ARM: fix delays
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
925b7673 923/**
dfe0e773 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 925 * @page: the page
fa9add64 926 * @zone: zone of the page
dfe0e773
JW
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 931 */
599d0c95 932struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 933{
ef8f2327 934 struct mem_cgroup_per_node *mz;
925b7673 935 struct mem_cgroup *memcg;
bea8c150 936 struct lruvec *lruvec;
6d12e2d8 937
bea8c150 938 if (mem_cgroup_disabled()) {
599d0c95 939 lruvec = &pgdat->lruvec;
bea8c150
HD
940 goto out;
941 }
925b7673 942
1306a85a 943 memcg = page->mem_cgroup;
7512102c 944 /*
dfe0e773 945 * Swapcache readahead pages are added to the LRU - and
29833315 946 * possibly migrated - before they are charged.
7512102c 947 */
29833315
JW
948 if (!memcg)
949 memcg = root_mem_cgroup;
7512102c 950
ef8f2327 951 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
952 lruvec = &mz->lruvec;
953out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
599d0c95
MG
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
bea8c150 961 return lruvec;
08e552c6 962}
b69408e8 963
925b7673 964/**
fa9add64
HD
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
925b7673 969 *
ca707239
HD
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 973 */
fa9add64 974void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 975 int nr_pages)
3f58a829 976{
ef8f2327 977 struct mem_cgroup_per_node *mz;
fa9add64 978 unsigned long *lru_size;
ca707239
HD
979 long size;
980 bool empty;
3f58a829
MK
981
982 if (mem_cgroup_disabled())
983 return;
984
ef8f2327 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 986 lru_size = mz->lru_size + lru;
ca707239
HD
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
08e552c6 1002}
544122e5 1003
2314b42d 1004bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1005{
2314b42d 1006 struct mem_cgroup *task_memcg;
158e0a2d 1007 struct task_struct *p;
ffbdccf5 1008 bool ret;
4c4a2214 1009
158e0a2d 1010 p = find_lock_task_mm(task);
de077d22 1011 if (p) {
2314b42d 1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
ffbdccf5 1020 rcu_read_lock();
2314b42d
JW
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
ffbdccf5 1023 rcu_read_unlock();
de077d22 1024 }
2314b42d
JW
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
4c4a2214
DR
1027 return ret;
1028}
1029
19942822 1030/**
9d11ea9f 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1032 * @memcg: the memory cgroup
19942822 1033 *
9d11ea9f 1034 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1035 * pages.
19942822 1036 */
c0ff4b85 1037static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1038{
3e32cb2e
JW
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
9d11ea9f 1042
3e32cb2e 1043 count = page_counter_read(&memcg->memory);
4db0c3c2 1044 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1045 if (count < limit)
1046 margin = limit - count;
1047
7941d214 1048 if (do_memsw_account()) {
3e32cb2e 1049 count = page_counter_read(&memcg->memsw);
4db0c3c2 1050 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
cbedbac3
LR
1053 else
1054 margin = 0;
3e32cb2e
JW
1055 }
1056
1057 return margin;
19942822
JW
1058}
1059
32047e2a 1060/*
bdcbb659 1061 * A routine for checking "mem" is under move_account() or not.
32047e2a 1062 *
bdcbb659
QH
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
32047e2a 1066 */
c0ff4b85 1067static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1068{
2bd9bb20
KH
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
4b534334 1071 bool ret = false;
2bd9bb20
KH
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
3e92041d 1081
2314b42d
JW
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1084unlock:
1085 spin_unlock(&mc.lock);
4b534334
KH
1086 return ret;
1087}
1088
c0ff4b85 1089static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1090{
1091 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1092 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103}
1104
58cf188e 1105#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1106/**
58cf188e 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115{
58cf188e
SZ
1116 struct mem_cgroup *iter;
1117 unsigned int i;
e222432b 1118
e222432b
BS
1119 rcu_read_lock();
1120
2415b9f5
BV
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
e61734c5 1129 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1130 pr_cont("\n");
e222432b 1131
e222432b
BS
1132 rcu_read_unlock();
1133
3e32cb2e
JW
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1151 continue;
484ebb3b 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
e222432b
BS
1162}
1163
81d39c20
KH
1164/*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
c0ff4b85 1168static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1169{
1170 int num = 0;
7d74b06f
KH
1171 struct mem_cgroup *iter;
1172
c0ff4b85 1173 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1174 num++;
81d39c20
KH
1175 return num;
1176}
1177
a63d83f4
DR
1178/*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
3e32cb2e 1181static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1182{
3e32cb2e 1183 unsigned long limit;
f3e8eb70 1184
3e32cb2e 1185 limit = memcg->memory.limit;
9a5a8f19 1186 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1187 unsigned long memsw_limit;
37e84351 1188 unsigned long swap_limit;
9a5a8f19 1189
3e32cb2e 1190 memsw_limit = memcg->memsw.limit;
37e84351
VD
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1194 }
9a5a8f19 1195 return limit;
a63d83f4
DR
1196}
1197
b6e6edcf 1198static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1199 int order)
9cbb78bb 1200{
6e0fc46d
DR
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
2a966b77 1204 .memcg = memcg,
6e0fc46d
DR
1205 .gfp_mask = gfp_mask,
1206 .order = order,
6e0fc46d 1207 };
9cbb78bb
DR
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
dc56401f
JW
1214 mutex_lock(&oom_lock);
1215
876aafbf 1216 /*
465adcf1
DR
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
876aafbf 1220 */
1af8bb43 1221 if (task_will_free_mem(current)) {
16e95196 1222 mark_oom_victim(current);
1af8bb43 1223 wake_oom_reaper(current);
dc56401f 1224 goto unlock;
876aafbf
DR
1225 }
1226
2a966b77 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1229 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1230 struct css_task_iter it;
9cbb78bb
DR
1231 struct task_struct *task;
1232
72ec7029
TH
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
fbe84a09 1235 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
72ec7029 1246 css_task_iter_end(&it);
9cbb78bb
DR
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1ebab2db
TH
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
dc56401f 1252 goto unlock;
9cbb78bb
DR
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
9cbb78bb 1269 }
72ec7029 1270 css_task_iter_end(&it);
9cbb78bb
DR
1271 }
1272
dc56401f
JW
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
2a966b77 1275 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1276 "Memory cgroup out of memory");
dc56401f
JW
1277 }
1278unlock:
1279 mutex_unlock(&oom_lock);
b6e6edcf 1280 return chosen;
9cbb78bb
DR
1281}
1282
ae6e71d3
MC
1283#if MAX_NUMNODES > 1
1284
4d0c066d
KH
1285/**
1286 * test_mem_cgroup_node_reclaimable
dad7557e 1287 * @memcg: the target memcg
4d0c066d
KH
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
c0ff4b85 1295static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1296 int nid, bool noswap)
1297{
c0ff4b85 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
c0ff4b85 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1303 return true;
1304 return false;
1305
1306}
889976db
YH
1307
1308/*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
c0ff4b85 1314static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int nid;
453a9bf3
KH
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
c0ff4b85 1321 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1322 return;
c0ff4b85 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1324 return;
1325
889976db 1326 /* make a nodemask where this memcg uses memory from */
31aaea4a 1327 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1328
31aaea4a 1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1330
c0ff4b85
R
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
889976db 1333 }
453a9bf3 1334
c0ff4b85
R
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1337}
1338
1339/*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
c0ff4b85 1351int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int node;
1354
c0ff4b85
R
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
889976db 1357
0edaf86c 1358 node = next_node_in(node, memcg->scan_nodes);
889976db 1359 /*
fda3d69b
MH
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
889976db
YH
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
c0ff4b85 1367 memcg->last_scanned_node = node;
889976db
YH
1368 return node;
1369}
889976db 1370#else
c0ff4b85 1371int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1372{
1373 return 0;
1374}
1375#endif
1376
0608f43d 1377static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1378 pg_data_t *pgdat,
0608f43d
AM
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381{
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1388 .pgdat = pgdat,
0608f43d
AM
1389 .priority = 0,
1390 };
1391
3e32cb2e 1392 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
a9dd0a83 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1419 pgdat, &nr_scanned);
0608f43d 1420 *total_scanned += nr_scanned;
3e32cb2e 1421 if (!soft_limit_excess(root_memcg))
0608f43d 1422 break;
6d61ef40 1423 }
0608f43d
AM
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
6d61ef40
BS
1426}
1427
0056f4e6
JW
1428#ifdef CONFIG_LOCKDEP
1429static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431};
1432#endif
1433
fb2a6fc5
JW
1434static DEFINE_SPINLOCK(memcg_oom_lock);
1435
867578cb
KH
1436/*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
fb2a6fc5 1440static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1441{
79dfdacc 1442 struct mem_cgroup *iter, *failed = NULL;
a636b327 1443
fb2a6fc5
JW
1444 spin_lock(&memcg_oom_lock);
1445
9f3a0d09 1446 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1447 if (iter->oom_lock) {
79dfdacc
MH
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
79dfdacc 1452 failed = iter;
9f3a0d09
JW
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
23751be0
JW
1455 } else
1456 iter->oom_lock = true;
7d74b06f 1457 }
867578cb 1458
fb2a6fc5
JW
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
79dfdacc 1470 }
0056f4e6
JW
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
a636b327 1477}
0b7f569e 1478
fb2a6fc5 1479static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1480{
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
fb2a6fc5 1483 spin_lock(&memcg_oom_lock);
0056f4e6 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1485 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1486 iter->oom_lock = false;
fb2a6fc5 1487 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1488}
1489
c0ff4b85 1490static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1491{
1492 struct mem_cgroup *iter;
1493
c2b42d3c 1494 spin_lock(&memcg_oom_lock);
c0ff4b85 1495 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1498}
1499
c0ff4b85 1500static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1501{
1502 struct mem_cgroup *iter;
1503
867578cb
KH
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1507 */
c2b42d3c 1508 spin_lock(&memcg_oom_lock);
c0ff4b85 1509 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1513}
1514
867578cb
KH
1515static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
dc98df5a 1517struct oom_wait_info {
d79154bb 1518 struct mem_cgroup *memcg;
dc98df5a
KH
1519 wait_queue_t wait;
1520};
1521
1522static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524{
d79154bb
HD
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1530 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1531
2314b42d
JW
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1534 return 0;
dc98df5a
KH
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536}
1537
c0ff4b85 1538static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1539{
c2b42d3c
TH
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
f4b90b70 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1550}
1551
3812c8c8 1552static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1553{
d0db7afa 1554 if (!current->memcg_may_oom)
3812c8c8 1555 return;
867578cb 1556 /*
49426420
JW
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
867578cb 1569 */
49426420 1570 css_get(&memcg->css);
626ebc41
TH
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
3812c8c8
JW
1574}
1575
1576/**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1578 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1579 *
49426420
JW
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
3812c8c8 1582 *
49426420 1583 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1588 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1591 * completed, %false otherwise.
3812c8c8 1592 */
49426420 1593bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1594{
626ebc41 1595 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1596 struct oom_wait_info owait;
49426420 1597 bool locked;
3812c8c8
JW
1598
1599 /* OOM is global, do not handle */
3812c8c8 1600 if (!memcg)
49426420 1601 return false;
3812c8c8 1602
c32b3cbe 1603 if (!handle || oom_killer_disabled)
49426420 1604 goto cleanup;
3812c8c8
JW
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1611
3812c8c8 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
49426420 1625 } else {
3812c8c8 1626 schedule();
49426420
JW
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
fb2a6fc5
JW
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
49426420 1640cleanup:
626ebc41 1641 current->memcg_in_oom = NULL;
3812c8c8 1642 css_put(&memcg->css);
867578cb 1643 return true;
0b7f569e
KH
1644}
1645
d7365e78 1646/**
81f8c3a4
JW
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
32047e2a 1649 *
81f8c3a4
JW
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1652 */
62cccb8c 1653void lock_page_memcg(struct page *page)
89c06bd5
KH
1654{
1655 struct mem_cgroup *memcg;
6de22619 1656 unsigned long flags;
89c06bd5 1657
6de22619
JW
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
6de22619 1662 */
d7365e78
JW
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
62cccb8c 1666 return;
89c06bd5 1667again:
1306a85a 1668 memcg = page->mem_cgroup;
29833315 1669 if (unlikely(!memcg))
62cccb8c 1670 return;
d7365e78 1671
bdcbb659 1672 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1673 return;
89c06bd5 1674
6de22619 1675 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1676 if (memcg != page->mem_cgroup) {
6de22619 1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1678 goto again;
1679 }
6de22619
JW
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1684 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
d7365e78 1688
62cccb8c 1689 return;
89c06bd5 1690}
81f8c3a4 1691EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1692
d7365e78 1693/**
81f8c3a4 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1695 * @page: the page
d7365e78 1696 */
62cccb8c 1697void unlock_page_memcg(struct page *page)
89c06bd5 1698{
62cccb8c
JW
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
6de22619
JW
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
89c06bd5 1709
d7365e78 1710 rcu_read_unlock();
89c06bd5 1711}
81f8c3a4 1712EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1713
cdec2e42
KH
1714/*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
7ec99d62 1718#define CHARGE_BATCH 32U
cdec2e42
KH
1719struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1721 unsigned int nr_pages;
cdec2e42 1722 struct work_struct work;
26fe6168 1723 unsigned long flags;
a0db00fc 1724#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1725};
1726static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1727static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1728
a0956d54
SS
1729/**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
cdec2e42 1739 */
a0956d54 1740static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1741{
1742 struct memcg_stock_pcp *stock;
db2ba40c 1743 unsigned long flags;
3e32cb2e 1744 bool ret = false;
cdec2e42 1745
a0956d54 1746 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1747 return ret;
a0956d54 1748
db2ba40c
JW
1749 local_irq_save(flags);
1750
1751 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1753 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1754 ret = true;
1755 }
db2ba40c
JW
1756
1757 local_irq_restore(flags);
1758
cdec2e42
KH
1759 return ret;
1760}
1761
1762/*
3e32cb2e 1763 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1764 */
1765static void drain_stock(struct memcg_stock_pcp *stock)
1766{
1767 struct mem_cgroup *old = stock->cached;
1768
11c9ea4e 1769 if (stock->nr_pages) {
3e32cb2e 1770 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1771 if (do_memsw_account())
3e32cb2e 1772 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1773 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1774 stock->nr_pages = 0;
cdec2e42
KH
1775 }
1776 stock->cached = NULL;
cdec2e42
KH
1777}
1778
cdec2e42
KH
1779static void drain_local_stock(struct work_struct *dummy)
1780{
db2ba40c
JW
1781 struct memcg_stock_pcp *stock;
1782 unsigned long flags;
1783
1784 local_irq_save(flags);
1785
1786 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1787 drain_stock(stock);
26fe6168 1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1789
1790 local_irq_restore(flags);
cdec2e42
KH
1791}
1792
1793/*
3e32cb2e 1794 * Cache charges(val) to local per_cpu area.
320cc51d 1795 * This will be consumed by consume_stock() function, later.
cdec2e42 1796 */
c0ff4b85 1797static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1798{
db2ba40c
JW
1799 struct memcg_stock_pcp *stock;
1800 unsigned long flags;
1801
1802 local_irq_save(flags);
cdec2e42 1803
db2ba40c 1804 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1805 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1806 drain_stock(stock);
c0ff4b85 1807 stock->cached = memcg;
cdec2e42 1808 }
11c9ea4e 1809 stock->nr_pages += nr_pages;
db2ba40c
JW
1810
1811 local_irq_restore(flags);
cdec2e42
KH
1812}
1813
1814/*
c0ff4b85 1815 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1816 * of the hierarchy under it.
cdec2e42 1817 */
6d3d6aa2 1818static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1819{
26fe6168 1820 int cpu, curcpu;
d38144b7 1821
6d3d6aa2
JW
1822 /* If someone's already draining, avoid adding running more workers. */
1823 if (!mutex_trylock(&percpu_charge_mutex))
1824 return;
cdec2e42 1825 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1826 get_online_cpus();
5af12d0e 1827 curcpu = get_cpu();
cdec2e42
KH
1828 for_each_online_cpu(cpu) {
1829 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1830 struct mem_cgroup *memcg;
26fe6168 1831
c0ff4b85
R
1832 memcg = stock->cached;
1833 if (!memcg || !stock->nr_pages)
26fe6168 1834 continue;
2314b42d 1835 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1836 continue;
d1a05b69
MH
1837 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1838 if (cpu == curcpu)
1839 drain_local_stock(&stock->work);
1840 else
1841 schedule_work_on(cpu, &stock->work);
1842 }
cdec2e42 1843 }
5af12d0e 1844 put_cpu();
f894ffa8 1845 put_online_cpus();
9f50fad6 1846 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1847}
1848
0db0628d 1849static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1850 unsigned long action,
1851 void *hcpu)
1852{
1853 int cpu = (unsigned long)hcpu;
1854 struct memcg_stock_pcp *stock;
1855
619d094b 1856 if (action == CPU_ONLINE)
1489ebad 1857 return NOTIFY_OK;
1489ebad 1858
d833049b 1859 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1860 return NOTIFY_OK;
711d3d2c 1861
cdec2e42
KH
1862 stock = &per_cpu(memcg_stock, cpu);
1863 drain_stock(stock);
1864 return NOTIFY_OK;
1865}
1866
f7e1cb6e
JW
1867static void reclaim_high(struct mem_cgroup *memcg,
1868 unsigned int nr_pages,
1869 gfp_t gfp_mask)
1870{
1871 do {
1872 if (page_counter_read(&memcg->memory) <= memcg->high)
1873 continue;
1874 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 } while ((memcg = parent_mem_cgroup(memcg)));
1877}
1878
1879static void high_work_func(struct work_struct *work)
1880{
1881 struct mem_cgroup *memcg;
1882
1883 memcg = container_of(work, struct mem_cgroup, high_work);
1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1885}
1886
b23afb93
TH
1887/*
1888 * Scheduled by try_charge() to be executed from the userland return path
1889 * and reclaims memory over the high limit.
