield.disp16 = 0;
7453 i.types[op].bitfield.disp64 = 0;
43083a50 7454 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7455 {
7456 /* Must be 32 bit */
7457 i.types[op].bitfield.disp32 = 1;
7458 i.types[op].bitfield.disp32s = 0;
7459 }
29b0f896 7460 else
40fb9820
L
7461 {
7462 i.types[op].bitfield.disp32 = 0;
7463 i.types[op].bitfield.disp32s = 1;
7464 }
29b0f896 7465 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7466 i.rex |= REX_X;
29b0f896
AM
7467 }
7468 }
7469 /* RIP addressing for 64bit mode. */
e968fc9b 7470 else if (i.base_reg->reg_num == RegIP)
29b0f896 7471 {
6c30d220 7472 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7473 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7474 i.types[op].bitfield.disp8 = 0;
7475 i.types[op].bitfield.disp16 = 0;
7476 i.types[op].bitfield.disp32 = 0;
7477 i.types[op].bitfield.disp32s = 1;
7478 i.types[op].bitfield.disp64 = 0;
71903a11 7479 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7480 if (! i.disp_operands)
7481 fake_zero_displacement = 1;
29b0f896 7482 }
dc821c5f 7483 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7484 {
6c30d220 7485 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7486 switch (i.base_reg->reg_num)
7487 {
7488 case 3: /* (%bx) */
7489 if (i.index_reg == 0)
7490 i.rm.regmem = 7;
7491 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7492 i.rm.regmem = i.index_reg->reg_num - 6;
7493 break;
7494 case 5: /* (%bp) */
7495 default_seg = &ss;
7496 if (i.index_reg == 0)
7497 {
7498 i.rm.regmem = 6;
40fb9820 7499 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7500 {
7501 /* fake (%bp) into 0(%bp) */
b5014f7a 7502 i.types[op].bitfield.disp8 = 1;
252b5132 7503 fake_zero_displacement = 1;
29b0f896
AM
7504 }
7505 }
7506 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7507 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7508 break;
7509 default: /* (%si) -> 4 or (%di) -> 5 */
7510 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7511 }
7512 i.rm.mode = mode_from_disp_size (i.types[op]);
7513 }
7514 else /* i.base_reg and 32/64 bit mode */
7515 {
7516 if (flag_code == CODE_64BIT
40fb9820
L
7517 && operand_type_check (i.types[op], disp))
7518 {
73053c1f
JB
7519 i.types[op].bitfield.disp16 = 0;
7520 i.types[op].bitfield.disp64 = 0;
40fb9820 7521 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7522 {
7523 i.types[op].bitfield.disp32 = 0;
7524 i.types[op].bitfield.disp32s = 1;
7525 }
40fb9820 7526 else
73053c1f
JB
7527 {
7528 i.types[op].bitfield.disp32 = 1;
7529 i.types[op].bitfield.disp32s = 0;
7530 }
40fb9820 7531 }
20f0a1fc 7532
6c30d220
L
7533 if (!i.tm.opcode_modifier.vecsib)
7534 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7535 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7536 i.rex |= REX_B;
29b0f896
AM
7537 i.sib.base = i.base_reg->reg_num;
7538 /* x86-64 ignores REX prefix bit here to avoid decoder
7539 complications. */
848930b2
JB
7540 if (!(i.base_reg->reg_flags & RegRex)
7541 && (i.base_reg->reg_num == EBP_REG_NUM
7542 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7543 default_seg = &ss;
848930b2 7544 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7545 {
848930b2 7546 fake_zero_displacement = 1;
b5014f7a 7547 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7548 }
7549 i.sib.scale = i.log2_scale_factor;
7550 if (i.index_reg == 0)
7551 {
6c30d220 7552 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7553 /* <disp>(%esp) becomes two byte modrm with no index
7554 register. We've already stored the code for esp
7555 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7556 Any base register besides %esp will not use the
7557 extra modrm byte. */
7558 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7559 }
6c30d220 7560 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7561 {
e968fc9b 7562 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7563 i.sib.index = NO_INDEX_REGISTER;
7564 else
7565 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7566 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7567 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7568 i.rex |= REX_X;
29b0f896 7569 }
67a4f2b7
AO
7570
7571 if (i.disp_operands
7572 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7573 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7574 i.rm.mode = 0;
7575 else
a501d77e
L
7576 {
7577 if (!fake_zero_displacement
7578 && !i.disp_operands
7579 && i.disp_encoding)
7580 {
7581 fake_zero_displacement = 1;
7582 if (i.disp_encoding == disp_encoding_8bit)
7583 i.types[op].bitfield.disp8 = 1;
7584 else
7585 i.types[op].bitfield.disp32 = 1;
7586 }
7587 i.rm.mode = mode_from_disp_size (i.types[op]);
7588 }
29b0f896 7589 }
252b5132 7590
29b0f896
AM
7591 if (fake_zero_displacement)
7592 {
7593 /* Fakes a zero displacement assuming that i.types[op]
7594 holds the correct displacement size. */
7595 expressionS *exp;
7596
9c2799c2 7597 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7598 exp = &disp_expressions[i.disp_operands++];
7599 i.op[op].disps = exp;
7600 exp->X_op = O_constant;
7601 exp->X_add_number = 0;
7602 exp->X_add_symbol = (symbolS *) 0;
7603 exp->X_op_symbol = (symbolS *) 0;
7604 }
c0f3af97
L
7605
7606 mem = op;
29b0f896 7607 }
c0f3af97
L
7608 else
7609 mem = ~0;
252b5132 7610
8c43a48b 7611 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7612 {
7613 if (operand_type_check (i.types[0], imm))
7614 i.vex.register_specifier = NULL;
7615 else
7616 {
7617 /* VEX.vvvv encodes one of the sources when the first
7618 operand is not an immediate. */
1ef99a7b 7619 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7620 i.vex.register_specifier = i.op[0].regs;
7621 else
7622 i.vex.register_specifier = i.op[1].regs;
7623 }
7624
7625 /* Destination is a XMM register encoded in the ModRM.reg
7626 and VEX.R bit. */
7627 i.rm.reg = i.op[2].regs->reg_num;
7628 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7629 i.rex |= REX_R;
7630
7631 /* ModRM.rm and VEX.B encodes the other source. */
7632 if (!i.mem_operands)
7633 {
7634 i.rm.mode = 3;
7635
1ef99a7b 7636 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7637 i.rm.regmem = i.op[1].regs->reg_num;
7638 else
7639 i.rm.regmem = i.op[0].regs->reg_num;
7640
7641 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7642 i.rex |= REX_B;
7643 }
7644 }
2426c15f 7645 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7646 {
7647 i.vex.register_specifier = i.op[2].regs;
7648 if (!i.mem_operands)
7649 {
7650 i.rm.mode = 3;
7651 i.rm.regmem = i.op[1].regs->reg_num;
7652 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7653 i.rex |= REX_B;
7654 }
7655 }
29b0f896
AM
7656 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7657 (if any) based on i.tm.extension_opcode. Again, we must be
7658 careful to make sure that segment/control/debug/test/MMX
7659 registers are coded into the i.rm.reg field. */
f88c9eb0 7660 else if (i.reg_operands)
29b0f896 7661 {
99018f42 7662 unsigned int op;
7ab9ffdd
L
7663 unsigned int vex_reg = ~0;
7664
7665 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7666 {
7667 if (i.types[op].bitfield.reg
7668 || i.types[op].bitfield.regbnd
7669 || i.types[op].bitfield.regmask
21df382b 7670 || i.types[op].bitfield.sreg
b4a3a7b4
L
7671 || i.types[op].bitfield.control
7672 || i.types[op].bitfield.debug
7673 || i.types[op].bitfield.test)
7674 break;
7675 if (i.types[op].bitfield.regsimd)
7676 {
7677 if (i.types[op].bitfield.zmmword)
7678 i.has_regzmm = TRUE;
7679 else if (i.types[op].bitfield.ymmword)
7680 i.has_regymm = TRUE;
7681 else
7682 i.has_regxmm = TRUE;
7683 break;
7684 }
7685 if (i.types[op].bitfield.regmmx)
7686 {
7687 i.has_regmmx = TRUE;
7688 break;
7689 }
7690 }
c0209578 7691
7ab9ffdd
L
7692 if (vex_3_sources)
7693 op = dest;
2426c15f 7694 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7695 {
7696 /* For instructions with VexNDS, the register-only
7697 source operand is encoded in VEX prefix. */
7698 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7699
7ab9ffdd 7700 if (op > mem)
c0f3af97 7701 {
7ab9ffdd
L
7702 vex_reg = op++;
7703 gas_assert (op < i.operands);
c0f3af97
L
7704 }
7705 else
c0f3af97 7706 {
f12dc422
L
7707 /* Check register-only source operand when two source
7708 operands are swapped. */
7709 if (!i.tm.operand_types[op].bitfield.baseindex
7710 && i.tm.operand_types[op + 1].bitfield.baseindex)
7711 {
7712 vex_reg = op;
7713 op += 2;
7714 gas_assert (mem == (vex_reg + 1)
7715 && op < i.operands);
7716 }
7717 else
7718 {
7719 vex_reg = op + 1;
7720 gas_assert (vex_reg < i.operands);
7721 }
c0f3af97 7722 }
7ab9ffdd 7723 }
2426c15f 7724 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7725 {
f12dc422 7726 /* For instructions with VexNDD, the register destination
7ab9ffdd 7727 is encoded in VEX prefix. */
f12dc422
L
7728 if (i.mem_operands == 0)
7729 {
7730 /* There is no memory operand. */
7731 gas_assert ((op + 2) == i.operands);
7732 vex_reg = op + 1;
7733 }
7734 else
8d63c93e 7735 {
ed438a93
JB
7736 /* There are only 2 non-immediate operands. */
7737 gas_assert (op < i.imm_operands + 2
7738 && i.operands == i.imm_operands + 2);
7739 vex_reg = i.imm_operands + 1;
f12dc422 7740 }
7ab9ffdd
L
7741 }
7742 else
7743 gas_assert (op < i.operands);
99018f42 7744
7ab9ffdd
L
7745 if (vex_reg != (unsigned int) ~0)
7746 {
f12dc422 7747 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7748
dc821c5f
JB
7749 if ((!type->bitfield.reg
7750 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7751 && !type->bitfield.regsimd
43234a1e 7752 && !operand_type_equal (type, &regmask))
7ab9ffdd 7753 abort ();
f88c9eb0 7754
7ab9ffdd
L
7755 i.vex.register_specifier = i.op[vex_reg].regs;
7756 }
7757
1b9f0c97
L
7758 /* Don't set OP operand twice. */
7759 if (vex_reg != op)
7ab9ffdd 7760 {
1b9f0c97
L
7761 /* If there is an extension opcode to put here, the
7762 register number must be put into the regmem field. */
7763 if (i.tm.extension_opcode != None)
7764 {
7765 i.rm.regmem = i.op[op].regs->reg_num;
7766 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7767 i.rex |= REX_B;
43234a1e
L
7768 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7769 i.vrex |= REX_B;
1b9f0c97
L
7770 }
7771 else
7772 {
7773 i.rm.reg = i.op[op].regs->reg_num;
7774 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7775 i.rex |= REX_R;
43234a1e
L
7776 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7777 i.vrex |= REX_R;
1b9f0c97 7778 }
7ab9ffdd 7779 }
252b5132 7780
29b0f896
AM
7781 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7782 must set it to 3 to indicate this is a register operand
7783 in the regmem field. */
7784 if (!i.mem_operands)
7785 i.rm.mode = 3;
7786 }
252b5132 7787
29b0f896 7788 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7789 if (i.tm.extension_opcode != None)
29b0f896
AM
7790 i.rm.reg = i.tm.extension_opcode;
7791 }
7792 return default_seg;
7793}
252b5132 7794
29b0f896 7795static void
e3bb37b5 7796output_branch (void)
29b0f896
AM
7797{
7798 char *p;
f8a5c266 7799 int size;
29b0f896
AM
7800 int code16;
7801 int prefix;
7802 relax_substateT subtype;
7803 symbolS *sym;
7804 offsetT off;
7805
f8a5c266 7806 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7807 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7808
7809 prefix = 0;
7810 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7811 {
29b0f896
AM
7812 prefix = 1;
7813 i.prefixes -= 1;
7814 code16 ^= CODE16;
252b5132 7815 }
29b0f896
AM
7816 /* Pentium4 branch hints. */
7817 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7818 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7819 {
29b0f896
AM
7820 prefix++;
7821 i.prefixes--;
7822 }
7823 if (i.prefix[REX_PREFIX] != 0)
7824 {
7825 prefix++;
7826 i.prefixes--;
2f66722d
AM
7827 }
7828
7e8b059b
L
7829 /* BND prefixed jump. */
7830 if (i.prefix[BND_PREFIX] != 0)
7831 {
7832 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7833 i.prefixes -= 1;
7834 }
7835
29b0f896
AM
7836 if (i.prefixes != 0 && !intel_syntax)
7837 as_warn (_("skipping prefixes on this instruction"));
7838
7839 /* It's always a symbol; End frag & setup for relax.
7840 Make sure there is enough room in this frag for the largest
7841 instruction we may generate in md_convert_frag. This is 2
7842 bytes for the opcode and room for the prefix and largest
7843 displacement. */
7844 frag_grow (prefix + 2 + 4);
7845 /* Prefix and 1 opcode byte go in fr_fix. */
7846 p = frag_more (prefix + 1);
7847 if (i.prefix[DATA_PREFIX] != 0)
7848 *p++ = DATA_PREFIX_OPCODE;
7849 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7850 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7851 *p++ = i.prefix[SEG_PREFIX];
7852 if (i.prefix[REX_PREFIX] != 0)
7853 *p++ = i.prefix[REX_PREFIX];
7854 *p = i.tm.base_opcode;
7855
7856 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7857 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7858 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7859 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7860 else
f8a5c266 7861 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7862 subtype |= code16;
3e73aa7c 7863
29b0f896
AM
7864 sym = i.op[0].disps->X_add_symbol;
7865 off = i.op[0].disps->X_add_number;
3e73aa7c 7866
29b0f896
AM
7867 if (i.op[0].disps->X_op != O_constant
7868 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7869 {
29b0f896
AM
7870 /* Handle complex expressions. */
7871 sym = make_expr_symbol (i.op[0].disps);
7872 off = 0;
7873 }
3e73aa7c 7874
29b0f896
AM
7875 /* 1 possible extra opcode + 4 byte displacement go in var part.
7876 Pass reloc in fr_var. */
d258b828 7877 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7878}
3e73aa7c 7879
bd7ab16b
L
7880#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7881/* Return TRUE iff PLT32 relocation should be used for branching to
7882 symbol S. */
7883
7884static bfd_boolean
7885need_plt32_p (symbolS *s)
7886{
7887 /* PLT32 relocation is ELF only. */
7888 if (!IS_ELF)
7889 return FALSE;
7890
a5def729
RO
7891#ifdef TE_SOLARIS
7892 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7893 krtld support it. */
7894 return FALSE;
7895#endif
7896
bd7ab16b
L
7897 /* Since there is no need to prepare for PLT branch on x86-64, we
7898 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7899 be used as a marker for 32-bit PC-relative branches. */
7900 if (!object_64bit)
7901 return FALSE;
7902
7903 /* Weak or undefined symbol need PLT32 relocation. */
7904 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7905 return TRUE;
7906
7907 /* Non-global symbol doesn't need PLT32 relocation. */
7908 if (! S_IS_EXTERNAL (s))
7909 return FALSE;
7910
7911 /* Other global symbols need PLT32 relocation. NB: Symbol with
7912 non-default visibilities are treated as normal global symbol
7913 so that PLT32 relocation can be used as a marker for 32-bit
7914 PC-relative branches. It is useful for linker relaxation. */
7915 return TRUE;
7916}
7917#endif
7918
29b0f896 7919static void
e3bb37b5 7920output_jump (void)
29b0f896
AM
7921{
7922 char *p;
7923 int size;
3e02c1cc 7924 fixS *fixP;
bd7ab16b 7925 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7926
40fb9820 7927 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7928 {
7929 /* This is a loop or jecxz type instruction. */
7930 size = 1;
7931 if (i.prefix[ADDR_PREFIX] != 0)
7932 {
7933 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7934 i.prefixes -= 1;
7935 }
7936 /* Pentium4 branch hints. */
7937 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7938 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7939 {
7940 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7941 i.prefixes--;
3e73aa7c
JH
7942 }
7943 }
29b0f896
AM
7944 else
7945 {
7946 int code16;
3e73aa7c 7947
29b0f896
AM
7948 code16 = 0;
7949 if (flag_code == CODE_16BIT)
7950 code16 = CODE16;
3e73aa7c 7951
29b0f896
AM
7952 if (i.prefix[DATA_PREFIX] != 0)
7953 {
7954 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7955 i.prefixes -= 1;
7956 code16 ^= CODE16;
7957 }
252b5132 7958
29b0f896
AM
7959 size = 4;
7960 if (code16)
7961 size = 2;
7962 }
9fcc94b6 7963
29b0f896
AM
7964 if (i.prefix[REX_PREFIX] != 0)
7965 {
7966 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7967 i.prefixes -= 1;
7968 }
252b5132 7969
7e8b059b
L
7970 /* BND prefixed jump. */
7971 if (i.prefix[BND_PREFIX] != 0)
7972 {
7973 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7974 i.prefixes -= 1;
7975 }
7976
29b0f896
AM
7977 if (i.prefixes != 0 && !intel_syntax)
7978 as_warn (_("skipping prefixes on this instruction"));
e0890092 7979
42164a71
L
7980 p = frag_more (i.tm.opcode_length + size);
7981 switch (i.tm.opcode_length)
7982 {
7983 case 2:
7984 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7985 /* Fall through. */
42164a71
L
7986 case 1:
7987 *p++ = i.tm.base_opcode;
7988 break;
7989 default:
7990 abort ();
7991 }
e0890092 7992
bd7ab16b
L
7993#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7994 if (size == 4
7995 && jump_reloc == NO_RELOC
7996 && need_plt32_p (i.op[0].disps->X_add_symbol))
7997 jump_reloc = BFD_RELOC_X86_64_PLT32;
7998#endif
7999
8000 jump_reloc = reloc (size, 1, 1, jump_reloc);
8001
3e02c1cc 8002 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8003 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8004
8005 /* All jumps handled here are signed, but don't use a signed limit
8006 check for 32 and 16 bit jumps as we want to allow wrap around at
8007 4G and 64k respectively. */
8008 if (size == 1)
8009 fixP->fx_signed = 1;
29b0f896 8010}
e0890092 8011
29b0f896 8012static void
e3bb37b5 8013output_interseg_jump (void)
29b0f896
AM
8014{
8015 char *p;
8016 int size;
8017 int prefix;
8018 int code16;
252b5132 8019
29b0f896
AM
8020 code16 = 0;
8021 if (flag_code == CODE_16BIT)
8022 code16 = CODE16;
a217f122 8023
29b0f896
AM
8024 prefix = 0;
8025 if (i.prefix[DATA_PREFIX] != 0)
8026 {
8027 prefix = 1;
8028 i.prefixes -= 1;
8029 code16 ^= CODE16;
8030 }
8031 if (i.prefix[REX_PREFIX] != 0)
8032 {
8033 prefix++;
8034 i.prefixes -= 1;
8035 }
252b5132 8036
29b0f896
AM
8037 size = 4;
8038 if (code16)
8039 size = 2;
252b5132 8040
29b0f896
AM
8041 if (i.prefixes != 0 && !intel_syntax)
8042 as_warn (_("skipping prefixes on this instruction"));
252b5132 8043
29b0f896
AM
8044 /* 1 opcode; 2 segment; offset */
8045 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8046
29b0f896
AM
8047 if (i.prefix[DATA_PREFIX] != 0)
8048 *p++ = DATA_PREFIX_OPCODE;
252b5132 8049
29b0f896
AM
8050 if (i.prefix[REX_PREFIX] != 0)
8051 *p++ = i.prefix[REX_PREFIX];
252b5132 8052
29b0f896
AM
8053 *p++ = i.tm.base_opcode;
8054 if (i.op[1].imms->X_op == O_constant)
8055 {
8056 offsetT n = i.op[1].imms->X_add_number;
252b5132 8057
29b0f896
AM
8058 if (size == 2
8059 && !fits_in_unsigned_word (n)
8060 && !fits_in_signed_word (n))
8061 {
8062 as_bad (_("16-bit jump out of range"));
8063 return;
8064 }
8065 md_number_to_chars (p, n, size);
8066 }
8067 else
8068 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8069 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8070 if (i.op[0].imms->X_op != O_constant)
8071 as_bad (_("can't handle non absolute segment in `%s'"),
8072 i.tm.name);
8073 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8074}
a217f122 8075
b4a3a7b4
L
8076#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8077void
8078x86_cleanup (void)
8079{
8080 char *p;
8081 asection *seg = now_seg;
8082 subsegT subseg = now_subseg;
8083 asection *sec;
8084 unsigned int alignment, align_size_1;
8085 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8086 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8087 unsigned int padding;
8088
8089 if (!IS_ELF || !x86_used_note)
8090 return;
8091
b4a3a7b4
L
8092 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8093
8094 /* The .note.gnu.property section layout:
8095
8096 Field Length Contents
8097 ---- ---- ----
8098 n_namsz 4 4
8099 n_descsz 4 The note descriptor size
8100 n_type 4 NT_GNU_PROPERTY_TYPE_0
8101 n_name 4 "GNU"
8102 n_desc n_descsz The program property array
8103 .... .... ....
