Merge branch 'gdb-9-branch' into amd-staging-rocgdb-9
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
11bc5fe4 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
ca9af5a1 5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
4ef3f3be 74static int follow_fork (void);
96baa820 75
d83ad864
DB
76static int follow_fork_inferior (int follow_child, int detach_fork);
77
78static void follow_inferior_reset_breakpoints (void);
79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
e58b0e63
PA
82void nullify_last_target_wait_ptid (void);
83
2c03e5be 84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
2484c66b
UW
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
8550d3b3
YQ
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
aff4e175
AB
92static void resume (gdb_signal sig);
93
372316f1
PA
94/* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96static struct async_event_handler *infrun_async_inferior_event_token;
97
98/* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100static int infrun_is_async = -1;
101
102/* See infrun.h. */
103
104void
105infrun_async (int enable)
106{
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121}
122
0b333c5e
PA
123/* See infrun.h. */
124
125void
126mark_infrun_async_event_handler (void)
127{
128 mark_async_event_handler (infrun_async_inferior_event_token);
129}
130
5fbbeb29
CF
131/* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
491144b5 134bool step_stop_if_no_debug = false;
920d2a44
AC
135static void
136show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140}
5fbbeb29 141
b9f437de
PA
142/* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
96baa820 145
39f77062 146static ptid_t previous_inferior_ptid;
7a292a7a 147
07107ca6
LM
148/* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
491144b5 153static bool detach_fork = true;
6c95b8df 154
491144b5 155bool debug_displaced = false;
237fc4c9
PA
156static void
157show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161}
162
ccce17b0 163unsigned int debug_infrun = 0;
920d2a44
AC
164static void
165show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169}
527159b7 170
03583c20
UW
171
172/* Support for disabling address space randomization. */
173
491144b5 174bool disable_randomization = true;
03583c20
UW
175
176static void
177show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189}
190
191static void
eb4c3f4a 192set_disable_randomization (const char *args, int from_tty,
03583c20
UW
193 struct cmd_list_element *c)
194{
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199}
200
d32dc48e
PA
201/* User interface for non-stop mode. */
202
491144b5
CB
203bool non_stop = false;
204static bool non_stop_1 = false;
d32dc48e
PA
205
206static void
eb4c3f4a 207set_non_stop (const char *args, int from_tty,
d32dc48e
PA
208 struct cmd_list_element *c)
209{
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217}
218
219static void
220show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226}
227
d914c394
SS
228/* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
491144b5
CB
232bool observer_mode = false;
233static bool observer_mode_1 = false;
d914c394
SS
234
235static void
eb4c3f4a 236set_observer_mode (const char *args, int from_tty,
d914c394
SS
237 struct cmd_list_element *c)
238{
d914c394
SS
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
491144b5 254 may_insert_fast_tracepoints = true;
d914c394
SS
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
d914c394 262 pagination_enabled = 0;
491144b5 263 non_stop = non_stop_1 = true;
d914c394
SS
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269}
270
271static void
272show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276}
277
278/* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284void
285update_observer_mode (void)
286{
491144b5
CB
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
d914c394
SS
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299}
c2c6d25f 300
c906108c
SS
301/* Tables of how to react to signals; the user sets them. */
302
adc6a863
PA
303static unsigned char signal_stop[GDB_SIGNAL_LAST];
304static unsigned char signal_print[GDB_SIGNAL_LAST];
305static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 306
ab04a2af
TT
307/* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
309 signal" command. */
310static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 311
2455069d
UW
312/* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
adc6a863 315static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 316
c906108c
SS
317#define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325#define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
9b224c5e
PA
333/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336void
337update_signals_program_target (void)
338{
adc6a863 339 target_program_signals (signal_program);
9b224c5e
PA
340}
341
1777feb0 342/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 343
edb3359d 344#define RESUME_ALL minus_one_ptid
c906108c
SS
345
346/* Command list pointer for the "stop" placeholder. */
347
348static struct cmd_list_element *stop_command;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
f9e14852
GB
353
354/* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357static void
eb4c3f4a
TT
358set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
f9e14852
GB
360{
361 update_solib_breakpoints ();
362}
363
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370}
c906108c 371
c906108c
SS
372/* Nonzero after stop if current stack frame should be printed. */
373
374static int stop_print_frame;
375
e02bc4cc 376/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411static int
412follow_fork_inferior (int follow_child, int detach_fork)
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
79639e11 484 inferior_ptid = child_ptid;
f67c0c91 485 add_thread_silent (inferior_ptid);
2a00d7ce 486 set_current_inferior (child_inf);
d83ad864
DB
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
564b1e3f 507 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
d83ad864
DB
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
f67c0c91 545 if (print_inferior_events)
d83ad864 546 {
f67c0c91
SDJ
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
223ffa71 550 target_terminal::ours_for_output ();
6f259a23 551 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
6f259a23 554 has_vforked ? "vfork" : "fork",
f67c0c91 555 child_pid.c_str ());
d83ad864
DB
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
e99b03dc 561 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
6f259a23 592 {
f67c0c91 593 if (print_inferior_events)
6f259a23 594 {
8dd06f7a 595 /* Ensure that we have a process ptid. */
e99b03dc 596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 597
223ffa71 598 target_terminal::ours_for_output ();
6f259a23 599 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
600 _("[Detaching after fork from "
601 "parent %s]\n"),
a068643d 602 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
603 }
604
6e1e1966 605 target_detach (parent_inf, 0);
6f259a23 606 }
d83ad864
DB
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
79639e11 614 inferior_ptid = child_ptid;
f67c0c91 615 add_thread_silent (inferior_ptid);
2a00d7ce 616 set_current_inferior (child_inf);
d83ad864
DB
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
564b1e3f 629 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645}
646
e58b0e63
PA
647/* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
6604731b 651static int
4ef3f3be 652follow_fork (void)
c906108c 653{
ea1dd7bc 654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
4e3990f4
DE
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 663 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
8980e177 667 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
00431a78
PA
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
e58b0e63
PA
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
00431a78
PA
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
e58b0e63
PA
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
8358c15c
JK
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
16c381f0
JK
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
186c406b
TT
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 721 thread_fsm = tp->thread_fsm;
e58b0e63
PA
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
16c381f0
JK
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
186c406b 732 delete_exception_resume_breakpoint (tp);
8980e177 733 tp->thread_fsm = NULL;
e58b0e63
PA
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
d83ad864
DB
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
e09875d4 754 tp = find_thread_ptid (parent);
e58b0e63
PA
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
1777feb0 762 /* If we followed the child, switch to it... */
e58b0e63
PA
763 if (follow_child)
764 {
00431a78
PA
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
e58b0e63
PA
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
8358c15c
JK
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
16c381f0
JK
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
186c406b
TT
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
8980e177 780 tp->thread_fsm = thread_fsm;
e58b0e63
PA
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
3e43a32a 790 warning (_("Not resuming: switched threads "
fd7dcb94 791 "before following fork child."));
e58b0e63
PA
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
e58b0e63
PA
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
c906108c 809
e58b0e63 810 return should_resume;
c906108c
SS
811}
812
d83ad864 813static void
6604731b 814follow_inferior_reset_breakpoints (void)
c906108c 815{
4e1c45ea
PA
816 struct thread_info *tp = inferior_thread ();
817
6604731b
DJ
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
6604731b
DJ
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
8358c15c 831 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
6604731b 836
a1aa2221 837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 838 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
186c406b 843
6604731b
DJ
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
c906108c 851}
c906108c 852
6c95b8df
PA
853/* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856static int
857proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859{
860 int pid = * (int *) arg;
861
00431a78
PA
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
6c95b8df 865 && !thread->stop_requested
a493e3e2 866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
a068643d 871 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 872
00431a78 873 switch_to_thread (thread);
70509625 874 clear_proceed_status (0);
64ce06e4 875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
876 }
877
878 return 0;
879}
880
5ed8105e
PA
881/* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884class scoped_restore_exited_inferior
885{
886public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895};
896
6c95b8df
PA
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
b73715df
TV
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
6c95b8df 914
b73715df
TV
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
6c95b8df
PA
918 {
919 struct thread_info *tp;
6c95b8df
PA
920 struct program_space *pspace;
921 struct address_space *aspace;
922
1777feb0 923 /* follow-fork child, detach-on-fork on. */
6c95b8df 924
b73715df 925 vfork_parent->pending_detach = 0;
68c9da30 926
5ed8105e
PA
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
f50f4e56 934 if (!exec)
5ed8105e 935 maybe_restore_inferior.emplace ();
f50f4e56 936 else
5ed8105e 937 maybe_restore_thread.emplace ();
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
b73715df 940 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
5ed8105e
PA
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
564b1e3f 1022 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1026 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
b73715df 1030 resume_parent = vfork_parent->pid;
6c95b8df
PA
1031 }
1032
6c95b8df
PA
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
5ed8105e 1039 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1040
1041 if (debug_infrun)
3e43a32a
MS
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1047 }
1048 }
1049}
1050
eb6c553b 1051/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1052
1053static const char follow_exec_mode_new[] = "new";
1054static const char follow_exec_mode_same[] = "same";
40478521 1055static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1056{
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060};
1061
1062static const char *follow_exec_mode_string = follow_exec_mode_same;
1063static void
1064show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066{
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068}
1069
ecf45d2c 1070/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1071
c906108c 1072static void
4ca51187 1073follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1074{
6c95b8df 1075 struct inferior *inf = current_inferior ();
e99b03dc 1076 int pid = ptid.pid ();
94585166 1077 ptid_t process_ptid;
7a292a7a 1078
65d2b333
PW
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
c906108c
SS
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
85102364 1101 value that was overwritten with a TRAP instruction). Since
1777feb0 1102 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1103
1104 mark_breakpoints_out ();
1105
95e50b27
PA
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
08036331 1125 for (thread_info *th : all_threads_safe ())
d7e15655 1126 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1127 delete_thread (th);
95e50b27
PA
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
08036331 1133 thread_info *th = inferior_thread ();
8358c15c 1134 th->control.step_resume_breakpoint = NULL;
186c406b 1135 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1136 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
c906108c 1139
95e50b27
PA
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
a75724bc
PA
1143 th->stop_requested = 0;
1144
95e50b27
PA
1145 update_breakpoints_after_exec ();
1146
1777feb0 1147 /* What is this a.out's name? */
f2907e49 1148 process_ptid = ptid_t (pid);
6c95b8df 1149 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1150 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1151 exec_file_target);
c906108c
SS
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1154 inferior has essentially been killed & reborn. */
7a292a7a 1155
6ca15a4b 1156 breakpoint_init_inferior (inf_execd);
e85a822c 1157
797bc1cb
TT
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
ff862be4 1160
ecf45d2c
SL
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
c906108c 1169
cce9b6bf
PA
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
6c95b8df
PA
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
6c95b8df
PA
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
35ed81d4
SM
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
057302ce 1189 exit_inferior_silent (current_inferior ());
17d8546e 1190
94585166 1191 inf->pid = pid;
ecf45d2c 1192 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1193
1194 set_current_inferior (inf);
94585166 1195 set_current_program_space (inf->pspace);
c4c17fb0 1196 add_thread (ptid);
6c95b8df 1197 }
9107fc8d
PA
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
6c95b8df
PA
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
ecf45d2c
SL
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
797bc1cb 1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1217
9107fc8d
PA
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
268a4a75 1226 solib_create_inferior_hook (0);
c906108c 1227
4efc6507
DE
1228 jit_inferior_created_hook ();
1229
c1e56572
JK
1230 breakpoint_re_set ();
1231
c906108c
SS
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1777feb0 1234 to symbol_file_command...). */
c906108c
SS
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1777feb0 1240 matically get reset there in the new process.). */
c906108c
SS
1241}
1242
c2829269
PA
1243/* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250struct thread_info *step_over_queue_head;
1251
6c4cfb24
PA
1252/* Bit flags indicating what the thread needs to step over. */
1253
8d297bbf 1254enum step_over_what_flag
6c4cfb24
PA
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
8d297bbf 1264DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1265
963f9c80 1266/* Info about an instruction that is being stepped over. */
31e77af2
PA
1267
1268struct step_over_info
1269{
963f9c80
PA
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
8b86c959 1274 const address_space *aspace;
31e77af2 1275 CORE_ADDR address;
963f9c80
PA
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
21edc42f
YQ
1280
1281 /* The thread's global number. */
1282 int thread;
31e77af2
PA
1283};
1284
1285/* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309static struct step_over_info step_over_info;
1310
1311/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
31e77af2
PA
1315
1316static void
8b86c959 1317set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1318 int nonsteppable_watchpoint_p,
1319 int thread)
31e77af2
PA
1320{
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
963f9c80 1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1324 step_over_info.thread = thread;
31e77af2
PA
1325}
1326
1327/* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330static void
1331clear_step_over_info (void)
1332{
372316f1
PA
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
31e77af2
PA
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
963f9c80 1338 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1339 step_over_info.thread = -1;
31e77af2
PA
1340}
1341
7f89fd65 1342/* See infrun.h. */
31e77af2
PA
1343
1344int
1345stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347{
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352}
1353
963f9c80
PA
1354/* See infrun.h. */
1355
21edc42f
YQ
1356int
1357thread_is_stepping_over_breakpoint (int thread)
1358{
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361}
1362
1363/* See infrun.h. */
1364
963f9c80
PA
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1426 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
237fc4c9
PA
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
cfba9872
SM
1467/* Default destructor for displaced_step_closure. */
1468
1469displaced_step_closure::~displaced_step_closure () = default;
1470
fc1cf338
PA
1471/* Get the displaced stepping state of process PID. */
1472
39a36629 1473static displaced_step_inferior_state *
00431a78 1474get_displaced_stepping_state (inferior *inf)
fc1cf338 1475{
d20172fc 1476 return &inf->displaced_step_state;
fc1cf338
PA
1477}
1478
372316f1
PA
1479/* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
39a36629
SM
1482static bool
1483displaced_step_in_progress_any_inferior ()
372316f1 1484{
d20172fc 1485 for (inferior *i : all_inferiors ())
39a36629 1486 {
d20172fc 1487 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1488 return true;
1489 }
372316f1 1490
39a36629 1491 return false;
372316f1
PA
1492}
1493
c0987663
YQ
1494/* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497static int
00431a78 1498displaced_step_in_progress_thread (thread_info *thread)
c0987663 1499{
00431a78 1500 gdb_assert (thread != NULL);
c0987663 1501
d20172fc 1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1503}
1504
8f572e5c
PA
1505/* Return true if process PID has a thread doing a displaced step. */
1506
1507static int
00431a78 1508displaced_step_in_progress (inferior *inf)
8f572e5c 1509{
d20172fc 1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1511}
1512
a42244db
YQ
1513/* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517struct displaced_step_closure*
1518get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519{
d20172fc 1520 displaced_step_inferior_state *displaced
00431a78 1521 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1522
1523 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1524 if (displaced->step_thread != nullptr
00431a78 1525 && displaced->step_copy == addr)
a42244db
YQ
1526 return displaced->step_closure;
1527
1528 return NULL;
1529}
1530
fc1cf338
PA
1531static void
1532infrun_inferior_exit (struct inferior *inf)
1533{
d20172fc 1534 inf->displaced_step_state.reset ();
fc1cf338 1535}
237fc4c9 1536
fff08868
HZ
1537/* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
72d0e2c5 1545static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1546
237fc4c9
PA
1547static void
1548show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551{
72d0e2c5 1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1556 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1557 else
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1561}
1562
fff08868 1563/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1564 over breakpoints of thread TP. */
fff08868 1565
237fc4c9 1566static int
3fc8eb30 1567use_displaced_stepping (struct thread_info *tp)
237fc4c9 1568{
00431a78 1569 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1570 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1573
fbea99ea
PA
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
72d0e2c5 1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1578 && find_record_target () == NULL
d20172fc 1579 && !displaced_state->failed_before);
237fc4c9
PA
1580}
1581
1582/* Clean out any stray displaced stepping state. */
1583static void
fc1cf338 1584displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1585{
1586 /* Indicate that there is no cleanup pending. */
00431a78 1587 displaced->step_thread = nullptr;
237fc4c9 1588
cfba9872 1589 delete displaced->step_closure;
6d45d4b4 1590 displaced->step_closure = NULL;
237fc4c9
PA
1591}
1592
9799571e
TT
1593/* A cleanup that wraps displaced_step_clear. */
1594using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1596
1597/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598void
1599displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602{
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608}
1609
1610/* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
237fc4c9 1626static int
00431a78 1627displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1628{
00431a78 1629 regcache *regcache = get_thread_regcache (tp);
ac7936df 1630 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1631 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
9e529e1d 1635 int status;
237fc4c9
PA
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
c2829269
PA
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
c1e36e3e
PA
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
fc1cf338
PA
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
237fc4c9 1652
d20172fc
SM
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
fc1cf338 1655
00431a78 1656 if (displaced->step_thread != nullptr)
237fc4c9
PA
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
237fc4c9
PA
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
c2829269 1663 "displaced: deferring step of %s\n",
a068643d 1664 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1665
c2829269 1666 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
a068643d 1674 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
00431a78
PA
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
ad53cd71 1682
515630c5 1683 original = regcache_read_pc (regcache);
237fc4c9
PA
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
d35ae833
PA
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
d35ae833
PA
1706 return -1;
1707 }
1708
237fc4c9 1709 /* Save the original contents of the copy area. */
d20172fc
SM
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1717 if (debug_displaced)
1718 {
5af949e3
UW
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
fc1cf338 1721 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1722 displaced->step_saved_copy.data (),
fc1cf338 1723 len);
237fc4c9
PA
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1727 original, copy, regcache);
7f03bd92
PA
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
7f03bd92
PA
1733 return -1;
1734 }
237fc4c9 1735
9f5a595d
UW
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
00431a78 1738 displaced->step_thread = tp;
fc1cf338
PA
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
9f5a595d 1743
9799571e
TT
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1746
9799571e
TT
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
237fc4c9 1749
9799571e
TT
1750 cleanup.release ();
1751 }
ad53cd71 1752
237fc4c9 1753 if (debug_displaced)
5af949e3
UW
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
237fc4c9 1756
237fc4c9
PA
1757 return 1;
1758}
1759
3fc8eb30
PA
1760/* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763static int
00431a78 1764displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1765{
1766 int prepared = -1;
1767
a70b8144 1768 try
3fc8eb30 1769 {
00431a78 1770 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1771 }
230d2906 1772 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
16b41842
PA
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1778 throw;
3fc8eb30
PA
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1784 ex.what ());
3fc8eb30
PA
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
fd7dcb94 1791 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1792 ex.what ());
3fc8eb30
PA
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
00431a78 1797 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1798 displaced_state->failed_before = 1;
1799 }
3fc8eb30
PA
1800
1801 return prepared;
1802}
1803
237fc4c9 1804static void
3e43a32a
MS
1805write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
237fc4c9 1807{
2989a365 1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1809
237fc4c9
PA
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1812}
1813
e2d96639
YQ
1814/* Restore the contents of the copy area for thread PTID. */
1815
1816static void
1817displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819{
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1823 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1826 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829}
1830
372316f1
PA
1831/* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837static int
00431a78 1838displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1839{
fc1cf338 1840 struct displaced_step_inferior_state *displaced
00431a78 1841 = get_displaced_stepping_state (event_thread->inf);
372316f1 1842 int ret;
fc1cf338 1843
00431a78
PA
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
372316f1 1846 return 0;
237fc4c9 1847
9799571e 1848 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1849
00431a78 1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1851
cb71640d
PA
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
00431a78 1855 switch_to_thread (event_thread);
cb71640d 1856
237fc4c9 1857 /* Did the instruction complete successfully? */
cb71640d
PA
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
237fc4c9
PA
1862 {
1863 /* Fix up the resulting state. */
fc1cf338
PA
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
00431a78 1868 get_thread_regcache (displaced->step_thread));
372316f1 1869 ret = 1;
237fc4c9
PA
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
00431a78 1875 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1876 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1877
fc1cf338 1878 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1879 regcache_write_pc (regcache, pc);
372316f1 1880 ret = -1;
237fc4c9
PA
1881 }
1882
372316f1 1883 return ret;
c2829269 1884}
1c5cfe86 1885
4d9d9d04
PA
1886/* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888struct execution_control_state
1889{
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907};
1908
1909/* Clear ECS and set it to point at TP. */
c2829269
PA
1910
1911static void
4d9d9d04
PA
1912reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913{
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917}
1918
1919static void keep_going_pass_signal (struct execution_control_state *ecs);
1920static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1921static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1922static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1923
1924/* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927static int
c2829269
PA
1928start_step_over (void)
1929{
1930 struct thread_info *tp, *next;
1931
372316f1
PA
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
c2829269 1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1938 {
4d9d9d04
PA
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
8d297bbf 1941 step_over_what step_what;
372316f1 1942 int must_be_in_line;
c2829269 1943
c65d6b55
PA
1944 gdb_assert (!tp->stop_requested);
1945
c2829269 1946 next = thread_step_over_chain_next (tp);
237fc4c9 1947
c2829269
PA
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
00431a78 1950 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1951 continue;
1952
372316f1
PA
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1956 && !use_displaced_stepping (tp)));
372316f1
PA
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
c2829269
PA
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
372316f1
PA
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
ad53cd71 1976 {
4d9d9d04
PA
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
372316f1 1979 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1980 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1981 tp->control.trap_expected,
372316f1 1982 tp->resumed,
4d9d9d04 1983 tp->executing);
ad53cd71 1984 }
1c5cfe86 1985
4d9d9d04
PA
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
a068643d 1989 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1997 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1998 continue;
8550d3b3 1999
00431a78 2000 switch_to_thread (tp);
4d9d9d04
PA
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
1c5cfe86 2003
4d9d9d04
PA
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
1c5cfe86 2006
372316f1
PA
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
fbea99ea 2016 if (!target_is_non_stop_p ())
4d9d9d04
PA
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
1c5cfe86 2027 }
c2829269 2028
4d9d9d04
PA
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
237fc4c9 2033 }
4d9d9d04
PA
2034
2035 return 0;
237fc4c9
PA
2036}
2037
5231c1fd
PA
2038/* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040static void
2041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042{
d7e15655 2043 if (inferior_ptid == old_ptid)
5231c1fd 2044 inferior_ptid = new_ptid;
5231c1fd
PA
2045}
2046
237fc4c9 2047\f
c906108c 2048
53904c9e
AC
2049static const char schedlock_off[] = "off";
2050static const char schedlock_on[] = "on";
2051static const char schedlock_step[] = "step";
f2665db5 2052static const char schedlock_replay[] = "replay";
40478521 2053static const char *const scheduler_enums[] = {
ef346e04
AC
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
f2665db5 2057 schedlock_replay,
ef346e04
AC
2058 NULL
2059};
f2665db5 2060static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2061static void
2062show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064{
3e43a32a
MS
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
920d2a44
AC
2068 value);
2069}
c906108c
SS
2070
2071static void
eb4c3f4a 2072set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2073{
eefe576e
AC
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
c906108c
SS
2079}
2080
d4db2f36
PA
2081/* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
491144b5 2084bool sched_multi = false;
d4db2f36 2085
2facfe5c
DD
2086/* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092static int
2093maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094{
2095 int hw_step = 1;
2096
f02253f1 2097 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2facfe5c
DD
2101 return hw_step;
2102}
c906108c 2103
f3263aa4
PA
2104/* See infrun.h. */
2105
09cee04b
PA
2106ptid_t
2107user_visible_resume_ptid (int step)
2108{
f3263aa4 2109 ptid_t resume_ptid;
09cee04b 2110
09cee04b
PA
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
03d46957 2118 || (scheduler_mode == schedlock_step && step))
09cee04b 2119 {
f3263aa4
PA
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
09cee04b
PA
2122 resume_ptid = inferior_ptid;
2123 }
f2665db5
MM
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
f3263aa4
PA
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
e99b03dc 2135 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
09cee04b
PA
2142
2143 return resume_ptid;
2144}
2145
fbea99ea
PA
2146/* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152static ptid_t
2153internal_resume_ptid (int user_step)
2154{
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163}
2164
64ce06e4
PA
2165/* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168static void
2169do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170{
2171 struct thread_info *tp = inferior_thread ();
2172
c65d6b55
PA
2173 gdb_assert (!tp->stop_requested);
2174
64ce06e4 2175 /* Install inferior's terminal modes. */
223ffa71 2176 target_terminal::inferior ();
64ce06e4
PA
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
8f572e5c
PA
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
00431a78 2202 || displaced_step_in_progress (tp->inf))
adc6a863 2203 target_pass_signals ({});
64ce06e4 2204 else
adc6a863 2205 target_pass_signals (signal_pass);
64ce06e4
PA
2206
2207 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2208
2209 target_commit_resume ();
64ce06e4
PA
2210}
2211
d930703d 2212/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
c906108c 2215
71d378ae
PA
2216static void
2217resume_1 (enum gdb_signal sig)
c906108c 2218{
515630c5 2219 struct regcache *regcache = get_current_regcache ();
ac7936df 2220 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2221 struct thread_info *tp = inferior_thread ();
515630c5 2222 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2223 const address_space *aspace = regcache->aspace ();
b0f16a3e 2224 ptid_t resume_ptid;
856e7dd6
PA
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
6b403daa 2233 int step;
c7e8a53c 2234
c65d6b55 2235 gdb_assert (!tp->stop_requested);
c2829269
PA
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
372316f1
PA
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
23fdd69e
SM
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2244
372316f1 2245 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
a068643d
TT
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
372316f1 2250 currently_stepping (tp));
372316f1
PA
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
fd7dcb94 2260 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2266
2267 if (target_can_async_p ())
9516f85a
AB
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
372316f1
PA
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
6b403daa
PA
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
74609e71
YQ
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
48f9886d
PA
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
74609e71
YQ
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
a09dd441 2297 step = 0;
74609e71
YQ
2298 }
2299
527159b7 2300 if (debug_infrun)
237fc4c9 2301 fprintf_unfiltered (gdb_stdlog,
c9737c08 2302 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2303 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
a068643d 2306 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2307 paddress (gdbarch, pc));
c906108c 2308
c2c6d25f
JM
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2314 {
af48d08f
PA
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
44a1ee51
PA
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
af48d08f 2374 (overstep). */
1ac806b8 2375 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
fbea99ea 2379 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2381 tp->resumed = 1;
af48d08f
PA
2382 return;
2383 }
2384 }
6d350bb5 2385 }
c2c6d25f 2386
c1e36e3e
PA
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
237fc4c9
PA
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
3fc8eb30
PA
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
cb71640d 2405 && !step_over_info_valid_p ()
a493e3e2 2406 && sig == GDB_SIGNAL_0
74609e71 2407 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2408 {
00431a78 2409 int prepared = displaced_step_prepare (tp);
fc1cf338 2410
3fc8eb30 2411 if (prepared == 0)
d56b7306 2412 {
4d9d9d04
PA
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
d56b7306
VP
2418 return;
2419 }
3fc8eb30
PA
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
a01bda52 2427 set_step_over_info (regcache->aspace (),
21edc42f 2428 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
99e40580 2437
3fc8eb30
PA
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
00431a78 2440 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2441
