mm: concentrate modification of totalram_pages into the mm core
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
70
72812019
LS
71#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72DEFINE_PER_CPU(int, numa_node);
73EXPORT_PER_CPU_SYMBOL(numa_node);
74#endif
75
7aac7898
LS
76#ifdef CONFIG_HAVE_MEMORYLESS_NODES
77/*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85#endif
86
1da177e4 87/*
13808910 88 * Array of node states.
1da177e4 89 */
13808910
CL
90nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
91 [N_POSSIBLE] = NODE_MASK_ALL,
92 [N_ONLINE] = { { [0] = 1UL } },
93#ifndef CONFIG_NUMA
94 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
95#ifdef CONFIG_HIGHMEM
96 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
97#endif
98#ifdef CONFIG_MOVABLE_NODE
99 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
100#endif
101 [N_CPU] = { { [0] = 1UL } },
102#endif /* NUMA */
103};
104EXPORT_SYMBOL(node_states);
105
c3d5f5f0
JL
106/* Protect totalram_pages and zone->managed_pages */
107static DEFINE_SPINLOCK(managed_page_count_lock);
108
6c231b7b 109unsigned long totalram_pages __read_mostly;
cb45b0e9 110unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
111/*
112 * When calculating the number of globally allowed dirty pages, there
113 * is a certain number of per-zone reserves that should not be
114 * considered dirtyable memory. This is the sum of those reserves
115 * over all existing zones that contribute dirtyable memory.
116 */
117unsigned long dirty_balance_reserve __read_mostly;
118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
452aa699
RW
122#ifdef CONFIG_PM_SLEEP
123/*
124 * The following functions are used by the suspend/hibernate code to temporarily
125 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
126 * while devices are suspended. To avoid races with the suspend/hibernate code,
127 * they should always be called with pm_mutex held (gfp_allowed_mask also should
128 * only be modified with pm_mutex held, unless the suspend/hibernate code is
129 * guaranteed not to run in parallel with that modification).
130 */
c9e664f1
RW
131
132static gfp_t saved_gfp_mask;
133
134void pm_restore_gfp_mask(void)
452aa699
RW
135{
136 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
137 if (saved_gfp_mask) {
138 gfp_allowed_mask = saved_gfp_mask;
139 saved_gfp_mask = 0;
140 }
452aa699
RW
141}
142
c9e664f1 143void pm_restrict_gfp_mask(void)
452aa699 144{
452aa699 145 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
146 WARN_ON(saved_gfp_mask);
147 saved_gfp_mask = gfp_allowed_mask;
148 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 149}
f90ac398
MG
150
151bool pm_suspended_storage(void)
152{
153 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
154 return false;
155 return true;
156}
452aa699
RW
157#endif /* CONFIG_PM_SLEEP */
158
d9c23400
MG
159#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
160int pageblock_order __read_mostly;
161#endif
162
d98c7a09 163static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 164
1da177e4
LT
165/*
166 * results with 256, 32 in the lowmem_reserve sysctl:
167 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
168 * 1G machine -> (16M dma, 784M normal, 224M high)
169 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
170 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
171 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
172 *
173 * TBD: should special case ZONE_DMA32 machines here - in those we normally
174 * don't need any ZONE_NORMAL reservation
1da177e4 175 */
2f1b6248 176int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 177#ifdef CONFIG_ZONE_DMA
2f1b6248 178 256,
4b51d669 179#endif
fb0e7942 180#ifdef CONFIG_ZONE_DMA32
2f1b6248 181 256,
fb0e7942 182#endif
e53ef38d 183#ifdef CONFIG_HIGHMEM
2a1e274a 184 32,
e53ef38d 185#endif
2a1e274a 186 32,
2f1b6248 187};
1da177e4
LT
188
189EXPORT_SYMBOL(totalram_pages);
1da177e4 190
15ad7cdc 191static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248 193 "DMA",
4b51d669 194#endif
fb0e7942 195#ifdef CONFIG_ZONE_DMA32
2f1b6248 196 "DMA32",
fb0e7942 197#endif
2f1b6248 198 "Normal",
e53ef38d 199#ifdef CONFIG_HIGHMEM
2a1e274a 200 "HighMem",
e53ef38d 201#endif
2a1e274a 202 "Movable",
2f1b6248
CL
203};
204
1da177e4
LT
205int min_free_kbytes = 1024;
206
2c85f51d
JB
207static unsigned long __meminitdata nr_kernel_pages;
208static unsigned long __meminitdata nr_all_pages;
a3142c8e 209static unsigned long __meminitdata dma_reserve;
1da177e4 210
0ee332c1
TH
211#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
212static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
213static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
214static unsigned long __initdata required_kernelcore;
215static unsigned long __initdata required_movablecore;
216static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
217
218/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219int movable_zone;
220EXPORT_SYMBOL(movable_zone);
221#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 222
418508c1
MS
223#if MAX_NUMNODES > 1
224int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 225int nr_online_nodes __read_mostly = 1;
418508c1 226EXPORT_SYMBOL(nr_node_ids);
62bc62a8 227EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
228#endif
229
9ef9acb0
MG
230int page_group_by_mobility_disabled __read_mostly;
231
ee6f509c 232void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 233{
49255c61
MG
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
b2a0ac88
MG
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240}
241
7f33d49a
RW
242bool oom_killer_disabled __read_mostly;
243
13e7444b 244#ifdef CONFIG_DEBUG_VM
c6a57e19 245static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 246{
bdc8cb98
DH
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 250 unsigned long sp, start_pfn;
c6a57e19 251
bdc8cb98
DH
252 do {
253 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
254 start_pfn = zone->zone_start_pfn;
255 sp = zone->spanned_pages;
108bcc96 256 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
257 ret = 1;
258 } while (zone_span_seqretry(zone, seq));
259
b5e6a5a2
CS
260 if (ret)
261 pr_err("page %lu outside zone [ %lu - %lu ]\n",
262 pfn, start_pfn, start_pfn + sp);
263
bdc8cb98 264 return ret;
c6a57e19
DH
265}
266
267static int page_is_consistent(struct zone *zone, struct page *page)
268{
14e07298 269 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 270 return 0;
1da177e4 271 if (zone != page_zone(page))
c6a57e19
DH
272 return 0;
273
274 return 1;
275}
276/*
277 * Temporary debugging check for pages not lying within a given zone.
278 */
279static int bad_range(struct zone *zone, struct page *page)
280{
281 if (page_outside_zone_boundaries(zone, page))
1da177e4 282 return 1;
c6a57e19
DH
283 if (!page_is_consistent(zone, page))
284 return 1;
285
1da177e4
LT
286 return 0;
287}
13e7444b
NP
288#else
289static inline int bad_range(struct zone *zone, struct page *page)
290{
291 return 0;
292}
293#endif
294
224abf92 295static void bad_page(struct page *page)
1da177e4 296{
d936cf9b
HD
297 static unsigned long resume;
298 static unsigned long nr_shown;
299 static unsigned long nr_unshown;
300
2a7684a2
WF
301 /* Don't complain about poisoned pages */
302 if (PageHWPoison(page)) {
22b751c3 303 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
304 return;
305 }
306
d936cf9b
HD
307 /*
308 * Allow a burst of 60 reports, then keep quiet for that minute;
309 * or allow a steady drip of one report per second.
310 */
311 if (nr_shown == 60) {
312 if (time_before(jiffies, resume)) {
313 nr_unshown++;
314 goto out;
315 }
316 if (nr_unshown) {
1e9e6365
HD
317 printk(KERN_ALERT
318 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
319 nr_unshown);
320 nr_unshown = 0;
321 }
322 nr_shown = 0;
323 }
324 if (nr_shown++ == 0)
325 resume = jiffies + 60 * HZ;
326
1e9e6365 327 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 328 current->comm, page_to_pfn(page));
718a3821 329 dump_page(page);
3dc14741 330
4f31888c 331 print_modules();
1da177e4 332 dump_stack();
d936cf9b 333out:
8cc3b392 334 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 335 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 336 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
337}
338
1da177e4
LT
339/*
340 * Higher-order pages are called "compound pages". They are structured thusly:
341 *
342 * The first PAGE_SIZE page is called the "head page".
343 *
344 * The remaining PAGE_SIZE pages are called "tail pages".
345 *
6416b9fa
WSH
346 * All pages have PG_compound set. All tail pages have their ->first_page
347 * pointing at the head page.
1da177e4 348 *
41d78ba5
HD
349 * The first tail page's ->lru.next holds the address of the compound page's
350 * put_page() function. Its ->lru.prev holds the order of allocation.
351 * This usage means that zero-order pages may not be compound.
1da177e4 352 */
d98c7a09
HD
353
354static void free_compound_page(struct page *page)
355{
d85f3385 356 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
357}
358
01ad1c08 359void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
360{
361 int i;
362 int nr_pages = 1 << order;
363
364 set_compound_page_dtor(page, free_compound_page);
365 set_compound_order(page, order);
366 __SetPageHead(page);
367 for (i = 1; i < nr_pages; i++) {
368 struct page *p = page + i;
18229df5 369 __SetPageTail(p);
58a84aa9 370 set_page_count(p, 0);
18229df5
AW
371 p->first_page = page;
372 }
373}
374
59ff4216 375/* update __split_huge_page_refcount if you change this function */
8cc3b392 376static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
377{
378 int i;
379 int nr_pages = 1 << order;
8cc3b392 380 int bad = 0;
1da177e4 381
0bb2c763 382 if (unlikely(compound_order(page) != order)) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
1da177e4 386
6d777953 387 __ClearPageHead(page);
8cc3b392 388
18229df5
AW
389 for (i = 1; i < nr_pages; i++) {
390 struct page *p = page + i;
1da177e4 391
e713a21d 392 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 393 bad_page(page);
8cc3b392
HD
394 bad++;
395 }
d85f3385 396 __ClearPageTail(p);
1da177e4 397 }
8cc3b392
HD
398
399 return bad;
1da177e4 400}
1da177e4 401
17cf4406
NP
402static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
403{
404 int i;
405
6626c5d5
AM
406 /*
407 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
408 * and __GFP_HIGHMEM from hard or soft interrupt context.