1890 */
1891void mem_cgroup_handle_over_high(void)
1892{
1893 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1894 struct mem_cgroup *memcg;
b23afb93
TH
1895
1896 if (likely(!nr_pages))
1897 return;
1898
f7e1cb6e
JW
1899 memcg = get_mem_cgroup_from_mm(current->mm);
1900 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1901 css_put(&memcg->css);
1902 current->memcg_nr_pages_over_high = 0;
1903}
1904
00501b53
JW
1905static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 unsigned int nr_pages)
8a9f3ccd 1907{
7ec99d62 1908 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1910 struct mem_cgroup *mem_over_limit;
3e32cb2e 1911 struct page_counter *counter;
6539cc05 1912 unsigned long nr_reclaimed;
b70a2a21
JW
1913 bool may_swap = true;
1914 bool drained = false;
a636b327 1915
ce00a967 1916 if (mem_cgroup_is_root(memcg))
10d53c74 1917 return 0;
6539cc05 1918retry:
b6b6cc72 1919 if (consume_stock(memcg, nr_pages))
10d53c74 1920 return 0;
8a9f3ccd 1921
7941d214 1922 if (!do_memsw_account() ||
6071ca52
JW
1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1925 goto done_restock;
7941d214 1926 if (do_memsw_account())
3e32cb2e
JW
1927 page_counter_uncharge(&memcg->memsw, batch);
1928 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1929 } else {
3e32cb2e 1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1931 may_swap = false;
3fbe7244 1932 }
7a81b88c 1933
6539cc05
JW
1934 if (batch > nr_pages) {
1935 batch = nr_pages;
1936 goto retry;
1937 }
6d61ef40 1938
06b078fc
JW
1939 /*
1940 * Unlike in global OOM situations, memcg is not in a physical
1941 * memory shortage. Allow dying and OOM-killed tasks to
1942 * bypass the last charges so that they can exit quickly and
1943 * free their memory.
1944 */
1945 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1946 fatal_signal_pending(current) ||
1947 current->flags & PF_EXITING))
10d53c74 1948 goto force;
06b078fc
JW
1949
1950 if (unlikely(task_in_memcg_oom(current)))
1951 goto nomem;
1952
d0164adc 1953 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1954 goto nomem;
4b534334 1955
241994ed
JW
1956 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1957
b70a2a21
JW
1958 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1959 gfp_mask, may_swap);
6539cc05 1960
61e02c74 1961 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1962 goto retry;
28c34c29 1963
b70a2a21 1964 if (!drained) {
6d3d6aa2 1965 drain_all_stock(mem_over_limit);
b70a2a21
JW
1966 drained = true;
1967 goto retry;
1968 }
1969
28c34c29
JW
1970 if (gfp_mask & __GFP_NORETRY)
1971 goto nomem;
6539cc05
JW
1972 /*
1973 * Even though the limit is exceeded at this point, reclaim
1974 * may have been able to free some pages. Retry the charge
1975 * before killing the task.
1976 *
1977 * Only for regular pages, though: huge pages are rather
1978 * unlikely to succeed so close to the limit, and we fall back
1979 * to regular pages anyway in case of failure.
1980 */
61e02c74 1981 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1982 goto retry;
1983 /*
1984 * At task move, charge accounts can be doubly counted. So, it's
1985 * better to wait until the end of task_move if something is going on.
1986 */
1987 if (mem_cgroup_wait_acct_move(mem_over_limit))
1988 goto retry;
1989
9b130619
JW
1990 if (nr_retries--)
1991 goto retry;
1992
06b078fc 1993 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1994 goto force;
06b078fc 1995
6539cc05 1996 if (fatal_signal_pending(current))
10d53c74 1997 goto force;
6539cc05 1998
241994ed
JW
1999 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2000
3608de07
JM
2001 mem_cgroup_oom(mem_over_limit, gfp_mask,
2002 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2003nomem:
6d1fdc48 2004 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2005 return -ENOMEM;
10d53c74
TH
2006force:
2007 /*
2008 * The allocation either can't fail or will lead to more memory
2009 * being freed very soon. Allow memory usage go over the limit
2010 * temporarily by force charging it.
2011 */
2012 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2013 if (do_memsw_account())
10d53c74
TH
2014 page_counter_charge(&memcg->memsw, nr_pages);
2015 css_get_many(&memcg->css, nr_pages);
2016
2017 return 0;
6539cc05
JW
2018
2019done_restock:
e8ea14cc 2020 css_get_many(&memcg->css, batch);
6539cc05
JW
2021 if (batch > nr_pages)
2022 refill_stock(memcg, batch - nr_pages);
b23afb93 2023
241994ed 2024 /*
b23afb93
TH
2025 * If the hierarchy is above the normal consumption range, schedule
2026 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2027 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2028 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2029 * not recorded as it most likely matches current's and won't
2030 * change in the meantime. As high limit is checked again before
2031 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2032 */
2033 do {
b23afb93 2034 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2035 /* Don't bother a random interrupted task */
2036 if (in_interrupt()) {
2037 schedule_work(&memcg->high_work);
2038 break;
2039 }
9516a18a 2040 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2041 set_notify_resume(current);
2042 break;
2043 }
241994ed 2044 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2045
2046 return 0;
7a81b88c 2047}
8a9f3ccd 2048
00501b53 2049static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2050{
ce00a967
JW
2051 if (mem_cgroup_is_root(memcg))
2052 return;
2053
3e32cb2e 2054 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2055 if (do_memsw_account())
3e32cb2e 2056 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2057
e8ea14cc 2058 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2059}
2060
0a31bc97
JW
2061static void lock_page_lru(struct page *page, int *isolated)
2062{
2063 struct zone *zone = page_zone(page);
2064
a52633d8 2065 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2066 if (PageLRU(page)) {
2067 struct lruvec *lruvec;
2068
599d0c95 2069 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2070 ClearPageLRU(page);
2071 del_page_from_lru_list(page, lruvec, page_lru(page));
2072 *isolated = 1;
2073 } else
2074 *isolated = 0;
2075}
2076
2077static void unlock_page_lru(struct page *page, int isolated)
2078{
2079 struct zone *zone = page_zone(page);
2080
2081 if (isolated) {
2082 struct lruvec *lruvec;
2083
599d0c95 2084 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2085 VM_BUG_ON_PAGE(PageLRU(page), page);
2086 SetPageLRU(page);
2087 add_page_to_lru_list(page, lruvec, page_lru(page));
2088 }
a52633d8 2089 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2090}
2091
00501b53 2092static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2093 bool lrucare)
7a81b88c 2094{
0a31bc97 2095 int isolated;
9ce70c02 2096
1306a85a 2097 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2098
2099 /*
2100 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2101 * may already be on some other mem_cgroup's LRU. Take care of it.
2102 */
0a31bc97
JW
2103 if (lrucare)
2104 lock_page_lru(page, &isolated);
9ce70c02 2105
0a31bc97
JW
2106 /*
2107 * Nobody should be changing or seriously looking at
1306a85a 2108 * page->mem_cgroup at this point:
0a31bc97
JW
2109 *
2110 * - the page is uncharged
2111 *
2112 * - the page is off-LRU
2113 *
2114 * - an anonymous fault has exclusive page access, except for
2115 * a locked page table
2116 *
2117 * - a page cache insertion, a swapin fault, or a migration
2118 * have the page locked
2119 */
1306a85a 2120 page->mem_cgroup = memcg;
9ce70c02 2121
0a31bc97
JW
2122 if (lrucare)
2123 unlock_page_lru(page, isolated);
7a81b88c 2124}
66e1707b 2125
127424c8 2126#ifndef CONFIG_SLOB
f3bb3043 2127static int memcg_alloc_cache_id(void)
55007d84 2128{
f3bb3043
VD
2129 int id, size;
2130 int err;
2131
dbcf73e2 2132 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2133 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2134 if (id < 0)
2135 return id;
55007d84 2136
dbcf73e2 2137 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2138 return id;
2139
2140 /*
2141 * There's no space for the new id in memcg_caches arrays,
2142 * so we have to grow them.
2143 */
05257a1a 2144 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2145
2146 size = 2 * (id + 1);
55007d84
GC
2147 if (size < MEMCG_CACHES_MIN_SIZE)
2148 size = MEMCG_CACHES_MIN_SIZE;
2149 else if (size > MEMCG_CACHES_MAX_SIZE)
2150 size = MEMCG_CACHES_MAX_SIZE;
2151
f3bb3043 2152 err = memcg_update_all_caches(size);
60d3fd32
VD
2153 if (!err)
2154 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2155 if (!err)
2156 memcg_nr_cache_ids = size;
2157
2158 up_write(&memcg_cache_ids_sem);
2159
f3bb3043 2160 if (err) {
dbcf73e2 2161 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2162 return err;
2163 }
2164 return id;
2165}
2166
2167static void memcg_free_cache_id(int id)
2168{
dbcf73e2 2169 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2170}
2171
d5b3cf71 2172struct memcg_kmem_cache_create_work {
5722d094
VD
2173 struct mem_cgroup *memcg;
2174 struct kmem_cache *cachep;
2175 struct work_struct work;
2176};
2177
d5b3cf71 2178static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2179{
d5b3cf71
VD
2180 struct memcg_kmem_cache_create_work *cw =
2181 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2182 struct mem_cgroup *memcg = cw->memcg;
2183 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2184
d5b3cf71 2185 memcg_create_kmem_cache(memcg, cachep);
bd673145 2186
5722d094 2187 css_put(&memcg->css);
d7f25f8a
GC
2188 kfree(cw);
2189}
2190
2191/*
2192 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2193 */
d5b3cf71
VD
2194static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 struct kmem_cache *cachep)
d7f25f8a 2196{
d5b3cf71 2197 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2198
776ed0f0 2199 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2200 if (!cw)
d7f25f8a 2201 return;
8135be5a
VD
2202
2203 css_get(&memcg->css);
d7f25f8a
GC
2204
2205 cw->memcg = memcg;
2206 cw->cachep = cachep;
d5b3cf71 2207 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2208
d7f25f8a
GC
2209 schedule_work(&cw->work);
2210}
2211
d5b3cf71
VD
2212static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 struct kmem_cache *cachep)
0e9d92f2
GC
2214{
2215 /*
2216 * We need to stop accounting when we kmalloc, because if the
2217 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2218 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2219 *
2220 * However, it is better to enclose the whole function. Depending on
2221 * the debugging options enabled, INIT_WORK(), for instance, can
2222 * trigger an allocation. This too, will make us recurse. Because at
2223 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2224 * the safest choice is to do it like this, wrapping the whole function.
2225 */
6f185c29 2226 current->memcg_kmem_skip_account = 1;
d5b3cf71 2227 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2228 current->memcg_kmem_skip_account = 0;
0e9d92f2 2229}
c67a8a68 2230
45264778
VD
2231static inline bool memcg_kmem_bypass(void)
2232{
2233 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2234 return true;
2235 return false;
2236}
2237
2238/**
2239 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2240 * @cachep: the original global kmem cache
2241 *
d7f25f8a
GC
2242 * Return the kmem_cache we're supposed to use for a slab allocation.
2243 * We try to use the current memcg's version of the cache.
2244 *
45264778
VD
2245 * If the cache does not exist yet, if we are the first user of it, we
2246 * create it asynchronously in a workqueue and let the current allocation
2247 * go through with the original cache.
d7f25f8a 2248 *
45264778
VD
2249 * This function takes a reference to the cache it returns to assure it
2250 * won't get destroyed while we are working with it. Once the caller is
2251 * done with it, memcg_kmem_put_cache() must be called to release the
2252 * reference.
d7f25f8a 2253 */
45264778 2254struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2255{
2256 struct mem_cgroup *memcg;
959c8963 2257 struct kmem_cache *memcg_cachep;
2a4db7eb 2258 int kmemcg_id;
d7f25f8a 2259
f7ce3190 2260 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2261
45264778 2262 if (memcg_kmem_bypass())
230e9fc2
VD
2263 return cachep;
2264
9d100c5e 2265 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2266 return cachep;
2267
8135be5a 2268 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2269 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2270 if (kmemcg_id < 0)
ca0dde97 2271 goto out;
d7f25f8a 2272
2a4db7eb 2273 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2274 if (likely(memcg_cachep))
2275 return memcg_cachep;
ca0dde97
LZ
2276
2277 /*
2278 * If we are in a safe context (can wait, and not in interrupt
2279 * context), we could be be predictable and return right away.
2280 * This would guarantee that the allocation being performed
2281 * already belongs in the new cache.
2282 *
2283 * However, there are some clashes that can arrive from locking.
2284 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2285 * memcg_create_kmem_cache, this means no further allocation
2286 * could happen with the slab_mutex held. So it's better to
2287 * defer everything.
ca0dde97 2288 */
d5b3cf71 2289 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2290out:
8135be5a 2291 css_put(&memcg->css);
ca0dde97 2292 return cachep;
d7f25f8a 2293}
d7f25f8a 2294
45264778
VD
2295/**
2296 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2297 * @cachep: the cache returned by memcg_kmem_get_cache
2298 */
2299void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2300{
2301 if (!is_root_cache(cachep))
f7ce3190 2302 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2303}
2304
45264778
VD
2305/**
2306 * memcg_kmem_charge: charge a kmem page
2307 * @page: page to charge
2308 * @gfp: reclaim mode
2309 * @order: allocation order
2310 * @memcg: memory cgroup to charge
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2315 struct mem_cgroup *memcg)
7ae1e1d0 2316{
f3ccb2c4
VD
2317 unsigned int nr_pages = 1 << order;
2318 struct page_counter *counter;
7ae1e1d0
GC
2319 int ret;
2320
f3ccb2c4 2321 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2322 if (ret)
f3ccb2c4 2323 return ret;
52c29b04
JW
2324
2325 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2326 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2327 cancel_charge(memcg, nr_pages);
2328 return -ENOMEM;
7ae1e1d0
GC
2329 }
2330
f3ccb2c4 2331 page->mem_cgroup = memcg;
7ae1e1d0 2332
f3ccb2c4 2333 return 0;
7ae1e1d0
GC
2334}
2335
45264778
VD
2336/**
2337 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2338 * @page: page to charge
2339 * @gfp: reclaim mode
2340 * @order: allocation order
2341 *
2342 * Returns 0 on success, an error code on failure.
2343 */
2344int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2345{
f3ccb2c4 2346 struct mem_cgroup *memcg;
fcff7d7e 2347 int ret = 0;
7ae1e1d0 2348
45264778
VD
2349 if (memcg_kmem_bypass())
2350 return 0;
2351
f3ccb2c4 2352 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2353 if (!mem_cgroup_is_root(memcg)) {
45264778 2354 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2355 if (!ret)
2356 __SetPageKmemcg(page);
2357 }
7ae1e1d0 2358 css_put(&memcg->css);
d05e83a6 2359 return ret;
7ae1e1d0 2360}
45264778
VD
2361/**
2362 * memcg_kmem_uncharge: uncharge a kmem page
2363 * @page: page to uncharge
2364 * @order: allocation order
2365 */
2366void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2367{
1306a85a 2368 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2369 unsigned int nr_pages = 1 << order;
7ae1e1d0 2370
7ae1e1d0
GC
2371 if (!memcg)
2372 return;
2373
309381fe 2374 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2375
52c29b04
JW
2376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2377 page_counter_uncharge(&memcg->kmem, nr_pages);
2378
f3ccb2c4 2379 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2380 if (do_memsw_account())
f3ccb2c4 2381 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2382
1306a85a 2383 page->mem_cgroup = NULL;
c4159a75
VD
2384
2385 /* slab pages do not have PageKmemcg flag set */
2386 if (PageKmemcg(page))
2387 __ClearPageKmemcg(page);
2388
f3ccb2c4 2389 css_put_many(&memcg->css, nr_pages);
60d3fd32 2390}
127424c8 2391#endif /* !CONFIG_SLOB */
7ae1e1d0 2392
ca3e0214
KH
2393#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2394
ca3e0214
KH
2395/*
2396 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2397 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2398 */
e94c8a9c 2399void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2400{
e94c8a9c 2401 int i;
ca3e0214 2402
3d37c4a9
KH
2403 if (mem_cgroup_disabled())
2404 return;
b070e65c 2405
29833315 2406 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2407 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2408
1306a85a 2409 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2410 HPAGE_PMD_NR);
ca3e0214 2411}
12d27107 2412#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2413
c255a458 2414#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2415static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2416 bool charge)
d13d1443 2417{
0a31bc97
JW
2418 int val = (charge) ? 1 : -1;
2419 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2420}
02491447
DN
2421
2422/**
2423 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2424 * @entry: swap entry to be moved
2425 * @from: mem_cgroup which the entry is moved from
2426 * @to: mem_cgroup which the entry is moved to
2427 *
2428 * It succeeds only when the swap_cgroup's record for this entry is the same
2429 * as the mem_cgroup's id of @from.
2430 *
2431 * Returns 0 on success, -EINVAL on failure.
2432 *
3e32cb2e 2433 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2434 * both res and memsw, and called css_get().
2435 */
2436static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2437 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2438{
2439 unsigned short old_id, new_id;
2440
34c00c31
LZ
2441 old_id = mem_cgroup_id(from);
2442 new_id = mem_cgroup_id(to);
02491447
DN
2443
2444 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2445 mem_cgroup_swap_statistics(from, false);
483c30b5 2446 mem_cgroup_swap_statistics(to, true);
02491447
DN
2447 return 0;
2448 }
2449 return -EINVAL;
2450}
2451#else
2452static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2453 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2454{
2455 return -EINVAL;
2456}
8c7c6e34 2457#endif
d13d1443 2458
3e32cb2e 2459static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2460
d38d2a75 2461static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2462 unsigned long limit)
628f4235 2463{
3e32cb2e
JW
2464 unsigned long curusage;
2465 unsigned long oldusage;
2466 bool enlarge = false;
81d39c20 2467 int retry_count;
3e32cb2e 2468 int ret;
81d39c20
KH
2469
2470 /*
2471 * For keeping hierarchical_reclaim simple, how long we should retry
2472 * is depends on callers. We set our retry-count to be function
2473 * of # of children which we should visit in this loop.