00431a78 2442 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
237fc4c9
PA
2446 }
2447
2facfe5c 2448 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2449 else if (step)
2facfe5c 2450 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2451
30852783
UW
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
34b7e8a6 2476 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
30852783
UW
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2c03e5be 2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
34b7e8a6 2491 delete_single_step_breakpoints (tp);
30852783 2492
31e77af2 2493 clear_step_over_info ();
30852783 2494 tp->control.trap_expected = 0;
31e77af2
PA
2495
2496 insert_breakpoints ();
30852783
UW
2497 }
2498
b0f16a3e
SM
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
34b7e8a6 2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2503
fbea99ea 2504 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2505 if (tp->control.trap_expected)
b0f16a3e
SM
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
b0f16a3e
SM
2516 resume_ptid = inferior_ptid;
2517 }
fbea99ea
PA
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2520
7f5ef605
PA
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2523 {
372316f1
PA
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
372316f1
PA
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2555 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2556
2557 tp->stepped_breakpoint = 1;
2558
b0f16a3e
SM
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
7f5ef605 2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2563 step = 0;
2564 }
ef5cf84e 2565
b0f16a3e 2566 if (debug_displaced
cb71640d 2567 && tp->control.trap_expected
3fc8eb30 2568 && use_displaced_stepping (tp)
cb71640d 2569 && !step_over_info_valid_p ())
b0f16a3e 2570 {
00431a78 2571 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
237fc4c9 2581
b0f16a3e
SM
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
c1e36e3e 2591
64ce06e4 2592 do_target_resume (resume_ptid, step, sig);
372316f1 2593 tp->resumed = 1;
c906108c 2594}
71d378ae
PA
2595
2596/* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
aff4e175 2600static void
71d378ae
PA
2601resume (gdb_signal sig)
2602{
a70b8144 2603 try
71d378ae
PA
2604 {
2605 resume_1 (sig);
2606 }
230d2906 2607 catch (const gdb_exception &ex)
71d378ae
PA
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2616 throw;
71d378ae 2617 }
71d378ae
PA
2618}
2619
c906108c 2620\f
237fc4c9 2621/* Proceeding. */
c906108c 2622
4c2f2a79
PA
2623/* See infrun.h. */
2624
2625/* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632static ULONGEST current_stop_id;
2633
2634/* See infrun.h. */
2635
2636ULONGEST
2637get_stop_id (void)
2638{
2639 return current_stop_id;
2640}
2641
2642/* Called when we report a user visible stop. */
2643
2644static void
2645new_stop_id (void)
2646{
2647 current_stop_id++;
2648}
2649
c906108c
SS
2650/* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
a7212384
UW
2653static void
2654clear_proceed_status_thread (struct thread_info *tp)
c906108c 2655{
a7212384
UW
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2659 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2660
372316f1
PA
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
a068643d 2672 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
23fdd69e
SM
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2681
372316f1
PA
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
a068643d
TT
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
372316f1 2688 currently_stepping (tp));
372316f1
PA
2689 }
2690 }
2691
70509625
PA
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
46e3ed7f 2697 delete tp->thread_fsm;
243a9253
PA
2698 tp->thread_fsm = NULL;
2699
16c381f0
JK
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
c1e36e3e 2703 tp->control.may_range_step = 0;
16c381f0
JK
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2707 tp->control.step_start_function = NULL;
a7212384 2708 tp->stop_requested = 0;
4e1c45ea 2709
16c381f0 2710 tp->control.stop_step = 0;
32400beb 2711
16c381f0 2712 tp->control.proceed_to_finish = 0;
414c69f7 2713
856e7dd6 2714 tp->control.stepping_command = 0;
17b2616c 2715
a7212384 2716 /* Discard any remaining commands or status from previous stop. */
16c381f0 2717 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2718}
32400beb 2719
a7212384 2720void
70509625 2721clear_proceed_status (int step)
a7212384 2722{
f2665db5
MM
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
08036331 2735 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2736 {
08036331 2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
08036331
PA
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
6c95b8df
PA
2743 }
2744
d7e15655 2745 if (inferior_ptid != null_ptid)
a7212384
UW
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
6c95b8df
PA
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
a7212384
UW
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
6c95b8df 2755
d6b48e9c 2756 inferior = current_inferior ();
16c381f0 2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2758 }
2759
76727919 2760 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2761}
2762
99619bea
PA
2763/* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2766
2767static int
6c4cfb24 2768thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2769{
2770 if (tp->stepping_over_breakpoint)
2771 {
00431a78 2772 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2773
a01bda52 2774 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
99619bea
PA
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783}
2784
6c4cfb24
PA
2785/* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
8d297bbf 2789static step_over_what
6c4cfb24
PA
2790thread_still_needs_step_over (struct thread_info *tp)
2791{
8d297bbf 2792 step_over_what what = 0;
6c4cfb24
PA
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802}
2803
483805cf
PA
2804/* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807static int
856e7dd6 2808schedlock_applies (struct thread_info *tp)
483805cf
PA
2809{
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
f2665db5
MM
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
483805cf
PA
2816}
2817
c906108c
SS
2818/* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826void
64ce06e4 2827proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2828{
e58b0e63
PA
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
e58b0e63 2831 CORE_ADDR pc;
4d9d9d04
PA
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
4d9d9d04 2835 int started;
c906108c 2836
e58b0e63
PA
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
f148b27e
PA
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2846 return;
2847 }
2848
842951eb
PA
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
e58b0e63 2852 regcache = get_current_regcache ();
ac7936df 2853 gdbarch = regcache->arch ();
8b86c959
YQ
2854 const address_space *aspace = regcache->aspace ();
2855
e58b0e63 2856 pc = regcache_read_pc (regcache);
08036331 2857 thread_info *cur_thr = inferior_thread ();
e58b0e63 2858
99619bea 2859 /* Fill in with reasonable starting values. */
08036331 2860 init_thread_stepping_state (cur_thr);
99619bea 2861
08036331 2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2863
2acceee2 2864 if (addr == (CORE_ADDR) -1)
c906108c 2865 {
08036331 2866 if (pc == cur_thr->suspend.stop_pc
af48d08f 2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2868 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
b2175913
MS
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
08036331 2877 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
3352ef37
AC
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
08036331 2883 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2884 }
2885 else
2886 {
515630c5 2887 regcache_write_pc (regcache, addr);
c906108c
SS
2888 }
2889
70509625 2890 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2891 cur_thr->suspend.stop_signal = siggnal;
70509625 2892
08036331 2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
731f534f 2898 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
08036331 2906 if (!cur_thr->control.in_infcall)
4d9d9d04 2907 set_running (resume_ptid, 1);
17b2616c 2908
527159b7 2909 if (debug_infrun)
8a9de0e4 2910 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2911 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2912 paddress (gdbarch, addr),
64ce06e4 2913 gdb_signal_to_symbol_string (siggnal));
527159b7 2914
4d9d9d04
PA
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
d930703d
PA
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
4d9d9d04
PA
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
08036331 2940 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2941 {
08036331
PA
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
4d9d9d04
PA
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
08036331 2946 if (tp == cur_thr)
4d9d9d04 2947 continue;
c906108c 2948
4d9d9d04
PA
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2953
99619bea
PA
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
a068643d 2957 target_pid_to_str (tp->ptid).c_str ());
99619bea 2958
4d9d9d04 2959 thread_step_over_chain_enqueue (tp);
2adfaa28 2960 }
30852783
UW
2961 }
2962
4d9d9d04
PA
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
08036331
PA
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
30852783 2967
4d9d9d04
PA
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
08036331 2973 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2974
a9bc57b9
TT
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2977
a9bc57b9 2978 started = start_step_over ();
c906108c 2979
a9bc57b9
TT
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
08036331 2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2996 {
fbea99ea
PA
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
a068643d 3002 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
a068643d 3012 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
a068643d 3019 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3020
3021 reset_ecs (ecs, tp);
00431a78 3022 switch_to_thread (tp);
fbea99ea
PA
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
fd7dcb94 3025 error (_("Command aborted."));
fbea99ea 3026 }
a9bc57b9 3027 }
08036331 3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
a9bc57b9
TT
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
c906108c 3038
85ad3aaf
PA
3039 target_commit_resume ();
3040
731f534f 3041 finish_state.release ();
c906108c 3042
0b333c5e
PA
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
362646f5 3046 if (!target_can_async_p ())
0b333c5e 3047 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3048}
c906108c
SS
3049\f
3050
3051/* Start remote-debugging of a machine over a serial link. */
96baa820 3052
c906108c 3053void
8621d6a9 3054start_remote (int from_tty)
c906108c 3055{
d6b48e9c 3056 struct inferior *inferior;
d6b48e9c
PA
3057
3058 inferior = current_inferior ();
16c381f0 3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3060
1777feb0 3061 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3063 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
1777feb0 3067 timeout. */
6426a772
JM
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
1777feb0 3074 for an async run. */
e4c8541f 3075 wait_for_inferior ();
8621d6a9
DJ
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
8b88a78e 3080 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3081
6426a772 3082 normal_stop ();
c906108c
SS
3083}
3084
3085/* Initialize static vars when a new inferior begins. */
3086
3087void
96baa820 3088init_wait_for_inferior (void)
c906108c
SS
3089{
3090 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3091
c906108c
SS
3092 breakpoint_init_inferior (inf_starting);
3093
70509625 3094 clear_proceed_status (0);
9f976b41 3095
ca005067 3096 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3097
842951eb 3098 previous_inferior_ptid = inferior_ptid;
c906108c 3099}
237fc4c9 3100
c906108c 3101\f
488f131b 3102
ec9499be 3103static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3104
568d6575
UW
3105static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
4f5d7f63 3109static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3110static void check_exception_resume (struct execution_control_state *,
28106bc2 3111 struct frame_info *);
611c83ae 3112
bdc36728 3113static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3114static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3115static void keep_going (struct execution_control_state *ecs);
94c57d6a 3116static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3117static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3118
252fbfc8
PA
3119/* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
2c0b251b 3123static void
252fbfc8
PA
3124infrun_thread_stop_requested (ptid_t ptid)
3125{
c65d6b55
PA
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
08036331
PA
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
c65d6b55 3136
08036331
PA
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
c65d6b55 3142
08036331
PA
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
c65d6b55 3153
08036331
PA
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
c65d6b55 3157
08036331
PA
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
252fbfc8
PA
3170}
3171
a07daef3
PA
3172static void
3173infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174{
d7e15655 3175 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3176 nullify_last_target_wait_ptid ();
3177}
3178
0cbcdb96
PA
3179/* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
4e1c45ea 3181
0cbcdb96
PA
3182static void
3183delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3184{
0cbcdb96
PA
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
34b7e8a6 3187 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3188}
3189
0cbcdb96
PA
3190/* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
4e1c45ea
PA
3196
3197static void
0cbcdb96 3198for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3199{
d7e15655 3200 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3201 return;
3202
fbea99ea 3203 if (target_is_non_stop_p ())
4e1c45ea 3204 {
0cbcdb96
PA
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
4e1c45ea
PA
3207 }
3208 else
0cbcdb96 3209 {
0cbcdb96 3210 /* In all-stop mode, all threads have stopped. */
08036331
PA
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
0cbcdb96
PA
3213 }
3214}
3215
3216/* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219static void
3220delete_just_stopped_threads_infrun_breakpoints (void)
3221{
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3223}
3224
3225/* Delete the single-step breakpoints of the threads that just
3226 stopped. */
7c16b83e 3227
34b7e8a6
PA
3228static void
3229delete_just_stopped_threads_single_step_breakpoints (void)
3230{
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3232}
3233
221e1a37 3234/* See infrun.h. */
223698f8 3235
221e1a37 3236void
223698f8
DE
3237print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239{
23fdd69e 3240 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3241 string_file stb;
223698f8
DE
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
d7e74731 3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3249 waiton_ptid.pid (),
e38504b3 3250 waiton_ptid.lwp (),
cc6bcb54 3251 waiton_ptid.tid ());
e99b03dc 3252 if (waiton_ptid.pid () != -1)
a068643d 3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3256 result_ptid.pid (),
e38504b3 3257 result_ptid.lwp (),
cc6bcb54 3258 result_ptid.tid (),
a068643d 3259 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3260 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
d7e74731 3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3265}
3266
372316f1
PA
3267/* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270static struct thread_info *
3271random_pending_event_thread (ptid_t waiton_ptid)
3272{
372316f1 3273 int num_events = 0;
08036331
PA
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
372316f1
PA
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
08036331
PA
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
372316f1
PA
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
372316f1
PA
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
08036331
PA
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
372316f1 3302 if (random_selector-- == 0)
08036331 3303 return tp;
372316f1 3304
08036331 3305 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3306}
3307
3308/* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312static ptid_t
3313do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314{
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
d7e15655 3320 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
a068643d 3329 target_pid_to_str (ptid).c_str ());
372316f1
PA
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
00431a78 3342 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3343 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3354 target_pid_to_str (tp->ptid).c_str (),
defd2172 3355 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
a01bda52 3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3364 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
a068643d 3375 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
23fdd69e
SM
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3388
372316f1
PA
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3391 statstr.c_str (),
a068643d 3392 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
00431a78 3405 regcache = get_thread_regcache (tp);
ac7936df 3406 gdbarch = regcache->arch ();
372316f1
PA
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437}
3438
24291992
PA
3439/* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444void
3445prepare_for_detach (void)
3446{
3447 struct inferior *inf = current_inferior ();
f2907e49 3448 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3449
00431a78 3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
d20172fc 3454 if (displaced->step_thread == nullptr)
24291992
PA
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
9bcb1f16 3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3462
00431a78 3463 while (displaced->step_thread != nullptr)
24291992 3464 {
24291992
PA
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
f15cb84a
YQ
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
24291992 3477
372316f1 3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
731f534f 3486 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
731f534f 3492 finish_state.release ();
24291992
PA
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
9bcb1f16 3499 restore_detaching.release ();
24291992
PA
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
9bcb1f16 3504 restore_detaching.release ();
24291992
PA
3505}
3506
cd0fc7c3 3507/* Wait for control to return from inferior to debugger.
ae123ec6 3508
cd0fc7c3
SS
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514void
e4c8541f 3515wait_for_inferior (void)
cd0fc7c3 3516{
527159b7 3517 if (debug_infrun)
ae123ec6 3518 fprintf_unfiltered
e4c8541f 3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3520
4c41382a 3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3522
e6f5c25b
PA
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
731f534f 3526 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3527
c906108c
SS
3528 while (1)
3529 {
ae25568b
PA
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
963f9c80 3532 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3533
ae25568b
PA
3534 memset (ecs, 0, sizeof (*ecs));
3535
ec9499be 3536 overlay_cache_invalid = 1;
ec9499be 3537
f15cb84a
YQ
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
372316f1 3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3545
f00150c9 3546 if (debug_infrun)
223698f8 3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3548
cd0fc7c3
SS
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
c906108c 3551
cd0fc7c3
SS
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
4e1c45ea 3555
e6f5c25b 3556 /* No error, don't finish the state yet. */
731f534f 3557 finish_state.release ();
cd0fc7c3 3558}
c906108c 3559
d3d4baed
PA
3560/* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570static void
d238133d 3571reinstall_readline_callback_handler_cleanup ()
d3d4baed 3572{
3b12939d
PA
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
6c400b59
PA
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3b12939d 3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3586 gdb_rl_callback_handler_reinstall ();
3587}
3588
243a9253
PA
3589/* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592static void
3593clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594{
08036331
PA
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3598
3599 if (!non_stop)
3600 {
08036331 3601 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
00431a78 3608 switch_to_thread (thr);
46e3ed7f 3609 thr->thread_fsm->clean_up (thr);
243a9253
PA
3610 }
3611
3612 if (ecs->event_thread != NULL)
00431a78 3613 switch_to_thread (ecs->event_thread);
243a9253
PA
3614 }
3615}
3616
3b12939d
PA
3617/* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620static void
3621check_curr_ui_sync_execution_done (void)
3622{
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
223ffa71 3629 target_terminal::ours ();
76727919 3630 gdb::observers::sync_execution_done.notify ();
3eb7562a 3631 ui_register_input_event_handler (ui);
3b12939d
PA
3632 }
3633}
3634
3635/* See infrun.h. */
3636
3637void
3638all_uis_check_sync_execution_done (void)
3639{
0e454242 3640 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644}
3645
a8836c93
PA
3646/* See infrun.h. */
3647
3648void
3649all_uis_on_sync_execution_starting (void)
3650{
0e454242 3651 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656}
3657
1777feb0 3658/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3659 event loop whenever a change of state is detected on the file
1777feb0
MS
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
1777feb0 3665 necessary cleanups. */
43ff13b4
JM
3666
3667void
fba45db2 3668fetch_inferior_event (void *client_data)
43ff13b4 3669{
0d1e5fa7 3670 struct execution_control_state ecss;
a474d7c2 3671 struct execution_control_state *ecs = &ecss;
0f641c01 3672 int cmd_done = 0;
963f9c80 3673 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3674
0d1e5fa7
PA
3675 memset (ecs, 0, sizeof (*ecs));
3676
c61db772
PA
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
4b6749b9 3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3681
d3d4baed 3682 /* End up with readline processing input, if necessary. */
d238133d
TT
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
43ff13b4 3696
d238133d
TT
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
979a0d13 3729 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3744
d238133d 3745 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3746
d238133d
TT
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3750
d238133d 3751 if (thread_fsm != NULL)
46e3ed7f 3752 should_stop = thread_fsm->should_stop (thr);
d238133d 3753 }
243a9253 3754
d238133d
TT
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
46e3ed7f 3761 bool should_notify_stop = true;
d238133d 3762 int proceeded = 0;
1840d81a 3763
d238133d 3764 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3765
d238133d 3766 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3768
d238133d
TT
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
243a9253 3775
d238133d
TT
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
4f8d22e3 3783
d238133d
TT
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
29f49a6a 3786
d238133d
TT
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
731f534f 3789
d238133d
TT
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
4f8d22e3 3793
3b12939d
PA
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
0f641c01
PA
3798
3799 if (cmd_done
0f641c01 3800 && exec_done_display_p
00431a78
PA
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3803 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3804}
3805
edb3359d
DJ
3806/* Record the frame and location we're currently stepping through. */
3807void
3808set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809{
3810 struct thread_info *tp = inferior_thread ();
3811
16c381f0
JK
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817}
3818
0d1e5fa7
PA
3819/* Clear context switchable stepping state. */
3820
3821void
4e1c45ea 3822init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3823{
7f5ef605 3824 tss->stepped_breakpoint = 0;
0d1e5fa7 3825 tss->stepping_over_breakpoint = 0;
963f9c80 3826 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3827 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3828}
3829
c32c64b7
DE
3830/* Set the cached copy of the last ptid/waitstatus. */
3831
6efcd9a8 3832void
c32c64b7
DE
3833set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834{
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837}
3838
e02bc4cc 3839/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3843
3844void
488f131b 3845get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3846{
39f77062 3847 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3848 *status = target_last_waitstatus;
3849}
3850
ac264b3b
MS
3851void
3852nullify_last_target_wait_ptid (void)
3853{
3854 target_last_wait_ptid = minus_one_ptid;
3855}
3856
dcf4fbde 3857/* Switch thread contexts. */
dd80620e
MS
3858
3859static void
00431a78 3860context_switch (execution_control_state *ecs)
dd80620e 3861{
00431a78
PA
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3867 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3869 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3870 }
3871
00431a78 3872 switch_to_thread (ecs->event_thread);
dd80620e
MS
3873}
3874
d8dd4d5f
PA
3875/* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
4fa8626c 3880static void
d8dd4d5f
PA
3881adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
4fa8626c 3883{
24a73cce
UW
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
118e6252 3886 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3887
4fa8626c
DJ
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
9709f61c
DJ
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
8fb3e588 3895
4fa8626c
DJ
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
8fb3e588 3902
e6cf7916
UW
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3908
d8dd4d5f 3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3910 return;
3911
d8dd4d5f 3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3913 return;
3914
4058b839
PA
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
1cf4d951
PA
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
24a73cce
UW
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
00431a78 3958 regcache = get_thread_regcache (thread);
ac7936df 3959 gdbarch = regcache->arch ();
118e6252 3960
527a273a 3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3962 if (decr_pc == 0)
24a73cce
UW
3963 return;
3964
8b86c959 3965 const address_space *aspace = regcache->aspace ();
6c95b8df 3966
8aad930b
AC
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
118e6252 3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3970
1cf4d951
PA
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
1c5cfe86
PA
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
6c95b8df 3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3990 {
07036511 3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 3992
8213266a 3993 if (record_full_is_used ())
07036511
TT
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
96429cc8 3996
1c0fdd0e
UW
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
d8dd4d5f
PA
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
515630c5 4018 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4019 }
4fa8626c
DJ
4020}
4021
edb3359d
DJ
4022static int
4023stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024{
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036}
4037
c65d6b55
PA
4038/* If the event thread has the stop requested flag set, pretend it
4039 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4040 target_stop). */
4041
4042static bool
4043handle_stop_requested (struct execution_control_state *ecs)
4044{
4045 if (ecs->event_thread->stop_requested)
4046 {
4047 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4048 ecs->ws.value.sig = GDB_SIGNAL_0;
4049 handle_signal_stop (ecs);
4050 return true;
4051 }
4052 return false;
4053}
4054
a96d9b2e
SDJ
4055/* Auxiliary function that handles syscall entry/return events.
4056 It returns 1 if the inferior should keep going (and GDB
4057 should ignore the event), or 0 if the event deserves to be
4058 processed. */
ca2163eb 4059
a96d9b2e 4060static int
ca2163eb 4061handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4062{
ca2163eb 4063 struct regcache *regcache;
ca2163eb
PA
4064 int syscall_number;
4065
00431a78 4066 context_switch (ecs);
ca2163eb 4067
00431a78 4068 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4069 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4070 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4071
a96d9b2e
SDJ
4072 if (catch_syscall_enabled () > 0
4073 && catching_syscall_number (syscall_number) > 0)
4074 {
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4077 syscall_number);
a96d9b2e 4078
16c381f0 4079 ecs->event_thread->control.stop_bpstat
a01bda52 4080 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4081 ecs->event_thread->suspend.stop_pc,
4082 ecs->event_thread, &ecs->ws);
ab04a2af 4083
c65d6b55
PA
4084 if (handle_stop_requested (ecs))
4085 return 0;
4086
ce12b012 4087 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4088 {
4089 /* Catchpoint hit. */
ca2163eb
PA
4090 return 0;
4091 }
a96d9b2e 4092 }
ca2163eb 4093
c65d6b55
PA
4094 if (handle_stop_requested (ecs))
4095 return 0;
4096
ca2163eb 4097 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4098 keep_going (ecs);
4099 return 1;
a96d9b2e
SDJ
4100}
4101
7e324e48
GB
4102/* Lazily fill in the execution_control_state's stop_func_* fields. */
4103
4104static void
4105fill_in_stop_func (struct gdbarch *gdbarch,
4106 struct execution_control_state *ecs)
4107{
4108 if (!ecs->stop_func_filled_in)
4109 {
98a617f8
KB
4110 const block *block;
4111
7e324e48
GB
4112 /* Don't care about return value; stop_func_start and stop_func_name
4113 will both be 0 if it doesn't work. */
98a617f8
KB
4114 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4115 &ecs->stop_func_name,
4116 &ecs->stop_func_start,
4117 &ecs->stop_func_end,
4118 &block);
4119
4120 /* The call to find_pc_partial_function, above, will set
4121 stop_func_start and stop_func_end to the start and end
4122 of the range containing the stop pc. If this range
4123 contains the entry pc for the block (which is always the
4124 case for contiguous blocks), advance stop_func_start past
4125 the function's start offset and entrypoint. Note that
4126 stop_func_start is NOT advanced when in a range of a
4127 non-contiguous block that does not contain the entry pc. */
4128 if (block != nullptr
4129 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4130 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4131 {
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start
4137 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4138 }
591a12a1 4139
7e324e48
GB
4140 ecs->stop_func_filled_in = 1;
4141 }
4142}
4143
4f5d7f63 4144
00431a78 4145/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4146
4147static enum stop_kind
00431a78 4148get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4149{
00431a78 4150 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4151
4152 gdb_assert (inf != NULL);
4153 return inf->control.stop_soon;
4154}
4155
372316f1
PA
4156/* Wait for one event. Store the resulting waitstatus in WS, and
4157 return the event ptid. */
4158
4159static ptid_t
4160wait_one (struct target_waitstatus *ws)
4161{
4162 ptid_t event_ptid;
4163 ptid_t wait_ptid = minus_one_ptid;
4164
4165 overlay_cache_invalid = 1;
4166
4167 /* Flush target cache before starting to handle each event.
4168 Target was running and cache could be stale. This is just a
4169 heuristic. Running threads may modify target memory, but we
4170 don't get any event. */
4171 target_dcache_invalidate ();
4172
4173 if (deprecated_target_wait_hook)
4174 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4175 else
4176 event_ptid = target_wait (wait_ptid, ws, 0);
4177
4178 if (debug_infrun)
4179 print_target_wait_results (wait_ptid, event_ptid, ws);
4180
4181 return event_ptid;
4182}
4183
4184/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4185 instead of the current thread. */
4186#define THREAD_STOPPED_BY(REASON) \
4187static int \
4188thread_stopped_by_ ## REASON (ptid_t ptid) \
4189{ \
2989a365 4190 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4191 inferior_ptid = ptid; \
4192 \
2989a365 4193 return target_stopped_by_ ## REASON (); \
372316f1
PA
4194}
4195
4196/* Generate thread_stopped_by_watchpoint. */
4197THREAD_STOPPED_BY (watchpoint)
4198/* Generate thread_stopped_by_sw_breakpoint. */
4199THREAD_STOPPED_BY (sw_breakpoint)
4200/* Generate thread_stopped_by_hw_breakpoint. */
4201THREAD_STOPPED_BY (hw_breakpoint)
4202
372316f1
PA
4203/* Save the thread's event and stop reason to process it later. */
4204
4205static void
4206save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4207{
372316f1
PA
4208 if (debug_infrun)
4209 {
23fdd69e 4210 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4211
372316f1
PA
4212 fprintf_unfiltered (gdb_stdlog,
4213 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4214 statstr.c_str (),
e99b03dc 4215 tp->ptid.pid (),
e38504b3 4216 tp->ptid.lwp (),
cc6bcb54 4217 tp->ptid.tid ());
372316f1
PA
4218 }
4219
4220 /* Record for later. */
4221 tp->suspend.waitstatus = *ws;
4222 tp->suspend.waitstatus_pending_p = 1;
4223
00431a78 4224 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4225 const address_space *aspace = regcache->aspace ();
372316f1
PA
4226
4227 if (ws->kind == TARGET_WAITKIND_STOPPED
4228 && ws->value.sig == GDB_SIGNAL_TRAP)
4229 {
4230 CORE_ADDR pc = regcache_read_pc (regcache);
4231
4232 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4233
4234 if (thread_stopped_by_watchpoint (tp->ptid))
4235 {
4236 tp->suspend.stop_reason
4237 = TARGET_STOPPED_BY_WATCHPOINT;
4238 }
4239 else if (target_supports_stopped_by_sw_breakpoint ()
4240 && thread_stopped_by_sw_breakpoint (tp->ptid))
4241 {
4242 tp->suspend.stop_reason
4243 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4244 }
4245 else if (target_supports_stopped_by_hw_breakpoint ()
4246 && thread_stopped_by_hw_breakpoint (tp->ptid))
4247 {
4248 tp->suspend.stop_reason
4249 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4250 }
4251 else if (!target_supports_stopped_by_hw_breakpoint ()
4252 && hardware_breakpoint_inserted_here_p (aspace,
4253 pc))
4254 {
4255 tp->suspend.stop_reason
4256 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4257 }
4258 else if (!target_supports_stopped_by_sw_breakpoint ()
4259 && software_breakpoint_inserted_here_p (aspace,
4260 pc))
4261 {
4262 tp->suspend.stop_reason
4263 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4264 }
4265 else if (!thread_has_single_step_breakpoints_set (tp)
4266 && currently_stepping (tp))
4267 {
4268 tp->suspend.stop_reason
4269 = TARGET_STOPPED_BY_SINGLE_STEP;
4270 }
4271 }
4272}
4273
6efcd9a8 4274/* See infrun.h. */
372316f1 4275
6efcd9a8 4276void
372316f1
PA
4277stop_all_threads (void)
4278{
4279 /* We may need multiple passes to discover all threads. */
4280 int pass;
4281 int iterations = 0;
372316f1 4282
fbea99ea 4283 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
00431a78 4288 scoped_restore_current_thread restore_thread;
372316f1 4289
65706a29 4290 target_thread_events (1);
9885e6bb 4291 SCOPE_EXIT { target_thread_events (0); };
65706a29 4292
372316f1
PA
4293 /* Request threads to stop, and then wait for the stops. Because
4294 threads we already know about can spawn more threads while we're
4295 trying to stop them, and we only learn about new threads when we
4296 update the thread list, do this in a loop, and keep iterating
4297 until two passes find no threads that need to be stopped. */
4298 for (pass = 0; pass < 2; pass++, iterations++)
4299 {
4300 if (debug_infrun)
4301 fprintf_unfiltered (gdb_stdlog,
4302 "infrun: stop_all_threads, pass=%d, "
4303 "iterations=%d\n", pass, iterations);
4304 while (1)
4305 {
4306 ptid_t event_ptid;
4307 struct target_waitstatus ws;
4308 int need_wait = 0;
372316f1
PA
4309
4310 update_thread_list ();
4311
4312 /* Go through all threads looking for threads that we need
4313 to tell the target to stop. */
08036331 4314 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4315 {
4316 if (t->executing)
4317 {
4318 /* If already stopping, don't request a stop again.