409 */
725d704e 410 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
411 for (i = 0; i < (1 << order); i++)
412 clear_highpage(page + i);
413}
414
c0a32fc5
SG
415#ifdef CONFIG_DEBUG_PAGEALLOC
416unsigned int _debug_guardpage_minorder;
417
418static int __init debug_guardpage_minorder_setup(char *buf)
419{
420 unsigned long res;
421
422 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
423 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
424 return 0;
425 }
426 _debug_guardpage_minorder = res;
427 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
428 return 0;
429}
430__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
431
432static inline void set_page_guard_flag(struct page *page)
433{
434 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435}
436
437static inline void clear_page_guard_flag(struct page *page)
438{
439 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
440}
441#else
442static inline void set_page_guard_flag(struct page *page) { }
443static inline void clear_page_guard_flag(struct page *page) { }
444#endif
445
6aa3001b
AM
446static inline void set_page_order(struct page *page, int order)
447{
4c21e2f2 448 set_page_private(page, order);
676165a8 449 __SetPageBuddy(page);
1da177e4
LT
450}
451
452static inline void rmv_page_order(struct page *page)
453{
676165a8 454 __ClearPageBuddy(page);
4c21e2f2 455 set_page_private(page, 0);
1da177e4
LT
456}
457
458/*
459 * Locate the struct page for both the matching buddy in our
460 * pair (buddy1) and the combined O(n+1) page they form (page).
461 *
462 * 1) Any buddy B1 will have an order O twin B2 which satisfies
463 * the following equation:
464 * B2 = B1 ^ (1 << O)
465 * For example, if the starting buddy (buddy2) is #8 its order
466 * 1 buddy is #10:
467 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
468 *
469 * 2) Any buddy B will have an order O+1 parent P which
470 * satisfies the following equation:
471 * P = B & ~(1 << O)
472 *
d6e05edc 473 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 474 */
1da177e4 475static inline unsigned long
43506fad 476__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 477{
43506fad 478 return page_idx ^ (1 << order);
1da177e4
LT
479}
480
481/*
482 * This function checks whether a page is free && is the buddy
483 * we can do coalesce a page and its buddy if
13e7444b 484 * (a) the buddy is not in a hole &&
676165a8 485 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
486 * (c) a page and its buddy have the same order &&
487 * (d) a page and its buddy are in the same zone.
676165a8 488 *
5f24ce5f
AA
489 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
490 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 491 *
676165a8 492 * For recording page's order, we use page_private(page).
1da177e4 493 */
cb2b95e1
AW
494static inline int page_is_buddy(struct page *page, struct page *buddy,
495 int order)
1da177e4 496{
14e07298 497 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 498 return 0;
13e7444b 499
cb2b95e1
AW
500 if (page_zone_id(page) != page_zone_id(buddy))
501 return 0;
502
c0a32fc5
SG
503 if (page_is_guard(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507
cb2b95e1 508 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 509 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 510 return 1;
676165a8 511 }
6aa3001b 512 return 0;
1da177e4
LT
513}
514
515/*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 528 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 529 * order is recorded in page_private(page) field.
1da177e4 530 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
531 * other. That is, if we allocate a small block, and both were
532 * free, the remainder of the region must be split into blocks.
1da177e4 533 * If a block is freed, and its buddy is also free, then this
5f63b720 534 * triggers coalescing into a block of larger size.
1da177e4 535 *
6d49e352 536 * -- nyc
1da177e4
LT
537 */
538
48db57f8 539static inline void __free_one_page(struct page *page,
ed0ae21d
MG
540 struct zone *zone, unsigned int order,
541 int migratetype)
1da177e4
LT
542{
543 unsigned long page_idx;
6dda9d55 544 unsigned long combined_idx;
43506fad 545 unsigned long uninitialized_var(buddy_idx);
6dda9d55 546 struct page *buddy;
1da177e4 547
d29bb978
CS
548 VM_BUG_ON(!zone_is_initialized(zone));
549
224abf92 550 if (unlikely(PageCompound(page)))
8cc3b392
HD
551 if (unlikely(destroy_compound_page(page, order)))
552 return;
1da177e4 553
ed0ae21d
MG
554 VM_BUG_ON(migratetype == -1);
555
1da177e4
LT
556 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
557
f2260e6b 558 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 559 VM_BUG_ON(bad_range(zone, page));
1da177e4 560
1da177e4 561 while (order < MAX_ORDER-1) {
43506fad
KC
562 buddy_idx = __find_buddy_index(page_idx, order);
563 buddy = page + (buddy_idx - page_idx);
cb2b95e1 564 if (!page_is_buddy(page, buddy, order))
3c82d0ce 565 break;
c0a32fc5
SG
566 /*
567 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
568 * merge with it and move up one order.
569 */
570 if (page_is_guard(buddy)) {
571 clear_page_guard_flag(buddy);
572 set_page_private(page, 0);
d1ce749a
BZ
573 __mod_zone_freepage_state(zone, 1 << order,
574 migratetype);
c0a32fc5
SG
575 } else {
576 list_del(&buddy->lru);
577 zone->free_area[order].nr_free--;
578 rmv_page_order(buddy);
579 }
43506fad 580 combined_idx = buddy_idx & page_idx;
1da177e4
LT
581 page = page + (combined_idx - page_idx);
582 page_idx = combined_idx;
583 order++;
584 }
585 set_page_order(page, order);
6dda9d55
CZ
586
587 /*
588 * If this is not the largest possible page, check if the buddy
589 * of the next-highest order is free. If it is, it's possible
590 * that pages are being freed that will coalesce soon. In case,
591 * that is happening, add the free page to the tail of the list
592 * so it's less likely to be used soon and more likely to be merged
593 * as a higher order page
594 */
b7f50cfa 595 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 596 struct page *higher_page, *higher_buddy;
43506fad
KC
597 combined_idx = buddy_idx & page_idx;
598 higher_page = page + (combined_idx - page_idx);
599 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 600 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
601 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
602 list_add_tail(&page->lru,
603 &zone->free_area[order].free_list[migratetype]);
604 goto out;
605 }
606 }
607
608 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
609out:
1da177e4
LT
610 zone->free_area[order].nr_free++;
611}
612
224abf92 613static inline int free_pages_check(struct page *page)
1da177e4 614{
92be2e33
NP
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
a3af9c38 617 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
618 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
619 (mem_cgroup_bad_page_check(page)))) {
224abf92 620 bad_page(page);
79f4b7bf 621 return 1;
8cc3b392 622 }
22b751c3 623 page_nid_reset_last(page);
79f4b7bf
HD
624 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
625 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
626 return 0;
1da177e4
LT
627}
628
629/*
5f8dcc21 630 * Frees a number of pages from the PCP lists
1da177e4 631 * Assumes all pages on list are in same zone, and of same order.
207f36ee 632 * count is the number of pages to free.
1da177e4
LT
633 *
634 * If the zone was previously in an "all pages pinned" state then look to
635 * see if this freeing clears that state.
636 *
637 * And clear the zone's pages_scanned counter, to hold off the "all pages are
638 * pinned" detection logic.
639 */
5f8dcc21
MG
640static void free_pcppages_bulk(struct zone *zone, int count,
641 struct per_cpu_pages *pcp)
1da177e4 642{
5f8dcc21 643 int migratetype = 0;
a6f9edd6 644 int batch_free = 0;
72853e29 645 int to_free = count;
5f8dcc21 646
c54ad30c 647 spin_lock(&zone->lock);
93e4a89a 648 zone->all_unreclaimable = 0;
1da177e4 649 zone->pages_scanned = 0;
f2260e6b 650
72853e29 651 while (to_free) {
48db57f8 652 struct page *page;
5f8dcc21
MG
653 struct list_head *list;
654
655 /*
a6f9edd6
MG
656 * Remove pages from lists in a round-robin fashion. A
657 * batch_free count is maintained that is incremented when an
658 * empty list is encountered. This is so more pages are freed
659 * off fuller lists instead of spinning excessively around empty
660 * lists
5f8dcc21
MG
661 */
662 do {
a6f9edd6 663 batch_free++;
5f8dcc21
MG
664 if (++migratetype == MIGRATE_PCPTYPES)
665 migratetype = 0;
666 list = &pcp->lists[migratetype];
667 } while (list_empty(list));
48db57f8 668
1d16871d
NK
669 /* This is the only non-empty list. Free them all. */
670 if (batch_free == MIGRATE_PCPTYPES)
671 batch_free = to_free;
672
a6f9edd6 673 do {
770c8aaa
BZ
674 int mt; /* migratetype of the to-be-freed page */
675
a6f9edd6
MG
676 page = list_entry(list->prev, struct page, lru);
677 /* must delete as __free_one_page list manipulates */
678 list_del(&page->lru);
b12c4ad1 679 mt = get_freepage_migratetype(page);
a7016235 680 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
681 __free_one_page(page, zone, 0, mt);
682 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 683 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
684 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
685 if (is_migrate_cma(mt))
686 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
687 }
72853e29 688 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 689 }
c54ad30c 690 spin_unlock(&zone->lock);
1da177e4
LT
691}
692
ed0ae21d
MG
693static void free_one_page(struct zone *zone, struct page *page, int order,
694 int migratetype)
1da177e4 695{
006d22d9 696 spin_lock(&zone->lock);
93e4a89a 697 zone->all_unreclaimable = 0;
006d22d9 698 zone->pages_scanned = 0;
f2260e6b 699
ed0ae21d 700 __free_one_page(page, zone, order, migratetype);
194159fb 701 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 702 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 703 spin_unlock(&zone->lock);
48db57f8
NP
704}
705
ec95f53a 706static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 707{
1da177e4 708 int i;
8cc3b392 709 int bad = 0;
1da177e4 710
b413d48a 711 trace_mm_page_free(page, order);
b1eeab67
VN
712 kmemcheck_free_shadow(page, order);
713
8dd60a3a
AA
714 if (PageAnon(page))
715 page->mapping = NULL;
716 for (i = 0; i < (1 << order); i++)
717 bad += free_pages_check(page + i);
8cc3b392 718 if (bad)
ec95f53a 719 return false;
689bcebf 720
3ac7fe5a 721 if (!PageHighMem(page)) {
9858db50 722 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
723 debug_check_no_obj_freed(page_address(page),
724 PAGE_SIZE << order);
725 }
dafb1367 726 arch_free_page(page, order);
48db57f8 727 kernel_map_pages(page, 1 << order, 0);
dafb1367 728
ec95f53a
KM
729 return true;
730}
731
732static void __free_pages_ok(struct page *page, unsigned int order)
733{
734 unsigned long flags;
95e34412 735 int migratetype;
ec95f53a
KM
736
737 if (!free_pages_prepare(page, order))
738 return;
739
c54ad30c 740 local_irq_save(flags);
f8891e5e 741 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
742 migratetype = get_pageblock_migratetype(page);
743 set_freepage_migratetype(page, migratetype);
744 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 745 local_irq_restore(flags);
1da177e4
LT
746}
747
170a5a7e 748void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 749{
c3993076
JW
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
a226f6c8 752
c3993076
JW
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
a226f6c8 761 }
c3993076 762
9feedc9d 763 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
764 set_page_refcounted(page);
765 __free_pages(page, order);
a226f6c8
DH
766}
767
47118af0
MN
768#ifdef CONFIG_CMA
769/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770void __init init_cma_reserved_pageblock(struct page *page)
771{
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
3dcc0571 783 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
784}
785#endif
1da177e4
LT
786
787/*
788 * The order of subdivision here is critical for the IO subsystem.
