PR24339, segfault on NULL symbol section
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
43234a1e
L
202/* This struct describes rounding control and SAE in the instruction. */
203struct RC_Operation
204{
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214};
215
216static struct RC_Operation rc_op;
217
218/* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221struct Mask_Operation
222{
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227};
228
229static struct Mask_Operation mask_op;
230
231/* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233struct Broadcast_Operation
234{
8e6e0792 235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
4a1b91ea
L
240
241 /* Number of bytes to broadcast. */
242 int bytes;
43234a1e
L
243};
244
245static struct Broadcast_Operation broadcast_op;
246
c0f3af97
L
247/* VEX prefix. */
248typedef struct
249{
43234a1e
L
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
c0f3af97
L
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255} vex_prefix;
256
252b5132 257/* 'md_assemble ()' gathers together information and puts it into a
47926f60 258 i386_insn. */
252b5132 259
520dc8e8
AM
260union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
a65babc9
L
267enum i386_error
268 {
86e026a4 269 operand_size_mismatch,
a65babc9
L
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
a65babc9
L
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
6c30d220
L
277 unsupported,
278 invalid_vsib_address,
7bab8ab5 279 invalid_vector_register_set,
43234a1e
L
280 unsupported_vector_index_register,
281 unsupported_broadcast,
43234a1e
L
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
a65babc9
L
289 };
290
252b5132
RH
291struct _i386_insn
292 {
47926f60 293 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 294 insn_template tm;
252b5132 295
7d5e4556
L
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
252b5132
RH
298 char suffix;
299
47926f60 300 /* OPERANDS gives the number of given operands. */
252b5132
RH
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
47926f60 305 operands. */
252b5132
RH
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 309 use OP[i] for the corresponding operand. */
40fb9820 310 i386_operand_type types[MAX_OPERANDS];
252b5132 311
520dc8e8
AM
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
252b5132 315
3e73aa7c
JH
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318#define Operand_PCrel 1
c48dadc9 319#define Operand_Mem 2
3e73aa7c 320
252b5132 321 /* Relocation type for operand */
f86103b7 322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 323
252b5132
RH
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 331 explicit segment overrides are given. */
ce8a8b2f 332 const seg_entry *seg[2];
252b5132 333
8325cc63
JB
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
252b5132
RH
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
b4a3a7b4
L
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
252b5132 354 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 355 addressing modes of this insn are encoded. */
252b5132 356 modrm_byte rm;
3e73aa7c 357 rex_byte rex;
43234a1e 358 rex_byte vrex;
252b5132 359 sib_byte sib;
c0f3af97 360 vex_prefix vex;
b6169b20 361
43234a1e
L
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
86fa6981
L
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
64c49ab3
JB
379 dir_encoding_store,
380 dir_encoding_swap
86fa6981 381 } dir_encoding;
891edac4 382
a501d77e
L
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
f8a5c266 390
6b6b6807
L
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
b6f8c7c4
L
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
86fa6981
L
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
d5de92cf
L
406 /* REP prefix. */
407 const char *rep_prefix;
408
165de32a
L
409 /* HLE prefix. */
410 const char *hle_prefix;
42164a71 411
7e8b059b
L
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
04ef582a
L
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
891edac4 418 /* Error message. */
a65babc9 419 enum i386_error error;
252b5132
RH
420 };
421
422typedef struct _i386_insn i386_insn;
423
43234a1e
L
424/* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426struct RC_name
427{
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431};
432
433static const struct RC_name RC_NamesTable[] =
434{
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440};
441
252b5132
RH
442/* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 444const char extra_symbol_chars[] = "*%-([{}"
252b5132 445#ifdef LEX_AT
32137342
NC
446 "@"
447#endif
448#ifdef LEX_QM
449 "?"
252b5132 450#endif
32137342 451 ;
252b5132 452
29b0f896
AM
453#if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 455 && !defined (TE_GNU) \
29b0f896 456 && !defined (TE_LINUX) \
8d63c93e 457 && !defined (TE_NACL) \
29b0f896 458 && !defined (TE_FreeBSD) \
5b806d27 459 && !defined (TE_DragonFly) \
29b0f896 460 && !defined (TE_NetBSD)))
252b5132 461/* This array holds the chars that always start a comment. If the
b3b91714
AM
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464const char *i386_comment_chars = "#/";
465#define SVR4_COMMENT_CHARS 1
252b5132 466#define PREFIX_SEPARATOR '\\'
252b5132 467
b3b91714
AM
468#else
469const char *i386_comment_chars = "#";
470#define PREFIX_SEPARATOR '/'
471#endif
472
252b5132
RH
473/* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 477 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
252b5132 480 '/' isn't otherwise defined. */
b3b91714 481const char line_comment_chars[] = "#/";
252b5132 482
63a0b638 483const char line_separator_chars[] = ";";
252b5132 484
ce8a8b2f
AM
485/* Chars that can be used to separate mant from exp in floating point
486 nums. */
252b5132
RH
487const char EXP_CHARS[] = "eE";
488
ce8a8b2f
AM
489/* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
252b5132
RH
492const char FLT_CHARS[] = "fFdDxX";
493
ce8a8b2f 494/* Tables for lexical analysis. */
252b5132
RH
495static char mnemonic_chars[256];
496static char register_chars[256];
497static char operand_chars[256];
498static char identifier_chars[256];
499static char digit_chars[256];
500
ce8a8b2f 501/* Lexical macros. */
252b5132
RH
502#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503#define is_operand_char(x) (operand_chars[(unsigned char) x])
504#define is_register_char(x) (register_chars[(unsigned char) x])
505#define is_space_char(x) ((x) == ' ')
506#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507#define is_digit_char(x) (digit_chars[(unsigned char) x])
508
0234cb7c 509/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
510static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512/* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
47926f60 515 assembler instruction). */
252b5132 516static char save_stack[32];
ce8a8b2f 517static char *save_stack_p;
252b5132
RH
518#define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520#define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
47926f60 523/* The instruction we're assembling. */
252b5132
RH
524static i386_insn i;
525
526/* Possible templates for current insn. */
527static const templates *current_templates;
528
31b2323c
L
529/* Per instruction expressionS buffers: max displacements & immediates. */
530static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 532
47926f60 533/* Current operand we are working on. */
ee86248c 534static int this_operand = -1;
252b5132 535
3e73aa7c
JH
536/* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544static enum flag_code flag_code;
4fa24527 545static unsigned int object_64bit;
862be3fb 546static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
547static int use_rela_relocations = 0;
548
7af8ed2d
NC
549#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
351f65ca
L
553/* The ELF ABI to use. */
554enum x86_elf_abi
555{
556 I386_ABI,
7f56bc95
L
557 X86_64_ABI,
558 X86_64_X32_ABI
351f65ca
L
559};
560
561static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 562#endif
351f65ca 563
167ad85b
TG
564#if defined (TE_PE) || defined (TE_PEP)
565/* Use big object file format. */
566static int use_big_obj = 0;
567#endif
568
8dcea932
L
569#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570/* 1 if generating code for a shared library. */
571static int shared = 0;
572#endif
573
47926f60
KH
574/* 1 for intel syntax,
575 0 if att syntax. */
576static int intel_syntax = 0;
252b5132 577
e89c5eaa
L
578/* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580static int intel64;
581
1efbbeb4
L
582/* 1 for intel mnemonic,
583 0 if att mnemonic. */
584static int intel_mnemonic = !SYSV386_COMPAT;
585
a60de03c
JB
586/* 1 if pseudo registers are permitted. */
587static int allow_pseudo_reg = 0;
588
47926f60
KH
589/* 1 if register prefix % not required. */
590static int allow_naked_reg = 0;
252b5132 591
33eaf5de 592/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595static int add_bnd_prefix = 0;
596
ba104c83 597/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
598static int allow_index_reg = 0;
599
d022bddd
IT
600/* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602static int omit_lock_prefix = 0;
603
e4e00185
AS
604/* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606static int avoid_fence = 0;
607
0cb4071e
L
608/* 1 if the assembler should generate relax relocations. */
609
610static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
7bab8ab5 613static enum check_kind
daf50ae7 614 {
7bab8ab5
JB
615 check_none = 0,
616 check_warning,
617 check_error
daf50ae7 618 }
7bab8ab5 619sse_check, operand_check = check_warning;
daf50ae7 620
b6f8c7c4
L
621/* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626static int optimize = 0;
627
628/* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635static int optimize_for_space = 0;
636
2ca3ace5
L
637/* Register prefix used for error message. */
638static const char *register_prefix = "%";
639
47926f60
KH
640/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643static char stackop_size = '\0';
eecb386c 644
12b55ccc
L
645/* Non-zero to optimize code alignment. */
646int optimize_align_code = 1;
647
47926f60
KH
648/* Non-zero to quieten some warnings. */
649static int quiet_warnings = 0;
a38cf1db 650
47926f60
KH
651/* CPU name. */
652static const char *cpu_arch_name = NULL;
6305a203 653static char *cpu_sub_arch_name = NULL;
a38cf1db 654
47926f60 655/* CPU feature flags. */
40fb9820
L
656static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
ccc9c027
L
658/* If we have selected a cpu we are generating instructions for. */
659static int cpu_arch_tune_set = 0;
660
9103f4f4 661/* Cpu we are generating instructions for. */
fbf3f584 662enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
663
664/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 665static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 666
ccc9c027 667/* CPU instruction set architecture used. */
fbf3f584 668enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 669
9103f4f4 670/* CPU feature flags of instruction set architecture used. */
fbf3f584 671i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 672
fddf5b5b
AM
673/* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675static unsigned int no_cond_jump_promotion = 0;
676
c0f3af97
L
677/* Encode SSE instructions with VEX prefix. */
678static unsigned int sse2avx;
679
539f890d
L
680/* Encode scalar AVX instructions with specific vector length. */
681static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
03751133
L
687/* Encode VEX WIG instructions with specific vex.w. */
688static enum
689 {
690 vexw0 = 0,
691 vexw1
692 } vexwig;
693
43234a1e
L
694/* Encode scalar EVEX LIG instructions with specific vector length. */
695static enum
696 {
697 evexl128 = 0,
698 evexl256,
699 evexl512
700 } evexlig;
701
702/* Encode EVEX WIG instructions with specific evex.w. */
703static enum
704 {
705 evexw0 = 0,
706 evexw1
707 } evexwig;
708
d3d3c6db
IT
709/* Value to encode in EVEX RC bits, for SAE-only instructions. */
710static enum rc_type evexrcig = rne;
711
29b0f896 712/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 713static symbolS *GOT_symbol;
29b0f896 714
a4447b93
RH
715/* The dwarf2 return column, adjusted for 32 or 64 bit. */
716unsigned int x86_dwarf2_return_column;
717
718/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
719int x86_cie_data_alignment;
720
252b5132 721/* Interface to relax_segment.
fddf5b5b
AM
722 There are 3 major relax states for 386 jump insns because the
723 different types of jumps add different sizes to frags when we're
724 figuring out what sort of jump to choose to reach a given label. */
252b5132 725
47926f60 726/* Types. */
93c2a809
AM
727#define UNCOND_JUMP 0
728#define COND_JUMP 1
729#define COND_JUMP86 2
fddf5b5b 730
47926f60 731/* Sizes. */
252b5132
RH
732#define CODE16 1
733#define SMALL 0
29b0f896 734#define SMALL16 (SMALL | CODE16)
252b5132 735#define BIG 2
29b0f896 736#define BIG16 (BIG | CODE16)
252b5132
RH
737
738#ifndef INLINE
739#ifdef __GNUC__
740#define INLINE __inline__
741#else
742#define INLINE
743#endif
744#endif
745
fddf5b5b
AM
746#define ENCODE_RELAX_STATE(type, size) \
747 ((relax_substateT) (((type) << 2) | (size)))
748#define TYPE_FROM_RELAX_STATE(s) \
749 ((s) >> 2)
750#define DISP_SIZE_FROM_RELAX_STATE(s) \
751 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
752
753/* This table is used by relax_frag to promote short jumps to long
754 ones where necessary. SMALL (short) jumps may be promoted to BIG
755 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
756 don't allow a short jump in a 32 bit code segment to be promoted to
757 a 16 bit offset jump because it's slower (requires data size
758 prefix), and doesn't work, unless the destination is in the bottom
759 64k of the code segment (The top 16 bits of eip are zeroed). */
760
761const relax_typeS md_relax_table[] =
762{
24eab124
AM
763 /* The fields are:
764 1) most positive reach of this state,
765 2) most negative reach of this state,
93c2a809 766 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 767 4) which index into the table to try if we can't fit into this one. */
252b5132 768
fddf5b5b 769 /* UNCOND_JUMP states. */
93c2a809
AM
770 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
771 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
772 /* dword jmp adds 4 bytes to frag:
773 0 extra opcode bytes, 4 displacement bytes. */
252b5132 774 {0, 0, 4, 0},
93c2a809
AM
775 /* word jmp adds 2 byte2 to frag:
776 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
777 {0, 0, 2, 0},
778
93c2a809
AM
779 /* COND_JUMP states. */
780 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
782 /* dword conditionals adds 5 bytes to frag:
783 1 extra opcode byte, 4 displacement bytes. */
784 {0, 0, 5, 0},
fddf5b5b 785 /* word conditionals add 3 bytes to frag:
93c2a809
AM
786 1 extra opcode byte, 2 displacement bytes. */
787 {0, 0, 3, 0},
788
789 /* COND_JUMP86 states. */
790 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
792 /* dword conditionals adds 5 bytes to frag:
793 1 extra opcode byte, 4 displacement bytes. */
794 {0, 0, 5, 0},
795 /* word conditionals add 4 bytes to frag:
796 1 displacement byte and a 3 byte long branch insn. */
797 {0, 0, 4, 0}
252b5132
RH
798};
799
9103f4f4
L
800static const arch_entry cpu_arch[] =
801{
89507696
JB
802 /* Do not replace the first two entries - i386_target_format()
803 relies on them being there in this order. */
8a2c8fef 804 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 805 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 807 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 809 CPU_NONE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 811 CPU_I186_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 813 CPU_I286_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 815 CPU_I386_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 817 CPU_I486_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 819 CPU_I586_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 821 CPU_I686_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 823 CPU_I586_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 825 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 827 CPU_P2_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 829 CPU_P3_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 831 CPU_P4_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 833 CPU_CORE_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 835 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 837 CPU_CORE_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 839 CPU_CORE_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 841 CPU_CORE2_FLAGS, 1 },
8a2c8fef 842 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 843 CPU_CORE2_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 845 CPU_COREI7_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 847 CPU_L1OM_FLAGS, 0 },
7a9068fe 848 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 849 CPU_K1OM_FLAGS, 0 },
81486035 850 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 851 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 853 CPU_K6_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 855 CPU_K6_2_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 857 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 859 CPU_K8_FLAGS, 1 },
8a2c8fef 860 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 861 CPU_K8_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 863 CPU_K8_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 865 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 866 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 867 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 868 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 869 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 870 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 871 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 872 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 873 CPU_BDVER4_FLAGS, 0 },
029f3522 874 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 875 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
876 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
877 CPU_ZNVER2_FLAGS, 0 },
7b458c12 878 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 879 CPU_BTVER1_FLAGS, 0 },
7b458c12 880 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 881 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_8087_FLAGS, 0 },
8a2c8fef 884 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_287_FLAGS, 0 },
8a2c8fef 886 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_387_FLAGS, 0 },
1848e567
L
888 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
889 CPU_687_FLAGS, 0 },
d871f3f4
L
890 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
891 CPU_CMOV_FLAGS, 0 },
892 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
893 CPU_FXSR_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_MMX_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_SSE_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_SSE2_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_SSE3_FLAGS, 0 },
8a2c8fef 902 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_AVX_FLAGS, 0 },
6c30d220 912 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_AVX2_FLAGS, 0 },
43234a1e 914 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AVX512F_FLAGS, 0 },
43234a1e 916 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_AVX512CD_FLAGS, 0 },
43234a1e 918 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_AVX512ER_FLAGS, 0 },
43234a1e 920 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 922 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 924 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 926 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_VMX_FLAGS, 0 },
8729a6f6 930 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_SMX_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 936 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_AES_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 948 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 952 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_F16C_FLAGS, 0 },
6c30d220 954 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_BMI2_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_FMA_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_FMA4_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_XOP_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_LWP_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_MOVBE_FLAGS, 0 },
60aa667e 966 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_CX16_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_EPT_FLAGS, 0 },
6c30d220 970 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_LZCNT_FLAGS, 0 },
42164a71 972 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_HLE_FLAGS, 0 },
42164a71 974 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_RTM_FLAGS, 0 },
6c30d220 976 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_CLFLUSH_FLAGS, 0 },
22109423 980 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_NOP_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 984 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 986 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 988 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 990 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SVME_FLAGS, 1 },
8a2c8fef 994 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_SVME_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_ABM_FLAGS, 0 },
87973e9f 1000 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_BMI_FLAGS, 0 },
2a2a0f38 1002 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_TBM_FLAGS, 0 },
e2e1fcde 1004 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_ADX_FLAGS, 0 },
e2e1fcde 1006 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1008 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1010 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SMAP_FLAGS, 0 },
7e8b059b 1012 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_MPX_FLAGS, 0 },
a0046408 1014 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_SHA_FLAGS, 0 },
963f3586 1016 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1018 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1020 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_SE1_FLAGS, 0 },
c5e7287a 1022 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1024 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1026 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1028 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1029 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1030 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1031 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1032 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1033 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1034 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1035 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1036 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1037 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1038 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1040 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_CLZERO_FLAGS, 0 },
9916071f 1042 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1043 CPU_MWAITX_FLAGS, 0 },
8eab4136 1044 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1045 CPU_OSPKE_FLAGS, 0 },
8bc52696 1046 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1047 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1048 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1049 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1050 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1051 CPU_IBT_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1053 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1054 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1055 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1056 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1057 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1058 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1059 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1060 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1061 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1062 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1063 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1064 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1065 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1066 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1067 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1068 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1069 CPU_MOVDIRI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1071 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1072};
1073
1074static const noarch_entry cpu_noarch[] =
1075{
1076 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1077 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1078 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1079 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1080 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1081 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1082 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1083 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1084 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1085 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1086 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1087 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1088 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1089 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1090 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1091 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1092 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1100 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1101 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1102 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1103 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1104 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1105 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1106 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1107 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1108 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1109 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1110 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1111};
1112
704209c0 1113#ifdef I386COFF
a6c24e68
NC
1114/* Like s_lcomm_internal in gas/read.c but the alignment string
1115 is allowed to be optional. */
1116
1117static symbolS *
1118pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1119{
1120 addressT align = 0;
1121
1122 SKIP_WHITESPACE ();
1123
7ab9ffdd 1124 if (needs_align
a6c24e68
NC
1125 && *input_line_pointer == ',')
1126 {
1127 align = parse_align (needs_align - 1);
7ab9ffdd 1128
a6c24e68
NC
1129 if (align == (addressT) -1)
1130 return NULL;
1131 }
1132 else
1133 {
1134 if (size >= 8)
1135 align = 3;
1136 else if (size >= 4)
1137 align = 2;
1138 else if (size >= 2)
1139 align = 1;
1140 else
1141 align = 0;
1142 }
1143
1144 bss_alloc (symbolP, size, align);
1145 return symbolP;
1146}
1147
704209c0 1148static void
a6c24e68
NC
1149pe_lcomm (int needs_align)
1150{
1151 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1152}
704209c0 1153#endif
a6c24e68 1154
29b0f896
AM
1155const pseudo_typeS md_pseudo_table[] =
1156{
1157#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1158 {"align", s_align_bytes, 0},
1159#else
1160 {"align", s_align_ptwo, 0},
1161#endif
1162 {"arch", set_cpu_arch, 0},
1163#ifndef I386COFF
1164 {"bss", s_bss, 0},
a6c24e68
NC
1165#else
1166 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1167#endif
1168 {"ffloat", float_cons, 'f'},
1169 {"dfloat", float_cons, 'd'},
1170 {"tfloat", float_cons, 'x'},
1171 {"value", cons, 2},
d182319b 1172 {"slong", signed_cons, 4},
29b0f896
AM
1173 {"noopt", s_ignore, 0},
1174 {"optim", s_ignore, 0},
1175 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1176 {"code16", set_code_flag, CODE_16BIT},
1177 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1178#ifdef BFD64
29b0f896 1179 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1180#endif
29b0f896
AM
1181 {"intel_syntax", set_intel_syntax, 1},
1182 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1183 {"intel_mnemonic", set_intel_mnemonic, 1},
1184 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1185 {"allow_index_reg", set_allow_index_reg, 1},
1186 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1187 {"sse_check", set_check, 0},
1188 {"operand_check", set_check, 1},
3b22753a
L
1189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1190 {"largecomm", handle_large_common, 0},
07a53e5c 1191#else
68d20676 1192 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1193 {"loc", dwarf2_directive_loc, 0},
1194 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1195#endif
6482c264
NC
1196#ifdef TE_PE
1197 {"secrel32", pe_directive_secrel, 0},
1198#endif
29b0f896
AM
1199 {0, 0, 0}
1200};
1201
1202/* For interface with expression (). */
1203extern char *input_line_pointer;
1204
1205/* Hash table for instruction mnemonic lookup. */
1206static struct hash_control *op_hash;
1207
1208/* Hash table for register lookup. */
1209static struct hash_control *reg_hash;
1210\f
ce8a8b2f
AM
1211 /* Various efficient no-op patterns for aligning code labels.
1212 Note: Don't try to assemble the instructions in the comments.
1213 0L and 0w are not legal. */
62a02d25
L
1214static const unsigned char f32_1[] =
1215 {0x90}; /* nop */
1216static const unsigned char f32_2[] =
1217 {0x66,0x90}; /* xchg %ax,%ax */
1218static const unsigned char f32_3[] =
1219 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1220static const unsigned char f32_4[] =
1221 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1222static const unsigned char f32_6[] =
1223 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1224static const unsigned char f32_7[] =
1225 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1226static const unsigned char f16_3[] =
3ae729d5 1227 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1228static const unsigned char f16_4[] =
3ae729d5
L
1229 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1230static const unsigned char jump_disp8[] =
1231 {0xeb}; /* jmp disp8 */
1232static const unsigned char jump32_disp32[] =
1233 {0xe9}; /* jmp disp32 */
1234static const unsigned char jump16_disp32[] =
1235 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1236/* 32-bit NOPs patterns. */
1237static const unsigned char *const f32_patt[] = {
3ae729d5 1238 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1239};
1240/* 16-bit NOPs patterns. */
1241static const unsigned char *const f16_patt[] = {
3ae729d5 1242 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1243};
1244/* nopl (%[re]ax) */
1245static const unsigned char alt_3[] =
1246 {0x0f,0x1f,0x00};
1247/* nopl 0(%[re]ax) */
1248static const unsigned char alt_4[] =
1249 {0x0f,0x1f,0x40,0x00};
1250/* nopl 0(%[re]ax,%[re]ax,1) */
1251static const unsigned char alt_5[] =
1252 {0x0f,0x1f,0x44,0x00,0x00};
1253/* nopw 0(%[re]ax,%[re]ax,1) */
1254static const unsigned char alt_6[] =
1255 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1256/* nopl 0L(%[re]ax) */
1257static const unsigned char alt_7[] =
1258 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1259/* nopl 0L(%[re]ax,%[re]ax,1) */
1260static const unsigned char alt_8[] =
1261 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1262/* nopw 0L(%[re]ax,%[re]ax,1) */
1263static const unsigned char alt_9[] =
1264 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1265/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1266static const unsigned char alt_10[] =
1267 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1268/* data16 nopw %cs:0L(%eax,%eax,1) */
1269static const unsigned char alt_11[] =
1270 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1271/* 32-bit and 64-bit NOPs patterns. */
1272static const unsigned char *const alt_patt[] = {
1273 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1274 alt_9, alt_10, alt_11
62a02d25
L
1275};
1276
1277/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1278 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1279
1280static void
1281i386_output_nops (char *where, const unsigned char *const *patt,
1282 int count, int max_single_nop_size)
1283
1284{
3ae729d5
L
1285 /* Place the longer NOP first. */
1286 int last;
1287 int offset;
1288 const unsigned char *nops = patt[max_single_nop_size - 1];
1289
1290 /* Use the smaller one if the requsted one isn't available. */
1291 if (nops == NULL)
62a02d25 1292 {
3ae729d5
L
1293 max_single_nop_size--;
1294 nops = patt[max_single_nop_size - 1];
62a02d25
L
1295 }
1296
3ae729d5
L
1297 last = count % max_single_nop_size;
1298
1299 count -= last;
1300 for (offset = 0; offset < count; offset += max_single_nop_size)
1301 memcpy (where + offset, nops, max_single_nop_size);
1302
1303 if (last)
1304 {
1305 nops = patt[last - 1];
1306 if (nops == NULL)
1307 {
1308 /* Use the smaller one plus one-byte NOP if the needed one
1309 isn't available. */
1310 last--;
1311 nops = patt[last - 1];
1312 memcpy (where + offset, nops, last);
1313 where[offset + last] = *patt[0];
1314 }
1315 else
1316 memcpy (where + offset, nops, last);
1317 }
62a02d25
L
1318}
1319
3ae729d5
L
1320static INLINE int
1321fits_in_imm7 (offsetT num)
1322{
1323 return (num & 0x7f) == num;
1324}
1325
1326static INLINE int
1327fits_in_imm31 (offsetT num)
1328{
1329 return (num & 0x7fffffff) == num;
1330}
62a02d25
L
1331
1332/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1333 single NOP instruction LIMIT. */
1334
1335void
3ae729d5 1336i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1337{
3ae729d5 1338 const unsigned char *const *patt = NULL;
62a02d25 1339 int max_single_nop_size;
3ae729d5
L
1340 /* Maximum number of NOPs before switching to jump over NOPs. */
1341 int max_number_of_nops;
62a02d25 1342
3ae729d5 1343 switch (fragP->fr_type)
62a02d25 1344 {
3ae729d5
L
1345 case rs_fill_nop:
1346 case rs_align_code:
1347 break;
1348 default:
62a02d25
L
1349 return;
1350 }
1351
ccc9c027
L
1352 /* We need to decide which NOP sequence to use for 32bit and
1353 64bit. When -mtune= is used:
4eed87de 1354
76bc74dc
L
1355 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1356 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1357 2. For the rest, alt_patt will be used.
1358
1359 When -mtune= isn't used, alt_patt will be used if
22109423 1360 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1361 be used.
ccc9c027
L
1362
1363 When -march= or .arch is used, we can't use anything beyond
1364 cpu_arch_isa_flags. */
1365
1366 if (flag_code == CODE_16BIT)
1367 {
3ae729d5
L
1368 patt = f16_patt;
1369 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1370 /* Limit number of NOPs to 2 in 16-bit mode. */
1371 max_number_of_nops = 2;
252b5132 1372 }
33fef721 1373 else
ccc9c027 1374 {
fbf3f584 1375 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1376 {
1377 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1378 switch (cpu_arch_tune)
1379 {
1380 case PROCESSOR_UNKNOWN:
1381 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1382 optimize with nops. */
1383 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1384 patt = alt_patt;
ccc9c027
L
1385 else
1386 patt = f32_patt;
1387 break;
ccc9c027
L
1388 case PROCESSOR_PENTIUM4:
1389 case PROCESSOR_NOCONA:
ef05d495 1390 case PROCESSOR_CORE:
76bc74dc 1391 case PROCESSOR_CORE2:
bd5295b2 1392 case PROCESSOR_COREI7:
3632d14b 1393 case PROCESSOR_L1OM:
7a9068fe 1394 case PROCESSOR_K1OM:
76bc74dc 1395 case PROCESSOR_GENERIC64:
ccc9c027
L
1396 case PROCESSOR_K6:
1397 case PROCESSOR_ATHLON:
1398 case PROCESSOR_K8:
4eed87de 1399 case PROCESSOR_AMDFAM10:
8aedb9fe 1400 case PROCESSOR_BD:
029f3522 1401 case PROCESSOR_ZNVER:
7b458c12 1402 case PROCESSOR_BT:
80b8656c 1403 patt = alt_patt;
ccc9c027 1404 break;
76bc74dc 1405 case PROCESSOR_I386:
ccc9c027
L
1406 case PROCESSOR_I486:
1407 case PROCESSOR_PENTIUM:
2dde1948 1408 case PROCESSOR_PENTIUMPRO:
81486035 1409 case PROCESSOR_IAMCU:
ccc9c027
L
1410 case PROCESSOR_GENERIC32:
1411 patt = f32_patt;
1412 break;
4eed87de 1413 }
ccc9c027
L
1414 }
1415 else
1416 {
fbf3f584 1417 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1418 {
1419 case PROCESSOR_UNKNOWN:
e6a14101 1420 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1421 PROCESSOR_UNKNOWN. */
1422 abort ();
1423 break;
1424
76bc74dc 1425 case PROCESSOR_I386:
ccc9c027
L
1426 case PROCESSOR_I486:
1427 case PROCESSOR_PENTIUM:
81486035 1428 case PROCESSOR_IAMCU:
ccc9c027
L
1429 case PROCESSOR_K6:
1430 case PROCESSOR_ATHLON:
1431 case PROCESSOR_K8:
4eed87de 1432 case PROCESSOR_AMDFAM10:
8aedb9fe 1433 case PROCESSOR_BD:
029f3522 1434 case PROCESSOR_ZNVER:
7b458c12 1435 case PROCESSOR_BT:
ccc9c027
L
1436 case PROCESSOR_GENERIC32:
1437 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1438 with nops. */
1439 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1440 patt = alt_patt;
ccc9c027
L
1441 else
1442 patt = f32_patt;
1443 break;
76bc74dc
L
1444 case PROCESSOR_PENTIUMPRO:
1445 case PROCESSOR_PENTIUM4:
1446 case PROCESSOR_NOCONA:
1447 case PROCESSOR_CORE:
ef05d495 1448 case PROCESSOR_CORE2:
bd5295b2 1449 case PROCESSOR_COREI7:
3632d14b 1450 case PROCESSOR_L1OM:
7a9068fe 1451 case PROCESSOR_K1OM:
22109423 1452 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1453 patt = alt_patt;
ccc9c027
L
1454 else
1455 patt = f32_patt;
1456 break;
1457 case PROCESSOR_GENERIC64:
80b8656c 1458 patt = alt_patt;
ccc9c027 1459 break;
4eed87de 1460 }
ccc9c027
L
1461 }
1462
76bc74dc
L
1463 if (patt == f32_patt)
1464 {
3ae729d5
L
1465 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1466 /* Limit number of NOPs to 2 for older processors. */
1467 max_number_of_nops = 2;
76bc74dc
L
1468 }
1469 else
1470 {
3ae729d5
L
1471 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1472 /* Limit number of NOPs to 7 for newer processors. */
1473 max_number_of_nops = 7;
1474 }
1475 }
1476
1477 if (limit == 0)
1478 limit = max_single_nop_size;
1479
1480 if (fragP->fr_type == rs_fill_nop)
1481 {
1482 /* Output NOPs for .nop directive. */
1483 if (limit > max_single_nop_size)
1484 {
1485 as_bad_where (fragP->fr_file, fragP->fr_line,
1486 _("invalid single nop size: %d "
1487 "(expect within [0, %d])"),
1488 limit, max_single_nop_size);
1489 return;
1490 }
1491 }
1492 else
1493 fragP->fr_var = count;
1494
1495 if ((count / max_single_nop_size) > max_number_of_nops)
1496 {
1497 /* Generate jump over NOPs. */
1498 offsetT disp = count - 2;
1499 if (fits_in_imm7 (disp))
1500 {
1501 /* Use "jmp disp8" if possible. */
1502 count = disp;
1503 where[0] = jump_disp8[0];
1504 where[1] = count;
1505 where += 2;
1506 }
1507 else
1508 {
1509 unsigned int size_of_jump;
1510
1511 if (flag_code == CODE_16BIT)
1512 {
1513 where[0] = jump16_disp32[0];
1514 where[1] = jump16_disp32[1];
1515 size_of_jump = 2;
1516 }
1517 else
1518 {
1519 where[0] = jump32_disp32[0];
1520 size_of_jump = 1;
1521 }
1522
1523 count -= size_of_jump + 4;
1524 if (!fits_in_imm31 (count))
1525 {
1526 as_bad_where (fragP->fr_file, fragP->fr_line,
1527 _("jump over nop padding out of range"));
1528 return;
1529 }
1530
1531 md_number_to_chars (where + size_of_jump, count, 4);
1532 where += size_of_jump + 4;
76bc74dc 1533 }
ccc9c027 1534 }
3ae729d5
L
1535
1536 /* Generate multiple NOPs. */
1537 i386_output_nops (where, patt, count, limit);
252b5132
RH
1538}
1539
c6fb90c8 1540static INLINE int
0dfbf9d7 1541operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1542{
0dfbf9d7 1543 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1544 {
1545 case 3:
0dfbf9d7 1546 if (x->array[2])
c6fb90c8 1547 return 0;
1a0670f3 1548 /* Fall through. */
c6fb90c8 1549 case 2:
0dfbf9d7 1550 if (x->array[1])
c6fb90c8 1551 return 0;
1a0670f3 1552 /* Fall through. */
c6fb90c8 1553 case 1:
0dfbf9d7 1554 return !x->array[0];
c6fb90c8
L
1555 default:
1556 abort ();
1557 }
40fb9820
L
1558}
1559
c6fb90c8 1560static INLINE void
0dfbf9d7 1561operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1562{
0dfbf9d7 1563 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1564 {
1565 case 3:
0dfbf9d7 1566 x->array[2] = v;
1a0670f3 1567 /* Fall through. */
c6fb90c8 1568 case 2:
0dfbf9d7 1569 x->array[1] = v;
1a0670f3 1570 /* Fall through. */
c6fb90c8 1571 case 1:
0dfbf9d7 1572 x->array[0] = v;
1a0670f3 1573 /* Fall through. */
c6fb90c8
L
1574 break;
1575 default:
1576 abort ();
1577 }
1578}
40fb9820 1579
c6fb90c8 1580static INLINE int
0dfbf9d7
L
1581operand_type_equal (const union i386_operand_type *x,
1582 const union i386_operand_type *y)
c6fb90c8 1583{
0dfbf9d7 1584 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1585 {
1586 case 3:
0dfbf9d7 1587 if (x->array[2] != y->array[2])
c6fb90c8 1588 return 0;
1a0670f3 1589 /* Fall through. */
c6fb90c8 1590 case 2:
0dfbf9d7 1591 if (x->array[1] != y->array[1])
c6fb90c8 1592 return 0;
1a0670f3 1593 /* Fall through. */
c6fb90c8 1594 case 1:
0dfbf9d7 1595 return x->array[0] == y->array[0];
c6fb90c8
L
1596 break;
1597 default:
1598 abort ();
1599 }
1600}
40fb9820 1601
0dfbf9d7
L
1602static INLINE int
1603cpu_flags_all_zero (const union i386_cpu_flags *x)
1604{
1605 switch (ARRAY_SIZE(x->array))
1606 {
53467f57
IT
1607 case 4:
1608 if (x->array[3])
1609 return 0;
1610 /* Fall through. */
0dfbf9d7
L
1611 case 3:
1612 if (x->array[2])
1613 return 0;
1a0670f3 1614 /* Fall through. */
0dfbf9d7
L
1615 case 2:
1616 if (x->array[1])
1617 return 0;
1a0670f3 1618 /* Fall through. */
0dfbf9d7
L
1619 case 1:
1620 return !x->array[0];
1621 default:
1622 abort ();
1623 }
1624}
1625
0dfbf9d7
L
1626static INLINE int
1627cpu_flags_equal (const union i386_cpu_flags *x,
1628 const union i386_cpu_flags *y)
1629{
1630 switch (ARRAY_SIZE(x->array))
1631 {
53467f57
IT
1632 case 4:
1633 if (x->array[3] != y->array[3])
1634 return 0;
1635 /* Fall through. */
0dfbf9d7
L
1636 case 3:
1637 if (x->array[2] != y->array[2])
1638 return 0;
1a0670f3 1639 /* Fall through. */
0dfbf9d7
L
1640 case 2:
1641 if (x->array[1] != y->array[1])
1642 return 0;
1a0670f3 1643 /* Fall through. */
0dfbf9d7
L
1644 case 1:
1645 return x->array[0] == y->array[0];
1646 break;
1647 default:
1648 abort ();
1649 }
1650}
c6fb90c8
L
1651
1652static INLINE int
1653cpu_flags_check_cpu64 (i386_cpu_flags f)
1654{
1655 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1656 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1657}
1658
c6fb90c8
L
1659static INLINE i386_cpu_flags
1660cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1661{
c6fb90c8
L
1662 switch (ARRAY_SIZE (x.array))
1663 {
53467f57
IT
1664 case 4:
1665 x.array [3] &= y.array [3];
1666 /* Fall through. */
c6fb90c8
L
1667 case 3:
1668 x.array [2] &= y.array [2];
1a0670f3 1669 /* Fall through. */
c6fb90c8
L
1670 case 2:
1671 x.array [1] &= y.array [1];
1a0670f3 1672 /* Fall through. */
c6fb90c8
L
1673 case 1:
1674 x.array [0] &= y.array [0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 return x;
1680}
40fb9820 1681
c6fb90c8
L
1682static INLINE i386_cpu_flags
1683cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1684{
c6fb90c8 1685 switch (ARRAY_SIZE (x.array))
40fb9820 1686 {
53467f57
IT
1687 case 4:
1688 x.array [3] |= y.array [3];
1689 /* Fall through. */
c6fb90c8
L
1690 case 3:
1691 x.array [2] |= y.array [2];
1a0670f3 1692 /* Fall through. */
c6fb90c8
L
1693 case 2:
1694 x.array [1] |= y.array [1];
1a0670f3 1695 /* Fall through. */
c6fb90c8
L
1696 case 1:
1697 x.array [0] |= y.array [0];
40fb9820
L
1698 break;
1699 default:
1700 abort ();
1701 }
40fb9820
L
1702 return x;
1703}
1704
309d3373
JB
1705static INLINE i386_cpu_flags
1706cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1707{
1708 switch (ARRAY_SIZE (x.array))
1709 {
53467f57
IT
1710 case 4:
1711 x.array [3] &= ~y.array [3];
1712 /* Fall through. */
309d3373
JB
1713 case 3:
1714 x.array [2] &= ~y.array [2];
1a0670f3 1715 /* Fall through. */
309d3373
JB
1716 case 2:
1717 x.array [1] &= ~y.array [1];
1a0670f3 1718 /* Fall through. */
309d3373
JB
1719 case 1:
1720 x.array [0] &= ~y.array [0];
1721 break;
1722 default:
1723 abort ();
1724 }
1725 return x;
1726}
1727
c0f3af97
L
1728#define CPU_FLAGS_ARCH_MATCH 0x1
1729#define CPU_FLAGS_64BIT_MATCH 0x2
1730
c0f3af97 1731#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1732 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1733
1734/* Return CPU flags match bits. */
3629bb00 1735
40fb9820 1736static int
d3ce72d0 1737cpu_flags_match (const insn_template *t)
40fb9820 1738{
c0f3af97
L
1739 i386_cpu_flags x = t->cpu_flags;
1740 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1741
1742 x.bitfield.cpu64 = 0;
1743 x.bitfield.cpuno64 = 0;
1744
0dfbf9d7 1745 if (cpu_flags_all_zero (&x))
c0f3af97
L
1746 {
1747 /* This instruction is available on all archs. */
db12e14e 1748 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1749 }
3629bb00
L
1750 else
1751 {
c0f3af97 1752 /* This instruction is available only on some archs. */
3629bb00
L
1753 i386_cpu_flags cpu = cpu_arch_flags;
1754
ab592e75
JB
1755 /* AVX512VL is no standalone feature - match it and then strip it. */
1756 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1757 return match;
1758 x.bitfield.cpuavx512vl = 0;
1759
3629bb00 1760 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1761 if (!cpu_flags_all_zero (&cpu))
1762 {
a5ff0eb2
L
1763 if (x.bitfield.cpuavx)
1764 {
929f69fa 1765 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1766 if (cpu.bitfield.cpuavx
1767 && (!t->opcode_modifier.sse2avx || sse2avx)
1768 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1769 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1770 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1771 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1772 }
929f69fa
JB
1773 else if (x.bitfield.cpuavx512f)
1774 {
1775 /* We need to check a few extra flags with AVX512F. */
1776 if (cpu.bitfield.cpuavx512f
1777 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1778 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1779 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
a5ff0eb2 1782 else
db12e14e 1783 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1784 }
3629bb00 1785 }
c0f3af97 1786 return match;
40fb9820
L
1787}
1788
c6fb90c8
L
1789static INLINE i386_operand_type
1790operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1791{
c6fb90c8
L
1792 switch (ARRAY_SIZE (x.array))
1793 {
1794 case 3:
1795 x.array [2] &= y.array [2];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 2:
1798 x.array [1] &= y.array [1];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 1:
1801 x.array [0] &= y.array [0];
1802 break;
1803 default:
1804 abort ();
1805 }
1806 return x;
40fb9820
L
1807}
1808
73053c1f
JB
1809static INLINE i386_operand_type
1810operand_type_and_not (i386_operand_type x, i386_operand_type y)
1811{
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] &= ~y.array [2];
1816 /* Fall through. */
1817 case 2:
1818 x.array [1] &= ~y.array [1];
1819 /* Fall through. */
1820 case 1:
1821 x.array [0] &= ~y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
1826 return x;
1827}
1828
c6fb90c8
L
1829static INLINE i386_operand_type
1830operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1831{
c6fb90c8 1832 switch (ARRAY_SIZE (x.array))
40fb9820 1833 {
c6fb90c8
L
1834 case 3:
1835 x.array [2] |= y.array [2];
1a0670f3 1836 /* Fall through. */
c6fb90c8
L
1837 case 2:
1838 x.array [1] |= y.array [1];
1a0670f3 1839 /* Fall through. */
c6fb90c8
L
1840 case 1:
1841 x.array [0] |= y.array [0];
40fb9820
L
1842 break;
1843 default:
1844 abort ();
1845 }
c6fb90c8
L
1846 return x;
1847}
40fb9820 1848
c6fb90c8
L
1849static INLINE i386_operand_type
1850operand_type_xor (i386_operand_type x, i386_operand_type y)
1851{
1852 switch (ARRAY_SIZE (x.array))
1853 {
1854 case 3:
1855 x.array [2] ^= y.array [2];
1a0670f3 1856 /* Fall through. */
c6fb90c8
L
1857 case 2:
1858 x.array [1] ^= y.array [1];
1a0670f3 1859 /* Fall through. */
c6fb90c8
L
1860 case 1:
1861 x.array [0] ^= y.array [0];
1862 break;
1863 default:
1864 abort ();
1865 }
40fb9820
L
1866 return x;
1867}
1868
1869static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1870static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1871static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1872static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1873static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1874static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1875static const i386_operand_type anydisp
1876 = OPERAND_TYPE_ANYDISP;
40fb9820 1877static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1878static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1879static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1880static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1881static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1882static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1883static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1884static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1885static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1886static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1887static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1888static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1889
1890enum operand_type
1891{
1892 reg,
40fb9820
L
1893 imm,
1894 disp,
1895 anymem
1896};
1897
c6fb90c8 1898static INLINE int
40fb9820
L
1899operand_type_check (i386_operand_type t, enum operand_type c)
1900{
1901 switch (c)
1902 {
1903 case reg:
dc821c5f 1904 return t.bitfield.reg;
40fb9820 1905
40fb9820
L
1906 case imm:
1907 return (t.bitfield.imm8
1908 || t.bitfield.imm8s
1909 || t.bitfield.imm16
1910 || t.bitfield.imm32
1911 || t.bitfield.imm32s
1912 || t.bitfield.imm64);
1913
1914 case disp:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64);
1920
1921 case anymem:
1922 return (t.bitfield.disp8
1923 || t.bitfield.disp16
1924 || t.bitfield.disp32
1925 || t.bitfield.disp32s
1926 || t.bitfield.disp64
1927 || t.bitfield.baseindex);
1928
1929 default:
1930 abort ();
1931 }
2cfe26b6
AM
1932
1933 return 0;
40fb9820
L
1934}
1935
7a54636a
L
1936/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1937 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1938
1939static INLINE int
7a54636a
L
1940match_operand_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
5c07affc 1942{
3ac21baa
JB
1943 return !((i.types[given].bitfield.byte
1944 && !t->operand_types[wanted].bitfield.byte)
1945 || (i.types[given].bitfield.word
1946 && !t->operand_types[wanted].bitfield.word)
1947 || (i.types[given].bitfield.dword
1948 && !t->operand_types[wanted].bitfield.dword)
1949 || (i.types[given].bitfield.qword
1950 && !t->operand_types[wanted].bitfield.qword)
1951 || (i.types[given].bitfield.tbyte
1952 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1953}
1954
dd40ce22
L
1955/* Return 1 if there is no conflict in SIMD register between operand
1956 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1957
1958static INLINE int
dd40ce22
L
1959match_simd_size (const insn_template *t, unsigned int wanted,
1960 unsigned int given)
1b54b8d7 1961{
3ac21baa
JB
1962 return !((i.types[given].bitfield.xmmword
1963 && !t->operand_types[wanted].bitfield.xmmword)
1964 || (i.types[given].bitfield.ymmword
1965 && !t->operand_types[wanted].bitfield.ymmword)
1966 || (i.types[given].bitfield.zmmword
1967 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1968}
1969
7a54636a
L
1970/* Return 1 if there is no conflict in any size between operand GIVEN
1971 and opeand WANTED for instruction template T. */
5c07affc
L
1972
1973static INLINE int
dd40ce22
L
1974match_mem_size (const insn_template *t, unsigned int wanted,
1975 unsigned int given)
5c07affc 1976{
7a54636a 1977 return (match_operand_size (t, wanted, given)
3ac21baa 1978 && !((i.types[given].bitfield.unspecified
af508cb9 1979 && !i.broadcast
3ac21baa
JB
1980 && !t->operand_types[wanted].bitfield.unspecified)
1981 || (i.types[given].bitfield.fword
1982 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1983 /* For scalar opcode templates to allow register and memory
1984 operands at the same time, some special casing is needed
d6793fa1
JB
1985 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1986 down-conversion vpmov*. */
3ac21baa 1987 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1988 && !t->opcode_modifier.broadcast
3ac21baa
JB
1989 && (t->operand_types[wanted].bitfield.byte
1990 || t->operand_types[wanted].bitfield.word
1991 || t->operand_types[wanted].bitfield.dword
1992 || t->operand_types[wanted].bitfield.qword))
1993 ? (i.types[given].bitfield.xmmword
1994 || i.types[given].bitfield.ymmword
1995 || i.types[given].bitfield.zmmword)
1996 : !match_simd_size(t, wanted, given))));
5c07affc
L
1997}
1998
3ac21baa
JB
1999/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2000 operands for instruction template T, and it has MATCH_REVERSE set if there
2001 is no size conflict on any operands for the template with operands reversed
2002 (and the template allows for reversing in the first place). */
5c07affc 2003
3ac21baa
JB
2004#define MATCH_STRAIGHT 1
2005#define MATCH_REVERSE 2
2006
2007static INLINE unsigned int
d3ce72d0 2008operand_size_match (const insn_template *t)
5c07affc 2009{
3ac21baa 2010 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2011
2012 /* Don't check jump instructions. */
2013 if (t->opcode_modifier.jump
2014 || t->opcode_modifier.jumpbyte
2015 || t->opcode_modifier.jumpdword
2016 || t->opcode_modifier.jumpintersegment)
2017 return match;
2018
2019 /* Check memory and accumulator operand size. */
2020 for (j = 0; j < i.operands; j++)
2021 {
1b54b8d7
JB
2022 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2023 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2024 continue;
2025
1b54b8d7 2026 if (t->operand_types[j].bitfield.reg
7a54636a 2027 && !match_operand_size (t, j, j))
5c07affc
L
2028 {
2029 match = 0;
2030 break;
2031 }
2032
1b54b8d7 2033 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2034 && !match_simd_size (t, j, j))
1b54b8d7
JB
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if (t->operand_types[j].bitfield.acc
7a54636a 2041 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2042 {
2043 match = 0;
2044 break;
2045 }
2046
c48dadc9 2047 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2048 {
2049 match = 0;
2050 break;
2051 }
2052 }
2053
3ac21baa 2054 if (!t->opcode_modifier.d)
891edac4
L
2055 {
2056mismatch:
3ac21baa
JB
2057 if (!match)
2058 i.error = operand_size_mismatch;
2059 return match;
891edac4 2060 }
5c07affc
L
2061
2062 /* Check reverse. */
f5eb1d70 2063 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2064
f5eb1d70 2065 for (j = 0; j < i.operands; j++)
5c07affc 2066 {
f5eb1d70
JB
2067 unsigned int given = i.operands - j - 1;
2068
dbbc8b7e 2069 if (t->operand_types[j].bitfield.reg
f5eb1d70 2070 && !match_operand_size (t, j, given))
891edac4 2071 goto mismatch;
5c07affc 2072
dbbc8b7e 2073 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2074 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2075 goto mismatch;
2076
2077 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2078 && (!match_operand_size (t, j, given)
2079 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2080 goto mismatch;
2081
f5eb1d70 2082 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2083 goto mismatch;
5c07affc
L
2084 }
2085
3ac21baa 2086 return match | MATCH_REVERSE;
5c07affc
L
2087}
2088
c6fb90c8 2089static INLINE int
40fb9820
L
2090operand_type_match (i386_operand_type overlap,
2091 i386_operand_type given)
2092{
2093 i386_operand_type temp = overlap;
2094
2095 temp.bitfield.jumpabsolute = 0;
7d5e4556 2096 temp.bitfield.unspecified = 0;
5c07affc
L
2097 temp.bitfield.byte = 0;
2098 temp.bitfield.word = 0;
2099 temp.bitfield.dword = 0;
2100 temp.bitfield.fword = 0;
2101 temp.bitfield.qword = 0;
2102 temp.bitfield.tbyte = 0;
2103 temp.bitfield.xmmword = 0;
c0f3af97 2104 temp.bitfield.ymmword = 0;
43234a1e 2105 temp.bitfield.zmmword = 0;
0dfbf9d7 2106 if (operand_type_all_zero (&temp))
891edac4 2107 goto mismatch;
40fb9820 2108
891edac4
L
2109 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2110 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2111 return 1;
2112
2113mismatch:
a65babc9 2114 i.error = operand_type_mismatch;
891edac4 2115 return 0;
40fb9820
L
2116}
2117
7d5e4556 2118/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2119 unless the expected operand type register overlap is null.