4319 We just haven't seen the notification yet. */
4320 if (!t->stop_requested)
4321 {
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: %s executing, "
4325 "need stop\n",
a068643d 4326 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4327 target_stop (t->ptid);
4328 t->stop_requested = 1;
4329 }
4330 else
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "infrun: %s executing, "
4335 "already stopping\n",
a068643d 4336 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4337 }
4338
4339 if (t->stop_requested)
4340 need_wait = 1;
4341 }
4342 else
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog,
4346 "infrun: %s not executing\n",
a068643d 4347 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4348
4349 /* The thread may be not executing, but still be
4350 resumed with a pending status to process. */
4351 t->resumed = 0;
4352 }
4353 }
4354
4355 if (!need_wait)
4356 break;
4357
4358 /* If we find new threads on the second iteration, restart
4359 over. We want to see two iterations in a row with all
4360 threads stopped. */
4361 if (pass > 0)
4362 pass = -1;
4363
4364 event_ptid = wait_one (&ws);
c29705b7 4365 if (debug_infrun)
372316f1 4366 {
c29705b7
PW
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: stop_all_threads %s %s\n",
4369 target_waitstatus_to_string (&ws).c_str (),
4370 target_pid_to_str (event_ptid).c_str ());
372316f1 4371 }
372316f1 4372
c29705b7
PW
4373 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4374 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4375 || ws.kind == TARGET_WAITKIND_EXITED
4376 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4377 {
4378 /* All resumed threads exited
4379 or one thread/process exited/signalled. */
372316f1
PA
4380 }
4381 else
4382 {
08036331 4383 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
6efcd9a8
PA
4392 /* This may be the first time we see the inferior report
4393 a stop. */
08036331 4394 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4395 if (inf->needs_setup)
4396 {
4397 switch_to_thread_no_regs (t);
4398 setup_inferior (0);
4399 }
4400
372316f1
PA
4401 if (ws.kind == TARGET_WAITKIND_STOPPED
4402 && ws.value.sig == GDB_SIGNAL_0)
4403 {
4404 /* We caught the event that we intended to catch, so
4405 there's no event pending. */
4406 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4407 t->suspend.waitstatus_pending_p = 0;
4408
00431a78 4409 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4410 {
4411 /* Add it back to the step-over queue. */
4412 if (debug_infrun)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: displaced-step of %s "
4416 "canceled: adding back to the "
4417 "step-over queue\n",
a068643d 4418 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4419 }
4420 t->control.trap_expected = 0;
4421 thread_step_over_chain_enqueue (t);
4422 }
4423 }
4424 else
4425 {
4426 enum gdb_signal sig;
4427 struct regcache *regcache;
372316f1
PA
4428
4429 if (debug_infrun)
4430 {
23fdd69e 4431 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4432
372316f1
PA
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: target_wait %s, saving "
4435 "status for %d.%ld.%ld\n",
23fdd69e 4436 statstr.c_str (),
e99b03dc 4437 t->ptid.pid (),
e38504b3 4438 t->ptid.lwp (),
cc6bcb54 4439 t->ptid.tid ());
372316f1
PA
4440 }
4441
4442 /* Record for later. */
4443 save_waitstatus (t, &ws);
4444
4445 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4446 ? ws.value.sig : GDB_SIGNAL_0);
4447
00431a78 4448 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4449 {
4450 /* Add it back to the step-over queue. */
4451 t->control.trap_expected = 0;
4452 thread_step_over_chain_enqueue (t);
4453 }
4454
00431a78 4455 regcache = get_thread_regcache (t);
372316f1
PA
4456 t->suspend.stop_pc = regcache_read_pc (regcache);
4457
4458 if (debug_infrun)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: saved stop_pc=%s for %s "
4462 "(currently_stepping=%d)\n",
4463 paddress (target_gdbarch (),
4464 t->suspend.stop_pc),
a068643d 4465 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4466 currently_stepping (t));
4467 }
4468 }
4469 }
4470 }
4471 }
4472
372316f1
PA
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4475}
4476
f4836ba9
PA
4477/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4478
4479static int
4480handle_no_resumed (struct execution_control_state *ecs)
4481{
3b12939d 4482 if (target_can_async_p ())
f4836ba9 4483 {
3b12939d
PA
4484 struct ui *ui;
4485 int any_sync = 0;
f4836ba9 4486
3b12939d
PA
4487 ALL_UIS (ui)
4488 {
4489 if (ui->prompt_state == PROMPT_BLOCKED)
4490 {
4491 any_sync = 1;
4492 break;
4493 }
4494 }
4495 if (!any_sync)
4496 {
4497 /* There were no unwaited-for children left in the target, but,
4498 we're not synchronously waiting for events either. Just
4499 ignore. */
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: TARGET_WAITKIND_NO_RESUMED "
4504 "(ignoring: bg)\n");
4505 prepare_to_wait (ecs);
4506 return 1;
4507 }
f4836ba9
PA
4508 }
4509
4510 /* Otherwise, if we were running a synchronous execution command, we
4511 may need to cancel it and give the user back the terminal.
4512
4513 In non-stop mode, the target can't tell whether we've already
4514 consumed previous stop events, so it can end up sending us a
4515 no-resumed event like so:
4516
4517 #0 - thread 1 is left stopped
4518
4519 #1 - thread 2 is resumed and hits breakpoint
4520 -> TARGET_WAITKIND_STOPPED
4521
4522 #2 - thread 3 is resumed and exits
4523 this is the last resumed thread, so
4524 -> TARGET_WAITKIND_NO_RESUMED
4525
4526 #3 - gdb processes stop for thread 2 and decides to re-resume
4527 it.
4528
4529 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4530 thread 2 is now resumed, so the event should be ignored.
4531
4532 IOW, if the stop for thread 2 doesn't end a foreground command,
4533 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4534 event. But it could be that the event meant that thread 2 itself
4535 (or whatever other thread was the last resumed thread) exited.
4536
4537 To address this we refresh the thread list and check whether we
4538 have resumed threads _now_. In the example above, this removes
4539 thread 3 from the thread list. If thread 2 was re-resumed, we
4540 ignore this event. If we find no thread resumed, then we cancel
4541 the synchronous command show "no unwaited-for " to the user. */
4542 update_thread_list ();
4543
08036331 4544 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4545 {
4546 if (thread->executing
4547 || thread->suspend.waitstatus_pending_p)
4548 {
4549 /* There were no unwaited-for children left in the target at
4550 some point, but there are now. Just ignore. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: TARGET_WAITKIND_NO_RESUMED "
4554 "(ignoring: found resumed)\n");
4555 prepare_to_wait (ecs);
4556 return 1;
4557 }
4558 }
4559
4560 /* Note however that we may find no resumed thread because the whole
4561 process exited meanwhile (thus updating the thread list results
4562 in an empty thread list). In this case we know we'll be getting
4563 a process exit event shortly. */
08036331 4564 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4565 {
4566 if (inf->pid == 0)
4567 continue;
4568
08036331 4569 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4570 if (thread == NULL)
4571 {
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: TARGET_WAITKIND_NO_RESUMED "
4575 "(expect process exit)\n");
4576 prepare_to_wait (ecs);
4577 return 1;
4578 }
4579 }
4580
4581 /* Go ahead and report the event. */
4582 return 0;
4583}
4584
05ba8510
PA
4585/* Given an execution control state that has been freshly filled in by
4586 an event from the inferior, figure out what it means and take
4587 appropriate action.
4588
4589 The alternatives are:
4590
22bcd14b 4591 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4592 debugger.
4593
4594 2) keep_going and return; to wait for the next event (set
4595 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4596 once). */
c906108c 4597
ec9499be 4598static void
595915c1 4599handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4600{
595915c1
TT
4601 /* Make sure that all temporary struct value objects that were
4602 created during the handling of the event get deleted at the
4603 end. */
4604 scoped_value_mark free_values;
4605
d6b48e9c
PA
4606 enum stop_kind stop_soon;
4607
c29705b7
PW
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4610 target_waitstatus_to_string (&ecs->ws).c_str ());
4611
28736962
PA
4612 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4613 {
4614 /* We had an event in the inferior, but we are not interested in
4615 handling it at this level. The lower layers have already
4616 done what needs to be done, if anything.
4617
4618 One of the possible circumstances for this is when the
4619 inferior produces output for the console. The inferior has
4620 not stopped, and we are ignoring the event. Another possible
4621 circumstance is any event which the lower level knows will be
4622 reported multiple times without an intervening resume. */
28736962
PA
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
65706a29
PA
4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628 {
65706a29
PA
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
0e5bf2a8 4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4634 && handle_no_resumed (ecs))
4635 return;
0e5bf2a8 4636
1777feb0 4637 /* Cache the last pid/waitstatus. */
c32c64b7 4638 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4639
ca005067 4640 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4641 stop_stack_dummy = STOP_NONE;
ca005067 4642
0e5bf2a8
PA
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
0e5bf2a8 4647 stop_print_frame = 0;
22bcd14b 4648 stop_waiting (ecs);
0e5bf2a8
PA
4649 return;
4650 }
4651
8c90c137 4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4663 }
88ed393a
JK
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
28736962
PA
4671 breakpoint_retire_moribund ();
4672
2b009048
DJ
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
2b009048 4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4687 {
00431a78 4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4689
a01bda52 4690 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4697 }
2b009048
DJ
4698 }
4699
28736962
PA
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
e1316e60 4702 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4703 {
4704 ptid_t mark_ptid;
4705
fbea99ea 4706 if (!target_is_non_stop_p ())
372316f1
PA
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
e99b03dc 4725 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
8c90c137 4735
488f131b
JB
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
00431a78 4739 context_switch (ecs);
b0f4b84b
DJ
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4f5d7f63 4746
00431a78 4747 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4748 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4749 {
edcc5120
TT
4750 struct regcache *regcache;
4751
00431a78 4752 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
a01bda52 4757 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
ab04a2af 4760
c65d6b55
PA
4761 if (handle_stop_requested (ecs))
4762 return;
4763
ce12b012 4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4765 {
4766 /* A catchpoint triggered. */
94c57d6a
PA
4767 process_event_stop_test (ecs);
4768 return;
edcc5120 4769 }
488f131b 4770
b0f4b84b
DJ
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
a493e3e2 4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4776 if (stop_on_solib_events)
4777 {
55409f9d
DJ
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
22bcd14b 4782 stop_waiting (ecs);
b0f4b84b
DJ
4783 return;
4784 }
488f131b 4785 }
b0f4b84b
DJ
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
5c09a2c5 4789 we're running the program normally, also resume. */
b0f4b84b
DJ
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
74960c60
VP
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4794 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4795 insert_breakpoints ();
64ce06e4 4796 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
5c09a2c5
PA
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4808 stop_waiting (ecs);
5c09a2c5
PA
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4814
488f131b 4815 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4816 if (handle_stop_requested (ecs))
4817 return;
00431a78 4818 context_switch (ecs);
64ce06e4 4819 resume (GDB_SIGNAL_0);
488f131b
JB
4820 prepare_to_wait (ecs);
4821 return;
c5aa993b 4822
65706a29 4823 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4824 if (handle_stop_requested (ecs))
4825 return;
00431a78 4826 context_switch (ecs);
65706a29
PA
4827 if (!switch_back_to_stepped_thread (ecs))
4828 keep_going (ecs);
4829 return;
4830
488f131b 4831 case TARGET_WAITKIND_EXITED:
940c3c06 4832 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4833 inferior_ptid = ecs->ptid;
c9657e70 4834 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4835 set_current_program_space (current_inferior ()->pspace);
4836 handle_vfork_child_exec_or_exit (0);
223ffa71 4837 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4838
0c557179
SDJ
4839 /* Clearing any previous state of convenience variables. */
4840 clear_exit_convenience_vars ();
4841
940c3c06
PA
4842 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4843 {
4844 /* Record the exit code in the convenience variable $_exitcode, so
4845 that the user can inspect this again later. */
4846 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4847 (LONGEST) ecs->ws.value.integer);
4848
4849 /* Also record this in the inferior itself. */
4850 current_inferior ()->has_exit_code = 1;
4851 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4852
98eb56a4
PA
4853 /* Support the --return-child-result option. */
4854 return_child_result_value = ecs->ws.value.integer;
4855
76727919 4856 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4857 }
4858 else
0c557179 4859 {
00431a78 4860 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4861
4862 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4863 {
4864 /* Set the value of the internal variable $_exitsignal,
4865 which holds the signal uncaught by the inferior. */
4866 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4867 gdbarch_gdb_signal_to_target (gdbarch,
4868 ecs->ws.value.sig));
4869 }
4870 else
4871 {
4872 /* We don't have access to the target's method used for
4873 converting between signal numbers (GDB's internal
4874 representation <-> target's representation).
4875 Therefore, we cannot do a good job at displaying this
4876 information to the user. It's better to just warn
4877 her about it (if infrun debugging is enabled), and
4878 give up. */
4879 if (debug_infrun)
4880 fprintf_filtered (gdb_stdlog, _("\
4881Cannot fill $_exitsignal with the correct signal number.\n"));
4882 }
4883
76727919 4884 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4885 }
8cf64490 4886
488f131b 4887 gdb_flush (gdb_stdout);
bc1e6c81 4888 target_mourn_inferior (inferior_ptid);
488f131b 4889 stop_print_frame = 0;
22bcd14b 4890 stop_waiting (ecs);
488f131b 4891 return;
c5aa993b 4892
488f131b 4893 /* The following are the only cases in which we keep going;
1777feb0 4894 the above cases end in a continue or goto. */
488f131b 4895 case TARGET_WAITKIND_FORKED:
deb3b17b 4896 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4897 /* Check whether the inferior is displaced stepping. */
4898 {
00431a78 4899 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4900 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4901
4902 /* If checking displaced stepping is supported, and thread
4903 ecs->ptid is displaced stepping. */
00431a78 4904 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4905 {
4906 struct inferior *parent_inf
c9657e70 4907 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4908 struct regcache *child_regcache;
4909 CORE_ADDR parent_pc;
4910
4911 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4912 indicating that the displaced stepping of syscall instruction
4913 has been done. Perform cleanup for parent process here. Note
4914 that this operation also cleans up the child process for vfork,
4915 because their pages are shared. */
00431a78 4916 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4917 /* Start a new step-over in another thread if there's one
4918 that needs it. */
4919 start_step_over ();
e2d96639
YQ
4920
4921 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4922 {
c0987663 4923 struct displaced_step_inferior_state *displaced
00431a78 4924 = get_displaced_stepping_state (parent_inf);
c0987663 4925
e2d96639
YQ
4926 /* Restore scratch pad for child process. */
4927 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4928 }
4929
4930 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4931 the child's PC is also within the scratchpad. Set the child's PC
4932 to the parent's PC value, which has already been fixed up.
4933 FIXME: we use the parent's aspace here, although we're touching
4934 the child, because the child hasn't been added to the inferior
4935 list yet at this point. */
4936
4937 child_regcache
4938 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4939 gdbarch,
4940 parent_inf->aspace);
4941 /* Read PC value of parent process. */
4942 parent_pc = regcache_read_pc (regcache);
4943
4944 if (debug_displaced)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "displaced: write child pc from %s to %s\n",
4947 paddress (gdbarch,
4948 regcache_read_pc (child_regcache)),
4949 paddress (gdbarch, parent_pc));
4950
4951 regcache_write_pc (child_regcache, parent_pc);
4952 }
4953 }
4954
00431a78 4955 context_switch (ecs);
5a2901d9 4956
b242c3c2
PA
4957 /* Immediately detach breakpoints from the child before there's
4958 any chance of letting the user delete breakpoints from the
4959 breakpoint lists. If we don't do this early, it's easy to
4960 leave left over traps in the child, vis: "break foo; catch
4961 fork; c; <fork>; del; c; <child calls foo>". We only follow
4962 the fork on the last `continue', and by that time the
4963 breakpoint at "foo" is long gone from the breakpoint table.
4964 If we vforked, then we don't need to unpatch here, since both
4965 parent and child are sharing the same memory pages; we'll
4966 need to unpatch at follow/detach time instead to be certain
4967 that new breakpoints added between catchpoint hit time and
4968 vfork follow are detached. */
4969 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4970 {
b242c3c2
PA
4971 /* This won't actually modify the breakpoint list, but will
4972 physically remove the breakpoints from the child. */
d80ee84f 4973 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4974 }
4975
34b7e8a6 4976 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4977
e58b0e63
PA
4978 /* In case the event is caught by a catchpoint, remember that
4979 the event is to be followed at the next resume of the thread,
4980 and not immediately. */
4981 ecs->event_thread->pending_follow = ecs->ws;
4982
f2ffa92b
PA
4983 ecs->event_thread->suspend.stop_pc
4984 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 4985
16c381f0 4986 ecs->event_thread->control.stop_bpstat
a01bda52 4987 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
4988 ecs->event_thread->suspend.stop_pc,
4989 ecs->event_thread, &ecs->ws);
675bf4cb 4990
c65d6b55
PA
4991 if (handle_stop_requested (ecs))
4992 return;
4993
ce12b012
PA
4994 /* If no catchpoint triggered for this, then keep going. Note
4995 that we're interested in knowing the bpstat actually causes a
4996 stop, not just if it may explain the signal. Software
4997 watchpoints, for example, always appear in the bpstat. */
4998 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4999 {
e58b0e63 5000 int should_resume;
3e43a32a
MS
5001 int follow_child
5002 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5003
a493e3e2 5004 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5005
5006 should_resume = follow_fork ();
5007
00431a78
PA
5008 thread_info *parent = ecs->event_thread;
5009 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5010
a2077e25
PA
5011 /* At this point, the parent is marked running, and the
5012 child is marked stopped. */
5013
5014 /* If not resuming the parent, mark it stopped. */
5015 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5016 parent->set_running (false);
a2077e25
PA
5017
5018 /* If resuming the child, mark it running. */
5019 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5020 child->set_running (true);
a2077e25 5021
6c95b8df 5022 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5023 if (!detach_fork && (non_stop
5024 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5025 {
5026 if (follow_child)
5027 switch_to_thread (parent);
5028 else
5029 switch_to_thread (child);
5030
5031 ecs->event_thread = inferior_thread ();
5032 ecs->ptid = inferior_ptid;
5033 keep_going (ecs);
5034 }
5035
5036 if (follow_child)
5037 switch_to_thread (child);
5038 else
5039 switch_to_thread (parent);
5040
e58b0e63
PA
5041 ecs->event_thread = inferior_thread ();
5042 ecs->ptid = inferior_ptid;
5043
5044 if (should_resume)
5045 keep_going (ecs);
5046 else
22bcd14b 5047 stop_waiting (ecs);
04e68871
DJ
5048 return;
5049 }
94c57d6a
PA
5050 process_event_stop_test (ecs);
5051 return;
488f131b 5052
6c95b8df
PA
5053 case TARGET_WAITKIND_VFORK_DONE:
5054 /* Done with the shared memory region. Re-insert breakpoints in
5055 the parent, and keep going. */
5056
00431a78 5057 context_switch (ecs);
6c95b8df
PA
5058
5059 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5060 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5061
5062 if (handle_stop_requested (ecs))
5063 return;
5064
6c95b8df
PA
5065 /* This also takes care of reinserting breakpoints in the
5066 previously locked inferior. */
5067 keep_going (ecs);
5068 return;
5069
488f131b 5070 case TARGET_WAITKIND_EXECD:
488f131b 5071
cbd2b4e3
PA
5072 /* Note we can't read registers yet (the stop_pc), because we
5073 don't yet know the inferior's post-exec architecture.
5074 'stop_pc' is explicitly read below instead. */
00431a78 5075 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5076
6c95b8df
PA
5077 /* Do whatever is necessary to the parent branch of the vfork. */
5078 handle_vfork_child_exec_or_exit (1);
5079
795e548f
PA
5080 /* This causes the eventpoints and symbol table to be reset.
5081 Must do this now, before trying to determine whether to
5082 stop. */
71b43ef8 5083 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5084
17d8546e
DB
5085 /* In follow_exec we may have deleted the original thread and
5086 created a new one. Make sure that the event thread is the
5087 execd thread for that case (this is a nop otherwise). */
5088 ecs->event_thread = inferior_thread ();
5089
f2ffa92b
PA
5090 ecs->event_thread->suspend.stop_pc
5091 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5092
16c381f0 5093 ecs->event_thread->control.stop_bpstat
a01bda52 5094 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5095 ecs->event_thread->suspend.stop_pc,
5096 ecs->event_thread, &ecs->ws);
795e548f 5097
71b43ef8
PA
5098 /* Note that this may be referenced from inside
5099 bpstat_stop_status above, through inferior_has_execd. */
5100 xfree (ecs->ws.value.execd_pathname);
5101 ecs->ws.value.execd_pathname = NULL;
5102
c65d6b55
PA
5103 if (handle_stop_requested (ecs))
5104 return;
5105
04e68871 5106 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5107 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5108 {
a493e3e2 5109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5110 keep_going (ecs);
5111 return;
5112 }
94c57d6a
PA
5113 process_event_stop_test (ecs);
5114 return;
488f131b 5115
b4dc5ffa
MK
5116 /* Be careful not to try to gather much state about a thread
5117 that's in a syscall. It's frequently a losing proposition. */
488f131b 5118 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5119 /* Getting the current syscall number. */
94c57d6a
PA
5120 if (handle_syscall_event (ecs) == 0)
5121 process_event_stop_test (ecs);
5122 return;
c906108c 5123
488f131b
JB
5124 /* Before examining the threads further, step this thread to
5125 get it entirely out of the syscall. (We get notice of the
5126 event when the thread is just on the verge of exiting a
5127 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5128 into user code.) */
488f131b 5129 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
c906108c 5133
488f131b 5134 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5135 handle_signal_stop (ecs);
5136 return;
c906108c 5137
b2175913
MS
5138 case TARGET_WAITKIND_NO_HISTORY:
5139 /* Reverse execution: target ran out of history info. */
eab402df 5140
d1988021 5141 /* Switch to the stopped thread. */
00431a78 5142 context_switch (ecs);
d1988021
MM
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5145
34b7e8a6 5146 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5147 ecs->event_thread->suspend.stop_pc
5148 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5149
5150 if (handle_stop_requested (ecs))
5151 return;
5152
76727919 5153 gdb::observers::no_history.notify ();
22bcd14b 5154 stop_waiting (ecs);
b2175913 5155 return;
488f131b 5156 }
4f5d7f63
PA
5157}
5158
372316f1
PA
5159/* Restart threads back to what they were trying to do back when we
5160 paused them for an in-line step-over. The EVENT_THREAD thread is
5161 ignored. */
4d9d9d04
PA
5162
5163static void
372316f1
PA
5164restart_threads (struct thread_info *event_thread)
5165{
372316f1
PA
5166 /* In case the instruction just stepped spawned a new thread. */
5167 update_thread_list ();
5168
08036331 5169 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5170 {
5171 if (tp == event_thread)
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: restart threads: "
5176 "[%s] is event thread\n",
a068643d 5177 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5178 continue;
5179 }
5180
5181 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5182 {
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog,
5185 "infrun: restart threads: "
5186 "[%s] not meant to be running\n",
a068643d 5187 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5188 continue;
5189 }
5190
5191 if (tp->resumed)
5192 {
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: restart threads: [%s] resumed\n",
a068643d 5196 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5197 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5198 continue;
5199 }
5200
5201 if (thread_is_in_step_over_chain (tp))
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: restart threads: "
5206 "[%s] needs step-over\n",
a068643d 5207 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5208 gdb_assert (!tp->resumed);
5209 continue;
5210 }
5211
5212
5213 if (tp->suspend.waitstatus_pending_p)
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: restart threads: "
5218 "[%s] has pending status\n",
a068643d 5219 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5220 tp->resumed = 1;
5221 continue;
5222 }
5223
c65d6b55
PA
5224 gdb_assert (!tp->stop_requested);
5225
372316f1
PA
5226 /* If some thread needs to start a step-over at this point, it
5227 should still be in the step-over queue, and thus skipped
5228 above. */
5229 if (thread_still_needs_step_over (tp))
5230 {
5231 internal_error (__FILE__, __LINE__,
5232 "thread [%s] needs a step-over, but not in "
5233 "step-over queue\n",
a068643d 5234 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5235 }
5236
5237 if (currently_stepping (tp))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: [%s] was stepping\n",
a068643d 5242 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5243 keep_going_stepped_thread (tp);
5244 }
5245 else
5246 {
5247 struct execution_control_state ecss;
5248 struct execution_control_state *ecs = &ecss;
5249
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: [%s] continuing\n",
a068643d 5253 target_pid_to_str (tp->ptid).c_str ());
372316f1 5254 reset_ecs (ecs, tp);
00431a78 5255 switch_to_thread (tp);
372316f1
PA
5256 keep_going_pass_signal (ecs);
5257 }
5258 }
5259}
5260
5261/* Callback for iterate_over_threads. Find a resumed thread that has
5262 a pending waitstatus. */
5263
5264static int
5265resumed_thread_with_pending_status (struct thread_info *tp,
5266 void *arg)
5267{
5268 return (tp->resumed
5269 && tp->suspend.waitstatus_pending_p);
5270}
5271
5272/* Called when we get an event that may finish an in-line or
5273 out-of-line (displaced stepping) step-over started previously.
