gdb: rename displaced_step_closure to displaced_step_copy_insn_closure
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
11bc5fe4 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
ca9af5a1 5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
4ef3f3be 74static int follow_fork (void);
96baa820 75
d83ad864
DB
76static int follow_fork_inferior (int follow_child, int detach_fork);
77
78static void follow_inferior_reset_breakpoints (void);
79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
e58b0e63
PA
82void nullify_last_target_wait_ptid (void);
83
2c03e5be 84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
2484c66b
UW
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
8550d3b3
YQ
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
aff4e175
AB
92static void resume (gdb_signal sig);
93
372316f1
PA
94/* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96static struct async_event_handler *infrun_async_inferior_event_token;
97
98/* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100static int infrun_is_async = -1;
101
102/* See infrun.h. */
103
104void
105infrun_async (int enable)
106{
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121}
122
0b333c5e
PA
123/* See infrun.h. */
124
125void
126mark_infrun_async_event_handler (void)
127{
128 mark_async_event_handler (infrun_async_inferior_event_token);
129}
130
5fbbeb29
CF
131/* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
491144b5 134bool step_stop_if_no_debug = false;
920d2a44
AC
135static void
136show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140}
5fbbeb29 141
b9f437de
PA
142/* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
96baa820 145
39f77062 146static ptid_t previous_inferior_ptid;
7a292a7a 147
07107ca6
LM
148/* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
491144b5 153static bool detach_fork = true;
6c95b8df 154
491144b5 155bool debug_displaced = false;
237fc4c9
PA
156static void
157show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161}
162
ccce17b0 163unsigned int debug_infrun = 0;
920d2a44
AC
164static void
165show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169}
527159b7 170
03583c20
UW
171
172/* Support for disabling address space randomization. */
173
491144b5 174bool disable_randomization = true;
03583c20
UW
175
176static void
177show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189}
190
191static void
eb4c3f4a 192set_disable_randomization (const char *args, int from_tty,
03583c20
UW
193 struct cmd_list_element *c)
194{
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199}
200
d32dc48e
PA
201/* User interface for non-stop mode. */
202
491144b5
CB
203bool non_stop = false;
204static bool non_stop_1 = false;
d32dc48e
PA
205
206static void
eb4c3f4a 207set_non_stop (const char *args, int from_tty,
d32dc48e
PA
208 struct cmd_list_element *c)
209{
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217}
218
219static void
220show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226}
227
d914c394
SS
228/* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
491144b5
CB
232bool observer_mode = false;
233static bool observer_mode_1 = false;
d914c394
SS
234
235static void
eb4c3f4a 236set_observer_mode (const char *args, int from_tty,
d914c394
SS
237 struct cmd_list_element *c)
238{
d914c394
SS
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
491144b5 254 may_insert_fast_tracepoints = true;
d914c394
SS
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
d914c394 262 pagination_enabled = 0;
491144b5 263 non_stop = non_stop_1 = true;
d914c394
SS
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269}
270
271static void
272show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276}
277
278/* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284void
285update_observer_mode (void)
286{
491144b5
CB
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
d914c394
SS
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299}
c2c6d25f 300
c906108c
SS
301/* Tables of how to react to signals; the user sets them. */
302
adc6a863
PA
303static unsigned char signal_stop[GDB_SIGNAL_LAST];
304static unsigned char signal_print[GDB_SIGNAL_LAST];
305static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 306
ab04a2af
TT
307/* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
309 signal" command. */
310static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 311
2455069d
UW
312/* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
adc6a863 315static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 316
c906108c
SS
317#define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325#define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
9b224c5e
PA
333/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336void
337update_signals_program_target (void)
338{
adc6a863 339 target_program_signals (signal_program);
9b224c5e
PA
340}
341
1777feb0 342/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 343
edb3359d 344#define RESUME_ALL minus_one_ptid
c906108c
SS
345
346/* Command list pointer for the "stop" placeholder. */
347
348static struct cmd_list_element *stop_command;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
f9e14852
GB
353
354/* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357static void
eb4c3f4a
TT
358set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
f9e14852
GB
360{
361 update_solib_breakpoints ();
362}
363
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370}
c906108c 371
c906108c
SS
372/* Nonzero after stop if current stack frame should be printed. */
373
374static int stop_print_frame;
375
e02bc4cc 376/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411static int
412follow_fork_inferior (int follow_child, int detach_fork)
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
79639e11 484 inferior_ptid = child_ptid;
f67c0c91 485 add_thread_silent (inferior_ptid);
2a00d7ce 486 set_current_inferior (child_inf);
d83ad864
DB
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
564b1e3f 507 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
d83ad864
DB
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
f67c0c91 545 if (print_inferior_events)
d83ad864 546 {
f67c0c91
SDJ
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
223ffa71 550 target_terminal::ours_for_output ();
6f259a23 551 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
6f259a23 554 has_vforked ? "vfork" : "fork",
f67c0c91 555 child_pid.c_str ());
d83ad864
DB
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
e99b03dc 561 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
6f259a23 592 {
f67c0c91 593 if (print_inferior_events)
6f259a23 594 {
8dd06f7a 595 /* Ensure that we have a process ptid. */
e99b03dc 596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 597
223ffa71 598 target_terminal::ours_for_output ();
6f259a23 599 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
600 _("[Detaching after fork from "
601 "parent %s]\n"),
a068643d 602 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
603 }
604
6e1e1966 605 target_detach (parent_inf, 0);
6f259a23 606 }
d83ad864
DB
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
79639e11 614 inferior_ptid = child_ptid;
f67c0c91 615 add_thread_silent (inferior_ptid);
2a00d7ce 616 set_current_inferior (child_inf);
d83ad864
DB
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
564b1e3f 629 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645}
646
e58b0e63
PA
647/* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
6604731b 651static int
4ef3f3be 652follow_fork (void)
c906108c 653{
ea1dd7bc 654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
4e3990f4
DE
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 663 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
8980e177 667 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
00431a78
PA
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
e58b0e63
PA
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
00431a78
PA
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
e58b0e63
PA
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
8358c15c
JK
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
16c381f0
JK
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
186c406b
TT
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 721 thread_fsm = tp->thread_fsm;
e58b0e63
PA
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
16c381f0
JK
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
186c406b 732 delete_exception_resume_breakpoint (tp);
8980e177 733 tp->thread_fsm = NULL;
e58b0e63
PA
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
d83ad864
DB
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
e09875d4 754 tp = find_thread_ptid (parent);
e58b0e63
PA
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
1777feb0 762 /* If we followed the child, switch to it... */
e58b0e63
PA
763 if (follow_child)
764 {
00431a78
PA
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
e58b0e63
PA
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
8358c15c
JK
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
16c381f0
JK
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
186c406b
TT
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
8980e177 780 tp->thread_fsm = thread_fsm;
e58b0e63
PA
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
3e43a32a 790 warning (_("Not resuming: switched threads "
fd7dcb94 791 "before following fork child."));
e58b0e63
PA
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
e58b0e63
PA
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
c906108c 809
e58b0e63 810 return should_resume;
c906108c
SS
811}
812
d83ad864 813static void
6604731b 814follow_inferior_reset_breakpoints (void)
c906108c 815{
4e1c45ea
PA
816 struct thread_info *tp = inferior_thread ();
817
6604731b
DJ
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
6604731b
DJ
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
8358c15c 831 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
6604731b 836
a1aa2221 837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 838 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
186c406b 843
6604731b
DJ
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
c906108c 851}
c906108c 852
6c95b8df
PA
853/* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856static int
857proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859{
860 int pid = * (int *) arg;
861
00431a78
PA
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
6c95b8df 865 && !thread->stop_requested
a493e3e2 866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
a068643d 871 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 872
00431a78 873 switch_to_thread (thread);
70509625 874 clear_proceed_status (0);
64ce06e4 875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
876 }
877
878 return 0;
879}
880
5ed8105e
PA
881/* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884class scoped_restore_exited_inferior
885{
886public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895};
896
6c95b8df
PA
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
b73715df
TV
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
6c95b8df 914
b73715df
TV
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
6c95b8df
PA
918 {
919 struct thread_info *tp;
6c95b8df
PA
920 struct program_space *pspace;
921 struct address_space *aspace;
922
1777feb0 923 /* follow-fork child, detach-on-fork on. */
6c95b8df 924
b73715df 925 vfork_parent->pending_detach = 0;
68c9da30 926
5ed8105e
PA
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
f50f4e56 934 if (!exec)
5ed8105e 935 maybe_restore_inferior.emplace ();
f50f4e56 936 else
5ed8105e 937 maybe_restore_thread.emplace ();
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
b73715df 940 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
5ed8105e
PA
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
564b1e3f 1022 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1026 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
b73715df 1030 resume_parent = vfork_parent->pid;
6c95b8df
PA
1031 }
1032
6c95b8df
PA
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
5ed8105e 1039 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1040
1041 if (debug_infrun)
3e43a32a
MS
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1047 }
1048 }
1049}
1050
eb6c553b 1051/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1052
1053static const char follow_exec_mode_new[] = "new";
1054static const char follow_exec_mode_same[] = "same";
40478521 1055static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1056{
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060};
1061
1062static const char *follow_exec_mode_string = follow_exec_mode_same;
1063static void
1064show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066{
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068}
1069
ecf45d2c 1070/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1071
c906108c 1072static void
4ca51187 1073follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1074{
6c95b8df 1075 struct inferior *inf = current_inferior ();
e99b03dc 1076 int pid = ptid.pid ();
94585166 1077 ptid_t process_ptid;
7a292a7a 1078
65d2b333
PW
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
c906108c
SS
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
85102364 1101 value that was overwritten with a TRAP instruction). Since
1777feb0 1102 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1103
1104 mark_breakpoints_out ();
1105
95e50b27
PA
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
08036331 1125 for (thread_info *th : all_threads_safe ())
d7e15655 1126 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1127 delete_thread (th);
95e50b27
PA
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
08036331 1133 thread_info *th = inferior_thread ();
8358c15c 1134 th->control.step_resume_breakpoint = NULL;
186c406b 1135 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1136 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
c906108c 1139
95e50b27
PA
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
a75724bc
PA
1143 th->stop_requested = 0;
1144
95e50b27
PA
1145 update_breakpoints_after_exec ();
1146
1777feb0 1147 /* What is this a.out's name? */
f2907e49 1148 process_ptid = ptid_t (pid);
6c95b8df 1149 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1150 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1151 exec_file_target);
c906108c
SS
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1154 inferior has essentially been killed & reborn. */
7a292a7a 1155
6ca15a4b 1156 breakpoint_init_inferior (inf_execd);
e85a822c 1157
797bc1cb
TT
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
ff862be4 1160
ecf45d2c
SL
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
c906108c 1169
cce9b6bf
PA
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
6c95b8df
PA
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
6c95b8df
PA
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
35ed81d4
SM
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
057302ce 1189 exit_inferior_silent (current_inferior ());
17d8546e 1190
94585166 1191 inf->pid = pid;
ecf45d2c 1192 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1193
1194 set_current_inferior (inf);
94585166 1195 set_current_program_space (inf->pspace);
c4c17fb0 1196 add_thread (ptid);
6c95b8df 1197 }
9107fc8d
PA
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
6c95b8df
PA
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
ecf45d2c
SL
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
797bc1cb 1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1217
9107fc8d
PA
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
268a4a75 1226 solib_create_inferior_hook (0);
c906108c 1227
4efc6507
DE
1228 jit_inferior_created_hook ();
1229
c1e56572
JK
1230 breakpoint_re_set ();
1231
c906108c
SS
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1777feb0 1234 to symbol_file_command...). */
c906108c
SS
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1777feb0 1240 matically get reset there in the new process.). */
c906108c
SS
1241}
1242
c2829269
PA
1243/* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
66716e78 1250struct thread_info *global_thread_step_over_chain_head;
c2829269 1251
6c4cfb24
PA
1252/* Bit flags indicating what the thread needs to step over. */
1253
8d297bbf 1254enum step_over_what_flag
6c4cfb24
PA
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
8d297bbf 1264DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1265
963f9c80 1266/* Info about an instruction that is being stepped over. */
31e77af2
PA
1267
1268struct step_over_info
1269{
963f9c80
PA
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
8b86c959 1274 const address_space *aspace;
31e77af2 1275 CORE_ADDR address;
963f9c80
PA
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
21edc42f
YQ
1280
1281 /* The thread's global number. */
1282 int thread;
31e77af2
PA
1283};
1284
1285/* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309static struct step_over_info step_over_info;
1310
1311/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
31e77af2
PA
1315
1316static void
8b86c959 1317set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1318 int nonsteppable_watchpoint_p,
1319 int thread)
31e77af2
PA
1320{
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
963f9c80 1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1324 step_over_info.thread = thread;
31e77af2
PA
1325}
1326
1327/* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330static void
1331clear_step_over_info (void)
1332{
372316f1
PA
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
31e77af2
PA
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
963f9c80 1338 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1339 step_over_info.thread = -1;
31e77af2
PA
1340}
1341
7f89fd65 1342/* See infrun.h. */
31e77af2
PA
1343
1344int
1345stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347{
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352}
1353
963f9c80
PA
1354/* See infrun.h. */
1355
21edc42f
YQ
1356int
1357thread_is_stepping_over_breakpoint (int thread)
1358{
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361}
1362
1363/* See infrun.h. */
1364
963f9c80
PA
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1426 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
237fc4c9
PA
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
4a3a374c 1467/* Default destructor for displaced_step_copy_insn_closure. */
cfba9872 1468
4a3a374c 1469displaced_step_copy_insn_closure::~displaced_step_copy_insn_closure () = default;
cfba9872 1470
fc1cf338
PA
1471/* Get the displaced stepping state of process PID. */
1472
39a36629 1473static displaced_step_inferior_state *
00431a78 1474get_displaced_stepping_state (inferior *inf)
fc1cf338 1475{
d20172fc 1476 return &inf->displaced_step_state;
fc1cf338
PA
1477}
1478
372316f1
PA
1479/* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
39a36629
SM
1482static bool
1483displaced_step_in_progress_any_inferior ()
372316f1 1484{
d20172fc 1485 for (inferior *i : all_inferiors ())
39a36629 1486 {
d20172fc 1487 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1488 return true;
1489 }
372316f1 1490
39a36629 1491 return false;
372316f1
PA
1492}
1493
c0987663
YQ
1494/* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497static int
00431a78 1498displaced_step_in_progress_thread (thread_info *thread)
c0987663 1499{
00431a78 1500 gdb_assert (thread != NULL);
c0987663 1501
d20172fc 1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1503}
1504
8f572e5c
PA
1505/* Return true if process PID has a thread doing a displaced step. */
1506
1507static int
00431a78 1508displaced_step_in_progress (inferior *inf)
8f572e5c 1509{
d20172fc 1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1511}
1512
a42244db 1513/* If inferior is in displaced stepping, and ADDR equals to starting address
4a3a374c 1514 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
a42244db
YQ
1515 return NULL. */
1516
4a3a374c
SM
1517struct displaced_step_copy_insn_closure *
1518get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
a42244db 1519{
d20172fc 1520 displaced_step_inferior_state *displaced
00431a78 1521 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1522
1523 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1524 if (displaced->step_thread != nullptr
00431a78 1525 && displaced->step_copy == addr)
b8bfbca5 1526 return displaced->step_closure.get ();
a42244db
YQ
1527
1528 return NULL;
1529}
1530
fc1cf338
PA
1531static void
1532infrun_inferior_exit (struct inferior *inf)
1533{
d20172fc 1534 inf->displaced_step_state.reset ();
fc1cf338 1535}
237fc4c9 1536
fff08868
HZ
1537/* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
80e899b3 1542 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1543
72d0e2c5 1544static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1545
237fc4c9
PA
1546static void
1547show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550{
72d0e2c5 1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1555 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1556 else
3e43a32a
MS
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1560}
1561
80e899b3
SM
1562/* Return true if the gdbarch implements the required methods to use
1563 displaced stepping. */
1564
1565static bool
1566gdbarch_supports_displaced_stepping (gdbarch *arch)
1567{
1568 /* Only check for the presence of step_copy_insn. Other required methods
1569 are checked by the gdbarch validation. */
1570 return gdbarch_displaced_step_copy_insn_p (arch);
1571}
1572
fff08868 1573/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1574 over breakpoints of thread TP. */
fff08868 1575
80e899b3
SM
1576static bool
1577use_displaced_stepping (thread_info *tp)
237fc4c9 1578{
80e899b3
SM
1579 /* If the user disabled it explicitly, don't use displaced stepping. */
1580 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1581 return false;
1582
1583 /* If "auto", only use displaced stepping if the target operates in a non-stop
1584 way. */
1585 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1586 && !target_is_non_stop_p ())
1587 return false;
1588
1589 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1590
1591 /* If the architecture doesn't implement displaced stepping, don't use
1592 it. */
1593 if (!gdbarch_supports_displaced_stepping (gdbarch))
1594 return false;
1595
1596 /* If recording, don't use displaced stepping. */
1597 if (find_record_target () != nullptr)
1598 return false;
1599
d20172fc
SM
1600 displaced_step_inferior_state *displaced_state
1601 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1602
80e899b3
SM
1603 /* If displaced stepping failed before for this inferior, don't bother trying
1604 again. */
1605 if (displaced_state->failed_before)
1606 return false;
1607
1608 return true;
237fc4c9
PA
1609}
1610
b8bfbca5
SM
1611/* Simple function wrapper around displaced_step_inferior_state::reset. */
1612
237fc4c9 1613static void
b8bfbca5 1614displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1615{
b8bfbca5 1616 displaced->reset ();
237fc4c9
PA
1617}
1618
b8bfbca5
SM
1619/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1620 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1621
1622using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1623
1624/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1625void
1626displaced_step_dump_bytes (struct ui_file *file,
1627 const gdb_byte *buf,
1628 size_t len)
1629{
1630 int i;
1631
1632 for (i = 0; i < len; i++)
1633 fprintf_unfiltered (file, "%02x ", buf[i]);
1634 fputs_unfiltered ("\n", file);
1635}
1636
1637/* Prepare to single-step, using displaced stepping.
1638
1639 Note that we cannot use displaced stepping when we have a signal to
1640 deliver. If we have a signal to deliver and an instruction to step
1641 over, then after the step, there will be no indication from the
1642 target whether the thread entered a signal handler or ignored the
1643 signal and stepped over the instruction successfully --- both cases
1644 result in a simple SIGTRAP. In the first case we mustn't do a
1645 fixup, and in the second case we must --- but we can't tell which.
1646 Comments in the code for 'random signals' in handle_inferior_event
1647 explain how we handle this case instead.
1648
1649 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1650 stepped now; 0 if displaced stepping this thread got queued; or -1
1651 if this instruction can't be displaced stepped. */
1652
237fc4c9 1653static int
00431a78 1654displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1655{
00431a78 1656 regcache *regcache = get_thread_regcache (tp);
ac7936df 1657 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1658 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1659 CORE_ADDR original, copy;
1660 ULONGEST len;
9e529e1d 1661 int status;
237fc4c9
PA
1662
1663 /* We should never reach this function if the architecture does not
1664 support displaced stepping. */
80e899b3 1665 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1666
c2829269
PA
1667 /* Nor if the thread isn't meant to step over a breakpoint. */
1668 gdb_assert (tp->control.trap_expected);
1669
c1e36e3e
PA
1670 /* Disable range stepping while executing in the scratch pad. We
1671 want a single-step even if executing the displaced instruction in
1672 the scratch buffer lands within the stepping range (e.g., a
1673 jump/branch). */
1674 tp->control.may_range_step = 0;
1675
fc1cf338
PA
1676 /* We have to displaced step one thread at a time, as we only have
1677 access to a single scratch space per inferior. */
237fc4c9 1678
d20172fc
SM
1679 displaced_step_inferior_state *displaced
1680 = get_displaced_stepping_state (tp->inf);
fc1cf338 1681
00431a78 1682 if (displaced->step_thread != nullptr)
237fc4c9
PA
1683 {
1684 /* Already waiting for a displaced step to finish. Defer this
1685 request and place in queue. */
237fc4c9
PA
1686
1687 if (debug_displaced)
1688 fprintf_unfiltered (gdb_stdlog,
c2829269 1689 "displaced: deferring step of %s\n",
a068643d 1690 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1691
66716e78 1692 global_thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1693 return 0;
1694 }
1695 else
1696 {
1697 if (debug_displaced)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "displaced: stepping %s now\n",
a068643d 1700 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1701 }
1702
b8bfbca5 1703 displaced_step_reset (displaced);
237fc4c9 1704
00431a78
PA
1705 scoped_restore_current_thread restore_thread;
1706
1707 switch_to_thread (tp);
ad53cd71 1708
515630c5 1709 original = regcache_read_pc (regcache);
237fc4c9
PA
1710
1711 copy = gdbarch_displaced_step_location (gdbarch);
1712 len = gdbarch_max_insn_length (gdbarch);
1713
d35ae833
PA
1714 if (breakpoint_in_range_p (aspace, copy, len))
1715 {
1716 /* There's a breakpoint set in the scratch pad location range
1717 (which is usually around the entry point). We'd either
1718 install it before resuming, which would overwrite/corrupt the
1719 scratch pad, or if it was already inserted, this displaced
1720 step would overwrite it. The latter is OK in the sense that
1721 we already assume that no thread is going to execute the code
1722 in the scratch pad range (after initial startup) anyway, but
1723 the former is unacceptable. Simply punt and fallback to
1724 stepping over this breakpoint in-line. */
1725 if (debug_displaced)
1726 {
1727 fprintf_unfiltered (gdb_stdlog,
1728 "displaced: breakpoint set in scratch pad. "
1729 "Stepping over breakpoint in-line instead.\n");
1730 }
1731
d35ae833
PA
1732 return -1;
1733 }
1734
237fc4c9 1735 /* Save the original contents of the copy area. */
d20172fc
SM
1736 displaced->step_saved_copy.resize (len);
1737 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1738 if (status != 0)
1739 throw_error (MEMORY_ERROR,
1740 _("Error accessing memory address %s (%s) for "
1741 "displaced-stepping scratch space."),
1742 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1743 if (debug_displaced)
1744 {
5af949e3
UW
1745 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1746 paddress (gdbarch, copy));
fc1cf338 1747 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1748 displaced->step_saved_copy.data (),
fc1cf338 1749 len);
237fc4c9
PA
1750 };
1751
18b28e13
SM
1752 displaced->step_closure
1753 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1754 if (displaced->step_closure == NULL)
7f03bd92
PA
1755 {
1756 /* The architecture doesn't know how or want to displaced step
1757 this instruction or instruction sequence. Fallback to
1758 stepping over the breakpoint in-line. */
7f03bd92
PA
1759 return -1;
1760 }
237fc4c9 1761
9f5a595d
UW
1762 /* Save the information we need to fix things up if the step
1763 succeeds. */
00431a78 1764 displaced->step_thread = tp;
fc1cf338 1765 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1766 displaced->step_original = original;
1767 displaced->step_copy = copy;
9f5a595d 1768
9799571e 1769 {
b8bfbca5 1770 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1771
9799571e
TT
1772 /* Resume execution at the copy. */
1773 regcache_write_pc (regcache, copy);
237fc4c9 1774
9799571e
TT
1775 cleanup.release ();
1776 }
ad53cd71 1777
237fc4c9 1778 if (debug_displaced)
5af949e3
UW
1779 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1780 paddress (gdbarch, copy));
237fc4c9 1781
237fc4c9
PA
1782 return 1;
1783}
1784
3fc8eb30
PA
1785/* Wrapper for displaced_step_prepare_throw that disabled further
1786 attempts at displaced stepping if we get a memory error. */
1787
1788static int
00431a78 1789displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1790{
1791 int prepared = -1;
1792
a70b8144 1793 try
3fc8eb30 1794 {
00431a78 1795 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1796 }
230d2906 1797 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1798 {
1799 struct displaced_step_inferior_state *displaced_state;
1800
16b41842
PA
1801 if (ex.error != MEMORY_ERROR
1802 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1803 throw;
3fc8eb30
PA
1804
1805 if (debug_infrun)
1806 {
1807 fprintf_unfiltered (gdb_stdlog,
1808 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1809 ex.what ());
3fc8eb30
PA
1810 }
1811
1812 /* Be verbose if "set displaced-stepping" is "on", silent if
1813 "auto". */
1814 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1815 {
fd7dcb94 1816 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1817 ex.what ());
3fc8eb30
PA
1818 }
1819
1820 /* Disable further displaced stepping attempts. */
1821 displaced_state
00431a78 1822 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1823 displaced_state->failed_before = 1;
1824 }
3fc8eb30
PA
1825
1826 return prepared;
1827}
1828
237fc4c9 1829static void
3e43a32a
MS
1830write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1831 const gdb_byte *myaddr, int len)
237fc4c9 1832{
2989a365 1833 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1834
237fc4c9
PA
1835 inferior_ptid = ptid;
1836 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1837}
1838
e2d96639
YQ
1839/* Restore the contents of the copy area for thread PTID. */
1840
1841static void
1842displaced_step_restore (struct displaced_step_inferior_state *displaced,
1843 ptid_t ptid)
1844{
1845 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1846
1847 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1848 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1849 if (debug_displaced)
1850 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1851 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1852 paddress (displaced->step_gdbarch,
1853 displaced->step_copy));
1854}
1855
372316f1
PA
1856/* If we displaced stepped an instruction successfully, adjust
1857 registers and memory to yield the same effect the instruction would
1858 have had if we had executed it at its original address, and return
1859 1. If the instruction didn't complete, relocate the PC and return
1860 -1. If the thread wasn't displaced stepping, return 0. */
1861
1862static int
00431a78 1863displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1864{
fc1cf338 1865 struct displaced_step_inferior_state *displaced
00431a78 1866 = get_displaced_stepping_state (event_thread->inf);
372316f1 1867 int ret;
fc1cf338 1868
00431a78
PA
1869 /* Was this event for the thread we displaced? */
1870 if (displaced->step_thread != event_thread)
372316f1 1871 return 0;
237fc4c9 1872
b8bfbca5 1873 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1874
00431a78 1875 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1876
cb71640d
PA
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread. */
00431a78 1880 switch_to_thread (event_thread);
cb71640d 1881
237fc4c9 1882 /* Did the instruction complete successfully? */
cb71640d
PA
1883 if (signal == GDB_SIGNAL_TRAP
1884 && !(target_stopped_by_watchpoint ()
1885 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1886 || target_have_steppable_watchpoint)))
237fc4c9
PA
1887 {
1888 /* Fix up the resulting state. */
fc1cf338 1889 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
b8bfbca5 1890 displaced->step_closure.get (),
fc1cf338
PA
1891 displaced->step_original,
1892 displaced->step_copy,
00431a78 1893 get_thread_regcache (displaced->step_thread));
372316f1 1894 ret = 1;
237fc4c9
PA
1895 }
1896 else
1897 {
1898 /* Since the instruction didn't complete, all we can do is
1899 relocate the PC. */
00431a78 1900 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1901 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1902
fc1cf338 1903 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1904 regcache_write_pc (regcache, pc);
372316f1 1905 ret = -1;
237fc4c9
PA
1906 }
1907
372316f1 1908 return ret;
c2829269 1909}
1c5cfe86 1910
4d9d9d04
PA
1911/* Data to be passed around while handling an event. This data is
1912 discarded between events. */
1913struct execution_control_state
1914{
1915 ptid_t ptid;
1916 /* The thread that got the event, if this was a thread event; NULL
1917 otherwise. */
1918 struct thread_info *event_thread;
1919
1920 struct target_waitstatus ws;
1921 int stop_func_filled_in;
1922 CORE_ADDR stop_func_start;
1923 CORE_ADDR stop_func_end;
1924 const char *stop_func_name;
1925 int wait_some_more;
1926
1927 /* True if the event thread hit the single-step breakpoint of
1928 another thread. Thus the event doesn't cause a stop, the thread
1929 needs to be single-stepped past the single-step breakpoint before
1930 we can switch back to the original stepping thread. */
1931 int hit_singlestep_breakpoint;
1932};
1933
1934/* Clear ECS and set it to point at TP. */
c2829269
PA
1935
1936static void
4d9d9d04
PA
1937reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1938{
1939 memset (ecs, 0, sizeof (*ecs));
1940 ecs->event_thread = tp;
1941 ecs->ptid = tp->ptid;
1942}
1943
1944static void keep_going_pass_signal (struct execution_control_state *ecs);
1945static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1946static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1947static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1948
1949/* Are there any pending step-over requests? If so, run all we can
1950 now and return true. Otherwise, return false. */
1951
1952static int
c2829269
PA
1953start_step_over (void)
1954{
1955 struct thread_info *tp, *next;
1956
372316f1
PA
1957 /* Don't start a new step-over if we already have an in-line
1958 step-over operation ongoing. */
1959 if (step_over_info_valid_p ())
1960 return 0;
1961
66716e78 1962 for (tp = global_thread_step_over_chain_head; tp != NULL; tp = next)
237fc4c9 1963 {
4d9d9d04
PA
1964 struct execution_control_state ecss;
1965 struct execution_control_state *ecs = &ecss;
8d297bbf 1966 step_over_what step_what;
372316f1 1967 int must_be_in_line;
c2829269 1968
c65d6b55
PA
1969 gdb_assert (!tp->stop_requested);
1970
66716e78 1971 next = global_thread_step_over_chain_next (tp);
237fc4c9 1972
c2829269
PA
1973 /* If this inferior already has a displaced step in process,
1974 don't start a new one. */
00431a78 1975 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1976 continue;
1977
372316f1
PA
1978 step_what = thread_still_needs_step_over (tp);
1979 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1980 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1981 && !use_displaced_stepping (tp)));
372316f1
PA
1982
1983 /* We currently stop all threads of all processes to step-over
1984 in-line. If we need to start a new in-line step-over, let
1985 any pending displaced steps finish first. */
1986 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1987 return 0;
1988
66716e78 1989 global_thread_step_over_chain_remove (tp);
c2829269 1990
66716e78 1991 if (global_thread_step_over_chain_head == NULL)
c2829269
PA
1992 {
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog,
1995 "infrun: step-over queue now empty\n");
1996 }
1997
372316f1
PA
1998 if (tp->control.trap_expected
1999 || tp->resumed
2000 || tp->executing)
ad53cd71 2001 {
4d9d9d04
PA
2002 internal_error (__FILE__, __LINE__,
2003 "[%s] has inconsistent state: "
372316f1 2004 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2005 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2006 tp->control.trap_expected,
372316f1 2007 tp->resumed,
4d9d9d04 2008 tp->executing);
ad53cd71 2009 }
1c5cfe86 2010
4d9d9d04
PA
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: resuming [%s] for step-over\n",
a068643d 2014 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2022 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2023 continue;
8550d3b3 2024
00431a78 2025 switch_to_thread (tp);
4d9d9d04
PA
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
1c5cfe86 2028
4d9d9d04
PA
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
1c5cfe86 2031
372316f1
PA
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return 1;
2039 }
2040
fbea99ea 2041 if (!target_is_non_stop_p ())
4d9d9d04
PA
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return 1;
1c5cfe86 2052 }
c2829269 2053
4d9d9d04
PA
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
237fc4c9 2058 }
4d9d9d04
PA
2059
2060 return 0;
237fc4c9
PA
2061}
2062
5231c1fd
PA
2063/* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065static void
2066infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2067{
d7e15655 2068 if (inferior_ptid == old_ptid)
5231c1fd 2069 inferior_ptid = new_ptid;
5231c1fd
PA
2070}
2071
237fc4c9 2072\f
c906108c 2073
53904c9e
AC
2074static const char schedlock_off[] = "off";
2075static const char schedlock_on[] = "on";
2076static const char schedlock_step[] = "step";
f2665db5 2077static const char schedlock_replay[] = "replay";
40478521 2078static const char *const scheduler_enums[] = {
ef346e04
AC
2079 schedlock_off,
2080 schedlock_on,
2081 schedlock_step,
f2665db5 2082 schedlock_replay,
ef346e04
AC
2083 NULL
2084};
f2665db5 2085static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2086static void
2087show_scheduler_mode (struct ui_file *file, int from_tty,
2088 struct cmd_list_element *c, const char *value)
2089{
3e43a32a
MS
2090 fprintf_filtered (file,
2091 _("Mode for locking scheduler "
2092 "during execution is \"%s\".\n"),
920d2a44
AC
2093 value);
2094}
c906108c
SS
2095
2096static void
eb4c3f4a 2097set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2098{
eefe576e
AC
2099 if (!target_can_lock_scheduler)
2100 {
2101 scheduler_mode = schedlock_off;
2102 error (_("Target '%s' cannot support this command."), target_shortname);
2103 }
c906108c
SS
2104}
2105
d4db2f36
PA
2106/* True if execution commands resume all threads of all processes by
2107 default; otherwise, resume only threads of the current inferior
2108 process. */
491144b5 2109bool sched_multi = false;
d4db2f36 2110
2facfe5c
DD
2111/* Try to setup for software single stepping over the specified location.