2120 Memory operand size of certain SIMD instructions is also being checked
2121 here. */
40fb9820 2122
c6fb90c8 2123static INLINE int
dc821c5f 2124operand_type_register_match (i386_operand_type g0,
40fb9820 2125 i386_operand_type t0,
40fb9820
L
2126 i386_operand_type g1,
2127 i386_operand_type t1)
2128{
10c17abd
JB
2129 if (!g0.bitfield.reg
2130 && !g0.bitfield.regsimd
2131 && (!operand_type_check (g0, anymem)
2132 || g0.bitfield.unspecified
2133 || !t0.bitfield.regsimd))
40fb9820
L
2134 return 1;
2135
10c17abd
JB
2136 if (!g1.bitfield.reg
2137 && !g1.bitfield.regsimd
2138 && (!operand_type_check (g1, anymem)
2139 || g1.bitfield.unspecified
2140 || !t1.bitfield.regsimd))
40fb9820
L
2141 return 1;
2142
dc821c5f
JB
2143 if (g0.bitfield.byte == g1.bitfield.byte
2144 && g0.bitfield.word == g1.bitfield.word
2145 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2146 && g0.bitfield.qword == g1.bitfield.qword
2147 && g0.bitfield.xmmword == g1.bitfield.xmmword
2148 && g0.bitfield.ymmword == g1.bitfield.ymmword
2149 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2150 return 1;
2151
dc821c5f
JB
2152 if (!(t0.bitfield.byte & t1.bitfield.byte)
2153 && !(t0.bitfield.word & t1.bitfield.word)
2154 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2155 && !(t0.bitfield.qword & t1.bitfield.qword)
2156 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2157 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2158 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2159 return 1;
2160
a65babc9 2161 i.error = register_type_mismatch;
891edac4
L
2162
2163 return 0;
40fb9820
L
2164}
2165
4c692bc7
JB
2166static INLINE unsigned int
2167register_number (const reg_entry *r)
2168{
2169 unsigned int nr = r->reg_num;
2170
2171 if (r->reg_flags & RegRex)
2172 nr += 8;
2173
200cbe0f
L
2174 if (r->reg_flags & RegVRex)
2175 nr += 16;
2176
4c692bc7
JB
2177 return nr;
2178}
2179
252b5132 2180static INLINE unsigned int
40fb9820 2181mode_from_disp_size (i386_operand_type t)
252b5132 2182{
b5014f7a 2183 if (t.bitfield.disp8)
40fb9820
L
2184 return 1;
2185 else if (t.bitfield.disp16
2186 || t.bitfield.disp32
2187 || t.bitfield.disp32s)
2188 return 2;
2189 else
2190 return 0;
252b5132
RH
2191}
2192
2193static INLINE int
65879393 2194fits_in_signed_byte (addressT num)
252b5132 2195{
65879393 2196 return num + 0x80 <= 0xff;
47926f60 2197}
252b5132
RH
2198
2199static INLINE int
65879393 2200fits_in_unsigned_byte (addressT num)
252b5132 2201{
65879393 2202 return num <= 0xff;
47926f60 2203}
252b5132
RH
2204
2205static INLINE int
65879393 2206fits_in_unsigned_word (addressT num)
252b5132 2207{
65879393 2208 return num <= 0xffff;
47926f60 2209}
252b5132
RH
2210
2211static INLINE int
65879393 2212fits_in_signed_word (addressT num)
252b5132 2213{
65879393 2214 return num + 0x8000 <= 0xffff;
47926f60 2215}
2a962e6d 2216
3e73aa7c 2217static INLINE int
65879393 2218fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2219{
2220#ifndef BFD64
2221 return 1;
2222#else
65879393 2223 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2224#endif
2225} /* fits_in_signed_long() */
2a962e6d 2226
3e73aa7c 2227static INLINE int
65879393 2228fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2229{
2230#ifndef BFD64
2231 return 1;
2232#else
65879393 2233 return num <= 0xffffffff;
3e73aa7c
JH
2234#endif
2235} /* fits_in_unsigned_long() */
252b5132 2236
43234a1e 2237static INLINE int
b5014f7a 2238fits_in_disp8 (offsetT num)
43234a1e
L
2239{
2240 int shift = i.memshift;
2241 unsigned int mask;
2242
2243 if (shift == -1)
2244 abort ();
2245
2246 mask = (1 << shift) - 1;
2247
2248 /* Return 0 if NUM isn't properly aligned. */
2249 if ((num & mask))
2250 return 0;
2251
2252 /* Check if NUM will fit in 8bit after shift. */
2253 return fits_in_signed_byte (num >> shift);
2254}
2255
a683cc34
SP
2256static INLINE int
2257fits_in_imm4 (offsetT num)
2258{
2259 return (num & 0xf) == num;
2260}
2261
40fb9820 2262static i386_operand_type
e3bb37b5 2263smallest_imm_type (offsetT num)
252b5132 2264{
40fb9820 2265 i386_operand_type t;
7ab9ffdd 2266
0dfbf9d7 2267 operand_type_set (&t, 0);
40fb9820
L
2268 t.bitfield.imm64 = 1;
2269
2270 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2271 {
2272 /* This code is disabled on the 486 because all the Imm1 forms
2273 in the opcode table are slower on the i486. They're the
2274 versions with the implicitly specified single-position
2275 displacement, which has another syntax if you really want to
2276 use that form. */
40fb9820
L
2277 t.bitfield.imm1 = 1;
2278 t.bitfield.imm8 = 1;
2279 t.bitfield.imm8s = 1;
2280 t.bitfield.imm16 = 1;
2281 t.bitfield.imm32 = 1;
2282 t.bitfield.imm32s = 1;
2283 }
2284 else if (fits_in_signed_byte (num))
2285 {
2286 t.bitfield.imm8 = 1;
2287 t.bitfield.imm8s = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_unsigned_byte (num))
2293 {
2294 t.bitfield.imm8 = 1;
2295 t.bitfield.imm16 = 1;
2296 t.bitfield.imm32 = 1;
2297 t.bitfield.imm32s = 1;
2298 }
2299 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2300 {
2301 t.bitfield.imm16 = 1;
2302 t.bitfield.imm32 = 1;
2303 t.bitfield.imm32s = 1;
2304 }
2305 else if (fits_in_signed_long (num))
2306 {
2307 t.bitfield.imm32 = 1;
2308 t.bitfield.imm32s = 1;
2309 }
2310 else if (fits_in_unsigned_long (num))
2311 t.bitfield.imm32 = 1;
2312
2313 return t;
47926f60 2314}
252b5132 2315
847f7ad4 2316static offsetT
e3bb37b5 2317offset_in_range (offsetT val, int size)
847f7ad4 2318{
508866be 2319 addressT mask;
ba2adb93 2320
847f7ad4
AM
2321 switch (size)
2322 {
508866be
L
2323 case 1: mask = ((addressT) 1 << 8) - 1; break;
2324 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2325 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2326#ifdef BFD64
2327 case 8: mask = ((addressT) 2 << 63) - 1; break;
2328#endif
47926f60 2329 default: abort ();
847f7ad4
AM
2330 }
2331
9de868bf
L
2332#ifdef BFD64
2333 /* If BFD64, sign extend val for 32bit address mode. */
2334 if (flag_code != CODE_64BIT
2335 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2336 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2337 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2338#endif
ba2adb93 2339
47926f60 2340 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2341 {
2342 char buf1[40], buf2[40];
2343
2344 sprint_value (buf1, val);
2345 sprint_value (buf2, val & mask);
2346 as_warn (_("%s shortened to %s"), buf1, buf2);
2347 }
2348 return val & mask;
2349}
2350
c32fa91d
L
2351enum PREFIX_GROUP
2352{
2353 PREFIX_EXIST = 0,
2354 PREFIX_LOCK,
2355 PREFIX_REP,
04ef582a 2356 PREFIX_DS,
c32fa91d
L
2357 PREFIX_OTHER
2358};
2359
2360/* Returns
2361 a. PREFIX_EXIST if attempting to add a prefix where one from the
2362 same class already exists.
2363 b. PREFIX_LOCK if lock prefix is added.
2364 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2365 d. PREFIX_DS if ds prefix is added.
2366 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2367 */
2368
2369static enum PREFIX_GROUP
e3bb37b5 2370add_prefix (unsigned int prefix)
252b5132 2371{
c32fa91d 2372 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2373 unsigned int q;
252b5132 2374
29b0f896
AM
2375 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2376 && flag_code == CODE_64BIT)
b1905489 2377 {
161a04f6 2378 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2379 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2380 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2381 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2382 ret = PREFIX_EXIST;
b1905489
JB
2383 q = REX_PREFIX;
2384 }
3e73aa7c 2385 else
b1905489
JB
2386 {
2387 switch (prefix)
2388 {
2389 default:
2390 abort ();
2391
b1905489 2392 case DS_PREFIX_OPCODE:
04ef582a
L
2393 ret = PREFIX_DS;
2394 /* Fall through. */
2395 case CS_PREFIX_OPCODE:
b1905489
JB
2396 case ES_PREFIX_OPCODE:
2397 case FS_PREFIX_OPCODE:
2398 case GS_PREFIX_OPCODE:
2399 case SS_PREFIX_OPCODE:
2400 q = SEG_PREFIX;
2401 break;
2402
2403 case REPNE_PREFIX_OPCODE:
2404 case REPE_PREFIX_OPCODE:
c32fa91d
L
2405 q = REP_PREFIX;
2406 ret = PREFIX_REP;
2407 break;
2408
b1905489 2409 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2410 q = LOCK_PREFIX;
2411 ret = PREFIX_LOCK;
b1905489
JB
2412 break;
2413
2414 case FWAIT_OPCODE:
2415 q = WAIT_PREFIX;
2416 break;
2417
2418 case ADDR_PREFIX_OPCODE:
2419 q = ADDR_PREFIX;
2420 break;
2421
2422 case DATA_PREFIX_OPCODE:
2423 q = DATA_PREFIX;
2424 break;
2425 }
2426 if (i.prefix[q] != 0)
c32fa91d 2427 ret = PREFIX_EXIST;
b1905489 2428 }
252b5132 2429
b1905489 2430 if (ret)
252b5132 2431 {
b1905489
JB
2432 if (!i.prefix[q])
2433 ++i.prefixes;
2434 i.prefix[q] |= prefix;
252b5132 2435 }
b1905489
JB
2436 else
2437 as_bad (_("same type of prefix used twice"));
252b5132 2438
252b5132
RH
2439 return ret;
2440}
2441
2442static void
78f12dd3 2443update_code_flag (int value, int check)
eecb386c 2444{
78f12dd3
L
2445 PRINTF_LIKE ((*as_error));
2446
1e9cc1c2 2447 flag_code = (enum flag_code) value;
40fb9820
L
2448 if (flag_code == CODE_64BIT)
2449 {
2450 cpu_arch_flags.bitfield.cpu64 = 1;
2451 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2452 }
2453 else
2454 {
2455 cpu_arch_flags.bitfield.cpu64 = 0;
2456 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2457 }
2458 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2459 {
78f12dd3
L
2460 if (check)
2461 as_error = as_fatal;
2462 else
2463 as_error = as_bad;
2464 (*as_error) (_("64bit mode not supported on `%s'."),
2465 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2466 }
40fb9820 2467 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2468 {
78f12dd3
L
2469 if (check)
2470 as_error = as_fatal;
2471 else
2472 as_error = as_bad;
2473 (*as_error) (_("32bit mode not supported on `%s'."),
2474 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2475 }
eecb386c
AM
2476 stackop_size = '\0';
2477}
2478
78f12dd3
L
2479static void
2480set_code_flag (int value)
2481{
2482 update_code_flag (value, 0);
2483}
2484
eecb386c 2485static void
e3bb37b5 2486set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2487{
1e9cc1c2 2488 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2489 if (flag_code != CODE_16BIT)
2490 abort ();
2491 cpu_arch_flags.bitfield.cpu64 = 0;
2492 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2493 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2494}
2495
2496static void
e3bb37b5 2497set_intel_syntax (int syntax_flag)
252b5132
RH
2498{
2499 /* Find out if register prefixing is specified. */
2500 int ask_naked_reg = 0;
2501
2502 SKIP_WHITESPACE ();
29b0f896 2503 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2504 {
d02603dc
NC
2505 char *string;
2506 int e = get_symbol_name (&string);
252b5132 2507
47926f60 2508 if (strcmp (string, "prefix") == 0)
252b5132 2509 ask_naked_reg = 1;
47926f60 2510 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2511 ask_naked_reg = -1;
2512 else
d0b47220 2513 as_bad (_("bad argument to syntax directive."));
d02603dc 2514 (void) restore_line_pointer (e);
252b5132
RH
2515 }
2516 demand_empty_rest_of_line ();
c3332e24 2517
252b5132
RH
2518 intel_syntax = syntax_flag;
2519
2520 if (ask_naked_reg == 0)
f86103b7
AM
2521 allow_naked_reg = (intel_syntax
2522 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2523 else
2524 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2525
ee86248c 2526 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2527
e4a3b5a4 2528 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2529 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2530 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2531}
2532
1efbbeb4
L
2533static void
2534set_intel_mnemonic (int mnemonic_flag)
2535{
e1d4d893 2536 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2537}
2538
db51cc60
L
2539static void
2540set_allow_index_reg (int flag)
2541{
2542 allow_index_reg = flag;
2543}
2544
cb19c032 2545static void
7bab8ab5 2546set_check (int what)
cb19c032 2547{
7bab8ab5
JB
2548 enum check_kind *kind;
2549 const char *str;
2550
2551 if (what)
2552 {
2553 kind = &operand_check;
2554 str = "operand";
2555 }
2556 else
2557 {
2558 kind = &sse_check;
2559 str = "sse";
2560 }
2561
cb19c032
L
2562 SKIP_WHITESPACE ();
2563
2564 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2565 {
d02603dc
NC
2566 char *string;
2567 int e = get_symbol_name (&string);
cb19c032
L
2568
2569 if (strcmp (string, "none") == 0)
7bab8ab5 2570 *kind = check_none;
cb19c032 2571 else if (strcmp (string, "warning") == 0)
7bab8ab5 2572 *kind = check_warning;
cb19c032 2573 else if (strcmp (string, "error") == 0)
7bab8ab5 2574 *kind = check_error;
cb19c032 2575 else
7bab8ab5 2576 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2577 (void) restore_line_pointer (e);
cb19c032
L
2578 }
2579 else
7bab8ab5 2580 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2581
2582 demand_empty_rest_of_line ();
2583}
2584
8a9036a4
L
2585static void
2586check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2587 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2588{
2589#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2590 static const char *arch;
2591
2592 /* Intel LIOM is only supported on ELF. */
2593 if (!IS_ELF)
2594 return;
2595
2596 if (!arch)
2597 {
2598 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2599 use default_arch. */
2600 arch = cpu_arch_name;
2601 if (!arch)
2602 arch = default_arch;
2603 }
2604
81486035
L
2605 /* If we are targeting Intel MCU, we must enable it. */
2606 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2607 || new_flag.bitfield.cpuiamcu)
2608 return;
2609
3632d14b 2610 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2611 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2612 || new_flag.bitfield.cpul1om)
8a9036a4 2613 return;
76ba9986 2614
7a9068fe
L
2615 /* If we are targeting Intel K1OM, we must enable it. */
2616 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2617 || new_flag.bitfield.cpuk1om)
2618 return;
2619
8a9036a4
L
2620 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2621#endif
2622}
2623
e413e4e9 2624static void
e3bb37b5 2625set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2626{
47926f60 2627 SKIP_WHITESPACE ();
e413e4e9 2628
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
91d6fa6a 2633 unsigned int j;
40fb9820 2634 i386_cpu_flags flags;
e413e4e9 2635
91d6fa6a 2636 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2637 {
91d6fa6a 2638 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2639 {
91d6fa6a 2640 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2641
5c6af06e
JB
2642 if (*string != '.')
2643 {
91d6fa6a 2644 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2645 cpu_sub_arch_name = NULL;
91d6fa6a 2646 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2647 if (flag_code == CODE_64BIT)
2648 {
2649 cpu_arch_flags.bitfield.cpu64 = 1;
2650 cpu_arch_flags.bitfield.cpuno64 = 0;
2651 }
2652 else
2653 {
2654 cpu_arch_flags.bitfield.cpu64 = 0;
2655 cpu_arch_flags.bitfield.cpuno64 = 1;
2656 }
91d6fa6a
NC
2657 cpu_arch_isa = cpu_arch[j].type;
2658 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2659 if (!cpu_arch_tune_set)
2660 {
2661 cpu_arch_tune = cpu_arch_isa;
2662 cpu_arch_tune_flags = cpu_arch_isa_flags;
2663 }
5c6af06e
JB
2664 break;
2665 }
40fb9820 2666
293f5f65
L
2667 flags = cpu_flags_or (cpu_arch_flags,
2668 cpu_arch[j].flags);
81486035 2669
5b64d091 2670 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2671 {
6305a203
L
2672 if (cpu_sub_arch_name)
2673 {
2674 char *name = cpu_sub_arch_name;
2675 cpu_sub_arch_name = concat (name,
91d6fa6a 2676 cpu_arch[j].name,
1bf57e9f 2677 (const char *) NULL);
6305a203
L
2678 free (name);
2679 }
2680 else
91d6fa6a 2681 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2682 cpu_arch_flags = flags;
a586129e 2683 cpu_arch_isa_flags = flags;
5c6af06e 2684 }
0089dace
L
2685 else
2686 cpu_arch_isa_flags
2687 = cpu_flags_or (cpu_arch_isa_flags,
2688 cpu_arch[j].flags);
d02603dc 2689 (void) restore_line_pointer (e);
5c6af06e
JB
2690 demand_empty_rest_of_line ();
2691 return;
e413e4e9
AM
2692 }
2693 }
293f5f65
L
2694
2695 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2696 {
33eaf5de 2697 /* Disable an ISA extension. */
293f5f65
L
2698 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2699 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2700 {
2701 flags = cpu_flags_and_not (cpu_arch_flags,
2702 cpu_noarch[j].flags);
2703 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2704 {
2705 if (cpu_sub_arch_name)
2706 {
2707 char *name = cpu_sub_arch_name;
2708 cpu_sub_arch_name = concat (name, string,
2709 (const char *) NULL);
2710 free (name);
2711 }
2712 else
2713 cpu_sub_arch_name = xstrdup (string);
2714 cpu_arch_flags = flags;
2715 cpu_arch_isa_flags = flags;
2716 }
2717 (void) restore_line_pointer (e);
2718 demand_empty_rest_of_line ();
2719 return;
2720 }
2721
2722 j = ARRAY_SIZE (cpu_arch);
2723 }
2724
91d6fa6a 2725 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2726 as_bad (_("no such architecture: `%s'"), string);
2727
2728 *input_line_pointer = e;
2729 }
2730 else
2731 as_bad (_("missing cpu architecture"));
2732
fddf5b5b
AM
2733 no_cond_jump_promotion = 0;
2734 if (*input_line_pointer == ','
29b0f896 2735 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2736 {
d02603dc
NC
2737 char *string;
2738 char e;
2739
2740 ++input_line_pointer;
2741 e = get_symbol_name (&string);
fddf5b5b
AM
2742
2743 if (strcmp (string, "nojumps") == 0)
2744 no_cond_jump_promotion = 1;
2745 else if (strcmp (string, "jumps") == 0)
2746 ;
2747 else
2748 as_bad (_("no such architecture modifier: `%s'"), string);
2749
d02603dc 2750 (void) restore_line_pointer (e);
fddf5b5b
AM
2751 }
2752
e413e4e9
AM
2753 demand_empty_rest_of_line ();
2754}
2755
8a9036a4
L
2756enum bfd_architecture
2757i386_arch (void)
2758{
3632d14b 2759 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel L1OM is 64bit ELF only"));
2764 return bfd_arch_l1om;
2765 }
7a9068fe
L
2766 else if (cpu_arch_isa == PROCESSOR_K1OM)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code != CODE_64BIT)
2770 as_fatal (_("Intel K1OM is 64bit ELF only"));
2771 return bfd_arch_k1om;
2772 }
81486035
L
2773 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code == CODE_64BIT)
2777 as_fatal (_("Intel MCU is 32bit ELF only"));
2778 return bfd_arch_iamcu;
2779 }
8a9036a4
L
2780 else
2781 return bfd_arch_i386;
2782}
2783
b9d79e03 2784unsigned long
7016a5d5 2785i386_mach (void)
b9d79e03 2786{
351f65ca 2787 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2788 {
3632d14b 2789 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2790 {
351f65ca
L
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
8a9036a4
L
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_mach_l1om;
2795 }
7a9068fe
L
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || default_arch[6] != '\0')
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_mach_k1om;
2802 }
351f65ca 2803 else if (default_arch[6] == '\0')
8a9036a4 2804 return bfd_mach_x86_64;
351f65ca
L
2805 else
2806 return bfd_mach_x64_32;
8a9036a4 2807 }
5197d474
L
2808 else if (!strcmp (default_arch, "i386")
2809 || !strcmp (default_arch, "iamcu"))
81486035
L
2810 {
2811 if (cpu_arch_isa == PROCESSOR_IAMCU)
2812 {
2813 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2814 as_fatal (_("Intel MCU is 32bit ELF only"));
2815 return bfd_mach_i386_iamcu;
2816 }
2817 else
2818 return bfd_mach_i386_i386;
2819 }
b9d79e03 2820 else
2b5d6a91 2821 as_fatal (_("unknown architecture"));
b9d79e03 2822}
b9d79e03 2823\f
252b5132 2824void
7016a5d5 2825md_begin (void)
252b5132
RH
2826{
2827 const char *hash_err;
2828
86fa6981
L
2829 /* Support pseudo prefixes like {disp32}. */
2830 lex_type ['{'] = LEX_BEGIN_NAME;
2831
47926f60 2832 /* Initialize op_hash hash table. */
252b5132
RH
2833 op_hash = hash_new ();
2834
2835 {
d3ce72d0 2836 const insn_template *optab;
29b0f896 2837 templates *core_optab;
252b5132 2838
47926f60
KH
2839 /* Setup for loop. */
2840 optab = i386_optab;
add39d23 2841 core_optab = XNEW (templates);
252b5132
RH
2842 core_optab->start = optab;
2843
2844 while (1)
2845 {
2846 ++optab;
2847 if (optab->name == NULL
2848 || strcmp (optab->name, (optab - 1)->name) != 0)
2849 {
2850 /* different name --> ship out current template list;
47926f60 2851 add to hash table; & begin anew. */
252b5132
RH
2852 core_optab->end = optab;
2853 hash_err = hash_insert (op_hash,
2854 (optab - 1)->name,
5a49b8ac 2855 (void *) core_optab);
252b5132
RH
2856 if (hash_err)
2857 {
b37df7c4 2858 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2859 (optab - 1)->name,
2860 hash_err);
2861 }
2862 if (optab->name == NULL)
2863 break;
add39d23 2864 core_optab = XNEW (templates);
252b5132
RH
2865 core_optab->start = optab;
2866 }
2867 }
2868 }
2869
47926f60 2870 /* Initialize reg_hash hash table. */
252b5132
RH
2871 reg_hash = hash_new ();
2872 {
29b0f896 2873 const reg_entry *regtab;
c3fe08fa 2874 unsigned int regtab_size = i386_regtab_size;
252b5132 2875
c3fe08fa 2876 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2877 {
5a49b8ac 2878 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2879 if (hash_err)
b37df7c4 2880 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2881 regtab->reg_name,
2882 hash_err);
252b5132
RH
2883 }
2884 }
2885
47926f60 2886 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2887 {
29b0f896
AM
2888 int c;
2889 char *p;
252b5132
RH
2890
2891 for (c = 0; c < 256; c++)
2892 {
3882b010 2893 if (ISDIGIT (c))
252b5132
RH
2894 {
2895 digit_chars[c] = c;
2896 mnemonic_chars[c] = c;
2897 register_chars[c] = c;
2898 operand_chars[c] = c;
2899 }
3882b010 2900 else if (ISLOWER (c))
252b5132
RH
2901 {
2902 mnemonic_chars[c] = c;
2903 register_chars[c] = c;
2904 operand_chars[c] = c;
2905 }
3882b010 2906 else if (ISUPPER (c))
252b5132 2907 {
3882b010 2908 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2909 register_chars[c] = mnemonic_chars[c];
2910 operand_chars[c] = c;
2911 }
43234a1e 2912 else if (c == '{' || c == '}')
86fa6981
L
2913 {
2914 mnemonic_chars[c] = c;
2915 operand_chars[c] = c;
2916 }
252b5132 2917
3882b010 2918 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2919 identifier_chars[c] = c;
2920 else if (c >= 128)
2921 {
2922 identifier_chars[c] = c;
2923 operand_chars[c] = c;
2924 }
2925 }
2926
2927#ifdef LEX_AT
2928 identifier_chars['@'] = '@';
32137342
NC
2929#endif
2930#ifdef LEX_QM
2931 identifier_chars['?'] = '?';
2932 operand_chars['?'] = '?';
252b5132 2933#endif
252b5132 2934 digit_chars['-'] = '-';
c0f3af97 2935 mnemonic_chars['_'] = '_';
791fe849 2936 mnemonic_chars['-'] = '-';
0003779b 2937 mnemonic_chars['.'] = '.';
252b5132
RH
2938 identifier_chars['_'] = '_';
2939 identifier_chars['.'] = '.';
2940
2941 for (p = operand_special_chars; *p != '\0'; p++)
2942 operand_chars[(unsigned char) *p] = *p;
2943 }
2944
a4447b93
RH
2945 if (flag_code == CODE_64BIT)
2946 {
ca19b261
KT
2947#if defined (OBJ_COFF) && defined (TE_PE)
2948 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2949 ? 32 : 16);
2950#else
a4447b93 2951 x86_dwarf2_return_column = 16;
ca19b261 2952#endif
61ff971f 2953 x86_cie_data_alignment = -8;
a4447b93
RH
2954 }
2955 else
2956 {
2957 x86_dwarf2_return_column = 8;
2958 x86_cie_data_alignment = -4;
2959 }
252b5132
RH
2960}
2961
2962void
e3bb37b5 2963i386_print_statistics (FILE *file)
252b5132
RH
2964{
2965 hash_print_statistics (file, "i386 opcode", op_hash);
2966 hash_print_statistics (file, "i386 register", reg_hash);
2967}
2968\f
252b5132
RH
2969#ifdef DEBUG386
2970
ce8a8b2f 2971/* Debugging routines for md_assemble. */
d3ce72d0 2972static void pte (insn_template *);
40fb9820 2973static void pt (i386_operand_type);
e3bb37b5
L
2974static void pe (expressionS *);
2975static void ps (symbolS *);
252b5132
RH
2976
2977static void
e3bb37b5 2978pi (char *line, i386_insn *x)
252b5132 2979{
09137c09 2980 unsigned int j;
252b5132
RH
2981
2982 fprintf (stdout, "%s: template ", line);
2983 pte (&x->tm);
09f131f2
JH
2984 fprintf (stdout, " address: base %s index %s scale %x\n",
2985 x->base_reg ? x->base_reg->reg_name : "none",
2986 x->index_reg ? x->index_reg->reg_name : "none",
2987 x->log2_scale_factor);
2988 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2989 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2990 fprintf (stdout, " sib: base %x index %x scale %x\n",
2991 x->sib.base, x->sib.index, x->sib.scale);
2992 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2993 (x->rex & REX_W) != 0,
2994 (x->rex & REX_R) != 0,
2995 (x->rex & REX_X) != 0,
2996 (x->rex & REX_B) != 0);
09137c09 2997 for (j = 0; j < x->operands; j++)
252b5132 2998 {
09137c09
SP
2999 fprintf (stdout, " #%d: ", j + 1);
3000 pt (x->types[j]);
252b5132 3001 fprintf (stdout, "\n");
dc821c5f 3002 if (x->types[j].bitfield.reg
09137c09 3003 || x->types[j].bitfield.regmmx
1b54b8d7 3004 || x->types[j].bitfield.regsimd
09137c09
SP
3005 || x->types[j].bitfield.sreg2
3006 || x->types[j].bitfield.sreg3
3007 || x->types[j].bitfield.control
3008 || x->types[j].bitfield.debug
3009 || x->types[j].bitfield.test)
3010 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3011 if (operand_type_check (x->types[j], imm))
3012 pe (x->op[j].imms);
3013 if (operand_type_check (x->types[j], disp))
3014 pe (x->op[j].disps);
252b5132
RH
3015 }
3016}
3017
3018static void
d3ce72d0 3019pte (insn_template *t)
252b5132 3020{
09137c09 3021 unsigned int j;
252b5132 3022 fprintf (stdout, " %d operands ", t->operands);
47926f60 3023 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3024 if (t->extension_opcode != None)
3025 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3026 if (t->opcode_modifier.d)
252b5132 3027 fprintf (stdout, "D");
40fb9820 3028 if (t->opcode_modifier.w)
252b5132
RH
3029 fprintf (stdout, "W");
3030 fprintf (stdout, "\n");
09137c09 3031 for (j = 0; j < t->operands; j++)
252b5132 3032 {
09137c09
SP
3033 fprintf (stdout, " #%d type ", j + 1);
3034 pt (t->operand_types[j]);
252b5132
RH
3035 fprintf (stdout, "\n");
3036 }
3037}
3038
3039static void
e3bb37b5 3040pe (expressionS *e)
252b5132 3041{
24eab124 3042 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3043 fprintf (stdout, " add_number %ld (%lx)\n",
3044 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3045 if (e->X_add_symbol)
3046 {
3047 fprintf (stdout, " add_symbol ");
3048 ps (e->X_add_symbol);
3049 fprintf (stdout, "\n");
3050 }
3051 if (e->X_op_symbol)
3052 {
3053 fprintf (stdout, " op_symbol ");
3054 ps (e->X_op_symbol);
3055 fprintf (stdout, "\n");
3056 }
3057}
3058
3059static void
e3bb37b5 3060ps (symbolS *s)
252b5132
RH
3061{
3062 fprintf (stdout, "%s type %s%s",
3063 S_GET_NAME (s),
3064 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3065 segment_name (S_GET_SEGMENT (s)));
3066}
3067
7b81dfbb 3068static struct type_name
252b5132 3069 {
40fb9820
L
3070 i386_operand_type mask;
3071 const char *name;
252b5132 3072 }
7b81dfbb 3073const type_names[] =
252b5132 3074{
40fb9820
L
3075 { OPERAND_TYPE_REG8, "r8" },
3076 { OPERAND_TYPE_REG16, "r16" },
3077 { OPERAND_TYPE_REG32, "r32" },
3078 { OPERAND_TYPE_REG64, "r64" },
3079 { OPERAND_TYPE_IMM8, "i8" },
3080 { OPERAND_TYPE_IMM8, "i8s" },
3081 { OPERAND_TYPE_IMM16, "i16" },
3082 { OPERAND_TYPE_IMM32, "i32" },
3083 { OPERAND_TYPE_IMM32S, "i32s" },
3084 { OPERAND_TYPE_IMM64, "i64" },
3085 { OPERAND_TYPE_IMM1, "i1" },
3086 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3087 { OPERAND_TYPE_DISP8, "d8" },
3088 { OPERAND_TYPE_DISP16, "d16" },
3089 { OPERAND_TYPE_DISP32, "d32" },
3090 { OPERAND_TYPE_DISP32S, "d32s" },
3091 { OPERAND_TYPE_DISP64, "d64" },
3092 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3093 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3094 { OPERAND_TYPE_CONTROL, "control reg" },
3095 { OPERAND_TYPE_TEST, "test reg" },
3096 { OPERAND_TYPE_DEBUG, "debug reg" },
3097 { OPERAND_TYPE_FLOATREG, "FReg" },
3098 { OPERAND_TYPE_FLOATACC, "FAcc" },
3099 { OPERAND_TYPE_SREG2, "SReg2" },
3100 { OPERAND_TYPE_SREG3, "SReg3" },
3101 { OPERAND_TYPE_ACC, "Acc" },
3102 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3103 { OPERAND_TYPE_REGMMX, "rMMX" },
3104 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3105 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3106 { OPERAND_TYPE_REGZMM, "rZMM" },
3107 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3108 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3109};
3110
3111static void
40fb9820 3112pt (i386_operand_type t)
252b5132 3113{
40fb9820 3114 unsigned int j;
c6fb90c8 3115 i386_operand_type a;
252b5132 3116
40fb9820 3117 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3118 {
3119 a = operand_type_and (t, type_names[j].mask);
0349dc08 3120 if (!operand_type_all_zero (&a))
c6fb90c8
L
3121 fprintf (stdout, "%s, ", type_names[j].name);
3122 }
252b5132
RH
3123 fflush (stdout);
3124}
3125
3126#endif /* DEBUG386 */
3127\f
252b5132 3128static bfd_reloc_code_real_type
3956db08 3129reloc (unsigned int size,
64e74474
AM
3130 int pcrel,
3131 int sign,
3132 bfd_reloc_code_real_type other)
252b5132 3133{
47926f60 3134 if (other != NO_RELOC)
3956db08 3135 {
91d6fa6a 3136 reloc_howto_type *rel;
3956db08
JB
3137
3138 if (size == 8)
3139 switch (other)
3140 {
64e74474
AM
3141 case BFD_RELOC_X86_64_GOT32:
3142 return BFD_RELOC_X86_64_GOT64;
3143 break;
553d1284
L
3144 case BFD_RELOC_X86_64_GOTPLT64:
3145 return BFD_RELOC_X86_64_GOTPLT64;
3146 break;
64e74474
AM
3147 case BFD_RELOC_X86_64_PLTOFF64:
3148 return BFD_RELOC_X86_64_PLTOFF64;
3149 break;
3150 case BFD_RELOC_X86_64_GOTPC32:
3151 other = BFD_RELOC_X86_64_GOTPC64;
3152 break;
3153 case BFD_RELOC_X86_64_GOTPCREL:
3154 other = BFD_RELOC_X86_64_GOTPCREL64;
3155 break;
3156 case BFD_RELOC_X86_64_TPOFF32:
3157 other = BFD_RELOC_X86_64_TPOFF64;
3158 break;
3159 case BFD_RELOC_X86_64_DTPOFF32:
3160 other = BFD_RELOC_X86_64_DTPOFF64;
3161 break;
3162 default:
3163 break;
3956db08 3164 }
e05278af 3165
8ce3d284 3166#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3167 if (other == BFD_RELOC_SIZE32)
3168 {
3169 if (size == 8)
1ab668bf 3170 other = BFD_RELOC_SIZE64;
8fd4256d 3171 if (pcrel)
1ab668bf
AM
3172 {
3173 as_bad (_("there are no pc-relative size relocations"));
3174 return NO_RELOC;
3175 }
8fd4256d 3176 }
8ce3d284 3177#endif
8fd4256d 3178
e05278af 3179 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3180 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3181 sign = -1;
3182
91d6fa6a
NC
3183 rel = bfd_reloc_type_lookup (stdoutput, other);
3184 if (!rel)
3956db08 3185 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3186 else if (size != bfd_get_reloc_size (rel))
3956db08 3187 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3188 bfd_get_reloc_size (rel),
3956db08 3189 size);
91d6fa6a 3190 else if (pcrel && !rel->pc_relative)
3956db08 3191 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3192 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3193 && !sign)
91d6fa6a 3194 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3195 && sign > 0))
3956db08
JB
3196 as_bad (_("relocated field and relocation type differ in signedness"));
3197 else
3198 return other;
3199 return NO_RELOC;
3200 }
252b5132
RH
3201
3202 if (pcrel)
3203 {
3e73aa7c 3204 if (!sign)
3956db08 3205 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3206 switch (size)
3207 {
3208 case 1: return BFD_RELOC_8_PCREL;
3209 case 2: return BFD_RELOC_16_PCREL;
d258b828 3210 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3211 case 8: return BFD_RELOC_64_PCREL;
252b5132 3212 }
3956db08 3213 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3214 }
3215 else
3216 {
3956db08 3217 if (sign > 0)
e5cb08ac 3218 switch (size)
3e73aa7c
JH
3219 {
3220 case 4: return BFD_RELOC_X86_64_32S;
3221 }
3222 else
3223 switch (size)
3224 {
3225 case 1: return BFD_RELOC_8;
3226 case 2: return BFD_RELOC_16;
3227 case 4: return BFD_RELOC_32;
3228 case 8: return BFD_RELOC_64;
3229 }
3956db08
JB
3230 as_bad (_("cannot do %s %u byte relocation"),
3231 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3232 }
3233
0cc9e1d3 3234 return NO_RELOC;
252b5132
RH
3235}
3236
47926f60
KH
3237/* Here we decide which fixups can be adjusted to make them relative to
3238 the beginning of the section instead of the symbol. Basically we need
3239 to make sure that the dynamic relocations are done correctly, so in
3240 some cases we force the original symbol to be used. */
3241
252b5132 3242int
e3bb37b5 3243tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3244{
6d249963 3245#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3246 if (!IS_ELF)
31312f95
AM
3247 return 1;
3248
a161fe53
AM
3249 /* Don't adjust pc-relative references to merge sections in 64-bit
3250 mode. */
3251 if (use_rela_relocations
3252 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3253 && fixP->fx_pcrel)
252b5132 3254 return 0;
31312f95 3255
8d01d9a9
AJ
3256 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3257 and changed later by validate_fix. */
3258 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3259 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3260 return 0;
3261
8fd4256d
L
3262 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3263 for size relocations. */
3264 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3265 || fixP->fx_r_type == BFD_RELOC_SIZE64
3266 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3267 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3268 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3269 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3273 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3274 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3275 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3276 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3277 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3278 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3279 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3288 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3290 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3291 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3292 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3293 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3295 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3296 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3297 return 0;
31312f95 3298#endif
252b5132
RH
3299 return 1;
3300}
252b5132 3301
b4cac588 3302static int
e3bb37b5 3303intel_float_operand (const char *mnemonic)
252b5132 3304{
9306ca4a
JB
3305 /* Note that the value returned is meaningful only for opcodes with (memory)
3306 operands, hence the code here is free to improperly handle opcodes that
3307 have no operands (for better performance and smaller code). */
3308
3309 if (mnemonic[0] != 'f')
3310 return 0; /* non-math */
3311
3312 switch (mnemonic[1])
3313 {
3314 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3315 the fs segment override prefix not currently handled because no
3316 call path can make opcodes without operands get here */
3317 case 'i':
3318 return 2 /* integer op */;
3319 case 'l':
3320 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3321 return 3; /* fldcw/fldenv */
3322 break;
3323 case 'n':
3324 if (mnemonic[2] != 'o' /* fnop */)
3325 return 3; /* non-waiting control op */
3326 break;
3327 case 'r':
3328 if (mnemonic[2] == 's')
3329 return 3; /* frstor/frstpm */
3330 break;
3331 case 's':
3332 if (mnemonic[2] == 'a')
3333 return 3; /* fsave */
3334 if (mnemonic[2] == 't')
3335 {
3336 switch (mnemonic[3])
3337 {
3338 case 'c': /* fstcw */
3339 case 'd': /* fstdw */
3340 case 'e': /* fstenv */
3341 case 's': /* fsts[gw] */
3342 return 3;
3343 }
3344 }
3345 break;
3346 case 'x':
3347 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3348 return 0; /* fxsave/fxrstor are not really math ops */
3349 break;
3350 }
252b5132 3351
9306ca4a 3352 return 1;
252b5132
RH
3353}
3354
c0f3af97
L
3355/* Build the VEX prefix. */
3356
3357static void
d3ce72d0 3358build_vex_prefix (const insn_template *t)
c0f3af97
L
3359{
3360 unsigned int register_specifier;
3361 unsigned int implied_prefix;
3362 unsigned int vector_length;
03751133 3363 unsigned int w;
c0f3af97
L
3364
3365 /* Check register specifier. */
3366 if (i.vex.register_specifier)
43234a1e
L
3367 {
3368 register_specifier =
3369 ~register_number (i.vex.register_specifier) & 0xf;
3370 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3371 }
c0f3af97
L
3372 else
3373 register_specifier = 0xf;
3374
79f0fa25
L
3375 /* Use 2-byte VEX prefix by swapping destination and source operand
3376 if there are more than 1 register operand. */
3377 if (i.reg_operands > 1
3378 && i.vec_encoding != vex_encoding_vex3
86fa6981 3379 && i.dir_encoding == dir_encoding_default
fa99fab2 3380 && i.operands == i.reg_operands
dbbc8b7e 3381 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3382 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3383 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3384 && i.rex == REX_B)
3385 {
3386 unsigned int xchg = i.operands - 1;
3387 union i386_op temp_op;
3388 i386_operand_type temp_type;
3389
3390 temp_type = i.types[xchg];
3391 i.types[xchg] = i.types[0];
3392 i.types[0] = temp_type;
3393 temp_op = i.op[xchg];
3394 i.op[xchg] = i.op[0];
3395 i.op[0] = temp_op;
3396
9c2799c2 3397 gas_assert (i.rm.mode == 3);
fa99fab2
L
3398
3399 i.rex = REX_R;
3400 xchg = i.rm.regmem;
3401 i.rm.regmem = i.rm.reg;
3402 i.rm.reg = xchg;
3403
dbbc8b7e
JB
3404 if (i.tm.opcode_modifier.d)
3405 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3406 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3407 else /* Use the next insn. */
3408 i.tm = t[1];
fa99fab2
L
3409 }
3410
539f890d
L
3411 if (i.tm.opcode_modifier.vex == VEXScalar)
3412 vector_length = avxscalar;
10c17abd
JB
3413 else if (i.tm.opcode_modifier.vex == VEX256)
3414 vector_length = 1;
539f890d 3415 else
10c17abd 3416 {
56522fc5 3417 unsigned int op;
10c17abd 3418
c7213af9
L
3419 /* Determine vector length from the last multi-length vector
3420 operand. */
10c17abd 3421 vector_length = 0;
56522fc5 3422 for (op = t->operands; op--;)
10c17abd
JB
3423 if (t->operand_types[op].bitfield.xmmword
3424 && t->operand_types[op].bitfield.ymmword
3425 && i.types[op].bitfield.ymmword)
3426 {
3427 vector_length = 1;
3428 break;
3429 }
3430 }
c0f3af97
L
3431
3432 switch ((i.tm.base_opcode >> 8) & 0xff)
3433 {
3434 case 0:
3435 implied_prefix = 0;
3436 break;
3437 case DATA_PREFIX_OPCODE:
3438 implied_prefix = 1;
3439 break;
3440 case REPE_PREFIX_OPCODE:
3441 implied_prefix = 2;
3442 break;
3443 case REPNE_PREFIX_OPCODE:
3444 implied_prefix = 3;
3445 break;
3446 default:
3447 abort ();
3448 }
3449
03751133
L
3450 /* Check the REX.W bit and VEXW. */
3451 if (i.tm.opcode_modifier.vexw == VEXWIG)
3452 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3453 else if (i.tm.opcode_modifier.vexw)
3454 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3455 else
931d03b7 3456 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3457
c0f3af97 3458 /* Use 2-byte VEX prefix if possible. */
03751133
L
3459 if (w == 0
3460 && i.vec_encoding != vex_encoding_vex3
86fa6981 3461 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3462 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3463 {
3464 /* 2-byte VEX prefix. */
3465 unsigned int r;
3466
3467 i.vex.length = 2;
3468 i.vex.bytes[0] = 0xc5;
3469
3470 /* Check the REX.R bit. */
3471 r = (i.rex & REX_R) ? 0 : 1;
3472 i.vex.bytes[1] = (r << 7
3473 | register_specifier << 3
3474 | vector_length << 2
3475 | implied_prefix);
3476 }
3477 else
3478 {
3479 /* 3-byte VEX prefix. */
03751133 3480 unsigned int m;
c0f3af97 3481
f88c9eb0 3482 i.vex.length = 3;
f88c9eb0 3483
7f399153 3484 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3485 {
7f399153
L
3486 case VEX0F:
3487 m = 0x1;
80de6e00 3488 i.vex.bytes[0] = 0xc4;
7f399153
L
3489 break;
3490 case VEX0F38:
3491 m = 0x2;
80de6e00 3492 i.vex.bytes[0] = 0xc4;
7f399153
L
3493 break;
3494 case VEX0F3A:
3495 m = 0x3;
80de6e00 3496 i.vex.bytes[0] = 0xc4;
7f399153
L
3497 break;
3498 case XOP08:
5dd85c99
SP
3499 m = 0x8;
3500 i.vex.bytes[0] = 0x8f;
7f399153
L
3501 break;
3502 case XOP09:
f88c9eb0
SP
3503 m = 0x9;
3504 i.vex.bytes[0] = 0x8f;
7f399153
L
3505 break;
3506 case XOP0A:
f88c9eb0
SP
3507 m = 0xa;
3508 i.vex.bytes[0] = 0x8f;
7f399153
L
3509 break;
3510 default:
3511 abort ();
f88c9eb0 3512 }
c0f3af97 3513
c0f3af97
L
3514 /* The high 3 bits of the second VEX byte are 1's compliment
3515 of RXB bits from REX. */
3516 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3517
c0f3af97
L
3518 i.vex.bytes[2] = (w << 7
3519 | register_specifier << 3
3520 | vector_length << 2
3521 | implied_prefix);
3522 }
3523}
3524
e771e7c9
JB
3525static INLINE bfd_boolean
3526is_evex_encoding (const insn_template *t)
3527{
7091c612 3528 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3529 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3530 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3531}
3532
7a8655d2
JB
3533static INLINE bfd_boolean
3534is_any_vex_encoding (const insn_template *t)
3535{
3536 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3537 || is_evex_encoding (t);
3538}
3539
43234a1e
L
3540/* Build the EVEX prefix. */
3541
3542static void
3543build_evex_prefix (void)
3544{
3545 unsigned int register_specifier;
3546 unsigned int implied_prefix;
3547 unsigned int m, w;
3548 rex_byte vrex_used = 0;
3549
3550 /* Check register specifier. */
3551 if (i.vex.register_specifier)
3552 {
3553 gas_assert ((i.vrex & REX_X) == 0);
3554
3555 register_specifier = i.vex.register_specifier->reg_num;
3556 if ((i.vex.register_specifier->reg_flags & RegRex))
3557 register_specifier += 8;
3558 /* The upper 16 registers are encoded in the fourth byte of the
3559 EVEX prefix. */
3560 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3561 i.vex.bytes[3] = 0x8;
3562 register_specifier = ~register_specifier & 0xf;
3563 }
3564 else
3565 {
3566 register_specifier = 0xf;
3567
3568 /* Encode upper 16 vector index register in the fourth byte of
3569 the EVEX prefix. */
3570 if (!(i.vrex & REX_X))
3571 i.vex.bytes[3] = 0x8;
3572 else
3573 vrex_used |= REX_X;
3574 }
3575
3576 switch ((i.tm.base_opcode >> 8) & 0xff)
3577 {
3578 case 0:
3579 implied_prefix = 0;
3580 break;
3581 case DATA_PREFIX_OPCODE:
3582 implied_prefix = 1;
3583 break;
3584 case REPE_PREFIX_OPCODE:
3585 implied_prefix = 2;
3586 break;
3587 case REPNE_PREFIX_OPCODE:
3588 implied_prefix = 3;
3589 break;
3590 default:
3591 abort ();
3592 }
3593
3594 /* 4 byte EVEX prefix. */
3595 i.vex.length = 4;
3596 i.vex.bytes[0] = 0x62;
3597
3598 /* mmmm bits. */
3599 switch (i.tm.opcode_modifier.vexopcode)
3600 {
3601 case VEX0F:
3602 m = 1;
3603 break;
3604 case VEX0F38:
3605 m = 2;
3606 break;
3607 case VEX0F3A:
3608 m = 3;
3609 break;
3610 default:
3611 abort ();
3612 break;
3613 }
3614
3615 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3616 bits from REX. */
3617 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3618
3619 /* The fifth bit of the second EVEX byte is 1's compliment of the
3620 REX_R bit in VREX. */
3621 if (!(i.vrex & REX_R))
3622 i.vex.bytes[1] |= 0x10;
3623 else
3624 vrex_used |= REX_R;
3625
3626 if ((i.reg_operands + i.imm_operands) == i.operands)
3627 {
3628 /* When all operands are registers, the REX_X bit in REX is not
3629 used. We reuse it to encode the upper 16 registers, which is
3630 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3631 as 1's compliment. */
3632 if ((i.vrex & REX_B))
3633 {
3634 vrex_used |= REX_B;
3635 i.vex.bytes[1] &= ~0x40;
3636 }
3637 }
3638
3639 /* EVEX instructions shouldn't need the REX prefix. */
3640 i.vrex &= ~vrex_used;
3641 gas_assert (i.vrex == 0);
3642
6865c043
L
3643 /* Check the REX.W bit and VEXW. */
3644 if (i.tm.opcode_modifier.vexw == VEXWIG)
3645 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3646 else if (i.tm.opcode_modifier.vexw)
3647 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3648 else
931d03b7 3649 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3650
3651 /* Encode the U bit. */
3652 implied_prefix |= 0x4;
3653
3654 /* The third byte of the EVEX prefix. */
3655 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3656
3657 /* The fourth byte of the EVEX prefix. */
3658 /* The zeroing-masking bit. */
3659 if (i.mask && i.mask->zeroing)
3660 i.vex.bytes[3] |= 0x80;
3661
3662 /* Don't always set the broadcast bit if there is no RC. */
3663 if (!i.rounding)
3664 {
3665 /* Encode the vector length. */
3666 unsigned int vec_length;
3667
e771e7c9
JB
3668 if (!i.tm.opcode_modifier.evex
3669 || i.tm.opcode_modifier.evex == EVEXDYN)
3670 {
56522fc5 3671 unsigned int op;
e771e7c9 3672
c7213af9
L
3673 /* Determine vector length from the last multi-length vector
3674 operand. */
e771e7c9 3675 vec_length = 0;
56522fc5 3676 for (op = i.operands; op--;)
e771e7c9
JB
3677 if (i.tm.operand_types[op].bitfield.xmmword
3678 + i.tm.operand_types[op].bitfield.ymmword
3679 + i.tm.operand_types[op].bitfield.zmmword > 1)
3680 {
3681 if (i.types[op].bitfield.zmmword)
c7213af9
L
3682 {
3683 i.tm.opcode_modifier.evex = EVEX512;
3684 break;
3685 }
e771e7c9 3686 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3687 {
3688 i.tm.opcode_modifier.evex = EVEX256;
3689 break;
3690 }
e771e7c9 3691 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3692 {
3693 i.tm.opcode_modifier.evex = EVEX128;
3694 break;
3695 }
625cbd7a
JB
3696 else if (i.broadcast && (int) op == i.broadcast->operand)
3697 {
4a1b91ea 3698 switch (i.broadcast->bytes)
625cbd7a
JB
3699 {
3700 case 64:
3701 i.tm.opcode_modifier.evex = EVEX512;
3702 break;
3703 case 32:
3704 i.tm.opcode_modifier.evex = EVEX256;
3705 break;
3706 case 16:
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 default:
c7213af9 3710 abort ();
625cbd7a 3711 }
c7213af9 3712 break;
625cbd7a 3713 }
e771e7c9 3714 }
c7213af9 3715
56522fc5 3716 if (op >= MAX_OPERANDS)
c7213af9 3717 abort ();
e771e7c9
JB
3718 }
3719
43234a1e
L
3720 switch (i.tm.opcode_modifier.evex)
3721 {
3722 case EVEXLIG: /* LL' is ignored */
3723 vec_length = evexlig << 5;
3724 break;
3725 case EVEX128:
3726 vec_length = 0 << 5;
3727 break;
3728 case EVEX256:
3729 vec_length = 1 << 5;
3730 break;
3731 case EVEX512:
3732 vec_length = 2 << 5;
3733 break;
3734 default:
3735 abort ();
3736 break;
3737 }
3738 i.vex.bytes[3] |= vec_length;
3739 /* Encode the broadcast bit. */
3740 if (i.broadcast)
3741 i.vex.bytes[3] |= 0x10;
3742 }
3743 else
3744 {
3745 if (i.rounding->type != saeonly)
3746 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3747 else
d3d3c6db 3748 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3749 }
3750
3751 if (i.mask && i.mask->mask)
3752 i.vex.bytes[3] |= i.mask->mask->reg_num;
3753}
3754
65da13b5
L
3755static void
3756process_immext (void)
3757{
3758 expressionS *exp;
3759
4c692bc7
JB
3760 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3761 && i.operands > 0)
65da13b5 3762 {
4c692bc7
JB
3763 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3764 with an opcode suffix which is coded in the same place as an
3765 8-bit immediate field would be.