789 * Please do not alter this order without good reasons and regression
790 * testing. Specifically, as large blocks of memory are subdivided,
791 * the order in which smaller blocks are delivered depends on the order
792 * they're subdivided in this function. This is the primary factor
793 * influencing the order in which pages are delivered to the IO
794 * subsystem according to empirical testing, and this is also justified
795 * by considering the behavior of a buddy system containing a single
796 * large block of memory acted on by a series of small allocations.
797 * This behavior is a critical factor in sglist merging's success.
798 *
6d49e352 799 * -- nyc
1da177e4 800 */
085cc7d5 801static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
802 int low, int high, struct free_area *area,
803 int migratetype)
1da177e4
LT
804{
805 unsigned long size = 1 << high;
806
807 while (high > low) {
808 area--;
809 high--;
810 size >>= 1;
725d704e 811 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
812
813#ifdef CONFIG_DEBUG_PAGEALLOC
814 if (high < debug_guardpage_minorder()) {
815 /*
816 * Mark as guard pages (or page), that will allow to
817 * merge back to allocator when buddy will be freed.
818 * Corresponding page table entries will not be touched,
819 * pages will stay not present in virtual address space
820 */
821 INIT_LIST_HEAD(&page[size].lru);
822 set_page_guard_flag(&page[size]);
823 set_page_private(&page[size], high);
824 /* Guard pages are not available for any usage */
d1ce749a
BZ
825 __mod_zone_freepage_state(zone, -(1 << high),
826 migratetype);
c0a32fc5
SG
827 continue;
828 }
829#endif
b2a0ac88 830 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
831 area->nr_free++;
832 set_page_order(&page[size], high);
833 }
1da177e4
LT
834}
835
1da177e4
LT
836/*
837 * This page is about to be returned from the page allocator
838 */
2a7684a2 839static inline int check_new_page(struct page *page)
1da177e4 840{
92be2e33
NP
841 if (unlikely(page_mapcount(page) |
842 (page->mapping != NULL) |
a3af9c38 843 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
844 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
845 (mem_cgroup_bad_page_check(page)))) {
224abf92 846 bad_page(page);
689bcebf 847 return 1;
8cc3b392 848 }
2a7684a2
WF
849 return 0;
850}
851
852static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
853{
854 int i;
855
856 for (i = 0; i < (1 << order); i++) {
857 struct page *p = page + i;
858 if (unlikely(check_new_page(p)))
859 return 1;
860 }
689bcebf 861
4c21e2f2 862 set_page_private(page, 0);
7835e98b 863 set_page_refcounted(page);
cc102509
NP
864
865 arch_alloc_page(page, order);
1da177e4 866 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
867
868 if (gfp_flags & __GFP_ZERO)
869 prep_zero_page(page, order, gfp_flags);
870
871 if (order && (gfp_flags & __GFP_COMP))
872 prep_compound_page(page, order);
873
689bcebf 874 return 0;
1da177e4
LT
875}
876
56fd56b8
MG
877/*
878 * Go through the free lists for the given migratetype and remove
879 * the smallest available page from the freelists
880 */
728ec980
MG
881static inline
882struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
883 int migratetype)
884{
885 unsigned int current_order;
886 struct free_area * area;
887 struct page *page;
888
889 /* Find a page of the appropriate size in the preferred list */
890 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
891 area = &(zone->free_area[current_order]);
892 if (list_empty(&area->free_list[migratetype]))
893 continue;
894
895 page = list_entry(area->free_list[migratetype].next,
896 struct page, lru);
897 list_del(&page->lru);
898 rmv_page_order(page);
899 area->nr_free--;
56fd56b8
MG
900 expand(zone, page, order, current_order, area, migratetype);
901 return page;
902 }
903
904 return NULL;
905}
906
907
b2a0ac88
MG
908/*
909 * This array describes the order lists are fallen back to when
910 * the free lists for the desirable migrate type are depleted
911 */
47118af0
MN
912static int fallbacks[MIGRATE_TYPES][4] = {
913 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
914 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
915#ifdef CONFIG_CMA
916 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
918#else
919 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920#endif
6d4a4916 921 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 922#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 923 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 924#endif
b2a0ac88
MG
925};
926
c361be55
MG
927/*
928 * Move the free pages in a range to the free lists of the requested type.
d9c23400 929 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
930 * boundary. If alignment is required, use move_freepages_block()
931 */
435b405c 932int move_freepages(struct zone *zone,
b69a7288
AB
933 struct page *start_page, struct page *end_page,
934 int migratetype)
c361be55
MG
935{
936 struct page *page;
937 unsigned long order;
d100313f 938 int pages_moved = 0;
c361be55
MG
939
940#ifndef CONFIG_HOLES_IN_ZONE
941 /*
942 * page_zone is not safe to call in this context when
943 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
944 * anyway as we check zone boundaries in move_freepages_block().
945 * Remove at a later date when no bug reports exist related to
ac0e5b7a 946 * grouping pages by mobility
c361be55
MG
947 */
948 BUG_ON(page_zone(start_page) != page_zone(end_page));
949#endif
950
951 for (page = start_page; page <= end_page;) {
344c790e
AL
952 /* Make sure we are not inadvertently changing nodes */
953 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
954
c361be55
MG
955 if (!pfn_valid_within(page_to_pfn(page))) {
956 page++;
957 continue;
958 }
959
960 if (!PageBuddy(page)) {
961 page++;
962 continue;
963 }
964
965 order = page_order(page);
84be48d8
KS
966 list_move(&page->lru,
967 &zone->free_area[order].free_list[migratetype]);
95e34412 968 set_freepage_migratetype(page, migratetype);
c361be55 969 page += 1 << order;
d100313f 970 pages_moved += 1 << order;
c361be55
MG
971 }
972
d100313f 973 return pages_moved;
c361be55
MG
974}
975
ee6f509c 976int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 977 int migratetype)
c361be55
MG
978{
979 unsigned long start_pfn, end_pfn;
980 struct page *start_page, *end_page;
981
982 start_pfn = page_to_pfn(page);
d9c23400 983 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 984 start_page = pfn_to_page(start_pfn);
d9c23400
MG
985 end_page = start_page + pageblock_nr_pages - 1;
986 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
987
988 /* Do not cross zone boundaries */
108bcc96 989 if (!zone_spans_pfn(zone, start_pfn))
c361be55 990 start_page = page;
108bcc96 991 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
992 return 0;
993
994 return move_freepages(zone, start_page, end_page, migratetype);
995}
996
2f66a68f
MG
997static void change_pageblock_range(struct page *pageblock_page,
998 int start_order, int migratetype)
999{
1000 int nr_pageblocks = 1 << (start_order - pageblock_order);
1001
1002 while (nr_pageblocks--) {
1003 set_pageblock_migratetype(pageblock_page, migratetype);
1004 pageblock_page += pageblock_nr_pages;
1005 }
1006}
1007
b2a0ac88 1008/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1009static inline struct page *
1010__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1011{
1012 struct free_area * area;
1013 int current_order;
1014 struct page *page;
1015 int migratetype, i;
1016
1017 /* Find the largest possible block of pages in the other list */
1018 for (current_order = MAX_ORDER-1; current_order >= order;
1019 --current_order) {
6d4a4916 1020 for (i = 0;; i++) {
b2a0ac88
MG
1021 migratetype = fallbacks[start_migratetype][i];
1022
56fd56b8
MG
1023 /* MIGRATE_RESERVE handled later if necessary */
1024 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1025 break;
e010487d 1026
b2a0ac88
MG
1027 area = &(zone->free_area[current_order]);
1028 if (list_empty(&area->free_list[migratetype]))
1029 continue;
1030
1031 page = list_entry(area->free_list[migratetype].next,
1032 struct page, lru);
1033 area->nr_free--;
1034
1035 /*
c361be55 1036 * If breaking a large block of pages, move all free
46dafbca
MG
1037 * pages to the preferred allocation list. If falling
1038 * back for a reclaimable kernel allocation, be more
25985edc 1039 * aggressive about taking ownership of free pages
47118af0
MN
1040 *
1041 * On the other hand, never change migration
1042 * type of MIGRATE_CMA pageblocks nor move CMA
1043 * pages on different free lists. We don't
1044 * want unmovable pages to be allocated from
1045 * MIGRATE_CMA areas.