2474 */
3e32cb2e
JW
2475 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2476 mem_cgroup_count_children(memcg);
81d39c20 2477
3e32cb2e 2478 oldusage = page_counter_read(&memcg->memory);
628f4235 2479
3e32cb2e 2480 do {
628f4235
KH
2481 if (signal_pending(current)) {
2482 ret = -EINTR;
2483 break;
2484 }
3e32cb2e
JW
2485
2486 mutex_lock(&memcg_limit_mutex);
2487 if (limit > memcg->memsw.limit) {
2488 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2489 ret = -EINVAL;
628f4235
KH
2490 break;
2491 }
3e32cb2e
JW
2492 if (limit > memcg->memory.limit)
2493 enlarge = true;
2494 ret = page_counter_limit(&memcg->memory, limit);
2495 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2496
2497 if (!ret)
2498 break;
2499
b70a2a21
JW
2500 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2501
3e32cb2e 2502 curusage = page_counter_read(&memcg->memory);
81d39c20 2503 /* Usage is reduced ? */
f894ffa8 2504 if (curusage >= oldusage)
81d39c20
KH
2505 retry_count--;
2506 else
2507 oldusage = curusage;
3e32cb2e
JW
2508 } while (retry_count);
2509
3c11ecf4
KH
2510 if (!ret && enlarge)
2511 memcg_oom_recover(memcg);
14797e23 2512
8c7c6e34
KH
2513 return ret;
2514}
2515
338c8431 2516static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2517 unsigned long limit)
8c7c6e34 2518{
3e32cb2e
JW
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
81d39c20 2522 int retry_count;
3e32cb2e 2523 int ret;
8c7c6e34 2524
81d39c20 2525 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2526 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2527 mem_cgroup_count_children(memcg);
2528
2529 oldusage = page_counter_read(&memcg->memsw);
2530
2531 do {
8c7c6e34
KH
2532 if (signal_pending(current)) {
2533 ret = -EINTR;
2534 break;
2535 }
3e32cb2e
JW
2536
2537 mutex_lock(&memcg_limit_mutex);
2538 if (limit < memcg->memory.limit) {
2539 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2540 ret = -EINVAL;
8c7c6e34
KH
2541 break;
2542 }
3e32cb2e
JW
2543 if (limit > memcg->memsw.limit)
2544 enlarge = true;
2545 ret = page_counter_limit(&memcg->memsw, limit);
2546 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2547
2548 if (!ret)
2549 break;
2550
b70a2a21
JW
2551 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2552
3e32cb2e 2553 curusage = page_counter_read(&memcg->memsw);
81d39c20 2554 /* Usage is reduced ? */
8c7c6e34 2555 if (curusage >= oldusage)
628f4235 2556 retry_count--;
81d39c20
KH
2557 else
2558 oldusage = curusage;
3e32cb2e
JW
2559 } while (retry_count);
2560
3c11ecf4
KH
2561 if (!ret && enlarge)
2562 memcg_oom_recover(memcg);
3e32cb2e 2563
628f4235
KH
2564 return ret;
2565}
2566
ef8f2327 2567unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2568 gfp_t gfp_mask,
2569 unsigned long *total_scanned)
2570{
2571 unsigned long nr_reclaimed = 0;
ef8f2327 2572 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2573 unsigned long reclaimed;
2574 int loop = 0;
ef8f2327 2575 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2576 unsigned long excess;
0608f43d
AM
2577 unsigned long nr_scanned;
2578
2579 if (order > 0)
2580 return 0;
2581
ef8f2327 2582 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2583
2584 /*
2585 * Do not even bother to check the largest node if the root
2586 * is empty. Do it lockless to prevent lock bouncing. Races
2587 * are acceptable as soft limit is best effort anyway.
2588 */
2589 if (RB_EMPTY_ROOT(&mctz->rb_root))
2590 return 0;
2591
0608f43d
AM
2592 /*
2593 * This loop can run a while, specially if mem_cgroup's continuously
2594 * keep exceeding their soft limit and putting the system under
2595 * pressure
2596 */
2597 do {
2598 if (next_mz)
2599 mz = next_mz;
2600 else
2601 mz = mem_cgroup_largest_soft_limit_node(mctz);
2602 if (!mz)
2603 break;
2604
2605 nr_scanned = 0;
ef8f2327 2606 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2607 gfp_mask, &nr_scanned);
2608 nr_reclaimed += reclaimed;
2609 *total_scanned += nr_scanned;
0a31bc97 2610 spin_lock_irq(&mctz->lock);
bc2f2e7f 2611 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2612
2613 /*
2614 * If we failed to reclaim anything from this memory cgroup
2615 * it is time to move on to the next cgroup
2616 */
2617 next_mz = NULL;
bc2f2e7f
VD
2618 if (!reclaimed)
2619 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2620
3e32cb2e 2621 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2622 /*
2623 * One school of thought says that we should not add
2624 * back the node to the tree if reclaim returns 0.
2625 * But our reclaim could return 0, simply because due
2626 * to priority we are exposing a smaller subset of
2627 * memory to reclaim from. Consider this as a longer
2628 * term TODO.
2629 */
2630 /* If excess == 0, no tree ops */
cf2c8127 2631 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2632 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2633 css_put(&mz->memcg->css);
2634 loop++;
2635 /*
2636 * Could not reclaim anything and there are no more
2637 * mem cgroups to try or we seem to be looping without
2638 * reclaiming anything.
2639 */
2640 if (!nr_reclaimed &&
2641 (next_mz == NULL ||
2642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2643 break;
2644 } while (!nr_reclaimed);
2645 if (next_mz)
2646 css_put(&next_mz->memcg->css);
2647 return nr_reclaimed;
2648}
2649
ea280e7b
TH
2650/*
2651 * Test whether @memcg has children, dead or alive. Note that this
2652 * function doesn't care whether @memcg has use_hierarchy enabled and
2653 * returns %true if there are child csses according to the cgroup
2654 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2655 */
b5f99b53
GC
2656static inline bool memcg_has_children(struct mem_cgroup *memcg)
2657{
ea280e7b
TH
2658 bool ret;
2659
ea280e7b
TH
2660 rcu_read_lock();
2661 ret = css_next_child(NULL, &memcg->css);
2662 rcu_read_unlock();
2663 return ret;
b5f99b53
GC
2664}
2665
c26251f9 2666/*
51038171 2667 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2668 *
2669 * Caller is responsible for holding css reference for memcg.
2670 */
2671static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2672{
2673 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2674
c1e862c1
KH
2675 /* we call try-to-free pages for make this cgroup empty */
2676 lru_add_drain_all();
f817ed48 2677 /* try to free all pages in this cgroup */
3e32cb2e 2678 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2679 int progress;
c1e862c1 2680
c26251f9
MH
2681 if (signal_pending(current))
2682 return -EINTR;
2683
b70a2a21
JW
2684 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2685 GFP_KERNEL, true);
c1e862c1 2686 if (!progress) {
f817ed48 2687 nr_retries--;
c1e862c1 2688 /* maybe some writeback is necessary */
8aa7e847 2689 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2690 }
f817ed48
KH
2691
2692 }
ab5196c2
MH
2693
2694 return 0;
cc847582
KH
2695}
2696
6770c64e
TH
2697static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2698 char *buf, size_t nbytes,
2699 loff_t off)
c1e862c1 2700{
6770c64e 2701 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2702
d8423011
MH
2703 if (mem_cgroup_is_root(memcg))
2704 return -EINVAL;
6770c64e 2705 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2706}
2707
182446d0
TH
2708static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2709 struct cftype *cft)
18f59ea7 2710{
182446d0 2711 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2712}
2713
182446d0
TH
2714static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2715 struct cftype *cft, u64 val)
18f59ea7
BS
2716{
2717 int retval = 0;
182446d0 2718 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2719 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2720
567fb435 2721 if (memcg->use_hierarchy == val)
0b8f73e1 2722 return 0;
567fb435 2723
18f59ea7 2724 /*
af901ca1 2725 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2726 * in the child subtrees. If it is unset, then the change can
2727 * occur, provided the current cgroup has no children.
2728 *
2729 * For the root cgroup, parent_mem is NULL, we allow value to be
2730 * set if there are no children.
2731 */
c0ff4b85 2732 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2733 (val == 1 || val == 0)) {
ea280e7b 2734 if (!memcg_has_children(memcg))
c0ff4b85 2735 memcg->use_hierarchy = val;
18f59ea7
BS
2736 else
2737 retval = -EBUSY;
2738 } else
2739 retval = -EINVAL;
567fb435 2740
18f59ea7
BS
2741 return retval;
2742}
2743
72b54e73 2744static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2745{
2746 struct mem_cgroup *iter;
72b54e73 2747 int i;
ce00a967 2748
72b54e73 2749 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2750
72b54e73
VD
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_STAT; i++)
2753 stat[i] += mem_cgroup_read_stat(iter, i);
2754 }
ce00a967
JW
2755}
2756
72b54e73 2757static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2758{
2759 struct mem_cgroup *iter;
72b54e73 2760 int i;
587d9f72 2761
72b54e73 2762 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2763
72b54e73
VD
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2766 events[i] += mem_cgroup_read_events(iter, i);
2767 }
587d9f72
JW
2768}
2769
6f646156 2770static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2771{
72b54e73 2772 unsigned long val = 0;
ce00a967 2773
3e32cb2e 2774 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2775 struct mem_cgroup *iter;
2776
2777 for_each_mem_cgroup_tree(iter, memcg) {
2778 val += mem_cgroup_read_stat(iter,
2779 MEM_CGROUP_STAT_CACHE);
2780 val += mem_cgroup_read_stat(iter,
2781 MEM_CGROUP_STAT_RSS);
2782 if (swap)
2783 val += mem_cgroup_read_stat(iter,
2784 MEM_CGROUP_STAT_SWAP);
2785 }
3e32cb2e 2786 } else {
ce00a967 2787 if (!swap)
3e32cb2e 2788 val = page_counter_read(&memcg->memory);
ce00a967 2789 else
3e32cb2e 2790 val = page_counter_read(&memcg->memsw);
ce00a967 2791 }
c12176d3 2792 return val;
ce00a967
JW
2793}
2794
3e32cb2e
JW
2795enum {
2796 RES_USAGE,
2797 RES_LIMIT,
2798 RES_MAX_USAGE,
2799 RES_FAILCNT,
2800 RES_SOFT_LIMIT,
2801};
ce00a967 2802
791badbd 2803static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2804 struct cftype *cft)
8cdea7c0 2805{
182446d0 2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2807 struct page_counter *counter;
af36f906 2808
3e32cb2e 2809 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2810 case _MEM:
3e32cb2e
JW
2811 counter = &memcg->memory;
2812 break;
8c7c6e34 2813 case _MEMSWAP:
3e32cb2e
JW
2814 counter = &memcg->memsw;
2815 break;
510fc4e1 2816 case _KMEM:
3e32cb2e 2817 counter = &memcg->kmem;
510fc4e1 2818 break;
d55f90bf 2819 case _TCP:
0db15298 2820 counter = &memcg->tcpmem;
d55f90bf 2821 break;
8c7c6e34
KH
2822 default:
2823 BUG();
8c7c6e34 2824 }
3e32cb2e
JW
2825
2826 switch (MEMFILE_ATTR(cft->private)) {
2827 case RES_USAGE:
2828 if (counter == &memcg->memory)
c12176d3 2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2830 if (counter == &memcg->memsw)
c12176d3 2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2832 return (u64)page_counter_read(counter) * PAGE_SIZE;
2833 case RES_LIMIT:
2834 return (u64)counter->limit * PAGE_SIZE;
2835 case RES_MAX_USAGE:
2836 return (u64)counter->watermark * PAGE_SIZE;
2837 case RES_FAILCNT:
2838 return counter->failcnt;
2839 case RES_SOFT_LIMIT:
2840 return (u64)memcg->soft_limit * PAGE_SIZE;
2841 default:
2842 BUG();
2843 }
8cdea7c0 2844}
510fc4e1 2845
127424c8 2846#ifndef CONFIG_SLOB
567e9ab2 2847static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2848{
d6441637
VD
2849 int memcg_id;
2850
b313aeee
VD
2851 if (cgroup_memory_nokmem)
2852 return 0;
2853
2a4db7eb 2854 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2855 BUG_ON(memcg->kmem_state);
d6441637 2856
f3bb3043 2857 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2858 if (memcg_id < 0)
2859 return memcg_id;
d6441637 2860
ef12947c 2861 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2862 /*
567e9ab2 2863 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2864 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2865 * guarantee no one starts accounting before all call sites are
2866 * patched.
2867 */
900a38f0 2868 memcg->kmemcg_id = memcg_id;
567e9ab2 2869 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2870
2871 return 0;
d6441637
VD
2872}
2873
8e0a8912
JW
2874static void memcg_offline_kmem(struct mem_cgroup *memcg)
2875{
2876 struct cgroup_subsys_state *css;
2877 struct mem_cgroup *parent, *child;
2878 int kmemcg_id;
2879
2880 if (memcg->kmem_state != KMEM_ONLINE)
2881 return;
2882 /*
2883 * Clear the online state before clearing memcg_caches array
2884 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2885 * guarantees that no cache will be created for this cgroup
2886 * after we are done (see memcg_create_kmem_cache()).
2887 */
2888 memcg->kmem_state = KMEM_ALLOCATED;
2889
2890 memcg_deactivate_kmem_caches(memcg);
2891
2892 kmemcg_id = memcg->kmemcg_id;
2893 BUG_ON(kmemcg_id < 0);
2894
2895 parent = parent_mem_cgroup(memcg);
2896 if (!parent)
2897 parent = root_mem_cgroup;
2898
2899 /*
2900 * Change kmemcg_id of this cgroup and all its descendants to the
2901 * parent's id, and then move all entries from this cgroup's list_lrus
2902 * to ones of the parent. After we have finished, all list_lrus
2903 * corresponding to this cgroup are guaranteed to remain empty. The
2904 * ordering is imposed by list_lru_node->lock taken by
2905 * memcg_drain_all_list_lrus().
2906 */
3a06bb78 2907 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2908 css_for_each_descendant_pre(css, &memcg->css) {
2909 child = mem_cgroup_from_css(css);
2910 BUG_ON(child->kmemcg_id != kmemcg_id);
2911 child->kmemcg_id = parent->kmemcg_id;
2912 if (!memcg->use_hierarchy)
2913 break;
2914 }
3a06bb78
TH
2915 rcu_read_unlock();
2916
8e0a8912
JW
2917 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2918
2919 memcg_free_cache_id(kmemcg_id);
2920}
2921
2922static void memcg_free_kmem(struct mem_cgroup *memcg)
2923{
0b8f73e1
JW
2924 /* css_alloc() failed, offlining didn't happen */
2925 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2926 memcg_offline_kmem(memcg);
2927
8e0a8912
JW
2928 if (memcg->kmem_state == KMEM_ALLOCATED) {
2929 memcg_destroy_kmem_caches(memcg);
2930 static_branch_dec(&memcg_kmem_enabled_key);
2931 WARN_ON(page_counter_read(&memcg->kmem));
2932 }
8e0a8912 2933}
d6441637 2934#else
0b8f73e1 2935static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2936{
2937 return 0;
2938}
2939static void memcg_offline_kmem(struct mem_cgroup *memcg)
2940{
2941}
2942static void memcg_free_kmem(struct mem_cgroup *memcg)
2943{
2944}
2945#endif /* !CONFIG_SLOB */
2946
d6441637 2947static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2948 unsigned long limit)
d6441637 2949{
b313aeee 2950 int ret;
127424c8
JW
2951
2952 mutex_lock(&memcg_limit_mutex);
127424c8 2953 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2954 mutex_unlock(&memcg_limit_mutex);
2955 return ret;
d6441637 2956}
510fc4e1 2957
d55f90bf
VD
2958static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2959{
2960 int ret;
2961
2962 mutex_lock(&memcg_limit_mutex);
2963
0db15298 2964 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2965 if (ret)
2966 goto out;
2967
0db15298 2968 if (!memcg->tcpmem_active) {
d55f90bf
VD
2969 /*
2970 * The active flag needs to be written after the static_key
2971 * update. This is what guarantees that the socket activation
2972 * function is the last one to run. See sock_update_memcg() for
2973 * details, and note that we don't mark any socket as belonging
2974 * to this memcg until that flag is up.
2975 *
2976 * We need to do this, because static_keys will span multiple
2977 * sites, but we can't control their order. If we mark a socket
2978 * as accounted, but the accounting functions are not patched in
2979 * yet, we'll lose accounting.
2980 *
2981 * We never race with the readers in sock_update_memcg(),
2982 * because when this value change, the code to process it is not
2983 * patched in yet.
2984 */
2985 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2986 memcg->tcpmem_active = true;
d55f90bf
VD
2987 }
2988out:
2989 mutex_unlock(&memcg_limit_mutex);
2990 return ret;
2991}
d55f90bf 2992
628f4235
KH
2993/*
2994 * The user of this function is...
2995 * RES_LIMIT.
2996 */
451af504
TH
2997static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2998 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2999{
451af504 3000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3001 unsigned long nr_pages;
628f4235
KH
3002 int ret;
3003
451af504 3004 buf = strstrip(buf);
650c5e56 3005 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3006 if (ret)
3007 return ret;
af36f906 3008
3e32cb2e 3009 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3010 case RES_LIMIT:
4b3bde4c
BS
3011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3012 ret = -EINVAL;
3013 break;
3014 }
3e32cb2e
JW
3015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3016 case _MEM:
3017 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3018 break;
3e32cb2e
JW
3019 case _MEMSWAP:
3020 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3021 break;
3e32cb2e
JW
3022 case _KMEM:
3023 ret = memcg_update_kmem_limit(memcg, nr_pages);
3024 break;
d55f90bf
VD
3025 case _TCP:
3026 ret = memcg_update_tcp_limit(memcg, nr_pages);
3027 break;
3e32cb2e 3028 }
296c81d8 3029 break;
3e32cb2e
JW
3030 case RES_SOFT_LIMIT:
3031 memcg->soft_limit = nr_pages;
3032 ret = 0;
628f4235
KH
3033 break;
3034 }
451af504 3035 return ret ?: nbytes;
8cdea7c0
BS
3036}
3037
6770c64e
TH
3038static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3039 size_t nbytes, loff_t off)
c84872e1 3040{
6770c64e 3041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3042 struct page_counter *counter;
c84872e1 3043
3e32cb2e
JW
3044 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3045 case _MEM:
3046 counter = &memcg->memory;
3047 break;
3048 case _MEMSWAP:
3049 counter = &memcg->memsw;
3050 break;
3051 case _KMEM:
3052 counter = &memcg->kmem;
3053 break;
d55f90bf 3054 case _TCP:
0db15298 3055 counter = &memcg->tcpmem;
d55f90bf 3056 break;
3e32cb2e
JW
3057 default:
3058 BUG();
3059 }
af36f906 3060
3e32cb2e 3061 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3062 case RES_MAX_USAGE:
3e32cb2e 3063 page_counter_reset_watermark(counter);
29f2a4da
PE
3064 break;
3065 case RES_FAILCNT:
3e32cb2e 3066 counter->failcnt = 0;
29f2a4da 3067 break;
3e32cb2e
JW
3068 default:
3069 BUG();
29f2a4da 3070 }
f64c3f54 3071
6770c64e 3072 return nbytes;
c84872e1
PE
3073}
3074
182446d0 3075static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3076 struct cftype *cft)
3077{
182446d0 3078 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3079}
3080
02491447 3081#ifdef CONFIG_MMU
182446d0 3082static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3083 struct cftype *cft, u64 val)
3084{
182446d0 3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3086
1dfab5ab 3087 if (val & ~MOVE_MASK)
7dc74be0 3088 return -EINVAL;
ee5e8472 3089
7dc74be0 3090 /*
ee5e8472
GC
3091 * No kind of locking is needed in here, because ->can_attach() will
3092 * check this value once in the beginning of the process, and then carry
3093 * on with stale data. This means that changes to this value will only
3094 * affect task migrations starting after the change.