2112 Return 1 if target_resume() should use hardware single step.
2113
2114 GDBARCH the current gdbarch.
2115 PC the location to step over. */
2116
2117static int
2118maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2119{
2120 int hw_step = 1;
2121
f02253f1 2122 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2123 && gdbarch_software_single_step_p (gdbarch))
2124 hw_step = !insert_single_step_breakpoints (gdbarch);
2125
2facfe5c
DD
2126 return hw_step;
2127}
c906108c 2128
f3263aa4
PA
2129/* See infrun.h. */
2130
09cee04b
PA
2131ptid_t
2132user_visible_resume_ptid (int step)
2133{
f3263aa4 2134 ptid_t resume_ptid;
09cee04b 2135
09cee04b
PA
2136 if (non_stop)
2137 {
2138 /* With non-stop mode on, threads are always handled
2139 individually. */
2140 resume_ptid = inferior_ptid;
2141 }
2142 else if ((scheduler_mode == schedlock_on)
03d46957 2143 || (scheduler_mode == schedlock_step && step))
09cee04b 2144 {
f3263aa4
PA
2145 /* User-settable 'scheduler' mode requires solo thread
2146 resume. */
09cee04b
PA
2147 resume_ptid = inferior_ptid;
2148 }
f2665db5
MM
2149 else if ((scheduler_mode == schedlock_replay)
2150 && target_record_will_replay (minus_one_ptid, execution_direction))
2151 {
2152 /* User-settable 'scheduler' mode requires solo thread resume in replay
2153 mode. */
2154 resume_ptid = inferior_ptid;
2155 }
f3263aa4
PA
2156 else if (!sched_multi && target_supports_multi_process ())
2157 {
2158 /* Resume all threads of the current process (and none of other
2159 processes). */
e99b03dc 2160 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2161 }
2162 else
2163 {
2164 /* Resume all threads of all processes. */
2165 resume_ptid = RESUME_ALL;
2166 }
09cee04b
PA
2167
2168 return resume_ptid;
2169}
2170
fbea99ea
PA
2171/* Return a ptid representing the set of threads that we will resume,
2172 in the perspective of the target, assuming run control handling
2173 does not require leaving some threads stopped (e.g., stepping past
2174 breakpoint). USER_STEP indicates whether we're about to start the
2175 target for a stepping command. */
2176
2177static ptid_t
2178internal_resume_ptid (int user_step)
2179{
2180 /* In non-stop, we always control threads individually. Note that
2181 the target may always work in non-stop mode even with "set
2182 non-stop off", in which case user_visible_resume_ptid could
2183 return a wildcard ptid. */
2184 if (target_is_non_stop_p ())
2185 return inferior_ptid;
2186 else
2187 return user_visible_resume_ptid (user_step);
2188}
2189
64ce06e4
PA
2190/* Wrapper for target_resume, that handles infrun-specific
2191 bookkeeping. */
2192
2193static void
2194do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2195{
2196 struct thread_info *tp = inferior_thread ();
2197
c65d6b55
PA
2198 gdb_assert (!tp->stop_requested);
2199
64ce06e4 2200 /* Install inferior's terminal modes. */
223ffa71 2201 target_terminal::inferior ();
64ce06e4
PA
2202
2203 /* Avoid confusing the next resume, if the next stop/resume
2204 happens to apply to another thread. */
2205 tp->suspend.stop_signal = GDB_SIGNAL_0;
2206
8f572e5c
PA
2207 /* Advise target which signals may be handled silently.
2208
2209 If we have removed breakpoints because we are stepping over one
2210 in-line (in any thread), we need to receive all signals to avoid
2211 accidentally skipping a breakpoint during execution of a signal
2212 handler.
2213
2214 Likewise if we're displaced stepping, otherwise a trap for a
2215 breakpoint in a signal handler might be confused with the
2216 displaced step finishing. We don't make the displaced_step_fixup
2217 step distinguish the cases instead, because:
2218
2219 - a backtrace while stopped in the signal handler would show the
2220 scratch pad as frame older than the signal handler, instead of
2221 the real mainline code.
2222
2223 - when the thread is later resumed, the signal handler would
2224 return to the scratch pad area, which would no longer be
2225 valid. */
2226 if (step_over_info_valid_p ()
00431a78 2227 || displaced_step_in_progress (tp->inf))
adc6a863 2228 target_pass_signals ({});
64ce06e4 2229 else
adc6a863 2230 target_pass_signals (signal_pass);
64ce06e4
PA
2231
2232 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2233
2234 target_commit_resume ();
64ce06e4
PA
2235}
2236
d930703d 2237/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2238 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2239 call 'resume', which handles exceptions. */
c906108c 2240
71d378ae
PA
2241static void
2242resume_1 (enum gdb_signal sig)
c906108c 2243{
515630c5 2244 struct regcache *regcache = get_current_regcache ();
ac7936df 2245 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2246 struct thread_info *tp = inferior_thread ();
515630c5 2247 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2248 const address_space *aspace = regcache->aspace ();
b0f16a3e 2249 ptid_t resume_ptid;
856e7dd6
PA
2250 /* This represents the user's step vs continue request. When
2251 deciding whether "set scheduler-locking step" applies, it's the
2252 user's intention that counts. */
2253 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2254 /* This represents what we'll actually request the target to do.
2255 This can decay from a step to a continue, if e.g., we need to
2256 implement single-stepping with breakpoints (software
2257 single-step). */
6b403daa 2258 int step;
c7e8a53c 2259
c65d6b55 2260 gdb_assert (!tp->stop_requested);
c2829269
PA
2261 gdb_assert (!thread_is_in_step_over_chain (tp));
2262
372316f1
PA
2263 if (tp->suspend.waitstatus_pending_p)
2264 {
2265 if (debug_infrun)
2266 {
23fdd69e
SM
2267 std::string statstr
2268 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2269
372316f1 2270 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2271 "infrun: resume: thread %s has pending wait "
2272 "status %s (currently_stepping=%d).\n",
a068643d
TT
2273 target_pid_to_str (tp->ptid).c_str (),
2274 statstr.c_str (),
372316f1 2275 currently_stepping (tp));
372316f1
PA
2276 }
2277
2278 tp->resumed = 1;
2279
2280 /* FIXME: What should we do if we are supposed to resume this
2281 thread with a signal? Maybe we should maintain a queue of
2282 pending signals to deliver. */
2283 if (sig != GDB_SIGNAL_0)
2284 {
fd7dcb94 2285 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2286 gdb_signal_to_name (sig),
2287 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2288 }
2289
2290 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2291
2292 if (target_can_async_p ())
9516f85a
AB
2293 {
2294 target_async (1);
2295 /* Tell the event loop we have an event to process. */
2296 mark_async_event_handler (infrun_async_inferior_event_token);
2297 }
372316f1
PA
2298 return;
2299 }
2300
2301 tp->stepped_breakpoint = 0;
2302
6b403daa
PA
2303 /* Depends on stepped_breakpoint. */
2304 step = currently_stepping (tp);
2305
74609e71
YQ
2306 if (current_inferior ()->waiting_for_vfork_done)
2307 {
48f9886d
PA
2308 /* Don't try to single-step a vfork parent that is waiting for
2309 the child to get out of the shared memory region (by exec'ing
2310 or exiting). This is particularly important on software
2311 single-step archs, as the child process would trip on the
2312 software single step breakpoint inserted for the parent
2313 process. Since the parent will not actually execute any
2314 instruction until the child is out of the shared region (such
2315 are vfork's semantics), it is safe to simply continue it.
2316 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2317 the parent, and tell it to `keep_going', which automatically
2318 re-sets it stepping. */
74609e71
YQ
2319 if (debug_infrun)
2320 fprintf_unfiltered (gdb_stdlog,
2321 "infrun: resume : clear step\n");
a09dd441 2322 step = 0;
74609e71
YQ
2323 }
2324
527159b7 2325 if (debug_infrun)
237fc4c9 2326 fprintf_unfiltered (gdb_stdlog,
c9737c08 2327 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2328 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2329 step, gdb_signal_to_symbol_string (sig),
2330 tp->control.trap_expected,
a068643d 2331 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2332 paddress (gdbarch, pc));
c906108c 2333
c2c6d25f
JM
2334 /* Normally, by the time we reach `resume', the breakpoints are either
2335 removed or inserted, as appropriate. The exception is if we're sitting
2336 at a permanent breakpoint; we need to step over it, but permanent
2337 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2338 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2339 {
af48d08f
PA
2340 if (sig != GDB_SIGNAL_0)
2341 {
2342 /* We have a signal to pass to the inferior. The resume
2343 may, or may not take us to the signal handler. If this
2344 is a step, we'll need to stop in the signal handler, if
2345 there's one, (if the target supports stepping into
2346 handlers), or in the next mainline instruction, if
2347 there's no handler. If this is a continue, we need to be
2348 sure to run the handler with all breakpoints inserted.
2349 In all cases, set a breakpoint at the current address
2350 (where the handler returns to), and once that breakpoint
2351 is hit, resume skipping the permanent breakpoint. If
2352 that breakpoint isn't hit, then we've stepped into the
2353 signal handler (or hit some other event). We'll delete
2354 the step-resume breakpoint then. */
2355
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint, "
2359 "deliver signal first\n");
2360
2361 clear_step_over_info ();
2362 tp->control.trap_expected = 0;
2363
2364 if (tp->control.step_resume_breakpoint == NULL)
2365 {
2366 /* Set a "high-priority" step-resume, as we don't want
2367 user breakpoints at PC to trigger (again) when this
2368 hits. */
2369 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2370 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2371
2372 tp->step_after_step_resume_breakpoint = step;
2373 }
2374
2375 insert_breakpoints ();
2376 }
2377 else
2378 {
2379 /* There's no signal to pass, we can go ahead and skip the
2380 permanent breakpoint manually. */
2381 if (debug_infrun)
2382 fprintf_unfiltered (gdb_stdlog,
2383 "infrun: resume: skipping permanent breakpoint\n");
2384 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2385 /* Update pc to reflect the new address from which we will
2386 execute instructions. */
2387 pc = regcache_read_pc (regcache);
2388
2389 if (step)
2390 {
2391 /* We've already advanced the PC, so the stepping part
2392 is done. Now we need to arrange for a trap to be
2393 reported to handle_inferior_event. Set a breakpoint
2394 at the current PC, and run to it. Don't update
2395 prev_pc, because if we end in
44a1ee51
PA
2396 switch_back_to_stepped_thread, we want the "expected
2397 thread advanced also" branch to be taken. IOW, we
2398 don't want this thread to step further from PC
af48d08f 2399 (overstep). */
1ac806b8 2400 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2401 insert_single_step_breakpoint (gdbarch, aspace, pc);
2402 insert_breakpoints ();
2403
fbea99ea 2404 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2405 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2406 tp->resumed = 1;
af48d08f
PA
2407 return;
2408 }
2409 }
6d350bb5 2410 }
c2c6d25f 2411
c1e36e3e
PA
2412 /* If we have a breakpoint to step over, make sure to do a single
2413 step only. Same if we have software watchpoints. */
2414 if (tp->control.trap_expected || bpstat_should_step ())
2415 tp->control.may_range_step = 0;
2416
237fc4c9
PA
2417 /* If enabled, step over breakpoints by executing a copy of the
2418 instruction at a different address.
2419
2420 We can't use displaced stepping when we have a signal to deliver;
2421 the comments for displaced_step_prepare explain why. The
2422 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2423 signals' explain what we do instead.
2424
2425 We can't use displaced stepping when we are waiting for vfork_done
2426 event, displaced stepping breaks the vfork child similarly as single
2427 step software breakpoint. */
3fc8eb30
PA
2428 if (tp->control.trap_expected
2429 && use_displaced_stepping (tp)
cb71640d 2430 && !step_over_info_valid_p ()
a493e3e2 2431 && sig == GDB_SIGNAL_0
74609e71 2432 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2433 {
00431a78 2434 int prepared = displaced_step_prepare (tp);
fc1cf338 2435
3fc8eb30 2436 if (prepared == 0)
d56b7306 2437 {
4d9d9d04
PA
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "Got placed in step-over queue\n");
2441
2442 tp->control.trap_expected = 0;
d56b7306
VP
2443 return;
2444 }
3fc8eb30
PA
2445 else if (prepared < 0)
2446 {
2447 /* Fallback to stepping over the breakpoint in-line. */
2448
2449 if (target_is_non_stop_p ())
2450 stop_all_threads ();
2451
a01bda52 2452 set_step_over_info (regcache->aspace (),
21edc42f 2453 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2454
2455 step = maybe_software_singlestep (gdbarch, pc);
2456
2457 insert_breakpoints ();
2458 }
2459 else if (prepared > 0)
2460 {
2461 struct displaced_step_inferior_state *displaced;
99e40580 2462
3fc8eb30
PA
2463 /* Update pc to reflect the new address from which we will
2464 execute instructions due to displaced stepping. */
00431a78 2465 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2466
00431a78 2467 displaced = get_displaced_stepping_state (tp->inf);
b8bfbca5
SM
2468 step = gdbarch_displaced_step_hw_singlestep
2469 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2470 }
237fc4c9
PA
2471 }
2472
2facfe5c 2473 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2474 else if (step)
2facfe5c 2475 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2476
30852783
UW
2477 /* Currently, our software single-step implementation leads to different
2478 results than hardware single-stepping in one situation: when stepping
2479 into delivering a signal which has an associated signal handler,
2480 hardware single-step will stop at the first instruction of the handler,
2481 while software single-step will simply skip execution of the handler.
2482
2483 For now, this difference in behavior is accepted since there is no
2484 easy way to actually implement single-stepping into a signal handler
2485 without kernel support.
2486
2487 However, there is one scenario where this difference leads to follow-on
2488 problems: if we're stepping off a breakpoint by removing all breakpoints
2489 and then single-stepping. In this case, the software single-step
2490 behavior means that even if there is a *breakpoint* in the signal
2491 handler, GDB still would not stop.
2492
2493 Fortunately, we can at least fix this particular issue. We detect
2494 here the case where we are about to deliver a signal while software
2495 single-stepping with breakpoints removed. In this situation, we
2496 revert the decisions to remove all breakpoints and insert single-
2497 step breakpoints, and instead we install a step-resume breakpoint
2498 at the current address, deliver the signal without stepping, and
2499 once we arrive back at the step-resume breakpoint, actually step
2500 over the breakpoint we originally wanted to step over. */
34b7e8a6 2501 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2502 && sig != GDB_SIGNAL_0
2503 && step_over_info_valid_p ())
30852783
UW
2504 {
2505 /* If we have nested signals or a pending signal is delivered
2506 immediately after a handler returns, might might already have
2507 a step-resume breakpoint set on the earlier handler. We cannot
2508 set another step-resume breakpoint; just continue on until the
2509 original breakpoint is hit. */
2510 if (tp->control.step_resume_breakpoint == NULL)
2511 {
2c03e5be 2512 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2513 tp->step_after_step_resume_breakpoint = 1;
2514 }
2515
34b7e8a6 2516 delete_single_step_breakpoints (tp);
30852783 2517
31e77af2 2518 clear_step_over_info ();
30852783 2519 tp->control.trap_expected = 0;
31e77af2
PA
2520
2521 insert_breakpoints ();
30852783
UW
2522 }
2523
b0f16a3e
SM
2524 /* If STEP is set, it's a request to use hardware stepping
2525 facilities. But in that case, we should never
2526 use singlestep breakpoint. */
34b7e8a6 2527 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2528
fbea99ea 2529 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2530 if (tp->control.trap_expected)
b0f16a3e
SM
2531 {
2532 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2533 hit, either by single-stepping the thread with the breakpoint
2534 removed, or by displaced stepping, with the breakpoint inserted.
2535 In the former case, we need to single-step only this thread,
2536 and keep others stopped, as they can miss this breakpoint if
2537 allowed to run. That's not really a problem for displaced
2538 stepping, but, we still keep other threads stopped, in case
2539 another thread is also stopped for a breakpoint waiting for
2540 its turn in the displaced stepping queue. */
b0f16a3e
SM
2541 resume_ptid = inferior_ptid;
2542 }
fbea99ea
PA
2543 else
2544 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2545
7f5ef605
PA
2546 if (execution_direction != EXEC_REVERSE
2547 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2548 {
372316f1
PA
2549 /* There are two cases where we currently need to step a
2550 breakpoint instruction when we have a signal to deliver:
2551
2552 - See handle_signal_stop where we handle random signals that
2553 could take out us out of the stepping range. Normally, in
2554 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2555 signal handler with a breakpoint at PC, but there are cases
2556 where we should _always_ single-step, even if we have a
2557 step-resume breakpoint, like when a software watchpoint is
2558 set. Assuming single-stepping and delivering a signal at the
2559 same time would takes us to the signal handler, then we could
2560 have removed the breakpoint at PC to step over it. However,
2561 some hardware step targets (like e.g., Mac OS) can't step
2562 into signal handlers, and for those, we need to leave the
2563 breakpoint at PC inserted, as otherwise if the handler
2564 recurses and executes PC again, it'll miss the breakpoint.
2565 So we leave the breakpoint inserted anyway, but we need to
2566 record that we tried to step a breakpoint instruction, so
372316f1
PA
2567 that adjust_pc_after_break doesn't end up confused.
2568
2569 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2570 in one thread after another thread that was stepping had been
2571 momentarily paused for a step-over. When we re-resume the
2572 stepping thread, it may be resumed from that address with a
2573 breakpoint that hasn't trapped yet. Seen with
2574 gdb.threads/non-stop-fair-events.exp, on targets that don't
2575 do displaced stepping. */
2576
2577 if (debug_infrun)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2580 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2581
2582 tp->stepped_breakpoint = 1;
2583
b0f16a3e
SM
2584 /* Most targets can step a breakpoint instruction, thus
2585 executing it normally. But if this one cannot, just
2586 continue and we will hit it anyway. */
7f5ef605 2587 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2588 step = 0;
2589 }
ef5cf84e 2590
b0f16a3e 2591 if (debug_displaced
cb71640d 2592 && tp->control.trap_expected
3fc8eb30 2593 && use_displaced_stepping (tp)
cb71640d 2594 && !step_over_info_valid_p ())
b0f16a3e 2595 {
00431a78 2596 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2597 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2598 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2599 gdb_byte buf[4];
2600
2601 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2602 paddress (resume_gdbarch, actual_pc));
2603 read_memory (actual_pc, buf, sizeof (buf));
2604 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2605 }
237fc4c9 2606
b0f16a3e
SM
2607 if (tp->control.may_range_step)
2608 {
2609 /* If we're resuming a thread with the PC out of the step
2610 range, then we're doing some nested/finer run control
2611 operation, like stepping the thread out of the dynamic
2612 linker or the displaced stepping scratch pad. We
2613 shouldn't have allowed a range step then. */
2614 gdb_assert (pc_in_thread_step_range (pc, tp));
2615 }
c1e36e3e 2616
64ce06e4 2617 do_target_resume (resume_ptid, step, sig);
372316f1 2618 tp->resumed = 1;
c906108c 2619}
71d378ae
PA
2620
2621/* Resume the inferior. SIG is the signal to give the inferior
2622 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2623 rolls back state on error. */
2624
aff4e175 2625static void
71d378ae
PA
2626resume (gdb_signal sig)
2627{
a70b8144 2628 try
71d378ae
PA
2629 {
2630 resume_1 (sig);
2631 }
230d2906 2632 catch (const gdb_exception &ex)
71d378ae
PA
2633 {
2634 /* If resuming is being aborted for any reason, delete any
2635 single-step breakpoint resume_1 may have created, to avoid
2636 confusing the following resumption, and to avoid leaving
2637 single-step breakpoints perturbing other threads, in case
2638 we're running in non-stop mode. */
2639 if (inferior_ptid != null_ptid)
2640 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2641 throw;
71d378ae 2642 }
71d378ae
PA
2643}
2644
c906108c 2645\f
237fc4c9 2646/* Proceeding. */
c906108c 2647
4c2f2a79
PA
2648/* See infrun.h. */
2649
2650/* Counter that tracks number of user visible stops. This can be used
2651 to tell whether a command has proceeded the inferior past the
2652 current location. This allows e.g., inferior function calls in
2653 breakpoint commands to not interrupt the command list. When the
2654 call finishes successfully, the inferior is standing at the same
2655 breakpoint as if nothing happened (and so we don't call
2656 normal_stop). */
2657static ULONGEST current_stop_id;
2658
2659/* See infrun.h. */
2660
2661ULONGEST
2662get_stop_id (void)
2663{
2664 return current_stop_id;
2665}
2666
2667/* Called when we report a user visible stop. */
2668
2669static void
2670new_stop_id (void)
2671{
2672 current_stop_id++;
2673}
2674
c906108c
SS
2675/* Clear out all variables saying what to do when inferior is continued.
2676 First do this, then set the ones you want, then call `proceed'. */
2677
a7212384
UW
2678static void
2679clear_proceed_status_thread (struct thread_info *tp)
c906108c 2680{
a7212384
UW
2681 if (debug_infrun)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2684 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2685
372316f1
PA
2686 /* If we're starting a new sequence, then the previous finished
2687 single-step is no longer relevant. */
2688 if (tp->suspend.waitstatus_pending_p)
2689 {
2690 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2691 {
2692 if (debug_infrun)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "infrun: clear_proceed_status: pending "
2695 "event of %s was a finished step. "
2696 "Discarding.\n",
a068643d 2697 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2698
2699 tp->suspend.waitstatus_pending_p = 0;
2700 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2701 }
2702 else if (debug_infrun)
2703 {
23fdd69e
SM
2704 std::string statstr
2705 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2706
372316f1
PA
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: clear_proceed_status_thread: thread %s "
2709 "has pending wait status %s "
2710 "(currently_stepping=%d).\n",
a068643d
TT
2711 target_pid_to_str (tp->ptid).c_str (),
2712 statstr.c_str (),
372316f1 2713 currently_stepping (tp));
372316f1
PA
2714 }
2715 }
2716
70509625
PA
2717 /* If this signal should not be seen by program, give it zero.
2718 Used for debugging signals. */
2719 if (!signal_pass_state (tp->suspend.stop_signal))
2720 tp->suspend.stop_signal = GDB_SIGNAL_0;
2721
46e3ed7f 2722 delete tp->thread_fsm;
243a9253
PA
2723 tp->thread_fsm = NULL;
2724
16c381f0
JK
2725 tp->control.trap_expected = 0;
2726 tp->control.step_range_start = 0;
2727 tp->control.step_range_end = 0;
c1e36e3e 2728 tp->control.may_range_step = 0;
16c381f0
JK
2729 tp->control.step_frame_id = null_frame_id;
2730 tp->control.step_stack_frame_id = null_frame_id;
2731 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2732 tp->control.step_start_function = NULL;
a7212384 2733 tp->stop_requested = 0;
4e1c45ea 2734
16c381f0 2735 tp->control.stop_step = 0;
32400beb 2736
16c381f0 2737 tp->control.proceed_to_finish = 0;
414c69f7 2738
856e7dd6 2739 tp->control.stepping_command = 0;
17b2616c 2740
a7212384 2741 /* Discard any remaining commands or status from previous stop. */
16c381f0 2742 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2743}
32400beb 2744
a7212384 2745void
70509625 2746clear_proceed_status (int step)
a7212384 2747{
f2665db5
MM
2748 /* With scheduler-locking replay, stop replaying other threads if we're
2749 not replaying the user-visible resume ptid.
2750
2751 This is a convenience feature to not require the user to explicitly
2752 stop replaying the other threads. We're assuming that the user's
2753 intent is to resume tracing the recorded process. */
2754 if (!non_stop && scheduler_mode == schedlock_replay
2755 && target_record_is_replaying (minus_one_ptid)
2756 && !target_record_will_replay (user_visible_resume_ptid (step),
2757 execution_direction))
2758 target_record_stop_replaying ();
2759
08036331 2760 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2761 {
08036331 2762 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2763
2764 /* In all-stop mode, delete the per-thread status of all threads
2765 we're about to resume, implicitly and explicitly. */
08036331
PA
2766 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2767 clear_proceed_status_thread (tp);
6c95b8df
PA
2768 }
2769
d7e15655 2770 if (inferior_ptid != null_ptid)
a7212384
UW
2771 {
2772 struct inferior *inferior;
2773
2774 if (non_stop)
2775 {
6c95b8df
PA
2776 /* If in non-stop mode, only delete the per-thread status of
2777 the current thread. */
a7212384
UW
2778 clear_proceed_status_thread (inferior_thread ());
2779 }
6c95b8df 2780
d6b48e9c 2781 inferior = current_inferior ();
16c381f0 2782 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2783 }
2784
76727919 2785 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2786}
2787
99619bea
PA
2788/* Returns true if TP is still stopped at a breakpoint that needs
2789 stepping-over in order to make progress. If the breakpoint is gone
2790 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2791
2792static int
6c4cfb24 2793thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2794{
2795 if (tp->stepping_over_breakpoint)
2796 {
00431a78 2797 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2798
a01bda52 2799 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2800 regcache_read_pc (regcache))
2801 == ordinary_breakpoint_here)
99619bea
PA
2802 return 1;
2803
2804 tp->stepping_over_breakpoint = 0;
2805 }
2806
2807 return 0;
2808}
2809
6c4cfb24
PA
2810/* Check whether thread TP still needs to start a step-over in order
2811 to make progress when resumed. Returns an bitwise or of enum
2812 step_over_what bits, indicating what needs to be stepped over. */
2813
8d297bbf 2814static step_over_what
6c4cfb24
PA
2815thread_still_needs_step_over (struct thread_info *tp)
2816{
8d297bbf 2817 step_over_what what = 0;
6c4cfb24
PA
2818
2819 if (thread_still_needs_step_over_bp (tp))
2820 what |= STEP_OVER_BREAKPOINT;
2821
2822 if (tp->stepping_over_watchpoint
2823 && !target_have_steppable_watchpoint)
2824 what |= STEP_OVER_WATCHPOINT;
2825
2826 return what;
2827}
2828
483805cf
PA
2829/* Returns true if scheduler locking applies. STEP indicates whether
2830 we're about to do a step/next-like command to a thread. */
2831
2832static int
856e7dd6 2833schedlock_applies (struct thread_info *tp)
483805cf
PA
2834{
2835 return (scheduler_mode == schedlock_on
2836 || (scheduler_mode == schedlock_step
f2665db5
MM
2837 && tp->control.stepping_command)
2838 || (scheduler_mode == schedlock_replay
2839 && target_record_will_replay (minus_one_ptid,
2840 execution_direction)));
483805cf
PA
2841}
2842
c906108c
SS
2843/* Basic routine for continuing the program in various fashions.
2844
2845 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2846 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2847 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2848
2849 You should call clear_proceed_status before calling proceed. */
2850
2851void
64ce06e4 2852proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2853{
e58b0e63
PA
2854 struct regcache *regcache;
2855 struct gdbarch *gdbarch;
e58b0e63 2856 CORE_ADDR pc;
4d9d9d04
PA
2857 ptid_t resume_ptid;
2858 struct execution_control_state ecss;
2859 struct execution_control_state *ecs = &ecss;
4d9d9d04 2860 int started;
c906108c 2861
e58b0e63
PA
2862 /* If we're stopped at a fork/vfork, follow the branch set by the
2863 "set follow-fork-mode" command; otherwise, we'll just proceed
2864 resuming the current thread. */
2865 if (!follow_fork ())
2866 {
2867 /* The target for some reason decided not to resume. */
2868 normal_stop ();
f148b27e
PA
2869 if (target_can_async_p ())
2870 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2871 return;
2872 }
2873
842951eb
PA
2874 /* We'll update this if & when we switch to a new thread. */
2875 previous_inferior_ptid = inferior_ptid;
2876
e58b0e63 2877 regcache = get_current_regcache ();
ac7936df 2878 gdbarch = regcache->arch ();
8b86c959
YQ
2879 const address_space *aspace = regcache->aspace ();
2880
e58b0e63 2881 pc = regcache_read_pc (regcache);
08036331 2882 thread_info *cur_thr = inferior_thread ();
e58b0e63 2883
99619bea 2884 /* Fill in with reasonable starting values. */
08036331 2885 init_thread_stepping_state (cur_thr);
99619bea 2886
08036331 2887 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2888
2acceee2 2889 if (addr == (CORE_ADDR) -1)
c906108c 2890 {
08036331 2891 if (pc == cur_thr->suspend.stop_pc
af48d08f 2892 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2893 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2894 /* There is a breakpoint at the address we will resume at,
2895 step one instruction before inserting breakpoints so that
2896 we do not stop right away (and report a second hit at this
b2175913
MS
2897 breakpoint).
2898
2899 Note, we don't do this in reverse, because we won't
2900 actually be executing the breakpoint insn anyway.
2901 We'll be (un-)executing the previous instruction. */
08036331 2902 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2903 else if (gdbarch_single_step_through_delay_p (gdbarch)
2904 && gdbarch_single_step_through_delay (gdbarch,
2905 get_current_frame ()))
3352ef37
AC
2906 /* We stepped onto an instruction that needs to be stepped
2907 again before re-inserting the breakpoint, do so. */
08036331 2908 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2909 }
2910 else
2911 {
515630c5 2912 regcache_write_pc (regcache, addr);
c906108c
SS
2913 }
2914
70509625 2915 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2916 cur_thr->suspend.stop_signal = siggnal;
70509625 2917
08036331 2918 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2919
2920 /* If an exception is thrown from this point on, make sure to
2921 propagate GDB's knowledge of the executing state to the
2922 frontend/user running state. */
731f534f 2923 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2924
2925 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2926 threads (e.g., we might need to set threads stepping over
2927 breakpoints first), from the user/frontend's point of view, all
2928 threads in RESUME_PTID are now running. Unless we're calling an
2929 inferior function, as in that case we pretend the inferior
2930 doesn't run at all. */
08036331 2931 if (!cur_thr->control.in_infcall)
4d9d9d04 2932 set_running (resume_ptid, 1);
17b2616c 2933
527159b7 2934 if (debug_infrun)
8a9de0e4 2935 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2936 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2937 paddress (gdbarch, addr),
64ce06e4 2938 gdb_signal_to_symbol_string (siggnal));
527159b7 2939
4d9d9d04
PA
2940 annotate_starting ();
2941
2942 /* Make sure that output from GDB appears before output from the
2943 inferior. */
2944 gdb_flush (gdb_stdout);
2945
d930703d
PA
2946 /* Since we've marked the inferior running, give it the terminal. A
2947 QUIT/Ctrl-C from here on is forwarded to the target (which can
2948 still detect attempts to unblock a stuck connection with repeated
2949 Ctrl-C from within target_pass_ctrlc). */
2950 target_terminal::inferior ();
2951
4d9d9d04
PA
2952 /* In a multi-threaded task we may select another thread and
2953 then continue or step.
2954
2955 But if a thread that we're resuming had stopped at a breakpoint,
2956 it will immediately cause another breakpoint stop without any
2957 execution (i.e. it will report a breakpoint hit incorrectly). So
2958 we must step over it first.
2959
2960 Look for threads other than the current (TP) that reported a
2961 breakpoint hit and haven't been resumed yet since. */
2962
2963 /* If scheduler locking applies, we can avoid iterating over all
2964 threads. */
08036331 2965 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2966 {
08036331
PA
2967 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2968 {
4d9d9d04
PA
2969 /* Ignore the current thread here. It's handled
2970 afterwards. */
08036331 2971 if (tp == cur_thr)
4d9d9d04 2972 continue;
c906108c 2973
4d9d9d04
PA
2974 if (!thread_still_needs_step_over (tp))
2975 continue;
2976
2977 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2978
99619bea
PA
2979 if (debug_infrun)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "infrun: need to step-over [%s] first\n",
a068643d 2982 target_pid_to_str (tp->ptid).c_str ());
99619bea 2983
66716e78 2984 global_thread_step_over_chain_enqueue (tp);
2adfaa28 2985 }
30852783
UW
2986 }
2987
4d9d9d04
PA
2988 /* Enqueue the current thread last, so that we move all other
2989 threads over their breakpoints first. */
08036331 2990 if (cur_thr->stepping_over_breakpoint)
66716e78 2991 global_thread_step_over_chain_enqueue (cur_thr);
30852783 2992
4d9d9d04
PA
2993 /* If the thread isn't started, we'll still need to set its prev_pc,
2994 so that switch_back_to_stepped_thread knows the thread hasn't
2995 advanced. Must do this before resuming any thread, as in
2996 all-stop/remote, once we resume we can't send any other packet
2997 until the target stops again. */
08036331 2998 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2999
a9bc57b9
TT
3000 {
3001 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3002
a9bc57b9 3003 started = start_step_over ();
c906108c 3004
a9bc57b9
TT
3005 if (step_over_info_valid_p ())
3006 {
3007 /* Either this thread started a new in-line step over, or some
3008 other thread was already doing one. In either case, don't
3009 resume anything else until the step-over is finished. */
3010 }
3011 else if (started && !target_is_non_stop_p ())
3012 {
3013 /* A new displaced stepping sequence was started. In all-stop,
3014 we can't talk to the target anymore until it next stops. */
3015 }
3016 else if (!non_stop && target_is_non_stop_p ())
3017 {
3018 /* In all-stop, but the target is always in non-stop mode.
3019 Start all other threads that are implicitly resumed too. */
08036331 3020 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3021 {
fbea99ea
PA
3022 if (tp->resumed)
3023 {
3024 if (debug_infrun)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "infrun: proceed: [%s] resumed\n",
a068643d 3027 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3028 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3029 continue;
3030 }
3031
3032 if (thread_is_in_step_over_chain (tp))
3033 {
3034 if (debug_infrun)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "infrun: proceed: [%s] needs step-over\n",
a068643d 3037 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3038 continue;
3039 }
3040
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "infrun: proceed: resuming %s\n",
a068643d 3044 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3045
3046 reset_ecs (ecs, tp);
00431a78 3047 switch_to_thread (tp);
fbea99ea
PA
3048 keep_going_pass_signal (ecs);
3049 if (!ecs->wait_some_more)
fd7dcb94 3050 error (_("Command aborted."));
fbea99ea 3051 }
a9bc57b9 3052 }
08036331 3053 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3054 {
3055 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3056 reset_ecs (ecs, cur_thr);
3057 switch_to_thread (cur_thr);
a9bc57b9
TT
3058 keep_going_pass_signal (ecs);
3059 if (!ecs->wait_some_more)
3060 error (_("Command aborted."));
3061 }
3062 }
c906108c 3063
85ad3aaf
PA
3064 target_commit_resume ();
3065
731f534f 3066 finish_state.release ();
c906108c 3067
0b333c5e
PA
3068 /* Tell the event loop to wait for it to stop. If the target
3069 supports asynchronous execution, it'll do this from within
3070 target_resume. */
362646f5 3071 if (!target_can_async_p ())
0b333c5e 3072 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3073}
c906108c
SS
3074\f
3075
3076/* Start remote-debugging of a machine over a serial link. */
96baa820 3077
c906108c 3078void
8621d6a9 3079start_remote (int from_tty)
c906108c 3080{
d6b48e9c 3081 struct inferior *inferior;
d6b48e9c
PA
3082
3083 inferior = current_inferior ();
16c381f0 3084 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3085
1777feb0 3086 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3087 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3088 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3089 nothing is returned (instead of just blocking). Because of this,
3090 targets expecting an immediate response need to, internally, set
3091 things up so that the target_wait() is forced to eventually
1777feb0 3092 timeout. */
6426a772
JM
3093 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3094 differentiate to its caller what the state of the target is after
3095 the initial open has been performed. Here we're assuming that
3096 the target has stopped. It should be possible to eventually have
3097 target_open() return to the caller an indication that the target
3098 is currently running and GDB state should be set to the same as
1777feb0 3099 for an async run. */
e4c8541f 3100 wait_for_inferior ();
8621d6a9
DJ
3101
3102 /* Now that the inferior has stopped, do any bookkeeping like
3103 loading shared libraries. We want to do this before normal_stop,
3104 so that the displayed frame is up to date. */
8b88a78e 3105 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3106
6426a772 3107 normal_stop ();
c906108c
SS
3108}
3109
3110/* Initialize static vars when a new inferior begins. */
3111
3112void
96baa820 3113init_wait_for_inferior (void)
c906108c
SS
3114{
3115 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3116
c906108c
SS
3117 breakpoint_init_inferior (inf_starting);
3118
70509625 3119 clear_proceed_status (0);
9f976b41 3120
ca005067 3121 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3122
842951eb 3123 previous_inferior_ptid = inferior_ptid;
c906108c 3124}
237fc4c9 3125
c906108c 3126\f
488f131b 3127
ec9499be 3128static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3129
568d6575
UW
3130static void handle_step_into_function (struct gdbarch *gdbarch,
3131 struct execution_control_state *ecs);
3132static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3133 struct execution_control_state *ecs);
4f5d7f63 3134static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3135static void check_exception_resume (struct execution_control_state *,
28106bc2 3136 struct frame_info *);
611c83ae 3137
bdc36728 3138static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3139static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3140static void keep_going (struct execution_control_state *ecs);
94c57d6a 3141static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3142static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3143
252fbfc8
PA
3144/* This function is attached as a "thread_stop_requested" observer.
