Introduce find_function_entry_range_from_pc and use it in infrun.c
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
aff4e175
AB
95static void resume (gdb_signal sig);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124}
125
0b333c5e
PA
126/* See infrun.h. */
127
128void
129mark_infrun_async_event_handler (void)
130{
131 mark_async_event_handler (infrun_async_inferior_event_token);
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
b9f437de
PA
145/* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
96baa820 148
39f77062 149static ptid_t previous_inferior_ptid;
7a292a7a 150
07107ca6
LM
151/* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
156static int detach_fork = 1;
6c95b8df 157
237fc4c9
PA
158int debug_displaced = 0;
159static void
160show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164}
165
ccce17b0 166unsigned int debug_infrun = 0;
920d2a44
AC
167static void
168show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172}
527159b7 173
03583c20
UW
174
175/* Support for disabling address space randomization. */
176
177int disable_randomization = 1;
178
179static void
180show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192}
193
194static void
eb4c3f4a 195set_disable_randomization (const char *args, int from_tty,
03583c20
UW
196 struct cmd_list_element *c)
197{
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202}
203
d32dc48e
PA
204/* User interface for non-stop mode. */
205
206int non_stop = 0;
207static int non_stop_1 = 0;
208
209static void
eb4c3f4a 210set_non_stop (const char *args, int from_tty,
d32dc48e
PA
211 struct cmd_list_element *c)
212{
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220}
221
222static void
223show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229}
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
d914c394
SS
235int observer_mode = 0;
236static int observer_mode_1 = 0;
237
238static void
eb4c3f4a 239set_observer_mode (const char *args, int from_tty,
d914c394
SS
240 struct cmd_list_element *c)
241{
d914c394
SS
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
257 may_insert_fast_tracepoints = 1;
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
d914c394
SS
265 pagination_enabled = 0;
266 non_stop = non_stop_1 = 1;
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272}
273
274static void
275show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277{
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279}
280
281/* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287void
288update_observer_mode (void)
289{
290 int newval;
291
292 newval = (!may_insert_breakpoints
293 && !may_insert_tracepoints
294 && may_insert_fast_tracepoints
295 && !may_stop
296 && non_stop);
297
298 /* Let the user know if things change. */
299 if (newval != observer_mode)
300 printf_filtered (_("Observer mode is now %s.\n"),
301 (newval ? "on" : "off"));
302
303 observer_mode = observer_mode_1 = newval;
304}
c2c6d25f 305
c906108c
SS
306/* Tables of how to react to signals; the user sets them. */
307
308static unsigned char *signal_stop;
309static unsigned char *signal_print;
310static unsigned char *signal_program;
311
ab04a2af
TT
312/* Table of signals that are registered with "catch signal". A
313 non-zero entry indicates that the signal is caught by some "catch
314 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
315 signals. */
316static unsigned char *signal_catch;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
a493e3e2 345 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
797bc1cb
TT
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
ff862be4 1169
ecf45d2c
SL
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
c906108c 1178
cce9b6bf
PA
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
6c95b8df
PA
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
6c95b8df
PA
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
17d8546e
DB
1192 /* Do exit processing for the original inferior before adding
1193 the new inferior so we don't have two active inferiors with
1194 the same ptid, which can confuse find_inferior_ptid. */
057302ce 1195 exit_inferior_silent (current_inferior ());
17d8546e 1196
94585166
DB
1197 inf = add_inferior_with_spaces ();
1198 inf->pid = pid;
ecf45d2c 1199 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1200
1201 set_current_inferior (inf);
94585166 1202 set_current_program_space (inf->pspace);
6c95b8df 1203 }
9107fc8d
PA
1204 else
1205 {
1206 /* The old description may no longer be fit for the new image.
1207 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1208 old description; we'll read a new one below. No need to do
1209 this on "follow-exec-mode new", as the old inferior stays
1210 around (its description is later cleared/refetched on
1211 restart). */
1212 target_clear_description ();
1213 }
6c95b8df
PA
1214
1215 gdb_assert (current_program_space == inf->pspace);
1216
ecf45d2c
SL
1217 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1218 because the proper displacement for a PIE (Position Independent
1219 Executable) main symbol file will only be computed by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail
1221 to insert the breakpoints with the zero displacement. */
797bc1cb 1222 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1223
9107fc8d
PA
1224 /* If the target can specify a description, read it. Must do this
1225 after flipping to the new executable (because the target supplied
1226 description must be compatible with the executable's
1227 architecture, and the old executable may e.g., be 32-bit, while
1228 the new one 64-bit), and before anything involving memory or
1229 registers. */
1230 target_find_description ();
1231
bf93d7ba
SM
1232 /* The add_thread call ends up reading registers, so do it after updating the
1233 target description. */
1234 if (follow_exec_mode_string == follow_exec_mode_new)
1235 add_thread (ptid);
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
8d297bbf 1265enum step_over_what_flag
6c4cfb24
PA
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
8d297bbf 1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1276
963f9c80 1277/* Info about an instruction that is being stepped over. */
31e77af2
PA
1278
1279struct step_over_info
1280{
963f9c80
PA
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
8b86c959 1285 const address_space *aspace;
31e77af2 1286 CORE_ADDR address;
963f9c80
PA
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
21edc42f
YQ
1291
1292 /* The thread's global number. */
1293 int thread;
31e77af2
PA
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
31e77af2
PA
1326
1327static void
8b86c959 1328set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
237fc4c9
PA
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
cfba9872
SM
1478/* Default destructor for displaced_step_closure. */
1479
1480displaced_step_closure::~displaced_step_closure () = default;
1481
fc1cf338
PA
1482/* Per-inferior displaced stepping state. */
1483struct displaced_step_inferior_state
1484{
1485 /* Pointer to next in linked list. */
1486 struct displaced_step_inferior_state *next;
1487
1488 /* The process this displaced step state refers to. */
00431a78 1489 inferior *inf;
fc1cf338 1490
3fc8eb30
PA
1491 /* True if preparing a displaced step ever failed. If so, we won't
1492 try displaced stepping for this inferior again. */
1493 int failed_before;
1494
00431a78 1495 /* If this is not nullptr, this is the thread carrying out a
fc1cf338
PA
1496 displaced single-step in process PID. This thread's state will
1497 require fixing up once it has completed its step. */
00431a78 1498 thread_info *step_thread;
fc1cf338
PA
1499
1500 /* The architecture the thread had when we stepped it. */
1501 struct gdbarch *step_gdbarch;
1502
1503 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1504 for post-step cleanup. */
1505 struct displaced_step_closure *step_closure;
1506
1507 /* The address of the original instruction, and the copy we
1508 made. */
1509 CORE_ADDR step_original, step_copy;
1510
1511 /* Saved contents of copy area. */
1512 gdb_byte *step_saved_copy;
1513};
1514
1515/* The list of states of processes involved in displaced stepping
1516 presently. */
1517static struct displaced_step_inferior_state *displaced_step_inferior_states;
1518
1519/* Get the displaced stepping state of process PID. */
1520
1521static struct displaced_step_inferior_state *
00431a78 1522get_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1523{
1524 struct displaced_step_inferior_state *state;
1525
1526 for (state = displaced_step_inferior_states;
1527 state != NULL;
1528 state = state->next)
00431a78 1529 if (state->inf == inf)
fc1cf338
PA
1530 return state;
1531
1532 return NULL;
1533}
1534
372316f1
PA
1535/* Returns true if any inferior has a thread doing a displaced
1536 step. */
1537
1538static int
1539displaced_step_in_progress_any_inferior (void)
1540{
1541 struct displaced_step_inferior_state *state;
1542
1543 for (state = displaced_step_inferior_states;
1544 state != NULL;
1545 state = state->next)
00431a78 1546 if (state->step_thread != nullptr)
372316f1
PA
1547 return 1;
1548
1549 return 0;
1550}
1551
c0987663
YQ
1552/* Return true if thread represented by PTID is doing a displaced
1553 step. */
1554
1555static int
00431a78 1556displaced_step_in_progress_thread (thread_info *thread)
c0987663
YQ
1557{
1558 struct displaced_step_inferior_state *displaced;
1559
00431a78 1560 gdb_assert (thread != NULL);
c0987663 1561
00431a78 1562 displaced = get_displaced_stepping_state (thread->inf);
c0987663 1563
00431a78 1564 return (displaced != NULL && displaced->step_thread == thread);
c0987663
YQ
1565}
1566
8f572e5c
PA
1567/* Return true if process PID has a thread doing a displaced step. */
1568
1569static int
00431a78 1570displaced_step_in_progress (inferior *inf)
8f572e5c
PA
1571{
1572 struct displaced_step_inferior_state *displaced;
1573
00431a78
PA
1574 displaced = get_displaced_stepping_state (inf);
1575 if (displaced != NULL && displaced->step_thread != nullptr)
8f572e5c
PA
1576 return 1;
1577
1578 return 0;
1579}
1580
fc1cf338
PA
1581/* Add a new displaced stepping state for process PID to the displaced
1582 stepping state list, or return a pointer to an already existing
1583 entry, if it already exists. Never returns NULL. */
1584
1585static struct displaced_step_inferior_state *
00431a78 1586add_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1587{
1588 struct displaced_step_inferior_state *state;
1589
1590 for (state = displaced_step_inferior_states;
1591 state != NULL;
1592 state = state->next)
00431a78 1593 if (state->inf == inf)
fc1cf338 1594 return state;
237fc4c9 1595
8d749320 1596 state = XCNEW (struct displaced_step_inferior_state);
00431a78 1597 state->inf = inf;
fc1cf338
PA
1598 state->next = displaced_step_inferior_states;
1599 displaced_step_inferior_states = state;
237fc4c9 1600
fc1cf338
PA
1601 return state;
1602}
1603
a42244db
YQ
1604/* If inferior is in displaced stepping, and ADDR equals to starting address
1605 of copy area, return corresponding displaced_step_closure. Otherwise,
1606 return NULL. */
1607
1608struct displaced_step_closure*
1609get_displaced_step_closure_by_addr (CORE_ADDR addr)
1610{
1611 struct displaced_step_inferior_state *displaced
00431a78 1612 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1613
1614 /* If checking the mode of displaced instruction in copy area. */
00431a78
PA
1615 if (displaced != NULL
1616 && displaced->step_thread != nullptr
1617 && displaced->step_copy == addr)
a42244db
YQ
1618 return displaced->step_closure;
1619
1620 return NULL;
1621}
1622
fc1cf338 1623/* Remove the displaced stepping state of process PID. */
237fc4c9 1624
fc1cf338 1625static void
00431a78 1626remove_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1627{
1628 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1629
00431a78 1630 gdb_assert (inf != nullptr);
fc1cf338
PA
1631
1632 it = displaced_step_inferior_states;
1633 prev_next_p = &displaced_step_inferior_states;
1634 while (it)
1635 {
00431a78 1636 if (it->inf == inf)
fc1cf338
PA
1637 {
1638 *prev_next_p = it->next;
1639 xfree (it);
1640 return;
1641 }
1642
1643 prev_next_p = &it->next;
1644 it = *prev_next_p;
1645 }
1646}
1647
1648static void
1649infrun_inferior_exit (struct inferior *inf)
1650{
00431a78 1651 remove_displaced_stepping_state (inf);
fc1cf338 1652}
237fc4c9 1653
fff08868
HZ
1654/* If ON, and the architecture supports it, GDB will use displaced
1655 stepping to step over breakpoints. If OFF, or if the architecture
1656 doesn't support it, GDB will instead use the traditional
1657 hold-and-step approach. If AUTO (which is the default), GDB will
1658 decide which technique to use to step over breakpoints depending on
1659 which of all-stop or non-stop mode is active --- displaced stepping
1660 in non-stop mode; hold-and-step in all-stop mode. */
1661
72d0e2c5 1662static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1663
237fc4c9
PA
1664static void
1665show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1666 struct cmd_list_element *c,
1667 const char *value)
1668{
72d0e2c5 1669 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1673 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1674 else
3e43a32a
MS
1675 fprintf_filtered (file,
1676 _("Debugger's willingness to use displaced stepping "
1677 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1678}
1679
fff08868 1680/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1681 over breakpoints of thread TP. */
fff08868 1682
237fc4c9 1683static int
3fc8eb30 1684use_displaced_stepping (struct thread_info *tp)
237fc4c9 1685{
00431a78 1686 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1687 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1688 struct displaced_step_inferior_state *displaced_state;
1689
00431a78 1690 displaced_state = get_displaced_stepping_state (tp->inf);
3fc8eb30 1691
fbea99ea
PA
1692 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1693 && target_is_non_stop_p ())
72d0e2c5 1694 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1695 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1696 && find_record_target () == NULL
1697 && (displaced_state == NULL
1698 || !displaced_state->failed_before));
237fc4c9
PA
1699}
1700
1701/* Clean out any stray displaced stepping state. */
1702static void
fc1cf338 1703displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1704{
1705 /* Indicate that there is no cleanup pending. */
00431a78 1706 displaced->step_thread = nullptr;
237fc4c9 1707
cfba9872 1708 delete displaced->step_closure;
6d45d4b4 1709 displaced->step_closure = NULL;
237fc4c9
PA
1710}
1711
1712static void
fc1cf338 1713displaced_step_clear_cleanup (void *arg)
237fc4c9 1714{
9a3c8263
SM
1715 struct displaced_step_inferior_state *state
1716 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1717
1718 displaced_step_clear (state);
237fc4c9
PA
1719}
1720
1721/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1722void
1723displaced_step_dump_bytes (struct ui_file *file,
1724 const gdb_byte *buf,
1725 size_t len)
1726{
1727 int i;
1728
1729 for (i = 0; i < len; i++)
1730 fprintf_unfiltered (file, "%02x ", buf[i]);
1731 fputs_unfiltered ("\n", file);
1732}
1733
1734/* Prepare to single-step, using displaced stepping.
1735
1736 Note that we cannot use displaced stepping when we have a signal to
1737 deliver. If we have a signal to deliver and an instruction to step
1738 over, then after the step, there will be no indication from the
1739 target whether the thread entered a signal handler or ignored the
1740 signal and stepped over the instruction successfully --- both cases
1741 result in a simple SIGTRAP. In the first case we mustn't do a
1742 fixup, and in the second case we must --- but we can't tell which.
1743 Comments in the code for 'random signals' in handle_inferior_event
1744 explain how we handle this case instead.
1745
1746 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1747 stepped now; 0 if displaced stepping this thread got queued; or -1
1748 if this instruction can't be displaced stepped. */
1749
237fc4c9 1750static int
00431a78 1751displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1752{
2989a365 1753 struct cleanup *ignore_cleanups;
00431a78 1754 regcache *regcache = get_thread_regcache (tp);
ac7936df 1755 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1756 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
fc1cf338 1760 struct displaced_step_inferior_state *displaced;
9e529e1d 1761 int status;
237fc4c9
PA
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
c2829269
PA
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
c1e36e3e
PA
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
fc1cf338
PA
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
237fc4c9 1778
00431a78 1779 displaced = add_displaced_stepping_state (tp->inf);
fc1cf338 1780
00431a78 1781 if (displaced->step_thread != nullptr)
237fc4c9
PA
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
237fc4c9
PA
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
c2829269 1788 "displaced: deferring step of %s\n",
00431a78 1789 target_pid_to_str (tp->ptid));
237fc4c9 1790
c2829269 1791 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
00431a78 1799 target_pid_to_str (tp->ptid));
237fc4c9
PA
1800 }
1801
fc1cf338 1802 displaced_step_clear (displaced);
237fc4c9 1803
00431a78
PA
1804 scoped_restore_current_thread restore_thread;
1805
1806 switch_to_thread (tp);
ad53cd71 1807
515630c5 1808 original = regcache_read_pc (regcache);
237fc4c9
PA
1809
1810 copy = gdbarch_displaced_step_location (gdbarch);
1811 len = gdbarch_max_insn_length (gdbarch);
1812
d35ae833
PA
1813 if (breakpoint_in_range_p (aspace, copy, len))
1814 {
1815 /* There's a breakpoint set in the scratch pad location range
1816 (which is usually around the entry point). We'd either
1817 install it before resuming, which would overwrite/corrupt the
1818 scratch pad, or if it was already inserted, this displaced
1819 step would overwrite it. The latter is OK in the sense that
1820 we already assume that no thread is going to execute the code
1821 in the scratch pad range (after initial startup) anyway, but
1822 the former is unacceptable. Simply punt and fallback to
1823 stepping over this breakpoint in-line. */
1824 if (debug_displaced)
1825 {
1826 fprintf_unfiltered (gdb_stdlog,
1827 "displaced: breakpoint set in scratch pad. "
1828 "Stepping over breakpoint in-line instead.\n");
1829 }
1830
d35ae833
PA
1831 return -1;
1832 }
1833
237fc4c9 1834 /* Save the original contents of the copy area. */
224c3ddb 1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1836 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1837 &displaced->step_saved_copy);
9e529e1d
JK
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1844 if (debug_displaced)
1845 {
5af949e3
UW
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
fc1cf338
PA
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
237fc4c9
PA
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1854 original, copy, regcache);
7f03bd92
PA
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
2989a365 1860 do_cleanups (ignore_cleanups);
7f03bd92
PA
1861 return -1;
1862 }
237fc4c9 1863
9f5a595d
UW
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
00431a78 1866 displaced->step_thread = tp;
fc1cf338
PA
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
9f5a595d 1871
fc1cf338 1872 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1873
1874 /* Resume execution at the copy. */
515630c5 1875 regcache_write_pc (regcache, copy);
237fc4c9 1876
ad53cd71
PA
1877 discard_cleanups (ignore_cleanups);
1878
237fc4c9 1879 if (debug_displaced)
5af949e3
UW
1880 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1881 paddress (gdbarch, copy));
237fc4c9 1882
237fc4c9
PA
1883 return 1;
1884}
1885
3fc8eb30
PA
1886/* Wrapper for displaced_step_prepare_throw that disabled further
1887 attempts at displaced stepping if we get a memory error. */
1888
1889static int
00431a78 1890displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1891{
1892 int prepared = -1;
1893
1894 TRY
1895 {
00431a78 1896 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1897 }
1898 CATCH (ex, RETURN_MASK_ERROR)
1899 {
1900 struct displaced_step_inferior_state *displaced_state;
1901
16b41842
PA
1902 if (ex.error != MEMORY_ERROR
1903 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1904 throw_exception (ex);
1905
1906 if (debug_infrun)
1907 {
1908 fprintf_unfiltered (gdb_stdlog,
1909 "infrun: disabling displaced stepping: %s\n",
1910 ex.message);
1911 }
1912
1913 /* Be verbose if "set displaced-stepping" is "on", silent if
1914 "auto". */
1915 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1916 {
fd7dcb94 1917 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1918 ex.message);
1919 }
1920
1921 /* Disable further displaced stepping attempts. */
1922 displaced_state
00431a78 1923 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1924 displaced_state->failed_before = 1;
1925 }
1926 END_CATCH
1927
1928 return prepared;
1929}
1930
237fc4c9 1931static void
3e43a32a
MS
1932write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1933 const gdb_byte *myaddr, int len)
237fc4c9 1934{
2989a365 1935 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1936
237fc4c9
PA
1937 inferior_ptid = ptid;
1938 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1939}
1940
e2d96639
YQ
1941/* Restore the contents of the copy area for thread PTID. */
1942
1943static void
1944displaced_step_restore (struct displaced_step_inferior_state *displaced,
1945 ptid_t ptid)
1946{
1947 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1948
1949 write_memory_ptid (ptid, displaced->step_copy,
1950 displaced->step_saved_copy, len);
1951 if (debug_displaced)
1952 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1953 target_pid_to_str (ptid),
1954 paddress (displaced->step_gdbarch,
1955 displaced->step_copy));
1956}
1957
372316f1
PA
1958/* If we displaced stepped an instruction successfully, adjust
1959 registers and memory to yield the same effect the instruction would
1960 have had if we had executed it at its original address, and return
1961 1. If the instruction didn't complete, relocate the PC and return
1962 -1. If the thread wasn't displaced stepping, return 0. */
1963
1964static int
00431a78 1965displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1966{
1967 struct cleanup *old_cleanups;
fc1cf338 1968 struct displaced_step_inferior_state *displaced
00431a78 1969 = get_displaced_stepping_state (event_thread->inf);
372316f1 1970 int ret;
fc1cf338
PA
1971
1972 /* Was any thread of this process doing a displaced step? */
1973 if (displaced == NULL)
372316f1 1974 return 0;
237fc4c9 1975
00431a78
PA
1976 /* Was this event for the thread we displaced? */
1977 if (displaced->step_thread != event_thread)
372316f1 1978 return 0;
237fc4c9 1979
fc1cf338 1980 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1981
00431a78 1982 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1983
cb71640d
PA
1984 /* Fixup may need to read memory/registers. Switch to the thread
1985 that we're fixing up. Also, target_stopped_by_watchpoint checks
1986 the current thread. */
00431a78 1987 switch_to_thread (event_thread);
cb71640d 1988
237fc4c9 1989 /* Did the instruction complete successfully? */
cb71640d
PA
1990 if (signal == GDB_SIGNAL_TRAP
1991 && !(target_stopped_by_watchpoint ()
1992 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1993 || target_have_steppable_watchpoint)))
237fc4c9
PA
1994 {
1995 /* Fix up the resulting state. */
fc1cf338
PA
1996 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1997 displaced->step_closure,
1998 displaced->step_original,
1999 displaced->step_copy,
00431a78 2000 get_thread_regcache (displaced->step_thread));
372316f1 2001 ret = 1;
237fc4c9
PA
2002 }
2003 else
2004 {
2005 /* Since the instruction didn't complete, all we can do is
2006 relocate the PC. */
00431a78 2007 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 2008 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2009
fc1cf338 2010 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2011 regcache_write_pc (regcache, pc);
372316f1 2012 ret = -1;
237fc4c9
PA
2013 }
2014
2015 do_cleanups (old_cleanups);
2016
00431a78 2017 displaced->step_thread = nullptr;
372316f1
PA
2018
2019 return ret;
c2829269 2020}
1c5cfe86 2021
4d9d9d04
PA
2022/* Data to be passed around while handling an event. This data is
2023 discarded between events. */
2024struct execution_control_state
2025{
2026 ptid_t ptid;
2027 /* The thread that got the event, if this was a thread event; NULL
2028 otherwise. */
2029 struct thread_info *event_thread;
2030
2031 struct target_waitstatus ws;
2032 int stop_func_filled_in;
2033 CORE_ADDR stop_func_start;
2034 CORE_ADDR stop_func_end;
2035 const char *stop_func_name;
2036 int wait_some_more;
2037
2038 /* True if the event thread hit the single-step breakpoint of
2039 another thread. Thus the event doesn't cause a stop, the thread
2040 needs to be single-stepped past the single-step breakpoint before
2041 we can switch back to the original stepping thread. */
2042 int hit_singlestep_breakpoint;
2043};
2044
2045/* Clear ECS and set it to point at TP. */
c2829269
PA
2046
2047static void
4d9d9d04
PA
2048reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2049{
2050 memset (ecs, 0, sizeof (*ecs));
2051 ecs->event_thread = tp;
2052 ecs->ptid = tp->ptid;
2053}
2054
2055static void keep_going_pass_signal (struct execution_control_state *ecs);
2056static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2057static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2058static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2059
2060/* Are there any pending step-over requests? If so, run all we can
2061 now and return true. Otherwise, return false. */
2062
2063static int
c2829269
PA
2064start_step_over (void)
2065{
2066 struct thread_info *tp, *next;
2067
372316f1
PA
2068 /* Don't start a new step-over if we already have an in-line
2069 step-over operation ongoing. */
2070 if (step_over_info_valid_p ())
2071 return 0;
2072
c2829269 2073 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2074 {
4d9d9d04
PA
2075 struct execution_control_state ecss;
2076 struct execution_control_state *ecs = &ecss;
8d297bbf 2077 step_over_what step_what;
372316f1 2078 int must_be_in_line;
c2829269 2079
c65d6b55
PA
2080 gdb_assert (!tp->stop_requested);
2081
c2829269 2082 next = thread_step_over_chain_next (tp);
237fc4c9 2083
c2829269
PA
2084 /* If this inferior already has a displaced step in process,
2085 don't start a new one. */
00431a78 2086 if (displaced_step_in_progress (tp->inf))
c2829269
PA
2087 continue;
2088
372316f1
PA
2089 step_what = thread_still_needs_step_over (tp);
2090 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2091 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2092 && !use_displaced_stepping (tp)));
372316f1
PA
2093
2094 /* We currently stop all threads of all processes to step-over
2095 in-line. If we need to start a new in-line step-over, let
2096 any pending displaced steps finish first. */
2097 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2098 return 0;
2099
c2829269
PA
2100 thread_step_over_chain_remove (tp);
2101
2102 if (step_over_queue_head == NULL)
2103 {
2104 if (debug_infrun)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "infrun: step-over queue now empty\n");
2107 }
2108
372316f1
PA
2109 if (tp->control.trap_expected
2110 || tp->resumed
2111 || tp->executing)
ad53cd71 2112 {
4d9d9d04
PA
2113 internal_error (__FILE__, __LINE__,
2114 "[%s] has inconsistent state: "
372316f1 2115 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2116 target_pid_to_str (tp->ptid),
2117 tp->control.trap_expected,
372316f1 2118 tp->resumed,
4d9d9d04 2119 tp->executing);
ad53cd71 2120 }
1c5cfe86 2121
4d9d9d04
PA
2122 if (debug_infrun)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "infrun: resuming [%s] for step-over\n",
2125 target_pid_to_str (tp->ptid));
2126
2127 /* keep_going_pass_signal skips the step-over if the breakpoint
2128 is no longer inserted. In all-stop, we want to keep looking
2129 for a thread that needs a step-over instead of resuming TP,
2130 because we wouldn't be able to resume anything else until the
2131 target stops again. In non-stop, the resume always resumes
2132 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2133 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2134 continue;
8550d3b3 2135
00431a78 2136 switch_to_thread (tp);
4d9d9d04
PA
2137 reset_ecs (ecs, tp);
2138 keep_going_pass_signal (ecs);
1c5cfe86 2139
4d9d9d04
PA
2140 if (!ecs->wait_some_more)
2141 error (_("Command aborted."));
1c5cfe86 2142
372316f1
PA
2143 gdb_assert (tp->resumed);
2144
2145 /* If we started a new in-line step-over, we're done. */
2146 if (step_over_info_valid_p ())
2147 {
2148 gdb_assert (tp->control.trap_expected);
2149 return 1;
2150 }
2151
fbea99ea 2152 if (!target_is_non_stop_p ())
4d9d9d04
PA
2153 {
2154 /* On all-stop, shouldn't have resumed unless we needed a
2155 step over. */
2156 gdb_assert (tp->control.trap_expected
2157 || tp->step_after_step_resume_breakpoint);
2158
2159 /* With remote targets (at least), in all-stop, we can't
2160 issue any further remote commands until the program stops
2161 again. */
2162 return 1;
1c5cfe86 2163 }
c2829269 2164
4d9d9d04
PA
2165 /* Either the thread no longer needed a step-over, or a new
2166 displaced stepping sequence started. Even in the latter
2167 case, continue looking. Maybe we can also start another
2168 displaced step on a thread of other process. */
237fc4c9 2169 }
4d9d9d04
PA
2170
2171 return 0;
237fc4c9
PA
2172}
2173
5231c1fd
PA
2174/* Update global variables holding ptids to hold NEW_PTID if they were
2175 holding OLD_PTID. */
2176static void
2177infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2178{
d7e15655 2179 if (inferior_ptid == old_ptid)
5231c1fd 2180 inferior_ptid = new_ptid;
5231c1fd
PA
2181}
2182
237fc4c9 2183\f
c906108c 2184
53904c9e
AC
2185static const char schedlock_off[] = "off";
2186static const char schedlock_on[] = "on";
2187static const char schedlock_step[] = "step";
f2665db5 2188static const char schedlock_replay[] = "replay";
40478521 2189static const char *const scheduler_enums[] = {
ef346e04
AC
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
f2665db5 2193 schedlock_replay,
ef346e04
AC
2194 NULL
2195};
f2665db5 2196static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2197static void
2198show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200{
3e43a32a
MS
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
920d2a44
AC
2204 value);
2205}
c906108c
SS
2206
2207static void
eb4c3f4a 2208set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2209{
eefe576e
AC
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
c906108c
SS
2215}
2216
d4db2f36
PA
2217/* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220int sched_multi = 0;
2221
2facfe5c
DD
2222/* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228static int
2229maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230{
2231 int hw_step = 1;
2232
f02253f1 2233 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2234 && gdbarch_software_single_step_p (gdbarch))
2235 hw_step = !insert_single_step_breakpoints (gdbarch);
2236
2facfe5c
DD
2237 return hw_step;
2238}
c906108c 2239
f3263aa4
PA
2240/* See infrun.h. */
2241
09cee04b
PA
2242ptid_t
2243user_visible_resume_ptid (int step)
2244{
f3263aa4 2245 ptid_t resume_ptid;
09cee04b 2246
09cee04b
PA
2247 if (non_stop)
2248 {
2249 /* With non-stop mode on, threads are always handled
2250 individually. */
2251 resume_ptid = inferior_ptid;
2252 }
2253 else if ((scheduler_mode == schedlock_on)
03d46957 2254 || (scheduler_mode == schedlock_step && step))
09cee04b 2255 {
f3263aa4
PA
2256 /* User-settable 'scheduler' mode requires solo thread
2257 resume. */
09cee04b
PA
2258 resume_ptid = inferior_ptid;
2259 }
f2665db5
MM
2260 else if ((scheduler_mode == schedlock_replay)
2261 && target_record_will_replay (minus_one_ptid, execution_direction))
2262 {
2263 /* User-settable 'scheduler' mode requires solo thread resume in replay
2264 mode. */
2265 resume_ptid = inferior_ptid;
2266 }
f3263aa4
PA
2267 else if (!sched_multi && target_supports_multi_process ())
2268 {
2269 /* Resume all threads of the current process (and none of other
2270 processes). */
e99b03dc 2271 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2272 }
2273 else
2274 {
2275 /* Resume all threads of all processes. */
2276 resume_ptid = RESUME_ALL;
2277 }
09cee04b
PA
2278
2279 return resume_ptid;
2280}
2281
fbea99ea
PA
2282/* Return a ptid representing the set of threads that we will resume,
2283 in the perspective of the target, assuming run control handling
2284 does not require leaving some threads stopped (e.g., stepping past
2285 breakpoint). USER_STEP indicates whether we're about to start the
2286 target for a stepping command. */
2287
2288static ptid_t
2289internal_resume_ptid (int user_step)
2290{
2291 /* In non-stop, we always control threads individually. Note that
2292 the target may always work in non-stop mode even with "set
2293 non-stop off", in which case user_visible_resume_ptid could
2294 return a wildcard ptid. */
2295 if (target_is_non_stop_p ())
2296 return inferior_ptid;
2297 else
2298 return user_visible_resume_ptid (user_step);
2299}
2300
64ce06e4
PA
2301/* Wrapper for target_resume, that handles infrun-specific
2302 bookkeeping. */
2303
2304static void
2305do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2306{
2307 struct thread_info *tp = inferior_thread ();
2308
c65d6b55
PA
2309 gdb_assert (!tp->stop_requested);
2310
64ce06e4 2311 /* Install inferior's terminal modes. */
223ffa71 2312 target_terminal::inferior ();
64ce06e4
PA
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
8f572e5c
PA
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
00431a78 2338 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2344
2345 target_commit_resume ();
64ce06e4
PA
2346}
2347
d930703d 2348/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2349 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2350 call 'resume', which handles exceptions. */
c906108c 2351
71d378ae
PA
2352static void
2353resume_1 (enum gdb_signal sig)
c906108c 2354{
515630c5 2355 struct regcache *regcache = get_current_regcache ();
ac7936df 2356 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2357 struct thread_info *tp = inferior_thread ();
515630c5 2358 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2359 const address_space *aspace = regcache->aspace ();
b0f16a3e 2360 ptid_t resume_ptid;
856e7dd6
PA
2361 /* This represents the user's step vs continue request. When
2362 deciding whether "set scheduler-locking step" applies, it's the
2363 user's intention that counts. */
2364 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2365 /* This represents what we'll actually request the target to do.
2366 This can decay from a step to a continue, if e.g., we need to
2367 implement single-stepping with breakpoints (software
2368 single-step). */
6b403daa 2369 int step;
c7e8a53c 2370
c65d6b55 2371 gdb_assert (!tp->stop_requested);
c2829269
PA
2372 gdb_assert (!thread_is_in_step_over_chain (tp));
2373
372316f1
PA
2374 if (tp->suspend.waitstatus_pending_p)
2375 {
2376 if (debug_infrun)
2377 {
23fdd69e
SM
2378 std::string statstr
2379 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2380
372316f1 2381 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2382 "infrun: resume: thread %s has pending wait "
2383 "status %s (currently_stepping=%d).\n",
2384 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2385 currently_stepping (tp));
372316f1
PA
2386 }
2387
2388 tp->resumed = 1;
2389
2390 /* FIXME: What should we do if we are supposed to resume this
2391 thread with a signal? Maybe we should maintain a queue of
2392 pending signals to deliver. */
2393 if (sig != GDB_SIGNAL_0)
2394 {
fd7dcb94 2395 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2396 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2397 }
2398
2399 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2400
2401 if (target_can_async_p ())
9516f85a
AB
2402 {
2403 target_async (1);
2404 /* Tell the event loop we have an event to process. */
2405 mark_async_event_handler (infrun_async_inferior_event_token);
2406 }
372316f1
PA
2407 return;
2408 }
2409
2410 tp->stepped_breakpoint = 0;
2411
6b403daa
PA
2412 /* Depends on stepped_breakpoint. */
2413 step = currently_stepping (tp);
2414
74609e71
YQ
2415 if (current_inferior ()->waiting_for_vfork_done)
2416 {
48f9886d
PA
2417 /* Don't try to single-step a vfork parent that is waiting for
2418 the child to get out of the shared memory region (by exec'ing
2419 or exiting). This is particularly important on software
2420 single-step archs, as the child process would trip on the
2421 software single step breakpoint inserted for the parent
2422 process. Since the parent will not actually execute any
2423 instruction until the child is out of the shared region (such
2424 are vfork's semantics), it is safe to simply continue it.