7dc74be0 3095 */
c0ff4b85 3096 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3097 return 0;
3098}
02491447 3099#else
182446d0 3100static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3101 struct cftype *cft, u64 val)
3102{
3103 return -ENOSYS;
3104}
3105#endif
7dc74be0 3106
406eb0c9 3107#ifdef CONFIG_NUMA
2da8ca82 3108static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3109{
25485de6
GT
3110 struct numa_stat {
3111 const char *name;
3112 unsigned int lru_mask;
3113 };
3114
3115 static const struct numa_stat stats[] = {
3116 { "total", LRU_ALL },
3117 { "file", LRU_ALL_FILE },
3118 { "anon", LRU_ALL_ANON },
3119 { "unevictable", BIT(LRU_UNEVICTABLE) },
3120 };
3121 const struct numa_stat *stat;
406eb0c9 3122 int nid;
25485de6 3123 unsigned long nr;
2da8ca82 3124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3125
25485de6
GT
3126 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3128 seq_printf(m, "%s=%lu", stat->name, nr);
3129 for_each_node_state(nid, N_MEMORY) {
3130 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3131 stat->lru_mask);
3132 seq_printf(m, " N%d=%lu", nid, nr);
3133 }
3134 seq_putc(m, '\n');
406eb0c9 3135 }
406eb0c9 3136
071aee13
YH
3137 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3138 struct mem_cgroup *iter;
3139
3140 nr = 0;
3141 for_each_mem_cgroup_tree(iter, memcg)
3142 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3143 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3145 nr = 0;
3146 for_each_mem_cgroup_tree(iter, memcg)
3147 nr += mem_cgroup_node_nr_lru_pages(
3148 iter, nid, stat->lru_mask);
3149 seq_printf(m, " N%d=%lu", nid, nr);
3150 }
3151 seq_putc(m, '\n');
406eb0c9 3152 }
406eb0c9 3153
406eb0c9
YH
3154 return 0;
3155}
3156#endif /* CONFIG_NUMA */
3157
2da8ca82 3158static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3159{
2da8ca82 3160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3161 unsigned long memory, memsw;
af7c4b0e
JW
3162 struct mem_cgroup *mi;
3163 unsigned int i;
406eb0c9 3164
0ca44b14
GT
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3166 MEM_CGROUP_STAT_NSTATS);
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3168 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3170
af7c4b0e 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3172 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3173 continue;
484ebb3b 3174 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3175 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3176 }
7b854121 3177
af7c4b0e
JW
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3179 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3180 mem_cgroup_read_events(memcg, i));
3181
3182 for (i = 0; i < NR_LRU_LISTS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3184 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3185
14067bb3 3186 /* Hierarchical information */
3e32cb2e
JW
3187 memory = memsw = PAGE_COUNTER_MAX;
3188 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3189 memory = min(memory, mi->memory.limit);
3190 memsw = min(memsw, mi->memsw.limit);
fee7b548 3191 }
3e32cb2e
JW
3192 seq_printf(m, "hierarchical_memory_limit %llu\n",
3193 (u64)memory * PAGE_SIZE);
7941d214 3194 if (do_memsw_account())
3e32cb2e
JW
3195 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3196 (u64)memsw * PAGE_SIZE);
7f016ee8 3197
af7c4b0e 3198 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3199 unsigned long long val = 0;
af7c4b0e 3200
7941d214 3201 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3202 continue;
af7c4b0e
JW
3203 for_each_mem_cgroup_tree(mi, memcg)
3204 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3206 }
3207
3208 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3209 unsigned long long val = 0;
3210
3211 for_each_mem_cgroup_tree(mi, memcg)
3212 val += mem_cgroup_read_events(mi, i);
3213 seq_printf(m, "total_%s %llu\n",
3214 mem_cgroup_events_names[i], val);
3215 }
3216
3217 for (i = 0; i < NR_LRU_LISTS; i++) {
3218 unsigned long long val = 0;
3219
3220 for_each_mem_cgroup_tree(mi, memcg)
3221 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3222 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3223 }
14067bb3 3224
7f016ee8 3225#ifdef CONFIG_DEBUG_VM
7f016ee8 3226 {
ef8f2327
MG
3227 pg_data_t *pgdat;
3228 struct mem_cgroup_per_node *mz;
89abfab1 3229 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3230 unsigned long recent_rotated[2] = {0, 0};
3231 unsigned long recent_scanned[2] = {0, 0};
3232
ef8f2327
MG
3233 for_each_online_pgdat(pgdat) {
3234 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3235 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3236
ef8f2327
MG
3237 recent_rotated[0] += rstat->recent_rotated[0];
3238 recent_rotated[1] += rstat->recent_rotated[1];
3239 recent_scanned[0] += rstat->recent_scanned[0];
3240 recent_scanned[1] += rstat->recent_scanned[1];
3241 }
78ccf5b5
JW
3242 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3243 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3244 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3245 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3246 }
3247#endif
3248
d2ceb9b7
KH
3249 return 0;
3250}
3251
182446d0
TH
3252static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3253 struct cftype *cft)
a7885eb8 3254{
182446d0 3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3256
1f4c025b 3257 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3258}
3259
182446d0
TH
3260static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3261 struct cftype *cft, u64 val)
a7885eb8 3262{
182446d0 3263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3264
3dae7fec 3265 if (val > 100)
a7885eb8
KM
3266 return -EINVAL;
3267
14208b0e 3268 if (css->parent)
3dae7fec
JW
3269 memcg->swappiness = val;
3270 else
3271 vm_swappiness = val;
068b38c1 3272
a7885eb8
KM
3273 return 0;
3274}
3275
2e72b634
KS
3276static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3277{
3278 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3279 unsigned long usage;
2e72b634
KS
3280 int i;
3281
3282 rcu_read_lock();
3283 if (!swap)
2c488db2 3284 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3285 else
2c488db2 3286 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3287
3288 if (!t)
3289 goto unlock;
3290
ce00a967 3291 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3292
3293 /*
748dad36 3294 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3295 * If it's not true, a threshold was crossed after last
3296 * call of __mem_cgroup_threshold().
3297 */
5407a562 3298 i = t->current_threshold;
2e72b634
KS
3299
3300 /*
3301 * Iterate backward over array of thresholds starting from
3302 * current_threshold and check if a threshold is crossed.
3303 * If none of thresholds below usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* i = current_threshold + 1 */
3310 i++;
3311
3312 /*
3313 * Iterate forward over array of thresholds starting from
3314 * current_threshold+1 and check if a threshold is crossed.
3315 * If none of thresholds above usage is crossed, we read
3316 * only one element of the array here.
3317 */
3318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3319 eventfd_signal(t->entries[i].eventfd, 1);
3320
3321 /* Update current_threshold */
5407a562 3322 t->current_threshold = i - 1;
2e72b634
KS
3323unlock:
3324 rcu_read_unlock();
3325}
3326
3327static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3328{
ad4ca5f4
KS
3329 while (memcg) {
3330 __mem_cgroup_threshold(memcg, false);
7941d214 3331 if (do_memsw_account())
ad4ca5f4
KS
3332 __mem_cgroup_threshold(memcg, true);
3333
3334 memcg = parent_mem_cgroup(memcg);
3335 }
2e72b634
KS
3336}
3337
3338static int compare_thresholds(const void *a, const void *b)
3339{
3340 const struct mem_cgroup_threshold *_a = a;
3341 const struct mem_cgroup_threshold *_b = b;
3342
2bff24a3
GT
3343 if (_a->threshold > _b->threshold)
3344 return 1;
3345
3346 if (_a->threshold < _b->threshold)
3347 return -1;
3348
3349 return 0;
2e72b634
KS
3350}
3351
c0ff4b85 3352static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3353{
3354 struct mem_cgroup_eventfd_list *ev;
3355
2bcf2e92
MH
3356 spin_lock(&memcg_oom_lock);
3357
c0ff4b85 3358 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3359 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3360
3361 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3362 return 0;
3363}
3364
c0ff4b85 3365static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3366{
7d74b06f
KH
3367 struct mem_cgroup *iter;
3368
c0ff4b85 3369 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3370 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3371}
3372
59b6f873 3373static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3374 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3375{
2c488db2
KS
3376 struct mem_cgroup_thresholds *thresholds;
3377 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3378 unsigned long threshold;
3379 unsigned long usage;
2c488db2 3380 int i, size, ret;
2e72b634 3381
650c5e56 3382 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3383 if (ret)
3384 return ret;
3385
3386 mutex_lock(&memcg->thresholds_lock);
2c488db2 3387
05b84301 3388 if (type == _MEM) {
2c488db2 3389 thresholds = &memcg->thresholds;
ce00a967 3390 usage = mem_cgroup_usage(memcg, false);
05b84301 3391 } else if (type == _MEMSWAP) {
2c488db2 3392 thresholds = &memcg->memsw_thresholds;
ce00a967 3393 usage = mem_cgroup_usage(memcg, true);
05b84301 3394 } else
2e72b634
KS
3395 BUG();
3396
2e72b634 3397 /* Check if a threshold crossed before adding a new one */
2c488db2 3398 if (thresholds->primary)
2e72b634
KS
3399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3400
2c488db2 3401 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3402
3403 /* Allocate memory for new array of thresholds */
2c488db2 3404 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3405 GFP_KERNEL);
2c488db2 3406 if (!new) {
2e72b634
KS
3407 ret = -ENOMEM;
3408 goto unlock;
3409 }
2c488db2 3410 new->size = size;
2e72b634
KS
3411
3412 /* Copy thresholds (if any) to new array */
2c488db2
KS
3413 if (thresholds->primary) {
3414 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3415 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3416 }
3417
2e72b634 3418 /* Add new threshold */
2c488db2
KS
3419 new->entries[size - 1].eventfd = eventfd;
3420 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3421
3422 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3423 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3424 compare_thresholds, NULL);
3425
3426 /* Find current threshold */
2c488db2 3427 new->current_threshold = -1;
2e72b634 3428 for (i = 0; i < size; i++) {
748dad36 3429 if (new->entries[i].threshold <= usage) {
2e72b634 3430 /*
2c488db2
KS
3431 * new->current_threshold will not be used until
3432 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3433 * it here.
3434 */
2c488db2 3435 ++new->current_threshold;
748dad36
SZ
3436 } else
3437 break;
2e72b634
KS
3438 }
3439
2c488db2
KS
3440 /* Free old spare buffer and save old primary buffer as spare */
3441 kfree(thresholds->spare);
3442 thresholds->spare = thresholds->primary;
3443
3444 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3445
907860ed 3446 /* To be sure that nobody uses thresholds */
2e72b634
KS
3447 synchronize_rcu();
3448
2e72b634
KS
3449unlock:
3450 mutex_unlock(&memcg->thresholds_lock);
3451
3452 return ret;
3453}
3454
59b6f873 3455static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3456 struct eventfd_ctx *eventfd, const char *args)
3457{
59b6f873 3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3459}
3460
59b6f873 3461static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3462 struct eventfd_ctx *eventfd, const char *args)
3463{
59b6f873 3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3465}
3466
59b6f873 3467static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3468 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3469{
2c488db2
KS
3470 struct mem_cgroup_thresholds *thresholds;
3471 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3472 unsigned long usage;
2c488db2 3473 int i, j, size;
2e72b634
KS
3474
3475 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3476
3477 if (type == _MEM) {
2c488db2 3478 thresholds = &memcg->thresholds;
ce00a967 3479 usage = mem_cgroup_usage(memcg, false);
05b84301 3480 } else if (type == _MEMSWAP) {
2c488db2 3481 thresholds = &memcg->memsw_thresholds;
ce00a967 3482 usage = mem_cgroup_usage(memcg, true);
05b84301 3483 } else
2e72b634
KS
3484 BUG();
3485
371528ca
AV
3486 if (!thresholds->primary)
3487 goto unlock;
3488
2e72b634
KS
3489 /* Check if a threshold crossed before removing */
3490 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3491
3492 /* Calculate new number of threshold */
2c488db2
KS
3493 size = 0;
3494 for (i = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3496 size++;
3497 }
3498
2c488db2 3499 new = thresholds->spare;
907860ed 3500
2e72b634
KS
3501 /* Set thresholds array to NULL if we don't have thresholds */
3502 if (!size) {
2c488db2
KS
3503 kfree(new);
3504 new = NULL;
907860ed 3505 goto swap_buffers;
2e72b634
KS
3506 }
3507
2c488db2 3508 new->size = size;
2e72b634
KS
3509
3510 /* Copy thresholds and find current threshold */
2c488db2
KS
3511 new->current_threshold = -1;
3512 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3513 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3514 continue;
3515
2c488db2 3516 new->entries[j] = thresholds->primary->entries[i];
748dad36 3517 if (new->entries[j].threshold <= usage) {
2e72b634 3518 /*
2c488db2 3519 * new->current_threshold will not be used
2e72b634
KS
3520 * until rcu_assign_pointer(), so it's safe to increment
3521 * it here.
3522 */
2c488db2 3523 ++new->current_threshold;
2e72b634
KS
3524 }
3525 j++;
3526 }
3527
907860ed 3528swap_buffers:
2c488db2
KS
3529 /* Swap primary and spare array */
3530 thresholds->spare = thresholds->primary;
8c757763 3531
2c488db2 3532 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3533
907860ed 3534 /* To be sure that nobody uses thresholds */
2e72b634 3535 synchronize_rcu();
6611d8d7
MC
3536
3537 /* If all events are unregistered, free the spare array */
3538 if (!new) {
3539 kfree(thresholds->spare);
3540 thresholds->spare = NULL;
3541 }
371528ca 3542unlock:
2e72b634 3543 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3544}
c1e862c1 3545
59b6f873 3546static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3547 struct eventfd_ctx *eventfd)
3548{
59b6f873 3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3550}
3551
59b6f873 3552static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3553 struct eventfd_ctx *eventfd)
3554{
59b6f873 3555 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3556}
3557
59b6f873 3558static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3559 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3560{
9490ff27 3561 struct mem_cgroup_eventfd_list *event;
9490ff27 3562
9490ff27
KH
3563 event = kmalloc(sizeof(*event), GFP_KERNEL);
3564 if (!event)
3565 return -ENOMEM;
3566
1af8efe9 3567 spin_lock(&memcg_oom_lock);
9490ff27
KH
3568
3569 event->eventfd = eventfd;
3570 list_add(&event->list, &memcg->oom_notify);
3571
3572 /* already in OOM ? */
c2b42d3c 3573 if (memcg->under_oom)
9490ff27 3574 eventfd_signal(eventfd, 1);
1af8efe9 3575 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3576
3577 return 0;
3578}
3579
59b6f873 3580static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3581 struct eventfd_ctx *eventfd)
9490ff27 3582{
9490ff27 3583 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3584
1af8efe9 3585 spin_lock(&memcg_oom_lock);
9490ff27 3586
c0ff4b85 3587 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3588 if (ev->eventfd == eventfd) {
3589 list_del(&ev->list);
3590 kfree(ev);
3591 }
3592 }
3593
1af8efe9 3594 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3595}
3596
2da8ca82 3597static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3598{
2da8ca82 3599 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3600
791badbd 3601 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3602 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3603 return 0;
3604}
3605
182446d0 3606static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3607 struct cftype *cft, u64 val)
3608{
182446d0 3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3610
3611 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3612 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3613 return -EINVAL;
3614
c0ff4b85 3615 memcg->oom_kill_disable = val;
4d845ebf 3616 if (!val)
c0ff4b85 3617 memcg_oom_recover(memcg);
3dae7fec 3618
3c11ecf4
KH
3619 return 0;
3620}
3621
52ebea74
TH
3622#ifdef CONFIG_CGROUP_WRITEBACK
3623
3624struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3625{
3626 return &memcg->cgwb_list;
3627}
3628
841710aa
TH
3629static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3630{
3631 return wb_domain_init(&memcg->cgwb_domain, gfp);
3632}
3633
3634static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3635{
3636 wb_domain_exit(&memcg->cgwb_domain);
3637}
3638
2529bb3a
TH
3639static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3640{
3641 wb_domain_size_changed(&memcg->cgwb_domain);
3642}
3643
841710aa
TH
3644struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3645{
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647
3648 if (!memcg->css.parent)
3649 return NULL;
3650
3651 return &memcg->cgwb_domain;
3652}
3653
c2aa723a
TH
3654/**
3655 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3656 * @wb: bdi_writeback in question
c5edf9cd
TH
3657 * @pfilepages: out parameter for number of file pages
3658 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3659 * @pdirty: out parameter for number of dirty pages
3660 * @pwriteback: out parameter for number of pages under writeback
3661 *
c5edf9cd
TH
3662 * Determine the numbers of file, headroom, dirty, and writeback pages in
3663 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3664 * is a bit more involved.
c2aa723a 3665 *
c5edf9cd
TH
3666 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3667 * headroom is calculated as the lowest headroom of itself and the
3668 * ancestors. Note that this doesn't consider the actual amount of
3669 * available memory in the system. The caller should further cap
3670 * *@pheadroom accordingly.
c2aa723a 3671 */
c5edf9cd
TH
3672void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3673 unsigned long *pheadroom, unsigned long *pdirty,
3674 unsigned long *pwriteback)
c2aa723a
TH
3675{
3676 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3677 struct mem_cgroup *parent;
c2aa723a
TH
3678
3679 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3680
3681 /* this should eventually include NR_UNSTABLE_NFS */
3682 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3683 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3684 (1 << LRU_ACTIVE_FILE));
3685 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3686
c2aa723a
TH
3687 while ((parent = parent_mem_cgroup(memcg))) {
3688 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3689 unsigned long used = page_counter_read(&memcg->memory);
3690
c5edf9cd 3691 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3692 memcg = parent;
3693 }
c2aa723a
TH
3694}
3695
841710aa
TH
3696#else /* CONFIG_CGROUP_WRITEBACK */
3697
3698static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3699{
3700 return 0;
3701}
3702
3703static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3704{
3705}
3706
2529bb3a
TH
3707static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3708{
3709}
3710
52ebea74
TH
3711#endif /* CONFIG_CGROUP_WRITEBACK */
3712
3bc942f3
TH
3713/*
3714 * DO NOT USE IN NEW FILES.