3145 Cleanup local state that assumed the PTID was to be resumed, and
3146 report the stop to the frontend. */
3147
2c0b251b 3148static void
252fbfc8
PA
3149infrun_thread_stop_requested (ptid_t ptid)
3150{
c65d6b55
PA
3151 /* PTID was requested to stop. If the thread was already stopped,
3152 but the user/frontend doesn't know about that yet (e.g., the
3153 thread had been temporarily paused for some step-over), set up
3154 for reporting the stop now. */
08036331
PA
3155 for (thread_info *tp : all_threads (ptid))
3156 {
3157 if (tp->state != THREAD_RUNNING)
3158 continue;
3159 if (tp->executing)
3160 continue;
c65d6b55 3161
08036331
PA
3162 /* Remove matching threads from the step-over queue, so
3163 start_step_over doesn't try to resume them
3164 automatically. */
3165 if (thread_is_in_step_over_chain (tp))
66716e78 3166 global_thread_step_over_chain_remove (tp);
c65d6b55 3167
08036331
PA
3168 /* If the thread is stopped, but the user/frontend doesn't
3169 know about that yet, queue a pending event, as if the
3170 thread had just stopped now. Unless the thread already had
3171 a pending event. */
3172 if (!tp->suspend.waitstatus_pending_p)
3173 {
3174 tp->suspend.waitstatus_pending_p = 1;
3175 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3176 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3177 }
c65d6b55 3178
08036331
PA
3179 /* Clear the inline-frame state, since we're re-processing the
3180 stop. */
3181 clear_inline_frame_state (tp->ptid);
c65d6b55 3182
08036331
PA
3183 /* If this thread was paused because some other thread was
3184 doing an inline-step over, let that finish first. Once
3185 that happens, we'll restart all threads and consume pending
3186 stop events then. */
3187 if (step_over_info_valid_p ())
3188 continue;
3189
3190 /* Otherwise we can process the (new) pending event now. Set
3191 it so this pending event is considered by
3192 do_target_wait. */
3193 tp->resumed = 1;
3194 }
252fbfc8
PA
3195}
3196
a07daef3
PA
3197static void
3198infrun_thread_thread_exit (struct thread_info *tp, int silent)
3199{
d7e15655 3200 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3201 nullify_last_target_wait_ptid ();
3202}
3203
0cbcdb96
PA
3204/* Delete the step resume, single-step and longjmp/exception resume
3205 breakpoints of TP. */
4e1c45ea 3206
0cbcdb96
PA
3207static void
3208delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3209{
0cbcdb96
PA
3210 delete_step_resume_breakpoint (tp);
3211 delete_exception_resume_breakpoint (tp);
34b7e8a6 3212 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3213}
3214
0cbcdb96
PA
3215/* If the target still has execution, call FUNC for each thread that
3216 just stopped. In all-stop, that's all the non-exited threads; in
3217 non-stop, that's the current thread, only. */
3218
3219typedef void (*for_each_just_stopped_thread_callback_func)
3220 (struct thread_info *tp);
4e1c45ea
PA
3221
3222static void
0cbcdb96 3223for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3224{
d7e15655 3225 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3226 return;
3227
fbea99ea 3228 if (target_is_non_stop_p ())
4e1c45ea 3229 {
0cbcdb96
PA
3230 /* If in non-stop mode, only the current thread stopped. */
3231 func (inferior_thread ());
4e1c45ea
PA
3232 }
3233 else
0cbcdb96 3234 {
0cbcdb96 3235 /* In all-stop mode, all threads have stopped. */
08036331
PA
3236 for (thread_info *tp : all_non_exited_threads ())
3237 func (tp);
0cbcdb96
PA
3238 }
3239}
3240
3241/* Delete the step resume and longjmp/exception resume breakpoints of
3242 the threads that just stopped. */
3243
3244static void
3245delete_just_stopped_threads_infrun_breakpoints (void)
3246{
3247 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3248}
3249
3250/* Delete the single-step breakpoints of the threads that just
3251 stopped. */
7c16b83e 3252
34b7e8a6
PA
3253static void
3254delete_just_stopped_threads_single_step_breakpoints (void)
3255{
3256 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3257}
3258
221e1a37 3259/* See infrun.h. */
223698f8 3260
221e1a37 3261void
223698f8
DE
3262print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3263 const struct target_waitstatus *ws)
3264{
23fdd69e 3265 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3266 string_file stb;
223698f8
DE
3267
3268 /* The text is split over several lines because it was getting too long.
3269 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3270 output as a unit; we want only one timestamp printed if debug_timestamp
3271 is set. */
3272
d7e74731 3273 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3274 waiton_ptid.pid (),
e38504b3 3275 waiton_ptid.lwp (),
cc6bcb54 3276 waiton_ptid.tid ());
e99b03dc 3277 if (waiton_ptid.pid () != -1)
a068643d 3278 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3279 stb.printf (", status) =\n");
3280 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3281 result_ptid.pid (),
e38504b3 3282 result_ptid.lwp (),
cc6bcb54 3283 result_ptid.tid (),
a068643d 3284 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3285 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3286
3287 /* This uses %s in part to handle %'s in the text, but also to avoid
3288 a gcc error: the format attribute requires a string literal. */
d7e74731 3289 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3290}
3291
372316f1
PA
3292/* Select a thread at random, out of those which are resumed and have
3293 had events. */
3294
3295static struct thread_info *
3296random_pending_event_thread (ptid_t waiton_ptid)
3297{
372316f1 3298 int num_events = 0;
08036331
PA
3299
3300 auto has_event = [] (thread_info *tp)
3301 {
3302 return (tp->resumed
3303 && tp->suspend.waitstatus_pending_p);
3304 };
372316f1
PA
3305
3306 /* First see how many events we have. Count only resumed threads
3307 that have an event pending. */
08036331
PA
3308 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3309 if (has_event (tp))
372316f1
PA
3310 num_events++;
3311
3312 if (num_events == 0)
3313 return NULL;
3314
3315 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3316 int random_selector = (int) ((num_events * (double) rand ())
3317 / (RAND_MAX + 1.0));
372316f1
PA
3318
3319 if (debug_infrun && num_events > 1)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "infrun: Found %d events, selecting #%d\n",
3322 num_events, random_selector);
3323
3324 /* Select the Nth thread that has had an event. */
08036331
PA
3325 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3326 if (has_event (tp))
372316f1 3327 if (random_selector-- == 0)
08036331 3328 return tp;
372316f1 3329
08036331 3330 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3331}
3332
3333/* Wrapper for target_wait that first checks whether threads have
3334 pending statuses to report before actually asking the target for
3335 more events. */
3336
3337static ptid_t
3338do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3339{
3340 ptid_t event_ptid;
3341 struct thread_info *tp;
3342
3343 /* First check if there is a resumed thread with a wait status
3344 pending. */
d7e15655 3345 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3346 {
3347 tp = random_pending_event_thread (ptid);
3348 }
3349 else
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: Waiting for specific thread %s.\n",
a068643d 3354 target_pid_to_str (ptid).c_str ());
372316f1
PA
3355
3356 /* We have a specific thread to check. */
3357 tp = find_thread_ptid (ptid);
3358 gdb_assert (tp != NULL);
3359 if (!tp->suspend.waitstatus_pending_p)
3360 tp = NULL;
3361 }
3362
3363 if (tp != NULL
3364 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3365 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3366 {
00431a78 3367 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3368 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3369 CORE_ADDR pc;
3370 int discard = 0;
3371
3372 pc = regcache_read_pc (regcache);
3373
3374 if (pc != tp->suspend.stop_pc)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3379 target_pid_to_str (tp->ptid).c_str (),
defd2172 3380 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3381 paddress (gdbarch, pc));
3382 discard = 1;
3383 }
a01bda52 3384 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3385 {
3386 if (debug_infrun)
3387 fprintf_unfiltered (gdb_stdlog,
3388 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3389 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3390 paddress (gdbarch, pc));
3391
3392 discard = 1;
3393 }
3394
3395 if (discard)
3396 {
3397 if (debug_infrun)
3398 fprintf_unfiltered (gdb_stdlog,
3399 "infrun: pending event of %s cancelled.\n",
a068643d 3400 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3401
3402 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3403 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3404 }
3405 }
3406
3407 if (tp != NULL)
3408 {
3409 if (debug_infrun)
3410 {
23fdd69e
SM
3411 std::string statstr
3412 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3413
372316f1
PA
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3416 statstr.c_str (),
a068643d 3417 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3418 }
3419
3420 /* Now that we've selected our final event LWP, un-adjust its PC
3421 if it was a software breakpoint (and the target doesn't
3422 always adjust the PC itself). */
3423 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3424 && !target_supports_stopped_by_sw_breakpoint ())
3425 {
3426 struct regcache *regcache;
3427 struct gdbarch *gdbarch;
3428 int decr_pc;
3429
00431a78 3430 regcache = get_thread_regcache (tp);
ac7936df 3431 gdbarch = regcache->arch ();
372316f1
PA
3432
3433 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3434 if (decr_pc != 0)
3435 {
3436 CORE_ADDR pc;
3437
3438 pc = regcache_read_pc (regcache);
3439 regcache_write_pc (regcache, pc + decr_pc);
3440 }
3441 }
3442
3443 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3444 *status = tp->suspend.waitstatus;
3445 tp->suspend.waitstatus_pending_p = 0;
3446
3447 /* Wake up the event loop again, until all pending events are
3448 processed. */
3449 if (target_is_async_p ())
3450 mark_async_event_handler (infrun_async_inferior_event_token);
3451 return tp->ptid;
3452 }
3453
3454 /* But if we don't find one, we'll have to wait. */
3455
3456 if (deprecated_target_wait_hook)
3457 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3458 else
3459 event_ptid = target_wait (ptid, status, options);
3460
3461 return event_ptid;
3462}
3463
24291992
PA
3464/* Prepare and stabilize the inferior for detaching it. E.g.,
3465 detaching while a thread is displaced stepping is a recipe for
3466 crashing it, as nothing would readjust the PC out of the scratch
3467 pad. */
3468
3469void
3470prepare_for_detach (void)
3471{
3472 struct inferior *inf = current_inferior ();
f2907e49 3473 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3474
00431a78 3475 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3476
3477 /* Is any thread of this process displaced stepping? If not,
3478 there's nothing else to do. */
d20172fc 3479 if (displaced->step_thread == nullptr)
24291992
PA
3480 return;
3481
3482 if (debug_infrun)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "displaced-stepping in-process while detaching");
3485
9bcb1f16 3486 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3487
00431a78 3488 while (displaced->step_thread != nullptr)
24291992 3489 {
24291992
PA
3490 struct execution_control_state ecss;
3491 struct execution_control_state *ecs;
3492
3493 ecs = &ecss;
3494 memset (ecs, 0, sizeof (*ecs));
3495
3496 overlay_cache_invalid = 1;
f15cb84a
YQ
3497 /* Flush target cache before starting to handle each event.
3498 Target was running and cache could be stale. This is just a
3499 heuristic. Running threads may modify target memory, but we
3500 don't get any event. */
3501 target_dcache_invalidate ();
24291992 3502
372316f1 3503 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3504
3505 if (debug_infrun)
3506 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3507
3508 /* If an error happens while handling the event, propagate GDB's
3509 knowledge of the executing state to the frontend/user running
3510 state. */
731f534f 3511 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3512
3513 /* Now figure out what to do with the result of the result. */
3514 handle_inferior_event (ecs);
3515
3516 /* No error, don't finish the state yet. */
731f534f 3517 finish_state.release ();
24291992
PA
3518
3519 /* Breakpoints and watchpoints are not installed on the target
3520 at this point, and signals are passed directly to the
3521 inferior, so this must mean the process is gone. */
3522 if (!ecs->wait_some_more)
3523 {
9bcb1f16 3524 restore_detaching.release ();
24291992
PA
3525 error (_("Program exited while detaching"));
3526 }
3527 }
3528
9bcb1f16 3529 restore_detaching.release ();
24291992
PA
3530}
3531
cd0fc7c3 3532/* Wait for control to return from inferior to debugger.
ae123ec6 3533
cd0fc7c3
SS
3534 If inferior gets a signal, we may decide to start it up again
3535 instead of returning. That is why there is a loop in this function.
3536 When this function actually returns it means the inferior
3537 should be left stopped and GDB should read more commands. */
3538
3539void
e4c8541f 3540wait_for_inferior (void)
cd0fc7c3 3541{
527159b7 3542 if (debug_infrun)
ae123ec6 3543 fprintf_unfiltered
e4c8541f 3544 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3545
4c41382a 3546 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3547
e6f5c25b
PA
3548 /* If an error happens while handling the event, propagate GDB's
3549 knowledge of the executing state to the frontend/user running
3550 state. */
731f534f 3551 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3552
c906108c
SS
3553 while (1)
3554 {
ae25568b
PA
3555 struct execution_control_state ecss;
3556 struct execution_control_state *ecs = &ecss;
963f9c80 3557 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3558
ae25568b
PA
3559 memset (ecs, 0, sizeof (*ecs));
3560
ec9499be 3561 overlay_cache_invalid = 1;
ec9499be 3562
f15cb84a
YQ
3563 /* Flush target cache before starting to handle each event.
3564 Target was running and cache could be stale. This is just a
3565 heuristic. Running threads may modify target memory, but we
3566 don't get any event. */
3567 target_dcache_invalidate ();
3568
372316f1 3569 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3570
f00150c9 3571 if (debug_infrun)
223698f8 3572 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3573
cd0fc7c3
SS
3574 /* Now figure out what to do with the result of the result. */
3575 handle_inferior_event (ecs);
c906108c 3576
cd0fc7c3
SS
3577 if (!ecs->wait_some_more)
3578 break;
3579 }
4e1c45ea 3580
e6f5c25b 3581 /* No error, don't finish the state yet. */
731f534f 3582 finish_state.release ();
cd0fc7c3 3583}
c906108c 3584
d3d4baed
PA
3585/* Cleanup that reinstalls the readline callback handler, if the
3586 target is running in the background. If while handling the target
3587 event something triggered a secondary prompt, like e.g., a
3588 pagination prompt, we'll have removed the callback handler (see
3589 gdb_readline_wrapper_line). Need to do this as we go back to the
3590 event loop, ready to process further input. Note this has no
3591 effect if the handler hasn't actually been removed, because calling
3592 rl_callback_handler_install resets the line buffer, thus losing
3593 input. */
3594
3595static void
d238133d 3596reinstall_readline_callback_handler_cleanup ()
d3d4baed 3597{
3b12939d
PA
3598 struct ui *ui = current_ui;
3599
3600 if (!ui->async)
6c400b59
PA
3601 {
3602 /* We're not going back to the top level event loop yet. Don't
3603 install the readline callback, as it'd prep the terminal,
3604 readline-style (raw, noecho) (e.g., --batch). We'll install
3605 it the next time the prompt is displayed, when we're ready
3606 for input. */
3607 return;
3608 }
3609
3b12939d 3610 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3611 gdb_rl_callback_handler_reinstall ();
3612}
3613
243a9253
PA
3614/* Clean up the FSMs of threads that are now stopped. In non-stop,
3615 that's just the event thread. In all-stop, that's all threads. */
3616
3617static void
3618clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3619{
08036331
PA
3620 if (ecs->event_thread != NULL
3621 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3622 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3623
3624 if (!non_stop)
3625 {
08036331 3626 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3627 {
3628 if (thr->thread_fsm == NULL)
3629 continue;
3630 if (thr == ecs->event_thread)
3631 continue;
3632
00431a78 3633 switch_to_thread (thr);
46e3ed7f 3634 thr->thread_fsm->clean_up (thr);
243a9253
PA
3635 }
3636
3637 if (ecs->event_thread != NULL)
00431a78 3638 switch_to_thread (ecs->event_thread);
243a9253
PA
3639 }
3640}
3641
3b12939d
PA
3642/* Helper for all_uis_check_sync_execution_done that works on the
3643 current UI. */
3644
3645static void
3646check_curr_ui_sync_execution_done (void)
3647{
3648 struct ui *ui = current_ui;
3649
3650 if (ui->prompt_state == PROMPT_NEEDED
3651 && ui->async
3652 && !gdb_in_secondary_prompt_p (ui))
3653 {
223ffa71 3654 target_terminal::ours ();
76727919 3655 gdb::observers::sync_execution_done.notify ();
3eb7562a 3656 ui_register_input_event_handler (ui);
3b12939d
PA
3657 }
3658}
3659
3660/* See infrun.h. */
3661
3662void
3663all_uis_check_sync_execution_done (void)
3664{
0e454242 3665 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3666 {
3667 check_curr_ui_sync_execution_done ();
3668 }
3669}
3670
a8836c93
PA
3671/* See infrun.h. */
3672
3673void
3674all_uis_on_sync_execution_starting (void)
3675{
0e454242 3676 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3677 {
3678 if (current_ui->prompt_state == PROMPT_NEEDED)
3679 async_disable_stdin ();
3680 }
3681}
3682
1777feb0 3683/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3684 event loop whenever a change of state is detected on the file
1777feb0
MS
3685 descriptor corresponding to the target. It can be called more than
3686 once to complete a single execution command. In such cases we need
3687 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3688 that this function is called for a single execution command, then
3689 report to the user that the inferior has stopped, and do the
1777feb0 3690 necessary cleanups. */
43ff13b4
JM
3691
3692void
fba45db2 3693fetch_inferior_event (void *client_data)
43ff13b4 3694{
0d1e5fa7 3695 struct execution_control_state ecss;
a474d7c2 3696 struct execution_control_state *ecs = &ecss;
0f641c01 3697 int cmd_done = 0;
963f9c80 3698 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3699
0d1e5fa7
PA
3700 memset (ecs, 0, sizeof (*ecs));
3701
c61db772
PA
3702 /* Events are always processed with the main UI as current UI. This
3703 way, warnings, debug output, etc. are always consistently sent to
3704 the main console. */
4b6749b9 3705 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3706
d3d4baed 3707 /* End up with readline processing input, if necessary. */
d238133d
TT
3708 {
3709 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3710
3711 /* We're handling a live event, so make sure we're doing live
3712 debugging. If we're looking at traceframes while the target is
3713 running, we're going to need to get back to that mode after
3714 handling the event. */
3715 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3716 if (non_stop)
3717 {
3718 maybe_restore_traceframe.emplace ();
3719 set_current_traceframe (-1);
3720 }
43ff13b4 3721
d238133d
TT
3722 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3723
3724 if (non_stop)
3725 /* In non-stop mode, the user/frontend should not notice a thread
3726 switch due to internal events. Make sure we reverse to the
3727 user selected thread and frame after handling the event and
3728 running any breakpoint commands. */
3729 maybe_restore_thread.emplace ();
3730
3731 overlay_cache_invalid = 1;
3732 /* Flush target cache before starting to handle each event. Target
3733 was running and cache could be stale. This is just a heuristic.
3734 Running threads may modify target memory, but we don't get any
3735 event. */
3736 target_dcache_invalidate ();
3737
3738 scoped_restore save_exec_dir
3739 = make_scoped_restore (&execution_direction,
3740 target_execution_direction ());
3741
3742 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3743 target_can_async_p () ? TARGET_WNOHANG : 0);
3744
3745 if (debug_infrun)
3746 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3747
3748 /* If an error happens while handling the event, propagate GDB's
3749 knowledge of the executing state to the frontend/user running
3750 state. */
3751 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3752 scoped_finish_thread_state finish_state (finish_ptid);
3753
979a0d13 3754 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3755 still for the thread which has thrown the exception. */
3756 auto defer_bpstat_clear
3757 = make_scope_exit (bpstat_clear_actions);
3758 auto defer_delete_threads
3759 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3760
3761 /* Now figure out what to do with the result of the result. */
3762 handle_inferior_event (ecs);
3763
3764 if (!ecs->wait_some_more)
3765 {
3766 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3767 int should_stop = 1;
3768 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3769
d238133d 3770 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3771
d238133d
TT
3772 if (thr != NULL)
3773 {
3774 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3775
d238133d 3776 if (thread_fsm != NULL)
46e3ed7f 3777 should_stop = thread_fsm->should_stop (thr);
d238133d 3778 }
243a9253 3779
d238133d
TT
3780 if (!should_stop)
3781 {
3782 keep_going (ecs);
3783 }
3784 else
3785 {
46e3ed7f 3786 bool should_notify_stop = true;
d238133d 3787 int proceeded = 0;
1840d81a 3788
d238133d 3789 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3790
d238133d 3791 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3792 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3793
d238133d
TT
3794 if (should_notify_stop)
3795 {
3796 /* We may not find an inferior if this was a process exit. */
3797 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3798 proceeded = normal_stop ();
3799 }
243a9253 3800
d238133d
TT
3801 if (!proceeded)
3802 {
3803 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3804 cmd_done = 1;
3805 }
3806 }
3807 }
4f8d22e3 3808
d238133d
TT
3809 defer_delete_threads.release ();
3810 defer_bpstat_clear.release ();
29f49a6a 3811
d238133d
TT
3812 /* No error, don't finish the thread states yet. */
3813 finish_state.release ();
731f534f 3814
d238133d
TT
3815 /* This scope is used to ensure that readline callbacks are
3816 reinstalled here. */
3817 }
4f8d22e3 3818
3b12939d
PA
3819 /* If a UI was in sync execution mode, and now isn't, restore its
3820 prompt (a synchronous execution command has finished, and we're
3821 ready for input). */
3822 all_uis_check_sync_execution_done ();
0f641c01
PA
3823
3824 if (cmd_done
0f641c01 3825 && exec_done_display_p
00431a78
PA
3826 && (inferior_ptid == null_ptid
3827 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3828 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3829}
3830
edb3359d
DJ
3831/* Record the frame and location we're currently stepping through. */
3832void
3833set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3834{
3835 struct thread_info *tp = inferior_thread ();
3836
16c381f0
JK
3837 tp->control.step_frame_id = get_frame_id (frame);
3838 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3839
3840 tp->current_symtab = sal.symtab;
3841 tp->current_line = sal.line;
3842}
3843
0d1e5fa7
PA
3844/* Clear context switchable stepping state. */
3845
3846void
4e1c45ea 3847init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3848{
7f5ef605 3849 tss->stepped_breakpoint = 0;
0d1e5fa7 3850 tss->stepping_over_breakpoint = 0;
963f9c80 3851 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3852 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3853}
3854
c32c64b7
DE
3855/* Set the cached copy of the last ptid/waitstatus. */
3856
6efcd9a8 3857void
c32c64b7
DE
3858set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3859{
3860 target_last_wait_ptid = ptid;
3861 target_last_waitstatus = status;
3862}
3863
e02bc4cc 3864/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3865 target_wait()/deprecated_target_wait_hook(). The data is actually
3866 cached by handle_inferior_event(), which gets called immediately
3867 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3868
3869void
488f131b 3870get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3871{
39f77062 3872 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3873 *status = target_last_waitstatus;
3874}
3875
ac264b3b
MS
3876void
3877nullify_last_target_wait_ptid (void)
3878{
3879 target_last_wait_ptid = minus_one_ptid;
3880}
3881
dcf4fbde 3882/* Switch thread contexts. */
dd80620e
MS
3883
3884static void
00431a78 3885context_switch (execution_control_state *ecs)
dd80620e 3886{
00431a78
PA
3887 if (debug_infrun
3888 && ecs->ptid != inferior_ptid
3889 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3890 {
3891 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3892 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3893 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3894 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3895 }
3896
00431a78 3897 switch_to_thread (ecs->event_thread);
dd80620e
MS
3898}
3899
d8dd4d5f
PA
3900/* If the target can't tell whether we've hit breakpoints
3901 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3902 check whether that could have been caused by a breakpoint. If so,
3903 adjust the PC, per gdbarch_decr_pc_after_break. */
3904
4fa8626c 3905static void
d8dd4d5f
PA
3906adjust_pc_after_break (struct thread_info *thread,
3907 struct target_waitstatus *ws)
4fa8626c 3908{
24a73cce
UW
3909 struct regcache *regcache;
3910 struct gdbarch *gdbarch;
118e6252 3911 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3912
4fa8626c
DJ
3913 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3914 we aren't, just return.
9709f61c
DJ
3915
3916 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3917 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3918 implemented by software breakpoints should be handled through the normal
3919 breakpoint layer.
8fb3e588 3920
4fa8626c
DJ
3921 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3922 different signals (SIGILL or SIGEMT for instance), but it is less
3923 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3924 gdbarch_decr_pc_after_break. I don't know any specific target that
3925 generates these signals at breakpoints (the code has been in GDB since at
3926 least 1992) so I can not guess how to handle them here.
8fb3e588 3927
e6cf7916
UW
3928 In earlier versions of GDB, a target with
3929 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3930 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3931 target with both of these set in GDB history, and it seems unlikely to be
3932 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3933
d8dd4d5f 3934 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3935 return;
3936
d8dd4d5f 3937 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3938 return;
3939
4058b839
PA
3940 /* In reverse execution, when a breakpoint is hit, the instruction
3941 under it has already been de-executed. The reported PC always
3942 points at the breakpoint address, so adjusting it further would
3943 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3944 architecture:
3945
3946 B1 0x08000000 : INSN1
3947 B2 0x08000001 : INSN2
3948 0x08000002 : INSN3
3949 PC -> 0x08000003 : INSN4
3950
3951 Say you're stopped at 0x08000003 as above. Reverse continuing
3952 from that point should hit B2 as below. Reading the PC when the
3953 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3954 been de-executed already.
3955
3956 B1 0x08000000 : INSN1
3957 B2 PC -> 0x08000001 : INSN2
3958 0x08000002 : INSN3
3959 0x08000003 : INSN4
3960
3961 We can't apply the same logic as for forward execution, because
3962 we would wrongly adjust the PC to 0x08000000, since there's a
3963 breakpoint at PC - 1. We'd then report a hit on B1, although
3964 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3965 behaviour. */
3966 if (execution_direction == EXEC_REVERSE)
3967 return;
3968
1cf4d951
PA
3969 /* If the target can tell whether the thread hit a SW breakpoint,
3970 trust it. Targets that can tell also adjust the PC
3971 themselves. */
3972 if (target_supports_stopped_by_sw_breakpoint ())
3973 return;
3974
3975 /* Note that relying on whether a breakpoint is planted in memory to
3976 determine this can fail. E.g,. the breakpoint could have been
3977 removed since. Or the thread could have been told to step an
3978 instruction the size of a breakpoint instruction, and only
3979 _after_ was a breakpoint inserted at its address. */
3980
24a73cce
UW
3981 /* If this target does not decrement the PC after breakpoints, then
3982 we have nothing to do. */
00431a78 3983 regcache = get_thread_regcache (thread);
ac7936df 3984 gdbarch = regcache->arch ();
118e6252 3985
527a273a 3986 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3987 if (decr_pc == 0)
24a73cce
UW
3988 return;
3989
8b86c959 3990 const address_space *aspace = regcache->aspace ();
6c95b8df 3991
8aad930b
AC
3992 /* Find the location where (if we've hit a breakpoint) the
3993 breakpoint would be. */
118e6252 3994 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3995
1cf4d951
PA
3996 /* If the target can't tell whether a software breakpoint triggered,
3997 fallback to figuring it out based on breakpoints we think were
3998 inserted in the target, and on whether the thread was stepped or
3999 continued. */
4000
1c5cfe86
PA
4001 /* Check whether there actually is a software breakpoint inserted at
4002 that location.
4003
4004 If in non-stop mode, a race condition is possible where we've
4005 removed a breakpoint, but stop events for that breakpoint were
4006 already queued and arrive later. To suppress those spurious
4007 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4008 and retire them after a number of stop events are reported. Note
4009 this is an heuristic and can thus get confused. The real fix is
4010 to get the "stopped by SW BP and needs adjustment" info out of
4011 the target/kernel (and thus never reach here; see above). */
6c95b8df 4012 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4013 || (target_is_non_stop_p ()
4014 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4015 {
07036511 4016 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4017
8213266a 4018 if (record_full_is_used ())
07036511
TT
4019 restore_operation_disable.emplace
4020 (record_full_gdb_operation_disable_set ());
96429cc8 4021
1c0fdd0e
UW
4022 /* When using hardware single-step, a SIGTRAP is reported for both
4023 a completed single-step and a software breakpoint. Need to
4024 differentiate between the two, as the latter needs adjusting
4025 but the former does not.
4026
4027 The SIGTRAP can be due to a completed hardware single-step only if
4028 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4029 - this thread is currently being stepped
4030
4031 If any of these events did not occur, we must have stopped due
4032 to hitting a software breakpoint, and have to back up to the
4033 breakpoint address.
4034
4035 As a special case, we could have hardware single-stepped a
4036 software breakpoint. In this case (prev_pc == breakpoint_pc),
4037 we also need to back up to the breakpoint address. */
4038
d8dd4d5f
PA
4039 if (thread_has_single_step_breakpoints_set (thread)
4040 || !currently_stepping (thread)
4041 || (thread->stepped_breakpoint
4042 && thread->prev_pc == breakpoint_pc))
515630c5 4043 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4044 }
4fa8626c
DJ
4045}
4046
edb3359d
DJ
4047static int
4048stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4049{
4050 for (frame = get_prev_frame (frame);
4051 frame != NULL;
4052 frame = get_prev_frame (frame))
4053 {
4054 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4055 return 1;
4056 if (get_frame_type (frame) != INLINE_FRAME)
4057 break;
4058 }
4059
4060 return 0;
4061}
4062
c65d6b55
PA
4063/* If the event thread has the stop requested flag set, pretend it
4064 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4065 target_stop). */
4066
4067static bool
4068handle_stop_requested (struct execution_control_state *ecs)
4069{
4070 if (ecs->event_thread->stop_requested)
4071 {
4072 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4073 ecs->ws.value.sig = GDB_SIGNAL_0;
4074 handle_signal_stop (ecs);
4075 return true;
4076 }
4077 return false;
4078}
4079
a96d9b2e
SDJ
4080/* Auxiliary function that handles syscall entry/return events.
4081 It returns 1 if the inferior should keep going (and GDB
4082 should ignore the event), or 0 if the event deserves to be
4083 processed. */
ca2163eb 4084
a96d9b2e 4085static int
ca2163eb 4086handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4087{
ca2163eb 4088 struct regcache *regcache;
ca2163eb
PA
4089 int syscall_number;
4090
00431a78 4091 context_switch (ecs);
ca2163eb 4092
00431a78 4093 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4094 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4095 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4096
a96d9b2e
SDJ
4097 if (catch_syscall_enabled () > 0
4098 && catching_syscall_number (syscall_number) > 0)
4099 {
4100 if (debug_infrun)
4101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4102 syscall_number);
a96d9b2e 4103
16c381f0 4104 ecs->event_thread->control.stop_bpstat
a01bda52 4105 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4106 ecs->event_thread->suspend.stop_pc,
4107 ecs->event_thread, &ecs->ws);
ab04a2af 4108
c65d6b55
PA
4109 if (handle_stop_requested (ecs))
4110 return 0;
4111
ce12b012 4112 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4113 {
4114 /* Catchpoint hit. */
ca2163eb
PA
4115 return 0;
4116 }
a96d9b2e 4117 }
ca2163eb 4118
c65d6b55
PA
4119 if (handle_stop_requested (ecs))
4120 return 0;
4121
ca2163eb 4122 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4123 keep_going (ecs);
4124 return 1;
a96d9b2e
SDJ
4125}
4126
7e324e48
GB
4127/* Lazily fill in the execution_control_state's stop_func_* fields. */
4128
4129static void
4130fill_in_stop_func (struct gdbarch *gdbarch,
4131 struct execution_control_state *ecs)
4132{
4133 if (!ecs->stop_func_filled_in)
4134 {
98a617f8
KB
4135 const block *block;
4136
7e324e48
GB
4137 /* Don't care about return value; stop_func_start and stop_func_name
4138 will both be 0 if it doesn't work. */
98a617f8
KB
4139 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4140 &ecs->stop_func_name,
4141 &ecs->stop_func_start,
4142 &ecs->stop_func_end,
4143 &block);
4144
4145 /* The call to find_pc_partial_function, above, will set
4146 stop_func_start and stop_func_end to the start and end
4147 of the range containing the stop pc. If this range
4148 contains the entry pc for the block (which is always the
4149 case for contiguous blocks), advance stop_func_start past
4150 the function's start offset and entrypoint. Note that
4151 stop_func_start is NOT advanced when in a range of a
4152 non-contiguous block that does not contain the entry pc. */
4153 if (block != nullptr
4154 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4155 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4156 {
4157 ecs->stop_func_start
4158 += gdbarch_deprecated_function_start_offset (gdbarch);
4159
4160 if (gdbarch_skip_entrypoint_p (gdbarch))
4161 ecs->stop_func_start
4162 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4163 }
591a12a1 4164
7e324e48
GB
4165 ecs->stop_func_filled_in = 1;
4166 }
4167}
4168
4f5d7f63 4169
00431a78 4170/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4171
4172static enum stop_kind
00431a78 4173get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4174{
00431a78 4175 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4176
4177 gdb_assert (inf != NULL);
4178 return inf->control.stop_soon;
4179}
4180
372316f1
PA
4181/* Wait for one event. Store the resulting waitstatus in WS, and
4182 return the event ptid. */
4183
4184static ptid_t
4185wait_one (struct target_waitstatus *ws)
4186{
4187 ptid_t event_ptid;
4188 ptid_t wait_ptid = minus_one_ptid;
4189
4190 overlay_cache_invalid = 1;
4191
4192 /* Flush target cache before starting to handle each event.