b2a0ac88 1046 */
47118af0
MN
1047 if (!is_migrate_cma(migratetype) &&
1048 (unlikely(current_order >= pageblock_order / 2) ||
1049 start_migratetype == MIGRATE_RECLAIMABLE ||
1050 page_group_by_mobility_disabled)) {
1051 int pages;
46dafbca
MG
1052 pages = move_freepages_block(zone, page,
1053 start_migratetype);
1054
1055 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1056 if (pages >= (1 << (pageblock_order-1)) ||
1057 page_group_by_mobility_disabled)
46dafbca
MG
1058 set_pageblock_migratetype(page,
1059 start_migratetype);
1060
b2a0ac88 1061 migratetype = start_migratetype;
c361be55 1062 }
b2a0ac88
MG
1063
1064 /* Remove the page from the freelists */
1065 list_del(&page->lru);
1066 rmv_page_order(page);
b2a0ac88 1067
2f66a68f 1068 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1069 if (current_order >= pageblock_order &&
1070 !is_migrate_cma(migratetype))
2f66a68f 1071 change_pageblock_range(page, current_order,
b2a0ac88
MG
1072 start_migratetype);
1073
47118af0
MN
1074 expand(zone, page, order, current_order, area,
1075 is_migrate_cma(migratetype)
1076 ? migratetype : start_migratetype);
e0fff1bd
MG
1077
1078 trace_mm_page_alloc_extfrag(page, order, current_order,
1079 start_migratetype, migratetype);
1080
b2a0ac88
MG
1081 return page;
1082 }
1083 }
1084
728ec980 1085 return NULL;
b2a0ac88
MG
1086}
1087
56fd56b8 1088/*
1da177e4
LT
1089 * Do the hard work of removing an element from the buddy allocator.
1090 * Call me with the zone->lock already held.
1091 */
b2a0ac88
MG
1092static struct page *__rmqueue(struct zone *zone, unsigned int order,
1093 int migratetype)
1da177e4 1094{
1da177e4
LT
1095 struct page *page;
1096
728ec980 1097retry_reserve:
56fd56b8 1098 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1099
728ec980 1100 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1101 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1102
728ec980
MG
1103 /*
1104 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1105 * is used because __rmqueue_smallest is an inline function
1106 * and we want just one call site
1107 */
1108 if (!page) {
1109 migratetype = MIGRATE_RESERVE;
1110 goto retry_reserve;
1111 }
1112 }
1113
0d3d062a 1114 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1115 return page;
1da177e4
LT
1116}
1117
5f63b720 1118/*
1da177e4
LT
1119 * Obtain a specified number of elements from the buddy allocator, all under
1120 * a single hold of the lock, for efficiency. Add them to the supplied list.
1121 * Returns the number of new pages which were placed at *list.
1122 */
5f63b720 1123static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1124 unsigned long count, struct list_head *list,
e084b2d9 1125 int migratetype, int cold)
1da177e4 1126{
47118af0 1127 int mt = migratetype, i;
5f63b720 1128
c54ad30c 1129 spin_lock(&zone->lock);
1da177e4 1130 for (i = 0; i < count; ++i) {
b2a0ac88 1131 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1132 if (unlikely(page == NULL))
1da177e4 1133 break;
81eabcbe
MG
1134
1135 /*
1136 * Split buddy pages returned by expand() are received here
1137 * in physical page order. The page is added to the callers and
1138 * list and the list head then moves forward. From the callers
1139 * perspective, the linked list is ordered by page number in
1140 * some conditions. This is useful for IO devices that can
1141 * merge IO requests if the physical pages are ordered
1142 * properly.
1143 */
e084b2d9
MG
1144 if (likely(cold == 0))
1145 list_add(&page->lru, list);
1146 else
1147 list_add_tail(&page->lru, list);
47118af0
MN
1148 if (IS_ENABLED(CONFIG_CMA)) {
1149 mt = get_pageblock_migratetype(page);
194159fb 1150 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1151 mt = migratetype;
1152 }
b12c4ad1 1153 set_freepage_migratetype(page, mt);
81eabcbe 1154 list = &page->lru;
d1ce749a
BZ
1155 if (is_migrate_cma(mt))
1156 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1157 -(1 << order));
1da177e4 1158 }
f2260e6b 1159 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1160 spin_unlock(&zone->lock);
085cc7d5 1161 return i;
1da177e4
LT
1162}
1163
4ae7c039 1164#ifdef CONFIG_NUMA
8fce4d8e 1165/*
4037d452
CL
1166 * Called from the vmstat counter updater to drain pagesets of this
1167 * currently executing processor on remote nodes after they have
1168 * expired.
1169 *
879336c3
CL
1170 * Note that this function must be called with the thread pinned to
1171 * a single processor.
8fce4d8e 1172 */
4037d452 1173void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1174{
4ae7c039 1175 unsigned long flags;
4037d452 1176 int to_drain;
998d39cb 1177 unsigned long batch;
4ae7c039 1178
4037d452 1179 local_irq_save(flags);
998d39cb
CS
1180 batch = ACCESS_ONCE(pcp->batch);
1181 if (pcp->count >= batch)
1182 to_drain = batch;
4037d452
CL
1183 else
1184 to_drain = pcp->count;
2a13515c
KM
1185 if (to_drain > 0) {
1186 free_pcppages_bulk(zone, to_drain, pcp);
1187 pcp->count -= to_drain;
1188 }
4037d452 1189 local_irq_restore(flags);
4ae7c039
CL
1190}
1191#endif
1192
9f8f2172
CL
1193/*
1194 * Drain pages of the indicated processor.
1195 *
1196 * The processor must either be the current processor and the
1197 * thread pinned to the current processor or a processor that
1198 * is not online.
1199 */
1200static void drain_pages(unsigned int cpu)
1da177e4 1201{
c54ad30c 1202 unsigned long flags;
1da177e4 1203 struct zone *zone;
1da177e4 1204
ee99c71c 1205 for_each_populated_zone(zone) {
1da177e4 1206 struct per_cpu_pageset *pset;
3dfa5721 1207 struct per_cpu_pages *pcp;
1da177e4 1208
99dcc3e5
CL
1209 local_irq_save(flags);
1210 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1211
1212 pcp = &pset->pcp;
2ff754fa
DR
1213 if (pcp->count) {
1214 free_pcppages_bulk(zone, pcp->count, pcp);
1215 pcp->count = 0;
1216 }
3dfa5721 1217 local_irq_restore(flags);
1da177e4
LT
1218 }
1219}
1da177e4 1220
9f8f2172
CL
1221/*
1222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1223 */
1224void drain_local_pages(void *arg)
1225{
1226 drain_pages(smp_processor_id());
1227}
1228
1229/*
74046494
GBY
1230 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1231 *
1232 * Note that this code is protected against sending an IPI to an offline
1233 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1234 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1235 * nothing keeps CPUs from showing up after we populated the cpumask and
1236 * before the call to on_each_cpu_mask().
9f8f2172
CL
1237 */
1238void drain_all_pages(void)
1239{
74046494
GBY
1240 int cpu;
1241 struct per_cpu_pageset *pcp;
1242 struct zone *zone;
1243
1244 /*
1245 * Allocate in the BSS so we wont require allocation in
1246 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1247 */
1248 static cpumask_t cpus_with_pcps;
1249
1250 /*
1251 * We don't care about racing with CPU hotplug event
1252 * as offline notification will cause the notified
1253 * cpu to drain that CPU pcps and on_each_cpu_mask
1254 * disables preemption as part of its processing
1255 */
1256 for_each_online_cpu(cpu) {
1257 bool has_pcps = false;
1258 for_each_populated_zone(zone) {
1259 pcp = per_cpu_ptr(zone->pageset, cpu);
1260 if (pcp->pcp.count) {
1261 has_pcps = true;
1262 break;
1263 }
1264 }
1265 if (has_pcps)
1266 cpumask_set_cpu(cpu, &cpus_with_pcps);
1267 else
1268 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1269 }
1270 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1271}
1272
296699de 1273#ifdef CONFIG_HIBERNATION
1da177e4
LT
1274
1275void mark_free_pages(struct zone *zone)
1276{
f623f0db
RW
1277 unsigned long pfn, max_zone_pfn;
1278 unsigned long flags;
b2a0ac88 1279 int order, t;
1da177e4
LT
1280 struct list_head *curr;
1281
1282 if (!zone->spanned_pages)
1283 return;
1284
1285 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1286
108bcc96 1287 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1289 if (pfn_valid(pfn)) {
1290 struct page *page = pfn_to_page(pfn);
1291
7be98234
RW
1292 if (!swsusp_page_is_forbidden(page))
1293 swsusp_unset_page_free(page);
f623f0db 1294 }
1da177e4 1295
b2a0ac88
MG
1296 for_each_migratetype_order(order, t) {
1297 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1298 unsigned long i;
1da177e4 1299
f623f0db
RW
1300 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1301 for (i = 0; i < (1UL << order); i++)
7be98234 1302 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1303 }
b2a0ac88 1304 }
1da177e4
LT
1305 spin_unlock_irqrestore(&zone->lock, flags);
1306}
e2c55dc8 1307#endif /* CONFIG_PM */
1da177e4 1308
1da177e4
LT
1309/*
1310 * Free a 0-order page
fc91668e 1311 * cold == 1 ? free a cold page : free a hot page
1da177e4 1312 */
fc91668e 1313void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1314{
1315 struct zone *zone = page_zone(page);
1316 struct per_cpu_pages *pcp;
1317 unsigned long flags;
5f8dcc21 1318 int migratetype;
1da177e4 1319
ec95f53a 1320 if (!free_pages_prepare(page, 0))
689bcebf
HD
1321 return;
1322
5f8dcc21 1323 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1324 set_freepage_migratetype(page, migratetype);
1da177e4 1325 local_irq_save(flags);
f8891e5e 1326 __count_vm_event(PGFREE);
da456f14 1327
5f8dcc21
MG
1328 /*
1329 * We only track unmovable, reclaimable and movable on pcp lists.