8104 */
8105
8106 /* Create the .note.gnu.property section. */
8107 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8108 bfd_set_section_flags (sec,
b4a3a7b4
L
8109 (SEC_ALLOC
8110 | SEC_LOAD
8111 | SEC_DATA
8112 | SEC_HAS_CONTENTS
8113 | SEC_READONLY));
8114
8115 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8116 {
8117 align_size_1 = 7;
8118 alignment = 3;
8119 }
8120 else
8121 {
8122 align_size_1 = 3;
8123 alignment = 2;
8124 }
8125
fd361982 8126 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8127 elf_section_type (sec) = SHT_NOTE;
8128
8129 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8130 + 4-byte data */
8131 isa_1_descsz_raw = 4 + 4 + 4;
8132 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8133 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8134
8135 feature_2_descsz_raw = isa_1_descsz;
8136 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8137 + 4-byte data */
8138 feature_2_descsz_raw += 4 + 4 + 4;
8139 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8140 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8141 & ~align_size_1);
8142
8143 descsz = feature_2_descsz;
8144 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8145 p = frag_more (4 + 4 + 4 + 4 + descsz);
8146
8147 /* Write n_namsz. */
8148 md_number_to_chars (p, (valueT) 4, 4);
8149
8150 /* Write n_descsz. */
8151 md_number_to_chars (p + 4, (valueT) descsz, 4);
8152
8153 /* Write n_type. */
8154 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8155
8156 /* Write n_name. */
8157 memcpy (p + 4 * 3, "GNU", 4);
8158
8159 /* Write 4-byte type. */
8160 md_number_to_chars (p + 4 * 4,
8161 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8162
8163 /* Write 4-byte data size. */
8164 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8165
8166 /* Write 4-byte data. */
8167 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8168
8169 /* Zero out paddings. */
8170 padding = isa_1_descsz - isa_1_descsz_raw;
8171 if (padding)
8172 memset (p + 4 * 7, 0, padding);
8173
8174 /* Write 4-byte type. */
8175 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8176 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8177
8178 /* Write 4-byte data size. */
8179 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8180
8181 /* Write 4-byte data. */
8182 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8183 (valueT) x86_feature_2_used, 4);
8184
8185 /* Zero out paddings. */
8186 padding = feature_2_descsz - feature_2_descsz_raw;
8187 if (padding)
8188 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8189
8190 /* We probably can't restore the current segment, for there likely
8191 isn't one yet... */
8192 if (seg && subseg)
8193 subseg_set (seg, subseg);
8194}
8195#endif
8196
9c33702b
JB
8197static unsigned int
8198encoding_length (const fragS *start_frag, offsetT start_off,
8199 const char *frag_now_ptr)
8200{
8201 unsigned int len = 0;
8202
8203 if (start_frag != frag_now)
8204 {
8205 const fragS *fr = start_frag;
8206
8207 do {
8208 len += fr->fr_fix;
8209 fr = fr->fr_next;
8210 } while (fr && fr != frag_now);
8211 }
8212
8213 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8214}
8215
29b0f896 8216static void
e3bb37b5 8217output_insn (void)
29b0f896 8218{
2bbd9c25
JJ
8219 fragS *insn_start_frag;
8220 offsetT insn_start_off;
8221
b4a3a7b4
L
8222#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8223 if (IS_ELF && x86_used_note)
8224 {
8225 if (i.tm.cpu_flags.bitfield.cpucmov)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8227 if (i.tm.cpu_flags.bitfield.cpusse)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8229 if (i.tm.cpu_flags.bitfield.cpusse2)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8231 if (i.tm.cpu_flags.bitfield.cpusse3)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8233 if (i.tm.cpu_flags.bitfield.cpussse3)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8235 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8237 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8239 if (i.tm.cpu_flags.bitfield.cpuavx)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8241 if (i.tm.cpu_flags.bitfield.cpuavx2)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8243 if (i.tm.cpu_flags.bitfield.cpufma)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8263 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8264 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8265 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8266 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8267 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8269 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8270 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8271 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8272 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8273 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8274 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8275
8276 if (i.tm.cpu_flags.bitfield.cpu8087
8277 || i.tm.cpu_flags.bitfield.cpu287
8278 || i.tm.cpu_flags.bitfield.cpu387
8279 || i.tm.cpu_flags.bitfield.cpu687
8280 || i.tm.cpu_flags.bitfield.cpufisttp)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8282 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8283 Xfence instructions. */
8284 if (i.tm.base_opcode != 0xf18
8285 && i.tm.base_opcode != 0xf0d
c3949f43 8286 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8287 && (i.has_regmmx
8288 || i.tm.cpu_flags.bitfield.cpummx
8289 || i.tm.cpu_flags.bitfield.cpua3dnow
8290 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8292 if (i.has_regxmm)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8294 if (i.has_regymm)
8295 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8296 if (i.has_regzmm)
8297 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8298 if (i.tm.cpu_flags.bitfield.cpufxsr)
8299 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8300 if (i.tm.cpu_flags.bitfield.cpuxsave)
8301 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8302 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8303 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8304 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8305 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8306 }
8307#endif
8308
29b0f896
AM
8309 /* Tie dwarf2 debug info to the address at the start of the insn.
8310 We can't do this after the insn has been output as the current
8311 frag may have been closed off. eg. by frag_var. */
8312 dwarf2_emit_insn (0);
8313
2bbd9c25
JJ
8314 insn_start_frag = frag_now;
8315 insn_start_off = frag_now_fix ();
8316
29b0f896 8317 /* Output jumps. */
40fb9820 8318 if (i.tm.opcode_modifier.jump)
29b0f896 8319 output_branch ();
40fb9820
L
8320 else if (i.tm.opcode_modifier.jumpbyte
8321 || i.tm.opcode_modifier.jumpdword)
29b0f896 8322 output_jump ();
40fb9820 8323 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8324 output_interseg_jump ();
8325 else
8326 {
8327 /* Output normal instructions here. */
8328 char *p;
8329 unsigned char *q;
47465058 8330 unsigned int j;
331d2d0d 8331 unsigned int prefix;
4dffcebc 8332
e4e00185 8333 if (avoid_fence
c3949f43
JB
8334 && (i.tm.base_opcode == 0xfaee8
8335 || i.tm.base_opcode == 0xfaef0
8336 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8337 {
8338 /* Encode lfence, mfence, and sfence as
8339 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8340 offsetT val = 0x240483f0ULL;
8341 p = frag_more (5);
8342 md_number_to_chars (p, val, 5);
8343 return;
8344 }
8345
d022bddd
IT
8346 /* Some processors fail on LOCK prefix. This options makes
8347 assembler ignore LOCK prefix and serves as a workaround. */
8348 if (omit_lock_prefix)
8349 {
8350 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8351 return;
8352 i.prefix[LOCK_PREFIX] = 0;
8353 }
8354
43234a1e
L
8355 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8356 don't need the explicit prefix. */
8357 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8358 {
c0f3af97 8359 switch (i.tm.opcode_length)
bc4bd9ab 8360 {
c0f3af97
L
8361 case 3:
8362 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8363 {
c0f3af97 8364 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8365 if (!i.tm.cpu_flags.bitfield.cpupadlock
8366 || prefix != REPE_PREFIX_OPCODE
8367 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8368 add_prefix (prefix);
c0f3af97
L
8369 }
8370 break;
8371 case 2:
8372 if ((i.tm.base_opcode & 0xff0000) != 0)
8373 {
8374 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8375 add_prefix (prefix);
4dffcebc 8376 }
c0f3af97
L
8377 break;
8378 case 1:
8379 break;
390c91cf
L
8380 case 0:
8381 /* Check for pseudo prefixes. */
8382 as_bad_where (insn_start_frag->fr_file,
8383 insn_start_frag->fr_line,
8384 _("pseudo prefix without instruction"));
8385 return;
c0f3af97
L
8386 default:
8387 abort ();
bc4bd9ab 8388 }
c0f3af97 8389
6d19a37a 8390#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8391 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8392 R_X86_64_GOTTPOFF relocation so that linker can safely
8393 perform IE->LE optimization. */
8394 if (x86_elf_abi == X86_64_X32_ABI
8395 && i.operands == 2
8396 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8397 && i.prefix[REX_PREFIX] == 0)
8398 add_prefix (REX_OPCODE);
6d19a37a 8399#endif
cf61b747 8400
c0f3af97
L
8401 /* The prefix bytes. */
8402 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8403 if (*q)
8404 FRAG_APPEND_1_CHAR (*q);
0f10071e 8405 }
ae5c1c7b 8406 else
c0f3af97
L
8407 {
8408 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8409 if (*q)
8410 switch (j)
8411 {
8412 case REX_PREFIX:
8413 /* REX byte is encoded in VEX prefix. */
8414 break;
8415 case SEG_PREFIX:
8416 case ADDR_PREFIX:
8417 FRAG_APPEND_1_CHAR (*q);
8418 break;
8419 default:
8420 /* There should be no other prefixes for instructions
8421 with VEX prefix. */
8422 abort ();
8423 }
8424
43234a1e
L
8425 /* For EVEX instructions i.vrex should become 0 after
8426 build_evex_prefix. For VEX instructions upper 16 registers
8427 aren't available, so VREX should be 0. */
8428 if (i.vrex)
8429 abort ();
c0f3af97
L
8430 /* Now the VEX prefix. */
8431 p = frag_more (i.vex.length);
8432 for (j = 0; j < i.vex.length; j++)
8433 p[j] = i.vex.bytes[j];
8434 }
252b5132 8435
29b0f896 8436 /* Now the opcode; be careful about word order here! */
4dffcebc 8437 if (i.tm.opcode_length == 1)
29b0f896
AM
8438 {
8439 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8440 }
8441 else
8442 {
4dffcebc 8443 switch (i.tm.opcode_length)
331d2d0d 8444 {
43234a1e
L
8445 case 4:
8446 p = frag_more (4);
8447 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8448 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8449 break;
4dffcebc 8450 case 3:
331d2d0d
L
8451 p = frag_more (3);
8452 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8453 break;
8454 case 2:
8455 p = frag_more (2);
8456 break;
8457 default:
8458 abort ();
8459 break;
331d2d0d 8460 }
0f10071e 8461
29b0f896
AM
8462 /* Put out high byte first: can't use md_number_to_chars! */
8463 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8464 *p = i.tm.base_opcode & 0xff;
8465 }
3e73aa7c 8466
29b0f896 8467 /* Now the modrm byte and sib byte (if present). */
40fb9820 8468 if (i.tm.opcode_modifier.modrm)
29b0f896 8469 {
4a3523fa
L
8470 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8471 | i.rm.reg << 3
8472 | i.rm.mode << 6));
29b0f896
AM
8473 /* If i.rm.regmem == ESP (4)
8474 && i.rm.mode != (Register mode)
8475 && not 16 bit
8476 ==> need second modrm byte. */
8477 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8478 && i.rm.mode != 3
dc821c5f 8479 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8480 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8481 | i.sib.index << 3
8482 | i.sib.scale << 6));
29b0f896 8483 }
3e73aa7c 8484
29b0f896 8485 if (i.disp_operands)
2bbd9c25 8486 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8487
29b0f896 8488 if (i.imm_operands)
2bbd9c25 8489 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8490
8491 /*
8492 * frag_now_fix () returning plain abs_section_offset when we're in the
8493 * absolute section, and abs_section_offset not getting updated as data
8494 * gets added to the frag breaks the logic below.
8495 */
8496 if (now_seg != absolute_section)
8497 {
8498 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8499 if (j > 15)
8500 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8501 j);
8502 }
29b0f896 8503 }
252b5132 8504
29b0f896
AM
8505#ifdef DEBUG386
8506 if (flag_debug)
8507 {
7b81dfbb 8508 pi ("" /*line*/, &i);
29b0f896
AM
8509 }
8510#endif /* DEBUG386 */
8511}
252b5132 8512
e205caa7
L
8513/* Return the size of the displacement operand N. */
8514
8515static int
8516disp_size (unsigned int n)
8517{
8518 int size = 4;
43234a1e 8519
b5014f7a 8520 if (i.types[n].bitfield.disp64)
40fb9820
L
8521 size = 8;
8522 else if (i.types[n].bitfield.disp8)
8523 size = 1;
8524 else if (i.types[n].bitfield.disp16)
8525 size = 2;
e205caa7
L
8526 return size;
8527}
8528
8529/* Return the size of the immediate operand N. */
8530
8531static int
8532imm_size (unsigned int n)
8533{
8534 int size = 4;
40fb9820
L
8535 if (i.types[n].bitfield.imm64)
8536 size = 8;
8537 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8538 size = 1;
8539 else if (i.types[n].bitfield.imm16)
8540 size = 2;
e205caa7
L
8541 return size;
8542}
8543
29b0f896 8544static void
64e74474 8545output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8546{
8547 char *p;
8548 unsigned int n;
252b5132 8549
29b0f896
AM
8550 for (n = 0; n < i.operands; n++)
8551 {
b5014f7a 8552 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8553 {
8554 if (i.op[n].disps->X_op == O_constant)
8555 {
e205caa7 8556 int size = disp_size (n);
43234a1e 8557 offsetT val = i.op[n].disps->X_add_number;
252b5132 8558
629cfaf1
JB
8559 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8560 size);
29b0f896
AM
8561 p = frag_more (size);
8562 md_number_to_chars (p, val, size);
8563 }
8564 else
8565 {
f86103b7 8566 enum bfd_reloc_code_real reloc_type;
e205caa7 8567 int size = disp_size (n);
40fb9820 8568 int sign = i.types[n].bitfield.disp32s;
29b0f896 8569 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8570 fixS *fixP;
29b0f896 8571
e205caa7 8572 /* We can't have 8 bit displacement here. */
9c2799c2 8573 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8574
29b0f896
AM
8575 /* The PC relative address is computed relative
8576 to the instruction boundary, so in case immediate
8577 fields follows, we need to adjust the value. */
8578 if (pcrel && i.imm_operands)
8579 {
29b0f896 8580 unsigned int n1;
e205caa7 8581 int sz = 0;
252b5132 8582
29b0f896 8583 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8584 if (operand_type_check (i.types[n1], imm))
252b5132 8585 {
e205caa7
L
8586 /* Only one immediate is allowed for PC
8587 relative address. */
9c2799c2 8588 gas_assert (sz == 0);
e205caa7
L
8589 sz = imm_size (n1);
8590 i.op[n].disps->X_add_number -= sz;
252b5132 8591 }
29b0f896 8592 /* We should find the immediate. */
9c2799c2 8593 gas_assert (sz != 0);
29b0f896 8594 }
520dc8e8 8595
29b0f896 8596 p = frag_more (size);
d258b828 8597 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8598 if (GOT_symbol
2bbd9c25 8599 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8600 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8601 || reloc_type == BFD_RELOC_X86_64_32S
8602 || (reloc_type == BFD_RELOC_64
8603 && object_64bit))
d6ab8113
JB
8604 && (i.op[n].disps->X_op == O_symbol
8605 || (i.op[n].disps->X_op == O_add
8606 && ((symbol_get_value_expression
8607 (i.op[n].disps->X_op_symbol)->X_op)
8608 == O_subtract))))
8609 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8610 {
4fa24527 8611 if (!object_64bit)
7b81dfbb
AJ
8612 {
8613 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8614 i.op[n].imms->X_add_number +=
8615 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8616 }
8617 else if (reloc_type == BFD_RELOC_64)
8618 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8619 else
7b81dfbb
AJ
8620 /* Don't do the adjustment for x86-64, as there
8621 the pcrel addressing is relative to the _next_
8622 insn, and that is taken care of in other code. */
d6ab8113 8623 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8624 }
02a86693
L
8625 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8626 size, i.op[n].disps, pcrel,
8627 reloc_type);
8628 /* Check for "call/jmp *mem", "mov mem, %reg",
8629 "test %reg, mem" and "binop mem, %reg" where binop
8630 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8631 instructions without data prefix. Always generate
8632 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8633 if (i.prefix[DATA_PREFIX] == 0
8634 && (generate_relax_relocations
8635 || (!object_64bit
8636 && i.rm.mode == 0
8637 && i.rm.regmem == 5))
0cb4071e
L
8638 && (i.rm.mode == 2
8639 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8640 && ((i.operands == 1
8641 && i.tm.base_opcode == 0xff
8642 && (i.rm.reg == 2 || i.rm.reg == 4))
8643 || (i.operands == 2
8644 && (i.tm.base_opcode == 0x8b
8645 || i.tm.base_opcode == 0x85
8646 || (i.tm.base_opcode & 0xc7) == 0x03))))
8647 {
8648 if (object_64bit)
8649 {
8650 fixP->fx_tcbit = i.rex != 0;
8651 if (i.base_reg
e968fc9b 8652 && (i.base_reg->reg_num == RegIP))
02a86693
L
8653 fixP->fx_tcbit2 = 1;
8654 }
8655 else
8656 fixP->fx_tcbit2 = 1;
8657 }
29b0f896
AM
8658 }
8659 }
8660 }
8661}
252b5132 8662
29b0f896 8663static void
64e74474 8664output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8665{
8666 char *p;
8667 unsigned int n;
252b5132 8668
29b0f896
AM
8669 for (n = 0; n < i.operands; n++)
8670 {
43234a1e
L
8671 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8672 if (i.rounding && (int) n == i.rounding->operand)
8673 continue;
8674
40fb9820 8675 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8676 {
8677 if (i.op[n].imms->X_op == O_constant)
8678 {
e205caa7 8679 int size = imm_size (n);
29b0f896 8680 offsetT val;
b4cac588 8681
29b0f896
AM
8682 val = offset_in_range (i.op[n].imms->X_add_number,
8683 size);
8684 p = frag_more (size);
8685 md_number_to_chars (p, val, size);
8686 }
8687 else
8688 {
8689 /* Not absolute_section.