5274 Return true if the event is processed and we should go back to the
5275 event loop; false if the caller should continue processing the
5276 event. */
5277
5278static int
4d9d9d04
PA
5279finish_step_over (struct execution_control_state *ecs)
5280{
372316f1
PA
5281 int had_step_over_info;
5282
00431a78 5283 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5284 ecs->event_thread->suspend.stop_signal);
5285
372316f1
PA
5286 had_step_over_info = step_over_info_valid_p ();
5287
5288 if (had_step_over_info)
4d9d9d04
PA
5289 {
5290 /* If we're stepping over a breakpoint with all threads locked,
5291 then only the thread that was stepped should be reporting
5292 back an event. */
5293 gdb_assert (ecs->event_thread->control.trap_expected);
5294
c65d6b55 5295 clear_step_over_info ();
4d9d9d04
PA
5296 }
5297
fbea99ea 5298 if (!target_is_non_stop_p ())
372316f1 5299 return 0;
4d9d9d04
PA
5300
5301 /* Start a new step-over in another thread if there's one that
5302 needs it. */
5303 start_step_over ();
372316f1
PA
5304
5305 /* If we were stepping over a breakpoint before, and haven't started
5306 a new in-line step-over sequence, then restart all other threads
5307 (except the event thread). We can't do this in all-stop, as then
5308 e.g., we wouldn't be able to issue any other remote packet until
5309 these other threads stop. */
5310 if (had_step_over_info && !step_over_info_valid_p ())
5311 {
5312 struct thread_info *pending;
5313
5314 /* If we only have threads with pending statuses, the restart
5315 below won't restart any thread and so nothing re-inserts the
5316 breakpoint we just stepped over. But we need it inserted
5317 when we later process the pending events, otherwise if
5318 another thread has a pending event for this breakpoint too,
5319 we'd discard its event (because the breakpoint that
5320 originally caused the event was no longer inserted). */
00431a78 5321 context_switch (ecs);
372316f1
PA
5322 insert_breakpoints ();
5323
abeeff98
LM
5324 {
5325 scoped_restore save_defer_tc
5326 = make_scoped_defer_target_commit_resume ();
5327 restart_threads (ecs->event_thread);
5328 }
5329 target_commit_resume ();
372316f1
PA
5330
5331 /* If we have events pending, go through handle_inferior_event
5332 again, picking up a pending event at random. This avoids
5333 thread starvation. */
5334
5335 /* But not if we just stepped over a watchpoint in order to let
5336 the instruction execute so we can evaluate its expression.
5337 The set of watchpoints that triggered is recorded in the
5338 breakpoint objects themselves (see bp->watchpoint_triggered).
5339 If we processed another event first, that other event could
5340 clobber this info. */
5341 if (ecs->event_thread->stepping_over_watchpoint)
5342 return 0;
5343
5344 pending = iterate_over_threads (resumed_thread_with_pending_status,
5345 NULL);
5346 if (pending != NULL)
5347 {
5348 struct thread_info *tp = ecs->event_thread;
5349 struct regcache *regcache;
5350
5351 if (debug_infrun)
5352 {
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: found resumed threads with "
5355 "pending events, saving status\n");
5356 }
5357
5358 gdb_assert (pending != tp);
5359
5360 /* Record the event thread's event for later. */
5361 save_waitstatus (tp, &ecs->ws);
5362 /* This was cleared early, by handle_inferior_event. Set it
5363 so this pending event is considered by
5364 do_target_wait. */
5365 tp->resumed = 1;
5366
5367 gdb_assert (!tp->executing);
5368
00431a78 5369 regcache = get_thread_regcache (tp);
372316f1
PA
5370 tp->suspend.stop_pc = regcache_read_pc (regcache);
5371
5372 if (debug_infrun)
5373 {
5374 fprintf_unfiltered (gdb_stdlog,
5375 "infrun: saved stop_pc=%s for %s "
5376 "(currently_stepping=%d)\n",
5377 paddress (target_gdbarch (),
5378 tp->suspend.stop_pc),
a068643d 5379 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5380 currently_stepping (tp));
5381 }
5382
5383 /* This in-line step-over finished; clear this so we won't
5384 start a new one. This is what handle_signal_stop would
5385 do, if we returned false. */
5386 tp->stepping_over_breakpoint = 0;
5387
5388 /* Wake up the event loop again. */
5389 mark_async_event_handler (infrun_async_inferior_event_token);
5390
5391 prepare_to_wait (ecs);
5392 return 1;
5393 }
5394 }
5395
5396 return 0;
4d9d9d04
PA
5397}
5398
4f5d7f63
PA
5399/* Come here when the program has stopped with a signal. */
5400
5401static void
5402handle_signal_stop (struct execution_control_state *ecs)
5403{
5404 struct frame_info *frame;
5405 struct gdbarch *gdbarch;
5406 int stopped_by_watchpoint;
5407 enum stop_kind stop_soon;
5408 int random_signal;
c906108c 5409
f0407826
DE
5410 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5411
c65d6b55
PA
5412 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5413
f0407826
DE
5414 /* Do we need to clean up the state of a thread that has
5415 completed a displaced single-step? (Doing so usually affects
5416 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5417 if (finish_step_over (ecs))
5418 return;
f0407826
DE
5419
5420 /* If we either finished a single-step or hit a breakpoint, but
5421 the user wanted this thread to be stopped, pretend we got a
5422 SIG0 (generic unsignaled stop). */
5423 if (ecs->event_thread->stop_requested
5424 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5425 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5426
f2ffa92b
PA
5427 ecs->event_thread->suspend.stop_pc
5428 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5429
527159b7 5430 if (debug_infrun)
237fc4c9 5431 {
00431a78 5432 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5433 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5434 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5435
5436 inferior_ptid = ecs->ptid;
5af949e3
UW
5437
5438 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5439 paddress (reg_gdbarch,
f2ffa92b 5440 ecs->event_thread->suspend.stop_pc));
d92524f1 5441 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5442 {
5443 CORE_ADDR addr;
abbb1732 5444
237fc4c9
PA
5445 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5446
8b88a78e 5447 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5448 fprintf_unfiltered (gdb_stdlog,
5af949e3 5449 "infrun: stopped data address = %s\n",
b926417a 5450 paddress (reg_gdbarch, addr));
237fc4c9
PA
5451 else
5452 fprintf_unfiltered (gdb_stdlog,
5453 "infrun: (no data address available)\n");
5454 }
5455 }
527159b7 5456
36fa8042
PA
5457 /* This is originated from start_remote(), start_inferior() and
5458 shared libraries hook functions. */
00431a78 5459 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5460 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5461 {
00431a78 5462 context_switch (ecs);
36fa8042
PA
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5465 stop_print_frame = 1;
22bcd14b 5466 stop_waiting (ecs);
36fa8042
PA
5467 return;
5468 }
5469
36fa8042
PA
5470 /* This originates from attach_command(). We need to overwrite
5471 the stop_signal here, because some kernels don't ignore a
5472 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5473 See more comments in inferior.h. On the other hand, if we
5474 get a non-SIGSTOP, report it to the user - assume the backend
5475 will handle the SIGSTOP if it should show up later.
5476
5477 Also consider that the attach is complete when we see a
5478 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5479 target extended-remote report it instead of a SIGSTOP
5480 (e.g. gdbserver). We already rely on SIGTRAP being our
5481 signal, so this is no exception.
5482
5483 Also consider that the attach is complete when we see a
5484 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5485 the target to stop all threads of the inferior, in case the
5486 low level attach operation doesn't stop them implicitly. If
5487 they weren't stopped implicitly, then the stub will report a
5488 GDB_SIGNAL_0, meaning: stopped for no particular reason
5489 other than GDB's request. */
5490 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5491 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5492 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5493 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5494 {
5495 stop_print_frame = 1;
22bcd14b 5496 stop_waiting (ecs);
36fa8042
PA
5497 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5498 return;
5499 }
5500
488f131b 5501 /* See if something interesting happened to the non-current thread. If
b40c7d58 5502 so, then switch to that thread. */
d7e15655 5503 if (ecs->ptid != inferior_ptid)
488f131b 5504 {
527159b7 5505 if (debug_infrun)
8a9de0e4 5506 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5507
00431a78 5508 context_switch (ecs);
c5aa993b 5509
9a4105ab 5510 if (deprecated_context_hook)
00431a78 5511 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5512 }
c906108c 5513
568d6575
UW
5514 /* At this point, get hold of the now-current thread's frame. */
5515 frame = get_current_frame ();
5516 gdbarch = get_frame_arch (frame);
5517
2adfaa28 5518 /* Pull the single step breakpoints out of the target. */
af48d08f 5519 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5520 {
af48d08f 5521 struct regcache *regcache;
af48d08f 5522 CORE_ADDR pc;
2adfaa28 5523
00431a78 5524 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5525 const address_space *aspace = regcache->aspace ();
5526
af48d08f 5527 pc = regcache_read_pc (regcache);
34b7e8a6 5528
af48d08f
PA
5529 /* However, before doing so, if this single-step breakpoint was
5530 actually for another thread, set this thread up for moving
5531 past it. */
5532 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5533 aspace, pc))
5534 {
5535 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5536 {
5537 if (debug_infrun)
5538 {
5539 fprintf_unfiltered (gdb_stdlog,
af48d08f 5540 "infrun: [%s] hit another thread's "
34b7e8a6 5541 "single-step breakpoint\n",
a068643d 5542 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5543 }
af48d08f
PA
5544 ecs->hit_singlestep_breakpoint = 1;
5545 }
5546 }
5547 else
5548 {
5549 if (debug_infrun)
5550 {
5551 fprintf_unfiltered (gdb_stdlog,
5552 "infrun: [%s] hit its "
5553 "single-step breakpoint\n",
a068643d 5554 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5555 }
5556 }
488f131b 5557 }
af48d08f 5558 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5559
963f9c80
PA
5560 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5561 && ecs->event_thread->control.trap_expected
5562 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5563 stopped_by_watchpoint = 0;
5564 else
5565 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5566
5567 /* If necessary, step over this watchpoint. We'll be back to display
5568 it in a moment. */
5569 if (stopped_by_watchpoint
d92524f1 5570 && (target_have_steppable_watchpoint
568d6575 5571 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5572 {
488f131b
JB
5573 /* At this point, we are stopped at an instruction which has
5574 attempted to write to a piece of memory under control of
5575 a watchpoint. The instruction hasn't actually executed
5576 yet. If we were to evaluate the watchpoint expression
5577 now, we would get the old value, and therefore no change
5578 would seem to have occurred.
5579
5580 In order to make watchpoints work `right', we really need
5581 to complete the memory write, and then evaluate the
d983da9c
DJ
5582 watchpoint expression. We do this by single-stepping the
5583 target.
5584
7f89fd65 5585 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5586 it. For example, the PA can (with some kernel cooperation)
5587 single step over a watchpoint without disabling the watchpoint.
5588
5589 It is far more common to need to disable a watchpoint to step
5590 the inferior over it. If we have non-steppable watchpoints,
5591 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5592 disable all watchpoints.
5593
5594 Any breakpoint at PC must also be stepped over -- if there's
5595 one, it will have already triggered before the watchpoint
5596 triggered, and we either already reported it to the user, or
5597 it didn't cause a stop and we called keep_going. In either
5598 case, if there was a breakpoint at PC, we must be trying to
5599 step past it. */
5600 ecs->event_thread->stepping_over_watchpoint = 1;
5601 keep_going (ecs);
488f131b
JB
5602 return;
5603 }
5604
4e1c45ea 5605 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5606 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5607 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5608 ecs->event_thread->control.stop_step = 0;
488f131b 5609 stop_print_frame = 1;
488f131b 5610 stopped_by_random_signal = 0;
ddfe970e 5611 bpstat stop_chain = NULL;
488f131b 5612
edb3359d
DJ
5613 /* Hide inlined functions starting here, unless we just performed stepi or
5614 nexti. After stepi and nexti, always show the innermost frame (not any
5615 inline function call sites). */
16c381f0 5616 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5617 {
00431a78
PA
5618 const address_space *aspace
5619 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5620
5621 /* skip_inline_frames is expensive, so we avoid it if we can
5622 determine that the address is one where functions cannot have
5623 been inlined. This improves performance with inferiors that
5624 load a lot of shared libraries, because the solib event
5625 breakpoint is defined as the address of a function (i.e. not
5626 inline). Note that we have to check the previous PC as well
5627 as the current one to catch cases when we have just
5628 single-stepped off a breakpoint prior to reinstating it.
5629 Note that we're assuming that the code we single-step to is
5630 not inline, but that's not definitive: there's nothing
5631 preventing the event breakpoint function from containing
5632 inlined code, and the single-step ending up there. If the
5633 user had set a breakpoint on that inlined code, the missing
5634 skip_inline_frames call would break things. Fortunately
5635 that's an extremely unlikely scenario. */
f2ffa92b
PA
5636 if (!pc_at_non_inline_function (aspace,
5637 ecs->event_thread->suspend.stop_pc,
5638 &ecs->ws)
a210c238
MR
5639 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5640 && ecs->event_thread->control.trap_expected
5641 && pc_at_non_inline_function (aspace,
5642 ecs->event_thread->prev_pc,
09ac7c10 5643 &ecs->ws)))
1c5a993e 5644 {
f2ffa92b
PA
5645 stop_chain = build_bpstat_chain (aspace,
5646 ecs->event_thread->suspend.stop_pc,
5647 &ecs->ws);
00431a78 5648 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5649
5650 /* Re-fetch current thread's frame in case that invalidated
5651 the frame cache. */
5652 frame = get_current_frame ();
5653 gdbarch = get_frame_arch (frame);
5654 }
0574c78f 5655 }
edb3359d 5656
a493e3e2 5657 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5658 && ecs->event_thread->control.trap_expected
568d6575 5659 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5660 && currently_stepping (ecs->event_thread))
3352ef37 5661 {
b50d7442 5662 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5663 also on an instruction that needs to be stepped multiple
1777feb0 5664 times before it's been fully executing. E.g., architectures
3352ef37
AC
5665 with a delay slot. It needs to be stepped twice, once for
5666 the instruction and once for the delay slot. */
5667 int step_through_delay
568d6575 5668 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5669
527159b7 5670 if (debug_infrun && step_through_delay)
8a9de0e4 5671 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5672 if (ecs->event_thread->control.step_range_end == 0
5673 && step_through_delay)
3352ef37
AC
5674 {
5675 /* The user issued a continue when stopped at a breakpoint.
5676 Set up for another trap and get out of here. */
4e1c45ea 5677 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5678 keep_going (ecs);
5679 return;
5680 }
5681 else if (step_through_delay)
5682 {
5683 /* The user issued a step when stopped at a breakpoint.
5684 Maybe we should stop, maybe we should not - the delay
5685 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5686 case, don't decide that here, just set
5687 ecs->stepping_over_breakpoint, making sure we
5688 single-step again before breakpoints are re-inserted. */
4e1c45ea 5689 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5690 }
5691 }
5692
ab04a2af
TT
5693 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5694 handles this event. */
5695 ecs->event_thread->control.stop_bpstat
a01bda52 5696 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5697 ecs->event_thread->suspend.stop_pc,
5698 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5699
ab04a2af
TT
5700 /* Following in case break condition called a
5701 function. */
5702 stop_print_frame = 1;
73dd234f 5703
ab04a2af
TT
5704 /* This is where we handle "moribund" watchpoints. Unlike
5705 software breakpoints traps, hardware watchpoint traps are
5706 always distinguishable from random traps. If no high-level
5707 watchpoint is associated with the reported stop data address
5708 anymore, then the bpstat does not explain the signal ---
5709 simply make sure to ignore it if `stopped_by_watchpoint' is
5710 set. */
5711
5712 if (debug_infrun
5713 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5714 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5715 GDB_SIGNAL_TRAP)
ab04a2af
TT
5716 && stopped_by_watchpoint)
5717 fprintf_unfiltered (gdb_stdlog,
5718 "infrun: no user watchpoint explains "
5719 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5720
bac7d97b 5721 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5722 at one stage in the past included checks for an inferior
5723 function call's call dummy's return breakpoint. The original
5724 comment, that went with the test, read:
03cebad2 5725
ab04a2af
TT
5726 ``End of a stack dummy. Some systems (e.g. Sony news) give
5727 another signal besides SIGTRAP, so check here as well as
5728 above.''
73dd234f 5729
ab04a2af
TT
5730 If someone ever tries to get call dummys on a
5731 non-executable stack to work (where the target would stop
5732 with something like a SIGSEGV), then those tests might need
5733 to be re-instated. Given, however, that the tests were only
5734 enabled when momentary breakpoints were not being used, I
5735 suspect that it won't be the case.
488f131b 5736
ab04a2af
TT
5737 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5738 be necessary for call dummies on a non-executable stack on
5739 SPARC. */
488f131b 5740
bac7d97b 5741 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5742 random_signal
5743 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5744 ecs->event_thread->suspend.stop_signal);
bac7d97b 5745
1cf4d951
PA
5746 /* Maybe this was a trap for a software breakpoint that has since
5747 been removed. */
5748 if (random_signal && target_stopped_by_sw_breakpoint ())
5749 {
f2ffa92b
PA
5750 if (program_breakpoint_here_p (gdbarch,
5751 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5752 {
5753 struct regcache *regcache;
5754 int decr_pc;
5755
5756 /* Re-adjust PC to what the program would see if GDB was not
5757 debugging it. */
00431a78 5758 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5759 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5760 if (decr_pc != 0)
5761 {
07036511
TT
5762 gdb::optional<scoped_restore_tmpl<int>>
5763 restore_operation_disable;
1cf4d951
PA
5764
5765 if (record_full_is_used ())
07036511
TT
5766 restore_operation_disable.emplace
5767 (record_full_gdb_operation_disable_set ());
1cf4d951 5768
f2ffa92b
PA
5769 regcache_write_pc (regcache,
5770 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5771 }
5772 }
5773 else
5774 {
5775 /* A delayed software breakpoint event. Ignore the trap. */
5776 if (debug_infrun)
5777 fprintf_unfiltered (gdb_stdlog,
5778 "infrun: delayed software breakpoint "
5779 "trap, ignoring\n");
5780 random_signal = 0;
5781 }
5782 }
5783
5784 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5785 has since been removed. */
5786 if (random_signal && target_stopped_by_hw_breakpoint ())
5787 {
5788 /* A delayed hardware breakpoint event. Ignore the trap. */
5789 if (debug_infrun)
5790 fprintf_unfiltered (gdb_stdlog,
5791 "infrun: delayed hardware breakpoint/watchpoint "
5792 "trap, ignoring\n");
5793 random_signal = 0;
5794 }
5795
bac7d97b
PA
5796 /* If not, perhaps stepping/nexting can. */
5797 if (random_signal)
5798 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5799 && currently_stepping (ecs->event_thread));
ab04a2af 5800
2adfaa28
PA
5801 /* Perhaps the thread hit a single-step breakpoint of _another_
5802 thread. Single-step breakpoints are transparent to the
5803 breakpoints module. */
5804 if (random_signal)
5805 random_signal = !ecs->hit_singlestep_breakpoint;
5806
bac7d97b
PA
5807 /* No? Perhaps we got a moribund watchpoint. */
5808 if (random_signal)
5809 random_signal = !stopped_by_watchpoint;
ab04a2af 5810
c65d6b55
PA
5811 /* Always stop if the user explicitly requested this thread to
5812 remain stopped. */
5813 if (ecs->event_thread->stop_requested)
5814 {
5815 random_signal = 1;
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5818 }
5819
488f131b
JB
5820 /* For the program's own signals, act according to
5821 the signal handling tables. */
5822
ce12b012 5823 if (random_signal)
488f131b
JB
5824 {
5825 /* Signal not for debugging purposes. */
c9657e70 5826 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5827 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5828
527159b7 5829 if (debug_infrun)
c9737c08
PA
5830 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5831 gdb_signal_to_symbol_string (stop_signal));
527159b7 5832
488f131b
JB
5833 stopped_by_random_signal = 1;
5834
252fbfc8
PA
5835 /* Always stop on signals if we're either just gaining control
5836 of the program, or the user explicitly requested this thread
5837 to remain stopped. */
d6b48e9c 5838 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5839 || ecs->event_thread->stop_requested
24291992 5840 || (!inf->detaching
16c381f0 5841 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5842 {
22bcd14b 5843 stop_waiting (ecs);
488f131b
JB
5844 return;
5845 }
b57bacec
PA
5846
5847 /* Notify observers the signal has "handle print" set. Note we
5848 returned early above if stopping; normal_stop handles the
5849 printing in that case. */
5850 if (signal_print[ecs->event_thread->suspend.stop_signal])
5851 {
5852 /* The signal table tells us to print about this signal. */
223ffa71 5853 target_terminal::ours_for_output ();
76727919 5854 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5855 target_terminal::inferior ();
b57bacec 5856 }
488f131b
JB
5857
5858 /* Clear the signal if it should not be passed. */
16c381f0 5859 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5860 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5861
f2ffa92b 5862 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5863 && ecs->event_thread->control.trap_expected
8358c15c 5864 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5865 {
5866 /* We were just starting a new sequence, attempting to
5867 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5868 Instead this signal arrives. This signal will take us out
68f53502
AC
5869 of the stepping range so GDB needs to remember to, when
5870 the signal handler returns, resume stepping off that
5871 breakpoint. */
5872 /* To simplify things, "continue" is forced to use the same
5873 code paths as single-step - set a breakpoint at the
5874 signal return address and then, once hit, step off that
5875 breakpoint. */
237fc4c9
PA
5876 if (debug_infrun)
5877 fprintf_unfiltered (gdb_stdlog,
5878 "infrun: signal arrived while stepping over "
5879 "breakpoint\n");
d3169d93 5880
2c03e5be 5881 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5882 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5883 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5884 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5885
5886 /* If we were nexting/stepping some other thread, switch to
5887 it, so that we don't continue it, losing control. */
5888 if (!switch_back_to_stepped_thread (ecs))
5889 keep_going (ecs);
9d799f85 5890 return;
68f53502 5891 }
9d799f85 5892
e5f8a7cc 5893 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5894 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5895 ecs->event_thread)
e5f8a7cc 5896 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5897 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5898 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5899 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5900 {
5901 /* The inferior is about to take a signal that will take it
5902 out of the single step range. Set a breakpoint at the
5903 current PC (which is presumably where the signal handler
5904 will eventually return) and then allow the inferior to
5905 run free.
5906
5907 Note that this is only needed for a signal delivered
5908 while in the single-step range. Nested signals aren't a
5909 problem as they eventually all return. */
237fc4c9
PA
5910 if (debug_infrun)
5911 fprintf_unfiltered (gdb_stdlog,
5912 "infrun: signal may take us out of "
5913 "single-step range\n");
5914
372316f1 5915 clear_step_over_info ();
2c03e5be 5916 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5917 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5918 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5919 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5920 keep_going (ecs);
5921 return;
d303a6c7 5922 }
9d799f85 5923
85102364 5924 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5925 when either there's a nested signal, or when there's a
5926 pending signal enabled just as the signal handler returns
5927 (leaving the inferior at the step-resume-breakpoint without
5928 actually executing it). Either way continue until the
5929 breakpoint is really hit. */
c447ac0b
PA
5930
5931 if (!switch_back_to_stepped_thread (ecs))
5932 {
5933 if (debug_infrun)
5934 fprintf_unfiltered (gdb_stdlog,
5935 "infrun: random signal, keep going\n");
5936
5937 keep_going (ecs);
5938 }
5939 return;
488f131b 5940 }
94c57d6a
PA
5941
5942 process_event_stop_test (ecs);
5943}
5944
5945/* Come here when we've got some debug event / signal we can explain
5946 (IOW, not a random signal), and test whether it should cause a
5947 stop, or whether we should resume the inferior (transparently).
5948 E.g., could be a breakpoint whose condition evaluates false; we
5949 could be still stepping within the line; etc. */
5950
5951static void
5952process_event_stop_test (struct execution_control_state *ecs)
5953{
5954 struct symtab_and_line stop_pc_sal;
5955 struct frame_info *frame;
5956 struct gdbarch *gdbarch;
cdaa5b73
PA
5957 CORE_ADDR jmp_buf_pc;
5958 struct bpstat_what what;
94c57d6a 5959
cdaa5b73 5960 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5961
cdaa5b73
PA
5962 frame = get_current_frame ();
5963 gdbarch = get_frame_arch (frame);
fcf3daef 5964
cdaa5b73 5965 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5966
cdaa5b73
PA
5967 if (what.call_dummy)
5968 {
5969 stop_stack_dummy = what.call_dummy;
5970 }
186c406b 5971
243a9253
PA
5972 /* A few breakpoint types have callbacks associated (e.g.,
5973 bp_jit_event). Run them now. */
5974 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5975
cdaa5b73
PA
5976 /* If we hit an internal event that triggers symbol changes, the
5977 current frame will be invalidated within bpstat_what (e.g., if we
5978 hit an internal solib event). Re-fetch it. */
5979 frame = get_current_frame ();
5980 gdbarch = get_frame_arch (frame);
e2e4d78b 5981
cdaa5b73
PA
5982 switch (what.main_action)
5983 {
5984 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5985 /* If we hit the breakpoint at longjmp while stepping, we
5986 install a momentary breakpoint at the target of the
5987 jmp_buf. */
186c406b 5988
cdaa5b73
PA
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5992
cdaa5b73 5993 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5994
cdaa5b73
PA
5995 if (what.is_longjmp)
5996 {
5997 struct value *arg_value;
5998
5999 /* If we set the longjmp breakpoint via a SystemTap probe,
6000 then use it to extract the arguments. The destination PC
6001 is the third argument to the probe. */
6002 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6003 if (arg_value)
8fa0c4f8
AA
6004 {
6005 jmp_buf_pc = value_as_address (arg_value);
6006 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6007 }
cdaa5b73
PA
6008 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6009 || !gdbarch_get_longjmp_target (gdbarch,
6010 frame, &jmp_buf_pc))
e2e4d78b 6011 {
cdaa5b73
PA
6012 if (debug_infrun)
6013 fprintf_unfiltered (gdb_stdlog,
6014 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6015 "(!gdbarch_get_longjmp_target)\n");
6016 keep_going (ecs);
6017 return;
e2e4d78b 6018 }
e2e4d78b 6019
cdaa5b73
PA
6020 /* Insert a breakpoint at resume address. */
6021 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6022 }
6023 else
6024 check_exception_resume (ecs, frame);
6025 keep_going (ecs);
6026 return;
e81a37f7 6027
cdaa5b73
PA
6028 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6029 {
6030 struct frame_info *init_frame;
e81a37f7 6031
cdaa5b73 6032 /* There are several cases to consider.
c906108c 6033
cdaa5b73
PA
6034 1. The initiating frame no longer exists. In this case we
6035 must stop, because the exception or longjmp has gone too
6036 far.