4193 Target was running and cache could be stale. This is just a
4194 heuristic. Running threads may modify target memory, but we
4195 don't get any event. */
4196 target_dcache_invalidate ();
4197
4198 if (deprecated_target_wait_hook)
4199 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4200 else
4201 event_ptid = target_wait (wait_ptid, ws, 0);
4202
4203 if (debug_infrun)
4204 print_target_wait_results (wait_ptid, event_ptid, ws);
4205
4206 return event_ptid;
4207}
4208
4209/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4210 instead of the current thread. */
4211#define THREAD_STOPPED_BY(REASON) \
4212static int \
4213thread_stopped_by_ ## REASON (ptid_t ptid) \
4214{ \
2989a365 4215 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4216 inferior_ptid = ptid; \
4217 \
2989a365 4218 return target_stopped_by_ ## REASON (); \
372316f1
PA
4219}
4220
4221/* Generate thread_stopped_by_watchpoint. */
4222THREAD_STOPPED_BY (watchpoint)
4223/* Generate thread_stopped_by_sw_breakpoint. */
4224THREAD_STOPPED_BY (sw_breakpoint)
4225/* Generate thread_stopped_by_hw_breakpoint. */
4226THREAD_STOPPED_BY (hw_breakpoint)
4227
372316f1
PA
4228/* Save the thread's event and stop reason to process it later. */
4229
4230static void
4231save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4232{
372316f1
PA
4233 if (debug_infrun)
4234 {
23fdd69e 4235 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4236
372316f1
PA
4237 fprintf_unfiltered (gdb_stdlog,
4238 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4239 statstr.c_str (),
e99b03dc 4240 tp->ptid.pid (),
e38504b3 4241 tp->ptid.lwp (),
cc6bcb54 4242 tp->ptid.tid ());
372316f1
PA
4243 }
4244
4245 /* Record for later. */
4246 tp->suspend.waitstatus = *ws;
4247 tp->suspend.waitstatus_pending_p = 1;
4248
00431a78 4249 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4250 const address_space *aspace = regcache->aspace ();
372316f1
PA
4251
4252 if (ws->kind == TARGET_WAITKIND_STOPPED
4253 && ws->value.sig == GDB_SIGNAL_TRAP)
4254 {
4255 CORE_ADDR pc = regcache_read_pc (regcache);
4256
4257 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4258
4259 if (thread_stopped_by_watchpoint (tp->ptid))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_WATCHPOINT;
4263 }
4264 else if (target_supports_stopped_by_sw_breakpoint ()
4265 && thread_stopped_by_sw_breakpoint (tp->ptid))
4266 {
4267 tp->suspend.stop_reason
4268 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4269 }
4270 else if (target_supports_stopped_by_hw_breakpoint ()
4271 && thread_stopped_by_hw_breakpoint (tp->ptid))
4272 {
4273 tp->suspend.stop_reason
4274 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4275 }
4276 else if (!target_supports_stopped_by_hw_breakpoint ()
4277 && hardware_breakpoint_inserted_here_p (aspace,
4278 pc))
4279 {
4280 tp->suspend.stop_reason
4281 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4282 }
4283 else if (!target_supports_stopped_by_sw_breakpoint ()
4284 && software_breakpoint_inserted_here_p (aspace,
4285 pc))
4286 {
4287 tp->suspend.stop_reason
4288 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4289 }
4290 else if (!thread_has_single_step_breakpoints_set (tp)
4291 && currently_stepping (tp))
4292 {
4293 tp->suspend.stop_reason
4294 = TARGET_STOPPED_BY_SINGLE_STEP;
4295 }
4296 }
4297}
4298
6efcd9a8 4299/* See infrun.h. */
372316f1 4300
6efcd9a8 4301void
372316f1
PA
4302stop_all_threads (void)
4303{
4304 /* We may need multiple passes to discover all threads. */
4305 int pass;
4306 int iterations = 0;
372316f1 4307
fbea99ea 4308 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4309
4310 if (debug_infrun)
4311 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4312
00431a78 4313 scoped_restore_current_thread restore_thread;
372316f1 4314
65706a29 4315 target_thread_events (1);
9885e6bb 4316 SCOPE_EXIT { target_thread_events (0); };
65706a29 4317
372316f1
PA
4318 /* Request threads to stop, and then wait for the stops. Because
4319 threads we already know about can spawn more threads while we're
4320 trying to stop them, and we only learn about new threads when we
4321 update the thread list, do this in a loop, and keep iterating
4322 until two passes find no threads that need to be stopped. */
4323 for (pass = 0; pass < 2; pass++, iterations++)
4324 {
4325 if (debug_infrun)
4326 fprintf_unfiltered (gdb_stdlog,
4327 "infrun: stop_all_threads, pass=%d, "
4328 "iterations=%d\n", pass, iterations);
4329 while (1)
4330 {
4331 ptid_t event_ptid;
4332 struct target_waitstatus ws;
4333 int need_wait = 0;
372316f1
PA
4334
4335 update_thread_list ();
4336
4337 /* Go through all threads looking for threads that we need
4338 to tell the target to stop. */
08036331 4339 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4340 {
4341 if (t->executing)
4342 {
4343 /* If already stopping, don't request a stop again.
4344 We just haven't seen the notification yet. */
4345 if (!t->stop_requested)
4346 {
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog,
4349 "infrun: %s executing, "
4350 "need stop\n",
a068643d 4351 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4352 target_stop (t->ptid);
4353 t->stop_requested = 1;
4354 }
4355 else
4356 {
4357 if (debug_infrun)
4358 fprintf_unfiltered (gdb_stdlog,
4359 "infrun: %s executing, "
4360 "already stopping\n",
a068643d 4361 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4362 }
4363
4364 if (t->stop_requested)
4365 need_wait = 1;
4366 }
4367 else
4368 {
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: %s not executing\n",
a068643d 4372 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4373
4374 /* The thread may be not executing, but still be
4375 resumed with a pending status to process. */
4376 t->resumed = 0;
4377 }
4378 }
4379
4380 if (!need_wait)
4381 break;
4382
4383 /* If we find new threads on the second iteration, restart
4384 over. We want to see two iterations in a row with all
4385 threads stopped. */
4386 if (pass > 0)
4387 pass = -1;
4388
4389 event_ptid = wait_one (&ws);
c29705b7 4390 if (debug_infrun)
372316f1 4391 {
c29705b7
PW
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: stop_all_threads %s %s\n",
4394 target_waitstatus_to_string (&ws).c_str (),
4395 target_pid_to_str (event_ptid).c_str ());
372316f1 4396 }
372316f1 4397
c29705b7
PW
4398 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4399 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4400 || ws.kind == TARGET_WAITKIND_EXITED
4401 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4402 {
4403 /* All resumed threads exited
4404 or one thread/process exited/signalled. */
372316f1
PA
4405 }
4406 else
4407 {
08036331 4408 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4409 if (t == NULL)
4410 t = add_thread (event_ptid);
4411
4412 t->stop_requested = 0;
4413 t->executing = 0;
4414 t->resumed = 0;
4415 t->control.may_range_step = 0;
4416
6efcd9a8
PA
4417 /* This may be the first time we see the inferior report
4418 a stop. */
08036331 4419 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4420 if (inf->needs_setup)
4421 {
4422 switch_to_thread_no_regs (t);
4423 setup_inferior (0);
4424 }
4425
372316f1
PA
4426 if (ws.kind == TARGET_WAITKIND_STOPPED
4427 && ws.value.sig == GDB_SIGNAL_0)
4428 {
4429 /* We caught the event that we intended to catch, so
4430 there's no event pending. */
4431 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4432 t->suspend.waitstatus_pending_p = 0;
4433
00431a78 4434 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4435 {
4436 /* Add it back to the step-over queue. */
4437 if (debug_infrun)
4438 {
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: displaced-step of %s "
4441 "canceled: adding back to the "
4442 "step-over queue\n",
a068643d 4443 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4444 }
4445 t->control.trap_expected = 0;
66716e78 4446 global_thread_step_over_chain_enqueue (t);
372316f1
PA
4447 }
4448 }
4449 else
4450 {
4451 enum gdb_signal sig;
4452 struct regcache *regcache;
372316f1
PA
4453
4454 if (debug_infrun)
4455 {
23fdd69e 4456 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4457
372316f1
PA
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: target_wait %s, saving "
4460 "status for %d.%ld.%ld\n",
23fdd69e 4461 statstr.c_str (),
e99b03dc 4462 t->ptid.pid (),
e38504b3 4463 t->ptid.lwp (),
cc6bcb54 4464 t->ptid.tid ());
372316f1
PA
4465 }
4466
4467 /* Record for later. */
4468 save_waitstatus (t, &ws);
4469
4470 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4471 ? ws.value.sig : GDB_SIGNAL_0);
4472
00431a78 4473 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4474 {
4475 /* Add it back to the step-over queue. */
4476 t->control.trap_expected = 0;
66716e78 4477 global_thread_step_over_chain_enqueue (t);
372316f1
PA
4478 }
4479
00431a78 4480 regcache = get_thread_regcache (t);
372316f1
PA
4481 t->suspend.stop_pc = regcache_read_pc (regcache);
4482
4483 if (debug_infrun)
4484 {
4485 fprintf_unfiltered (gdb_stdlog,
4486 "infrun: saved stop_pc=%s for %s "
4487 "(currently_stepping=%d)\n",
4488 paddress (target_gdbarch (),
4489 t->suspend.stop_pc),
a068643d 4490 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4491 currently_stepping (t));
4492 }
4493 }
4494 }
4495 }
4496 }
4497
372316f1
PA
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4500}
4501
f4836ba9
PA
4502/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4503
4504static int
4505handle_no_resumed (struct execution_control_state *ecs)
4506{
3b12939d 4507 if (target_can_async_p ())
f4836ba9 4508 {
3b12939d
PA
4509 struct ui *ui;
4510 int any_sync = 0;
f4836ba9 4511
3b12939d
PA
4512 ALL_UIS (ui)
4513 {
4514 if (ui->prompt_state == PROMPT_BLOCKED)
4515 {
4516 any_sync = 1;
4517 break;
4518 }
4519 }
4520 if (!any_sync)
4521 {
4522 /* There were no unwaited-for children left in the target, but,
4523 we're not synchronously waiting for events either. Just
4524 ignore. */
4525
4526 if (debug_infrun)
4527 fprintf_unfiltered (gdb_stdlog,
4528 "infrun: TARGET_WAITKIND_NO_RESUMED "
4529 "(ignoring: bg)\n");
4530 prepare_to_wait (ecs);
4531 return 1;
4532 }
f4836ba9
PA
4533 }
4534
4535 /* Otherwise, if we were running a synchronous execution command, we
4536 may need to cancel it and give the user back the terminal.
4537
4538 In non-stop mode, the target can't tell whether we've already
4539 consumed previous stop events, so it can end up sending us a
4540 no-resumed event like so:
4541
4542 #0 - thread 1 is left stopped
4543
4544 #1 - thread 2 is resumed and hits breakpoint
4545 -> TARGET_WAITKIND_STOPPED
4546
4547 #2 - thread 3 is resumed and exits
4548 this is the last resumed thread, so
4549 -> TARGET_WAITKIND_NO_RESUMED
4550
4551 #3 - gdb processes stop for thread 2 and decides to re-resume
4552 it.
4553
4554 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4555 thread 2 is now resumed, so the event should be ignored.
4556
4557 IOW, if the stop for thread 2 doesn't end a foreground command,
4558 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4559 event. But it could be that the event meant that thread 2 itself
4560 (or whatever other thread was the last resumed thread) exited.
4561
4562 To address this we refresh the thread list and check whether we
4563 have resumed threads _now_. In the example above, this removes
4564 thread 3 from the thread list. If thread 2 was re-resumed, we
4565 ignore this event. If we find no thread resumed, then we cancel
4566 the synchronous command show "no unwaited-for " to the user. */
4567 update_thread_list ();
4568
08036331 4569 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4570 {
4571 if (thread->executing
4572 || thread->suspend.waitstatus_pending_p)
4573 {
4574 /* There were no unwaited-for children left in the target at
4575 some point, but there are now. Just ignore. */
4576 if (debug_infrun)
4577 fprintf_unfiltered (gdb_stdlog,
4578 "infrun: TARGET_WAITKIND_NO_RESUMED "
4579 "(ignoring: found resumed)\n");
4580 prepare_to_wait (ecs);
4581 return 1;
4582 }
4583 }
4584
4585 /* Note however that we may find no resumed thread because the whole
4586 process exited meanwhile (thus updating the thread list results
4587 in an empty thread list). In this case we know we'll be getting
4588 a process exit event shortly. */
08036331 4589 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4590 {
4591 if (inf->pid == 0)
4592 continue;
4593
08036331 4594 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4595 if (thread == NULL)
4596 {
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog,
4599 "infrun: TARGET_WAITKIND_NO_RESUMED "
4600 "(expect process exit)\n");
4601 prepare_to_wait (ecs);
4602 return 1;
4603 }
4604 }
4605
4606 /* Go ahead and report the event. */
4607 return 0;
4608}
4609
05ba8510
PA
4610/* Given an execution control state that has been freshly filled in by
4611 an event from the inferior, figure out what it means and take
4612 appropriate action.
4613
4614 The alternatives are:
4615
22bcd14b 4616 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4617 debugger.
4618
4619 2) keep_going and return; to wait for the next event (set
4620 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4621 once). */
c906108c 4622
ec9499be 4623static void
595915c1 4624handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4625{
595915c1
TT
4626 /* Make sure that all temporary struct value objects that were
4627 created during the handling of the event get deleted at the
4628 end. */
4629 scoped_value_mark free_values;
4630
d6b48e9c
PA
4631 enum stop_kind stop_soon;
4632
c29705b7
PW
4633 if (debug_infrun)
4634 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4635 target_waitstatus_to_string (&ecs->ws).c_str ());
4636
28736962
PA
4637 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4638 {
4639 /* We had an event in the inferior, but we are not interested in
4640 handling it at this level. The lower layers have already
4641 done what needs to be done, if anything.
4642
4643 One of the possible circumstances for this is when the
4644 inferior produces output for the console. The inferior has
4645 not stopped, and we are ignoring the event. Another possible
4646 circumstance is any event which the lower level knows will be
4647 reported multiple times without an intervening resume. */
28736962
PA
4648 prepare_to_wait (ecs);
4649 return;
4650 }
4651
65706a29
PA
4652 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4653 {
65706a29
PA
4654 prepare_to_wait (ecs);
4655 return;
4656 }
4657
0e5bf2a8 4658 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4659 && handle_no_resumed (ecs))
4660 return;
0e5bf2a8 4661
1777feb0 4662 /* Cache the last pid/waitstatus. */
c32c64b7 4663 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4664
ca005067 4665 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4666 stop_stack_dummy = STOP_NONE;
ca005067 4667
0e5bf2a8
PA
4668 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4669 {
4670 /* No unwaited-for children left. IOW, all resumed children
4671 have exited. */
0e5bf2a8 4672 stop_print_frame = 0;
22bcd14b 4673 stop_waiting (ecs);
0e5bf2a8
PA
4674 return;
4675 }
4676
8c90c137 4677 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4678 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4679 {
4680 ecs->event_thread = find_thread_ptid (ecs->ptid);
4681 /* If it's a new thread, add it to the thread database. */
4682 if (ecs->event_thread == NULL)
4683 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4684
4685 /* Disable range stepping. If the next step request could use a
4686 range, this will be end up re-enabled then. */
4687 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4688 }
88ed393a
JK
4689
4690 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4691 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4692
4693 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4694 reinit_frame_cache ();
4695
28736962
PA
4696 breakpoint_retire_moribund ();
4697
2b009048
DJ
4698 /* First, distinguish signals caused by the debugger from signals
4699 that have to do with the program's own actions. Note that
4700 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4701 on the operating system version. Here we detect when a SIGILL or
4702 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4703 something similar for SIGSEGV, since a SIGSEGV will be generated
4704 when we're trying to execute a breakpoint instruction on a
4705 non-executable stack. This happens for call dummy breakpoints
4706 for architectures like SPARC that place call dummies on the
4707 stack. */
2b009048 4708 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4709 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4710 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4711 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4712 {
00431a78 4713 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4714
a01bda52 4715 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4716 regcache_read_pc (regcache)))
4717 {
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4721 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4722 }
2b009048
DJ
4723 }
4724
28736962
PA
4725 /* Mark the non-executing threads accordingly. In all-stop, all
4726 threads of all processes are stopped when we get any event
e1316e60 4727 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4728 {
4729 ptid_t mark_ptid;
4730
fbea99ea 4731 if (!target_is_non_stop_p ())
372316f1
PA
4732 mark_ptid = minus_one_ptid;
4733 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4734 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4735 {
4736 /* If we're handling a process exit in non-stop mode, even
4737 though threads haven't been deleted yet, one would think
4738 that there is nothing to do, as threads of the dead process
4739 will be soon deleted, and threads of any other process were
4740 left running. However, on some targets, threads survive a
4741 process exit event. E.g., for the "checkpoint" command,
4742 when the current checkpoint/fork exits, linux-fork.c
4743 automatically switches to another fork from within
4744 target_mourn_inferior, by associating the same
4745 inferior/thread to another fork. We haven't mourned yet at
4746 this point, but we must mark any threads left in the
4747 process as not-executing so that finish_thread_state marks
4748 them stopped (in the user's perspective) if/when we present
4749 the stop to the user. */
e99b03dc 4750 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4751 }
4752 else
4753 mark_ptid = ecs->ptid;
4754
4755 set_executing (mark_ptid, 0);
4756
4757 /* Likewise the resumed flag. */
4758 set_resumed (mark_ptid, 0);
4759 }
8c90c137 4760
488f131b
JB
4761 switch (ecs->ws.kind)
4762 {
4763 case TARGET_WAITKIND_LOADED:
00431a78 4764 context_switch (ecs);
b0f4b84b
DJ
4765 /* Ignore gracefully during startup of the inferior, as it might
4766 be the shell which has just loaded some objects, otherwise
4767 add the symbols for the newly loaded objects. Also ignore at
4768 the beginning of an attach or remote session; we will query
4769 the full list of libraries once the connection is
4770 established. */
4f5d7f63 4771
00431a78 4772 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4773 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4774 {
edcc5120
TT
4775 struct regcache *regcache;
4776
00431a78 4777 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4778
4779 handle_solib_event ();
4780
4781 ecs->event_thread->control.stop_bpstat
a01bda52 4782 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4783 ecs->event_thread->suspend.stop_pc,
4784 ecs->event_thread, &ecs->ws);
ab04a2af 4785
c65d6b55
PA
4786 if (handle_stop_requested (ecs))
4787 return;
4788
ce12b012 4789 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4790 {
4791 /* A catchpoint triggered. */
94c57d6a
PA
4792 process_event_stop_test (ecs);
4793 return;
edcc5120 4794 }
488f131b 4795
b0f4b84b
DJ
4796 /* If requested, stop when the dynamic linker notifies
4797 gdb of events. This allows the user to get control
4798 and place breakpoints in initializer routines for
4799 dynamically loaded objects (among other things). */
a493e3e2 4800 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4801 if (stop_on_solib_events)
4802 {
55409f9d
DJ
4803 /* Make sure we print "Stopped due to solib-event" in
4804 normal_stop. */
4805 stop_print_frame = 1;
4806
22bcd14b 4807 stop_waiting (ecs);
b0f4b84b
DJ
4808 return;
4809 }
488f131b 4810 }
b0f4b84b
DJ
4811
4812 /* If we are skipping through a shell, or through shared library
4813 loading that we aren't interested in, resume the program. If
5c09a2c5 4814 we're running the program normally, also resume. */
b0f4b84b
DJ
4815 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4816 {
74960c60
VP
4817 /* Loading of shared libraries might have changed breakpoint
4818 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4819 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4820 insert_breakpoints ();
64ce06e4 4821 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4822 prepare_to_wait (ecs);
4823 return;
4824 }
4825
5c09a2c5
PA
4826 /* But stop if we're attaching or setting up a remote
4827 connection. */
4828 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4829 || stop_soon == STOP_QUIETLY_REMOTE)
4830 {
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4833 stop_waiting (ecs);
5c09a2c5
PA
4834 return;
4835 }
4836
4837 internal_error (__FILE__, __LINE__,
4838 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4839
488f131b 4840 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4841 if (handle_stop_requested (ecs))
4842 return;
00431a78 4843 context_switch (ecs);
64ce06e4 4844 resume (GDB_SIGNAL_0);
488f131b
JB
4845 prepare_to_wait (ecs);
4846 return;
c5aa993b 4847
65706a29 4848 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4849 if (handle_stop_requested (ecs))
4850 return;
00431a78 4851 context_switch (ecs);
65706a29
PA
4852 if (!switch_back_to_stepped_thread (ecs))
4853 keep_going (ecs);
4854 return;
4855
488f131b 4856 case TARGET_WAITKIND_EXITED:
940c3c06 4857 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4858 inferior_ptid = ecs->ptid;
c9657e70 4859 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4860 set_current_program_space (current_inferior ()->pspace);
4861 handle_vfork_child_exec_or_exit (0);
223ffa71 4862 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4863
0c557179
SDJ
4864 /* Clearing any previous state of convenience variables. */
4865 clear_exit_convenience_vars ();
4866
940c3c06
PA
4867 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4868 {
4869 /* Record the exit code in the convenience variable $_exitcode, so
4870 that the user can inspect this again later. */
4871 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4872 (LONGEST) ecs->ws.value.integer);
4873
4874 /* Also record this in the inferior itself. */
4875 current_inferior ()->has_exit_code = 1;
4876 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4877
98eb56a4
PA
4878 /* Support the --return-child-result option. */
4879 return_child_result_value = ecs->ws.value.integer;
4880
76727919 4881 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4882 }
4883 else
0c557179 4884 {
00431a78 4885 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4886
4887 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4888 {
4889 /* Set the value of the internal variable $_exitsignal,
4890 which holds the signal uncaught by the inferior. */
4891 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4892 gdbarch_gdb_signal_to_target (gdbarch,
4893 ecs->ws.value.sig));
4894 }
4895 else
4896 {
4897 /* We don't have access to the target's method used for
4898 converting between signal numbers (GDB's internal
4899 representation <-> target's representation).
4900 Therefore, we cannot do a good job at displaying this
4901 information to the user. It's better to just warn
4902 her about it (if infrun debugging is enabled), and
4903 give up. */
4904 if (debug_infrun)
4905 fprintf_filtered (gdb_stdlog, _("\
4906Cannot fill $_exitsignal with the correct signal number.\n"));
4907 }
4908
76727919 4909 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4910 }
8cf64490 4911
488f131b 4912 gdb_flush (gdb_stdout);
bc1e6c81 4913 target_mourn_inferior (inferior_ptid);
488f131b 4914 stop_print_frame = 0;
22bcd14b 4915 stop_waiting (ecs);
488f131b 4916 return;
c5aa993b 4917
488f131b 4918 /* The following are the only cases in which we keep going;
1777feb0 4919 the above cases end in a continue or goto. */
488f131b 4920 case TARGET_WAITKIND_FORKED:
deb3b17b 4921 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4922 /* Check whether the inferior is displaced stepping. */
4923 {
00431a78 4924 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4925 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4926
4927 /* If checking displaced stepping is supported, and thread
4928 ecs->ptid is displaced stepping. */
00431a78 4929 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4930 {
4931 struct inferior *parent_inf
c9657e70 4932 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4933 struct regcache *child_regcache;
4934 CORE_ADDR parent_pc;
4935
b8bfbca5
SM
4936 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4937 {
4938 struct displaced_step_inferior_state *displaced
4939 = get_displaced_stepping_state (parent_inf);
4940
4941 /* Restore scratch pad for child process. */
4942 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4943 }
4944
e2d96639
YQ
4945 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4946 indicating that the displaced stepping of syscall instruction
4947 has been done. Perform cleanup for parent process here. Note
4948 that this operation also cleans up the child process for vfork,
4949 because their pages are shared. */
00431a78 4950 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4951 /* Start a new step-over in another thread if there's one
4952 that needs it. */
4953 start_step_over ();
e2d96639 4954
e2d96639
YQ
4955 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4956 the child's PC is also within the scratchpad. Set the child's PC
4957 to the parent's PC value, which has already been fixed up.
4958 FIXME: we use the parent's aspace here, although we're touching
4959 the child, because the child hasn't been added to the inferior
4960 list yet at this point. */
4961
4962 child_regcache
4963 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4964 gdbarch,
4965 parent_inf->aspace);
4966 /* Read PC value of parent process. */
4967 parent_pc = regcache_read_pc (regcache);
4968
4969 if (debug_displaced)
4970 fprintf_unfiltered (gdb_stdlog,
4971 "displaced: write child pc from %s to %s\n",
4972 paddress (gdbarch,
4973 regcache_read_pc (child_regcache)),
4974 paddress (gdbarch, parent_pc));
4975
4976 regcache_write_pc (child_regcache, parent_pc);
4977 }
4978 }
4979
00431a78 4980 context_switch (ecs);
5a2901d9 4981
b242c3c2
PA
4982 /* Immediately detach breakpoints from the child before there's
4983 any chance of letting the user delete breakpoints from the
4984 breakpoint lists. If we don't do this early, it's easy to
4985 leave left over traps in the child, vis: "break foo; catch
4986 fork; c; <fork>; del; c; <child calls foo>". We only follow
4987 the fork on the last `continue', and by that time the
4988 breakpoint at "foo" is long gone from the breakpoint table.
4989 If we vforked, then we don't need to unpatch here, since both
4990 parent and child are sharing the same memory pages; we'll
4991 need to unpatch at follow/detach time instead to be certain
4992 that new breakpoints added between catchpoint hit time and
4993 vfork follow are detached. */
4994 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4995 {
b242c3c2
PA
4996 /* This won't actually modify the breakpoint list, but will
4997 physically remove the breakpoints from the child. */
d80ee84f 4998 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4999 }
5000
34b7e8a6 5001 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5002
e58b0e63
PA
5003 /* In case the event is caught by a catchpoint, remember that
5004 the event is to be followed at the next resume of the thread,
5005 and not immediately. */
5006 ecs->event_thread->pending_follow = ecs->ws;
5007
f2ffa92b
PA
5008 ecs->event_thread->suspend.stop_pc
5009 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5010
16c381f0 5011 ecs->event_thread->control.stop_bpstat
a01bda52 5012 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5013 ecs->event_thread->suspend.stop_pc,
5014 ecs->event_thread, &ecs->ws);
675bf4cb 5015
c65d6b55
PA
5016 if (handle_stop_requested (ecs))
5017 return;
5018
ce12b012
PA
5019 /* If no catchpoint triggered for this, then keep going. Note
5020 that we're interested in knowing the bpstat actually causes a
5021 stop, not just if it may explain the signal. Software
5022 watchpoints, for example, always appear in the bpstat. */
5023 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5024 {
e58b0e63 5025 int should_resume;
3e43a32a
MS
5026 int follow_child
5027 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5028
a493e3e2 5029 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5030
5031 should_resume = follow_fork ();
5032
00431a78
PA
5033 thread_info *parent = ecs->event_thread;
5034 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5035
a2077e25
PA
5036 /* At this point, the parent is marked running, and the
5037 child is marked stopped. */
5038
5039 /* If not resuming the parent, mark it stopped. */
5040 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5041 parent->set_running (false);
a2077e25
PA
5042
5043 /* If resuming the child, mark it running. */
5044 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5045 child->set_running (true);
a2077e25 5046
6c95b8df 5047 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5048 if (!detach_fork && (non_stop
5049 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5050 {
5051 if (follow_child)
5052 switch_to_thread (parent);
5053 else
5054 switch_to_thread (child);
5055
5056 ecs->event_thread = inferior_thread ();
5057 ecs->ptid = inferior_ptid;
5058 keep_going (ecs);
5059 }
5060
5061 if (follow_child)
5062 switch_to_thread (child);
5063 else
5064 switch_to_thread (parent);
5065
e58b0e63
PA
5066 ecs->event_thread = inferior_thread ();
5067 ecs->ptid = inferior_ptid;
5068
5069 if (should_resume)
5070 keep_going (ecs);
5071 else
22bcd14b 5072 stop_waiting (ecs);
04e68871
DJ
5073 return;
5074 }
94c57d6a
PA
5075 process_event_stop_test (ecs);
5076 return;
488f131b 5077
6c95b8df
PA
5078 case TARGET_WAITKIND_VFORK_DONE:
5079 /* Done with the shared memory region. Re-insert breakpoints in
5080 the parent, and keep going. */
5081
00431a78 5082 context_switch (ecs);
6c95b8df
PA
5083
5084 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5085 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5086
5087 if (handle_stop_requested (ecs))
5088 return;
5089
6c95b8df
PA
5090 /* This also takes care of reinserting breakpoints in the
5091 previously locked inferior. */
5092 keep_going (ecs);
5093 return;
5094
488f131b 5095 case TARGET_WAITKIND_EXECD:
488f131b 5096
cbd2b4e3
PA
5097 /* Note we can't read registers yet (the stop_pc), because we
5098 don't yet know the inferior's post-exec architecture.
5099 'stop_pc' is explicitly read below instead. */
00431a78 5100 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5101
6c95b8df
PA
5102 /* Do whatever is necessary to the parent branch of the vfork. */
5103 handle_vfork_child_exec_or_exit (1);
5104
795e548f
PA
5105 /* This causes the eventpoints and symbol table to be reset.
5106 Must do this now, before trying to determine whether to
5107 stop. */
71b43ef8 5108 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5109
17d8546e
DB
5110 /* In follow_exec we may have deleted the original thread and
5111 created a new one. Make sure that the event thread is the
5112 execd thread for that case (this is a nop otherwise). */
5113 ecs->event_thread = inferior_thread ();
5114
f2ffa92b
PA
5115 ecs->event_thread->suspend.stop_pc
5116 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5117
16c381f0 5118 ecs->event_thread->control.stop_bpstat
a01bda52 5119 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5120 ecs->event_thread->suspend.stop_pc,
5121 ecs->event_thread, &ecs->ws);
795e548f 5122
71b43ef8
PA
5123 /* Note that this may be referenced from inside
5124 bpstat_stop_status above, through inferior_has_execd. */
5125 xfree (ecs->ws.value.execd_pathname);
5126 ecs->ws.value.execd_pathname = NULL;
5127
c65d6b55
PA
5128 if (handle_stop_requested (ecs))
5129 return;
5130
04e68871 5131 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5132 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5133 {
a493e3e2 5134 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5135 keep_going (ecs);
5136 return;
5137 }
94c57d6a
PA
5138 process_event_stop_test (ecs);
5139 return;
488f131b 5140
b4dc5ffa
MK
5141 /* Be careful not to try to gather much state about a thread
5142 that's in a syscall. It's frequently a losing proposition. */
488f131b 5143 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5144 /* Getting the current syscall number. */
94c57d6a
PA
5145 if (handle_syscall_event (ecs) == 0)
5146 process_event_stop_test (ecs);
5147 return;
c906108c 5148
488f131b
JB
5149 /* Before examining the threads further, step this thread to
5150 get it entirely out of the syscall. (We get notice of the
5151 event when the thread is just on the verge of exiting a
5152 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5153 into user code.) */
488f131b 5154 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5155 if (handle_syscall_event (ecs) == 0)
5156 process_event_stop_test (ecs);
5157 return;
c906108c 5158
488f131b 5159 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5160 handle_signal_stop (ecs);
5161 return;
c906108c 5162
b2175913
MS
5163 case TARGET_WAITKIND_NO_HISTORY:
5164 /* Reverse execution: target ran out of history info. */
eab402df 5165
d1988021 5166 /* Switch to the stopped thread. */
00431a78 5167 context_switch (ecs);
d1988021
MM
5168 if (debug_infrun)
5169 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5170
34b7e8a6 5171 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5172 ecs->event_thread->suspend.stop_pc
5173 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5174
5175 if (handle_stop_requested (ecs))
5176 return;
5177
76727919 5178 gdb::observers::no_history.notify ();
22bcd14b 5179 stop_waiting (ecs);
b2175913 5180 return;
488f131b 5181 }
4f5d7f63
PA
5182}
5183
372316f1
PA
5184/* Restart threads back to what they were trying to do back when we
5185 paused them for an in-line step-over. The EVENT_THREAD thread is
5186 ignored. */
4d9d9d04
PA
5187
5188static void
372316f1
PA
5189restart_threads (struct thread_info *event_thread)
5190{
372316f1
PA
5191 /* In case the instruction just stepped spawned a new thread. */
5192 update_thread_list ();
5193
08036331 5194 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5195 {
5196 if (tp == event_thread)
5197 {
5198 if (debug_infrun)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "infrun: restart threads: "
5201 "[%s] is event thread\n",
a068643d 5202 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5203 continue;
5204 }
5205
5206 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5207 {
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog,
5210 "infrun: restart threads: "
5211 "[%s] not meant to be running\n",
a068643d 5212 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5213 continue;
5214 }
5215
5216 if (tp->resumed)
5217 {
5218 if (debug_infrun)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: restart threads: [%s] resumed\n",
a068643d 5221 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5222 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5223 continue;
5224 }
5225
5226 if (thread_is_in_step_over_chain (tp))
5227 {
5228 if (debug_infrun)
5229 fprintf_unfiltered (gdb_stdlog,
5230 "infrun: restart threads: "
5231 "[%s] needs step-over\n",
a068643d 5232 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5233 gdb_assert (!tp->resumed);
5234 continue;
5235 }
5236
5237
5238 if (tp->suspend.waitstatus_pending_p)
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: restart threads: "
5243 "[%s] has pending status\n",
a068643d 5244 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5245 tp->resumed = 1;
5246 continue;
5247 }
5248
c65d6b55
PA
5249 gdb_assert (!tp->stop_requested);
5250
372316f1
PA
5251 /* If some thread needs to start a step-over at this point, it
5252 should still be in the step-over queue, and thus skipped
5253 above. */
5254 if (thread_still_needs_step_over (tp))
5255 {
5256 internal_error (__FILE__, __LINE__,
5257 "thread [%s] needs a step-over, but not in "
5258 "step-over queue\n",
a068643d 5259 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5260 }
5261
5262 if (currently_stepping (tp))
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: [%s] was stepping\n",
a068643d 5267 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5268 keep_going_stepped_thread (tp);
5269 }
5270 else
5271 {
5272 struct execution_control_state ecss;
5273 struct execution_control_state *ecs = &ecss;
5274
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: restart threads: [%s] continuing\n",
a068643d 5278 target_pid_to_str (tp->ptid).c_str ());
372316f1 5279 reset_ecs (ecs, tp);
00431a78 5280 switch_to_thread (tp);
372316f1
PA
5281 keep_going_pass_signal (ecs);
5282 }
5283 }
5284}
5285
5286/* Callback for iterate_over_threads. Find a resumed thread that has
5287 a pending waitstatus. */
5288
5289static int
5290resumed_thread_with_pending_status (struct thread_info *tp,
5291 void *arg)
5292{
5293 return (tp->resumed
5294 && tp->suspend.waitstatus_pending_p);
5295}
5296
5297/* Called when we get an event that may finish an in-line or
5298 out-of-line (displaced stepping) step-over started previously.