8690 Need a 32-bit fixup (don't support 8bit
8691 non-absolute imms). Try to support other
8692 sizes ... */
f86103b7 8693 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8694 int size = imm_size (n);
8695 int sign;
29b0f896 8696
40fb9820 8697 if (i.types[n].bitfield.imm32s
a7d61044 8698 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8699 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8700 sign = 1;
e205caa7
L
8701 else
8702 sign = 0;
520dc8e8 8703
29b0f896 8704 p = frag_more (size);
d258b828 8705 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8706
2bbd9c25
JJ
8707 /* This is tough to explain. We end up with this one if we
8708 * have operands that look like
8709 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8710 * obtain the absolute address of the GOT, and it is strongly
8711 * preferable from a performance point of view to avoid using
8712 * a runtime relocation for this. The actual sequence of
8713 * instructions often look something like:
8714 *
8715 * call .L66
8716 * .L66:
8717 * popl %ebx
8718 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8719 *
8720 * The call and pop essentially return the absolute address
8721 * of the label .L66 and store it in %ebx. The linker itself
8722 * will ultimately change the first operand of the addl so
8723 * that %ebx points to the GOT, but to keep things simple, the
8724 * .o file must have this operand set so that it generates not
8725 * the absolute address of .L66, but the absolute address of
8726 * itself. This allows the linker itself simply treat a GOTPC
8727 * relocation as asking for a pcrel offset to the GOT to be
8728 * added in, and the addend of the relocation is stored in the
8729 * operand field for the instruction itself.
8730 *
8731 * Our job here is to fix the operand so that it would add
8732 * the correct offset so that %ebx would point to itself. The
8733 * thing that is tricky is that .-.L66 will point to the
8734 * beginning of the instruction, so we need to further modify
8735 * the operand so that it will point to itself. There are
8736 * other cases where you have something like:
8737 *
8738 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8739 *
8740 * and here no correction would be required. Internally in
8741 * the assembler we treat operands of this form as not being
8742 * pcrel since the '.' is explicitly mentioned, and I wonder
8743 * whether it would simplify matters to do it this way. Who
8744 * knows. In earlier versions of the PIC patches, the
8745 * pcrel_adjust field was used to store the correction, but
8746 * since the expression is not pcrel, I felt it would be
8747 * confusing to do it this way. */
8748
d6ab8113 8749 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8750 || reloc_type == BFD_RELOC_X86_64_32S
8751 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8752 && GOT_symbol
8753 && GOT_symbol == i.op[n].imms->X_add_symbol
8754 && (i.op[n].imms->X_op == O_symbol
8755 || (i.op[n].imms->X_op == O_add
8756 && ((symbol_get_value_expression
8757 (i.op[n].imms->X_op_symbol)->X_op)
8758 == O_subtract))))
8759 {
4fa24527 8760 if (!object_64bit)
d6ab8113 8761 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8762 else if (size == 4)
d6ab8113 8763 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8764 else if (size == 8)
8765 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8766 i.op[n].imms->X_add_number +=
8767 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8768 }
29b0f896
AM
8769 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8770 i.op[n].imms, 0, reloc_type);
8771 }
8772 }
8773 }
252b5132
RH
8774}
8775\f
d182319b
JB
8776/* x86_cons_fix_new is called via the expression parsing code when a
8777 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8778static int cons_sign = -1;
8779
8780void
e3bb37b5 8781x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8782 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8783{
d258b828 8784 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8785
8786#ifdef TE_PE
8787 if (exp->X_op == O_secrel)
8788 {
8789 exp->X_op = O_symbol;
8790 r = BFD_RELOC_32_SECREL;
8791 }
8792#endif
8793
8794 fix_new_exp (frag, off, len, exp, 0, r);
8795}
8796
357d1bd8
L
8797/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8798 purpose of the `.dc.a' internal pseudo-op. */
8799
8800int
8801x86_address_bytes (void)
8802{
8803 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8804 return 4;
8805 return stdoutput->arch_info->bits_per_address / 8;
8806}
8807
d382c579
TG
8808#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8809 || defined (LEX_AT)
d258b828 8810# define lex_got(reloc, adjust, types) NULL
718ddfc0 8811#else
f3c180ae
AM
8812/* Parse operands of the form
8813 <symbol>@GOTOFF+<nnn>
8814 and similar .plt or .got references.
8815
8816 If we find one, set up the correct relocation in RELOC and copy the
8817 input string, minus the `@GOTOFF' into a malloc'd buffer for
8818 parsing by the calling routine. Return this buffer, and if ADJUST
8819 is non-null set it to the length of the string we removed from the
8820 input line. Otherwise return NULL. */
8821static char *
91d6fa6a 8822lex_got (enum bfd_reloc_code_real *rel,
64e74474 8823 int *adjust,
d258b828 8824 i386_operand_type *types)
f3c180ae 8825{
7b81dfbb
AJ
8826 /* Some of the relocations depend on the size of what field is to
8827 be relocated. But in our callers i386_immediate and i386_displacement
8828 we don't yet know the operand size (this will be set by insn
8829 matching). Hence we record the word32 relocation here,
8830 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8831 static const struct {
8832 const char *str;
cff8d58a 8833 int len;
4fa24527 8834 const enum bfd_reloc_code_real rel[2];
40fb9820 8835 const i386_operand_type types64;
f3c180ae 8836 } gotrel[] = {
8ce3d284 8837#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8838 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8839 BFD_RELOC_SIZE32 },
8840 OPERAND_TYPE_IMM32_64 },
8ce3d284 8841#endif
cff8d58a
L
8842 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8843 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8844 OPERAND_TYPE_IMM64 },
cff8d58a
L
8845 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8846 BFD_RELOC_X86_64_PLT32 },
40fb9820 8847 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8848 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8849 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8850 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8851 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8852 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8853 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8854 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8855 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8856 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8857 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8858 BFD_RELOC_X86_64_TLSGD },
40fb9820 8859 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8860 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8861 _dummy_first_bfd_reloc_code_real },
40fb9820 8862 OPERAND_TYPE_NONE },
cff8d58a
L
8863 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8864 BFD_RELOC_X86_64_TLSLD },
40fb9820 8865 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8866 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8867 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8868 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8869 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8870 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8871 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8872 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8873 _dummy_first_bfd_reloc_code_real },
40fb9820 8874 OPERAND_TYPE_NONE },
cff8d58a
L
8875 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8876 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8877 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8878 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8879 _dummy_first_bfd_reloc_code_real },
40fb9820 8880 OPERAND_TYPE_NONE },
cff8d58a
L
8881 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8882 _dummy_first_bfd_reloc_code_real },
40fb9820 8883 OPERAND_TYPE_NONE },
cff8d58a
L
8884 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8885 BFD_RELOC_X86_64_GOT32 },
40fb9820 8886 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8887 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8888 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8889 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8890 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8891 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8892 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8893 };
8894 char *cp;
8895 unsigned int j;
8896
d382c579 8897#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8898 if (!IS_ELF)
8899 return NULL;
d382c579 8900#endif
718ddfc0 8901
f3c180ae 8902 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8903 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8904 return NULL;
8905
47465058 8906 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8907 {
cff8d58a 8908 int len = gotrel[j].len;
28f81592 8909 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8910 {
4fa24527 8911 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8912 {
28f81592
AM
8913 int first, second;
8914 char *tmpbuf, *past_reloc;
f3c180ae 8915
91d6fa6a 8916 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8917
3956db08
JB
8918 if (types)
8919 {
8920 if (flag_code != CODE_64BIT)
40fb9820
L
8921 {
8922 types->bitfield.imm32 = 1;
8923 types->bitfield.disp32 = 1;
8924 }
3956db08
JB
8925 else
8926 *types = gotrel[j].types64;
8927 }
8928
8fd4256d 8929 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8930 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8931
28f81592 8932 /* The length of the first part of our input line. */
f3c180ae 8933 first = cp - input_line_pointer;
28f81592
AM
8934
8935 /* The second part goes from after the reloc token until
67c11a9b 8936 (and including) an end_of_line char or comma. */
28f81592 8937 past_reloc = cp + 1 + len;
67c11a9b
AM
8938 cp = past_reloc;
8939 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8940 ++cp;
8941 second = cp + 1 - past_reloc;
28f81592
AM
8942
8943 /* Allocate and copy string. The trailing NUL shouldn't
8944 be necessary, but be safe. */
add39d23 8945 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8946 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8947 if (second != 0 && *past_reloc != ' ')
8948 /* Replace the relocation token with ' ', so that
8949 errors like foo@GOTOFF1 will be detected. */
8950 tmpbuf[first++] = ' ';
af89796a
L
8951 else
8952 /* Increment length by 1 if the relocation token is
8953 removed. */
8954 len++;
8955 if (adjust)
8956 *adjust = len;
0787a12d
AM
8957 memcpy (tmpbuf + first, past_reloc, second);
8958 tmpbuf[first + second] = '\0';
f3c180ae
AM
8959 return tmpbuf;
8960 }
8961
4fa24527
JB
8962 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8963 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8964 return NULL;
8965 }
8966 }
8967
8968 /* Might be a symbol version string. Don't as_bad here. */
8969 return NULL;
8970}
4e4f7c87 8971#endif
f3c180ae 8972
a988325c
NC
8973#ifdef TE_PE
8974#ifdef lex_got
8975#undef lex_got
8976#endif
8977/* Parse operands of the form
8978 <symbol>@SECREL32+<nnn>
8979
8980 If we find one, set up the correct relocation in RELOC and copy the
8981 input string, minus the `@SECREL32' into a malloc'd buffer for
8982 parsing by the calling routine. Return this buffer, and if ADJUST
8983 is non-null set it to the length of the string we removed from the
34bca508
L
8984 input line. Otherwise return NULL.
8985
a988325c
NC
8986 This function is copied from the ELF version above adjusted for PE targets. */
8987
8988static char *
8989lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8990 int *adjust ATTRIBUTE_UNUSED,
d258b828 8991 i386_operand_type *types)
a988325c
NC
8992{
8993 static const struct
8994 {
8995 const char *str;
8996 int len;
8997 const enum bfd_reloc_code_real rel[2];
8998 const i386_operand_type types64;
8999 }
9000 gotrel[] =
9001 {
9002 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9003 BFD_RELOC_32_SECREL },
9004 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9005 };
9006
9007 char *cp;
9008 unsigned j;
9009
9010 for (cp = input_line_pointer; *cp != '@'; cp++)
9011 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9012 return NULL;
9013
9014 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9015 {
9016 int len = gotrel[j].len;
9017
9018 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9019 {
9020 if (gotrel[j].rel[object_64bit] != 0)
9021 {
9022 int first, second;
9023 char *tmpbuf, *past_reloc;
9024
9025 *rel = gotrel[j].rel[object_64bit];
9026 if (adjust)
9027 *adjust = len;
9028
9029 if (types)
9030 {
9031 if (flag_code != CODE_64BIT)
9032 {
9033 types->bitfield.imm32 = 1;
9034 types->bitfield.disp32 = 1;
9035 }
9036 else
9037 *types = gotrel[j].types64;
9038 }
9039
9040 /* The length of the first part of our input line. */
9041 first = cp - input_line_pointer;
9042
9043 /* The second part goes from after the reloc token until
9044 (and including) an end_of_line char or comma. */
9045 past_reloc = cp + 1 + len;
9046 cp = past_reloc;
9047 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9048 ++cp;
9049 second = cp + 1 - past_reloc;
9050
9051 /* Allocate and copy string. The trailing NUL shouldn't
9052 be necessary, but be safe. */
add39d23 9053 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9054 memcpy (tmpbuf, input_line_pointer, first);
9055 if (second != 0 && *past_reloc != ' ')
9056 /* Replace the relocation token with ' ', so that
9057 errors like foo@SECLREL321 will be detected. */
9058 tmpbuf[first++] = ' ';
9059 memcpy (tmpbuf + first, past_reloc, second);
9060 tmpbuf[first + second] = '\0';
9061 return tmpbuf;
9062 }
9063
9064 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9065 gotrel[j].str, 1 << (5 + object_64bit));
9066 return NULL;
9067 }
9068 }
9069
9070 /* Might be a symbol version string. Don't as_bad here. */
9071 return NULL;
9072}
9073
9074#endif /* TE_PE */
9075
62ebcb5c 9076bfd_reloc_code_real_type
e3bb37b5 9077x86_cons (expressionS *exp, int size)
f3c180ae 9078{
62ebcb5c
AM
9079 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9080
ee86248c
JB
9081 intel_syntax = -intel_syntax;
9082
3c7b9c2c 9083 exp->X_md = 0;
4fa24527 9084 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9085 {
9086 /* Handle @GOTOFF and the like in an expression. */
9087 char *save;
9088 char *gotfree_input_line;
4a57f2cf 9089 int adjust = 0;
f3c180ae
AM
9090
9091 save = input_line_pointer;
d258b828 9092 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9093 if (gotfree_input_line)
9094 input_line_pointer = gotfree_input_line;
9095
9096 expression (exp);
9097
9098 if (gotfree_input_line)
9099 {
9100 /* expression () has merrily parsed up to the end of line,
9101 or a comma - in the wrong buffer. Transfer how far
9102 input_line_pointer has moved to the right buffer. */
9103 input_line_pointer = (save
9104 + (input_line_pointer - gotfree_input_line)
9105 + adjust);
9106 free (gotfree_input_line);
3992d3b7
AM
9107 if (exp->X_op == O_constant
9108 || exp->X_op == O_absent
9109 || exp->X_op == O_illegal
0398aac5 9110 || exp->X_op == O_register
3992d3b7
AM
9111 || exp->X_op == O_big)
9112 {
9113 char c = *input_line_pointer;
9114 *input_line_pointer = 0;
9115 as_bad (_("missing or invalid expression `%s'"), save);
9116 *input_line_pointer = c;
9117 }
b9519cfe
L
9118 else if ((got_reloc == BFD_RELOC_386_PLT32
9119 || got_reloc == BFD_RELOC_X86_64_PLT32)
9120 && exp->X_op != O_symbol)
9121 {
9122 char c = *input_line_pointer;
9123 *input_line_pointer = 0;
9124 as_bad (_("invalid PLT expression `%s'"), save);
9125 *input_line_pointer = c;
9126 }
f3c180ae
AM
9127 }
9128 }
9129 else
9130 expression (exp);
ee86248c
JB
9131
9132 intel_syntax = -intel_syntax;
9133
9134 if (intel_syntax)
9135 i386_intel_simplify (exp);
62ebcb5c
AM
9136
9137 return got_reloc;
f3c180ae 9138}
f3c180ae 9139
9f32dd5b
L
9140static void
9141signed_cons (int size)
6482c264 9142{
d182319b
JB
9143 if (flag_code == CODE_64BIT)
9144 cons_sign = 1;
9145 cons (size);
9146 cons_sign = -1;
6482c264
NC
9147}
9148
d182319b 9149#ifdef TE_PE
6482c264 9150static void
7016a5d5 9151pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9152{
9153 expressionS exp;
9154
9155 do
9156 {
9157 expression (&exp);
9158 if (exp.X_op == O_symbol)
9159 exp.X_op = O_secrel;
9160
9161 emit_expr (&exp, 4);
9162 }
9163 while (*input_line_pointer++ == ',');
9164
9165 input_line_pointer--;
9166 demand_empty_rest_of_line ();
9167}
6482c264
NC
9168#endif
9169
43234a1e
L
9170/* Handle Vector operations. */
9171
9172static char *
9173check_VecOperations (char *op_string, char *op_end)
9174{
9175 const reg_entry *mask;
9176 const char *saved;
9177 char *end_op;
9178
9179 while (*op_string
9180 && (op_end == NULL || op_string < op_end))
9181 {
9182 saved = op_string;
9183 if (*op_string == '{')
9184 {
9185 op_string++;
9186
9187 /* Check broadcasts. */
9188 if (strncmp (op_string, "1to", 3) == 0)
9189 {
9190 int bcst_type;
9191
9192 if (i.broadcast)
9193 goto duplicated_vec_op;
9194
9195 op_string += 3;