2c03e5be 6037
cdaa5b73
PA
6038 2. The initiating frame exists, and is the same as the
6039 current frame. We stop, because the exception or longjmp
6040 has been caught.
2c03e5be 6041
cdaa5b73
PA
6042 3. The initiating frame exists and is different from the
6043 current frame. This means the exception or longjmp has
6044 been caught beneath the initiating frame, so keep going.
c906108c 6045
cdaa5b73
PA
6046 4. longjmp breakpoint has been placed just to protect
6047 against stale dummy frames and user is not interested in
6048 stopping around longjmps. */
c5aa993b 6049
cdaa5b73
PA
6050 if (debug_infrun)
6051 fprintf_unfiltered (gdb_stdlog,
6052 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6053
cdaa5b73
PA
6054 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6055 != NULL);
6056 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6057
cdaa5b73
PA
6058 if (what.is_longjmp)
6059 {
b67a2c6f 6060 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6061
cdaa5b73 6062 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6063 {
cdaa5b73
PA
6064 /* Case 4. */
6065 keep_going (ecs);
6066 return;
e5ef252a 6067 }
cdaa5b73 6068 }
c5aa993b 6069
cdaa5b73 6070 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6071
cdaa5b73
PA
6072 if (init_frame)
6073 {
6074 struct frame_id current_id
6075 = get_frame_id (get_current_frame ());
6076 if (frame_id_eq (current_id,
6077 ecs->event_thread->initiating_frame))
6078 {
6079 /* Case 2. Fall through. */
6080 }
6081 else
6082 {
6083 /* Case 3. */
6084 keep_going (ecs);
6085 return;
6086 }
68f53502 6087 }
488f131b 6088
cdaa5b73
PA
6089 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6090 exists. */
6091 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6092
bdc36728 6093 end_stepping_range (ecs);
cdaa5b73
PA
6094 }
6095 return;
e5ef252a 6096
cdaa5b73
PA
6097 case BPSTAT_WHAT_SINGLE:
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6100 ecs->event_thread->stepping_over_breakpoint = 1;
6101 /* Still need to check other stuff, at least the case where we
6102 are stepping and step out of the right range. */
6103 break;
e5ef252a 6104
cdaa5b73
PA
6105 case BPSTAT_WHAT_STEP_RESUME:
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6108
cdaa5b73
PA
6109 delete_step_resume_breakpoint (ecs->event_thread);
6110 if (ecs->event_thread->control.proceed_to_finish
6111 && execution_direction == EXEC_REVERSE)
6112 {
6113 struct thread_info *tp = ecs->event_thread;
6114
6115 /* We are finishing a function in reverse, and just hit the
6116 step-resume breakpoint at the start address of the
6117 function, and we're almost there -- just need to back up
6118 by one more single-step, which should take us back to the
6119 function call. */
6120 tp->control.step_range_start = tp->control.step_range_end = 1;
6121 keep_going (ecs);
e5ef252a 6122 return;
cdaa5b73
PA
6123 }
6124 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6125 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6126 && execution_direction == EXEC_REVERSE)
6127 {
6128 /* We are stepping over a function call in reverse, and just
6129 hit the step-resume breakpoint at the start address of
6130 the function. Go back to single-stepping, which should
6131 take us back to the function call. */
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133 keep_going (ecs);
6134 return;
6135 }
6136 break;
e5ef252a 6137
cdaa5b73
PA
6138 case BPSTAT_WHAT_STOP_NOISY:
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6141 stop_print_frame = 1;
e5ef252a 6142
99619bea
PA
6143 /* Assume the thread stopped for a breapoint. We'll still check
6144 whether a/the breakpoint is there when the thread is next
6145 resumed. */
6146 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6147
22bcd14b 6148 stop_waiting (ecs);
cdaa5b73 6149 return;
e5ef252a 6150
cdaa5b73
PA
6151 case BPSTAT_WHAT_STOP_SILENT:
6152 if (debug_infrun)
6153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6154 stop_print_frame = 0;
e5ef252a 6155
99619bea
PA
6156 /* Assume the thread stopped for a breapoint. We'll still check
6157 whether a/the breakpoint is there when the thread is next
6158 resumed. */
6159 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6160 stop_waiting (ecs);
cdaa5b73
PA
6161 return;
6162
6163 case BPSTAT_WHAT_HP_STEP_RESUME:
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6166
6167 delete_step_resume_breakpoint (ecs->event_thread);
6168 if (ecs->event_thread->step_after_step_resume_breakpoint)
6169 {
6170 /* Back when the step-resume breakpoint was inserted, we
6171 were trying to single-step off a breakpoint. Go back to
6172 doing that. */
6173 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6174 ecs->event_thread->stepping_over_breakpoint = 1;
6175 keep_going (ecs);
6176 return;
e5ef252a 6177 }
cdaa5b73
PA
6178 break;
6179
6180 case BPSTAT_WHAT_KEEP_CHECKING:
6181 break;
e5ef252a 6182 }
c906108c 6183
af48d08f
PA
6184 /* If we stepped a permanent breakpoint and we had a high priority
6185 step-resume breakpoint for the address we stepped, but we didn't
6186 hit it, then we must have stepped into the signal handler. The
6187 step-resume was only necessary to catch the case of _not_
6188 stepping into the handler, so delete it, and fall through to
6189 checking whether the step finished. */
6190 if (ecs->event_thread->stepped_breakpoint)
6191 {
6192 struct breakpoint *sr_bp
6193 = ecs->event_thread->control.step_resume_breakpoint;
6194
8d707a12
PA
6195 if (sr_bp != NULL
6196 && sr_bp->loc->permanent
af48d08f
PA
6197 && sr_bp->type == bp_hp_step_resume
6198 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6199 {
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog,
6202 "infrun: stepped permanent breakpoint, stopped in "
6203 "handler\n");
6204 delete_step_resume_breakpoint (ecs->event_thread);
6205 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6206 }
6207 }
6208
cdaa5b73
PA
6209 /* We come here if we hit a breakpoint but should not stop for it.
6210 Possibly we also were stepping and should stop for that. So fall
6211 through and test for stepping. But, if not stepping, do not
6212 stop. */
c906108c 6213
a7212384
UW
6214 /* In all-stop mode, if we're currently stepping but have stopped in
6215 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6216 if (switch_back_to_stepped_thread (ecs))
6217 return;
776f04fa 6218
8358c15c 6219 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6220 {
527159b7 6221 if (debug_infrun)
d3169d93
DJ
6222 fprintf_unfiltered (gdb_stdlog,
6223 "infrun: step-resume breakpoint is inserted\n");
527159b7 6224
488f131b
JB
6225 /* Having a step-resume breakpoint overrides anything
6226 else having to do with stepping commands until
6227 that breakpoint is reached. */
488f131b
JB
6228 keep_going (ecs);
6229 return;
6230 }
c5aa993b 6231
16c381f0 6232 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6233 {
527159b7 6234 if (debug_infrun)
8a9de0e4 6235 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6236 /* Likewise if we aren't even stepping. */
488f131b
JB
6237 keep_going (ecs);
6238 return;
6239 }
c5aa993b 6240
4b7703ad
JB
6241 /* Re-fetch current thread's frame in case the code above caused
6242 the frame cache to be re-initialized, making our FRAME variable
6243 a dangling pointer. */
6244 frame = get_current_frame ();
628fe4e4 6245 gdbarch = get_frame_arch (frame);
7e324e48 6246 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6247
488f131b 6248 /* If stepping through a line, keep going if still within it.
c906108c 6249
488f131b
JB
6250 Note that step_range_end is the address of the first instruction
6251 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6252 within it!
6253
6254 Note also that during reverse execution, we may be stepping
6255 through a function epilogue and therefore must detect when
6256 the current-frame changes in the middle of a line. */
6257
f2ffa92b
PA
6258 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6259 ecs->event_thread)
31410e84 6260 && (execution_direction != EXEC_REVERSE
388a8562 6261 || frame_id_eq (get_frame_id (frame),
16c381f0 6262 ecs->event_thread->control.step_frame_id)))
488f131b 6263 {
527159b7 6264 if (debug_infrun)
5af949e3
UW
6265 fprintf_unfiltered
6266 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6267 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6268 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6269
c1e36e3e
PA
6270 /* Tentatively re-enable range stepping; `resume' disables it if
6271 necessary (e.g., if we're stepping over a breakpoint or we
6272 have software watchpoints). */
6273 ecs->event_thread->control.may_range_step = 1;
6274
b2175913
MS
6275 /* When stepping backward, stop at beginning of line range
6276 (unless it's the function entry point, in which case
6277 keep going back to the call point). */
f2ffa92b 6278 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6279 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6280 && stop_pc != ecs->stop_func_start
6281 && execution_direction == EXEC_REVERSE)
bdc36728 6282 end_stepping_range (ecs);
b2175913
MS
6283 else
6284 keep_going (ecs);
6285
488f131b
JB
6286 return;
6287 }
c5aa993b 6288
488f131b 6289 /* We stepped out of the stepping range. */
c906108c 6290
488f131b 6291 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6292 loader dynamic symbol resolution code...
6293
6294 EXEC_FORWARD: we keep on single stepping until we exit the run
6295 time loader code and reach the callee's address.
6296
6297 EXEC_REVERSE: we've already executed the callee (backward), and
6298 the runtime loader code is handled just like any other
6299 undebuggable function call. Now we need only keep stepping
6300 backward through the trampoline code, and that's handled further
6301 down, so there is nothing for us to do here. */
6302
6303 if (execution_direction != EXEC_REVERSE
16c381f0 6304 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6305 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6306 {
4c8c40e6 6307 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6308 gdbarch_skip_solib_resolver (gdbarch,
6309 ecs->event_thread->suspend.stop_pc);
c906108c 6310
527159b7 6311 if (debug_infrun)
3e43a32a
MS
6312 fprintf_unfiltered (gdb_stdlog,
6313 "infrun: stepped into dynsym resolve code\n");
527159b7 6314
488f131b
JB
6315 if (pc_after_resolver)
6316 {
6317 /* Set up a step-resume breakpoint at the address
6318 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6319 symtab_and_line sr_sal;
488f131b 6320 sr_sal.pc = pc_after_resolver;
6c95b8df 6321 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6322
a6d9a66e
UW
6323 insert_step_resume_breakpoint_at_sal (gdbarch,
6324 sr_sal, null_frame_id);
c5aa993b 6325 }
c906108c 6326
488f131b
JB
6327 keep_going (ecs);
6328 return;
6329 }
c906108c 6330
1d509aa6
MM
6331 /* Step through an indirect branch thunk. */
6332 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6333 && gdbarch_in_indirect_branch_thunk (gdbarch,
6334 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6335 {
6336 if (debug_infrun)
6337 fprintf_unfiltered (gdb_stdlog,
6338 "infrun: stepped into indirect branch thunk\n");
6339 keep_going (ecs);
6340 return;
6341 }
6342
16c381f0
JK
6343 if (ecs->event_thread->control.step_range_end != 1
6344 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6345 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6346 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6347 {
527159b7 6348 if (debug_infrun)
3e43a32a
MS
6349 fprintf_unfiltered (gdb_stdlog,
6350 "infrun: stepped into signal trampoline\n");
42edda50 6351 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6352 a signal trampoline (either by a signal being delivered or by
6353 the signal handler returning). Just single-step until the
6354 inferior leaves the trampoline (either by calling the handler
6355 or returning). */
488f131b
JB
6356 keep_going (ecs);
6357 return;
6358 }
c906108c 6359
14132e89
MR
6360 /* If we're in the return path from a shared library trampoline,
6361 we want to proceed through the trampoline when stepping. */
6362 /* macro/2012-04-25: This needs to come before the subroutine
6363 call check below as on some targets return trampolines look
6364 like subroutine calls (MIPS16 return thunks). */
6365 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6366 ecs->event_thread->suspend.stop_pc,
6367 ecs->stop_func_name)
14132e89
MR
6368 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6369 {
6370 /* Determine where this trampoline returns. */
f2ffa92b
PA
6371 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6372 CORE_ADDR real_stop_pc
6373 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6374
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: stepped into solib return tramp\n");
6378
6379 /* Only proceed through if we know where it's going. */
6380 if (real_stop_pc)
6381 {
6382 /* And put the step-breakpoint there and go until there. */
51abb421 6383 symtab_and_line sr_sal;
14132e89
MR
6384 sr_sal.pc = real_stop_pc;
6385 sr_sal.section = find_pc_overlay (sr_sal.pc);
6386 sr_sal.pspace = get_frame_program_space (frame);
6387
6388 /* Do not specify what the fp should be when we stop since
6389 on some machines the prologue is where the new fp value
6390 is established. */
6391 insert_step_resume_breakpoint_at_sal (gdbarch,
6392 sr_sal, null_frame_id);
6393
6394 /* Restart without fiddling with the step ranges or
6395 other state. */
6396 keep_going (ecs);
6397 return;
6398 }
6399 }
6400
c17eaafe
DJ
6401 /* Check for subroutine calls. The check for the current frame
6402 equalling the step ID is not necessary - the check of the
6403 previous frame's ID is sufficient - but it is a common case and
6404 cheaper than checking the previous frame's ID.
14e60db5
DJ
6405
6406 NOTE: frame_id_eq will never report two invalid frame IDs as
6407 being equal, so to get into this block, both the current and
6408 previous frame must have valid frame IDs. */
005ca36a
JB
6409 /* The outer_frame_id check is a heuristic to detect stepping
6410 through startup code. If we step over an instruction which
6411 sets the stack pointer from an invalid value to a valid value,
6412 we may detect that as a subroutine call from the mythical
6413 "outermost" function. This could be fixed by marking
6414 outermost frames as !stack_p,code_p,special_p. Then the
6415 initial outermost frame, before sp was valid, would
ce6cca6d 6416 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6417 for more. */
edb3359d 6418 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6419 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6420 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6421 ecs->event_thread->control.step_stack_frame_id)
6422 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6423 outer_frame_id)
885eeb5b 6424 || (ecs->event_thread->control.step_start_function
f2ffa92b 6425 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6426 {
f2ffa92b 6427 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6428 CORE_ADDR real_stop_pc;
8fb3e588 6429
527159b7 6430 if (debug_infrun)
8a9de0e4 6431 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6432
b7a084be 6433 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6434 {
6435 /* I presume that step_over_calls is only 0 when we're
6436 supposed to be stepping at the assembly language level
6437 ("stepi"). Just stop. */
388a8562 6438 /* And this works the same backward as frontward. MVS */
bdc36728 6439 end_stepping_range (ecs);
95918acb
AC
6440 return;
6441 }
8fb3e588 6442
388a8562
MS
6443 /* Reverse stepping through solib trampolines. */
6444
6445 if (execution_direction == EXEC_REVERSE
16c381f0 6446 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6447 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6448 || (ecs->stop_func_start == 0
6449 && in_solib_dynsym_resolve_code (stop_pc))))
6450 {
6451 /* Any solib trampoline code can be handled in reverse
6452 by simply continuing to single-step. We have already
6453 executed the solib function (backwards), and a few
6454 steps will take us back through the trampoline to the
6455 caller. */
6456 keep_going (ecs);
6457 return;
6458 }
6459
16c381f0 6460 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6461 {
b2175913
MS
6462 /* We're doing a "next".
6463
6464 Normal (forward) execution: set a breakpoint at the
6465 callee's return address (the address at which the caller
6466 will resume).
6467
6468 Reverse (backward) execution. set the step-resume
6469 breakpoint at the start of the function that we just
6470 stepped into (backwards), and continue to there. When we
6130d0b7 6471 get there, we'll need to single-step back to the caller. */
b2175913
MS
6472
6473 if (execution_direction == EXEC_REVERSE)
6474 {
acf9414f
JK
6475 /* If we're already at the start of the function, we've either
6476 just stepped backward into a single instruction function,
6477 or stepped back out of a signal handler to the first instruction
6478 of the function. Just keep going, which will single-step back
6479 to the caller. */
58c48e72 6480 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6481 {
acf9414f 6482 /* Normal function call return (static or dynamic). */
51abb421 6483 symtab_and_line sr_sal;
acf9414f
JK
6484 sr_sal.pc = ecs->stop_func_start;
6485 sr_sal.pspace = get_frame_program_space (frame);
6486 insert_step_resume_breakpoint_at_sal (gdbarch,
6487 sr_sal, null_frame_id);
6488 }
b2175913
MS
6489 }
6490 else
568d6575 6491 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6492
8567c30f
AC
6493 keep_going (ecs);
6494 return;
6495 }
a53c66de 6496
95918acb 6497 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6498 calling routine and the real function), locate the real
6499 function. That's what tells us (a) whether we want to step
6500 into it at all, and (b) what prologue we want to run to the
6501 end of, if we do step into it. */
568d6575 6502 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6503 if (real_stop_pc == 0)
568d6575 6504 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6505 if (real_stop_pc != 0)
6506 ecs->stop_func_start = real_stop_pc;
8fb3e588 6507
db5f024e 6508 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6509 {
51abb421 6510 symtab_and_line sr_sal;
1b2bfbb9 6511 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6512 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6513
a6d9a66e
UW
6514 insert_step_resume_breakpoint_at_sal (gdbarch,
6515 sr_sal, null_frame_id);
8fb3e588
AC
6516 keep_going (ecs);
6517 return;
1b2bfbb9
RC
6518 }
6519
95918acb 6520 /* If we have line number information for the function we are
1bfeeb0f
JL
6521 thinking of stepping into and the function isn't on the skip
6522 list, step into it.
95918acb 6523
8fb3e588
AC
6524 If there are several symtabs at that PC (e.g. with include
6525 files), just want to know whether *any* of them have line
6526 numbers. find_pc_line handles this. */
95918acb
AC
6527 {
6528 struct symtab_and_line tmp_sal;
8fb3e588 6529
95918acb 6530 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6531 if (tmp_sal.line != 0
85817405 6532 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6533 tmp_sal))
95918acb 6534 {
b2175913 6535 if (execution_direction == EXEC_REVERSE)
568d6575 6536 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6537 else
568d6575 6538 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6539 return;
6540 }
6541 }
6542
6543 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6544 set, we stop the step so that the user has a chance to switch
6545 in assembly mode. */
16c381f0 6546 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6547 && step_stop_if_no_debug)
95918acb 6548 {
bdc36728 6549 end_stepping_range (ecs);
95918acb
AC
6550 return;
6551 }
6552
b2175913
MS
6553 if (execution_direction == EXEC_REVERSE)
6554 {
acf9414f
JK
6555 /* If we're already at the start of the function, we've either just
6556 stepped backward into a single instruction function without line
6557 number info, or stepped back out of a signal handler to the first
6558 instruction of the function without line number info. Just keep
6559 going, which will single-step back to the caller. */
6560 if (ecs->stop_func_start != stop_pc)
6561 {
6562 /* Set a breakpoint at callee's start address.
6563 From there we can step once and be back in the caller. */
51abb421 6564 symtab_and_line sr_sal;
acf9414f
JK
6565 sr_sal.pc = ecs->stop_func_start;
6566 sr_sal.pspace = get_frame_program_space (frame);
6567 insert_step_resume_breakpoint_at_sal (gdbarch,
6568 sr_sal, null_frame_id);
6569 }
b2175913
MS
6570 }
6571 else
6572 /* Set a breakpoint at callee's return address (the address
6573 at which the caller will resume). */
568d6575 6574 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6575
95918acb 6576 keep_going (ecs);
488f131b 6577 return;
488f131b 6578 }
c906108c 6579
fdd654f3
MS
6580 /* Reverse stepping through solib trampolines. */
6581
6582 if (execution_direction == EXEC_REVERSE
16c381f0 6583 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6584 {
f2ffa92b
PA
6585 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6586
fdd654f3
MS
6587 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6588 || (ecs->stop_func_start == 0
6589 && in_solib_dynsym_resolve_code (stop_pc)))
6590 {
6591 /* Any solib trampoline code can be handled in reverse
6592 by simply continuing to single-step. We have already
6593 executed the solib function (backwards), and a few
6594 steps will take us back through the trampoline to the
6595 caller. */
6596 keep_going (ecs);
6597 return;
6598 }
6599 else if (in_solib_dynsym_resolve_code (stop_pc))
6600 {
6601 /* Stepped backward into the solib dynsym resolver.
6602 Set a breakpoint at its start and continue, then
6603 one more step will take us out. */
51abb421 6604 symtab_and_line sr_sal;
fdd654f3 6605 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6606 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6607 insert_step_resume_breakpoint_at_sal (gdbarch,
6608 sr_sal, null_frame_id);
6609 keep_going (ecs);
6610 return;
6611 }
6612 }
6613
f2ffa92b 6614 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6615
1b2bfbb9
RC
6616 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6617 the trampoline processing logic, however, there are some trampolines
6618 that have no names, so we should do trampoline handling first. */
16c381f0 6619 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6620 && ecs->stop_func_name == NULL
2afb61aa 6621 && stop_pc_sal.line == 0)
1b2bfbb9 6622 {
527159b7 6623 if (debug_infrun)
3e43a32a
MS
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into undebuggable function\n");
527159b7 6626
1b2bfbb9 6627 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6628 undebuggable function (where there is no debugging information
6629 and no line number corresponding to the address where the
1b2bfbb9
RC
6630 inferior stopped). Since we want to skip this kind of code,
6631 we keep going until the inferior returns from this
14e60db5
DJ
6632 function - unless the user has asked us not to (via
6633 set step-mode) or we no longer know how to get back
6634 to the call site. */
6635 if (step_stop_if_no_debug
c7ce8faa 6636 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6637 {
6638 /* If we have no line number and the step-stop-if-no-debug
6639 is set, we stop the step so that the user has a chance to
6640 switch in assembly mode. */
bdc36728 6641 end_stepping_range (ecs);
1b2bfbb9
RC
6642 return;
6643 }
6644 else
6645 {
6646 /* Set a breakpoint at callee's return address (the address
6647 at which the caller will resume). */
568d6575 6648 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6649 keep_going (ecs);
6650 return;
6651 }
6652 }
6653
16c381f0 6654 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6655 {
6656 /* It is stepi or nexti. We always want to stop stepping after
6657 one instruction. */
527159b7 6658 if (debug_infrun)
8a9de0e4 6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6660 end_stepping_range (ecs);
1b2bfbb9
RC
6661 return;
6662 }
6663
2afb61aa 6664 if (stop_pc_sal.line == 0)
488f131b
JB
6665 {
6666 /* We have no line number information. That means to stop
6667 stepping (does this always happen right after one instruction,
6668 when we do "s" in a function with no line numbers,
6669 or can this happen as a result of a return or longjmp?). */
527159b7 6670 if (debug_infrun)
8a9de0e4 6671 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6672 end_stepping_range (ecs);
488f131b
JB
6673 return;
6674 }
c906108c 6675
edb3359d
DJ
6676 /* Look for "calls" to inlined functions, part one. If the inline
6677 frame machinery detected some skipped call sites, we have entered
6678 a new inline function. */
6679
6680 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6681 ecs->event_thread->control.step_frame_id)
00431a78 6682 && inline_skipped_frames (ecs->event_thread))
edb3359d 6683 {
edb3359d
DJ
6684 if (debug_infrun)
6685 fprintf_unfiltered (gdb_stdlog,
6686 "infrun: stepped into inlined function\n");
6687
51abb421 6688 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6689
16c381f0 6690 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6691 {
6692 /* For "step", we're going to stop. But if the call site
6693 for this inlined function is on the same source line as
6694 we were previously stepping, go down into the function
6695 first. Otherwise stop at the call site. */
6696
6697 if (call_sal.line == ecs->event_thread->current_line
6698 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6699 step_into_inline_frame (ecs->event_thread);
edb3359d 6700
bdc36728 6701 end_stepping_range (ecs);
edb3359d
DJ
6702 return;
6703 }
6704 else
6705 {
6706 /* For "next", we should stop at the call site if it is on a
6707 different source line. Otherwise continue through the
6708 inlined function. */
6709 if (call_sal.line == ecs->event_thread->current_line
6710 && call_sal.symtab == ecs->event_thread->current_symtab)
6711 keep_going (ecs);
6712 else
bdc36728 6713 end_stepping_range (ecs);
edb3359d
DJ
6714 return;
6715 }
6716 }
6717
6718 /* Look for "calls" to inlined functions, part two. If we are still
6719 in the same real function we were stepping through, but we have
6720 to go further up to find the exact frame ID, we are stepping
6721 through a more inlined call beyond its call site. */
6722
6723 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6724 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6725 ecs->event_thread->control.step_frame_id)
edb3359d 6726 && stepped_in_from (get_current_frame (),
16c381f0 6727 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6728 {
6729 if (debug_infrun)
6730 fprintf_unfiltered (gdb_stdlog,
6731 "infrun: stepping through inlined function\n");
6732
16c381f0 6733 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6734 keep_going (ecs);
6735 else
bdc36728 6736 end_stepping_range (ecs);
edb3359d
DJ
6737 return;
6738 }
6739
f2ffa92b 6740 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6741 && (ecs->event_thread->current_line != stop_pc_sal.line
6742 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6743 {
6744 /* We are at the start of a different line. So stop. Note that
6745 we don't stop if we step into the middle of a different line.
6746 That is said to make things like for (;;) statements work
6747 better. */
527159b7 6748 if (debug_infrun)
3e43a32a
MS
6749 fprintf_unfiltered (gdb_stdlog,
6750 "infrun: stepped to a different line\n");
bdc36728 6751 end_stepping_range (ecs);
488f131b
JB
6752 return;
6753 }
c906108c 6754
488f131b 6755 /* We aren't done stepping.
c906108c 6756
488f131b
JB
6757 Optimize by setting the stepping range to the line.
6758 (We might not be in the original line, but if we entered a
6759 new line in mid-statement, we continue stepping. This makes
6760 things like for(;;) statements work better.) */
c906108c 6761
16c381f0
JK
6762 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6763 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6764 ecs->event_thread->control.may_range_step = 1;
edb3359d 6765 set_step_info (frame, stop_pc_sal);
488f131b 6766
527159b7 6767 if (debug_infrun)
8a9de0e4 6768 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6769 keep_going (ecs);
104c1213
JM
6770}
6771
c447ac0b
PA
6772/* In all-stop mode, if we're currently stepping but have stopped in
6773 some other thread, we may need to switch back to the stepped
6774 thread. Returns true we set the inferior running, false if we left
6775 it stopped (and the event needs further processing). */
6776
6777static int
6778switch_back_to_stepped_thread (struct execution_control_state *ecs)
6779{
fbea99ea 6780 if (!target_is_non_stop_p ())
c447ac0b 6781 {
99619bea
PA
6782 struct thread_info *stepping_thread;
6783
6784 /* If any thread is blocked on some internal breakpoint, and we
6785 simply need to step over that breakpoint to get it going
6786 again, do that first. */
6787
6788 /* However, if we see an event for the stepping thread, then we
6789 know all other threads have been moved past their breakpoints
6790 already. Let the caller check whether the step is finished,
6791 etc., before deciding to move it past a breakpoint. */
6792 if (ecs->event_thread->control.step_range_end != 0)
6793 return 0;
6794
6795 /* Check if the current thread is blocked on an incomplete
6796 step-over, interrupted by a random signal. */
6797 if (ecs->event_thread->control.trap_expected
6798 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6799 {
99619bea
PA
6800 if (debug_infrun)
6801 {
6802 fprintf_unfiltered (gdb_stdlog,
6803 "infrun: need to finish step-over of [%s]\n",
a068643d 6804 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6805 }
6806 keep_going (ecs);
6807 return 1;
6808 }
2adfaa28 6809
99619bea
PA
6810 /* Check if the current thread is blocked by a single-step
6811 breakpoint of another thread. */
6812 if (ecs->hit_singlestep_breakpoint)
6813 {
6814 if (debug_infrun)
6815 {
6816 fprintf_unfiltered (gdb_stdlog,
6817 "infrun: need to step [%s] over single-step "
6818 "breakpoint\n",
a068643d 6819 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6820 }
6821 keep_going (ecs);
6822 return 1;
6823 }
6824
4d9d9d04
PA
6825 /* If this thread needs yet another step-over (e.g., stepping
6826 through a delay slot), do it first before moving on to
6827 another thread. */
6828 if (thread_still_needs_step_over (ecs->event_thread))
6829 {
6830 if (debug_infrun)
6831 {
6832 fprintf_unfiltered (gdb_stdlog,
6833 "infrun: thread [%s] still needs step-over\n",
a068643d 6834 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6835 }
6836 keep_going (ecs);
6837 return 1;
6838 }
70509625 6839
483805cf
PA
6840 /* If scheduler locking applies even if not stepping, there's no
6841 need to walk over threads. Above we've checked whether the
6842 current thread is stepping. If some other thread not the
6843 event thread is stepping, then it must be that scheduler
6844 locking is not in effect. */
856e7dd6 6845 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6846 return 0;
6847
4d9d9d04
PA
6848 /* Otherwise, we no longer expect a trap in the current thread.