2425 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2426 the parent, and tell it to `keep_going', which automatically
2427 re-sets it stepping. */
74609e71
YQ
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "infrun: resume : clear step\n");
a09dd441 2431 step = 0;
74609e71
YQ
2432 }
2433
527159b7 2434 if (debug_infrun)
237fc4c9 2435 fprintf_unfiltered (gdb_stdlog,
c9737c08 2436 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2437 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2438 step, gdb_signal_to_symbol_string (sig),
2439 tp->control.trap_expected,
0d9a9a5f
PA
2440 target_pid_to_str (inferior_ptid),
2441 paddress (gdbarch, pc));
c906108c 2442
c2c6d25f
JM
2443 /* Normally, by the time we reach `resume', the breakpoints are either
2444 removed or inserted, as appropriate. The exception is if we're sitting
2445 at a permanent breakpoint; we need to step over it, but permanent
2446 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2447 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2448 {
af48d08f
PA
2449 if (sig != GDB_SIGNAL_0)
2450 {
2451 /* We have a signal to pass to the inferior. The resume
2452 may, or may not take us to the signal handler. If this
2453 is a step, we'll need to stop in the signal handler, if
2454 there's one, (if the target supports stepping into
2455 handlers), or in the next mainline instruction, if
2456 there's no handler. If this is a continue, we need to be
2457 sure to run the handler with all breakpoints inserted.
2458 In all cases, set a breakpoint at the current address
2459 (where the handler returns to), and once that breakpoint
2460 is hit, resume skipping the permanent breakpoint. If
2461 that breakpoint isn't hit, then we've stepped into the
2462 signal handler (or hit some other event). We'll delete
2463 the step-resume breakpoint then. */
2464
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: resume: skipping permanent breakpoint, "
2468 "deliver signal first\n");
2469
2470 clear_step_over_info ();
2471 tp->control.trap_expected = 0;
2472
2473 if (tp->control.step_resume_breakpoint == NULL)
2474 {
2475 /* Set a "high-priority" step-resume, as we don't want
2476 user breakpoints at PC to trigger (again) when this
2477 hits. */
2478 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2479 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2480
2481 tp->step_after_step_resume_breakpoint = step;
2482 }
2483
2484 insert_breakpoints ();
2485 }
2486 else
2487 {
2488 /* There's no signal to pass, we can go ahead and skip the
2489 permanent breakpoint manually. */
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "infrun: resume: skipping permanent breakpoint\n");
2493 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2494 /* Update pc to reflect the new address from which we will
2495 execute instructions. */
2496 pc = regcache_read_pc (regcache);
2497
2498 if (step)
2499 {
2500 /* We've already advanced the PC, so the stepping part
2501 is done. Now we need to arrange for a trap to be
2502 reported to handle_inferior_event. Set a breakpoint
2503 at the current PC, and run to it. Don't update
2504 prev_pc, because if we end in
44a1ee51
PA
2505 switch_back_to_stepped_thread, we want the "expected
2506 thread advanced also" branch to be taken. IOW, we
2507 don't want this thread to step further from PC
af48d08f 2508 (overstep). */
1ac806b8 2509 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2510 insert_single_step_breakpoint (gdbarch, aspace, pc);
2511 insert_breakpoints ();
2512
fbea99ea 2513 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2514 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2515 tp->resumed = 1;
af48d08f
PA
2516 return;
2517 }
2518 }
6d350bb5 2519 }
c2c6d25f 2520
c1e36e3e
PA
2521 /* If we have a breakpoint to step over, make sure to do a single
2522 step only. Same if we have software watchpoints. */
2523 if (tp->control.trap_expected || bpstat_should_step ())
2524 tp->control.may_range_step = 0;
2525
237fc4c9
PA
2526 /* If enabled, step over breakpoints by executing a copy of the
2527 instruction at a different address.
2528
2529 We can't use displaced stepping when we have a signal to deliver;
2530 the comments for displaced_step_prepare explain why. The
2531 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2532 signals' explain what we do instead.
2533
2534 We can't use displaced stepping when we are waiting for vfork_done
2535 event, displaced stepping breaks the vfork child similarly as single
2536 step software breakpoint. */
3fc8eb30
PA
2537 if (tp->control.trap_expected
2538 && use_displaced_stepping (tp)
cb71640d 2539 && !step_over_info_valid_p ()
a493e3e2 2540 && sig == GDB_SIGNAL_0
74609e71 2541 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2542 {
00431a78 2543 int prepared = displaced_step_prepare (tp);
fc1cf338 2544
3fc8eb30 2545 if (prepared == 0)
d56b7306 2546 {
4d9d9d04
PA
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog,
2549 "Got placed in step-over queue\n");
2550
2551 tp->control.trap_expected = 0;
d56b7306
VP
2552 return;
2553 }
3fc8eb30
PA
2554 else if (prepared < 0)
2555 {
2556 /* Fallback to stepping over the breakpoint in-line. */
2557
2558 if (target_is_non_stop_p ())
2559 stop_all_threads ();
2560
a01bda52 2561 set_step_over_info (regcache->aspace (),
21edc42f 2562 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2563
2564 step = maybe_software_singlestep (gdbarch, pc);
2565
2566 insert_breakpoints ();
2567 }
2568 else if (prepared > 0)
2569 {
2570 struct displaced_step_inferior_state *displaced;
99e40580 2571
3fc8eb30
PA
2572 /* Update pc to reflect the new address from which we will
2573 execute instructions due to displaced stepping. */
00431a78 2574 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2575
00431a78 2576 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2577 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2578 displaced->step_closure);
2579 }
237fc4c9
PA
2580 }
2581
2facfe5c 2582 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2583 else if (step)
2facfe5c 2584 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2585
30852783
UW
2586 /* Currently, our software single-step implementation leads to different
2587 results than hardware single-stepping in one situation: when stepping
2588 into delivering a signal which has an associated signal handler,
2589 hardware single-step will stop at the first instruction of the handler,
2590 while software single-step will simply skip execution of the handler.
2591
2592 For now, this difference in behavior is accepted since there is no
2593 easy way to actually implement single-stepping into a signal handler
2594 without kernel support.
2595
2596 However, there is one scenario where this difference leads to follow-on
2597 problems: if we're stepping off a breakpoint by removing all breakpoints
2598 and then single-stepping. In this case, the software single-step
2599 behavior means that even if there is a *breakpoint* in the signal
2600 handler, GDB still would not stop.
2601
2602 Fortunately, we can at least fix this particular issue. We detect
2603 here the case where we are about to deliver a signal while software
2604 single-stepping with breakpoints removed. In this situation, we
2605 revert the decisions to remove all breakpoints and insert single-
2606 step breakpoints, and instead we install a step-resume breakpoint
2607 at the current address, deliver the signal without stepping, and
2608 once we arrive back at the step-resume breakpoint, actually step
2609 over the breakpoint we originally wanted to step over. */
34b7e8a6 2610 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2611 && sig != GDB_SIGNAL_0
2612 && step_over_info_valid_p ())
30852783
UW
2613 {
2614 /* If we have nested signals or a pending signal is delivered
2615 immediately after a handler returns, might might already have
2616 a step-resume breakpoint set on the earlier handler. We cannot
2617 set another step-resume breakpoint; just continue on until the
2618 original breakpoint is hit. */
2619 if (tp->control.step_resume_breakpoint == NULL)
2620 {
2c03e5be 2621 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2622 tp->step_after_step_resume_breakpoint = 1;
2623 }
2624
34b7e8a6 2625 delete_single_step_breakpoints (tp);
30852783 2626
31e77af2 2627 clear_step_over_info ();
30852783 2628 tp->control.trap_expected = 0;
31e77af2
PA
2629
2630 insert_breakpoints ();
30852783
UW
2631 }
2632
b0f16a3e
SM
2633 /* If STEP is set, it's a request to use hardware stepping
2634 facilities. But in that case, we should never
2635 use singlestep breakpoint. */
34b7e8a6 2636 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2637
fbea99ea 2638 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2639 if (tp->control.trap_expected)
b0f16a3e
SM
2640 {
2641 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2642 hit, either by single-stepping the thread with the breakpoint
2643 removed, or by displaced stepping, with the breakpoint inserted.
2644 In the former case, we need to single-step only this thread,
2645 and keep others stopped, as they can miss this breakpoint if
2646 allowed to run. That's not really a problem for displaced
2647 stepping, but, we still keep other threads stopped, in case
2648 another thread is also stopped for a breakpoint waiting for
2649 its turn in the displaced stepping queue. */
b0f16a3e
SM
2650 resume_ptid = inferior_ptid;
2651 }
fbea99ea
PA
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2654
7f5ef605
PA
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2657 {
372316f1
PA
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
372316f1
PA
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
7f5ef605
PA
2690
2691 tp->stepped_breakpoint = 1;
2692
b0f16a3e
SM
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
7f5ef605 2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2697 step = 0;
2698 }
ef5cf84e 2699
b0f16a3e 2700 if (debug_displaced
cb71640d 2701 && tp->control.trap_expected
3fc8eb30 2702 && use_displaced_stepping (tp)
cb71640d 2703 && !step_over_info_valid_p ())
b0f16a3e 2704 {
00431a78 2705 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2706 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
237fc4c9 2715
b0f16a3e
SM
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
c1e36e3e 2725
64ce06e4 2726 do_target_resume (resume_ptid, step, sig);
372316f1 2727 tp->resumed = 1;
c906108c 2728}
71d378ae
PA
2729
2730/* Resume the inferior. SIG is the signal to give the inferior
2731 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2732 rolls back state on error. */
2733
aff4e175 2734static void
71d378ae
PA
2735resume (gdb_signal sig)
2736{
2737 TRY
2738 {
2739 resume_1 (sig);
2740 }
2741 CATCH (ex, RETURN_MASK_ALL)
2742 {
2743 /* If resuming is being aborted for any reason, delete any
2744 single-step breakpoint resume_1 may have created, to avoid
2745 confusing the following resumption, and to avoid leaving
2746 single-step breakpoints perturbing other threads, in case
2747 we're running in non-stop mode. */
2748 if (inferior_ptid != null_ptid)
2749 delete_single_step_breakpoints (inferior_thread ());
2750 throw_exception (ex);
2751 }
2752 END_CATCH
2753}
2754
c906108c 2755\f
237fc4c9 2756/* Proceeding. */
c906108c 2757
4c2f2a79
PA
2758/* See infrun.h. */
2759
2760/* Counter that tracks number of user visible stops. This can be used
2761 to tell whether a command has proceeded the inferior past the
2762 current location. This allows e.g., inferior function calls in
2763 breakpoint commands to not interrupt the command list. When the
2764 call finishes successfully, the inferior is standing at the same
2765 breakpoint as if nothing happened (and so we don't call
2766 normal_stop). */
2767static ULONGEST current_stop_id;
2768
2769/* See infrun.h. */
2770
2771ULONGEST
2772get_stop_id (void)
2773{
2774 return current_stop_id;
2775}
2776
2777/* Called when we report a user visible stop. */
2778
2779static void
2780new_stop_id (void)
2781{
2782 current_stop_id++;
2783}
2784
c906108c
SS
2785/* Clear out all variables saying what to do when inferior is continued.
2786 First do this, then set the ones you want, then call `proceed'. */
2787
a7212384
UW
2788static void
2789clear_proceed_status_thread (struct thread_info *tp)
c906108c 2790{
a7212384
UW
2791 if (debug_infrun)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread (%s)\n",
2794 target_pid_to_str (tp->ptid));
d6b48e9c 2795
372316f1
PA
2796 /* If we're starting a new sequence, then the previous finished
2797 single-step is no longer relevant. */
2798 if (tp->suspend.waitstatus_pending_p)
2799 {
2800 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2801 {
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "infrun: clear_proceed_status: pending "
2805 "event of %s was a finished step. "
2806 "Discarding.\n",
2807 target_pid_to_str (tp->ptid));
2808
2809 tp->suspend.waitstatus_pending_p = 0;
2810 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2811 }
2812 else if (debug_infrun)
2813 {
23fdd69e
SM
2814 std::string statstr
2815 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2816
372316f1
PA
2817 fprintf_unfiltered (gdb_stdlog,
2818 "infrun: clear_proceed_status_thread: thread %s "
2819 "has pending wait status %s "
2820 "(currently_stepping=%d).\n",
23fdd69e 2821 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2822 currently_stepping (tp));
372316f1
PA
2823 }
2824 }
2825
70509625
PA
2826 /* If this signal should not be seen by program, give it zero.
2827 Used for debugging signals. */
2828 if (!signal_pass_state (tp->suspend.stop_signal))
2829 tp->suspend.stop_signal = GDB_SIGNAL_0;
2830
243a9253
PA
2831 thread_fsm_delete (tp->thread_fsm);
2832 tp->thread_fsm = NULL;
2833
16c381f0
JK
2834 tp->control.trap_expected = 0;
2835 tp->control.step_range_start = 0;
2836 tp->control.step_range_end = 0;
c1e36e3e 2837 tp->control.may_range_step = 0;
16c381f0
JK
2838 tp->control.step_frame_id = null_frame_id;
2839 tp->control.step_stack_frame_id = null_frame_id;
2840 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2841 tp->control.step_start_function = NULL;
a7212384 2842 tp->stop_requested = 0;
4e1c45ea 2843
16c381f0 2844 tp->control.stop_step = 0;
32400beb 2845
16c381f0 2846 tp->control.proceed_to_finish = 0;
414c69f7 2847
856e7dd6 2848 tp->control.stepping_command = 0;
17b2616c 2849
a7212384 2850 /* Discard any remaining commands or status from previous stop. */
16c381f0 2851 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2852}
32400beb 2853
a7212384 2854void
70509625 2855clear_proceed_status (int step)
a7212384 2856{
f2665db5
MM
2857 /* With scheduler-locking replay, stop replaying other threads if we're
2858 not replaying the user-visible resume ptid.
2859
2860 This is a convenience feature to not require the user to explicitly
2861 stop replaying the other threads. We're assuming that the user's
2862 intent is to resume tracing the recorded process. */
2863 if (!non_stop && scheduler_mode == schedlock_replay
2864 && target_record_is_replaying (minus_one_ptid)
2865 && !target_record_will_replay (user_visible_resume_ptid (step),
2866 execution_direction))
2867 target_record_stop_replaying ();
2868
6c95b8df
PA
2869 if (!non_stop)
2870 {
70509625
PA
2871 struct thread_info *tp;
2872 ptid_t resume_ptid;
2873
2874 resume_ptid = user_visible_resume_ptid (step);
2875
2876 /* In all-stop mode, delete the per-thread status of all threads
2877 we're about to resume, implicitly and explicitly. */
2878 ALL_NON_EXITED_THREADS (tp)
2879 {
26a57c92 2880 if (!tp->ptid.matches (resume_ptid))
70509625
PA
2881 continue;
2882 clear_proceed_status_thread (tp);
2883 }
6c95b8df
PA
2884 }
2885
d7e15655 2886 if (inferior_ptid != null_ptid)
a7212384
UW
2887 {
2888 struct inferior *inferior;
2889
2890 if (non_stop)
2891 {
6c95b8df
PA
2892 /* If in non-stop mode, only delete the per-thread status of
2893 the current thread. */
a7212384
UW
2894 clear_proceed_status_thread (inferior_thread ());
2895 }
6c95b8df 2896
d6b48e9c 2897 inferior = current_inferior ();
16c381f0 2898 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2899 }
2900
76727919 2901 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2902}
2903
99619bea
PA
2904/* Returns true if TP is still stopped at a breakpoint that needs
2905 stepping-over in order to make progress. If the breakpoint is gone
2906 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2907
2908static int
6c4cfb24 2909thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2910{
2911 if (tp->stepping_over_breakpoint)
2912 {
00431a78 2913 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2914
a01bda52 2915 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2916 regcache_read_pc (regcache))
2917 == ordinary_breakpoint_here)
99619bea
PA
2918 return 1;
2919
2920 tp->stepping_over_breakpoint = 0;
2921 }
2922
2923 return 0;
2924}
2925
6c4cfb24
PA
2926/* Check whether thread TP still needs to start a step-over in order
2927 to make progress when resumed. Returns an bitwise or of enum
2928 step_over_what bits, indicating what needs to be stepped over. */
2929
8d297bbf 2930static step_over_what
6c4cfb24
PA
2931thread_still_needs_step_over (struct thread_info *tp)
2932{
8d297bbf 2933 step_over_what what = 0;
6c4cfb24
PA
2934
2935 if (thread_still_needs_step_over_bp (tp))
2936 what |= STEP_OVER_BREAKPOINT;
2937
2938 if (tp->stepping_over_watchpoint
2939 && !target_have_steppable_watchpoint)
2940 what |= STEP_OVER_WATCHPOINT;
2941
2942 return what;
2943}
2944
483805cf
PA
2945/* Returns true if scheduler locking applies. STEP indicates whether
2946 we're about to do a step/next-like command to a thread. */
2947
2948static int
856e7dd6 2949schedlock_applies (struct thread_info *tp)
483805cf
PA
2950{
2951 return (scheduler_mode == schedlock_on
2952 || (scheduler_mode == schedlock_step
f2665db5
MM
2953 && tp->control.stepping_command)
2954 || (scheduler_mode == schedlock_replay
2955 && target_record_will_replay (minus_one_ptid,
2956 execution_direction)));
483805cf
PA
2957}
2958
c906108c
SS
2959/* Basic routine for continuing the program in various fashions.
2960
2961 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2962 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2963 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2964
2965 You should call clear_proceed_status before calling proceed. */
2966
2967void
64ce06e4 2968proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2969{
e58b0e63
PA
2970 struct regcache *regcache;
2971 struct gdbarch *gdbarch;
4e1c45ea 2972 struct thread_info *tp;
e58b0e63 2973 CORE_ADDR pc;
4d9d9d04
PA
2974 ptid_t resume_ptid;
2975 struct execution_control_state ecss;
2976 struct execution_control_state *ecs = &ecss;
4d9d9d04 2977 int started;
c906108c 2978
e58b0e63
PA
2979 /* If we're stopped at a fork/vfork, follow the branch set by the
2980 "set follow-fork-mode" command; otherwise, we'll just proceed
2981 resuming the current thread. */
2982 if (!follow_fork ())
2983 {
2984 /* The target for some reason decided not to resume. */
2985 normal_stop ();
f148b27e
PA
2986 if (target_can_async_p ())
2987 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2988 return;
2989 }
2990
842951eb
PA
2991 /* We'll update this if & when we switch to a new thread. */
2992 previous_inferior_ptid = inferior_ptid;
2993
e58b0e63 2994 regcache = get_current_regcache ();
ac7936df 2995 gdbarch = regcache->arch ();
8b86c959
YQ
2996 const address_space *aspace = regcache->aspace ();
2997
e58b0e63 2998 pc = regcache_read_pc (regcache);
2adfaa28 2999 tp = inferior_thread ();
e58b0e63 3000
99619bea
PA
3001 /* Fill in with reasonable starting values. */
3002 init_thread_stepping_state (tp);
3003
c2829269
PA
3004 gdb_assert (!thread_is_in_step_over_chain (tp));
3005
2acceee2 3006 if (addr == (CORE_ADDR) -1)
c906108c 3007 {
f2ffa92b 3008 if (pc == tp->suspend.stop_pc
af48d08f 3009 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3010 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3011 /* There is a breakpoint at the address we will resume at,
3012 step one instruction before inserting breakpoints so that
3013 we do not stop right away (and report a second hit at this
b2175913
MS
3014 breakpoint).
3015
3016 Note, we don't do this in reverse, because we won't
3017 actually be executing the breakpoint insn anyway.
3018 We'll be (un-)executing the previous instruction. */
99619bea 3019 tp->stepping_over_breakpoint = 1;
515630c5
UW
3020 else if (gdbarch_single_step_through_delay_p (gdbarch)
3021 && gdbarch_single_step_through_delay (gdbarch,
3022 get_current_frame ()))
3352ef37
AC
3023 /* We stepped onto an instruction that needs to be stepped
3024 again before re-inserting the breakpoint, do so. */
99619bea 3025 tp->stepping_over_breakpoint = 1;
c906108c
SS
3026 }
3027 else
3028 {
515630c5 3029 regcache_write_pc (regcache, addr);
c906108c
SS
3030 }
3031
70509625
PA
3032 if (siggnal != GDB_SIGNAL_DEFAULT)
3033 tp->suspend.stop_signal = siggnal;
3034
4d9d9d04
PA
3035 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3036
3037 /* If an exception is thrown from this point on, make sure to
3038 propagate GDB's knowledge of the executing state to the
3039 frontend/user running state. */
731f534f 3040 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
3041
3042 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3043 threads (e.g., we might need to set threads stepping over
3044 breakpoints first), from the user/frontend's point of view, all
3045 threads in RESUME_PTID are now running. Unless we're calling an
3046 inferior function, as in that case we pretend the inferior
3047 doesn't run at all. */
3048 if (!tp->control.in_infcall)
3049 set_running (resume_ptid, 1);
17b2616c 3050
527159b7 3051 if (debug_infrun)
8a9de0e4 3052 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3053 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3054 paddress (gdbarch, addr),
64ce06e4 3055 gdb_signal_to_symbol_string (siggnal));
527159b7 3056
4d9d9d04
PA
3057 annotate_starting ();
3058
3059 /* Make sure that output from GDB appears before output from the
3060 inferior. */
3061 gdb_flush (gdb_stdout);
3062
d930703d
PA
3063 /* Since we've marked the inferior running, give it the terminal. A
3064 QUIT/Ctrl-C from here on is forwarded to the target (which can
3065 still detect attempts to unblock a stuck connection with repeated
3066 Ctrl-C from within target_pass_ctrlc). */
3067 target_terminal::inferior ();
3068
4d9d9d04
PA
3069 /* In a multi-threaded task we may select another thread and
3070 then continue or step.
3071
3072 But if a thread that we're resuming had stopped at a breakpoint,
3073 it will immediately cause another breakpoint stop without any
3074 execution (i.e. it will report a breakpoint hit incorrectly). So
3075 we must step over it first.
3076
3077 Look for threads other than the current (TP) that reported a
3078 breakpoint hit and haven't been resumed yet since. */
3079
3080 /* If scheduler locking applies, we can avoid iterating over all
3081 threads. */
3082 if (!non_stop && !schedlock_applies (tp))
94cc34af 3083 {
4d9d9d04
PA
3084 struct thread_info *current = tp;
3085
3086 ALL_NON_EXITED_THREADS (tp)
3087 {
3088 /* Ignore the current thread here. It's handled
3089 afterwards. */
3090 if (tp == current)
3091 continue;
99619bea 3092
4d9d9d04 3093 /* Ignore threads of processes we're not resuming. */
26a57c92 3094 if (!tp->ptid.matches (resume_ptid))
4d9d9d04 3095 continue;
c906108c 3096
4d9d9d04
PA
3097 if (!thread_still_needs_step_over (tp))
3098 continue;
3099
3100 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3101
99619bea
PA
3102 if (debug_infrun)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "infrun: need to step-over [%s] first\n",
4d9d9d04 3105 target_pid_to_str (tp->ptid));
99619bea 3106
4d9d9d04 3107 thread_step_over_chain_enqueue (tp);
2adfaa28 3108 }
31e77af2 3109
4d9d9d04 3110 tp = current;
30852783
UW
3111 }
3112
4d9d9d04
PA
3113 /* Enqueue the current thread last, so that we move all other
3114 threads over their breakpoints first. */
3115 if (tp->stepping_over_breakpoint)
3116 thread_step_over_chain_enqueue (tp);
30852783 3117
4d9d9d04
PA
3118 /* If the thread isn't started, we'll still need to set its prev_pc,
3119 so that switch_back_to_stepped_thread knows the thread hasn't
3120 advanced. Must do this before resuming any thread, as in
3121 all-stop/remote, once we resume we can't send any other packet
3122 until the target stops again. */
3123 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3124
a9bc57b9
TT
3125 {
3126 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3127
a9bc57b9 3128 started = start_step_over ();
c906108c 3129
a9bc57b9
TT
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3146 {
3147 /* Ignore threads of processes we're not resuming. */
26a57c92 3148 if (!tp->ptid.matches (resume_ptid))
fbea99ea
PA
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
00431a78 3176 switch_to_thread (tp);
fbea99ea
PA
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
fd7dcb94 3179 error (_("Command aborted."));
fbea99ea 3180 }
a9bc57b9
TT
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
00431a78 3186 switch_to_thread (tp);
a9bc57b9
TT
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191 }
c906108c 3192
85ad3aaf
PA
3193 target_commit_resume ();
3194
731f534f 3195 finish_state.release ();
c906108c 3196
0b333c5e
PA
3197 /* Tell the event loop to wait for it to stop. If the target
3198 supports asynchronous execution, it'll do this from within
3199 target_resume. */
362646f5 3200 if (!target_can_async_p ())
0b333c5e 3201 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3202}
c906108c
SS
3203\f
3204
3205/* Start remote-debugging of a machine over a serial link. */
96baa820 3206
c906108c 3207void
8621d6a9 3208start_remote (int from_tty)
c906108c 3209{
d6b48e9c 3210 struct inferior *inferior;
d6b48e9c
PA
3211
3212 inferior = current_inferior ();
16c381f0 3213 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3214
1777feb0 3215 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3216 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3217 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3218 nothing is returned (instead of just blocking). Because of this,
3219 targets expecting an immediate response need to, internally, set
3220 things up so that the target_wait() is forced to eventually
1777feb0 3221 timeout. */
6426a772
JM
3222 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3223 differentiate to its caller what the state of the target is after
3224 the initial open has been performed. Here we're assuming that
3225 the target has stopped. It should be possible to eventually have
3226 target_open() return to the caller an indication that the target
3227 is currently running and GDB state should be set to the same as
1777feb0 3228 for an async run. */
e4c8541f 3229 wait_for_inferior ();
8621d6a9
DJ
3230
3231 /* Now that the inferior has stopped, do any bookkeeping like
3232 loading shared libraries. We want to do this before normal_stop,
3233 so that the displayed frame is up to date. */
8b88a78e 3234 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3235
6426a772 3236 normal_stop ();
c906108c
SS
3237}
3238
3239/* Initialize static vars when a new inferior begins. */
3240
3241void
96baa820 3242init_wait_for_inferior (void)
c906108c
SS
3243{
3244 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3245
c906108c
SS
3246 breakpoint_init_inferior (inf_starting);
3247
70509625 3248 clear_proceed_status (0);
9f976b41 3249
ca005067 3250 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3251
842951eb 3252 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3253
edb3359d
DJ
3254 /* Discard any skipped inlined frames. */
3255 clear_inline_frame_state (minus_one_ptid);
c906108c 3256}
237fc4c9 3257
c906108c 3258\f
488f131b 3259
ec9499be 3260static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3261
568d6575
UW
3262static void handle_step_into_function (struct gdbarch *gdbarch,
3263 struct execution_control_state *ecs);
3264static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3265 struct execution_control_state *ecs);
4f5d7f63 3266static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3267static void check_exception_resume (struct execution_control_state *,
28106bc2 3268 struct frame_info *);
611c83ae 3269
bdc36728 3270static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3271static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3272static void keep_going (struct execution_control_state *ecs);
94c57d6a 3273static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3274static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3275
252fbfc8
PA
3276/* This function is attached as a "thread_stop_requested" observer.
3277 Cleanup local state that assumed the PTID was to be resumed, and
3278 report the stop to the frontend. */
3279
2c0b251b 3280static void
252fbfc8
PA
3281infrun_thread_stop_requested (ptid_t ptid)
3282{
c2829269 3283 struct thread_info *tp;
252fbfc8 3284
c65d6b55
PA
3285 /* PTID was requested to stop. If the thread was already stopped,
3286 but the user/frontend doesn't know about that yet (e.g., the
3287 thread had been temporarily paused for some step-over), set up
3288 for reporting the stop now. */
c2829269 3289 ALL_NON_EXITED_THREADS (tp)
26a57c92 3290 if (tp->ptid.matches (ptid))
c2829269 3291 {
c65d6b55
PA
3292 if (tp->state != THREAD_RUNNING)
3293 continue;
3294 if (tp->executing)
3295 continue;
3296
3297 /* Remove matching threads from the step-over queue, so
3298 start_step_over doesn't try to resume them
3299 automatically. */
c2829269
PA
3300 if (thread_is_in_step_over_chain (tp))
3301 thread_step_over_chain_remove (tp);
252fbfc8 3302
c65d6b55
PA
3303 /* If the thread is stopped, but the user/frontend doesn't
3304 know about that yet, queue a pending event, as if the
3305 thread had just stopped now. Unless the thread already had
3306 a pending event. */
3307 if (!tp->suspend.waitstatus_pending_p)
3308 {
3309 tp->suspend.waitstatus_pending_p = 1;
3310 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3311 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3312 }
3313
3314 /* Clear the inline-frame state, since we're re-processing the
3315 stop. */
3316 clear_inline_frame_state (tp->ptid);
3317
3318 /* If this thread was paused because some other thread was
3319 doing an inline-step over, let that finish first. Once
3320 that happens, we'll restart all threads and consume pending
3321 stop events then. */
3322 if (step_over_info_valid_p ())
3323 continue;
3324
3325 /* Otherwise we can process the (new) pending event now. Set
3326 it so this pending event is considered by
3327 do_target_wait. */
3328 tp->resumed = 1;
3329 }
252fbfc8
PA
3330}
3331
a07daef3
PA
3332static void
3333infrun_thread_thread_exit (struct thread_info *tp, int silent)
3334{
d7e15655 3335 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3336 nullify_last_target_wait_ptid ();
3337}
3338
0cbcdb96
PA
3339/* Delete the step resume, single-step and longjmp/exception resume
3340 breakpoints of TP. */
4e1c45ea 3341
0cbcdb96
PA
3342static void
3343delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3344{
0cbcdb96
PA
3345 delete_step_resume_breakpoint (tp);
3346 delete_exception_resume_breakpoint (tp);
34b7e8a6 3347 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3348}
3349
0cbcdb96
PA
3350/* If the target still has execution, call FUNC for each thread that
3351 just stopped. In all-stop, that's all the non-exited threads; in
3352 non-stop, that's the current thread, only. */
3353
3354typedef void (*for_each_just_stopped_thread_callback_func)
3355 (struct thread_info *tp);
4e1c45ea
PA
3356
3357static void
0cbcdb96 3358for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3359{
d7e15655 3360 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3361 return;
3362
fbea99ea 3363 if (target_is_non_stop_p ())
4e1c45ea 3364 {
0cbcdb96
PA
3365 /* If in non-stop mode, only the current thread stopped. */
3366 func (inferior_thread ());
4e1c45ea
PA
3367 }
3368 else
0cbcdb96
PA
3369 {
3370 struct thread_info *tp;
3371
3372 /* In all-stop mode, all threads have stopped. */
3373 ALL_NON_EXITED_THREADS (tp)
3374 {
3375 func (tp);
3376 }
3377 }
3378}
3379
3380/* Delete the step resume and longjmp/exception resume breakpoints of
3381 the threads that just stopped. */
3382
3383static void
3384delete_just_stopped_threads_infrun_breakpoints (void)
3385{
3386 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3387}
3388
3389/* Delete the single-step breakpoints of the threads that just
3390 stopped. */
7c16b83e 3391
34b7e8a6
PA
3392static void
3393delete_just_stopped_threads_single_step_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3396}
3397
1777feb0 3398/* A cleanup wrapper. */
4e1c45ea
PA
3399
3400static void
0cbcdb96 3401delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3402{
0cbcdb96 3403 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3404}
3405
221e1a37 3406/* See infrun.h. */
223698f8 3407
221e1a37 3408void
223698f8
DE
3409print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3410 const struct target_waitstatus *ws)
3411{
23fdd69e 3412 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3413 string_file stb;
223698f8
DE
3414
3415 /* The text is split over several lines because it was getting too long.