9196 if (*op_string == '8')
8e6e0792 9197 bcst_type = 8;
b28d1bda 9198 else if (*op_string == '4')
8e6e0792 9199 bcst_type = 4;
b28d1bda 9200 else if (*op_string == '2')
8e6e0792 9201 bcst_type = 2;
43234a1e
L
9202 else if (*op_string == '1'
9203 && *(op_string+1) == '6')
9204 {
8e6e0792 9205 bcst_type = 16;
43234a1e
L
9206 op_string++;
9207 }
9208 else
9209 {
9210 as_bad (_("Unsupported broadcast: `%s'"), saved);
9211 return NULL;
9212 }
9213 op_string++;
9214
9215 broadcast_op.type = bcst_type;
9216 broadcast_op.operand = this_operand;
1f75763a 9217 broadcast_op.bytes = 0;
43234a1e
L
9218 i.broadcast = &broadcast_op;
9219 }
9220 /* Check masking operation. */
9221 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9222 {
9223 /* k0 can't be used for write mask. */
6d2cd6b2 9224 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9225 {
6d2cd6b2
JB
9226 as_bad (_("`%s%s' can't be used for write mask"),
9227 register_prefix, mask->reg_name);
43234a1e
L
9228 return NULL;
9229 }
9230
9231 if (!i.mask)
9232 {
9233 mask_op.mask = mask;
9234 mask_op.zeroing = 0;
9235 mask_op.operand = this_operand;
9236 i.mask = &mask_op;
9237 }
9238 else
9239 {
9240 if (i.mask->mask)
9241 goto duplicated_vec_op;
9242
9243 i.mask->mask = mask;
9244
9245 /* Only "{z}" is allowed here. No need to check
9246 zeroing mask explicitly. */
9247 if (i.mask->operand != this_operand)
9248 {
9249 as_bad (_("invalid write mask `%s'"), saved);
9250 return NULL;
9251 }
9252 }
9253
9254 op_string = end_op;
9255 }
9256 /* Check zeroing-flag for masking operation. */
9257 else if (*op_string == 'z')
9258 {
9259 if (!i.mask)
9260 {
9261 mask_op.mask = NULL;
9262 mask_op.zeroing = 1;
9263 mask_op.operand = this_operand;
9264 i.mask = &mask_op;
9265 }
9266 else
9267 {
9268 if (i.mask->zeroing)
9269 {
9270 duplicated_vec_op:
9271 as_bad (_("duplicated `%s'"), saved);
9272 return NULL;
9273 }
9274
9275 i.mask->zeroing = 1;
9276
9277 /* Only "{%k}" is allowed here. No need to check mask
9278 register explicitly. */
9279 if (i.mask->operand != this_operand)
9280 {
9281 as_bad (_("invalid zeroing-masking `%s'"),
9282 saved);
9283 return NULL;
9284 }
9285 }
9286
9287 op_string++;
9288 }
9289 else
9290 goto unknown_vec_op;
9291
9292 if (*op_string != '}')
9293 {
9294 as_bad (_("missing `}' in `%s'"), saved);
9295 return NULL;
9296 }
9297 op_string++;
0ba3a731
L
9298
9299 /* Strip whitespace since the addition of pseudo prefixes
9300 changed how the scrubber treats '{'. */
9301 if (is_space_char (*op_string))
9302 ++op_string;
9303
43234a1e
L
9304 continue;
9305 }
9306 unknown_vec_op:
9307 /* We don't know this one. */
9308 as_bad (_("unknown vector operation: `%s'"), saved);
9309 return NULL;
9310 }
9311
6d2cd6b2
JB
9312 if (i.mask && i.mask->zeroing && !i.mask->mask)
9313 {
9314 as_bad (_("zeroing-masking only allowed with write mask"));
9315 return NULL;
9316 }
9317
43234a1e
L
9318 return op_string;
9319}
9320
252b5132 9321static int
70e41ade 9322i386_immediate (char *imm_start)
252b5132
RH
9323{
9324 char *save_input_line_pointer;
f3c180ae 9325 char *gotfree_input_line;
252b5132 9326 segT exp_seg = 0;
47926f60 9327 expressionS *exp;
40fb9820
L
9328 i386_operand_type types;
9329
0dfbf9d7 9330 operand_type_set (&types, ~0);
252b5132
RH
9331
9332 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9333 {
31b2323c
L
9334 as_bad (_("at most %d immediate operands are allowed"),
9335 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9336 return 0;
9337 }
9338
9339 exp = &im_expressions[i.imm_operands++];
520dc8e8 9340 i.op[this_operand].imms = exp;
252b5132
RH
9341
9342 if (is_space_char (*imm_start))
9343 ++imm_start;
9344
9345 save_input_line_pointer = input_line_pointer;
9346 input_line_pointer = imm_start;
9347
d258b828 9348 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9349 if (gotfree_input_line)
9350 input_line_pointer = gotfree_input_line;
252b5132
RH
9351
9352 exp_seg = expression (exp);
9353
83183c0c 9354 SKIP_WHITESPACE ();
43234a1e
L
9355
9356 /* Handle vector operations. */
9357 if (*input_line_pointer == '{')
9358 {
9359 input_line_pointer = check_VecOperations (input_line_pointer,
9360 NULL);
9361 if (input_line_pointer == NULL)
9362 return 0;
9363 }
9364
252b5132 9365 if (*input_line_pointer)
f3c180ae 9366 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9367
9368 input_line_pointer = save_input_line_pointer;
f3c180ae 9369 if (gotfree_input_line)
ee86248c
JB
9370 {
9371 free (gotfree_input_line);
9372
9373 if (exp->X_op == O_constant || exp->X_op == O_register)
9374 exp->X_op = O_illegal;
9375 }
9376
9377 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9378}
252b5132 9379
ee86248c
JB
9380static int
9381i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9382 i386_operand_type types, const char *imm_start)
9383{
9384 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9385 {
313c53d1
L
9386 if (imm_start)
9387 as_bad (_("missing or invalid immediate expression `%s'"),
9388 imm_start);
3992d3b7 9389 return 0;
252b5132 9390 }
3e73aa7c 9391 else if (exp->X_op == O_constant)
252b5132 9392 {
47926f60 9393 /* Size it properly later. */
40fb9820 9394 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9395 /* If not 64bit, sign extend val. */
9396 if (flag_code != CODE_64BIT
4eed87de
AM
9397 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9398 exp->X_add_number
9399 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9400 }
4c63da97 9401#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9402 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9403 && exp_seg != absolute_section
47926f60 9404 && exp_seg != text_section
24eab124
AM
9405 && exp_seg != data_section
9406 && exp_seg != bss_section
9407 && exp_seg != undefined_section
f86103b7 9408 && !bfd_is_com_section (exp_seg))
252b5132 9409 {
d0b47220 9410 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9411 return 0;
9412 }
9413#endif
a841bdf5 9414 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9415 {
313c53d1
L
9416 if (imm_start)
9417 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9418 return 0;
9419 }
252b5132
RH
9420 else
9421 {
9422 /* This is an address. The size of the address will be
24eab124 9423 determined later, depending on destination register,
3e73aa7c 9424 suffix, or the default for the section. */
40fb9820
L
9425 i.types[this_operand].bitfield.imm8 = 1;
9426 i.types[this_operand].bitfield.imm16 = 1;
9427 i.types[this_operand].bitfield.imm32 = 1;
9428 i.types[this_operand].bitfield.imm32s = 1;
9429 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9430 i.types[this_operand] = operand_type_and (i.types[this_operand],
9431 types);
252b5132
RH
9432 }
9433
9434 return 1;
9435}
9436
551c1ca1 9437static char *
e3bb37b5 9438i386_scale (char *scale)
252b5132 9439{
551c1ca1
AM
9440 offsetT val;
9441 char *save = input_line_pointer;
252b5132 9442
551c1ca1
AM
9443 input_line_pointer = scale;
9444 val = get_absolute_expression ();
9445
9446 switch (val)
252b5132 9447 {
551c1ca1 9448 case 1:
252b5132
RH
9449 i.log2_scale_factor = 0;
9450 break;
551c1ca1 9451 case 2:
252b5132
RH
9452 i.log2_scale_factor = 1;
9453 break;
551c1ca1 9454 case 4:
252b5132
RH
9455 i.log2_scale_factor = 2;
9456 break;
551c1ca1 9457 case 8:
252b5132
RH
9458 i.log2_scale_factor = 3;
9459 break;
9460 default:
a724f0f4
JB
9461 {
9462 char sep = *input_line_pointer;
9463
9464 *input_line_pointer = '\0';
9465 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9466 scale);
9467 *input_line_pointer = sep;
9468 input_line_pointer = save;
9469 return NULL;
9470 }
252b5132 9471 }
29b0f896 9472 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9473 {
9474 as_warn (_("scale factor of %d without an index register"),
24eab124 9475 1 << i.log2_scale_factor);
252b5132 9476 i.log2_scale_factor = 0;
252b5132 9477 }
551c1ca1
AM
9478 scale = input_line_pointer;
9479 input_line_pointer = save;
9480 return scale;
252b5132
RH
9481}
9482
252b5132 9483static int
e3bb37b5 9484i386_displacement (char *disp_start, char *disp_end)
252b5132 9485{
29b0f896 9486 expressionS *exp;
252b5132
RH
9487 segT exp_seg = 0;
9488 char *save_input_line_pointer;
f3c180ae 9489 char *gotfree_input_line;
40fb9820
L
9490 int override;
9491 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9492 int ret;
252b5132 9493
31b2323c
L
9494 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9495 {
9496 as_bad (_("at most %d displacement operands are allowed"),
9497 MAX_MEMORY_OPERANDS);
9498 return 0;
9499 }
9500
0dfbf9d7 9501 operand_type_set (&bigdisp, 0);
40fb9820
L
9502 if ((i.types[this_operand].bitfield.jumpabsolute)
9503 || (!current_templates->start->opcode_modifier.jump
9504 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9505 {
40fb9820 9506 bigdisp.bitfield.disp32 = 1;
e05278af 9507 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9508 if (flag_code == CODE_64BIT)
9509 {
9510 if (!override)
9511 {
9512 bigdisp.bitfield.disp32s = 1;
9513 bigdisp.bitfield.disp64 = 1;
9514 }
9515 }
9516 else if ((flag_code == CODE_16BIT) ^ override)
9517 {
9518 bigdisp.bitfield.disp32 = 0;
9519 bigdisp.bitfield.disp16 = 1;
9520 }
e05278af
JB
9521 }
9522 else
9523 {
9524 /* For PC-relative branches, the width of the displacement
9525 is dependent upon data size, not address size. */
e05278af 9526 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9527 if (flag_code == CODE_64BIT)
9528 {
9529 if (override || i.suffix == WORD_MNEM_SUFFIX)
9530 bigdisp.bitfield.disp16 = 1;
9531 else
9532 {
9533 bigdisp.bitfield.disp32 = 1;
9534 bigdisp.bitfield.disp32s = 1;
9535 }
9536 }
9537 else
e05278af
JB
9538 {
9539 if (!override)
9540 override = (i.suffix == (flag_code != CODE_16BIT
9541 ? WORD_MNEM_SUFFIX
9542 : LONG_MNEM_SUFFIX));
40fb9820
L
9543 bigdisp.bitfield.disp32 = 1;
9544 if ((flag_code == CODE_16BIT) ^ override)
9545 {
9546 bigdisp.bitfield.disp32 = 0;
9547 bigdisp.bitfield.disp16 = 1;
9548 }
e05278af 9549 }
e05278af 9550 }
c6fb90c8
L
9551 i.types[this_operand] = operand_type_or (i.types[this_operand],
9552 bigdisp);
252b5132
RH
9553
9554 exp = &disp_expressions[i.disp_operands];
520dc8e8 9555 i.op[this_operand].disps = exp;
252b5132
RH
9556 i.disp_operands++;
9557 save_input_line_pointer = input_line_pointer;
9558 input_line_pointer = disp_start;
9559 END_STRING_AND_SAVE (disp_end);
9560
9561#ifndef GCC_ASM_O_HACK
9562#define GCC_ASM_O_HACK 0
9563#endif
9564#if GCC_ASM_O_HACK
9565 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9566 if (i.types[this_operand].bitfield.baseIndex
24eab124 9567 && displacement_string_end[-1] == '+')
252b5132
RH
9568 {
9569 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9570 constraint within gcc asm statements.
9571 For instance:
9572
9573 #define _set_tssldt_desc(n,addr,limit,type) \
9574 __asm__ __volatile__ ( \
9575 "movw %w2,%0\n\t" \
9576 "movw %w1,2+%0\n\t" \
9577 "rorl $16,%1\n\t" \
9578 "movb %b1,4+%0\n\t" \
9579 "movb %4,5+%0\n\t" \
9580 "movb $0,6+%0\n\t" \
9581 "movb %h1,7+%0\n\t" \
9582 "rorl $16,%1" \
9583 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9584
9585 This works great except that the output assembler ends
9586 up looking a bit weird if it turns out that there is
9587 no offset. You end up producing code that looks like:
9588
9589 #APP
9590 movw $235,(%eax)
9591 movw %dx,2+(%eax)
9592 rorl $16,%edx
9593 movb %dl,4+(%eax)
9594 movb $137,5+(%eax)
9595 movb $0,6+(%eax)
9596 movb %dh,7+(%eax)
9597 rorl $16,%edx
9598 #NO_APP
9599
47926f60 9600 So here we provide the missing zero. */
24eab124
AM
9601
9602 *displacement_string_end = '0';
252b5132
RH
9603 }
9604#endif
d258b828 9605 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9606 if (gotfree_input_line)
9607 input_line_pointer = gotfree_input_line;
252b5132 9608
24eab124 9609 exp_seg = expression (exp);
252b5132 9610
636c26b0
AM
9611 SKIP_WHITESPACE ();
9612 if (*input_line_pointer)
9613 as_bad (_("junk `%s' after expression"), input_line_pointer);
9614#if GCC_ASM_O_HACK
9615 RESTORE_END_STRING (disp_end + 1);
9616#endif
636c26b0 9617 input_line_pointer = save_input_line_pointer;
636c26b0 9618 if (gotfree_input_line)
ee86248c
JB
9619 {
9620 free (gotfree_input_line);
9621
9622 if (exp->X_op == O_constant || exp->X_op == O_register)
9623 exp->X_op = O_illegal;
9624 }
9625
9626 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9627
9628 RESTORE_END_STRING (disp_end);
9629
9630 return ret;
9631}
9632
9633static int
9634i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9635 i386_operand_type types, const char *disp_start)
9636{
9637 i386_operand_type bigdisp;
9638 int ret = 1;
636c26b0 9639
24eab124
AM
9640 /* We do this to make sure that the section symbol is in
9641 the symbol table. We will ultimately change the relocation
47926f60 9642 to be relative to the beginning of the section. */
1ae12ab7 9643 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9644 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9645 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9646 {
636c26b0 9647 if (exp->X_op != O_symbol)
3992d3b7 9648 goto inv_disp;
636c26b0 9649
e5cb08ac 9650 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9651 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9652 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9653 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9654 exp->X_op = O_subtract;
9655 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9656 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9657 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9658 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9659 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9660 else
29b0f896 9661 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9662 }
252b5132 9663
3992d3b7
AM
9664 else if (exp->X_op == O_absent
9665 || exp->X_op == O_illegal
ee86248c 9666 || exp->X_op == O_big)
2daf4fd8 9667 {
3992d3b7
AM
9668 inv_disp:
9669 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9670 disp_start);
3992d3b7 9671 ret = 0;
2daf4fd8
AM
9672 }
9673
0e1147d9
L
9674 else if (flag_code == CODE_64BIT
9675 && !i.prefix[ADDR_PREFIX]
9676 && exp->X_op == O_constant)
9677 {
9678 /* Since displacement is signed extended to 64bit, don't allow
9679 disp32 and turn off disp32s if they are out of range. */
9680 i.types[this_operand].bitfield.disp32 = 0;
9681 if (!fits_in_signed_long (exp->X_add_number))
9682 {
9683 i.types[this_operand].bitfield.disp32s = 0;
9684 if (i.types[this_operand].bitfield.baseindex)
9685 {
9686 as_bad (_("0x%lx out range of signed 32bit displacement"),
9687 (long) exp->X_add_number);
9688 ret = 0;
9689 }
9690 }
9691 }
9692
4c63da97 9693#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9694 else if (exp->X_op != O_constant
9695 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9696 && exp_seg != absolute_section
9697 && exp_seg != text_section
9698 && exp_seg != data_section
9699 && exp_seg != bss_section
9700 && exp_seg != undefined_section
9701 && !bfd_is_com_section (exp_seg))
24eab124 9702 {
d0b47220 9703 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9704 ret = 0;
24eab124 9705 }
252b5132 9706#endif
3956db08 9707
40fb9820
L
9708 /* Check if this is a displacement only operand. */
9709 bigdisp = i.types[this_operand];
9710 bigdisp.bitfield.disp8 = 0;
9711 bigdisp.bitfield.disp16 = 0;
9712 bigdisp.bitfield.disp32 = 0;
9713 bigdisp.bitfield.disp32s = 0;
9714 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9715 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9716 i.types[this_operand] = operand_type_and (i.types[this_operand],
9717 types);
3956db08 9718
3992d3b7 9719 return ret;
252b5132
RH
9720}
9721
2abc2bec
JB
9722/* Return the active addressing mode, taking address override and
9723 registers forming the address into consideration. Update the
9724 address override prefix if necessary. */
47926f60 9725
2abc2bec
JB
9726static enum flag_code
9727i386_addressing_mode (void)
252b5132 9728{
be05d201
L
9729 enum flag_code addr_mode;
9730
9731 if (i.prefix[ADDR_PREFIX])
9732 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9733 else
9734 {
9735 addr_mode = flag_code;
9736
24eab124 9737#if INFER_ADDR_PREFIX
be05d201
L
9738 if (i.mem_operands == 0)
9739 {
9740 /* Infer address prefix from the first memory operand. */
9741 const reg_entry *addr_reg = i.base_reg;
9742
9743 if (addr_reg == NULL)
9744 addr_reg = i.index_reg;
eecb386c 9745
be05d201
L
9746 if (addr_reg)
9747 {
e968fc9b 9748 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9749 addr_mode = CODE_32BIT;
9750 else if (flag_code != CODE_64BIT
dc821c5f 9751 && addr_reg->reg_type.bitfield.word)
be05d201
L
9752 addr_mode = CODE_16BIT;
9753
9754 if (addr_mode != flag_code)
9755 {
9756 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9757 i.prefixes += 1;
9758 /* Change the size of any displacement too. At most one
9759 of Disp16 or Disp32 is set.
9760 FIXME. There doesn't seem to be any real need for
9761 separate Disp16 and Disp32 flags. The same goes for
9762 Imm16 and Imm32. Removing them would probably clean
9763 up the code quite a lot. */
9764 if (flag_code != CODE_64BIT
9765 && (i.types[this_operand].bitfield.disp16
9766 || i.types[this_operand].bitfield.disp32))
9767 i.types[this_operand]
9768 = operand_type_xor (i.types[this_operand], disp16_32);
9769 }
9770 }
9771 }
24eab124 9772#endif
be05d201
L
9773 }
9774
2abc2bec
JB
9775 return addr_mode;
9776}
9777
9778/* Make sure the memory operand we've been dealt is valid.