6849 Clear the trap_expected flag before switching back -- this is
6850 what keep_going does as well, if we call it. */
6851 ecs->event_thread->control.trap_expected = 0;
6852
6853 /* Likewise, clear the signal if it should not be passed. */
6854 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6856
6857 /* Do all pending step-overs before actually proceeding with
483805cf 6858 step/next/etc. */
4d9d9d04
PA
6859 if (start_step_over ())
6860 {
6861 prepare_to_wait (ecs);
6862 return 1;
6863 }
6864
6865 /* Look for the stepping/nexting thread. */
483805cf 6866 stepping_thread = NULL;
4d9d9d04 6867
08036331 6868 for (thread_info *tp : all_non_exited_threads ())
483805cf 6869 {
fbea99ea
PA
6870 /* Ignore threads of processes the caller is not
6871 resuming. */
483805cf 6872 if (!sched_multi
e99b03dc 6873 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6874 continue;
6875
6876 /* When stepping over a breakpoint, we lock all threads
6877 except the one that needs to move past the breakpoint.
6878 If a non-event thread has this set, the "incomplete
6879 step-over" check above should have caught it earlier. */
372316f1
PA
6880 if (tp->control.trap_expected)
6881 {
6882 internal_error (__FILE__, __LINE__,
6883 "[%s] has inconsistent state: "
6884 "trap_expected=%d\n",
a068643d 6885 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6886 tp->control.trap_expected);
6887 }
483805cf
PA
6888
6889 /* Did we find the stepping thread? */
6890 if (tp->control.step_range_end)
6891 {
6892 /* Yep. There should only one though. */
6893 gdb_assert (stepping_thread == NULL);
6894
6895 /* The event thread is handled at the top, before we
6896 enter this loop. */
6897 gdb_assert (tp != ecs->event_thread);
6898
6899 /* If some thread other than the event thread is
6900 stepping, then scheduler locking can't be in effect,
6901 otherwise we wouldn't have resumed the current event
6902 thread in the first place. */
856e7dd6 6903 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6904
6905 stepping_thread = tp;
6906 }
99619bea
PA
6907 }
6908
483805cf 6909 if (stepping_thread != NULL)
99619bea 6910 {
c447ac0b
PA
6911 if (debug_infrun)
6912 fprintf_unfiltered (gdb_stdlog,
6913 "infrun: switching back to stepped thread\n");
6914
2ac7589c
PA
6915 if (keep_going_stepped_thread (stepping_thread))
6916 {
6917 prepare_to_wait (ecs);
6918 return 1;
6919 }
6920 }
6921 }
2adfaa28 6922
2ac7589c
PA
6923 return 0;
6924}
2adfaa28 6925
2ac7589c
PA
6926/* Set a previously stepped thread back to stepping. Returns true on
6927 success, false if the resume is not possible (e.g., the thread
6928 vanished). */
6929
6930static int
6931keep_going_stepped_thread (struct thread_info *tp)
6932{
6933 struct frame_info *frame;
2ac7589c
PA
6934 struct execution_control_state ecss;
6935 struct execution_control_state *ecs = &ecss;
2adfaa28 6936
2ac7589c
PA
6937 /* If the stepping thread exited, then don't try to switch back and
6938 resume it, which could fail in several different ways depending
6939 on the target. Instead, just keep going.
2adfaa28 6940
2ac7589c
PA
6941 We can find a stepping dead thread in the thread list in two
6942 cases:
2adfaa28 6943
2ac7589c
PA
6944 - The target supports thread exit events, and when the target
6945 tries to delete the thread from the thread list, inferior_ptid
6946 pointed at the exiting thread. In such case, calling
6947 delete_thread does not really remove the thread from the list;
6948 instead, the thread is left listed, with 'exited' state.
64ce06e4 6949
2ac7589c
PA
6950 - The target's debug interface does not support thread exit
6951 events, and so we have no idea whatsoever if the previously
6952 stepping thread is still alive. For that reason, we need to
6953 synchronously query the target now. */
2adfaa28 6954
00431a78 6955 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6956 {
6957 if (debug_infrun)
6958 fprintf_unfiltered (gdb_stdlog,
6959 "infrun: not resuming previously "
6960 "stepped thread, it has vanished\n");
6961
00431a78 6962 delete_thread (tp);
2ac7589c 6963 return 0;
c447ac0b 6964 }
2ac7589c
PA
6965
6966 if (debug_infrun)
6967 fprintf_unfiltered (gdb_stdlog,
6968 "infrun: resuming previously stepped thread\n");
6969
6970 reset_ecs (ecs, tp);
00431a78 6971 switch_to_thread (tp);
2ac7589c 6972
f2ffa92b 6973 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 6974 frame = get_current_frame ();
2ac7589c
PA
6975
6976 /* If the PC of the thread we were trying to single-step has
6977 changed, then that thread has trapped or been signaled, but the
6978 event has not been reported to GDB yet. Re-poll the target
6979 looking for this particular thread's event (i.e. temporarily
6980 enable schedlock) by:
6981
6982 - setting a break at the current PC
6983 - resuming that particular thread, only (by setting trap
6984 expected)
6985
6986 This prevents us continuously moving the single-step breakpoint
6987 forward, one instruction at a time, overstepping. */
6988
f2ffa92b 6989 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
6990 {
6991 ptid_t resume_ptid;
6992
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: expected thread advanced also (%s -> %s)\n",
6996 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 6997 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
6998
6999 /* Clear the info of the previous step-over, as it's no longer
7000 valid (if the thread was trying to step over a breakpoint, it
7001 has already succeeded). It's what keep_going would do too,
7002 if we called it. Do this before trying to insert the sss
7003 breakpoint, otherwise if we were previously trying to step
7004 over this exact address in another thread, the breakpoint is
7005 skipped. */
7006 clear_step_over_info ();
7007 tp->control.trap_expected = 0;
7008
7009 insert_single_step_breakpoint (get_frame_arch (frame),
7010 get_frame_address_space (frame),
f2ffa92b 7011 tp->suspend.stop_pc);
2ac7589c 7012
372316f1 7013 tp->resumed = 1;
fbea99ea 7014 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7015 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7016 }
7017 else
7018 {
7019 if (debug_infrun)
7020 fprintf_unfiltered (gdb_stdlog,
7021 "infrun: expected thread still hasn't advanced\n");
7022
7023 keep_going_pass_signal (ecs);
7024 }
7025 return 1;
c447ac0b
PA
7026}
7027
8b061563
PA
7028/* Is thread TP in the middle of (software or hardware)
7029 single-stepping? (Note the result of this function must never be
7030 passed directly as target_resume's STEP parameter.) */
104c1213 7031
a289b8f6 7032static int
b3444185 7033currently_stepping (struct thread_info *tp)
a7212384 7034{
8358c15c
JK
7035 return ((tp->control.step_range_end
7036 && tp->control.step_resume_breakpoint == NULL)
7037 || tp->control.trap_expected
af48d08f 7038 || tp->stepped_breakpoint
8358c15c 7039 || bpstat_should_step ());
a7212384
UW
7040}
7041
b2175913
MS
7042/* Inferior has stepped into a subroutine call with source code that
7043 we should not step over. Do step to the first line of code in
7044 it. */
c2c6d25f
JM
7045
7046static void
568d6575
UW
7047handle_step_into_function (struct gdbarch *gdbarch,
7048 struct execution_control_state *ecs)
c2c6d25f 7049{
7e324e48
GB
7050 fill_in_stop_func (gdbarch, ecs);
7051
f2ffa92b
PA
7052 compunit_symtab *cust
7053 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7054 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7055 ecs->stop_func_start
7056 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7057
51abb421 7058 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7059 /* Use the step_resume_break to step until the end of the prologue,
7060 even if that involves jumps (as it seems to on the vax under
7061 4.2). */
7062 /* If the prologue ends in the middle of a source line, continue to
7063 the end of that source line (if it is still within the function).
7064 Otherwise, just go to end of prologue. */
2afb61aa
PA
7065 if (stop_func_sal.end
7066 && stop_func_sal.pc != ecs->stop_func_start
7067 && stop_func_sal.end < ecs->stop_func_end)
7068 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7069
2dbd5e30
KB
7070 /* Architectures which require breakpoint adjustment might not be able
7071 to place a breakpoint at the computed address. If so, the test
7072 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7073 ecs->stop_func_start to an address at which a breakpoint may be
7074 legitimately placed.
8fb3e588 7075
2dbd5e30
KB
7076 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7077 made, GDB will enter an infinite loop when stepping through
7078 optimized code consisting of VLIW instructions which contain
7079 subinstructions corresponding to different source lines. On
7080 FR-V, it's not permitted to place a breakpoint on any but the
7081 first subinstruction of a VLIW instruction. When a breakpoint is
7082 set, GDB will adjust the breakpoint address to the beginning of
7083 the VLIW instruction. Thus, we need to make the corresponding
7084 adjustment here when computing the stop address. */
8fb3e588 7085
568d6575 7086 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7087 {
7088 ecs->stop_func_start
568d6575 7089 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7090 ecs->stop_func_start);
2dbd5e30
KB
7091 }
7092
f2ffa92b 7093 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7094 {
7095 /* We are already there: stop now. */
bdc36728 7096 end_stepping_range (ecs);
c2c6d25f
JM
7097 return;
7098 }
7099 else
7100 {
7101 /* Put the step-breakpoint there and go until there. */
51abb421 7102 symtab_and_line sr_sal;
c2c6d25f
JM
7103 sr_sal.pc = ecs->stop_func_start;
7104 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7105 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7106
c2c6d25f 7107 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7108 some machines the prologue is where the new fp value is
7109 established. */
a6d9a66e 7110 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7111
7112 /* And make sure stepping stops right away then. */
16c381f0
JK
7113 ecs->event_thread->control.step_range_end
7114 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7115 }
7116 keep_going (ecs);
7117}
d4f3574e 7118
b2175913
MS
7119/* Inferior has stepped backward into a subroutine call with source
7120 code that we should not step over. Do step to the beginning of the
7121 last line of code in it. */
7122
7123static void
568d6575
UW
7124handle_step_into_function_backward (struct gdbarch *gdbarch,
7125 struct execution_control_state *ecs)
b2175913 7126{
43f3e411 7127 struct compunit_symtab *cust;
167e4384 7128 struct symtab_and_line stop_func_sal;
b2175913 7129
7e324e48
GB
7130 fill_in_stop_func (gdbarch, ecs);
7131
f2ffa92b 7132 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7133 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7134 ecs->stop_func_start
7135 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7136
f2ffa92b 7137 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7138
7139 /* OK, we're just going to keep stepping here. */
f2ffa92b 7140 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7141 {
7142 /* We're there already. Just stop stepping now. */
bdc36728 7143 end_stepping_range (ecs);
b2175913
MS
7144 }
7145 else
7146 {
7147 /* Else just reset the step range and keep going.
7148 No step-resume breakpoint, they don't work for
7149 epilogues, which can have multiple entry paths. */
16c381f0
JK
7150 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7151 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7152 keep_going (ecs);
7153 }
7154 return;
7155}
7156
d3169d93 7157/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7158 This is used to both functions and to skip over code. */
7159
7160static void
2c03e5be
PA
7161insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7162 struct symtab_and_line sr_sal,
7163 struct frame_id sr_id,
7164 enum bptype sr_type)
44cbf7b5 7165{
611c83ae
PA
7166 /* There should never be more than one step-resume or longjmp-resume
7167 breakpoint per thread, so we should never be setting a new
44cbf7b5 7168 step_resume_breakpoint when one is already active. */
8358c15c 7169 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7170 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7171
7172 if (debug_infrun)
7173 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7174 "infrun: inserting step-resume breakpoint at %s\n",
7175 paddress (gdbarch, sr_sal.pc));
d3169d93 7176
8358c15c 7177 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7178 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7179}
7180
9da8c2a0 7181void
2c03e5be
PA
7182insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7183 struct symtab_and_line sr_sal,
7184 struct frame_id sr_id)
7185{
7186 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7187 sr_sal, sr_id,
7188 bp_step_resume);
44cbf7b5 7189}
7ce450bd 7190
2c03e5be
PA
7191/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7192 This is used to skip a potential signal handler.
7ce450bd 7193
14e60db5
DJ
7194 This is called with the interrupted function's frame. The signal
7195 handler, when it returns, will resume the interrupted function at
7196 RETURN_FRAME.pc. */
d303a6c7
AC
7197
7198static void
2c03e5be 7199insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7200{
f4c1edd8 7201 gdb_assert (return_frame != NULL);
d303a6c7 7202
51abb421
PA
7203 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7204
7205 symtab_and_line sr_sal;
568d6575 7206 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7207 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7208 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7209
2c03e5be
PA
7210 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7211 get_stack_frame_id (return_frame),
7212 bp_hp_step_resume);
d303a6c7
AC
7213}
7214
2c03e5be
PA
7215/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7216 is used to skip a function after stepping into it (for "next" or if
7217 the called function has no debugging information).
14e60db5
DJ
7218
7219 The current function has almost always been reached by single
7220 stepping a call or return instruction. NEXT_FRAME belongs to the
7221 current function, and the breakpoint will be set at the caller's
7222 resume address.
7223
7224 This is a separate function rather than reusing
2c03e5be 7225 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7226 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7227 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7228
7229static void
7230insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7231{
14e60db5
DJ
7232 /* We shouldn't have gotten here if we don't know where the call site
7233 is. */
c7ce8faa 7234 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7235
51abb421 7236 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7237
51abb421 7238 symtab_and_line sr_sal;
c7ce8faa
DJ
7239 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7240 frame_unwind_caller_pc (next_frame));
14e60db5 7241 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7242 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7243
a6d9a66e 7244 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7245 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7246}
7247
611c83ae
PA
7248/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7249 new breakpoint at the target of a jmp_buf. The handling of
7250 longjmp-resume uses the same mechanisms used for handling
7251 "step-resume" breakpoints. */
7252
7253static void
a6d9a66e 7254insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7255{
e81a37f7
TT
7256 /* There should never be more than one longjmp-resume breakpoint per
7257 thread, so we should never be setting a new
611c83ae 7258 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7259 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7260
7261 if (debug_infrun)
7262 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7263 "infrun: inserting longjmp-resume breakpoint at %s\n",
7264 paddress (gdbarch, pc));
611c83ae 7265
e81a37f7 7266 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7267 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7268}
7269
186c406b
TT
7270/* Insert an exception resume breakpoint. TP is the thread throwing
7271 the exception. The block B is the block of the unwinder debug hook
7272 function. FRAME is the frame corresponding to the call to this
7273 function. SYM is the symbol of the function argument holding the
7274 target PC of the exception. */
7275
7276static void
7277insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7278 const struct block *b,
186c406b
TT
7279 struct frame_info *frame,
7280 struct symbol *sym)
7281{
a70b8144 7282 try
186c406b 7283 {
63e43d3a 7284 struct block_symbol vsym;
186c406b
TT
7285 struct value *value;
7286 CORE_ADDR handler;
7287 struct breakpoint *bp;
7288
987012b8 7289 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7290 b, VAR_DOMAIN);
63e43d3a 7291 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7292 /* If the value was optimized out, revert to the old behavior. */
7293 if (! value_optimized_out (value))
7294 {
7295 handler = value_as_address (value);
7296
7297 if (debug_infrun)
7298 fprintf_unfiltered (gdb_stdlog,
7299 "infrun: exception resume at %lx\n",
7300 (unsigned long) handler);
7301
7302 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7303 handler,
7304 bp_exception_resume).release ();
c70a6932
JK
7305
7306 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7307 frame = NULL;
7308
5d5658a1 7309 bp->thread = tp->global_num;
186c406b
TT
7310 inferior_thread ()->control.exception_resume_breakpoint = bp;
7311 }
7312 }
230d2906 7313 catch (const gdb_exception_error &e)
492d29ea
PA
7314 {
7315 /* We want to ignore errors here. */
7316 }
186c406b
TT
7317}
7318
28106bc2
SDJ
7319/* A helper for check_exception_resume that sets an
7320 exception-breakpoint based on a SystemTap probe. */
7321
7322static void
7323insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7324 const struct bound_probe *probe,
28106bc2
SDJ
7325 struct frame_info *frame)
7326{
7327 struct value *arg_value;
7328 CORE_ADDR handler;
7329 struct breakpoint *bp;
7330
7331 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7332 if (!arg_value)
7333 return;
7334
7335 handler = value_as_address (arg_value);
7336
7337 if (debug_infrun)
7338 fprintf_unfiltered (gdb_stdlog,
7339 "infrun: exception resume at %s\n",
6bac7473 7340 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7341 handler));
7342
7343 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7344 handler, bp_exception_resume).release ();
5d5658a1 7345 bp->thread = tp->global_num;
28106bc2
SDJ
7346 inferior_thread ()->control.exception_resume_breakpoint = bp;
7347}
7348
186c406b
TT
7349/* This is called when an exception has been intercepted. Check to
7350 see whether the exception's destination is of interest, and if so,
7351 set an exception resume breakpoint there. */
7352
7353static void
7354check_exception_resume (struct execution_control_state *ecs,
28106bc2 7355 struct frame_info *frame)
186c406b 7356{
729662a5 7357 struct bound_probe probe;
28106bc2
SDJ
7358 struct symbol *func;
7359
7360 /* First see if this exception unwinding breakpoint was set via a
7361 SystemTap probe point. If so, the probe has two arguments: the
7362 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7363 set a breakpoint there. */
6bac7473 7364 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7365 if (probe.prob)
28106bc2 7366 {
729662a5 7367 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7368 return;
7369 }
7370
7371 func = get_frame_function (frame);
7372 if (!func)
7373 return;
186c406b 7374
a70b8144 7375 try
186c406b 7376 {
3977b71f 7377 const struct block *b;
8157b174 7378 struct block_iterator iter;
186c406b
TT
7379 struct symbol *sym;
7380 int argno = 0;
7381
7382 /* The exception breakpoint is a thread-specific breakpoint on
7383 the unwinder's debug hook, declared as:
7384
7385 void _Unwind_DebugHook (void *cfa, void *handler);
7386
7387 The CFA argument indicates the frame to which control is
7388 about to be transferred. HANDLER is the destination PC.
7389
7390 We ignore the CFA and set a temporary breakpoint at HANDLER.
7391 This is not extremely efficient but it avoids issues in gdb
7392 with computing the DWARF CFA, and it also works even in weird
7393 cases such as throwing an exception from inside a signal
7394 handler. */
7395
7396 b = SYMBOL_BLOCK_VALUE (func);
7397 ALL_BLOCK_SYMBOLS (b, iter, sym)
7398 {
7399 if (!SYMBOL_IS_ARGUMENT (sym))
7400 continue;
7401
7402 if (argno == 0)
7403 ++argno;
7404 else
7405 {
7406 insert_exception_resume_breakpoint (ecs->event_thread,
7407 b, frame, sym);
7408 break;
7409 }
7410 }
7411 }
230d2906 7412 catch (const gdb_exception_error &e)
492d29ea
PA
7413 {
7414 }
186c406b
TT
7415}
7416
104c1213 7417static void
22bcd14b 7418stop_waiting (struct execution_control_state *ecs)
104c1213 7419{
527159b7 7420 if (debug_infrun)
22bcd14b 7421 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7422
cd0fc7c3
SS
7423 /* Let callers know we don't want to wait for the inferior anymore. */
7424 ecs->wait_some_more = 0;
fbea99ea
PA
7425
7426 /* If all-stop, but the target is always in non-stop mode, stop all
7427 threads now that we're presenting the stop to the user. */
7428 if (!non_stop && target_is_non_stop_p ())
7429 stop_all_threads ();
cd0fc7c3
SS
7430}
7431
4d9d9d04
PA
7432/* Like keep_going, but passes the signal to the inferior, even if the
7433 signal is set to nopass. */
d4f3574e
SS
7434
7435static void
4d9d9d04 7436keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7437{
d7e15655 7438 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7439 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7440
d4f3574e 7441 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7442 ecs->event_thread->prev_pc
00431a78 7443 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7444
4d9d9d04 7445 if (ecs->event_thread->control.trap_expected)
d4f3574e 7446 {
4d9d9d04
PA
7447 struct thread_info *tp = ecs->event_thread;
7448
7449 if (debug_infrun)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "infrun: %s has trap_expected set, "
7452 "resuming to collect trap\n",
a068643d 7453 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7454
a9ba6bae
PA
7455 /* We haven't yet gotten our trap, and either: intercepted a
7456 non-signal event (e.g., a fork); or took a signal which we
7457 are supposed to pass through to the inferior. Simply
7458 continue. */
64ce06e4 7459 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7460 }
372316f1
PA
7461 else if (step_over_info_valid_p ())
7462 {
7463 /* Another thread is stepping over a breakpoint in-line. If
7464 this thread needs a step-over too, queue the request. In
7465 either case, this resume must be deferred for later. */
7466 struct thread_info *tp = ecs->event_thread;
7467
7468 if (ecs->hit_singlestep_breakpoint
7469 || thread_still_needs_step_over (tp))
7470 {
7471 if (debug_infrun)
7472 fprintf_unfiltered (gdb_stdlog,
7473 "infrun: step-over already in progress: "
7474 "step-over for %s deferred\n",
a068643d 7475 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7476 thread_step_over_chain_enqueue (tp);
7477 }
7478 else
7479 {
7480 if (debug_infrun)
7481 fprintf_unfiltered (gdb_stdlog,
7482 "infrun: step-over in progress: "
7483 "resume of %s deferred\n",
a068643d 7484 target_pid_to_str (tp->ptid).c_str ());
372316f1 7485 }
372316f1 7486 }
d4f3574e
SS
7487 else
7488 {
31e77af2 7489 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7490 int remove_bp;
7491 int remove_wps;
8d297bbf 7492 step_over_what step_what;
31e77af2 7493
d4f3574e 7494 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7495 anyway (if we got a signal, the user asked it be passed to
7496 the child)
7497 -- or --
7498 We got our expected trap, but decided we should resume from
7499 it.
d4f3574e 7500
a9ba6bae 7501 We're going to run this baby now!
d4f3574e 7502
c36b740a
VP
7503 Note that insert_breakpoints won't try to re-insert
7504 already inserted breakpoints. Therefore, we don't
7505 care if breakpoints were already inserted, or not. */
a9ba6bae 7506
31e77af2
PA
7507 /* If we need to step over a breakpoint, and we're not using
7508 displaced stepping to do so, insert all breakpoints
7509 (watchpoints, etc.) but the one we're stepping over, step one
7510 instruction, and then re-insert the breakpoint when that step
7511 is finished. */
963f9c80 7512
6c4cfb24
PA
7513 step_what = thread_still_needs_step_over (ecs->event_thread);
7514
963f9c80 7515 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7516 || (step_what & STEP_OVER_BREAKPOINT));
7517 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7518
cb71640d
PA
7519 /* We can't use displaced stepping if we need to step past a
7520 watchpoint. The instruction copied to the scratch pad would
7521 still trigger the watchpoint. */
7522 if (remove_bp
3fc8eb30 7523 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7524 {
a01bda52 7525 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7526 regcache_read_pc (regcache), remove_wps,
7527 ecs->event_thread->global_num);
45e8c884 7528 }
963f9c80 7529 else if (remove_wps)
21edc42f 7530 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7531
7532 /* If we now need to do an in-line step-over, we need to stop
7533 all other threads. Note this must be done before
7534 insert_breakpoints below, because that removes the breakpoint
7535 we're about to step over, otherwise other threads could miss
7536 it. */
fbea99ea 7537 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7538 stop_all_threads ();
abbb1732 7539
31e77af2 7540 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7541 try
31e77af2
PA
7542 {
7543 insert_breakpoints ();
7544 }
230d2906 7545 catch (const gdb_exception_error &e)
31e77af2
PA
7546 {
7547 exception_print (gdb_stderr, e);
22bcd14b 7548 stop_waiting (ecs);
bdf2a94a 7549 clear_step_over_info ();
31e77af2 7550 return;
d4f3574e
SS
7551 }
7552
963f9c80 7553 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7554
64ce06e4 7555 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7556 }
7557
488f131b 7558 prepare_to_wait (ecs);
d4f3574e
SS
7559}
7560
4d9d9d04
PA
7561/* Called when we should continue running the inferior, because the
7562 current event doesn't cause a user visible stop. This does the
7563 resuming part; waiting for the next event is done elsewhere. */
7564
7565static void
7566keep_going (struct execution_control_state *ecs)
7567{
7568 if (ecs->event_thread->control.trap_expected
7569 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7570 ecs->event_thread->control.trap_expected = 0;
7571
7572 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7574 keep_going_pass_signal (ecs);
7575}
7576
104c1213
JM
7577/* This function normally comes after a resume, before
7578 handle_inferior_event exits. It takes care of any last bits of
7579 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7580
104c1213
JM
7581static void
7582prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7583{
527159b7 7584 if (debug_infrun)
8a9de0e4 7585 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7586
104c1213 7587 ecs->wait_some_more = 1;
0b333c5e
PA
7588
7589 if (!target_is_async_p ())
7590 mark_infrun_async_event_handler ();
c906108c 7591}
11cf8741 7592
fd664c91 7593/* We are done with the step range of a step/next/si/ni command.
b57bacec 7594 Called once for each n of a "step n" operation. */
fd664c91
PA
7595
7596static void
bdc36728 7597end_stepping_range (struct execution_control_state *ecs)
fd664c91 7598{
bdc36728 7599 ecs->event_thread->control.stop_step = 1;
bdc36728 7600 stop_waiting (ecs);
fd664c91
PA
7601}
7602
33d62d64
JK
7603/* Several print_*_reason functions to print why the inferior has stopped.