3416 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3417 output as a unit; we want only one timestamp printed if debug_timestamp
3418 is set. */
3419
d7e74731 3420 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3421 waiton_ptid.pid (),
e38504b3 3422 waiton_ptid.lwp (),
cc6bcb54 3423 waiton_ptid.tid ());
e99b03dc 3424 if (waiton_ptid.pid () != -1)
d7e74731
PA
3425 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3426 stb.printf (", status) =\n");
3427 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3428 result_ptid.pid (),
e38504b3 3429 result_ptid.lwp (),
cc6bcb54 3430 result_ptid.tid (),
d7e74731 3431 target_pid_to_str (result_ptid));
23fdd69e 3432 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3433
3434 /* This uses %s in part to handle %'s in the text, but also to avoid
3435 a gcc error: the format attribute requires a string literal. */
d7e74731 3436 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3437}
3438
372316f1
PA
3439/* Select a thread at random, out of those which are resumed and have
3440 had events. */
3441
3442static struct thread_info *
3443random_pending_event_thread (ptid_t waiton_ptid)
3444{
3445 struct thread_info *event_tp;
3446 int num_events = 0;
3447 int random_selector;
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 ALL_NON_EXITED_THREADS (event_tp)
26a57c92 3452 if (event_tp->ptid.matches (waiton_ptid)
372316f1
PA
3453 && event_tp->resumed
3454 && event_tp->suspend.waitstatus_pending_p)
3455 num_events++;
3456
3457 if (num_events == 0)
3458 return NULL;
3459
3460 /* Now randomly pick a thread out of those that have had events. */
3461 random_selector = (int)
3462 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3463
3464 if (debug_infrun && num_events > 1)
3465 fprintf_unfiltered (gdb_stdlog,
3466 "infrun: Found %d events, selecting #%d\n",
3467 num_events, random_selector);
3468
3469 /* Select the Nth thread that has had an event. */
3470 ALL_NON_EXITED_THREADS (event_tp)
26a57c92 3471 if (event_tp->ptid.matches (waiton_ptid)
372316f1
PA
3472 && event_tp->resumed
3473 && event_tp->suspend.waitstatus_pending_p)
3474 if (random_selector-- == 0)
3475 break;
3476
3477 return event_tp;
3478}
3479
3480/* Wrapper for target_wait that first checks whether threads have
3481 pending statuses to report before actually asking the target for
3482 more events. */
3483
3484static ptid_t
3485do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3486{
3487 ptid_t event_ptid;
3488 struct thread_info *tp;
3489
3490 /* First check if there is a resumed thread with a wait status
3491 pending. */
d7e15655 3492 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3493 {
3494 tp = random_pending_event_thread (ptid);
3495 }
3496 else
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Waiting for specific thread %s.\n",
3501 target_pid_to_str (ptid));
3502
3503 /* We have a specific thread to check. */
3504 tp = find_thread_ptid (ptid);
3505 gdb_assert (tp != NULL);
3506 if (!tp->suspend.waitstatus_pending_p)
3507 tp = NULL;
3508 }
3509
3510 if (tp != NULL
3511 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3513 {
00431a78 3514 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3515 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3516 CORE_ADDR pc;
3517 int discard = 0;
3518
3519 pc = regcache_read_pc (regcache);
3520
3521 if (pc != tp->suspend.stop_pc)
3522 {
3523 if (debug_infrun)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "infrun: PC of %s changed. was=%s, now=%s\n",
3526 target_pid_to_str (tp->ptid),
defd2172 3527 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3528 paddress (gdbarch, pc));
3529 discard = 1;
3530 }
a01bda52 3531 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: previous breakpoint of %s, at %s gone\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, pc));
3538
3539 discard = 1;
3540 }
3541
3542 if (discard)
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: pending event of %s cancelled.\n",
3547 target_pid_to_str (tp->ptid));
3548
3549 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3550 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3551 }
3552 }
3553
3554 if (tp != NULL)
3555 {
3556 if (debug_infrun)
3557 {
23fdd69e
SM
3558 std::string statstr
3559 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3560
372316f1
PA
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3563 statstr.c_str (),
372316f1 3564 target_pid_to_str (tp->ptid));
372316f1
PA
3565 }
3566
3567 /* Now that we've selected our final event LWP, un-adjust its PC
3568 if it was a software breakpoint (and the target doesn't
3569 always adjust the PC itself). */
3570 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3571 && !target_supports_stopped_by_sw_breakpoint ())
3572 {
3573 struct regcache *regcache;
3574 struct gdbarch *gdbarch;
3575 int decr_pc;
3576
00431a78 3577 regcache = get_thread_regcache (tp);
ac7936df 3578 gdbarch = regcache->arch ();
372316f1
PA
3579
3580 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3581 if (decr_pc != 0)
3582 {
3583 CORE_ADDR pc;
3584
3585 pc = regcache_read_pc (regcache);
3586 regcache_write_pc (regcache, pc + decr_pc);
3587 }
3588 }
3589
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 *status = tp->suspend.waitstatus;
3592 tp->suspend.waitstatus_pending_p = 0;
3593
3594 /* Wake up the event loop again, until all pending events are
3595 processed. */
3596 if (target_is_async_p ())
3597 mark_async_event_handler (infrun_async_inferior_event_token);
3598 return tp->ptid;
3599 }
3600
3601 /* But if we don't find one, we'll have to wait. */
3602
3603 if (deprecated_target_wait_hook)
3604 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3605 else
3606 event_ptid = target_wait (ptid, status, options);
3607
3608 return event_ptid;
3609}
3610
24291992
PA
3611/* Prepare and stabilize the inferior for detaching it. E.g.,
3612 detaching while a thread is displaced stepping is a recipe for
3613 crashing it, as nothing would readjust the PC out of the scratch
3614 pad. */
3615
3616void
3617prepare_for_detach (void)
3618{
3619 struct inferior *inf = current_inferior ();
f2907e49 3620 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3621
00431a78 3622 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3623
3624 /* Is any thread of this process displaced stepping? If not,
3625 there's nothing else to do. */
00431a78 3626 if (displaced == NULL || displaced->step_thread == nullptr)
24291992
PA
3627 return;
3628
3629 if (debug_infrun)
3630 fprintf_unfiltered (gdb_stdlog,
3631 "displaced-stepping in-process while detaching");
3632
9bcb1f16 3633 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3634
00431a78 3635 while (displaced->step_thread != nullptr)
24291992 3636 {
24291992
PA
3637 struct execution_control_state ecss;
3638 struct execution_control_state *ecs;
3639
3640 ecs = &ecss;
3641 memset (ecs, 0, sizeof (*ecs));
3642
3643 overlay_cache_invalid = 1;
f15cb84a
YQ
3644 /* Flush target cache before starting to handle each event.
3645 Target was running and cache could be stale. This is just a
3646 heuristic. Running threads may modify target memory, but we
3647 don't get any event. */
3648 target_dcache_invalidate ();
24291992 3649
372316f1 3650 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3651
3652 if (debug_infrun)
3653 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3654
3655 /* If an error happens while handling the event, propagate GDB's
3656 knowledge of the executing state to the frontend/user running
3657 state. */
731f534f 3658 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3659
3660 /* Now figure out what to do with the result of the result. */
3661 handle_inferior_event (ecs);
3662
3663 /* No error, don't finish the state yet. */
731f534f 3664 finish_state.release ();
24291992
PA
3665
3666 /* Breakpoints and watchpoints are not installed on the target
3667 at this point, and signals are passed directly to the
3668 inferior, so this must mean the process is gone. */
3669 if (!ecs->wait_some_more)
3670 {
9bcb1f16 3671 restore_detaching.release ();
24291992
PA
3672 error (_("Program exited while detaching"));
3673 }
3674 }
3675
9bcb1f16 3676 restore_detaching.release ();
24291992
PA
3677}
3678
cd0fc7c3 3679/* Wait for control to return from inferior to debugger.
ae123ec6 3680
cd0fc7c3
SS
3681 If inferior gets a signal, we may decide to start it up again
3682 instead of returning. That is why there is a loop in this function.
3683 When this function actually returns it means the inferior
3684 should be left stopped and GDB should read more commands. */
3685
3686void
e4c8541f 3687wait_for_inferior (void)
cd0fc7c3
SS
3688{
3689 struct cleanup *old_cleanups;
c906108c 3690
527159b7 3691 if (debug_infrun)
ae123ec6 3692 fprintf_unfiltered
e4c8541f 3693 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3694
0cbcdb96
PA
3695 old_cleanups
3696 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3697 NULL);
cd0fc7c3 3698
e6f5c25b
PA
3699 /* If an error happens while handling the event, propagate GDB's
3700 knowledge of the executing state to the frontend/user running
3701 state. */
731f534f 3702 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3703
c906108c
SS
3704 while (1)
3705 {
ae25568b
PA
3706 struct execution_control_state ecss;
3707 struct execution_control_state *ecs = &ecss;
963f9c80 3708 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3709
ae25568b
PA
3710 memset (ecs, 0, sizeof (*ecs));
3711
ec9499be 3712 overlay_cache_invalid = 1;
ec9499be 3713
f15cb84a
YQ
3714 /* Flush target cache before starting to handle each event.
3715 Target was running and cache could be stale. This is just a
3716 heuristic. Running threads may modify target memory, but we
3717 don't get any event. */
3718 target_dcache_invalidate ();
3719
372316f1 3720 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3721
f00150c9 3722 if (debug_infrun)
223698f8 3723 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3724
cd0fc7c3
SS
3725 /* Now figure out what to do with the result of the result. */
3726 handle_inferior_event (ecs);
c906108c 3727
cd0fc7c3
SS
3728 if (!ecs->wait_some_more)
3729 break;
3730 }
4e1c45ea 3731
e6f5c25b 3732 /* No error, don't finish the state yet. */
731f534f 3733 finish_state.release ();
e6f5c25b 3734
cd0fc7c3
SS
3735 do_cleanups (old_cleanups);
3736}
c906108c 3737
d3d4baed
PA
3738/* Cleanup that reinstalls the readline callback handler, if the
3739 target is running in the background. If while handling the target
3740 event something triggered a secondary prompt, like e.g., a
3741 pagination prompt, we'll have removed the callback handler (see
3742 gdb_readline_wrapper_line). Need to do this as we go back to the
3743 event loop, ready to process further input. Note this has no
3744 effect if the handler hasn't actually been removed, because calling
3745 rl_callback_handler_install resets the line buffer, thus losing
3746 input. */
3747
3748static void
3749reinstall_readline_callback_handler_cleanup (void *arg)
3750{
3b12939d
PA
3751 struct ui *ui = current_ui;
3752
3753 if (!ui->async)
6c400b59
PA
3754 {
3755 /* We're not going back to the top level event loop yet. Don't
3756 install the readline callback, as it'd prep the terminal,
3757 readline-style (raw, noecho) (e.g., --batch). We'll install
3758 it the next time the prompt is displayed, when we're ready
3759 for input. */
3760 return;
3761 }
3762
3b12939d 3763 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3764 gdb_rl_callback_handler_reinstall ();
3765}
3766
243a9253
PA
3767/* Clean up the FSMs of threads that are now stopped. In non-stop,
3768 that's just the event thread. In all-stop, that's all threads. */
3769
3770static void
3771clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3772{
3773 struct thread_info *thr = ecs->event_thread;
3774
3775 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3776 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3777
3778 if (!non_stop)
3779 {
3780 ALL_NON_EXITED_THREADS (thr)
3781 {
3782 if (thr->thread_fsm == NULL)
3783 continue;
3784 if (thr == ecs->event_thread)
3785 continue;
3786
00431a78 3787 switch_to_thread (thr);
8980e177 3788 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3789 }
3790
3791 if (ecs->event_thread != NULL)
00431a78 3792 switch_to_thread (ecs->event_thread);
243a9253
PA
3793 }
3794}
3795
3b12939d
PA
3796/* Helper for all_uis_check_sync_execution_done that works on the
3797 current UI. */
3798
3799static void
3800check_curr_ui_sync_execution_done (void)
3801{
3802 struct ui *ui = current_ui;
3803
3804 if (ui->prompt_state == PROMPT_NEEDED
3805 && ui->async
3806 && !gdb_in_secondary_prompt_p (ui))
3807 {
223ffa71 3808 target_terminal::ours ();
76727919 3809 gdb::observers::sync_execution_done.notify ();
3eb7562a 3810 ui_register_input_event_handler (ui);
3b12939d
PA
3811 }
3812}
3813
3814/* See infrun.h. */
3815
3816void
3817all_uis_check_sync_execution_done (void)
3818{
0e454242 3819 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3820 {
3821 check_curr_ui_sync_execution_done ();
3822 }
3823}
3824
a8836c93
PA
3825/* See infrun.h. */
3826
3827void
3828all_uis_on_sync_execution_starting (void)
3829{
0e454242 3830 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3831 {
3832 if (current_ui->prompt_state == PROMPT_NEEDED)
3833 async_disable_stdin ();
3834 }
3835}
3836
1777feb0 3837/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3838 event loop whenever a change of state is detected on the file
1777feb0
MS
3839 descriptor corresponding to the target. It can be called more than
3840 once to complete a single execution command. In such cases we need
3841 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3842 that this function is called for a single execution command, then
3843 report to the user that the inferior has stopped, and do the
1777feb0 3844 necessary cleanups. */
43ff13b4
JM
3845
3846void
fba45db2 3847fetch_inferior_event (void *client_data)
43ff13b4 3848{
0d1e5fa7 3849 struct execution_control_state ecss;
a474d7c2 3850 struct execution_control_state *ecs = &ecss;
4f8d22e3 3851 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3852 int cmd_done = 0;
963f9c80 3853 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3854
0d1e5fa7
PA
3855 memset (ecs, 0, sizeof (*ecs));
3856
c61db772
PA
3857 /* Events are always processed with the main UI as current UI. This
3858 way, warnings, debug output, etc. are always consistently sent to
3859 the main console. */
4b6749b9 3860 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3861
d3d4baed
PA
3862 /* End up with readline processing input, if necessary. */
3863 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3864
c5187ac6
PA
3865 /* We're handling a live event, so make sure we're doing live
3866 debugging. If we're looking at traceframes while the target is
3867 running, we're going to need to get back to that mode after
3868 handling the event. */
6f14adc5 3869 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3870 if (non_stop)
3871 {
6f14adc5 3872 maybe_restore_traceframe.emplace ();
e6e4e701 3873 set_current_traceframe (-1);
c5187ac6
PA
3874 }
3875
5ed8105e
PA
3876 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3877
4f8d22e3
PA
3878 if (non_stop)
3879 /* In non-stop mode, the user/frontend should not notice a thread
3880 switch due to internal events. Make sure we reverse to the
3881 user selected thread and frame after handling the event and
3882 running any breakpoint commands. */
5ed8105e 3883 maybe_restore_thread.emplace ();
4f8d22e3 3884
ec9499be 3885 overlay_cache_invalid = 1;
f15cb84a
YQ
3886 /* Flush target cache before starting to handle each event. Target
3887 was running and cache could be stale. This is just a heuristic.
3888 Running threads may modify target memory, but we don't get any
3889 event. */
3890 target_dcache_invalidate ();
3dd5b83d 3891
b7b633e9
TT
3892 scoped_restore save_exec_dir
3893 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3894
0b333c5e
PA
3895 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3896 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3897
f00150c9 3898 if (debug_infrun)
223698f8 3899 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3900
29f49a6a
PA
3901 /* If an error happens while handling the event, propagate GDB's
3902 knowledge of the executing state to the frontend/user running
3903 state. */
731f534f
PA
3904 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3905 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3906
353d1d73
JK
3907 /* Get executed before make_cleanup_restore_current_thread above to apply
3908 still for the thread which has thrown the exception. */
731f534f 3909 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
353d1d73 3910
7c16b83e
PA
3911 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3912
43ff13b4 3913 /* Now figure out what to do with the result of the result. */
a474d7c2 3914 handle_inferior_event (ecs);
43ff13b4 3915
a474d7c2 3916 if (!ecs->wait_some_more)
43ff13b4 3917 {
c9657e70 3918 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3919 int should_stop = 1;
3920 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3921
0cbcdb96 3922 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3923
243a9253
PA
3924 if (thr != NULL)
3925 {
3926 struct thread_fsm *thread_fsm = thr->thread_fsm;
3927
3928 if (thread_fsm != NULL)
8980e177 3929 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3930 }
3931
3932 if (!should_stop)
3933 {
3934 keep_going (ecs);
3935 }
c2d11a7d 3936 else
0f641c01 3937 {
1840d81a
AB
3938 int should_notify_stop = 1;
3939 int proceeded = 0;
3940
243a9253
PA
3941 clean_up_just_stopped_threads_fsms (ecs);
3942
388a7084
PA
3943 if (thr != NULL && thr->thread_fsm != NULL)
3944 {
3945 should_notify_stop
3946 = thread_fsm_should_notify_stop (thr->thread_fsm);
3947 }
3948
3949 if (should_notify_stop)
3950 {
3951 /* We may not find an inferior if this was a process exit. */
3952 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3953 proceeded = normal_stop ();
1840d81a 3954 }
243a9253 3955
1840d81a
AB
3956 if (!proceeded)
3957 {
3958 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3959 cmd_done = 1;
388a7084 3960 }
0f641c01 3961 }
43ff13b4 3962 }
4f8d22e3 3963
29f49a6a
PA
3964 discard_cleanups (ts_old_chain);
3965
731f534f
PA
3966 /* No error, don't finish the thread states yet. */
3967 finish_state.release ();
3968
4f8d22e3
PA
3969 /* Revert thread and frame. */
3970 do_cleanups (old_chain);
3971
3b12939d
PA
3972 /* If a UI was in sync execution mode, and now isn't, restore its
3973 prompt (a synchronous execution command has finished, and we're
3974 ready for input). */
3975 all_uis_check_sync_execution_done ();
0f641c01
PA
3976
3977 if (cmd_done
0f641c01 3978 && exec_done_display_p
00431a78
PA
3979 && (inferior_ptid == null_ptid
3980 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3981 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3982}
3983
edb3359d
DJ
3984/* Record the frame and location we're currently stepping through. */
3985void
3986set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3987{
3988 struct thread_info *tp = inferior_thread ();
3989
16c381f0
JK
3990 tp->control.step_frame_id = get_frame_id (frame);
3991 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3992
3993 tp->current_symtab = sal.symtab;
3994 tp->current_line = sal.line;
3995}
3996
0d1e5fa7
PA
3997/* Clear context switchable stepping state. */
3998
3999void
4e1c45ea 4000init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4001{
7f5ef605 4002 tss->stepped_breakpoint = 0;
0d1e5fa7 4003 tss->stepping_over_breakpoint = 0;
963f9c80 4004 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4005 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4006}
4007
c32c64b7
DE
4008/* Set the cached copy of the last ptid/waitstatus. */
4009
6efcd9a8 4010void
c32c64b7
DE
4011set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4012{
4013 target_last_wait_ptid = ptid;
4014 target_last_waitstatus = status;
4015}
4016
e02bc4cc 4017/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4018 target_wait()/deprecated_target_wait_hook(). The data is actually
4019 cached by handle_inferior_event(), which gets called immediately
4020 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4021
4022void
488f131b 4023get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4024{
39f77062 4025 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4026 *status = target_last_waitstatus;
4027}
4028
ac264b3b
MS
4029void
4030nullify_last_target_wait_ptid (void)
4031{
4032 target_last_wait_ptid = minus_one_ptid;
4033}
4034
dcf4fbde 4035/* Switch thread contexts. */
dd80620e
MS
4036
4037static void
00431a78 4038context_switch (execution_control_state *ecs)
dd80620e 4039{
00431a78
PA
4040 if (debug_infrun
4041 && ecs->ptid != inferior_ptid
4042 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
4043 {
4044 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4045 target_pid_to_str (inferior_ptid));
4046 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 4047 target_pid_to_str (ecs->ptid));
fd48f117
DJ
4048 }
4049
00431a78 4050 switch_to_thread (ecs->event_thread);
dd80620e
MS
4051}
4052
d8dd4d5f
PA
4053/* If the target can't tell whether we've hit breakpoints
4054 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4055 check whether that could have been caused by a breakpoint. If so,
4056 adjust the PC, per gdbarch_decr_pc_after_break. */
4057
4fa8626c 4058static void
d8dd4d5f
PA
4059adjust_pc_after_break (struct thread_info *thread,
4060 struct target_waitstatus *ws)
4fa8626c 4061{
24a73cce
UW
4062 struct regcache *regcache;
4063 struct gdbarch *gdbarch;
118e6252 4064 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4065
4fa8626c
DJ
4066 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4067 we aren't, just return.
9709f61c
DJ
4068
4069 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4070 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4071 implemented by software breakpoints should be handled through the normal
4072 breakpoint layer.
8fb3e588 4073
4fa8626c
DJ
4074 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4075 different signals (SIGILL or SIGEMT for instance), but it is less
4076 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4077 gdbarch_decr_pc_after_break. I don't know any specific target that
4078 generates these signals at breakpoints (the code has been in GDB since at
4079 least 1992) so I can not guess how to handle them here.
8fb3e588 4080
e6cf7916
UW
4081 In earlier versions of GDB, a target with
4082 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4083 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4084 target with both of these set in GDB history, and it seems unlikely to be
4085 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4086
d8dd4d5f 4087 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4088 return;
4089
d8dd4d5f 4090 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4091 return;
4092
4058b839
PA
4093 /* In reverse execution, when a breakpoint is hit, the instruction
4094 under it has already been de-executed. The reported PC always
4095 points at the breakpoint address, so adjusting it further would
4096 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4097 architecture:
4098
4099 B1 0x08000000 : INSN1
4100 B2 0x08000001 : INSN2
4101 0x08000002 : INSN3
4102 PC -> 0x08000003 : INSN4
4103
4104 Say you're stopped at 0x08000003 as above. Reverse continuing
4105 from that point should hit B2 as below. Reading the PC when the
4106 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4107 been de-executed already.
4108
4109 B1 0x08000000 : INSN1
4110 B2 PC -> 0x08000001 : INSN2
4111 0x08000002 : INSN3
4112 0x08000003 : INSN4
4113
4114 We can't apply the same logic as for forward execution, because
4115 we would wrongly adjust the PC to 0x08000000, since there's a
4116 breakpoint at PC - 1. We'd then report a hit on B1, although
4117 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4118 behaviour. */
4119 if (execution_direction == EXEC_REVERSE)
4120 return;
4121
1cf4d951
PA
4122 /* If the target can tell whether the thread hit a SW breakpoint,
4123 trust it. Targets that can tell also adjust the PC
4124 themselves. */
4125 if (target_supports_stopped_by_sw_breakpoint ())
4126 return;
4127
4128 /* Note that relying on whether a breakpoint is planted in memory to
4129 determine this can fail. E.g,. the breakpoint could have been
4130 removed since. Or the thread could have been told to step an
4131 instruction the size of a breakpoint instruction, and only
4132 _after_ was a breakpoint inserted at its address. */
4133
24a73cce
UW
4134 /* If this target does not decrement the PC after breakpoints, then
4135 we have nothing to do. */
00431a78 4136 regcache = get_thread_regcache (thread);
ac7936df 4137 gdbarch = regcache->arch ();
118e6252 4138
527a273a 4139 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4140 if (decr_pc == 0)
24a73cce
UW
4141 return;
4142
8b86c959 4143 const address_space *aspace = regcache->aspace ();
6c95b8df 4144
8aad930b
AC
4145 /* Find the location where (if we've hit a breakpoint) the
4146 breakpoint would be. */
118e6252 4147 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4148
1cf4d951
PA
4149 /* If the target can't tell whether a software breakpoint triggered,
4150 fallback to figuring it out based on breakpoints we think were
4151 inserted in the target, and on whether the thread was stepped or
4152 continued. */
4153
1c5cfe86
PA
4154 /* Check whether there actually is a software breakpoint inserted at
4155 that location.
4156
4157 If in non-stop mode, a race condition is possible where we've
4158 removed a breakpoint, but stop events for that breakpoint were
4159 already queued and arrive later. To suppress those spurious
4160 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4161 and retire them after a number of stop events are reported. Note
4162 this is an heuristic and can thus get confused. The real fix is
4163 to get the "stopped by SW BP and needs adjustment" info out of
4164 the target/kernel (and thus never reach here; see above). */
6c95b8df 4165 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4166 || (target_is_non_stop_p ()
4167 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4168 {
07036511 4169 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4170
8213266a 4171 if (record_full_is_used ())
07036511
TT
4172 restore_operation_disable.emplace
4173 (record_full_gdb_operation_disable_set ());
96429cc8 4174
1c0fdd0e
UW
4175 /* When using hardware single-step, a SIGTRAP is reported for both
4176 a completed single-step and a software breakpoint. Need to
4177 differentiate between the two, as the latter needs adjusting
4178 but the former does not.
4179
4180 The SIGTRAP can be due to a completed hardware single-step only if
4181 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4182 - this thread is currently being stepped
4183
4184 If any of these events did not occur, we must have stopped due
4185 to hitting a software breakpoint, and have to back up to the
4186 breakpoint address.
4187
4188 As a special case, we could have hardware single-stepped a
4189 software breakpoint. In this case (prev_pc == breakpoint_pc),
4190 we also need to back up to the breakpoint address. */
4191
d8dd4d5f
PA
4192 if (thread_has_single_step_breakpoints_set (thread)
4193 || !currently_stepping (thread)
4194 || (thread->stepped_breakpoint
4195 && thread->prev_pc == breakpoint_pc))
515630c5 4196 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4197 }
4fa8626c
DJ
4198}
4199
edb3359d
DJ
4200static int
4201stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4202{
4203 for (frame = get_prev_frame (frame);
4204 frame != NULL;
4205 frame = get_prev_frame (frame))
4206 {
4207 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4208 return 1;
4209 if (get_frame_type (frame) != INLINE_FRAME)
4210 break;
4211 }
4212
4213 return 0;
4214}
4215
c65d6b55
PA
4216/* If the event thread has the stop requested flag set, pretend it
4217 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4218 target_stop). */
4219
4220static bool
4221handle_stop_requested (struct execution_control_state *ecs)
4222{
4223 if (ecs->event_thread->stop_requested)
4224 {
4225 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4226 ecs->ws.value.sig = GDB_SIGNAL_0;
4227 handle_signal_stop (ecs);
4228 return true;
4229 }
4230 return false;
4231}
4232
a96d9b2e
SDJ
4233/* Auxiliary function that handles syscall entry/return events.
4234 It returns 1 if the inferior should keep going (and GDB
4235 should ignore the event), or 0 if the event deserves to be
4236 processed. */
ca2163eb 4237
a96d9b2e 4238static int
ca2163eb 4239handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4240{
ca2163eb 4241 struct regcache *regcache;
ca2163eb
PA
4242 int syscall_number;
4243
00431a78 4244 context_switch (ecs);
ca2163eb 4245
00431a78 4246 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4247 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4248 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4249
a96d9b2e
SDJ
4250 if (catch_syscall_enabled () > 0
4251 && catching_syscall_number (syscall_number) > 0)
4252 {
4253 if (debug_infrun)
4254 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4255 syscall_number);
a96d9b2e 4256
16c381f0 4257 ecs->event_thread->control.stop_bpstat
a01bda52 4258 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4259 ecs->event_thread->suspend.stop_pc,
4260 ecs->event_thread, &ecs->ws);
ab04a2af 4261
c65d6b55
PA
4262 if (handle_stop_requested (ecs))
4263 return 0;
4264
ce12b012 4265 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4266 {
4267 /* Catchpoint hit. */
ca2163eb
PA
4268 return 0;
4269 }
a96d9b2e 4270 }
ca2163eb 4271
c65d6b55
PA
4272 if (handle_stop_requested (ecs))
4273 return 0;
4274
ca2163eb 4275 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4276 keep_going (ecs);
4277 return 1;
a96d9b2e
SDJ
4278}
4279
7e324e48
GB
4280/* Lazily fill in the execution_control_state's stop_func_* fields. */
4281
4282static void
4283fill_in_stop_func (struct gdbarch *gdbarch,
4284 struct execution_control_state *ecs)
4285{
4286 if (!ecs->stop_func_filled_in)
4287 {
4288 /* Don't care about return value; stop_func_start and stop_func_name
4289 will both be 0 if it doesn't work. */
59adbf5d
KB
4290 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4291 &ecs->stop_func_name,
4292 &ecs->stop_func_start,
4293 &ecs->stop_func_end);
7e324e48
GB
4294 ecs->stop_func_start
4295 += gdbarch_deprecated_function_start_offset (gdbarch);
4296
591a12a1
UW
4297 if (gdbarch_skip_entrypoint_p (gdbarch))
4298 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4299 ecs->stop_func_start);
4300
7e324e48
GB
4301 ecs->stop_func_filled_in = 1;
4302 }
4303}
4304
4f5d7f63 4305
00431a78 4306/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4307
4308static enum stop_kind
00431a78 4309get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4310{
00431a78 4311 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4312
4313 gdb_assert (inf != NULL);
4314 return inf->control.stop_soon;
4315}
4316
372316f1
PA
4317/* Wait for one event. Store the resulting waitstatus in WS, and
4318 return the event ptid. */
4319
4320static ptid_t
4321wait_one (struct target_waitstatus *ws)
4322{
4323 ptid_t event_ptid;
4324 ptid_t wait_ptid = minus_one_ptid;
4325
4326 overlay_cache_invalid = 1;
4327
4328 /* Flush target cache before starting to handle each event.
4329 Target was running and cache could be stale. This is just a
4330 heuristic. Running threads may modify target memory, but we
4331 don't get any event. */
4332 target_dcache_invalidate ();
4333
4334 if (deprecated_target_wait_hook)
4335 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4336 else
4337 event_ptid = target_wait (wait_ptid, ws, 0);
4338
4339 if (debug_infrun)
4340 print_target_wait_results (wait_ptid, event_ptid, ws);
4341
4342 return event_ptid;
4343}
4344
4345/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4346 instead of the current thread. */
4347#define THREAD_STOPPED_BY(REASON) \
4348static int \
4349thread_stopped_by_ ## REASON (ptid_t ptid) \
4350{ \
2989a365 4351 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4352 inferior_ptid = ptid; \
4353 \
2989a365 4354 return target_stopped_by_ ## REASON (); \
372316f1
PA
4355}
4356
4357/* Generate thread_stopped_by_watchpoint. */
4358THREAD_STOPPED_BY (watchpoint)
4359/* Generate thread_stopped_by_sw_breakpoint. */
4360THREAD_STOPPED_BY (sw_breakpoint)
4361/* Generate thread_stopped_by_hw_breakpoint. */
4362THREAD_STOPPED_BY (hw_breakpoint)
4363
372316f1
PA
4364/* Save the thread's event and stop reason to process it later. */
4365
4366static void
4367save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4368{
372316f1
PA
4369 if (debug_infrun)
4370 {
23fdd69e 4371 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4372
372316f1
PA
4373 fprintf_unfiltered (gdb_stdlog,
4374 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4375 statstr.c_str (),
e99b03dc 4376 tp->ptid.pid (),
e38504b3 4377 tp->ptid.lwp (),
cc6bcb54 4378 tp->ptid.tid ());
372316f1
PA
4379 }
4380
4381 /* Record for later. */
4382 tp->suspend.waitstatus = *ws;
4383 tp->suspend.waitstatus_pending_p = 1;
4384
00431a78 4385 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4386 const address_space *aspace = regcache->aspace ();
372316f1
PA
4387
4388 if (ws->kind == TARGET_WAITKIND_STOPPED
4389 && ws->value.sig == GDB_SIGNAL_TRAP)
4390 {
4391 CORE_ADDR pc = regcache_read_pc (regcache);
4392
4393 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4394
4395 if (thread_stopped_by_watchpoint (tp->ptid))
4396 {
4397 tp->suspend.stop_reason
4398 = TARGET_STOPPED_BY_WATCHPOINT;
4399 }
4400 else if (target_supports_stopped_by_sw_breakpoint ()
4401 && thread_stopped_by_sw_breakpoint (tp->ptid))
4402 {
4403 tp->suspend.stop_reason
4404 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4405 }
4406 else if (target_supports_stopped_by_hw_breakpoint ()
4407 && thread_stopped_by_hw_breakpoint (tp->ptid))
4408 {
4409 tp->suspend.stop_reason
4410 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4411 }
4412 else if (!target_supports_stopped_by_hw_breakpoint ()
4413 && hardware_breakpoint_inserted_here_p (aspace,
4414 pc))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4418 }
4419 else if (!target_supports_stopped_by_sw_breakpoint ()
4420 && software_breakpoint_inserted_here_p (aspace,
4421 pc))
4422 {
4423 tp->suspend.stop_reason
4424 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4425 }
4426 else if (!thread_has_single_step_breakpoints_set (tp)
4427 && currently_stepping (tp))
4428 {
4429 tp->suspend.stop_reason
4430 = TARGET_STOPPED_BY_SINGLE_STEP;
4431 }
4432 }
4433}
4434
65706a29
PA
4435/* A cleanup that disables thread create/exit events. */
4436
4437static void
4438disable_thread_events (void *arg)
4439{
4440 target_thread_events (0);
4441}
4442
6efcd9a8 4443/* See infrun.h. */
372316f1 4444
6efcd9a8 4445void
372316f1
PA
4446stop_all_threads (void)
4447{
4448 /* We may need multiple passes to discover all threads. */
4449 int pass;
4450 int iterations = 0;
372316f1
PA
4451 struct cleanup *old_chain;
4452
fbea99ea 4453 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4454
4455 if (debug_infrun)
4456 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4457
00431a78 4458 scoped_restore_current_thread restore_thread;
372316f1 4459
65706a29 4460 target_thread_events (1);
00431a78 4461 old_chain = make_cleanup (disable_thread_events, NULL);
65706a29 4462
372316f1
PA
4463 /* Request threads to stop, and then wait for the stops. Because
4464 threads we already know about can spawn more threads while we're
4465 trying to stop them, and we only learn about new threads when we
4466 update the thread list, do this in a loop, and keep iterating
4467 until two passes find no threads that need to be stopped. */
4468 for (pass = 0; pass < 2; pass++, iterations++)
4469 {
4470 if (debug_infrun)
4471 fprintf_unfiltered (gdb_stdlog,
4472 "infrun: stop_all_threads, pass=%d, "
4473 "iterations=%d\n", pass, iterations);
4474 while (1)
4475 {
4476 ptid_t event_ptid;
4477 struct target_waitstatus ws;
4478 int need_wait = 0;
4479 struct thread_info *t;
4480
4481 update_thread_list ();
4482
4483 /* Go through all threads looking for threads that we need
4484 to tell the target to stop. */
4485 ALL_NON_EXITED_THREADS (t)
4486 {
4487 if (t->executing)
4488 {
4489 /* If already stopping, don't request a stop again.