9779 Return 1 on success, 0 on a failure. */
9780
9781static int
9782i386_index_check (const char *operand_string)
9783{
9784 const char *kind = "base/index";
9785 enum flag_code addr_mode = i386_addressing_mode ();
9786
fc0763e6 9787 if (current_templates->start->opcode_modifier.isstring
c3949f43 9788 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9789 && (current_templates->end[-1].opcode_modifier.isstring
9790 || i.mem_operands))
9791 {
9792 /* Memory operands of string insns are special in that they only allow
9793 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9794 const reg_entry *expected_reg;
9795 static const char *di_si[][2] =
9796 {
9797 { "esi", "edi" },
9798 { "si", "di" },
9799 { "rsi", "rdi" }
9800 };
9801 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9802
9803 kind = "string address";
9804
8325cc63 9805 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9806 {
9807 i386_operand_type type = current_templates->end[-1].operand_types[0];
9808
9809 if (!type.bitfield.baseindex
9810 || ((!i.mem_operands != !intel_syntax)
9811 && current_templates->end[-1].operand_types[1]
9812 .bitfield.baseindex))
9813 type = current_templates->end[-1].operand_types[1];
be05d201
L
9814 expected_reg = hash_find (reg_hash,
9815 di_si[addr_mode][type.bitfield.esseg]);
9816
fc0763e6
JB
9817 }
9818 else
be05d201 9819 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9820
be05d201
L
9821 if (i.base_reg != expected_reg
9822 || i.index_reg
fc0763e6 9823 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9824 {
be05d201
L
9825 /* The second memory operand must have the same size as
9826 the first one. */
9827 if (i.mem_operands
9828 && i.base_reg
9829 && !((addr_mode == CODE_64BIT
dc821c5f 9830 && i.base_reg->reg_type.bitfield.qword)
be05d201 9831 || (addr_mode == CODE_32BIT
dc821c5f
JB
9832 ? i.base_reg->reg_type.bitfield.dword
9833 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9834 goto bad_address;
9835
fc0763e6
JB
9836 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9837 operand_string,
9838 intel_syntax ? '[' : '(',
9839 register_prefix,
be05d201 9840 expected_reg->reg_name,
fc0763e6 9841 intel_syntax ? ']' : ')');
be05d201 9842 return 1;
fc0763e6 9843 }
be05d201
L
9844 else
9845 return 1;
9846
9847bad_address:
9848 as_bad (_("`%s' is not a valid %s expression"),
9849 operand_string, kind);
9850 return 0;
3e73aa7c
JH
9851 }
9852 else
9853 {
be05d201
L
9854 if (addr_mode != CODE_16BIT)
9855 {
9856 /* 32-bit/64-bit checks. */
9857 if ((i.base_reg
e968fc9b
JB
9858 && ((addr_mode == CODE_64BIT
9859 ? !i.base_reg->reg_type.bitfield.qword
9860 : !i.base_reg->reg_type.bitfield.dword)
9861 || (i.index_reg && i.base_reg->reg_num == RegIP)
9862 || i.base_reg->reg_num == RegIZ))
be05d201 9863 || (i.index_reg
1b54b8d7
JB
9864 && !i.index_reg->reg_type.bitfield.xmmword
9865 && !i.index_reg->reg_type.bitfield.ymmword
9866 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9867 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9868 ? !i.index_reg->reg_type.bitfield.qword
9869 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9870 || !i.index_reg->reg_type.bitfield.baseindex)))
9871 goto bad_address;
8178be5b
JB
9872
9873 /* bndmk, bndldx, and bndstx have special restrictions. */
9874 if (current_templates->start->base_opcode == 0xf30f1b
9875 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9876 {
9877 /* They cannot use RIP-relative addressing. */
e968fc9b 9878 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9879 {
9880 as_bad (_("`%s' cannot be used here"), operand_string);
9881 return 0;
9882 }
9883
9884 /* bndldx and bndstx ignore their scale factor. */
9885 if (current_templates->start->base_opcode != 0xf30f1b
9886 && i.log2_scale_factor)
9887 as_warn (_("register scaling is being ignored here"));
9888 }
be05d201
L
9889 }
9890 else
3e73aa7c 9891 {
be05d201 9892 /* 16-bit checks. */
3e73aa7c 9893 if ((i.base_reg
dc821c5f 9894 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9895 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9896 || (i.index_reg
dc821c5f 9897 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9898 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9899 || !(i.base_reg
9900 && i.base_reg->reg_num < 6
9901 && i.index_reg->reg_num >= 6
9902 && i.log2_scale_factor == 0))))
be05d201 9903 goto bad_address;
3e73aa7c
JH
9904 }
9905 }
be05d201 9906 return 1;
24eab124 9907}
252b5132 9908
43234a1e
L
9909/* Handle vector immediates. */
9910
9911static int
9912RC_SAE_immediate (const char *imm_start)
9913{
9914 unsigned int match_found, j;
9915 const char *pstr = imm_start;
9916 expressionS *exp;
9917
9918 if (*pstr != '{')
9919 return 0;
9920
9921 pstr++;
9922 match_found = 0;
9923 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9924 {
9925 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9926 {
9927 if (!i.rounding)
9928 {
9929 rc_op.type = RC_NamesTable[j].type;
9930 rc_op.operand = this_operand;
9931 i.rounding = &rc_op;
9932 }
9933 else
9934 {
9935 as_bad (_("duplicated `%s'"), imm_start);
9936 return 0;
9937 }
9938 pstr += RC_NamesTable[j].len;
9939 match_found = 1;
9940 break;
9941 }
9942 }
9943 if (!match_found)
9944 return 0;
9945
9946 if (*pstr++ != '}')
9947 {
9948 as_bad (_("Missing '}': '%s'"), imm_start);
9949 return 0;
9950 }
9951 /* RC/SAE immediate string should contain nothing more. */;
9952 if (*pstr != 0)
9953 {
9954 as_bad (_("Junk after '}': '%s'"), imm_start);
9955 return 0;
9956 }
9957
9958 exp = &im_expressions[i.imm_operands++];
9959 i.op[this_operand].imms = exp;
9960
9961 exp->X_op = O_constant;
9962 exp->X_add_number = 0;
9963 exp->X_add_symbol = (symbolS *) 0;
9964 exp->X_op_symbol = (symbolS *) 0;
9965
9966 i.types[this_operand].bitfield.imm8 = 1;
9967 return 1;
9968}
9969
8325cc63
JB
9970/* Only string instructions can have a second memory operand, so
9971 reduce current_templates to just those if it contains any. */
9972static int
9973maybe_adjust_templates (void)
9974{
9975 const insn_template *t;
9976
9977 gas_assert (i.mem_operands == 1);
9978
9979 for (t = current_templates->start; t < current_templates->end; ++t)
9980 if (t->opcode_modifier.isstring)
9981 break;
9982
9983 if (t < current_templates->end)
9984 {
9985 static templates aux_templates;
9986 bfd_boolean recheck;
9987
9988 aux_templates.start = t;
9989 for (; t < current_templates->end; ++t)
9990 if (!t->opcode_modifier.isstring)
9991 break;
9992 aux_templates.end = t;
9993
9994 /* Determine whether to re-check the first memory operand. */
9995 recheck = (aux_templates.start != current_templates->start
9996 || t != current_templates->end);
9997
9998 current_templates = &aux_templates;
9999
10000 if (recheck)
10001 {
10002 i.mem_operands = 0;
10003 if (i.memop1_string != NULL
10004 && i386_index_check (i.memop1_string) == 0)
10005 return 0;
10006 i.mem_operands = 1;
10007 }
10008 }
10009
10010 return 1;
10011}
10012
fc0763e6 10013/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10014 on error. */
252b5132 10015
252b5132 10016static int
a7619375 10017i386_att_operand (char *operand_string)
252b5132 10018{
af6bdddf
AM
10019 const reg_entry *r;
10020 char *end_op;
24eab124 10021 char *op_string = operand_string;
252b5132 10022
24eab124 10023 if (is_space_char (*op_string))
252b5132
RH
10024 ++op_string;
10025
24eab124 10026 /* We check for an absolute prefix (differentiating,
47926f60 10027 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10028 if (*op_string == ABSOLUTE_PREFIX)
10029 {
10030 ++op_string;
10031 if (is_space_char (*op_string))
10032 ++op_string;
40fb9820 10033 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10034 }
252b5132 10035
47926f60 10036 /* Check if operand is a register. */
4d1bb795 10037 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10038 {
40fb9820
L
10039 i386_operand_type temp;
10040
24eab124
AM
10041 /* Check for a segment override by searching for ':' after a
10042 segment register. */
10043 op_string = end_op;
10044 if (is_space_char (*op_string))
10045 ++op_string;
21df382b 10046 if (*op_string == ':' && r->reg_type.bitfield.sreg)
24eab124
AM
10047 {
10048 switch (r->reg_num)
10049 {
10050 case 0:
10051 i.seg[i.mem_operands] = &es;
10052 break;
10053 case 1:
10054 i.seg[i.mem_operands] = &cs;
10055 break;
10056 case 2:
10057 i.seg[i.mem_operands] = &ss;
10058 break;
10059 case 3:
10060 i.seg[i.mem_operands] = &ds;
10061 break;
10062 case 4:
10063 i.seg[i.mem_operands] = &fs;
10064 break;
10065 case 5:
10066 i.seg[i.mem_operands] = &gs;
10067 break;
10068 }
252b5132 10069
24eab124 10070 /* Skip the ':' and whitespace. */
252b5132
RH
10071 ++op_string;
10072 if (is_space_char (*op_string))
24eab124 10073 ++op_string;
252b5132 10074
24eab124
AM
10075 if (!is_digit_char (*op_string)
10076 && !is_identifier_char (*op_string)
10077 && *op_string != '('
10078 && *op_string != ABSOLUTE_PREFIX)
10079 {
10080 as_bad (_("bad memory operand `%s'"), op_string);
10081 return 0;
10082 }
47926f60 10083 /* Handle case of %es:*foo. */
24eab124
AM
10084 if (*op_string == ABSOLUTE_PREFIX)
10085 {
10086 ++op_string;
10087 if (is_space_char (*op_string))
10088 ++op_string;
40fb9820 10089 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10090 }
10091 goto do_memory_reference;
10092 }
43234a1e
L
10093
10094 /* Handle vector operations. */
10095 if (*op_string == '{')
10096 {
10097 op_string = check_VecOperations (op_string, NULL);
10098 if (op_string == NULL)
10099 return 0;
10100 }
10101
24eab124
AM
10102 if (*op_string)
10103 {
d0b47220 10104 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10105 return 0;
10106 }
40fb9820
L
10107 temp = r->reg_type;
10108 temp.bitfield.baseindex = 0;
c6fb90c8
L
10109 i.types[this_operand] = operand_type_or (i.types[this_operand],
10110 temp);
7d5e4556 10111 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10112 i.op[this_operand].regs = r;
24eab124
AM
10113 i.reg_operands++;
10114 }
af6bdddf
AM
10115 else if (*op_string == REGISTER_PREFIX)
10116 {
10117 as_bad (_("bad register name `%s'"), op_string);
10118 return 0;
10119 }
24eab124 10120 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10121 {
24eab124 10122 ++op_string;
40fb9820 10123 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10124 {
d0b47220 10125 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10126 return 0;
10127 }
10128 if (!i386_immediate (op_string))
10129 return 0;
10130 }
43234a1e
L
10131 else if (RC_SAE_immediate (operand_string))
10132 {
10133 /* If it is a RC or SAE immediate, do nothing. */
10134 ;
10135 }
24eab124
AM
10136 else if (is_digit_char (*op_string)
10137 || is_identifier_char (*op_string)
d02603dc 10138 || *op_string == '"'
e5cb08ac 10139 || *op_string == '(')
24eab124 10140 {
47926f60 10141 /* This is a memory reference of some sort. */
af6bdddf 10142 char *base_string;
252b5132 10143
47926f60 10144 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10145 char *displacement_string_start;
10146 char *displacement_string_end;
43234a1e 10147 char *vop_start;
252b5132 10148
24eab124 10149 do_memory_reference:
8325cc63
JB
10150 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10151 return 0;
24eab124 10152 if ((i.mem_operands == 1
40fb9820 10153 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10154 || i.mem_operands == 2)
10155 {
10156 as_bad (_("too many memory references for `%s'"),
10157 current_templates->start->name);
10158 return 0;
10159 }
252b5132 10160
24eab124
AM
10161 /* Check for base index form. We detect the base index form by
10162 looking for an ')' at the end of the operand, searching
10163 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10164 after the '('. */
af6bdddf 10165 base_string = op_string + strlen (op_string);
c3332e24 10166
43234a1e
L
10167 /* Handle vector operations. */
10168 vop_start = strchr (op_string, '{');
10169 if (vop_start && vop_start < base_string)
10170 {
10171 if (check_VecOperations (vop_start, base_string) == NULL)
10172 return 0;
10173 base_string = vop_start;
10174 }
10175
af6bdddf
AM
10176 --base_string;
10177 if (is_space_char (*base_string))
10178 --base_string;
252b5132 10179
47926f60 10180 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10181 displacement_string_start = op_string;
10182 displacement_string_end = base_string + 1;
252b5132 10183
24eab124
AM
10184 if (*base_string == ')')
10185 {
af6bdddf 10186 char *temp_string;
24eab124
AM
10187 unsigned int parens_balanced = 1;
10188 /* We've already checked that the number of left & right ()'s are
47926f60 10189 equal, so this loop will not be infinite. */
24eab124
AM
10190 do
10191 {
10192 base_string--;
10193 if (*base_string == ')')
10194 parens_balanced++;
10195 if (*base_string == '(')
10196 parens_balanced--;
10197 }
10198 while (parens_balanced);
c3332e24 10199
af6bdddf 10200 temp_string = base_string;
c3332e24 10201
24eab124 10202 /* Skip past '(' and whitespace. */
252b5132
RH
10203 ++base_string;
10204 if (is_space_char (*base_string))
24eab124 10205 ++base_string;
252b5132 10206
af6bdddf 10207 if (*base_string == ','
4eed87de
AM
10208 || ((i.base_reg = parse_register (base_string, &end_op))
10209 != NULL))
252b5132 10210 {
af6bdddf 10211 displacement_string_end = temp_string;
252b5132 10212
40fb9820 10213 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10214
af6bdddf 10215 if (i.base_reg)
24eab124 10216 {
24eab124
AM
10217 base_string = end_op;
10218 if (is_space_char (*base_string))
10219 ++base_string;
af6bdddf
AM
10220 }
10221
10222 /* There may be an index reg or scale factor here. */
10223 if (*base_string == ',')
10224 {
10225 ++base_string;
10226 if (is_space_char (*base_string))
10227 ++base_string;
10228
4eed87de
AM
10229 if ((i.index_reg = parse_register (base_string, &end_op))
10230 != NULL)
24eab124 10231 {
af6bdddf 10232 base_string = end_op;
24eab124
AM
10233 if (is_space_char (*base_string))
10234 ++base_string;
af6bdddf
AM
10235 if (*base_string == ',')
10236 {
10237 ++base_string;
10238 if (is_space_char (*base_string))
10239 ++base_string;
10240 }
e5cb08ac 10241 else if (*base_string != ')')
af6bdddf 10242 {
4eed87de
AM
10243 as_bad (_("expecting `,' or `)' "
10244 "after index register in `%s'"),
af6bdddf
AM
10245 operand_string);
10246 return 0;
10247 }
24eab124 10248 }
af6bdddf 10249 else if (*base_string == REGISTER_PREFIX)
24eab124 10250 {
f76bf5e0
L
10251 end_op = strchr (base_string, ',');
10252 if (end_op)
10253 *end_op = '\0';
af6bdddf 10254 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10255 return 0;
10256 }
252b5132 10257
47926f60 10258 /* Check for scale factor. */
551c1ca1 10259 if (*base_string != ')')
af6bdddf 10260 {
551c1ca1
AM
10261 char *end_scale = i386_scale (base_string);
10262
10263 if (!end_scale)
af6bdddf 10264 return 0;
24eab124 10265
551c1ca1 10266 base_string = end_scale;
af6bdddf
AM
10267 if (is_space_char (*base_string))
10268 ++base_string;
10269 if (*base_string != ')')
10270 {
4eed87de
AM
10271 as_bad (_("expecting `)' "
10272 "after scale factor in `%s'"),
af6bdddf
AM
10273 operand_string);
10274 return 0;
10275 }
10276 }
10277 else if (!i.index_reg)
24eab124 10278 {
4eed87de
AM
10279 as_bad (_("expecting index register or scale factor "
10280 "after `,'; got '%c'"),
af6bdddf 10281 *base_string);
24eab124
AM
10282 return 0;
10283 }
10284 }
af6bdddf 10285 else if (*base_string != ')')
24eab124 10286 {
4eed87de
AM
10287 as_bad (_("expecting `,' or `)' "
10288 "after base register in `%s'"),
af6bdddf 10289 operand_string);
24eab124
AM
10290 return 0;
10291 }
c3332e24 10292 }
af6bdddf 10293 else if (*base_string == REGISTER_PREFIX)
c3332e24 10294 {
f76bf5e0
L
10295 end_op = strchr (base_string, ',');
10296 if (end_op)
10297 *end_op = '\0';
af6bdddf 10298 as_bad (_("bad register name `%s'"), base_string);
24eab124 10299 return 0;
c3332e24 10300 }
24eab124
AM
10301 }
10302
10303 /* If there's an expression beginning the operand, parse it,
10304 assuming displacement_string_start and
10305 displacement_string_end are meaningful. */
10306 if (displacement_string_start != displacement_string_end)
10307 {
10308 if (!i386_displacement (displacement_string_start,
10309 displacement_string_end))
10310 return 0;
10311 }
10312
10313 /* Special case for (%dx) while doing input/output op. */
10314 if (i.base_reg
2fb5be8d 10315 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10316 && i.index_reg == 0
10317 && i.log2_scale_factor == 0
10318 && i.seg[i.mem_operands] == 0
40fb9820 10319 && !operand_type_check (i.types[this_operand], disp))
24eab124 10320 {
2fb5be8d 10321 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10322 return 1;
10323 }
10324
eecb386c
AM
10325 if (i386_index_check (operand_string) == 0)
10326 return 0;
c48dadc9 10327 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10328 if (i.mem_operands == 0)
10329 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10330 i.mem_operands++;
10331 }
10332 else
ce8a8b2f
AM
10333 {
10334 /* It's not a memory operand; argh! */
24eab124
AM
10335 as_bad (_("invalid char %s beginning operand %d `%s'"),
10336 output_invalid (*op_string),
10337 this_operand + 1,
10338 op_string);
10339 return 0;
10340 }
47926f60 10341 return 1; /* Normal return. */
252b5132
RH
10342}
10343\f
fa94de6b
RM
10344/* Calculate the maximum variable size (i.e., excluding fr_fix)
10345 that an rs_machine_dependent frag may reach. */
10346
10347unsigned int
10348i386_frag_max_var (fragS *frag)
10349{
10350 /* The only relaxable frags are for jumps.
10351 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10352 gas_assert (frag->fr_type == rs_machine_dependent);
10353 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10354}
10355
b084df0b
L
10356#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10357static int
8dcea932 10358elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10359{
10360 /* STT_GNU_IFUNC symbol must go through PLT. */
10361 if ((symbol_get_bfdsym (fr_symbol)->flags
10362 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10363 return 0;
10364
10365 if (!S_IS_EXTERNAL (fr_symbol))
10366 /* Symbol may be weak or local. */
10367 return !S_IS_WEAK (fr_symbol);
10368
8dcea932
L
10369 /* Global symbols with non-default visibility can't be preempted. */
10370 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10371 return 1;
10372
10373 if (fr_var != NO_RELOC)
10374 switch ((enum bfd_reloc_code_real) fr_var)
10375 {
10376 case BFD_RELOC_386_PLT32:
10377 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10378 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10379 return 0;
10380 default:
10381 abort ();
10382 }
10383
b084df0b
L
10384 /* Global symbols with default visibility in a shared library may be
10385 preempted by another definition. */
8dcea932 10386 return !shared;
b084df0b
L
10387}
10388#endif
10389
ee7fcc42
AM
10390/* md_estimate_size_before_relax()
10391
10392 Called just before relax() for rs_machine_dependent frags. The x86
10393 assembler uses these frags to handle variable size jump
10394 instructions.
10395
10396 Any symbol that is now undefined will not become defined.
10397 Return the correct fr_subtype in the frag.
10398 Return the initial "guess for variable size of frag" to caller.
10399 The guess is actually the growth beyond the fixed part. Whatever
10400 we do to grow the fixed or variable part contributes to our
10401 returned value. */
10402
252b5132 10403int
7016a5d5 10404md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10405{
252b5132 10406 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10407 check for un-relaxable symbols. On an ELF system, we can't relax
10408 an externally visible symbol, because it may be overridden by a
10409 shared library. */
10410 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10411#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10412 || (IS_ELF
8dcea932
L
10413 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10414 fragP->fr_var))
fbeb56a4
DK
10415#endif
10416#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10417 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10418 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10419#endif
10420 )
252b5132 10421 {
b98ef147
AM
10422 /* Symbol is undefined in this segment, or we need to keep a
10423 reloc so that weak symbols can be overridden. */
10424 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10425 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10426 unsigned char *opcode;
10427 int old_fr_fix;
f6af82bd 10428
ee7fcc42 10429 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10430 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10431 else if (size == 2)
f6af82bd 10432 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10433#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10434 else if (need_plt32_p (fragP->fr_symbol))
10435 reloc_type = BFD_RELOC_X86_64_PLT32;
10436#endif
f6af82bd
AM
10437 else
10438 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10439
ee7fcc42
AM
10440 old_fr_fix = fragP->fr_fix;
10441 opcode = (unsigned char *) fragP->fr_opcode;
10442
fddf5b5b 10443 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10444 {
fddf5b5b
AM
10445 case UNCOND_JUMP:
10446 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10447 opcode[0] = 0xe9;
252b5132 10448 fragP->fr_fix += size;
062cd5e7
AS
10449 fix_new (fragP, old_fr_fix, size,
10450 fragP->fr_symbol,
10451 fragP->fr_offset, 1,
10452 reloc_type);
252b5132
RH
10453 break;
10454
fddf5b5b 10455 case COND_JUMP86:
412167cb
AM
10456 if (size == 2
10457 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10458 {
10459 /* Negate the condition, and branch past an
10460 unconditional jump. */
10461 opcode[0] ^= 1;
10462 opcode[1] = 3;
10463 /* Insert an unconditional jump. */
10464 opcode[2] = 0xe9;
10465 /* We added two extra opcode bytes, and have a two byte
10466 offset. */
10467 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10468 fix_new (fragP, old_fr_fix + 2, 2,
10469 fragP->fr_symbol,
10470 fragP->fr_offset, 1,
10471 reloc_type);
fddf5b5b
AM
10472 break;
10473 }
10474 /* Fall through. */
10475
10476 case COND_JUMP:
412167cb
AM
10477 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10478 {
3e02c1cc
AM
10479 fixS *fixP;
10480
412167cb 10481 fragP->fr_fix += 1;
3e02c1cc
AM
10482 fixP = fix_new (fragP, old_fr_fix, 1,
10483 fragP->fr_symbol,
10484 fragP->fr_offset, 1,
10485 BFD_RELOC_8_PCREL);
10486 fixP->fx_signed = 1;
412167cb
AM
10487 break;
10488 }
93c2a809 10489
24eab124 10490 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10491 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10492 opcode[1] = opcode[0] + 0x10;
f6af82bd 10493 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10494 /* We've added an opcode byte. */
10495 fragP->fr_fix += 1 + size;
062cd5e7
AS
10496 fix_new (fragP, old_fr_fix + 1, size,
10497 fragP->fr_symbol,
10498 fragP->fr_offset, 1,
10499 reloc_type);
252b5132 10500 break;
fddf5b5b
AM
10501
10502 default:
10503 BAD_CASE (fragP->fr_subtype);
10504 break;
252b5132
RH
10505 }
10506 frag_wane (fragP);
ee7fcc42 10507 return fragP->fr_fix - old_fr_fix;
252b5132 10508 }
93c2a809 10509
93c2a809
AM
10510 /* Guess size depending on current relax state. Initially the relax
10511 state will correspond to a short jump and we return 1, because
10512 the variable part of the frag (the branch offset) is one byte
10513 long. However, we can relax a section more than once and in that
10514 case we must either set fr_subtype back to the unrelaxed state,
10515 or return the value for the appropriate branch. */
10516 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10517}
10518
47926f60
KH
10519/* Called after relax() is finished.
10520
10521 In: Address of frag.
10522 fr_type == rs_machine_dependent.
10523 fr_subtype is what the address relaxed to.