1330 * Free ISOLATE pages back to the allocator because they are being
1331 * offlined but treat RESERVE as movable pages so we can get those
1332 * areas back if necessary. Otherwise, we may have to free
1333 * excessively into the page allocator
1334 */
1335 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1336 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1337 free_one_page(zone, page, 0, migratetype);
1338 goto out;
1339 }
1340 migratetype = MIGRATE_MOVABLE;
1341 }
1342
99dcc3e5 1343 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1344 if (cold)
5f8dcc21 1345 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1346 else
5f8dcc21 1347 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1348 pcp->count++;
48db57f8 1349 if (pcp->count >= pcp->high) {
998d39cb
CS
1350 unsigned long batch = ACCESS_ONCE(pcp->batch);
1351 free_pcppages_bulk(zone, batch, pcp);
1352 pcp->count -= batch;
48db57f8 1353 }
5f8dcc21
MG
1354
1355out:
1da177e4 1356 local_irq_restore(flags);
1da177e4
LT
1357}
1358
cc59850e
KK
1359/*
1360 * Free a list of 0-order pages
1361 */
1362void free_hot_cold_page_list(struct list_head *list, int cold)
1363{
1364 struct page *page, *next;
1365
1366 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1367 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1368 free_hot_cold_page(page, cold);
1369 }
1370}
1371
8dfcc9ba
NP
1372/*
1373 * split_page takes a non-compound higher-order page, and splits it into
1374 * n (1<<order) sub-pages: page[0..n]
1375 * Each sub-page must be freed individually.
1376 *
1377 * Note: this is probably too low level an operation for use in drivers.
1378 * Please consult with lkml before using this in your driver.
1379 */
1380void split_page(struct page *page, unsigned int order)
1381{
1382 int i;
1383
725d704e
NP
1384 VM_BUG_ON(PageCompound(page));
1385 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1386
1387#ifdef CONFIG_KMEMCHECK
1388 /*
1389 * Split shadow pages too, because free(page[0]) would
1390 * otherwise free the whole shadow.
1391 */
1392 if (kmemcheck_page_is_tracked(page))
1393 split_page(virt_to_page(page[0].shadow), order);
1394#endif
1395
7835e98b
NP
1396 for (i = 1; i < (1 << order); i++)
1397 set_page_refcounted(page + i);
8dfcc9ba 1398}
5853ff23 1399EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1400
8fb74b9f 1401static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1402{
748446bb
MG
1403 unsigned long watermark;
1404 struct zone *zone;
2139cbe6 1405 int mt;
748446bb
MG
1406
1407 BUG_ON(!PageBuddy(page));
1408
1409 zone = page_zone(page);
2e30abd1 1410 mt = get_pageblock_migratetype(page);
748446bb 1411
194159fb 1412 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark = low_wmark_pages(zone) + (1 << order);
1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 return 0;
1417
8fb74b9f 1418 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1419 }
748446bb
MG
1420
1421 /* Remove page from free list */
1422 list_del(&page->lru);
1423 zone->free_area[order].nr_free--;
1424 rmv_page_order(page);
2139cbe6 1425
8fb74b9f 1426 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1427 if (order >= pageblock_order - 1) {
1428 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1429 for (; page < endpage; page += pageblock_nr_pages) {
1430 int mt = get_pageblock_migratetype(page);
194159fb 1431 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1432 set_pageblock_migratetype(page,
1433 MIGRATE_MOVABLE);
1434 }
748446bb
MG
1435 }
1436
8fb74b9f 1437 return 1UL << order;
1fb3f8ca
MG
1438}
1439
1440/*
1441 * Similar to split_page except the page is already free. As this is only
1442 * being used for migration, the migratetype of the block also changes.
1443 * As this is called with interrupts disabled, the caller is responsible
1444 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1445 * are enabled.
1446 *
1447 * Note: this is probably too low level an operation for use in drivers.
1448 * Please consult with lkml before using this in your driver.
1449 */
1450int split_free_page(struct page *page)
1451{
1452 unsigned int order;
1453 int nr_pages;
1454
1fb3f8ca
MG
1455 order = page_order(page);
1456
8fb74b9f 1457 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1458 if (!nr_pages)
1459 return 0;
1460
1461 /* Split into individual pages */
1462 set_page_refcounted(page);
1463 split_page(page, order);
1464 return nr_pages;
748446bb
MG
1465}
1466
1da177e4
LT
1467/*
1468 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1469 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1470 * or two.
1471 */
0a15c3e9
MG
1472static inline
1473struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1474 struct zone *zone, int order, gfp_t gfp_flags,
1475 int migratetype)
1da177e4
LT
1476{
1477 unsigned long flags;
689bcebf 1478 struct page *page;
1da177e4
LT
1479 int cold = !!(gfp_flags & __GFP_COLD);
1480
689bcebf 1481again:
48db57f8 1482 if (likely(order == 0)) {
1da177e4 1483 struct per_cpu_pages *pcp;
5f8dcc21 1484 struct list_head *list;
1da177e4 1485
1da177e4 1486 local_irq_save(flags);
99dcc3e5
CL
1487 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1488 list = &pcp->lists[migratetype];
5f8dcc21 1489 if (list_empty(list)) {
535131e6 1490 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1491 pcp->batch, list,
e084b2d9 1492 migratetype, cold);
5f8dcc21 1493 if (unlikely(list_empty(list)))
6fb332fa 1494 goto failed;
535131e6 1495 }
b92a6edd 1496
5f8dcc21
MG
1497 if (cold)
1498 page = list_entry(list->prev, struct page, lru);
1499 else
1500 page = list_entry(list->next, struct page, lru);
1501
b92a6edd
MG
1502 list_del(&page->lru);
1503 pcp->count--;
7fb1d9fc 1504 } else {
dab48dab
AM
1505 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1506 /*
1507 * __GFP_NOFAIL is not to be used in new code.
1508 *
1509 * All __GFP_NOFAIL callers should be fixed so that they
1510 * properly detect and handle allocation failures.
1511 *
1512 * We most definitely don't want callers attempting to
4923abf9 1513 * allocate greater than order-1 page units with
dab48dab
AM
1514 * __GFP_NOFAIL.
1515 */
4923abf9 1516 WARN_ON_ONCE(order > 1);
dab48dab 1517 }
1da177e4 1518 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1519 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1520 spin_unlock(&zone->lock);
1521 if (!page)
1522 goto failed;
d1ce749a
BZ
1523 __mod_zone_freepage_state(zone, -(1 << order),
1524 get_pageblock_migratetype(page));
1da177e4
LT
1525 }
1526
f8891e5e 1527 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1528 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1529 local_irq_restore(flags);
1da177e4 1530
725d704e 1531 VM_BUG_ON(bad_range(zone, page));
17cf4406 1532 if (prep_new_page(page, order, gfp_flags))
a74609fa 1533 goto again;
1da177e4 1534 return page;
a74609fa
NP
1535
1536failed:
1537 local_irq_restore(flags);
a74609fa 1538 return NULL;
1da177e4
LT
1539}
1540
933e312e
AM
1541#ifdef CONFIG_FAIL_PAGE_ALLOC
1542
b2588c4b 1543static struct {
933e312e
AM
1544 struct fault_attr attr;
1545
1546 u32 ignore_gfp_highmem;
1547 u32 ignore_gfp_wait;
54114994 1548 u32 min_order;
933e312e
AM
1549} fail_page_alloc = {
1550 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1551 .ignore_gfp_wait = 1,
1552 .ignore_gfp_highmem = 1,
54114994 1553 .min_order = 1,
933e312e
AM
1554};
1555
1556static int __init setup_fail_page_alloc(char *str)
1557{
1558 return setup_fault_attr(&fail_page_alloc.attr, str);
1559}
1560__setup("fail_page_alloc=", setup_fail_page_alloc);
1561
deaf386e 1562static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1563{
54114994 1564 if (order < fail_page_alloc.min_order)
deaf386e 1565 return false;
933e312e 1566 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1567 return false;
933e312e 1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1569 return false;
933e312e 1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1571 return false;
933e312e
AM
1572
1573 return should_fail(&fail_page_alloc.attr, 1 << order);
1574}
1575
1576#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577
1578static int __init fail_page_alloc_debugfs(void)
1579{
f4ae40a6 1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1581 struct dentry *dir;
933e312e 1582
dd48c085
AM
1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 &fail_page_alloc.attr);
1585 if (IS_ERR(dir))
1586 return PTR_ERR(dir);
933e312e 1587
b2588c4b
AM
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 &fail_page_alloc.ignore_gfp_wait))
1590 goto fail;
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 &fail_page_alloc.ignore_gfp_highmem))
1593 goto fail;
1594 if (!debugfs_create_u32("min-order", mode, dir,
1595 &fail_page_alloc.min_order))
1596 goto fail;
1597
1598 return 0;
1599fail:
dd48c085 1600 debugfs_remove_recursive(dir);
933e312e 1601
b2588c4b 1602 return -ENOMEM;
933e312e
AM
1603}
1604
1605late_initcall(fail_page_alloc_debugfs);
1606
1607#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608
1609#else /* CONFIG_FAIL_PAGE_ALLOC */
1610
deaf386e 1611static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1612{
deaf386e 1613 return false;
933e312e
AM
1614}
1615
1616#endif /* CONFIG_FAIL_PAGE_ALLOC */
1617
1da177e4 1618/*
88f5acf8 1619 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1620 * of the allocation.