4490 We just haven't seen the notification yet. */
4491 if (!t->stop_requested)
4492 {
4493 if (debug_infrun)
4494 fprintf_unfiltered (gdb_stdlog,
4495 "infrun: %s executing, "
4496 "need stop\n",
4497 target_pid_to_str (t->ptid));
4498 target_stop (t->ptid);
4499 t->stop_requested = 1;
4500 }
4501 else
4502 {
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "infrun: %s executing, "
4506 "already stopping\n",
4507 target_pid_to_str (t->ptid));
4508 }
4509
4510 if (t->stop_requested)
4511 need_wait = 1;
4512 }
4513 else
4514 {
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: %s not executing\n",
4518 target_pid_to_str (t->ptid));
4519
4520 /* The thread may be not executing, but still be
4521 resumed with a pending status to process. */
4522 t->resumed = 0;
4523 }
4524 }
4525
4526 if (!need_wait)
4527 break;
4528
4529 /* If we find new threads on the second iteration, restart
4530 over. We want to see two iterations in a row with all
4531 threads stopped. */
4532 if (pass > 0)
4533 pass = -1;
4534
4535 event_ptid = wait_one (&ws);
00431a78 4536
372316f1
PA
4537 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4538 {
4539 /* All resumed threads exited. */
4540 }
65706a29
PA
4541 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4542 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4543 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4544 {
4545 if (debug_infrun)
4546 {
f2907e49 4547 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4548
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: %s exited while "
4551 "stopping threads\n",
4552 target_pid_to_str (ptid));
4553 }
4554 }
4555 else
4556 {
00431a78 4557 inferior *inf;
6efcd9a8 4558
372316f1
PA
4559 t = find_thread_ptid (event_ptid);
4560 if (t == NULL)
4561 t = add_thread (event_ptid);
4562
4563 t->stop_requested = 0;
4564 t->executing = 0;
4565 t->resumed = 0;
4566 t->control.may_range_step = 0;
4567
6efcd9a8
PA
4568 /* This may be the first time we see the inferior report
4569 a stop. */
4570 inf = find_inferior_ptid (event_ptid);
4571 if (inf->needs_setup)
4572 {
4573 switch_to_thread_no_regs (t);
4574 setup_inferior (0);
4575 }
4576
372316f1
PA
4577 if (ws.kind == TARGET_WAITKIND_STOPPED
4578 && ws.value.sig == GDB_SIGNAL_0)
4579 {
4580 /* We caught the event that we intended to catch, so
4581 there's no event pending. */
4582 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4583 t->suspend.waitstatus_pending_p = 0;
4584
00431a78 4585 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4586 {
4587 /* Add it back to the step-over queue. */
4588 if (debug_infrun)
4589 {
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: displaced-step of %s "
4592 "canceled: adding back to the "
4593 "step-over queue\n",
4594 target_pid_to_str (t->ptid));
4595 }
4596 t->control.trap_expected = 0;
4597 thread_step_over_chain_enqueue (t);
4598 }
4599 }
4600 else
4601 {
4602 enum gdb_signal sig;
4603 struct regcache *regcache;
372316f1
PA
4604
4605 if (debug_infrun)
4606 {
23fdd69e 4607 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4608
372316f1
PA
4609 fprintf_unfiltered (gdb_stdlog,
4610 "infrun: target_wait %s, saving "
4611 "status for %d.%ld.%ld\n",
23fdd69e 4612 statstr.c_str (),
e99b03dc 4613 t->ptid.pid (),
e38504b3 4614 t->ptid.lwp (),
cc6bcb54 4615 t->ptid.tid ());
372316f1
PA
4616 }
4617
4618 /* Record for later. */
4619 save_waitstatus (t, &ws);
4620
4621 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4622 ? ws.value.sig : GDB_SIGNAL_0);
4623
00431a78 4624 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4625 {
4626 /* Add it back to the step-over queue. */
4627 t->control.trap_expected = 0;
4628 thread_step_over_chain_enqueue (t);
4629 }
4630
00431a78 4631 regcache = get_thread_regcache (t);
372316f1
PA
4632 t->suspend.stop_pc = regcache_read_pc (regcache);
4633
4634 if (debug_infrun)
4635 {
4636 fprintf_unfiltered (gdb_stdlog,
4637 "infrun: saved stop_pc=%s for %s "
4638 "(currently_stepping=%d)\n",
4639 paddress (target_gdbarch (),
4640 t->suspend.stop_pc),
4641 target_pid_to_str (t->ptid),
4642 currently_stepping (t));
4643 }
4644 }
4645 }
4646 }
4647 }
4648
4649 do_cleanups (old_chain);
4650
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4653}
4654
f4836ba9
PA
4655/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4656
4657static int
4658handle_no_resumed (struct execution_control_state *ecs)
4659{
4660 struct inferior *inf;
4661 struct thread_info *thread;
4662
3b12939d 4663 if (target_can_async_p ())
f4836ba9 4664 {
3b12939d
PA
4665 struct ui *ui;
4666 int any_sync = 0;
f4836ba9 4667
3b12939d
PA
4668 ALL_UIS (ui)
4669 {
4670 if (ui->prompt_state == PROMPT_BLOCKED)
4671 {
4672 any_sync = 1;
4673 break;
4674 }
4675 }
4676 if (!any_sync)
4677 {
4678 /* There were no unwaited-for children left in the target, but,
4679 we're not synchronously waiting for events either. Just
4680 ignore. */
4681
4682 if (debug_infrun)
4683 fprintf_unfiltered (gdb_stdlog,
4684 "infrun: TARGET_WAITKIND_NO_RESUMED "
4685 "(ignoring: bg)\n");
4686 prepare_to_wait (ecs);
4687 return 1;
4688 }
f4836ba9
PA
4689 }
4690
4691 /* Otherwise, if we were running a synchronous execution command, we
4692 may need to cancel it and give the user back the terminal.
4693
4694 In non-stop mode, the target can't tell whether we've already
4695 consumed previous stop events, so it can end up sending us a
4696 no-resumed event like so:
4697
4698 #0 - thread 1 is left stopped
4699
4700 #1 - thread 2 is resumed and hits breakpoint
4701 -> TARGET_WAITKIND_STOPPED
4702
4703 #2 - thread 3 is resumed and exits
4704 this is the last resumed thread, so
4705 -> TARGET_WAITKIND_NO_RESUMED
4706
4707 #3 - gdb processes stop for thread 2 and decides to re-resume
4708 it.
4709
4710 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4711 thread 2 is now resumed, so the event should be ignored.
4712
4713 IOW, if the stop for thread 2 doesn't end a foreground command,
4714 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4715 event. But it could be that the event meant that thread 2 itself
4716 (or whatever other thread was the last resumed thread) exited.
4717
4718 To address this we refresh the thread list and check whether we
4719 have resumed threads _now_. In the example above, this removes
4720 thread 3 from the thread list. If thread 2 was re-resumed, we
4721 ignore this event. If we find no thread resumed, then we cancel
4722 the synchronous command show "no unwaited-for " to the user. */
4723 update_thread_list ();
4724
4725 ALL_NON_EXITED_THREADS (thread)
4726 {
4727 if (thread->executing
4728 || thread->suspend.waitstatus_pending_p)
4729 {
4730 /* There were no unwaited-for children left in the target at
4731 some point, but there are now. Just ignore. */
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: TARGET_WAITKIND_NO_RESUMED "
4735 "(ignoring: found resumed)\n");
4736 prepare_to_wait (ecs);
4737 return 1;
4738 }
4739 }
4740
4741 /* Note however that we may find no resumed thread because the whole
4742 process exited meanwhile (thus updating the thread list results
4743 in an empty thread list). In this case we know we'll be getting
4744 a process exit event shortly. */
4745 ALL_INFERIORS (inf)
4746 {
4747 if (inf->pid == 0)
4748 continue;
4749
00431a78 4750 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4751 if (thread == NULL)
4752 {
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: TARGET_WAITKIND_NO_RESUMED "
4756 "(expect process exit)\n");
4757 prepare_to_wait (ecs);
4758 return 1;
4759 }
4760 }
4761
4762 /* Go ahead and report the event. */
4763 return 0;
4764}
4765
05ba8510
PA
4766/* Given an execution control state that has been freshly filled in by
4767 an event from the inferior, figure out what it means and take
4768 appropriate action.
4769
4770 The alternatives are:
4771
22bcd14b 4772 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4773 debugger.
4774
4775 2) keep_going and return; to wait for the next event (set
4776 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4777 once). */
c906108c 4778
ec9499be 4779static void
0b6e5e10 4780handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4781{
d6b48e9c
PA
4782 enum stop_kind stop_soon;
4783
28736962
PA
4784 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4785 {
4786 /* We had an event in the inferior, but we are not interested in
4787 handling it at this level. The lower layers have already
4788 done what needs to be done, if anything.
4789
4790 One of the possible circumstances for this is when the
4791 inferior produces output for the console. The inferior has
4792 not stopped, and we are ignoring the event. Another possible
4793 circumstance is any event which the lower level knows will be
4794 reported multiple times without an intervening resume. */
4795 if (debug_infrun)
4796 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
65706a29
PA
4801 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4805 prepare_to_wait (ecs);
4806 return;
4807 }
4808
0e5bf2a8 4809 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4810 && handle_no_resumed (ecs))
4811 return;
0e5bf2a8 4812
1777feb0 4813 /* Cache the last pid/waitstatus. */
c32c64b7 4814 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4815
ca005067 4816 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4817 stop_stack_dummy = STOP_NONE;
ca005067 4818
0e5bf2a8
PA
4819 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4820 {
4821 /* No unwaited-for children left. IOW, all resumed children
4822 have exited. */
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4825
4826 stop_print_frame = 0;
22bcd14b 4827 stop_waiting (ecs);
0e5bf2a8
PA
4828 return;
4829 }
4830
8c90c137 4831 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4832 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4833 {
4834 ecs->event_thread = find_thread_ptid (ecs->ptid);
4835 /* If it's a new thread, add it to the thread database. */
4836 if (ecs->event_thread == NULL)
4837 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4838
4839 /* Disable range stepping. If the next step request could use a
4840 range, this will be end up re-enabled then. */
4841 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4842 }
88ed393a
JK
4843
4844 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4845 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4846
4847 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4848 reinit_frame_cache ();
4849
28736962
PA
4850 breakpoint_retire_moribund ();
4851
2b009048
DJ
4852 /* First, distinguish signals caused by the debugger from signals
4853 that have to do with the program's own actions. Note that
4854 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4855 on the operating system version. Here we detect when a SIGILL or
4856 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4857 something similar for SIGSEGV, since a SIGSEGV will be generated
4858 when we're trying to execute a breakpoint instruction on a
4859 non-executable stack. This happens for call dummy breakpoints
4860 for architectures like SPARC that place call dummies on the
4861 stack. */
2b009048 4862 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4863 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4864 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4865 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4866 {
00431a78 4867 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4868
a01bda52 4869 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4870 regcache_read_pc (regcache)))
4871 {
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog,
4874 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4875 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4876 }
2b009048
DJ
4877 }
4878
28736962
PA
4879 /* Mark the non-executing threads accordingly. In all-stop, all
4880 threads of all processes are stopped when we get any event
e1316e60 4881 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4882 {
4883 ptid_t mark_ptid;
4884
fbea99ea 4885 if (!target_is_non_stop_p ())
372316f1
PA
4886 mark_ptid = minus_one_ptid;
4887 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4888 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4889 {
4890 /* If we're handling a process exit in non-stop mode, even
4891 though threads haven't been deleted yet, one would think
4892 that there is nothing to do, as threads of the dead process
4893 will be soon deleted, and threads of any other process were
4894 left running. However, on some targets, threads survive a
4895 process exit event. E.g., for the "checkpoint" command,
4896 when the current checkpoint/fork exits, linux-fork.c
4897 automatically switches to another fork from within
4898 target_mourn_inferior, by associating the same
4899 inferior/thread to another fork. We haven't mourned yet at
4900 this point, but we must mark any threads left in the
4901 process as not-executing so that finish_thread_state marks
4902 them stopped (in the user's perspective) if/when we present
4903 the stop to the user. */
e99b03dc 4904 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4905 }
4906 else
4907 mark_ptid = ecs->ptid;
4908
4909 set_executing (mark_ptid, 0);
4910
4911 /* Likewise the resumed flag. */
4912 set_resumed (mark_ptid, 0);
4913 }
8c90c137 4914
488f131b
JB
4915 switch (ecs->ws.kind)
4916 {
4917 case TARGET_WAITKIND_LOADED:
527159b7 4918 if (debug_infrun)
8a9de0e4 4919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4920 context_switch (ecs);
b0f4b84b
DJ
4921 /* Ignore gracefully during startup of the inferior, as it might
4922 be the shell which has just loaded some objects, otherwise
4923 add the symbols for the newly loaded objects. Also ignore at
4924 the beginning of an attach or remote session; we will query
4925 the full list of libraries once the connection is
4926 established. */
4f5d7f63 4927
00431a78 4928 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4929 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4930 {
edcc5120
TT
4931 struct regcache *regcache;
4932
00431a78 4933 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4934
4935 handle_solib_event ();
4936
4937 ecs->event_thread->control.stop_bpstat
a01bda52 4938 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4939 ecs->event_thread->suspend.stop_pc,
4940 ecs->event_thread, &ecs->ws);
ab04a2af 4941
c65d6b55
PA
4942 if (handle_stop_requested (ecs))
4943 return;
4944
ce12b012 4945 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4946 {
4947 /* A catchpoint triggered. */
94c57d6a
PA
4948 process_event_stop_test (ecs);
4949 return;
edcc5120 4950 }
488f131b 4951
b0f4b84b
DJ
4952 /* If requested, stop when the dynamic linker notifies
4953 gdb of events. This allows the user to get control
4954 and place breakpoints in initializer routines for
4955 dynamically loaded objects (among other things). */
a493e3e2 4956 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4957 if (stop_on_solib_events)
4958 {
55409f9d
DJ
4959 /* Make sure we print "Stopped due to solib-event" in
4960 normal_stop. */
4961 stop_print_frame = 1;
4962
22bcd14b 4963 stop_waiting (ecs);
b0f4b84b
DJ
4964 return;
4965 }
488f131b 4966 }
b0f4b84b
DJ
4967
4968 /* If we are skipping through a shell, or through shared library
4969 loading that we aren't interested in, resume the program. If
5c09a2c5 4970 we're running the program normally, also resume. */
b0f4b84b
DJ
4971 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4972 {
74960c60
VP
4973 /* Loading of shared libraries might have changed breakpoint
4974 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4975 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4976 insert_breakpoints ();
64ce06e4 4977 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4978 prepare_to_wait (ecs);
4979 return;
4980 }
4981
5c09a2c5
PA
4982 /* But stop if we're attaching or setting up a remote
4983 connection. */
4984 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4985 || stop_soon == STOP_QUIETLY_REMOTE)
4986 {
4987 if (debug_infrun)
4988 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4989 stop_waiting (ecs);
5c09a2c5
PA
4990 return;
4991 }
4992
4993 internal_error (__FILE__, __LINE__,
4994 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4995
488f131b 4996 case TARGET_WAITKIND_SPURIOUS:
527159b7 4997 if (debug_infrun)
8a9de0e4 4998 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4999 if (handle_stop_requested (ecs))
5000 return;
00431a78 5001 context_switch (ecs);
64ce06e4 5002 resume (GDB_SIGNAL_0);
488f131b
JB
5003 prepare_to_wait (ecs);
5004 return;
c5aa993b 5005
65706a29
PA
5006 case TARGET_WAITKIND_THREAD_CREATED:
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5009 if (handle_stop_requested (ecs))
5010 return;
00431a78 5011 context_switch (ecs);
65706a29
PA
5012 if (!switch_back_to_stepped_thread (ecs))
5013 keep_going (ecs);
5014 return;
5015
488f131b 5016 case TARGET_WAITKIND_EXITED:
940c3c06 5017 case TARGET_WAITKIND_SIGNALLED:
527159b7 5018 if (debug_infrun)
940c3c06
PA
5019 {
5020 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5021 fprintf_unfiltered (gdb_stdlog,
5022 "infrun: TARGET_WAITKIND_EXITED\n");
5023 else
5024 fprintf_unfiltered (gdb_stdlog,
5025 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5026 }
5027
fb66883a 5028 inferior_ptid = ecs->ptid;
c9657e70 5029 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5030 set_current_program_space (current_inferior ()->pspace);
5031 handle_vfork_child_exec_or_exit (0);
223ffa71 5032 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5033
0c557179
SDJ
5034 /* Clearing any previous state of convenience variables. */
5035 clear_exit_convenience_vars ();
5036
940c3c06
PA
5037 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5038 {
5039 /* Record the exit code in the convenience variable $_exitcode, so
5040 that the user can inspect this again later. */
5041 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5042 (LONGEST) ecs->ws.value.integer);
5043
5044 /* Also record this in the inferior itself. */
5045 current_inferior ()->has_exit_code = 1;
5046 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5047
98eb56a4
PA
5048 /* Support the --return-child-result option. */
5049 return_child_result_value = ecs->ws.value.integer;
5050
76727919 5051 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5052 }
5053 else
0c557179 5054 {
00431a78 5055 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5056
5057 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5058 {
5059 /* Set the value of the internal variable $_exitsignal,
5060 which holds the signal uncaught by the inferior. */
5061 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5062 gdbarch_gdb_signal_to_target (gdbarch,
5063 ecs->ws.value.sig));
5064 }
5065 else
5066 {
5067 /* We don't have access to the target's method used for
5068 converting between signal numbers (GDB's internal
5069 representation <-> target's representation).
5070 Therefore, we cannot do a good job at displaying this
5071 information to the user. It's better to just warn
5072 her about it (if infrun debugging is enabled), and
5073 give up. */
5074 if (debug_infrun)
5075 fprintf_filtered (gdb_stdlog, _("\
5076Cannot fill $_exitsignal with the correct signal number.\n"));
5077 }
5078
76727919 5079 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5080 }
8cf64490 5081
488f131b 5082 gdb_flush (gdb_stdout);
bc1e6c81 5083 target_mourn_inferior (inferior_ptid);
488f131b 5084 stop_print_frame = 0;
22bcd14b 5085 stop_waiting (ecs);
488f131b 5086 return;
c5aa993b 5087
488f131b 5088 /* The following are the only cases in which we keep going;
1777feb0 5089 the above cases end in a continue or goto. */
488f131b 5090 case TARGET_WAITKIND_FORKED:
deb3b17b 5091 case TARGET_WAITKIND_VFORKED:
527159b7 5092 if (debug_infrun)
fed708ed
PA
5093 {
5094 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5095 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5096 else
5097 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5098 }
c906108c 5099
e2d96639
YQ
5100 /* Check whether the inferior is displaced stepping. */
5101 {
00431a78 5102 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5103 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5104
5105 /* If checking displaced stepping is supported, and thread
5106 ecs->ptid is displaced stepping. */
00431a78 5107 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5108 {
5109 struct inferior *parent_inf
c9657e70 5110 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5111 struct regcache *child_regcache;
5112 CORE_ADDR parent_pc;
5113
5114 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5115 indicating that the displaced stepping of syscall instruction
5116 has been done. Perform cleanup for parent process here. Note
5117 that this operation also cleans up the child process for vfork,
5118 because their pages are shared. */
00431a78 5119 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5120 /* Start a new step-over in another thread if there's one
5121 that needs it. */
5122 start_step_over ();
e2d96639
YQ
5123
5124 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5125 {
c0987663 5126 struct displaced_step_inferior_state *displaced
00431a78 5127 = get_displaced_stepping_state (parent_inf);
c0987663 5128
e2d96639
YQ
5129 /* Restore scratch pad for child process. */
5130 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5131 }
5132
5133 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5134 the child's PC is also within the scratchpad. Set the child's PC
5135 to the parent's PC value, which has already been fixed up.
5136 FIXME: we use the parent's aspace here, although we're touching
5137 the child, because the child hasn't been added to the inferior
5138 list yet at this point. */
5139
5140 child_regcache
5141 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5142 gdbarch,
5143 parent_inf->aspace);
5144 /* Read PC value of parent process. */
5145 parent_pc = regcache_read_pc (regcache);
5146
5147 if (debug_displaced)
5148 fprintf_unfiltered (gdb_stdlog,
5149 "displaced: write child pc from %s to %s\n",
5150 paddress (gdbarch,
5151 regcache_read_pc (child_regcache)),
5152 paddress (gdbarch, parent_pc));
5153
5154 regcache_write_pc (child_regcache, parent_pc);
5155 }
5156 }
5157
00431a78 5158 context_switch (ecs);
5a2901d9 5159
b242c3c2
PA
5160 /* Immediately detach breakpoints from the child before there's
5161 any chance of letting the user delete breakpoints from the
5162 breakpoint lists. If we don't do this early, it's easy to
5163 leave left over traps in the child, vis: "break foo; catch
5164 fork; c; <fork>; del; c; <child calls foo>". We only follow
5165 the fork on the last `continue', and by that time the
5166 breakpoint at "foo" is long gone from the breakpoint table.
5167 If we vforked, then we don't need to unpatch here, since both
5168 parent and child are sharing the same memory pages; we'll
5169 need to unpatch at follow/detach time instead to be certain
5170 that new breakpoints added between catchpoint hit time and
5171 vfork follow are detached. */
5172 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5173 {
b242c3c2
PA
5174 /* This won't actually modify the breakpoint list, but will
5175 physically remove the breakpoints from the child. */
d80ee84f 5176 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5177 }
5178
34b7e8a6 5179 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5180
e58b0e63
PA
5181 /* In case the event is caught by a catchpoint, remember that
5182 the event is to be followed at the next resume of the thread,
5183 and not immediately. */
5184 ecs->event_thread->pending_follow = ecs->ws;
5185
f2ffa92b
PA
5186 ecs->event_thread->suspend.stop_pc
5187 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5188
16c381f0 5189 ecs->event_thread->control.stop_bpstat
a01bda52 5190 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5191 ecs->event_thread->suspend.stop_pc,
5192 ecs->event_thread, &ecs->ws);
675bf4cb 5193
c65d6b55
PA
5194 if (handle_stop_requested (ecs))
5195 return;
5196
ce12b012
PA
5197 /* If no catchpoint triggered for this, then keep going. Note
5198 that we're interested in knowing the bpstat actually causes a
5199 stop, not just if it may explain the signal. Software
5200 watchpoints, for example, always appear in the bpstat. */
5201 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5202 {
e58b0e63 5203 int should_resume;
3e43a32a
MS
5204 int follow_child
5205 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5206
a493e3e2 5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5208
5209 should_resume = follow_fork ();
5210
00431a78
PA
5211 thread_info *parent = ecs->event_thread;
5212 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5213
a2077e25
PA
5214 /* At this point, the parent is marked running, and the
5215 child is marked stopped. */
5216
5217 /* If not resuming the parent, mark it stopped. */
5218 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5219 parent->set_running (false);
a2077e25
PA
5220
5221 /* If resuming the child, mark it running. */
5222 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5223 child->set_running (true);
a2077e25 5224
6c95b8df 5225 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5226 if (!detach_fork && (non_stop
5227 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5228 {
5229 if (follow_child)
5230 switch_to_thread (parent);
5231 else
5232 switch_to_thread (child);
5233
5234 ecs->event_thread = inferior_thread ();
5235 ecs->ptid = inferior_ptid;
5236 keep_going (ecs);
5237 }
5238
5239 if (follow_child)
5240 switch_to_thread (child);
5241 else
5242 switch_to_thread (parent);
5243
e58b0e63
PA
5244 ecs->event_thread = inferior_thread ();
5245 ecs->ptid = inferior_ptid;
5246
5247 if (should_resume)
5248 keep_going (ecs);
5249 else
22bcd14b 5250 stop_waiting (ecs);
04e68871
DJ
5251 return;
5252 }
94c57d6a
PA
5253 process_event_stop_test (ecs);
5254 return;
488f131b 5255
6c95b8df
PA
5256 case TARGET_WAITKIND_VFORK_DONE:
5257 /* Done with the shared memory region. Re-insert breakpoints in
5258 the parent, and keep going. */
5259
5260 if (debug_infrun)
3e43a32a
MS
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5263
00431a78 5264 context_switch (ecs);
6c95b8df
PA
5265
5266 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5267 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5268
5269 if (handle_stop_requested (ecs))
5270 return;
5271
6c95b8df
PA
5272 /* This also takes care of reinserting breakpoints in the
5273 previously locked inferior. */
5274 keep_going (ecs);
5275 return;
5276
488f131b 5277 case TARGET_WAITKIND_EXECD:
527159b7 5278 if (debug_infrun)
fc5261f2 5279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5280
cbd2b4e3
PA
5281 /* Note we can't read registers yet (the stop_pc), because we
5282 don't yet know the inferior's post-exec architecture.
5283 'stop_pc' is explicitly read below instead. */
00431a78 5284 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5285
6c95b8df
PA
5286 /* Do whatever is necessary to the parent branch of the vfork. */
5287 handle_vfork_child_exec_or_exit (1);
5288
795e548f
PA
5289 /* This causes the eventpoints and symbol table to be reset.
5290 Must do this now, before trying to determine whether to
5291 stop. */
71b43ef8 5292 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5293
17d8546e
DB
5294 /* In follow_exec we may have deleted the original thread and
5295 created a new one. Make sure that the event thread is the
5296 execd thread for that case (this is a nop otherwise). */
5297 ecs->event_thread = inferior_thread ();
5298
f2ffa92b
PA
5299 ecs->event_thread->suspend.stop_pc
5300 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5301
16c381f0 5302 ecs->event_thread->control.stop_bpstat
a01bda52 5303 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5304 ecs->event_thread->suspend.stop_pc,
5305 ecs->event_thread, &ecs->ws);
795e548f 5306
71b43ef8
PA
5307 /* Note that this may be referenced from inside
5308 bpstat_stop_status above, through inferior_has_execd. */
5309 xfree (ecs->ws.value.execd_pathname);
5310 ecs->ws.value.execd_pathname = NULL;
5311
c65d6b55
PA
5312 if (handle_stop_requested (ecs))
5313 return;
5314
04e68871 5315 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5316 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5317 {
a493e3e2 5318 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5319 keep_going (ecs);
5320 return;
5321 }
94c57d6a
PA
5322 process_event_stop_test (ecs);
5323 return;
488f131b 5324
b4dc5ffa
MK
5325 /* Be careful not to try to gather much state about a thread
5326 that's in a syscall. It's frequently a losing proposition. */
488f131b 5327 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5328 if (debug_infrun)
3e43a32a
MS
5329 fprintf_unfiltered (gdb_stdlog,
5330 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5331 /* Getting the current syscall number. */
94c57d6a
PA
5332 if (handle_syscall_event (ecs) == 0)
5333 process_event_stop_test (ecs);
5334 return;
c906108c 5335
488f131b
JB
5336 /* Before examining the threads further, step this thread to
5337 get it entirely out of the syscall. (We get notice of the
5338 event when the thread is just on the verge of exiting a
5339 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5340 into user code.) */
488f131b 5341 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5342 if (debug_infrun)
3e43a32a
MS
5343 fprintf_unfiltered (gdb_stdlog,
5344 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5345 if (handle_syscall_event (ecs) == 0)
5346 process_event_stop_test (ecs);
5347 return;
c906108c 5348
488f131b 5349 case TARGET_WAITKIND_STOPPED:
527159b7 5350 if (debug_infrun)
8a9de0e4 5351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5352 handle_signal_stop (ecs);
5353 return;
c906108c 5354
b2175913 5355 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5358 /* Reverse execution: target ran out of history info. */
eab402df 5359
d1988021 5360 /* Switch to the stopped thread. */
00431a78 5361 context_switch (ecs);
d1988021
MM
5362 if (debug_infrun)
5363 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5364
34b7e8a6 5365 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5366 ecs->event_thread->suspend.stop_pc
5367 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5368
5369 if (handle_stop_requested (ecs))
5370 return;
5371
76727919 5372 gdb::observers::no_history.notify ();
22bcd14b 5373 stop_waiting (ecs);
b2175913 5374 return;
488f131b 5375 }
4f5d7f63
PA
5376}
5377
0b6e5e10
JB
5378/* A wrapper around handle_inferior_event_1, which also makes sure
5379 that all temporary struct value objects that were created during
5380 the handling of the event get deleted at the end. */
5381
5382static void
5383handle_inferior_event (struct execution_control_state *ecs)
5384{
5385 struct value *mark = value_mark ();
5386
5387 handle_inferior_event_1 (ecs);
5388 /* Purge all temporary values created during the event handling,
5389 as it could be a long time before we return to the command level
5390 where such values would otherwise be purged. */
5391 value_free_to_mark (mark);
5392}
5393
372316f1
PA
5394/* Restart threads back to what they were trying to do back when we
5395 paused them for an in-line step-over. The EVENT_THREAD thread is
5396 ignored. */
4d9d9d04
PA
5397
5398static void
372316f1
PA
5399restart_threads (struct thread_info *event_thread)
5400{
5401 struct thread_info *tp;
372316f1
PA
5402
5403 /* In case the instruction just stepped spawned a new thread. */
5404 update_thread_list ();
5405
5406 ALL_NON_EXITED_THREADS (tp)
5407 {
5408 if (tp == event_thread)
5409 {
5410 if (debug_infrun)
5411 fprintf_unfiltered (gdb_stdlog,
5412 "infrun: restart threads: "
5413 "[%s] is event thread\n",
5414 target_pid_to_str (tp->ptid));
5415 continue;
5416 }
5417
5418 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5419 {
5420 if (debug_infrun)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "infrun: restart threads: "
5423 "[%s] not meant to be running\n",
5424 target_pid_to_str (tp->ptid));
5425 continue;
5426 }
5427
5428 if (tp->resumed)
5429 {
5430 if (debug_infrun)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: restart threads: [%s] resumed\n",
5433 target_pid_to_str (tp->ptid));
5434 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5435 continue;
5436 }
5437
5438 if (thread_is_in_step_over_chain (tp))
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: restart threads: "
5443 "[%s] needs step-over\n",
5444 target_pid_to_str (tp->ptid));
5445 gdb_assert (!tp->resumed);
5446 continue;
5447 }
5448
5449
5450 if (tp->suspend.waitstatus_pending_p)
5451 {
5452 if (debug_infrun)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: restart threads: "
5455 "[%s] has pending status\n",
5456 target_pid_to_str (tp->ptid));
5457 tp->resumed = 1;
5458 continue;
5459 }
5460
c65d6b55
PA
5461 gdb_assert (!tp->stop_requested);
5462
372316f1
PA
5463 /* If some thread needs to start a step-over at this point, it
5464 should still be in the step-over queue, and thus skipped
5465 above. */
5466 if (thread_still_needs_step_over (tp))
5467 {
5468 internal_error (__FILE__, __LINE__,
5469 "thread [%s] needs a step-over, but not in "
5470 "step-over queue\n",
5471 target_pid_to_str (tp->ptid));
5472 }
5473
5474 if (currently_stepping (tp))
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: [%s] was stepping\n",
5479 target_pid_to_str (tp->ptid));
5480 keep_going_stepped_thread (tp);
5481 }
5482 else
5483 {
5484 struct execution_control_state ecss;
5485 struct execution_control_state *ecs = &ecss;
5486
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: restart threads: [%s] continuing\n",
5490 target_pid_to_str (tp->ptid));
5491 reset_ecs (ecs, tp);
00431a78 5492 switch_to_thread (tp);
372316f1
PA
5493 keep_going_pass_signal (ecs);
5494 }
5495 }
5496}
5497
5498/* Callback for iterate_over_threads. Find a resumed thread that has
5499 a pending waitstatus. */
5500
5501static int
5502resumed_thread_with_pending_status (struct thread_info *tp,
5503 void *arg)
5504{
5505 return (tp->resumed
5506 && tp->suspend.waitstatus_pending_p);
5507}
5508
5509/* Called when we get an event that may finish an in-line or
5510 out-of-line (displaced stepping) step-over started previously.
5511 Return true if the event is processed and we should go back to the
5512 event loop; false if the caller should continue processing the
5513 event. */
5514
5515static int
4d9d9d04
PA
5516finish_step_over (struct execution_control_state *ecs)
5517{
372316f1
PA
5518 int had_step_over_info;
5519
00431a78 5520 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5521 ecs->event_thread->suspend.stop_signal);
5522
372316f1
PA
5523 had_step_over_info = step_over_info_valid_p ();
5524
5525 if (had_step_over_info)
4d9d9d04
PA
5526 {
5527 /* If we're stepping over a breakpoint with all threads locked,
5528 then only the thread that was stepped should be reporting
5529 back an event. */
5530 gdb_assert (ecs->event_thread->control.trap_expected);
5531
c65d6b55 5532 clear_step_over_info ();
4d9d9d04
PA
5533 }
5534
fbea99ea 5535 if (!target_is_non_stop_p ())
372316f1 5536 return 0;
4d9d9d04
PA
5537
5538 /* Start a new step-over in another thread if there's one that
5539 needs it. */
5540 start_step_over ();
372316f1
PA
5541
5542 /* If we were stepping over a breakpoint before, and haven't started
5543 a new in-line step-over sequence, then restart all other threads
5544 (except the event thread). We can't do this in all-stop, as then
5545 e.g., we wouldn't be able to issue any other remote packet until
5546 these other threads stop. */
5547 if (had_step_over_info && !step_over_info_valid_p ())
5548 {
5549 struct thread_info *pending;
5550
5551 /* If we only have threads with pending statuses, the restart
5552 below won't restart any thread and so nothing re-inserts the
5553 breakpoint we just stepped over. But we need it inserted
5554 when we later process the pending events, otherwise if
5555 another thread has a pending event for this breakpoint too,
5556 we'd discard its event (because the breakpoint that
5557 originally caused the event was no longer inserted). */
00431a78 5558 context_switch (ecs);
372316f1
PA
5559 insert_breakpoints ();
5560
5561 restart_threads (ecs->event_thread);
5562
5563 /* If we have events pending, go through handle_inferior_event
5564 again, picking up a pending event at random. This avoids
5565 thread starvation. */
5566
5567 /* But not if we just stepped over a watchpoint in order to let
5568 the instruction execute so we can evaluate its expression.