10524
10525 Out: Any fixSs and constants are set up.
10526 Caller will turn frag into a ".space 0". */
10527
252b5132 10528void
7016a5d5
TG
10529md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10530 fragS *fragP)
252b5132 10531{
29b0f896 10532 unsigned char *opcode;
252b5132 10533 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10534 offsetT target_address;
10535 offsetT opcode_address;
252b5132 10536 unsigned int extension = 0;
847f7ad4 10537 offsetT displacement_from_opcode_start;
252b5132
RH
10538
10539 opcode = (unsigned char *) fragP->fr_opcode;
10540
47926f60 10541 /* Address we want to reach in file space. */
252b5132 10542 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10543
47926f60 10544 /* Address opcode resides at in file space. */
252b5132
RH
10545 opcode_address = fragP->fr_address + fragP->fr_fix;
10546
47926f60 10547 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10548 displacement_from_opcode_start = target_address - opcode_address;
10549
fddf5b5b 10550 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10551 {
47926f60
KH
10552 /* Don't have to change opcode. */
10553 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10554 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10555 }
10556 else
10557 {
10558 if (no_cond_jump_promotion
10559 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10560 as_warn_where (fragP->fr_file, fragP->fr_line,
10561 _("long jump required"));
252b5132 10562
fddf5b5b
AM
10563 switch (fragP->fr_subtype)
10564 {
10565 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10566 extension = 4; /* 1 opcode + 4 displacement */
10567 opcode[0] = 0xe9;
10568 where_to_put_displacement = &opcode[1];
10569 break;
252b5132 10570
fddf5b5b
AM
10571 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10572 extension = 2; /* 1 opcode + 2 displacement */
10573 opcode[0] = 0xe9;
10574 where_to_put_displacement = &opcode[1];
10575 break;
252b5132 10576
fddf5b5b
AM
10577 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10578 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10579 extension = 5; /* 2 opcode + 4 displacement */
10580 opcode[1] = opcode[0] + 0x10;
10581 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10582 where_to_put_displacement = &opcode[2];
10583 break;
252b5132 10584
fddf5b5b
AM
10585 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10586 extension = 3; /* 2 opcode + 2 displacement */
10587 opcode[1] = opcode[0] + 0x10;
10588 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10589 where_to_put_displacement = &opcode[2];
10590 break;
252b5132 10591
fddf5b5b
AM
10592 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10593 extension = 4;
10594 opcode[0] ^= 1;
10595 opcode[1] = 3;
10596 opcode[2] = 0xe9;
10597 where_to_put_displacement = &opcode[3];
10598 break;
10599
10600 default:
10601 BAD_CASE (fragP->fr_subtype);
10602 break;
10603 }
252b5132 10604 }
fddf5b5b 10605
7b81dfbb
AJ
10606 /* If size if less then four we are sure that the operand fits,
10607 but if it's 4, then it could be that the displacement is larger
10608 then -/+ 2GB. */
10609 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10610 && object_64bit
10611 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10612 + ((addressT) 1 << 31))
10613 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10614 {
10615 as_bad_where (fragP->fr_file, fragP->fr_line,
10616 _("jump target out of range"));
10617 /* Make us emit 0. */
10618 displacement_from_opcode_start = extension;
10619 }
47926f60 10620 /* Now put displacement after opcode. */
252b5132
RH
10621 md_number_to_chars ((char *) where_to_put_displacement,
10622 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10623 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10624 fragP->fr_fix += extension;
10625}
10626\f
7016a5d5 10627/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10628 by our caller that we have all the info we need to fix it up.
10629
7016a5d5
TG
10630 Parameter valP is the pointer to the value of the bits.
10631
252b5132
RH
10632 On the 386, immediates, displacements, and data pointers are all in
10633 the same (little-endian) format, so we don't need to care about which
10634 we are handling. */
10635
94f592af 10636void
7016a5d5 10637md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10638{
94f592af 10639 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10640 valueT value = *valP;
252b5132 10641
f86103b7 10642#if !defined (TE_Mach)
93382f6d
AM
10643 if (fixP->fx_pcrel)
10644 {
10645 switch (fixP->fx_r_type)
10646 {
5865bb77
ILT
10647 default:
10648 break;
10649
d6ab8113
JB
10650 case BFD_RELOC_64:
10651 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10652 break;
93382f6d 10653 case BFD_RELOC_32:
ae8887b5 10654 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10655 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10656 break;
10657 case BFD_RELOC_16:
10658 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10659 break;
10660 case BFD_RELOC_8:
10661 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10662 break;
10663 }
10664 }
252b5132 10665
a161fe53 10666 if (fixP->fx_addsy != NULL
31312f95 10667 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10668 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10669 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10670 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10671 && !use_rela_relocations)
252b5132 10672 {
31312f95
AM
10673 /* This is a hack. There should be a better way to handle this.
10674 This covers for the fact that bfd_install_relocation will
10675 subtract the current location (for partial_inplace, PC relative
10676 relocations); see more below. */
252b5132 10677#ifndef OBJ_AOUT
718ddfc0 10678 if (IS_ELF
252b5132
RH
10679#ifdef TE_PE
10680 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10681#endif
10682 )
10683 value += fixP->fx_where + fixP->fx_frag->fr_address;
10684#endif
10685#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10686 if (IS_ELF)
252b5132 10687 {
6539b54b 10688 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10689
6539b54b 10690 if ((sym_seg == seg
2f66722d 10691 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10692 && sym_seg != absolute_section))
af65af87 10693 && !generic_force_reloc (fixP))
2f66722d
AM
10694 {
10695 /* Yes, we add the values in twice. This is because
6539b54b
AM
10696 bfd_install_relocation subtracts them out again. I think
10697 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10698 it. FIXME. */
10699 value += fixP->fx_where + fixP->fx_frag->fr_address;
10700 }
252b5132
RH
10701 }
10702#endif
10703#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10704 /* For some reason, the PE format does not store a
10705 section address offset for a PC relative symbol. */
10706 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10707 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10708 value += md_pcrel_from (fixP);
10709#endif
10710 }
fbeb56a4 10711#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10712 if (fixP->fx_addsy != NULL
10713 && S_IS_WEAK (fixP->fx_addsy)
10714 /* PR 16858: Do not modify weak function references. */
10715 && ! fixP->fx_pcrel)
fbeb56a4 10716 {
296a8689
NC
10717#if !defined (TE_PEP)
10718 /* For x86 PE weak function symbols are neither PC-relative
10719 nor do they set S_IS_FUNCTION. So the only reliable way
10720 to detect them is to check the flags of their containing
10721 section. */
10722 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10723 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10724 ;
10725 else
10726#endif
fbeb56a4
DK
10727 value -= S_GET_VALUE (fixP->fx_addsy);
10728 }
10729#endif
252b5132
RH
10730
10731 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10732 and we must not disappoint it. */
252b5132 10733#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10734 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10735 switch (fixP->fx_r_type)
10736 {
10737 case BFD_RELOC_386_PLT32:
3e73aa7c 10738 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10739 /* Make the jump instruction point to the address of the operand.
10740 At runtime we merely add the offset to the actual PLT entry.
10741 NB: Subtract the offset size only for jump instructions. */
10742 if (fixP->fx_pcrel)
10743 value = -4;
47926f60 10744 break;
31312f95 10745
13ae64f3
JJ
10746 case BFD_RELOC_386_TLS_GD:
10747 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10748 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10749 case BFD_RELOC_386_TLS_IE:
10750 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10751 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10752 case BFD_RELOC_X86_64_TLSGD:
10753 case BFD_RELOC_X86_64_TLSLD:
10754 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10755 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10756 value = 0; /* Fully resolved at runtime. No addend. */
10757 /* Fallthrough */
10758 case BFD_RELOC_386_TLS_LE:
10759 case BFD_RELOC_386_TLS_LDO_32:
10760 case BFD_RELOC_386_TLS_LE_32:
10761 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10762 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10763 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10764 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10765 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10766 break;
10767
67a4f2b7
AO
10768 case BFD_RELOC_386_TLS_DESC_CALL:
10769 case BFD_RELOC_X86_64_TLSDESC_CALL:
10770 value = 0; /* Fully resolved at runtime. No addend. */
10771 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10772 fixP->fx_done = 0;
10773 return;
10774
47926f60
KH
10775 case BFD_RELOC_VTABLE_INHERIT:
10776 case BFD_RELOC_VTABLE_ENTRY:
10777 fixP->fx_done = 0;
94f592af 10778 return;
47926f60
KH
10779
10780 default:
10781 break;
10782 }
10783#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10784 *valP = value;
f86103b7 10785#endif /* !defined (TE_Mach) */
3e73aa7c 10786
3e73aa7c 10787 /* Are we finished with this relocation now? */
c6682705 10788 if (fixP->fx_addsy == NULL)
3e73aa7c 10789 fixP->fx_done = 1;
fbeb56a4
DK
10790#if defined (OBJ_COFF) && defined (TE_PE)
10791 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10792 {
10793 fixP->fx_done = 0;
10794 /* Remember value for tc_gen_reloc. */
10795 fixP->fx_addnumber = value;
10796 /* Clear out the frag for now. */
10797 value = 0;
10798 }
10799#endif
3e73aa7c
JH
10800 else if (use_rela_relocations)
10801 {
10802 fixP->fx_no_overflow = 1;
062cd5e7
AS
10803 /* Remember value for tc_gen_reloc. */
10804 fixP->fx_addnumber = value;
3e73aa7c
JH
10805 value = 0;
10806 }
f86103b7 10807
94f592af 10808 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10809}
252b5132 10810\f
6d4af3c2 10811const char *
499ac353 10812md_atof (int type, char *litP, int *sizeP)
252b5132 10813{
499ac353
NC
10814 /* This outputs the LITTLENUMs in REVERSE order;
10815 in accord with the bigendian 386. */
10816 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10817}
10818\f
2d545b82 10819static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10820
252b5132 10821static char *
e3bb37b5 10822output_invalid (int c)
252b5132 10823{
3882b010 10824 if (ISPRINT (c))
f9f21a03
L
10825 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10826 "'%c'", c);
252b5132 10827 else
f9f21a03 10828 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10829 "(0x%x)", (unsigned char) c);
252b5132
RH
10830 return output_invalid_buf;
10831}
10832
af6bdddf 10833/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10834
10835static const reg_entry *
4d1bb795 10836parse_real_register (char *reg_string, char **end_op)
252b5132 10837{
af6bdddf
AM
10838 char *s = reg_string;
10839 char *p;
252b5132
RH
10840 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10841 const reg_entry *r;
10842
10843 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10844 if (*s == REGISTER_PREFIX)
10845 ++s;
10846
10847 if (is_space_char (*s))
10848 ++s;
10849
10850 p = reg_name_given;
af6bdddf 10851 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10852 {
10853 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10854 return (const reg_entry *) NULL;
10855 s++;
252b5132
RH
10856 }
10857
6588847e
DN
10858 /* For naked regs, make sure that we are not dealing with an identifier.
10859 This prevents confusing an identifier like `eax_var' with register
10860 `eax'. */
10861 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10862 return (const reg_entry *) NULL;
10863
af6bdddf 10864 *end_op = s;
252b5132
RH
10865
10866 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10867
5f47d35b 10868 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10869 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10870 {
0e0eea78
JB
10871 if (!cpu_arch_flags.bitfield.cpu8087
10872 && !cpu_arch_flags.bitfield.cpu287
10873 && !cpu_arch_flags.bitfield.cpu387)
10874 return (const reg_entry *) NULL;
10875
5f47d35b
AM
10876 if (is_space_char (*s))
10877 ++s;
10878 if (*s == '(')
10879 {
af6bdddf 10880 ++s;
5f47d35b
AM
10881 if (is_space_char (*s))
10882 ++s;
10883 if (*s >= '0' && *s <= '7')
10884 {
db557034 10885 int fpr = *s - '0';
af6bdddf 10886 ++s;
5f47d35b
AM
10887 if (is_space_char (*s))
10888 ++s;
10889 if (*s == ')')
10890 {
10891 *end_op = s + 1;
1e9cc1c2 10892 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10893 know (r);
10894 return r + fpr;
5f47d35b 10895 }
5f47d35b 10896 }
47926f60 10897 /* We have "%st(" then garbage. */
5f47d35b
AM
10898 return (const reg_entry *) NULL;
10899 }
10900 }
10901
a60de03c
JB
10902 if (r == NULL || allow_pseudo_reg)
10903 return r;
10904
0dfbf9d7 10905 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10906 return (const reg_entry *) NULL;
10907
dc821c5f 10908 if ((r->reg_type.bitfield.dword
21df382b 10909 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
192dc9c6
JB
10910 || r->reg_type.bitfield.control
10911 || r->reg_type.bitfield.debug
10912 || r->reg_type.bitfield.test)
10913 && !cpu_arch_flags.bitfield.cpui386)
10914 return (const reg_entry *) NULL;
10915
6e041cf4 10916 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10917 return (const reg_entry *) NULL;
10918
6e041cf4
JB
10919 if (!cpu_arch_flags.bitfield.cpuavx512f)
10920 {
10921 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10922 return (const reg_entry *) NULL;
40f12533 10923
6e041cf4
JB
10924 if (!cpu_arch_flags.bitfield.cpuavx)
10925 {
10926 if (r->reg_type.bitfield.ymmword)
10927 return (const reg_entry *) NULL;
1848e567 10928
6e041cf4
JB
10929 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10930 return (const reg_entry *) NULL;
10931 }
10932 }
43234a1e 10933
1adf7f56
JB
10934 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10935 return (const reg_entry *) NULL;
10936
db51cc60 10937 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10938 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10939 return (const reg_entry *) NULL;
10940
1d3f8286
JB
10941 /* Upper 16 vector registers are only available with VREX in 64bit
10942 mode, and require EVEX encoding. */
10943 if (r->reg_flags & RegVRex)
43234a1e 10944 {
e951d5ca 10945 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10946 || flag_code != CODE_64BIT)
10947 return (const reg_entry *) NULL;
1d3f8286
JB
10948
10949 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10950 }
10951
4787f4a5
JB
10952 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10953 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10954 && flag_code != CODE_64BIT)
20f0a1fc 10955 return (const reg_entry *) NULL;
1ae00879 10956
21df382b 10957 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
b7240065
JB
10958 return (const reg_entry *) NULL;
10959
252b5132
RH
10960 return r;
10961}
4d1bb795
JB
10962
10963/* REG_STRING starts *before* REGISTER_PREFIX. */
10964
10965static const reg_entry *
10966parse_register (char *reg_string, char **end_op)
10967{
10968 const reg_entry *r;
10969
10970 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10971 r = parse_real_register (reg_string, end_op);
10972 else
10973 r = NULL;
10974 if (!r)
10975 {
10976 char *save = input_line_pointer;
10977 char c;
10978 symbolS *symbolP;
10979
10980 input_line_pointer = reg_string;
d02603dc 10981 c = get_symbol_name (&reg_string);
4d1bb795
JB
10982 symbolP = symbol_find (reg_string);
10983 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10984 {
10985 const expressionS *e = symbol_get_value_expression (symbolP);
10986
0398aac5 10987 know (e->X_op == O_register);
4eed87de 10988 know (e->X_add_number >= 0
c3fe08fa 10989 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10990 r = i386_regtab + e->X_add_number;
d3bb6b49 10991 if ((r->reg_flags & RegVRex))
86fa6981 10992 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10993 *end_op = input_line_pointer;
10994 }
10995 *input_line_pointer = c;
10996 input_line_pointer = save;
10997 }
10998 return r;
10999}
11000
11001int
11002i386_parse_name (char *name, expressionS *e, char *nextcharP)
11003{
11004 const reg_entry *r;
11005 char *end = input_line_pointer;
11006
11007 *end = *nextcharP;
11008 r = parse_register (name, &input_line_pointer);
11009 if (r && end <= input_line_pointer)
11010 {
11011 *nextcharP = *input_line_pointer;
11012 *input_line_pointer = 0;
11013 e->X_op = O_register;
11014 e->X_add_number = r - i386_regtab;
11015 return 1;
11016 }
11017 input_line_pointer = end;
11018 *end = 0;
ee86248c 11019 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11020}
11021
11022void
11023md_operand (expressionS *e)
11024{
ee86248c
JB
11025 char *end;
11026 const reg_entry *r;
4d1bb795 11027
ee86248c
JB
11028 switch (*input_line_pointer)
11029 {
11030 case REGISTER_PREFIX:
11031 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11032 if (r)
11033 {
11034 e->X_op = O_register;
11035 e->X_add_number = r - i386_regtab;
11036 input_line_pointer = end;
11037 }
ee86248c
JB
11038 break;
11039
11040 case '[':
9c2799c2 11041 gas_assert (intel_syntax);
ee86248c
JB
11042 end = input_line_pointer++;
11043 expression (e);
11044 if (*input_line_pointer == ']')
11045 {
11046 ++input_line_pointer;
11047 e->X_op_symbol = make_expr_symbol (e);
11048 e->X_add_symbol = NULL;
11049 e->X_add_number = 0;
11050 e->X_op = O_index;
11051 }
11052 else
11053 {
11054 e->X_op = O_absent;
11055 input_line_pointer = end;
11056 }
11057 break;
4d1bb795
JB
11058 }
11059}
11060
252b5132 11061\f
4cc782b5 11062#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11063const char *md_shortopts = "kVQ:sqnO::";
252b5132 11064#else
b6f8c7c4 11065const char *md_shortopts = "qnO::";
252b5132 11066#endif
6e0b89ee 11067
3e73aa7c 11068#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11069#define OPTION_64 (OPTION_MD_BASE + 1)
11070#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11071#define OPTION_MARCH (OPTION_MD_BASE + 3)
11072#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11073#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11074#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11075#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11076#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11077#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11078#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11079#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11080#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11081#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11082#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11083#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11084#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11085#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11086#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11087#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11088#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11089#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11090#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11091#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11092#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11093#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11094#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11095
99ad8390
NC
11096struct option md_longopts[] =
11097{
3e73aa7c 11098 {"32", no_argument, NULL, OPTION_32},
321098a5 11099#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11100 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11101 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11102#endif
11103#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11104 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11105 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11106 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11107#endif
b3b91714 11108 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11109 {"march", required_argument, NULL, OPTION_MARCH},
11110 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11111 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11112 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11113 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11114 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11115 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11116 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11117 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11118 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11119 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11120 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11121 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11122 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11123# if defined (TE_PE) || defined (TE_PEP)
11124 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11125#endif
d1982f93 11126 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11127 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11128 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11129 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11130 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11131 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11132 {NULL, no_argument, NULL, 0}
11133};
11134size_t md_longopts_size = sizeof (md_longopts);
11135
11136int
17b9d67d 11137md_parse_option (int c, const char *arg)
252b5132 11138{
91d6fa6a 11139 unsigned int j;
293f5f65 11140 char *arch, *next, *saved;
9103f4f4 11141
252b5132
RH
11142 switch (c)
11143 {
12b55ccc
L
11144 case 'n':
11145 optimize_align_code = 0;
11146 break;
11147
a38cf1db
AM
11148 case 'q':
11149 quiet_warnings = 1;
252b5132
RH
11150 break;
11151
11152#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11153 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11154 should be emitted or not. FIXME: Not implemented. */
11155 case 'Q':
d4693039
JB
11156 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11157 return 0;
252b5132
RH
11158 break;
11159
11160 /* -V: SVR4 argument to print version ID. */
11161 case 'V':
11162 print_version_id ();
11163 break;
11164
a38cf1db
AM
11165 /* -k: Ignore for FreeBSD compatibility. */
11166 case 'k':
252b5132 11167 break;
4cc782b5
ILT
11168
11169 case 's':
11170 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11171 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11172 break;
8dcea932
L
11173
11174 case OPTION_MSHARED:
11175 shared = 1;
11176 break;
b4a3a7b4
L
11177
11178 case OPTION_X86_USED_NOTE:
11179 if (strcasecmp (arg, "yes") == 0)
11180 x86_used_note = 1;
11181 else if (strcasecmp (arg, "no") == 0)
11182 x86_used_note = 0;
11183 else
11184 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11185 break;
11186
11187
99ad8390 11188#endif
321098a5 11189#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11190 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11191 case OPTION_64:
11192 {
11193 const char **list, **l;
11194
3e73aa7c
JH
11195 list = bfd_target_list ();
11196 for (l = list; *l != NULL; l++)
8620418b 11197 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11198 || strcmp (*l, "coff-x86-64") == 0
11199 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11200 || strcmp (*l, "pei-x86-64") == 0
11201 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11202 {
11203 default_arch = "x86_64";
11204 break;
11205 }
3e73aa7c 11206 if (*l == NULL)
2b5d6a91 11207 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11208 free (list);
11209 }
11210 break;
11211#endif
252b5132 11212
351f65ca 11213#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11214 case OPTION_X32:
351f65ca
L
11215 if (IS_ELF)
11216 {
11217 const char **list, **l;
11218
11219 list = bfd_target_list ();
11220 for (l = list; *l != NULL; l++)
11221 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11222 {
11223 default_arch = "x86_64:32";
11224 break;
11225 }
11226 if (*l == NULL)
2b5d6a91 11227 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11228 free (list);
11229 }
11230 else
11231 as_fatal (_("32bit x86_64 is only supported for ELF"));
11232 break;
11233#endif
11234
6e0b89ee
AM
11235 case OPTION_32:
11236 default_arch = "i386";
11237 break;
11238
b3b91714
AM
11239 case OPTION_DIVIDE:
11240#ifdef SVR4_COMMENT_CHARS
11241 {
11242 char *n, *t;
11243 const char *s;
11244
add39d23 11245 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11246 t = n;
11247 for (s = i386_comment_chars; *s != '\0'; s++)
11248 if (*s != '/')
11249 *t++ = *s;
11250 *t = '\0';
11251 i386_comment_chars = n;
11252 }
11253#endif
11254 break;
11255
9103f4f4 11256 case OPTION_MARCH:
293f5f65
L
11257 saved = xstrdup (arg);
11258 arch = saved;
11259 /* Allow -march=+nosse. */
11260 if (*arch == '+')
11261 arch++;
6305a203 11262 do
9103f4f4 11263 {
6305a203 11264 if (*arch == '.')