5299 Return true if the event is processed and we should go back to the
5300 event loop; false if the caller should continue processing the
5301 event. */
5302
5303static int
4d9d9d04
PA
5304finish_step_over (struct execution_control_state *ecs)
5305{
372316f1
PA
5306 int had_step_over_info;
5307
00431a78 5308 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5309 ecs->event_thread->suspend.stop_signal);
5310
372316f1
PA
5311 had_step_over_info = step_over_info_valid_p ();
5312
5313 if (had_step_over_info)
4d9d9d04
PA
5314 {
5315 /* If we're stepping over a breakpoint with all threads locked,
5316 then only the thread that was stepped should be reporting
5317 back an event. */
5318 gdb_assert (ecs->event_thread->control.trap_expected);
5319
c65d6b55 5320 clear_step_over_info ();
4d9d9d04
PA
5321 }
5322
fbea99ea 5323 if (!target_is_non_stop_p ())
372316f1 5324 return 0;
4d9d9d04
PA
5325
5326 /* Start a new step-over in another thread if there's one that
5327 needs it. */
5328 start_step_over ();
372316f1
PA
5329
5330 /* If we were stepping over a breakpoint before, and haven't started
5331 a new in-line step-over sequence, then restart all other threads
5332 (except the event thread). We can't do this in all-stop, as then
5333 e.g., we wouldn't be able to issue any other remote packet until
5334 these other threads stop. */
5335 if (had_step_over_info && !step_over_info_valid_p ())
5336 {
5337 struct thread_info *pending;
5338
5339 /* If we only have threads with pending statuses, the restart
5340 below won't restart any thread and so nothing re-inserts the
5341 breakpoint we just stepped over. But we need it inserted
5342 when we later process the pending events, otherwise if
5343 another thread has a pending event for this breakpoint too,
5344 we'd discard its event (because the breakpoint that
5345 originally caused the event was no longer inserted). */
00431a78 5346 context_switch (ecs);
372316f1
PA
5347 insert_breakpoints ();
5348
abeeff98
LM
5349 {
5350 scoped_restore save_defer_tc
5351 = make_scoped_defer_target_commit_resume ();
5352 restart_threads (ecs->event_thread);
5353 }
5354 target_commit_resume ();
372316f1
PA
5355
5356 /* If we have events pending, go through handle_inferior_event
5357 again, picking up a pending event at random. This avoids
5358 thread starvation. */
5359
5360 /* But not if we just stepped over a watchpoint in order to let
5361 the instruction execute so we can evaluate its expression.
5362 The set of watchpoints that triggered is recorded in the
5363 breakpoint objects themselves (see bp->watchpoint_triggered).
5364 If we processed another event first, that other event could
5365 clobber this info. */
5366 if (ecs->event_thread->stepping_over_watchpoint)
5367 return 0;
5368
5369 pending = iterate_over_threads (resumed_thread_with_pending_status,
5370 NULL);
5371 if (pending != NULL)
5372 {
5373 struct thread_info *tp = ecs->event_thread;
5374 struct regcache *regcache;
5375
5376 if (debug_infrun)
5377 {
5378 fprintf_unfiltered (gdb_stdlog,
5379 "infrun: found resumed threads with "
5380 "pending events, saving status\n");
5381 }
5382
5383 gdb_assert (pending != tp);
5384
5385 /* Record the event thread's event for later. */
5386 save_waitstatus (tp, &ecs->ws);
5387 /* This was cleared early, by handle_inferior_event. Set it
5388 so this pending event is considered by
5389 do_target_wait. */
5390 tp->resumed = 1;
5391
5392 gdb_assert (!tp->executing);
5393
00431a78 5394 regcache = get_thread_regcache (tp);
372316f1
PA
5395 tp->suspend.stop_pc = regcache_read_pc (regcache);
5396
5397 if (debug_infrun)
5398 {
5399 fprintf_unfiltered (gdb_stdlog,
5400 "infrun: saved stop_pc=%s for %s "
5401 "(currently_stepping=%d)\n",
5402 paddress (target_gdbarch (),
5403 tp->suspend.stop_pc),
a068643d 5404 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5405 currently_stepping (tp));
5406 }
5407
5408 /* This in-line step-over finished; clear this so we won't
5409 start a new one. This is what handle_signal_stop would
5410 do, if we returned false. */
5411 tp->stepping_over_breakpoint = 0;
5412
5413 /* Wake up the event loop again. */
5414 mark_async_event_handler (infrun_async_inferior_event_token);
5415
5416 prepare_to_wait (ecs);
5417 return 1;
5418 }
5419 }
5420
5421 return 0;
4d9d9d04
PA
5422}
5423
4f5d7f63
PA
5424/* Come here when the program has stopped with a signal. */
5425
5426static void
5427handle_signal_stop (struct execution_control_state *ecs)
5428{
5429 struct frame_info *frame;
5430 struct gdbarch *gdbarch;
5431 int stopped_by_watchpoint;
5432 enum stop_kind stop_soon;
5433 int random_signal;
c906108c 5434
f0407826
DE
5435 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5436
c65d6b55
PA
5437 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5438
f0407826
DE
5439 /* Do we need to clean up the state of a thread that has
5440 completed a displaced single-step? (Doing so usually affects
5441 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5442 if (finish_step_over (ecs))
5443 return;
f0407826
DE
5444
5445 /* If we either finished a single-step or hit a breakpoint, but
5446 the user wanted this thread to be stopped, pretend we got a
5447 SIG0 (generic unsignaled stop). */
5448 if (ecs->event_thread->stop_requested
5449 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5450 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5451
f2ffa92b
PA
5452 ecs->event_thread->suspend.stop_pc
5453 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5454
527159b7 5455 if (debug_infrun)
237fc4c9 5456 {
00431a78 5457 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5458 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5459 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5460
5461 inferior_ptid = ecs->ptid;
5af949e3
UW
5462
5463 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5464 paddress (reg_gdbarch,
f2ffa92b 5465 ecs->event_thread->suspend.stop_pc));
d92524f1 5466 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5467 {
5468 CORE_ADDR addr;
abbb1732 5469
237fc4c9
PA
5470 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5471
8b88a78e 5472 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5473 fprintf_unfiltered (gdb_stdlog,
5af949e3 5474 "infrun: stopped data address = %s\n",
b926417a 5475 paddress (reg_gdbarch, addr));
237fc4c9
PA
5476 else
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: (no data address available)\n");
5479 }
5480 }
527159b7 5481
36fa8042
PA
5482 /* This is originated from start_remote(), start_inferior() and
5483 shared libraries hook functions. */
00431a78 5484 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5485 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5486 {
00431a78 5487 context_switch (ecs);
36fa8042
PA
5488 if (debug_infrun)
5489 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5490 stop_print_frame = 1;
22bcd14b 5491 stop_waiting (ecs);
36fa8042
PA
5492 return;
5493 }
5494
36fa8042
PA
5495 /* This originates from attach_command(). We need to overwrite
5496 the stop_signal here, because some kernels don't ignore a
5497 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5498 See more comments in inferior.h. On the other hand, if we
5499 get a non-SIGSTOP, report it to the user - assume the backend
5500 will handle the SIGSTOP if it should show up later.
5501
5502 Also consider that the attach is complete when we see a
5503 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5504 target extended-remote report it instead of a SIGSTOP
5505 (e.g. gdbserver). We already rely on SIGTRAP being our
5506 signal, so this is no exception.
5507
5508 Also consider that the attach is complete when we see a
5509 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5510 the target to stop all threads of the inferior, in case the
5511 low level attach operation doesn't stop them implicitly. If
5512 they weren't stopped implicitly, then the stub will report a
5513 GDB_SIGNAL_0, meaning: stopped for no particular reason
5514 other than GDB's request. */
5515 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5516 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5517 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5518 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5519 {
5520 stop_print_frame = 1;
22bcd14b 5521 stop_waiting (ecs);
36fa8042
PA
5522 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5523 return;
5524 }
5525
488f131b 5526 /* See if something interesting happened to the non-current thread. If
b40c7d58 5527 so, then switch to that thread. */
d7e15655 5528 if (ecs->ptid != inferior_ptid)
488f131b 5529 {
527159b7 5530 if (debug_infrun)
8a9de0e4 5531 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5532
00431a78 5533 context_switch (ecs);
c5aa993b 5534
9a4105ab 5535 if (deprecated_context_hook)
00431a78 5536 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5537 }
c906108c 5538
568d6575
UW
5539 /* At this point, get hold of the now-current thread's frame. */
5540 frame = get_current_frame ();
5541 gdbarch = get_frame_arch (frame);
5542
2adfaa28 5543 /* Pull the single step breakpoints out of the target. */
af48d08f 5544 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5545 {
af48d08f 5546 struct regcache *regcache;
af48d08f 5547 CORE_ADDR pc;
2adfaa28 5548
00431a78 5549 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5550 const address_space *aspace = regcache->aspace ();
5551
af48d08f 5552 pc = regcache_read_pc (regcache);
34b7e8a6 5553
af48d08f
PA
5554 /* However, before doing so, if this single-step breakpoint was
5555 actually for another thread, set this thread up for moving
5556 past it. */
5557 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5558 aspace, pc))
5559 {
5560 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5561 {
5562 if (debug_infrun)
5563 {
5564 fprintf_unfiltered (gdb_stdlog,
af48d08f 5565 "infrun: [%s] hit another thread's "
34b7e8a6 5566 "single-step breakpoint\n",
a068643d 5567 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5568 }
af48d08f
PA
5569 ecs->hit_singlestep_breakpoint = 1;
5570 }
5571 }
5572 else
5573 {
5574 if (debug_infrun)
5575 {
5576 fprintf_unfiltered (gdb_stdlog,
5577 "infrun: [%s] hit its "
5578 "single-step breakpoint\n",
a068643d 5579 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5580 }
5581 }
488f131b 5582 }
af48d08f 5583 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5584
963f9c80
PA
5585 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5586 && ecs->event_thread->control.trap_expected
5587 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5588 stopped_by_watchpoint = 0;
5589 else
5590 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5591
5592 /* If necessary, step over this watchpoint. We'll be back to display
5593 it in a moment. */
5594 if (stopped_by_watchpoint
d92524f1 5595 && (target_have_steppable_watchpoint
568d6575 5596 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5597 {
488f131b
JB
5598 /* At this point, we are stopped at an instruction which has
5599 attempted to write to a piece of memory under control of
5600 a watchpoint. The instruction hasn't actually executed
5601 yet. If we were to evaluate the watchpoint expression
5602 now, we would get the old value, and therefore no change
5603 would seem to have occurred.
5604
5605 In order to make watchpoints work `right', we really need
5606 to complete the memory write, and then evaluate the
d983da9c
DJ
5607 watchpoint expression. We do this by single-stepping the
5608 target.
5609
7f89fd65 5610 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5611 it. For example, the PA can (with some kernel cooperation)
5612 single step over a watchpoint without disabling the watchpoint.
5613
5614 It is far more common to need to disable a watchpoint to step
5615 the inferior over it. If we have non-steppable watchpoints,
5616 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5617 disable all watchpoints.
5618
5619 Any breakpoint at PC must also be stepped over -- if there's
5620 one, it will have already triggered before the watchpoint
5621 triggered, and we either already reported it to the user, or
5622 it didn't cause a stop and we called keep_going. In either
5623 case, if there was a breakpoint at PC, we must be trying to
5624 step past it. */
5625 ecs->event_thread->stepping_over_watchpoint = 1;
5626 keep_going (ecs);
488f131b
JB
5627 return;
5628 }
5629
4e1c45ea 5630 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5631 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5632 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5633 ecs->event_thread->control.stop_step = 0;
488f131b 5634 stop_print_frame = 1;
488f131b 5635 stopped_by_random_signal = 0;
ddfe970e 5636 bpstat stop_chain = NULL;
488f131b 5637
edb3359d
DJ
5638 /* Hide inlined functions starting here, unless we just performed stepi or
5639 nexti. After stepi and nexti, always show the innermost frame (not any
5640 inline function call sites). */
16c381f0 5641 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5642 {
00431a78
PA
5643 const address_space *aspace
5644 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5645
5646 /* skip_inline_frames is expensive, so we avoid it if we can
5647 determine that the address is one where functions cannot have
5648 been inlined. This improves performance with inferiors that
5649 load a lot of shared libraries, because the solib event
5650 breakpoint is defined as the address of a function (i.e. not
5651 inline). Note that we have to check the previous PC as well
5652 as the current one to catch cases when we have just
5653 single-stepped off a breakpoint prior to reinstating it.
5654 Note that we're assuming that the code we single-step to is
5655 not inline, but that's not definitive: there's nothing
5656 preventing the event breakpoint function from containing
5657 inlined code, and the single-step ending up there. If the
5658 user had set a breakpoint on that inlined code, the missing
5659 skip_inline_frames call would break things. Fortunately
5660 that's an extremely unlikely scenario. */
f2ffa92b
PA
5661 if (!pc_at_non_inline_function (aspace,
5662 ecs->event_thread->suspend.stop_pc,
5663 &ecs->ws)
a210c238
MR
5664 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5665 && ecs->event_thread->control.trap_expected
5666 && pc_at_non_inline_function (aspace,
5667 ecs->event_thread->prev_pc,
09ac7c10 5668 &ecs->ws)))
1c5a993e 5669 {
f2ffa92b
PA
5670 stop_chain = build_bpstat_chain (aspace,
5671 ecs->event_thread->suspend.stop_pc,
5672 &ecs->ws);
00431a78 5673 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5674
5675 /* Re-fetch current thread's frame in case that invalidated
5676 the frame cache. */
5677 frame = get_current_frame ();
5678 gdbarch = get_frame_arch (frame);
5679 }
0574c78f 5680 }
edb3359d 5681
a493e3e2 5682 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5683 && ecs->event_thread->control.trap_expected
568d6575 5684 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5685 && currently_stepping (ecs->event_thread))
3352ef37 5686 {
b50d7442 5687 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5688 also on an instruction that needs to be stepped multiple
1777feb0 5689 times before it's been fully executing. E.g., architectures
3352ef37
AC
5690 with a delay slot. It needs to be stepped twice, once for
5691 the instruction and once for the delay slot. */
5692 int step_through_delay
568d6575 5693 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5694
527159b7 5695 if (debug_infrun && step_through_delay)
8a9de0e4 5696 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5697 if (ecs->event_thread->control.step_range_end == 0
5698 && step_through_delay)
3352ef37
AC
5699 {
5700 /* The user issued a continue when stopped at a breakpoint.
5701 Set up for another trap and get out of here. */
4e1c45ea 5702 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5703 keep_going (ecs);
5704 return;
5705 }
5706 else if (step_through_delay)
5707 {
5708 /* The user issued a step when stopped at a breakpoint.
5709 Maybe we should stop, maybe we should not - the delay
5710 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5711 case, don't decide that here, just set
5712 ecs->stepping_over_breakpoint, making sure we
5713 single-step again before breakpoints are re-inserted. */
4e1c45ea 5714 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5715 }
5716 }
5717
ab04a2af
TT
5718 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5719 handles this event. */
5720 ecs->event_thread->control.stop_bpstat
a01bda52 5721 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5722 ecs->event_thread->suspend.stop_pc,
5723 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5724
ab04a2af
TT
5725 /* Following in case break condition called a
5726 function. */
5727 stop_print_frame = 1;
73dd234f 5728
ab04a2af
TT
5729 /* This is where we handle "moribund" watchpoints. Unlike
5730 software breakpoints traps, hardware watchpoint traps are
5731 always distinguishable from random traps. If no high-level
5732 watchpoint is associated with the reported stop data address
5733 anymore, then the bpstat does not explain the signal ---
5734 simply make sure to ignore it if `stopped_by_watchpoint' is
5735 set. */
5736
5737 if (debug_infrun
5738 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5739 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5740 GDB_SIGNAL_TRAP)
ab04a2af
TT
5741 && stopped_by_watchpoint)
5742 fprintf_unfiltered (gdb_stdlog,
5743 "infrun: no user watchpoint explains "
5744 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5745
bac7d97b 5746 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5747 at one stage in the past included checks for an inferior
5748 function call's call dummy's return breakpoint. The original
5749 comment, that went with the test, read:
03cebad2 5750
ab04a2af
TT
5751 ``End of a stack dummy. Some systems (e.g. Sony news) give
5752 another signal besides SIGTRAP, so check here as well as
5753 above.''
73dd234f 5754
ab04a2af
TT
5755 If someone ever tries to get call dummys on a
5756 non-executable stack to work (where the target would stop
5757 with something like a SIGSEGV), then those tests might need
5758 to be re-instated. Given, however, that the tests were only
5759 enabled when momentary breakpoints were not being used, I
5760 suspect that it won't be the case.
488f131b 5761
ab04a2af
TT
5762 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5763 be necessary for call dummies on a non-executable stack on
5764 SPARC. */
488f131b 5765
bac7d97b 5766 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5767 random_signal
5768 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5769 ecs->event_thread->suspend.stop_signal);
bac7d97b 5770
1cf4d951
PA
5771 /* Maybe this was a trap for a software breakpoint that has since
5772 been removed. */
5773 if (random_signal && target_stopped_by_sw_breakpoint ())
5774 {
f2ffa92b
PA
5775 if (program_breakpoint_here_p (gdbarch,
5776 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5777 {
5778 struct regcache *regcache;
5779 int decr_pc;
5780
5781 /* Re-adjust PC to what the program would see if GDB was not
5782 debugging it. */
00431a78 5783 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5784 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5785 if (decr_pc != 0)
5786 {
07036511
TT
5787 gdb::optional<scoped_restore_tmpl<int>>
5788 restore_operation_disable;
1cf4d951
PA
5789
5790 if (record_full_is_used ())
07036511
TT
5791 restore_operation_disable.emplace
5792 (record_full_gdb_operation_disable_set ());
1cf4d951 5793
f2ffa92b
PA
5794 regcache_write_pc (regcache,
5795 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5796 }
5797 }
5798 else
5799 {
5800 /* A delayed software breakpoint event. Ignore the trap. */
5801 if (debug_infrun)
5802 fprintf_unfiltered (gdb_stdlog,
5803 "infrun: delayed software breakpoint "
5804 "trap, ignoring\n");
5805 random_signal = 0;
5806 }
5807 }
5808
5809 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5810 has since been removed. */
5811 if (random_signal && target_stopped_by_hw_breakpoint ())
5812 {
5813 /* A delayed hardware breakpoint event. Ignore the trap. */
5814 if (debug_infrun)
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: delayed hardware breakpoint/watchpoint "
5817 "trap, ignoring\n");
5818 random_signal = 0;
5819 }
5820
bac7d97b
PA
5821 /* If not, perhaps stepping/nexting can. */
5822 if (random_signal)
5823 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5824 && currently_stepping (ecs->event_thread));
ab04a2af 5825
2adfaa28
PA
5826 /* Perhaps the thread hit a single-step breakpoint of _another_
5827 thread. Single-step breakpoints are transparent to the
5828 breakpoints module. */
5829 if (random_signal)
5830 random_signal = !ecs->hit_singlestep_breakpoint;
5831
bac7d97b
PA
5832 /* No? Perhaps we got a moribund watchpoint. */
5833 if (random_signal)
5834 random_signal = !stopped_by_watchpoint;
ab04a2af 5835
c65d6b55
PA
5836 /* Always stop if the user explicitly requested this thread to
5837 remain stopped. */
5838 if (ecs->event_thread->stop_requested)
5839 {
5840 random_signal = 1;
5841 if (debug_infrun)
5842 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5843 }
5844
488f131b
JB
5845 /* For the program's own signals, act according to
5846 the signal handling tables. */
5847
ce12b012 5848 if (random_signal)
488f131b
JB
5849 {
5850 /* Signal not for debugging purposes. */
c9657e70 5851 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5852 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5853
527159b7 5854 if (debug_infrun)
c9737c08
PA
5855 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5856 gdb_signal_to_symbol_string (stop_signal));
527159b7 5857
488f131b
JB
5858 stopped_by_random_signal = 1;
5859
252fbfc8
PA
5860 /* Always stop on signals if we're either just gaining control
5861 of the program, or the user explicitly requested this thread
5862 to remain stopped. */
d6b48e9c 5863 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5864 || ecs->event_thread->stop_requested
24291992 5865 || (!inf->detaching
16c381f0 5866 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5867 {
22bcd14b 5868 stop_waiting (ecs);
488f131b
JB
5869 return;
5870 }
b57bacec
PA
5871
5872 /* Notify observers the signal has "handle print" set. Note we
5873 returned early above if stopping; normal_stop handles the
5874 printing in that case. */
5875 if (signal_print[ecs->event_thread->suspend.stop_signal])
5876 {
5877 /* The signal table tells us to print about this signal. */
223ffa71 5878 target_terminal::ours_for_output ();
76727919 5879 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5880 target_terminal::inferior ();
b57bacec 5881 }
488f131b
JB
5882
5883 /* Clear the signal if it should not be passed. */
16c381f0 5884 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5885 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5886
f2ffa92b 5887 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5888 && ecs->event_thread->control.trap_expected
8358c15c 5889 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5890 {
5891 /* We were just starting a new sequence, attempting to
5892 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5893 Instead this signal arrives. This signal will take us out
68f53502
AC
5894 of the stepping range so GDB needs to remember to, when
5895 the signal handler returns, resume stepping off that
5896 breakpoint. */
5897 /* To simplify things, "continue" is forced to use the same
5898 code paths as single-step - set a breakpoint at the
5899 signal return address and then, once hit, step off that
5900 breakpoint. */
237fc4c9
PA
5901 if (debug_infrun)
5902 fprintf_unfiltered (gdb_stdlog,
5903 "infrun: signal arrived while stepping over "
5904 "breakpoint\n");
d3169d93 5905
2c03e5be 5906 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5907 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5908 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5909 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5910
5911 /* If we were nexting/stepping some other thread, switch to
5912 it, so that we don't continue it, losing control. */
5913 if (!switch_back_to_stepped_thread (ecs))
5914 keep_going (ecs);
9d799f85 5915 return;
68f53502 5916 }
9d799f85 5917
e5f8a7cc 5918 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5919 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5920 ecs->event_thread)
e5f8a7cc 5921 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5922 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5923 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5924 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5925 {
5926 /* The inferior is about to take a signal that will take it
5927 out of the single step range. Set a breakpoint at the
5928 current PC (which is presumably where the signal handler
5929 will eventually return) and then allow the inferior to
5930 run free.
5931
5932 Note that this is only needed for a signal delivered
5933 while in the single-step range. Nested signals aren't a
5934 problem as they eventually all return. */
237fc4c9
PA
5935 if (debug_infrun)
5936 fprintf_unfiltered (gdb_stdlog,
5937 "infrun: signal may take us out of "
5938 "single-step range\n");
5939
372316f1 5940 clear_step_over_info ();
2c03e5be 5941 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5942 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5943 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5944 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5945 keep_going (ecs);
5946 return;
d303a6c7 5947 }
9d799f85 5948
85102364 5949 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5950 when either there's a nested signal, or when there's a
5951 pending signal enabled just as the signal handler returns
5952 (leaving the inferior at the step-resume-breakpoint without
5953 actually executing it). Either way continue until the
5954 breakpoint is really hit. */
c447ac0b
PA
5955
5956 if (!switch_back_to_stepped_thread (ecs))
5957 {
5958 if (debug_infrun)
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: random signal, keep going\n");
5961
5962 keep_going (ecs);
5963 }
5964 return;
488f131b 5965 }
94c57d6a
PA
5966
5967 process_event_stop_test (ecs);
5968}
5969
5970/* Come here when we've got some debug event / signal we can explain
5971 (IOW, not a random signal), and test whether it should cause a
5972 stop, or whether we should resume the inferior (transparently).
5973 E.g., could be a breakpoint whose condition evaluates false; we
5974 could be still stepping within the line; etc. */
5975
5976static void
5977process_event_stop_test (struct execution_control_state *ecs)
5978{
5979 struct symtab_and_line stop_pc_sal;
5980 struct frame_info *frame;
5981 struct gdbarch *gdbarch;
cdaa5b73
PA
5982 CORE_ADDR jmp_buf_pc;
5983 struct bpstat_what what;
94c57d6a 5984
cdaa5b73 5985 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5986
cdaa5b73
PA
5987 frame = get_current_frame ();
5988 gdbarch = get_frame_arch (frame);
fcf3daef 5989
cdaa5b73 5990 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5991
cdaa5b73
PA
5992 if (what.call_dummy)
5993 {
5994 stop_stack_dummy = what.call_dummy;
5995 }
186c406b 5996
243a9253
PA
5997 /* A few breakpoint types have callbacks associated (e.g.,
5998 bp_jit_event). Run them now. */
5999 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6000
cdaa5b73
PA
6001 /* If we hit an internal event that triggers symbol changes, the
6002 current frame will be invalidated within bpstat_what (e.g., if we
6003 hit an internal solib event). Re-fetch it. */
6004 frame = get_current_frame ();
6005 gdbarch = get_frame_arch (frame);
e2e4d78b 6006
cdaa5b73
PA
6007 switch (what.main_action)
6008 {
6009 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6010 /* If we hit the breakpoint at longjmp while stepping, we
6011 install a momentary breakpoint at the target of the
6012 jmp_buf. */
186c406b 6013
cdaa5b73
PA
6014 if (debug_infrun)
6015 fprintf_unfiltered (gdb_stdlog,
6016 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6017
cdaa5b73 6018 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6019
cdaa5b73
PA
6020 if (what.is_longjmp)
6021 {
6022 struct value *arg_value;
6023
6024 /* If we set the longjmp breakpoint via a SystemTap probe,
6025 then use it to extract the arguments. The destination PC
6026 is the third argument to the probe. */
6027 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6028 if (arg_value)
8fa0c4f8
AA
6029 {
6030 jmp_buf_pc = value_as_address (arg_value);
6031 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6032 }
cdaa5b73
PA
6033 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6034 || !gdbarch_get_longjmp_target (gdbarch,
6035 frame, &jmp_buf_pc))
e2e4d78b 6036 {
cdaa5b73
PA
6037 if (debug_infrun)
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6040 "(!gdbarch_get_longjmp_target)\n");
6041 keep_going (ecs);
6042 return;
e2e4d78b 6043 }
e2e4d78b 6044
cdaa5b73
PA
6045 /* Insert a breakpoint at resume address. */
6046 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6047 }
6048 else
6049 check_exception_resume (ecs, frame);
6050 keep_going (ecs);
6051 return;
e81a37f7 6052
cdaa5b73
PA
6053 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6054 {
6055 struct frame_info *init_frame;
e81a37f7 6056
cdaa5b73 6057 /* There are several cases to consider.
c906108c 6058
cdaa5b73
PA
6059 1. The initiating frame no longer exists. In this case we
6060 must stop, because the exception or longjmp has gone too
6061 far.
2c03e5be 6062
cdaa5b73
PA
6063 2. The initiating frame exists, and is the same as the
6064 current frame. We stop, because the exception or longjmp
6065 has been caught.
2c03e5be 6066
cdaa5b73
PA
6067 3. The initiating frame exists and is different from the
6068 current frame. This means the exception or longjmp has
6069 been caught beneath the initiating frame, so keep going.
c906108c 6070
cdaa5b73
PA
6071 4. longjmp breakpoint has been placed just to protect
6072 against stale dummy frames and user is not interested in
6073 stopping around longjmps. */
c5aa993b 6074
cdaa5b73
PA
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6078
cdaa5b73
PA
6079 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6080 != NULL);
6081 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6082
cdaa5b73
PA
6083 if (what.is_longjmp)
6084 {
b67a2c6f 6085 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6086
cdaa5b73 6087 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6088 {
cdaa5b73
PA
6089 /* Case 4. */
6090 keep_going (ecs);
6091 return;
e5ef252a 6092 }
cdaa5b73 6093 }
c5aa993b 6094
cdaa5b73 6095 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6096
cdaa5b73
PA
6097 if (init_frame)
6098 {
6099 struct frame_id current_id
6100 = get_frame_id (get_current_frame ());
6101 if (frame_id_eq (current_id,
6102 ecs->event_thread->initiating_frame))
6103 {
6104 /* Case 2. Fall through. */
6105 }
6106 else
6107 {
6108 /* Case 3. */
6109 keep_going (ecs);
6110 return;
6111 }
68f53502 6112 }
488f131b 6113
cdaa5b73
PA
6114 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6115 exists. */
6116 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6117
bdc36728 6118 end_stepping_range (ecs);
cdaa5b73
PA
6119 }
6120 return;
e5ef252a 6121
cdaa5b73
PA
6122 case BPSTAT_WHAT_SINGLE:
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6125 ecs->event_thread->stepping_over_breakpoint = 1;
6126 /* Still need to check other stuff, at least the case where we
6127 are stepping and step out of the right range. */
6128 break;
e5ef252a 6129
cdaa5b73
PA
6130 case BPSTAT_WHAT_STEP_RESUME:
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6133
cdaa5b73
PA
6134 delete_step_resume_breakpoint (ecs->event_thread);
6135 if (ecs->event_thread->control.proceed_to_finish
6136 && execution_direction == EXEC_REVERSE)
6137 {
6138 struct thread_info *tp = ecs->event_thread;
6139
6140 /* We are finishing a function in reverse, and just hit the
6141 step-resume breakpoint at the start address of the
6142 function, and we're almost there -- just need to back up
6143 by one more single-step, which should take us back to the
6144 function call. */
6145 tp->control.step_range_start = tp->control.step_range_end = 1;
6146 keep_going (ecs);
e5ef252a 6147 return;
cdaa5b73
PA
6148 }
6149 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6150 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6151 && execution_direction == EXEC_REVERSE)
6152 {
6153 /* We are stepping over a function call in reverse, and just
6154 hit the step-resume breakpoint at the start address of
6155 the function. Go back to single-stepping, which should
6156 take us back to the function call. */
6157 ecs->event_thread->stepping_over_breakpoint = 1;
6158 keep_going (ecs);
6159 return;
6160 }
6161 break;
e5ef252a 6162
cdaa5b73
PA
6163 case BPSTAT_WHAT_STOP_NOISY:
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6166 stop_print_frame = 1;
e5ef252a 6167
99619bea
PA
6168 /* Assume the thread stopped for a breapoint. We'll still check
6169 whether a/the breakpoint is there when the thread is next
6170 resumed. */
6171 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6172
22bcd14b 6173 stop_waiting (ecs);
cdaa5b73 6174 return;
e5ef252a 6175
cdaa5b73
PA
6176 case BPSTAT_WHAT_STOP_SILENT:
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6179 stop_print_frame = 0;
e5ef252a 6180
99619bea
PA
6181 /* Assume the thread stopped for a breapoint. We'll still check
6182 whether a/the breakpoint is there when the thread is next
6183 resumed. */
6184 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6185 stop_waiting (ecs);
cdaa5b73
PA
6186 return;
6187
6188 case BPSTAT_WHAT_HP_STEP_RESUME:
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6191
6192 delete_step_resume_breakpoint (ecs->event_thread);
6193 if (ecs->event_thread->step_after_step_resume_breakpoint)
6194 {
6195 /* Back when the step-resume breakpoint was inserted, we
6196 were trying to single-step off a breakpoint. Go back to
6197 doing that. */
6198 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6199 ecs->event_thread->stepping_over_breakpoint = 1;
6200 keep_going (ecs);
6201 return;
e5ef252a 6202 }
cdaa5b73
PA
6203 break;
6204
6205 case BPSTAT_WHAT_KEEP_CHECKING:
6206 break;
e5ef252a 6207 }
c906108c 6208
af48d08f
PA
6209 /* If we stepped a permanent breakpoint and we had a high priority
6210 step-resume breakpoint for the address we stepped, but we didn't
6211 hit it, then we must have stepped into the signal handler. The
6212 step-resume was only necessary to catch the case of _not_
6213 stepping into the handler, so delete it, and fall through to
6214 checking whether the step finished. */
6215 if (ecs->event_thread->stepped_breakpoint)
6216 {
6217 struct breakpoint *sr_bp
6218 = ecs->event_thread->control.step_resume_breakpoint;
6219
8d707a12
PA
6220 if (sr_bp != NULL
6221 && sr_bp->loc->permanent
af48d08f
PA
6222 && sr_bp->type == bp_hp_step_resume
6223 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6224 {
6225 if (debug_infrun)
6226 fprintf_unfiltered (gdb_stdlog,
6227 "infrun: stepped permanent breakpoint, stopped in "
6228 "handler\n");
6229 delete_step_resume_breakpoint (ecs->event_thread);
6230 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6231 }
6232 }
6233
cdaa5b73
PA
6234 /* We come here if we hit a breakpoint but should not stop for it.