5569 The set of watchpoints that triggered is recorded in the
5570 breakpoint objects themselves (see bp->watchpoint_triggered).
5571 If we processed another event first, that other event could
5572 clobber this info. */
5573 if (ecs->event_thread->stepping_over_watchpoint)
5574 return 0;
5575
5576 pending = iterate_over_threads (resumed_thread_with_pending_status,
5577 NULL);
5578 if (pending != NULL)
5579 {
5580 struct thread_info *tp = ecs->event_thread;
5581 struct regcache *regcache;
5582
5583 if (debug_infrun)
5584 {
5585 fprintf_unfiltered (gdb_stdlog,
5586 "infrun: found resumed threads with "
5587 "pending events, saving status\n");
5588 }
5589
5590 gdb_assert (pending != tp);
5591
5592 /* Record the event thread's event for later. */
5593 save_waitstatus (tp, &ecs->ws);
5594 /* This was cleared early, by handle_inferior_event. Set it
5595 so this pending event is considered by
5596 do_target_wait. */
5597 tp->resumed = 1;
5598
5599 gdb_assert (!tp->executing);
5600
00431a78 5601 regcache = get_thread_regcache (tp);
372316f1
PA
5602 tp->suspend.stop_pc = regcache_read_pc (regcache);
5603
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
5607 "infrun: saved stop_pc=%s for %s "
5608 "(currently_stepping=%d)\n",
5609 paddress (target_gdbarch (),
5610 tp->suspend.stop_pc),
5611 target_pid_to_str (tp->ptid),
5612 currently_stepping (tp));
5613 }
5614
5615 /* This in-line step-over finished; clear this so we won't
5616 start a new one. This is what handle_signal_stop would
5617 do, if we returned false. */
5618 tp->stepping_over_breakpoint = 0;
5619
5620 /* Wake up the event loop again. */
5621 mark_async_event_handler (infrun_async_inferior_event_token);
5622
5623 prepare_to_wait (ecs);
5624 return 1;
5625 }
5626 }
5627
5628 return 0;
4d9d9d04
PA
5629}
5630
4f5d7f63
PA
5631/* Come here when the program has stopped with a signal. */
5632
5633static void
5634handle_signal_stop (struct execution_control_state *ecs)
5635{
5636 struct frame_info *frame;
5637 struct gdbarch *gdbarch;
5638 int stopped_by_watchpoint;
5639 enum stop_kind stop_soon;
5640 int random_signal;
c906108c 5641
f0407826
DE
5642 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5643
c65d6b55
PA
5644 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5645
f0407826
DE
5646 /* Do we need to clean up the state of a thread that has
5647 completed a displaced single-step? (Doing so usually affects
5648 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5649 if (finish_step_over (ecs))
5650 return;
f0407826
DE
5651
5652 /* If we either finished a single-step or hit a breakpoint, but
5653 the user wanted this thread to be stopped, pretend we got a
5654 SIG0 (generic unsignaled stop). */
5655 if (ecs->event_thread->stop_requested
5656 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5657 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5658
f2ffa92b
PA
5659 ecs->event_thread->suspend.stop_pc
5660 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5661
527159b7 5662 if (debug_infrun)
237fc4c9 5663 {
00431a78 5664 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5665 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5666 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5667
5668 inferior_ptid = ecs->ptid;
5af949e3
UW
5669
5670 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
f2ffa92b
PA
5671 paddress (gdbarch,
5672 ecs->event_thread->suspend.stop_pc));
d92524f1 5673 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5674 {
5675 CORE_ADDR addr;
abbb1732 5676
237fc4c9
PA
5677 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5678
8b88a78e 5679 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5680 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5681 "infrun: stopped data address = %s\n",
5682 paddress (gdbarch, addr));
237fc4c9
PA
5683 else
5684 fprintf_unfiltered (gdb_stdlog,
5685 "infrun: (no data address available)\n");
5686 }
5687 }
527159b7 5688
36fa8042
PA
5689 /* This is originated from start_remote(), start_inferior() and
5690 shared libraries hook functions. */
00431a78 5691 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5692 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5693 {
00431a78 5694 context_switch (ecs);
36fa8042
PA
5695 if (debug_infrun)
5696 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5697 stop_print_frame = 1;
22bcd14b 5698 stop_waiting (ecs);
36fa8042
PA
5699 return;
5700 }
5701
36fa8042
PA
5702 /* This originates from attach_command(). We need to overwrite
5703 the stop_signal here, because some kernels don't ignore a
5704 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5705 See more comments in inferior.h. On the other hand, if we
5706 get a non-SIGSTOP, report it to the user - assume the backend
5707 will handle the SIGSTOP if it should show up later.
5708
5709 Also consider that the attach is complete when we see a
5710 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5711 target extended-remote report it instead of a SIGSTOP
5712 (e.g. gdbserver). We already rely on SIGTRAP being our
5713 signal, so this is no exception.
5714
5715 Also consider that the attach is complete when we see a
5716 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5717 the target to stop all threads of the inferior, in case the
5718 low level attach operation doesn't stop them implicitly. If
5719 they weren't stopped implicitly, then the stub will report a
5720 GDB_SIGNAL_0, meaning: stopped for no particular reason
5721 other than GDB's request. */
5722 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5723 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5724 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5725 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5726 {
5727 stop_print_frame = 1;
22bcd14b 5728 stop_waiting (ecs);
36fa8042
PA
5729 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5730 return;
5731 }
5732
488f131b 5733 /* See if something interesting happened to the non-current thread. If
b40c7d58 5734 so, then switch to that thread. */
d7e15655 5735 if (ecs->ptid != inferior_ptid)
488f131b 5736 {
527159b7 5737 if (debug_infrun)
8a9de0e4 5738 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5739
00431a78 5740 context_switch (ecs);
c5aa993b 5741
9a4105ab 5742 if (deprecated_context_hook)
00431a78 5743 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5744 }
c906108c 5745
568d6575
UW
5746 /* At this point, get hold of the now-current thread's frame. */
5747 frame = get_current_frame ();
5748 gdbarch = get_frame_arch (frame);
5749
2adfaa28 5750 /* Pull the single step breakpoints out of the target. */
af48d08f 5751 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5752 {
af48d08f 5753 struct regcache *regcache;
af48d08f 5754 CORE_ADDR pc;
2adfaa28 5755
00431a78 5756 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5757 const address_space *aspace = regcache->aspace ();
5758
af48d08f 5759 pc = regcache_read_pc (regcache);
34b7e8a6 5760
af48d08f
PA
5761 /* However, before doing so, if this single-step breakpoint was
5762 actually for another thread, set this thread up for moving
5763 past it. */
5764 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5765 aspace, pc))
5766 {
5767 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5768 {
5769 if (debug_infrun)
5770 {
5771 fprintf_unfiltered (gdb_stdlog,
af48d08f 5772 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5773 "single-step breakpoint\n",
5774 target_pid_to_str (ecs->ptid));
2adfaa28 5775 }
af48d08f
PA
5776 ecs->hit_singlestep_breakpoint = 1;
5777 }
5778 }
5779 else
5780 {
5781 if (debug_infrun)
5782 {
5783 fprintf_unfiltered (gdb_stdlog,
5784 "infrun: [%s] hit its "
5785 "single-step breakpoint\n",
5786 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5787 }
5788 }
488f131b 5789 }
af48d08f 5790 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5791
963f9c80
PA
5792 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5793 && ecs->event_thread->control.trap_expected
5794 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5795 stopped_by_watchpoint = 0;
5796 else
5797 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5798
5799 /* If necessary, step over this watchpoint. We'll be back to display
5800 it in a moment. */
5801 if (stopped_by_watchpoint
d92524f1 5802 && (target_have_steppable_watchpoint
568d6575 5803 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5804 {
488f131b
JB
5805 /* At this point, we are stopped at an instruction which has
5806 attempted to write to a piece of memory under control of
5807 a watchpoint. The instruction hasn't actually executed
5808 yet. If we were to evaluate the watchpoint expression
5809 now, we would get the old value, and therefore no change
5810 would seem to have occurred.
5811
5812 In order to make watchpoints work `right', we really need
5813 to complete the memory write, and then evaluate the
d983da9c
DJ
5814 watchpoint expression. We do this by single-stepping the
5815 target.
5816
7f89fd65 5817 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5818 it. For example, the PA can (with some kernel cooperation)
5819 single step over a watchpoint without disabling the watchpoint.
5820
5821 It is far more common to need to disable a watchpoint to step
5822 the inferior over it. If we have non-steppable watchpoints,
5823 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5824 disable all watchpoints.
5825
5826 Any breakpoint at PC must also be stepped over -- if there's
5827 one, it will have already triggered before the watchpoint
5828 triggered, and we either already reported it to the user, or
5829 it didn't cause a stop and we called keep_going. In either
5830 case, if there was a breakpoint at PC, we must be trying to
5831 step past it. */
5832 ecs->event_thread->stepping_over_watchpoint = 1;
5833 keep_going (ecs);
488f131b
JB
5834 return;
5835 }
5836
4e1c45ea 5837 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5838 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5839 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5840 ecs->event_thread->control.stop_step = 0;
488f131b 5841 stop_print_frame = 1;
488f131b 5842 stopped_by_random_signal = 0;
ddfe970e 5843 bpstat stop_chain = NULL;
488f131b 5844
edb3359d
DJ
5845 /* Hide inlined functions starting here, unless we just performed stepi or
5846 nexti. After stepi and nexti, always show the innermost frame (not any
5847 inline function call sites). */
16c381f0 5848 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5849 {
00431a78
PA
5850 const address_space *aspace
5851 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5852
5853 /* skip_inline_frames is expensive, so we avoid it if we can
5854 determine that the address is one where functions cannot have
5855 been inlined. This improves performance with inferiors that
5856 load a lot of shared libraries, because the solib event
5857 breakpoint is defined as the address of a function (i.e. not
5858 inline). Note that we have to check the previous PC as well
5859 as the current one to catch cases when we have just
5860 single-stepped off a breakpoint prior to reinstating it.
5861 Note that we're assuming that the code we single-step to is
5862 not inline, but that's not definitive: there's nothing
5863 preventing the event breakpoint function from containing
5864 inlined code, and the single-step ending up there. If the
5865 user had set a breakpoint on that inlined code, the missing
5866 skip_inline_frames call would break things. Fortunately
5867 that's an extremely unlikely scenario. */
f2ffa92b
PA
5868 if (!pc_at_non_inline_function (aspace,
5869 ecs->event_thread->suspend.stop_pc,
5870 &ecs->ws)
a210c238
MR
5871 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5872 && ecs->event_thread->control.trap_expected
5873 && pc_at_non_inline_function (aspace,
5874 ecs->event_thread->prev_pc,
09ac7c10 5875 &ecs->ws)))
1c5a993e 5876 {
f2ffa92b
PA
5877 stop_chain = build_bpstat_chain (aspace,
5878 ecs->event_thread->suspend.stop_pc,
5879 &ecs->ws);
00431a78 5880 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5881
5882 /* Re-fetch current thread's frame in case that invalidated
5883 the frame cache. */
5884 frame = get_current_frame ();
5885 gdbarch = get_frame_arch (frame);
5886 }
0574c78f 5887 }
edb3359d 5888
a493e3e2 5889 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5890 && ecs->event_thread->control.trap_expected
568d6575 5891 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5892 && currently_stepping (ecs->event_thread))
3352ef37 5893 {
b50d7442 5894 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5895 also on an instruction that needs to be stepped multiple
1777feb0 5896 times before it's been fully executing. E.g., architectures
3352ef37
AC
5897 with a delay slot. It needs to be stepped twice, once for
5898 the instruction and once for the delay slot. */
5899 int step_through_delay
568d6575 5900 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5901
527159b7 5902 if (debug_infrun && step_through_delay)
8a9de0e4 5903 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5904 if (ecs->event_thread->control.step_range_end == 0
5905 && step_through_delay)
3352ef37
AC
5906 {
5907 /* The user issued a continue when stopped at a breakpoint.
5908 Set up for another trap and get out of here. */
4e1c45ea 5909 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5910 keep_going (ecs);
5911 return;
5912 }
5913 else if (step_through_delay)
5914 {
5915 /* The user issued a step when stopped at a breakpoint.
5916 Maybe we should stop, maybe we should not - the delay
5917 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5918 case, don't decide that here, just set
5919 ecs->stepping_over_breakpoint, making sure we
5920 single-step again before breakpoints are re-inserted. */
4e1c45ea 5921 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5922 }
5923 }
5924
ab04a2af
TT
5925 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5926 handles this event. */
5927 ecs->event_thread->control.stop_bpstat
a01bda52 5928 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5929 ecs->event_thread->suspend.stop_pc,
5930 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5931
ab04a2af
TT
5932 /* Following in case break condition called a
5933 function. */
5934 stop_print_frame = 1;
73dd234f 5935
ab04a2af
TT
5936 /* This is where we handle "moribund" watchpoints. Unlike
5937 software breakpoints traps, hardware watchpoint traps are
5938 always distinguishable from random traps. If no high-level
5939 watchpoint is associated with the reported stop data address
5940 anymore, then the bpstat does not explain the signal ---
5941 simply make sure to ignore it if `stopped_by_watchpoint' is
5942 set. */
5943
5944 if (debug_infrun
5945 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5946 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5947 GDB_SIGNAL_TRAP)
ab04a2af
TT
5948 && stopped_by_watchpoint)
5949 fprintf_unfiltered (gdb_stdlog,
5950 "infrun: no user watchpoint explains "
5951 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5952
bac7d97b 5953 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5954 at one stage in the past included checks for an inferior
5955 function call's call dummy's return breakpoint. The original
5956 comment, that went with the test, read:
03cebad2 5957
ab04a2af
TT
5958 ``End of a stack dummy. Some systems (e.g. Sony news) give
5959 another signal besides SIGTRAP, so check here as well as
5960 above.''
73dd234f 5961
ab04a2af
TT
5962 If someone ever tries to get call dummys on a
5963 non-executable stack to work (where the target would stop
5964 with something like a SIGSEGV), then those tests might need
5965 to be re-instated. Given, however, that the tests were only
5966 enabled when momentary breakpoints were not being used, I
5967 suspect that it won't be the case.
488f131b 5968
ab04a2af
TT
5969 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5970 be necessary for call dummies on a non-executable stack on
5971 SPARC. */
488f131b 5972
bac7d97b 5973 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5974 random_signal
5975 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5976 ecs->event_thread->suspend.stop_signal);
bac7d97b 5977
1cf4d951
PA
5978 /* Maybe this was a trap for a software breakpoint that has since
5979 been removed. */
5980 if (random_signal && target_stopped_by_sw_breakpoint ())
5981 {
f2ffa92b
PA
5982 if (program_breakpoint_here_p (gdbarch,
5983 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5984 {
5985 struct regcache *regcache;
5986 int decr_pc;
5987
5988 /* Re-adjust PC to what the program would see if GDB was not
5989 debugging it. */
00431a78 5990 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5991 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5992 if (decr_pc != 0)
5993 {
07036511
TT
5994 gdb::optional<scoped_restore_tmpl<int>>
5995 restore_operation_disable;
1cf4d951
PA
5996
5997 if (record_full_is_used ())
07036511
TT
5998 restore_operation_disable.emplace
5999 (record_full_gdb_operation_disable_set ());
1cf4d951 6000
f2ffa92b
PA
6001 regcache_write_pc (regcache,
6002 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6003 }
6004 }
6005 else
6006 {
6007 /* A delayed software breakpoint event. Ignore the trap. */
6008 if (debug_infrun)
6009 fprintf_unfiltered (gdb_stdlog,
6010 "infrun: delayed software breakpoint "
6011 "trap, ignoring\n");
6012 random_signal = 0;
6013 }
6014 }
6015
6016 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6017 has since been removed. */
6018 if (random_signal && target_stopped_by_hw_breakpoint ())
6019 {
6020 /* A delayed hardware breakpoint event. Ignore the trap. */
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: delayed hardware breakpoint/watchpoint "
6024 "trap, ignoring\n");
6025 random_signal = 0;
6026 }
6027
bac7d97b
PA
6028 /* If not, perhaps stepping/nexting can. */
6029 if (random_signal)
6030 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6031 && currently_stepping (ecs->event_thread));
ab04a2af 6032
2adfaa28
PA
6033 /* Perhaps the thread hit a single-step breakpoint of _another_
6034 thread. Single-step breakpoints are transparent to the
6035 breakpoints module. */
6036 if (random_signal)
6037 random_signal = !ecs->hit_singlestep_breakpoint;
6038
bac7d97b
PA
6039 /* No? Perhaps we got a moribund watchpoint. */
6040 if (random_signal)
6041 random_signal = !stopped_by_watchpoint;
ab04a2af 6042
c65d6b55
PA
6043 /* Always stop if the user explicitly requested this thread to
6044 remain stopped. */
6045 if (ecs->event_thread->stop_requested)
6046 {
6047 random_signal = 1;
6048 if (debug_infrun)
6049 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6050 }
6051
488f131b
JB
6052 /* For the program's own signals, act according to
6053 the signal handling tables. */
6054
ce12b012 6055 if (random_signal)
488f131b
JB
6056 {
6057 /* Signal not for debugging purposes. */
c9657e70 6058 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6059 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6060
527159b7 6061 if (debug_infrun)
c9737c08
PA
6062 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6063 gdb_signal_to_symbol_string (stop_signal));
527159b7 6064
488f131b
JB
6065 stopped_by_random_signal = 1;
6066
252fbfc8
PA
6067 /* Always stop on signals if we're either just gaining control
6068 of the program, or the user explicitly requested this thread
6069 to remain stopped. */
d6b48e9c 6070 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6071 || ecs->event_thread->stop_requested
24291992 6072 || (!inf->detaching
16c381f0 6073 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6074 {
22bcd14b 6075 stop_waiting (ecs);
488f131b
JB
6076 return;
6077 }
b57bacec
PA
6078
6079 /* Notify observers the signal has "handle print" set. Note we
6080 returned early above if stopping; normal_stop handles the
6081 printing in that case. */
6082 if (signal_print[ecs->event_thread->suspend.stop_signal])
6083 {
6084 /* The signal table tells us to print about this signal. */
223ffa71 6085 target_terminal::ours_for_output ();
76727919 6086 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6087 target_terminal::inferior ();
b57bacec 6088 }
488f131b
JB
6089
6090 /* Clear the signal if it should not be passed. */
16c381f0 6091 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6092 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6093
f2ffa92b 6094 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6095 && ecs->event_thread->control.trap_expected
8358c15c 6096 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6097 {
6098 /* We were just starting a new sequence, attempting to
6099 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6100 Instead this signal arrives. This signal will take us out
68f53502
AC
6101 of the stepping range so GDB needs to remember to, when
6102 the signal handler returns, resume stepping off that
6103 breakpoint. */
6104 /* To simplify things, "continue" is forced to use the same
6105 code paths as single-step - set a breakpoint at the
6106 signal return address and then, once hit, step off that
6107 breakpoint. */
237fc4c9
PA
6108 if (debug_infrun)
6109 fprintf_unfiltered (gdb_stdlog,
6110 "infrun: signal arrived while stepping over "
6111 "breakpoint\n");
d3169d93 6112
2c03e5be 6113 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6114 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6115 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6116 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6117
6118 /* If we were nexting/stepping some other thread, switch to
6119 it, so that we don't continue it, losing control. */
6120 if (!switch_back_to_stepped_thread (ecs))
6121 keep_going (ecs);
9d799f85 6122 return;
68f53502 6123 }
9d799f85 6124
e5f8a7cc 6125 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6126 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6127 ecs->event_thread)
e5f8a7cc 6128 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6129 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6130 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6131 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6132 {
6133 /* The inferior is about to take a signal that will take it
6134 out of the single step range. Set a breakpoint at the
6135 current PC (which is presumably where the signal handler
6136 will eventually return) and then allow the inferior to
6137 run free.
6138
6139 Note that this is only needed for a signal delivered
6140 while in the single-step range. Nested signals aren't a
6141 problem as they eventually all return. */
237fc4c9
PA
6142 if (debug_infrun)
6143 fprintf_unfiltered (gdb_stdlog,
6144 "infrun: signal may take us out of "
6145 "single-step range\n");
6146
372316f1 6147 clear_step_over_info ();
2c03e5be 6148 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6149 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6150 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6151 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6152 keep_going (ecs);
6153 return;
d303a6c7 6154 }
9d799f85
AC
6155
6156 /* Note: step_resume_breakpoint may be non-NULL. This occures
6157 when either there's a nested signal, or when there's a
6158 pending signal enabled just as the signal handler returns
6159 (leaving the inferior at the step-resume-breakpoint without
6160 actually executing it). Either way continue until the
6161 breakpoint is really hit. */
c447ac0b
PA
6162
6163 if (!switch_back_to_stepped_thread (ecs))
6164 {
6165 if (debug_infrun)
6166 fprintf_unfiltered (gdb_stdlog,
6167 "infrun: random signal, keep going\n");
6168
6169 keep_going (ecs);
6170 }
6171 return;
488f131b 6172 }
94c57d6a
PA
6173
6174 process_event_stop_test (ecs);
6175}
6176
6177/* Come here when we've got some debug event / signal we can explain
6178 (IOW, not a random signal), and test whether it should cause a
6179 stop, or whether we should resume the inferior (transparently).
6180 E.g., could be a breakpoint whose condition evaluates false; we
6181 could be still stepping within the line; etc. */
6182
6183static void
6184process_event_stop_test (struct execution_control_state *ecs)
6185{
6186 struct symtab_and_line stop_pc_sal;
6187 struct frame_info *frame;
6188 struct gdbarch *gdbarch;
cdaa5b73
PA
6189 CORE_ADDR jmp_buf_pc;
6190 struct bpstat_what what;
94c57d6a 6191
cdaa5b73 6192 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6193
cdaa5b73
PA
6194 frame = get_current_frame ();
6195 gdbarch = get_frame_arch (frame);
fcf3daef 6196
cdaa5b73 6197 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6198
cdaa5b73
PA
6199 if (what.call_dummy)
6200 {
6201 stop_stack_dummy = what.call_dummy;
6202 }
186c406b 6203
243a9253
PA
6204 /* A few breakpoint types have callbacks associated (e.g.,
6205 bp_jit_event). Run them now. */
6206 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6207
cdaa5b73
PA
6208 /* If we hit an internal event that triggers symbol changes, the
6209 current frame will be invalidated within bpstat_what (e.g., if we
6210 hit an internal solib event). Re-fetch it. */
6211 frame = get_current_frame ();
6212 gdbarch = get_frame_arch (frame);
e2e4d78b 6213
cdaa5b73
PA
6214 switch (what.main_action)
6215 {
6216 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6217 /* If we hit the breakpoint at longjmp while stepping, we
6218 install a momentary breakpoint at the target of the
6219 jmp_buf. */
186c406b 6220
cdaa5b73
PA
6221 if (debug_infrun)
6222 fprintf_unfiltered (gdb_stdlog,
6223 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6224
cdaa5b73 6225 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6226
cdaa5b73
PA
6227 if (what.is_longjmp)
6228 {
6229 struct value *arg_value;
6230
6231 /* If we set the longjmp breakpoint via a SystemTap probe,
6232 then use it to extract the arguments. The destination PC
6233 is the third argument to the probe. */
6234 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6235 if (arg_value)
8fa0c4f8
AA
6236 {
6237 jmp_buf_pc = value_as_address (arg_value);
6238 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6239 }
cdaa5b73
PA
6240 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6241 || !gdbarch_get_longjmp_target (gdbarch,
6242 frame, &jmp_buf_pc))
e2e4d78b 6243 {
cdaa5b73
PA
6244 if (debug_infrun)
6245 fprintf_unfiltered (gdb_stdlog,
6246 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6247 "(!gdbarch_get_longjmp_target)\n");
6248 keep_going (ecs);
6249 return;
e2e4d78b 6250 }
e2e4d78b 6251
cdaa5b73
PA
6252 /* Insert a breakpoint at resume address. */
6253 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6254 }
6255 else
6256 check_exception_resume (ecs, frame);
6257 keep_going (ecs);
6258 return;
e81a37f7 6259
cdaa5b73
PA
6260 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6261 {
6262 struct frame_info *init_frame;
e81a37f7 6263
cdaa5b73 6264 /* There are several cases to consider.
c906108c 6265
cdaa5b73
PA
6266 1. The initiating frame no longer exists. In this case we
6267 must stop, because the exception or longjmp has gone too
6268 far.
2c03e5be 6269
cdaa5b73
PA
6270 2. The initiating frame exists, and is the same as the
6271 current frame. We stop, because the exception or longjmp
6272 has been caught.
2c03e5be 6273
cdaa5b73
PA
6274 3. The initiating frame exists and is different from the
6275 current frame. This means the exception or longjmp has
6276 been caught beneath the initiating frame, so keep going.
c906108c 6277
cdaa5b73
PA
6278 4. longjmp breakpoint has been placed just to protect
6279 against stale dummy frames and user is not interested in
6280 stopping around longjmps. */
c5aa993b 6281
cdaa5b73
PA
6282 if (debug_infrun)
6283 fprintf_unfiltered (gdb_stdlog,
6284 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6285
cdaa5b73
PA
6286 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6287 != NULL);
6288 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6289
cdaa5b73
PA
6290 if (what.is_longjmp)
6291 {
b67a2c6f 6292 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6293
cdaa5b73 6294 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6295 {
cdaa5b73
PA
6296 /* Case 4. */
6297 keep_going (ecs);
6298 return;
e5ef252a 6299 }
cdaa5b73 6300 }
c5aa993b 6301
cdaa5b73 6302 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6303
cdaa5b73
PA
6304 if (init_frame)
6305 {
6306 struct frame_id current_id
6307 = get_frame_id (get_current_frame ());
6308 if (frame_id_eq (current_id,
6309 ecs->event_thread->initiating_frame))
6310 {
6311 /* Case 2. Fall through. */
6312 }
6313 else
6314 {
6315 /* Case 3. */
6316 keep_going (ecs);
6317 return;
6318 }
68f53502 6319 }
488f131b 6320
cdaa5b73
PA
6321 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6322 exists. */
6323 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6324
bdc36728 6325 end_stepping_range (ecs);
cdaa5b73
PA
6326 }
6327 return;
e5ef252a 6328
cdaa5b73
PA
6329 case BPSTAT_WHAT_SINGLE:
6330 if (debug_infrun)
6331 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6332 ecs->event_thread->stepping_over_breakpoint = 1;
6333 /* Still need to check other stuff, at least the case where we
6334 are stepping and step out of the right range. */
6335 break;
e5ef252a 6336
cdaa5b73
PA
6337 case BPSTAT_WHAT_STEP_RESUME:
6338 if (debug_infrun)
6339 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6340
cdaa5b73
PA
6341 delete_step_resume_breakpoint (ecs->event_thread);
6342 if (ecs->event_thread->control.proceed_to_finish
6343 && execution_direction == EXEC_REVERSE)
6344 {
6345 struct thread_info *tp = ecs->event_thread;
6346
6347 /* We are finishing a function in reverse, and just hit the
6348 step-resume breakpoint at the start address of the
6349 function, and we're almost there -- just need to back up
6350 by one more single-step, which should take us back to the
6351 function call. */
6352 tp->control.step_range_start = tp->control.step_range_end = 1;
6353 keep_going (ecs);
e5ef252a 6354 return;
cdaa5b73
PA
6355 }
6356 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6357 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6358 && execution_direction == EXEC_REVERSE)
6359 {
6360 /* We are stepping over a function call in reverse, and just
6361 hit the step-resume breakpoint at the start address of
6362 the function. Go back to single-stepping, which should
6363 take us back to the function call. */
6364 ecs->event_thread->stepping_over_breakpoint = 1;
6365 keep_going (ecs);
6366 return;
6367 }
6368 break;
e5ef252a 6369
cdaa5b73
PA
6370 case BPSTAT_WHAT_STOP_NOISY:
6371 if (debug_infrun)
6372 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6373 stop_print_frame = 1;
e5ef252a 6374
99619bea
PA
6375 /* Assume the thread stopped for a breapoint. We'll still check
6376 whether a/the breakpoint is there when the thread is next
6377 resumed. */
6378 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6379
22bcd14b 6380 stop_waiting (ecs);
cdaa5b73 6381 return;
e5ef252a 6382
cdaa5b73
PA
6383 case BPSTAT_WHAT_STOP_SILENT:
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6386 stop_print_frame = 0;
e5ef252a 6387
99619bea
PA
6388 /* Assume the thread stopped for a breapoint. We'll still check
6389 whether a/the breakpoint is there when the thread is next
6390 resumed. */
6391 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6392 stop_waiting (ecs);
cdaa5b73
PA
6393 return;
6394
6395 case BPSTAT_WHAT_HP_STEP_RESUME:
6396 if (debug_infrun)
6397 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6398
6399 delete_step_resume_breakpoint (ecs->event_thread);
6400 if (ecs->event_thread->step_after_step_resume_breakpoint)
6401 {
6402 /* Back when the step-resume breakpoint was inserted, we
6403 were trying to single-step off a breakpoint. Go back to
6404 doing that. */
6405 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6406 ecs->event_thread->stepping_over_breakpoint = 1;
6407 keep_going (ecs);
6408 return;
e5ef252a 6409 }
cdaa5b73
PA
6410 break;
6411
6412 case BPSTAT_WHAT_KEEP_CHECKING:
6413 break;
e5ef252a 6414 }
c906108c 6415
af48d08f
PA
6416 /* If we stepped a permanent breakpoint and we had a high priority
6417 step-resume breakpoint for the address we stepped, but we didn't
6418 hit it, then we must have stepped into the signal handler. The
6419 step-resume was only necessary to catch the case of _not_
6420 stepping into the handler, so delete it, and fall through to
6421 checking whether the step finished. */
6422 if (ecs->event_thread->stepped_breakpoint)
6423 {
6424 struct breakpoint *sr_bp
6425 = ecs->event_thread->control.step_resume_breakpoint;
6426
8d707a12
PA
6427 if (sr_bp != NULL
6428 && sr_bp->loc->permanent
af48d08f
PA
6429 && sr_bp->type == bp_hp_step_resume
6430 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6431 {
6432 if (debug_infrun)
6433 fprintf_unfiltered (gdb_stdlog,
6434 "infrun: stepped permanent breakpoint, stopped in "
6435 "handler\n");
6436 delete_step_resume_breakpoint (ecs->event_thread);
6437 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6438 }
6439 }
6440
cdaa5b73
PA
6441 /* We come here if we hit a breakpoint but should not stop for it.
6442 Possibly we also were stepping and should stop for that. So fall
6443 through and test for stepping. But, if not stepping, do not
6444 stop. */
c906108c 6445
a7212384
UW
6446 /* In all-stop mode, if we're currently stepping but have stopped in
6447 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6448 if (switch_back_to_stepped_thread (ecs))
6449 return;
776f04fa 6450
8358c15c 6451 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6452 {
527159b7 6453 if (debug_infrun)
d3169d93
DJ
6454 fprintf_unfiltered (gdb_stdlog,
6455 "infrun: step-resume breakpoint is inserted\n");
527159b7 6456
488f131b
JB
6457 /* Having a step-resume breakpoint overrides anything
6458 else having to do with stepping commands until
6459 that breakpoint is reached. */
488f131b
JB
6460 keep_going (ecs);
6461 return;
6462 }
c5aa993b 6463
16c381f0 6464 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6465 {
527159b7 6466 if (debug_infrun)
8a9de0e4 6467 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6468 /* Likewise if we aren't even stepping. */
488f131b
JB
6469 keep_going (ecs);
6470 return;
6471 }
c5aa993b 6472
4b7703ad
JB
6473 /* Re-fetch current thread's frame in case the code above caused
6474 the frame cache to be re-initialized, making our FRAME variable
6475 a dangling pointer. */
6476 frame = get_current_frame ();
628fe4e4 6477 gdbarch = get_frame_arch (frame);
7e324e48 6478 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6479
488f131b 6480 /* If stepping through a line, keep going if still within it.
c906108c 6481
488f131b
JB
6482 Note that step_range_end is the address of the first instruction
6483 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6484 within it!
6485
6486 Note also that during reverse execution, we may be stepping
6487 through a function epilogue and therefore must detect when
6488 the current-frame changes in the middle of a line. */
6489
f2ffa92b
PA
6490 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6491 ecs->event_thread)
31410e84 6492 && (execution_direction != EXEC_REVERSE
388a8562 6493 || frame_id_eq (get_frame_id (frame),
16c381f0 6494 ecs->event_thread->control.step_frame_id)))
488f131b 6495 {
527159b7 6496 if (debug_infrun)
5af949e3
UW
6497 fprintf_unfiltered
6498 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6499 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6500 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6501
c1e36e3e
PA
6502 /* Tentatively re-enable range stepping; `resume' disables it if
6503 necessary (e.g., if we're stepping over a breakpoint or we
6504 have software watchpoints). */
6505 ecs->event_thread->control.may_range_step = 1;
6506
b2175913
MS
6507 /* When stepping backward, stop at beginning of line range
6508 (unless it's the function entry point, in which case
6509 keep going back to the call point). */
f2ffa92b 6510 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6511 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6512 && stop_pc != ecs->stop_func_start
6513 && execution_direction == EXEC_REVERSE)
bdc36728 6514 end_stepping_range (ecs);
b2175913
MS
6515 else
6516 keep_going (ecs);
6517
488f131b
JB
6518 return;
6519 }
c5aa993b 6520
488f131b 6521 /* We stepped out of the stepping range. */
c906108c 6522
488f131b 6523 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6524 loader dynamic symbol resolution code...