3766 Here we check those operands and remove them afterwards. */
65da13b5
L
3767 unsigned int x;
3768
3769 for (x = 0; x < i.operands; x++)
4c692bc7 3770 if (register_number (i.op[x].regs) != x)
65da13b5 3771 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3772 register_prefix, i.op[x].regs->reg_name, x + 1,
3773 i.tm.name);
3774
3775 i.operands = 0;
65da13b5
L
3776 }
3777
9916071f
AP
3778 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3779 {
3780 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3781 suffix which is coded in the same place as an 8-bit immediate
3782 field would be.
3783 Here we check those operands and remove them afterwards. */
3784 unsigned int x;
3785
3786 if (i.operands != 3)
3787 abort();
3788
3789 for (x = 0; x < 2; x++)
3790 if (register_number (i.op[x].regs) != x)
3791 goto bad_register_operand;
3792
3793 /* Check for third operand for mwaitx/monitorx insn. */
3794 if (register_number (i.op[x].regs)
3795 != (x + (i.tm.extension_opcode == 0xfb)))
3796 {
3797bad_register_operand:
3798 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3799 register_prefix, i.op[x].regs->reg_name, x+1,
3800 i.tm.name);
3801 }
3802
3803 i.operands = 0;
3804 }
3805
c0f3af97 3806 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3807 which is coded in the same place as an 8-bit immediate field
3808 would be. Here we fake an 8-bit immediate operand from the
3809 opcode suffix stored in tm.extension_opcode.
3810
c1e679ec 3811 AVX instructions also use this encoding, for some of
c0f3af97 3812 3 argument instructions. */
65da13b5 3813
43234a1e 3814 gas_assert (i.imm_operands <= 1
7ab9ffdd 3815 && (i.operands <= 2
7a8655d2 3816 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3817 && i.operands <= 4)));
65da13b5
L
3818
3819 exp = &im_expressions[i.imm_operands++];
3820 i.op[i.operands].imms = exp;
3821 i.types[i.operands] = imm8;
3822 i.operands++;
3823 exp->X_op = O_constant;
3824 exp->X_add_number = i.tm.extension_opcode;
3825 i.tm.extension_opcode = None;
3826}
3827
42164a71
L
3828
3829static int
3830check_hle (void)
3831{
3832 switch (i.tm.opcode_modifier.hleprefixok)
3833 {
3834 default:
3835 abort ();
82c2def5 3836 case HLEPrefixNone:
165de32a
L
3837 as_bad (_("invalid instruction `%s' after `%s'"),
3838 i.tm.name, i.hle_prefix);
42164a71 3839 return 0;
82c2def5 3840 case HLEPrefixLock:
42164a71
L
3841 if (i.prefix[LOCK_PREFIX])
3842 return 1;
165de32a 3843 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3844 return 0;
82c2def5 3845 case HLEPrefixAny:
42164a71 3846 return 1;
82c2def5 3847 case HLEPrefixRelease:
42164a71
L
3848 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3849 {
3850 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3851 i.tm.name);
3852 return 0;
3853 }
3854 if (i.mem_operands == 0
3855 || !operand_type_check (i.types[i.operands - 1], anymem))
3856 {
3857 as_bad (_("memory destination needed for instruction `%s'"
3858 " after `xrelease'"), i.tm.name);
3859 return 0;
3860 }
3861 return 1;
3862 }
3863}
3864
b6f8c7c4
L
3865/* Try the shortest encoding by shortening operand size. */
3866
3867static void
3868optimize_encoding (void)
3869{
3870 int j;
3871
3872 if (optimize_for_space
3873 && i.reg_operands == 1
3874 && i.imm_operands == 1
3875 && !i.types[1].bitfield.byte
3876 && i.op[0].imms->X_op == O_constant
3877 && fits_in_imm7 (i.op[0].imms->X_add_number)
3878 && ((i.tm.base_opcode == 0xa8
3879 && i.tm.extension_opcode == None)
3880 || (i.tm.base_opcode == 0xf6
3881 && i.tm.extension_opcode == 0x0)))
3882 {
3883 /* Optimize: -Os:
3884 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3885 */
3886 unsigned int base_regnum = i.op[1].regs->reg_num;
3887 if (flag_code == CODE_64BIT || base_regnum < 4)
3888 {
3889 i.types[1].bitfield.byte = 1;
3890 /* Ignore the suffix. */
3891 i.suffix = 0;
3892 if (base_regnum >= 4
3893 && !(i.op[1].regs->reg_flags & RegRex))
3894 {
3895 /* Handle SP, BP, SI and DI registers. */
3896 if (i.types[1].bitfield.word)
3897 j = 16;
3898 else if (i.types[1].bitfield.dword)
3899 j = 32;
3900 else
3901 j = 48;
3902 i.op[1].regs -= j;
3903 }
3904 }
3905 }
3906 else if (flag_code == CODE_64BIT
d3d50934
L
3907 && ((i.types[1].bitfield.qword
3908 && i.reg_operands == 1
b6f8c7c4
L
3909 && i.imm_operands == 1
3910 && i.op[0].imms->X_op == O_constant
3911 && ((i.tm.base_opcode == 0xb0
3912 && i.tm.extension_opcode == None
3913 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3914 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3915 && (((i.tm.base_opcode == 0x24
3916 || i.tm.base_opcode == 0xa8)
3917 && i.tm.extension_opcode == None)
3918 || (i.tm.base_opcode == 0x80
3919 && i.tm.extension_opcode == 0x4)
3920 || ((i.tm.base_opcode == 0xf6
3921 || i.tm.base_opcode == 0xc6)
3922 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3923 || (i.types[0].bitfield.qword
3924 && ((i.reg_operands == 2
3925 && i.op[0].regs == i.op[1].regs
3926 && ((i.tm.base_opcode == 0x30
3927 || i.tm.base_opcode == 0x28)
3928 && i.tm.extension_opcode == None))
3929 || (i.reg_operands == 1
3930 && i.operands == 1
3931 && i.tm.base_opcode == 0x30
3932 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3933 {
3934 /* Optimize: -O:
3935 andq $imm31, %r64 -> andl $imm31, %r32
3936 testq $imm31, %r64 -> testl $imm31, %r32
3937 xorq %r64, %r64 -> xorl %r32, %r32
3938 subq %r64, %r64 -> subl %r32, %r32
3939 movq $imm31, %r64 -> movl $imm31, %r32
3940 movq $imm32, %r64 -> movl $imm32, %r32
3941 */
3942 i.tm.opcode_modifier.norex64 = 1;
3943 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3944 {
3945 /* Handle
3946 movq $imm31, %r64 -> movl $imm31, %r32
3947 movq $imm32, %r64 -> movl $imm32, %r32
3948 */
3949 i.tm.operand_types[0].bitfield.imm32 = 1;
3950 i.tm.operand_types[0].bitfield.imm32s = 0;
3951 i.tm.operand_types[0].bitfield.imm64 = 0;
3952 i.types[0].bitfield.imm32 = 1;
3953 i.types[0].bitfield.imm32s = 0;
3954 i.types[0].bitfield.imm64 = 0;
3955 i.types[1].bitfield.dword = 1;
3956 i.types[1].bitfield.qword = 0;
3957 if (i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 */
3962 i.tm.base_opcode = 0xb0;
3963 i.tm.extension_opcode = None;
3964 i.tm.opcode_modifier.shortform = 1;
3965 i.tm.opcode_modifier.modrm = 0;
3966 }
3967 }
3968 }
3969 else if (optimize > 1
3970 && i.reg_operands == 3
3971 && i.op[0].regs == i.op[1].regs
3972 && !i.types[2].bitfield.xmmword
3973 && (i.tm.opcode_modifier.vex
7a69eac3 3974 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3975 && !i.rounding
e771e7c9 3976 && is_evex_encoding (&i.tm)
80c34c38
L
3977 && (i.vec_encoding != vex_encoding_evex
3978 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3979 || (i.tm.operand_types[2].bitfield.zmmword
3980 && i.types[2].bitfield.ymmword)
0089dace 3981 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3982 && ((i.tm.base_opcode == 0x55
3983 || i.tm.base_opcode == 0x6655
3984 || i.tm.base_opcode == 0x66df
3985 || i.tm.base_opcode == 0x57
3986 || i.tm.base_opcode == 0x6657
8305403a
L
3987 || i.tm.base_opcode == 0x66ef
3988 || i.tm.base_opcode == 0x66f8
3989 || i.tm.base_opcode == 0x66f9
3990 || i.tm.base_opcode == 0x66fa
1424ad86
JB
3991 || i.tm.base_opcode == 0x66fb
3992 || i.tm.base_opcode == 0x42
3993 || i.tm.base_opcode == 0x6642
3994 || i.tm.base_opcode == 0x47
3995 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
3996 && i.tm.extension_opcode == None))
3997 {
3998 /* Optimize: -O2:
8305403a
L
3999 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4000 vpsubq and vpsubw:
b6f8c7c4
L
4001 EVEX VOP %zmmM, %zmmM, %zmmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4003 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4004 EVEX VOP %ymmM, %ymmM, %ymmN
4005 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4006 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4007 VEX VOP %ymmM, %ymmM, %ymmN
4008 -> VEX VOP %xmmM, %xmmM, %xmmN
4009 VOP, one of vpandn and vpxor:
4010 VEX VOP %ymmM, %ymmM, %ymmN
4011 -> VEX VOP %xmmM, %xmmM, %xmmN
4012 VOP, one of vpandnd and vpandnq:
4013 EVEX VOP %zmmM, %zmmM, %zmmN
4014 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4015 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4016 EVEX VOP %ymmM, %ymmM, %ymmN
4017 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4018 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4019 VOP, one of vpxord and vpxorq:
4020 EVEX VOP %zmmM, %zmmM, %zmmN
4021 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4022 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4023 EVEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4025 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
1424ad86
JB
4026 VOP, one of kxord and kxorq:
4027 VEX VOP %kM, %kM, %kN
4028 -> VEX kxorw %kM, %kM, %kN
4029 VOP, one of kandnd and kandnq:
4030 VEX VOP %kM, %kM, %kN
4031 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4032 */
e771e7c9 4033 if (is_evex_encoding (&i.tm))
b6f8c7c4 4034 {
0089dace 4035 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
4036 i.tm.opcode_modifier.evex = EVEX128;
4037 else
4038 {
4039 i.tm.opcode_modifier.vex = VEX128;
4040 i.tm.opcode_modifier.vexw = VEXW0;
4041 i.tm.opcode_modifier.evex = 0;
4042 }
4043 }
1424ad86
JB
4044 else if (i.tm.operand_types[0].bitfield.regmask)
4045 {
4046 i.tm.base_opcode &= 0xff;
4047 i.tm.opcode_modifier.vexw = VEXW0;
4048 }
b6f8c7c4
L
4049 else
4050 i.tm.opcode_modifier.vex = VEX128;
4051
4052 if (i.tm.opcode_modifier.vex)
4053 for (j = 0; j < 3; j++)
4054 {
4055 i.types[j].bitfield.xmmword = 1;
4056 i.types[j].bitfield.ymmword = 0;
4057 }
4058 }
4059}
4060
252b5132
RH
4061/* This is the guts of the machine-dependent assembler. LINE points to a
4062 machine dependent instruction. This function is supposed to emit
4063 the frags/bytes it assembles to. */
4064
4065void
65da13b5 4066md_assemble (char *line)
252b5132 4067{
40fb9820 4068 unsigned int j;
83b16ac6 4069 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4070 const insn_template *t;
252b5132 4071
47926f60 4072 /* Initialize globals. */
252b5132
RH
4073 memset (&i, '\0', sizeof (i));
4074 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4075 i.reloc[j] = NO_RELOC;
252b5132
RH
4076 memset (disp_expressions, '\0', sizeof (disp_expressions));
4077 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4078 save_stack_p = save_stack;
252b5132
RH
4079
4080 /* First parse an instruction mnemonic & call i386_operand for the operands.
4081 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4082 start of a (possibly prefixed) mnemonic. */
252b5132 4083
29b0f896
AM
4084 line = parse_insn (line, mnemonic);
4085 if (line == NULL)
4086 return;
83b16ac6 4087 mnem_suffix = i.suffix;
252b5132 4088
29b0f896 4089 line = parse_operands (line, mnemonic);
ee86248c 4090 this_operand = -1;
8325cc63
JB
4091 xfree (i.memop1_string);
4092 i.memop1_string = NULL;
29b0f896
AM
4093 if (line == NULL)
4094 return;
252b5132 4095
29b0f896
AM
4096 /* Now we've parsed the mnemonic into a set of templates, and have the
4097 operands at hand. */
4098
4099 /* All intel opcodes have reversed operands except for "bound" and
4100 "enter". We also don't reverse intersegment "jmp" and "call"
4101 instructions with 2 immediate operands so that the immediate segment
050dfa73 4102 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4103 if (intel_syntax
4104 && i.operands > 1
29b0f896 4105 && (strcmp (mnemonic, "bound") != 0)
30123838 4106 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4107 && !(operand_type_check (i.types[0], imm)
4108 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4109 swap_operands ();
4110
ec56d5c0
JB
4111 /* The order of the immediates should be reversed
4112 for 2 immediates extrq and insertq instructions */
4113 if (i.imm_operands == 2
4114 && (strcmp (mnemonic, "extrq") == 0
4115 || strcmp (mnemonic, "insertq") == 0))
4116 swap_2_operands (0, 1);
4117
29b0f896
AM
4118 if (i.imm_operands)
4119 optimize_imm ();
4120
b300c311
L
4121 /* Don't optimize displacement for movabs since it only takes 64bit
4122 displacement. */
4123 if (i.disp_operands
a501d77e 4124 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4125 && (flag_code != CODE_64BIT
4126 || strcmp (mnemonic, "movabs") != 0))
4127 optimize_disp ();
29b0f896
AM
4128
4129 /* Next, we find a template that matches the given insn,
4130 making sure the overlap of the given operands types is consistent
4131 with the template operand types. */
252b5132 4132
83b16ac6 4133 if (!(t = match_template (mnem_suffix)))
29b0f896 4134 return;
252b5132 4135
7bab8ab5 4136 if (sse_check != check_none
81f8a913 4137 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4138 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4139 && (i.tm.cpu_flags.bitfield.cpusse
4140 || i.tm.cpu_flags.bitfield.cpusse2
4141 || i.tm.cpu_flags.bitfield.cpusse3
4142 || i.tm.cpu_flags.bitfield.cpussse3
4143 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4144 || i.tm.cpu_flags.bitfield.cpusse4_2
4145 || i.tm.cpu_flags.bitfield.cpupclmul
4146 || i.tm.cpu_flags.bitfield.cpuaes
4147 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4148 {
7bab8ab5 4149 (sse_check == check_warning
daf50ae7
L
4150 ? as_warn
4151 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4152 }
4153
321fd21e
L
4154 /* Zap movzx and movsx suffix. The suffix has been set from
4155 "word ptr" or "byte ptr" on the source operand in Intel syntax
4156 or extracted from mnemonic in AT&T syntax. But we'll use
4157 the destination register to choose the suffix for encoding. */
4158 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4159 {
321fd21e
L
4160 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4161 there is no suffix, the default will be byte extension. */
4162 if (i.reg_operands != 2
4163 && !i.suffix
7ab9ffdd 4164 && intel_syntax)
321fd21e
L
4165 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4166
4167 i.suffix = 0;
cd61ebfe 4168 }
24eab124 4169
40fb9820 4170 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4171 if (!add_prefix (FWAIT_OPCODE))
4172 return;
252b5132 4173
d5de92cf
L
4174 /* Check if REP prefix is OK. */
4175 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4176 {
4177 as_bad (_("invalid instruction `%s' after `%s'"),
4178 i.tm.name, i.rep_prefix);
4179 return;
4180 }
4181
c1ba0266
L
4182 /* Check for lock without a lockable instruction. Destination operand
4183 must be memory unless it is xchg (0x86). */
c32fa91d
L
4184 if (i.prefix[LOCK_PREFIX]
4185 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4186 || i.mem_operands == 0
4187 || (i.tm.base_opcode != 0x86
4188 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4189 {
4190 as_bad (_("expecting lockable instruction after `lock'"));
4191 return;
4192 }
4193
7a8655d2
JB
4194 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4195 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4196 {
4197 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4198 return;
4199 }
4200
42164a71 4201 /* Check if HLE prefix is OK. */
165de32a 4202 if (i.hle_prefix && !check_hle ())
42164a71
L
4203 return;
4204
7e8b059b
L
4205 /* Check BND prefix. */
4206 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4207 as_bad (_("expecting valid branch instruction after `bnd'"));
4208
04ef582a 4209 /* Check NOTRACK prefix. */
9fef80d6
L
4210 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4211 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4212
327e8c42
JB
4213 if (i.tm.cpu_flags.bitfield.cpumpx)
4214 {
4215 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4216 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4217 else if (flag_code != CODE_16BIT
4218 ? i.prefix[ADDR_PREFIX]
4219 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4220 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4221 }
7e8b059b
L
4222
4223 /* Insert BND prefix. */
76d3a78a
JB
4224 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4225 {
4226 if (!i.prefix[BND_PREFIX])
4227 add_prefix (BND_PREFIX_OPCODE);
4228 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4229 {
4230 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4231 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4232 }
4233 }
7e8b059b 4234
29b0f896 4235 /* Check string instruction segment overrides. */
40fb9820 4236 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4237 {
4238 if (!check_string ())
5dd0794d 4239 return;
fc0763e6 4240 i.disp_operands = 0;
29b0f896 4241 }
5dd0794d 4242
b6f8c7c4
L
4243 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4244 optimize_encoding ();
4245
29b0f896
AM
4246 if (!process_suffix ())
4247 return;
e413e4e9 4248
bc0844ae
L
4249 /* Update operand types. */
4250 for (j = 0; j < i.operands; j++)
4251 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4252
29b0f896
AM
4253 /* Make still unresolved immediate matches conform to size of immediate
4254 given in i.suffix. */
4255 if (!finalize_imm ())
4256 return;
252b5132 4257
40fb9820 4258 if (i.types[0].bitfield.imm1)
29b0f896 4259 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4260
9afe6eb8
L
4261 /* We only need to check those implicit registers for instructions
4262 with 3 operands or less. */
4263 if (i.operands <= 3)
4264 for (j = 0; j < i.operands; j++)
4265 if (i.types[j].bitfield.inoutportreg
4266 || i.types[j].bitfield.shiftcount
1b54b8d7 4267 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4268 i.reg_operands--;
40fb9820 4269
c0f3af97
L
4270 /* ImmExt should be processed after SSE2AVX. */
4271 if (!i.tm.opcode_modifier.sse2avx
4272 && i.tm.opcode_modifier.immext)
65da13b5 4273 process_immext ();
252b5132 4274
29b0f896
AM
4275 /* For insns with operands there are more diddles to do to the opcode. */
4276 if (i.operands)
4277 {
4278 if (!process_operands ())
4279 return;
4280 }
40fb9820 4281 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4282 {
4283 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4284 as_warn (_("translating to `%sp'"), i.tm.name);
4285 }
252b5132 4286
7a8655d2 4287 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4288 {
4289 if (flag_code == CODE_16BIT)
4290 {
4291 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4292 i.tm.name);
4293 return;
4294 }
c0f3af97 4295
9e5e5283
L
4296 if (i.tm.opcode_modifier.vex)
4297 build_vex_prefix (t);
4298 else
4299 build_evex_prefix ();
4300 }
43234a1e 4301
5dd85c99
SP
4302 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4303 instructions may define INT_OPCODE as well, so avoid this corner
4304 case for those instructions that use MODRM. */
4305 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4306 && !i.tm.opcode_modifier.modrm
4307 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4308 {
4309 i.tm.base_opcode = INT3_OPCODE;
4310 i.imm_operands = 0;
4311 }
252b5132 4312
40fb9820
L
4313 if ((i.tm.opcode_modifier.jump
4314 || i.tm.opcode_modifier.jumpbyte
4315 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4316 && i.op[0].disps->X_op == O_constant)
4317 {
4318 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4319 the absolute address given by the constant. Since ix86 jumps and
4320 calls are pc relative, we need to generate a reloc. */
4321 i.op[0].disps->X_add_symbol = &abs_symbol;
4322 i.op[0].disps->X_op = O_symbol;
4323 }
252b5132 4324
40fb9820 4325 if (i.tm.opcode_modifier.rex64)
161a04f6 4326 i.rex |= REX_W;
252b5132 4327
29b0f896
AM
4328 /* For 8 bit registers we need an empty rex prefix. Also if the
4329 instruction already has a prefix, we need to convert old
4330 registers to new ones. */
773f551c 4331
dc821c5f 4332 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4333 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4334 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4335 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4336 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4337 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4338 && i.rex != 0))
4339 {
4340 int x;
726c5dcd 4341
29b0f896
AM
4342 i.rex |= REX_OPCODE;
4343 for (x = 0; x < 2; x++)
4344 {
4345 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4346 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4347 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4348 {
29b0f896
AM
4349 /* In case it is "hi" register, give up. */
4350 if (i.op[x].regs->reg_num > 3)
a540244d 4351 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4352 "instruction requiring REX prefix."),
a540244d 4353 register_prefix, i.op[x].regs->reg_name);
773f551c 4354
29b0f896
AM
4355 /* Otherwise it is equivalent to the extended register.
4356 Since the encoding doesn't change this is merely
4357 cosmetic cleanup for debug output. */
4358
4359 i.op[x].regs = i.op[x].regs + 8;
773f551c 4360 }
29b0f896
AM
4361 }
4362 }
773f551c 4363
6b6b6807
L
4364 if (i.rex == 0 && i.rex_encoding)
4365 {
4366 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4367 that uses legacy register. If it is "hi" register, don't add
4368 the REX_OPCODE byte. */
4369 int x;
4370 for (x = 0; x < 2; x++)
4371 if (i.types[x].bitfield.reg
4372 && i.types[x].bitfield.byte
4373 && (i.op[x].regs->reg_flags & RegRex64) == 0
4374 && i.op[x].regs->reg_num > 3)
4375 {
4376 i.rex_encoding = FALSE;
4377 break;
4378 }
4379
4380 if (i.rex_encoding)
4381 i.rex = REX_OPCODE;
4382 }
4383
7ab9ffdd 4384 if (i.rex != 0)
29b0f896
AM
4385 add_prefix (REX_OPCODE | i.rex);
4386
4387 /* We are ready to output the insn. */
4388 output_insn ();
4389}
4390
4391static char *
e3bb37b5 4392parse_insn (char *line, char *mnemonic)
29b0f896
AM
4393{
4394 char *l = line;
4395 char *token_start = l;
4396 char *mnem_p;
5c6af06e 4397 int supported;
d3ce72d0 4398 const insn_template *t;
b6169b20 4399 char *dot_p = NULL;
29b0f896 4400
29b0f896
AM
4401 while (1)
4402 {
4403 mnem_p = mnemonic;
4404 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4405 {
b6169b20
L
4406 if (*mnem_p == '.')
4407 dot_p = mnem_p;
29b0f896
AM
4408 mnem_p++;
4409 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4410 {
29b0f896
AM
4411 as_bad (_("no such instruction: `%s'"), token_start);
4412 return NULL;
4413 }
4414 l++;
4415 }
4416 if (!is_space_char (*l)
4417 && *l != END_OF_INSN
e44823cf
JB
4418 && (intel_syntax
4419 || (*l != PREFIX_SEPARATOR
4420 && *l != ',')))
29b0f896
AM
4421 {
4422 as_bad (_("invalid character %s in mnemonic"),
4423 output_invalid (*l));
4424 return NULL;
4425 }
4426 if (token_start == l)
4427 {
e44823cf 4428 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4429 as_bad (_("expecting prefix; got nothing"));
4430 else
4431 as_bad (_("expecting mnemonic; got nothing"));
4432 return NULL;
4433 }
45288df1 4434
29b0f896 4435 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4436 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4437
29b0f896
AM
4438 if (*l != END_OF_INSN
4439 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4440 && current_templates
40fb9820 4441 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4442 {
c6fb90c8 4443 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4444 {
4445 as_bad ((flag_code != CODE_64BIT
4446 ? _("`%s' is only supported in 64-bit mode")
4447 : _("`%s' is not supported in 64-bit mode")),
4448 current_templates->start->name);
4449 return NULL;
4450 }
29b0f896
AM
4451 /* If we are in 16-bit mode, do not allow addr16 or data16.
4452 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4453 if ((current_templates->start->opcode_modifier.size == SIZE16
4454 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4455 && flag_code != CODE_64BIT
673fe0f0 4456 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4457 ^ (flag_code == CODE_16BIT)))
4458 {
4459 as_bad (_("redundant %s prefix"),
4460 current_templates->start->name);
4461 return NULL;
45288df1 4462 }
86fa6981 4463 if (current_templates->start->opcode_length == 0)
29b0f896 4464 {
86fa6981
L
4465 /* Handle pseudo prefixes. */
4466 switch (current_templates->start->base_opcode)
4467 {
4468 case 0x0:
4469 /* {disp8} */
4470 i.disp_encoding = disp_encoding_8bit;
4471 break;
4472 case 0x1:
4473 /* {disp32} */
4474 i.disp_encoding = disp_encoding_32bit;
4475 break;
4476 case 0x2:
4477 /* {load} */
4478 i.dir_encoding = dir_encoding_load;
4479 break;
4480 case 0x3:
4481 /* {store} */
4482 i.dir_encoding = dir_encoding_store;
4483 break;
4484 case 0x4:
4485 /* {vex2} */
4486 i.vec_encoding = vex_encoding_vex2;
4487 break;
4488 case 0x5:
4489 /* {vex3} */
4490 i.vec_encoding = vex_encoding_vex3;
4491 break;
4492 case 0x6:
4493 /* {evex} */
4494 i.vec_encoding = vex_encoding_evex;
4495 break;
6b6b6807
L
4496 case 0x7:
4497 /* {rex} */
4498 i.rex_encoding = TRUE;
4499 break;
b6f8c7c4
L
4500 case 0x8:
4501 /* {nooptimize} */
4502 i.no_optimize = TRUE;
4503 break;
86fa6981
L
4504 default:
4505 abort ();
4506 }
4507 }
4508 else
4509 {
4510 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4511 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4512 {
4e9ac44a
L
4513 case PREFIX_EXIST:
4514 return NULL;
4515 case PREFIX_DS:
d777820b 4516 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4517 i.notrack_prefix = current_templates->start->name;
4518 break;
4519 case PREFIX_REP:
4520 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4521 i.hle_prefix = current_templates->start->name;
4522 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4523 i.bnd_prefix = current_templates->start->name;
4524 else
4525 i.rep_prefix = current_templates->start->name;
4526 break;
4527 default:
4528 break;
86fa6981 4529 }
29b0f896
AM
4530 }
4531 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4532 token_start = ++l;
4533 }
4534 else
4535 break;
4536 }
45288df1 4537
30a55f88 4538 if (!current_templates)
b6169b20 4539 {
07d5e953
JB
4540 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4541 Check if we should swap operand or force 32bit displacement in
f8a5c266 4542 encoding. */
30a55f88 4543 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4544 i.dir_encoding = dir_encoding_swap;
8d63c93e 4545 else if (mnem_p - 3 == dot_p
a501d77e
L
4546 && dot_p[1] == 'd'
4547 && dot_p[2] == '8')
4548 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4549 else if (mnem_p - 4 == dot_p
f8a5c266
L
4550 && dot_p[1] == 'd'
4551 && dot_p[2] == '3'
4552 && dot_p[3] == '2')
a501d77e 4553 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4554 else
4555 goto check_suffix;
4556 mnem_p = dot_p;
4557 *dot_p = '\0';
d3ce72d0 4558 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4559 }
4560
29b0f896
AM
4561 if (!current_templates)
4562 {
b6169b20 4563check_suffix:
29b0f896
AM
4564 /* See if we can get a match by trimming off a suffix. */
4565 switch (mnem_p[-1])
4566 {
4567 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4568 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4569 i.suffix = SHORT_MNEM_SUFFIX;
4570 else
1a0670f3 4571 /* Fall through. */
29b0f896
AM
4572 case BYTE_MNEM_SUFFIX:
4573 case QWORD_MNEM_SUFFIX:
4574 i.suffix = mnem_p[-1];
4575 mnem_p[-1] = '\0';
d3ce72d0
NC
4576 current_templates = (const templates *) hash_find (op_hash,
4577 mnemonic);
29b0f896
AM
4578 break;
4579 case SHORT_MNEM_SUFFIX:
4580 case LONG_MNEM_SUFFIX:
4581 if (!intel_syntax)
4582 {
4583 i.suffix = mnem_p[-1];
4584 mnem_p[-1] = '\0';
d3ce72d0
NC
4585 current_templates = (const templates *) hash_find (op_hash,
4586 mnemonic);
29b0f896
AM
4587 }
4588 break;
252b5132 4589
29b0f896
AM
4590 /* Intel Syntax. */
4591 case 'd':
4592 if (intel_syntax)
4593 {
9306ca4a 4594 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4595 i.suffix = SHORT_MNEM_SUFFIX;
4596 else
4597 i.suffix = LONG_MNEM_SUFFIX;
4598 mnem_p[-1] = '\0';
d3ce72d0
NC
4599 current_templates = (const templates *) hash_find (op_hash,
4600 mnemonic);
29b0f896
AM
4601 }
4602 break;
4603 }
4604 if (!current_templates)
4605 {
4606 as_bad (_("no such instruction: `%s'"), token_start);
4607 return NULL;
4608 }
4609 }
252b5132 4610
40fb9820
L
4611 if (current_templates->start->opcode_modifier.jump
4612 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4613 {
4614 /* Check for a branch hint. We allow ",pt" and ",pn" for
4615 predict taken and predict not taken respectively.
4616 I'm not sure that branch hints actually do anything on loop
4617 and jcxz insns (JumpByte) for current Pentium4 chips. They
4618 may work in the future and it doesn't hurt to accept them
4619 now. */
4620 if (l[0] == ',' && l[1] == 'p')
4621 {
4622 if (l[2] == 't')
4623 {
4624 if (!add_prefix (DS_PREFIX_OPCODE))
4625 return NULL;
4626 l += 3;
4627 }
4628 else if (l[2] == 'n')
4629 {
4630 if (!add_prefix (CS_PREFIX_OPCODE))
4631 return NULL;
4632 l += 3;
4633 }
4634 }
4635 }
4636 /* Any other comma loses. */
4637 if (*l == ',')
4638 {
4639 as_bad (_("invalid character %s in mnemonic"),
4640 output_invalid (*l));
4641 return NULL;
4642 }
252b5132 4643
29b0f896 4644 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4645 supported = 0;
4646 for (t = current_templates->start; t < current_templates->end; ++t)
4647 {
c0f3af97
L
4648 supported |= cpu_flags_match (t);
4649 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4650 {
4651 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4652 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4653
548d0ee6
JB
4654 return l;
4655 }
29b0f896 4656 }
3629bb00 4657
548d0ee6
JB
4658 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4659 as_bad (flag_code == CODE_64BIT
4660 ? _("`%s' is not supported in 64-bit mode")
4661 : _("`%s' is only supported in 64-bit mode"),
4662 current_templates->start->name);
4663 else
4664 as_bad (_("`%s' is not supported on `%s%s'"),
4665 current_templates->start->name,
4666 cpu_arch_name ? cpu_arch_name : default_arch,
4667 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4668
548d0ee6 4669 return NULL;
29b0f896 4670}
252b5132 4671
29b0f896 4672static char *
e3bb37b5 4673parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4674{
4675 char *token_start;
3138f287 4676
29b0f896
AM
4677 /* 1 if operand is pending after ','. */
4678 unsigned int expecting_operand = 0;
252b5132 4679
29b0f896
AM
4680 /* Non-zero if operand parens not balanced. */
4681 unsigned int paren_not_balanced;
4682
4683 while (*l != END_OF_INSN)
4684 {
4685 /* Skip optional white space before operand. */
4686 if (is_space_char (*l))
4687 ++l;
d02603dc 4688 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4689 {
4690 as_bad (_("invalid character %s before operand %d"),
4691 output_invalid (*l),
4692 i.operands + 1);
4693 return NULL;
4694 }
d02603dc 4695 token_start = l; /* After white space. */
29b0f896
AM
4696 paren_not_balanced = 0;
4697 while (paren_not_balanced || *l != ',')
4698 {
4699 if (*l == END_OF_INSN)
4700 {
4701 if (paren_not_balanced)
4702 {
4703 if (!intel_syntax)
4704 as_bad (_("unbalanced parenthesis in operand %d."),
4705 i.operands + 1);
4706 else
4707 as_bad (_("unbalanced brackets in operand %d."),
4708 i.operands + 1);
4709 return NULL;
4710 }
4711 else
4712 break; /* we are done */
4713 }
d02603dc 4714 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4715 {
4716 as_bad (_("invalid character %s in operand %d"),
4717 output_invalid (*l),
4718 i.operands + 1);
4719 return NULL;
4720 }
4721 if (!intel_syntax)
4722 {
4723 if (*l == '(')
4724 ++paren_not_balanced;
4725 if (*l == ')')
4726 --paren_not_balanced;
4727 }
4728 else
4729 {
4730 if (*l == '[')
4731 ++paren_not_balanced;
4732 if (*l == ']')
4733 --paren_not_balanced;
4734 }
4735 l++;
4736 }
4737 if (l != token_start)
4738 { /* Yes, we've read in another operand. */
4739 unsigned int operand_ok;
4740 this_operand = i.operands++;
4741 if (i.operands > MAX_OPERANDS)
4742 {
4743 as_bad (_("spurious operands; (%d operands/instruction max)"),
4744 MAX_OPERANDS);
4745 return NULL;
4746 }
9d46ce34 4747 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4748 /* Now parse operand adding info to 'i' as we go along. */
4749 END_STRING_AND_SAVE (l);
4750
1286ab78
L
4751 if (i.mem_operands > 1)
4752 {
4753 as_bad (_("too many memory references for `%s'"),
4754 mnemonic);
4755 return 0;
4756 }
4757
29b0f896
AM
4758 if (intel_syntax)
4759 operand_ok =
4760 i386_intel_operand (token_start,
4761 intel_float_operand (mnemonic));
4762 else
a7619375 4763 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4764
4765 RESTORE_END_STRING (l);
4766 if (!operand_ok)
4767 return NULL;
4768 }
4769 else
4770 {
4771 if (expecting_operand)
4772 {
4773 expecting_operand_after_comma:
4774 as_bad (_("expecting operand after ','; got nothing"));
4775 return NULL;
4776 }
4777 if (*l == ',')
4778 {
4779 as_bad (_("expecting operand before ','; got nothing"));
4780 return NULL;
4781 }
4782 }
7f3f1ea2 4783
29b0f896
AM
4784 /* Now *l must be either ',' or END_OF_INSN. */
4785 if (*l == ',')
4786 {
4787 if (*++l == END_OF_INSN)
4788 {
4789 /* Just skip it, if it's \n complain. */
4790 goto expecting_operand_after_comma;
4791 }
4792 expecting_operand = 1;
4793 }
4794 }
4795 return l;
4796}
7f3f1ea2 4797
050dfa73 4798static void
4d456e3d 4799swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4800{
4801 union i386_op temp_op;
40fb9820 4802 i386_operand_type temp_type;
c48dadc9 4803 unsigned int temp_flags;
050dfa73 4804 enum bfd_reloc_code_real temp_reloc;
4eed87de 4805
050dfa73
MM
4806 temp_type = i.types[xchg2];
4807 i.types[xchg2] = i.types[xchg1];
4808 i.types[xchg1] = temp_type;
c48dadc9
JB
4809
4810 temp_flags = i.flags[xchg2];
4811 i.flags[xchg2] = i.flags[xchg1];
4812 i.flags[xchg1] = temp_flags;
4813
050dfa73
MM
4814 temp_op = i.op[xchg2];
4815 i.op[xchg2] = i.op[xchg1];
4816 i.op[xchg1] = temp_op;
c48dadc9 4817
050dfa73
MM
4818 temp_reloc = i.reloc[xchg2];
4819 i.reloc[xchg2] = i.reloc[xchg1];
4820 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4821
4822 if (i.mask)
4823 {
4824 if (i.mask->operand == xchg1)
4825 i.mask->operand = xchg2;
4826 else if (i.mask->operand == xchg2)
4827 i.mask->operand = xchg1;
4828 }
4829 if (i.broadcast)
4830 {
4831 if (i.broadcast->operand == xchg1)
4832 i.broadcast->operand = xchg2;
4833 else if (i.broadcast->operand == xchg2)
4834 i.broadcast->operand = xchg1;
4835 }
4836 if (i.rounding)
4837 {
4838 if (i.rounding->operand == xchg1)
4839 i.rounding->operand = xchg2;
4840 else if (i.rounding->operand == xchg2)
4841 i.rounding->operand = xchg1;
4842 }
050dfa73
MM
4843}
4844
29b0f896 4845static void
e3bb37b5 4846swap_operands (void)
29b0f896 4847{
b7c61d9a 4848 switch (i.operands)
050dfa73 4849 {
c0f3af97 4850 case 5:
b7c61d9a 4851 case 4:
4d456e3d 4852 swap_2_operands (1, i.operands - 2);
1a0670f3 4853 /* Fall through. */
b7c61d9a
L
4854 case 3:
4855 case 2:
4d456e3d 4856 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4857 break;
4858 default:
4859 abort ();
29b0f896 4860 }
29b0f896
AM
4861
4862 if (i.mem_operands == 2)
4863 {
4864 const seg_entry *temp_seg;
4865 temp_seg = i.seg[0];
4866 i.seg[0] = i.seg[1];
4867 i.seg[1] = temp_seg;
4868 }
4869}
252b5132 4870
29b0f896
AM
4871/* Try to ensure constant immediates are represented in the smallest
4872 opcode possible. */
4873static void
e3bb37b5 4874optimize_imm (void)
29b0f896
AM
4875{
4876 char guess_suffix = 0;
4877 int op;
252b5132 4878
29b0f896
AM
4879 if (i.suffix)
4880 guess_suffix = i.suffix;
4881 else if (i.reg_operands)
4882 {
4883 /* Figure out a suffix from the last register operand specified.
4884 We can't do this properly yet, ie. excluding InOutPortReg,
4885 but the following works for instructions with immediates.
4886 In any case, we can't set i.suffix yet. */
4887 for (op = i.operands; --op >= 0;)
dc821c5f 4888 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4889 {
40fb9820
L
4890 guess_suffix = BYTE_MNEM_SUFFIX;
4891 break;
4892 }
dc821c5f 4893 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4894 {
40fb9820
L
4895 guess_suffix = WORD_MNEM_SUFFIX;
4896 break;
4897 }
dc821c5f 4898 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4899 {
4900 guess_suffix = LONG_MNEM_SUFFIX;
4901 break;
4902 }
dc821c5f 4903 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4904 {
4905 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4906 break;
252b5132 4907 }
29b0f896
AM
4908 }
4909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4910 guess_suffix = WORD_MNEM_SUFFIX;
4911
4912 for (op = i.operands; --op >= 0;)
40fb9820 4913 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4914 {
4915 switch (i.op[op].imms->X_op)
252b5132 4916 {
29b0f896
AM
4917 case O_constant:
4918 /* If a suffix is given, this operand may be shortened. */
4919 switch (guess_suffix)
252b5132 4920 {
29b0f896 4921 case LONG_MNEM_SUFFIX:
40fb9820
L
4922 i.types[op].bitfield.imm32 = 1;
4923 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4924 break;
4925 case WORD_MNEM_SUFFIX:
40fb9820
L
4926 i.types[op].bitfield.imm16 = 1;
4927 i.types[op].bitfield.imm32 = 1;
4928 i.types[op].bitfield.imm32s = 1;
4929 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4930 break;
4931 case BYTE_MNEM_SUFFIX:
40fb9820
L
4932 i.types[op].bitfield.imm8 = 1;
4933 i.types[op].bitfield.imm8s = 1;
4934 i.types[op].bitfield.imm16 = 1;
4935 i.types[op].bitfield.imm32 = 1;
4936 i.types[op].bitfield.imm32s = 1;
4937 i.types[op].bitfield.imm64 = 1;
29b0f896 4938 break;
252b5132 4939 }
252b5132 4940
29b0f896
AM
4941 /* If this operand is at most 16 bits, convert it
4942 to a signed 16 bit number before trying to see
4943 whether it will fit in an even smaller size.