2b5d6a91 11265 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11266 next = strchr (arch, '+');
11267 if (next)
11268 *next++ = '\0';
91d6fa6a 11269 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11270 {
91d6fa6a 11271 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11272 {
6305a203 11273 /* Processor. */
1ded5609
JB
11274 if (! cpu_arch[j].flags.bitfield.cpui386)
11275 continue;
11276
91d6fa6a 11277 cpu_arch_name = cpu_arch[j].name;
6305a203 11278 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11279 cpu_arch_flags = cpu_arch[j].flags;
11280 cpu_arch_isa = cpu_arch[j].type;
11281 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11282 if (!cpu_arch_tune_set)
11283 {
11284 cpu_arch_tune = cpu_arch_isa;
11285 cpu_arch_tune_flags = cpu_arch_isa_flags;
11286 }
11287 break;
11288 }
91d6fa6a
NC
11289 else if (*cpu_arch [j].name == '.'
11290 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11291 {
33eaf5de 11292 /* ISA extension. */
6305a203 11293 i386_cpu_flags flags;
309d3373 11294
293f5f65
L
11295 flags = cpu_flags_or (cpu_arch_flags,
11296 cpu_arch[j].flags);
81486035 11297
5b64d091 11298 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11299 {
11300 if (cpu_sub_arch_name)
11301 {
11302 char *name = cpu_sub_arch_name;
11303 cpu_sub_arch_name = concat (name,
91d6fa6a 11304 cpu_arch[j].name,
1bf57e9f 11305 (const char *) NULL);
6305a203
L
11306 free (name);
11307 }
11308 else
91d6fa6a 11309 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11310 cpu_arch_flags = flags;
a586129e 11311 cpu_arch_isa_flags = flags;
6305a203 11312 }
0089dace
L
11313 else
11314 cpu_arch_isa_flags
11315 = cpu_flags_or (cpu_arch_isa_flags,
11316 cpu_arch[j].flags);
6305a203 11317 break;
ccc9c027 11318 }
9103f4f4 11319 }
6305a203 11320
293f5f65
L
11321 if (j >= ARRAY_SIZE (cpu_arch))
11322 {
33eaf5de 11323 /* Disable an ISA extension. */
293f5f65
L
11324 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11325 if (strcmp (arch, cpu_noarch [j].name) == 0)
11326 {
11327 i386_cpu_flags flags;
11328
11329 flags = cpu_flags_and_not (cpu_arch_flags,
11330 cpu_noarch[j].flags);
11331 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11332 {
11333 if (cpu_sub_arch_name)
11334 {
11335 char *name = cpu_sub_arch_name;
11336 cpu_sub_arch_name = concat (arch,
11337 (const char *) NULL);
11338 free (name);
11339 }
11340 else
11341 cpu_sub_arch_name = xstrdup (arch);
11342 cpu_arch_flags = flags;
11343 cpu_arch_isa_flags = flags;
11344 }
11345 break;
11346 }
11347
11348 if (j >= ARRAY_SIZE (cpu_noarch))
11349 j = ARRAY_SIZE (cpu_arch);
11350 }
11351
91d6fa6a 11352 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11353 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11354
11355 arch = next;
9103f4f4 11356 }
293f5f65
L
11357 while (next != NULL);
11358 free (saved);
9103f4f4
L
11359 break;
11360
11361 case OPTION_MTUNE:
11362 if (*arg == '.')
2b5d6a91 11363 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11364 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11365 {
91d6fa6a 11366 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11367 {
ccc9c027 11368 cpu_arch_tune_set = 1;
91d6fa6a
NC
11369 cpu_arch_tune = cpu_arch [j].type;
11370 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11371 break;
11372 }
11373 }
91d6fa6a 11374 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11375 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11376 break;
11377
1efbbeb4
L
11378 case OPTION_MMNEMONIC:
11379 if (strcasecmp (arg, "att") == 0)
11380 intel_mnemonic = 0;
11381 else if (strcasecmp (arg, "intel") == 0)
11382 intel_mnemonic = 1;
11383 else
2b5d6a91 11384 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11385 break;
11386
11387 case OPTION_MSYNTAX:
11388 if (strcasecmp (arg, "att") == 0)
11389 intel_syntax = 0;
11390 else if (strcasecmp (arg, "intel") == 0)
11391 intel_syntax = 1;
11392 else
2b5d6a91 11393 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11394 break;
11395
11396 case OPTION_MINDEX_REG:
11397 allow_index_reg = 1;
11398 break;
11399
11400 case OPTION_MNAKED_REG:
11401 allow_naked_reg = 1;
11402 break;
11403
c0f3af97
L
11404 case OPTION_MSSE2AVX:
11405 sse2avx = 1;
11406 break;
11407
daf50ae7
L
11408 case OPTION_MSSE_CHECK:
11409 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11410 sse_check = check_error;
daf50ae7 11411 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11412 sse_check = check_warning;
daf50ae7 11413 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11414 sse_check = check_none;
daf50ae7 11415 else
2b5d6a91 11416 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11417 break;
11418
7bab8ab5
JB
11419 case OPTION_MOPERAND_CHECK:
11420 if (strcasecmp (arg, "error") == 0)
11421 operand_check = check_error;
11422 else if (strcasecmp (arg, "warning") == 0)
11423 operand_check = check_warning;
11424 else if (strcasecmp (arg, "none") == 0)
11425 operand_check = check_none;
11426 else
11427 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11428 break;
11429
539f890d
L
11430 case OPTION_MAVXSCALAR:
11431 if (strcasecmp (arg, "128") == 0)
11432 avxscalar = vex128;
11433 else if (strcasecmp (arg, "256") == 0)
11434 avxscalar = vex256;
11435 else
2b5d6a91 11436 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11437 break;
11438
03751133
L
11439 case OPTION_MVEXWIG:
11440 if (strcmp (arg, "0") == 0)
11441 vexwig = evexw0;
11442 else if (strcmp (arg, "1") == 0)
11443 vexwig = evexw1;
11444 else
11445 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11446 break;
11447
7e8b059b
L
11448 case OPTION_MADD_BND_PREFIX:
11449 add_bnd_prefix = 1;
11450 break;
11451
43234a1e
L
11452 case OPTION_MEVEXLIG:
11453 if (strcmp (arg, "128") == 0)
11454 evexlig = evexl128;
11455 else if (strcmp (arg, "256") == 0)
11456 evexlig = evexl256;
11457 else if (strcmp (arg, "512") == 0)
11458 evexlig = evexl512;
11459 else
11460 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11461 break;
11462
d3d3c6db
IT
11463 case OPTION_MEVEXRCIG:
11464 if (strcmp (arg, "rne") == 0)
11465 evexrcig = rne;
11466 else if (strcmp (arg, "rd") == 0)
11467 evexrcig = rd;
11468 else if (strcmp (arg, "ru") == 0)
11469 evexrcig = ru;
11470 else if (strcmp (arg, "rz") == 0)
11471 evexrcig = rz;
11472 else
11473 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11474 break;
11475
43234a1e
L
11476 case OPTION_MEVEXWIG:
11477 if (strcmp (arg, "0") == 0)
11478 evexwig = evexw0;
11479 else if (strcmp (arg, "1") == 0)
11480 evexwig = evexw1;
11481 else
11482 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11483 break;
11484
167ad85b
TG
11485# if defined (TE_PE) || defined (TE_PEP)
11486 case OPTION_MBIG_OBJ:
11487 use_big_obj = 1;
11488 break;
11489#endif
11490
d1982f93 11491 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11492 if (strcasecmp (arg, "yes") == 0)
11493 omit_lock_prefix = 1;
11494 else if (strcasecmp (arg, "no") == 0)
11495 omit_lock_prefix = 0;
11496 else
11497 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11498 break;
11499
e4e00185
AS
11500 case OPTION_MFENCE_AS_LOCK_ADD:
11501 if (strcasecmp (arg, "yes") == 0)
11502 avoid_fence = 1;
11503 else if (strcasecmp (arg, "no") == 0)
11504 avoid_fence = 0;
11505 else
11506 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11507 break;
11508
0cb4071e
L
11509 case OPTION_MRELAX_RELOCATIONS:
11510 if (strcasecmp (arg, "yes") == 0)
11511 generate_relax_relocations = 1;
11512 else if (strcasecmp (arg, "no") == 0)
11513 generate_relax_relocations = 0;
11514 else
11515 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11516 break;
11517
5db04b09 11518 case OPTION_MAMD64:
e89c5eaa 11519 intel64 = 0;
5db04b09
L
11520 break;
11521
11522 case OPTION_MINTEL64:
e89c5eaa 11523 intel64 = 1;
5db04b09
L
11524 break;
11525
b6f8c7c4
L
11526 case 'O':
11527 if (arg == NULL)
11528 {
11529 optimize = 1;
11530 /* Turn off -Os. */
11531 optimize_for_space = 0;
11532 }
11533 else if (*arg == 's')
11534 {
11535 optimize_for_space = 1;
11536 /* Turn on all encoding optimizations. */
41fd2579 11537 optimize = INT_MAX;
b6f8c7c4
L
11538 }
11539 else
11540 {
11541 optimize = atoi (arg);
11542 /* Turn off -Os. */
11543 optimize_for_space = 0;
11544 }
11545 break;
11546
252b5132
RH
11547 default:
11548 return 0;
11549 }
11550 return 1;
11551}
11552
8a2c8fef
L
11553#define MESSAGE_TEMPLATE \
11554" "
11555
293f5f65
L
11556static char *
11557output_message (FILE *stream, char *p, char *message, char *start,
11558 int *left_p, const char *name, int len)
11559{
11560 int size = sizeof (MESSAGE_TEMPLATE);
11561 int left = *left_p;
11562
11563 /* Reserve 2 spaces for ", " or ",\0" */
11564 left -= len + 2;
11565
11566 /* Check if there is any room. */
11567 if (left >= 0)
11568 {
11569 if (p != start)
11570 {
11571 *p++ = ',';
11572 *p++ = ' ';
11573 }
11574 p = mempcpy (p, name, len);
11575 }
11576 else
11577 {
11578 /* Output the current message now and start a new one. */
11579 *p++ = ',';
11580 *p = '\0';
11581 fprintf (stream, "%s\n", message);
11582 p = start;
11583 left = size - (start - message) - len - 2;
11584
11585 gas_assert (left >= 0);
11586
11587 p = mempcpy (p, name, len);
11588 }
11589
11590 *left_p = left;
11591 return p;
11592}
11593
8a2c8fef 11594static void
1ded5609 11595show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11596{
11597 static char message[] = MESSAGE_TEMPLATE;
11598 char *start = message + 27;
11599 char *p;
11600 int size = sizeof (MESSAGE_TEMPLATE);
11601 int left;
11602 const char *name;
11603 int len;
11604 unsigned int j;
11605
11606 p = start;
11607 left = size - (start - message);
11608 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11609 {
11610 /* Should it be skipped? */
11611 if (cpu_arch [j].skip)
11612 continue;
11613
11614 name = cpu_arch [j].name;
11615 len = cpu_arch [j].len;
11616 if (*name == '.')
11617 {
11618 /* It is an extension. Skip if we aren't asked to show it. */
11619 if (ext)
11620 {
11621 name++;
11622 len--;
11623 }
11624 else
11625 continue;
11626 }
11627 else if (ext)
11628 {
11629 /* It is an processor. Skip if we show only extension. */
11630 continue;
11631 }
1ded5609
JB
11632 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11633 {
11634 /* It is an impossible processor - skip. */
11635 continue;
11636 }
8a2c8fef 11637
293f5f65 11638 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11639 }
11640
293f5f65
L
11641 /* Display disabled extensions. */
11642 if (ext)
11643 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11644 {
11645 name = cpu_noarch [j].name;
11646 len = cpu_noarch [j].len;
11647 p = output_message (stream, p, message, start, &left, name,
11648 len);
11649 }
11650
8a2c8fef
L
11651 *p = '\0';
11652 fprintf (stream, "%s\n", message);
11653}
11654
252b5132 11655void
8a2c8fef 11656md_show_usage (FILE *stream)
252b5132 11657{
4cc782b5
ILT
11658#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11659 fprintf (stream, _("\
d4693039 11660 -Qy, -Qn ignored\n\
a38cf1db 11661 -V print assembler version number\n\
b3b91714
AM
11662 -k ignored\n"));
11663#endif
11664 fprintf (stream, _("\
12b55ccc 11665 -n Do not optimize code alignment\n\
b3b91714
AM
11666 -q quieten some warnings\n"));
11667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11668 fprintf (stream, _("\
a38cf1db 11669 -s ignored\n"));
b3b91714 11670#endif
d7f449c0
L
11671#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11672 || defined (TE_PE) || defined (TE_PEP))
751d281c 11673 fprintf (stream, _("\
570561f7 11674 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11675#endif
b3b91714
AM
11676#ifdef SVR4_COMMENT_CHARS
11677 fprintf (stream, _("\
11678 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11679#else
11680 fprintf (stream, _("\
b3b91714 11681 --divide ignored\n"));
4cc782b5 11682#endif
9103f4f4 11683 fprintf (stream, _("\
6305a203 11684 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11685 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11686 show_arch (stream, 0, 1);
8a2c8fef
L
11687 fprintf (stream, _("\
11688 EXTENSION is combination of:\n"));
1ded5609 11689 show_arch (stream, 1, 0);
6305a203 11690 fprintf (stream, _("\
8a2c8fef 11691 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11692 show_arch (stream, 0, 0);
ba104c83 11693 fprintf (stream, _("\
c0f3af97
L
11694 -msse2avx encode SSE instructions with VEX prefix\n"));
11695 fprintf (stream, _("\
7c5c05ef 11696 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11697 check SSE instructions\n"));
11698 fprintf (stream, _("\
7c5c05ef 11699 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11700 check operand combinations for validity\n"));
11701 fprintf (stream, _("\
7c5c05ef
L
11702 -mavxscalar=[128|256] (default: 128)\n\
11703 encode scalar AVX instructions with specific vector\n\
539f890d
L
11704 length\n"));
11705 fprintf (stream, _("\
03751133
L
11706 -mvexwig=[0|1] (default: 0)\n\
11707 encode VEX instructions with specific VEX.W value\n\
11708 for VEX.W bit ignored instructions\n"));
11709 fprintf (stream, _("\
7c5c05ef
L
11710 -mevexlig=[128|256|512] (default: 128)\n\
11711 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11712 length\n"));
11713 fprintf (stream, _("\
7c5c05ef
L
11714 -mevexwig=[0|1] (default: 0)\n\
11715 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11716 for EVEX.W bit ignored instructions\n"));
11717 fprintf (stream, _("\
7c5c05ef 11718 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11719 encode EVEX instructions with specific EVEX.RC value\n\
11720 for SAE-only ignored instructions\n"));
11721 fprintf (stream, _("\
7c5c05ef
L
11722 -mmnemonic=[att|intel] "));
11723 if (SYSV386_COMPAT)
11724 fprintf (stream, _("(default: att)\n"));
11725 else
11726 fprintf (stream, _("(default: intel)\n"));
11727 fprintf (stream, _("\
11728 use AT&T/Intel mnemonic\n"));
ba104c83 11729 fprintf (stream, _("\
7c5c05ef
L
11730 -msyntax=[att|intel] (default: att)\n\
11731 use AT&T/Intel syntax\n"));
ba104c83
L
11732 fprintf (stream, _("\
11733 -mindex-reg support pseudo index registers\n"));
11734 fprintf (stream, _("\
11735 -mnaked-reg don't require `%%' prefix for registers\n"));
11736 fprintf (stream, _("\
7e8b059b 11737 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11738#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11739 fprintf (stream, _("\
11740 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11741 fprintf (stream, _("\
11742 -mx86-used-note=[no|yes] "));
11743 if (DEFAULT_X86_USED_NOTE)
11744 fprintf (stream, _("(default: yes)\n"));
11745 else
11746 fprintf (stream, _("(default: no)\n"));
11747 fprintf (stream, _("\
11748 generate x86 used ISA and feature properties\n"));
11749#endif
11750#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11751 fprintf (stream, _("\
11752 -mbig-obj generate big object files\n"));
11753#endif
d022bddd 11754 fprintf (stream, _("\
7c5c05ef 11755 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11756 strip all lock prefixes\n"));
5db04b09 11757 fprintf (stream, _("\
7c5c05ef 11758 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11759 encode lfence, mfence and sfence as\n\
11760 lock addl $0x0, (%%{re}sp)\n"));
11761 fprintf (stream, _("\
7c5c05ef
L
11762 -mrelax-relocations=[no|yes] "));
11763 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11764 fprintf (stream, _("(default: yes)\n"));
11765 else
11766 fprintf (stream, _("(default: no)\n"));
11767 fprintf (stream, _("\
0cb4071e
L
11768 generate relax relocations\n"));
11769 fprintf (stream, _("\
7c5c05ef 11770 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11771 fprintf (stream, _("\
11772 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11773}
11774
3e73aa7c 11775#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11776 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11777 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11778
11779/* Pick the target format to use. */
11780
47926f60 11781const char *
e3bb37b5 11782i386_target_format (void)
252b5132 11783{
351f65ca
L
11784 if (!strncmp (default_arch, "x86_64", 6))
11785 {
11786 update_code_flag (CODE_64BIT, 1);
11787 if (default_arch[6] == '\0')
7f56bc95 11788 x86_elf_abi = X86_64_ABI;
351f65ca 11789 else
7f56bc95 11790 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11791 }
3e73aa7c 11792 else if (!strcmp (default_arch, "i386"))
78f12dd3 11793 update_code_flag (CODE_32BIT, 1);
5197d474
L
11794 else if (!strcmp (default_arch, "iamcu"))
11795 {
11796 update_code_flag (CODE_32BIT, 1);
11797 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11798 {
11799 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11800 cpu_arch_name = "iamcu";
11801 cpu_sub_arch_name = NULL;
11802 cpu_arch_flags = iamcu_flags;
11803 cpu_arch_isa = PROCESSOR_IAMCU;
11804 cpu_arch_isa_flags = iamcu_flags;
11805 if (!cpu_arch_tune_set)
11806 {
11807 cpu_arch_tune = cpu_arch_isa;
11808 cpu_arch_tune_flags = cpu_arch_isa_flags;
11809 }
11810 }
8d471ec1 11811 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11812 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11813 cpu_arch_name);
11814 }
3e73aa7c 11815 else
2b5d6a91 11816 as_fatal (_("unknown architecture"));
89507696
JB
11817
11818 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11819 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11820 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11821 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11822
252b5132
RH
11823 switch (OUTPUT_FLAVOR)
11824 {
9384f2ff 11825#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11826 case bfd_target_aout_flavour:
47926f60 11827 return AOUT_TARGET_FORMAT;
4c63da97 11828#endif
9384f2ff
AM
11829#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11830# if defined (TE_PE) || defined (TE_PEP)
11831 case bfd_target_coff_flavour:
167ad85b
TG
11832 if (flag_code == CODE_64BIT)
11833 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11834 else
11835 return "pe-i386";