7604 We always print something when the inferior exits, or receives a signal.
7605 The rest of the cases are dealt with later on in normal_stop and
7606 print_it_typical. Ideally there should be a call to one of these
7607 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7608 stop_waiting is called.
33d62d64 7609
fd664c91
PA
7610 Note that we don't call these directly, instead we delegate that to
7611 the interpreters, through observers. Interpreters then call these
7612 with whatever uiout is right. */
33d62d64 7613
fd664c91
PA
7614void
7615print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7616{
fd664c91 7617 /* For CLI-like interpreters, print nothing. */
33d62d64 7618
112e8700 7619 if (uiout->is_mi_like_p ())
fd664c91 7620 {
112e8700 7621 uiout->field_string ("reason",
fd664c91
PA
7622 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7623 }
7624}
33d62d64 7625
fd664c91
PA
7626void
7627print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7628{
33d62d64 7629 annotate_signalled ();
112e8700
SM
7630 if (uiout->is_mi_like_p ())
7631 uiout->field_string
7632 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7633 uiout->text ("\nProgram terminated with signal ");
33d62d64 7634 annotate_signal_name ();
112e8700 7635 uiout->field_string ("signal-name",
2ea28649 7636 gdb_signal_to_name (siggnal));
33d62d64 7637 annotate_signal_name_end ();
112e8700 7638 uiout->text (", ");
33d62d64 7639 annotate_signal_string ();
112e8700 7640 uiout->field_string ("signal-meaning",
2ea28649 7641 gdb_signal_to_string (siggnal));
33d62d64 7642 annotate_signal_string_end ();
112e8700
SM
7643 uiout->text (".\n");
7644 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7645}
7646
fd664c91
PA
7647void
7648print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7649{
fda326dd 7650 struct inferior *inf = current_inferior ();
a068643d 7651 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7652
33d62d64
JK
7653 annotate_exited (exitstatus);
7654 if (exitstatus)
7655 {
112e8700
SM
7656 if (uiout->is_mi_like_p ())
7657 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7658 std::string exit_code_str
7659 = string_printf ("0%o", (unsigned int) exitstatus);
7660 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7661 plongest (inf->num), pidstr.c_str (),
7662 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7663 }
7664 else
11cf8741 7665 {
112e8700
SM
7666 if (uiout->is_mi_like_p ())
7667 uiout->field_string
7668 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7669 uiout->message ("[Inferior %s (%s) exited normally]\n",
7670 plongest (inf->num), pidstr.c_str ());
33d62d64 7671 }
33d62d64
JK
7672}
7673
012b3a21
WT
7674/* Some targets/architectures can do extra processing/display of
7675 segmentation faults. E.g., Intel MPX boundary faults.
7676 Call the architecture dependent function to handle the fault. */
7677
7678static void
7679handle_segmentation_fault (struct ui_out *uiout)
7680{
7681 struct regcache *regcache = get_current_regcache ();
ac7936df 7682 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7683
7684 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7685 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7686}
7687
fd664c91
PA
7688void
7689print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7690{
f303dbd6
PA
7691 struct thread_info *thr = inferior_thread ();
7692
33d62d64
JK
7693 annotate_signal ();
7694
112e8700 7695 if (uiout->is_mi_like_p ())
f303dbd6
PA
7696 ;
7697 else if (show_thread_that_caused_stop ())
33d62d64 7698 {
f303dbd6 7699 const char *name;
33d62d64 7700
112e8700 7701 uiout->text ("\nThread ");
33eca680 7702 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7703
7704 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7705 if (name != NULL)
7706 {
112e8700 7707 uiout->text (" \"");
33eca680 7708 uiout->field_string ("name", name);
112e8700 7709 uiout->text ("\"");
f303dbd6 7710 }
33d62d64 7711 }
f303dbd6 7712 else
112e8700 7713 uiout->text ("\nProgram");
f303dbd6 7714
112e8700
SM
7715 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7716 uiout->text (" stopped");
33d62d64
JK
7717 else
7718 {
112e8700 7719 uiout->text (" received signal ");
8b93c638 7720 annotate_signal_name ();
112e8700
SM
7721 if (uiout->is_mi_like_p ())
7722 uiout->field_string
7723 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7724 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7725 annotate_signal_name_end ();
112e8700 7726 uiout->text (", ");
8b93c638 7727 annotate_signal_string ();
112e8700 7728 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7729
7730 if (siggnal == GDB_SIGNAL_SEGV)
7731 handle_segmentation_fault (uiout);
7732
8b93c638 7733 annotate_signal_string_end ();
33d62d64 7734 }
112e8700 7735 uiout->text (".\n");
33d62d64 7736}
252fbfc8 7737
fd664c91
PA
7738void
7739print_no_history_reason (struct ui_out *uiout)
33d62d64 7740{
112e8700 7741 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7742}
43ff13b4 7743
0c7e1a46
PA
7744/* Print current location without a level number, if we have changed
7745 functions or hit a breakpoint. Print source line if we have one.
7746 bpstat_print contains the logic deciding in detail what to print,
7747 based on the event(s) that just occurred. */
7748
243a9253
PA
7749static void
7750print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7751{
7752 int bpstat_ret;
f486487f 7753 enum print_what source_flag;
0c7e1a46
PA
7754 int do_frame_printing = 1;
7755 struct thread_info *tp = inferior_thread ();
7756
7757 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7758 switch (bpstat_ret)
7759 {
7760 case PRINT_UNKNOWN:
7761 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7762 should) carry around the function and does (or should) use
7763 that when doing a frame comparison. */
7764 if (tp->control.stop_step
7765 && frame_id_eq (tp->control.step_frame_id,
7766 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7767 && (tp->control.step_start_function
7768 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7769 {
7770 /* Finished step, just print source line. */
7771 source_flag = SRC_LINE;
7772 }
7773 else
7774 {
7775 /* Print location and source line. */
7776 source_flag = SRC_AND_LOC;
7777 }
7778 break;
7779 case PRINT_SRC_AND_LOC:
7780 /* Print location and source line. */
7781 source_flag = SRC_AND_LOC;
7782 break;
7783 case PRINT_SRC_ONLY:
7784 source_flag = SRC_LINE;
7785 break;
7786 case PRINT_NOTHING:
7787 /* Something bogus. */
7788 source_flag = SRC_LINE;
7789 do_frame_printing = 0;
7790 break;
7791 default:
7792 internal_error (__FILE__, __LINE__, _("Unknown value."));
7793 }
7794
7795 /* The behavior of this routine with respect to the source
7796 flag is:
7797 SRC_LINE: Print only source line
7798 LOCATION: Print only location
7799 SRC_AND_LOC: Print location and source line. */
7800 if (do_frame_printing)
7801 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7802}
7803
243a9253
PA
7804/* See infrun.h. */
7805
7806void
4c7d57e7 7807print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7808{
243a9253
PA
7809 struct target_waitstatus last;
7810 ptid_t last_ptid;
7811 struct thread_info *tp;
7812
7813 get_last_target_status (&last_ptid, &last);
7814
67ad9399
TT
7815 {
7816 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7817
67ad9399 7818 print_stop_location (&last);
243a9253 7819
67ad9399 7820 /* Display the auto-display expressions. */
4c7d57e7
TT
7821 if (displays)
7822 do_displays ();
67ad9399 7823 }
243a9253
PA
7824
7825 tp = inferior_thread ();
7826 if (tp->thread_fsm != NULL
46e3ed7f 7827 && tp->thread_fsm->finished_p ())
243a9253
PA
7828 {
7829 struct return_value_info *rv;
7830
46e3ed7f 7831 rv = tp->thread_fsm->return_value ();
243a9253
PA
7832 if (rv != NULL)
7833 print_return_value (uiout, rv);
7834 }
0c7e1a46
PA
7835}
7836
388a7084
PA
7837/* See infrun.h. */
7838
7839void
7840maybe_remove_breakpoints (void)
7841{
7842 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7843 {
7844 if (remove_breakpoints ())
7845 {
223ffa71 7846 target_terminal::ours_for_output ();
388a7084
PA
7847 printf_filtered (_("Cannot remove breakpoints because "
7848 "program is no longer writable.\nFurther "
7849 "execution is probably impossible.\n"));
7850 }
7851 }
7852}
7853
4c2f2a79
PA
7854/* The execution context that just caused a normal stop. */
7855
7856struct stop_context
7857{
2d844eaf
TT
7858 stop_context ();
7859 ~stop_context ();
7860
7861 DISABLE_COPY_AND_ASSIGN (stop_context);
7862
7863 bool changed () const;
7864
4c2f2a79
PA
7865 /* The stop ID. */
7866 ULONGEST stop_id;
c906108c 7867
4c2f2a79 7868 /* The event PTID. */
c906108c 7869
4c2f2a79
PA
7870 ptid_t ptid;
7871
7872 /* If stopp for a thread event, this is the thread that caused the
7873 stop. */
7874 struct thread_info *thread;
7875
7876 /* The inferior that caused the stop. */
7877 int inf_num;
7878};
7879
2d844eaf 7880/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7881 takes a strong reference to the thread. */
7882
2d844eaf 7883stop_context::stop_context ()
4c2f2a79 7884{
2d844eaf
TT
7885 stop_id = get_stop_id ();
7886 ptid = inferior_ptid;
7887 inf_num = current_inferior ()->num;
4c2f2a79 7888
d7e15655 7889 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7890 {
7891 /* Take a strong reference so that the thread can't be deleted
7892 yet. */
2d844eaf
TT
7893 thread = inferior_thread ();
7894 thread->incref ();
4c2f2a79
PA
7895 }
7896 else
2d844eaf 7897 thread = NULL;
4c2f2a79
PA
7898}
7899
7900/* Release a stop context previously created with save_stop_context.
7901 Releases the strong reference to the thread as well. */
7902
2d844eaf 7903stop_context::~stop_context ()
4c2f2a79 7904{
2d844eaf
TT
7905 if (thread != NULL)
7906 thread->decref ();
4c2f2a79
PA
7907}
7908
7909/* Return true if the current context no longer matches the saved stop
7910 context. */
7911
2d844eaf
TT
7912bool
7913stop_context::changed () const
7914{
7915 if (ptid != inferior_ptid)
7916 return true;
7917 if (inf_num != current_inferior ()->num)
7918 return true;
7919 if (thread != NULL && thread->state != THREAD_STOPPED)
7920 return true;
7921 if (get_stop_id () != stop_id)
7922 return true;
7923 return false;
4c2f2a79
PA
7924}
7925
7926/* See infrun.h. */
7927
7928int
96baa820 7929normal_stop (void)
c906108c 7930{
73b65bb0
DJ
7931 struct target_waitstatus last;
7932 ptid_t last_ptid;
7933
7934 get_last_target_status (&last_ptid, &last);
7935
4c2f2a79
PA
7936 new_stop_id ();
7937
29f49a6a
PA
7938 /* If an exception is thrown from this point on, make sure to
7939 propagate GDB's knowledge of the executing state to the
7940 frontend/user running state. A QUIT is an easy exception to see
7941 here, so do this before any filtered output. */
731f534f
PA
7942
7943 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7944
c35b1492 7945 if (!non_stop)
731f534f 7946 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7947 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7948 || last.kind == TARGET_WAITKIND_EXITED)
7949 {
7950 /* On some targets, we may still have live threads in the
7951 inferior when we get a process exit event. E.g., for
7952 "checkpoint", when the current checkpoint/fork exits,
7953 linux-fork.c automatically switches to another fork from
7954 within target_mourn_inferior. */
731f534f
PA
7955 if (inferior_ptid != null_ptid)
7956 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7957 }
7958 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 7959 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 7960
b57bacec
PA
7961 /* As we're presenting a stop, and potentially removing breakpoints,
7962 update the thread list so we can tell whether there are threads
7963 running on the target. With target remote, for example, we can
7964 only learn about new threads when we explicitly update the thread
7965 list. Do this before notifying the interpreters about signal
7966 stops, end of stepping ranges, etc., so that the "new thread"
7967 output is emitted before e.g., "Program received signal FOO",
7968 instead of after. */
7969 update_thread_list ();
7970
7971 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 7972 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 7973
c906108c
SS
7974 /* As with the notification of thread events, we want to delay
7975 notifying the user that we've switched thread context until
7976 the inferior actually stops.
7977
73b65bb0
DJ
7978 There's no point in saying anything if the inferior has exited.
7979 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7980 "received a signal".
7981
7982 Also skip saying anything in non-stop mode. In that mode, as we
7983 don't want GDB to switch threads behind the user's back, to avoid
7984 races where the user is typing a command to apply to thread x,
7985 but GDB switches to thread y before the user finishes entering
7986 the command, fetch_inferior_event installs a cleanup to restore
7987 the current thread back to the thread the user had selected right
7988 after this event is handled, so we're not really switching, only
7989 informing of a stop. */
4f8d22e3 7990 if (!non_stop
731f534f 7991 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
7992 && target_has_execution
7993 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7994 && last.kind != TARGET_WAITKIND_EXITED
7995 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 7996 {
0e454242 7997 SWITCH_THRU_ALL_UIS ()
3b12939d 7998 {
223ffa71 7999 target_terminal::ours_for_output ();
3b12939d 8000 printf_filtered (_("[Switching to %s]\n"),
a068643d 8001 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8002 annotate_thread_changed ();
8003 }
39f77062 8004 previous_inferior_ptid = inferior_ptid;
c906108c 8005 }
c906108c 8006
0e5bf2a8
PA
8007 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8008 {
0e454242 8009 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8010 if (current_ui->prompt_state == PROMPT_BLOCKED)
8011 {
223ffa71 8012 target_terminal::ours_for_output ();
3b12939d
PA
8013 printf_filtered (_("No unwaited-for children left.\n"));
8014 }
0e5bf2a8
PA
8015 }
8016
b57bacec 8017 /* Note: this depends on the update_thread_list call above. */
388a7084 8018 maybe_remove_breakpoints ();
c906108c 8019
c906108c
SS
8020 /* If an auto-display called a function and that got a signal,
8021 delete that auto-display to avoid an infinite recursion. */
8022
8023 if (stopped_by_random_signal)
8024 disable_current_display ();
8025
0e454242 8026 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8027 {
8028 async_enable_stdin ();
8029 }
c906108c 8030
388a7084 8031 /* Let the user/frontend see the threads as stopped. */
731f534f 8032 maybe_finish_thread_state.reset ();
388a7084
PA
8033
8034 /* Select innermost stack frame - i.e., current frame is frame 0,
8035 and current location is based on that. Handle the case where the
8036 dummy call is returning after being stopped. E.g. the dummy call
8037 previously hit a breakpoint. (If the dummy call returns
8038 normally, we won't reach here.) Do this before the stop hook is
8039 run, so that it doesn't get to see the temporary dummy frame,
8040 which is not where we'll present the stop. */
8041 if (has_stack_frames ())
8042 {
8043 if (stop_stack_dummy == STOP_STACK_DUMMY)
8044 {
8045 /* Pop the empty frame that contains the stack dummy. This
8046 also restores inferior state prior to the call (struct
8047 infcall_suspend_state). */
8048 struct frame_info *frame = get_current_frame ();
8049
8050 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8051 frame_pop (frame);
8052 /* frame_pop calls reinit_frame_cache as the last thing it
8053 does which means there's now no selected frame. */
8054 }
8055
8056 select_frame (get_current_frame ());
8057
8058 /* Set the current source location. */
8059 set_current_sal_from_frame (get_current_frame ());
8060 }
dd7e2d2b
PA
8061
8062 /* Look up the hook_stop and run it (CLI internally handles problem
8063 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8064 if (stop_command != NULL)
8065 {
2d844eaf 8066 stop_context saved_context;
4c2f2a79 8067
a70b8144 8068 try
bf469271
PA
8069 {
8070 execute_cmd_pre_hook (stop_command);
8071 }
230d2906 8072 catch (const gdb_exception &ex)
bf469271
PA
8073 {
8074 exception_fprintf (gdb_stderr, ex,
8075 "Error while running hook_stop:\n");
8076 }
4c2f2a79
PA
8077
8078 /* If the stop hook resumes the target, then there's no point in
8079 trying to notify about the previous stop; its context is
8080 gone. Likewise if the command switches thread or inferior --
8081 the observers would print a stop for the wrong
8082 thread/inferior. */
2d844eaf
TT
8083 if (saved_context.changed ())
8084 return 1;
4c2f2a79 8085 }
dd7e2d2b 8086
388a7084
PA
8087 /* Notify observers about the stop. This is where the interpreters
8088 print the stop event. */
d7e15655 8089 if (inferior_ptid != null_ptid)
76727919 8090 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8091 stop_print_frame);
8092 else
76727919 8093 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8094
243a9253
PA
8095 annotate_stopped ();
8096
48844aa6
PA
8097 if (target_has_execution)
8098 {
8099 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8100 && last.kind != TARGET_WAITKIND_EXITED
8101 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8102 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8103 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8104 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8105 }
6c95b8df
PA
8106
8107 /* Try to get rid of automatically added inferiors that are no
8108 longer needed. Keeping those around slows down things linearly.
8109 Note that this never removes the current inferior. */
8110 prune_inferiors ();
4c2f2a79
PA
8111
8112 return 0;
c906108c 8113}
c906108c 8114\f
c5aa993b 8115int
96baa820 8116signal_stop_state (int signo)
c906108c 8117{
d6b48e9c 8118 return signal_stop[signo];
c906108c
SS
8119}
8120
c5aa993b 8121int
96baa820 8122signal_print_state (int signo)
c906108c
SS
8123{
8124 return signal_print[signo];
8125}
8126
c5aa993b 8127int
96baa820 8128signal_pass_state (int signo)
c906108c
SS
8129{
8130 return signal_program[signo];
8131}
8132
2455069d
UW
8133static void
8134signal_cache_update (int signo)
8135{
8136 if (signo == -1)
8137 {
a493e3e2 8138 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8139 signal_cache_update (signo);
8140
8141 return;
8142 }
8143
8144 signal_pass[signo] = (signal_stop[signo] == 0
8145 && signal_print[signo] == 0
ab04a2af
TT
8146 && signal_program[signo] == 1
8147 && signal_catch[signo] == 0);
2455069d
UW
8148}
8149
488f131b 8150int
7bda5e4a 8151signal_stop_update (int signo, int state)
d4f3574e
SS
8152{
8153 int ret = signal_stop[signo];
abbb1732 8154
d4f3574e 8155 signal_stop[signo] = state;
2455069d 8156 signal_cache_update (signo);
d4f3574e
SS
8157 return ret;
8158}
8159
488f131b 8160int
7bda5e4a 8161signal_print_update (int signo, int state)
d4f3574e
SS
8162{
8163 int ret = signal_print[signo];
abbb1732 8164
d4f3574e 8165 signal_print[signo] = state;
2455069d 8166 signal_cache_update (signo);
d4f3574e
SS
8167 return ret;
8168}
8169
488f131b 8170int
7bda5e4a 8171signal_pass_update (int signo, int state)
d4f3574e
SS
8172{
8173 int ret = signal_program[signo];
abbb1732 8174
d4f3574e 8175 signal_program[signo] = state;
2455069d 8176 signal_cache_update (signo);
d4f3574e
SS
8177 return ret;
8178}
8179
ab04a2af
TT
8180/* Update the global 'signal_catch' from INFO and notify the
8181 target. */
8182
8183void
8184signal_catch_update (const unsigned int *info)
8185{
8186 int i;
8187
8188 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8189 signal_catch[i] = info[i] > 0;
8190 signal_cache_update (-1);
adc6a863 8191 target_pass_signals (signal_pass);
ab04a2af
TT
8192}
8193
c906108c 8194static void
96baa820 8195sig_print_header (void)
c906108c 8196{
3e43a32a
MS
8197 printf_filtered (_("Signal Stop\tPrint\tPass "
8198 "to program\tDescription\n"));
c906108c
SS
8199}
8200
8201static void
2ea28649 8202sig_print_info (enum gdb_signal oursig)
c906108c 8203{
2ea28649 8204 const char *name = gdb_signal_to_name (oursig);
c906108c 8205 int name_padding = 13 - strlen (name);
96baa820 8206
c906108c
SS
8207 if (name_padding <= 0)
8208 name_padding = 0;
8209
8210 printf_filtered ("%s", name);
488f131b 8211 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8212 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8213 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8214 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8215 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8216}
8217
8218/* Specify how various signals in the inferior should be handled. */
8219
8220static void
0b39b52e 8221handle_command (const char *args, int from_tty)
c906108c 8222{
c906108c 8223 int digits, wordlen;
b926417a 8224 int sigfirst, siglast;
2ea28649 8225 enum gdb_signal oursig;
c906108c 8226 int allsigs;
c906108c
SS
8227
8228 if (args == NULL)
8229 {
e2e0b3e5 8230 error_no_arg (_("signal to handle"));
c906108c
SS
8231 }
8232
1777feb0 8233 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8234
adc6a863
PA
8235 const size_t nsigs = GDB_SIGNAL_LAST;
8236 unsigned char sigs[nsigs] {};
c906108c 8237
1777feb0 8238 /* Break the command line up into args. */
c906108c 8239
773a1edc 8240 gdb_argv built_argv (args);
c906108c
SS
8241
8242 /* Walk through the args, looking for signal oursigs, signal names, and
8243 actions. Signal numbers and signal names may be interspersed with
8244 actions, with the actions being performed for all signals cumulatively
1777feb0 8245 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8246
773a1edc 8247 for (char *arg : built_argv)
c906108c 8248 {
773a1edc
TT
8249 wordlen = strlen (arg);
8250 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8251 {;
8252 }
8253 allsigs = 0;
8254 sigfirst = siglast = -1;
8255
773a1edc 8256 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8257 {
8258 /* Apply action to all signals except those used by the
1777feb0 8259 debugger. Silently skip those. */
c906108c
SS
8260 allsigs = 1;
8261 sigfirst = 0;
8262 siglast = nsigs - 1;
8263 }
773a1edc 8264 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8265 {
8266 SET_SIGS (nsigs, sigs, signal_stop);
8267 SET_SIGS (nsigs, sigs, signal_print);
8268 }
773a1edc 8269 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8270 {
8271 UNSET_SIGS (nsigs, sigs, signal_program);
8272 }
773a1edc 8273 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8274 {
8275 SET_SIGS (nsigs, sigs, signal_print);
8276 }
773a1edc 8277 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8278 {
8279 SET_SIGS (nsigs, sigs, signal_program);
8280 }
773a1edc 8281 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8282 {
8283 UNSET_SIGS (nsigs, sigs, signal_stop);
8284 }
773a1edc 8285 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8286 {
8287 SET_SIGS (nsigs, sigs, signal_program);
8288 }
773a1edc 8289 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8290 {
8291 UNSET_SIGS (nsigs, sigs, signal_print);
8292 UNSET_SIGS (nsigs, sigs, signal_stop);
8293 }
773a1edc 8294 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8295 {
8296 UNSET_SIGS (nsigs, sigs, signal_program);
8297 }
8298 else if (digits > 0)
8299 {
8300 /* It is numeric. The numeric signal refers to our own
8301 internal signal numbering from target.h, not to host/target
8302 signal number. This is a feature; users really should be
8303 using symbolic names anyway, and the common ones like
8304 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8305
8306 sigfirst = siglast = (int)
773a1edc
TT
8307 gdb_signal_from_command (atoi (arg));
8308 if (arg[digits] == '-')
c906108c
SS
8309 {
8310 siglast = (int)
773a1edc 8311 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8312 }
8313 if (sigfirst > siglast)
8314 {
1777feb0 8315 /* Bet he didn't figure we'd think of this case... */
b926417a 8316 std::swap (sigfirst, siglast);
c906108c
SS
8317 }
8318 }
8319 else
8320 {
773a1edc 8321 oursig = gdb_signal_from_name (arg);
a493e3e2 8322 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8323 {
8324 sigfirst = siglast = (int) oursig;
8325 }
8326 else
8327 {
8328 /* Not a number and not a recognized flag word => complain. */
773a1edc 8329 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8330 }
8331 }
8332
8333 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8334 which signals to apply actions to. */
c906108c 8335
b926417a 8336 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8337 {
2ea28649 8338 switch ((enum gdb_signal) signum)
c906108c 8339 {
a493e3e2
PA
8340 case GDB_SIGNAL_TRAP:
8341 case GDB_SIGNAL_INT:
c906108c
SS
8342 if (!allsigs && !sigs[signum])
8343 {
9e2f0ad4 8344 if (query (_("%s is used by the debugger.\n\
3e43a32a 8345Are you sure you want to change it? "),
2ea28649 8346 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8347 {
8348 sigs[signum] = 1;
8349 }
8350 else
c119e040 8351 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8352 }
8353 break;
a493e3e2
PA
8354 case GDB_SIGNAL_0:
8355 case GDB_SIGNAL_DEFAULT:
8356 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8357 /* Make sure that "all" doesn't print these. */
8358 break;
8359 default:
8360 sigs[signum] = 1;
8361 break;
8362 }
8363 }
c906108c
SS
8364 }
8365
b926417a 8366 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8367 if (sigs[signum])
8368 {
2455069d 8369 signal_cache_update (-1);
adc6a863
PA
8370 target_pass_signals (signal_pass);
8371 target_program_signals (signal_program);
c906108c 8372
3a031f65
PA
8373 if (from_tty)
8374 {
8375 /* Show the results. */
8376 sig_print_header ();
8377 for (; signum < nsigs; signum++)
8378 if (sigs[signum])
aead7601 8379 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8380 }
8381
8382 break;
8383 }
c906108c
SS
8384}
8385
de0bea00
MF
8386/* Complete the "handle" command. */
8387
eb3ff9a5 8388static void
de0bea00 8389handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8390 completion_tracker &tracker,
6f937416 8391 const char *text, const char *word)
de0bea00 8392{
de0bea00
MF
8393 static const char * const keywords[] =
8394 {
8395 "all",
8396 "stop",
8397 "ignore",
8398 "print",
8399 "pass",
8400 "nostop",
8401 "noignore",
8402 "noprint",
8403 "nopass",
8404 NULL,
8405 };
8406
eb3ff9a5
PA
8407 signal_completer (ignore, tracker, text, word);
8408 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8409}
8410
2ea28649
PA
8411enum gdb_signal
8412gdb_signal_from_command (int num)
ed01b82c
PA
8413{
8414 if (num >= 1 && num <= 15)
2ea28649 8415 return (enum gdb_signal) num;
ed01b82c
PA
8416 error (_("Only signals 1-15 are valid as numeric signals.\n\
8417Use \"info signals\" for a list of symbolic signals."));
8418}
8419
c906108c
SS
8420/* Print current contents of the tables set by the handle command.