6525
6526 EXEC_FORWARD: we keep on single stepping until we exit the run
6527 time loader code and reach the callee's address.
6528
6529 EXEC_REVERSE: we've already executed the callee (backward), and
6530 the runtime loader code is handled just like any other
6531 undebuggable function call. Now we need only keep stepping
6532 backward through the trampoline code, and that's handled further
6533 down, so there is nothing for us to do here. */
6534
6535 if (execution_direction != EXEC_REVERSE
16c381f0 6536 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6537 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6538 {
4c8c40e6 6539 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6540 gdbarch_skip_solib_resolver (gdbarch,
6541 ecs->event_thread->suspend.stop_pc);
c906108c 6542
527159b7 6543 if (debug_infrun)
3e43a32a
MS
6544 fprintf_unfiltered (gdb_stdlog,
6545 "infrun: stepped into dynsym resolve code\n");
527159b7 6546
488f131b
JB
6547 if (pc_after_resolver)
6548 {
6549 /* Set up a step-resume breakpoint at the address
6550 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6551 symtab_and_line sr_sal;
488f131b 6552 sr_sal.pc = pc_after_resolver;
6c95b8df 6553 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6554
a6d9a66e
UW
6555 insert_step_resume_breakpoint_at_sal (gdbarch,
6556 sr_sal, null_frame_id);
c5aa993b 6557 }
c906108c 6558
488f131b
JB
6559 keep_going (ecs);
6560 return;
6561 }
c906108c 6562
1d509aa6
MM
6563 /* Step through an indirect branch thunk. */
6564 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6565 && gdbarch_in_indirect_branch_thunk (gdbarch,
6566 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6567 {
6568 if (debug_infrun)
6569 fprintf_unfiltered (gdb_stdlog,
6570 "infrun: stepped into indirect branch thunk\n");
6571 keep_going (ecs);
6572 return;
6573 }
6574
16c381f0
JK
6575 if (ecs->event_thread->control.step_range_end != 1
6576 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6577 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6578 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6579 {
527159b7 6580 if (debug_infrun)
3e43a32a
MS
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into signal trampoline\n");
42edda50 6583 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6584 a signal trampoline (either by a signal being delivered or by
6585 the signal handler returning). Just single-step until the
6586 inferior leaves the trampoline (either by calling the handler
6587 or returning). */
488f131b
JB
6588 keep_going (ecs);
6589 return;
6590 }
c906108c 6591
14132e89
MR
6592 /* If we're in the return path from a shared library trampoline,
6593 we want to proceed through the trampoline when stepping. */
6594 /* macro/2012-04-25: This needs to come before the subroutine
6595 call check below as on some targets return trampolines look
6596 like subroutine calls (MIPS16 return thunks). */
6597 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6598 ecs->event_thread->suspend.stop_pc,
6599 ecs->stop_func_name)
14132e89
MR
6600 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6601 {
6602 /* Determine where this trampoline returns. */
f2ffa92b
PA
6603 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6604 CORE_ADDR real_stop_pc
6605 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6606
6607 if (debug_infrun)
6608 fprintf_unfiltered (gdb_stdlog,
6609 "infrun: stepped into solib return tramp\n");
6610
6611 /* Only proceed through if we know where it's going. */
6612 if (real_stop_pc)
6613 {
6614 /* And put the step-breakpoint there and go until there. */
51abb421 6615 symtab_and_line sr_sal;
14132e89
MR
6616 sr_sal.pc = real_stop_pc;
6617 sr_sal.section = find_pc_overlay (sr_sal.pc);
6618 sr_sal.pspace = get_frame_program_space (frame);
6619
6620 /* Do not specify what the fp should be when we stop since
6621 on some machines the prologue is where the new fp value
6622 is established. */
6623 insert_step_resume_breakpoint_at_sal (gdbarch,
6624 sr_sal, null_frame_id);
6625
6626 /* Restart without fiddling with the step ranges or
6627 other state. */
6628 keep_going (ecs);
6629 return;
6630 }
6631 }
6632
c17eaafe
DJ
6633 /* Check for subroutine calls. The check for the current frame
6634 equalling the step ID is not necessary - the check of the
6635 previous frame's ID is sufficient - but it is a common case and
6636 cheaper than checking the previous frame's ID.
14e60db5
DJ
6637
6638 NOTE: frame_id_eq will never report two invalid frame IDs as
6639 being equal, so to get into this block, both the current and
6640 previous frame must have valid frame IDs. */
005ca36a
JB
6641 /* The outer_frame_id check is a heuristic to detect stepping
6642 through startup code. If we step over an instruction which
6643 sets the stack pointer from an invalid value to a valid value,
6644 we may detect that as a subroutine call from the mythical
6645 "outermost" function. This could be fixed by marking
6646 outermost frames as !stack_p,code_p,special_p. Then the
6647 initial outermost frame, before sp was valid, would
ce6cca6d 6648 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6649 for more. */
edb3359d 6650 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6651 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6652 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6653 ecs->event_thread->control.step_stack_frame_id)
6654 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6655 outer_frame_id)
885eeb5b 6656 || (ecs->event_thread->control.step_start_function
f2ffa92b 6657 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6658 {
f2ffa92b 6659 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6660 CORE_ADDR real_stop_pc;
8fb3e588 6661
527159b7 6662 if (debug_infrun)
8a9de0e4 6663 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6664
b7a084be 6665 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6666 {
6667 /* I presume that step_over_calls is only 0 when we're
6668 supposed to be stepping at the assembly language level
6669 ("stepi"). Just stop. */
388a8562 6670 /* And this works the same backward as frontward. MVS */
bdc36728 6671 end_stepping_range (ecs);
95918acb
AC
6672 return;
6673 }
8fb3e588 6674
388a8562
MS
6675 /* Reverse stepping through solib trampolines. */
6676
6677 if (execution_direction == EXEC_REVERSE
16c381f0 6678 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6679 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6680 || (ecs->stop_func_start == 0
6681 && in_solib_dynsym_resolve_code (stop_pc))))
6682 {
6683 /* Any solib trampoline code can be handled in reverse
6684 by simply continuing to single-step. We have already
6685 executed the solib function (backwards), and a few
6686 steps will take us back through the trampoline to the
6687 caller. */
6688 keep_going (ecs);
6689 return;
6690 }
6691
16c381f0 6692 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6693 {
b2175913
MS
6694 /* We're doing a "next".
6695
6696 Normal (forward) execution: set a breakpoint at the
6697 callee's return address (the address at which the caller
6698 will resume).
6699
6700 Reverse (backward) execution. set the step-resume
6701 breakpoint at the start of the function that we just
6702 stepped into (backwards), and continue to there. When we
6130d0b7 6703 get there, we'll need to single-step back to the caller. */
b2175913
MS
6704
6705 if (execution_direction == EXEC_REVERSE)
6706 {
acf9414f
JK
6707 /* If we're already at the start of the function, we've either
6708 just stepped backward into a single instruction function,
6709 or stepped back out of a signal handler to the first instruction
6710 of the function. Just keep going, which will single-step back
6711 to the caller. */
58c48e72 6712 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6713 {
acf9414f 6714 /* Normal function call return (static or dynamic). */
51abb421 6715 symtab_and_line sr_sal;
acf9414f
JK
6716 sr_sal.pc = ecs->stop_func_start;
6717 sr_sal.pspace = get_frame_program_space (frame);
6718 insert_step_resume_breakpoint_at_sal (gdbarch,
6719 sr_sal, null_frame_id);
6720 }
b2175913
MS
6721 }
6722 else
568d6575 6723 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6724
8567c30f
AC
6725 keep_going (ecs);
6726 return;
6727 }
a53c66de 6728
95918acb 6729 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6730 calling routine and the real function), locate the real
6731 function. That's what tells us (a) whether we want to step
6732 into it at all, and (b) what prologue we want to run to the
6733 end of, if we do step into it. */
568d6575 6734 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6735 if (real_stop_pc == 0)
568d6575 6736 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6737 if (real_stop_pc != 0)
6738 ecs->stop_func_start = real_stop_pc;
8fb3e588 6739
db5f024e 6740 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6741 {
51abb421 6742 symtab_and_line sr_sal;
1b2bfbb9 6743 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6744 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6745
a6d9a66e
UW
6746 insert_step_resume_breakpoint_at_sal (gdbarch,
6747 sr_sal, null_frame_id);
8fb3e588
AC
6748 keep_going (ecs);
6749 return;
1b2bfbb9
RC
6750 }
6751
95918acb 6752 /* If we have line number information for the function we are
1bfeeb0f
JL
6753 thinking of stepping into and the function isn't on the skip
6754 list, step into it.
95918acb 6755
8fb3e588
AC
6756 If there are several symtabs at that PC (e.g. with include
6757 files), just want to know whether *any* of them have line
6758 numbers. find_pc_line handles this. */
95918acb
AC
6759 {
6760 struct symtab_and_line tmp_sal;
8fb3e588 6761
95918acb 6762 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6763 if (tmp_sal.line != 0
85817405 6764 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6765 tmp_sal))
95918acb 6766 {
b2175913 6767 if (execution_direction == EXEC_REVERSE)
568d6575 6768 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6769 else
568d6575 6770 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6771 return;
6772 }
6773 }
6774
6775 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6776 set, we stop the step so that the user has a chance to switch
6777 in assembly mode. */
16c381f0 6778 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6779 && step_stop_if_no_debug)
95918acb 6780 {
bdc36728 6781 end_stepping_range (ecs);
95918acb
AC
6782 return;
6783 }
6784
b2175913
MS
6785 if (execution_direction == EXEC_REVERSE)
6786 {
acf9414f
JK
6787 /* If we're already at the start of the function, we've either just
6788 stepped backward into a single instruction function without line
6789 number info, or stepped back out of a signal handler to the first
6790 instruction of the function without line number info. Just keep
6791 going, which will single-step back to the caller. */
6792 if (ecs->stop_func_start != stop_pc)
6793 {
6794 /* Set a breakpoint at callee's start address.
6795 From there we can step once and be back in the caller. */
51abb421 6796 symtab_and_line sr_sal;
acf9414f
JK
6797 sr_sal.pc = ecs->stop_func_start;
6798 sr_sal.pspace = get_frame_program_space (frame);
6799 insert_step_resume_breakpoint_at_sal (gdbarch,
6800 sr_sal, null_frame_id);
6801 }
b2175913
MS
6802 }
6803 else
6804 /* Set a breakpoint at callee's return address (the address
6805 at which the caller will resume). */
568d6575 6806 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6807
95918acb 6808 keep_going (ecs);
488f131b 6809 return;
488f131b 6810 }
c906108c 6811
fdd654f3
MS
6812 /* Reverse stepping through solib trampolines. */
6813
6814 if (execution_direction == EXEC_REVERSE
16c381f0 6815 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6816 {
f2ffa92b
PA
6817 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6818
fdd654f3
MS
6819 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6820 || (ecs->stop_func_start == 0
6821 && in_solib_dynsym_resolve_code (stop_pc)))
6822 {
6823 /* Any solib trampoline code can be handled in reverse
6824 by simply continuing to single-step. We have already
6825 executed the solib function (backwards), and a few
6826 steps will take us back through the trampoline to the
6827 caller. */
6828 keep_going (ecs);
6829 return;
6830 }
6831 else if (in_solib_dynsym_resolve_code (stop_pc))
6832 {
6833 /* Stepped backward into the solib dynsym resolver.
6834 Set a breakpoint at its start and continue, then
6835 one more step will take us out. */
51abb421 6836 symtab_and_line sr_sal;
fdd654f3 6837 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6838 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6839 insert_step_resume_breakpoint_at_sal (gdbarch,
6840 sr_sal, null_frame_id);
6841 keep_going (ecs);
6842 return;
6843 }
6844 }
6845
f2ffa92b 6846 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6847
1b2bfbb9
RC
6848 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6849 the trampoline processing logic, however, there are some trampolines
6850 that have no names, so we should do trampoline handling first. */
16c381f0 6851 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6852 && ecs->stop_func_name == NULL
2afb61aa 6853 && stop_pc_sal.line == 0)
1b2bfbb9 6854 {
527159b7 6855 if (debug_infrun)
3e43a32a
MS
6856 fprintf_unfiltered (gdb_stdlog,
6857 "infrun: stepped into undebuggable function\n");
527159b7 6858
1b2bfbb9 6859 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6860 undebuggable function (where there is no debugging information
6861 and no line number corresponding to the address where the
1b2bfbb9
RC
6862 inferior stopped). Since we want to skip this kind of code,
6863 we keep going until the inferior returns from this
14e60db5
DJ
6864 function - unless the user has asked us not to (via
6865 set step-mode) or we no longer know how to get back
6866 to the call site. */
6867 if (step_stop_if_no_debug
c7ce8faa 6868 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6869 {
6870 /* If we have no line number and the step-stop-if-no-debug
6871 is set, we stop the step so that the user has a chance to
6872 switch in assembly mode. */
bdc36728 6873 end_stepping_range (ecs);
1b2bfbb9
RC
6874 return;
6875 }
6876 else
6877 {
6878 /* Set a breakpoint at callee's return address (the address
6879 at which the caller will resume). */
568d6575 6880 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6881 keep_going (ecs);
6882 return;
6883 }
6884 }
6885
16c381f0 6886 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6887 {
6888 /* It is stepi or nexti. We always want to stop stepping after
6889 one instruction. */
527159b7 6890 if (debug_infrun)
8a9de0e4 6891 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6892 end_stepping_range (ecs);
1b2bfbb9
RC
6893 return;
6894 }
6895
2afb61aa 6896 if (stop_pc_sal.line == 0)
488f131b
JB
6897 {
6898 /* We have no line number information. That means to stop
6899 stepping (does this always happen right after one instruction,
6900 when we do "s" in a function with no line numbers,
6901 or can this happen as a result of a return or longjmp?). */
527159b7 6902 if (debug_infrun)
8a9de0e4 6903 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6904 end_stepping_range (ecs);
488f131b
JB
6905 return;
6906 }
c906108c 6907
edb3359d
DJ
6908 /* Look for "calls" to inlined functions, part one. If the inline
6909 frame machinery detected some skipped call sites, we have entered
6910 a new inline function. */
6911
6912 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6913 ecs->event_thread->control.step_frame_id)
00431a78 6914 && inline_skipped_frames (ecs->event_thread))
edb3359d 6915 {
edb3359d
DJ
6916 if (debug_infrun)
6917 fprintf_unfiltered (gdb_stdlog,
6918 "infrun: stepped into inlined function\n");
6919
51abb421 6920 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6921
16c381f0 6922 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6923 {
6924 /* For "step", we're going to stop. But if the call site
6925 for this inlined function is on the same source line as
6926 we were previously stepping, go down into the function
6927 first. Otherwise stop at the call site. */
6928
6929 if (call_sal.line == ecs->event_thread->current_line
6930 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6931 step_into_inline_frame (ecs->event_thread);
edb3359d 6932
bdc36728 6933 end_stepping_range (ecs);
edb3359d
DJ
6934 return;
6935 }
6936 else
6937 {
6938 /* For "next", we should stop at the call site if it is on a
6939 different source line. Otherwise continue through the
6940 inlined function. */
6941 if (call_sal.line == ecs->event_thread->current_line
6942 && call_sal.symtab == ecs->event_thread->current_symtab)
6943 keep_going (ecs);
6944 else
bdc36728 6945 end_stepping_range (ecs);
edb3359d
DJ
6946 return;
6947 }
6948 }
6949
6950 /* Look for "calls" to inlined functions, part two. If we are still
6951 in the same real function we were stepping through, but we have
6952 to go further up to find the exact frame ID, we are stepping
6953 through a more inlined call beyond its call site. */
6954
6955 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6956 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6957 ecs->event_thread->control.step_frame_id)
edb3359d 6958 && stepped_in_from (get_current_frame (),
16c381f0 6959 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6960 {
6961 if (debug_infrun)
6962 fprintf_unfiltered (gdb_stdlog,
6963 "infrun: stepping through inlined function\n");
6964
16c381f0 6965 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6966 keep_going (ecs);
6967 else
bdc36728 6968 end_stepping_range (ecs);
edb3359d
DJ
6969 return;
6970 }
6971
f2ffa92b 6972 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6973 && (ecs->event_thread->current_line != stop_pc_sal.line
6974 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6975 {
6976 /* We are at the start of a different line. So stop. Note that
6977 we don't stop if we step into the middle of a different line.
6978 That is said to make things like for (;;) statements work
6979 better. */
527159b7 6980 if (debug_infrun)
3e43a32a
MS
6981 fprintf_unfiltered (gdb_stdlog,
6982 "infrun: stepped to a different line\n");
bdc36728 6983 end_stepping_range (ecs);
488f131b
JB
6984 return;
6985 }
c906108c 6986
488f131b 6987 /* We aren't done stepping.
c906108c 6988
488f131b
JB
6989 Optimize by setting the stepping range to the line.
6990 (We might not be in the original line, but if we entered a
6991 new line in mid-statement, we continue stepping. This makes
6992 things like for(;;) statements work better.) */
c906108c 6993
16c381f0
JK
6994 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6995 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6996 ecs->event_thread->control.may_range_step = 1;
edb3359d 6997 set_step_info (frame, stop_pc_sal);
488f131b 6998
527159b7 6999 if (debug_infrun)
8a9de0e4 7000 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7001 keep_going (ecs);
104c1213
JM
7002}
7003
c447ac0b
PA
7004/* In all-stop mode, if we're currently stepping but have stopped in
7005 some other thread, we may need to switch back to the stepped
7006 thread. Returns true we set the inferior running, false if we left
7007 it stopped (and the event needs further processing). */
7008
7009static int
7010switch_back_to_stepped_thread (struct execution_control_state *ecs)
7011{
fbea99ea 7012 if (!target_is_non_stop_p ())
c447ac0b
PA
7013 {
7014 struct thread_info *tp;
99619bea
PA
7015 struct thread_info *stepping_thread;
7016
7017 /* If any thread is blocked on some internal breakpoint, and we
7018 simply need to step over that breakpoint to get it going
7019 again, do that first. */
7020
7021 /* However, if we see an event for the stepping thread, then we
7022 know all other threads have been moved past their breakpoints
7023 already. Let the caller check whether the step is finished,
7024 etc., before deciding to move it past a breakpoint. */
7025 if (ecs->event_thread->control.step_range_end != 0)
7026 return 0;
7027
7028 /* Check if the current thread is blocked on an incomplete
7029 step-over, interrupted by a random signal. */
7030 if (ecs->event_thread->control.trap_expected
7031 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7032 {
99619bea
PA
7033 if (debug_infrun)
7034 {
7035 fprintf_unfiltered (gdb_stdlog,
7036 "infrun: need to finish step-over of [%s]\n",
7037 target_pid_to_str (ecs->event_thread->ptid));
7038 }
7039 keep_going (ecs);
7040 return 1;
7041 }
2adfaa28 7042
99619bea
PA
7043 /* Check if the current thread is blocked by a single-step
7044 breakpoint of another thread. */
7045 if (ecs->hit_singlestep_breakpoint)
7046 {
7047 if (debug_infrun)
7048 {
7049 fprintf_unfiltered (gdb_stdlog,
7050 "infrun: need to step [%s] over single-step "
7051 "breakpoint\n",
7052 target_pid_to_str (ecs->ptid));
7053 }
7054 keep_going (ecs);
7055 return 1;
7056 }
7057
4d9d9d04
PA
7058 /* If this thread needs yet another step-over (e.g., stepping
7059 through a delay slot), do it first before moving on to
7060 another thread. */
7061 if (thread_still_needs_step_over (ecs->event_thread))
7062 {
7063 if (debug_infrun)
7064 {
7065 fprintf_unfiltered (gdb_stdlog,
7066 "infrun: thread [%s] still needs step-over\n",
7067 target_pid_to_str (ecs->event_thread->ptid));
7068 }
7069 keep_going (ecs);
7070 return 1;
7071 }
70509625 7072
483805cf
PA
7073 /* If scheduler locking applies even if not stepping, there's no
7074 need to walk over threads. Above we've checked whether the
7075 current thread is stepping. If some other thread not the
7076 event thread is stepping, then it must be that scheduler
7077 locking is not in effect. */
856e7dd6 7078 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7079 return 0;
7080
4d9d9d04
PA
7081 /* Otherwise, we no longer expect a trap in the current thread.
7082 Clear the trap_expected flag before switching back -- this is
7083 what keep_going does as well, if we call it. */
7084 ecs->event_thread->control.trap_expected = 0;
7085
7086 /* Likewise, clear the signal if it should not be passed. */
7087 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7088 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7089
7090 /* Do all pending step-overs before actually proceeding with
483805cf 7091 step/next/etc. */
4d9d9d04
PA
7092 if (start_step_over ())
7093 {
7094 prepare_to_wait (ecs);
7095 return 1;
7096 }
7097
7098 /* Look for the stepping/nexting thread. */
483805cf 7099 stepping_thread = NULL;
4d9d9d04 7100
034f788c 7101 ALL_NON_EXITED_THREADS (tp)
483805cf 7102 {
fbea99ea
PA
7103 /* Ignore threads of processes the caller is not
7104 resuming. */
483805cf 7105 if (!sched_multi
e99b03dc 7106 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
7107 continue;
7108
7109 /* When stepping over a breakpoint, we lock all threads
7110 except the one that needs to move past the breakpoint.
7111 If a non-event thread has this set, the "incomplete
7112 step-over" check above should have caught it earlier. */
372316f1
PA
7113 if (tp->control.trap_expected)
7114 {
7115 internal_error (__FILE__, __LINE__,
7116 "[%s] has inconsistent state: "
7117 "trap_expected=%d\n",
7118 target_pid_to_str (tp->ptid),
7119 tp->control.trap_expected);
7120 }
483805cf
PA
7121
7122 /* Did we find the stepping thread? */
7123 if (tp->control.step_range_end)
7124 {
7125 /* Yep. There should only one though. */
7126 gdb_assert (stepping_thread == NULL);
7127
7128 /* The event thread is handled at the top, before we
7129 enter this loop. */
7130 gdb_assert (tp != ecs->event_thread);
7131
7132 /* If some thread other than the event thread is
7133 stepping, then scheduler locking can't be in effect,
7134 otherwise we wouldn't have resumed the current event
7135 thread in the first place. */
856e7dd6 7136 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7137
7138 stepping_thread = tp;
7139 }
99619bea
PA
7140 }
7141
483805cf 7142 if (stepping_thread != NULL)
99619bea 7143 {
c447ac0b
PA
7144 if (debug_infrun)
7145 fprintf_unfiltered (gdb_stdlog,
7146 "infrun: switching back to stepped thread\n");
7147
2ac7589c
PA
7148 if (keep_going_stepped_thread (stepping_thread))
7149 {
7150 prepare_to_wait (ecs);
7151 return 1;
7152 }
7153 }
7154 }
2adfaa28 7155
2ac7589c
PA
7156 return 0;
7157}
2adfaa28 7158
2ac7589c
PA
7159/* Set a previously stepped thread back to stepping. Returns true on
7160 success, false if the resume is not possible (e.g., the thread
7161 vanished). */
7162
7163static int
7164keep_going_stepped_thread (struct thread_info *tp)
7165{
7166 struct frame_info *frame;
2ac7589c
PA
7167 struct execution_control_state ecss;
7168 struct execution_control_state *ecs = &ecss;
2adfaa28 7169
2ac7589c
PA
7170 /* If the stepping thread exited, then don't try to switch back and
7171 resume it, which could fail in several different ways depending
7172 on the target. Instead, just keep going.
2adfaa28 7173
2ac7589c
PA
7174 We can find a stepping dead thread in the thread list in two
7175 cases:
2adfaa28 7176
2ac7589c
PA
7177 - The target supports thread exit events, and when the target
7178 tries to delete the thread from the thread list, inferior_ptid
7179 pointed at the exiting thread. In such case, calling
7180 delete_thread does not really remove the thread from the list;
7181 instead, the thread is left listed, with 'exited' state.
64ce06e4 7182
2ac7589c
PA
7183 - The target's debug interface does not support thread exit
7184 events, and so we have no idea whatsoever if the previously
7185 stepping thread is still alive. For that reason, we need to
7186 synchronously query the target now. */
2adfaa28 7187
00431a78 7188 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7189 {
7190 if (debug_infrun)
7191 fprintf_unfiltered (gdb_stdlog,
7192 "infrun: not resuming previously "
7193 "stepped thread, it has vanished\n");
7194
00431a78 7195 delete_thread (tp);
2ac7589c 7196 return 0;
c447ac0b 7197 }
2ac7589c
PA
7198
7199 if (debug_infrun)
7200 fprintf_unfiltered (gdb_stdlog,
7201 "infrun: resuming previously stepped thread\n");
7202
7203 reset_ecs (ecs, tp);
00431a78 7204 switch_to_thread (tp);
2ac7589c 7205
f2ffa92b 7206 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7207 frame = get_current_frame ();
2ac7589c
PA
7208
7209 /* If the PC of the thread we were trying to single-step has
7210 changed, then that thread has trapped or been signaled, but the
7211 event has not been reported to GDB yet. Re-poll the target
7212 looking for this particular thread's event (i.e. temporarily
7213 enable schedlock) by:
7214
7215 - setting a break at the current PC
7216 - resuming that particular thread, only (by setting trap
7217 expected)
7218
7219 This prevents us continuously moving the single-step breakpoint
7220 forward, one instruction at a time, overstepping. */
7221
f2ffa92b 7222 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7223 {
7224 ptid_t resume_ptid;
7225
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: expected thread advanced also (%s -> %s)\n",
7229 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7230 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7231
7232 /* Clear the info of the previous step-over, as it's no longer
7233 valid (if the thread was trying to step over a breakpoint, it
7234 has already succeeded). It's what keep_going would do too,
7235 if we called it. Do this before trying to insert the sss
7236 breakpoint, otherwise if we were previously trying to step
7237 over this exact address in another thread, the breakpoint is
7238 skipped. */
7239 clear_step_over_info ();
7240 tp->control.trap_expected = 0;
7241
7242 insert_single_step_breakpoint (get_frame_arch (frame),
7243 get_frame_address_space (frame),
f2ffa92b 7244 tp->suspend.stop_pc);
2ac7589c 7245
372316f1 7246 tp->resumed = 1;
fbea99ea 7247 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7248 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7249 }
7250 else
7251 {
7252 if (debug_infrun)
7253 fprintf_unfiltered (gdb_stdlog,
7254 "infrun: expected thread still hasn't advanced\n");
7255
7256 keep_going_pass_signal (ecs);
7257 }
7258 return 1;
c447ac0b
PA
7259}
7260
8b061563
PA
7261/* Is thread TP in the middle of (software or hardware)
7262 single-stepping? (Note the result of this function must never be
7263 passed directly as target_resume's STEP parameter.) */
104c1213 7264
a289b8f6 7265static int
b3444185 7266currently_stepping (struct thread_info *tp)
a7212384 7267{
8358c15c
JK
7268 return ((tp->control.step_range_end
7269 && tp->control.step_resume_breakpoint == NULL)
7270 || tp->control.trap_expected
af48d08f 7271 || tp->stepped_breakpoint
8358c15c 7272 || bpstat_should_step ());
a7212384
UW
7273}
7274
b2175913
MS
7275/* Inferior has stepped into a subroutine call with source code that
7276 we should not step over. Do step to the first line of code in
7277 it. */
c2c6d25f
JM
7278
7279static void
568d6575
UW
7280handle_step_into_function (struct gdbarch *gdbarch,
7281 struct execution_control_state *ecs)
c2c6d25f 7282{
7e324e48
GB
7283 fill_in_stop_func (gdbarch, ecs);
7284
f2ffa92b
PA
7285 compunit_symtab *cust
7286 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7287 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7288 ecs->stop_func_start
7289 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7290
51abb421 7291 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7292 /* Use the step_resume_break to step until the end of the prologue,
7293 even if that involves jumps (as it seems to on the vax under
7294 4.2). */
7295 /* If the prologue ends in the middle of a source line, continue to
7296 the end of that source line (if it is still within the function).
7297 Otherwise, just go to end of prologue. */
2afb61aa
PA
7298 if (stop_func_sal.end
7299 && stop_func_sal.pc != ecs->stop_func_start
7300 && stop_func_sal.end < ecs->stop_func_end)
7301 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7302
2dbd5e30
KB
7303 /* Architectures which require breakpoint adjustment might not be able
7304 to place a breakpoint at the computed address. If so, the test
7305 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7306 ecs->stop_func_start to an address at which a breakpoint may be
7307 legitimately placed.
8fb3e588 7308
2dbd5e30
KB
7309 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7310 made, GDB will enter an infinite loop when stepping through
7311 optimized code consisting of VLIW instructions which contain
7312 subinstructions corresponding to different source lines. On
7313 FR-V, it's not permitted to place a breakpoint on any but the
7314 first subinstruction of a VLIW instruction. When a breakpoint is
7315 set, GDB will adjust the breakpoint address to the beginning of
7316 the VLIW instruction. Thus, we need to make the corresponding
7317 adjustment here when computing the stop address. */
8fb3e588 7318
568d6575 7319 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7320 {
7321 ecs->stop_func_start
568d6575 7322 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7323 ecs->stop_func_start);
2dbd5e30
KB
7324 }
7325
f2ffa92b 7326 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7327 {
7328 /* We are already there: stop now. */
bdc36728 7329 end_stepping_range (ecs);
c2c6d25f
JM
7330 return;
7331 }
7332 else
7333 {
7334 /* Put the step-breakpoint there and go until there. */
51abb421 7335 symtab_and_line sr_sal;
c2c6d25f
JM
7336 sr_sal.pc = ecs->stop_func_start;
7337 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7338 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7339
c2c6d25f 7340 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7341 some machines the prologue is where the new fp value is
7342 established. */
a6d9a66e 7343 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7344
7345 /* And make sure stepping stops right away then. */
16c381f0
JK
7346 ecs->event_thread->control.step_range_end
7347 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7348 }
7349 keep_going (ecs);
7350}
d4f3574e 7351
b2175913
MS
7352/* Inferior has stepped backward into a subroutine call with source
7353 code that we should not step over. Do step to the beginning of the
7354 last line of code in it. */
7355
7356static void
568d6575
UW
7357handle_step_into_function_backward (struct gdbarch *gdbarch,
7358 struct execution_control_state *ecs)
b2175913 7359{
43f3e411 7360 struct compunit_symtab *cust;
167e4384 7361 struct symtab_and_line stop_func_sal;
b2175913 7362
7e324e48
GB
7363 fill_in_stop_func (gdbarch, ecs);
7364
f2ffa92b 7365 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7366 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7367 ecs->stop_func_start
7368 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7369
f2ffa92b 7370 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7371
7372 /* OK, we're just going to keep stepping here. */
f2ffa92b 7373 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7374 {
7375 /* We're there already. Just stop stepping now. */
bdc36728 7376 end_stepping_range (ecs);
b2175913
MS
7377 }
7378 else
7379 {
7380 /* Else just reset the step range and keep going.
7381 No step-resume breakpoint, they don't work for
7382 epilogues, which can have multiple entry paths. */
16c381f0
JK
7383 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7384 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7385 keep_going (ecs);
7386 }
7387 return;
7388}
7389
d3169d93 7390/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7391 This is used to both functions and to skip over code. */
7392
7393static void
2c03e5be
PA
7394insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7395 struct symtab_and_line sr_sal,
7396 struct frame_id sr_id,
7397 enum bptype sr_type)
44cbf7b5 7398{
611c83ae
PA
7399 /* There should never be more than one step-resume or longjmp-resume
7400 breakpoint per thread, so we should never be setting a new
44cbf7b5 7401 step_resume_breakpoint when one is already active. */
8358c15c 7402 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7403 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7404
7405 if (debug_infrun)
7406 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7407 "infrun: inserting step-resume breakpoint at %s\n",
7408 paddress (gdbarch, sr_sal.pc));
d3169d93 7409
8358c15c 7410 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7411 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7412}
7413
9da8c2a0 7414void
2c03e5be
PA
7415insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7416 struct symtab_and_line sr_sal,
7417 struct frame_id sr_id)
7418{
7419 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7420 sr_sal, sr_id,
7421 bp_step_resume);
44cbf7b5 7422}
7ce450bd 7423
2c03e5be
PA
7424/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7425 This is used to skip a potential signal handler.
7ce450bd 7426
14e60db5
DJ
7427 This is called with the interrupted function's frame. The signal
7428 handler, when it returns, will resume the interrupted function at
7429 RETURN_FRAME.pc. */
d303a6c7
AC
7430
7431static void
2c03e5be 7432insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7433{
f4c1edd8 7434 gdb_assert (return_frame != NULL);
d303a6c7 7435
51abb421
PA
7436 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7437
7438 symtab_and_line sr_sal;
568d6575 7439 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7440 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7441 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7442
2c03e5be
PA
7443 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7444 get_stack_frame_id (return_frame),
7445 bp_hp_step_resume);
d303a6c7
AC
7446}
7447
2c03e5be
PA
7448/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7449 is used to skip a function after stepping into it (for "next" or if
7450 the called function has no debugging information).
14e60db5
DJ
7451
7452 The current function has almost always been reached by single
7453 stepping a call or return instruction. NEXT_FRAME belongs to the
7454 current function, and the breakpoint will be set at the caller's
7455 resume address.