9384f2ff 11836# elif defined (TE_GO32)
0561d57c
JK
11837 case bfd_target_coff_flavour:
11838 return "coff-go32";
9384f2ff 11839# else
252b5132
RH
11840 case bfd_target_coff_flavour:
11841 return "coff-i386";
9384f2ff 11842# endif
4c63da97 11843#endif
3e73aa7c 11844#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11845 case bfd_target_elf_flavour:
3e73aa7c 11846 {
351f65ca
L
11847 const char *format;
11848
11849 switch (x86_elf_abi)
4fa24527 11850 {
351f65ca
L
11851 default:
11852 format = ELF_TARGET_FORMAT;
11853 break;
7f56bc95 11854 case X86_64_ABI:
351f65ca 11855 use_rela_relocations = 1;
4fa24527 11856 object_64bit = 1;
351f65ca
L
11857 format = ELF_TARGET_FORMAT64;
11858 break;
7f56bc95 11859 case X86_64_X32_ABI:
4fa24527 11860 use_rela_relocations = 1;
351f65ca 11861 object_64bit = 1;
862be3fb 11862 disallow_64bit_reloc = 1;
351f65ca
L
11863 format = ELF_TARGET_FORMAT32;
11864 break;
4fa24527 11865 }
3632d14b 11866 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11867 {
7f56bc95 11868 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11869 as_fatal (_("Intel L1OM is 64bit only"));
11870 return ELF_TARGET_L1OM_FORMAT;
11871 }
b49f93f6 11872 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11873 {
11874 if (x86_elf_abi != X86_64_ABI)
11875 as_fatal (_("Intel K1OM is 64bit only"));
11876 return ELF_TARGET_K1OM_FORMAT;
11877 }
81486035
L
11878 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11879 {
11880 if (x86_elf_abi != I386_ABI)
11881 as_fatal (_("Intel MCU is 32bit only"));
11882 return ELF_TARGET_IAMCU_FORMAT;
11883 }
8a9036a4 11884 else
351f65ca 11885 return format;
3e73aa7c 11886 }
e57f8c65
TG
11887#endif
11888#if defined (OBJ_MACH_O)
11889 case bfd_target_mach_o_flavour:
d382c579
TG
11890 if (flag_code == CODE_64BIT)
11891 {
11892 use_rela_relocations = 1;
11893 object_64bit = 1;
11894 return "mach-o-x86-64";
11895 }
11896 else
11897 return "mach-o-i386";
4c63da97 11898#endif
252b5132
RH
11899 default:
11900 abort ();
11901 return NULL;
11902 }
11903}
11904
47926f60 11905#endif /* OBJ_MAYBE_ more than one */
252b5132 11906\f
252b5132 11907symbolS *
7016a5d5 11908md_undefined_symbol (char *name)
252b5132 11909{
18dc2407
ILT
11910 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11911 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11912 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11913 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11914 {
11915 if (!GOT_symbol)
11916 {
11917 if (symbol_find (name))
11918 as_bad (_("GOT already in symbol table"));
11919 GOT_symbol = symbol_new (name, undefined_section,
11920 (valueT) 0, &zero_address_frag);
11921 };
11922 return GOT_symbol;
11923 }
252b5132
RH
11924 return 0;
11925}
11926
11927/* Round up a section size to the appropriate boundary. */
47926f60 11928
252b5132 11929valueT
7016a5d5 11930md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11931{
4c63da97
AM
11932#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11933 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11934 {
11935 /* For a.out, force the section size to be aligned. If we don't do
11936 this, BFD will align it for us, but it will not write out the
11937 final bytes of the section. This may be a bug in BFD, but it is
11938 easier to fix it here since that is how the other a.out targets
11939 work. */
11940 int align;
11941
fd361982 11942 align = bfd_section_alignment (segment);
8d3842cd 11943 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11944 }
252b5132
RH
11945#endif
11946
11947 return size;
11948}
11949
11950/* On the i386, PC-relative offsets are relative to the start of the
11951 next instruction. That is, the address of the offset, plus its
11952 size, since the offset is always the last part of the insn. */
11953
11954long
e3bb37b5 11955md_pcrel_from (fixS *fixP)
252b5132
RH
11956{
11957 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11958}
11959
11960#ifndef I386COFF
11961
11962static void
e3bb37b5 11963s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11964{
29b0f896 11965 int temp;
252b5132 11966
8a75718c
JB
11967#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11968 if (IS_ELF)
11969 obj_elf_section_change_hook ();
11970#endif
252b5132
RH
11971 temp = get_absolute_expression ();
11972 subseg_set (bss_section, (subsegT) temp);
11973 demand_empty_rest_of_line ();
11974}
11975
11976#endif
11977
252b5132 11978void
e3bb37b5 11979i386_validate_fix (fixS *fixp)
252b5132 11980{
02a86693 11981 if (fixp->fx_subsy)
252b5132 11982 {
02a86693 11983 if (fixp->fx_subsy == GOT_symbol)
23df1078 11984 {
02a86693
L
11985 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11986 {
11987 if (!object_64bit)
11988 abort ();
11989#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11990 if (fixp->fx_tcbit2)
56ceb5b5
L
11991 fixp->fx_r_type = (fixp->fx_tcbit
11992 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11993 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11994 else
11995#endif
11996 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11997 }
d6ab8113 11998 else
02a86693
L
11999 {
12000 if (!object_64bit)
12001 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12002 else
12003 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12004 }
12005 fixp->fx_subsy = 0;
23df1078 12006 }
252b5132 12007 }
02a86693
L
12008#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12009 else if (!object_64bit)
12010 {
12011 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12012 && fixp->fx_tcbit2)
12013 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12014 }
12015#endif
252b5132
RH
12016}
12017
252b5132 12018arelent *
7016a5d5 12019tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12020{
12021 arelent *rel;
12022 bfd_reloc_code_real_type code;
12023
12024 switch (fixp->fx_r_type)
12025 {
8ce3d284 12026#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12027 case BFD_RELOC_SIZE32:
12028 case BFD_RELOC_SIZE64:
12029 if (S_IS_DEFINED (fixp->fx_addsy)
12030 && !S_IS_EXTERNAL (fixp->fx_addsy))
12031 {
12032 /* Resolve size relocation against local symbol to size of
12033 the symbol plus addend. */
12034 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12035 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12036 && !fits_in_unsigned_long (value))
12037 as_bad_where (fixp->fx_file, fixp->fx_line,
12038 _("symbol size computation overflow"));
12039 fixp->fx_addsy = NULL;
12040 fixp->fx_subsy = NULL;
12041 md_apply_fix (fixp, (valueT *) &value, NULL);
12042 return NULL;
12043 }
8ce3d284 12044#endif
1a0670f3 12045 /* Fall through. */
8fd4256d 12046
3e73aa7c
JH
12047 case BFD_RELOC_X86_64_PLT32:
12048 case BFD_RELOC_X86_64_GOT32:
12049 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12050 case BFD_RELOC_X86_64_GOTPCRELX:
12051 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12052 case BFD_RELOC_386_PLT32:
12053 case BFD_RELOC_386_GOT32:
02a86693 12054 case BFD_RELOC_386_GOT32X:
252b5132
RH
12055 case BFD_RELOC_386_GOTOFF:
12056 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12057 case BFD_RELOC_386_TLS_GD:
12058 case BFD_RELOC_386_TLS_LDM:
12059 case BFD_RELOC_386_TLS_LDO_32:
12060 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12061 case BFD_RELOC_386_TLS_IE:
12062 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12063 case BFD_RELOC_386_TLS_LE_32:
12064 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12065 case BFD_RELOC_386_TLS_GOTDESC:
12066 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12067 case BFD_RELOC_X86_64_TLSGD:
12068 case BFD_RELOC_X86_64_TLSLD:
12069 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12070 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12071 case BFD_RELOC_X86_64_GOTTPOFF:
12072 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12073 case BFD_RELOC_X86_64_TPOFF64:
12074 case BFD_RELOC_X86_64_GOTOFF64:
12075 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12076 case BFD_RELOC_X86_64_GOT64:
12077 case BFD_RELOC_X86_64_GOTPCREL64:
12078 case BFD_RELOC_X86_64_GOTPC64:
12079 case BFD_RELOC_X86_64_GOTPLT64:
12080 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12081 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12082 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12083 case BFD_RELOC_RVA:
12084 case BFD_RELOC_VTABLE_ENTRY:
12085 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12086#ifdef TE_PE
12087 case BFD_RELOC_32_SECREL:
12088#endif
252b5132
RH
12089 code = fixp->fx_r_type;
12090 break;
dbbaec26
L
12091 case BFD_RELOC_X86_64_32S:
12092 if (!fixp->fx_pcrel)
12093 {
12094 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12095 code = fixp->fx_r_type;
12096 break;
12097 }
1a0670f3 12098 /* Fall through. */
252b5132 12099 default:
93382f6d 12100 if (fixp->fx_pcrel)
252b5132 12101 {
93382f6d
AM
12102 switch (fixp->fx_size)
12103 {
12104 default:
b091f402
AM
12105 as_bad_where (fixp->fx_file, fixp->fx_line,
12106 _("can not do %d byte pc-relative relocation"),
12107 fixp->fx_size);
93382f6d
AM
12108 code = BFD_RELOC_32_PCREL;
12109 break;
12110 case 1: code = BFD_RELOC_8_PCREL; break;
12111 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12112 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12113#ifdef BFD64
12114 case 8: code = BFD_RELOC_64_PCREL; break;
12115#endif
93382f6d
AM
12116 }
12117 }
12118 else
12119 {
12120 switch (fixp->fx_size)
12121 {
12122 default:
b091f402
AM
12123 as_bad_where (fixp->fx_file, fixp->fx_line,
12124 _("can not do %d byte relocation"),
12125 fixp->fx_size);
93382f6d
AM
12126 code = BFD_RELOC_32;
12127 break;
12128 case 1: code = BFD_RELOC_8; break;
12129 case 2: code = BFD_RELOC_16; break;
12130 case 4: code = BFD_RELOC_32; break;
937149dd 12131#ifdef BFD64
3e73aa7c 12132 case 8: code = BFD_RELOC_64; break;
937149dd 12133#endif
93382f6d 12134 }
252b5132
RH
12135 }
12136 break;
12137 }
252b5132 12138
d182319b
JB
12139 if ((code == BFD_RELOC_32
12140 || code == BFD_RELOC_32_PCREL
12141 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12142 && GOT_symbol
12143 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12144 {
4fa24527 12145 if (!object_64bit)
d6ab8113
JB
12146 code = BFD_RELOC_386_GOTPC;
12147 else
12148 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12149 }
7b81dfbb
AJ
12150 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12151 && GOT_symbol
12152 && fixp->fx_addsy == GOT_symbol)
12153 {
12154 code = BFD_RELOC_X86_64_GOTPC64;
12155 }
252b5132 12156
add39d23
TS
12157 rel = XNEW (arelent);
12158 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12159 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12160
12161 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12162
3e73aa7c
JH
12163 if (!use_rela_relocations)
12164 {
12165 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12166 vtable entry to be used in the relocation's section offset. */
12167 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12168 rel->address = fixp->fx_offset;
fbeb56a4
DK
12169#if defined (OBJ_COFF) && defined (TE_PE)
12170 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12171 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12172 else
12173#endif
c6682705 12174 rel->addend = 0;
3e73aa7c
JH
12175 }
12176 /* Use the rela in 64bit mode. */
252b5132 12177 else
3e73aa7c 12178 {
862be3fb
L
12179 if (disallow_64bit_reloc)
12180 switch (code)
12181 {
862be3fb
L
12182 case BFD_RELOC_X86_64_DTPOFF64:
12183 case BFD_RELOC_X86_64_TPOFF64:
12184 case BFD_RELOC_64_PCREL:
12185 case BFD_RELOC_X86_64_GOTOFF64:
12186 case BFD_RELOC_X86_64_GOT64:
12187 case BFD_RELOC_X86_64_GOTPCREL64:
12188 case BFD_RELOC_X86_64_GOTPC64:
12189 case BFD_RELOC_X86_64_GOTPLT64:
12190 case BFD_RELOC_X86_64_PLTOFF64:
12191 as_bad_where (fixp->fx_file, fixp->fx_line,
12192 _("cannot represent relocation type %s in x32 mode"),
12193 bfd_get_reloc_code_name (code));
12194 break;
12195 default:
12196 break;
12197 }
12198
062cd5e7
AS
12199 if (!fixp->fx_pcrel)
12200 rel->addend = fixp->fx_offset;
12201 else
12202 switch (code)
12203 {
12204 case BFD_RELOC_X86_64_PLT32:
12205 case BFD_RELOC_X86_64_GOT32:
12206 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12207 case BFD_RELOC_X86_64_GOTPCRELX:
12208 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12209 case BFD_RELOC_X86_64_TLSGD:
12210 case BFD_RELOC_X86_64_TLSLD:
12211 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12212 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12213 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12214 rel->addend = fixp->fx_offset - fixp->fx_size;
12215 break;
12216 default:
12217 rel->addend = (section->vma
12218 - fixp->fx_size
12219 + fixp->fx_addnumber
12220 + md_pcrel_from (fixp));
12221 break;
12222 }
3e73aa7c
JH
12223 }
12224
252b5132
RH
12225 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12226 if (rel->howto == NULL)
12227 {
12228 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12229 _("cannot represent relocation type %s"),
252b5132
RH
12230 bfd_get_reloc_code_name (code));
12231 /* Set howto to a garbage value so that we can keep going. */
12232 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12233 gas_assert (rel->howto != NULL);
252b5132
RH
12234 }
12235
12236 return rel;
12237}
12238
ee86248c 12239#include "tc-i386-intel.c"
54cfded0 12240
a60de03c
JB
12241void
12242tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12243{
a60de03c
JB
12244 int saved_naked_reg;
12245 char saved_register_dot;
54cfded0 12246
a60de03c
JB
12247 saved_naked_reg = allow_naked_reg;
12248 allow_naked_reg = 1;
12249 saved_register_dot = register_chars['.'];
12250 register_chars['.'] = '.';
12251 allow_pseudo_reg = 1;
12252 expression_and_evaluate (exp);
12253 allow_pseudo_reg = 0;
12254 register_chars['.'] = saved_register_dot;
12255 allow_naked_reg = saved_naked_reg;
12256
e96d56a1 12257 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12258 {
a60de03c
JB
12259 if ((addressT) exp->X_add_number < i386_regtab_size)
12260 {
12261 exp->X_op = O_constant;
12262 exp->X_add_number = i386_regtab[exp->X_add_number]
12263 .dw2_regnum[flag_code >> 1];
12264 }
12265 else
12266 exp->X_op = O_illegal;
54cfded0 12267 }
54cfded0
AM
12268}
12269
12270void
12271tc_x86_frame_initial_instructions (void)
12272{
a60de03c
JB
12273 static unsigned int sp_regno[2];
12274
12275 if (!sp_regno[flag_code >> 1])
12276 {
12277 char *saved_input = input_line_pointer;
12278 char sp[][4] = {"esp", "rsp"};
12279 expressionS exp;
a4447b93 12280
a60de03c
JB
12281 input_line_pointer = sp[flag_code >> 1];
12282 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12283 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12284 sp_regno[flag_code >> 1] = exp.X_add_number;
12285 input_line_pointer = saved_input;
12286 }
a4447b93 12287
61ff971f
L
12288 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12289 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12290}
d2b2c203 12291
d7921315
L
12292int
12293x86_dwarf2_addr_size (void)
12294{
12295#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12296 if (x86_elf_abi == X86_64_X32_ABI)
12297 return 4;
12298#endif
12299 return bfd_arch_bits_per_address (stdoutput) / 8;
12300}
12301
d2b2c203
DJ
12302int
12303i386_elf_section_type (const char *str, size_t len)
12304{
12305 if (flag_code == CODE_64BIT
12306 && len == sizeof ("unwind") - 1
12307 && strncmp (str, "unwind", 6) == 0)
12308 return SHT_X86_64_UNWIND;
12309
12310 return -1;
12311}
bb41ade5 12312
ad5fec3b
EB
12313#ifdef TE_SOLARIS
12314void
12315i386_solaris_fix_up_eh_frame (segT sec)
12316{
12317 if (flag_code == CODE_64BIT)
12318 elf_section_type (sec) = SHT_X86_64_UNWIND;
12319}
12320#endif
12321
bb41ade5
AM
12322#ifdef TE_PE
12323void
12324tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12325{
91d6fa6a 12326 expressionS exp;
bb41ade5 12327
91d6fa6a
NC
12328 exp.X_op = O_secrel;
12329 exp.X_add_symbol = symbol;
12330 exp.X_add_number = 0;
12331 emit_expr (&exp, size);
bb41ade5
AM
12332}
12333#endif
3b22753a
L
12334
12335#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12336/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12337
01e1a5bc 12338bfd_vma
6d4af3c2 12339x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12340{
12341 if (flag_code == CODE_64BIT)
12342 {
12343 if (letter == 'l')
12344 return SHF_X86_64_LARGE;
12345
8f3bae45 12346 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12347 }
3b22753a 12348 else
8f3bae45 12349 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12350 return -1;
12351}
12352
01e1a5bc 12353bfd_vma
3b22753a
L
12354x86_64_section_word (char *str, size_t len)
12355{
8620418b 12356 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12357 return SHF_X86_64_LARGE;
12358
12359 return -1;
12360}
12361
12362static void
12363handle_large_common (int small ATTRIBUTE_UNUSED)
12364{
12365 if (flag_code != CODE_64BIT)
12366 {
12367 s_comm_internal (0, elf_common_parse);
12368 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12369 }
12370 else
12371 {
12372 static segT lbss_section;
12373 asection *saved_com_section_ptr = elf_com_section_ptr;
12374 asection *saved_bss_section = bss_section;
12375
12376 if (lbss_section == NULL)
12377 {
12378 flagword applicable;
12379 segT seg = now_seg;
12380 subsegT subseg = now_subseg;
12381
12382 /* The .lbss section is for local .largecomm symbols. */
12383 lbss_section = subseg_new (".lbss", 0);
12384 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12385 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12386 seg_info (lbss_section)->bss = 1;
12387
12388 subseg_set (seg, subseg);
12389 }
12390
12391 elf_com_section_ptr = &_bfd_elf_large_com_section;
12392 bss_section = lbss_section;
12393
12394 s_comm_internal (0, elf_common_parse);
12395
12396 elf_com_section_ptr = saved_com_section_ptr;
12397 bss_section = saved_bss_section;
12398 }
12399}
12400#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.096778 seconds and 4 git commands to generate.