3715 *
3716 * "cgroup.event_control" implementation.
3717 *
3718 * This is way over-engineered. It tries to support fully configurable
3719 * events for each user. Such level of flexibility is completely
3720 * unnecessary especially in the light of the planned unified hierarchy.
3721 *
3722 * Please deprecate this and replace with something simpler if at all
3723 * possible.
3724 */
3725
79bd9814
TH
3726/*
3727 * Unregister event and free resources.
3728 *
3729 * Gets called from workqueue.
3730 */
3bc942f3 3731static void memcg_event_remove(struct work_struct *work)
79bd9814 3732{
3bc942f3
TH
3733 struct mem_cgroup_event *event =
3734 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3735 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3736
3737 remove_wait_queue(event->wqh, &event->wait);
3738
59b6f873 3739 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3740
3741 /* Notify userspace the event is going away. */
3742 eventfd_signal(event->eventfd, 1);
3743
3744 eventfd_ctx_put(event->eventfd);
3745 kfree(event);
59b6f873 3746 css_put(&memcg->css);
79bd9814
TH
3747}
3748
3749/*
3750 * Gets called on POLLHUP on eventfd when user closes it.
3751 *
3752 * Called with wqh->lock held and interrupts disabled.
3753 */
3bc942f3
TH
3754static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3755 int sync, void *key)
79bd9814 3756{
3bc942f3
TH
3757 struct mem_cgroup_event *event =
3758 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3759 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3760 unsigned long flags = (unsigned long)key;
3761
3762 if (flags & POLLHUP) {
3763 /*
3764 * If the event has been detached at cgroup removal, we
3765 * can simply return knowing the other side will cleanup
3766 * for us.
3767 *
3768 * We can't race against event freeing since the other
3769 * side will require wqh->lock via remove_wait_queue(),
3770 * which we hold.
3771 */
fba94807 3772 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3773 if (!list_empty(&event->list)) {
3774 list_del_init(&event->list);
3775 /*
3776 * We are in atomic context, but cgroup_event_remove()
3777 * may sleep, so we have to call it in workqueue.
3778 */
3779 schedule_work(&event->remove);
3780 }
fba94807 3781 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3782 }
3783
3784 return 0;
3785}
3786
3bc942f3 3787static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3788 wait_queue_head_t *wqh, poll_table *pt)
3789{
3bc942f3
TH
3790 struct mem_cgroup_event *event =
3791 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3792
3793 event->wqh = wqh;
3794 add_wait_queue(wqh, &event->wait);
3795}
3796
3797/*
3bc942f3
TH
3798 * DO NOT USE IN NEW FILES.
3799 *
79bd9814
TH
3800 * Parse input and register new cgroup event handler.
3801 *
3802 * Input must be in format '<event_fd> <control_fd> <args>'.
3803 * Interpretation of args is defined by control file implementation.
3804 */
451af504
TH
3805static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3806 char *buf, size_t nbytes, loff_t off)
79bd9814 3807{
451af504 3808 struct cgroup_subsys_state *css = of_css(of);
fba94807 3809 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3810 struct mem_cgroup_event *event;
79bd9814
TH
3811 struct cgroup_subsys_state *cfile_css;
3812 unsigned int efd, cfd;
3813 struct fd efile;
3814 struct fd cfile;
fba94807 3815 const char *name;
79bd9814
TH
3816 char *endp;
3817 int ret;
3818
451af504
TH
3819 buf = strstrip(buf);
3820
3821 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3822 if (*endp != ' ')
3823 return -EINVAL;
451af504 3824 buf = endp + 1;
79bd9814 3825
451af504 3826 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3827 if ((*endp != ' ') && (*endp != '\0'))
3828 return -EINVAL;
451af504 3829 buf = endp + 1;
79bd9814
TH
3830
3831 event = kzalloc(sizeof(*event), GFP_KERNEL);
3832 if (!event)
3833 return -ENOMEM;
3834
59b6f873 3835 event->memcg = memcg;
79bd9814 3836 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3837 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3838 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3839 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3840
3841 efile = fdget(efd);
3842 if (!efile.file) {
3843 ret = -EBADF;
3844 goto out_kfree;
3845 }
3846
3847 event->eventfd = eventfd_ctx_fileget(efile.file);
3848 if (IS_ERR(event->eventfd)) {
3849 ret = PTR_ERR(event->eventfd);
3850 goto out_put_efile;
3851 }
3852
3853 cfile = fdget(cfd);
3854 if (!cfile.file) {
3855 ret = -EBADF;
3856 goto out_put_eventfd;
3857 }
3858
3859 /* the process need read permission on control file */
3860 /* AV: shouldn't we check that it's been opened for read instead? */
3861 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3862 if (ret < 0)
3863 goto out_put_cfile;
3864
fba94807
TH
3865 /*
3866 * Determine the event callbacks and set them in @event. This used
3867 * to be done via struct cftype but cgroup core no longer knows
3868 * about these events. The following is crude but the whole thing
3869 * is for compatibility anyway.
3bc942f3
TH
3870 *
3871 * DO NOT ADD NEW FILES.
fba94807 3872 */
b583043e 3873 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3874
3875 if (!strcmp(name, "memory.usage_in_bytes")) {
3876 event->register_event = mem_cgroup_usage_register_event;
3877 event->unregister_event = mem_cgroup_usage_unregister_event;
3878 } else if (!strcmp(name, "memory.oom_control")) {
3879 event->register_event = mem_cgroup_oom_register_event;
3880 event->unregister_event = mem_cgroup_oom_unregister_event;
3881 } else if (!strcmp(name, "memory.pressure_level")) {
3882 event->register_event = vmpressure_register_event;
3883 event->unregister_event = vmpressure_unregister_event;
3884 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3885 event->register_event = memsw_cgroup_usage_register_event;
3886 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3887 } else {
3888 ret = -EINVAL;
3889 goto out_put_cfile;
3890 }
3891
79bd9814 3892 /*
b5557c4c
TH
3893 * Verify @cfile should belong to @css. Also, remaining events are
3894 * automatically removed on cgroup destruction but the removal is
3895 * asynchronous, so take an extra ref on @css.
79bd9814 3896 */
b583043e 3897 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3898 &memory_cgrp_subsys);
79bd9814 3899 ret = -EINVAL;
5a17f543 3900 if (IS_ERR(cfile_css))
79bd9814 3901 goto out_put_cfile;
5a17f543
TH
3902 if (cfile_css != css) {
3903 css_put(cfile_css);
79bd9814 3904 goto out_put_cfile;
5a17f543 3905 }
79bd9814 3906
451af504 3907 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3908 if (ret)
3909 goto out_put_css;
3910
3911 efile.file->f_op->poll(efile.file, &event->pt);
3912
fba94807
TH
3913 spin_lock(&memcg->event_list_lock);
3914 list_add(&event->list, &memcg->event_list);
3915 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3916
3917 fdput(cfile);
3918 fdput(efile);
3919
451af504 3920 return nbytes;
79bd9814
TH
3921
3922out_put_css:
b5557c4c 3923 css_put(css);
79bd9814
TH
3924out_put_cfile:
3925 fdput(cfile);
3926out_put_eventfd:
3927 eventfd_ctx_put(event->eventfd);
3928out_put_efile:
3929 fdput(efile);
3930out_kfree:
3931 kfree(event);
3932
3933 return ret;
3934}
3935
241994ed 3936static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3937 {
0eea1030 3938 .name = "usage_in_bytes",
8c7c6e34 3939 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3940 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3941 },
c84872e1
PE
3942 {
3943 .name = "max_usage_in_bytes",
8c7c6e34 3944 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3945 .write = mem_cgroup_reset,
791badbd 3946 .read_u64 = mem_cgroup_read_u64,
c84872e1 3947 },
8cdea7c0 3948 {
0eea1030 3949 .name = "limit_in_bytes",
8c7c6e34 3950 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3951 .write = mem_cgroup_write,
791badbd 3952 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3953 },
296c81d8
BS
3954 {
3955 .name = "soft_limit_in_bytes",
3956 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3957 .write = mem_cgroup_write,
791badbd 3958 .read_u64 = mem_cgroup_read_u64,
296c81d8 3959 },
8cdea7c0
BS
3960 {
3961 .name = "failcnt",
8c7c6e34 3962 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3963 .write = mem_cgroup_reset,
791badbd 3964 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3965 },
d2ceb9b7
KH
3966 {
3967 .name = "stat",
2da8ca82 3968 .seq_show = memcg_stat_show,
d2ceb9b7 3969 },
c1e862c1
KH
3970 {
3971 .name = "force_empty",
6770c64e 3972 .write = mem_cgroup_force_empty_write,
c1e862c1 3973 },
18f59ea7
BS
3974 {
3975 .name = "use_hierarchy",
3976 .write_u64 = mem_cgroup_hierarchy_write,
3977 .read_u64 = mem_cgroup_hierarchy_read,
3978 },
79bd9814 3979 {
3bc942f3 3980 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3981 .write = memcg_write_event_control,
7dbdb199 3982 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3983 },
a7885eb8
KM
3984 {
3985 .name = "swappiness",
3986 .read_u64 = mem_cgroup_swappiness_read,
3987 .write_u64 = mem_cgroup_swappiness_write,
3988 },
7dc74be0
DN
3989 {
3990 .name = "move_charge_at_immigrate",
3991 .read_u64 = mem_cgroup_move_charge_read,
3992 .write_u64 = mem_cgroup_move_charge_write,
3993 },
9490ff27
KH
3994 {
3995 .name = "oom_control",
2da8ca82 3996 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3997 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3998 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3999 },
70ddf637
AV
4000 {
4001 .name = "pressure_level",
70ddf637 4002 },
406eb0c9
YH
4003#ifdef CONFIG_NUMA
4004 {
4005 .name = "numa_stat",
2da8ca82 4006 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4007 },
4008#endif
510fc4e1
GC
4009 {
4010 .name = "kmem.limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4012 .write = mem_cgroup_write,
791badbd 4013 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4014 },
4015 {
4016 .name = "kmem.usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4018 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4019 },
4020 {
4021 .name = "kmem.failcnt",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4023 .write = mem_cgroup_reset,
791badbd 4024 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4025 },
4026 {
4027 .name = "kmem.max_usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4029 .write = mem_cgroup_reset,
791badbd 4030 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4031 },
749c5415
GC
4032#ifdef CONFIG_SLABINFO
4033 {
4034 .name = "kmem.slabinfo",
b047501c
VD
4035 .seq_start = slab_start,
4036 .seq_next = slab_next,
4037 .seq_stop = slab_stop,
4038 .seq_show = memcg_slab_show,
749c5415
GC
4039 },
4040#endif
d55f90bf
VD
4041 {
4042 .name = "kmem.tcp.limit_in_bytes",
4043 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4044 .write = mem_cgroup_write,
4045 .read_u64 = mem_cgroup_read_u64,
4046 },
4047 {
4048 .name = "kmem.tcp.usage_in_bytes",
4049 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.tcp.failcnt",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4055 .write = mem_cgroup_reset,
4056 .read_u64 = mem_cgroup_read_u64,
4057 },
4058 {
4059 .name = "kmem.tcp.max_usage_in_bytes",
4060 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4061 .write = mem_cgroup_reset,
4062 .read_u64 = mem_cgroup_read_u64,
4063 },
6bc10349 4064 { }, /* terminate */
af36f906 4065};
8c7c6e34 4066
73f576c0
JW
4067/*
4068 * Private memory cgroup IDR
4069 *
4070 * Swap-out records and page cache shadow entries need to store memcg
4071 * references in constrained space, so we maintain an ID space that is
4072 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4073 * memory-controlled cgroups to 64k.
4074 *
4075 * However, there usually are many references to the oflline CSS after
4076 * the cgroup has been destroyed, such as page cache or reclaimable
4077 * slab objects, that don't need to hang on to the ID. We want to keep
4078 * those dead CSS from occupying IDs, or we might quickly exhaust the
4079 * relatively small ID space and prevent the creation of new cgroups
4080 * even when there are much fewer than 64k cgroups - possibly none.
4081 *
4082 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4083 * be freed and recycled when it's no longer needed, which is usually
4084 * when the CSS is offlined.
4085 *
4086 * The only exception to that are records of swapped out tmpfs/shmem
4087 * pages that need to be attributed to live ancestors on swapin. But
4088 * those references are manageable from userspace.
4089 */
4090
4091static DEFINE_IDR(mem_cgroup_idr);
4092
615d66c3 4093static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4094{
615d66c3 4095 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4096}
4097
615d66c3 4098static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4099{
615d66c3 4100 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4101 idr_remove(&mem_cgroup_idr, memcg->id.id);
4102 memcg->id.id = 0;
4103
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg->css);
4106 }
4107}
4108
615d66c3
VD
4109static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4110{
4111 mem_cgroup_id_get_many(memcg, 1);
4112}
4113
4114static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4115{
4116 mem_cgroup_id_put_many(memcg, 1);
4117}
4118
73f576c0
JW
4119/**
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4122 *
4123 * Caller must hold rcu_read_lock().
4124 */
4125struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4126{
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr, id);
4129}
4130
ef8f2327 4131static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4132{
4133 struct mem_cgroup_per_node *pn;
ef8f2327 4134 int tmp = node;
1ecaab2b
KH
4135 /*
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4138 *
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4141 * function.
4142 */
41e3355d
KH
4143 if (!node_state(node, N_NORMAL_MEMORY))
4144 tmp = -1;
17295c88 4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4146 if (!pn)
4147 return 1;
1ecaab2b 4148
ef8f2327
MG
4149 lruvec_init(&pn->lruvec);
4150 pn->usage_in_excess = 0;
4151 pn->on_tree = false;
4152 pn->memcg = memcg;
4153
54f72fe0 4154 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4155 return 0;
4156}
4157
ef8f2327 4158static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4159{
54f72fe0 4160 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4161}
4162
0b8f73e1 4163static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4164{
c8b2a36f 4165 int node;
59927fb9 4166
0b8f73e1 4167 memcg_wb_domain_exit(memcg);
c8b2a36f 4168 for_each_node(node)
ef8f2327 4169 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4170 free_percpu(memcg->stat);
8ff69e2c 4171 kfree(memcg);
59927fb9 4172}
3afe36b1 4173
0b8f73e1 4174static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4175{
d142e3e6 4176 struct mem_cgroup *memcg;
0b8f73e1 4177 size_t size;
6d12e2d8 4178 int node;
8cdea7c0 4179
0b8f73e1
JW
4180 size = sizeof(struct mem_cgroup);
4181 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4182
4183 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4184 if (!memcg)
0b8f73e1
JW
4185 return NULL;
4186
73f576c0
JW
4187 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4188 1, MEM_CGROUP_ID_MAX,
4189 GFP_KERNEL);
4190 if (memcg->id.id < 0)
4191 goto fail;
4192
0b8f73e1
JW
4193 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4194 if (!memcg->stat)
4195 goto fail;
78fb7466 4196
3ed28fa1 4197 for_each_node(node)
ef8f2327 4198 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4199 goto fail;
f64c3f54 4200
0b8f73e1
JW
4201 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4202 goto fail;
28dbc4b6 4203
f7e1cb6e 4204 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4205 memcg->last_scanned_node = MAX_NUMNODES;
4206 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4207 mutex_init(&memcg->thresholds_lock);
4208 spin_lock_init(&memcg->move_lock);
70ddf637 4209 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4210 INIT_LIST_HEAD(&memcg->event_list);
4211 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4212 memcg->socket_pressure = jiffies;
127424c8 4213#ifndef CONFIG_SLOB
900a38f0 4214 memcg->kmemcg_id = -1;
900a38f0 4215#endif
52ebea74
TH
4216#ifdef CONFIG_CGROUP_WRITEBACK
4217 INIT_LIST_HEAD(&memcg->cgwb_list);
4218#endif
73f576c0 4219 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4220 return memcg;
4221fail:
73f576c0
JW
4222 if (memcg->id.id > 0)
4223 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4224 mem_cgroup_free(memcg);
4225 return NULL;
d142e3e6
GC
4226}
4227
0b8f73e1
JW
4228static struct cgroup_subsys_state * __ref
4229mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4230{
0b8f73e1
JW
4231 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4232 struct mem_cgroup *memcg;
4233 long error = -ENOMEM;
d142e3e6 4234
0b8f73e1
JW
4235 memcg = mem_cgroup_alloc();
4236 if (!memcg)
4237 return ERR_PTR(error);
d142e3e6 4238
0b8f73e1
JW
4239 memcg->high = PAGE_COUNTER_MAX;
4240 memcg->soft_limit = PAGE_COUNTER_MAX;
4241 if (parent) {
4242 memcg->swappiness = mem_cgroup_swappiness(parent);
4243 memcg->oom_kill_disable = parent->oom_kill_disable;
4244 }
4245 if (parent && parent->use_hierarchy) {
4246 memcg->use_hierarchy = true;
3e32cb2e 4247 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4248 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4249 page_counter_init(&memcg->memsw, &parent->memsw);
4250 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4251 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4252 } else {
3e32cb2e 4253 page_counter_init(&memcg->memory, NULL);
37e84351 4254 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4255 page_counter_init(&memcg->memsw, NULL);
4256 page_counter_init(&memcg->kmem, NULL);
0db15298 4257 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4258 /*
4259 * Deeper hierachy with use_hierarchy == false doesn't make
4260 * much sense so let cgroup subsystem know about this
4261 * unfortunate state in our controller.