7456
7457 This is a separate function rather than reusing
2c03e5be 7458 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7459 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7460 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7461
7462static void
7463insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7464{
14e60db5
DJ
7465 /* We shouldn't have gotten here if we don't know where the call site
7466 is. */
c7ce8faa 7467 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7468
51abb421 7469 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7470
51abb421 7471 symtab_and_line sr_sal;
c7ce8faa
DJ
7472 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7473 frame_unwind_caller_pc (next_frame));
14e60db5 7474 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7475 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7476
a6d9a66e 7477 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7478 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7479}
7480
611c83ae
PA
7481/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7482 new breakpoint at the target of a jmp_buf. The handling of
7483 longjmp-resume uses the same mechanisms used for handling
7484 "step-resume" breakpoints. */
7485
7486static void
a6d9a66e 7487insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7488{
e81a37f7
TT
7489 /* There should never be more than one longjmp-resume breakpoint per
7490 thread, so we should never be setting a new
611c83ae 7491 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7492 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7493
7494 if (debug_infrun)
7495 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7496 "infrun: inserting longjmp-resume breakpoint at %s\n",
7497 paddress (gdbarch, pc));
611c83ae 7498
e81a37f7 7499 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7500 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7501}
7502
186c406b
TT
7503/* Insert an exception resume breakpoint. TP is the thread throwing
7504 the exception. The block B is the block of the unwinder debug hook
7505 function. FRAME is the frame corresponding to the call to this
7506 function. SYM is the symbol of the function argument holding the
7507 target PC of the exception. */
7508
7509static void
7510insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7511 const struct block *b,
186c406b
TT
7512 struct frame_info *frame,
7513 struct symbol *sym)
7514{
492d29ea 7515 TRY
186c406b 7516 {
63e43d3a 7517 struct block_symbol vsym;
186c406b
TT
7518 struct value *value;
7519 CORE_ADDR handler;
7520 struct breakpoint *bp;
7521
de63c46b
PA
7522 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7523 b, VAR_DOMAIN);
63e43d3a 7524 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7525 /* If the value was optimized out, revert to the old behavior. */
7526 if (! value_optimized_out (value))
7527 {
7528 handler = value_as_address (value);
7529
7530 if (debug_infrun)
7531 fprintf_unfiltered (gdb_stdlog,
7532 "infrun: exception resume at %lx\n",
7533 (unsigned long) handler);
7534
7535 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7536 handler,
7537 bp_exception_resume).release ();
c70a6932
JK
7538
7539 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7540 frame = NULL;
7541
5d5658a1 7542 bp->thread = tp->global_num;
186c406b
TT
7543 inferior_thread ()->control.exception_resume_breakpoint = bp;
7544 }
7545 }
492d29ea
PA
7546 CATCH (e, RETURN_MASK_ERROR)
7547 {
7548 /* We want to ignore errors here. */
7549 }
7550 END_CATCH
186c406b
TT
7551}
7552
28106bc2
SDJ
7553/* A helper for check_exception_resume that sets an
7554 exception-breakpoint based on a SystemTap probe. */
7555
7556static void
7557insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7558 const struct bound_probe *probe,
28106bc2
SDJ
7559 struct frame_info *frame)
7560{
7561 struct value *arg_value;
7562 CORE_ADDR handler;
7563 struct breakpoint *bp;
7564
7565 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7566 if (!arg_value)
7567 return;
7568
7569 handler = value_as_address (arg_value);
7570
7571 if (debug_infrun)
7572 fprintf_unfiltered (gdb_stdlog,
7573 "infrun: exception resume at %s\n",
6bac7473 7574 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7575 handler));
7576
7577 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7578 handler, bp_exception_resume).release ();
5d5658a1 7579 bp->thread = tp->global_num;
28106bc2
SDJ
7580 inferior_thread ()->control.exception_resume_breakpoint = bp;
7581}
7582
186c406b
TT
7583/* This is called when an exception has been intercepted. Check to
7584 see whether the exception's destination is of interest, and if so,
7585 set an exception resume breakpoint there. */
7586
7587static void
7588check_exception_resume (struct execution_control_state *ecs,
28106bc2 7589 struct frame_info *frame)
186c406b 7590{
729662a5 7591 struct bound_probe probe;
28106bc2
SDJ
7592 struct symbol *func;
7593
7594 /* First see if this exception unwinding breakpoint was set via a
7595 SystemTap probe point. If so, the probe has two arguments: the
7596 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7597 set a breakpoint there. */
6bac7473 7598 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7599 if (probe.prob)
28106bc2 7600 {
729662a5 7601 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7602 return;
7603 }
7604
7605 func = get_frame_function (frame);
7606 if (!func)
7607 return;
186c406b 7608
492d29ea 7609 TRY
186c406b 7610 {
3977b71f 7611 const struct block *b;
8157b174 7612 struct block_iterator iter;
186c406b
TT
7613 struct symbol *sym;
7614 int argno = 0;
7615
7616 /* The exception breakpoint is a thread-specific breakpoint on
7617 the unwinder's debug hook, declared as:
7618
7619 void _Unwind_DebugHook (void *cfa, void *handler);
7620
7621 The CFA argument indicates the frame to which control is
7622 about to be transferred. HANDLER is the destination PC.
7623
7624 We ignore the CFA and set a temporary breakpoint at HANDLER.
7625 This is not extremely efficient but it avoids issues in gdb
7626 with computing the DWARF CFA, and it also works even in weird
7627 cases such as throwing an exception from inside a signal
7628 handler. */
7629
7630 b = SYMBOL_BLOCK_VALUE (func);
7631 ALL_BLOCK_SYMBOLS (b, iter, sym)
7632 {
7633 if (!SYMBOL_IS_ARGUMENT (sym))
7634 continue;
7635
7636 if (argno == 0)
7637 ++argno;
7638 else
7639 {
7640 insert_exception_resume_breakpoint (ecs->event_thread,
7641 b, frame, sym);
7642 break;
7643 }
7644 }
7645 }
492d29ea
PA
7646 CATCH (e, RETURN_MASK_ERROR)
7647 {
7648 }
7649 END_CATCH
186c406b
TT
7650}
7651
104c1213 7652static void
22bcd14b 7653stop_waiting (struct execution_control_state *ecs)
104c1213 7654{
527159b7 7655 if (debug_infrun)
22bcd14b 7656 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7657
cd0fc7c3
SS
7658 /* Let callers know we don't want to wait for the inferior anymore. */
7659 ecs->wait_some_more = 0;
fbea99ea
PA
7660
7661 /* If all-stop, but the target is always in non-stop mode, stop all
7662 threads now that we're presenting the stop to the user. */
7663 if (!non_stop && target_is_non_stop_p ())
7664 stop_all_threads ();
cd0fc7c3
SS
7665}
7666
4d9d9d04
PA
7667/* Like keep_going, but passes the signal to the inferior, even if the
7668 signal is set to nopass. */
d4f3574e
SS
7669
7670static void
4d9d9d04 7671keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7672{
d7e15655 7673 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7674 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7675
d4f3574e 7676 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7677 ecs->event_thread->prev_pc
00431a78 7678 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7679
4d9d9d04 7680 if (ecs->event_thread->control.trap_expected)
d4f3574e 7681 {
4d9d9d04
PA
7682 struct thread_info *tp = ecs->event_thread;
7683
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: %s has trap_expected set, "
7687 "resuming to collect trap\n",
7688 target_pid_to_str (tp->ptid));
7689
a9ba6bae
PA
7690 /* We haven't yet gotten our trap, and either: intercepted a
7691 non-signal event (e.g., a fork); or took a signal which we
7692 are supposed to pass through to the inferior. Simply
7693 continue. */
64ce06e4 7694 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7695 }
372316f1
PA
7696 else if (step_over_info_valid_p ())
7697 {
7698 /* Another thread is stepping over a breakpoint in-line. If
7699 this thread needs a step-over too, queue the request. In
7700 either case, this resume must be deferred for later. */
7701 struct thread_info *tp = ecs->event_thread;
7702
7703 if (ecs->hit_singlestep_breakpoint
7704 || thread_still_needs_step_over (tp))
7705 {
7706 if (debug_infrun)
7707 fprintf_unfiltered (gdb_stdlog,
7708 "infrun: step-over already in progress: "
7709 "step-over for %s deferred\n",
7710 target_pid_to_str (tp->ptid));
7711 thread_step_over_chain_enqueue (tp);
7712 }
7713 else
7714 {
7715 if (debug_infrun)
7716 fprintf_unfiltered (gdb_stdlog,
7717 "infrun: step-over in progress: "
7718 "resume of %s deferred\n",
7719 target_pid_to_str (tp->ptid));
7720 }
372316f1 7721 }
d4f3574e
SS
7722 else
7723 {
31e77af2 7724 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7725 int remove_bp;
7726 int remove_wps;
8d297bbf 7727 step_over_what step_what;
31e77af2 7728
d4f3574e 7729 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7730 anyway (if we got a signal, the user asked it be passed to
7731 the child)
7732 -- or --
7733 We got our expected trap, but decided we should resume from
7734 it.
d4f3574e 7735
a9ba6bae 7736 We're going to run this baby now!
d4f3574e 7737
c36b740a
VP
7738 Note that insert_breakpoints won't try to re-insert
7739 already inserted breakpoints. Therefore, we don't
7740 care if breakpoints were already inserted, or not. */
a9ba6bae 7741
31e77af2
PA
7742 /* If we need to step over a breakpoint, and we're not using
7743 displaced stepping to do so, insert all breakpoints
7744 (watchpoints, etc.) but the one we're stepping over, step one
7745 instruction, and then re-insert the breakpoint when that step
7746 is finished. */
963f9c80 7747
6c4cfb24
PA
7748 step_what = thread_still_needs_step_over (ecs->event_thread);
7749
963f9c80 7750 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7751 || (step_what & STEP_OVER_BREAKPOINT));
7752 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7753
cb71640d
PA
7754 /* We can't use displaced stepping if we need to step past a
7755 watchpoint. The instruction copied to the scratch pad would
7756 still trigger the watchpoint. */
7757 if (remove_bp
3fc8eb30 7758 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7759 {
a01bda52 7760 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7761 regcache_read_pc (regcache), remove_wps,
7762 ecs->event_thread->global_num);
45e8c884 7763 }
963f9c80 7764 else if (remove_wps)
21edc42f 7765 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7766
7767 /* If we now need to do an in-line step-over, we need to stop
7768 all other threads. Note this must be done before
7769 insert_breakpoints below, because that removes the breakpoint
7770 we're about to step over, otherwise other threads could miss
7771 it. */
fbea99ea 7772 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7773 stop_all_threads ();
abbb1732 7774
31e77af2 7775 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7776 TRY
31e77af2
PA
7777 {
7778 insert_breakpoints ();
7779 }
492d29ea 7780 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7781 {
7782 exception_print (gdb_stderr, e);
22bcd14b 7783 stop_waiting (ecs);
bdf2a94a 7784 clear_step_over_info ();
31e77af2 7785 return;
d4f3574e 7786 }
492d29ea 7787 END_CATCH
d4f3574e 7788
963f9c80 7789 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7790
64ce06e4 7791 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7792 }
7793
488f131b 7794 prepare_to_wait (ecs);
d4f3574e
SS
7795}
7796
4d9d9d04
PA
7797/* Called when we should continue running the inferior, because the
7798 current event doesn't cause a user visible stop. This does the
7799 resuming part; waiting for the next event is done elsewhere. */
7800
7801static void
7802keep_going (struct execution_control_state *ecs)
7803{
7804 if (ecs->event_thread->control.trap_expected
7805 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7806 ecs->event_thread->control.trap_expected = 0;
7807
7808 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7809 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7810 keep_going_pass_signal (ecs);
7811}
7812
104c1213
JM
7813/* This function normally comes after a resume, before
7814 handle_inferior_event exits. It takes care of any last bits of
7815 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7816
104c1213
JM
7817static void
7818prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7819{
527159b7 7820 if (debug_infrun)
8a9de0e4 7821 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7822
104c1213 7823 ecs->wait_some_more = 1;
0b333c5e
PA
7824
7825 if (!target_is_async_p ())
7826 mark_infrun_async_event_handler ();
c906108c 7827}
11cf8741 7828
fd664c91 7829/* We are done with the step range of a step/next/si/ni command.
b57bacec 7830 Called once for each n of a "step n" operation. */
fd664c91
PA
7831
7832static void
bdc36728 7833end_stepping_range (struct execution_control_state *ecs)
fd664c91 7834{
bdc36728 7835 ecs->event_thread->control.stop_step = 1;
bdc36728 7836 stop_waiting (ecs);
fd664c91
PA
7837}
7838
33d62d64
JK
7839/* Several print_*_reason functions to print why the inferior has stopped.
7840 We always print something when the inferior exits, or receives a signal.
7841 The rest of the cases are dealt with later on in normal_stop and
7842 print_it_typical. Ideally there should be a call to one of these
7843 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7844 stop_waiting is called.
33d62d64 7845
fd664c91
PA
7846 Note that we don't call these directly, instead we delegate that to
7847 the interpreters, through observers. Interpreters then call these
7848 with whatever uiout is right. */
33d62d64 7849
fd664c91
PA
7850void
7851print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7852{
fd664c91 7853 /* For CLI-like interpreters, print nothing. */
33d62d64 7854
112e8700 7855 if (uiout->is_mi_like_p ())
fd664c91 7856 {
112e8700 7857 uiout->field_string ("reason",
fd664c91
PA
7858 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7859 }
7860}
33d62d64 7861
fd664c91
PA
7862void
7863print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7864{
33d62d64 7865 annotate_signalled ();
112e8700
SM
7866 if (uiout->is_mi_like_p ())
7867 uiout->field_string
7868 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7869 uiout->text ("\nProgram terminated with signal ");
33d62d64 7870 annotate_signal_name ();
112e8700 7871 uiout->field_string ("signal-name",
2ea28649 7872 gdb_signal_to_name (siggnal));
33d62d64 7873 annotate_signal_name_end ();
112e8700 7874 uiout->text (", ");
33d62d64 7875 annotate_signal_string ();
112e8700 7876 uiout->field_string ("signal-meaning",
2ea28649 7877 gdb_signal_to_string (siggnal));
33d62d64 7878 annotate_signal_string_end ();
112e8700
SM
7879 uiout->text (".\n");
7880 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7881}
7882
fd664c91
PA
7883void
7884print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7885{
fda326dd 7886 struct inferior *inf = current_inferior ();
f2907e49 7887 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7888
33d62d64
JK
7889 annotate_exited (exitstatus);
7890 if (exitstatus)
7891 {
112e8700
SM
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7894 uiout->text ("[Inferior ");
7895 uiout->text (plongest (inf->num));
7896 uiout->text (" (");
7897 uiout->text (pidstr);
7898 uiout->text (") exited with code ");
7899 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7900 uiout->text ("]\n");
33d62d64
JK
7901 }
7902 else
11cf8741 7903 {
112e8700
SM
7904 if (uiout->is_mi_like_p ())
7905 uiout->field_string
7906 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7907 uiout->text ("[Inferior ");
7908 uiout->text (plongest (inf->num));
7909 uiout->text (" (");
7910 uiout->text (pidstr);
7911 uiout->text (") exited normally]\n");
33d62d64 7912 }
33d62d64
JK
7913}
7914
012b3a21
WT
7915/* Some targets/architectures can do extra processing/display of
7916 segmentation faults. E.g., Intel MPX boundary faults.
7917 Call the architecture dependent function to handle the fault. */
7918
7919static void
7920handle_segmentation_fault (struct ui_out *uiout)
7921{
7922 struct regcache *regcache = get_current_regcache ();
ac7936df 7923 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7924
7925 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7926 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7927}
7928
fd664c91
PA
7929void
7930print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7931{
f303dbd6
PA
7932 struct thread_info *thr = inferior_thread ();
7933
33d62d64
JK
7934 annotate_signal ();
7935
112e8700 7936 if (uiout->is_mi_like_p ())
f303dbd6
PA
7937 ;
7938 else if (show_thread_that_caused_stop ())
33d62d64 7939 {
f303dbd6 7940 const char *name;
33d62d64 7941
112e8700
SM
7942 uiout->text ("\nThread ");
7943 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7944
7945 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7946 if (name != NULL)
7947 {
112e8700
SM
7948 uiout->text (" \"");
7949 uiout->field_fmt ("name", "%s", name);
7950 uiout->text ("\"");
f303dbd6 7951 }
33d62d64 7952 }
f303dbd6 7953 else
112e8700 7954 uiout->text ("\nProgram");
f303dbd6 7955
112e8700
SM
7956 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7957 uiout->text (" stopped");
33d62d64
JK
7958 else
7959 {
112e8700 7960 uiout->text (" received signal ");
8b93c638 7961 annotate_signal_name ();
112e8700
SM
7962 if (uiout->is_mi_like_p ())
7963 uiout->field_string
7964 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7965 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7966 annotate_signal_name_end ();
112e8700 7967 uiout->text (", ");
8b93c638 7968 annotate_signal_string ();
112e8700 7969 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7970
7971 if (siggnal == GDB_SIGNAL_SEGV)
7972 handle_segmentation_fault (uiout);
7973
8b93c638 7974 annotate_signal_string_end ();
33d62d64 7975 }
112e8700 7976 uiout->text (".\n");
33d62d64 7977}
252fbfc8 7978
fd664c91
PA
7979void
7980print_no_history_reason (struct ui_out *uiout)
33d62d64 7981{
112e8700 7982 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7983}
43ff13b4 7984
0c7e1a46
PA
7985/* Print current location without a level number, if we have changed
7986 functions or hit a breakpoint. Print source line if we have one.
7987 bpstat_print contains the logic deciding in detail what to print,
7988 based on the event(s) that just occurred. */
7989
243a9253
PA
7990static void
7991print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7992{
7993 int bpstat_ret;
f486487f 7994 enum print_what source_flag;
0c7e1a46
PA
7995 int do_frame_printing = 1;
7996 struct thread_info *tp = inferior_thread ();
7997
7998 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7999 switch (bpstat_ret)
8000 {
8001 case PRINT_UNKNOWN:
8002 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8003 should) carry around the function and does (or should) use
8004 that when doing a frame comparison. */
8005 if (tp->control.stop_step
8006 && frame_id_eq (tp->control.step_frame_id,
8007 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8008 && (tp->control.step_start_function
8009 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8010 {
8011 /* Finished step, just print source line. */
8012 source_flag = SRC_LINE;
8013 }
8014 else
8015 {
8016 /* Print location and source line. */
8017 source_flag = SRC_AND_LOC;
8018 }
8019 break;
8020 case PRINT_SRC_AND_LOC:
8021 /* Print location and source line. */
8022 source_flag = SRC_AND_LOC;
8023 break;
8024 case PRINT_SRC_ONLY:
8025 source_flag = SRC_LINE;
8026 break;
8027 case PRINT_NOTHING:
8028 /* Something bogus. */
8029 source_flag = SRC_LINE;
8030 do_frame_printing = 0;
8031 break;
8032 default:
8033 internal_error (__FILE__, __LINE__, _("Unknown value."));
8034 }
8035
8036 /* The behavior of this routine with respect to the source
8037 flag is:
8038 SRC_LINE: Print only source line
8039 LOCATION: Print only location
8040 SRC_AND_LOC: Print location and source line. */
8041 if (do_frame_printing)
8042 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8043}
8044
243a9253
PA
8045/* See infrun.h. */
8046
8047void
8048print_stop_event (struct ui_out *uiout)
8049{
243a9253
PA
8050 struct target_waitstatus last;
8051 ptid_t last_ptid;
8052 struct thread_info *tp;
8053
8054 get_last_target_status (&last_ptid, &last);
8055
67ad9399
TT
8056 {
8057 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8058
67ad9399 8059 print_stop_location (&last);
243a9253 8060
67ad9399
TT
8061 /* Display the auto-display expressions. */
8062 do_displays ();
8063 }
243a9253
PA
8064
8065 tp = inferior_thread ();
8066 if (tp->thread_fsm != NULL
8067 && thread_fsm_finished_p (tp->thread_fsm))
8068 {
8069 struct return_value_info *rv;
8070
8071 rv = thread_fsm_return_value (tp->thread_fsm);
8072 if (rv != NULL)
8073 print_return_value (uiout, rv);
8074 }
0c7e1a46
PA
8075}
8076
388a7084
PA
8077/* See infrun.h. */
8078
8079void
8080maybe_remove_breakpoints (void)
8081{
8082 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8083 {
8084 if (remove_breakpoints ())
8085 {
223ffa71 8086 target_terminal::ours_for_output ();
388a7084
PA
8087 printf_filtered (_("Cannot remove breakpoints because "
8088 "program is no longer writable.\nFurther "
8089 "execution is probably impossible.\n"));
8090 }
8091 }
8092}
8093
4c2f2a79
PA
8094/* The execution context that just caused a normal stop. */
8095
8096struct stop_context
8097{
8098 /* The stop ID. */
8099 ULONGEST stop_id;
c906108c 8100
4c2f2a79 8101 /* The event PTID. */
c906108c 8102
4c2f2a79
PA
8103 ptid_t ptid;
8104
8105 /* If stopp for a thread event, this is the thread that caused the
8106 stop. */
8107 struct thread_info *thread;
8108
8109 /* The inferior that caused the stop. */
8110 int inf_num;
8111};
8112
8113/* Returns a new stop context. If stopped for a thread event, this
8114 takes a strong reference to the thread. */
8115
8116static struct stop_context *
8117save_stop_context (void)
8118{
224c3ddb 8119 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8120
8121 sc->stop_id = get_stop_id ();
8122 sc->ptid = inferior_ptid;
8123 sc->inf_num = current_inferior ()->num;
8124
d7e15655 8125 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8126 {
8127 /* Take a strong reference so that the thread can't be deleted
8128 yet. */
8129 sc->thread = inferior_thread ();
803bdfe4 8130 sc->thread->incref ();
4c2f2a79
PA
8131 }
8132 else
8133 sc->thread = NULL;
8134
8135 return sc;
8136}
8137
8138/* Release a stop context previously created with save_stop_context.
8139 Releases the strong reference to the thread as well. */
8140
8141static void
8142release_stop_context_cleanup (void *arg)
8143{
9a3c8263 8144 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8145
8146 if (sc->thread != NULL)
803bdfe4 8147 sc->thread->decref ();
4c2f2a79
PA
8148 xfree (sc);
8149}
8150
8151/* Return true if the current context no longer matches the saved stop
8152 context. */
8153
8154static int
8155stop_context_changed (struct stop_context *prev)
8156{
d7e15655 8157 if (prev->ptid != inferior_ptid)
4c2f2a79
PA
8158 return 1;
8159 if (prev->inf_num != current_inferior ()->num)
8160 return 1;
8161 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8162 return 1;
8163 if (get_stop_id () != prev->stop_id)
8164 return 1;
8165 return 0;
8166}
8167
8168/* See infrun.h. */
8169
8170int
96baa820 8171normal_stop (void)
c906108c 8172{
73b65bb0
DJ
8173 struct target_waitstatus last;
8174 ptid_t last_ptid;
8175
8176 get_last_target_status (&last_ptid, &last);
8177
4c2f2a79
PA
8178 new_stop_id ();
8179
29f49a6a
PA
8180 /* If an exception is thrown from this point on, make sure to
8181 propagate GDB's knowledge of the executing state to the
8182 frontend/user running state. A QUIT is an easy exception to see
8183 here, so do this before any filtered output. */
731f534f
PA
8184
8185 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8186
c35b1492 8187 if (!non_stop)
731f534f 8188 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8189 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8190 || last.kind == TARGET_WAITKIND_EXITED)
8191 {
8192 /* On some targets, we may still have live threads in the
8193 inferior when we get a process exit event. E.g., for
8194 "checkpoint", when the current checkpoint/fork exits,
8195 linux-fork.c automatically switches to another fork from
8196 within target_mourn_inferior. */
731f534f
PA
8197 if (inferior_ptid != null_ptid)
8198 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8199 }
8200 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8201 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8202
b57bacec
PA
8203 /* As we're presenting a stop, and potentially removing breakpoints,
8204 update the thread list so we can tell whether there are threads
8205 running on the target. With target remote, for example, we can
8206 only learn about new threads when we explicitly update the thread
8207 list. Do this before notifying the interpreters about signal
8208 stops, end of stepping ranges, etc., so that the "new thread"
8209 output is emitted before e.g., "Program received signal FOO",
8210 instead of after. */
8211 update_thread_list ();
8212
8213 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8214 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8215
c906108c
SS
8216 /* As with the notification of thread events, we want to delay
8217 notifying the user that we've switched thread context until
8218 the inferior actually stops.
8219
73b65bb0
DJ
8220 There's no point in saying anything if the inferior has exited.
8221 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8222 "received a signal".
8223
8224 Also skip saying anything in non-stop mode. In that mode, as we
8225 don't want GDB to switch threads behind the user's back, to avoid
8226 races where the user is typing a command to apply to thread x,
8227 but GDB switches to thread y before the user finishes entering
8228 the command, fetch_inferior_event installs a cleanup to restore
8229 the current thread back to the thread the user had selected right
8230 after this event is handled, so we're not really switching, only
8231 informing of a stop. */
4f8d22e3 8232 if (!non_stop
731f534f 8233 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8234 && target_has_execution
8235 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8236 && last.kind != TARGET_WAITKIND_EXITED
8237 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8238 {
0e454242 8239 SWITCH_THRU_ALL_UIS ()
3b12939d 8240 {
223ffa71 8241 target_terminal::ours_for_output ();
3b12939d
PA
8242 printf_filtered (_("[Switching to %s]\n"),
8243 target_pid_to_str (inferior_ptid));
8244 annotate_thread_changed ();
8245 }
39f77062 8246 previous_inferior_ptid = inferior_ptid;
c906108c 8247 }
c906108c 8248
0e5bf2a8
PA
8249 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8250 {
0e454242 8251 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8252 if (current_ui->prompt_state == PROMPT_BLOCKED)
8253 {
223ffa71 8254 target_terminal::ours_for_output ();
3b12939d
PA
8255 printf_filtered (_("No unwaited-for children left.\n"));
8256 }
0e5bf2a8
PA
8257 }
8258
b57bacec 8259 /* Note: this depends on the update_thread_list call above. */
388a7084 8260 maybe_remove_breakpoints ();
c906108c 8261
c906108c
SS
8262 /* If an auto-display called a function and that got a signal,
8263 delete that auto-display to avoid an infinite recursion. */
8264
8265 if (stopped_by_random_signal)
8266 disable_current_display ();
8267
0e454242 8268 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8269 {
8270 async_enable_stdin ();
8271 }
c906108c 8272
388a7084 8273 /* Let the user/frontend see the threads as stopped. */
731f534f 8274 maybe_finish_thread_state.reset ();
388a7084
PA
8275
8276 /* Select innermost stack frame - i.e., current frame is frame 0,
8277 and current location is based on that. Handle the case where the
8278 dummy call is returning after being stopped. E.g. the dummy call
8279 previously hit a breakpoint. (If the dummy call returns
8280 normally, we won't reach here.) Do this before the stop hook is
8281 run, so that it doesn't get to see the temporary dummy frame,
8282 which is not where we'll present the stop. */
8283 if (has_stack_frames ())
8284 {
8285 if (stop_stack_dummy == STOP_STACK_DUMMY)
8286 {
8287 /* Pop the empty frame that contains the stack dummy. This
8288 also restores inferior state prior to the call (struct
8289 infcall_suspend_state). */
8290 struct frame_info *frame = get_current_frame ();
8291
8292 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8293 frame_pop (frame);
8294 /* frame_pop calls reinit_frame_cache as the last thing it
8295 does which means there's now no selected frame. */
8296 }
8297
8298 select_frame (get_current_frame ());
8299
8300 /* Set the current source location. */
8301 set_current_sal_from_frame (get_current_frame ());
8302 }
dd7e2d2b
PA
8303
8304 /* Look up the hook_stop and run it (CLI internally handles problem
8305 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8306 if (stop_command != NULL)
8307 {
8308 struct stop_context *saved_context = save_stop_context ();
8309 struct cleanup *old_chain
8310 = make_cleanup (release_stop_context_cleanup, saved_context);
8311
bf469271
PA
8312 TRY
8313 {
8314 execute_cmd_pre_hook (stop_command);
8315 }
8316 CATCH (ex, RETURN_MASK_ALL)
8317 {
8318 exception_fprintf (gdb_stderr, ex,
8319 "Error while running hook_stop:\n");
8320 }
8321 END_CATCH
4c2f2a79
PA
8322
8323 /* If the stop hook resumes the target, then there's no point in
8324 trying to notify about the previous stop; its context is
8325 gone. Likewise if the command switches thread or inferior --
8326 the observers would print a stop for the wrong
8327 thread/inferior. */
8328 if (stop_context_changed (saved_context))
8329 {
8330 do_cleanups (old_chain);
8331 return 1;
8332 }
8333 do_cleanups (old_chain);
8334 }
dd7e2d2b 8335
388a7084
PA
8336 /* Notify observers about the stop. This is where the interpreters
8337 print the stop event. */
d7e15655 8338 if (inferior_ptid != null_ptid)
76727919 8339 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8340 stop_print_frame);
8341 else
76727919 8342 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8343
243a9253
PA
8344 annotate_stopped ();
8345
48844aa6
PA
8346 if (target_has_execution)
8347 {
8348 if (last.kind != TARGET_WAITKIND_SIGNALLED
8349 && last.kind != TARGET_WAITKIND_EXITED)
8350 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8351 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8352 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8353 }
6c95b8df
PA
8354
8355 /* Try to get rid of automatically added inferiors that are no
8356 longer needed. Keeping those around slows down things linearly.