8421 It is possible we should just be printing signals actually used
8422 by the current target (but for things to work right when switching
8423 targets, all signals should be in the signal tables). */
8424
8425static void
1d12d88f 8426info_signals_command (const char *signum_exp, int from_tty)
c906108c 8427{
2ea28649 8428 enum gdb_signal oursig;
abbb1732 8429
c906108c
SS
8430 sig_print_header ();
8431
8432 if (signum_exp)
8433 {
8434 /* First see if this is a symbol name. */
2ea28649 8435 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8436 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8437 {
8438 /* No, try numeric. */
8439 oursig =
2ea28649 8440 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8441 }
8442 sig_print_info (oursig);
8443 return;
8444 }
8445
8446 printf_filtered ("\n");
8447 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8448 for (oursig = GDB_SIGNAL_FIRST;
8449 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8450 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8451 {
8452 QUIT;
8453
a493e3e2
PA
8454 if (oursig != GDB_SIGNAL_UNKNOWN
8455 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8456 sig_print_info (oursig);
8457 }
8458
3e43a32a
MS
8459 printf_filtered (_("\nUse the \"handle\" command "
8460 "to change these tables.\n"));
c906108c 8461}
4aa995e1
PA
8462
8463/* The $_siginfo convenience variable is a bit special. We don't know
8464 for sure the type of the value until we actually have a chance to
7a9dd1b2 8465 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8466 also dependent on which thread you have selected.
8467
8468 1. making $_siginfo be an internalvar that creates a new value on
8469 access.
8470
8471 2. making the value of $_siginfo be an lval_computed value. */
8472
8473/* This function implements the lval_computed support for reading a
8474 $_siginfo value. */
8475
8476static void
8477siginfo_value_read (struct value *v)
8478{
8479 LONGEST transferred;
8480
a911d87a
PA
8481 /* If we can access registers, so can we access $_siginfo. Likewise
8482 vice versa. */
8483 validate_registers_access ();
c709acd1 8484
4aa995e1 8485 transferred =
8b88a78e 8486 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8487 NULL,
8488 value_contents_all_raw (v),
8489 value_offset (v),
8490 TYPE_LENGTH (value_type (v)));
8491
8492 if (transferred != TYPE_LENGTH (value_type (v)))
8493 error (_("Unable to read siginfo"));
8494}
8495
8496/* This function implements the lval_computed support for writing a
8497 $_siginfo value. */
8498
8499static void
8500siginfo_value_write (struct value *v, struct value *fromval)
8501{
8502 LONGEST transferred;
8503
a911d87a
PA
8504 /* If we can access registers, so can we access $_siginfo. Likewise
8505 vice versa. */
8506 validate_registers_access ();
c709acd1 8507
8b88a78e 8508 transferred = target_write (current_top_target (),
4aa995e1
PA
8509 TARGET_OBJECT_SIGNAL_INFO,
8510 NULL,
8511 value_contents_all_raw (fromval),
8512 value_offset (v),
8513 TYPE_LENGTH (value_type (fromval)));
8514
8515 if (transferred != TYPE_LENGTH (value_type (fromval)))
8516 error (_("Unable to write siginfo"));
8517}
8518
c8f2448a 8519static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8520 {
8521 siginfo_value_read,
8522 siginfo_value_write
8523 };
8524
8525/* Return a new value with the correct type for the siginfo object of
78267919
UW
8526 the current thread using architecture GDBARCH. Return a void value
8527 if there's no object available. */
4aa995e1 8528
2c0b251b 8529static struct value *
22d2b532
SDJ
8530siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8531 void *ignore)
4aa995e1 8532{
4aa995e1 8533 if (target_has_stack
d7e15655 8534 && inferior_ptid != null_ptid
78267919 8535 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8536 {
78267919 8537 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8538
78267919 8539 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8540 }
8541
78267919 8542 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8543}
8544
c906108c 8545\f
16c381f0
JK
8546/* infcall_suspend_state contains state about the program itself like its
8547 registers and any signal it received when it last stopped.
8548 This state must be restored regardless of how the inferior function call
8549 ends (either successfully, or after it hits a breakpoint or signal)
8550 if the program is to properly continue where it left off. */
8551
6bf78e29 8552class infcall_suspend_state
7a292a7a 8553{
6bf78e29
AB
8554public:
8555 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8556 once the inferior function call has finished. */
8557 infcall_suspend_state (struct gdbarch *gdbarch,
8558 const struct thread_info *tp,
8559 struct regcache *regcache)
8560 : m_thread_suspend (tp->suspend),
8561 m_registers (new readonly_detached_regcache (*regcache))
8562 {
8563 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8564
8565 if (gdbarch_get_siginfo_type_p (gdbarch))
8566 {
8567 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8568 size_t len = TYPE_LENGTH (type);
8569
8570 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8571
8572 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8573 siginfo_data.get (), 0, len) != len)
8574 {
8575 /* Errors ignored. */
8576 siginfo_data.reset (nullptr);
8577 }
8578 }
8579
8580 if (siginfo_data)
8581 {
8582 m_siginfo_gdbarch = gdbarch;
8583 m_siginfo_data = std::move (siginfo_data);
8584 }
8585 }
8586
8587 /* Return a pointer to the stored register state. */
16c381f0 8588
6bf78e29
AB
8589 readonly_detached_regcache *registers () const
8590 {
8591 return m_registers.get ();
8592 }
8593
8594 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8595
8596 void restore (struct gdbarch *gdbarch,
8597 struct thread_info *tp,
8598 struct regcache *regcache) const
8599 {
8600 tp->suspend = m_thread_suspend;
8601
8602 if (m_siginfo_gdbarch == gdbarch)
8603 {
8604 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8605
8606 /* Errors ignored. */
8607 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8608 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8609 }
8610
8611 /* The inferior can be gone if the user types "print exit(0)"
8612 (and perhaps other times). */
8613 if (target_has_execution)
8614 /* NB: The register write goes through to the target. */
8615 regcache->restore (registers ());
8616 }
8617
8618private:
8619 /* How the current thread stopped before the inferior function call was
8620 executed. */
8621 struct thread_suspend_state m_thread_suspend;
8622
8623 /* The registers before the inferior function call was executed. */
8624 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8625
35515841 8626 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8627 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8628
8629 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8630 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8631 content would be invalid. */
6bf78e29 8632 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8633};
8634
cb524840
TT
8635infcall_suspend_state_up
8636save_infcall_suspend_state ()
b89667eb 8637{
b89667eb 8638 struct thread_info *tp = inferior_thread ();
1736ad11 8639 struct regcache *regcache = get_current_regcache ();
ac7936df 8640 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8641
6bf78e29
AB
8642 infcall_suspend_state_up inf_state
8643 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8644
6bf78e29
AB
8645 /* Having saved the current state, adjust the thread state, discarding
8646 any stop signal information. The stop signal is not useful when
8647 starting an inferior function call, and run_inferior_call will not use
8648 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8649 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8650
b89667eb
DE
8651 return inf_state;
8652}
8653
8654/* Restore inferior session state to INF_STATE. */
8655
8656void
16c381f0 8657restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8658{
8659 struct thread_info *tp = inferior_thread ();
1736ad11 8660 struct regcache *regcache = get_current_regcache ();
ac7936df 8661 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8662
6bf78e29 8663 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8664 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8665}
8666
b89667eb 8667void
16c381f0 8668discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8669{
dd848631 8670 delete inf_state;
b89667eb
DE
8671}
8672
daf6667d 8673readonly_detached_regcache *
16c381f0 8674get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8675{
6bf78e29 8676 return inf_state->registers ();
b89667eb
DE
8677}
8678
16c381f0
JK
8679/* infcall_control_state contains state regarding gdb's control of the
8680 inferior itself like stepping control. It also contains session state like
8681 the user's currently selected frame. */
b89667eb 8682
16c381f0 8683struct infcall_control_state
b89667eb 8684{
16c381f0
JK
8685 struct thread_control_state thread_control;
8686 struct inferior_control_state inferior_control;
d82142e2
JK
8687
8688 /* Other fields: */
ee841dd8
TT
8689 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8690 int stopped_by_random_signal = 0;
7a292a7a 8691
b89667eb 8692 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8693 struct frame_id selected_frame_id {};
7a292a7a
SS
8694};
8695
c906108c 8696/* Save all of the information associated with the inferior<==>gdb
b89667eb 8697 connection. */
c906108c 8698
cb524840
TT
8699infcall_control_state_up
8700save_infcall_control_state ()
c906108c 8701{
cb524840 8702 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8703 struct thread_info *tp = inferior_thread ();
d6b48e9c 8704 struct inferior *inf = current_inferior ();
7a292a7a 8705
16c381f0
JK
8706 inf_status->thread_control = tp->control;
8707 inf_status->inferior_control = inf->control;
d82142e2 8708
8358c15c 8709 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8710 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8711
16c381f0
JK
8712 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8713 chain. If caller's caller is walking the chain, they'll be happier if we
8714 hand them back the original chain when restore_infcall_control_state is
8715 called. */
8716 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8717
8718 /* Other fields: */
8719 inf_status->stop_stack_dummy = stop_stack_dummy;
8720 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8721
206415a3 8722 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8723
7a292a7a 8724 return inf_status;
c906108c
SS
8725}
8726
bf469271
PA
8727static void
8728restore_selected_frame (const frame_id &fid)
c906108c 8729{
bf469271 8730 frame_info *frame = frame_find_by_id (fid);
c906108c 8731
aa0cd9c1
AC
8732 /* If inf_status->selected_frame_id is NULL, there was no previously
8733 selected frame. */
101dcfbe 8734 if (frame == NULL)
c906108c 8735 {
8a3fe4f8 8736 warning (_("Unable to restore previously selected frame."));
bf469271 8737 return;
c906108c
SS
8738 }
8739
0f7d239c 8740 select_frame (frame);
c906108c
SS
8741}
8742
b89667eb
DE
8743/* Restore inferior session state to INF_STATUS. */
8744
c906108c 8745void
16c381f0 8746restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8747{
4e1c45ea 8748 struct thread_info *tp = inferior_thread ();
d6b48e9c 8749 struct inferior *inf = current_inferior ();
4e1c45ea 8750
8358c15c
JK
8751 if (tp->control.step_resume_breakpoint)
8752 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8753
5b79abe7
TT
8754 if (tp->control.exception_resume_breakpoint)
8755 tp->control.exception_resume_breakpoint->disposition
8756 = disp_del_at_next_stop;
8757
d82142e2 8758 /* Handle the bpstat_copy of the chain. */
16c381f0 8759 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8760
16c381f0
JK
8761 tp->control = inf_status->thread_control;
8762 inf->control = inf_status->inferior_control;
d82142e2
JK
8763
8764 /* Other fields: */
8765 stop_stack_dummy = inf_status->stop_stack_dummy;
8766 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8767
b89667eb 8768 if (target_has_stack)
c906108c 8769 {
bf469271 8770 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8771 walking the stack might encounter a garbage pointer and
8772 error() trying to dereference it. */
a70b8144 8773 try
bf469271
PA
8774 {
8775 restore_selected_frame (inf_status->selected_frame_id);
8776 }
230d2906 8777 catch (const gdb_exception_error &ex)
bf469271
PA
8778 {
8779 exception_fprintf (gdb_stderr, ex,
8780 "Unable to restore previously selected frame:\n");
8781 /* Error in restoring the selected frame. Select the
8782 innermost frame. */
8783 select_frame (get_current_frame ());
8784 }
c906108c 8785 }
c906108c 8786
ee841dd8 8787 delete inf_status;
7a292a7a 8788}
c906108c
SS
8789
8790void
16c381f0 8791discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8792{
8358c15c
JK
8793 if (inf_status->thread_control.step_resume_breakpoint)
8794 inf_status->thread_control.step_resume_breakpoint->disposition
8795 = disp_del_at_next_stop;
8796
5b79abe7
TT
8797 if (inf_status->thread_control.exception_resume_breakpoint)
8798 inf_status->thread_control.exception_resume_breakpoint->disposition
8799 = disp_del_at_next_stop;
8800
1777feb0 8801 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8802 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8803
ee841dd8 8804 delete inf_status;
7a292a7a 8805}
b89667eb 8806\f
7f89fd65 8807/* See infrun.h. */
0c557179
SDJ
8808
8809void
8810clear_exit_convenience_vars (void)
8811{
8812 clear_internalvar (lookup_internalvar ("_exitsignal"));
8813 clear_internalvar (lookup_internalvar ("_exitcode"));
8814}
c5aa993b 8815\f
488f131b 8816
b2175913
MS
8817/* User interface for reverse debugging:
8818 Set exec-direction / show exec-direction commands
8819 (returns error unless target implements to_set_exec_direction method). */
8820
170742de 8821enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8822static const char exec_forward[] = "forward";
8823static const char exec_reverse[] = "reverse";
8824static const char *exec_direction = exec_forward;
40478521 8825static const char *const exec_direction_names[] = {
b2175913
MS
8826 exec_forward,
8827 exec_reverse,
8828 NULL
8829};
8830
8831static void
eb4c3f4a 8832set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8833 struct cmd_list_element *cmd)
8834{
8835 if (target_can_execute_reverse)
8836 {
8837 if (!strcmp (exec_direction, exec_forward))
8838 execution_direction = EXEC_FORWARD;
8839 else if (!strcmp (exec_direction, exec_reverse))
8840 execution_direction = EXEC_REVERSE;
8841 }
8bbed405
MS
8842 else
8843 {
8844 exec_direction = exec_forward;
8845 error (_("Target does not support this operation."));
8846 }
b2175913
MS
8847}
8848
8849static void
8850show_exec_direction_func (struct ui_file *out, int from_tty,
8851 struct cmd_list_element *cmd, const char *value)
8852{
8853 switch (execution_direction) {
8854 case EXEC_FORWARD:
8855 fprintf_filtered (out, _("Forward.\n"));
8856 break;
8857 case EXEC_REVERSE:
8858 fprintf_filtered (out, _("Reverse.\n"));
8859 break;
b2175913 8860 default:
d8b34453
PA
8861 internal_error (__FILE__, __LINE__,
8862 _("bogus execution_direction value: %d"),
8863 (int) execution_direction);
b2175913
MS
8864 }
8865}
8866
d4db2f36
PA
8867static void
8868show_schedule_multiple (struct ui_file *file, int from_tty,
8869 struct cmd_list_element *c, const char *value)
8870{
3e43a32a
MS
8871 fprintf_filtered (file, _("Resuming the execution of threads "
8872 "of all processes is %s.\n"), value);
d4db2f36 8873}
ad52ddc6 8874
22d2b532
SDJ
8875/* Implementation of `siginfo' variable. */
8876
8877static const struct internalvar_funcs siginfo_funcs =
8878{
8879 siginfo_make_value,
8880 NULL,
8881 NULL
8882};
8883
372316f1
PA
8884/* Callback for infrun's target events source. This is marked when a
8885 thread has a pending status to process. */
8886
8887static void
8888infrun_async_inferior_event_handler (gdb_client_data data)
8889{
372316f1
PA
8890 inferior_event_handler (INF_REG_EVENT, NULL);
8891}
8892
c906108c 8893void
96baa820 8894_initialize_infrun (void)
c906108c 8895{
de0bea00 8896 struct cmd_list_element *c;
c906108c 8897
372316f1
PA
8898 /* Register extra event sources in the event loop. */
8899 infrun_async_inferior_event_token
8900 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8901
11db9430 8902 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8903What debugger does when program gets various signals.\n\
8904Specify a signal as argument to print info on that signal only."));
c906108c
SS
8905 add_info_alias ("handle", "signals", 0);
8906
de0bea00 8907 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8908Specify how to handle signals.\n\
486c7739 8909Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8910Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8911If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8912will be displayed instead.\n\
8913\n\
c906108c
SS
8914Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8915from 1-15 are allowed for compatibility with old versions of GDB.\n\
8916Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8917The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8918used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8919\n\
1bedd215 8920Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8921\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8922Stop means reenter debugger if this signal happens (implies print).\n\
8923Print means print a message if this signal happens.\n\
8924Pass means let program see this signal; otherwise program doesn't know.\n\
8925Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8926Pass and Stop may be combined.\n\
8927\n\
8928Multiple signals may be specified. Signal numbers and signal names\n\
8929may be interspersed with actions, with the actions being performed for\n\
8930all signals cumulatively specified."));
de0bea00 8931 set_cmd_completer (c, handle_completer);
486c7739 8932
c906108c 8933 if (!dbx_commands)
1a966eab
AC
8934 stop_command = add_cmd ("stop", class_obscure,
8935 not_just_help_class_command, _("\
8936There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8937This allows you to set a list of commands to be run each time execution\n\
1a966eab 8938of the program stops."), &cmdlist);
c906108c 8939
ccce17b0 8940 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8941Set inferior debugging."), _("\
8942Show inferior debugging."), _("\
8943When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8944 NULL,
8945 show_debug_infrun,
8946 &setdebuglist, &showdebuglist);
527159b7 8947
3e43a32a
MS
8948 add_setshow_boolean_cmd ("displaced", class_maintenance,
8949 &debug_displaced, _("\
237fc4c9
PA
8950Set displaced stepping debugging."), _("\
8951Show displaced stepping debugging."), _("\
8952When non-zero, displaced stepping specific debugging is enabled."),
8953 NULL,
8954 show_debug_displaced,
8955 &setdebuglist, &showdebuglist);
8956
ad52ddc6
PA
8957 add_setshow_boolean_cmd ("non-stop", no_class,
8958 &non_stop_1, _("\
8959Set whether gdb controls the inferior in non-stop mode."), _("\
8960Show whether gdb controls the inferior in non-stop mode."), _("\
8961When debugging a multi-threaded program and this setting is\n\
8962off (the default, also called all-stop mode), when one thread stops\n\
8963(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8964all other threads in the program while you interact with the thread of\n\
8965interest. When you continue or step a thread, you can allow the other\n\
8966threads to run, or have them remain stopped, but while you inspect any\n\
8967thread's state, all threads stop.\n\
8968\n\
8969In non-stop mode, when one thread stops, other threads can continue\n\
8970to run freely. You'll be able to step each thread independently,\n\
8971leave it stopped or free to run as needed."),
8972 set_non_stop,
8973 show_non_stop,
8974 &setlist,
8975 &showlist);
8976
adc6a863 8977 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
8978 {
8979 signal_stop[i] = 1;
8980 signal_print[i] = 1;
8981 signal_program[i] = 1;
ab04a2af 8982 signal_catch[i] = 0;
c906108c
SS
8983 }
8984
4d9d9d04
PA
8985 /* Signals caused by debugger's own actions should not be given to
8986 the program afterwards.
8987
8988 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8989 explicitly specifies that it should be delivered to the target
8990 program. Typically, that would occur when a user is debugging a
8991 target monitor on a simulator: the target monitor sets a
8992 breakpoint; the simulator encounters this breakpoint and halts
8993 the simulation handing control to GDB; GDB, noting that the stop
8994 address doesn't map to any known breakpoint, returns control back
8995 to the simulator; the simulator then delivers the hardware
8996 equivalent of a GDB_SIGNAL_TRAP to the program being
8997 debugged. */
a493e3e2
PA
8998 signal_program[GDB_SIGNAL_TRAP] = 0;
8999 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9000
9001 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9002 signal_stop[GDB_SIGNAL_ALRM] = 0;
9003 signal_print[GDB_SIGNAL_ALRM] = 0;
9004 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9005 signal_print[GDB_SIGNAL_VTALRM] = 0;
9006 signal_stop[GDB_SIGNAL_PROF] = 0;
9007 signal_print[GDB_SIGNAL_PROF] = 0;
9008 signal_stop[GDB_SIGNAL_CHLD] = 0;
9009 signal_print[GDB_SIGNAL_CHLD] = 0;
9010 signal_stop[GDB_SIGNAL_IO] = 0;
9011 signal_print[GDB_SIGNAL_IO] = 0;
9012 signal_stop[GDB_SIGNAL_POLL] = 0;
9013 signal_print[GDB_SIGNAL_POLL] = 0;
9014 signal_stop[GDB_SIGNAL_URG] = 0;
9015 signal_print[GDB_SIGNAL_URG] = 0;
9016 signal_stop[GDB_SIGNAL_WINCH] = 0;
9017 signal_print[GDB_SIGNAL_WINCH] = 0;
9018 signal_stop[GDB_SIGNAL_PRIO] = 0;
9019 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9020
cd0fc7c3
SS
9021 /* These signals are used internally by user-level thread
9022 implementations. (See signal(5) on Solaris.) Like the above
9023 signals, a healthy program receives and handles them as part of
9024 its normal operation. */
a493e3e2
PA
9025 signal_stop[GDB_SIGNAL_LWP] = 0;
9026 signal_print[GDB_SIGNAL_LWP] = 0;
9027 signal_stop[GDB_SIGNAL_WAITING] = 0;
9028 signal_print[GDB_SIGNAL_WAITING] = 0;
9029 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9030 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9031 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9032 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9033
2455069d
UW
9034 /* Update cached state. */
9035 signal_cache_update (-1);
9036
85c07804
AC
9037 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9038 &stop_on_solib_events, _("\
9039Set stopping for shared library events."), _("\
9040Show stopping for shared library events."), _("\
c906108c
SS
9041If nonzero, gdb will give control to the user when the dynamic linker\n\
9042notifies gdb of shared library events. The most common event of interest\n\
85c07804 9043to the user would be loading/unloading of a new library."),
f9e14852 9044 set_stop_on_solib_events,
920d2a44 9045 show_stop_on_solib_events,
85c07804 9046 &setlist, &showlist);
c906108c 9047
7ab04401
AC
9048 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9049 follow_fork_mode_kind_names,
9050 &follow_fork_mode_string, _("\
9051Set debugger response to a program call of fork or vfork."), _("\
9052Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9053A fork or vfork creates a new process. follow-fork-mode can be:\n\
9054 parent - the original process is debugged after a fork\n\
9055 child - the new process is debugged after a fork\n\
ea1dd7bc 9056The unfollowed process will continue to run.\n\
7ab04401
AC
9057By default, the debugger will follow the parent process."),
9058 NULL,
920d2a44 9059 show_follow_fork_mode_string,
7ab04401
AC
9060 &setlist, &showlist);
9061
6c95b8df
PA
9062 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9063 follow_exec_mode_names,
9064 &follow_exec_mode_string, _("\
9065Set debugger response to a program call of exec."), _("\
9066Show debugger response to a program call of exec."), _("\
9067An exec call replaces the program image of a process.\n\
9068\n\
9069follow-exec-mode can be:\n\
9070\n\
cce7e648 9071 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9072to this new inferior. The program the process was running before\n\
9073the exec call can be restarted afterwards by restarting the original\n\
9074inferior.\n\
9075\n\
9076 same - the debugger keeps the process bound to the same inferior.\n\
9077The new executable image replaces the previous executable loaded in\n\
9078the inferior. Restarting the inferior after the exec call restarts\n\
9079the executable the process was running after the exec call.\n\
9080\n\
9081By default, the debugger will use the same inferior."),
9082 NULL,
9083 show_follow_exec_mode_string,
9084 &setlist, &showlist);
9085
7ab04401
AC
9086 add_setshow_enum_cmd ("scheduler-locking", class_run,
9087 scheduler_enums, &scheduler_mode, _("\
9088Set mode for locking scheduler during execution."), _("\
9089Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9090off == no locking (threads may preempt at any time)\n\
9091on == full locking (no thread except the current thread may run)\n\
9092 This applies to both normal execution and replay mode.\n\
9093step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9094 In this mode, other threads may run during other commands.\n\
9095 This applies to both normal execution and replay mode.\n\
9096replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9097 set_schedlock_func, /* traps on target vector */
920d2a44 9098 show_scheduler_mode,
7ab04401 9099 &setlist, &showlist);
5fbbeb29 9100
d4db2f36
PA
9101 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9102Set mode for resuming threads of all processes."), _("\
9103Show mode for resuming threads of all processes."), _("\
9104When on, execution commands (such as 'continue' or 'next') resume all\n\
9105threads of all processes. When off (which is the default), execution\n\
9106commands only resume the threads of the current process. The set of\n\
9107threads that are resumed is further refined by the scheduler-locking\n\
9108mode (see help set scheduler-locking)."),
9109 NULL,
9110 show_schedule_multiple,
9111 &setlist, &showlist);
9112
5bf193a2
AC
9113 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9114Set mode of the step operation."), _("\
9115Show mode of the step operation."), _("\
9116When set, doing a step over a function without debug line information\n\
9117will stop at the first instruction of that function. Otherwise, the\n\
9118function is skipped and the step command stops at a different source line."),
9119 NULL,
920d2a44 9120 show_step_stop_if_no_debug,
5bf193a2 9121 &setlist, &showlist);
ca6724c1 9122
72d0e2c5
YQ
9123 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9124 &can_use_displaced_stepping, _("\
237fc4c9
PA
9125Set debugger's willingness to use displaced stepping."), _("\
9126Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9127If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9128supported by the target architecture. If off, gdb will not use displaced\n\
9129stepping to step over breakpoints, even if such is supported by the target\n\
9130architecture. If auto (which is the default), gdb will use displaced stepping\n\
9131if the target architecture supports it and non-stop mode is active, but will not\n\
9132use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9133 NULL,
9134 show_can_use_displaced_stepping,
9135 &setlist, &showlist);
237fc4c9 9136
b2175913
MS
9137 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9138 &exec_direction, _("Set direction of execution.\n\
9139Options are 'forward' or 'reverse'."),
9140 _("Show direction of execution (forward/reverse)."),
9141 _("Tells gdb whether to execute forward or backward."),
9142 set_exec_direction_func, show_exec_direction_func,
9143 &setlist, &showlist);
9144
6c95b8df
PA
9145 /* Set/show detach-on-fork: user-settable mode. */
9146
9147 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9148Set whether gdb will detach the child of a fork."), _("\
9149Show whether gdb will detach the child of a fork."), _("\
9150Tells gdb whether to detach the child of a fork."),
9151 NULL, NULL, &setlist, &showlist);
9152
03583c20
UW
9153 /* Set/show disable address space randomization mode. */
9154
9155 add_setshow_boolean_cmd ("disable-randomization", class_support,
9156 &disable_randomization, _("\
9157Set disabling of debuggee's virtual address space randomization."), _("\
9158Show disabling of debuggee's virtual address space randomization."), _("\
9159When this mode is on (which is the default), randomization of the virtual\n\
9160address space is disabled. Standalone programs run with the randomization\n\
9161enabled by default on some platforms."),
9162 &set_disable_randomization,
9163 &show_disable_randomization,
9164 &setlist, &showlist);
9165
ca6724c1 9166 /* ptid initializations */
ca6724c1
KB
9167 inferior_ptid = null_ptid;
9168 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9169
76727919
TT
9170 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9171 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9172 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9173 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9174
9175 /* Explicitly create without lookup, since that tries to create a
9176 value with a void typed value, and when we get here, gdbarch
9177 isn't initialized yet. At this point, we're quite sure there
9178 isn't another convenience variable of the same name. */
22d2b532 9179 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9180
9181 add_setshow_boolean_cmd ("observer", no_class,
9182 &observer_mode_1, _("\
9183Set whether gdb controls the inferior in observer mode."), _("\
9184Show whether gdb controls the inferior in observer mode."), _("\
9185In observer mode, GDB can get data from the inferior, but not\n\
9186affect its execution. Registers and memory may not be changed,\n\
9187breakpoints may not be set, and the program cannot be interrupted\n\
9188or signalled."),
9189 set_observer_mode,
9190 show_observer_mode,
9191 &setlist,
9192 &showlist);
c906108c 9193}
This page took 3.330887 seconds and 4 git commands to generate.