4944 This allows a 16-bit operand such as $0xffe0 to
4945 be recognised as within Imm8S range. */
40fb9820 4946 if ((i.types[op].bitfield.imm16)
29b0f896 4947 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4948 {
29b0f896
AM
4949 i.op[op].imms->X_add_number =
4950 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4951 }
a28def75
L
4952#ifdef BFD64
4953 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4954 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4955 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4956 == 0))
4957 {
4958 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4959 ^ ((offsetT) 1 << 31))
4960 - ((offsetT) 1 << 31));
4961 }
a28def75 4962#endif
40fb9820 4963 i.types[op]
c6fb90c8
L
4964 = operand_type_or (i.types[op],
4965 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4966
29b0f896
AM
4967 /* We must avoid matching of Imm32 templates when 64bit
4968 only immediate is available. */
4969 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4970 i.types[op].bitfield.imm32 = 0;
29b0f896 4971 break;
252b5132 4972
29b0f896
AM
4973 case O_absent:
4974 case O_register:
4975 abort ();
4976
4977 /* Symbols and expressions. */
4978 default:
9cd96992
JB
4979 /* Convert symbolic operand to proper sizes for matching, but don't
4980 prevent matching a set of insns that only supports sizes other
4981 than those matching the insn suffix. */
4982 {
40fb9820 4983 i386_operand_type mask, allowed;
d3ce72d0 4984 const insn_template *t;
9cd96992 4985
0dfbf9d7
L
4986 operand_type_set (&mask, 0);
4987 operand_type_set (&allowed, 0);
40fb9820 4988
4eed87de
AM
4989 for (t = current_templates->start;
4990 t < current_templates->end;
4991 ++t)
c6fb90c8
L
4992 allowed = operand_type_or (allowed,
4993 t->operand_types[op]);
9cd96992
JB
4994 switch (guess_suffix)
4995 {
4996 case QWORD_MNEM_SUFFIX:
40fb9820
L
4997 mask.bitfield.imm64 = 1;
4998 mask.bitfield.imm32s = 1;
9cd96992
JB
4999 break;
5000 case LONG_MNEM_SUFFIX:
40fb9820 5001 mask.bitfield.imm32 = 1;
9cd96992
JB
5002 break;
5003 case WORD_MNEM_SUFFIX:
40fb9820 5004 mask.bitfield.imm16 = 1;
9cd96992
JB
5005 break;
5006 case BYTE_MNEM_SUFFIX:
40fb9820 5007 mask.bitfield.imm8 = 1;
9cd96992
JB
5008 break;
5009 default:
9cd96992
JB
5010 break;
5011 }
c6fb90c8 5012 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5013 if (!operand_type_all_zero (&allowed))
c6fb90c8 5014 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5015 }
29b0f896 5016 break;
252b5132 5017 }
29b0f896
AM
5018 }
5019}
47926f60 5020
29b0f896
AM
5021/* Try to use the smallest displacement type too. */
5022static void
e3bb37b5 5023optimize_disp (void)
29b0f896
AM
5024{
5025 int op;
3e73aa7c 5026
29b0f896 5027 for (op = i.operands; --op >= 0;)
40fb9820 5028 if (operand_type_check (i.types[op], disp))
252b5132 5029 {
b300c311 5030 if (i.op[op].disps->X_op == O_constant)
252b5132 5031 {
91d6fa6a 5032 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5033
40fb9820 5034 if (i.types[op].bitfield.disp16
91d6fa6a 5035 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5036 {
5037 /* If this operand is at most 16 bits, convert
5038 to a signed 16 bit number and don't use 64bit
5039 displacement. */
91d6fa6a 5040 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5041 i.types[op].bitfield.disp64 = 0;
b300c311 5042 }
a28def75
L
5043#ifdef BFD64
5044 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5045 if (i.types[op].bitfield.disp32
91d6fa6a 5046 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5047 {
5048 /* If this operand is at most 32 bits, convert
5049 to a signed 32 bit number and don't use 64bit
5050 displacement. */
91d6fa6a
NC
5051 op_disp &= (((offsetT) 2 << 31) - 1);
5052 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5053 i.types[op].bitfield.disp64 = 0;
b300c311 5054 }
a28def75 5055#endif
91d6fa6a 5056 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5057 {
40fb9820
L
5058 i.types[op].bitfield.disp8 = 0;
5059 i.types[op].bitfield.disp16 = 0;
5060 i.types[op].bitfield.disp32 = 0;
5061 i.types[op].bitfield.disp32s = 0;
5062 i.types[op].bitfield.disp64 = 0;
b300c311
L
5063 i.op[op].disps = 0;
5064 i.disp_operands--;
5065 }
5066 else if (flag_code == CODE_64BIT)
5067 {
91d6fa6a 5068 if (fits_in_signed_long (op_disp))
28a9d8f5 5069 {
40fb9820
L
5070 i.types[op].bitfield.disp64 = 0;
5071 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5072 }
0e1147d9 5073 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5074 && fits_in_unsigned_long (op_disp))
40fb9820 5075 i.types[op].bitfield.disp32 = 1;
b300c311 5076 }
40fb9820
L
5077 if ((i.types[op].bitfield.disp32
5078 || i.types[op].bitfield.disp32s
5079 || i.types[op].bitfield.disp16)
b5014f7a 5080 && fits_in_disp8 (op_disp))
40fb9820 5081 i.types[op].bitfield.disp8 = 1;
252b5132 5082 }
67a4f2b7
AO
5083 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5084 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5085 {
5086 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5087 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5088 i.types[op].bitfield.disp8 = 0;
5089 i.types[op].bitfield.disp16 = 0;
5090 i.types[op].bitfield.disp32 = 0;
5091 i.types[op].bitfield.disp32s = 0;
5092 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5093 }
5094 else
b300c311 5095 /* We only support 64bit displacement on constants. */
40fb9820 5096 i.types[op].bitfield.disp64 = 0;
252b5132 5097 }
29b0f896
AM
5098}
5099
4a1b91ea
L
5100/* Return 1 if there is a match in broadcast bytes between operand
5101 GIVEN and instruction template T. */
5102
5103static INLINE int
5104match_broadcast_size (const insn_template *t, unsigned int given)
5105{
5106 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5107 && i.types[given].bitfield.byte)
5108 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5109 && i.types[given].bitfield.word)
5110 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5111 && i.types[given].bitfield.dword)
5112 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5113 && i.types[given].bitfield.qword));
5114}
5115
6c30d220
L
5116/* Check if operands are valid for the instruction. */
5117
5118static int
5119check_VecOperands (const insn_template *t)
5120{
43234a1e 5121 unsigned int op;
e2195274
JB
5122 i386_cpu_flags cpu;
5123 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5124
5125 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5126 any one operand are implicity requiring AVX512VL support if the actual
5127 operand size is YMMword or XMMword. Since this function runs after
5128 template matching, there's no need to check for YMMword/XMMword in
5129 the template. */
5130 cpu = cpu_flags_and (t->cpu_flags, avx512);
5131 if (!cpu_flags_all_zero (&cpu)
5132 && !t->cpu_flags.bitfield.cpuavx512vl
5133 && !cpu_arch_flags.bitfield.cpuavx512vl)
5134 {
5135 for (op = 0; op < t->operands; ++op)
5136 {
5137 if (t->operand_types[op].bitfield.zmmword
5138 && (i.types[op].bitfield.ymmword
5139 || i.types[op].bitfield.xmmword))
5140 {
5141 i.error = unsupported;
5142 return 1;
5143 }
5144 }
5145 }
43234a1e 5146
6c30d220
L
5147 /* Without VSIB byte, we can't have a vector register for index. */
5148 if (!t->opcode_modifier.vecsib
5149 && i.index_reg
1b54b8d7
JB
5150 && (i.index_reg->reg_type.bitfield.xmmword
5151 || i.index_reg->reg_type.bitfield.ymmword
5152 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5153 {
5154 i.error = unsupported_vector_index_register;
5155 return 1;
5156 }
5157
ad8ecc81
MZ
5158 /* Check if default mask is allowed. */
5159 if (t->opcode_modifier.nodefmask
5160 && (!i.mask || i.mask->mask->reg_num == 0))
5161 {
5162 i.error = no_default_mask;
5163 return 1;
5164 }
5165
7bab8ab5
JB
5166 /* For VSIB byte, we need a vector register for index, and all vector
5167 registers must be distinct. */
5168 if (t->opcode_modifier.vecsib)
5169 {
5170 if (!i.index_reg
6c30d220 5171 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5172 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5173 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5174 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5175 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5176 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5177 {
5178 i.error = invalid_vsib_address;
5179 return 1;
5180 }
5181
43234a1e
L
5182 gas_assert (i.reg_operands == 2 || i.mask);
5183 if (i.reg_operands == 2 && !i.mask)
5184 {
1b54b8d7
JB
5185 gas_assert (i.types[0].bitfield.regsimd);
5186 gas_assert (i.types[0].bitfield.xmmword
5187 || i.types[0].bitfield.ymmword);
5188 gas_assert (i.types[2].bitfield.regsimd);
5189 gas_assert (i.types[2].bitfield.xmmword
5190 || i.types[2].bitfield.ymmword);
43234a1e
L
5191 if (operand_check == check_none)
5192 return 0;
5193 if (register_number (i.op[0].regs)
5194 != register_number (i.index_reg)
5195 && register_number (i.op[2].regs)
5196 != register_number (i.index_reg)
5197 && register_number (i.op[0].regs)
5198 != register_number (i.op[2].regs))
5199 return 0;
5200 if (operand_check == check_error)
5201 {
5202 i.error = invalid_vector_register_set;
5203 return 1;
5204 }
5205 as_warn (_("mask, index, and destination registers should be distinct"));
5206 }
8444f82a
MZ
5207 else if (i.reg_operands == 1 && i.mask)
5208 {
1b54b8d7
JB
5209 if (i.types[1].bitfield.regsimd
5210 && (i.types[1].bitfield.xmmword
5211 || i.types[1].bitfield.ymmword
5212 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5213 && (register_number (i.op[1].regs)
5214 == register_number (i.index_reg)))
5215 {
5216 if (operand_check == check_error)
5217 {
5218 i.error = invalid_vector_register_set;
5219 return 1;
5220 }
5221 if (operand_check != check_none)
5222 as_warn (_("index and destination registers should be distinct"));
5223 }
5224 }
43234a1e 5225 }
7bab8ab5 5226
43234a1e
L
5227 /* Check if broadcast is supported by the instruction and is applied
5228 to the memory operand. */
5229 if (i.broadcast)
5230 {
8e6e0792 5231 i386_operand_type type, overlap;
43234a1e
L
5232
5233 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5234 and its broadcast bytes match the memory operand. */
32546502 5235 op = i.broadcast->operand;
8e6e0792 5236 if (!t->opcode_modifier.broadcast
c48dadc9 5237 || !(i.flags[op] & Operand_Mem)
c39e5b26 5238 || (!i.types[op].bitfield.unspecified
4a1b91ea 5239 && !match_broadcast_size (t, op)))
43234a1e
L
5240 {
5241 bad_broadcast:
5242 i.error = unsupported_broadcast;
5243 return 1;
5244 }
8e6e0792 5245
4a1b91ea
L
5246 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5247 * i.broadcast->type);
8e6e0792 5248 operand_type_set (&type, 0);
4a1b91ea 5249 switch (i.broadcast->bytes)
8e6e0792 5250 {
4a1b91ea
L
5251 case 2:
5252 type.bitfield.word = 1;
5253 break;
5254 case 4:
5255 type.bitfield.dword = 1;
5256 break;
8e6e0792
JB
5257 case 8:
5258 type.bitfield.qword = 1;
5259 break;
5260 case 16:
5261 type.bitfield.xmmword = 1;
5262 break;
5263 case 32:
5264 type.bitfield.ymmword = 1;
5265 break;
5266 case 64:
5267 type.bitfield.zmmword = 1;
5268 break;
5269 default:
5270 goto bad_broadcast;
5271 }
5272
5273 overlap = operand_type_and (type, t->operand_types[op]);
5274 if (operand_type_all_zero (&overlap))
5275 goto bad_broadcast;
5276
5277 if (t->opcode_modifier.checkregsize)
5278 {
5279 unsigned int j;
5280
e2195274 5281 type.bitfield.baseindex = 1;
8e6e0792
JB
5282 for (j = 0; j < i.operands; ++j)
5283 {
5284 if (j != op
5285 && !operand_type_register_match(i.types[j],
5286 t->operand_types[j],
5287 type,
5288 t->operand_types[op]))
5289 goto bad_broadcast;
5290 }
5291 }
43234a1e
L
5292 }
5293 /* If broadcast is supported in this instruction, we need to check if
5294 operand of one-element size isn't specified without broadcast. */
5295 else if (t->opcode_modifier.broadcast && i.mem_operands)
5296 {
5297 /* Find memory operand. */
5298 for (op = 0; op < i.operands; op++)
5299 if (operand_type_check (i.types[op], anymem))
5300 break;
5301 gas_assert (op < i.operands);
5302 /* Check size of the memory operand. */
4a1b91ea 5303 if (match_broadcast_size (t, op))
43234a1e
L
5304 {
5305 i.error = broadcast_needed;
5306 return 1;
5307 }
5308 }
c39e5b26
JB
5309 else
5310 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5311
5312 /* Check if requested masking is supported. */
ae2387fe 5313 if (i.mask)
43234a1e 5314 {
ae2387fe
JB
5315 switch (t->opcode_modifier.masking)
5316 {
5317 case BOTH_MASKING:
5318 break;
5319 case MERGING_MASKING:
5320 if (i.mask->zeroing)
5321 {
5322 case 0:
5323 i.error = unsupported_masking;
5324 return 1;
5325 }
5326 break;
5327 case DYNAMIC_MASKING:
5328 /* Memory destinations allow only merging masking. */
5329 if (i.mask->zeroing && i.mem_operands)
5330 {
5331 /* Find memory operand. */
5332 for (op = 0; op < i.operands; op++)
c48dadc9 5333 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5334 break;
5335 gas_assert (op < i.operands);
5336 if (op == i.operands - 1)
5337 {
5338 i.error = unsupported_masking;
5339 return 1;
5340 }
5341 }
5342 break;
5343 default:
5344 abort ();
5345 }
43234a1e
L
5346 }
5347
5348 /* Check if masking is applied to dest operand. */
5349 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5350 {
5351 i.error = mask_not_on_destination;
5352 return 1;
5353 }
5354
43234a1e
L
5355 /* Check RC/SAE. */
5356 if (i.rounding)
5357 {
5358 if ((i.rounding->type != saeonly
5359 && !t->opcode_modifier.staticrounding)
5360 || (i.rounding->type == saeonly
5361 && (t->opcode_modifier.staticrounding
5362 || !t->opcode_modifier.sae)))
5363 {
5364 i.error = unsupported_rc_sae;
5365 return 1;
5366 }
5367 /* If the instruction has several immediate operands and one of
5368 them is rounding, the rounding operand should be the last
5369 immediate operand. */
5370 if (i.imm_operands > 1
5371 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5372 {
43234a1e 5373 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5374 return 1;
5375 }
6c30d220
L
5376 }
5377
43234a1e 5378 /* Check vector Disp8 operand. */
b5014f7a
JB
5379 if (t->opcode_modifier.disp8memshift
5380 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5381 {
5382 if (i.broadcast)
4a1b91ea 5383 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5384 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5385 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5386 else
5387 {
5388 const i386_operand_type *type = NULL;
5389
5390 i.memshift = 0;
5391 for (op = 0; op < i.operands; op++)
5392 if (operand_type_check (i.types[op], anymem))
5393 {
4174bfff
JB
5394 if (t->opcode_modifier.evex == EVEXLIG)
5395 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5396 else if (t->operand_types[op].bitfield.xmmword
5397 + t->operand_types[op].bitfield.ymmword
5398 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5399 type = &t->operand_types[op];
5400 else if (!i.types[op].bitfield.unspecified)
5401 type = &i.types[op];
5402 }
4174bfff
JB
5403 else if (i.types[op].bitfield.regsimd
5404 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5405 {
5406 if (i.types[op].bitfield.zmmword)
5407 i.memshift = 6;
5408 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5409 i.memshift = 5;
5410 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5411 i.memshift = 4;
5412 }
5413
5414 if (type)
5415 {
5416 if (type->bitfield.zmmword)
5417 i.memshift = 6;
5418 else if (type->bitfield.ymmword)
5419 i.memshift = 5;
5420 else if (type->bitfield.xmmword)
5421 i.memshift = 4;
5422 }
5423
5424 /* For the check in fits_in_disp8(). */
5425 if (i.memshift == 0)
5426 i.memshift = -1;
5427 }
43234a1e
L
5428
5429 for (op = 0; op < i.operands; op++)
5430 if (operand_type_check (i.types[op], disp)
5431 && i.op[op].disps->X_op == O_constant)
5432 {
b5014f7a 5433 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5434 {
b5014f7a
JB
5435 i.types[op].bitfield.disp8 = 1;
5436 return 0;
43234a1e 5437 }
b5014f7a 5438 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5439 }
5440 }
b5014f7a
JB
5441
5442 i.memshift = 0;
43234a1e 5443
6c30d220
L
5444 return 0;
5445}
5446
43f3e2ee 5447/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5448 operand types. */
5449
5450static int
5451VEX_check_operands (const insn_template *t)
5452{
86fa6981 5453 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5454 {
86fa6981 5455 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5456 if (!is_evex_encoding (t))
86fa6981
L
5457 {
5458 i.error = unsupported;
5459 return 1;
5460 }
5461 return 0;
43234a1e
L
5462 }
5463
a683cc34 5464 if (!t->opcode_modifier.vex)
86fa6981
L
5465 {
5466 /* This instruction template doesn't have VEX prefix. */
5467 if (i.vec_encoding != vex_encoding_default)
5468 {
5469 i.error = unsupported;
5470 return 1;
5471 }
5472 return 0;
5473 }
a683cc34
SP
5474
5475 /* Only check VEX_Imm4, which must be the first operand. */
5476 if (t->operand_types[0].bitfield.vec_imm4)
5477 {
5478 if (i.op[0].imms->X_op != O_constant
5479 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5480 {
a65babc9 5481 i.error = bad_imm4;
891edac4
L
5482 return 1;
5483 }
a683cc34
SP
5484
5485 /* Turn off Imm8 so that update_imm won't complain. */
5486 i.types[0] = vec_imm4;
5487 }
5488
5489 return 0;
5490}
5491
d3ce72d0 5492static const insn_template *
83b16ac6 5493match_template (char mnem_suffix)
29b0f896
AM
5494{
5495 /* Points to template once we've found it. */
d3ce72d0 5496 const insn_template *t;
40fb9820 5497 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5498 i386_operand_type overlap4;
29b0f896 5499 unsigned int found_reverse_match;
83b16ac6 5500 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5501 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5502 int addr_prefix_disp;
a5c311ca 5503 unsigned int j;
3ac21baa 5504 unsigned int found_cpu_match, size_match;
45664ddb 5505 unsigned int check_register;
5614d22c 5506 enum i386_error specific_error = 0;
29b0f896 5507
c0f3af97
L
5508#if MAX_OPERANDS != 5
5509# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5510#endif
5511
29b0f896 5512 found_reverse_match = 0;
539e75ad 5513 addr_prefix_disp = -1;
40fb9820
L
5514
5515 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5516 if (intel_syntax && i.broadcast)
5517 /* nothing */;
5518 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5519 suffix_check.no_bsuf = 1;
5520 else if (i.suffix == WORD_MNEM_SUFFIX)
5521 suffix_check.no_wsuf = 1;
5522 else if (i.suffix == SHORT_MNEM_SUFFIX)
5523 suffix_check.no_ssuf = 1;
5524 else if (i.suffix == LONG_MNEM_SUFFIX)
5525 suffix_check.no_lsuf = 1;
5526 else if (i.suffix == QWORD_MNEM_SUFFIX)
5527 suffix_check.no_qsuf = 1;
5528 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5529 suffix_check.no_ldsuf = 1;
29b0f896 5530
83b16ac6
JB
5531 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5532 if (intel_syntax)
5533 {
5534 switch (mnem_suffix)
5535 {
5536 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5537 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5538 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5539 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5540 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5541 }
5542 }
5543
01559ecc
L
5544 /* Must have right number of operands. */
5545 i.error = number_of_operands_mismatch;
5546
45aa61fe 5547 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5548 {
539e75ad 5549 addr_prefix_disp = -1;
dbbc8b7e 5550 found_reverse_match = 0;
539e75ad 5551
29b0f896
AM
5552 if (i.operands != t->operands)
5553 continue;
5554
50aecf8c 5555 /* Check processor support. */
a65babc9 5556 i.error = unsupported;
c0f3af97
L
5557 found_cpu_match = (cpu_flags_match (t)
5558 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5559 if (!found_cpu_match)
5560 continue;
5561
e1d4d893 5562 /* Check AT&T mnemonic. */
a65babc9 5563 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5564 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5565 continue;
5566
e92bae62 5567 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5568 i.error = unsupported_syntax;
5c07affc 5569 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5570 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5571 || (intel64 && t->opcode_modifier.amd64)
5572 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5573 continue;
5574
20592a94 5575 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5576 i.error = invalid_instruction_suffix;
567e4e96
L
5577 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5578 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5579 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5580 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5581 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5582 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5583 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5584 continue;
83b16ac6
JB
5585 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5586 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5587 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5588 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5589 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5590 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5591 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5592 continue;
29b0f896 5593
3ac21baa
JB
5594 size_match = operand_size_match (t);
5595 if (!size_match)
7d5e4556 5596 continue;
539e75ad 5597
5c07affc
L
5598 for (j = 0; j < MAX_OPERANDS; j++)
5599 operand_types[j] = t->operand_types[j];
5600
45aa61fe
AM
5601 /* In general, don't allow 64-bit operands in 32-bit mode. */
5602 if (i.suffix == QWORD_MNEM_SUFFIX
5603 && flag_code != CODE_64BIT
5604 && (intel_syntax
40fb9820 5605 ? (!t->opcode_modifier.ignoresize
625cbd7a 5606 && !t->opcode_modifier.broadcast
45aa61fe
AM
5607 && !intel_float_operand (t->name))
5608 : intel_float_operand (t->name) != 2)
40fb9820 5609 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5610 && !operand_types[0].bitfield.regsimd)
40fb9820 5611 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5612 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5613 && (t->base_opcode != 0x0fc7
5614 || t->extension_opcode != 1 /* cmpxchg8b */))
5615 continue;
5616
192dc9c6
JB
5617 /* In general, don't allow 32-bit operands on pre-386. */
5618 else if (i.suffix == LONG_MNEM_SUFFIX
5619 && !cpu_arch_flags.bitfield.cpui386
5620 && (intel_syntax
5621 ? (!t->opcode_modifier.ignoresize
5622 && !intel_float_operand (t->name))
5623 : intel_float_operand (t->name) != 2)
5624 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5625 && !operand_types[0].bitfield.regsimd)
192dc9c6 5626 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5627 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5628 continue;
5629
29b0f896 5630 /* Do not verify operands when there are none. */
50aecf8c 5631 else
29b0f896 5632 {
c6fb90c8 5633 if (!t->operands)
2dbab7d5
L
5634 /* We've found a match; break out of loop. */
5635 break;
29b0f896 5636 }
252b5132 5637
539e75ad
L
5638 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5639 into Disp32/Disp16/Disp32 operand. */
5640 if (i.prefix[ADDR_PREFIX] != 0)
5641 {
40fb9820 5642 /* There should be only one Disp operand. */
539e75ad
L
5643 switch (flag_code)
5644 {
5645 case CODE_16BIT:
40fb9820
L
5646 for (j = 0; j < MAX_OPERANDS; j++)
5647 {
5648 if (operand_types[j].bitfield.disp16)
5649 {
5650 addr_prefix_disp = j;
5651 operand_types[j].bitfield.disp32 = 1;
5652 operand_types[j].bitfield.disp16 = 0;
5653 break;
5654 }
5655 }
539e75ad
L
5656 break;
5657 case CODE_32BIT:
40fb9820
L
5658 for (j = 0; j < MAX_OPERANDS; j++)
5659 {
5660 if (operand_types[j].bitfield.disp32)
5661 {
5662 addr_prefix_disp = j;
5663 operand_types[j].bitfield.disp32 = 0;
5664 operand_types[j].bitfield.disp16 = 1;
5665 break;
5666 }
5667 }
539e75ad
L
5668 break;
5669 case CODE_64BIT:
40fb9820
L
5670 for (j = 0; j < MAX_OPERANDS; j++)
5671 {
5672 if (operand_types[j].bitfield.disp64)
5673 {
5674 addr_prefix_disp = j;
5675 operand_types[j].bitfield.disp64 = 0;
5676 operand_types[j].bitfield.disp32 = 1;
5677 break;
5678 }
5679 }
539e75ad
L
5680 break;
5681 }
539e75ad
L
5682 }
5683
02a86693
L
5684 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5685 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5686 continue;
5687
56ffb741 5688 /* We check register size if needed. */
e2195274
JB
5689 if (t->opcode_modifier.checkregsize)
5690 {
5691 check_register = (1 << t->operands) - 1;
5692 if (i.broadcast)
5693 check_register &= ~(1 << i.broadcast->operand);
5694 }
5695 else
5696 check_register = 0;
5697
c6fb90c8 5698 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5699 switch (t->operands)
5700 {
5701 case 1:
40fb9820 5702 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5703 continue;
5704 break;
5705 case 2:
33eaf5de 5706 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5707 only in 32bit mode and we can use opcode 0x90. In 64bit
5708 mode, we can't use 0x90 for xchg %eax, %eax since it should
5709 zero-extend %eax to %rax. */
5710 if (flag_code == CODE_64BIT
5711 && t->base_opcode == 0x90
0dfbf9d7
L
5712 && operand_type_equal (&i.types [0], &acc32)
5713 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5714 continue;
1212781b
JB
5715 /* xrelease mov %eax, <disp> is another special case. It must not
5716 match the accumulator-only encoding of mov. */
5717 if (flag_code != CODE_64BIT
5718 && i.hle_prefix
5719 && t->base_opcode == 0xa0
5720 && i.types[0].bitfield.acc
5721 && operand_type_check (i.types[1], anymem))
5722 continue;
f5eb1d70
JB
5723 /* Fall through. */
5724
5725 case 3:
3ac21baa
JB
5726 if (!(size_match & MATCH_STRAIGHT))
5727 goto check_reverse;
64c49ab3
JB
5728 /* Reverse direction of operands if swapping is possible in the first
5729 place (operands need to be symmetric) and
5730 - the load form is requested, and the template is a store form,
5731 - the store form is requested, and the template is a load form,
5732 - the non-default (swapped) form is requested. */
5733 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5734 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5735 && !operand_type_all_zero (&overlap1))
5736 switch (i.dir_encoding)
5737 {
5738 case dir_encoding_load:
5739 if (operand_type_check (operand_types[i.operands - 1], anymem)
5740 || operand_types[i.operands - 1].bitfield.regmem)
5741 goto check_reverse;
5742 break;
5743
5744 case dir_encoding_store:
5745 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5746 && !operand_types[i.operands - 1].bitfield.regmem)
5747 goto check_reverse;
5748 break;
5749
5750 case dir_encoding_swap:
5751 goto check_reverse;
5752
5753 case dir_encoding_default:
5754 break;
5755 }
86fa6981 5756 /* If we want store form, we skip the current load. */
64c49ab3
JB
5757 if ((i.dir_encoding == dir_encoding_store
5758 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5759 && i.mem_operands == 0
5760 && t->opcode_modifier.load)
fa99fab2 5761 continue;
1a0670f3 5762 /* Fall through. */
f48ff2ae 5763 case 4:
c0f3af97 5764 case 5:
c6fb90c8 5765 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5766 if (!operand_type_match (overlap0, i.types[0])
5767 || !operand_type_match (overlap1, i.types[1])
e2195274 5768 || ((check_register & 3) == 3
dc821c5f 5769 && !operand_type_register_match (i.types[0],
40fb9820 5770 operand_types[0],
dc821c5f 5771 i.types[1],
40fb9820 5772 operand_types[1])))
29b0f896
AM
5773 {
5774 /* Check if other direction is valid ... */
38e314eb 5775 if (!t->opcode_modifier.d)
29b0f896
AM
5776 continue;
5777
b6169b20 5778check_reverse:
3ac21baa
JB
5779 if (!(size_match & MATCH_REVERSE))
5780 continue;
29b0f896 5781 /* Try reversing direction of operands. */
f5eb1d70
JB
5782 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5783 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5784 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5785 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5786 || (check_register
dc821c5f 5787 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5788 operand_types[i.operands - 1],
5789 i.types[i.operands - 1],
45664ddb 5790 operand_types[0])))
29b0f896
AM
5791 {
5792 /* Does not match either direction. */
5793 continue;
5794 }
38e314eb 5795 /* found_reverse_match holds which of D or FloatR
29b0f896 5796 we've found. */
38e314eb
JB
5797 if (!t->opcode_modifier.d)
5798 found_reverse_match = 0;
5799 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5800 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5801 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5802 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5803 || operand_types[0].bitfield.regmmx
f5eb1d70 5804 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5805 || is_any_vex_encoding(t))
5806 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5807 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5808 else
38e314eb 5809 found_reverse_match = Opcode_D;
40fb9820 5810 if (t->opcode_modifier.floatr)
8a2ed489 5811 found_reverse_match |= Opcode_FloatR;
29b0f896 5812 }
f48ff2ae 5813 else
29b0f896 5814 {
f48ff2ae 5815 /* Found a forward 2 operand match here. */
d1cbb4db
L
5816 switch (t->operands)
5817 {
c0f3af97
L
5818 case 5:
5819 overlap4 = operand_type_and (i.types[4],
5820 operand_types[4]);
1a0670f3 5821 /* Fall through. */
d1cbb4db 5822 case 4:
c6fb90c8
L
5823 overlap3 = operand_type_and (i.types[3],
5824 operand_types[3]);
1a0670f3 5825 /* Fall through. */
d1cbb4db 5826 case 3:
c6fb90c8
L
5827 overlap2 = operand_type_and (i.types[2],
5828 operand_types[2]);
d1cbb4db
L
5829 break;
5830 }
29b0f896 5831
f48ff2ae
L
5832 switch (t->operands)
5833 {
c0f3af97
L
5834 case 5:
5835 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5836 || !operand_type_register_match (i.types[3],
c0f3af97 5837 operand_types[3],
c0f3af97
L
5838 i.types[4],
5839 operand_types[4]))
5840 continue;
1a0670f3 5841 /* Fall through. */
f48ff2ae 5842 case 4:
40fb9820 5843 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5844 || ((check_register & 0xa) == 0xa
5845 && !operand_type_register_match (i.types[1],
f7768225
JB
5846 operand_types[1],
5847 i.types[3],
e2195274
JB
5848 operand_types[3]))
5849 || ((check_register & 0xc) == 0xc
5850 && !operand_type_register_match (i.types[2],
5851 operand_types[2],
5852 i.types[3],
5853 operand_types[3])))
f48ff2ae 5854 continue;
1a0670f3 5855 /* Fall through. */
f48ff2ae
L
5856 case 3:
5857 /* Here we make use of the fact that there are no
23e42951 5858 reverse match 3 operand instructions. */
40fb9820 5859 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5860 || ((check_register & 5) == 5
5861 && !operand_type_register_match (i.types[0],
23e42951
JB
5862 operand_types[0],
5863 i.types[2],
e2195274
JB
5864 operand_types[2]))
5865 || ((check_register & 6) == 6
5866 && !operand_type_register_match (i.types[1],
5867 operand_types[1],
5868 i.types[2],
5869 operand_types[2])))
f48ff2ae
L
5870 continue;
5871 break;
5872 }
29b0f896 5873 }
f48ff2ae 5874 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5875 slip through to break. */
5876 }
3629bb00 5877 if (!found_cpu_match)
dbbc8b7e 5878 continue;
c0f3af97 5879
5614d22c
JB
5880 /* Check if vector and VEX operands are valid. */
5881 if (check_VecOperands (t) || VEX_check_operands (t))
5882 {
5883 specific_error = i.error;
5884 continue;
5885 }
a683cc34 5886
29b0f896
AM
5887 /* We've found a match; break out of loop. */
5888 break;
5889 }
5890
5891 if (t == current_templates->end)
5892 {
5893 /* We found no match. */
a65babc9 5894 const char *err_msg;
5614d22c 5895 switch (specific_error ? specific_error : i.error)
a65babc9
L
5896 {
5897 default:
5898 abort ();
86e026a4 5899 case operand_size_mismatch:
a65babc9
L
5900 err_msg = _("operand size mismatch");
5901 break;
5902 case operand_type_mismatch:
5903 err_msg = _("operand type mismatch");
5904 break;
5905 case register_type_mismatch:
5906 err_msg = _("register type mismatch");
5907 break;
5908 case number_of_operands_mismatch:
5909 err_msg = _("number of operands mismatch");
5910 break;
5911 case invalid_instruction_suffix:
5912 err_msg = _("invalid instruction suffix");
5913 break;
5914 case bad_imm4:
4a2608e3 5915 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5916 break;
a65babc9
L
5917 case unsupported_with_intel_mnemonic:
5918 err_msg = _("unsupported with Intel mnemonic");
5919 break;
5920 case unsupported_syntax:
5921 err_msg = _("unsupported syntax");
5922 break;
5923 case unsupported:
35262a23 5924 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5925 current_templates->start->name);
5926 return NULL;
6c30d220
L
5927 case invalid_vsib_address:
5928 err_msg = _("invalid VSIB address");
5929 break;
7bab8ab5
JB
5930 case invalid_vector_register_set:
5931 err_msg = _("mask, index, and destination registers must be distinct");
5932 break;
6c30d220
L
5933 case unsupported_vector_index_register:
5934 err_msg = _("unsupported vector index register");
5935 break;
43234a1e
L
5936 case unsupported_broadcast:
5937 err_msg = _("unsupported broadcast");
5938 break;
43234a1e
L
5939 case broadcast_needed:
5940 err_msg = _("broadcast is needed for operand of such type");
5941 break;
5942 case unsupported_masking:
5943 err_msg = _("unsupported masking");
5944 break;
5945 case mask_not_on_destination:
5946 err_msg = _("mask not on destination operand");
5947 break;
5948 case no_default_mask:
5949 err_msg = _("default mask isn't allowed");
5950 break;
5951 case unsupported_rc_sae:
5952 err_msg = _("unsupported static rounding/sae");
5953 break;
5954 case rc_sae_operand_not_last_imm:
5955 if (intel_syntax)
5956 err_msg = _("RC/SAE operand must precede immediate operands");
5957 else
5958 err_msg = _("RC/SAE operand must follow immediate operands");
5959 break;
5960 case invalid_register_operand:
5961 err_msg = _("invalid register operand");
5962 break;
a65babc9
L
5963 }
5964 as_bad (_("%s for `%s'"), err_msg,
891edac4 5965 current_templates->start->name);
fa99fab2 5966 return NULL;
29b0f896 5967 }
252b5132 5968
29b0f896
AM
5969 if (!quiet_warnings)
5970 {
5971 if (!intel_syntax
40fb9820
L
5972 && (i.types[0].bitfield.jumpabsolute
5973 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5974 {
5975 as_warn (_("indirect %s without `*'"), t->name);
5976 }
5977
40fb9820
L
5978 if (t->opcode_modifier.isprefix
5979 && t->opcode_modifier.ignoresize)
29b0f896
AM
5980 {
5981 /* Warn them that a data or address size prefix doesn't
5982 affect assembly of the next line of code. */
5983 as_warn (_("stand-alone `%s' prefix"), t->name);
5984 }
5985 }
5986
5987 /* Copy the template we found. */
5988 i.tm = *t;
539e75ad
L
5989
5990 if (addr_prefix_disp != -1)
5991 i.tm.operand_types[addr_prefix_disp]
5992 = operand_types[addr_prefix_disp];
5993
29b0f896
AM
5994 if (found_reverse_match)
5995 {
5996 /* If we found a reverse match we must alter the opcode
5997 direction bit. found_reverse_match holds bits to change
5998 (different for int & float insns). */
5999
6000 i.tm.base_opcode ^= found_reverse_match;
6001
f5eb1d70
JB
6002 i.tm.operand_types[0] = operand_types[i.operands - 1];
6003 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6004 }
6005
fa99fab2 6006 return t;
29b0f896
AM
6007}
6008
6009static int
e3bb37b5 6010check_string (void)
29b0f896 6011{
40fb9820
L
6012 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6013 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6014 {
6015 if (i.seg[0] != NULL && i.seg[0] != &es)
6016 {
a87af027 6017 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6018 i.tm.name,
a87af027
JB
6019 mem_op + 1,
6020 register_prefix);
29b0f896
AM
6021 return 0;
6022 }
6023 /* There's only ever one segment override allowed per instruction.