4262 */
d142e3e6 4263 if (parent != root_mem_cgroup)
073219e9 4264 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4265 }
d6441637 4266
0b8f73e1
JW
4267 /* The following stuff does not apply to the root */
4268 if (!parent) {
4269 root_mem_cgroup = memcg;
4270 return &memcg->css;
4271 }
4272
b313aeee 4273 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4274 if (error)
4275 goto fail;
127424c8 4276
f7e1cb6e 4277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4278 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4279
0b8f73e1
JW
4280 return &memcg->css;
4281fail:
4282 mem_cgroup_free(memcg);
ea3a9645 4283 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4284}
4285
73f576c0 4286static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4287{
73f576c0
JW
4288 /* Online state pins memcg ID, memcg ID pins CSS */
4289 mem_cgroup_id_get(mem_cgroup_from_css(css));
4290 css_get(css);
2f7dd7a4 4291 return 0;
8cdea7c0
BS
4292}
4293
eb95419b 4294static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4295{
eb95419b 4296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4297 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4298
4299 /*
4300 * Unregister events and notify userspace.
4301 * Notify userspace about cgroup removing only after rmdir of cgroup
4302 * directory to avoid race between userspace and kernelspace.
4303 */
fba94807
TH
4304 spin_lock(&memcg->event_list_lock);
4305 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4306 list_del_init(&event->list);
4307 schedule_work(&event->remove);
4308 }
fba94807 4309 spin_unlock(&memcg->event_list_lock);
ec64f515 4310
567e9ab2 4311 memcg_offline_kmem(memcg);
52ebea74 4312 wb_memcg_offline(memcg);
73f576c0
JW
4313
4314 mem_cgroup_id_put(memcg);
df878fb0
KH
4315}
4316
6df38689
VD
4317static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4318{
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320
4321 invalidate_reclaim_iterators(memcg);
4322}
4323
eb95419b 4324static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4325{
eb95419b 4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4327
f7e1cb6e 4328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4329 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4330
0db15298 4331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4332 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4333
0b8f73e1
JW
4334 vmpressure_cleanup(&memcg->vmpressure);
4335 cancel_work_sync(&memcg->high_work);
4336 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4337 memcg_free_kmem(memcg);
0b8f73e1 4338 mem_cgroup_free(memcg);
8cdea7c0
BS
4339}
4340
1ced953b
TH
4341/**
4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343 * @css: the target css
4344 *
4345 * Reset the states of the mem_cgroup associated with @css. This is
4346 * invoked when the userland requests disabling on the default hierarchy
4347 * but the memcg is pinned through dependency. The memcg should stop
4348 * applying policies and should revert to the vanilla state as it may be
4349 * made visible again.
4350 *
4351 * The current implementation only resets the essential configurations.
4352 * This needs to be expanded to cover all the visible parts.
4353 */
4354static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4355{
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
d334c9bc
VD
4358 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4359 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4360 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4361 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4362 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4363 memcg->low = 0;
4364 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4365 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4366 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4367}
4368
02491447 4369#ifdef CONFIG_MMU
7dc74be0 4370/* Handlers for move charge at task migration. */
854ffa8d 4371static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4372{
05b84301 4373 int ret;
9476db97 4374
d0164adc
MG
4375 /* Try a single bulk charge without reclaim first, kswapd may wake */
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4377 if (!ret) {
854ffa8d 4378 mc.precharge += count;
854ffa8d
DN
4379 return ret;
4380 }
9476db97
JW
4381
4382 /* Try charges one by one with reclaim */
854ffa8d 4383 while (count--) {
00501b53 4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4385 if (ret)
38c5d72f 4386 return ret;
854ffa8d 4387 mc.precharge++;
9476db97 4388 cond_resched();
854ffa8d 4389 }
9476db97 4390 return 0;
4ffef5fe
DN
4391}
4392
4ffef5fe
DN
4393union mc_target {
4394 struct page *page;
02491447 4395 swp_entry_t ent;
4ffef5fe
DN
4396};
4397
4ffef5fe 4398enum mc_target_type {
8d32ff84 4399 MC_TARGET_NONE = 0,
4ffef5fe 4400 MC_TARGET_PAGE,
02491447 4401 MC_TARGET_SWAP,
4ffef5fe
DN
4402};
4403
90254a65
DN
4404static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4405 unsigned long addr, pte_t ptent)
4ffef5fe 4406{
90254a65 4407 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4408
90254a65
DN
4409 if (!page || !page_mapped(page))
4410 return NULL;
4411 if (PageAnon(page)) {
1dfab5ab 4412 if (!(mc.flags & MOVE_ANON))
90254a65 4413 return NULL;
1dfab5ab
JW
4414 } else {
4415 if (!(mc.flags & MOVE_FILE))
4416 return NULL;
4417 }
90254a65
DN
4418 if (!get_page_unless_zero(page))
4419 return NULL;
4420
4421 return page;
4422}
4423
4b91355e 4424#ifdef CONFIG_SWAP
90254a65 4425static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4426 pte_t ptent, swp_entry_t *entry)
90254a65 4427{
90254a65
DN
4428 struct page *page = NULL;
4429 swp_entry_t ent = pte_to_swp_entry(ptent);
4430
1dfab5ab 4431 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4432 return NULL;
4b91355e
KH
4433 /*
4434 * Because lookup_swap_cache() updates some statistics counter,
4435 * we call find_get_page() with swapper_space directly.
4436 */
33806f06 4437 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4438 if (do_memsw_account())
90254a65
DN
4439 entry->val = ent.val;
4440
4441 return page;
4442}
4b91355e
KH
4443#else
4444static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4445 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4446{
4447 return NULL;
4448}
4449#endif
90254a65 4450
87946a72
DN
4451static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4452 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4453{
4454 struct page *page = NULL;
87946a72
DN
4455 struct address_space *mapping;
4456 pgoff_t pgoff;
4457
4458 if (!vma->vm_file) /* anonymous vma */
4459 return NULL;
1dfab5ab 4460 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4461 return NULL;
4462
87946a72 4463 mapping = vma->vm_file->f_mapping;
0661a336 4464 pgoff = linear_page_index(vma, addr);
87946a72
DN
4465
4466 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4467#ifdef CONFIG_SWAP
4468 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4469 if (shmem_mapping(mapping)) {
4470 page = find_get_entry(mapping, pgoff);
4471 if (radix_tree_exceptional_entry(page)) {
4472 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4473 if (do_memsw_account())
139b6a6f
JW
4474 *entry = swp;
4475 page = find_get_page(swap_address_space(swp), swp.val);
4476 }
4477 } else
4478 page = find_get_page(mapping, pgoff);
4479#else
4480 page = find_get_page(mapping, pgoff);
aa3b1895 4481#endif
87946a72
DN
4482 return page;
4483}
4484
b1b0deab
CG
4485/**
4486 * mem_cgroup_move_account - move account of the page
4487 * @page: the page
25843c2b 4488 * @compound: charge the page as compound or small page
b1b0deab
CG
4489 * @from: mem_cgroup which the page is moved from.
4490 * @to: mem_cgroup which the page is moved to. @from != @to.
4491 *
3ac808fd 4492 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4493 *
4494 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4495 * from old cgroup.
4496 */
4497static int mem_cgroup_move_account(struct page *page,
f627c2f5 4498 bool compound,
b1b0deab
CG
4499 struct mem_cgroup *from,
4500 struct mem_cgroup *to)
4501{
4502 unsigned long flags;
f627c2f5 4503 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4504 int ret;
c4843a75 4505 bool anon;
b1b0deab
CG
4506
4507 VM_BUG_ON(from == to);
4508 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4509 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4510
4511 /*
6a93ca8f 4512 * Prevent mem_cgroup_migrate() from looking at
45637bab 4513 * page->mem_cgroup of its source page while we change it.
b1b0deab 4514 */
f627c2f5 4515 ret = -EBUSY;
b1b0deab
CG
4516 if (!trylock_page(page))
4517 goto out;
4518
4519 ret = -EINVAL;
4520 if (page->mem_cgroup != from)
4521 goto out_unlock;
4522
c4843a75
GT
4523 anon = PageAnon(page);
4524
b1b0deab
CG
4525 spin_lock_irqsave(&from->move_lock, flags);
4526
c4843a75 4527 if (!anon && page_mapped(page)) {
b1b0deab
CG
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4529 nr_pages);
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4531 nr_pages);
4532 }
4533
c4843a75
GT
4534 /*
4535 * move_lock grabbed above and caller set from->moving_account, so
4536 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4537 * So mapping should be stable for dirty pages.
4538 */
4539 if (!anon && PageDirty(page)) {
4540 struct address_space *mapping = page_mapping(page);
4541
4542 if (mapping_cap_account_dirty(mapping)) {
4543 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4544 nr_pages);
4545 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4546 nr_pages);
4547 }
4548 }
4549
b1b0deab
CG
4550 if (PageWriteback(page)) {
4551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4552 nr_pages);
4553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4554 nr_pages);
4555 }
4556
4557 /*
4558 * It is safe to change page->mem_cgroup here because the page
4559 * is referenced, charged, and isolated - we can't race with
4560 * uncharging, charging, migration, or LRU putback.
4561 */
4562
4563 /* caller should have done css_get */
4564 page->mem_cgroup = to;
4565 spin_unlock_irqrestore(&from->move_lock, flags);
4566
4567 ret = 0;
4568
4569 local_irq_disable();
f627c2f5 4570 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4571 memcg_check_events(to, page);
f627c2f5 4572 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4573 memcg_check_events(from, page);
4574 local_irq_enable();
4575out_unlock:
4576 unlock_page(page);
4577out:
4578 return ret;
4579}
4580
7cf7806c
LR
4581/**
4582 * get_mctgt_type - get target type of moving charge
4583 * @vma: the vma the pte to be checked belongs
4584 * @addr: the address corresponding to the pte to be checked
4585 * @ptent: the pte to be checked
4586 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4587 *
4588 * Returns
4589 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4590 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4591 * move charge. if @target is not NULL, the page is stored in target->page
4592 * with extra refcnt got(Callers should handle it).
4593 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4594 * target for charge migration. if @target is not NULL, the entry is stored
4595 * in target->ent.
4596 *
4597 * Called with pte lock held.
4598 */
4599
8d32ff84 4600static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4601 unsigned long addr, pte_t ptent, union mc_target *target)
4602{
4603 struct page *page = NULL;
8d32ff84 4604 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4605 swp_entry_t ent = { .val = 0 };
4606
4607 if (pte_present(ptent))
4608 page = mc_handle_present_pte(vma, addr, ptent);
4609 else if (is_swap_pte(ptent))
48406ef8 4610 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4611 else if (pte_none(ptent))
87946a72 4612 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4613
4614 if (!page && !ent.val)
8d32ff84 4615 return ret;
02491447 4616 if (page) {
02491447 4617 /*
0a31bc97 4618 * Do only loose check w/o serialization.
1306a85a 4619 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4620 * not under LRU exclusion.
02491447 4621 */
1306a85a 4622 if (page->mem_cgroup == mc.from) {
02491447
DN
4623 ret = MC_TARGET_PAGE;
4624 if (target)
4625 target->page = page;
4626 }
4627 if (!ret || !target)
4628 put_page(page);
4629 }
90254a65
DN
4630 /* There is a swap entry and a page doesn't exist or isn't charged */
4631 if (ent.val && !ret &&
34c00c31 4632 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4633 ret = MC_TARGET_SWAP;
4634 if (target)
4635 target->ent = ent;
4ffef5fe 4636 }
4ffef5fe
DN
4637 return ret;
4638}
4639
12724850
NH
4640#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4641/*
4642 * We don't consider swapping or file mapped pages because THP does not
4643 * support them for now.
4644 * Caller should make sure that pmd_trans_huge(pmd) is true.
4645 */
4646static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 unsigned long addr, pmd_t pmd, union mc_target *target)
4648{
4649 struct page *page = NULL;
12724850
NH
4650 enum mc_target_type ret = MC_TARGET_NONE;
4651
4652 page = pmd_page(pmd);
309381fe 4653 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4654 if (!(mc.flags & MOVE_ANON))
12724850 4655 return ret;
1306a85a 4656 if (page->mem_cgroup == mc.from) {
12724850
NH
4657 ret = MC_TARGET_PAGE;
4658 if (target) {
4659 get_page(page);
4660 target->page = page;
4661 }
4662 }
4663 return ret;
4664}
4665#else
4666static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4667 unsigned long addr, pmd_t pmd, union mc_target *target)
4668{
4669 return MC_TARGET_NONE;
4670}
4671#endif
4672
4ffef5fe
DN
4673static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4674 unsigned long addr, unsigned long end,
4675 struct mm_walk *walk)
4676{
26bcd64a 4677 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4678 pte_t *pte;
4679 spinlock_t *ptl;
4680
b6ec57f4
KS
4681 ptl = pmd_trans_huge_lock(pmd, vma);
4682 if (ptl) {
12724850
NH
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
bf929152 4685 spin_unlock(ptl);
1a5a9906 4686 return 0;
12724850 4687 }
03319327 4688
45f83cef
AA
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4ffef5fe
DN
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
7dc74be0
DN
4698 return 0;
4699}
4700
4ffef5fe
DN
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703 unsigned long precharge;
4ffef5fe 4704
26bcd64a
NH
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
dfe076b0 4709 down_read(&mm->mmap_sem);
26bcd64a 4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4711 up_read(&mm->mmap_sem);
4ffef5fe
DN
4712
4713 precharge = mc.precharge;
4714 mc.precharge = 0;
4715
4716 return precharge;
4717}
4718
4ffef5fe
DN
4719static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4720{
dfe076b0
DN
4721 unsigned long precharge = mem_cgroup_count_precharge(mm);
4722
4723 VM_BUG_ON(mc.moving_task);
4724 mc.moving_task = current;
4725 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4726}
4727
dfe076b0
DN
4728/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729static void __mem_cgroup_clear_mc(void)
4ffef5fe 4730{
2bd9bb20
KH
4731 struct mem_cgroup *from = mc.from;
4732 struct mem_cgroup *to = mc.to;
4733
4ffef5fe 4734 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4735 if (mc.precharge) {
00501b53 4736 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4737 mc.precharge = 0;
4738 }
4739 /*
4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 * we must uncharge here.
4742 */
4743 if (mc.moved_charge) {
00501b53 4744 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4745 mc.moved_charge = 0;
4ffef5fe 4746 }
483c30b5
DN
4747 /* we must fixup refcnts and charges */
4748 if (mc.moved_swap) {
483c30b5 4749 /* uncharge swap account from the old cgroup */
ce00a967 4750 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4752
615d66c3
VD
4753 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4754
05b84301 4755 /*
3e32cb2e
JW
4756 * we charged both to->memory and to->memsw, so we
4757 * should uncharge to->memory.
05b84301 4758 */
ce00a967 4759 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4760 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4761
615d66c3
VD
4762 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4763 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4764
483c30b5
DN
4765 mc.moved_swap = 0;
4766 }
dfe076b0
DN
4767 memcg_oom_recover(from);
4768 memcg_oom_recover(to);
4769 wake_up_all(&mc.waitq);
4770}
4771
4772static void mem_cgroup_clear_mc(void)
4773{
264a0ae1
TH
4774 struct mm_struct *mm = mc.mm;
4775
dfe076b0
DN
4776 /*
4777 * we must clear moving_task before waking up waiters at the end of
4778 * task migration.
4779 */
4780 mc.moving_task = NULL;
4781 __mem_cgroup_clear_mc();
2bd9bb20 4782 spin_lock(&mc.lock);
4ffef5fe
DN
4783 mc.from = NULL;
4784 mc.to = NULL;
264a0ae1 4785 mc.mm = NULL;
2bd9bb20 4786 spin_unlock(&mc.lock);
264a0ae1
TH
4787
4788 mmput(mm);
4ffef5fe
DN
4789}
4790
1f7dd3e5 4791static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4792{
1f7dd3e5 4793 struct cgroup_subsys_state *css;
eed67d75 4794 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4795 struct mem_cgroup *from;
4530eddb 4796 struct task_struct *leader, *p;
9f2115f9 4797 struct mm_struct *mm;
1dfab5ab 4798 unsigned long move_flags;
9f2115f9 4799 int ret = 0;
7dc74be0 4800
1f7dd3e5
TH
4801 /* charge immigration isn't supported on the default hierarchy */
4802 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4803 return 0;
4804
4530eddb
TH
4805 /*
4806 * Multi-process migrations only happen on the default hierarchy
4807 * where charge immigration is not used. Perform charge
4808 * immigration if @tset contains a leader and whine if there are
4809 * multiple.
4810 */
4811 p = NULL;
1f7dd3e5 4812 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4813 WARN_ON_ONCE(p);
4814 p = leader;
1f7dd3e5 4815 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4816 }
4817 if (!p)
4818 return 0;
4819
1f7dd3e5
TH
4820 /*
4821 * We are now commited to this value whatever it is. Changes in this
4822 * tunable will only affect upcoming migrations, not the current one.
4823 * So we need to save it, and keep it going.
4824 */
4825 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4826 if (!move_flags)
4827 return 0;
4828
9f2115f9
TH
4829 from = mem_cgroup_from_task(p);
4830
4831 VM_BUG_ON(from == memcg);
4832
4833 mm = get_task_mm(p);
4834 if (!mm)
4835 return 0;
4836 /* We move charges only when we move a owner of the mm */
4837 if (mm->owner == p) {
4838 VM_BUG_ON(mc.from);
4839 VM_BUG_ON(mc.to);
4840 VM_BUG_ON(mc.precharge);
4841 VM_BUG_ON(mc.moved_charge);
4842 VM_BUG_ON(mc.moved_swap);
4843
4844 spin_lock(&mc.lock);
264a0ae1 4845 mc.mm = mm;
9f2115f9
TH
4846 mc.from = from;
4847 mc.to = memcg;
4848 mc.flags = move_flags;
4849 spin_unlock(&mc.lock);
4850 /* We set mc.moving_task later */
4851
4852 ret = mem_cgroup_precharge_mc(mm);
4853 if (ret)
4854 mem_cgroup_clear_mc();
264a0ae1
TH
4855 } else {
4856 mmput(mm);
7dc74be0
DN
4857 }
4858 return ret;
4859}
4860
1f7dd3e5 4861static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4862{
4e2f245d
JW
4863 if (mc.to)
4864 mem_cgroup_clear_mc();
7dc74be0
DN
4865}
4866
4ffef5fe
DN
4867static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4868 unsigned long addr, unsigned long end,
4869 struct mm_walk *walk)
7dc74be0 4870{
4ffef5fe 4871 int ret = 0;
26bcd64a 4872 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4873 pte_t *pte;
4874 spinlock_t *ptl;
12724850
NH
4875 enum mc_target_type target_type;
4876 union mc_target target;
4877 struct page *page;
4ffef5fe 4878
b6ec57f4
KS
4879 ptl = pmd_trans_huge_lock(pmd, vma);
4880 if (ptl) {
62ade86a 4881 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4882 spin_unlock(ptl);
12724850
NH
4883 return 0;
4884 }
4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 if (target_type == MC_TARGET_PAGE) {
4887 page = target.page;
4888 if (!isolate_lru_page(page)) {
f627c2f5 4889 if (!mem_cgroup_move_account(page, true,
1306a85a 4890 mc.from, mc.to)) {
12724850
NH
4891 mc.precharge -= HPAGE_PMD_NR;
4892 mc.moved_charge += HPAGE_PMD_NR;
4893 }
4894 putback_lru_page(page);
4895 }
4896 put_page(page);
4897 }
bf929152 4898 spin_unlock(ptl);
1a5a9906 4899 return 0;
12724850
NH
4900 }
4901
45f83cef
AA
4902 if (pmd_trans_unstable(pmd))
4903 return 0;
4ffef5fe
DN
4904retry:
4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 for (; addr != end; addr += PAGE_SIZE) {
4907 pte_t ptent = *(pte++);
02491447 4908 swp_entry_t ent;
4ffef5fe
DN
4909
4910 if (!mc.precharge)
4911 break;
4912
8d32ff84 4913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4914 case MC_TARGET_PAGE:
4915 page = target.page;
53f9263b
KS
4916 /*
4917 * We can have a part of the split pmd here. Moving it
4918 * can be done but it would be too convoluted so simply
4919 * ignore such a partial THP and keep it in original
4920 * memcg. There should be somebody mapping the head.