6235 Possibly we also were stepping and should stop for that. So fall
6236 through and test for stepping. But, if not stepping, do not
6237 stop. */
c906108c 6238
a7212384
UW
6239 /* In all-stop mode, if we're currently stepping but have stopped in
6240 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6241 if (switch_back_to_stepped_thread (ecs))
6242 return;
776f04fa 6243
8358c15c 6244 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6245 {
527159b7 6246 if (debug_infrun)
d3169d93
DJ
6247 fprintf_unfiltered (gdb_stdlog,
6248 "infrun: step-resume breakpoint is inserted\n");
527159b7 6249
488f131b
JB
6250 /* Having a step-resume breakpoint overrides anything
6251 else having to do with stepping commands until
6252 that breakpoint is reached. */
488f131b
JB
6253 keep_going (ecs);
6254 return;
6255 }
c5aa993b 6256
16c381f0 6257 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6258 {
527159b7 6259 if (debug_infrun)
8a9de0e4 6260 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6261 /* Likewise if we aren't even stepping. */
488f131b
JB
6262 keep_going (ecs);
6263 return;
6264 }
c5aa993b 6265
4b7703ad
JB
6266 /* Re-fetch current thread's frame in case the code above caused
6267 the frame cache to be re-initialized, making our FRAME variable
6268 a dangling pointer. */
6269 frame = get_current_frame ();
628fe4e4 6270 gdbarch = get_frame_arch (frame);
7e324e48 6271 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6272
488f131b 6273 /* If stepping through a line, keep going if still within it.
c906108c 6274
488f131b
JB
6275 Note that step_range_end is the address of the first instruction
6276 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6277 within it!
6278
6279 Note also that during reverse execution, we may be stepping
6280 through a function epilogue and therefore must detect when
6281 the current-frame changes in the middle of a line. */
6282
f2ffa92b
PA
6283 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6284 ecs->event_thread)
31410e84 6285 && (execution_direction != EXEC_REVERSE
388a8562 6286 || frame_id_eq (get_frame_id (frame),
16c381f0 6287 ecs->event_thread->control.step_frame_id)))
488f131b 6288 {
527159b7 6289 if (debug_infrun)
5af949e3
UW
6290 fprintf_unfiltered
6291 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6292 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6293 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6294
c1e36e3e
PA
6295 /* Tentatively re-enable range stepping; `resume' disables it if
6296 necessary (e.g., if we're stepping over a breakpoint or we
6297 have software watchpoints). */
6298 ecs->event_thread->control.may_range_step = 1;
6299
b2175913
MS
6300 /* When stepping backward, stop at beginning of line range
6301 (unless it's the function entry point, in which case
6302 keep going back to the call point). */
f2ffa92b 6303 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6304 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6305 && stop_pc != ecs->stop_func_start
6306 && execution_direction == EXEC_REVERSE)
bdc36728 6307 end_stepping_range (ecs);
b2175913
MS
6308 else
6309 keep_going (ecs);
6310
488f131b
JB
6311 return;
6312 }
c5aa993b 6313
488f131b 6314 /* We stepped out of the stepping range. */
c906108c 6315
488f131b 6316 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6317 loader dynamic symbol resolution code...
6318
6319 EXEC_FORWARD: we keep on single stepping until we exit the run
6320 time loader code and reach the callee's address.
6321
6322 EXEC_REVERSE: we've already executed the callee (backward), and
6323 the runtime loader code is handled just like any other
6324 undebuggable function call. Now we need only keep stepping
6325 backward through the trampoline code, and that's handled further
6326 down, so there is nothing for us to do here. */
6327
6328 if (execution_direction != EXEC_REVERSE
16c381f0 6329 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6330 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6331 {
4c8c40e6 6332 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6333 gdbarch_skip_solib_resolver (gdbarch,
6334 ecs->event_thread->suspend.stop_pc);
c906108c 6335
527159b7 6336 if (debug_infrun)
3e43a32a
MS
6337 fprintf_unfiltered (gdb_stdlog,
6338 "infrun: stepped into dynsym resolve code\n");
527159b7 6339
488f131b
JB
6340 if (pc_after_resolver)
6341 {
6342 /* Set up a step-resume breakpoint at the address
6343 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6344 symtab_and_line sr_sal;
488f131b 6345 sr_sal.pc = pc_after_resolver;
6c95b8df 6346 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6347
a6d9a66e
UW
6348 insert_step_resume_breakpoint_at_sal (gdbarch,
6349 sr_sal, null_frame_id);
c5aa993b 6350 }
c906108c 6351
488f131b
JB
6352 keep_going (ecs);
6353 return;
6354 }
c906108c 6355
1d509aa6
MM
6356 /* Step through an indirect branch thunk. */
6357 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6358 && gdbarch_in_indirect_branch_thunk (gdbarch,
6359 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6360 {
6361 if (debug_infrun)
6362 fprintf_unfiltered (gdb_stdlog,
6363 "infrun: stepped into indirect branch thunk\n");
6364 keep_going (ecs);
6365 return;
6366 }
6367
16c381f0
JK
6368 if (ecs->event_thread->control.step_range_end != 1
6369 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6370 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6371 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6372 {
527159b7 6373 if (debug_infrun)
3e43a32a
MS
6374 fprintf_unfiltered (gdb_stdlog,
6375 "infrun: stepped into signal trampoline\n");
42edda50 6376 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6377 a signal trampoline (either by a signal being delivered or by
6378 the signal handler returning). Just single-step until the
6379 inferior leaves the trampoline (either by calling the handler
6380 or returning). */
488f131b
JB
6381 keep_going (ecs);
6382 return;
6383 }
c906108c 6384
14132e89
MR
6385 /* If we're in the return path from a shared library trampoline,
6386 we want to proceed through the trampoline when stepping. */
6387 /* macro/2012-04-25: This needs to come before the subroutine
6388 call check below as on some targets return trampolines look
6389 like subroutine calls (MIPS16 return thunks). */
6390 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6391 ecs->event_thread->suspend.stop_pc,
6392 ecs->stop_func_name)
14132e89
MR
6393 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6394 {
6395 /* Determine where this trampoline returns. */
f2ffa92b
PA
6396 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6397 CORE_ADDR real_stop_pc
6398 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6399
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog,
6402 "infrun: stepped into solib return tramp\n");
6403
6404 /* Only proceed through if we know where it's going. */
6405 if (real_stop_pc)
6406 {
6407 /* And put the step-breakpoint there and go until there. */
51abb421 6408 symtab_and_line sr_sal;
14132e89
MR
6409 sr_sal.pc = real_stop_pc;
6410 sr_sal.section = find_pc_overlay (sr_sal.pc);
6411 sr_sal.pspace = get_frame_program_space (frame);
6412
6413 /* Do not specify what the fp should be when we stop since
6414 on some machines the prologue is where the new fp value
6415 is established. */
6416 insert_step_resume_breakpoint_at_sal (gdbarch,
6417 sr_sal, null_frame_id);
6418
6419 /* Restart without fiddling with the step ranges or
6420 other state. */
6421 keep_going (ecs);
6422 return;
6423 }
6424 }
6425
c17eaafe
DJ
6426 /* Check for subroutine calls. The check for the current frame
6427 equalling the step ID is not necessary - the check of the
6428 previous frame's ID is sufficient - but it is a common case and
6429 cheaper than checking the previous frame's ID.
14e60db5
DJ
6430
6431 NOTE: frame_id_eq will never report two invalid frame IDs as
6432 being equal, so to get into this block, both the current and
6433 previous frame must have valid frame IDs. */
005ca36a
JB
6434 /* The outer_frame_id check is a heuristic to detect stepping
6435 through startup code. If we step over an instruction which
6436 sets the stack pointer from an invalid value to a valid value,
6437 we may detect that as a subroutine call from the mythical
6438 "outermost" function. This could be fixed by marking
6439 outermost frames as !stack_p,code_p,special_p. Then the
6440 initial outermost frame, before sp was valid, would
ce6cca6d 6441 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6442 for more. */
edb3359d 6443 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6444 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6445 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6446 ecs->event_thread->control.step_stack_frame_id)
6447 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6448 outer_frame_id)
885eeb5b 6449 || (ecs->event_thread->control.step_start_function
f2ffa92b 6450 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6451 {
f2ffa92b 6452 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6453 CORE_ADDR real_stop_pc;
8fb3e588 6454
527159b7 6455 if (debug_infrun)
8a9de0e4 6456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6457
b7a084be 6458 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6459 {
6460 /* I presume that step_over_calls is only 0 when we're
6461 supposed to be stepping at the assembly language level
6462 ("stepi"). Just stop. */
388a8562 6463 /* And this works the same backward as frontward. MVS */
bdc36728 6464 end_stepping_range (ecs);
95918acb
AC
6465 return;
6466 }
8fb3e588 6467
388a8562
MS
6468 /* Reverse stepping through solib trampolines. */
6469
6470 if (execution_direction == EXEC_REVERSE
16c381f0 6471 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6472 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6473 || (ecs->stop_func_start == 0
6474 && in_solib_dynsym_resolve_code (stop_pc))))
6475 {
6476 /* Any solib trampoline code can be handled in reverse
6477 by simply continuing to single-step. We have already
6478 executed the solib function (backwards), and a few
6479 steps will take us back through the trampoline to the
6480 caller. */
6481 keep_going (ecs);
6482 return;
6483 }
6484
16c381f0 6485 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6486 {
b2175913
MS
6487 /* We're doing a "next".
6488
6489 Normal (forward) execution: set a breakpoint at the
6490 callee's return address (the address at which the caller
6491 will resume).
6492
6493 Reverse (backward) execution. set the step-resume
6494 breakpoint at the start of the function that we just
6495 stepped into (backwards), and continue to there. When we
6130d0b7 6496 get there, we'll need to single-step back to the caller. */
b2175913
MS
6497
6498 if (execution_direction == EXEC_REVERSE)
6499 {
acf9414f
JK
6500 /* If we're already at the start of the function, we've either
6501 just stepped backward into a single instruction function,
6502 or stepped back out of a signal handler to the first instruction
6503 of the function. Just keep going, which will single-step back
6504 to the caller. */
58c48e72 6505 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6506 {
acf9414f 6507 /* Normal function call return (static or dynamic). */
51abb421 6508 symtab_and_line sr_sal;
acf9414f
JK
6509 sr_sal.pc = ecs->stop_func_start;
6510 sr_sal.pspace = get_frame_program_space (frame);
6511 insert_step_resume_breakpoint_at_sal (gdbarch,
6512 sr_sal, null_frame_id);
6513 }
b2175913
MS
6514 }
6515 else
568d6575 6516 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6517
8567c30f
AC
6518 keep_going (ecs);
6519 return;
6520 }
a53c66de 6521
95918acb 6522 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6523 calling routine and the real function), locate the real
6524 function. That's what tells us (a) whether we want to step
6525 into it at all, and (b) what prologue we want to run to the
6526 end of, if we do step into it. */
568d6575 6527 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6528 if (real_stop_pc == 0)
568d6575 6529 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6530 if (real_stop_pc != 0)
6531 ecs->stop_func_start = real_stop_pc;
8fb3e588 6532
db5f024e 6533 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6534 {
51abb421 6535 symtab_and_line sr_sal;
1b2bfbb9 6536 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6537 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6538
a6d9a66e
UW
6539 insert_step_resume_breakpoint_at_sal (gdbarch,
6540 sr_sal, null_frame_id);
8fb3e588
AC
6541 keep_going (ecs);
6542 return;
1b2bfbb9
RC
6543 }
6544
95918acb 6545 /* If we have line number information for the function we are
1bfeeb0f
JL
6546 thinking of stepping into and the function isn't on the skip
6547 list, step into it.
95918acb 6548
8fb3e588
AC
6549 If there are several symtabs at that PC (e.g. with include
6550 files), just want to know whether *any* of them have line
6551 numbers. find_pc_line handles this. */
95918acb
AC
6552 {
6553 struct symtab_and_line tmp_sal;
8fb3e588 6554
95918acb 6555 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6556 if (tmp_sal.line != 0
85817405 6557 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6558 tmp_sal))
95918acb 6559 {
b2175913 6560 if (execution_direction == EXEC_REVERSE)
568d6575 6561 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6562 else
568d6575 6563 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6564 return;
6565 }
6566 }
6567
6568 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6569 set, we stop the step so that the user has a chance to switch
6570 in assembly mode. */
16c381f0 6571 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6572 && step_stop_if_no_debug)
95918acb 6573 {
bdc36728 6574 end_stepping_range (ecs);
95918acb
AC
6575 return;
6576 }
6577
b2175913
MS
6578 if (execution_direction == EXEC_REVERSE)
6579 {
acf9414f
JK
6580 /* If we're already at the start of the function, we've either just
6581 stepped backward into a single instruction function without line
6582 number info, or stepped back out of a signal handler to the first
6583 instruction of the function without line number info. Just keep
6584 going, which will single-step back to the caller. */
6585 if (ecs->stop_func_start != stop_pc)
6586 {
6587 /* Set a breakpoint at callee's start address.
6588 From there we can step once and be back in the caller. */
51abb421 6589 symtab_and_line sr_sal;
acf9414f
JK
6590 sr_sal.pc = ecs->stop_func_start;
6591 sr_sal.pspace = get_frame_program_space (frame);
6592 insert_step_resume_breakpoint_at_sal (gdbarch,
6593 sr_sal, null_frame_id);
6594 }
b2175913
MS
6595 }
6596 else
6597 /* Set a breakpoint at callee's return address (the address
6598 at which the caller will resume). */
568d6575 6599 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6600
95918acb 6601 keep_going (ecs);
488f131b 6602 return;
488f131b 6603 }
c906108c 6604
fdd654f3
MS
6605 /* Reverse stepping through solib trampolines. */
6606
6607 if (execution_direction == EXEC_REVERSE
16c381f0 6608 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6609 {
f2ffa92b
PA
6610 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6611
fdd654f3
MS
6612 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6613 || (ecs->stop_func_start == 0
6614 && in_solib_dynsym_resolve_code (stop_pc)))
6615 {
6616 /* Any solib trampoline code can be handled in reverse
6617 by simply continuing to single-step. We have already
6618 executed the solib function (backwards), and a few
6619 steps will take us back through the trampoline to the
6620 caller. */
6621 keep_going (ecs);
6622 return;
6623 }
6624 else if (in_solib_dynsym_resolve_code (stop_pc))
6625 {
6626 /* Stepped backward into the solib dynsym resolver.
6627 Set a breakpoint at its start and continue, then
6628 one more step will take us out. */
51abb421 6629 symtab_and_line sr_sal;
fdd654f3 6630 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6631 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6632 insert_step_resume_breakpoint_at_sal (gdbarch,
6633 sr_sal, null_frame_id);
6634 keep_going (ecs);
6635 return;
6636 }
6637 }
6638
f2ffa92b 6639 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6640
1b2bfbb9
RC
6641 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6642 the trampoline processing logic, however, there are some trampolines
6643 that have no names, so we should do trampoline handling first. */
16c381f0 6644 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6645 && ecs->stop_func_name == NULL
2afb61aa 6646 && stop_pc_sal.line == 0)
1b2bfbb9 6647 {
527159b7 6648 if (debug_infrun)
3e43a32a
MS
6649 fprintf_unfiltered (gdb_stdlog,
6650 "infrun: stepped into undebuggable function\n");
527159b7 6651
1b2bfbb9 6652 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6653 undebuggable function (where there is no debugging information
6654 and no line number corresponding to the address where the
1b2bfbb9
RC
6655 inferior stopped). Since we want to skip this kind of code,
6656 we keep going until the inferior returns from this
14e60db5
DJ
6657 function - unless the user has asked us not to (via
6658 set step-mode) or we no longer know how to get back
6659 to the call site. */
6660 if (step_stop_if_no_debug
c7ce8faa 6661 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6662 {
6663 /* If we have no line number and the step-stop-if-no-debug
6664 is set, we stop the step so that the user has a chance to
6665 switch in assembly mode. */
bdc36728 6666 end_stepping_range (ecs);
1b2bfbb9
RC
6667 return;
6668 }
6669 else
6670 {
6671 /* Set a breakpoint at callee's return address (the address
6672 at which the caller will resume). */
568d6575 6673 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6674 keep_going (ecs);
6675 return;
6676 }
6677 }
6678
16c381f0 6679 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6680 {
6681 /* It is stepi or nexti. We always want to stop stepping after
6682 one instruction. */
527159b7 6683 if (debug_infrun)
8a9de0e4 6684 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6685 end_stepping_range (ecs);
1b2bfbb9
RC
6686 return;
6687 }
6688
2afb61aa 6689 if (stop_pc_sal.line == 0)
488f131b
JB
6690 {
6691 /* We have no line number information. That means to stop
6692 stepping (does this always happen right after one instruction,
6693 when we do "s" in a function with no line numbers,
6694 or can this happen as a result of a return or longjmp?). */
527159b7 6695 if (debug_infrun)
8a9de0e4 6696 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6697 end_stepping_range (ecs);
488f131b
JB
6698 return;
6699 }
c906108c 6700
edb3359d
DJ
6701 /* Look for "calls" to inlined functions, part one. If the inline
6702 frame machinery detected some skipped call sites, we have entered
6703 a new inline function. */
6704
6705 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6706 ecs->event_thread->control.step_frame_id)
00431a78 6707 && inline_skipped_frames (ecs->event_thread))
edb3359d 6708 {
edb3359d
DJ
6709 if (debug_infrun)
6710 fprintf_unfiltered (gdb_stdlog,
6711 "infrun: stepped into inlined function\n");
6712
51abb421 6713 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6714
16c381f0 6715 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6716 {
6717 /* For "step", we're going to stop. But if the call site
6718 for this inlined function is on the same source line as
6719 we were previously stepping, go down into the function
6720 first. Otherwise stop at the call site. */
6721
6722 if (call_sal.line == ecs->event_thread->current_line
6723 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6724 step_into_inline_frame (ecs->event_thread);
edb3359d 6725
bdc36728 6726 end_stepping_range (ecs);
edb3359d
DJ
6727 return;
6728 }
6729 else
6730 {
6731 /* For "next", we should stop at the call site if it is on a
6732 different source line. Otherwise continue through the
6733 inlined function. */
6734 if (call_sal.line == ecs->event_thread->current_line
6735 && call_sal.symtab == ecs->event_thread->current_symtab)
6736 keep_going (ecs);
6737 else
bdc36728 6738 end_stepping_range (ecs);
edb3359d
DJ
6739 return;
6740 }
6741 }
6742
6743 /* Look for "calls" to inlined functions, part two. If we are still
6744 in the same real function we were stepping through, but we have
6745 to go further up to find the exact frame ID, we are stepping
6746 through a more inlined call beyond its call site. */
6747
6748 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6749 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6750 ecs->event_thread->control.step_frame_id)
edb3359d 6751 && stepped_in_from (get_current_frame (),
16c381f0 6752 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6753 {
6754 if (debug_infrun)
6755 fprintf_unfiltered (gdb_stdlog,
6756 "infrun: stepping through inlined function\n");
6757
16c381f0 6758 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6759 keep_going (ecs);
6760 else
bdc36728 6761 end_stepping_range (ecs);
edb3359d
DJ
6762 return;
6763 }
6764
f2ffa92b 6765 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6766 && (ecs->event_thread->current_line != stop_pc_sal.line
6767 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6768 {
6769 /* We are at the start of a different line. So stop. Note that
6770 we don't stop if we step into the middle of a different line.
6771 That is said to make things like for (;;) statements work
6772 better. */
527159b7 6773 if (debug_infrun)
3e43a32a
MS
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: stepped to a different line\n");
bdc36728 6776 end_stepping_range (ecs);
488f131b
JB
6777 return;
6778 }
c906108c 6779
488f131b 6780 /* We aren't done stepping.
c906108c 6781
488f131b
JB
6782 Optimize by setting the stepping range to the line.
6783 (We might not be in the original line, but if we entered a
6784 new line in mid-statement, we continue stepping. This makes
6785 things like for(;;) statements work better.) */
c906108c 6786
16c381f0
JK
6787 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6788 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6789 ecs->event_thread->control.may_range_step = 1;
edb3359d 6790 set_step_info (frame, stop_pc_sal);
488f131b 6791
527159b7 6792 if (debug_infrun)
8a9de0e4 6793 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6794 keep_going (ecs);
104c1213
JM
6795}
6796
c447ac0b
PA
6797/* In all-stop mode, if we're currently stepping but have stopped in
6798 some other thread, we may need to switch back to the stepped
6799 thread. Returns true we set the inferior running, false if we left
6800 it stopped (and the event needs further processing). */
6801
6802static int
6803switch_back_to_stepped_thread (struct execution_control_state *ecs)
6804{
fbea99ea 6805 if (!target_is_non_stop_p ())
c447ac0b 6806 {
99619bea
PA
6807 struct thread_info *stepping_thread;
6808
6809 /* If any thread is blocked on some internal breakpoint, and we
6810 simply need to step over that breakpoint to get it going
6811 again, do that first. */
6812
6813 /* However, if we see an event for the stepping thread, then we
6814 know all other threads have been moved past their breakpoints
6815 already. Let the caller check whether the step is finished,
6816 etc., before deciding to move it past a breakpoint. */
6817 if (ecs->event_thread->control.step_range_end != 0)
6818 return 0;
6819
6820 /* Check if the current thread is blocked on an incomplete
6821 step-over, interrupted by a random signal. */
6822 if (ecs->event_thread->control.trap_expected
6823 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6824 {
99619bea
PA
6825 if (debug_infrun)
6826 {
6827 fprintf_unfiltered (gdb_stdlog,
6828 "infrun: need to finish step-over of [%s]\n",
a068643d 6829 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6830 }
6831 keep_going (ecs);
6832 return 1;
6833 }
2adfaa28 6834
99619bea
PA
6835 /* Check if the current thread is blocked by a single-step
6836 breakpoint of another thread. */
6837 if (ecs->hit_singlestep_breakpoint)
6838 {
6839 if (debug_infrun)
6840 {
6841 fprintf_unfiltered (gdb_stdlog,
6842 "infrun: need to step [%s] over single-step "
6843 "breakpoint\n",
a068643d 6844 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6845 }
6846 keep_going (ecs);
6847 return 1;
6848 }
6849
4d9d9d04
PA
6850 /* If this thread needs yet another step-over (e.g., stepping
6851 through a delay slot), do it first before moving on to
6852 another thread. */
6853 if (thread_still_needs_step_over (ecs->event_thread))
6854 {
6855 if (debug_infrun)
6856 {
6857 fprintf_unfiltered (gdb_stdlog,
6858 "infrun: thread [%s] still needs step-over\n",
a068643d 6859 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6860 }
6861 keep_going (ecs);
6862 return 1;
6863 }
70509625 6864
483805cf
PA
6865 /* If scheduler locking applies even if not stepping, there's no
6866 need to walk over threads. Above we've checked whether the
6867 current thread is stepping. If some other thread not the
6868 event thread is stepping, then it must be that scheduler
6869 locking is not in effect. */
856e7dd6 6870 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6871 return 0;
6872
4d9d9d04
PA
6873 /* Otherwise, we no longer expect a trap in the current thread.
6874 Clear the trap_expected flag before switching back -- this is
6875 what keep_going does as well, if we call it. */
6876 ecs->event_thread->control.trap_expected = 0;
6877
6878 /* Likewise, clear the signal if it should not be passed. */
6879 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6880 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6881
6882 /* Do all pending step-overs before actually proceeding with
483805cf 6883 step/next/etc. */
4d9d9d04
PA
6884 if (start_step_over ())
6885 {
6886 prepare_to_wait (ecs);
6887 return 1;
6888 }
6889
6890 /* Look for the stepping/nexting thread. */
483805cf 6891 stepping_thread = NULL;
4d9d9d04 6892
08036331 6893 for (thread_info *tp : all_non_exited_threads ())
483805cf 6894 {
fbea99ea
PA
6895 /* Ignore threads of processes the caller is not
6896 resuming. */
483805cf 6897 if (!sched_multi
e99b03dc 6898 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6899 continue;
6900
6901 /* When stepping over a breakpoint, we lock all threads
6902 except the one that needs to move past the breakpoint.
6903 If a non-event thread has this set, the "incomplete
6904 step-over" check above should have caught it earlier. */
372316f1
PA
6905 if (tp->control.trap_expected)
6906 {
6907 internal_error (__FILE__, __LINE__,
6908 "[%s] has inconsistent state: "
6909 "trap_expected=%d\n",
a068643d 6910 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6911 tp->control.trap_expected);
6912 }
483805cf
PA
6913
6914 /* Did we find the stepping thread? */
6915 if (tp->control.step_range_end)
6916 {
6917 /* Yep. There should only one though. */
6918 gdb_assert (stepping_thread == NULL);
6919
6920 /* The event thread is handled at the top, before we
6921 enter this loop. */
6922 gdb_assert (tp != ecs->event_thread);
6923
6924 /* If some thread other than the event thread is
6925 stepping, then scheduler locking can't be in effect,
6926 otherwise we wouldn't have resumed the current event
6927 thread in the first place. */
856e7dd6 6928 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6929
6930 stepping_thread = tp;
6931 }
99619bea
PA
6932 }
6933
483805cf 6934 if (stepping_thread != NULL)
99619bea 6935 {
c447ac0b
PA
6936 if (debug_infrun)
6937 fprintf_unfiltered (gdb_stdlog,
6938 "infrun: switching back to stepped thread\n");
6939
2ac7589c
PA
6940 if (keep_going_stepped_thread (stepping_thread))
6941 {
6942 prepare_to_wait (ecs);
6943 return 1;
6944 }
6945 }
6946 }
2adfaa28 6947
2ac7589c
PA
6948 return 0;
6949}
2adfaa28 6950
2ac7589c
PA
6951/* Set a previously stepped thread back to stepping. Returns true on
6952 success, false if the resume is not possible (e.g., the thread
6953 vanished). */
6954
6955static int
6956keep_going_stepped_thread (struct thread_info *tp)
6957{
6958 struct frame_info *frame;
2ac7589c
PA
6959 struct execution_control_state ecss;
6960 struct execution_control_state *ecs = &ecss;
2adfaa28 6961
2ac7589c
PA
6962 /* If the stepping thread exited, then don't try to switch back and
6963 resume it, which could fail in several different ways depending
6964 on the target. Instead, just keep going.
2adfaa28 6965
2ac7589c
PA
6966 We can find a stepping dead thread in the thread list in two
6967 cases:
2adfaa28 6968
2ac7589c
PA
6969 - The target supports thread exit events, and when the target
6970 tries to delete the thread from the thread list, inferior_ptid
6971 pointed at the exiting thread. In such case, calling
6972 delete_thread does not really remove the thread from the list;
6973 instead, the thread is left listed, with 'exited' state.
64ce06e4 6974
2ac7589c
PA
6975 - The target's debug interface does not support thread exit
6976 events, and so we have no idea whatsoever if the previously
6977 stepping thread is still alive. For that reason, we need to
6978 synchronously query the target now. */
2adfaa28 6979
00431a78 6980 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6981 {
6982 if (debug_infrun)
6983 fprintf_unfiltered (gdb_stdlog,
6984 "infrun: not resuming previously "
6985 "stepped thread, it has vanished\n");
6986
00431a78 6987 delete_thread (tp);
2ac7589c 6988 return 0;
c447ac0b 6989 }
2ac7589c
PA
6990
6991 if (debug_infrun)
6992 fprintf_unfiltered (gdb_stdlog,
6993 "infrun: resuming previously stepped thread\n");
6994
6995 reset_ecs (ecs, tp);
00431a78 6996 switch_to_thread (tp);
2ac7589c 6997
f2ffa92b 6998 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 6999 frame = get_current_frame ();
2ac7589c
PA
7000
7001 /* If the PC of the thread we were trying to single-step has
7002 changed, then that thread has trapped or been signaled, but the
7003 event has not been reported to GDB yet. Re-poll the target
7004 looking for this particular thread's event (i.e. temporarily
7005 enable schedlock) by:
7006
7007 - setting a break at the current PC
7008 - resuming that particular thread, only (by setting trap
7009 expected)
7010
7011 This prevents us continuously moving the single-step breakpoint
7012 forward, one instruction at a time, overstepping. */
7013
f2ffa92b 7014 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7015 {
7016 ptid_t resume_ptid;
7017
7018 if (debug_infrun)
7019 fprintf_unfiltered (gdb_stdlog,
7020 "infrun: expected thread advanced also (%s -> %s)\n",
7021 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7022 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7023
7024 /* Clear the info of the previous step-over, as it's no longer
7025 valid (if the thread was trying to step over a breakpoint, it
7026 has already succeeded). It's what keep_going would do too,
7027 if we called it. Do this before trying to insert the sss
7028 breakpoint, otherwise if we were previously trying to step
7029 over this exact address in another thread, the breakpoint is
7030 skipped. */
7031 clear_step_over_info ();
7032 tp->control.trap_expected = 0;
7033
7034 insert_single_step_breakpoint (get_frame_arch (frame),
7035 get_frame_address_space (frame),
f2ffa92b 7036 tp->suspend.stop_pc);
2ac7589c 7037
372316f1 7038 tp->resumed = 1;
fbea99ea 7039 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7040 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7041 }
7042 else
7043 {
7044 if (debug_infrun)
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: expected thread still hasn't advanced\n");
7047
7048 keep_going_pass_signal (ecs);
7049 }
7050 return 1;
c447ac0b
PA
7051}
7052
8b061563
PA
7053/* Is thread TP in the middle of (software or hardware)
7054 single-stepping? (Note the result of this function must never be
7055 passed directly as target_resume's STEP parameter.) */
104c1213 7056
a289b8f6 7057static int
b3444185 7058currently_stepping (struct thread_info *tp)
a7212384 7059{
8358c15c
JK
7060 return ((tp->control.step_range_end
7061 && tp->control.step_resume_breakpoint == NULL)
7062 || tp->control.trap_expected
af48d08f 7063 || tp->stepped_breakpoint
8358c15c 7064 || bpstat_should_step ());
a7212384
UW
7065}
7066
b2175913
MS
7067/* Inferior has stepped into a subroutine call with source code that
7068 we should not step over. Do step to the first line of code in
7069 it. */
c2c6d25f
JM
7070
7071static void
568d6575
UW
7072handle_step_into_function (struct gdbarch *gdbarch,
7073 struct execution_control_state *ecs)
c2c6d25f 7074{
7e324e48
GB
7075 fill_in_stop_func (gdbarch, ecs);
7076
f2ffa92b
PA
7077 compunit_symtab *cust
7078 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7079 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7080 ecs->stop_func_start
7081 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7082
51abb421 7083 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7084 /* Use the step_resume_break to step until the end of the prologue,
7085 even if that involves jumps (as it seems to on the vax under
7086 4.2). */
7087 /* If the prologue ends in the middle of a source line, continue to
7088 the end of that source line (if it is still within the function).
7089 Otherwise, just go to end of prologue. */
2afb61aa
PA
7090 if (stop_func_sal.end
7091 && stop_func_sal.pc != ecs->stop_func_start
7092 && stop_func_sal.end < ecs->stop_func_end)
7093 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7094
2dbd5e30
KB
7095 /* Architectures which require breakpoint adjustment might not be able
7096 to place a breakpoint at the computed address. If so, the test
7097 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7098 ecs->stop_func_start to an address at which a breakpoint may be
7099 legitimately placed.
8fb3e588 7100
2dbd5e30
KB
7101 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7102 made, GDB will enter an infinite loop when stepping through
7103 optimized code consisting of VLIW instructions which contain
7104 subinstructions corresponding to different source lines. On
7105 FR-V, it's not permitted to place a breakpoint on any but the
7106 first subinstruction of a VLIW instruction. When a breakpoint is
7107 set, GDB will adjust the breakpoint address to the beginning of
7108 the VLIW instruction. Thus, we need to make the corresponding
7109 adjustment here when computing the stop address. */
8fb3e588 7110
568d6575 7111 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7112 {
7113 ecs->stop_func_start
568d6575 7114 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7115 ecs->stop_func_start);
2dbd5e30
KB
7116 }
7117
f2ffa92b 7118 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7119 {
7120 /* We are already there: stop now. */
bdc36728 7121 end_stepping_range (ecs);
c2c6d25f
JM
7122 return;
7123 }
7124 else
7125 {
7126 /* Put the step-breakpoint there and go until there. */
51abb421 7127 symtab_and_line sr_sal;
c2c6d25f
JM
7128 sr_sal.pc = ecs->stop_func_start;
7129 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7130 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7131
c2c6d25f 7132 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7133 some machines the prologue is where the new fp value is
7134 established. */
a6d9a66e 7135 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7136
7137 /* And make sure stepping stops right away then. */
16c381f0
JK
7138 ecs->event_thread->control.step_range_end
7139 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7140 }
7141 keep_going (ecs);
7142}
d4f3574e 7143
b2175913
MS
7144/* Inferior has stepped backward into a subroutine call with source
7145 code that we should not step over. Do step to the beginning of the
7146 last line of code in it. */
7147
7148static void
568d6575
UW
7149handle_step_into_function_backward (struct gdbarch *gdbarch,
7150 struct execution_control_state *ecs)
b2175913 7151{
43f3e411 7152 struct compunit_symtab *cust;
167e4384 7153 struct symtab_and_line stop_func_sal;
b2175913 7154
7e324e48
GB
7155 fill_in_stop_func (gdbarch, ecs);
7156
f2ffa92b 7157 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7158 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7159 ecs->stop_func_start
7160 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7161
f2ffa92b 7162 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7163
7164 /* OK, we're just going to keep stepping here. */
f2ffa92b 7165 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7166 {
7167 /* We're there already. Just stop stepping now. */
bdc36728 7168 end_stepping_range (ecs);
b2175913
MS
7169 }
7170 else
7171 {
7172 /* Else just reset the step range and keep going.