6024 This instruction possibly has a legal segment override on the
6025 second operand, so copy the segment to where non-string
6026 instructions store it, allowing common code. */
6027 i.seg[0] = i.seg[1];
6028 }
40fb9820 6029 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6030 {
6031 if (i.seg[1] != NULL && i.seg[1] != &es)
6032 {
a87af027 6033 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6034 i.tm.name,
a87af027
JB
6035 mem_op + 2,
6036 register_prefix);
29b0f896
AM
6037 return 0;
6038 }
6039 }
6040 return 1;
6041}
6042
6043static int
543613e9 6044process_suffix (void)
29b0f896
AM
6045{
6046 /* If matched instruction specifies an explicit instruction mnemonic
6047 suffix, use it. */
673fe0f0 6048 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6049 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6050 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6051 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6052 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6053 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6054 else if (i.reg_operands)
6055 {
6056 /* If there's no instruction mnemonic suffix we try to invent one
6057 based on register operands. */
6058 if (!i.suffix)
6059 {
6060 /* We take i.suffix from the last register operand specified,
6061 Destination register type is more significant than source
381d071f
L
6062 register type. crc32 in SSE4.2 prefers source register
6063 type. */
556059dd 6064 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6065 {
556059dd
JB
6066 if (i.types[0].bitfield.byte)
6067 i.suffix = BYTE_MNEM_SUFFIX;
6068 else if (i.types[0].bitfield.word)
40fb9820 6069 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6070 else if (i.types[0].bitfield.dword)
40fb9820 6071 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6072 else if (i.types[0].bitfield.qword)
40fb9820 6073 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6074 }
6075
6076 if (!i.suffix)
6077 {
6078 int op;
6079
556059dd 6080 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6081 {
6082 /* We have to know the operand size for crc32. */
6083 as_bad (_("ambiguous memory operand size for `%s`"),
6084 i.tm.name);
6085 return 0;
6086 }
6087
381d071f 6088 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6089 if (!i.tm.operand_types[op].bitfield.inoutportreg
6090 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6091 {
8819ada6
JB
6092 if (!i.types[op].bitfield.reg)
6093 continue;
6094 if (i.types[op].bitfield.byte)
6095 i.suffix = BYTE_MNEM_SUFFIX;
6096 else if (i.types[op].bitfield.word)
6097 i.suffix = WORD_MNEM_SUFFIX;
6098 else if (i.types[op].bitfield.dword)
6099 i.suffix = LONG_MNEM_SUFFIX;
6100 else if (i.types[op].bitfield.qword)
6101 i.suffix = QWORD_MNEM_SUFFIX;
6102 else
6103 continue;
6104 break;
381d071f
L
6105 }
6106 }
29b0f896
AM
6107 }
6108 else if (i.suffix == BYTE_MNEM_SUFFIX)
6109 {
2eb952a4
L
6110 if (intel_syntax
6111 && i.tm.opcode_modifier.ignoresize
6112 && i.tm.opcode_modifier.no_bsuf)
6113 i.suffix = 0;
6114 else if (!check_byte_reg ())
29b0f896
AM
6115 return 0;
6116 }
6117 else if (i.suffix == LONG_MNEM_SUFFIX)
6118 {
2eb952a4
L
6119 if (intel_syntax
6120 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6121 && i.tm.opcode_modifier.no_lsuf
6122 && !i.tm.opcode_modifier.todword
6123 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6124 i.suffix = 0;
6125 else if (!check_long_reg ())
29b0f896
AM
6126 return 0;
6127 }
6128 else if (i.suffix == QWORD_MNEM_SUFFIX)
6129 {
955e1e6a
L
6130 if (intel_syntax
6131 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6132 && i.tm.opcode_modifier.no_qsuf
6133 && !i.tm.opcode_modifier.todword
6134 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6135 i.suffix = 0;
6136 else if (!check_qword_reg ())
29b0f896
AM
6137 return 0;
6138 }
6139 else if (i.suffix == WORD_MNEM_SUFFIX)
6140 {
2eb952a4
L
6141 if (intel_syntax
6142 && i.tm.opcode_modifier.ignoresize
6143 && i.tm.opcode_modifier.no_wsuf)
6144 i.suffix = 0;
6145 else if (!check_word_reg ())
29b0f896
AM
6146 return 0;
6147 }
40fb9820 6148 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6149 /* Do nothing if the instruction is going to ignore the prefix. */
6150 ;
6151 else
6152 abort ();
6153 }
40fb9820 6154 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6155 && !i.suffix
6156 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6157 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6158 {
6159 i.suffix = stackop_size;
6160 }
9306ca4a
JB
6161 else if (intel_syntax
6162 && !i.suffix
40fb9820
L
6163 && (i.tm.operand_types[0].bitfield.jumpabsolute
6164 || i.tm.opcode_modifier.jumpbyte
6165 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6166 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6167 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6168 {
6169 switch (flag_code)
6170 {
6171 case CODE_64BIT:
40fb9820 6172 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6173 {
6174 i.suffix = QWORD_MNEM_SUFFIX;
6175 break;
6176 }
1a0670f3 6177 /* Fall through. */
9306ca4a 6178 case CODE_32BIT:
40fb9820 6179 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6180 i.suffix = LONG_MNEM_SUFFIX;
6181 break;
6182 case CODE_16BIT:
40fb9820 6183 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6184 i.suffix = WORD_MNEM_SUFFIX;
6185 break;
6186 }
6187 }
252b5132 6188
9306ca4a 6189 if (!i.suffix)
29b0f896 6190 {
9306ca4a
JB
6191 if (!intel_syntax)
6192 {
40fb9820 6193 if (i.tm.opcode_modifier.w)
9306ca4a 6194 {
4eed87de
AM
6195 as_bad (_("no instruction mnemonic suffix given and "
6196 "no register operands; can't size instruction"));
9306ca4a
JB
6197 return 0;
6198 }
6199 }
6200 else
6201 {
40fb9820 6202 unsigned int suffixes;
7ab9ffdd 6203
40fb9820
L
6204 suffixes = !i.tm.opcode_modifier.no_bsuf;
6205 if (!i.tm.opcode_modifier.no_wsuf)
6206 suffixes |= 1 << 1;
6207 if (!i.tm.opcode_modifier.no_lsuf)
6208 suffixes |= 1 << 2;
fc4adea1 6209 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6210 suffixes |= 1 << 3;
6211 if (!i.tm.opcode_modifier.no_ssuf)
6212 suffixes |= 1 << 4;
c2b9da16 6213 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6214 suffixes |= 1 << 5;
6215
6216 /* There are more than suffix matches. */
6217 if (i.tm.opcode_modifier.w
9306ca4a 6218 || ((suffixes & (suffixes - 1))
40fb9820
L
6219 && !i.tm.opcode_modifier.defaultsize
6220 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6221 {
6222 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6223 return 0;
6224 }
6225 }
29b0f896 6226 }
252b5132 6227
d2224064
JB
6228 /* Change the opcode based on the operand size given by i.suffix. */
6229 switch (i.suffix)
29b0f896 6230 {
d2224064
JB
6231 /* Size floating point instruction. */
6232 case LONG_MNEM_SUFFIX:
6233 if (i.tm.opcode_modifier.floatmf)
6234 {
6235 i.tm.base_opcode ^= 4;
6236 break;
6237 }
6238 /* fall through */
6239 case WORD_MNEM_SUFFIX:
6240 case QWORD_MNEM_SUFFIX:
29b0f896 6241 /* It's not a byte, select word/dword operation. */
40fb9820 6242 if (i.tm.opcode_modifier.w)
29b0f896 6243 {
40fb9820 6244 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6245 i.tm.base_opcode |= 8;
6246 else
6247 i.tm.base_opcode |= 1;
6248 }
d2224064
JB
6249 /* fall through */
6250 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6251 /* Now select between word & dword operations via the operand
6252 size prefix, except for instructions that will ignore this
6253 prefix anyway. */
75c0a438
L
6254 if (i.reg_operands > 0
6255 && i.types[0].bitfield.reg
6256 && i.tm.opcode_modifier.addrprefixopreg
6257 && (i.tm.opcode_modifier.immext
6258 || i.operands == 1))
cb712a9e 6259 {
ca61edf2
L
6260 /* The address size override prefix changes the size of the
6261 first operand. */
40fb9820 6262 if ((flag_code == CODE_32BIT
75c0a438 6263 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6264 || (flag_code != CODE_32BIT
75c0a438 6265 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6266 if (!add_prefix (ADDR_PREFIX_OPCODE))
6267 return 0;
6268 }
6269 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6270 && !i.tm.opcode_modifier.ignoresize
6271 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6272 && !i.tm.opcode_modifier.vex
6273 && !i.tm.opcode_modifier.vexopcode
6274 && !is_evex_encoding (&i.tm)
cb712a9e
L
6275 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6276 || (flag_code == CODE_64BIT
40fb9820 6277 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6278 {
6279 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6280
40fb9820 6281 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6282 prefix = ADDR_PREFIX_OPCODE;
252b5132 6283
29b0f896
AM
6284 if (!add_prefix (prefix))
6285 return 0;
24eab124 6286 }
252b5132 6287
29b0f896
AM
6288 /* Set mode64 for an operand. */
6289 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6290 && flag_code == CODE_64BIT
d2224064 6291 && !i.tm.opcode_modifier.norex64
46e883c5 6292 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6293 need rex64. */
6294 && ! (i.operands == 2
6295 && i.tm.base_opcode == 0x90
6296 && i.tm.extension_opcode == None
6297 && operand_type_equal (&i.types [0], &acc64)
6298 && operand_type_equal (&i.types [1], &acc64)))
6299 i.rex |= REX_W;
3e73aa7c 6300
d2224064 6301 break;
29b0f896 6302 }
7ecd2f8b 6303
c0a30a9f
L
6304 if (i.reg_operands != 0
6305 && i.operands > 1
6306 && i.tm.opcode_modifier.addrprefixopreg
6307 && !i.tm.opcode_modifier.immext)
6308 {
6309 /* Check invalid register operand when the address size override
6310 prefix changes the size of register operands. */
6311 unsigned int op;
6312 enum { need_word, need_dword, need_qword } need;
6313
6314 if (flag_code == CODE_32BIT)
6315 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6316 else
6317 {
6318 if (i.prefix[ADDR_PREFIX])
6319 need = need_dword;
6320 else
6321 need = flag_code == CODE_64BIT ? need_qword : need_word;
6322 }
6323
6324 for (op = 0; op < i.operands; op++)
6325 if (i.types[op].bitfield.reg
6326 && ((need == need_word
6327 && !i.op[op].regs->reg_type.bitfield.word)
6328 || (need == need_dword
6329 && !i.op[op].regs->reg_type.bitfield.dword)
6330 || (need == need_qword
6331 && !i.op[op].regs->reg_type.bitfield.qword)))
6332 {
6333 as_bad (_("invalid register operand size for `%s'"),
6334 i.tm.name);
6335 return 0;
6336 }
6337 }
6338
29b0f896
AM
6339 return 1;
6340}
3e73aa7c 6341
29b0f896 6342static int
543613e9 6343check_byte_reg (void)
29b0f896
AM
6344{
6345 int op;
543613e9 6346
29b0f896
AM
6347 for (op = i.operands; --op >= 0;)
6348 {
dc821c5f
JB
6349 /* Skip non-register operands. */
6350 if (!i.types[op].bitfield.reg)
6351 continue;
6352
29b0f896
AM
6353 /* If this is an eight bit register, it's OK. If it's the 16 or
6354 32 bit version of an eight bit register, we will just use the
6355 low portion, and that's OK too. */
dc821c5f 6356 if (i.types[op].bitfield.byte)
29b0f896
AM
6357 continue;
6358
5a819eb9
JB
6359 /* I/O port address operands are OK too. */
6360 if (i.tm.operand_types[op].bitfield.inoutportreg)
6361 continue;
6362
9344ff29
L
6363 /* crc32 doesn't generate this warning. */
6364 if (i.tm.base_opcode == 0xf20f38f0)
6365 continue;
6366
dc821c5f
JB
6367 if ((i.types[op].bitfield.word
6368 || i.types[op].bitfield.dword
6369 || i.types[op].bitfield.qword)
5a819eb9
JB
6370 && i.op[op].regs->reg_num < 4
6371 /* Prohibit these changes in 64bit mode, since the lowering
6372 would be more complicated. */
6373 && flag_code != CODE_64BIT)
29b0f896 6374 {
29b0f896 6375#if REGISTER_WARNINGS
5a819eb9 6376 if (!quiet_warnings)
a540244d
L
6377 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6378 register_prefix,
dc821c5f 6379 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6380 ? REGNAM_AL - REGNAM_AX
6381 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6382 register_prefix,
29b0f896
AM
6383 i.op[op].regs->reg_name,
6384 i.suffix);
6385#endif
6386 continue;
6387 }
6388 /* Any other register is bad. */
dc821c5f 6389 if (i.types[op].bitfield.reg
40fb9820 6390 || i.types[op].bitfield.regmmx
1b54b8d7 6391 || i.types[op].bitfield.regsimd
40fb9820
L
6392 || i.types[op].bitfield.sreg2
6393 || i.types[op].bitfield.sreg3
6394 || i.types[op].bitfield.control
6395 || i.types[op].bitfield.debug
ca0d63fe 6396 || i.types[op].bitfield.test)
29b0f896 6397 {
a540244d
L
6398 as_bad (_("`%s%s' not allowed with `%s%c'"),
6399 register_prefix,
29b0f896
AM
6400 i.op[op].regs->reg_name,
6401 i.tm.name,
6402 i.suffix);
6403 return 0;
6404 }
6405 }
6406 return 1;
6407}
6408
6409static int
e3bb37b5 6410check_long_reg (void)
29b0f896
AM
6411{
6412 int op;
6413
6414 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6415 /* Skip non-register operands. */
6416 if (!i.types[op].bitfield.reg)
6417 continue;
29b0f896
AM
6418 /* Reject eight bit registers, except where the template requires
6419 them. (eg. movzb) */
dc821c5f
JB
6420 else if (i.types[op].bitfield.byte
6421 && (i.tm.operand_types[op].bitfield.reg
6422 || i.tm.operand_types[op].bitfield.acc)
6423 && (i.tm.operand_types[op].bitfield.word
6424 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6425 {
a540244d
L
6426 as_bad (_("`%s%s' not allowed with `%s%c'"),
6427 register_prefix,
29b0f896
AM
6428 i.op[op].regs->reg_name,
6429 i.tm.name,
6430 i.suffix);
6431 return 0;
6432 }
e4630f71 6433 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6434 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6435 && i.types[op].bitfield.word
6436 && (i.tm.operand_types[op].bitfield.reg
6437 || i.tm.operand_types[op].bitfield.acc)
6438 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6439 {
6440 /* Prohibit these changes in the 64bit mode, since the
6441 lowering is more complicated. */
6442 if (flag_code == CODE_64BIT)
252b5132 6443 {
2b5d6a91 6444 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6445 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6446 i.suffix);
6447 return 0;
252b5132 6448 }
29b0f896 6449#if REGISTER_WARNINGS
cecf1424
JB
6450 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6451 register_prefix,
6452 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6453 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6454#endif
252b5132 6455 }
e4630f71 6456 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6457 else if (i.types[op].bitfield.qword
6458 && (i.tm.operand_types[op].bitfield.reg
6459 || i.tm.operand_types[op].bitfield.acc)
6460 && i.tm.operand_types[op].bitfield.dword)
252b5132 6461 {
34828aad 6462 if (intel_syntax
ca61edf2 6463 && i.tm.opcode_modifier.toqword
1b54b8d7 6464 && !i.types[0].bitfield.regsimd)
34828aad 6465 {
ca61edf2 6466 /* Convert to QWORD. We want REX byte. */
34828aad
L
6467 i.suffix = QWORD_MNEM_SUFFIX;
6468 }
6469 else
6470 {
2b5d6a91 6471 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6472 register_prefix, i.op[op].regs->reg_name,
6473 i.suffix);
6474 return 0;
6475 }
29b0f896
AM
6476 }
6477 return 1;
6478}
252b5132 6479
29b0f896 6480static int
e3bb37b5 6481check_qword_reg (void)
29b0f896
AM
6482{
6483 int op;
252b5132 6484
29b0f896 6485 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6486 /* Skip non-register operands. */
6487 if (!i.types[op].bitfield.reg)
6488 continue;
29b0f896
AM
6489 /* Reject eight bit registers, except where the template requires
6490 them. (eg. movzb) */
dc821c5f
JB
6491 else if (i.types[op].bitfield.byte
6492 && (i.tm.operand_types[op].bitfield.reg
6493 || i.tm.operand_types[op].bitfield.acc)
6494 && (i.tm.operand_types[op].bitfield.word
6495 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6496 {
a540244d
L
6497 as_bad (_("`%s%s' not allowed with `%s%c'"),
6498 register_prefix,
29b0f896
AM
6499 i.op[op].regs->reg_name,
6500 i.tm.name,
6501 i.suffix);
6502 return 0;
6503 }
e4630f71 6504 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6505 else if ((i.types[op].bitfield.word
6506 || i.types[op].bitfield.dword)
6507 && (i.tm.operand_types[op].bitfield.reg
6508 || i.tm.operand_types[op].bitfield.acc)
6509 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6510 {
6511 /* Prohibit these changes in the 64bit mode, since the
6512 lowering is more complicated. */
34828aad 6513 if (intel_syntax
ca61edf2 6514 && i.tm.opcode_modifier.todword
1b54b8d7 6515 && !i.types[0].bitfield.regsimd)
34828aad 6516 {
ca61edf2 6517 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6518 i.suffix = LONG_MNEM_SUFFIX;
6519 }
6520 else
6521 {
2b5d6a91 6522 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6523 register_prefix, i.op[op].regs->reg_name,
6524 i.suffix);
6525 return 0;
6526 }
252b5132 6527 }
29b0f896
AM
6528 return 1;
6529}
252b5132 6530
29b0f896 6531static int
e3bb37b5 6532check_word_reg (void)
29b0f896
AM
6533{
6534 int op;
6535 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6536 /* Skip non-register operands. */
6537 if (!i.types[op].bitfield.reg)
6538 continue;
29b0f896
AM
6539 /* Reject eight bit registers, except where the template requires
6540 them. (eg. movzb) */
dc821c5f
JB
6541 else if (i.types[op].bitfield.byte
6542 && (i.tm.operand_types[op].bitfield.reg
6543 || i.tm.operand_types[op].bitfield.acc)
6544 && (i.tm.operand_types[op].bitfield.word
6545 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6546 {
a540244d
L
6547 as_bad (_("`%s%s' not allowed with `%s%c'"),
6548 register_prefix,
29b0f896
AM
6549 i.op[op].regs->reg_name,
6550 i.tm.name,
6551 i.suffix);
6552 return 0;
6553 }
e4630f71 6554 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6555 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6556 && (i.types[op].bitfield.dword
6557 || i.types[op].bitfield.qword)
6558 && (i.tm.operand_types[op].bitfield.reg
6559 || i.tm.operand_types[op].bitfield.acc)
6560 && i.tm.operand_types[op].bitfield.word)
252b5132 6561 {
29b0f896
AM
6562 /* Prohibit these changes in the 64bit mode, since the
6563 lowering is more complicated. */
6564 if (flag_code == CODE_64BIT)
252b5132 6565 {
2b5d6a91 6566 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6567 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6568 i.suffix);
6569 return 0;
252b5132 6570 }
29b0f896 6571#if REGISTER_WARNINGS
cecf1424
JB
6572 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6573 register_prefix,
6574 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6575 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6576#endif
6577 }
6578 return 1;
6579}
252b5132 6580
29b0f896 6581static int
40fb9820 6582update_imm (unsigned int j)
29b0f896 6583{
bc0844ae 6584 i386_operand_type overlap = i.types[j];
40fb9820
L
6585 if ((overlap.bitfield.imm8
6586 || overlap.bitfield.imm8s
6587 || overlap.bitfield.imm16
6588 || overlap.bitfield.imm32
6589 || overlap.bitfield.imm32s
6590 || overlap.bitfield.imm64)
0dfbf9d7
L
6591 && !operand_type_equal (&overlap, &imm8)
6592 && !operand_type_equal (&overlap, &imm8s)
6593 && !operand_type_equal (&overlap, &imm16)
6594 && !operand_type_equal (&overlap, &imm32)
6595 && !operand_type_equal (&overlap, &imm32s)
6596 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6597 {
6598 if (i.suffix)
6599 {
40fb9820
L
6600 i386_operand_type temp;
6601
0dfbf9d7 6602 operand_type_set (&temp, 0);
7ab9ffdd 6603 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6604 {
6605 temp.bitfield.imm8 = overlap.bitfield.imm8;
6606 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6607 }
6608 else if (i.suffix == WORD_MNEM_SUFFIX)
6609 temp.bitfield.imm16 = overlap.bitfield.imm16;
6610 else if (i.suffix == QWORD_MNEM_SUFFIX)
6611 {
6612 temp.bitfield.imm64 = overlap.bitfield.imm64;
6613 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6614 }
6615 else
6616 temp.bitfield.imm32 = overlap.bitfield.imm32;
6617 overlap = temp;
29b0f896 6618 }
0dfbf9d7
L
6619 else if (operand_type_equal (&overlap, &imm16_32_32s)
6620 || operand_type_equal (&overlap, &imm16_32)
6621 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6622 {
40fb9820 6623 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6624 overlap = imm16;
40fb9820 6625 else
65da13b5 6626 overlap = imm32s;
29b0f896 6627 }
0dfbf9d7
L
6628 if (!operand_type_equal (&overlap, &imm8)
6629 && !operand_type_equal (&overlap, &imm8s)
6630 && !operand_type_equal (&overlap, &imm16)
6631 && !operand_type_equal (&overlap, &imm32)
6632 && !operand_type_equal (&overlap, &imm32s)
6633 && !operand_type_equal (&overlap, &imm64))
29b0f896 6634 {
4eed87de
AM
6635 as_bad (_("no instruction mnemonic suffix given; "
6636 "can't determine immediate size"));
29b0f896
AM
6637 return 0;
6638 }
6639 }
40fb9820 6640 i.types[j] = overlap;
29b0f896 6641
40fb9820
L
6642 return 1;
6643}
6644
6645static int
6646finalize_imm (void)
6647{
bc0844ae 6648 unsigned int j, n;
29b0f896 6649
bc0844ae
L
6650 /* Update the first 2 immediate operands. */
6651 n = i.operands > 2 ? 2 : i.operands;
6652 if (n)
6653 {
6654 for (j = 0; j < n; j++)
6655 if (update_imm (j) == 0)
6656 return 0;
40fb9820 6657
bc0844ae
L
6658 /* The 3rd operand can't be immediate operand. */
6659 gas_assert (operand_type_check (i.types[2], imm) == 0);
6660 }
29b0f896
AM
6661
6662 return 1;
6663}
6664
6665static int
e3bb37b5 6666process_operands (void)
29b0f896
AM
6667{
6668 /* Default segment register this instruction will use for memory
6669 accesses. 0 means unknown. This is only for optimizing out
6670 unnecessary segment overrides. */
6671 const seg_entry *default_seg = 0;
6672
2426c15f 6673 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6674 {
91d6fa6a
NC
6675 unsigned int dupl = i.operands;
6676 unsigned int dest = dupl - 1;
9fcfb3d7
L
6677 unsigned int j;
6678
c0f3af97 6679 /* The destination must be an xmm register. */
9c2799c2 6680 gas_assert (i.reg_operands
91d6fa6a 6681 && MAX_OPERANDS > dupl
7ab9ffdd 6682 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6683
1b54b8d7
JB
6684 if (i.tm.operand_types[0].bitfield.acc
6685 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6686 {
8cd7925b 6687 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6688 {
6689 /* Keep xmm0 for instructions with VEX prefix and 3
6690 sources. */
1b54b8d7
JB
6691 i.tm.operand_types[0].bitfield.acc = 0;
6692 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6693 goto duplicate;
6694 }
e2ec9d29 6695 else
c0f3af97
L
6696 {
6697 /* We remove the first xmm0 and keep the number of
6698 operands unchanged, which in fact duplicates the
6699 destination. */
6700 for (j = 1; j < i.operands; j++)
6701 {
6702 i.op[j - 1] = i.op[j];
6703 i.types[j - 1] = i.types[j];
6704 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6705 }
6706 }
6707 }
6708 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6709 {
91d6fa6a 6710 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6711 && (i.tm.opcode_modifier.vexsources
6712 == VEX3SOURCES));
c0f3af97
L
6713
6714 /* Add the implicit xmm0 for instructions with VEX prefix
6715 and 3 sources. */
6716 for (j = i.operands; j > 0; j--)
6717 {
6718 i.op[j] = i.op[j - 1];
6719 i.types[j] = i.types[j - 1];
6720 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6721 }
6722 i.op[0].regs
6723 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6724 i.types[0] = regxmm;
c0f3af97
L
6725 i.tm.operand_types[0] = regxmm;
6726
6727 i.operands += 2;
6728 i.reg_operands += 2;
6729 i.tm.operands += 2;
6730
91d6fa6a 6731 dupl++;
c0f3af97 6732 dest++;
91d6fa6a
NC
6733 i.op[dupl] = i.op[dest];
6734 i.types[dupl] = i.types[dest];
6735 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6736 }
c0f3af97
L
6737 else
6738 {
6739duplicate:
6740 i.operands++;
6741 i.reg_operands++;
6742 i.tm.operands++;
6743
91d6fa6a
NC
6744 i.op[dupl] = i.op[dest];
6745 i.types[dupl] = i.types[dest];
6746 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6747 }
6748
6749 if (i.tm.opcode_modifier.immext)
6750 process_immext ();
6751 }
1b54b8d7
JB
6752 else if (i.tm.operand_types[0].bitfield.acc
6753 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6754 {
6755 unsigned int j;
6756
9fcfb3d7
L
6757 for (j = 1; j < i.operands; j++)
6758 {
6759 i.op[j - 1] = i.op[j];
6760 i.types[j - 1] = i.types[j];
6761
6762 /* We need to adjust fields in i.tm since they are used by
6763 build_modrm_byte. */
6764 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6765 }
6766
e2ec9d29
L
6767 i.operands--;
6768 i.reg_operands--;
e2ec9d29
L
6769 i.tm.operands--;
6770 }
920d2ddc
IT
6771 else if (i.tm.opcode_modifier.implicitquadgroup)
6772 {
a477a8c4
JB
6773 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6774
920d2ddc 6775 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6776 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6777 regnum = register_number (i.op[1].regs);
6778 first_reg_in_group = regnum & ~3;
6779 last_reg_in_group = first_reg_in_group + 3;
6780 if (regnum != first_reg_in_group)
6781 as_warn (_("source register `%s%s' implicitly denotes"
6782 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6783 register_prefix, i.op[1].regs->reg_name,
6784 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6785 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6786 i.tm.name);
6787 }
e2ec9d29
L
6788 else if (i.tm.opcode_modifier.regkludge)
6789 {
6790 /* The imul $imm, %reg instruction is converted into
6791 imul $imm, %reg, %reg, and the clr %reg instruction
6792 is converted into xor %reg, %reg. */
6793
6794 unsigned int first_reg_op;
6795
6796 if (operand_type_check (i.types[0], reg))
6797 first_reg_op = 0;
6798 else
6799 first_reg_op = 1;
6800 /* Pretend we saw the extra register operand. */
9c2799c2 6801 gas_assert (i.reg_operands == 1
7ab9ffdd 6802 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6803 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6804 i.types[first_reg_op + 1] = i.types[first_reg_op];
6805 i.operands++;
6806 i.reg_operands++;
29b0f896
AM
6807 }
6808
40fb9820 6809 if (i.tm.opcode_modifier.shortform)
29b0f896 6810 {
40fb9820
L
6811 if (i.types[0].bitfield.sreg2
6812 || i.types[0].bitfield.sreg3)
29b0f896 6813 {
4eed87de
AM
6814 if (i.tm.base_opcode == POP_SEG_SHORT
6815 && i.op[0].regs->reg_num == 1)
29b0f896 6816 {
a87af027 6817 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6818 return 0;
29b0f896 6819 }
4eed87de
AM
6820 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6821 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6822 i.rex |= REX_B;
4eed87de
AM
6823 }
6824 else
6825 {
7ab9ffdd 6826 /* The register or float register operand is in operand
85f10a01 6827 0 or 1. */
40fb9820 6828 unsigned int op;
7ab9ffdd 6829
ca0d63fe 6830 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6831 || operand_type_check (i.types[0], reg))
6832 op = 0;
6833 else
6834 op = 1;
4eed87de
AM
6835 /* Register goes in low 3 bits of opcode. */
6836 i.tm.base_opcode |= i.op[op].regs->reg_num;
6837 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6838 i.rex |= REX_B;
40fb9820 6839 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6840 {
4eed87de
AM
6841 /* Warn about some common errors, but press on regardless.
6842 The first case can be generated by gcc (<= 2.8.1). */
6843 if (i.operands == 2)
6844 {
6845 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6846 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6847 register_prefix, i.op[!intel_syntax].regs->reg_name,
6848 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6849 }
6850 else
6851 {
6852 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6853 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6854 register_prefix, i.op[0].regs->reg_name);
4eed87de 6855 }
29b0f896
AM
6856 }
6857 }
6858 }
40fb9820 6859 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6860 {
6861 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6862 must be put into the modrm byte). Now, we make the modrm and
6863 index base bytes based on all the info we've collected. */
29b0f896
AM
6864
6865 default_seg = build_modrm_byte ();
6866 }
8a2ed489 6867 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6868 {
6869 default_seg = &ds;
6870 }
40fb9820 6871 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6872 {
6873 /* For the string instructions that allow a segment override
6874 on one of their operands, the default segment is ds. */
6875 default_seg = &ds;
6876 }
6877
75178d9d
L
6878 if (i.tm.base_opcode == 0x8d /* lea */
6879 && i.seg[0]
6880 && !quiet_warnings)
30123838 6881 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6882
6883 /* If a segment was explicitly specified, and the specified segment
6884 is not the default, use an opcode prefix to select it. If we
6885 never figured out what the default segment is, then default_seg
6886 will be zero at this point, and the specified segment prefix will
6887 always be used. */
29b0f896
AM
6888 if ((i.seg[0]) && (i.seg[0] != default_seg))
6889 {
6890 if (!add_prefix (i.seg[0]->seg_prefix))
6891 return 0;
6892 }
6893 return 1;
6894}
6895
6896static const seg_entry *
e3bb37b5 6897build_modrm_byte (void)
29b0f896
AM
6898{
6899 const seg_entry *default_seg = 0;
c0f3af97 6900 unsigned int source, dest;
8cd7925b 6901 int vex_3_sources;
c0f3af97 6902
8cd7925b 6903 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6904 if (vex_3_sources)
6905 {
91d6fa6a 6906 unsigned int nds, reg_slot;
4c2c6516 6907 expressionS *exp;
c0f3af97 6908
6b8d3588 6909 dest = i.operands - 1;
c0f3af97 6910 nds = dest - 1;
922d8de8 6911
a683cc34 6912 /* There are 2 kinds of instructions:
bed3d976
JB
6913 1. 5 operands: 4 register operands or 3 register operands
6914 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6915 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6916 ZMM register.
bed3d976 6917 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6918 plus 1 memory operand, with VexXDS. */
922d8de8 6919 gas_assert ((i.reg_operands == 4
bed3d976
JB
6920 || (i.reg_operands == 3 && i.mem_operands == 1))
6921 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6922 && i.tm.opcode_modifier.vexw
6923 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6924
48db9223
JB
6925 /* If VexW1 is set, the first non-immediate operand is the source and
6926 the second non-immediate one is encoded in the immediate operand. */
6927 if (i.tm.opcode_modifier.vexw == VEXW1)
6928 {
6929 source = i.imm_operands;
6930 reg_slot = i.imm_operands + 1;
6931 }
6932 else
6933 {
6934 source = i.imm_operands + 1;
6935 reg_slot = i.imm_operands;
6936 }
6937
a683cc34 6938 if (i.imm_operands == 0)
bed3d976
JB
6939 {
6940 /* When there is no immediate operand, generate an 8bit
6941 immediate operand to encode the first operand. */
6942 exp = &im_expressions[i.imm_operands++];
6943 i.op[i.operands].imms = exp;
6944 i.types[i.operands] = imm8;
6945 i.operands++;
6946
6947 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6948 exp->X_op = O_constant;
6949 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6950 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6951 }
922d8de8 6952 else
bed3d976
JB
6953 {
6954 unsigned int imm_slot;
a683cc34 6955
2f1bada2
JB
6956 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6957
bed3d976
JB
6958 if (i.tm.opcode_modifier.immext)
6959 {
6960 /* When ImmExt is set, the immediate byte is the last
6961 operand. */
6962 imm_slot = i.operands - 1;
6963 source--;
6964 reg_slot--;
6965 }
6966 else
6967 {
6968 imm_slot = 0;
6969
6970 /* Turn on Imm8 so that output_imm will generate it. */
6971 i.types[imm_slot].bitfield.imm8 = 1;
6972 }
6973
6974 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6975 i.op[imm_slot].imms->X_add_number
6976 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6977 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6978 }
a683cc34 6979
10c17abd 6980 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6981 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6982 }
6983 else
6984 source = dest = 0;
29b0f896
AM
6985
6986 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6987 implicit registers do not count. If there are 3 register
6988 operands, it must be a instruction with VexNDS. For a
6989 instruction with VexNDD, the destination register is encoded
6990 in VEX prefix. If there are 4 register operands, it must be
6991 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6992 if (i.mem_operands == 0
6993 && ((i.reg_operands == 2
2426c15f 6994 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6995 || (i.reg_operands == 3
2426c15f 6996 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6997 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6998 {
cab737b9
L
6999 switch (i.operands)
7000 {
7001 case 2:
7002 source = 0;
7003 break;
7004 case 3:
c81128dc
L
7005 /* When there are 3 operands, one of them may be immediate,
7006 which may be the first or the last operand. Otherwise,
c0f3af97
L
7007 the first operand must be shift count register (cl) or it
7008 is an instruction with VexNDS. */
9c2799c2 7009 gas_assert (i.imm_operands == 1
7ab9ffdd 7010 || (i.imm_operands == 0
2426c15f 7011 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7012 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7013 if (operand_type_check (i.types[0], imm)
7014 || i.types[0].bitfield.shiftcount)
7015 source = 1;
7016 else
7017 source = 0;
cab737b9
L
7018 break;
7019 case 4:
368d64cc
L
7020 /* When there are 4 operands, the first two must be 8bit
7021 immediate operands. The source operand will be the 3rd
c0f3af97
L
7022 one.
7023
7024 For instructions with VexNDS, if the first operand
7025 an imm8, the source operand is the 2nd one. If the last
7026 operand is imm8, the source operand is the first one. */
9c2799c2 7027 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7028 && i.types[0].bitfield.imm8
7029 && i.types[1].bitfield.imm8)
2426c15f 7030 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7031 && i.imm_operands == 1
7032 && (i.types[0].bitfield.imm8
43234a1e
L
7033 || i.types[i.operands - 1].bitfield.imm8
7034 || i.rounding)));
9f2670f2
L
7035 if (i.imm_operands == 2)
7036 source = 2;
7037 else
c0f3af97
L
7038 {
7039 if (i.types[0].bitfield.imm8)
7040 source = 1;
7041 else
7042 source = 0;
7043 }
c0f3af97
L
7044 break;
7045 case 5:
e771e7c9 7046 if (is_evex_encoding (&i.tm))
43234a1e
L
7047 {
7048 /* For EVEX instructions, when there are 5 operands, the
7049 first one must be immediate operand. If the second one
7050 is immediate operand, the source operand is the 3th
7051 one. If the last one is immediate operand, the source
7052 operand is the 2nd one. */
7053 gas_assert (i.imm_operands == 2
7054 && i.tm.opcode_modifier.sae
7055 && operand_type_check (i.types[0], imm));
7056 if (operand_type_check (i.types[1], imm))
7057 source = 2;
7058 else if (operand_type_check (i.types[4], imm))
7059 source = 1;
7060 else
7061 abort ();
7062 }
cab737b9
L
7063 break;
7064 default:
7065 abort ();
7066 }
7067
c0f3af97
L
7068 if (!vex_3_sources)
7069 {
7070 dest = source + 1;
7071
43234a1e
L
7072 /* RC/SAE operand could be between DEST and SRC. That happens
7073 when one operand is GPR and the other one is XMM/YMM/ZMM
7074 register. */
7075 if (i.rounding && i.rounding->operand == (int) dest)
7076 dest++;
7077
2426c15f 7078 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7079 {
43234a1e 7080 /* For instructions with VexNDS, the register-only source
c5d0745b 7081 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7082 register. It is encoded in VEX prefix. We need to
7083 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7084
7085 i386_operand_type op;
7086 unsigned int vvvv;
7087
7088 /* Check register-only source operand when two source
7089 operands are swapped. */
7090 if (!i.tm.operand_types[source].bitfield.baseindex
7091 && i.tm.operand_types[dest].bitfield.baseindex)
7092 {
7093 vvvv = source;
7094 source = dest;
7095 }
7096 else
7097 vvvv = dest;
7098
7099 op = i.tm.operand_types[vvvv];
fa99fab2 7100 op.bitfield.regmem = 0;
c0f3af97 7101 if ((dest + 1) >= i.operands
dc821c5f
JB
7102 || ((!op.bitfield.reg
7103 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7104 && !op.bitfield.regsimd
43234a1e 7105 && !operand_type_equal (&op, &regmask)))
c0f3af97 7106 abort ();
f12dc422 7107 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7108 dest++;
7109 }
7110 }
29b0f896
AM
7111
7112 i.rm.mode = 3;
7113 /* One of the register operands will be encoded in the i.tm.reg
7114 field, the other in the combined i.tm.mode and i.tm.regmem
7115 fields. If no form of this instruction supports a memory
7116 destination operand, then we assume the source operand may
7117 sometimes be a memory operand and so we need to store the
7118 destination in the i.rm.reg field. */
40fb9820
L
7119 if (!i.tm.operand_types[dest].bitfield.regmem
7120 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7121 {
7122 i.rm.reg = i.op[dest].regs->reg_num;
7123 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7124 if (i.op[dest].regs->reg_type.bitfield.regmmx
7125 || i.op[source].regs->reg_type.bitfield.regmmx)
7126 i.has_regmmx = TRUE;
7127 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7128 || i.op[source].regs->reg_type.bitfield.regsimd)
7129 {
7130 if (i.types[dest].bitfield.zmmword
7131 || i.types[source].bitfield.zmmword)
7132 i.has_regzmm = TRUE;
7133 else if (i.types[dest].bitfield.ymmword
7134 || i.types[source].bitfield.ymmword)
7135 i.has_regymm = TRUE;
7136 else
7137 i.has_regxmm = TRUE;
7138 }
29b0f896 7139 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7140 i.rex |= REX_R;
43234a1e
L
7141 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7142 i.vrex |= REX_R;
29b0f896 7143 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7144 i.rex |= REX_B;
43234a1e
L
7145 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7146 i.vrex |= REX_B;
29b0f896
AM
7147 }
7148 else
7149 {
7150 i.rm.reg = i.op[source].regs->reg_num;
7151 i.rm.regmem = i.op[dest].regs->reg_num;
7152 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7153 i.rex |= REX_B;
43234a1e
L
7154 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7155 i.vrex |= REX_B;
29b0f896 7156 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7157 i.rex |= REX_R;
43234a1e
L
7158 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7159 i.vrex |= REX_R;
29b0f896 7160 }
e0c7f900 7161 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7162 {
e0c7f900 7163 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7164 abort ();
e0c7f900 7165 i.rex &= ~REX_R;
c4a530c5
JB
7166 add_prefix (LOCK_PREFIX_OPCODE);
7167 }
29b0f896
AM
7168 }
7169 else
7170 { /* If it's not 2 reg operands... */
c0f3af97
L
7171 unsigned int mem;
7172
29b0f896
AM
7173 if (i.mem_operands)
7174 {
7175 unsigned int fake_zero_displacement = 0;
99018f42 7176 unsigned int op;
4eed87de 7177
7ab9ffdd
L
7178 for (op = 0; op < i.operands; op++)
7179 if (operand_type_check (i.types[op], anymem))
7180 break;
7ab9ffdd 7181 gas_assert (op < i.operands);
29b0f896 7182
6c30d220
L
7183 if (i.tm.opcode_modifier.vecsib)
7184 {
e968fc9b 7185 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7186 abort ();
7187
7188 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7189 if (!i.base_reg)
7190 {
7191 i.sib.base = NO_BASE_REGISTER;
7192 i.sib.scale = i.log2_scale_factor;
7193 i.types[op].bitfield.disp8 = 0;
7194 i.types[op].bitfield.disp16 = 0;
7195 i.types[op].bitfield.disp64 = 0;
43083a50 7196 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7197 {
7198 /* Must be 32 bit */
7199 i.types[op].bitfield.disp32 = 1;
7200 i.types[op].bitfield.disp32s = 0;
7201 }
7202 else
7203 {
7204 i.types[op].bitfield.disp32 = 0;
7205 i.types[op].bitfield.disp32s = 1;
7206 }
7207 }
7208 i.sib.index = i.index_reg->reg_num;
7209 if ((i.index_reg->reg_flags & RegRex) != 0)
7210 i.rex |= REX_X;
43234a1e
L
7211 if ((i.index_reg->reg_flags & RegVRex) != 0)
7212 i.vrex |= REX_X;
6c30d220
L
7213 }
7214
29b0f896
AM
7215 default_seg = &ds;
7216
7217 if (i.base_reg == 0)
7218 {
7219 i.rm.mode = 0;
7220 if (!i.disp_operands)
9bb129e8 7221 fake_zero_displacement = 1;
29b0f896
AM
7222 if (i.index_reg == 0)
7223 {
73053c1f
JB
7224 i386_operand_type newdisp;
7225
6c30d220 7226 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7227 /* Operand is just <disp> */
20f0a1fc 7228 if (flag_code == CODE_64BIT)
29b0f896
AM
7229 {
7230 /* 64bit mode overwrites the 32bit absolute
7231 addressing by RIP relative addressing and
7232 absolute addressing is encoded by one of the
7233 redundant SIB forms. */
7234 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7235 i.sib.base = NO_BASE_REGISTER;
7236 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7237 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7238 }
fc225355
L
7239 else if ((flag_code == CODE_16BIT)
7240 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7241 {
7242 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7243 newdisp = disp16;
20f0a1fc
NC
7244 }
7245 else
7246 {
7247 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7248 newdisp = disp32;
29b0f896 7249 }
73053c1f
JB
7250 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7251 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7252 }
6c30d220 7253 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7254 {
6c30d220 7255 /* !i.base_reg && i.index_reg */
e968fc9b 7256 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7257 i.sib.index = NO_INDEX_REGISTER;
7258 else
7259 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7260 i.sib.base = NO_BASE_REGISTER;
7261 i.sib.scale = i.log2_scale_factor;
7262 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7263 i.types[op].bitfield.disp8 = 0;
7264 i.types[op].bitfield.disp16 = 0;
7265 i.types[op].bitfield.disp64 = 0;
43083a50 7266 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7267 {
7268 /* Must be 32 bit */
7269 i.types[op].bitfield.disp32 = 1;
7270 i.types[op].bitfield.disp32s = 0;
7271 }
29b0f896 7272 else
40fb9820
L
7273 {
7274 i.types[op].bitfield.disp32 = 0;
7275 i.types[op].bitfield.disp32s = 1;
7276 }
29b0f896 7277 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7278 i.rex |= REX_X;
29b0f896
AM
7279 }
7280 }
7281 /* RIP addressing for 64bit mode. */
e968fc9b 7282 else if (i.base_reg->reg_num == RegIP)
29b0f896 7283 {
6c30d220 7284 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7285 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7286 i.types[op].bitfield.disp8 = 0;
7287 i.types[op].bitfield.disp16 = 0;
7288 i.types[op].bitfield.disp32 = 0;
7289 i.types[op].bitfield.disp32s = 1;
7290 i.types[op].bitfield.disp64 = 0;
71903a11 7291 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7292 if (! i.disp_operands)
7293 fake_zero_displacement = 1;
29b0f896 7294 }
dc821c5f 7295 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7296 {
6c30d220 7297 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7298 switch (i.base_reg->reg_num)
7299 {
7300 case 3: /* (%bx) */
7301 if (i.index_reg == 0)
7302 i.rm.regmem = 7;
7303 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7304 i.rm.regmem = i.index_reg->reg_num - 6;
7305 break;
7306 case 5: /* (%bp) */
7307 default_seg = &ss;
7308 if (i.index_reg == 0)
7309 {
7310 i.rm.regmem = 6;
40fb9820 7311 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7312 {
7313 /* fake (%bp) into 0(%bp) */
b5014f7a 7314 i.types[op].bitfield.disp8 = 1;
252b5132 7315 fake_zero_displacement = 1;
29b0f896
AM
7316 }
7317 }
7318 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7319 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7320 break;
7321 default: /* (%si) -> 4 or (%di) -> 5 */
7322 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7323 }
7324 i.rm.mode = mode_from_disp_size (i.types[op]);
7325 }
7326 else /* i.base_reg and 32/64 bit mode */
7327 {
7328 if (flag_code == CODE_64BIT
40fb9820
L
7329 && operand_type_check (i.types[op], disp))
7330 {
73053c1f
JB
7331 i.types[op].bitfield.disp16 = 0;
7332 i.types[op].bitfield.disp64 = 0;
40fb9820 7333 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7334 {
7335 i.types[op].bitfield.disp32 = 0;
7336 i.types[op].bitfield.disp32s = 1;
7337 }
40fb9820 7338 else
73053c1f
JB
7339 {
7340 i.types[op].bitfield.disp32 = 1;
7341 i.types[op].bitfield.disp32s = 0;
7342 }
40fb9820 7343 }
20f0a1fc 7344
6c30d220
L
7345 if (!i.tm.opcode_modifier.vecsib)
7346 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7347 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7348 i.rex |= REX_B;
29b0f896
AM
7349 i.sib.base = i.base_reg->reg_num;
7350 /* x86-64 ignores REX prefix bit here to avoid decoder
7351 complications. */
848930b2
JB
7352 if (!(i.base_reg->reg_flags & RegRex)
7353 && (i.base_reg->reg_num == EBP_REG_NUM
7354 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7355 default_seg = &ss;
848930b2 7356 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7357 {
848930b2 7358 fake_zero_displacement = 1;
b5014f7a 7359 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7360 }
7361 i.sib.scale = i.log2_scale_factor;
7362 if (i.index_reg == 0)
7363 {
6c30d220 7364 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7365 /* <disp>(%esp) becomes two byte modrm with no index
7366 register. We've already stored the code for esp
7367 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7368 Any base register besides %esp will not use the
7369 extra modrm byte. */
7370 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7371 }
6c30d220 7372 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7373 {
e968fc9b 7374 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7375 i.sib.index = NO_INDEX_REGISTER;
7376 else
7377 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7378 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7379 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7380 i.rex |= REX_X;
29b0f896 7381 }
67a4f2b7
AO
7382
7383 if (i.disp_operands
7384 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7385 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7386 i.rm.mode = 0;
7387 else
a501d77e
L
7388 {
7389 if (!fake_zero_displacement
7390 && !i.disp_operands
7391 && i.disp_encoding)
7392 {
7393 fake_zero_displacement = 1;
7394 if (i.disp_encoding == disp_encoding_8bit)
7395 i.types[op].bitfield.disp8 = 1;
7396 else
7397 i.types[op].bitfield.disp32 = 1;
7398 }
7399 i.rm.mode = mode_from_disp_size (i.types[op]);
7400 }
29b0f896 7401 }
252b5132 7402
29b0f896
AM
7403 if (fake_zero_displacement)
7404 {
7405 /* Fakes a zero displacement assuming that i.types[op]
7406 holds the correct displacement size. */
7407 expressionS *exp;
7408
9c2799c2 7409 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7410 exp = &disp_expressions[i.disp_operands++];
7411 i.op[op].disps = exp;
7412 exp->X_op = O_constant;
7413 exp->X_add_number = 0;
7414 exp->X_add_symbol = (symbolS *) 0;
7415 exp->X_op_symbol = (symbolS *) 0;
7416 }
c0f3af97
L
7417
7418 mem = op;
29b0f896 7419 }
c0f3af97
L
7420 else
7421 mem = ~0;
252b5132 7422
8c43a48b 7423 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7424 {
7425 if (operand_type_check (i.types[0], imm))
7426 i.vex.register_specifier = NULL;
7427 else
7428 {
7429 /* VEX.vvvv encodes one of the sources when the first
7430 operand is not an immediate. */
1ef99a7b 7431 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7432 i.vex.register_specifier = i.op[0].regs;
7433 else
7434 i.vex.register_specifier = i.op[1].regs;
7435 }
7436
7437 /* Destination is a XMM register encoded in the ModRM.reg
7438 and VEX.R bit. */
7439 i.rm.reg = i.op[2].regs->reg_num;
7440 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7441 i.rex |= REX_R;
7442
7443 /* ModRM.rm and VEX.B encodes the other source. */
7444 if (!i.mem_operands)
7445 {
7446 i.rm.mode = 3;
7447
1ef99a7b 7448 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7449 i.rm.regmem = i.op[1].regs->reg_num;
7450 else
7451 i.rm.regmem = i.op[0].regs->reg_num;
7452
7453 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7454 i.rex |= REX_B;
7455 }
7456 }
2426c15f 7457 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7458 {
7459 i.vex.register_specifier = i.op[2].regs;
7460 if (!i.mem_operands)
7461 {
7462 i.rm.mode = 3;
7463 i.rm.regmem = i.op[1].regs->reg_num;
7464 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7465 i.rex |= REX_B;
7466 }
7467 }
29b0f896
AM
7468 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7469 (if any) based on i.tm.extension_opcode. Again, we must be
7470 careful to make sure that segment/control/debug/test/MMX
7471 registers are coded into the i.rm.reg field. */
f88c9eb0 7472 else if (i.reg_operands)
29b0f896 7473 {
99018f42 7474 unsigned int op;
7ab9ffdd
L
7475 unsigned int vex_reg = ~0;
7476
7477 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7478 {
7479 if (i.types[op].bitfield.reg
7480 || i.types[op].bitfield.regbnd
7481 || i.types[op].bitfield.regmask
7482 || i.types[op].bitfield.sreg2
7483 || i.types[op].bitfield.sreg3
7484 || i.types[op].bitfield.control
7485 || i.types[op].bitfield.debug
7486 || i.types[op].bitfield.test)
7487 break;
7488 if (i.types[op].bitfield.regsimd)
7489 {
7490 if (i.types[op].bitfield.zmmword)
7491 i.has_regzmm = TRUE;
7492 else if (i.types[op].bitfield.ymmword)
7493 i.has_regymm = TRUE;
7494 else
7495 i.has_regxmm = TRUE;
7496 break;
7497 }
7498 if (i.types[op].bitfield.regmmx)
7499 {
7500 i.has_regmmx = TRUE;
7501 break;
7502 }
7503 }
c0209578 7504
7ab9ffdd
L
7505 if (vex_3_sources)
7506 op = dest;
2426c15f 7507 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7508 {
7509 /* For instructions with VexNDS, the register-only
7510 source operand is encoded in VEX prefix. */
7511 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7512
7ab9ffdd 7513 if (op > mem)
c0f3af97 7514 {
7ab9ffdd
L
7515 vex_reg = op++;
7516 gas_assert (op < i.operands);
c0f3af97
L
7517 }
7518 else
c0f3af97 7519 {
f12dc422
L
7520 /* Check register-only source operand when two source
7521 operands are swapped. */
7522 if (!i.tm.operand_types[op].bitfield.baseindex
7523 && i.tm.operand_types[op + 1].bitfield.baseindex)
7524 {
7525 vex_reg = op;
7526 op += 2;
7527 gas_assert (mem == (vex_reg + 1)
7528 && op < i.operands);
7529 }
7530 else
7531 {
7532 vex_reg = op + 1;
7533 gas_assert (vex_reg < i.operands);
7534 }
c0f3af97 7535 }
7ab9ffdd 7536 }
2426c15f 7537 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7538 {
f12dc422 7539 /* For instructions with VexNDD, the register destination
7ab9ffdd 7540 is encoded in VEX prefix. */
f12dc422
L
7541 if (i.mem_operands == 0)
7542 {
7543 /* There is no memory operand. */
7544 gas_assert ((op + 2) == i.operands);
7545 vex_reg = op + 1;
7546 }
7547 else
8d63c93e 7548 {
ed438a93
JB
7549 /* There are only 2 non-immediate operands. */
7550 gas_assert (op < i.imm_operands + 2
7551 && i.operands == i.imm_operands + 2);
7552 vex_reg = i.imm_operands + 1;
f12dc422 7553 }
7ab9ffdd
L
7554 }
7555 else
7556 gas_assert (op < i.operands);
99018f42 7557
7ab9ffdd
L
7558 if (vex_reg != (unsigned int) ~0)
7559 {
f12dc422 7560 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7561
dc821c5f
JB
7562 if ((!type->bitfield.reg
7563 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7564 && !type->bitfield.regsimd
43234a1e 7565 && !operand_type_equal (type, &regmask))
7ab9ffdd 7566 abort ();
f88c9eb0 7567
7ab9ffdd
L
7568 i.vex.register_specifier = i.op[vex_reg].regs;
7569 }
7570
1b9f0c97
L
7571 /* Don't set OP operand twice. */
7572 if (vex_reg != op)
7ab9ffdd 7573 {
1b9f0c97
L
7574 /* If there is an extension opcode to put here, the
7575 register number must be put into the regmem field. */
7576 if (i.tm.extension_opcode != None)
7577 {
7578 i.rm.regmem = i.op[op].regs->reg_num;
7579 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7580 i.rex |= REX_B;
43234a1e
L
7581 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7582 i.vrex |= REX_B;
1b9f0c97
L
7583 }
7584 else
7585 {
7586 i.rm.reg = i.op[op].regs->reg_num;
7587 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7588 i.rex |= REX_R;
43234a1e
L
7589 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7590 i.vrex |= REX_R;
1b9f0c97 7591 }
7ab9ffdd 7592 }
252b5132 7593
29b0f896
AM
7594 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7595 must set it to 3 to indicate this is a register operand
7596 in the regmem field. */
7597 if (!i.mem_operands)
7598 i.rm.mode = 3;
7599 }
252b5132 7600
29b0f896 7601 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7602 if (i.tm.extension_opcode != None)
29b0f896
AM
7603 i.rm.reg = i.tm.extension_opcode;
7604 }
7605 return default_seg;
7606}
252b5132 7607
29b0f896 7608static void
e3bb37b5 7609output_branch (void)
29b0f896
AM
7610{
7611 char *p;
f8a5c266 7612 int size;
29b0f896
AM
7613 int code16;
7614 int prefix;
7615 relax_substateT subtype;
7616 symbolS *sym;
7617 offsetT off;
7618
f8a5c266 7619 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7620 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7621
7622 prefix = 0;
7623 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7624 {
29b0f896
AM
7625 prefix = 1;
7626 i.prefixes -= 1;
7627 code16 ^= CODE16;
252b5132 7628 }
29b0f896
AM
7629 /* Pentium4 branch hints. */
7630 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7631 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7632 {
29b0f896
AM
7633 prefix++;
7634 i.prefixes--;
7635 }
7636 if (i.prefix[REX_PREFIX] != 0)
7637 {
7638 prefix++;
7639 i.prefixes--;
2f66722d
AM
7640 }
7641
7e8b059b
L
7642 /* BND prefixed jump. */
7643 if (i.prefix[BND_PREFIX] != 0)
7644 {
7645 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7646 i.prefixes -= 1;
7647 }
7648
29b0f896
AM
7649 if (i.prefixes != 0 && !intel_syntax)
7650 as_warn (_("skipping prefixes on this instruction"));
7651
7652 /* It's always a symbol; End frag & setup for relax.
7653 Make sure there is enough room in this frag for the largest
7654 instruction we may generate in md_convert_frag. This is 2
7655 bytes for the opcode and room for the prefix and largest
7656 displacement. */
7657 frag_grow (prefix + 2 + 4);
7658 /* Prefix and 1 opcode byte go in fr_fix. */
7659 p = frag_more (prefix + 1);
7660 if (i.prefix[DATA_PREFIX] != 0)
7661 *p++ = DATA_PREFIX_OPCODE;
7662 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7663 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7664 *p++ = i.prefix[SEG_PREFIX];
7665 if (i.prefix[REX_PREFIX] != 0)
7666 *p++ = i.prefix[REX_PREFIX];
7667 *p = i.tm.base_opcode;
7668
7669 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7670 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7671 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7672 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7673 else
f8a5c266 7674 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7675 subtype |= code16;
3e73aa7c 7676
29b0f896
AM
7677 sym = i.op[0].disps->X_add_symbol;
7678 off = i.op[0].disps->X_add_number;
3e73aa7c 7679
29b0f896
AM
7680 if (i.op[0].disps->X_op != O_constant
7681 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7682 {
29b0f896
AM
7683 /* Handle complex expressions. */
7684 sym = make_expr_symbol (i.op[0].disps);
7685 off = 0;
7686 }
3e73aa7c 7687
29b0f896
AM
7688 /* 1 possible extra opcode + 4 byte displacement go in var part.