8357 Note that this never removes the current inferior. */
8358 prune_inferiors ();
4c2f2a79
PA
8359
8360 return 0;
c906108c 8361}
c906108c 8362\f
c5aa993b 8363int
96baa820 8364signal_stop_state (int signo)
c906108c 8365{
d6b48e9c 8366 return signal_stop[signo];
c906108c
SS
8367}
8368
c5aa993b 8369int
96baa820 8370signal_print_state (int signo)
c906108c
SS
8371{
8372 return signal_print[signo];
8373}
8374
c5aa993b 8375int
96baa820 8376signal_pass_state (int signo)
c906108c
SS
8377{
8378 return signal_program[signo];
8379}
8380
2455069d
UW
8381static void
8382signal_cache_update (int signo)
8383{
8384 if (signo == -1)
8385 {
a493e3e2 8386 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8387 signal_cache_update (signo);
8388
8389 return;
8390 }
8391
8392 signal_pass[signo] = (signal_stop[signo] == 0
8393 && signal_print[signo] == 0
ab04a2af
TT
8394 && signal_program[signo] == 1
8395 && signal_catch[signo] == 0);
2455069d
UW
8396}
8397
488f131b 8398int
7bda5e4a 8399signal_stop_update (int signo, int state)
d4f3574e
SS
8400{
8401 int ret = signal_stop[signo];
abbb1732 8402
d4f3574e 8403 signal_stop[signo] = state;
2455069d 8404 signal_cache_update (signo);
d4f3574e
SS
8405 return ret;
8406}
8407
488f131b 8408int
7bda5e4a 8409signal_print_update (int signo, int state)
d4f3574e
SS
8410{
8411 int ret = signal_print[signo];
abbb1732 8412
d4f3574e 8413 signal_print[signo] = state;
2455069d 8414 signal_cache_update (signo);
d4f3574e
SS
8415 return ret;
8416}
8417
488f131b 8418int
7bda5e4a 8419signal_pass_update (int signo, int state)
d4f3574e
SS
8420{
8421 int ret = signal_program[signo];
abbb1732 8422
d4f3574e 8423 signal_program[signo] = state;
2455069d 8424 signal_cache_update (signo);
d4f3574e
SS
8425 return ret;
8426}
8427
ab04a2af
TT
8428/* Update the global 'signal_catch' from INFO and notify the
8429 target. */
8430
8431void
8432signal_catch_update (const unsigned int *info)
8433{
8434 int i;
8435
8436 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8437 signal_catch[i] = info[i] > 0;
8438 signal_cache_update (-1);
8439 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8440}
8441
c906108c 8442static void
96baa820 8443sig_print_header (void)
c906108c 8444{
3e43a32a
MS
8445 printf_filtered (_("Signal Stop\tPrint\tPass "
8446 "to program\tDescription\n"));
c906108c
SS
8447}
8448
8449static void
2ea28649 8450sig_print_info (enum gdb_signal oursig)
c906108c 8451{
2ea28649 8452 const char *name = gdb_signal_to_name (oursig);
c906108c 8453 int name_padding = 13 - strlen (name);
96baa820 8454
c906108c
SS
8455 if (name_padding <= 0)
8456 name_padding = 0;
8457
8458 printf_filtered ("%s", name);
488f131b 8459 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8460 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8461 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8462 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8463 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8464}
8465
8466/* Specify how various signals in the inferior should be handled. */
8467
8468static void
0b39b52e 8469handle_command (const char *args, int from_tty)
c906108c 8470{
c906108c
SS
8471 int digits, wordlen;
8472 int sigfirst, signum, siglast;
2ea28649 8473 enum gdb_signal oursig;
c906108c
SS
8474 int allsigs;
8475 int nsigs;
8476 unsigned char *sigs;
c906108c
SS
8477
8478 if (args == NULL)
8479 {
e2e0b3e5 8480 error_no_arg (_("signal to handle"));
c906108c
SS
8481 }
8482
1777feb0 8483 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8484
a493e3e2 8485 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8486 sigs = (unsigned char *) alloca (nsigs);
8487 memset (sigs, 0, nsigs);
8488
1777feb0 8489 /* Break the command line up into args. */
c906108c 8490
773a1edc 8491 gdb_argv built_argv (args);
c906108c
SS
8492
8493 /* Walk through the args, looking for signal oursigs, signal names, and
8494 actions. Signal numbers and signal names may be interspersed with
8495 actions, with the actions being performed for all signals cumulatively
1777feb0 8496 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8497
773a1edc 8498 for (char *arg : built_argv)
c906108c 8499 {
773a1edc
TT
8500 wordlen = strlen (arg);
8501 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8502 {;
8503 }
8504 allsigs = 0;
8505 sigfirst = siglast = -1;
8506
773a1edc 8507 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8508 {
8509 /* Apply action to all signals except those used by the
1777feb0 8510 debugger. Silently skip those. */
c906108c
SS
8511 allsigs = 1;
8512 sigfirst = 0;
8513 siglast = nsigs - 1;
8514 }
773a1edc 8515 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8516 {
8517 SET_SIGS (nsigs, sigs, signal_stop);
8518 SET_SIGS (nsigs, sigs, signal_print);
8519 }
773a1edc 8520 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8521 {
8522 UNSET_SIGS (nsigs, sigs, signal_program);
8523 }
773a1edc 8524 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8525 {
8526 SET_SIGS (nsigs, sigs, signal_print);
8527 }
773a1edc 8528 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8529 {
8530 SET_SIGS (nsigs, sigs, signal_program);
8531 }
773a1edc 8532 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8533 {
8534 UNSET_SIGS (nsigs, sigs, signal_stop);
8535 }
773a1edc 8536 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8537 {
8538 SET_SIGS (nsigs, sigs, signal_program);
8539 }
773a1edc 8540 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8541 {
8542 UNSET_SIGS (nsigs, sigs, signal_print);
8543 UNSET_SIGS (nsigs, sigs, signal_stop);
8544 }
773a1edc 8545 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8546 {
8547 UNSET_SIGS (nsigs, sigs, signal_program);
8548 }
8549 else if (digits > 0)
8550 {
8551 /* It is numeric. The numeric signal refers to our own
8552 internal signal numbering from target.h, not to host/target
8553 signal number. This is a feature; users really should be
8554 using symbolic names anyway, and the common ones like
8555 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8556
8557 sigfirst = siglast = (int)
773a1edc
TT
8558 gdb_signal_from_command (atoi (arg));
8559 if (arg[digits] == '-')
c906108c
SS
8560 {
8561 siglast = (int)
773a1edc 8562 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8563 }
8564 if (sigfirst > siglast)
8565 {
1777feb0 8566 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8567 signum = sigfirst;
8568 sigfirst = siglast;
8569 siglast = signum;
8570 }
8571 }
8572 else
8573 {
773a1edc 8574 oursig = gdb_signal_from_name (arg);
a493e3e2 8575 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8576 {
8577 sigfirst = siglast = (int) oursig;
8578 }
8579 else
8580 {
8581 /* Not a number and not a recognized flag word => complain. */
773a1edc 8582 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8583 }
8584 }
8585
8586 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8587 which signals to apply actions to. */
c906108c
SS
8588
8589 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8590 {
2ea28649 8591 switch ((enum gdb_signal) signum)
c906108c 8592 {
a493e3e2
PA
8593 case GDB_SIGNAL_TRAP:
8594 case GDB_SIGNAL_INT:
c906108c
SS
8595 if (!allsigs && !sigs[signum])
8596 {
9e2f0ad4 8597 if (query (_("%s is used by the debugger.\n\
3e43a32a 8598Are you sure you want to change it? "),
2ea28649 8599 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8600 {
8601 sigs[signum] = 1;
8602 }
8603 else
8604 {
a3f17187 8605 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8606 gdb_flush (gdb_stdout);
8607 }
8608 }
8609 break;
a493e3e2
PA
8610 case GDB_SIGNAL_0:
8611 case GDB_SIGNAL_DEFAULT:
8612 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8613 /* Make sure that "all" doesn't print these. */
8614 break;
8615 default:
8616 sigs[signum] = 1;
8617 break;
8618 }
8619 }
c906108c
SS
8620 }
8621
3a031f65
PA
8622 for (signum = 0; signum < nsigs; signum++)
8623 if (sigs[signum])
8624 {
2455069d 8625 signal_cache_update (-1);
a493e3e2
PA
8626 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8627 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8628
3a031f65
PA
8629 if (from_tty)
8630 {
8631 /* Show the results. */
8632 sig_print_header ();
8633 for (; signum < nsigs; signum++)
8634 if (sigs[signum])
aead7601 8635 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8636 }
8637
8638 break;
8639 }
c906108c
SS
8640}
8641
de0bea00
MF
8642/* Complete the "handle" command. */
8643
eb3ff9a5 8644static void
de0bea00 8645handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8646 completion_tracker &tracker,
6f937416 8647 const char *text, const char *word)
de0bea00 8648{
de0bea00
MF
8649 static const char * const keywords[] =
8650 {
8651 "all",
8652 "stop",
8653 "ignore",
8654 "print",
8655 "pass",
8656 "nostop",
8657 "noignore",
8658 "noprint",
8659 "nopass",
8660 NULL,
8661 };
8662
eb3ff9a5
PA
8663 signal_completer (ignore, tracker, text, word);
8664 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8665}
8666
2ea28649
PA
8667enum gdb_signal
8668gdb_signal_from_command (int num)
ed01b82c
PA
8669{
8670 if (num >= 1 && num <= 15)
2ea28649 8671 return (enum gdb_signal) num;
ed01b82c
PA
8672 error (_("Only signals 1-15 are valid as numeric signals.\n\
8673Use \"info signals\" for a list of symbolic signals."));
8674}
8675
c906108c
SS
8676/* Print current contents of the tables set by the handle command.
8677 It is possible we should just be printing signals actually used
8678 by the current target (but for things to work right when switching
8679 targets, all signals should be in the signal tables). */
8680
8681static void
1d12d88f 8682info_signals_command (const char *signum_exp, int from_tty)
c906108c 8683{
2ea28649 8684 enum gdb_signal oursig;
abbb1732 8685
c906108c
SS
8686 sig_print_header ();
8687
8688 if (signum_exp)
8689 {
8690 /* First see if this is a symbol name. */
2ea28649 8691 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8692 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8693 {
8694 /* No, try numeric. */
8695 oursig =
2ea28649 8696 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8697 }
8698 sig_print_info (oursig);
8699 return;
8700 }
8701
8702 printf_filtered ("\n");
8703 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8704 for (oursig = GDB_SIGNAL_FIRST;
8705 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8706 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8707 {
8708 QUIT;
8709
a493e3e2
PA
8710 if (oursig != GDB_SIGNAL_UNKNOWN
8711 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8712 sig_print_info (oursig);
8713 }
8714
3e43a32a
MS
8715 printf_filtered (_("\nUse the \"handle\" command "
8716 "to change these tables.\n"));
c906108c 8717}
4aa995e1
PA
8718
8719/* The $_siginfo convenience variable is a bit special. We don't know
8720 for sure the type of the value until we actually have a chance to
7a9dd1b2 8721 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8722 also dependent on which thread you have selected.
8723
8724 1. making $_siginfo be an internalvar that creates a new value on
8725 access.
8726
8727 2. making the value of $_siginfo be an lval_computed value. */
8728
8729/* This function implements the lval_computed support for reading a
8730 $_siginfo value. */
8731
8732static void
8733siginfo_value_read (struct value *v)
8734{
8735 LONGEST transferred;
8736
a911d87a
PA
8737 /* If we can access registers, so can we access $_siginfo. Likewise
8738 vice versa. */
8739 validate_registers_access ();
c709acd1 8740
4aa995e1 8741 transferred =
8b88a78e 8742 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8743 NULL,
8744 value_contents_all_raw (v),
8745 value_offset (v),
8746 TYPE_LENGTH (value_type (v)));
8747
8748 if (transferred != TYPE_LENGTH (value_type (v)))
8749 error (_("Unable to read siginfo"));
8750}
8751
8752/* This function implements the lval_computed support for writing a
8753 $_siginfo value. */
8754
8755static void
8756siginfo_value_write (struct value *v, struct value *fromval)
8757{
8758 LONGEST transferred;
8759
a911d87a
PA
8760 /* If we can access registers, so can we access $_siginfo. Likewise
8761 vice versa. */
8762 validate_registers_access ();
c709acd1 8763
8b88a78e 8764 transferred = target_write (current_top_target (),
4aa995e1
PA
8765 TARGET_OBJECT_SIGNAL_INFO,
8766 NULL,
8767 value_contents_all_raw (fromval),
8768 value_offset (v),
8769 TYPE_LENGTH (value_type (fromval)));
8770
8771 if (transferred != TYPE_LENGTH (value_type (fromval)))
8772 error (_("Unable to write siginfo"));
8773}
8774
c8f2448a 8775static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8776 {
8777 siginfo_value_read,
8778 siginfo_value_write
8779 };
8780
8781/* Return a new value with the correct type for the siginfo object of
78267919
UW
8782 the current thread using architecture GDBARCH. Return a void value
8783 if there's no object available. */
4aa995e1 8784
2c0b251b 8785static struct value *
22d2b532
SDJ
8786siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8787 void *ignore)
4aa995e1 8788{
4aa995e1 8789 if (target_has_stack
d7e15655 8790 && inferior_ptid != null_ptid
78267919 8791 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8792 {
78267919 8793 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8794
78267919 8795 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8796 }
8797
78267919 8798 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8799}
8800
c906108c 8801\f
16c381f0
JK
8802/* infcall_suspend_state contains state about the program itself like its
8803 registers and any signal it received when it last stopped.
8804 This state must be restored regardless of how the inferior function call
8805 ends (either successfully, or after it hits a breakpoint or signal)
8806 if the program is to properly continue where it left off. */
8807
8808struct infcall_suspend_state
7a292a7a 8809{
16c381f0 8810 struct thread_suspend_state thread_suspend;
16c381f0
JK
8811
8812 /* Other fields: */
daf6667d 8813 readonly_detached_regcache *registers;
1736ad11 8814
35515841 8815 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8816 struct gdbarch *siginfo_gdbarch;
8817
8818 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8819 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8820 content would be invalid. */
8821 gdb_byte *siginfo_data;
b89667eb
DE
8822};
8823
16c381f0
JK
8824struct infcall_suspend_state *
8825save_infcall_suspend_state (void)
b89667eb 8826{
16c381f0 8827 struct infcall_suspend_state *inf_state;
b89667eb 8828 struct thread_info *tp = inferior_thread ();
1736ad11 8829 struct regcache *regcache = get_current_regcache ();
ac7936df 8830 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8831 gdb_byte *siginfo_data = NULL;
8832
8833 if (gdbarch_get_siginfo_type_p (gdbarch))
8834 {
8835 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8836 size_t len = TYPE_LENGTH (type);
8837 struct cleanup *back_to;
8838
224c3ddb 8839 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8840 back_to = make_cleanup (xfree, siginfo_data);
8841
8b88a78e 8842 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1736ad11
JK
8843 siginfo_data, 0, len) == len)
8844 discard_cleanups (back_to);
8845 else
8846 {
8847 /* Errors ignored. */
8848 do_cleanups (back_to);
8849 siginfo_data = NULL;
8850 }
8851 }
8852
41bf6aca 8853 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8854
8855 if (siginfo_data)
8856 {
8857 inf_state->siginfo_gdbarch = gdbarch;
8858 inf_state->siginfo_data = siginfo_data;
8859 }
b89667eb 8860
16c381f0 8861 inf_state->thread_suspend = tp->suspend;
16c381f0 8862
35515841 8863 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8864 GDB_SIGNAL_0 anyway. */
8865 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8866
daf6667d 8867 inf_state->registers = new readonly_detached_regcache (*regcache);
b89667eb
DE
8868
8869 return inf_state;
8870}
8871
8872/* Restore inferior session state to INF_STATE. */
8873
8874void
16c381f0 8875restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8876{
8877 struct thread_info *tp = inferior_thread ();
1736ad11 8878 struct regcache *regcache = get_current_regcache ();
ac7936df 8879 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8880
16c381f0 8881 tp->suspend = inf_state->thread_suspend;
16c381f0 8882
1736ad11
JK
8883 if (inf_state->siginfo_gdbarch == gdbarch)
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8886
8887 /* Errors ignored. */
8b88a78e 8888 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8889 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8890 }
8891
b89667eb
DE
8892 /* The inferior can be gone if the user types "print exit(0)"
8893 (and perhaps other times). */
8894 if (target_has_execution)
8895 /* NB: The register write goes through to the target. */
fc5b8736 8896 regcache->restore (inf_state->registers);
803b5f95 8897
16c381f0 8898 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8899}
8900
8901static void
16c381f0 8902do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8903{
9a3c8263 8904 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8905}
8906
8907struct cleanup *
16c381f0
JK
8908make_cleanup_restore_infcall_suspend_state
8909 (struct infcall_suspend_state *inf_state)
b89667eb 8910{
16c381f0 8911 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8912}
8913
8914void
16c381f0 8915discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8916{
c0e383c6 8917 delete inf_state->registers;
803b5f95 8918 xfree (inf_state->siginfo_data);
b89667eb
DE
8919 xfree (inf_state);
8920}
8921
daf6667d 8922readonly_detached_regcache *
16c381f0 8923get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8924{
8925 return inf_state->registers;
8926}
8927
16c381f0
JK
8928/* infcall_control_state contains state regarding gdb's control of the
8929 inferior itself like stepping control. It also contains session state like
8930 the user's currently selected frame. */
b89667eb 8931
16c381f0 8932struct infcall_control_state
b89667eb 8933{
16c381f0
JK
8934 struct thread_control_state thread_control;
8935 struct inferior_control_state inferior_control;
d82142e2
JK
8936
8937 /* Other fields: */
8938 enum stop_stack_kind stop_stack_dummy;
8939 int stopped_by_random_signal;
7a292a7a 8940
b89667eb 8941 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8942 struct frame_id selected_frame_id;
7a292a7a
SS
8943};
8944
c906108c 8945/* Save all of the information associated with the inferior<==>gdb
b89667eb 8946 connection. */
c906108c 8947
16c381f0
JK
8948struct infcall_control_state *
8949save_infcall_control_state (void)
c906108c 8950{
8d749320
SM
8951 struct infcall_control_state *inf_status =
8952 XNEW (struct infcall_control_state);
4e1c45ea 8953 struct thread_info *tp = inferior_thread ();
d6b48e9c 8954 struct inferior *inf = current_inferior ();
7a292a7a 8955
16c381f0
JK
8956 inf_status->thread_control = tp->control;
8957 inf_status->inferior_control = inf->control;
d82142e2 8958
8358c15c 8959 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8960 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8961
16c381f0
JK
8962 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8963 chain. If caller's caller is walking the chain, they'll be happier if we
8964 hand them back the original chain when restore_infcall_control_state is
8965 called. */
8966 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8967
8968 /* Other fields: */
8969 inf_status->stop_stack_dummy = stop_stack_dummy;
8970 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8971
206415a3 8972 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8973
7a292a7a 8974 return inf_status;
c906108c
SS
8975}
8976
bf469271
PA
8977static void
8978restore_selected_frame (const frame_id &fid)
c906108c 8979{
bf469271 8980 frame_info *frame = frame_find_by_id (fid);
c906108c 8981
aa0cd9c1
AC
8982 /* If inf_status->selected_frame_id is NULL, there was no previously
8983 selected frame. */
101dcfbe 8984 if (frame == NULL)
c906108c 8985 {
8a3fe4f8 8986 warning (_("Unable to restore previously selected frame."));
bf469271 8987 return;
c906108c
SS
8988 }
8989
0f7d239c 8990 select_frame (frame);
c906108c
SS
8991}
8992
b89667eb
DE
8993/* Restore inferior session state to INF_STATUS. */
8994
c906108c 8995void
16c381f0 8996restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8997{
4e1c45ea 8998 struct thread_info *tp = inferior_thread ();
d6b48e9c 8999 struct inferior *inf = current_inferior ();
4e1c45ea 9000
8358c15c
JK
9001 if (tp->control.step_resume_breakpoint)
9002 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9003
5b79abe7
TT
9004 if (tp->control.exception_resume_breakpoint)
9005 tp->control.exception_resume_breakpoint->disposition
9006 = disp_del_at_next_stop;
9007
d82142e2 9008 /* Handle the bpstat_copy of the chain. */
16c381f0 9009 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9010
16c381f0
JK
9011 tp->control = inf_status->thread_control;
9012 inf->control = inf_status->inferior_control;
d82142e2
JK
9013
9014 /* Other fields: */
9015 stop_stack_dummy = inf_status->stop_stack_dummy;
9016 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9017
b89667eb 9018 if (target_has_stack)
c906108c 9019 {
bf469271 9020 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9021 walking the stack might encounter a garbage pointer and
9022 error() trying to dereference it. */
bf469271
PA
9023 TRY
9024 {
9025 restore_selected_frame (inf_status->selected_frame_id);
9026 }
9027 CATCH (ex, RETURN_MASK_ERROR)
9028 {
9029 exception_fprintf (gdb_stderr, ex,
9030 "Unable to restore previously selected frame:\n");
9031 /* Error in restoring the selected frame. Select the
9032 innermost frame. */
9033 select_frame (get_current_frame ());
9034 }
9035 END_CATCH
c906108c 9036 }
c906108c 9037
72cec141 9038 xfree (inf_status);
7a292a7a 9039}
c906108c 9040
74b7792f 9041static void
16c381f0 9042do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9043{
9a3c8263 9044 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9045}
9046
9047struct cleanup *
16c381f0
JK
9048make_cleanup_restore_infcall_control_state
9049 (struct infcall_control_state *inf_status)
74b7792f 9050{
16c381f0 9051 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9052}
9053
c906108c 9054void
16c381f0 9055discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9056{
8358c15c
JK
9057 if (inf_status->thread_control.step_resume_breakpoint)
9058 inf_status->thread_control.step_resume_breakpoint->disposition
9059 = disp_del_at_next_stop;
9060
5b79abe7
TT
9061 if (inf_status->thread_control.exception_resume_breakpoint)
9062 inf_status->thread_control.exception_resume_breakpoint->disposition
9063 = disp_del_at_next_stop;
9064
1777feb0 9065 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9066 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9067
72cec141 9068 xfree (inf_status);
7a292a7a 9069}
b89667eb 9070\f
7f89fd65 9071/* See infrun.h. */
0c557179
SDJ
9072
9073void
9074clear_exit_convenience_vars (void)
9075{
9076 clear_internalvar (lookup_internalvar ("_exitsignal"));
9077 clear_internalvar (lookup_internalvar ("_exitcode"));
9078}
c5aa993b 9079\f
488f131b 9080
b2175913
MS
9081/* User interface for reverse debugging:
9082 Set exec-direction / show exec-direction commands
9083 (returns error unless target implements to_set_exec_direction method). */
9084
170742de 9085enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9086static const char exec_forward[] = "forward";
9087static const char exec_reverse[] = "reverse";
9088static const char *exec_direction = exec_forward;
40478521 9089static const char *const exec_direction_names[] = {
b2175913
MS
9090 exec_forward,
9091 exec_reverse,
9092 NULL
9093};
9094
9095static void
eb4c3f4a 9096set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9097 struct cmd_list_element *cmd)
9098{
9099 if (target_can_execute_reverse)
9100 {
9101 if (!strcmp (exec_direction, exec_forward))
9102 execution_direction = EXEC_FORWARD;
9103 else if (!strcmp (exec_direction, exec_reverse))
9104 execution_direction = EXEC_REVERSE;
9105 }
8bbed405
MS
9106 else
9107 {
9108 exec_direction = exec_forward;
9109 error (_("Target does not support this operation."));
9110 }
b2175913
MS
9111}
9112
9113static void
9114show_exec_direction_func (struct ui_file *out, int from_tty,
9115 struct cmd_list_element *cmd, const char *value)
9116{
9117 switch (execution_direction) {
9118 case EXEC_FORWARD:
9119 fprintf_filtered (out, _("Forward.\n"));
9120 break;
9121 case EXEC_REVERSE:
9122 fprintf_filtered (out, _("Reverse.\n"));
9123 break;
b2175913 9124 default:
d8b34453
PA
9125 internal_error (__FILE__, __LINE__,
9126 _("bogus execution_direction value: %d"),
9127 (int) execution_direction);
b2175913
MS
9128 }
9129}
9130
d4db2f36
PA
9131static void
9132show_schedule_multiple (struct ui_file *file, int from_tty,
9133 struct cmd_list_element *c, const char *value)
9134{
3e43a32a
MS
9135 fprintf_filtered (file, _("Resuming the execution of threads "
9136 "of all processes is %s.\n"), value);
d4db2f36 9137}
ad52ddc6 9138
22d2b532
SDJ
9139/* Implementation of `siginfo' variable. */
9140
9141static const struct internalvar_funcs siginfo_funcs =
9142{
9143 siginfo_make_value,
9144 NULL,
9145 NULL
9146};
9147
372316f1
PA
9148/* Callback for infrun's target events source. This is marked when a
9149 thread has a pending status to process. */
9150
9151static void
9152infrun_async_inferior_event_handler (gdb_client_data data)
9153{
372316f1
PA
9154 inferior_event_handler (INF_REG_EVENT, NULL);
9155}
9156
c906108c 9157void
96baa820 9158_initialize_infrun (void)
c906108c 9159{
52f0bd74
AC
9160 int i;
9161 int numsigs;
de0bea00 9162 struct cmd_list_element *c;
c906108c 9163
372316f1
PA
9164 /* Register extra event sources in the event loop. */
9165 infrun_async_inferior_event_token
9166 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9167
11db9430 9168 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9169What debugger does when program gets various signals.\n\
9170Specify a signal as argument to print info on that signal only."));
c906108c
SS
9171 add_info_alias ("handle", "signals", 0);
9172
de0bea00 9173 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9174Specify how to handle signals.\n\
486c7739 9175Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9176Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9177If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9178will be displayed instead.\n\
9179\n\
c906108c
SS
9180Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9181from 1-15 are allowed for compatibility with old versions of GDB.\n\
9182Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9183The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9184used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9185\n\
1bedd215 9186Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9187\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9188Stop means reenter debugger if this signal happens (implies print).\n\
9189Print means print a message if this signal happens.\n\
9190Pass means let program see this signal; otherwise program doesn't know.\n\
9191Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9192Pass and Stop may be combined.\n\
9193\n\
9194Multiple signals may be specified. Signal numbers and signal names\n\
9195may be interspersed with actions, with the actions being performed for\n\
9196all signals cumulatively specified."));
de0bea00 9197 set_cmd_completer (c, handle_completer);
486c7739 9198
c906108c 9199 if (!dbx_commands)
1a966eab
AC
9200 stop_command = add_cmd ("stop", class_obscure,
9201 not_just_help_class_command, _("\
9202There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9203This allows you to set a list of commands to be run each time execution\n\
1a966eab 9204of the program stops."), &cmdlist);
c906108c 9205
ccce17b0 9206 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9207Set inferior debugging."), _("\
9208Show inferior debugging."), _("\
9209When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9210 NULL,
9211 show_debug_infrun,
9212 &setdebuglist, &showdebuglist);
527159b7 9213
3e43a32a
MS
9214 add_setshow_boolean_cmd ("displaced", class_maintenance,
9215 &debug_displaced, _("\
237fc4c9
PA
9216Set displaced stepping debugging."), _("\
9217Show displaced stepping debugging."), _("\
9218When non-zero, displaced stepping specific debugging is enabled."),
9219 NULL,
9220 show_debug_displaced,
9221 &setdebuglist, &showdebuglist);
9222
ad52ddc6
PA
9223 add_setshow_boolean_cmd ("non-stop", no_class,
9224 &non_stop_1, _("\
9225Set whether gdb controls the inferior in non-stop mode."), _("\
9226Show whether gdb controls the inferior in non-stop mode."), _("\
9227When debugging a multi-threaded program and this setting is\n\
9228off (the default, also called all-stop mode), when one thread stops\n\
9229(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9230all other threads in the program while you interact with the thread of\n\
9231interest. When you continue or step a thread, you can allow the other\n\
9232threads to run, or have them remain stopped, but while you inspect any\n\
9233thread's state, all threads stop.\n\
9234\n\
9235In non-stop mode, when one thread stops, other threads can continue\n\
9236to run freely. You'll be able to step each thread independently,\n\
9237leave it stopped or free to run as needed."),
9238 set_non_stop,
9239 show_non_stop,
9240 &setlist,
9241 &showlist);
9242
a493e3e2 9243 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9244 signal_stop = XNEWVEC (unsigned char, numsigs);
9245 signal_print = XNEWVEC (unsigned char, numsigs);
9246 signal_program = XNEWVEC (unsigned char, numsigs);
9247 signal_catch = XNEWVEC (unsigned char, numsigs);
9248 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9249 for (i = 0; i < numsigs; i++)
9250 {
9251 signal_stop[i] = 1;
9252 signal_print[i] = 1;
9253 signal_program[i] = 1;
ab04a2af 9254 signal_catch[i] = 0;
c906108c
SS
9255 }
9256
4d9d9d04
PA
9257 /* Signals caused by debugger's own actions should not be given to
9258 the program afterwards.
9259
9260 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9261 explicitly specifies that it should be delivered to the target
9262 program. Typically, that would occur when a user is debugging a
9263 target monitor on a simulator: the target monitor sets a
9264 breakpoint; the simulator encounters this breakpoint and halts
9265 the simulation handing control to GDB; GDB, noting that the stop
9266 address doesn't map to any known breakpoint, returns control back
9267 to the simulator; the simulator then delivers the hardware
9268 equivalent of a GDB_SIGNAL_TRAP to the program being
9269 debugged. */
a493e3e2
PA
9270 signal_program[GDB_SIGNAL_TRAP] = 0;
9271 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9272
9273 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9274 signal_stop[GDB_SIGNAL_ALRM] = 0;
9275 signal_print[GDB_SIGNAL_ALRM] = 0;
9276 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9277 signal_print[GDB_SIGNAL_VTALRM] = 0;
9278 signal_stop[GDB_SIGNAL_PROF] = 0;
9279 signal_print[GDB_SIGNAL_PROF] = 0;
9280 signal_stop[GDB_SIGNAL_CHLD] = 0;
9281 signal_print[GDB_SIGNAL_CHLD] = 0;
9282 signal_stop[GDB_SIGNAL_IO] = 0;
9283 signal_print[GDB_SIGNAL_IO] = 0;
9284 signal_stop[GDB_SIGNAL_POLL] = 0;
9285 signal_print[GDB_SIGNAL_POLL] = 0;
9286 signal_stop[GDB_SIGNAL_URG] = 0;
9287 signal_print[GDB_SIGNAL_URG] = 0;
9288 signal_stop[GDB_SIGNAL_WINCH] = 0;
9289 signal_print[GDB_SIGNAL_WINCH] = 0;
9290 signal_stop[GDB_SIGNAL_PRIO] = 0;
9291 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9292
cd0fc7c3
SS
9293 /* These signals are used internally by user-level thread
9294 implementations. (See signal(5) on Solaris.) Like the above
9295 signals, a healthy program receives and handles them as part of
9296 its normal operation. */
a493e3e2
PA
9297 signal_stop[GDB_SIGNAL_LWP] = 0;
9298 signal_print[GDB_SIGNAL_LWP] = 0;
9299 signal_stop[GDB_SIGNAL_WAITING] = 0;
9300 signal_print[GDB_SIGNAL_WAITING] = 0;
9301 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9302 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9303 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9304 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9305
2455069d
UW
9306 /* Update cached state. */
9307 signal_cache_update (-1);
9308
85c07804
AC
9309 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9310 &stop_on_solib_events, _("\
9311Set stopping for shared library events."), _("\
9312Show stopping for shared library events."), _("\
c906108c
SS
9313If nonzero, gdb will give control to the user when the dynamic linker\n\
9314notifies gdb of shared library events. The most common event of interest\n\
85c07804 9315to the user would be loading/unloading of a new library."),
f9e14852 9316 set_stop_on_solib_events,
920d2a44 9317 show_stop_on_solib_events,
85c07804 9318 &setlist, &showlist);
c906108c 9319
7ab04401
AC
9320 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9321 follow_fork_mode_kind_names,
9322 &follow_fork_mode_string, _("\
9323Set debugger response to a program call of fork or vfork."), _("\
9324Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9325A fork or vfork creates a new process. follow-fork-mode can be:\n\
9326 parent - the original process is debugged after a fork\n\
9327 child - the new process is debugged after a fork\n\
ea1dd7bc 9328The unfollowed process will continue to run.\n\
7ab04401
AC
9329By default, the debugger will follow the parent process."),
9330 NULL,
920d2a44 9331 show_follow_fork_mode_string,
7ab04401
AC
9332 &setlist, &showlist);
9333
6c95b8df
PA
9334 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9335 follow_exec_mode_names,
9336 &follow_exec_mode_string, _("\
9337Set debugger response to a program call of exec."), _("\
9338Show debugger response to a program call of exec."), _("\
9339An exec call replaces the program image of a process.\n\
9340\n\
9341follow-exec-mode can be:\n\
9342\n\
cce7e648 9343 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9344to this new inferior. The program the process was running before\n\
9345the exec call can be restarted afterwards by restarting the original\n\
9346inferior.\n\
9347\n\
9348 same - the debugger keeps the process bound to the same inferior.\n\
9349The new executable image replaces the previous executable loaded in\n\
9350the inferior. Restarting the inferior after the exec call restarts\n\
9351the executable the process was running after the exec call.\n\
9352\n\
9353By default, the debugger will use the same inferior."),
9354 NULL,
9355 show_follow_exec_mode_string,
9356 &setlist, &showlist);
9357
7ab04401
AC
9358 add_setshow_enum_cmd ("scheduler-locking", class_run,
9359 scheduler_enums, &scheduler_mode, _("\
9360Set mode for locking scheduler during execution."), _("\
9361Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9362off == no locking (threads may preempt at any time)\n\
9363on == full locking (no thread except the current thread may run)\n\
9364 This applies to both normal execution and replay mode.\n\
9365step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9366 In this mode, other threads may run during other commands.\n\
9367 This applies to both normal execution and replay mode.\n\
9368replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9369 set_schedlock_func, /* traps on target vector */
920d2a44 9370 show_scheduler_mode,
7ab04401 9371 &setlist, &showlist);
5fbbeb29 9372
d4db2f36
PA
9373 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9374Set mode for resuming threads of all processes."), _("\
9375Show mode for resuming threads of all processes."), _("\
9376When on, execution commands (such as 'continue' or 'next') resume all\n\
9377threads of all processes. When off (which is the default), execution\n\
9378commands only resume the threads of the current process. The set of\n\
9379threads that are resumed is further refined by the scheduler-locking\n\
9380mode (see help set scheduler-locking)."),
9381 NULL,
9382 show_schedule_multiple,
9383 &setlist, &showlist);
9384
5bf193a2
AC
9385 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9386Set mode of the step operation."), _("\
9387Show mode of the step operation."), _("\
9388When set, doing a step over a function without debug line information\n\
9389will stop at the first instruction of that function. Otherwise, the\n\
9390function is skipped and the step command stops at a different source line."),
9391 NULL,
920d2a44 9392 show_step_stop_if_no_debug,
5bf193a2 9393 &setlist, &showlist);
ca6724c1 9394
72d0e2c5
YQ
9395 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9396 &can_use_displaced_stepping, _("\
237fc4c9
PA
9397Set debugger's willingness to use displaced stepping."), _("\
9398Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9399If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9400supported by the target architecture. If off, gdb will not use displaced\n\
9401stepping to step over breakpoints, even if such is supported by the target\n\
9402architecture. If auto (which is the default), gdb will use displaced stepping\n\
9403if the target architecture supports it and non-stop mode is active, but will not\n\
9404use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9405 NULL,
9406 show_can_use_displaced_stepping,
9407 &setlist, &showlist);
237fc4c9 9408
b2175913
MS
9409 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9410 &exec_direction, _("Set direction of execution.\n\
9411Options are 'forward' or 'reverse'."),
9412 _("Show direction of execution (forward/reverse)."),
9413 _("Tells gdb whether to execute forward or backward."),
9414 set_exec_direction_func, show_exec_direction_func,
9415 &setlist, &showlist);
9416
6c95b8df
PA
9417 /* Set/show detach-on-fork: user-settable mode. */
9418
9419 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9420Set whether gdb will detach the child of a fork."), _("\
9421Show whether gdb will detach the child of a fork."), _("\
9422Tells gdb whether to detach the child of a fork."),
9423 NULL, NULL, &setlist, &showlist);
9424
03583c20
UW
9425 /* Set/show disable address space randomization mode. */
9426
9427 add_setshow_boolean_cmd ("disable-randomization", class_support,
9428 &disable_randomization, _("\
9429Set disabling of debuggee's virtual address space randomization."), _("\
9430Show disabling of debuggee's virtual address space randomization."), _("\
9431When this mode is on (which is the default), randomization of the virtual\n\
9432address space is disabled. Standalone programs run with the randomization\n\
9433enabled by default on some platforms."),
9434 &set_disable_randomization,
9435 &show_disable_randomization,
9436 &setlist, &showlist);
9437
ca6724c1 9438 /* ptid initializations */
ca6724c1
KB
9439 inferior_ptid = null_ptid;
9440 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9441
76727919
TT
9442 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9443 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9444 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9445 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9446
9447 /* Explicitly create without lookup, since that tries to create a
9448 value with a void typed value, and when we get here, gdbarch
9449 isn't initialized yet. At this point, we're quite sure there
9450 isn't another convenience variable of the same name. */
22d2b532 9451 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9452
9453 add_setshow_boolean_cmd ("observer", no_class,
9454 &observer_mode_1, _("\
9455Set whether gdb controls the inferior in observer mode."), _("\
9456Show whether gdb controls the inferior in observer mode."), _("\
9457In observer mode, GDB can get data from the inferior, but not\n\
9458affect its execution. Registers and memory may not be changed,\n\
9459breakpoints may not be set, and the program cannot be interrupted\n\
9460or signalled."),
9461 set_observer_mode,
9462 show_observer_mode,
9463 &setlist,
9464 &showlist);
c906108c 9465}
This page took 2.482871 seconds and 4 git commands to generate.