4921 */
4922 if (PageTransCompound(page))
4923 goto put;
4ffef5fe
DN
4924 if (isolate_lru_page(page))
4925 goto put;
f627c2f5
KS
4926 if (!mem_cgroup_move_account(page, false,
4927 mc.from, mc.to)) {
4ffef5fe 4928 mc.precharge--;
854ffa8d
DN
4929 /* we uncharge from mc.from later. */
4930 mc.moved_charge++;
4ffef5fe
DN
4931 }
4932 putback_lru_page(page);
8d32ff84 4933put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4934 put_page(page);
4935 break;
02491447
DN
4936 case MC_TARGET_SWAP:
4937 ent = target.ent;
e91cbb42 4938 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4939 mc.precharge--;
483c30b5
DN
4940 /* we fixup refcnts and charges later. */
4941 mc.moved_swap++;
4942 }
02491447 4943 break;
4ffef5fe
DN
4944 default:
4945 break;
4946 }
4947 }
4948 pte_unmap_unlock(pte - 1, ptl);
4949 cond_resched();
4950
4951 if (addr != end) {
4952 /*
4953 * We have consumed all precharges we got in can_attach().
4954 * We try charge one by one, but don't do any additional
4955 * charges to mc.to if we have failed in charge once in attach()
4956 * phase.
4957 */
854ffa8d 4958 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4959 if (!ret)
4960 goto retry;
4961 }
4962
4963 return ret;
4964}
4965
264a0ae1 4966static void mem_cgroup_move_charge(void)
4ffef5fe 4967{
26bcd64a
NH
4968 struct mm_walk mem_cgroup_move_charge_walk = {
4969 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4970 .mm = mc.mm,
26bcd64a 4971 };
4ffef5fe
DN
4972
4973 lru_add_drain_all();
312722cb 4974 /*
81f8c3a4
JW
4975 * Signal lock_page_memcg() to take the memcg's move_lock
4976 * while we're moving its pages to another memcg. Then wait
4977 * for already started RCU-only updates to finish.
312722cb
JW
4978 */
4979 atomic_inc(&mc.from->moving_account);
4980 synchronize_rcu();
dfe076b0 4981retry:
264a0ae1 4982 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4983 /*
4984 * Someone who are holding the mmap_sem might be waiting in
4985 * waitq. So we cancel all extra charges, wake up all waiters,
4986 * and retry. Because we cancel precharges, we might not be able
4987 * to move enough charges, but moving charge is a best-effort
4988 * feature anyway, so it wouldn't be a big problem.
4989 */
4990 __mem_cgroup_clear_mc();
4991 cond_resched();
4992 goto retry;
4993 }
26bcd64a
NH
4994 /*
4995 * When we have consumed all precharges and failed in doing
4996 * additional charge, the page walk just aborts.
4997 */
4998 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4999 up_read(&mc.mm->mmap_sem);
312722cb 5000 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5001}
5002
264a0ae1 5003static void mem_cgroup_move_task(void)
67e465a7 5004{
264a0ae1
TH
5005 if (mc.to) {
5006 mem_cgroup_move_charge();
a433658c 5007 mem_cgroup_clear_mc();
264a0ae1 5008 }
67e465a7 5009}
5cfb80a7 5010#else /* !CONFIG_MMU */
1f7dd3e5 5011static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5012{
5013 return 0;
5014}
1f7dd3e5 5015static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5016{
5017}
264a0ae1 5018static void mem_cgroup_move_task(void)
5cfb80a7
DN
5019{
5020}
5021#endif
67e465a7 5022
f00baae7
TH
5023/*
5024 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5025 * to verify whether we're attached to the default hierarchy on each mount
5026 * attempt.
f00baae7 5027 */
eb95419b 5028static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5029{
5030 /*
aa6ec29b 5031 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5032 * guarantees that @root doesn't have any children, so turning it
5033 * on for the root memcg is enough.
5034 */
9e10a130 5035 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5036 root_mem_cgroup->use_hierarchy = true;
5037 else
5038 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5039}
5040
241994ed
JW
5041static u64 memory_current_read(struct cgroup_subsys_state *css,
5042 struct cftype *cft)
5043{
f5fc3c5d
JW
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045
5046 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5047}
5048
5049static int memory_low_show(struct seq_file *m, void *v)
5050{
5051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5052 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5053
5054 if (low == PAGE_COUNTER_MAX)
d2973697 5055 seq_puts(m, "max\n");
241994ed
JW
5056 else
5057 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5058
5059 return 0;
5060}
5061
5062static ssize_t memory_low_write(struct kernfs_open_file *of,
5063 char *buf, size_t nbytes, loff_t off)
5064{
5065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5066 unsigned long low;
5067 int err;
5068
5069 buf = strstrip(buf);
d2973697 5070 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5071 if (err)
5072 return err;
5073
5074 memcg->low = low;
5075
5076 return nbytes;
5077}
5078
5079static int memory_high_show(struct seq_file *m, void *v)
5080{
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5082 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5083
5084 if (high == PAGE_COUNTER_MAX)
d2973697 5085 seq_puts(m, "max\n");
241994ed
JW
5086 else
5087 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5088
5089 return 0;
5090}
5091
5092static ssize_t memory_high_write(struct kernfs_open_file *of,
5093 char *buf, size_t nbytes, loff_t off)
5094{
5095 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5096 unsigned long nr_pages;
241994ed
JW
5097 unsigned long high;
5098 int err;
5099
5100 buf = strstrip(buf);
d2973697 5101 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5102 if (err)
5103 return err;
5104
5105 memcg->high = high;
5106
588083bb
JW
5107 nr_pages = page_counter_read(&memcg->memory);
5108 if (nr_pages > high)
5109 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5110 GFP_KERNEL, true);
5111
2529bb3a 5112 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5113 return nbytes;
5114}
5115
5116static int memory_max_show(struct seq_file *m, void *v)
5117{
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5119 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5120
5121 if (max == PAGE_COUNTER_MAX)
d2973697 5122 seq_puts(m, "max\n");
241994ed
JW
5123 else
5124 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5125
5126 return 0;
5127}
5128
5129static ssize_t memory_max_write(struct kernfs_open_file *of,
5130 char *buf, size_t nbytes, loff_t off)
5131{
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5133 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5134 bool drained = false;
241994ed
JW
5135 unsigned long max;
5136 int err;
5137
5138 buf = strstrip(buf);
d2973697 5139 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5140 if (err)
5141 return err;
5142
b6e6edcf
JW
5143 xchg(&memcg->memory.limit, max);
5144
5145 for (;;) {
5146 unsigned long nr_pages = page_counter_read(&memcg->memory);
5147
5148 if (nr_pages <= max)
5149 break;
5150
5151 if (signal_pending(current)) {
5152 err = -EINTR;
5153 break;
5154 }
5155
5156 if (!drained) {
5157 drain_all_stock(memcg);
5158 drained = true;
5159 continue;
5160 }
5161
5162 if (nr_reclaims) {
5163 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5164 GFP_KERNEL, true))
5165 nr_reclaims--;
5166 continue;
5167 }
5168
5169 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5170 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5171 break;
5172 }
241994ed 5173
2529bb3a 5174 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5175 return nbytes;
5176}
5177
5178static int memory_events_show(struct seq_file *m, void *v)
5179{
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181
5182 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5183 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5184 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5185 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5186
5187 return 0;
5188}
5189
587d9f72
JW
5190static int memory_stat_show(struct seq_file *m, void *v)
5191{
5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5193 unsigned long stat[MEMCG_NR_STAT];
5194 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5195 int i;
5196
5197 /*
5198 * Provide statistics on the state of the memory subsystem as
5199 * well as cumulative event counters that show past behavior.
5200 *
5201 * This list is ordered following a combination of these gradients:
5202 * 1) generic big picture -> specifics and details
5203 * 2) reflecting userspace activity -> reflecting kernel heuristics
5204 *
5205 * Current memory state:
5206 */
5207
72b54e73
VD
5208 tree_stat(memcg, stat);
5209 tree_events(memcg, events);
5210
587d9f72 5211 seq_printf(m, "anon %llu\n",
72b54e73 5212 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5213 seq_printf(m, "file %llu\n",
72b54e73 5214 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5215 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5216 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5217 seq_printf(m, "slab %llu\n",
5218 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5219 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5220 seq_printf(m, "sock %llu\n",
72b54e73 5221 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5222
5223 seq_printf(m, "file_mapped %llu\n",
72b54e73 5224 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5225 seq_printf(m, "file_dirty %llu\n",
72b54e73 5226 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5227 seq_printf(m, "file_writeback %llu\n",
72b54e73 5228 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5229
5230 for (i = 0; i < NR_LRU_LISTS; i++) {
5231 struct mem_cgroup *mi;
5232 unsigned long val = 0;
5233
5234 for_each_mem_cgroup_tree(mi, memcg)
5235 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5236 seq_printf(m, "%s %llu\n",
5237 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5238 }
5239
27ee57c9
VD
5240 seq_printf(m, "slab_reclaimable %llu\n",
5241 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5242 seq_printf(m, "slab_unreclaimable %llu\n",
5243 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5244
587d9f72
JW
5245 /* Accumulated memory events */
5246
5247 seq_printf(m, "pgfault %lu\n",
72b54e73 5248 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5249 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5250 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5251
5252 return 0;
5253}
5254
241994ed
JW
5255static struct cftype memory_files[] = {
5256 {
5257 .name = "current",
f5fc3c5d 5258 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5259 .read_u64 = memory_current_read,
5260 },
5261 {
5262 .name = "low",
5263 .flags = CFTYPE_NOT_ON_ROOT,
5264 .seq_show = memory_low_show,
5265 .write = memory_low_write,
5266 },
5267 {
5268 .name = "high",
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .seq_show = memory_high_show,
5271 .write = memory_high_write,
5272 },
5273 {
5274 .name = "max",
5275 .flags = CFTYPE_NOT_ON_ROOT,
5276 .seq_show = memory_max_show,
5277 .write = memory_max_write,
5278 },
5279 {
5280 .name = "events",
5281 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5282 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5283 .seq_show = memory_events_show,
5284 },
587d9f72
JW
5285 {
5286 .name = "stat",
5287 .flags = CFTYPE_NOT_ON_ROOT,
5288 .seq_show = memory_stat_show,
5289 },
241994ed
JW
5290 { } /* terminate */
5291};
5292
073219e9 5293struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5294 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5295 .css_online = mem_cgroup_css_online,
92fb9748 5296 .css_offline = mem_cgroup_css_offline,
6df38689 5297 .css_released = mem_cgroup_css_released,
92fb9748 5298 .css_free = mem_cgroup_css_free,
1ced953b 5299 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5300 .can_attach = mem_cgroup_can_attach,
5301 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5302 .post_attach = mem_cgroup_move_task,
f00baae7 5303 .bind = mem_cgroup_bind,
241994ed
JW
5304 .dfl_cftypes = memory_files,
5305 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5306 .early_init = 0,
8cdea7c0 5307};
c077719b 5308
241994ed
JW
5309/**
5310 * mem_cgroup_low - check if memory consumption is below the normal range
5311 * @root: the highest ancestor to consider
5312 * @memcg: the memory cgroup to check
5313 *
5314 * Returns %true if memory consumption of @memcg, and that of all
5315 * configurable ancestors up to @root, is below the normal range.
5316 */
5317bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5318{
5319 if (mem_cgroup_disabled())
5320 return false;
5321
5322 /*
5323 * The toplevel group doesn't have a configurable range, so
5324 * it's never low when looked at directly, and it is not
5325 * considered an ancestor when assessing the hierarchy.
5326 */
5327
5328 if (memcg == root_mem_cgroup)
5329 return false;
5330
4e54dede 5331 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5332 return false;
5333
5334 while (memcg != root) {
5335 memcg = parent_mem_cgroup(memcg);
5336
5337 if (memcg == root_mem_cgroup)
5338 break;
5339
4e54dede 5340 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5341 return false;
5342 }
5343 return true;
5344}
5345
00501b53
JW
5346/**
5347 * mem_cgroup_try_charge - try charging a page
5348 * @page: page to charge
5349 * @mm: mm context of the victim
5350 * @gfp_mask: reclaim mode
5351 * @memcgp: charged memcg return
25843c2b 5352 * @compound: charge the page as compound or small page
00501b53
JW
5353 *
5354 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5355 * pages according to @gfp_mask if necessary.
5356 *
5357 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5358 * Otherwise, an error code is returned.
5359 *
5360 * After page->mapping has been set up, the caller must finalize the
5361 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5362 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5363 */
5364int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5365 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5366 bool compound)
00501b53
JW
5367{
5368 struct mem_cgroup *memcg = NULL;
f627c2f5 5369 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5370 int ret = 0;
5371
5372 if (mem_cgroup_disabled())
5373 goto out;
5374
5375 if (PageSwapCache(page)) {
00501b53
JW
5376 /*
5377 * Every swap fault against a single page tries to charge the
5378 * page, bail as early as possible. shmem_unuse() encounters
5379 * already charged pages, too. The USED bit is protected by
5380 * the page lock, which serializes swap cache removal, which
5381 * in turn serializes uncharging.
5382 */
e993d905 5383 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5384 if (page->mem_cgroup)
00501b53 5385 goto out;
e993d905 5386
37e84351 5387 if (do_swap_account) {
e993d905
VD
5388 swp_entry_t ent = { .val = page_private(page), };
5389 unsigned short id = lookup_swap_cgroup_id(ent);
5390
5391 rcu_read_lock();
5392 memcg = mem_cgroup_from_id(id);
5393 if (memcg && !css_tryget_online(&memcg->css))
5394 memcg = NULL;
5395 rcu_read_unlock();
5396 }
00501b53
JW
5397 }
5398
00501b53
JW
5399 if (!memcg)
5400 memcg = get_mem_cgroup_from_mm(mm);
5401
5402 ret = try_charge(memcg, gfp_mask, nr_pages);
5403
5404 css_put(&memcg->css);
00501b53
JW
5405out:
5406 *memcgp = memcg;
5407 return ret;
5408}
5409
5410/**
5411 * mem_cgroup_commit_charge - commit a page charge
5412 * @page: page to charge
5413 * @memcg: memcg to charge the page to
5414 * @lrucare: page might be on LRU already
25843c2b 5415 * @compound: charge the page as compound or small page
00501b53
JW
5416 *
5417 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5418 * after page->mapping has been set up. This must happen atomically
5419 * as part of the page instantiation, i.e. under the page table lock
5420 * for anonymous pages, under the page lock for page and swap cache.
5421 *
5422 * In addition, the page must not be on the LRU during the commit, to
5423 * prevent racing with task migration. If it might be, use @lrucare.
5424 *
5425 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5426 */
5427void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5428 bool lrucare, bool compound)
00501b53 5429{
f627c2f5 5430 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5431
5432 VM_BUG_ON_PAGE(!page->mapping, page);
5433 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5434
5435 if (mem_cgroup_disabled())
5436 return;
5437 /*
5438 * Swap faults will attempt to charge the same page multiple
5439 * times. But reuse_swap_page() might have removed the page
5440 * from swapcache already, so we can't check PageSwapCache().
5441 */
5442 if (!memcg)
5443 return;
5444
6abb5a86
JW
5445 commit_charge(page, memcg, lrucare);
5446
6abb5a86 5447 local_irq_disable();
f627c2f5 5448 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5449 memcg_check_events(memcg, page);
5450 local_irq_enable();
00501b53 5451
7941d214 5452 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5453 swp_entry_t entry = { .val = page_private(page) };
5454 /*
5455 * The swap entry might not get freed for a long time,
5456 * let's not wait for it. The page already received a
5457 * memory+swap charge, drop the swap entry duplicate.
5458 */
5459 mem_cgroup_uncharge_swap(entry);
5460 }
5461}
5462
5463/**
5464 * mem_cgroup_cancel_charge - cancel a page charge
5465 * @page: page to charge
5466 * @memcg: memcg to charge the page to
25843c2b 5467 * @compound: charge the page as compound or small page
00501b53
JW
5468 *
5469 * Cancel a charge transaction started by mem_cgroup_try_charge().
5470 */
f627c2f5
KS
5471void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5472 bool compound)
00501b53 5473{
f627c2f5 5474 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5475
5476 if (mem_cgroup_disabled())
5477 return;
5478 /*
5479 * Swap faults will attempt to charge the same page multiple
5480 * times. But reuse_swap_page() might have removed the page
5481 * from swapcache already, so we can't check PageSwapCache().