7689 Pass reloc in fr_var. */
d258b828 7690 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7691}
3e73aa7c 7692
bd7ab16b
L
7693#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7694/* Return TRUE iff PLT32 relocation should be used for branching to
7695 symbol S. */
7696
7697static bfd_boolean
7698need_plt32_p (symbolS *s)
7699{
7700 /* PLT32 relocation is ELF only. */
7701 if (!IS_ELF)
7702 return FALSE;
7703
7704 /* Since there is no need to prepare for PLT branch on x86-64, we
7705 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7706 be used as a marker for 32-bit PC-relative branches. */
7707 if (!object_64bit)
7708 return FALSE;
7709
7710 /* Weak or undefined symbol need PLT32 relocation. */
7711 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7712 return TRUE;
7713
7714 /* Non-global symbol doesn't need PLT32 relocation. */
7715 if (! S_IS_EXTERNAL (s))
7716 return FALSE;
7717
7718 /* Other global symbols need PLT32 relocation. NB: Symbol with
7719 non-default visibilities are treated as normal global symbol
7720 so that PLT32 relocation can be used as a marker for 32-bit
7721 PC-relative branches. It is useful for linker relaxation. */
7722 return TRUE;
7723}
7724#endif
7725
29b0f896 7726static void
e3bb37b5 7727output_jump (void)
29b0f896
AM
7728{
7729 char *p;
7730 int size;
3e02c1cc 7731 fixS *fixP;
bd7ab16b 7732 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7733
40fb9820 7734 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7735 {
7736 /* This is a loop or jecxz type instruction. */
7737 size = 1;
7738 if (i.prefix[ADDR_PREFIX] != 0)
7739 {
7740 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7741 i.prefixes -= 1;
7742 }
7743 /* Pentium4 branch hints. */
7744 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7745 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7746 {
7747 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7748 i.prefixes--;
3e73aa7c
JH
7749 }
7750 }
29b0f896
AM
7751 else
7752 {
7753 int code16;
3e73aa7c 7754
29b0f896
AM
7755 code16 = 0;
7756 if (flag_code == CODE_16BIT)
7757 code16 = CODE16;
3e73aa7c 7758
29b0f896
AM
7759 if (i.prefix[DATA_PREFIX] != 0)
7760 {
7761 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7762 i.prefixes -= 1;
7763 code16 ^= CODE16;
7764 }
252b5132 7765
29b0f896
AM
7766 size = 4;
7767 if (code16)
7768 size = 2;
7769 }
9fcc94b6 7770
29b0f896
AM
7771 if (i.prefix[REX_PREFIX] != 0)
7772 {
7773 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7774 i.prefixes -= 1;
7775 }
252b5132 7776
7e8b059b
L
7777 /* BND prefixed jump. */
7778 if (i.prefix[BND_PREFIX] != 0)
7779 {
7780 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7781 i.prefixes -= 1;
7782 }
7783
29b0f896
AM
7784 if (i.prefixes != 0 && !intel_syntax)
7785 as_warn (_("skipping prefixes on this instruction"));
e0890092 7786
42164a71
L
7787 p = frag_more (i.tm.opcode_length + size);
7788 switch (i.tm.opcode_length)
7789 {
7790 case 2:
7791 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7792 /* Fall through. */
42164a71
L
7793 case 1:
7794 *p++ = i.tm.base_opcode;
7795 break;
7796 default:
7797 abort ();
7798 }
e0890092 7799
bd7ab16b
L
7800#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7801 if (size == 4
7802 && jump_reloc == NO_RELOC
7803 && need_plt32_p (i.op[0].disps->X_add_symbol))
7804 jump_reloc = BFD_RELOC_X86_64_PLT32;
7805#endif
7806
7807 jump_reloc = reloc (size, 1, 1, jump_reloc);
7808
3e02c1cc 7809 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7810 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7811
7812 /* All jumps handled here are signed, but don't use a signed limit
7813 check for 32 and 16 bit jumps as we want to allow wrap around at
7814 4G and 64k respectively. */
7815 if (size == 1)
7816 fixP->fx_signed = 1;
29b0f896 7817}
e0890092 7818
29b0f896 7819static void
e3bb37b5 7820output_interseg_jump (void)
29b0f896
AM
7821{
7822 char *p;
7823 int size;
7824 int prefix;
7825 int code16;
252b5132 7826
29b0f896
AM
7827 code16 = 0;
7828 if (flag_code == CODE_16BIT)
7829 code16 = CODE16;
a217f122 7830
29b0f896
AM
7831 prefix = 0;
7832 if (i.prefix[DATA_PREFIX] != 0)
7833 {
7834 prefix = 1;
7835 i.prefixes -= 1;
7836 code16 ^= CODE16;
7837 }
7838 if (i.prefix[REX_PREFIX] != 0)
7839 {
7840 prefix++;
7841 i.prefixes -= 1;
7842 }
252b5132 7843
29b0f896
AM
7844 size = 4;
7845 if (code16)
7846 size = 2;
252b5132 7847
29b0f896
AM
7848 if (i.prefixes != 0 && !intel_syntax)
7849 as_warn (_("skipping prefixes on this instruction"));
252b5132 7850
29b0f896
AM
7851 /* 1 opcode; 2 segment; offset */
7852 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7853
29b0f896
AM
7854 if (i.prefix[DATA_PREFIX] != 0)
7855 *p++ = DATA_PREFIX_OPCODE;
252b5132 7856
29b0f896
AM
7857 if (i.prefix[REX_PREFIX] != 0)
7858 *p++ = i.prefix[REX_PREFIX];
252b5132 7859
29b0f896
AM
7860 *p++ = i.tm.base_opcode;
7861 if (i.op[1].imms->X_op == O_constant)
7862 {
7863 offsetT n = i.op[1].imms->X_add_number;
252b5132 7864
29b0f896
AM
7865 if (size == 2
7866 && !fits_in_unsigned_word (n)
7867 && !fits_in_signed_word (n))
7868 {
7869 as_bad (_("16-bit jump out of range"));
7870 return;
7871 }
7872 md_number_to_chars (p, n, size);
7873 }
7874 else
7875 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7876 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7877 if (i.op[0].imms->X_op != O_constant)
7878 as_bad (_("can't handle non absolute segment in `%s'"),
7879 i.tm.name);
7880 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7881}
a217f122 7882
b4a3a7b4
L
7883#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7884void
7885x86_cleanup (void)
7886{
7887 char *p;
7888 asection *seg = now_seg;
7889 subsegT subseg = now_subseg;
7890 asection *sec;
7891 unsigned int alignment, align_size_1;
7892 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7893 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7894 unsigned int padding;
7895
7896 if (!IS_ELF || !x86_used_note)
7897 return;
7898
b4a3a7b4
L
7899 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7900
7901 /* The .note.gnu.property section layout:
7902
7903 Field Length Contents
7904 ---- ---- ----
7905 n_namsz 4 4
7906 n_descsz 4 The note descriptor size
7907 n_type 4 NT_GNU_PROPERTY_TYPE_0
7908 n_name 4 "GNU"
7909 n_desc n_descsz The program property array
7910 .... .... ....
7911 */
7912
7913 /* Create the .note.gnu.property section. */
7914 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7915 bfd_set_section_flags (stdoutput, sec,
7916 (SEC_ALLOC
7917 | SEC_LOAD
7918 | SEC_DATA
7919 | SEC_HAS_CONTENTS
7920 | SEC_READONLY));
7921
7922 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7923 {
7924 align_size_1 = 7;
7925 alignment = 3;
7926 }
7927 else
7928 {
7929 align_size_1 = 3;
7930 alignment = 2;
7931 }
7932
7933 bfd_set_section_alignment (stdoutput, sec, alignment);
7934 elf_section_type (sec) = SHT_NOTE;
7935
7936 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7937 + 4-byte data */
7938 isa_1_descsz_raw = 4 + 4 + 4;
7939 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7940 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7941
7942 feature_2_descsz_raw = isa_1_descsz;
7943 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7944 + 4-byte data */
7945 feature_2_descsz_raw += 4 + 4 + 4;
7946 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7947 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7948 & ~align_size_1);
7949
7950 descsz = feature_2_descsz;
7951 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7952 p = frag_more (4 + 4 + 4 + 4 + descsz);
7953
7954 /* Write n_namsz. */
7955 md_number_to_chars (p, (valueT) 4, 4);
7956
7957 /* Write n_descsz. */
7958 md_number_to_chars (p + 4, (valueT) descsz, 4);
7959
7960 /* Write n_type. */
7961 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7962
7963 /* Write n_name. */
7964 memcpy (p + 4 * 3, "GNU", 4);
7965
7966 /* Write 4-byte type. */
7967 md_number_to_chars (p + 4 * 4,
7968 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7969
7970 /* Write 4-byte data size. */
7971 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7972
7973 /* Write 4-byte data. */
7974 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7975
7976 /* Zero out paddings. */
7977 padding = isa_1_descsz - isa_1_descsz_raw;
7978 if (padding)
7979 memset (p + 4 * 7, 0, padding);
7980
7981 /* Write 4-byte type. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7983 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7984
7985 /* Write 4-byte data size. */
7986 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7987
7988 /* Write 4-byte data. */
7989 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7990 (valueT) x86_feature_2_used, 4);
7991
7992 /* Zero out paddings. */
7993 padding = feature_2_descsz - feature_2_descsz_raw;
7994 if (padding)
7995 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7996
7997 /* We probably can't restore the current segment, for there likely
7998 isn't one yet... */
7999 if (seg && subseg)
8000 subseg_set (seg, subseg);
8001}
8002#endif
8003
29b0f896 8004static void
e3bb37b5 8005output_insn (void)
29b0f896 8006{
2bbd9c25
JJ
8007 fragS *insn_start_frag;
8008 offsetT insn_start_off;
8009
b4a3a7b4
L
8010#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8011 if (IS_ELF && x86_used_note)
8012 {
8013 if (i.tm.cpu_flags.bitfield.cpucmov)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8015 if (i.tm.cpu_flags.bitfield.cpusse)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8017 if (i.tm.cpu_flags.bitfield.cpusse2)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8019 if (i.tm.cpu_flags.bitfield.cpusse3)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8021 if (i.tm.cpu_flags.bitfield.cpussse3)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8023 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8025 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8027 if (i.tm.cpu_flags.bitfield.cpuavx)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8029 if (i.tm.cpu_flags.bitfield.cpuavx2)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8031 if (i.tm.cpu_flags.bitfield.cpufma)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8057 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8059 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8061
8062 if (i.tm.cpu_flags.bitfield.cpu8087
8063 || i.tm.cpu_flags.bitfield.cpu287
8064 || i.tm.cpu_flags.bitfield.cpu387
8065 || i.tm.cpu_flags.bitfield.cpu687
8066 || i.tm.cpu_flags.bitfield.cpufisttp)
8067 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8068 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8069 Xfence instructions. */
8070 if (i.tm.base_opcode != 0xf18
8071 && i.tm.base_opcode != 0xf0d
8072 && i.tm.base_opcode != 0xfae
8073 && (i.has_regmmx
8074 || i.tm.cpu_flags.bitfield.cpummx
8075 || i.tm.cpu_flags.bitfield.cpua3dnow
8076 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8078 if (i.has_regxmm)
8079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8080 if (i.has_regymm)
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8082 if (i.has_regzmm)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8084 if (i.tm.cpu_flags.bitfield.cpufxsr)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8086 if (i.tm.cpu_flags.bitfield.cpuxsave)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8088 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8089 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8090 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8091 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8092 }
8093#endif
8094
29b0f896
AM
8095 /* Tie dwarf2 debug info to the address at the start of the insn.
8096 We can't do this after the insn has been output as the current
8097 frag may have been closed off. eg. by frag_var. */
8098 dwarf2_emit_insn (0);
8099
2bbd9c25
JJ
8100 insn_start_frag = frag_now;
8101 insn_start_off = frag_now_fix ();
8102
29b0f896 8103 /* Output jumps. */
40fb9820 8104 if (i.tm.opcode_modifier.jump)
29b0f896 8105 output_branch ();
40fb9820
L
8106 else if (i.tm.opcode_modifier.jumpbyte
8107 || i.tm.opcode_modifier.jumpdword)
29b0f896 8108 output_jump ();
40fb9820 8109 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8110 output_interseg_jump ();
8111 else
8112 {
8113 /* Output normal instructions here. */
8114 char *p;
8115 unsigned char *q;
47465058 8116 unsigned int j;
331d2d0d 8117 unsigned int prefix;
4dffcebc 8118
e4e00185
AS
8119 if (avoid_fence
8120 && i.tm.base_opcode == 0xfae
8121 && i.operands == 1
8122 && i.imm_operands == 1
8123 && (i.op[0].imms->X_add_number == 0xe8
8124 || i.op[0].imms->X_add_number == 0xf0
8125 || i.op[0].imms->X_add_number == 0xf8))
8126 {
8127 /* Encode lfence, mfence, and sfence as
8128 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8129 offsetT val = 0x240483f0ULL;
8130 p = frag_more (5);
8131 md_number_to_chars (p, val, 5);
8132 return;
8133 }
8134
d022bddd
IT
8135 /* Some processors fail on LOCK prefix. This options makes
8136 assembler ignore LOCK prefix and serves as a workaround. */
8137 if (omit_lock_prefix)
8138 {
8139 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8140 return;
8141 i.prefix[LOCK_PREFIX] = 0;
8142 }
8143
43234a1e
L
8144 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8145 don't need the explicit prefix. */
8146 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8147 {
c0f3af97 8148 switch (i.tm.opcode_length)
bc4bd9ab 8149 {
c0f3af97
L
8150 case 3:
8151 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8152 {
c0f3af97 8153 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8154 add_prefix (prefix);
c0f3af97
L
8155 }
8156 break;
8157 case 2:
8158 if ((i.tm.base_opcode & 0xff0000) != 0)
8159 {
8160 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8161 if (!i.tm.cpu_flags.bitfield.cpupadlock
8162 || prefix != REPE_PREFIX_OPCODE
8163 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8164 add_prefix (prefix);
8165 }
c0f3af97
L
8166 break;
8167 case 1:
8168 break;
390c91cf
L
8169 case 0:
8170 /* Check for pseudo prefixes. */
8171 as_bad_where (insn_start_frag->fr_file,
8172 insn_start_frag->fr_line,
8173 _("pseudo prefix without instruction"));
8174 return;
c0f3af97
L
8175 default:
8176 abort ();
bc4bd9ab 8177 }
c0f3af97 8178
6d19a37a 8179#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8180 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8181 R_X86_64_GOTTPOFF relocation so that linker can safely
8182 perform IE->LE optimization. */
8183 if (x86_elf_abi == X86_64_X32_ABI
8184 && i.operands == 2
8185 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8186 && i.prefix[REX_PREFIX] == 0)
8187 add_prefix (REX_OPCODE);
6d19a37a 8188#endif
cf61b747 8189
c0f3af97
L
8190 /* The prefix bytes. */
8191 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8192 if (*q)
8193 FRAG_APPEND_1_CHAR (*q);
0f10071e 8194 }
ae5c1c7b 8195 else
c0f3af97
L
8196 {
8197 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8198 if (*q)
8199 switch (j)
8200 {
8201 case REX_PREFIX:
8202 /* REX byte is encoded in VEX prefix. */
8203 break;
8204 case SEG_PREFIX:
8205 case ADDR_PREFIX:
8206 FRAG_APPEND_1_CHAR (*q);
8207 break;
8208 default:
8209 /* There should be no other prefixes for instructions
8210 with VEX prefix. */
8211 abort ();
8212 }
8213
43234a1e
L
8214 /* For EVEX instructions i.vrex should become 0 after
8215 build_evex_prefix. For VEX instructions upper 16 registers
8216 aren't available, so VREX should be 0. */
8217 if (i.vrex)
8218 abort ();
c0f3af97
L
8219 /* Now the VEX prefix. */
8220 p = frag_more (i.vex.length);
8221 for (j = 0; j < i.vex.length; j++)
8222 p[j] = i.vex.bytes[j];
8223 }
252b5132 8224
29b0f896 8225 /* Now the opcode; be careful about word order here! */
4dffcebc 8226 if (i.tm.opcode_length == 1)
29b0f896
AM
8227 {
8228 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8229 }
8230 else
8231 {
4dffcebc 8232 switch (i.tm.opcode_length)
331d2d0d 8233 {
43234a1e
L
8234 case 4:
8235 p = frag_more (4);
8236 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8237 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8238 break;
4dffcebc 8239 case 3:
331d2d0d
L
8240 p = frag_more (3);
8241 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8242 break;
8243 case 2:
8244 p = frag_more (2);
8245 break;
8246 default:
8247 abort ();
8248 break;
331d2d0d 8249 }
0f10071e 8250
29b0f896
AM
8251 /* Put out high byte first: can't use md_number_to_chars! */
8252 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8253 *p = i.tm.base_opcode & 0xff;
8254 }
3e73aa7c 8255
29b0f896 8256 /* Now the modrm byte and sib byte (if present). */
40fb9820 8257 if (i.tm.opcode_modifier.modrm)
29b0f896 8258 {
4a3523fa
L
8259 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8260 | i.rm.reg << 3
8261 | i.rm.mode << 6));
29b0f896
AM
8262 /* If i.rm.regmem == ESP (4)
8263 && i.rm.mode != (Register mode)
8264 && not 16 bit
8265 ==> need second modrm byte. */
8266 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8267 && i.rm.mode != 3
dc821c5f 8268 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8269 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8270 | i.sib.index << 3
8271 | i.sib.scale << 6));
29b0f896 8272 }
3e73aa7c 8273
29b0f896 8274 if (i.disp_operands)
2bbd9c25 8275 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8276
29b0f896 8277 if (i.imm_operands)
2bbd9c25 8278 output_imm (insn_start_frag, insn_start_off);
29b0f896 8279 }
252b5132 8280
29b0f896
AM
8281#ifdef DEBUG386
8282 if (flag_debug)
8283 {
7b81dfbb 8284 pi ("" /*line*/, &i);
29b0f896
AM
8285 }
8286#endif /* DEBUG386 */
8287}
252b5132 8288
e205caa7
L
8289/* Return the size of the displacement operand N. */
8290
8291static int
8292disp_size (unsigned int n)
8293{
8294 int size = 4;
43234a1e 8295
b5014f7a 8296 if (i.types[n].bitfield.disp64)
40fb9820
L
8297 size = 8;
8298 else if (i.types[n].bitfield.disp8)
8299 size = 1;
8300 else if (i.types[n].bitfield.disp16)
8301 size = 2;
e205caa7
L
8302 return size;
8303}
8304
8305/* Return the size of the immediate operand N. */
8306
8307static int
8308imm_size (unsigned int n)
8309{
8310 int size = 4;
40fb9820
L
8311 if (i.types[n].bitfield.imm64)
8312 size = 8;
8313 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8314 size = 1;
8315 else if (i.types[n].bitfield.imm16)
8316 size = 2;
e205caa7
L
8317 return size;
8318}
8319
29b0f896 8320static void
64e74474 8321output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8322{
8323 char *p;
8324 unsigned int n;
252b5132 8325
29b0f896
AM
8326 for (n = 0; n < i.operands; n++)
8327 {
b5014f7a 8328 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8329 {
8330 if (i.op[n].disps->X_op == O_constant)
8331 {
e205caa7 8332 int size = disp_size (n);
43234a1e 8333 offsetT val = i.op[n].disps->X_add_number;
252b5132 8334
629cfaf1
JB
8335 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8336 size);
29b0f896
AM
8337 p = frag_more (size);
8338 md_number_to_chars (p, val, size);
8339 }
8340 else
8341 {
f86103b7 8342 enum bfd_reloc_code_real reloc_type;
e205caa7 8343 int size = disp_size (n);
40fb9820 8344 int sign = i.types[n].bitfield.disp32s;
29b0f896 8345 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8346 fixS *fixP;
29b0f896 8347
e205caa7 8348 /* We can't have 8 bit displacement here. */
9c2799c2 8349 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8350
29b0f896
AM
8351 /* The PC relative address is computed relative
8352 to the instruction boundary, so in case immediate
8353 fields follows, we need to adjust the value. */
8354 if (pcrel && i.imm_operands)
8355 {
29b0f896 8356 unsigned int n1;
e205caa7 8357 int sz = 0;
252b5132 8358
29b0f896 8359 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8360 if (operand_type_check (i.types[n1], imm))
252b5132 8361 {
e205caa7
L
8362 /* Only one immediate is allowed for PC
8363 relative address. */
9c2799c2 8364 gas_assert (sz == 0);
e205caa7
L
8365 sz = imm_size (n1);
8366 i.op[n].disps->X_add_number -= sz;
252b5132 8367 }
29b0f896 8368 /* We should find the immediate. */
9c2799c2 8369 gas_assert (sz != 0);
29b0f896 8370 }
520dc8e8 8371
29b0f896 8372 p = frag_more (size);
d258b828 8373 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8374 if (GOT_symbol
2bbd9c25 8375 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8376 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8377 || reloc_type == BFD_RELOC_X86_64_32S
8378 || (reloc_type == BFD_RELOC_64
8379 && object_64bit))
d6ab8113
JB
8380 && (i.op[n].disps->X_op == O_symbol
8381 || (i.op[n].disps->X_op == O_add
8382 && ((symbol_get_value_expression
8383 (i.op[n].disps->X_op_symbol)->X_op)
8384 == O_subtract))))
8385 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8386 {
8387 offsetT add;
8388
8389 if (insn_start_frag == frag_now)
8390 add = (p - frag_now->fr_literal) - insn_start_off;
8391 else
8392 {
8393 fragS *fr;
8394
8395 add = insn_start_frag->fr_fix - insn_start_off;
8396 for (fr = insn_start_frag->fr_next;
8397 fr && fr != frag_now; fr = fr->fr_next)
8398 add += fr->fr_fix;
8399 add += p - frag_now->fr_literal;
8400 }
8401
4fa24527 8402 if (!object_64bit)
7b81dfbb
AJ
8403 {
8404 reloc_type = BFD_RELOC_386_GOTPC;
8405 i.op[n].imms->X_add_number += add;
8406 }
8407 else if (reloc_type == BFD_RELOC_64)
8408 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8409 else
7b81dfbb
AJ
8410 /* Don't do the adjustment for x86-64, as there
8411 the pcrel addressing is relative to the _next_
8412 insn, and that is taken care of in other code. */
d6ab8113 8413 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8414 }
02a86693
L
8415 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8416 size, i.op[n].disps, pcrel,
8417 reloc_type);
8418 /* Check for "call/jmp *mem", "mov mem, %reg",
8419 "test %reg, mem" and "binop mem, %reg" where binop
8420 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8421 instructions without data prefix. Always generate
8422 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8423 if (i.prefix[DATA_PREFIX] == 0
8424 && (generate_relax_relocations
8425 || (!object_64bit
8426 && i.rm.mode == 0
8427 && i.rm.regmem == 5))
0cb4071e
L
8428 && (i.rm.mode == 2
8429 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8430 && ((i.operands == 1
8431 && i.tm.base_opcode == 0xff
8432 && (i.rm.reg == 2 || i.rm.reg == 4))
8433 || (i.operands == 2
8434 && (i.tm.base_opcode == 0x8b
8435 || i.tm.base_opcode == 0x85
8436 || (i.tm.base_opcode & 0xc7) == 0x03))))
8437 {
8438 if (object_64bit)
8439 {
8440 fixP->fx_tcbit = i.rex != 0;
8441 if (i.base_reg
e968fc9b 8442 && (i.base_reg->reg_num == RegIP))
02a86693
L
8443 fixP->fx_tcbit2 = 1;
8444 }
8445 else
8446 fixP->fx_tcbit2 = 1;
8447 }
29b0f896
AM
8448 }
8449 }
8450 }
8451}
252b5132 8452
29b0f896 8453static void
64e74474 8454output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8455{
8456 char *p;
8457 unsigned int n;
252b5132 8458
29b0f896
AM
8459 for (n = 0; n < i.operands; n++)
8460 {
43234a1e
L
8461 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8462 if (i.rounding && (int) n == i.rounding->operand)
8463 continue;
8464
40fb9820 8465 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8466 {
8467 if (i.op[n].imms->X_op == O_constant)
8468 {
e205caa7 8469 int size = imm_size (n);
29b0f896 8470 offsetT val;
b4cac588 8471
29b0f896
AM
8472 val = offset_in_range (i.op[n].imms->X_add_number,
8473 size);
8474 p = frag_more (size);
8475 md_number_to_chars (p, val, size);
8476 }
8477 else
8478 {
8479 /* Not absolute_section.
8480 Need a 32-bit fixup (don't support 8bit
8481 non-absolute imms). Try to support other
8482 sizes ... */
f86103b7 8483 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8484 int size = imm_size (n);
8485 int sign;
29b0f896 8486
40fb9820 8487 if (i.types[n].bitfield.imm32s
a7d61044 8488 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8489 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8490 sign = 1;
e205caa7
L
8491 else
8492 sign = 0;
520dc8e8 8493
29b0f896 8494 p = frag_more (size);
d258b828 8495 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8496
2bbd9c25
JJ
8497 /* This is tough to explain. We end up with this one if we
8498 * have operands that look like
8499 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8500 * obtain the absolute address of the GOT, and it is strongly
8501 * preferable from a performance point of view to avoid using
8502 * a runtime relocation for this. The actual sequence of
8503 * instructions often look something like:
8504 *
8505 * call .L66
8506 * .L66:
8507 * popl %ebx
8508 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8509 *
8510 * The call and pop essentially return the absolute address
8511 * of the label .L66 and store it in %ebx. The linker itself
8512 * will ultimately change the first operand of the addl so
8513 * that %ebx points to the GOT, but to keep things simple, the
8514 * .o file must have this operand set so that it generates not
8515 * the absolute address of .L66, but the absolute address of
8516 * itself. This allows the linker itself simply treat a GOTPC
8517 * relocation as asking for a pcrel offset to the GOT to be
8518 * added in, and the addend of the relocation is stored in the
8519 * operand field for the instruction itself.
8520 *
8521 * Our job here is to fix the operand so that it would add
8522 * the correct offset so that %ebx would point to itself. The
8523 * thing that is tricky is that .-.L66 will point to the
8524 * beginning of the instruction, so we need to further modify
8525 * the operand so that it will point to itself. There are
8526 * other cases where you have something like:
8527 *
8528 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8529 *
8530 * and here no correction would be required. Internally in
8531 * the assembler we treat operands of this form as not being
8532 * pcrel since the '.' is explicitly mentioned, and I wonder
8533 * whether it would simplify matters to do it this way. Who
8534 * knows. In earlier versions of the PIC patches, the
8535 * pcrel_adjust field was used to store the correction, but
8536 * since the expression is not pcrel, I felt it would be
8537 * confusing to do it this way. */
8538
d6ab8113 8539 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8540 || reloc_type == BFD_RELOC_X86_64_32S
8541 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8542 && GOT_symbol
8543 && GOT_symbol == i.op[n].imms->X_add_symbol
8544 && (i.op[n].imms->X_op == O_symbol
8545 || (i.op[n].imms->X_op == O_add
8546 && ((symbol_get_value_expression
8547 (i.op[n].imms->X_op_symbol)->X_op)
8548 == O_subtract))))
8549 {
2bbd9c25
JJ
8550 offsetT add;
8551
8552 if (insn_start_frag == frag_now)
8553 add = (p - frag_now->fr_literal) - insn_start_off;
8554 else
8555 {
8556 fragS *fr;
8557
8558 add = insn_start_frag->fr_fix - insn_start_off;
8559 for (fr = insn_start_frag->fr_next;
8560 fr && fr != frag_now; fr = fr->fr_next)
8561 add += fr->fr_fix;
8562 add += p - frag_now->fr_literal;
8563 }
8564
4fa24527 8565 if (!object_64bit)
d6ab8113 8566 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8567 else if (size == 4)
d6ab8113 8568 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8569 else if (size == 8)
8570 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8571 i.op[n].imms->X_add_number += add;
29b0f896 8572 }
29b0f896
AM
8573 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8574 i.op[n].imms, 0, reloc_type);
8575 }
8576 }
8577 }
252b5132
RH
8578}
8579\f
d182319b
JB
8580/* x86_cons_fix_new is called via the expression parsing code when a
8581 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8582static int cons_sign = -1;
8583
8584void
e3bb37b5 8585x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8586 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8587{
d258b828 8588 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8589
8590#ifdef TE_PE
8591 if (exp->X_op == O_secrel)
8592 {
8593 exp->X_op = O_symbol;
8594 r = BFD_RELOC_32_SECREL;
8595 }
8596#endif
8597
8598 fix_new_exp (frag, off, len, exp, 0, r);
8599}
8600
357d1bd8
L
8601/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8602 purpose of the `.dc.a' internal pseudo-op. */
8603
8604int
8605x86_address_bytes (void)
8606{
8607 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8608 return 4;
8609 return stdoutput->arch_info->bits_per_address / 8;
8610}
8611
d382c579
TG
8612#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8613 || defined (LEX_AT)
d258b828 8614# define lex_got(reloc, adjust, types) NULL
718ddfc0 8615#else
f3c180ae
AM
8616/* Parse operands of the form
8617 <symbol>@GOTOFF+<nnn>
8618 and similar .plt or .got references.
8619
8620 If we find one, set up the correct relocation in RELOC and copy the
8621 input string, minus the `@GOTOFF' into a malloc'd buffer for
8622 parsing by the calling routine. Return this buffer, and if ADJUST
8623 is non-null set it to the length of the string we removed from the
8624 input line. Otherwise return NULL. */
8625static char *
91d6fa6a 8626lex_got (enum bfd_reloc_code_real *rel,
64e74474 8627 int *adjust,
d258b828 8628 i386_operand_type *types)
f3c180ae 8629{
7b81dfbb
AJ
8630 /* Some of the relocations depend on the size of what field is to
8631 be relocated. But in our callers i386_immediate and i386_displacement
8632 we don't yet know the operand size (this will be set by insn
8633 matching). Hence we record the word32 relocation here,
8634 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8635 static const struct {
8636 const char *str;
cff8d58a 8637 int len;
4fa24527 8638 const enum bfd_reloc_code_real rel[2];
40fb9820 8639 const i386_operand_type types64;
f3c180ae 8640 } gotrel[] = {
8ce3d284 8641#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8642 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8643 BFD_RELOC_SIZE32 },
8644 OPERAND_TYPE_IMM32_64 },
8ce3d284 8645#endif
cff8d58a
L
8646 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8647 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8648 OPERAND_TYPE_IMM64 },
cff8d58a
L
8649 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8650 BFD_RELOC_X86_64_PLT32 },
40fb9820 8651 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8652 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8653 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8654 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8655 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8656 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8657 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8658 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8659 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8660 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8661 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8662 BFD_RELOC_X86_64_TLSGD },
40fb9820 8663 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8664 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8665 _dummy_first_bfd_reloc_code_real },
40fb9820 8666 OPERAND_TYPE_NONE },
cff8d58a
L
8667 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8668 BFD_RELOC_X86_64_TLSLD },
40fb9820 8669 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8670 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8671 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8672 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8673 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8674 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8675 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8676 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8677 _dummy_first_bfd_reloc_code_real },
40fb9820 8678 OPERAND_TYPE_NONE },
cff8d58a
L
8679 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8680 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8681 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8682 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8683 _dummy_first_bfd_reloc_code_real },
40fb9820 8684 OPERAND_TYPE_NONE },
cff8d58a
L
8685 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8686 _dummy_first_bfd_reloc_code_real },
40fb9820 8687 OPERAND_TYPE_NONE },
cff8d58a
L
8688 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8689 BFD_RELOC_X86_64_GOT32 },
40fb9820 8690 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8691 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8692 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8693 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8694 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8695 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8696 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8697 };
8698 char *cp;
8699 unsigned int j;
8700
d382c579 8701#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8702 if (!IS_ELF)
8703 return NULL;
d382c579 8704#endif
718ddfc0 8705
f3c180ae 8706 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8707 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8708 return NULL;
8709
47465058 8710 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8711 {
cff8d58a 8712 int len = gotrel[j].len;
28f81592 8713 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8714 {
4fa24527 8715 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8716 {
28f81592
AM
8717 int first, second;
8718 char *tmpbuf, *past_reloc;
f3c180ae 8719
91d6fa6a 8720 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8721
3956db08
JB
8722 if (types)
8723 {
8724 if (flag_code != CODE_64BIT)
40fb9820
L
8725 {
8726 types->bitfield.imm32 = 1;
8727 types->bitfield.disp32 = 1;
8728 }
3956db08
JB
8729 else
8730 *types = gotrel[j].types64;
8731 }
8732
8fd4256d 8733 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8734 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8735
28f81592 8736 /* The length of the first part of our input line. */
f3c180ae 8737 first = cp - input_line_pointer;
28f81592
AM
8738
8739 /* The second part goes from after the reloc token until
67c11a9b 8740 (and including) an end_of_line char or comma. */
28f81592 8741 past_reloc = cp + 1 + len;
67c11a9b
AM
8742 cp = past_reloc;
8743 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8744 ++cp;
8745 second = cp + 1 - past_reloc;
28f81592
AM
8746
8747 /* Allocate and copy string. The trailing NUL shouldn't
8748 be necessary, but be safe. */
add39d23 8749 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8750 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8751 if (second != 0 && *past_reloc != ' ')
8752 /* Replace the relocation token with ' ', so that
8753 errors like foo@GOTOFF1 will be detected. */
8754 tmpbuf[first++] = ' ';
af89796a
L
8755 else
8756 /* Increment length by 1 if the relocation token is
8757 removed. */
8758 len++;
8759 if (adjust)
8760 *adjust = len;
0787a12d
AM
8761 memcpy (tmpbuf + first, past_reloc, second);
8762 tmpbuf[first + second] = '\0';
f3c180ae
AM
8763 return tmpbuf;
8764 }
8765
4fa24527
JB
8766 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8767 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8768 return NULL;
8769 }
8770 }
8771
8772 /* Might be a symbol version string. Don't as_bad here. */
8773 return NULL;
8774}
4e4f7c87 8775#endif
f3c180ae 8776
a988325c
NC
8777#ifdef TE_PE
8778#ifdef lex_got
8779#undef lex_got
8780#endif
8781/* Parse operands of the form
8782 <symbol>@SECREL32+<nnn>
8783
8784 If we find one, set up the correct relocation in RELOC and copy the
8785 input string, minus the `@SECREL32' into a malloc'd buffer for
8786 parsing by the calling routine. Return this buffer, and if ADJUST
8787 is non-null set it to the length of the string we removed from the
34bca508
L
8788 input line. Otherwise return NULL.
8789
a988325c
NC
8790 This function is copied from the ELF version above adjusted for PE targets. */
8791
8792static char *
8793lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8794 int *adjust ATTRIBUTE_UNUSED,
d258b828 8795 i386_operand_type *types)
a988325c
NC
8796{
8797 static const struct
8798 {
8799 const char *str;
8800 int len;
8801 const enum bfd_reloc_code_real rel[2];
8802 const i386_operand_type types64;
8803 }
8804 gotrel[] =
8805 {
8806 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8807 BFD_RELOC_32_SECREL },
8808 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8809 };
8810
8811 char *cp;
8812 unsigned j;
8813
8814 for (cp = input_line_pointer; *cp != '@'; cp++)
8815 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8816 return NULL;
8817
8818 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8819 {
8820 int len = gotrel[j].len;
8821
8822 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8823 {
8824 if (gotrel[j].rel[object_64bit] != 0)
8825 {
8826 int first, second;
8827 char *tmpbuf, *past_reloc;
8828
8829 *rel = gotrel[j].rel[object_64bit];
8830 if (adjust)
8831 *adjust = len;
8832
8833 if (types)
8834 {
8835 if (flag_code != CODE_64BIT)
8836 {
8837 types->bitfield.imm32 = 1;
8838 types->bitfield.disp32 = 1;
8839 }
8840 else
8841 *types = gotrel[j].types64;
8842 }
8843
8844 /* The length of the first part of our input line. */
8845 first = cp - input_line_pointer;
8846
8847 /* The second part goes from after the reloc token until
8848 (and including) an end_of_line char or comma. */
8849 past_reloc = cp + 1 + len;
8850 cp = past_reloc;
8851 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8852 ++cp;
8853 second = cp + 1 - past_reloc;
8854
8855 /* Allocate and copy string. The trailing NUL shouldn't
8856 be necessary, but be safe. */
add39d23 8857 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8858 memcpy (tmpbuf, input_line_pointer, first);
8859 if (second != 0 && *past_reloc != ' ')
8860 /* Replace the relocation token with ' ', so that
8861 errors like foo@SECLREL321 will be detected. */
8862 tmpbuf[first++] = ' ';
8863 memcpy (tmpbuf + first, past_reloc, second);
8864 tmpbuf[first + second] = '\0';
8865 return tmpbuf;
8866 }
8867
8868 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8869 gotrel[j].str, 1 << (5 + object_64bit));
8870 return NULL;
8871 }
8872 }
8873
8874 /* Might be a symbol version string. Don't as_bad here. */
8875 return NULL;
8876}
8877
8878#endif /* TE_PE */
8879
62ebcb5c 8880bfd_reloc_code_real_type
e3bb37b5 8881x86_cons (expressionS *exp, int size)
f3c180ae 8882{
62ebcb5c
AM
8883 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8884
ee86248c
JB
8885 intel_syntax = -intel_syntax;
8886
3c7b9c2c 8887 exp->X_md = 0;
4fa24527 8888 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8889 {
8890 /* Handle @GOTOFF and the like in an expression. */
8891 char *save;
8892 char *gotfree_input_line;
4a57f2cf 8893 int adjust = 0;
f3c180ae
AM
8894
8895 save = input_line_pointer;
d258b828 8896 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8897 if (gotfree_input_line)
8898 input_line_pointer = gotfree_input_line;
8899
8900 expression (exp);
8901
8902 if (gotfree_input_line)
8903 {
8904 /* expression () has merrily parsed up to the end of line,
8905 or a comma - in the wrong buffer. Transfer how far
8906 input_line_pointer has moved to the right buffer. */
8907 input_line_pointer = (save
8908 + (input_line_pointer - gotfree_input_line)
8909 + adjust);
8910 free (gotfree_input_line);
3992d3b7
AM
8911 if (exp->X_op == O_constant
8912 || exp->X_op == O_absent
8913 || exp->X_op == O_illegal
0398aac5 8914 || exp->X_op == O_register
3992d3b7
AM
8915 || exp->X_op == O_big)
8916 {
8917 char c = *input_line_pointer;
8918 *input_line_pointer = 0;
8919 as_bad (_("missing or invalid expression `%s'"), save);
8920 *input_line_pointer = c;
8921 }
b9519cfe
L
8922 else if ((got_reloc == BFD_RELOC_386_PLT32
8923 || got_reloc == BFD_RELOC_X86_64_PLT32)
8924 && exp->X_op != O_symbol)
8925 {
8926 char c = *input_line_pointer;
8927 *input_line_pointer = 0;
8928 as_bad (_("invalid PLT expression `%s'"), save);
8929 *input_line_pointer = c;
8930 }
f3c180ae
AM
8931 }
8932 }
8933 else
8934 expression (exp);
ee86248c
JB
8935
8936 intel_syntax = -intel_syntax;
8937
8938 if (intel_syntax)
8939 i386_intel_simplify (exp);
62ebcb5c
AM
8940
8941 return got_reloc;
f3c180ae 8942}
f3c180ae 8943
9f32dd5b
L
8944static void
8945signed_cons (int size)
6482c264 8946{
d182319b
JB
8947 if (flag_code == CODE_64BIT)
8948 cons_sign = 1;
8949 cons (size);
8950 cons_sign = -1;
6482c264
NC
8951}
8952
d182319b 8953#ifdef TE_PE
6482c264 8954static void
7016a5d5 8955pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8956{
8957 expressionS exp;
8958
8959 do
8960 {
8961 expression (&exp);
8962 if (exp.X_op == O_symbol)
8963 exp.X_op = O_secrel;
8964
8965 emit_expr (&exp, 4);
8966 }
8967 while (*input_line_pointer++ == ',');
8968
8969 input_line_pointer--;
8970 demand_empty_rest_of_line ();
8971}
6482c264
NC
8972#endif
8973
43234a1e
L
8974/* Handle Vector operations. */
8975
8976static char *
8977check_VecOperations (char *op_string, char *op_end)
8978{
8979 const reg_entry *mask;
8980 const char *saved;
8981 char *end_op;
8982
8983 while (*op_string
8984 && (op_end == NULL || op_string < op_end))
8985 {
8986 saved = op_string;
8987 if (*op_string == '{')
8988 {
8989 op_string++;
8990
8991 /* Check broadcasts. */
8992 if (strncmp (op_string, "1to", 3) == 0)
8993 {
8994 int bcst_type;
8995
8996 if (i.broadcast)
8997 goto duplicated_vec_op;
8998
8999 op_string += 3;
9000 if (*op_string == '8')
8e6e0792 9001 bcst_type = 8;
b28d1bda 9002 else if (*op_string == '4')
8e6e0792 9003 bcst_type = 4;
b28d1bda 9004 else if (*op_string == '2')
8e6e0792 9005 bcst_type = 2;
43234a1e
L
9006 else if (*op_string == '1'
9007 && *(op_string+1) == '6')
9008 {
8e6e0792 9009 bcst_type = 16;
43234a1e
L
9010 op_string++;
9011 }
9012 else
9013 {
9014 as_bad (_("Unsupported broadcast: `%s'"), saved);
9015 return NULL;
9016 }
9017 op_string++;
9018
9019 broadcast_op.type = bcst_type;
9020 broadcast_op.operand = this_operand;
1f75763a 9021 broadcast_op.bytes = 0;
43234a1e
L
9022 i.broadcast = &broadcast_op;
9023 }
9024 /* Check masking operation. */
9025 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9026 {
9027 /* k0 can't be used for write mask. */
6d2cd6b2 9028 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9029 {
6d2cd6b2
JB
9030 as_bad (_("`%s%s' can't be used for write mask"),
9031 register_prefix, mask->reg_name);
43234a1e
L
9032 return NULL;
9033 }
9034
9035 if (!i.mask)
9036 {
9037 mask_op.mask = mask;
9038 mask_op.zeroing = 0;
9039 mask_op.operand = this_operand;
9040 i.mask = &mask_op;
9041 }
9042 else
9043 {
9044 if (i.mask->mask)
9045 goto duplicated_vec_op;
9046
9047 i.mask->mask = mask;
9048
9049 /* Only "{z}" is allowed here. No need to check
9050 zeroing mask explicitly. */
9051 if (i.mask->operand != this_operand)
9052 {
9053 as_bad (_("invalid write mask `%s'"), saved);
9054 return NULL;
9055 }
9056 }
9057
9058 op_string = end_op;
9059 }
9060 /* Check zeroing-flag for masking operation. */
9061 else if (*op_string == 'z')
9062 {
9063 if (!i.mask)
9064 {
9065 mask_op.mask = NULL;
9066 mask_op.zeroing = 1;
9067 mask_op.operand = this_operand;
9068 i.mask = &mask_op;
9069 }
9070 else
9071 {
9072 if (i.mask->zeroing)
9073 {
9074 duplicated_vec_op:
9075 as_bad (_("duplicated `%s'"), saved);
9076 return NULL;
9077 }
9078
9079 i.mask->zeroing = 1;
9080
9081 /* Only "{%k}" is allowed here. No need to check mask
9082 register explicitly. */
9083 if (i.mask->operand != this_operand)
9084 {
9085 as_bad (_("invalid zeroing-masking `%s'"),
9086 saved);
9087 return NULL;
9088 }
9089 }
9090
9091 op_string++;
9092 }
9093 else
9094 goto unknown_vec_op;
9095
9096 if (*op_string != '}')
9097 {
9098 as_bad (_("missing `}' in `%s'"), saved);
9099 return NULL;
9100 }
9101 op_string++;
0ba3a731
L
9102
9103 /* Strip whitespace since the addition of pseudo prefixes
9104 changed how the scrubber treats '{'. */
9105 if (is_space_char (*op_string))
9106 ++op_string;
9107
43234a1e
L
9108 continue;
9109 }
9110 unknown_vec_op:
9111 /* We don't know this one. */
9112 as_bad (_("unknown vector operation: `%s'"), saved);
9113 return NULL;
9114 }
9115
6d2cd6b2
JB
9116 if (i.mask && i.mask->zeroing && !i.mask->mask)
9117 {
9118 as_bad (_("zeroing-masking only allowed with write mask"));
9119 return NULL;
9120 }
9121
43234a1e
L
9122 return op_string;
9123}
9124
252b5132 9125static int
70e41ade 9126i386_immediate (char *imm_start)
252b5132
RH
9127{
9128 char *save_input_line_pointer;
f3c180ae 9129 char *gotfree_input_line;
252b5132 9130 segT exp_seg = 0;
47926f60 9131 expressionS *exp;
40fb9820
L
9132 i386_operand_type types;
9133
0dfbf9d7 9134 operand_type_set (&types, ~0);
252b5132
RH
9135
9136 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9137 {
31b2323c
L
9138 as_bad (_("at most %d immediate operands are allowed"),
9139 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9140 return 0;
9141 }
9142
9143 exp = &im_expressions[i.imm_operands++];
520dc8e8 9144 i.op[this_operand].imms = exp;
252b5132
RH
9145
9146 if (is_space_char (*imm_start))
9147 ++imm_start;
9148
9149 save_input_line_pointer = input_line_pointer;
9150 input_line_pointer = imm_start;
9151
d258b828 9152 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9153 if (gotfree_input_line)
9154 input_line_pointer = gotfree_input_line;
252b5132
RH
9155
9156 exp_seg = expression (exp);
9157
83183c0c 9158 SKIP_WHITESPACE ();
43234a1e
L
9159
9160 /* Handle vector operations. */
9161 if (*input_line_pointer == '{')
9162 {
9163 input_line_pointer = check_VecOperations (input_line_pointer,
9164 NULL);
9165 if (input_line_pointer == NULL)
9166 return 0;
9167 }
9168
252b5132 9169 if (*input_line_pointer)
f3c180ae 9170 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9171
9172 input_line_pointer = save_input_line_pointer;
f3c180ae 9173 if (gotfree_input_line)
ee86248c
JB
9174 {
9175 free (gotfree_input_line);
9176
9177 if (exp->X_op == O_constant || exp->X_op == O_register)
9178 exp->X_op = O_illegal;
9179 }
9180
9181 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9182}
252b5132 9183
ee86248c
JB
9184static int
9185i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9186 i386_operand_type types, const char *imm_start)
9187{
9188 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9189 {
313c53d1
L
9190 if (imm_start)
9191 as_bad (_("missing or invalid immediate expression `%s'"),
9192 imm_start);
3992d3b7 9193 return 0;
252b5132 9194 }
3e73aa7c 9195 else if (exp->X_op == O_constant)
252b5132 9196 {
47926f60 9197 /* Size it properly later. */
40fb9820 9198 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9199 /* If not 64bit, sign extend val. */
9200 if (flag_code != CODE_64BIT
4eed87de
AM
9201 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9202 exp->X_add_number
9203 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9204 }
4c63da97 9205#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9206 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9207 && exp_seg != absolute_section
47926f60 9208 && exp_seg != text_section
24eab124
AM
9209 && exp_seg != data_section
9210 && exp_seg != bss_section
9211 && exp_seg != undefined_section
f86103b7 9212 && !bfd_is_com_section (exp_seg))
252b5132 9213 {
d0b47220 9214 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9215 return 0;
9216 }
9217#endif
a841bdf5 9218 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9219 {
313c53d1
L
9220 if (imm_start)
9221 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9222 return 0;
9223 }
252b5132
RH
9224 else
9225 {
9226 /* This is an address. The size of the address will be
24eab124 9227 determined later, depending on destination register,
3e73aa7c 9228 suffix, or the default for the section. */
40fb9820
L
9229 i.types[this_operand].bitfield.imm8 = 1;
9230 i.types[this_operand].bitfield.imm16 = 1;
9231 i.types[this_operand].bitfield.imm32 = 1;
9232 i.types[this_operand].bitfield.imm32s = 1;
9233 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9234 i.types[this_operand] = operand_type_and (i.types[this_operand],
9235 types);
252b5132
RH
9236 }
9237
9238 return 1;
9239}
9240
551c1ca1 9241static char *
e3bb37b5 9242i386_scale (char *scale)
252b5132 9243{
551c1ca1
AM
9244 offsetT val;
9245 char *save = input_line_pointer;
252b5132 9246
551c1ca1
AM
9247 input_line_pointer = scale;
9248 val = get_absolute_expression ();
9249
9250 switch (val)
252b5132 9251 {
551c1ca1 9252 case 1:
252b5132
RH
9253 i.log2_scale_factor = 0;
9254 break;
551c1ca1 9255 case 2:
252b5132
RH
9256 i.log2_scale_factor = 1;
9257 break;
551c1ca1 9258 case 4:
252b5132
RH
9259 i.log2_scale_factor = 2;
9260 break;
551c1ca1 9261 case 8:
252b5132
RH
9262 i.log2_scale_factor = 3;
9263 break;
9264 default:
a724f0f4
JB
9265 {
9266 char sep = *input_line_pointer;
9267
9268 *input_line_pointer = '\0';
9269 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9270 scale);
9271 *input_line_pointer = sep;
9272 input_line_pointer = save;
9273 return NULL;
9274 }
252b5132 9275 }
29b0f896 9276 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9277 {
9278 as_warn (_("scale factor of %d without an index register"),
24eab124 9279 1 << i.log2_scale_factor);
252b5132 9280 i.log2_scale_factor = 0;
252b5132 9281 }
551c1ca1
AM
9282 scale = input_line_pointer;
9283 input_line_pointer = save;
9284 return scale;
252b5132
RH
9285}
9286
252b5132 9287static int
e3bb37b5 9288i386_displacement (char *disp_start, char *disp_end)
252b5132 9289{
29b0f896 9290 expressionS *exp;
252b5132
RH
9291 segT exp_seg = 0;
9292 char *save_input_line_pointer;
f3c180ae 9293 char *gotfree_input_line;
40fb9820
L
9294 int override;
9295 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9296 int ret;
252b5132 9297
31b2323c
L
9298 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9299 {
9300 as_bad (_("at most %d displacement operands are allowed"),
9301 MAX_MEMORY_OPERANDS);
9302 return 0;
9303 }
9304
0dfbf9d7 9305 operand_type_set (&bigdisp, 0);
40fb9820
L
9306 if ((i.types[this_operand].bitfield.jumpabsolute)
9307 || (!current_templates->start->opcode_modifier.jump
9308 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9309 {
40fb9820 9310 bigdisp.bitfield.disp32 = 1;
e05278af 9311 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9312 if (flag_code == CODE_64BIT)
9313 {
9314 if (!override)
9315 {
9316 bigdisp.bitfield.disp32s = 1;
9317 bigdisp.bitfield.disp64 = 1;
9318 }
9319 }
9320 else if ((flag_code == CODE_16BIT) ^ override)
9321 {
9322 bigdisp.bitfield.disp32 = 0;
9323 bigdisp.bitfield.disp16 = 1;
9324 }
e05278af
JB
9325 }
9326 else
9327 {
9328 /* For PC-relative branches, the width of the displacement
9329 is dependent upon data size, not address size. */
e05278af 9330 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9331 if (flag_code == CODE_64BIT)
9332 {
9333 if (override || i.suffix == WORD_MNEM_SUFFIX)
9334 bigdisp.bitfield.disp16 = 1;
9335 else
9336 {
9337 bigdisp.bitfield.disp32 = 1;
9338 bigdisp.bitfield.disp32s = 1;
9339 }
9340 }
9341 else
e05278af
JB
9342 {
9343 if (!override)
9344 override = (i.suffix == (flag_code != CODE_16BIT
9345 ? WORD_MNEM_SUFFIX
9346 : LONG_MNEM_SUFFIX));
40fb9820
L
9347 bigdisp.bitfield.disp32 = 1;
9348 if ((flag_code == CODE_16BIT) ^ override)
9349 {
9350 bigdisp.bitfield.disp32 = 0;
9351 bigdisp.bitfield.disp16 = 1;
9352 }
e05278af 9353 }
e05278af 9354 }
c6fb90c8
L
9355 i.types[this_operand] = operand_type_or (i.types[this_operand],
9356 bigdisp);
252b5132
RH
9357
9358 exp = &disp_expressions[i.disp_operands];
520dc8e8 9359 i.op[this_operand].disps = exp;
252b5132
RH
9360 i.disp_operands++;
9361 save_input_line_pointer = input_line_pointer;
9362 input_line_pointer = disp_start;
9363 END_STRING_AND_SAVE (disp_end);
9364
9365#ifndef GCC_ASM_O_HACK
9366#define GCC_ASM_O_HACK 0
9367#endif
9368#if GCC_ASM_O_HACK
9369 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9370 if (i.types[this_operand].bitfield.baseIndex
24eab124 9371 && displacement_string_end[-1] == '+')
252b5132
RH
9372 {
9373 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9374 constraint within gcc asm statements.