1621 */
88f5acf8
MG
1622static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1624{
1625 /* free_pages my go negative - that's OK */
d23ad423 1626 long min = mark;
2cfed075 1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1628 int o;
026b0814 1629 long free_cma = 0;
1da177e4 1630
df0a6daa 1631 free_pages -= (1 << order) - 1;
7fb1d9fc 1632 if (alloc_flags & ALLOC_HIGH)
1da177e4 1633 min -= min / 2;
7fb1d9fc 1634 if (alloc_flags & ALLOC_HARDER)
1da177e4 1635 min -= min / 4;
d95ea5d1
BZ
1636#ifdef CONFIG_CMA
1637 /* If allocation can't use CMA areas don't use free CMA pages */
1638 if (!(alloc_flags & ALLOC_CMA))
026b0814 1639 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1640#endif
026b0814
TS
1641
1642 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1643 return false;
1da177e4
LT
1644 for (o = 0; o < order; o++) {
1645 /* At the next order, this order's pages become unavailable */
1646 free_pages -= z->free_area[o].nr_free << o;
1647
1648 /* Require fewer higher order pages to be free */
1649 min >>= 1;
1650
1651 if (free_pages <= min)
88f5acf8 1652 return false;
1da177e4 1653 }
88f5acf8
MG
1654 return true;
1655}
1656
1657bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1658 int classzone_idx, int alloc_flags)
1659{
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 zone_page_state(z, NR_FREE_PAGES));
1662}
1663
1664bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1665 int classzone_idx, int alloc_flags)
1666{
1667 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1668
1669 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1670 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1671
1672 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1673 free_pages);
1da177e4
LT
1674}
1675
9276b1bc
PJ
1676#ifdef CONFIG_NUMA
1677/*
1678 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1679 * skip over zones that are not allowed by the cpuset, or that have
1680 * been recently (in last second) found to be nearly full. See further
1681 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1682 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1683 *
1684 * If the zonelist cache is present in the passed in zonelist, then
1685 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1686 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1687 *
1688 * If the zonelist cache is not available for this zonelist, does
1689 * nothing and returns NULL.
1690 *
1691 * If the fullzones BITMAP in the zonelist cache is stale (more than
1692 * a second since last zap'd) then we zap it out (clear its bits.)
1693 *
1694 * We hold off even calling zlc_setup, until after we've checked the
1695 * first zone in the zonelist, on the theory that most allocations will
1696 * be satisfied from that first zone, so best to examine that zone as
1697 * quickly as we can.
1698 */
1699static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1700{
1701 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1702 nodemask_t *allowednodes; /* zonelist_cache approximation */
1703
1704 zlc = zonelist->zlcache_ptr;
1705 if (!zlc)
1706 return NULL;
1707
f05111f5 1708 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1710 zlc->last_full_zap = jiffies;
1711 }
1712
1713 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1714 &cpuset_current_mems_allowed :
4b0ef1fe 1715 &node_states[N_MEMORY];
9276b1bc
PJ
1716 return allowednodes;
1717}
1718
1719/*
1720 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1721 * if it is worth looking at further for free memory:
1722 * 1) Check that the zone isn't thought to be full (doesn't have its
1723 * bit set in the zonelist_cache fullzones BITMAP).
1724 * 2) Check that the zones node (obtained from the zonelist_cache
1725 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1726 * Return true (non-zero) if zone is worth looking at further, or
1727 * else return false (zero) if it is not.
1728 *
1729 * This check -ignores- the distinction between various watermarks,
1730 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1731 * found to be full for any variation of these watermarks, it will
1732 * be considered full for up to one second by all requests, unless
1733 * we are so low on memory on all allowed nodes that we are forced
1734 * into the second scan of the zonelist.
1735 *
1736 * In the second scan we ignore this zonelist cache and exactly
1737 * apply the watermarks to all zones, even it is slower to do so.
1738 * We are low on memory in the second scan, and should leave no stone
1739 * unturned looking for a free page.
1740 */
dd1a239f 1741static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1742 nodemask_t *allowednodes)
1743{
1744 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1745 int i; /* index of *z in zonelist zones */
1746 int n; /* node that zone *z is on */
1747
1748 zlc = zonelist->zlcache_ptr;
1749 if (!zlc)
1750 return 1;
1751
dd1a239f 1752 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1753 n = zlc->z_to_n[i];
1754
1755 /* This zone is worth trying if it is allowed but not full */
1756 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1757}
1758
1759/*
1760 * Given 'z' scanning a zonelist, set the corresponding bit in
1761 * zlc->fullzones, so that subsequent attempts to allocate a page
1762 * from that zone don't waste time re-examining it.
1763 */
dd1a239f 1764static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1765{
1766 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1767 int i; /* index of *z in zonelist zones */
1768
1769 zlc = zonelist->zlcache_ptr;
1770 if (!zlc)
1771 return;
1772
dd1a239f 1773 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1774
1775 set_bit(i, zlc->fullzones);
1776}
1777
76d3fbf8
MG
1778/*
1779 * clear all zones full, called after direct reclaim makes progress so that
1780 * a zone that was recently full is not skipped over for up to a second
1781 */
1782static void zlc_clear_zones_full(struct zonelist *zonelist)
1783{
1784 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1785
1786 zlc = zonelist->zlcache_ptr;
1787 if (!zlc)
1788 return;
1789
1790 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1791}
1792
957f822a
DR
1793static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1794{
1795 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1796}
1797
1798static void __paginginit init_zone_allows_reclaim(int nid)
1799{
1800 int i;
1801
1802 for_each_online_node(i)
6b187d02 1803 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1804 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1805 else
957f822a 1806 zone_reclaim_mode = 1;
957f822a
DR
1807}
1808
9276b1bc
PJ
1809#else /* CONFIG_NUMA */
1810
1811static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1812{
1813 return NULL;
1814}
1815
dd1a239f 1816static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1817 nodemask_t *allowednodes)
1818{
1819 return 1;
1820}
1821
dd1a239f 1822static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1823{
1824}
76d3fbf8
MG
1825
1826static void zlc_clear_zones_full(struct zonelist *zonelist)
1827{
1828}
957f822a
DR
1829
1830static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1831{
1832 return true;
1833}
1834
1835static inline void init_zone_allows_reclaim(int nid)
1836{
1837}
9276b1bc
PJ
1838#endif /* CONFIG_NUMA */
1839
7fb1d9fc 1840/*
0798e519 1841 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1842 * a page.
1843 */
1844static struct page *
19770b32 1845get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1846 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1847 struct zone *preferred_zone, int migratetype)
753ee728 1848{
dd1a239f 1849 struct zoneref *z;
7fb1d9fc 1850 struct page *page = NULL;
54a6eb5c 1851 int classzone_idx;
5117f45d 1852 struct zone *zone;
9276b1bc
PJ
1853 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1854 int zlc_active = 0; /* set if using zonelist_cache */
1855 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1856
19770b32 1857 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1858zonelist_scan:
7fb1d9fc 1859 /*
9276b1bc 1860 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1862 */
19770b32
MG
1863 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1864 high_zoneidx, nodemask) {
e5adfffc 1865 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1866 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1867 continue;
7fb1d9fc 1868 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1869 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1870 continue;
a756cf59
JW
1871 /*
1872 * When allocating a page cache page for writing, we
1873 * want to get it from a zone that is within its dirty
1874 * limit, such that no single zone holds more than its
1875 * proportional share of globally allowed dirty pages.
1876 * The dirty limits take into account the zone's
1877 * lowmem reserves and high watermark so that kswapd
1878 * should be able to balance it without having to
1879 * write pages from its LRU list.
1880 *
1881 * This may look like it could increase pressure on
1882 * lower zones by failing allocations in higher zones
1883 * before they are full. But the pages that do spill
1884 * over are limited as the lower zones are protected
1885 * by this very same mechanism. It should not become
1886 * a practical burden to them.
1887 *
1888 * XXX: For now, allow allocations to potentially
1889 * exceed the per-zone dirty limit in the slowpath
1890 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1891 * which is important when on a NUMA setup the allowed
1892 * zones are together not big enough to reach the
1893 * global limit. The proper fix for these situations
1894 * will require awareness of zones in the
1895 * dirty-throttling and the flusher threads.
1896 */
1897 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1898 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1899 goto this_zone_full;
7fb1d9fc 1900
41858966 1901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1902 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1903 unsigned long mark;
fa5e084e
MG
1904 int ret;
1905
41858966 1906 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1907 if (zone_watermark_ok(zone, order, mark,
1908 classzone_idx, alloc_flags))
1909 goto try_this_zone;
1910
e5adfffc
KS
1911 if (IS_ENABLED(CONFIG_NUMA) &&
1912 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1913 /*
1914 * we do zlc_setup if there are multiple nodes
1915 * and before considering the first zone allowed
1916 * by the cpuset.
1917 */
1918 allowednodes = zlc_setup(zonelist, alloc_flags);
1919 zlc_active = 1;
1920 did_zlc_setup = 1;
1921 }
1922
957f822a
DR
1923 if (zone_reclaim_mode == 0 ||
1924 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1925 goto this_zone_full;
1926
cd38b115
MG
1927 /*
1928 * As we may have just activated ZLC, check if the first
1929 * eligible zone has failed zone_reclaim recently.
1930 */
e5adfffc 1931 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1932 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1933 continue;
1934
fa5e084e
MG
1935 ret = zone_reclaim(zone, gfp_mask, order);
1936 switch (ret) {
1937 case ZONE_RECLAIM_NOSCAN:
1938 /* did not scan */
cd38b115 1939 continue;
fa5e084e
MG
1940 case ZONE_RECLAIM_FULL:
1941 /* scanned but unreclaimable */
cd38b115 1942 continue;
fa5e084e
MG
1943 default:
1944 /* did we reclaim enough */
fed2719e 1945 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1946 classzone_idx, alloc_flags))
fed2719e
MG
1947 goto try_this_zone;
1948
1949 /*
1950 * Failed to reclaim enough to meet watermark.
1951 * Only mark the zone full if checking the min
1952 * watermark or if we failed to reclaim just
1953 * 1<<order pages or else the page allocator
1954 * fastpath will prematurely mark zones full
1955 * when the watermark is between the low and
1956 * min watermarks.