5482 */
5483 if (!memcg)
5484 return;
5485
00501b53
JW
5486 cancel_charge(memcg, nr_pages);
5487}
5488
747db954 5489static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5490 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5491 unsigned long nr_huge, unsigned long nr_kmem,
5492 struct page *dummy_page)
747db954 5493{
5e8d35f8 5494 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5495 unsigned long flags;
5496
ce00a967 5497 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5498 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5499 if (do_memsw_account())
18eca2e6 5500 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5502 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5503 memcg_oom_recover(memcg);
5504 }
747db954
JW
5505
5506 local_irq_save(flags);
5507 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5508 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5509 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5510 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5511 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5512 memcg_check_events(memcg, dummy_page);
5513 local_irq_restore(flags);
e8ea14cc
JW
5514
5515 if (!mem_cgroup_is_root(memcg))
18eca2e6 5516 css_put_many(&memcg->css, nr_pages);
747db954
JW
5517}
5518
5519static void uncharge_list(struct list_head *page_list)
5520{
5521 struct mem_cgroup *memcg = NULL;
747db954
JW
5522 unsigned long nr_anon = 0;
5523 unsigned long nr_file = 0;
5524 unsigned long nr_huge = 0;
5e8d35f8 5525 unsigned long nr_kmem = 0;
747db954 5526 unsigned long pgpgout = 0;
747db954
JW
5527 struct list_head *next;
5528 struct page *page;
5529
8b592656
JW
5530 /*
5531 * Note that the list can be a single page->lru; hence the
5532 * do-while loop instead of a simple list_for_each_entry().
5533 */
747db954
JW
5534 next = page_list->next;
5535 do {
747db954
JW
5536 page = list_entry(next, struct page, lru);
5537 next = page->lru.next;
5538
5539 VM_BUG_ON_PAGE(PageLRU(page), page);
5540 VM_BUG_ON_PAGE(page_count(page), page);
5541
1306a85a 5542 if (!page->mem_cgroup)
747db954
JW
5543 continue;
5544
5545 /*
5546 * Nobody should be changing or seriously looking at
1306a85a 5547 * page->mem_cgroup at this point, we have fully
29833315 5548 * exclusive access to the page.
747db954
JW
5549 */
5550
1306a85a 5551 if (memcg != page->mem_cgroup) {
747db954 5552 if (memcg) {
18eca2e6 5553 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5554 nr_huge, nr_kmem, page);
5555 pgpgout = nr_anon = nr_file =
5556 nr_huge = nr_kmem = 0;
747db954 5557 }
1306a85a 5558 memcg = page->mem_cgroup;
747db954
JW
5559 }
5560
5e8d35f8
VD
5561 if (!PageKmemcg(page)) {
5562 unsigned int nr_pages = 1;
747db954 5563
5e8d35f8
VD
5564 if (PageTransHuge(page)) {
5565 nr_pages <<= compound_order(page);
5e8d35f8
VD
5566 nr_huge += nr_pages;
5567 }
5568 if (PageAnon(page))
5569 nr_anon += nr_pages;
5570 else
5571 nr_file += nr_pages;
5572 pgpgout++;
c4159a75 5573 } else {
5e8d35f8 5574 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5575 __ClearPageKmemcg(page);
5576 }
747db954 5577
1306a85a 5578 page->mem_cgroup = NULL;
747db954
JW
5579 } while (next != page_list);
5580
5581 if (memcg)
18eca2e6 5582 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5583 nr_huge, nr_kmem, page);
747db954
JW
5584}
5585
0a31bc97
JW
5586/**
5587 * mem_cgroup_uncharge - uncharge a page
5588 * @page: page to uncharge
5589 *
5590 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5591 * mem_cgroup_commit_charge().
5592 */
5593void mem_cgroup_uncharge(struct page *page)
5594{
0a31bc97
JW
5595 if (mem_cgroup_disabled())
5596 return;
5597
747db954 5598 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5599 if (!page->mem_cgroup)
0a31bc97
JW
5600 return;
5601
747db954
JW
5602 INIT_LIST_HEAD(&page->lru);
5603 uncharge_list(&page->lru);
5604}
0a31bc97 5605
747db954
JW
5606/**
5607 * mem_cgroup_uncharge_list - uncharge a list of page
5608 * @page_list: list of pages to uncharge
5609 *
5610 * Uncharge a list of pages previously charged with
5611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5612 */
5613void mem_cgroup_uncharge_list(struct list_head *page_list)
5614{
5615 if (mem_cgroup_disabled())
5616 return;
0a31bc97 5617
747db954
JW
5618 if (!list_empty(page_list))
5619 uncharge_list(page_list);
0a31bc97
JW
5620}
5621
5622/**
6a93ca8f
JW
5623 * mem_cgroup_migrate - charge a page's replacement
5624 * @oldpage: currently circulating page
5625 * @newpage: replacement page
0a31bc97 5626 *
6a93ca8f
JW
5627 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5628 * be uncharged upon free.
0a31bc97
JW
5629 *
5630 * Both pages must be locked, @newpage->mapping must be set up.
5631 */
6a93ca8f 5632void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5633{
29833315 5634 struct mem_cgroup *memcg;
44b7a8d3
JW
5635 unsigned int nr_pages;
5636 bool compound;
d93c4130 5637 unsigned long flags;
0a31bc97
JW
5638
5639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5641 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5642 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5643 newpage);
0a31bc97
JW
5644
5645 if (mem_cgroup_disabled())
5646 return;
5647
5648 /* Page cache replacement: new page already charged? */
1306a85a 5649 if (newpage->mem_cgroup)
0a31bc97
JW
5650 return;
5651
45637bab 5652 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5653 memcg = oldpage->mem_cgroup;
29833315 5654 if (!memcg)
0a31bc97
JW
5655 return;
5656
44b7a8d3
JW
5657 /* Force-charge the new page. The old one will be freed soon */
5658 compound = PageTransHuge(newpage);
5659 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5660
5661 page_counter_charge(&memcg->memory, nr_pages);
5662 if (do_memsw_account())
5663 page_counter_charge(&memcg->memsw, nr_pages);
5664 css_get_many(&memcg->css, nr_pages);
0a31bc97 5665
9cf7666a 5666 commit_charge(newpage, memcg, false);
44b7a8d3 5667
d93c4130 5668 local_irq_save(flags);
44b7a8d3
JW
5669 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5670 memcg_check_events(memcg, newpage);
d93c4130 5671 local_irq_restore(flags);
0a31bc97
JW
5672}
5673
ef12947c 5674DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5675EXPORT_SYMBOL(memcg_sockets_enabled_key);
5676
5677void sock_update_memcg(struct sock *sk)
5678{
5679 struct mem_cgroup *memcg;
5680
5681 /* Socket cloning can throw us here with sk_cgrp already
5682 * filled. It won't however, necessarily happen from
5683 * process context. So the test for root memcg given
5684 * the current task's memcg won't help us in this case.
5685 *
5686 * Respecting the original socket's memcg is a better
5687 * decision in this case.
5688 */
5689 if (sk->sk_memcg) {
5690 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5691 css_get(&sk->sk_memcg->css);
5692 return;
5693 }
5694
5695 rcu_read_lock();
5696 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5697 if (memcg == root_mem_cgroup)
5698 goto out;
0db15298 5699 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5700 goto out;
f7e1cb6e 5701 if (css_tryget_online(&memcg->css))
11092087 5702 sk->sk_memcg = memcg;
f7e1cb6e 5703out:
11092087
JW
5704 rcu_read_unlock();
5705}
5706EXPORT_SYMBOL(sock_update_memcg);
5707
5708void sock_release_memcg(struct sock *sk)
5709{
5710 WARN_ON(!sk->sk_memcg);
5711 css_put(&sk->sk_memcg->css);
5712}
5713
5714/**
5715 * mem_cgroup_charge_skmem - charge socket memory
5716 * @memcg: memcg to charge
5717 * @nr_pages: number of pages to charge
5718 *
5719 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5720 * @memcg's configured limit, %false if the charge had to be forced.
5721 */
5722bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5723{
f7e1cb6e 5724 gfp_t gfp_mask = GFP_KERNEL;
11092087 5725
f7e1cb6e 5726 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5727 struct page_counter *fail;
f7e1cb6e 5728
0db15298
JW
5729 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5730 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5731 return true;
5732 }
0db15298
JW
5733 page_counter_charge(&memcg->tcpmem, nr_pages);
5734 memcg->tcpmem_pressure = 1;
f7e1cb6e 5735 return false;
11092087 5736 }
d886f4e4 5737
f7e1cb6e
JW
5738 /* Don't block in the packet receive path */
5739 if (in_softirq())
5740 gfp_mask = GFP_NOWAIT;
5741
b2807f07
JW
5742 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5743
f7e1cb6e
JW
5744 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5745 return true;
5746
5747 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5748 return false;
5749}
5750
5751/**
5752 * mem_cgroup_uncharge_skmem - uncharge socket memory
5753 * @memcg - memcg to uncharge
5754 * @nr_pages - number of pages to uncharge
5755 */
5756void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5757{
f7e1cb6e 5758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5759 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5760 return;
5761 }
d886f4e4 5762
b2807f07
JW
5763 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5764
f7e1cb6e
JW
5765 page_counter_uncharge(&memcg->memory, nr_pages);
5766 css_put_many(&memcg->css, nr_pages);
11092087
JW
5767}
5768
f7e1cb6e
JW
5769static int __init cgroup_memory(char *s)
5770{
5771 char *token;
5772
5773 while ((token = strsep(&s, ",")) != NULL) {
5774 if (!*token)
5775 continue;
5776 if (!strcmp(token, "nosocket"))
5777 cgroup_memory_nosocket = true;
04823c83
VD
5778 if (!strcmp(token, "nokmem"))
5779 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5780 }
5781 return 0;
5782}
5783__setup("cgroup.memory=", cgroup_memory);
11092087 5784
2d11085e 5785/*
1081312f
MH
5786 * subsys_initcall() for memory controller.
5787 *
5788 * Some parts like hotcpu_notifier() have to be initialized from this context
5789 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5790 * everything that doesn't depend on a specific mem_cgroup structure should
5791 * be initialized from here.
2d11085e
MH
5792 */
5793static int __init mem_cgroup_init(void)
5794{
95a045f6
JW
5795 int cpu, node;
5796
2d11085e 5797 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5798
5799 for_each_possible_cpu(cpu)
5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5801 drain_local_stock);
5802
5803 for_each_node(node) {
5804 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5805
5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 node_online(node) ? node : NUMA_NO_NODE);
5808
ef8f2327
MG
5809 rtpn->rb_root = RB_ROOT;
5810 spin_lock_init(&rtpn->lock);
95a045f6
JW
5811 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5812 }
5813
2d11085e
MH
5814 return 0;
5815}
5816subsys_initcall(mem_cgroup_init);
21afa38e
JW
5817
5818#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5819static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5820{
5821 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5822 /*
5823 * The root cgroup cannot be destroyed, so it's refcount must
5824 * always be >= 1.
5825 */
5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5827 VM_BUG_ON(1);
5828 break;
5829 }
5830 memcg = parent_mem_cgroup(memcg);
5831 if (!memcg)
5832 memcg = root_mem_cgroup;
5833 }
5834 return memcg;
5835}
5836
21afa38e
JW
5837/**
5838 * mem_cgroup_swapout - transfer a memsw charge to swap
5839 * @page: page whose memsw charge to transfer
5840 * @entry: swap entry to move the charge to
5841 *
5842 * Transfer the memsw charge of @page to @entry.
5843 */
5844void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5845{
1f47b61f 5846 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5847 unsigned short oldid;
5848
5849 VM_BUG_ON_PAGE(PageLRU(page), page);
5850 VM_BUG_ON_PAGE(page_count(page), page);
5851
7941d214 5852 if (!do_memsw_account())
21afa38e
JW
5853 return;
5854
5855 memcg = page->mem_cgroup;
5856
5857 /* Readahead page, never charged */
5858 if (!memcg)
5859 return;
5860
1f47b61f
VD
5861 /*
5862 * In case the memcg owning these pages has been offlined and doesn't
5863 * have an ID allocated to it anymore, charge the closest online
5864 * ancestor for the swap instead and transfer the memory+swap charge.
5865 */
5866 swap_memcg = mem_cgroup_id_get_online(memcg);
5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5868 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5869 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5870
5871 page->mem_cgroup = NULL;
5872
5873 if (!mem_cgroup_is_root(memcg))
5874 page_counter_uncharge(&memcg->memory, 1);
5875
1f47b61f
VD
5876 if (memcg != swap_memcg) {
5877 if (!mem_cgroup_is_root(swap_memcg))
5878 page_counter_charge(&swap_memcg->memsw, 1);
5879 page_counter_uncharge(&memcg->memsw, 1);
5880 }
5881
ce9ce665
SAS
5882 /*
5883 * Interrupts should be disabled here because the caller holds the
5884 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 * important here to have the interrupts disabled because it is the
5886 * only synchronisation we have for udpating the per-CPU variables.
5887 */
5888 VM_BUG_ON(!irqs_disabled());
f627c2f5 5889 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5890 memcg_check_events(memcg, page);
73f576c0
JW
5891
5892 if (!mem_cgroup_is_root(memcg))
5893 css_put(&memcg->css);
21afa38e
JW
5894}
5895
37e84351
VD
5896/*
5897 * mem_cgroup_try_charge_swap - try charging a swap entry
5898 * @page: page being added to swap
5899 * @entry: swap entry to charge
5900 *
5901 * Try to charge @entry to the memcg that @page belongs to.
5902 *
5903 * Returns 0 on success, -ENOMEM on failure.
5904 */
5905int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5906{
5907 struct mem_cgroup *memcg;
5908 struct page_counter *counter;
5909 unsigned short oldid;
5910
5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5912 return 0;
5913
5914 memcg = page->mem_cgroup;
5915
5916 /* Readahead page, never charged */
5917 if (!memcg)
5918 return 0;
5919
1f47b61f
VD
5920 memcg = mem_cgroup_id_get_online(memcg);
5921
37e84351 5922 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 mem_cgroup_id_put(memcg);
37e84351 5925 return -ENOMEM;
1f47b61f 5926 }
37e84351
VD
5927
5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 VM_BUG_ON_PAGE(oldid, page);
5930 mem_cgroup_swap_statistics(memcg, true);
5931
37e84351
VD
5932 return 0;
5933}
5934
21afa38e
JW
5935/**
5936 * mem_cgroup_uncharge_swap - uncharge a swap entry
5937 * @entry: swap entry to uncharge
5938 *
37e84351 5939 * Drop the swap charge associated with @entry.
21afa38e
JW
5940 */
5941void mem_cgroup_uncharge_swap(swp_entry_t entry)
5942{
5943 struct mem_cgroup *memcg;
5944 unsigned short id;
5945
37e84351 5946 if (!do_swap_account)
21afa38e
JW
5947 return;
5948
5949 id = swap_cgroup_record(entry, 0);
5950 rcu_read_lock();
adbe427b 5951 memcg = mem_cgroup_from_id(id);
21afa38e 5952 if (memcg) {
37e84351
VD
5953 if (!mem_cgroup_is_root(memcg)) {
5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 page_counter_uncharge(&memcg->swap, 1);
5956 else
5957 page_counter_uncharge(&memcg->memsw, 1);
5958 }
21afa38e 5959 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5960 mem_cgroup_id_put(memcg);
21afa38e
JW
5961 }
5962 rcu_read_unlock();
5963}
5964
d8b38438
VD
5965long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5966{
5967 long nr_swap_pages = get_nr_swap_pages();
5968
5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 return nr_swap_pages;
5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 nr_swap_pages = min_t(long, nr_swap_pages,
5973 READ_ONCE(memcg->swap.limit) -
5974 page_counter_read(&memcg->swap));
5975 return nr_swap_pages;
5976}
5977
5ccc5aba
VD
5978bool mem_cgroup_swap_full(struct page *page)
5979{
5980 struct mem_cgroup *memcg;
5981
5982 VM_BUG_ON_PAGE(!PageLocked(page), page);
5983
5984 if (vm_swap_full())
5985 return true;
5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5987 return false;
5988
5989 memcg = page->mem_cgroup;
5990 if (!memcg)
5991 return false;
5992
5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5995 return true;
5996
5997 return false;
5998}
5999
21afa38e
JW
6000/* for remember boot option*/
6001#ifdef CONFIG_MEMCG_SWAP_ENABLED
6002static int really_do_swap_account __initdata = 1;
6003#else
6004static int really_do_swap_account __initdata;
6005#endif
6006
6007static int __init enable_swap_account(char *s)
6008{
6009 if (!strcmp(s, "1"))
6010 really_do_swap_account = 1;
6011 else if (!strcmp(s, "0"))
6012 really_do_swap_account = 0;
6013 return 1;
6014}
6015__setup("swapaccount=", enable_swap_account);
6016
37e84351
VD
6017static u64 swap_current_read(struct cgroup_subsys_state *css,
6018 struct cftype *cft)
6019{
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6021
6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6023}
6024
6025static int swap_max_show(struct seq_file *m, void *v)
6026{
6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 unsigned long max = READ_ONCE(memcg->swap.limit);
6029
6030 if (max == PAGE_COUNTER_MAX)
6031 seq_puts(m, "max\n");
6032 else
6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6034
6035 return 0;
6036}
6037
6038static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 char *buf, size_t nbytes, loff_t off)
6040{
6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6042 unsigned long max;
6043 int err;
6044
6045 buf = strstrip(buf);
6046 err = page_counter_memparse(buf, "max", &max);
6047 if (err)
6048 return err;
6049
6050 mutex_lock(&memcg_limit_mutex);
6051 err = page_counter_limit(&memcg->swap, max);
6052 mutex_unlock(&memcg_limit_mutex);
6053 if (err)
6054 return err;
6055
6056 return nbytes;
6057}
6058
6059static struct cftype swap_files[] = {
6060 {
6061 .name = "swap.current",
6062 .flags = CFTYPE_NOT_ON_ROOT,
6063 .read_u64 = swap_current_read,
6064 },
6065 {
6066 .name = "swap.max",
6067 .flags = CFTYPE_NOT_ON_ROOT,
6068 .seq_show = swap_max_show,
6069 .write = swap_max_write,
6070 },
6071 { } /* terminate */
6072};
6073
21afa38e
JW
6074static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .write = mem_cgroup_reset,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write = mem_cgroup_write,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 {
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .write = mem_cgroup_reset,
6096 .read_u64 = mem_cgroup_read_u64,
6097 },
6098 { }, /* terminate */
6099};
6100
6101static int __init mem_cgroup_swap_init(void)
6102{
6103 if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 do_swap_account = 1;
37e84351
VD
6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6106 swap_files));
21afa38e
JW
6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 memsw_cgroup_files));
6109 }
6110 return 0;
6111}
6112subsys_initcall(mem_cgroup_swap_init);
6113
6114#endif /* CONFIG_MEMCG_SWAP */
This page took 1.332159 seconds and 5 git commands to generate.