9375 For instance:
9376
9377 #define _set_tssldt_desc(n,addr,limit,type) \
9378 __asm__ __volatile__ ( \
9379 "movw %w2,%0\n\t" \
9380 "movw %w1,2+%0\n\t" \
9381 "rorl $16,%1\n\t" \
9382 "movb %b1,4+%0\n\t" \
9383 "movb %4,5+%0\n\t" \
9384 "movb $0,6+%0\n\t" \
9385 "movb %h1,7+%0\n\t" \
9386 "rorl $16,%1" \
9387 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9388
9389 This works great except that the output assembler ends
9390 up looking a bit weird if it turns out that there is
9391 no offset. You end up producing code that looks like:
9392
9393 #APP
9394 movw $235,(%eax)
9395 movw %dx,2+(%eax)
9396 rorl $16,%edx
9397 movb %dl,4+(%eax)
9398 movb $137,5+(%eax)
9399 movb $0,6+(%eax)
9400 movb %dh,7+(%eax)
9401 rorl $16,%edx
9402 #NO_APP
9403
47926f60 9404 So here we provide the missing zero. */
24eab124
AM
9405
9406 *displacement_string_end = '0';
252b5132
RH
9407 }
9408#endif
d258b828 9409 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9410 if (gotfree_input_line)
9411 input_line_pointer = gotfree_input_line;
252b5132 9412
24eab124 9413 exp_seg = expression (exp);
252b5132 9414
636c26b0
AM
9415 SKIP_WHITESPACE ();
9416 if (*input_line_pointer)
9417 as_bad (_("junk `%s' after expression"), input_line_pointer);
9418#if GCC_ASM_O_HACK
9419 RESTORE_END_STRING (disp_end + 1);
9420#endif
636c26b0 9421 input_line_pointer = save_input_line_pointer;
636c26b0 9422 if (gotfree_input_line)
ee86248c
JB
9423 {
9424 free (gotfree_input_line);
9425
9426 if (exp->X_op == O_constant || exp->X_op == O_register)
9427 exp->X_op = O_illegal;
9428 }
9429
9430 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9431
9432 RESTORE_END_STRING (disp_end);
9433
9434 return ret;
9435}
9436
9437static int
9438i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9439 i386_operand_type types, const char *disp_start)
9440{
9441 i386_operand_type bigdisp;
9442 int ret = 1;
636c26b0 9443
24eab124
AM
9444 /* We do this to make sure that the section symbol is in
9445 the symbol table. We will ultimately change the relocation
47926f60 9446 to be relative to the beginning of the section. */
1ae12ab7 9447 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9448 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9449 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9450 {
636c26b0 9451 if (exp->X_op != O_symbol)
3992d3b7 9452 goto inv_disp;
636c26b0 9453
e5cb08ac 9454 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9455 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9456 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9457 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9458 exp->X_op = O_subtract;
9459 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9460 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9461 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9462 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9463 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9464 else
29b0f896 9465 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9466 }
252b5132 9467
3992d3b7
AM
9468 else if (exp->X_op == O_absent
9469 || exp->X_op == O_illegal
ee86248c 9470 || exp->X_op == O_big)
2daf4fd8 9471 {
3992d3b7
AM
9472 inv_disp:
9473 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9474 disp_start);
3992d3b7 9475 ret = 0;
2daf4fd8
AM
9476 }
9477
0e1147d9
L
9478 else if (flag_code == CODE_64BIT
9479 && !i.prefix[ADDR_PREFIX]
9480 && exp->X_op == O_constant)
9481 {
9482 /* Since displacement is signed extended to 64bit, don't allow
9483 disp32 and turn off disp32s if they are out of range. */
9484 i.types[this_operand].bitfield.disp32 = 0;
9485 if (!fits_in_signed_long (exp->X_add_number))
9486 {
9487 i.types[this_operand].bitfield.disp32s = 0;
9488 if (i.types[this_operand].bitfield.baseindex)
9489 {
9490 as_bad (_("0x%lx out range of signed 32bit displacement"),
9491 (long) exp->X_add_number);
9492 ret = 0;
9493 }
9494 }
9495 }
9496
4c63da97 9497#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9498 else if (exp->X_op != O_constant
9499 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9500 && exp_seg != absolute_section
9501 && exp_seg != text_section
9502 && exp_seg != data_section
9503 && exp_seg != bss_section
9504 && exp_seg != undefined_section
9505 && !bfd_is_com_section (exp_seg))
24eab124 9506 {
d0b47220 9507 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9508 ret = 0;
24eab124 9509 }
252b5132 9510#endif
3956db08 9511
40fb9820
L
9512 /* Check if this is a displacement only operand. */
9513 bigdisp = i.types[this_operand];
9514 bigdisp.bitfield.disp8 = 0;
9515 bigdisp.bitfield.disp16 = 0;
9516 bigdisp.bitfield.disp32 = 0;
9517 bigdisp.bitfield.disp32s = 0;
9518 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9519 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9520 i.types[this_operand] = operand_type_and (i.types[this_operand],
9521 types);
3956db08 9522
3992d3b7 9523 return ret;
252b5132
RH
9524}
9525
2abc2bec
JB
9526/* Return the active addressing mode, taking address override and
9527 registers forming the address into consideration. Update the
9528 address override prefix if necessary. */
47926f60 9529
2abc2bec
JB
9530static enum flag_code
9531i386_addressing_mode (void)
252b5132 9532{
be05d201
L
9533 enum flag_code addr_mode;
9534
9535 if (i.prefix[ADDR_PREFIX])
9536 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9537 else
9538 {
9539 addr_mode = flag_code;
9540
24eab124 9541#if INFER_ADDR_PREFIX
be05d201
L
9542 if (i.mem_operands == 0)
9543 {
9544 /* Infer address prefix from the first memory operand. */
9545 const reg_entry *addr_reg = i.base_reg;
9546
9547 if (addr_reg == NULL)
9548 addr_reg = i.index_reg;
eecb386c 9549
be05d201
L
9550 if (addr_reg)
9551 {
e968fc9b 9552 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9553 addr_mode = CODE_32BIT;
9554 else if (flag_code != CODE_64BIT
dc821c5f 9555 && addr_reg->reg_type.bitfield.word)
be05d201
L
9556 addr_mode = CODE_16BIT;
9557
9558 if (addr_mode != flag_code)
9559 {
9560 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9561 i.prefixes += 1;
9562 /* Change the size of any displacement too. At most one
9563 of Disp16 or Disp32 is set.
9564 FIXME. There doesn't seem to be any real need for
9565 separate Disp16 and Disp32 flags. The same goes for
9566 Imm16 and Imm32. Removing them would probably clean
9567 up the code quite a lot. */
9568 if (flag_code != CODE_64BIT
9569 && (i.types[this_operand].bitfield.disp16
9570 || i.types[this_operand].bitfield.disp32))
9571 i.types[this_operand]
9572 = operand_type_xor (i.types[this_operand], disp16_32);
9573 }
9574 }
9575 }
24eab124 9576#endif
be05d201
L
9577 }
9578
2abc2bec
JB
9579 return addr_mode;
9580}
9581
9582/* Make sure the memory operand we've been dealt is valid.
9583 Return 1 on success, 0 on a failure. */
9584
9585static int
9586i386_index_check (const char *operand_string)
9587{
9588 const char *kind = "base/index";
9589 enum flag_code addr_mode = i386_addressing_mode ();
9590
fc0763e6
JB
9591 if (current_templates->start->opcode_modifier.isstring
9592 && !current_templates->start->opcode_modifier.immext
9593 && (current_templates->end[-1].opcode_modifier.isstring
9594 || i.mem_operands))
9595 {
9596 /* Memory operands of string insns are special in that they only allow
9597 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9598 const reg_entry *expected_reg;
9599 static const char *di_si[][2] =
9600 {
9601 { "esi", "edi" },
9602 { "si", "di" },
9603 { "rsi", "rdi" }
9604 };
9605 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9606
9607 kind = "string address";
9608
8325cc63 9609 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9610 {
9611 i386_operand_type type = current_templates->end[-1].operand_types[0];
9612
9613 if (!type.bitfield.baseindex
9614 || ((!i.mem_operands != !intel_syntax)
9615 && current_templates->end[-1].operand_types[1]
9616 .bitfield.baseindex))
9617 type = current_templates->end[-1].operand_types[1];
be05d201
L
9618 expected_reg = hash_find (reg_hash,
9619 di_si[addr_mode][type.bitfield.esseg]);
9620
fc0763e6
JB
9621 }
9622 else
be05d201 9623 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9624
be05d201
L
9625 if (i.base_reg != expected_reg
9626 || i.index_reg
fc0763e6 9627 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9628 {
be05d201
L
9629 /* The second memory operand must have the same size as
9630 the first one. */
9631 if (i.mem_operands
9632 && i.base_reg
9633 && !((addr_mode == CODE_64BIT
dc821c5f 9634 && i.base_reg->reg_type.bitfield.qword)
be05d201 9635 || (addr_mode == CODE_32BIT
dc821c5f
JB
9636 ? i.base_reg->reg_type.bitfield.dword
9637 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9638 goto bad_address;
9639
fc0763e6
JB
9640 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9641 operand_string,
9642 intel_syntax ? '[' : '(',
9643 register_prefix,
be05d201 9644 expected_reg->reg_name,
fc0763e6 9645 intel_syntax ? ']' : ')');
be05d201 9646 return 1;
fc0763e6 9647 }
be05d201
L
9648 else
9649 return 1;
9650
9651bad_address:
9652 as_bad (_("`%s' is not a valid %s expression"),
9653 operand_string, kind);
9654 return 0;
3e73aa7c
JH
9655 }
9656 else
9657 {
be05d201
L
9658 if (addr_mode != CODE_16BIT)
9659 {
9660 /* 32-bit/64-bit checks. */
9661 if ((i.base_reg
e968fc9b
JB
9662 && ((addr_mode == CODE_64BIT
9663 ? !i.base_reg->reg_type.bitfield.qword
9664 : !i.base_reg->reg_type.bitfield.dword)
9665 || (i.index_reg && i.base_reg->reg_num == RegIP)
9666 || i.base_reg->reg_num == RegIZ))
be05d201 9667 || (i.index_reg
1b54b8d7
JB
9668 && !i.index_reg->reg_type.bitfield.xmmword
9669 && !i.index_reg->reg_type.bitfield.ymmword
9670 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9671 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9672 ? !i.index_reg->reg_type.bitfield.qword
9673 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9674 || !i.index_reg->reg_type.bitfield.baseindex)))
9675 goto bad_address;
8178be5b
JB
9676
9677 /* bndmk, bndldx, and bndstx have special restrictions. */
9678 if (current_templates->start->base_opcode == 0xf30f1b
9679 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9680 {
9681 /* They cannot use RIP-relative addressing. */
e968fc9b 9682 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9683 {
9684 as_bad (_("`%s' cannot be used here"), operand_string);
9685 return 0;
9686 }
9687
9688 /* bndldx and bndstx ignore their scale factor. */
9689 if (current_templates->start->base_opcode != 0xf30f1b
9690 && i.log2_scale_factor)
9691 as_warn (_("register scaling is being ignored here"));
9692 }
be05d201
L
9693 }
9694 else
3e73aa7c 9695 {
be05d201 9696 /* 16-bit checks. */
3e73aa7c 9697 if ((i.base_reg
dc821c5f 9698 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9699 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9700 || (i.index_reg
dc821c5f 9701 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9702 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9703 || !(i.base_reg
9704 && i.base_reg->reg_num < 6
9705 && i.index_reg->reg_num >= 6
9706 && i.log2_scale_factor == 0))))
be05d201 9707 goto bad_address;
3e73aa7c
JH
9708 }
9709 }
be05d201 9710 return 1;
24eab124 9711}
252b5132 9712
43234a1e
L
9713/* Handle vector immediates. */
9714
9715static int
9716RC_SAE_immediate (const char *imm_start)
9717{
9718 unsigned int match_found, j;
9719 const char *pstr = imm_start;
9720 expressionS *exp;
9721
9722 if (*pstr != '{')
9723 return 0;
9724
9725 pstr++;
9726 match_found = 0;
9727 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9728 {
9729 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9730 {
9731 if (!i.rounding)
9732 {
9733 rc_op.type = RC_NamesTable[j].type;
9734 rc_op.operand = this_operand;
9735 i.rounding = &rc_op;
9736 }
9737 else
9738 {
9739 as_bad (_("duplicated `%s'"), imm_start);
9740 return 0;
9741 }
9742 pstr += RC_NamesTable[j].len;
9743 match_found = 1;
9744 break;
9745 }
9746 }
9747 if (!match_found)
9748 return 0;
9749
9750 if (*pstr++ != '}')
9751 {
9752 as_bad (_("Missing '}': '%s'"), imm_start);
9753 return 0;
9754 }
9755 /* RC/SAE immediate string should contain nothing more. */;
9756 if (*pstr != 0)
9757 {
9758 as_bad (_("Junk after '}': '%s'"), imm_start);
9759 return 0;
9760 }
9761
9762 exp = &im_expressions[i.imm_operands++];
9763 i.op[this_operand].imms = exp;
9764
9765 exp->X_op = O_constant;
9766 exp->X_add_number = 0;
9767 exp->X_add_symbol = (symbolS *) 0;
9768 exp->X_op_symbol = (symbolS *) 0;
9769
9770 i.types[this_operand].bitfield.imm8 = 1;
9771 return 1;
9772}
9773
8325cc63
JB
9774/* Only string instructions can have a second memory operand, so
9775 reduce current_templates to just those if it contains any. */
9776static int
9777maybe_adjust_templates (void)
9778{
9779 const insn_template *t;
9780
9781 gas_assert (i.mem_operands == 1);
9782
9783 for (t = current_templates->start; t < current_templates->end; ++t)
9784 if (t->opcode_modifier.isstring)
9785 break;
9786
9787 if (t < current_templates->end)
9788 {
9789 static templates aux_templates;
9790 bfd_boolean recheck;
9791
9792 aux_templates.start = t;
9793 for (; t < current_templates->end; ++t)
9794 if (!t->opcode_modifier.isstring)
9795 break;
9796 aux_templates.end = t;
9797
9798 /* Determine whether to re-check the first memory operand. */
9799 recheck = (aux_templates.start != current_templates->start
9800 || t != current_templates->end);
9801
9802 current_templates = &aux_templates;
9803
9804 if (recheck)
9805 {
9806 i.mem_operands = 0;
9807 if (i.memop1_string != NULL
9808 && i386_index_check (i.memop1_string) == 0)
9809 return 0;
9810 i.mem_operands = 1;
9811 }
9812 }
9813
9814 return 1;
9815}
9816
fc0763e6 9817/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9818 on error. */
252b5132 9819
252b5132 9820static int
a7619375 9821i386_att_operand (char *operand_string)
252b5132 9822{
af6bdddf
AM
9823 const reg_entry *r;
9824 char *end_op;
24eab124 9825 char *op_string = operand_string;
252b5132 9826
24eab124 9827 if (is_space_char (*op_string))
252b5132
RH
9828 ++op_string;
9829
24eab124 9830 /* We check for an absolute prefix (differentiating,
47926f60 9831 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9832 if (*op_string == ABSOLUTE_PREFIX)
9833 {
9834 ++op_string;
9835 if (is_space_char (*op_string))
9836 ++op_string;
40fb9820 9837 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9838 }
252b5132 9839
47926f60 9840 /* Check if operand is a register. */
4d1bb795 9841 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9842 {
40fb9820
L
9843 i386_operand_type temp;
9844
24eab124
AM
9845 /* Check for a segment override by searching for ':' after a
9846 segment register. */
9847 op_string = end_op;
9848 if (is_space_char (*op_string))
9849 ++op_string;
40fb9820
L
9850 if (*op_string == ':'
9851 && (r->reg_type.bitfield.sreg2
9852 || r->reg_type.bitfield.sreg3))
24eab124
AM
9853 {
9854 switch (r->reg_num)
9855 {
9856 case 0:
9857 i.seg[i.mem_operands] = &es;
9858 break;
9859 case 1:
9860 i.seg[i.mem_operands] = &cs;
9861 break;
9862 case 2:
9863 i.seg[i.mem_operands] = &ss;
9864 break;
9865 case 3:
9866 i.seg[i.mem_operands] = &ds;
9867 break;
9868 case 4:
9869 i.seg[i.mem_operands] = &fs;
9870 break;
9871 case 5:
9872 i.seg[i.mem_operands] = &gs;
9873 break;
9874 }
252b5132 9875
24eab124 9876 /* Skip the ':' and whitespace. */
252b5132
RH
9877 ++op_string;
9878 if (is_space_char (*op_string))
24eab124 9879 ++op_string;
252b5132 9880
24eab124
AM
9881 if (!is_digit_char (*op_string)
9882 && !is_identifier_char (*op_string)
9883 && *op_string != '('
9884 && *op_string != ABSOLUTE_PREFIX)
9885 {
9886 as_bad (_("bad memory operand `%s'"), op_string);
9887 return 0;
9888 }
47926f60 9889 /* Handle case of %es:*foo. */
24eab124
AM
9890 if (*op_string == ABSOLUTE_PREFIX)
9891 {
9892 ++op_string;
9893 if (is_space_char (*op_string))
9894 ++op_string;
40fb9820 9895 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9896 }
9897 goto do_memory_reference;
9898 }
43234a1e
L
9899
9900 /* Handle vector operations. */
9901 if (*op_string == '{')
9902 {
9903 op_string = check_VecOperations (op_string, NULL);
9904 if (op_string == NULL)
9905 return 0;
9906 }
9907
24eab124
AM
9908 if (*op_string)
9909 {
d0b47220 9910 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9911 return 0;
9912 }
40fb9820
L
9913 temp = r->reg_type;
9914 temp.bitfield.baseindex = 0;
c6fb90c8
L
9915 i.types[this_operand] = operand_type_or (i.types[this_operand],
9916 temp);
7d5e4556 9917 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9918 i.op[this_operand].regs = r;
24eab124
AM
9919 i.reg_operands++;
9920 }
af6bdddf
AM
9921 else if (*op_string == REGISTER_PREFIX)
9922 {
9923 as_bad (_("bad register name `%s'"), op_string);
9924 return 0;
9925 }
24eab124 9926 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9927 {
24eab124 9928 ++op_string;
40fb9820 9929 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9930 {
d0b47220 9931 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9932 return 0;
9933 }
9934 if (!i386_immediate (op_string))
9935 return 0;
9936 }
43234a1e
L
9937 else if (RC_SAE_immediate (operand_string))
9938 {
9939 /* If it is a RC or SAE immediate, do nothing. */
9940 ;
9941 }
24eab124
AM
9942 else if (is_digit_char (*op_string)
9943 || is_identifier_char (*op_string)
d02603dc 9944 || *op_string == '"'
e5cb08ac 9945 || *op_string == '(')
24eab124 9946 {
47926f60 9947 /* This is a memory reference of some sort. */
af6bdddf 9948 char *base_string;
252b5132 9949
47926f60 9950 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9951 char *displacement_string_start;
9952 char *displacement_string_end;
43234a1e 9953 char *vop_start;
252b5132 9954
24eab124 9955 do_memory_reference:
8325cc63
JB
9956 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9957 return 0;
24eab124 9958 if ((i.mem_operands == 1
40fb9820 9959 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9960 || i.mem_operands == 2)
9961 {
9962 as_bad (_("too many memory references for `%s'"),
9963 current_templates->start->name);
9964 return 0;
9965 }
252b5132 9966
24eab124
AM
9967 /* Check for base index form. We detect the base index form by
9968 looking for an ')' at the end of the operand, searching
9969 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9970 after the '('. */
af6bdddf 9971 base_string = op_string + strlen (op_string);
c3332e24 9972
43234a1e
L
9973 /* Handle vector operations. */
9974 vop_start = strchr (op_string, '{');
9975 if (vop_start && vop_start < base_string)
9976 {
9977 if (check_VecOperations (vop_start, base_string) == NULL)
9978 return 0;
9979 base_string = vop_start;
9980 }
9981
af6bdddf
AM
9982 --base_string;
9983 if (is_space_char (*base_string))
9984 --base_string;
252b5132 9985
47926f60 9986 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9987 displacement_string_start = op_string;
9988 displacement_string_end = base_string + 1;
252b5132 9989
24eab124
AM
9990 if (*base_string == ')')
9991 {
af6bdddf 9992 char *temp_string;
24eab124
AM
9993 unsigned int parens_balanced = 1;
9994 /* We've already checked that the number of left & right ()'s are
47926f60 9995 equal, so this loop will not be infinite. */
24eab124
AM
9996 do
9997 {
9998 base_string--;
9999 if (*base_string == ')')
10000 parens_balanced++;
10001 if (*base_string == '(')
10002 parens_balanced--;
10003 }
10004 while (parens_balanced);
c3332e24 10005
af6bdddf 10006 temp_string = base_string;
c3332e24 10007
24eab124 10008 /* Skip past '(' and whitespace. */
252b5132
RH
10009 ++base_string;
10010 if (is_space_char (*base_string))
24eab124 10011 ++base_string;
252b5132 10012
af6bdddf 10013 if (*base_string == ','
4eed87de
AM
10014 || ((i.base_reg = parse_register (base_string, &end_op))
10015 != NULL))
252b5132 10016 {
af6bdddf 10017 displacement_string_end = temp_string;
252b5132 10018
40fb9820 10019 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10020
af6bdddf 10021 if (i.base_reg)
24eab124 10022 {
24eab124
AM
10023 base_string = end_op;
10024 if (is_space_char (*base_string))
10025 ++base_string;
af6bdddf
AM
10026 }
10027
10028 /* There may be an index reg or scale factor here. */
10029 if (*base_string == ',')
10030 {
10031 ++base_string;
10032 if (is_space_char (*base_string))
10033 ++base_string;
10034
4eed87de
AM
10035 if ((i.index_reg = parse_register (base_string, &end_op))
10036 != NULL)
24eab124 10037 {
af6bdddf 10038 base_string = end_op;
24eab124
AM
10039 if (is_space_char (*base_string))
10040 ++base_string;
af6bdddf
AM
10041 if (*base_string == ',')
10042 {
10043 ++base_string;
10044 if (is_space_char (*base_string))
10045 ++base_string;
10046 }
e5cb08ac 10047 else if (*base_string != ')')
af6bdddf 10048 {
4eed87de
AM
10049 as_bad (_("expecting `,' or `)' "
10050 "after index register in `%s'"),
af6bdddf
AM
10051 operand_string);
10052 return 0;
10053 }
24eab124 10054 }
af6bdddf 10055 else if (*base_string == REGISTER_PREFIX)
24eab124 10056 {
f76bf5e0
L
10057 end_op = strchr (base_string, ',');
10058 if (end_op)
10059 *end_op = '\0';
af6bdddf 10060 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10061 return 0;
10062 }
252b5132 10063
47926f60 10064 /* Check for scale factor. */
551c1ca1 10065 if (*base_string != ')')
af6bdddf 10066 {
551c1ca1
AM
10067 char *end_scale = i386_scale (base_string);
10068
10069 if (!end_scale)
af6bdddf 10070 return 0;
24eab124 10071
551c1ca1 10072 base_string = end_scale;
af6bdddf
AM
10073 if (is_space_char (*base_string))
10074 ++base_string;
10075 if (*base_string != ')')
10076 {
4eed87de
AM
10077 as_bad (_("expecting `)' "
10078 "after scale factor in `%s'"),
af6bdddf
AM
10079 operand_string);
10080 return 0;
10081 }
10082 }
10083 else if (!i.index_reg)
24eab124 10084 {
4eed87de
AM
10085 as_bad (_("expecting index register or scale factor "
10086 "after `,'; got '%c'"),
af6bdddf 10087 *base_string);
24eab124
AM
10088 return 0;
10089 }
10090 }
af6bdddf 10091 else if (*base_string != ')')
24eab124 10092 {
4eed87de
AM
10093 as_bad (_("expecting `,' or `)' "
10094 "after base register in `%s'"),
af6bdddf 10095 operand_string);
24eab124
AM
10096 return 0;
10097 }
c3332e24 10098 }
af6bdddf 10099 else if (*base_string == REGISTER_PREFIX)
c3332e24 10100 {
f76bf5e0
L
10101 end_op = strchr (base_string, ',');
10102 if (end_op)
10103 *end_op = '\0';
af6bdddf 10104 as_bad (_("bad register name `%s'"), base_string);
24eab124 10105 return 0;
c3332e24 10106 }
24eab124
AM
10107 }
10108
10109 /* If there's an expression beginning the operand, parse it,
10110 assuming displacement_string_start and
10111 displacement_string_end are meaningful. */
10112 if (displacement_string_start != displacement_string_end)
10113 {
10114 if (!i386_displacement (displacement_string_start,
10115 displacement_string_end))
10116 return 0;
10117 }
10118
10119 /* Special case for (%dx) while doing input/output op. */
10120 if (i.base_reg
2fb5be8d 10121 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10122 && i.index_reg == 0
10123 && i.log2_scale_factor == 0
10124 && i.seg[i.mem_operands] == 0
40fb9820 10125 && !operand_type_check (i.types[this_operand], disp))
24eab124 10126 {
2fb5be8d 10127 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10128 return 1;
10129 }
10130
eecb386c
AM
10131 if (i386_index_check (operand_string) == 0)
10132 return 0;
c48dadc9 10133 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10134 if (i.mem_operands == 0)
10135 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10136 i.mem_operands++;
10137 }
10138 else
ce8a8b2f
AM
10139 {
10140 /* It's not a memory operand; argh! */
24eab124
AM
10141 as_bad (_("invalid char %s beginning operand %d `%s'"),
10142 output_invalid (*op_string),
10143 this_operand + 1,
10144 op_string);
10145 return 0;
10146 }
47926f60 10147 return 1; /* Normal return. */
252b5132
RH
10148}
10149\f
fa94de6b
RM
10150/* Calculate the maximum variable size (i.e., excluding fr_fix)
10151 that an rs_machine_dependent frag may reach. */
10152
10153unsigned int
10154i386_frag_max_var (fragS *frag)
10155{
10156 /* The only relaxable frags are for jumps.
10157 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10158 gas_assert (frag->fr_type == rs_machine_dependent);
10159 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10160}
10161
b084df0b
L
10162#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10163static int
8dcea932 10164elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10165{
10166 /* STT_GNU_IFUNC symbol must go through PLT. */
10167 if ((symbol_get_bfdsym (fr_symbol)->flags
10168 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10169 return 0;
10170
10171 if (!S_IS_EXTERNAL (fr_symbol))
10172 /* Symbol may be weak or local. */
10173 return !S_IS_WEAK (fr_symbol);
10174
8dcea932
L
10175 /* Global symbols with non-default visibility can't be preempted. */
10176 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10177 return 1;
10178
10179 if (fr_var != NO_RELOC)
10180 switch ((enum bfd_reloc_code_real) fr_var)
10181 {
10182 case BFD_RELOC_386_PLT32:
10183 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10184 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10185 return 0;
10186 default:
10187 abort ();
10188 }
10189
b084df0b
L
10190 /* Global symbols with default visibility in a shared library may be
10191 preempted by another definition. */
8dcea932 10192 return !shared;
b084df0b
L
10193}
10194#endif
10195
ee7fcc42
AM
10196/* md_estimate_size_before_relax()
10197
10198 Called just before relax() for rs_machine_dependent frags. The x86
10199 assembler uses these frags to handle variable size jump
10200 instructions.
10201
10202 Any symbol that is now undefined will not become defined.
10203 Return the correct fr_subtype in the frag.
10204 Return the initial "guess for variable size of frag" to caller.
10205 The guess is actually the growth beyond the fixed part. Whatever
10206 we do to grow the fixed or variable part contributes to our
10207 returned value. */
10208
252b5132 10209int
7016a5d5 10210md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10211{
252b5132 10212 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10213 check for un-relaxable symbols. On an ELF system, we can't relax
10214 an externally visible symbol, because it may be overridden by a
10215 shared library. */
10216 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10217#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10218 || (IS_ELF
8dcea932
L
10219 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10220 fragP->fr_var))
fbeb56a4
DK
10221#endif
10222#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10223 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10224 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10225#endif
10226 )
252b5132 10227 {
b98ef147
AM
10228 /* Symbol is undefined in this segment, or we need to keep a
10229 reloc so that weak symbols can be overridden. */
10230 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10231 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10232 unsigned char *opcode;
10233 int old_fr_fix;
f6af82bd 10234
ee7fcc42 10235 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10236 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10237 else if (size == 2)
f6af82bd 10238 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10240 else if (need_plt32_p (fragP->fr_symbol))
10241 reloc_type = BFD_RELOC_X86_64_PLT32;
10242#endif
f6af82bd
AM
10243 else
10244 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10245
ee7fcc42
AM
10246 old_fr_fix = fragP->fr_fix;
10247 opcode = (unsigned char *) fragP->fr_opcode;
10248
fddf5b5b 10249 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10250 {
fddf5b5b
AM
10251 case UNCOND_JUMP:
10252 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10253 opcode[0] = 0xe9;
252b5132 10254 fragP->fr_fix += size;
062cd5e7
AS
10255 fix_new (fragP, old_fr_fix, size,
10256 fragP->fr_symbol,
10257 fragP->fr_offset, 1,
10258 reloc_type);
252b5132
RH
10259 break;
10260
fddf5b5b 10261 case COND_JUMP86:
412167cb
AM
10262 if (size == 2
10263 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10264 {
10265 /* Negate the condition, and branch past an
10266 unconditional jump. */
10267 opcode[0] ^= 1;
10268 opcode[1] = 3;
10269 /* Insert an unconditional jump. */
10270 opcode[2] = 0xe9;
10271 /* We added two extra opcode bytes, and have a two byte
10272 offset. */
10273 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10274 fix_new (fragP, old_fr_fix + 2, 2,
10275 fragP->fr_symbol,
10276 fragP->fr_offset, 1,
10277 reloc_type);
fddf5b5b
AM
10278 break;
10279 }
10280 /* Fall through. */
10281
10282 case COND_JUMP:
412167cb
AM
10283 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10284 {
3e02c1cc
AM
10285 fixS *fixP;
10286
412167cb 10287 fragP->fr_fix += 1;
3e02c1cc
AM
10288 fixP = fix_new (fragP, old_fr_fix, 1,
10289 fragP->fr_symbol,
10290 fragP->fr_offset, 1,
10291 BFD_RELOC_8_PCREL);
10292 fixP->fx_signed = 1;
412167cb
AM
10293 break;
10294 }
93c2a809 10295
24eab124 10296 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10297 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10298 opcode[1] = opcode[0] + 0x10;
f6af82bd 10299 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10300 /* We've added an opcode byte. */
10301 fragP->fr_fix += 1 + size;
062cd5e7
AS
10302 fix_new (fragP, old_fr_fix + 1, size,
10303 fragP->fr_symbol,
10304 fragP->fr_offset, 1,
10305 reloc_type);
252b5132 10306 break;
fddf5b5b
AM
10307
10308 default:
10309 BAD_CASE (fragP->fr_subtype);
10310 break;
252b5132
RH
10311 }
10312 frag_wane (fragP);
ee7fcc42 10313 return fragP->fr_fix - old_fr_fix;
252b5132 10314 }
93c2a809 10315
93c2a809
AM
10316 /* Guess size depending on current relax state. Initially the relax
10317 state will correspond to a short jump and we return 1, because
10318 the variable part of the frag (the branch offset) is one byte
10319 long. However, we can relax a section more than once and in that
10320 case we must either set fr_subtype back to the unrelaxed state,
10321 or return the value for the appropriate branch. */
10322 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10323}
10324
47926f60
KH
10325/* Called after relax() is finished.
10326
10327 In: Address of frag.
10328 fr_type == rs_machine_dependent.
10329 fr_subtype is what the address relaxed to.
10330
10331 Out: Any fixSs and constants are set up.
10332 Caller will turn frag into a ".space 0". */
10333
252b5132 10334void
7016a5d5
TG
10335md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10336 fragS *fragP)
252b5132 10337{
29b0f896 10338 unsigned char *opcode;
252b5132 10339 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10340 offsetT target_address;
10341 offsetT opcode_address;
252b5132 10342 unsigned int extension = 0;
847f7ad4 10343 offsetT displacement_from_opcode_start;
252b5132
RH
10344
10345 opcode = (unsigned char *) fragP->fr_opcode;
10346
47926f60 10347 /* Address we want to reach in file space. */
252b5132 10348 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10349
47926f60 10350 /* Address opcode resides at in file space. */
252b5132
RH
10351 opcode_address = fragP->fr_address + fragP->fr_fix;
10352
47926f60 10353 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10354 displacement_from_opcode_start = target_address - opcode_address;
10355
fddf5b5b 10356 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10357 {
47926f60
KH
10358 /* Don't have to change opcode. */
10359 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10360 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10361 }
10362 else
10363 {
10364 if (no_cond_jump_promotion
10365 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10366 as_warn_where (fragP->fr_file, fragP->fr_line,
10367 _("long jump required"));
252b5132 10368
fddf5b5b
AM
10369 switch (fragP->fr_subtype)
10370 {
10371 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10372 extension = 4; /* 1 opcode + 4 displacement */
10373 opcode[0] = 0xe9;
10374 where_to_put_displacement = &opcode[1];
10375 break;
252b5132 10376
fddf5b5b
AM
10377 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10378 extension = 2; /* 1 opcode + 2 displacement */
10379 opcode[0] = 0xe9;
10380 where_to_put_displacement = &opcode[1];
10381 break;
252b5132 10382
fddf5b5b
AM
10383 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10384 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10385 extension = 5; /* 2 opcode + 4 displacement */
10386 opcode[1] = opcode[0] + 0x10;
10387 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10388 where_to_put_displacement = &opcode[2];
10389 break;
252b5132 10390
fddf5b5b
AM
10391 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10392 extension = 3; /* 2 opcode + 2 displacement */
10393 opcode[1] = opcode[0] + 0x10;
10394 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10395 where_to_put_displacement = &opcode[2];
10396 break;
252b5132 10397
fddf5b5b
AM
10398 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10399 extension = 4;
10400 opcode[0] ^= 1;
10401 opcode[1] = 3;
10402 opcode[2] = 0xe9;
10403 where_to_put_displacement = &opcode[3];
10404 break;
10405
10406 default:
10407 BAD_CASE (fragP->fr_subtype);
10408 break;
10409 }
252b5132 10410 }
fddf5b5b 10411
7b81dfbb
AJ
10412 /* If size if less then four we are sure that the operand fits,
10413 but if it's 4, then it could be that the displacement is larger
10414 then -/+ 2GB. */
10415 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10416 && object_64bit
10417 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10418 + ((addressT) 1 << 31))
10419 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10420 {
10421 as_bad_where (fragP->fr_file, fragP->fr_line,
10422 _("jump target out of range"));
10423 /* Make us emit 0. */
10424 displacement_from_opcode_start = extension;
10425 }
47926f60 10426 /* Now put displacement after opcode. */
252b5132
RH
10427 md_number_to_chars ((char *) where_to_put_displacement,
10428 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10429 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10430 fragP->fr_fix += extension;
10431}
10432\f
7016a5d5 10433/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10434 by our caller that we have all the info we need to fix it up.
10435
7016a5d5
TG
10436 Parameter valP is the pointer to the value of the bits.
10437
252b5132
RH
10438 On the 386, immediates, displacements, and data pointers are all in
10439 the same (little-endian) format, so we don't need to care about which
10440 we are handling. */
10441
94f592af 10442void
7016a5d5 10443md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10444{
94f592af 10445 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10446 valueT value = *valP;
252b5132 10447
f86103b7 10448#if !defined (TE_Mach)
93382f6d
AM
10449 if (fixP->fx_pcrel)
10450 {
10451 switch (fixP->fx_r_type)
10452 {
5865bb77
ILT
10453 default:
10454 break;
10455
d6ab8113
JB
10456 case BFD_RELOC_64:
10457 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10458 break;
93382f6d 10459 case BFD_RELOC_32:
ae8887b5 10460 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10461 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10462 break;
10463 case BFD_RELOC_16:
10464 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10465 break;
10466 case BFD_RELOC_8:
10467 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10468 break;
10469 }
10470 }
252b5132 10471
a161fe53 10472 if (fixP->fx_addsy != NULL
31312f95 10473 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10474 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10475 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10476 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10477 && !use_rela_relocations)
252b5132 10478 {
31312f95
AM
10479 /* This is a hack. There should be a better way to handle this.
10480 This covers for the fact that bfd_install_relocation will
10481 subtract the current location (for partial_inplace, PC relative
10482 relocations); see more below. */
252b5132 10483#ifndef OBJ_AOUT
718ddfc0 10484 if (IS_ELF
252b5132
RH
10485#ifdef TE_PE
10486 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10487#endif
10488 )
10489 value += fixP->fx_where + fixP->fx_frag->fr_address;
10490#endif
10491#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10492 if (IS_ELF)
252b5132 10493 {
6539b54b 10494 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10495
6539b54b 10496 if ((sym_seg == seg
2f66722d 10497 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10498 && sym_seg != absolute_section))
af65af87 10499 && !generic_force_reloc (fixP))
2f66722d
AM
10500 {
10501 /* Yes, we add the values in twice. This is because
6539b54b
AM
10502 bfd_install_relocation subtracts them out again. I think
10503 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10504 it. FIXME. */
10505 value += fixP->fx_where + fixP->fx_frag->fr_address;
10506 }
252b5132
RH
10507 }
10508#endif
10509#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10510 /* For some reason, the PE format does not store a
10511 section address offset for a PC relative symbol. */
10512 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10513 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10514 value += md_pcrel_from (fixP);
10515#endif
10516 }
fbeb56a4 10517#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10518 if (fixP->fx_addsy != NULL
10519 && S_IS_WEAK (fixP->fx_addsy)
10520 /* PR 16858: Do not modify weak function references. */
10521 && ! fixP->fx_pcrel)
fbeb56a4 10522 {
296a8689
NC
10523#if !defined (TE_PEP)
10524 /* For x86 PE weak function symbols are neither PC-relative
10525 nor do they set S_IS_FUNCTION. So the only reliable way
10526 to detect them is to check the flags of their containing
10527 section. */
10528 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10529 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10530 ;
10531 else
10532#endif
fbeb56a4
DK
10533 value -= S_GET_VALUE (fixP->fx_addsy);
10534 }
10535#endif
252b5132
RH
10536
10537 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10538 and we must not disappoint it. */
252b5132 10539#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10540 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10541 switch (fixP->fx_r_type)
10542 {
10543 case BFD_RELOC_386_PLT32:
3e73aa7c 10544 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10545 /* Make the jump instruction point to the address of the operand.
10546 At runtime we merely add the offset to the actual PLT entry.
10547 NB: Subtract the offset size only for jump instructions. */
10548 if (fixP->fx_pcrel)
10549 value = -4;
47926f60 10550 break;
31312f95 10551
13ae64f3
JJ
10552 case BFD_RELOC_386_TLS_GD:
10553 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10554 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10555 case BFD_RELOC_386_TLS_IE:
10556 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10557 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10558 case BFD_RELOC_X86_64_TLSGD:
10559 case BFD_RELOC_X86_64_TLSLD:
10560 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10561 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10562 value = 0; /* Fully resolved at runtime. No addend. */
10563 /* Fallthrough */
10564 case BFD_RELOC_386_TLS_LE:
10565 case BFD_RELOC_386_TLS_LDO_32:
10566 case BFD_RELOC_386_TLS_LE_32:
10567 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10568 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10569 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10570 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10571 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10572 break;
10573
67a4f2b7
AO
10574 case BFD_RELOC_386_TLS_DESC_CALL:
10575 case BFD_RELOC_X86_64_TLSDESC_CALL:
10576 value = 0; /* Fully resolved at runtime. No addend. */
10577 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10578 fixP->fx_done = 0;
10579 return;
10580
47926f60
KH
10581 case BFD_RELOC_VTABLE_INHERIT:
10582 case BFD_RELOC_VTABLE_ENTRY:
10583 fixP->fx_done = 0;
94f592af 10584 return;
47926f60
KH
10585
10586 default:
10587 break;
10588 }
10589#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10590 *valP = value;
f86103b7 10591#endif /* !defined (TE_Mach) */
3e73aa7c 10592
3e73aa7c 10593 /* Are we finished with this relocation now? */
c6682705 10594 if (fixP->fx_addsy == NULL)
3e73aa7c 10595 fixP->fx_done = 1;
fbeb56a4
DK
10596#if defined (OBJ_COFF) && defined (TE_PE)
10597 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10598 {
10599 fixP->fx_done = 0;
10600 /* Remember value for tc_gen_reloc. */
10601 fixP->fx_addnumber = value;
10602 /* Clear out the frag for now. */
10603 value = 0;
10604 }
10605#endif
3e73aa7c
JH
10606 else if (use_rela_relocations)
10607 {
10608 fixP->fx_no_overflow = 1;
062cd5e7
AS
10609 /* Remember value for tc_gen_reloc. */
10610 fixP->fx_addnumber = value;
3e73aa7c
JH
10611 value = 0;
10612 }
f86103b7 10613
94f592af 10614 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10615}
252b5132 10616\f
6d4af3c2 10617const char *
499ac353 10618md_atof (int type, char *litP, int *sizeP)
252b5132 10619{
499ac353
NC
10620 /* This outputs the LITTLENUMs in REVERSE order;
10621 in accord with the bigendian 386. */
10622 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10623}
10624\f
2d545b82 10625static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10626
252b5132 10627static char *
e3bb37b5 10628output_invalid (int c)
252b5132 10629{
3882b010 10630 if (ISPRINT (c))
f9f21a03
L
10631 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10632 "'%c'", c);
252b5132 10633 else
f9f21a03 10634 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10635 "(0x%x)", (unsigned char) c);
252b5132
RH
10636 return output_invalid_buf;
10637}
10638
af6bdddf 10639/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10640
10641static const reg_entry *
4d1bb795 10642parse_real_register (char *reg_string, char **end_op)
252b5132 10643{
af6bdddf
AM
10644 char *s = reg_string;
10645 char *p;
252b5132
RH
10646 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10647 const reg_entry *r;
10648
10649 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10650 if (*s == REGISTER_PREFIX)
10651 ++s;
10652
10653 if (is_space_char (*s))
10654 ++s;
10655
10656 p = reg_name_given;
af6bdddf 10657 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10658 {
10659 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10660 return (const reg_entry *) NULL;
10661 s++;
252b5132
RH
10662 }
10663
6588847e
DN
10664 /* For naked regs, make sure that we are not dealing with an identifier.