1957 */
1958 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1959 ret == ZONE_RECLAIM_SOME)
9276b1bc 1960 goto this_zone_full;
fed2719e
MG
1961
1962 continue;
0798e519 1963 }
7fb1d9fc
RS
1964 }
1965
fa5e084e 1966try_this_zone:
3dd28266
MG
1967 page = buffered_rmqueue(preferred_zone, zone, order,
1968 gfp_mask, migratetype);
0798e519 1969 if (page)
7fb1d9fc 1970 break;
9276b1bc 1971this_zone_full:
e5adfffc 1972 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1973 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1974 }
9276b1bc 1975
e5adfffc 1976 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1977 /* Disable zlc cache for second zonelist scan */
1978 zlc_active = 0;
1979 goto zonelist_scan;
1980 }
b121186a
AS
1981
1982 if (page)
1983 /*
1984 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1985 * necessary to allocate the page. The expectation is
1986 * that the caller is taking steps that will free more
1987 * memory. The caller should avoid the page being used
1988 * for !PFMEMALLOC purposes.
1989 */
1990 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1991
7fb1d9fc 1992 return page;
753ee728
MH
1993}
1994
29423e77
DR
1995/*
1996 * Large machines with many possible nodes should not always dump per-node
1997 * meminfo in irq context.
1998 */
1999static inline bool should_suppress_show_mem(void)
2000{
2001 bool ret = false;
2002
2003#if NODES_SHIFT > 8
2004 ret = in_interrupt();
2005#endif
2006 return ret;
2007}
2008
a238ab5b
DH
2009static DEFINE_RATELIMIT_STATE(nopage_rs,
2010 DEFAULT_RATELIMIT_INTERVAL,
2011 DEFAULT_RATELIMIT_BURST);
2012
2013void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2014{
a238ab5b
DH
2015 unsigned int filter = SHOW_MEM_FILTER_NODES;
2016
c0a32fc5
SG
2017 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2018 debug_guardpage_minorder() > 0)
a238ab5b
DH
2019 return;
2020
4b59e6c4
DR
2021 /*
2022 * Walking all memory to count page types is very expensive and should
2023 * be inhibited in non-blockable contexts.
2024 */
2025 if (!(gfp_mask & __GFP_WAIT))
2026 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2027
a238ab5b
DH
2028 /*
2029 * This documents exceptions given to allocations in certain
2030 * contexts that are allowed to allocate outside current's set
2031 * of allowed nodes.
2032 */
2033 if (!(gfp_mask & __GFP_NOMEMALLOC))
2034 if (test_thread_flag(TIF_MEMDIE) ||
2035 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2036 filter &= ~SHOW_MEM_FILTER_NODES;
2037 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2038 filter &= ~SHOW_MEM_FILTER_NODES;
2039
2040 if (fmt) {
3ee9a4f0
JP
2041 struct va_format vaf;
2042 va_list args;
2043
a238ab5b 2044 va_start(args, fmt);
3ee9a4f0
JP
2045
2046 vaf.fmt = fmt;
2047 vaf.va = &args;
2048
2049 pr_warn("%pV", &vaf);
2050
a238ab5b
DH
2051 va_end(args);
2052 }
2053
3ee9a4f0
JP
2054 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2055 current->comm, order, gfp_mask);
a238ab5b
DH
2056
2057 dump_stack();
2058 if (!should_suppress_show_mem())
2059 show_mem(filter);
2060}
2061
11e33f6a
MG
2062static inline int
2063should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2064 unsigned long did_some_progress,
11e33f6a 2065 unsigned long pages_reclaimed)
1da177e4 2066{
11e33f6a
MG
2067 /* Do not loop if specifically requested */
2068 if (gfp_mask & __GFP_NORETRY)
2069 return 0;
1da177e4 2070
f90ac398
MG
2071 /* Always retry if specifically requested */
2072 if (gfp_mask & __GFP_NOFAIL)
2073 return 1;
2074
2075 /*
2076 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2077 * making forward progress without invoking OOM. Suspend also disables
2078 * storage devices so kswapd will not help. Bail if we are suspending.
2079 */
2080 if (!did_some_progress && pm_suspended_storage())
2081 return 0;
2082
11e33f6a
MG
2083 /*
2084 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2085 * means __GFP_NOFAIL, but that may not be true in other
2086 * implementations.
2087 */
2088 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2089 return 1;
2090
2091 /*
2092 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2093 * specified, then we retry until we no longer reclaim any pages
2094 * (above), or we've reclaimed an order of pages at least as
2095 * large as the allocation's order. In both cases, if the
2096 * allocation still fails, we stop retrying.
2097 */
2098 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2099 return 1;
cf40bd16 2100
11e33f6a
MG
2101 return 0;
2102}
933e312e 2103
11e33f6a
MG
2104static inline struct page *
2105__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2106 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2107 nodemask_t *nodemask, struct zone *preferred_zone,
2108 int migratetype)
11e33f6a
MG
2109{
2110 struct page *page;
2111
2112 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2113 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2114 schedule_timeout_uninterruptible(1);
1da177e4
LT
2115 return NULL;
2116 }
6b1de916 2117
11e33f6a
MG
2118 /*
2119 * Go through the zonelist yet one more time, keep very high watermark
2120 * here, this is only to catch a parallel oom killing, we must fail if
2121 * we're still under heavy pressure.
2122 */
2123 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2124 order, zonelist, high_zoneidx,
5117f45d 2125 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2126 preferred_zone, migratetype);
7fb1d9fc 2127 if (page)
11e33f6a
MG
2128 goto out;
2129
4365a567
KH
2130 if (!(gfp_mask & __GFP_NOFAIL)) {
2131 /* The OOM killer will not help higher order allocs */
2132 if (order > PAGE_ALLOC_COSTLY_ORDER)
2133 goto out;
03668b3c
DR
2134 /* The OOM killer does not needlessly kill tasks for lowmem */
2135 if (high_zoneidx < ZONE_NORMAL)
2136 goto out;
4365a567
KH
2137 /*
2138 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2139 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2140 * The caller should handle page allocation failure by itself if
2141 * it specifies __GFP_THISNODE.
2142 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2143 */
2144 if (gfp_mask & __GFP_THISNODE)
2145 goto out;
2146 }
11e33f6a 2147 /* Exhausted what can be done so it's blamo time */
08ab9b10 2148 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2149
2150out:
2151 clear_zonelist_oom(zonelist, gfp_mask);
2152 return page;
2153}
2154
56de7263
MG
2155#ifdef CONFIG_COMPACTION
2156/* Try memory compaction for high-order allocations before reclaim */
2157static struct page *
2158__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2159 struct zonelist *zonelist, enum zone_type high_zoneidx,
2160 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2161 int migratetype, bool sync_migration,
c67fe375 2162 bool *contended_compaction, bool *deferred_compaction,
66199712 2163 unsigned long *did_some_progress)
56de7263 2164{
66199712 2165 if (!order)
56de7263
MG
2166 return NULL;
2167
aff62249 2168 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2169 *deferred_compaction = true;
2170 return NULL;
2171 }
2172
c06b1fca 2173 current->flags |= PF_MEMALLOC;
56de7263 2174 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2175 nodemask, sync_migration,
8fb74b9f 2176 contended_compaction);
c06b1fca 2177 current->flags &= ~PF_MEMALLOC;
56de7263 2178
1fb3f8ca 2179 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2180 struct page *page;
2181
56de7263
MG
2182 /* Page migration frees to the PCP lists but we want merging */
2183 drain_pages(get_cpu());
2184 put_cpu();
2185
2186 page = get_page_from_freelist(gfp_mask, nodemask,
2187 order, zonelist, high_zoneidx,
cfd19c5a
MG
2188 alloc_flags & ~ALLOC_NO_WATERMARKS,
2189 preferred_zone, migratetype);
56de7263 2190 if (page) {
62997027 2191 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2192 preferred_zone->compact_considered = 0;
2193 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2194 if (order >= preferred_zone->compact_order_failed)
2195 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2196 count_vm_event(COMPACTSUCCESS);
2197 return page;
2198 }
2199
2200 /*
2201 * It's bad if compaction run occurs and fails.
2202 * The most likely reason is that pages exist,
2203 * but not enough to satisfy watermarks.
2204 */
2205 count_vm_event(COMPACTFAIL);
66199712
MG
2206
2207 /*
2208 * As async compaction considers a subset of pageblocks, only
2209 * defer if the failure was a sync compaction failure.