7173 No step-resume breakpoint, they don't work for
7174 epilogues, which can have multiple entry paths. */
16c381f0
JK
7175 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7176 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7177 keep_going (ecs);
7178 }
7179 return;
7180}
7181
d3169d93 7182/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7183 This is used to both functions and to skip over code. */
7184
7185static void
2c03e5be
PA
7186insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7187 struct symtab_and_line sr_sal,
7188 struct frame_id sr_id,
7189 enum bptype sr_type)
44cbf7b5 7190{
611c83ae
PA
7191 /* There should never be more than one step-resume or longjmp-resume
7192 breakpoint per thread, so we should never be setting a new
44cbf7b5 7193 step_resume_breakpoint when one is already active. */
8358c15c 7194 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7195 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7196
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7199 "infrun: inserting step-resume breakpoint at %s\n",
7200 paddress (gdbarch, sr_sal.pc));
d3169d93 7201
8358c15c 7202 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7203 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7204}
7205
9da8c2a0 7206void
2c03e5be
PA
7207insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7208 struct symtab_and_line sr_sal,
7209 struct frame_id sr_id)
7210{
7211 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7212 sr_sal, sr_id,
7213 bp_step_resume);
44cbf7b5 7214}
7ce450bd 7215
2c03e5be
PA
7216/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7217 This is used to skip a potential signal handler.
7ce450bd 7218
14e60db5
DJ
7219 This is called with the interrupted function's frame. The signal
7220 handler, when it returns, will resume the interrupted function at
7221 RETURN_FRAME.pc. */
d303a6c7
AC
7222
7223static void
2c03e5be 7224insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7225{
f4c1edd8 7226 gdb_assert (return_frame != NULL);
d303a6c7 7227
51abb421
PA
7228 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7229
7230 symtab_and_line sr_sal;
568d6575 7231 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7232 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7233 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7234
2c03e5be
PA
7235 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7236 get_stack_frame_id (return_frame),
7237 bp_hp_step_resume);
d303a6c7
AC
7238}
7239
2c03e5be
PA
7240/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7241 is used to skip a function after stepping into it (for "next" or if
7242 the called function has no debugging information).
14e60db5
DJ
7243
7244 The current function has almost always been reached by single
7245 stepping a call or return instruction. NEXT_FRAME belongs to the
7246 current function, and the breakpoint will be set at the caller's
7247 resume address.
7248
7249 This is a separate function rather than reusing
2c03e5be 7250 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7251 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7252 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7253
7254static void
7255insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7256{
14e60db5
DJ
7257 /* We shouldn't have gotten here if we don't know where the call site
7258 is. */
c7ce8faa 7259 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7260
51abb421 7261 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7262
51abb421 7263 symtab_and_line sr_sal;
c7ce8faa
DJ
7264 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7265 frame_unwind_caller_pc (next_frame));
14e60db5 7266 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7267 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7268
a6d9a66e 7269 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7270 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7271}
7272
611c83ae
PA
7273/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7274 new breakpoint at the target of a jmp_buf. The handling of
7275 longjmp-resume uses the same mechanisms used for handling
7276 "step-resume" breakpoints. */
7277
7278static void
a6d9a66e 7279insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7280{
e81a37f7
TT
7281 /* There should never be more than one longjmp-resume breakpoint per
7282 thread, so we should never be setting a new
611c83ae 7283 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7284 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7285
7286 if (debug_infrun)
7287 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7288 "infrun: inserting longjmp-resume breakpoint at %s\n",
7289 paddress (gdbarch, pc));
611c83ae 7290
e81a37f7 7291 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7292 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7293}
7294
186c406b
TT
7295/* Insert an exception resume breakpoint. TP is the thread throwing
7296 the exception. The block B is the block of the unwinder debug hook
7297 function. FRAME is the frame corresponding to the call to this
7298 function. SYM is the symbol of the function argument holding the
7299 target PC of the exception. */
7300
7301static void
7302insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7303 const struct block *b,
186c406b
TT
7304 struct frame_info *frame,
7305 struct symbol *sym)
7306{
a70b8144 7307 try
186c406b 7308 {
63e43d3a 7309 struct block_symbol vsym;
186c406b
TT
7310 struct value *value;
7311 CORE_ADDR handler;
7312 struct breakpoint *bp;
7313
987012b8 7314 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7315 b, VAR_DOMAIN);
63e43d3a 7316 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7317 /* If the value was optimized out, revert to the old behavior. */
7318 if (! value_optimized_out (value))
7319 {
7320 handler = value_as_address (value);
7321
7322 if (debug_infrun)
7323 fprintf_unfiltered (gdb_stdlog,
7324 "infrun: exception resume at %lx\n",
7325 (unsigned long) handler);
7326
7327 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7328 handler,
7329 bp_exception_resume).release ();
c70a6932
JK
7330
7331 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7332 frame = NULL;
7333
5d5658a1 7334 bp->thread = tp->global_num;
186c406b
TT
7335 inferior_thread ()->control.exception_resume_breakpoint = bp;
7336 }
7337 }
230d2906 7338 catch (const gdb_exception_error &e)
492d29ea
PA
7339 {
7340 /* We want to ignore errors here. */
7341 }
186c406b
TT
7342}
7343
28106bc2
SDJ
7344/* A helper for check_exception_resume that sets an
7345 exception-breakpoint based on a SystemTap probe. */
7346
7347static void
7348insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7349 const struct bound_probe *probe,
28106bc2
SDJ
7350 struct frame_info *frame)
7351{
7352 struct value *arg_value;
7353 CORE_ADDR handler;
7354 struct breakpoint *bp;
7355
7356 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7357 if (!arg_value)
7358 return;
7359
7360 handler = value_as_address (arg_value);
7361
7362 if (debug_infrun)
7363 fprintf_unfiltered (gdb_stdlog,
7364 "infrun: exception resume at %s\n",
6bac7473 7365 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7366 handler));
7367
7368 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7369 handler, bp_exception_resume).release ();
5d5658a1 7370 bp->thread = tp->global_num;
28106bc2
SDJ
7371 inferior_thread ()->control.exception_resume_breakpoint = bp;
7372}
7373
186c406b
TT
7374/* This is called when an exception has been intercepted. Check to
7375 see whether the exception's destination is of interest, and if so,
7376 set an exception resume breakpoint there. */
7377
7378static void
7379check_exception_resume (struct execution_control_state *ecs,
28106bc2 7380 struct frame_info *frame)
186c406b 7381{
729662a5 7382 struct bound_probe probe;
28106bc2
SDJ
7383 struct symbol *func;
7384
7385 /* First see if this exception unwinding breakpoint was set via a
7386 SystemTap probe point. If so, the probe has two arguments: the
7387 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7388 set a breakpoint there. */
6bac7473 7389 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7390 if (probe.prob)
28106bc2 7391 {
729662a5 7392 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7393 return;
7394 }
7395
7396 func = get_frame_function (frame);
7397 if (!func)
7398 return;
186c406b 7399
a70b8144 7400 try
186c406b 7401 {
3977b71f 7402 const struct block *b;
8157b174 7403 struct block_iterator iter;
186c406b
TT
7404 struct symbol *sym;
7405 int argno = 0;
7406
7407 /* The exception breakpoint is a thread-specific breakpoint on
7408 the unwinder's debug hook, declared as:
7409
7410 void _Unwind_DebugHook (void *cfa, void *handler);
7411
7412 The CFA argument indicates the frame to which control is
7413 about to be transferred. HANDLER is the destination PC.
7414
7415 We ignore the CFA and set a temporary breakpoint at HANDLER.
7416 This is not extremely efficient but it avoids issues in gdb
7417 with computing the DWARF CFA, and it also works even in weird
7418 cases such as throwing an exception from inside a signal
7419 handler. */
7420
7421 b = SYMBOL_BLOCK_VALUE (func);
7422 ALL_BLOCK_SYMBOLS (b, iter, sym)
7423 {
7424 if (!SYMBOL_IS_ARGUMENT (sym))
7425 continue;
7426
7427 if (argno == 0)
7428 ++argno;
7429 else
7430 {
7431 insert_exception_resume_breakpoint (ecs->event_thread,
7432 b, frame, sym);
7433 break;
7434 }
7435 }
7436 }
230d2906 7437 catch (const gdb_exception_error &e)
492d29ea
PA
7438 {
7439 }
186c406b
TT
7440}
7441
104c1213 7442static void
22bcd14b 7443stop_waiting (struct execution_control_state *ecs)
104c1213 7444{
527159b7 7445 if (debug_infrun)
22bcd14b 7446 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7447
cd0fc7c3
SS
7448 /* Let callers know we don't want to wait for the inferior anymore. */
7449 ecs->wait_some_more = 0;
fbea99ea
PA
7450
7451 /* If all-stop, but the target is always in non-stop mode, stop all
7452 threads now that we're presenting the stop to the user. */
7453 if (!non_stop && target_is_non_stop_p ())
7454 stop_all_threads ();
cd0fc7c3
SS
7455}
7456
4d9d9d04
PA
7457/* Like keep_going, but passes the signal to the inferior, even if the
7458 signal is set to nopass. */
d4f3574e
SS
7459
7460static void
4d9d9d04 7461keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7462{
d7e15655 7463 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7464 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7465
d4f3574e 7466 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7467 ecs->event_thread->prev_pc
00431a78 7468 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7469
4d9d9d04 7470 if (ecs->event_thread->control.trap_expected)
d4f3574e 7471 {
4d9d9d04
PA
7472 struct thread_info *tp = ecs->event_thread;
7473
7474 if (debug_infrun)
7475 fprintf_unfiltered (gdb_stdlog,
7476 "infrun: %s has trap_expected set, "
7477 "resuming to collect trap\n",
a068643d 7478 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7479
a9ba6bae
PA
7480 /* We haven't yet gotten our trap, and either: intercepted a
7481 non-signal event (e.g., a fork); or took a signal which we
7482 are supposed to pass through to the inferior. Simply
7483 continue. */
64ce06e4 7484 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7485 }
372316f1
PA
7486 else if (step_over_info_valid_p ())
7487 {
7488 /* Another thread is stepping over a breakpoint in-line. If
7489 this thread needs a step-over too, queue the request. In
7490 either case, this resume must be deferred for later. */
7491 struct thread_info *tp = ecs->event_thread;
7492
7493 if (ecs->hit_singlestep_breakpoint
7494 || thread_still_needs_step_over (tp))
7495 {
7496 if (debug_infrun)
7497 fprintf_unfiltered (gdb_stdlog,
7498 "infrun: step-over already in progress: "
7499 "step-over for %s deferred\n",
a068643d 7500 target_pid_to_str (tp->ptid).c_str ());
66716e78 7501 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7502 }
7503 else
7504 {
7505 if (debug_infrun)
7506 fprintf_unfiltered (gdb_stdlog,
7507 "infrun: step-over in progress: "
7508 "resume of %s deferred\n",
a068643d 7509 target_pid_to_str (tp->ptid).c_str ());
372316f1 7510 }
372316f1 7511 }
d4f3574e
SS
7512 else
7513 {
31e77af2 7514 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7515 int remove_bp;
7516 int remove_wps;
8d297bbf 7517 step_over_what step_what;
31e77af2 7518
d4f3574e 7519 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7520 anyway (if we got a signal, the user asked it be passed to
7521 the child)
7522 -- or --
7523 We got our expected trap, but decided we should resume from
7524 it.
d4f3574e 7525
a9ba6bae 7526 We're going to run this baby now!
d4f3574e 7527
c36b740a
VP
7528 Note that insert_breakpoints won't try to re-insert
7529 already inserted breakpoints. Therefore, we don't
7530 care if breakpoints were already inserted, or not. */
a9ba6bae 7531
31e77af2
PA
7532 /* If we need to step over a breakpoint, and we're not using
7533 displaced stepping to do so, insert all breakpoints
7534 (watchpoints, etc.) but the one we're stepping over, step one
7535 instruction, and then re-insert the breakpoint when that step
7536 is finished. */
963f9c80 7537
6c4cfb24
PA
7538 step_what = thread_still_needs_step_over (ecs->event_thread);
7539
963f9c80 7540 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7541 || (step_what & STEP_OVER_BREAKPOINT));
7542 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7543
cb71640d
PA
7544 /* We can't use displaced stepping if we need to step past a
7545 watchpoint. The instruction copied to the scratch pad would
7546 still trigger the watchpoint. */
7547 if (remove_bp
3fc8eb30 7548 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7549 {
a01bda52 7550 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7551 regcache_read_pc (regcache), remove_wps,
7552 ecs->event_thread->global_num);
45e8c884 7553 }
963f9c80 7554 else if (remove_wps)
21edc42f 7555 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7556
7557 /* If we now need to do an in-line step-over, we need to stop
7558 all other threads. Note this must be done before
7559 insert_breakpoints below, because that removes the breakpoint
7560 we're about to step over, otherwise other threads could miss
7561 it. */
fbea99ea 7562 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7563 stop_all_threads ();
abbb1732 7564
31e77af2 7565 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7566 try
31e77af2
PA
7567 {
7568 insert_breakpoints ();
7569 }
230d2906 7570 catch (const gdb_exception_error &e)
31e77af2
PA
7571 {
7572 exception_print (gdb_stderr, e);
22bcd14b 7573 stop_waiting (ecs);
bdf2a94a 7574 clear_step_over_info ();
31e77af2 7575 return;
d4f3574e
SS
7576 }
7577
963f9c80 7578 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7579
64ce06e4 7580 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7581 }
7582
488f131b 7583 prepare_to_wait (ecs);
d4f3574e
SS
7584}
7585
4d9d9d04
PA
7586/* Called when we should continue running the inferior, because the
7587 current event doesn't cause a user visible stop. This does the
7588 resuming part; waiting for the next event is done elsewhere. */
7589
7590static void
7591keep_going (struct execution_control_state *ecs)
7592{
7593 if (ecs->event_thread->control.trap_expected
7594 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7595 ecs->event_thread->control.trap_expected = 0;
7596
7597 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7598 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7599 keep_going_pass_signal (ecs);
7600}
7601
104c1213
JM
7602/* This function normally comes after a resume, before
7603 handle_inferior_event exits. It takes care of any last bits of
7604 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7605
104c1213
JM
7606static void
7607prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7608{
527159b7 7609 if (debug_infrun)
8a9de0e4 7610 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7611
104c1213 7612 ecs->wait_some_more = 1;
0b333c5e
PA
7613
7614 if (!target_is_async_p ())
7615 mark_infrun_async_event_handler ();
c906108c 7616}
11cf8741 7617
fd664c91 7618/* We are done with the step range of a step/next/si/ni command.
b57bacec 7619 Called once for each n of a "step n" operation. */
fd664c91
PA
7620
7621static void
bdc36728 7622end_stepping_range (struct execution_control_state *ecs)
fd664c91 7623{
bdc36728 7624 ecs->event_thread->control.stop_step = 1;
bdc36728 7625 stop_waiting (ecs);
fd664c91
PA
7626}
7627
33d62d64
JK
7628/* Several print_*_reason functions to print why the inferior has stopped.
7629 We always print something when the inferior exits, or receives a signal.
7630 The rest of the cases are dealt with later on in normal_stop and
7631 print_it_typical. Ideally there should be a call to one of these
7632 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7633 stop_waiting is called.
33d62d64 7634
fd664c91
PA
7635 Note that we don't call these directly, instead we delegate that to
7636 the interpreters, through observers. Interpreters then call these
7637 with whatever uiout is right. */
33d62d64 7638
fd664c91
PA
7639void
7640print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7641{
fd664c91 7642 /* For CLI-like interpreters, print nothing. */
33d62d64 7643
112e8700 7644 if (uiout->is_mi_like_p ())
fd664c91 7645 {
112e8700 7646 uiout->field_string ("reason",
fd664c91
PA
7647 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7648 }
7649}
33d62d64 7650
fd664c91
PA
7651void
7652print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7653{
33d62d64 7654 annotate_signalled ();
112e8700
SM
7655 if (uiout->is_mi_like_p ())
7656 uiout->field_string
7657 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7658 uiout->text ("\nProgram terminated with signal ");
33d62d64 7659 annotate_signal_name ();
112e8700 7660 uiout->field_string ("signal-name",
2ea28649 7661 gdb_signal_to_name (siggnal));
33d62d64 7662 annotate_signal_name_end ();
112e8700 7663 uiout->text (", ");
33d62d64 7664 annotate_signal_string ();
112e8700 7665 uiout->field_string ("signal-meaning",
2ea28649 7666 gdb_signal_to_string (siggnal));
33d62d64 7667 annotate_signal_string_end ();
112e8700
SM
7668 uiout->text (".\n");
7669 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7670}
7671
fd664c91
PA
7672void
7673print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7674{
fda326dd 7675 struct inferior *inf = current_inferior ();
a068643d 7676 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7677
33d62d64
JK
7678 annotate_exited (exitstatus);
7679 if (exitstatus)
7680 {
112e8700
SM
7681 if (uiout->is_mi_like_p ())
7682 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7683 std::string exit_code_str
7684 = string_printf ("0%o", (unsigned int) exitstatus);
7685 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7686 plongest (inf->num), pidstr.c_str (),
7687 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7688 }
7689 else
11cf8741 7690 {
112e8700
SM
7691 if (uiout->is_mi_like_p ())
7692 uiout->field_string
7693 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7694 uiout->message ("[Inferior %s (%s) exited normally]\n",
7695 plongest (inf->num), pidstr.c_str ());
33d62d64 7696 }
33d62d64
JK
7697}
7698
012b3a21
WT
7699/* Some targets/architectures can do extra processing/display of
7700 segmentation faults. E.g., Intel MPX boundary faults.
7701 Call the architecture dependent function to handle the fault. */
7702
7703static void
7704handle_segmentation_fault (struct ui_out *uiout)
7705{
7706 struct regcache *regcache = get_current_regcache ();
ac7936df 7707 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7708
7709 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7710 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7711}
7712
fd664c91
PA
7713void
7714print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7715{
f303dbd6
PA
7716 struct thread_info *thr = inferior_thread ();
7717
33d62d64
JK
7718 annotate_signal ();
7719
112e8700 7720 if (uiout->is_mi_like_p ())
f303dbd6
PA
7721 ;
7722 else if (show_thread_that_caused_stop ())
33d62d64 7723 {
f303dbd6 7724 const char *name;
33d62d64 7725
112e8700 7726 uiout->text ("\nThread ");
33eca680 7727 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7728
7729 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7730 if (name != NULL)
7731 {
112e8700 7732 uiout->text (" \"");
33eca680 7733 uiout->field_string ("name", name);
112e8700 7734 uiout->text ("\"");
f303dbd6 7735 }
33d62d64 7736 }
f303dbd6 7737 else
112e8700 7738 uiout->text ("\nProgram");
f303dbd6 7739
112e8700
SM
7740 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7741 uiout->text (" stopped");
33d62d64
JK
7742 else
7743 {
112e8700 7744 uiout->text (" received signal ");
8b93c638 7745 annotate_signal_name ();
112e8700
SM
7746 if (uiout->is_mi_like_p ())
7747 uiout->field_string
7748 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7749 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7750 annotate_signal_name_end ();
112e8700 7751 uiout->text (", ");
8b93c638 7752 annotate_signal_string ();
112e8700 7753 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7754
7755 if (siggnal == GDB_SIGNAL_SEGV)
7756 handle_segmentation_fault (uiout);
7757
8b93c638 7758 annotate_signal_string_end ();
33d62d64 7759 }
112e8700 7760 uiout->text (".\n");
33d62d64 7761}
252fbfc8 7762
fd664c91
PA
7763void
7764print_no_history_reason (struct ui_out *uiout)
33d62d64 7765{
112e8700 7766 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7767}
43ff13b4 7768
0c7e1a46
PA
7769/* Print current location without a level number, if we have changed
7770 functions or hit a breakpoint. Print source line if we have one.
7771 bpstat_print contains the logic deciding in detail what to print,
7772 based on the event(s) that just occurred. */
7773
243a9253
PA
7774static void
7775print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7776{
7777 int bpstat_ret;
f486487f 7778 enum print_what source_flag;
0c7e1a46
PA
7779 int do_frame_printing = 1;
7780 struct thread_info *tp = inferior_thread ();
7781
7782 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7783 switch (bpstat_ret)
7784 {
7785 case PRINT_UNKNOWN:
7786 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7787 should) carry around the function and does (or should) use
7788 that when doing a frame comparison. */
7789 if (tp->control.stop_step
7790 && frame_id_eq (tp->control.step_frame_id,
7791 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7792 && (tp->control.step_start_function
7793 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7794 {
7795 /* Finished step, just print source line. */
7796 source_flag = SRC_LINE;
7797 }
7798 else
7799 {
7800 /* Print location and source line. */
7801 source_flag = SRC_AND_LOC;
7802 }
7803 break;
7804 case PRINT_SRC_AND_LOC:
7805 /* Print location and source line. */
7806 source_flag = SRC_AND_LOC;
7807 break;
7808 case PRINT_SRC_ONLY:
7809 source_flag = SRC_LINE;
7810 break;
7811 case PRINT_NOTHING:
7812 /* Something bogus. */
7813 source_flag = SRC_LINE;
7814 do_frame_printing = 0;
7815 break;
7816 default:
7817 internal_error (__FILE__, __LINE__, _("Unknown value."));
7818 }
7819
7820 /* The behavior of this routine with respect to the source
7821 flag is:
7822 SRC_LINE: Print only source line
7823 LOCATION: Print only location
7824 SRC_AND_LOC: Print location and source line. */
7825 if (do_frame_printing)
7826 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7827}
7828
243a9253
PA
7829/* See infrun.h. */
7830
7831void
4c7d57e7 7832print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7833{
243a9253
PA
7834 struct target_waitstatus last;
7835 ptid_t last_ptid;
7836 struct thread_info *tp;
7837
7838 get_last_target_status (&last_ptid, &last);
7839
67ad9399
TT
7840 {
7841 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7842
67ad9399 7843 print_stop_location (&last);
243a9253 7844
67ad9399 7845 /* Display the auto-display expressions. */
4c7d57e7
TT
7846 if (displays)
7847 do_displays ();
67ad9399 7848 }
243a9253
PA
7849
7850 tp = inferior_thread ();
7851 if (tp->thread_fsm != NULL
46e3ed7f 7852 && tp->thread_fsm->finished_p ())
243a9253
PA
7853 {
7854 struct return_value_info *rv;
7855
46e3ed7f 7856 rv = tp->thread_fsm->return_value ();
243a9253
PA
7857 if (rv != NULL)
7858 print_return_value (uiout, rv);
7859 }
0c7e1a46
PA
7860}
7861
388a7084
PA
7862/* See infrun.h. */
7863
7864void
7865maybe_remove_breakpoints (void)
7866{
7867 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7868 {
7869 if (remove_breakpoints ())
7870 {
223ffa71 7871 target_terminal::ours_for_output ();
388a7084
PA
7872 printf_filtered (_("Cannot remove breakpoints because "
7873 "program is no longer writable.\nFurther "
7874 "execution is probably impossible.\n"));
7875 }
7876 }
7877}
7878
4c2f2a79
PA
7879/* The execution context that just caused a normal stop. */
7880
7881struct stop_context
7882{
2d844eaf
TT
7883 stop_context ();
7884 ~stop_context ();
7885
7886 DISABLE_COPY_AND_ASSIGN (stop_context);
7887
7888 bool changed () const;
7889
4c2f2a79
PA
7890 /* The stop ID. */
7891 ULONGEST stop_id;
c906108c 7892
4c2f2a79 7893 /* The event PTID. */
c906108c 7894
4c2f2a79
PA
7895 ptid_t ptid;
7896
7897 /* If stopp for a thread event, this is the thread that caused the
7898 stop. */
7899 struct thread_info *thread;
7900
7901 /* The inferior that caused the stop. */
7902 int inf_num;
7903};
7904
2d844eaf 7905/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7906 takes a strong reference to the thread. */
7907
2d844eaf 7908stop_context::stop_context ()
4c2f2a79 7909{
2d844eaf
TT
7910 stop_id = get_stop_id ();
7911 ptid = inferior_ptid;
7912 inf_num = current_inferior ()->num;
4c2f2a79 7913
d7e15655 7914 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7915 {
7916 /* Take a strong reference so that the thread can't be deleted
7917 yet. */
2d844eaf
TT
7918 thread = inferior_thread ();
7919 thread->incref ();
4c2f2a79
PA
7920 }
7921 else
2d844eaf 7922 thread = NULL;
4c2f2a79
PA
7923}
7924
7925/* Release a stop context previously created with save_stop_context.
7926 Releases the strong reference to the thread as well. */
7927
2d844eaf 7928stop_context::~stop_context ()
4c2f2a79 7929{
2d844eaf
TT
7930 if (thread != NULL)
7931 thread->decref ();
4c2f2a79
PA
7932}
7933
7934/* Return true if the current context no longer matches the saved stop
7935 context. */
7936
2d844eaf
TT
7937bool
7938stop_context::changed () const
7939{
7940 if (ptid != inferior_ptid)
7941 return true;
7942 if (inf_num != current_inferior ()->num)
7943 return true;
7944 if (thread != NULL && thread->state != THREAD_STOPPED)
7945 return true;
7946 if (get_stop_id () != stop_id)
7947 return true;
7948 return false;
4c2f2a79
PA
7949}
7950
7951/* See infrun.h. */
7952
7953int
96baa820 7954normal_stop (void)
c906108c 7955{
73b65bb0
DJ
7956 struct target_waitstatus last;
7957 ptid_t last_ptid;
7958
7959 get_last_target_status (&last_ptid, &last);
7960
4c2f2a79
PA
7961 new_stop_id ();
7962
29f49a6a
PA
7963 /* If an exception is thrown from this point on, make sure to
7964 propagate GDB's knowledge of the executing state to the
7965 frontend/user running state. A QUIT is an easy exception to see
7966 here, so do this before any filtered output. */
731f534f
PA
7967
7968 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7969
c35b1492 7970 if (!non_stop)
731f534f 7971 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7972 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7973 || last.kind == TARGET_WAITKIND_EXITED)
7974 {
7975 /* On some targets, we may still have live threads in the
7976 inferior when we get a process exit event. E.g., for
7977 "checkpoint", when the current checkpoint/fork exits,
7978 linux-fork.c automatically switches to another fork from
7979 within target_mourn_inferior. */
731f534f
PA
7980 if (inferior_ptid != null_ptid)
7981 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7982 }
7983 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 7984 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 7985
b57bacec
PA
7986 /* As we're presenting a stop, and potentially removing breakpoints,
7987 update the thread list so we can tell whether there are threads
7988 running on the target. With target remote, for example, we can
7989 only learn about new threads when we explicitly update the thread
7990 list. Do this before notifying the interpreters about signal
7991 stops, end of stepping ranges, etc., so that the "new thread"
7992 output is emitted before e.g., "Program received signal FOO",
7993 instead of after. */
7994 update_thread_list ();
7995
7996 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 7997 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 7998
c906108c
SS
7999 /* As with the notification of thread events, we want to delay
8000 notifying the user that we've switched thread context until
8001 the inferior actually stops.
8002
73b65bb0
DJ
8003 There's no point in saying anything if the inferior has exited.
8004 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8005 "received a signal".
8006
8007 Also skip saying anything in non-stop mode. In that mode, as we
8008 don't want GDB to switch threads behind the user's back, to avoid
8009 races where the user is typing a command to apply to thread x,
8010 but GDB switches to thread y before the user finishes entering
8011 the command, fetch_inferior_event installs a cleanup to restore
8012 the current thread back to the thread the user had selected right
8013 after this event is handled, so we're not really switching, only
8014 informing of a stop. */
4f8d22e3 8015 if (!non_stop
731f534f 8016 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8017 && target_has_execution
8018 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8019 && last.kind != TARGET_WAITKIND_EXITED
8020 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8021 {
0e454242 8022 SWITCH_THRU_ALL_UIS ()
3b12939d 8023 {
223ffa71 8024 target_terminal::ours_for_output ();
3b12939d 8025 printf_filtered (_("[Switching to %s]\n"),
a068643d 8026 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8027 annotate_thread_changed ();
8028 }
39f77062 8029 previous_inferior_ptid = inferior_ptid;
c906108c 8030 }
c906108c 8031
0e5bf2a8
PA
8032 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8033 {
0e454242 8034 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8035 if (current_ui->prompt_state == PROMPT_BLOCKED)
8036 {
223ffa71 8037 target_terminal::ours_for_output ();
3b12939d
PA
8038 printf_filtered (_("No unwaited-for children left.\n"));
8039 }
0e5bf2a8
PA
8040 }
8041
b57bacec 8042 /* Note: this depends on the update_thread_list call above. */
388a7084 8043 maybe_remove_breakpoints ();
c906108c 8044
c906108c
SS
8045 /* If an auto-display called a function and that got a signal,
8046 delete that auto-display to avoid an infinite recursion. */
8047
8048 if (stopped_by_random_signal)
8049 disable_current_display ();
8050
0e454242 8051 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8052 {
8053 async_enable_stdin ();
8054 }
c906108c 8055
388a7084 8056 /* Let the user/frontend see the threads as stopped. */
731f534f 8057 maybe_finish_thread_state.reset ();
388a7084
PA
8058
8059 /* Select innermost stack frame - i.e., current frame is frame 0,
8060 and current location is based on that. Handle the case where the
8061 dummy call is returning after being stopped. E.g. the dummy call
8062 previously hit a breakpoint. (If the dummy call returns
8063 normally, we won't reach here.) Do this before the stop hook is
8064 run, so that it doesn't get to see the temporary dummy frame,
8065 which is not where we'll present the stop. */
8066 if (has_stack_frames ())
8067 {
8068 if (stop_stack_dummy == STOP_STACK_DUMMY)
8069 {
8070 /* Pop the empty frame that contains the stack dummy. This
8071 also restores inferior state prior to the call (struct
8072 infcall_suspend_state). */
8073 struct frame_info *frame = get_current_frame ();
8074
8075 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8076 frame_pop (frame);
8077 /* frame_pop calls reinit_frame_cache as the last thing it
8078 does which means there's now no selected frame. */
8079 }
8080
8081 select_frame (get_current_frame ());
8082
8083 /* Set the current source location. */
8084 set_current_sal_from_frame (get_current_frame ());
8085 }
dd7e2d2b
PA
8086
8087 /* Look up the hook_stop and run it (CLI internally handles problem
8088 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8089 if (stop_command != NULL)
8090 {
2d844eaf 8091 stop_context saved_context;
4c2f2a79 8092
a70b8144 8093 try
bf469271
PA
8094 {
8095 execute_cmd_pre_hook (stop_command);
8096 }
230d2906 8097 catch (const gdb_exception &ex)
bf469271
PA
8098 {
8099 exception_fprintf (gdb_stderr, ex,
8100 "Error while running hook_stop:\n");
8101 }
4c2f2a79
PA
8102
8103 /* If the stop hook resumes the target, then there's no point in
8104 trying to notify about the previous stop; its context is
8105 gone. Likewise if the command switches thread or inferior --
8106 the observers would print a stop for the wrong
8107 thread/inferior. */
2d844eaf
TT
8108 if (saved_context.changed ())
8109 return 1;
4c2f2a79 8110 }
dd7e2d2b 8111
388a7084
PA
8112 /* Notify observers about the stop. This is where the interpreters
8113 print the stop event. */
d7e15655 8114 if (inferior_ptid != null_ptid)
76727919 8115 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8116 stop_print_frame);
8117 else
76727919 8118 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8119
243a9253
PA
8120 annotate_stopped ();
8121
48844aa6
PA
8122 if (target_has_execution)
8123 {
8124 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8125 && last.kind != TARGET_WAITKIND_EXITED
8126 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8127 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8128 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8129 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8130 }
6c95b8df
PA
8131
8132 /* Try to get rid of automatically added inferiors that are no
8133 longer needed. Keeping those around slows down things linearly.