10665 This prevents confusing an identifier like `eax_var' with register
10666 `eax'. */
10667 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10668 return (const reg_entry *) NULL;
10669
af6bdddf 10670 *end_op = s;
252b5132
RH
10671
10672 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10673
5f47d35b 10674 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10675 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10676 {
0e0eea78
JB
10677 if (!cpu_arch_flags.bitfield.cpu8087
10678 && !cpu_arch_flags.bitfield.cpu287
10679 && !cpu_arch_flags.bitfield.cpu387)
10680 return (const reg_entry *) NULL;
10681
5f47d35b
AM
10682 if (is_space_char (*s))
10683 ++s;
10684 if (*s == '(')
10685 {
af6bdddf 10686 ++s;
5f47d35b
AM
10687 if (is_space_char (*s))
10688 ++s;
10689 if (*s >= '0' && *s <= '7')
10690 {
db557034 10691 int fpr = *s - '0';
af6bdddf 10692 ++s;
5f47d35b
AM
10693 if (is_space_char (*s))
10694 ++s;
10695 if (*s == ')')
10696 {
10697 *end_op = s + 1;
1e9cc1c2 10698 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10699 know (r);
10700 return r + fpr;
5f47d35b 10701 }
5f47d35b 10702 }
47926f60 10703 /* We have "%st(" then garbage. */
5f47d35b
AM
10704 return (const reg_entry *) NULL;
10705 }
10706 }
10707
a60de03c
JB
10708 if (r == NULL || allow_pseudo_reg)
10709 return r;
10710
0dfbf9d7 10711 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10712 return (const reg_entry *) NULL;
10713
dc821c5f 10714 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10715 || r->reg_type.bitfield.sreg3
10716 || r->reg_type.bitfield.control
10717 || r->reg_type.bitfield.debug
10718 || r->reg_type.bitfield.test)
10719 && !cpu_arch_flags.bitfield.cpui386)
10720 return (const reg_entry *) NULL;
10721
6e041cf4 10722 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10723 return (const reg_entry *) NULL;
10724
6e041cf4
JB
10725 if (!cpu_arch_flags.bitfield.cpuavx512f)
10726 {
10727 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10728 return (const reg_entry *) NULL;
40f12533 10729
6e041cf4
JB
10730 if (!cpu_arch_flags.bitfield.cpuavx)
10731 {
10732 if (r->reg_type.bitfield.ymmword)
10733 return (const reg_entry *) NULL;
1848e567 10734
6e041cf4
JB
10735 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10736 return (const reg_entry *) NULL;
10737 }
10738 }
43234a1e 10739
1adf7f56
JB
10740 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10741 return (const reg_entry *) NULL;
10742
db51cc60 10743 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10744 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10745 return (const reg_entry *) NULL;
10746
1d3f8286
JB
10747 /* Upper 16 vector registers are only available with VREX in 64bit
10748 mode, and require EVEX encoding. */
10749 if (r->reg_flags & RegVRex)
43234a1e 10750 {
e951d5ca 10751 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10752 || flag_code != CODE_64BIT)
10753 return (const reg_entry *) NULL;
1d3f8286
JB
10754
10755 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10756 }
10757
4787f4a5
JB
10758 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10759 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10760 && flag_code != CODE_64BIT)
20f0a1fc 10761 return (const reg_entry *) NULL;
1ae00879 10762
b7240065
JB
10763 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10764 return (const reg_entry *) NULL;
10765
252b5132
RH
10766 return r;
10767}
4d1bb795
JB
10768
10769/* REG_STRING starts *before* REGISTER_PREFIX. */
10770
10771static const reg_entry *
10772parse_register (char *reg_string, char **end_op)
10773{
10774 const reg_entry *r;
10775
10776 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10777 r = parse_real_register (reg_string, end_op);
10778 else
10779 r = NULL;
10780 if (!r)
10781 {
10782 char *save = input_line_pointer;
10783 char c;
10784 symbolS *symbolP;
10785
10786 input_line_pointer = reg_string;
d02603dc 10787 c = get_symbol_name (&reg_string);
4d1bb795
JB
10788 symbolP = symbol_find (reg_string);
10789 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10790 {
10791 const expressionS *e = symbol_get_value_expression (symbolP);
10792
0398aac5 10793 know (e->X_op == O_register);
4eed87de 10794 know (e->X_add_number >= 0
c3fe08fa 10795 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10796 r = i386_regtab + e->X_add_number;
d3bb6b49 10797 if ((r->reg_flags & RegVRex))
86fa6981 10798 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10799 *end_op = input_line_pointer;
10800 }
10801 *input_line_pointer = c;
10802 input_line_pointer = save;
10803 }
10804 return r;
10805}
10806
10807int
10808i386_parse_name (char *name, expressionS *e, char *nextcharP)
10809{
10810 const reg_entry *r;
10811 char *end = input_line_pointer;
10812
10813 *end = *nextcharP;
10814 r = parse_register (name, &input_line_pointer);
10815 if (r && end <= input_line_pointer)
10816 {
10817 *nextcharP = *input_line_pointer;
10818 *input_line_pointer = 0;
10819 e->X_op = O_register;
10820 e->X_add_number = r - i386_regtab;
10821 return 1;
10822 }
10823 input_line_pointer = end;
10824 *end = 0;
ee86248c 10825 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10826}
10827
10828void
10829md_operand (expressionS *e)
10830{
ee86248c
JB
10831 char *end;
10832 const reg_entry *r;
4d1bb795 10833
ee86248c
JB
10834 switch (*input_line_pointer)
10835 {
10836 case REGISTER_PREFIX:
10837 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10838 if (r)
10839 {
10840 e->X_op = O_register;
10841 e->X_add_number = r - i386_regtab;
10842 input_line_pointer = end;
10843 }
ee86248c
JB
10844 break;
10845
10846 case '[':
9c2799c2 10847 gas_assert (intel_syntax);
ee86248c
JB
10848 end = input_line_pointer++;
10849 expression (e);
10850 if (*input_line_pointer == ']')
10851 {
10852 ++input_line_pointer;
10853 e->X_op_symbol = make_expr_symbol (e);
10854 e->X_add_symbol = NULL;
10855 e->X_add_number = 0;
10856 e->X_op = O_index;
10857 }
10858 else
10859 {
10860 e->X_op = O_absent;
10861 input_line_pointer = end;
10862 }
10863 break;
4d1bb795
JB
10864 }
10865}
10866
252b5132 10867\f
4cc782b5 10868#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10869const char *md_shortopts = "kVQ:sqnO::";
252b5132 10870#else
b6f8c7c4 10871const char *md_shortopts = "qnO::";
252b5132 10872#endif
6e0b89ee 10873
3e73aa7c 10874#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10875#define OPTION_64 (OPTION_MD_BASE + 1)
10876#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10877#define OPTION_MARCH (OPTION_MD_BASE + 3)
10878#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10879#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10880#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10881#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10882#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10883#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10884#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10885#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10886#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10887#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10888#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10889#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10890#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10891#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10892#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10893#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10894#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10895#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10896#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10897#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10898#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10899#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 10900#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 10901
99ad8390
NC
10902struct option md_longopts[] =
10903{
3e73aa7c 10904 {"32", no_argument, NULL, OPTION_32},
321098a5 10905#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10906 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10907 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10908#endif
10909#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10910 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10911 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 10912 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 10913#endif
b3b91714 10914 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10915 {"march", required_argument, NULL, OPTION_MARCH},
10916 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10917 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10918 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10919 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10920 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10921 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10922 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10923 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10924 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 10925 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 10926 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10927 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10928 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10929# if defined (TE_PE) || defined (TE_PEP)
10930 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10931#endif
d1982f93 10932 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10933 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10934 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10935 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10936 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10937 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10938 {NULL, no_argument, NULL, 0}
10939};
10940size_t md_longopts_size = sizeof (md_longopts);
10941
10942int
17b9d67d 10943md_parse_option (int c, const char *arg)
252b5132 10944{
91d6fa6a 10945 unsigned int j;
293f5f65 10946 char *arch, *next, *saved;
9103f4f4 10947
252b5132
RH
10948 switch (c)
10949 {
12b55ccc
L
10950 case 'n':
10951 optimize_align_code = 0;
10952 break;
10953
a38cf1db
AM
10954 case 'q':
10955 quiet_warnings = 1;
252b5132
RH
10956 break;
10957
10958#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10959 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10960 should be emitted or not. FIXME: Not implemented. */
10961 case 'Q':
252b5132
RH
10962 break;
10963
10964 /* -V: SVR4 argument to print version ID. */
10965 case 'V':
10966 print_version_id ();
10967 break;
10968
a38cf1db
AM
10969 /* -k: Ignore for FreeBSD compatibility. */
10970 case 'k':
252b5132 10971 break;
4cc782b5
ILT
10972
10973 case 's':
10974 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10975 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10976 break;
8dcea932
L
10977
10978 case OPTION_MSHARED:
10979 shared = 1;
10980 break;
b4a3a7b4
L
10981
10982 case OPTION_X86_USED_NOTE:
10983 if (strcasecmp (arg, "yes") == 0)
10984 x86_used_note = 1;
10985 else if (strcasecmp (arg, "no") == 0)
10986 x86_used_note = 0;
10987 else
10988 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10989 break;
10990
10991
99ad8390 10992#endif
321098a5 10993#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10994 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10995 case OPTION_64:
10996 {
10997 const char **list, **l;
10998
3e73aa7c
JH
10999 list = bfd_target_list ();
11000 for (l = list; *l != NULL; l++)
8620418b 11001 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11002 || strcmp (*l, "coff-x86-64") == 0
11003 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11004 || strcmp (*l, "pei-x86-64") == 0
11005 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11006 {
11007 default_arch = "x86_64";
11008 break;
11009 }
3e73aa7c 11010 if (*l == NULL)
2b5d6a91 11011 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11012 free (list);
11013 }
11014 break;
11015#endif
252b5132 11016
351f65ca 11017#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11018 case OPTION_X32:
351f65ca
L
11019 if (IS_ELF)
11020 {
11021 const char **list, **l;
11022
11023 list = bfd_target_list ();
11024 for (l = list; *l != NULL; l++)
11025 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11026 {
11027 default_arch = "x86_64:32";
11028 break;
11029 }
11030 if (*l == NULL)
2b5d6a91 11031 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11032 free (list);
11033 }
11034 else
11035 as_fatal (_("32bit x86_64 is only supported for ELF"));
11036 break;
11037#endif
11038
6e0b89ee
AM
11039 case OPTION_32:
11040 default_arch = "i386";
11041 break;
11042
b3b91714
AM
11043 case OPTION_DIVIDE:
11044#ifdef SVR4_COMMENT_CHARS
11045 {
11046 char *n, *t;
11047 const char *s;
11048
add39d23 11049 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11050 t = n;
11051 for (s = i386_comment_chars; *s != '\0'; s++)
11052 if (*s != '/')
11053 *t++ = *s;
11054 *t = '\0';
11055 i386_comment_chars = n;
11056 }
11057#endif
11058 break;
11059
9103f4f4 11060 case OPTION_MARCH:
293f5f65
L
11061 saved = xstrdup (arg);
11062 arch = saved;
11063 /* Allow -march=+nosse. */
11064 if (*arch == '+')
11065 arch++;
6305a203 11066 do
9103f4f4 11067 {
6305a203 11068 if (*arch == '.')
2b5d6a91 11069 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11070 next = strchr (arch, '+');
11071 if (next)
11072 *next++ = '\0';
91d6fa6a 11073 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11074 {
91d6fa6a 11075 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11076 {
6305a203 11077 /* Processor. */
1ded5609
JB
11078 if (! cpu_arch[j].flags.bitfield.cpui386)
11079 continue;
11080
91d6fa6a 11081 cpu_arch_name = cpu_arch[j].name;
6305a203 11082 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11083 cpu_arch_flags = cpu_arch[j].flags;
11084 cpu_arch_isa = cpu_arch[j].type;
11085 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11086 if (!cpu_arch_tune_set)
11087 {
11088 cpu_arch_tune = cpu_arch_isa;
11089 cpu_arch_tune_flags = cpu_arch_isa_flags;
11090 }
11091 break;
11092 }
91d6fa6a
NC
11093 else if (*cpu_arch [j].name == '.'
11094 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11095 {
33eaf5de 11096 /* ISA extension. */
6305a203 11097 i386_cpu_flags flags;
309d3373 11098
293f5f65
L
11099 flags = cpu_flags_or (cpu_arch_flags,
11100 cpu_arch[j].flags);
81486035 11101
5b64d091 11102 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11103 {
11104 if (cpu_sub_arch_name)
11105 {
11106 char *name = cpu_sub_arch_name;
11107 cpu_sub_arch_name = concat (name,
91d6fa6a 11108 cpu_arch[j].name,
1bf57e9f 11109 (const char *) NULL);
6305a203
L
11110 free (name);
11111 }
11112 else
91d6fa6a 11113 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11114 cpu_arch_flags = flags;
a586129e 11115 cpu_arch_isa_flags = flags;
6305a203 11116 }
0089dace
L
11117 else
11118 cpu_arch_isa_flags
11119 = cpu_flags_or (cpu_arch_isa_flags,
11120 cpu_arch[j].flags);
6305a203 11121 break;
ccc9c027 11122 }
9103f4f4 11123 }
6305a203 11124
293f5f65
L
11125 if (j >= ARRAY_SIZE (cpu_arch))
11126 {
33eaf5de 11127 /* Disable an ISA extension. */
293f5f65
L
11128 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11129 if (strcmp (arch, cpu_noarch [j].name) == 0)
11130 {
11131 i386_cpu_flags flags;
11132
11133 flags = cpu_flags_and_not (cpu_arch_flags,
11134 cpu_noarch[j].flags);
11135 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11136 {
11137 if (cpu_sub_arch_name)
11138 {
11139 char *name = cpu_sub_arch_name;
11140 cpu_sub_arch_name = concat (arch,
11141 (const char *) NULL);
11142 free (name);
11143 }
11144 else
11145 cpu_sub_arch_name = xstrdup (arch);
11146 cpu_arch_flags = flags;
11147 cpu_arch_isa_flags = flags;
11148 }
11149 break;
11150 }
11151
11152 if (j >= ARRAY_SIZE (cpu_noarch))
11153 j = ARRAY_SIZE (cpu_arch);
11154 }
11155
91d6fa6a 11156 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11157 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11158
11159 arch = next;
9103f4f4 11160 }
293f5f65
L
11161 while (next != NULL);
11162 free (saved);
9103f4f4
L
11163 break;
11164
11165 case OPTION_MTUNE:
11166 if (*arg == '.')
2b5d6a91 11167 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11168 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11169 {
91d6fa6a 11170 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11171 {
ccc9c027 11172 cpu_arch_tune_set = 1;
91d6fa6a
NC
11173 cpu_arch_tune = cpu_arch [j].type;
11174 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11175 break;
11176 }
11177 }
91d6fa6a 11178 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11179 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11180 break;
11181
1efbbeb4
L
11182 case OPTION_MMNEMONIC:
11183 if (strcasecmp (arg, "att") == 0)
11184 intel_mnemonic = 0;
11185 else if (strcasecmp (arg, "intel") == 0)
11186 intel_mnemonic = 1;
11187 else
2b5d6a91 11188 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11189 break;
11190
11191 case OPTION_MSYNTAX:
11192 if (strcasecmp (arg, "att") == 0)
11193 intel_syntax = 0;
11194 else if (strcasecmp (arg, "intel") == 0)
11195 intel_syntax = 1;
11196 else
2b5d6a91 11197 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11198 break;
11199
11200 case OPTION_MINDEX_REG:
11201 allow_index_reg = 1;
11202 break;
11203
11204 case OPTION_MNAKED_REG:
11205 allow_naked_reg = 1;
11206 break;
11207
c0f3af97
L
11208 case OPTION_MSSE2AVX:
11209 sse2avx = 1;
11210 break;
11211
daf50ae7
L
11212 case OPTION_MSSE_CHECK:
11213 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11214 sse_check = check_error;
daf50ae7 11215 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11216 sse_check = check_warning;
daf50ae7 11217 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11218 sse_check = check_none;
daf50ae7 11219 else
2b5d6a91 11220 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11221 break;
11222
7bab8ab5
JB
11223 case OPTION_MOPERAND_CHECK:
11224 if (strcasecmp (arg, "error") == 0)
11225 operand_check = check_error;
11226 else if (strcasecmp (arg, "warning") == 0)
11227 operand_check = check_warning;
11228 else if (strcasecmp (arg, "none") == 0)
11229 operand_check = check_none;
11230 else
11231 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11232 break;
11233
539f890d
L
11234 case OPTION_MAVXSCALAR:
11235 if (strcasecmp (arg, "128") == 0)
11236 avxscalar = vex128;
11237 else if (strcasecmp (arg, "256") == 0)
11238 avxscalar = vex256;
11239 else
2b5d6a91 11240 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11241 break;
11242
03751133
L
11243 case OPTION_MVEXWIG:
11244 if (strcmp (arg, "0") == 0)
11245 vexwig = evexw0;
11246 else if (strcmp (arg, "1") == 0)
11247 vexwig = evexw1;
11248 else
11249 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11250 break;
11251
7e8b059b
L
11252 case OPTION_MADD_BND_PREFIX:
11253 add_bnd_prefix = 1;
11254 break;
11255
43234a1e
L
11256 case OPTION_MEVEXLIG:
11257 if (strcmp (arg, "128") == 0)
11258 evexlig = evexl128;
11259 else if (strcmp (arg, "256") == 0)
11260 evexlig = evexl256;
11261 else if (strcmp (arg, "512") == 0)
11262 evexlig = evexl512;
11263 else
11264 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11265 break;
11266
d3d3c6db
IT
11267 case OPTION_MEVEXRCIG:
11268 if (strcmp (arg, "rne") == 0)
11269 evexrcig = rne;
11270 else if (strcmp (arg, "rd") == 0)
11271 evexrcig = rd;
11272 else if (strcmp (arg, "ru") == 0)
11273 evexrcig = ru;
11274 else if (strcmp (arg, "rz") == 0)
11275 evexrcig = rz;
11276 else
11277 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11278 break;
11279
43234a1e
L
11280 case OPTION_MEVEXWIG:
11281 if (strcmp (arg, "0") == 0)
11282 evexwig = evexw0;
11283 else if (strcmp (arg, "1") == 0)
11284 evexwig = evexw1;
11285 else
11286 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11287 break;
11288
167ad85b
TG
11289# if defined (TE_PE) || defined (TE_PEP)
11290 case OPTION_MBIG_OBJ:
11291 use_big_obj = 1;
11292 break;
11293#endif
11294
d1982f93 11295 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11296 if (strcasecmp (arg, "yes") == 0)
11297 omit_lock_prefix = 1;
11298 else if (strcasecmp (arg, "no") == 0)
11299 omit_lock_prefix = 0;
11300 else
11301 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11302 break;
11303
e4e00185
AS
11304 case OPTION_MFENCE_AS_LOCK_ADD:
11305 if (strcasecmp (arg, "yes") == 0)
11306 avoid_fence = 1;
11307 else if (strcasecmp (arg, "no") == 0)
11308 avoid_fence = 0;
11309 else
11310 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11311 break;
11312
0cb4071e
L
11313 case OPTION_MRELAX_RELOCATIONS:
11314 if (strcasecmp (arg, "yes") == 0)
11315 generate_relax_relocations = 1;
11316 else if (strcasecmp (arg, "no") == 0)
11317 generate_relax_relocations = 0;
11318 else
11319 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11320 break;
11321
5db04b09 11322 case OPTION_MAMD64:
e89c5eaa 11323 intel64 = 0;
5db04b09
L
11324 break;
11325
11326 case OPTION_MINTEL64:
e89c5eaa 11327 intel64 = 1;
5db04b09
L
11328 break;
11329
b6f8c7c4
L
11330 case 'O':
11331 if (arg == NULL)
11332 {
11333 optimize = 1;
11334 /* Turn off -Os. */
11335 optimize_for_space = 0;
11336 }
11337 else if (*arg == 's')
11338 {
11339 optimize_for_space = 1;
11340 /* Turn on all encoding optimizations. */
11341 optimize = -1;
11342 }
11343 else
11344 {
11345 optimize = atoi (arg);
11346 /* Turn off -Os. */
11347 optimize_for_space = 0;
11348 }
11349 break;
11350
252b5132
RH
11351 default:
11352 return 0;
11353 }
11354 return 1;
11355}
11356
8a2c8fef
L
11357#define MESSAGE_TEMPLATE \
11358" "
11359
293f5f65
L
11360static char *
11361output_message (FILE *stream, char *p, char *message, char *start,
11362 int *left_p, const char *name, int len)
11363{
11364 int size = sizeof (MESSAGE_TEMPLATE);
11365 int left = *left_p;
11366
11367 /* Reserve 2 spaces for ", " or ",\0" */
11368 left -= len + 2;
11369
11370 /* Check if there is any room. */
11371 if (left >= 0)
11372 {
11373 if (p != start)
11374 {
11375 *p++ = ',';
11376 *p++ = ' ';
11377 }
11378 p = mempcpy (p, name, len);
11379 }
11380 else
11381 {
11382 /* Output the current message now and start a new one. */
11383 *p++ = ',';
11384 *p = '\0';
11385 fprintf (stream, "%s\n", message);
11386 p = start;
11387 left = size - (start - message) - len - 2;
11388
11389 gas_assert (left >= 0);
11390
11391 p = mempcpy (p, name, len);
11392 }
11393
11394 *left_p = left;
11395 return p;
11396}
11397
8a2c8fef 11398static void
1ded5609 11399show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11400{
11401 static char message[] = MESSAGE_TEMPLATE;
11402 char *start = message + 27;
11403 char *p;
11404 int size = sizeof (MESSAGE_TEMPLATE);
11405 int left;
11406 const char *name;
11407 int len;
11408 unsigned int j;
11409
11410 p = start;
11411 left = size - (start - message);
11412 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11413 {
11414 /* Should it be skipped? */
11415 if (cpu_arch [j].skip)
11416 continue;
11417
11418 name = cpu_arch [j].name;
11419 len = cpu_arch [j].len;
11420 if (*name == '.')
11421 {
11422 /* It is an extension. Skip if we aren't asked to show it. */
11423 if (ext)
11424 {
11425 name++;
11426 len--;
11427 }
11428 else
11429 continue;
11430 }
11431 else if (ext)
11432 {
11433 /* It is an processor. Skip if we show only extension. */
11434 continue;
11435 }
1ded5609
JB
11436 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11437 {
11438 /* It is an impossible processor - skip. */
11439 continue;
11440 }
8a2c8fef 11441
293f5f65 11442 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11443 }
11444
293f5f65
L
11445 /* Display disabled extensions. */
11446 if (ext)
11447 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11448 {
11449 name = cpu_noarch [j].name;
11450 len = cpu_noarch [j].len;
11451 p = output_message (stream, p, message, start, &left, name,
11452 len);
11453 }
11454
8a2c8fef
L
11455 *p = '\0';
11456 fprintf (stream, "%s\n", message);
11457}
11458
252b5132 11459void
8a2c8fef 11460md_show_usage (FILE *stream)
252b5132 11461{
4cc782b5
ILT
11462#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11463 fprintf (stream, _("\
a38cf1db
AM
11464 -Q ignored\n\
11465 -V print assembler version number\n\
b3b91714
AM
11466 -k ignored\n"));
11467#endif
11468 fprintf (stream, _("\
12b55ccc 11469 -n Do not optimize code alignment\n\
b3b91714
AM
11470 -q quieten some warnings\n"));
11471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11472 fprintf (stream, _("\
a38cf1db 11473 -s ignored\n"));
b3b91714 11474#endif
d7f449c0
L
11475#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11476 || defined (TE_PE) || defined (TE_PEP))
751d281c 11477 fprintf (stream, _("\
570561f7 11478 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11479#endif
b3b91714
AM
11480#ifdef SVR4_COMMENT_CHARS
11481 fprintf (stream, _("\
11482 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11483#else
11484 fprintf (stream, _("\
b3b91714 11485 --divide ignored\n"));
4cc782b5 11486#endif
9103f4f4 11487 fprintf (stream, _("\
6305a203 11488 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11489 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11490 show_arch (stream, 0, 1);
8a2c8fef
L
11491 fprintf (stream, _("\
11492 EXTENSION is combination of:\n"));
1ded5609 11493 show_arch (stream, 1, 0);
6305a203 11494 fprintf (stream, _("\
8a2c8fef 11495 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11496 show_arch (stream, 0, 0);
ba104c83 11497 fprintf (stream, _("\
c0f3af97
L
11498 -msse2avx encode SSE instructions with VEX prefix\n"));
11499 fprintf (stream, _("\
7c5c05ef 11500 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11501 check SSE instructions\n"));
11502 fprintf (stream, _("\
7c5c05ef 11503 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11504 check operand combinations for validity\n"));
11505 fprintf (stream, _("\
7c5c05ef
L
11506 -mavxscalar=[128|256] (default: 128)\n\
11507 encode scalar AVX instructions with specific vector\n\
539f890d
L
11508 length\n"));
11509 fprintf (stream, _("\
03751133
L
11510 -mvexwig=[0|1] (default: 0)\n\
11511 encode VEX instructions with specific VEX.W value\n\
11512 for VEX.W bit ignored instructions\n"));
11513 fprintf (stream, _("\
7c5c05ef
L
11514 -mevexlig=[128|256|512] (default: 128)\n\
11515 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11516 length\n"));
11517 fprintf (stream, _("\
7c5c05ef
L
11518 -mevexwig=[0|1] (default: 0)\n\
11519 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11520 for EVEX.W bit ignored instructions\n"));
11521 fprintf (stream, _("\
7c5c05ef 11522 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11523 encode EVEX instructions with specific EVEX.RC value\n\
11524 for SAE-only ignored instructions\n"));
11525 fprintf (stream, _("\
7c5c05ef
L
11526 -mmnemonic=[att|intel] "));
11527 if (SYSV386_COMPAT)
11528 fprintf (stream, _("(default: att)\n"));
11529 else
11530 fprintf (stream, _("(default: intel)\n"));
11531 fprintf (stream, _("\
11532 use AT&T/Intel mnemonic\n"));
ba104c83 11533 fprintf (stream, _("\
7c5c05ef
L
11534 -msyntax=[att|intel] (default: att)\n\
11535 use AT&T/Intel syntax\n"));
ba104c83
L
11536 fprintf (stream, _("\
11537 -mindex-reg support pseudo index registers\n"));
11538 fprintf (stream, _("\
11539 -mnaked-reg don't require `%%' prefix for registers\n"));
11540 fprintf (stream, _("\
7e8b059b 11541 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11542#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11543 fprintf (stream, _("\
11544 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11545 fprintf (stream, _("\
11546 -mx86-used-note=[no|yes] "));
11547 if (DEFAULT_X86_USED_NOTE)
11548 fprintf (stream, _("(default: yes)\n"));
11549 else
11550 fprintf (stream, _("(default: no)\n"));
11551 fprintf (stream, _("\
11552 generate x86 used ISA and feature properties\n"));
11553#endif
11554#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11555 fprintf (stream, _("\
11556 -mbig-obj generate big object files\n"));
11557#endif
d022bddd 11558 fprintf (stream, _("\
7c5c05ef 11559 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11560 strip all lock prefixes\n"));
5db04b09 11561 fprintf (stream, _("\
7c5c05ef 11562 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11563 encode lfence, mfence and sfence as\n\
11564 lock addl $0x0, (%%{re}sp)\n"));
11565 fprintf (stream, _("\
7c5c05ef
L
11566 -mrelax-relocations=[no|yes] "));
11567 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11568 fprintf (stream, _("(default: yes)\n"));
11569 else
11570 fprintf (stream, _("(default: no)\n"));
11571 fprintf (stream, _("\
0cb4071e
L
11572 generate relax relocations\n"));
11573 fprintf (stream, _("\
7c5c05ef 11574 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11575 fprintf (stream, _("\
11576 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11577}
11578
3e73aa7c 11579#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11580 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11581 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11582
11583/* Pick the target format to use. */
11584
47926f60 11585const char *
e3bb37b5 11586i386_target_format (void)
252b5132 11587{
351f65ca
L
11588 if (!strncmp (default_arch, "x86_64", 6))
11589 {
11590 update_code_flag (CODE_64BIT, 1);
11591 if (default_arch[6] == '\0')
7f56bc95 11592 x86_elf_abi = X86_64_ABI;
351f65ca 11593 else
7f56bc95 11594 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11595 }
3e73aa7c 11596 else if (!strcmp (default_arch, "i386"))
78f12dd3 11597 update_code_flag (CODE_32BIT, 1);
5197d474
L
11598 else if (!strcmp (default_arch, "iamcu"))
11599 {
11600 update_code_flag (CODE_32BIT, 1);
11601 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11602 {
11603 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11604 cpu_arch_name = "iamcu";
11605 cpu_sub_arch_name = NULL;
11606 cpu_arch_flags = iamcu_flags;
11607 cpu_arch_isa = PROCESSOR_IAMCU;
11608 cpu_arch_isa_flags = iamcu_flags;
11609 if (!cpu_arch_tune_set)
11610 {
11611 cpu_arch_tune = cpu_arch_isa;
11612 cpu_arch_tune_flags = cpu_arch_isa_flags;
11613 }
11614 }
8d471ec1 11615 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11616 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11617 cpu_arch_name);
11618 }
3e73aa7c 11619 else
2b5d6a91 11620 as_fatal (_("unknown architecture"));
89507696
JB
11621
11622 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11623 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11624 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11625 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11626
252b5132
RH
11627 switch (OUTPUT_FLAVOR)
11628 {
9384f2ff 11629#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11630 case bfd_target_aout_flavour:
47926f60 11631 return AOUT_TARGET_FORMAT;
4c63da97 11632#endif
9384f2ff
AM
11633#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11634# if defined (TE_PE) || defined (TE_PEP)
11635 case bfd_target_coff_flavour:
167ad85b
TG
11636 if (flag_code == CODE_64BIT)
11637 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11638 else
11639 return "pe-i386";
9384f2ff 11640# elif defined (TE_GO32)
0561d57c
JK
11641 case bfd_target_coff_flavour:
11642 return "coff-go32";
9384f2ff 11643# else
252b5132
RH
11644 case bfd_target_coff_flavour:
11645 return "coff-i386";
9384f2ff 11646# endif
4c63da97 11647#endif
3e73aa7c 11648#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11649 case bfd_target_elf_flavour:
3e73aa7c 11650 {
351f65ca
L
11651 const char *format;
11652
11653 switch (x86_elf_abi)
4fa24527 11654 {
351f65ca
L
11655 default:
11656 format = ELF_TARGET_FORMAT;
11657 break;
7f56bc95 11658 case X86_64_ABI:
351f65ca 11659 use_rela_relocations = 1;
4fa24527 11660 object_64bit = 1;
351f65ca
L
11661 format = ELF_TARGET_FORMAT64;
11662 break;
7f56bc95 11663 case X86_64_X32_ABI:
4fa24527 11664 use_rela_relocations = 1;
351f65ca 11665 object_64bit = 1;
862be3fb 11666 disallow_64bit_reloc = 1;
351f65ca
L
11667 format = ELF_TARGET_FORMAT32;
11668 break;
4fa24527 11669 }
3632d14b 11670 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11671 {
7f56bc95 11672 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11673 as_fatal (_("Intel L1OM is 64bit only"));
11674 return ELF_TARGET_L1OM_FORMAT;
11675 }
b49f93f6 11676 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11677 {
11678 if (x86_elf_abi != X86_64_ABI)
11679 as_fatal (_("Intel K1OM is 64bit only"));
11680 return ELF_TARGET_K1OM_FORMAT;
11681 }
81486035
L
11682 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11683 {
11684 if (x86_elf_abi != I386_ABI)
11685 as_fatal (_("Intel MCU is 32bit only"));
11686 return ELF_TARGET_IAMCU_FORMAT;
11687 }
8a9036a4 11688 else
351f65ca 11689 return format;
3e73aa7c 11690 }
e57f8c65
TG
11691#endif
11692#if defined (OBJ_MACH_O)
11693 case bfd_target_mach_o_flavour:
d382c579
TG
11694 if (flag_code == CODE_64BIT)
11695 {
11696 use_rela_relocations = 1;
11697 object_64bit = 1;
11698 return "mach-o-x86-64";
11699 }
11700 else
11701 return "mach-o-i386";
4c63da97 11702#endif
252b5132
RH
11703 default:
11704 abort ();
11705 return NULL;
11706 }
11707}
11708
47926f60 11709#endif /* OBJ_MAYBE_ more than one */
252b5132 11710\f
252b5132 11711symbolS *
7016a5d5 11712md_undefined_symbol (char *name)
252b5132 11713{
18dc2407
ILT
11714 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11715 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11716 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11717 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11718 {
11719 if (!GOT_symbol)
11720 {
11721 if (symbol_find (name))
11722 as_bad (_("GOT already in symbol table"));
11723 GOT_symbol = symbol_new (name, undefined_section,
11724 (valueT) 0, &zero_address_frag);
11725 };
11726 return GOT_symbol;
11727 }
252b5132
RH
11728 return 0;
11729}
11730
11731/* Round up a section size to the appropriate boundary. */
47926f60 11732
252b5132 11733valueT
7016a5d5 11734md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11735{
4c63da97
AM
11736#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11737 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11738 {
11739 /* For a.out, force the section size to be aligned. If we don't do
11740 this, BFD will align it for us, but it will not write out the
11741 final bytes of the section. This may be a bug in BFD, but it is
11742 easier to fix it here since that is how the other a.out targets
11743 work. */
11744 int align;
11745
11746 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11747 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11748 }
252b5132
RH
11749#endif
11750
11751 return size;
11752}
11753
11754/* On the i386, PC-relative offsets are relative to the start of the
11755 next instruction. That is, the address of the offset, plus its
11756 size, since the offset is always the last part of the insn. */
11757
11758long
e3bb37b5 11759md_pcrel_from (fixS *fixP)
252b5132
RH
11760{
11761 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11762}
11763
11764#ifndef I386COFF
11765
11766static void
e3bb37b5 11767s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11768{
29b0f896 11769 int temp;
252b5132 11770
8a75718c
JB
11771#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11772 if (IS_ELF)
11773 obj_elf_section_change_hook ();
11774#endif
252b5132
RH
11775 temp = get_absolute_expression ();
11776 subseg_set (bss_section, (subsegT) temp);
11777 demand_empty_rest_of_line ();
11778}
11779
11780#endif
11781
252b5132 11782void
e3bb37b5 11783i386_validate_fix (fixS *fixp)
252b5132 11784{
02a86693 11785 if (fixp->fx_subsy)
252b5132 11786 {
02a86693 11787 if (fixp->fx_subsy == GOT_symbol)
23df1078 11788 {
02a86693
L
11789 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11790 {
11791 if (!object_64bit)
11792 abort ();
11793#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11794 if (fixp->fx_tcbit2)
56ceb5b5
L
11795 fixp->fx_r_type = (fixp->fx_tcbit
11796 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11797 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11798 else
11799#endif
11800 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11801 }
d6ab8113 11802 else
02a86693
L
11803 {
11804 if (!object_64bit)
11805 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11806 else
11807 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11808 }
11809 fixp->fx_subsy = 0;
23df1078 11810 }
252b5132 11811 }
02a86693
L
11812#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11813 else if (!object_64bit)
11814 {
11815 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11816 && fixp->fx_tcbit2)
11817 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11818 }
11819#endif
252b5132
RH
11820}
11821
252b5132 11822arelent *
7016a5d5 11823tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11824{
11825 arelent *rel;
11826 bfd_reloc_code_real_type code;
11827
11828 switch (fixp->fx_r_type)
11829 {
8ce3d284 11830#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11831 case BFD_RELOC_SIZE32:
11832 case BFD_RELOC_SIZE64:
11833 if (S_IS_DEFINED (fixp->fx_addsy)
11834 && !S_IS_EXTERNAL (fixp->fx_addsy))
11835 {
11836 /* Resolve size relocation against local symbol to size of
11837 the symbol plus addend. */
11838 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11839 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11840 && !fits_in_unsigned_long (value))
11841 as_bad_where (fixp->fx_file, fixp->fx_line,
11842 _("symbol size computation overflow"));
11843 fixp->fx_addsy = NULL;
11844 fixp->fx_subsy = NULL;
11845 md_apply_fix (fixp, (valueT *) &value, NULL);
11846 return NULL;
11847 }
8ce3d284 11848#endif
1a0670f3 11849 /* Fall through. */
8fd4256d 11850
3e73aa7c
JH
11851 case BFD_RELOC_X86_64_PLT32:
11852 case BFD_RELOC_X86_64_GOT32:
11853 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11854 case BFD_RELOC_X86_64_GOTPCRELX:
11855 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11856 case BFD_RELOC_386_PLT32:
11857 case BFD_RELOC_386_GOT32:
02a86693 11858 case BFD_RELOC_386_GOT32X:
252b5132
RH
11859 case BFD_RELOC_386_GOTOFF:
11860 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11861 case BFD_RELOC_386_TLS_GD:
11862 case BFD_RELOC_386_TLS_LDM:
11863 case BFD_RELOC_386_TLS_LDO_32:
11864 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11865 case BFD_RELOC_386_TLS_IE:
11866 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11867 case BFD_RELOC_386_TLS_LE_32:
11868 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11869 case BFD_RELOC_386_TLS_GOTDESC:
11870 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11871 case BFD_RELOC_X86_64_TLSGD:
11872 case BFD_RELOC_X86_64_TLSLD:
11873 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11874 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11875 case BFD_RELOC_X86_64_GOTTPOFF:
11876 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11877 case BFD_RELOC_X86_64_TPOFF64:
11878 case BFD_RELOC_X86_64_GOTOFF64:
11879 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11880 case BFD_RELOC_X86_64_GOT64:
11881 case BFD_RELOC_X86_64_GOTPCREL64:
11882 case BFD_RELOC_X86_64_GOTPC64:
11883 case BFD_RELOC_X86_64_GOTPLT64:
11884 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11885 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11886 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11887 case BFD_RELOC_RVA:
11888 case BFD_RELOC_VTABLE_ENTRY:
11889 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11890#ifdef TE_PE
11891 case BFD_RELOC_32_SECREL:
11892#endif
252b5132
RH
11893 code = fixp->fx_r_type;
11894 break;
dbbaec26
L
11895 case BFD_RELOC_X86_64_32S:
11896 if (!fixp->fx_pcrel)
11897 {
11898 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11899 code = fixp->fx_r_type;
11900 break;
11901 }
1a0670f3 11902 /* Fall through. */
252b5132 11903 default:
93382f6d 11904 if (fixp->fx_pcrel)
252b5132 11905 {
93382f6d
AM
11906 switch (fixp->fx_size)
11907 {
11908 default:
b091f402
AM
11909 as_bad_where (fixp->fx_file, fixp->fx_line,
11910 _("can not do %d byte pc-relative relocation"),
11911 fixp->fx_size);
93382f6d
AM
11912 code = BFD_RELOC_32_PCREL;
11913 break;
11914 case 1: code = BFD_RELOC_8_PCREL; break;
11915 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11916 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11917#ifdef BFD64
11918 case 8: code = BFD_RELOC_64_PCREL; break;
11919#endif
93382f6d
AM
11920 }
11921 }
11922 else
11923 {
11924 switch (fixp->fx_size)
11925 {
11926 default:
b091f402
AM
11927 as_bad_where (fixp->fx_file, fixp->fx_line,
11928 _("can not do %d byte relocation"),
11929 fixp->fx_size);
93382f6d
AM
11930 code = BFD_RELOC_32;
11931 break;
11932 case 1: code = BFD_RELOC_8; break;
11933 case 2: code = BFD_RELOC_16; break;
11934 case 4: code = BFD_RELOC_32; break;
937149dd 11935#ifdef BFD64
3e73aa7c 11936 case 8: code = BFD_RELOC_64; break;
937149dd 11937#endif
93382f6d 11938 }
252b5132
RH
11939 }
11940 break;
11941 }
252b5132 11942
d182319b
JB
11943 if ((code == BFD_RELOC_32
11944 || code == BFD_RELOC_32_PCREL
11945 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11946 && GOT_symbol
11947 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11948 {
4fa24527 11949 if (!object_64bit)
d6ab8113
JB
11950 code = BFD_RELOC_386_GOTPC;
11951 else
11952 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11953 }
7b81dfbb
AJ
11954 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11955 && GOT_symbol
11956 && fixp->fx_addsy == GOT_symbol)
11957 {
11958 code = BFD_RELOC_X86_64_GOTPC64;
11959 }
252b5132 11960
add39d23
TS
11961 rel = XNEW (arelent);
11962 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11963 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11964
11965 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11966
3e73aa7c
JH
11967 if (!use_rela_relocations)
11968 {
11969 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11970 vtable entry to be used in the relocation's section offset. */
11971 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11972 rel->address = fixp->fx_offset;
fbeb56a4
DK
11973#if defined (OBJ_COFF) && defined (TE_PE)
11974 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11975 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11976 else
11977#endif
c6682705 11978 rel->addend = 0;
3e73aa7c
JH
11979 }
11980 /* Use the rela in 64bit mode. */
252b5132 11981 else
3e73aa7c 11982 {
862be3fb
L
11983 if (disallow_64bit_reloc)
11984 switch (code)
11985 {
862be3fb
L
11986 case BFD_RELOC_X86_64_DTPOFF64:
11987 case BFD_RELOC_X86_64_TPOFF64:
11988 case BFD_RELOC_64_PCREL:
11989 case BFD_RELOC_X86_64_GOTOFF64:
11990 case BFD_RELOC_X86_64_GOT64:
11991 case BFD_RELOC_X86_64_GOTPCREL64:
11992 case BFD_RELOC_X86_64_GOTPC64:
11993 case BFD_RELOC_X86_64_GOTPLT64:
11994 case BFD_RELOC_X86_64_PLTOFF64:
11995 as_bad_where (fixp->fx_file, fixp->fx_line,
11996 _("cannot represent relocation type %s in x32 mode"),
11997 bfd_get_reloc_code_name (code));
11998 break;
11999 default:
12000 break;
12001 }
12002
062cd5e7
AS
12003 if (!fixp->fx_pcrel)
12004 rel->addend = fixp->fx_offset;
12005 else
12006 switch (code)
12007 {
12008 case BFD_RELOC_X86_64_PLT32:
12009 case BFD_RELOC_X86_64_GOT32:
12010 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12011 case BFD_RELOC_X86_64_GOTPCRELX:
12012 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12013 case BFD_RELOC_X86_64_TLSGD:
12014 case BFD_RELOC_X86_64_TLSLD:
12015 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12016 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12017 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12018 rel->addend = fixp->fx_offset - fixp->fx_size;
12019 break;
12020 default:
12021 rel->addend = (section->vma
12022 - fixp->fx_size
12023 + fixp->fx_addnumber
12024 + md_pcrel_from (fixp));
12025 break;
12026 }
3e73aa7c
JH
12027 }
12028
252b5132
RH
12029 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12030 if (rel->howto == NULL)
12031 {
12032 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12033 _("cannot represent relocation type %s"),
252b5132
RH
12034 bfd_get_reloc_code_name (code));
12035 /* Set howto to a garbage value so that we can keep going. */
12036 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12037 gas_assert (rel->howto != NULL);
252b5132
RH
12038 }
12039
12040 return rel;
12041}
12042
ee86248c 12043#include "tc-i386-intel.c"
54cfded0 12044
a60de03c
JB
12045void
12046tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12047{
a60de03c
JB
12048 int saved_naked_reg;
12049 char saved_register_dot;
54cfded0 12050
a60de03c
JB
12051 saved_naked_reg = allow_naked_reg;
12052 allow_naked_reg = 1;
12053 saved_register_dot = register_chars['.'];
12054 register_chars['.'] = '.';
12055 allow_pseudo_reg = 1;
12056 expression_and_evaluate (exp);
12057 allow_pseudo_reg = 0;
12058 register_chars['.'] = saved_register_dot;
12059 allow_naked_reg = saved_naked_reg;
12060
e96d56a1 12061 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12062 {
a60de03c
JB
12063 if ((addressT) exp->X_add_number < i386_regtab_size)
12064 {
12065 exp->X_op = O_constant;
12066 exp->X_add_number = i386_regtab[exp->X_add_number]
12067 .dw2_regnum[flag_code >> 1];
12068 }
12069 else
12070 exp->X_op = O_illegal;
54cfded0 12071 }
54cfded0
AM
12072}
12073
12074void
12075tc_x86_frame_initial_instructions (void)
12076{
a60de03c
JB
12077 static unsigned int sp_regno[2];
12078
12079 if (!sp_regno[flag_code >> 1])
12080 {
12081 char *saved_input = input_line_pointer;
12082 char sp[][4] = {"esp", "rsp"};
12083 expressionS exp;
a4447b93 12084
a60de03c
JB
12085 input_line_pointer = sp[flag_code >> 1];
12086 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12087 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12088 sp_regno[flag_code >> 1] = exp.X_add_number;
12089 input_line_pointer = saved_input;
12090 }
a4447b93 12091
61ff971f
L
12092 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12093 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12094}
d2b2c203 12095
d7921315
L
12096int
12097x86_dwarf2_addr_size (void)
12098{
12099#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12100 if (x86_elf_abi == X86_64_X32_ABI)
12101 return 4;
12102#endif
12103 return bfd_arch_bits_per_address (stdoutput) / 8;
12104}
12105
d2b2c203
DJ
12106int
12107i386_elf_section_type (const char *str, size_t len)
12108{
12109 if (flag_code == CODE_64BIT
12110 && len == sizeof ("unwind") - 1
12111 && strncmp (str, "unwind", 6) == 0)
12112 return SHT_X86_64_UNWIND;
12113
12114 return -1;
12115}
bb41ade5 12116
ad5fec3b
EB
12117#ifdef TE_SOLARIS
12118void
12119i386_solaris_fix_up_eh_frame (segT sec)
12120{
12121 if (flag_code == CODE_64BIT)
12122 elf_section_type (sec) = SHT_X86_64_UNWIND;
12123}
12124#endif
12125
bb41ade5
AM
12126#ifdef TE_PE
12127void
12128tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12129{
91d6fa6a 12130 expressionS exp;
bb41ade5 12131
91d6fa6a
NC
12132 exp.X_op = O_secrel;
12133 exp.X_add_symbol = symbol;
12134 exp.X_add_number = 0;
12135 emit_expr (&exp, size);
bb41ade5
AM
12136}
12137#endif
3b22753a
L
12138
12139#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12140/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12141
01e1a5bc 12142bfd_vma
6d4af3c2 12143x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12144{
12145 if (flag_code == CODE_64BIT)
12146 {
12147 if (letter == 'l')
12148 return SHF_X86_64_LARGE;
12149
8f3bae45 12150 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12151 }
3b22753a 12152 else
8f3bae45 12153 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12154 return -1;
12155}
12156
01e1a5bc 12157bfd_vma
3b22753a
L
12158x86_64_section_word (char *str, size_t len)
12159{
8620418b 12160 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12161 return SHF_X86_64_LARGE;
12162
12163 return -1;
12164}
12165
12166static void
12167handle_large_common (int small ATTRIBUTE_UNUSED)
12168{
12169 if (flag_code != CODE_64BIT)
12170 {
12171 s_comm_internal (0, elf_common_parse);
12172 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12173 }
12174 else
12175 {
12176 static segT lbss_section;
12177 asection *saved_com_section_ptr = elf_com_section_ptr;
12178 asection *saved_bss_section = bss_section;
12179
12180 if (lbss_section == NULL)
12181 {
12182 flagword applicable;
12183 segT seg = now_seg;
12184 subsegT subseg = now_subseg;
12185
12186 /* The .lbss section is for local .largecomm symbols. */
12187 lbss_section = subseg_new (".lbss", 0);
12188 applicable = bfd_applicable_section_flags (stdoutput);
12189 bfd_set_section_flags (stdoutput, lbss_section,
12190 applicable & SEC_ALLOC);
12191 seg_info (lbss_section)->bss = 1;
12192
12193 subseg_set (seg, subseg);
12194 }
12195
12196 elf_com_section_ptr = &_bfd_elf_large_com_section;
12197 bss_section = lbss_section;
12198
12199 s_comm_internal (0, elf_common_parse);
12200
12201 elf_com_section_ptr = saved_com_section_ptr;
12202 bss_section = saved_bss_section;
12203 }
12204}
12205#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.108987 seconds and 4 git commands to generate.