8134 Note that this never removes the current inferior. */
8135 prune_inferiors ();
4c2f2a79
PA
8136
8137 return 0;
c906108c 8138}
c906108c 8139\f
c5aa993b 8140int
96baa820 8141signal_stop_state (int signo)
c906108c 8142{
d6b48e9c 8143 return signal_stop[signo];
c906108c
SS
8144}
8145
c5aa993b 8146int
96baa820 8147signal_print_state (int signo)
c906108c
SS
8148{
8149 return signal_print[signo];
8150}
8151
c5aa993b 8152int
96baa820 8153signal_pass_state (int signo)
c906108c
SS
8154{
8155 return signal_program[signo];
8156}
8157
2455069d
UW
8158static void
8159signal_cache_update (int signo)
8160{
8161 if (signo == -1)
8162 {
a493e3e2 8163 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8164 signal_cache_update (signo);
8165
8166 return;
8167 }
8168
8169 signal_pass[signo] = (signal_stop[signo] == 0
8170 && signal_print[signo] == 0
ab04a2af
TT
8171 && signal_program[signo] == 1
8172 && signal_catch[signo] == 0);
2455069d
UW
8173}
8174
488f131b 8175int
7bda5e4a 8176signal_stop_update (int signo, int state)
d4f3574e
SS
8177{
8178 int ret = signal_stop[signo];
abbb1732 8179
d4f3574e 8180 signal_stop[signo] = state;
2455069d 8181 signal_cache_update (signo);
d4f3574e
SS
8182 return ret;
8183}
8184
488f131b 8185int
7bda5e4a 8186signal_print_update (int signo, int state)
d4f3574e
SS
8187{
8188 int ret = signal_print[signo];
abbb1732 8189
d4f3574e 8190 signal_print[signo] = state;
2455069d 8191 signal_cache_update (signo);
d4f3574e
SS
8192 return ret;
8193}
8194
488f131b 8195int
7bda5e4a 8196signal_pass_update (int signo, int state)
d4f3574e
SS
8197{
8198 int ret = signal_program[signo];
abbb1732 8199
d4f3574e 8200 signal_program[signo] = state;
2455069d 8201 signal_cache_update (signo);
d4f3574e
SS
8202 return ret;
8203}
8204
ab04a2af
TT
8205/* Update the global 'signal_catch' from INFO and notify the
8206 target. */
8207
8208void
8209signal_catch_update (const unsigned int *info)
8210{
8211 int i;
8212
8213 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8214 signal_catch[i] = info[i] > 0;
8215 signal_cache_update (-1);
adc6a863 8216 target_pass_signals (signal_pass);
ab04a2af
TT
8217}
8218
c906108c 8219static void
96baa820 8220sig_print_header (void)
c906108c 8221{
3e43a32a
MS
8222 printf_filtered (_("Signal Stop\tPrint\tPass "
8223 "to program\tDescription\n"));
c906108c
SS
8224}
8225
8226static void
2ea28649 8227sig_print_info (enum gdb_signal oursig)
c906108c 8228{
2ea28649 8229 const char *name = gdb_signal_to_name (oursig);
c906108c 8230 int name_padding = 13 - strlen (name);
96baa820 8231
c906108c
SS
8232 if (name_padding <= 0)
8233 name_padding = 0;
8234
8235 printf_filtered ("%s", name);
488f131b 8236 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8237 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8238 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8239 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8240 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8241}
8242
8243/* Specify how various signals in the inferior should be handled. */
8244
8245static void
0b39b52e 8246handle_command (const char *args, int from_tty)
c906108c 8247{
c906108c 8248 int digits, wordlen;
b926417a 8249 int sigfirst, siglast;
2ea28649 8250 enum gdb_signal oursig;
c906108c 8251 int allsigs;
c906108c
SS
8252
8253 if (args == NULL)
8254 {
e2e0b3e5 8255 error_no_arg (_("signal to handle"));
c906108c
SS
8256 }
8257
1777feb0 8258 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8259
adc6a863
PA
8260 const size_t nsigs = GDB_SIGNAL_LAST;
8261 unsigned char sigs[nsigs] {};
c906108c 8262
1777feb0 8263 /* Break the command line up into args. */
c906108c 8264
773a1edc 8265 gdb_argv built_argv (args);
c906108c
SS
8266
8267 /* Walk through the args, looking for signal oursigs, signal names, and
8268 actions. Signal numbers and signal names may be interspersed with
8269 actions, with the actions being performed for all signals cumulatively
1777feb0 8270 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8271
773a1edc 8272 for (char *arg : built_argv)
c906108c 8273 {
773a1edc
TT
8274 wordlen = strlen (arg);
8275 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8276 {;
8277 }
8278 allsigs = 0;
8279 sigfirst = siglast = -1;
8280
773a1edc 8281 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8282 {
8283 /* Apply action to all signals except those used by the
1777feb0 8284 debugger. Silently skip those. */
c906108c
SS
8285 allsigs = 1;
8286 sigfirst = 0;
8287 siglast = nsigs - 1;
8288 }
773a1edc 8289 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8290 {
8291 SET_SIGS (nsigs, sigs, signal_stop);
8292 SET_SIGS (nsigs, sigs, signal_print);
8293 }
773a1edc 8294 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8295 {
8296 UNSET_SIGS (nsigs, sigs, signal_program);
8297 }
773a1edc 8298 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8299 {
8300 SET_SIGS (nsigs, sigs, signal_print);
8301 }
773a1edc 8302 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8303 {
8304 SET_SIGS (nsigs, sigs, signal_program);
8305 }
773a1edc 8306 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8307 {
8308 UNSET_SIGS (nsigs, sigs, signal_stop);
8309 }
773a1edc 8310 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8311 {
8312 SET_SIGS (nsigs, sigs, signal_program);
8313 }
773a1edc 8314 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8315 {
8316 UNSET_SIGS (nsigs, sigs, signal_print);
8317 UNSET_SIGS (nsigs, sigs, signal_stop);
8318 }
773a1edc 8319 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8320 {
8321 UNSET_SIGS (nsigs, sigs, signal_program);
8322 }
8323 else if (digits > 0)
8324 {
8325 /* It is numeric. The numeric signal refers to our own
8326 internal signal numbering from target.h, not to host/target
8327 signal number. This is a feature; users really should be
8328 using symbolic names anyway, and the common ones like
8329 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8330
8331 sigfirst = siglast = (int)
773a1edc
TT
8332 gdb_signal_from_command (atoi (arg));
8333 if (arg[digits] == '-')
c906108c
SS
8334 {
8335 siglast = (int)
773a1edc 8336 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8337 }
8338 if (sigfirst > siglast)
8339 {
1777feb0 8340 /* Bet he didn't figure we'd think of this case... */
b926417a 8341 std::swap (sigfirst, siglast);
c906108c
SS
8342 }
8343 }
8344 else
8345 {
773a1edc 8346 oursig = gdb_signal_from_name (arg);
a493e3e2 8347 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8348 {
8349 sigfirst = siglast = (int) oursig;
8350 }
8351 else
8352 {
8353 /* Not a number and not a recognized flag word => complain. */
773a1edc 8354 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8355 }
8356 }
8357
8358 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8359 which signals to apply actions to. */
c906108c 8360
b926417a 8361 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8362 {
2ea28649 8363 switch ((enum gdb_signal) signum)
c906108c 8364 {
a493e3e2
PA
8365 case GDB_SIGNAL_TRAP:
8366 case GDB_SIGNAL_INT:
c906108c
SS
8367 if (!allsigs && !sigs[signum])
8368 {
9e2f0ad4 8369 if (query (_("%s is used by the debugger.\n\
3e43a32a 8370Are you sure you want to change it? "),
2ea28649 8371 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8372 {
8373 sigs[signum] = 1;
8374 }
8375 else
c119e040 8376 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8377 }
8378 break;
a493e3e2
PA
8379 case GDB_SIGNAL_0:
8380 case GDB_SIGNAL_DEFAULT:
8381 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8382 /* Make sure that "all" doesn't print these. */
8383 break;
8384 default:
8385 sigs[signum] = 1;
8386 break;
8387 }
8388 }
c906108c
SS
8389 }
8390
b926417a 8391 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8392 if (sigs[signum])
8393 {
2455069d 8394 signal_cache_update (-1);
adc6a863
PA
8395 target_pass_signals (signal_pass);
8396 target_program_signals (signal_program);
c906108c 8397
3a031f65
PA
8398 if (from_tty)
8399 {
8400 /* Show the results. */
8401 sig_print_header ();
8402 for (; signum < nsigs; signum++)
8403 if (sigs[signum])
aead7601 8404 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8405 }
8406
8407 break;
8408 }
c906108c
SS
8409}
8410
de0bea00
MF
8411/* Complete the "handle" command. */
8412
eb3ff9a5 8413static void
de0bea00 8414handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8415 completion_tracker &tracker,
6f937416 8416 const char *text, const char *word)
de0bea00 8417{
de0bea00
MF
8418 static const char * const keywords[] =
8419 {
8420 "all",
8421 "stop",
8422 "ignore",
8423 "print",
8424 "pass",
8425 "nostop",
8426 "noignore",
8427 "noprint",
8428 "nopass",
8429 NULL,
8430 };
8431
eb3ff9a5
PA
8432 signal_completer (ignore, tracker, text, word);
8433 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8434}
8435
2ea28649
PA
8436enum gdb_signal
8437gdb_signal_from_command (int num)
ed01b82c
PA
8438{
8439 if (num >= 1 && num <= 15)
2ea28649 8440 return (enum gdb_signal) num;
ed01b82c
PA
8441 error (_("Only signals 1-15 are valid as numeric signals.\n\
8442Use \"info signals\" for a list of symbolic signals."));
8443}
8444
c906108c
SS
8445/* Print current contents of the tables set by the handle command.
8446 It is possible we should just be printing signals actually used
8447 by the current target (but for things to work right when switching
8448 targets, all signals should be in the signal tables). */
8449
8450static void
1d12d88f 8451info_signals_command (const char *signum_exp, int from_tty)
c906108c 8452{
2ea28649 8453 enum gdb_signal oursig;
abbb1732 8454
c906108c
SS
8455 sig_print_header ();
8456
8457 if (signum_exp)
8458 {
8459 /* First see if this is a symbol name. */
2ea28649 8460 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8461 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8462 {
8463 /* No, try numeric. */
8464 oursig =
2ea28649 8465 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8466 }
8467 sig_print_info (oursig);
8468 return;
8469 }
8470
8471 printf_filtered ("\n");
8472 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8473 for (oursig = GDB_SIGNAL_FIRST;
8474 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8475 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8476 {
8477 QUIT;
8478
a493e3e2
PA
8479 if (oursig != GDB_SIGNAL_UNKNOWN
8480 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8481 sig_print_info (oursig);
8482 }
8483
3e43a32a
MS
8484 printf_filtered (_("\nUse the \"handle\" command "
8485 "to change these tables.\n"));
c906108c 8486}
4aa995e1
PA
8487
8488/* The $_siginfo convenience variable is a bit special. We don't know
8489 for sure the type of the value until we actually have a chance to
7a9dd1b2 8490 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8491 also dependent on which thread you have selected.
8492
8493 1. making $_siginfo be an internalvar that creates a new value on
8494 access.
8495
8496 2. making the value of $_siginfo be an lval_computed value. */
8497
8498/* This function implements the lval_computed support for reading a
8499 $_siginfo value. */
8500
8501static void
8502siginfo_value_read (struct value *v)
8503{
8504 LONGEST transferred;
8505
a911d87a
PA
8506 /* If we can access registers, so can we access $_siginfo. Likewise
8507 vice versa. */
8508 validate_registers_access ();
c709acd1 8509
4aa995e1 8510 transferred =
8b88a78e 8511 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8512 NULL,
8513 value_contents_all_raw (v),
8514 value_offset (v),
8515 TYPE_LENGTH (value_type (v)));
8516
8517 if (transferred != TYPE_LENGTH (value_type (v)))
8518 error (_("Unable to read siginfo"));
8519}
8520
8521/* This function implements the lval_computed support for writing a
8522 $_siginfo value. */
8523
8524static void
8525siginfo_value_write (struct value *v, struct value *fromval)
8526{
8527 LONGEST transferred;
8528
a911d87a
PA
8529 /* If we can access registers, so can we access $_siginfo. Likewise
8530 vice versa. */
8531 validate_registers_access ();
c709acd1 8532
8b88a78e 8533 transferred = target_write (current_top_target (),
4aa995e1
PA
8534 TARGET_OBJECT_SIGNAL_INFO,
8535 NULL,
8536 value_contents_all_raw (fromval),
8537 value_offset (v),
8538 TYPE_LENGTH (value_type (fromval)));
8539
8540 if (transferred != TYPE_LENGTH (value_type (fromval)))
8541 error (_("Unable to write siginfo"));
8542}
8543
c8f2448a 8544static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8545 {
8546 siginfo_value_read,
8547 siginfo_value_write
8548 };
8549
8550/* Return a new value with the correct type for the siginfo object of
78267919
UW
8551 the current thread using architecture GDBARCH. Return a void value
8552 if there's no object available. */
4aa995e1 8553
2c0b251b 8554static struct value *
22d2b532
SDJ
8555siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8556 void *ignore)
4aa995e1 8557{
4aa995e1 8558 if (target_has_stack
d7e15655 8559 && inferior_ptid != null_ptid
78267919 8560 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8561 {
78267919 8562 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8563
78267919 8564 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8565 }
8566
78267919 8567 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8568}
8569
c906108c 8570\f
16c381f0
JK
8571/* infcall_suspend_state contains state about the program itself like its
8572 registers and any signal it received when it last stopped.
8573 This state must be restored regardless of how the inferior function call
8574 ends (either successfully, or after it hits a breakpoint or signal)
8575 if the program is to properly continue where it left off. */
8576
6bf78e29 8577class infcall_suspend_state
7a292a7a 8578{
6bf78e29
AB
8579public:
8580 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8581 once the inferior function call has finished. */
8582 infcall_suspend_state (struct gdbarch *gdbarch,
8583 const struct thread_info *tp,
8584 struct regcache *regcache)
8585 : m_thread_suspend (tp->suspend),
8586 m_registers (new readonly_detached_regcache (*regcache))
8587 {
8588 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8589
8590 if (gdbarch_get_siginfo_type_p (gdbarch))
8591 {
8592 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8593 size_t len = TYPE_LENGTH (type);
8594
8595 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8596
8597 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8598 siginfo_data.get (), 0, len) != len)
8599 {
8600 /* Errors ignored. */
8601 siginfo_data.reset (nullptr);
8602 }
8603 }
8604
8605 if (siginfo_data)
8606 {
8607 m_siginfo_gdbarch = gdbarch;
8608 m_siginfo_data = std::move (siginfo_data);
8609 }
8610 }
8611
8612 /* Return a pointer to the stored register state. */
16c381f0 8613
6bf78e29
AB
8614 readonly_detached_regcache *registers () const
8615 {
8616 return m_registers.get ();
8617 }
8618
8619 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8620
8621 void restore (struct gdbarch *gdbarch,
8622 struct thread_info *tp,
8623 struct regcache *regcache) const
8624 {
8625 tp->suspend = m_thread_suspend;
8626
8627 if (m_siginfo_gdbarch == gdbarch)
8628 {
8629 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8630
8631 /* Errors ignored. */
8632 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8633 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8634 }
8635
8636 /* The inferior can be gone if the user types "print exit(0)"
8637 (and perhaps other times). */
8638 if (target_has_execution)
8639 /* NB: The register write goes through to the target. */
8640 regcache->restore (registers ());
8641 }
8642
8643private:
8644 /* How the current thread stopped before the inferior function call was
8645 executed. */
8646 struct thread_suspend_state m_thread_suspend;
8647
8648 /* The registers before the inferior function call was executed. */
8649 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8650
35515841 8651 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8652 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8653
8654 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8655 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8656 content would be invalid. */
6bf78e29 8657 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8658};
8659
cb524840
TT
8660infcall_suspend_state_up
8661save_infcall_suspend_state ()
b89667eb 8662{
b89667eb 8663 struct thread_info *tp = inferior_thread ();
1736ad11 8664 struct regcache *regcache = get_current_regcache ();
ac7936df 8665 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8666
6bf78e29
AB
8667 infcall_suspend_state_up inf_state
8668 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8669
6bf78e29
AB
8670 /* Having saved the current state, adjust the thread state, discarding
8671 any stop signal information. The stop signal is not useful when
8672 starting an inferior function call, and run_inferior_call will not use
8673 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8674 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8675
b89667eb
DE
8676 return inf_state;
8677}
8678
8679/* Restore inferior session state to INF_STATE. */
8680
8681void
16c381f0 8682restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8683{
8684 struct thread_info *tp = inferior_thread ();
1736ad11 8685 struct regcache *regcache = get_current_regcache ();
ac7936df 8686 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8687
6bf78e29 8688 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8689 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8690}
8691
b89667eb 8692void
16c381f0 8693discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8694{
dd848631 8695 delete inf_state;
b89667eb
DE
8696}
8697
daf6667d 8698readonly_detached_regcache *
16c381f0 8699get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8700{
6bf78e29 8701 return inf_state->registers ();
b89667eb
DE
8702}
8703
16c381f0
JK
8704/* infcall_control_state contains state regarding gdb's control of the
8705 inferior itself like stepping control. It also contains session state like
8706 the user's currently selected frame. */
b89667eb 8707
16c381f0 8708struct infcall_control_state
b89667eb 8709{
16c381f0
JK
8710 struct thread_control_state thread_control;
8711 struct inferior_control_state inferior_control;
d82142e2
JK
8712
8713 /* Other fields: */
ee841dd8
TT
8714 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8715 int stopped_by_random_signal = 0;
7a292a7a 8716
b89667eb 8717 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8718 struct frame_id selected_frame_id {};
7a292a7a
SS
8719};
8720
c906108c 8721/* Save all of the information associated with the inferior<==>gdb
b89667eb 8722 connection. */
c906108c 8723
cb524840
TT
8724infcall_control_state_up
8725save_infcall_control_state ()
c906108c 8726{
cb524840 8727 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8728 struct thread_info *tp = inferior_thread ();
d6b48e9c 8729 struct inferior *inf = current_inferior ();
7a292a7a 8730
16c381f0
JK
8731 inf_status->thread_control = tp->control;
8732 inf_status->inferior_control = inf->control;
d82142e2 8733
8358c15c 8734 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8735 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8736
16c381f0
JK
8737 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8738 chain. If caller's caller is walking the chain, they'll be happier if we
8739 hand them back the original chain when restore_infcall_control_state is
8740 called. */
8741 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8742
8743 /* Other fields: */
8744 inf_status->stop_stack_dummy = stop_stack_dummy;
8745 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8746
206415a3 8747 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8748
7a292a7a 8749 return inf_status;
c906108c
SS
8750}
8751
bf469271
PA
8752static void
8753restore_selected_frame (const frame_id &fid)
c906108c 8754{
bf469271 8755 frame_info *frame = frame_find_by_id (fid);
c906108c 8756
aa0cd9c1
AC
8757 /* If inf_status->selected_frame_id is NULL, there was no previously
8758 selected frame. */
101dcfbe 8759 if (frame == NULL)
c906108c 8760 {
8a3fe4f8 8761 warning (_("Unable to restore previously selected frame."));
bf469271 8762 return;
c906108c
SS
8763 }
8764
0f7d239c 8765 select_frame (frame);
c906108c
SS
8766}
8767
b89667eb
DE
8768/* Restore inferior session state to INF_STATUS. */
8769
c906108c 8770void
16c381f0 8771restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8772{
4e1c45ea 8773 struct thread_info *tp = inferior_thread ();
d6b48e9c 8774 struct inferior *inf = current_inferior ();
4e1c45ea 8775
8358c15c
JK
8776 if (tp->control.step_resume_breakpoint)
8777 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8778
5b79abe7
TT
8779 if (tp->control.exception_resume_breakpoint)
8780 tp->control.exception_resume_breakpoint->disposition
8781 = disp_del_at_next_stop;
8782
d82142e2 8783 /* Handle the bpstat_copy of the chain. */
16c381f0 8784 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8785
16c381f0
JK
8786 tp->control = inf_status->thread_control;
8787 inf->control = inf_status->inferior_control;
d82142e2
JK
8788
8789 /* Other fields: */
8790 stop_stack_dummy = inf_status->stop_stack_dummy;
8791 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8792
b89667eb 8793 if (target_has_stack)
c906108c 8794 {
bf469271 8795 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8796 walking the stack might encounter a garbage pointer and
8797 error() trying to dereference it. */
a70b8144 8798 try
bf469271
PA
8799 {
8800 restore_selected_frame (inf_status->selected_frame_id);
8801 }
230d2906 8802 catch (const gdb_exception_error &ex)
bf469271
PA
8803 {
8804 exception_fprintf (gdb_stderr, ex,
8805 "Unable to restore previously selected frame:\n");
8806 /* Error in restoring the selected frame. Select the
8807 innermost frame. */
8808 select_frame (get_current_frame ());
8809 }
c906108c 8810 }
c906108c 8811
ee841dd8 8812 delete inf_status;
7a292a7a 8813}
c906108c
SS
8814
8815void
16c381f0 8816discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8817{
8358c15c
JK
8818 if (inf_status->thread_control.step_resume_breakpoint)
8819 inf_status->thread_control.step_resume_breakpoint->disposition
8820 = disp_del_at_next_stop;
8821
5b79abe7
TT
8822 if (inf_status->thread_control.exception_resume_breakpoint)
8823 inf_status->thread_control.exception_resume_breakpoint->disposition
8824 = disp_del_at_next_stop;
8825
1777feb0 8826 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8827 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8828
ee841dd8 8829 delete inf_status;
7a292a7a 8830}
b89667eb 8831\f
7f89fd65 8832/* See infrun.h. */
0c557179
SDJ
8833
8834void
8835clear_exit_convenience_vars (void)
8836{
8837 clear_internalvar (lookup_internalvar ("_exitsignal"));
8838 clear_internalvar (lookup_internalvar ("_exitcode"));
8839}
c5aa993b 8840\f
488f131b 8841
b2175913
MS
8842/* User interface for reverse debugging:
8843 Set exec-direction / show exec-direction commands
8844 (returns error unless target implements to_set_exec_direction method). */
8845
170742de 8846enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8847static const char exec_forward[] = "forward";
8848static const char exec_reverse[] = "reverse";
8849static const char *exec_direction = exec_forward;
40478521 8850static const char *const exec_direction_names[] = {
b2175913
MS
8851 exec_forward,
8852 exec_reverse,
8853 NULL
8854};
8855
8856static void
eb4c3f4a 8857set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8858 struct cmd_list_element *cmd)
8859{
8860 if (target_can_execute_reverse)
8861 {
8862 if (!strcmp (exec_direction, exec_forward))
8863 execution_direction = EXEC_FORWARD;
8864 else if (!strcmp (exec_direction, exec_reverse))
8865 execution_direction = EXEC_REVERSE;
8866 }
8bbed405
MS
8867 else
8868 {
8869 exec_direction = exec_forward;
8870 error (_("Target does not support this operation."));
8871 }
b2175913
MS
8872}
8873
8874static void
8875show_exec_direction_func (struct ui_file *out, int from_tty,
8876 struct cmd_list_element *cmd, const char *value)
8877{
8878 switch (execution_direction) {
8879 case EXEC_FORWARD:
8880 fprintf_filtered (out, _("Forward.\n"));
8881 break;
8882 case EXEC_REVERSE:
8883 fprintf_filtered (out, _("Reverse.\n"));
8884 break;
b2175913 8885 default:
d8b34453
PA
8886 internal_error (__FILE__, __LINE__,
8887 _("bogus execution_direction value: %d"),
8888 (int) execution_direction);
b2175913
MS
8889 }
8890}
8891
d4db2f36
PA
8892static void
8893show_schedule_multiple (struct ui_file *file, int from_tty,
8894 struct cmd_list_element *c, const char *value)
8895{
3e43a32a
MS
8896 fprintf_filtered (file, _("Resuming the execution of threads "
8897 "of all processes is %s.\n"), value);
d4db2f36 8898}
ad52ddc6 8899
22d2b532
SDJ
8900/* Implementation of `siginfo' variable. */
8901
8902static const struct internalvar_funcs siginfo_funcs =
8903{
8904 siginfo_make_value,
8905 NULL,
8906 NULL
8907};
8908
372316f1
PA
8909/* Callback for infrun's target events source. This is marked when a
8910 thread has a pending status to process. */
8911
8912static void
8913infrun_async_inferior_event_handler (gdb_client_data data)
8914{
372316f1
PA
8915 inferior_event_handler (INF_REG_EVENT, NULL);
8916}
8917
c906108c 8918void
96baa820 8919_initialize_infrun (void)
c906108c 8920{
de0bea00 8921 struct cmd_list_element *c;
c906108c 8922
372316f1
PA
8923 /* Register extra event sources in the event loop. */
8924 infrun_async_inferior_event_token
8925 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8926
11db9430 8927 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8928What debugger does when program gets various signals.\n\
8929Specify a signal as argument to print info on that signal only."));
c906108c
SS
8930 add_info_alias ("handle", "signals", 0);
8931
de0bea00 8932 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8933Specify how to handle signals.\n\
486c7739 8934Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8935Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8936If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8937will be displayed instead.\n\
8938\n\
c906108c
SS
8939Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8940from 1-15 are allowed for compatibility with old versions of GDB.\n\
8941Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8942The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8943used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8944\n\
1bedd215 8945Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8946\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8947Stop means reenter debugger if this signal happens (implies print).\n\
8948Print means print a message if this signal happens.\n\
8949Pass means let program see this signal; otherwise program doesn't know.\n\
8950Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8951Pass and Stop may be combined.\n\
8952\n\
8953Multiple signals may be specified. Signal numbers and signal names\n\
8954may be interspersed with actions, with the actions being performed for\n\
8955all signals cumulatively specified."));
de0bea00 8956 set_cmd_completer (c, handle_completer);
486c7739 8957
c906108c 8958 if (!dbx_commands)
1a966eab
AC
8959 stop_command = add_cmd ("stop", class_obscure,
8960 not_just_help_class_command, _("\
8961There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8962This allows you to set a list of commands to be run each time execution\n\
1a966eab 8963of the program stops."), &cmdlist);
c906108c 8964
ccce17b0 8965 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8966Set inferior debugging."), _("\
8967Show inferior debugging."), _("\
8968When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8969 NULL,
8970 show_debug_infrun,
8971 &setdebuglist, &showdebuglist);
527159b7 8972
3e43a32a
MS
8973 add_setshow_boolean_cmd ("displaced", class_maintenance,
8974 &debug_displaced, _("\
237fc4c9
PA
8975Set displaced stepping debugging."), _("\
8976Show displaced stepping debugging."), _("\
8977When non-zero, displaced stepping specific debugging is enabled."),
8978 NULL,
8979 show_debug_displaced,
8980 &setdebuglist, &showdebuglist);
8981
ad52ddc6
PA
8982 add_setshow_boolean_cmd ("non-stop", no_class,
8983 &non_stop_1, _("\
8984Set whether gdb controls the inferior in non-stop mode."), _("\
8985Show whether gdb controls the inferior in non-stop mode."), _("\
8986When debugging a multi-threaded program and this setting is\n\
8987off (the default, also called all-stop mode), when one thread stops\n\
8988(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8989all other threads in the program while you interact with the thread of\n\
8990interest. When you continue or step a thread, you can allow the other\n\
8991threads to run, or have them remain stopped, but while you inspect any\n\
8992thread's state, all threads stop.\n\
8993\n\
8994In non-stop mode, when one thread stops, other threads can continue\n\
8995to run freely. You'll be able to step each thread independently,\n\
8996leave it stopped or free to run as needed."),
8997 set_non_stop,
8998 show_non_stop,
8999 &setlist,
9000 &showlist);
9001
adc6a863 9002 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9003 {
9004 signal_stop[i] = 1;
9005 signal_print[i] = 1;
9006 signal_program[i] = 1;
ab04a2af 9007 signal_catch[i] = 0;
c906108c
SS
9008 }
9009
4d9d9d04
PA
9010 /* Signals caused by debugger's own actions should not be given to
9011 the program afterwards.
9012
9013 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9014 explicitly specifies that it should be delivered to the target
9015 program. Typically, that would occur when a user is debugging a
9016 target monitor on a simulator: the target monitor sets a
9017 breakpoint; the simulator encounters this breakpoint and halts
9018 the simulation handing control to GDB; GDB, noting that the stop
9019 address doesn't map to any known breakpoint, returns control back
9020 to the simulator; the simulator then delivers the hardware
9021 equivalent of a GDB_SIGNAL_TRAP to the program being
9022 debugged. */
a493e3e2
PA
9023 signal_program[GDB_SIGNAL_TRAP] = 0;
9024 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9025
9026 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9027 signal_stop[GDB_SIGNAL_ALRM] = 0;
9028 signal_print[GDB_SIGNAL_ALRM] = 0;
9029 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9030 signal_print[GDB_SIGNAL_VTALRM] = 0;
9031 signal_stop[GDB_SIGNAL_PROF] = 0;
9032 signal_print[GDB_SIGNAL_PROF] = 0;
9033 signal_stop[GDB_SIGNAL_CHLD] = 0;
9034 signal_print[GDB_SIGNAL_CHLD] = 0;
9035 signal_stop[GDB_SIGNAL_IO] = 0;
9036 signal_print[GDB_SIGNAL_IO] = 0;
9037 signal_stop[GDB_SIGNAL_POLL] = 0;
9038 signal_print[GDB_SIGNAL_POLL] = 0;
9039 signal_stop[GDB_SIGNAL_URG] = 0;
9040 signal_print[GDB_SIGNAL_URG] = 0;
9041 signal_stop[GDB_SIGNAL_WINCH] = 0;
9042 signal_print[GDB_SIGNAL_WINCH] = 0;
9043 signal_stop[GDB_SIGNAL_PRIO] = 0;
9044 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9045
cd0fc7c3
SS
9046 /* These signals are used internally by user-level thread
9047 implementations. (See signal(5) on Solaris.) Like the above
9048 signals, a healthy program receives and handles them as part of
9049 its normal operation. */
a493e3e2
PA
9050 signal_stop[GDB_SIGNAL_LWP] = 0;
9051 signal_print[GDB_SIGNAL_LWP] = 0;
9052 signal_stop[GDB_SIGNAL_WAITING] = 0;
9053 signal_print[GDB_SIGNAL_WAITING] = 0;
9054 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9055 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9056 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9057 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9058
2455069d
UW
9059 /* Update cached state. */
9060 signal_cache_update (-1);
9061
85c07804
AC
9062 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9063 &stop_on_solib_events, _("\
9064Set stopping for shared library events."), _("\
9065Show stopping for shared library events."), _("\
c906108c
SS
9066If nonzero, gdb will give control to the user when the dynamic linker\n\
9067notifies gdb of shared library events. The most common event of interest\n\
85c07804 9068to the user would be loading/unloading of a new library."),
f9e14852 9069 set_stop_on_solib_events,
920d2a44 9070 show_stop_on_solib_events,
85c07804 9071 &setlist, &showlist);
c906108c 9072
7ab04401
AC
9073 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9074 follow_fork_mode_kind_names,
9075 &follow_fork_mode_string, _("\
9076Set debugger response to a program call of fork or vfork."), _("\
9077Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9078A fork or vfork creates a new process. follow-fork-mode can be:\n\
9079 parent - the original process is debugged after a fork\n\
9080 child - the new process is debugged after a fork\n\
ea1dd7bc 9081The unfollowed process will continue to run.\n\
7ab04401
AC
9082By default, the debugger will follow the parent process."),
9083 NULL,
920d2a44 9084 show_follow_fork_mode_string,
7ab04401
AC
9085 &setlist, &showlist);
9086
6c95b8df
PA
9087 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9088 follow_exec_mode_names,
9089 &follow_exec_mode_string, _("\
9090Set debugger response to a program call of exec."), _("\
9091Show debugger response to a program call of exec."), _("\
9092An exec call replaces the program image of a process.\n\
9093\n\
9094follow-exec-mode can be:\n\
9095\n\
cce7e648 9096 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9097to this new inferior. The program the process was running before\n\
9098the exec call can be restarted afterwards by restarting the original\n\
9099inferior.\n\
9100\n\
9101 same - the debugger keeps the process bound to the same inferior.\n\
9102The new executable image replaces the previous executable loaded in\n\
9103the inferior. Restarting the inferior after the exec call restarts\n\
9104the executable the process was running after the exec call.\n\
9105\n\
9106By default, the debugger will use the same inferior."),
9107 NULL,
9108 show_follow_exec_mode_string,
9109 &setlist, &showlist);
9110
7ab04401
AC
9111 add_setshow_enum_cmd ("scheduler-locking", class_run,
9112 scheduler_enums, &scheduler_mode, _("\
9113Set mode for locking scheduler during execution."), _("\
9114Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9115off == no locking (threads may preempt at any time)\n\
9116on == full locking (no thread except the current thread may run)\n\
9117 This applies to both normal execution and replay mode.\n\
9118step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9119 In this mode, other threads may run during other commands.\n\
9120 This applies to both normal execution and replay mode.\n\
9121replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9122 set_schedlock_func, /* traps on target vector */
920d2a44 9123 show_scheduler_mode,
7ab04401 9124 &setlist, &showlist);
5fbbeb29 9125
d4db2f36
PA
9126 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9127Set mode for resuming threads of all processes."), _("\
9128Show mode for resuming threads of all processes."), _("\
9129When on, execution commands (such as 'continue' or 'next') resume all\n\
9130threads of all processes. When off (which is the default), execution\n\
9131commands only resume the threads of the current process. The set of\n\
9132threads that are resumed is further refined by the scheduler-locking\n\
9133mode (see help set scheduler-locking)."),
9134 NULL,
9135 show_schedule_multiple,
9136 &setlist, &showlist);
9137
5bf193a2
AC
9138 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9139Set mode of the step operation."), _("\
9140Show mode of the step operation."), _("\
9141When set, doing a step over a function without debug line information\n\
9142will stop at the first instruction of that function. Otherwise, the\n\
9143function is skipped and the step command stops at a different source line."),
9144 NULL,
920d2a44 9145 show_step_stop_if_no_debug,
5bf193a2 9146 &setlist, &showlist);
ca6724c1 9147
72d0e2c5
YQ
9148 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9149 &can_use_displaced_stepping, _("\
237fc4c9
PA
9150Set debugger's willingness to use displaced stepping."), _("\
9151Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9152If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9153supported by the target architecture. If off, gdb will not use displaced\n\
9154stepping to step over breakpoints, even if such is supported by the target\n\
9155architecture. If auto (which is the default), gdb will use displaced stepping\n\
9156if the target architecture supports it and non-stop mode is active, but will not\n\
9157use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9158 NULL,
9159 show_can_use_displaced_stepping,
9160 &setlist, &showlist);
237fc4c9 9161
b2175913
MS
9162 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9163 &exec_direction, _("Set direction of execution.\n\
9164Options are 'forward' or 'reverse'."),
9165 _("Show direction of execution (forward/reverse)."),
9166 _("Tells gdb whether to execute forward or backward."),
9167 set_exec_direction_func, show_exec_direction_func,
9168 &setlist, &showlist);
9169
6c95b8df
PA
9170 /* Set/show detach-on-fork: user-settable mode. */
9171
9172 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9173Set whether gdb will detach the child of a fork."), _("\
9174Show whether gdb will detach the child of a fork."), _("\
9175Tells gdb whether to detach the child of a fork."),
9176 NULL, NULL, &setlist, &showlist);
9177
03583c20
UW
9178 /* Set/show disable address space randomization mode. */
9179
9180 add_setshow_boolean_cmd ("disable-randomization", class_support,
9181 &disable_randomization, _("\
9182Set disabling of debuggee's virtual address space randomization."), _("\
9183Show disabling of debuggee's virtual address space randomization."), _("\
9184When this mode is on (which is the default), randomization of the virtual\n\
9185address space is disabled. Standalone programs run with the randomization\n\
9186enabled by default on some platforms."),
9187 &set_disable_randomization,
9188 &show_disable_randomization,
9189 &setlist, &showlist);
9190
ca6724c1 9191 /* ptid initializations */
ca6724c1
KB
9192 inferior_ptid = null_ptid;
9193 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9194
76727919
TT
9195 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9196 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9197 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9198 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9199
9200 /* Explicitly create without lookup, since that tries to create a
9201 value with a void typed value, and when we get here, gdbarch
9202 isn't initialized yet. At this point, we're quite sure there
9203 isn't another convenience variable of the same name. */
22d2b532 9204 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9205
9206 add_setshow_boolean_cmd ("observer", no_class,
9207 &observer_mode_1, _("\
9208Set whether gdb controls the inferior in observer mode."), _("\
9209Show whether gdb controls the inferior in observer mode."), _("\
9210In observer mode, GDB can get data from the inferior, but not\n\
9211affect its execution. Registers and memory may not be changed,\n\
9212breakpoints may not be set, and the program cannot be interrupted\n\
9213or signalled."),
9214 set_observer_mode,
9215 show_observer_mode,
9216 &setlist,
9217 &showlist);
c906108c 9218}
This page took 2.664776 seconds and 4 git commands to generate.