2210 */
2211 if (sync_migration)
aff62249 2212 defer_compaction(preferred_zone, order);
56de7263
MG
2213
2214 cond_resched();
2215 }
2216
2217 return NULL;
2218}
2219#else
2220static inline struct page *
2221__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2222 struct zonelist *zonelist, enum zone_type high_zoneidx,
2223 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2224 int migratetype, bool sync_migration,
c67fe375 2225 bool *contended_compaction, bool *deferred_compaction,
66199712 2226 unsigned long *did_some_progress)
56de7263
MG
2227{
2228 return NULL;
2229}
2230#endif /* CONFIG_COMPACTION */
2231
bba90710
MS
2232/* Perform direct synchronous page reclaim */
2233static int
2234__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2235 nodemask_t *nodemask)
11e33f6a 2236{
11e33f6a 2237 struct reclaim_state reclaim_state;
bba90710 2238 int progress;
11e33f6a
MG
2239
2240 cond_resched();
2241
2242 /* We now go into synchronous reclaim */
2243 cpuset_memory_pressure_bump();
c06b1fca 2244 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2245 lockdep_set_current_reclaim_state(gfp_mask);
2246 reclaim_state.reclaimed_slab = 0;
c06b1fca 2247 current->reclaim_state = &reclaim_state;
11e33f6a 2248
bba90710 2249 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2250
c06b1fca 2251 current->reclaim_state = NULL;
11e33f6a 2252 lockdep_clear_current_reclaim_state();
c06b1fca 2253 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2254
2255 cond_resched();
2256
bba90710
MS
2257 return progress;
2258}
2259
2260/* The really slow allocator path where we enter direct reclaim */
2261static inline struct page *
2262__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2263 struct zonelist *zonelist, enum zone_type high_zoneidx,
2264 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2265 int migratetype, unsigned long *did_some_progress)
2266{
2267 struct page *page = NULL;
2268 bool drained = false;
2269
2270 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2271 nodemask);
9ee493ce
MG
2272 if (unlikely(!(*did_some_progress)))
2273 return NULL;
11e33f6a 2274
76d3fbf8 2275 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2276 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2277 zlc_clear_zones_full(zonelist);
2278
9ee493ce
MG
2279retry:
2280 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2281 zonelist, high_zoneidx,
cfd19c5a
MG
2282 alloc_flags & ~ALLOC_NO_WATERMARKS,
2283 preferred_zone, migratetype);
9ee493ce
MG
2284
2285 /*
2286 * If an allocation failed after direct reclaim, it could be because
2287 * pages are pinned on the per-cpu lists. Drain them and try again
2288 */
2289 if (!page && !drained) {
2290 drain_all_pages();
2291 drained = true;
2292 goto retry;
2293 }
2294
11e33f6a
MG
2295 return page;
2296}
2297
1da177e4 2298/*
11e33f6a
MG
2299 * This is called in the allocator slow-path if the allocation request is of
2300 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2301 */
11e33f6a
MG
2302static inline struct page *
2303__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2304 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2305 nodemask_t *nodemask, struct zone *preferred_zone,
2306 int migratetype)
11e33f6a
MG
2307{
2308 struct page *page;
2309
2310 do {
2311 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2312 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2313 preferred_zone, migratetype);
11e33f6a
MG
2314
2315 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2316 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2317 } while (!page && (gfp_mask & __GFP_NOFAIL));
2318
2319 return page;
2320}
2321
2322static inline
2323void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2324 enum zone_type high_zoneidx,
2325 enum zone_type classzone_idx)
1da177e4 2326{
dd1a239f
MG
2327 struct zoneref *z;
2328 struct zone *zone;
1da177e4 2329
11e33f6a 2330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2331 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2332}
cf40bd16 2333
341ce06f
PZ
2334static inline int
2335gfp_to_alloc_flags(gfp_t gfp_mask)
2336{
341ce06f
PZ
2337 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2338 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2339
a56f57ff 2340 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2341 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2342
341ce06f
PZ
2343 /*
2344 * The caller may dip into page reserves a bit more if the caller
2345 * cannot run direct reclaim, or if the caller has realtime scheduling
2346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2347 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2348 */
e6223a3b 2349 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2350
341ce06f 2351 if (!wait) {
5c3240d9
AA
2352 /*
2353 * Not worth trying to allocate harder for
2354 * __GFP_NOMEMALLOC even if it can't schedule.
2355 */
2356 if (!(gfp_mask & __GFP_NOMEMALLOC))
2357 alloc_flags |= ALLOC_HARDER;
523b9458 2358 /*
341ce06f
PZ
2359 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2360 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2361 */
341ce06f 2362 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2363 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2364 alloc_flags |= ALLOC_HARDER;
2365
b37f1dd0
MG
2366 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2367 if (gfp_mask & __GFP_MEMALLOC)
2368 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2369 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 else if (!in_interrupt() &&
2372 ((current->flags & PF_MEMALLOC) ||
2373 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2374 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2375 }
d95ea5d1
BZ
2376#ifdef CONFIG_CMA
2377 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2378 alloc_flags |= ALLOC_CMA;
2379#endif
341ce06f
PZ
2380 return alloc_flags;
2381}
2382
072bb0aa
MG
2383bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2384{
b37f1dd0 2385 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2386}
2387
11e33f6a
MG
2388static inline struct page *
2389__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2390 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2391 nodemask_t *nodemask, struct zone *preferred_zone,
2392 int migratetype)
11e33f6a
MG
2393{
2394 const gfp_t wait = gfp_mask & __GFP_WAIT;
2395 struct page *page = NULL;
2396 int alloc_flags;
2397 unsigned long pages_reclaimed = 0;
2398 unsigned long did_some_progress;
77f1fe6b 2399 bool sync_migration = false;
66199712 2400 bool deferred_compaction = false;
c67fe375 2401 bool contended_compaction = false;
1da177e4 2402
72807a74
MG
2403 /*
2404 * In the slowpath, we sanity check order to avoid ever trying to
2405 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2406 * be using allocators in order of preference for an area that is
2407 * too large.
2408 */
1fc28b70
MG
2409 if (order >= MAX_ORDER) {
2410 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2411 return NULL;
1fc28b70 2412 }
1da177e4 2413
952f3b51
CL
2414 /*
2415 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2416 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2417 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2418 * using a larger set of nodes after it has established that the
2419 * allowed per node queues are empty and that nodes are
2420 * over allocated.
2421 */
e5adfffc
KS
2422 if (IS_ENABLED(CONFIG_NUMA) &&
2423 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2424 goto nopage;
2425
cc4a6851 2426restart:
caf49191
LT
2427 if (!(gfp_mask & __GFP_NO_KSWAPD))
2428 wake_all_kswapd(order, zonelist, high_zoneidx,
2429 zone_idx(preferred_zone));
1da177e4 2430
9bf2229f 2431 /*
7fb1d9fc
RS
2432 * OK, we're below the kswapd watermark and have kicked background
2433 * reclaim. Now things get more complex, so set up alloc_flags according
2434 * to how we want to proceed.
9bf2229f 2435 */
341ce06f 2436 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2437
f33261d7
DR
2438 /*
2439 * Find the true preferred zone if the allocation is unconstrained by
2440 * cpusets.
2441 */
2442 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2443 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2444 &preferred_zone);
2445
cfa54a0f 2446rebalance:
341ce06f 2447 /* This is the last chance, in general, before the goto nopage. */
19770b32 2448 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2449 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2450 preferred_zone, migratetype);
7fb1d9fc
RS
2451 if (page)
2452 goto got_pg;
1da177e4 2453
11e33f6a 2454 /* Allocate without watermarks if the context allows */
341ce06f 2455 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2456 /*
2457 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2458 * the allocation is high priority and these type of
2459 * allocations are system rather than user orientated
2460 */
2461 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2462
341ce06f
PZ
2463 page = __alloc_pages_high_priority(gfp_mask, order,
2464 zonelist, high_zoneidx, nodemask,
2465 preferred_zone, migratetype);
cfd19c5a 2466 if (page) {
341ce06f 2467 goto got_pg;
cfd19c5a 2468 }
1da177e4
LT
2469 }
2470
2471 /* Atomic allocations - we can't balance anything */
2472 if (!wait)
2473 goto nopage;
2474
341ce06f 2475 /* Avoid recursion of direct reclaim */
c06b1fca 2476 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2477 goto nopage;
2478
6583bb64
DR
2479 /* Avoid allocations with no watermarks from looping endlessly */
2480 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2481 goto nopage;
2482
77f1fe6b
MG
2483 /*
2484 * Try direct compaction. The first pass is asynchronous. Subsequent
2485 * attempts after direct reclaim are synchronous
2486 */
56de7263
MG
2487 page = __alloc_pages_direct_compact(gfp_mask, order,
2488 zonelist, high_zoneidx,
2489 nodemask,
2490 alloc_flags, preferred_zone,
66199712 2491 migratetype, sync_migration,
c67fe375 2492 &contended_compaction,
66199712
MG
2493 &deferred_compaction,
2494 &did_some_progress);
56de7263
MG
2495 if (page)
2496 goto got_pg;
c6a140bf 2497 sync_migration = true;
56de7263 2498
31f8d42d
LT
2499 /*
2500 * If compaction is deferred for high-order allocations, it is because
2501 * sync compaction recently failed. In this is the case and the caller
2502 * requested a movable allocation that does not heavily disrupt the
2503 * system then fail the allocation instead of entering direct reclaim.
2504 */
2505 if ((deferred_compaction || contended_compaction) &&
caf49191 2506 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2507 goto nopage;
66199712 2508
11e33f6a
MG
2509 /* Try direct reclaim and then allocating */
2510 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2511 zonelist, high_zoneidx,
2512 nodemask,
5117f45d 2513 alloc_flags, preferred_zone,
3dd28266 2514 migratetype, &did_some_progress);
11e33f6a
MG
2515 if (page)
2516 goto got_pg;
1da177e4 2517
e33c3b5e 2518 /*
11e33f6a
MG
2519 * If we failed to make any progress reclaiming, then we are
2520 * running out of options and have to consider going OOM
e33c3b5e 2521 */
11e33f6a
MG
2522 if (!did_some_progress) {
2523 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2524 if (oom_killer_disabled)
2525 goto nopage;
29fd66d2
DR
2526 /* Coredumps can quickly deplete all memory reserves */
2527 if ((current->flags & PF_DUMPCORE) &&
2528 !(gfp_mask & __GFP_NOFAIL))
2529 goto nopage;
11e33f6a
MG
2530 page = __alloc_pages_may_oom(gfp_mask, order,
2531 zonelist, high_zoneidx,
3dd28266
MG
2532 nodemask, preferred_zone,
2533 migratetype);
11e33f6a
MG
2534 if (page)
2535 goto got_pg;
1da177e4 2536
03668b3c
DR
2537 if (!(gfp_mask & __GFP_NOFAIL)) {
2538 /*
2539 * The oom killer is not called for high-order
2540 * allocations that may fail, so if no progress
2541 * is being made, there are no other options and
2542 * retrying is unlikely to help.
2543 */
2544 if (order > PAGE_ALLOC_COSTLY_ORDER)
2545 goto nopage;
2546 /*
2547 * The oom killer is not called for lowmem
2548 * allocations to prevent needlessly killing
2549 * innocent tasks.
2550 */
2551 if (high_zoneidx < ZONE_NORMAL)
2552 goto nopage;
2553 }
e2c55dc8 2554
ff0ceb9d
DR
2555 goto restart;
2556 }
1da177e4
LT
2557 }
2558
11e33f6a 2559 /* Check if we should retry the allocation */
a41f24ea 2560 pages_reclaimed += did_some_progress;
f90ac398
MG
2561 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2562 pages_reclaimed)) {
11e33f6a 2563 /* Wait for some write requests to complete then retry */
0e093d99 2564 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2565 goto rebalance;
3e7d3449
MG
2566 } else {
2567 /*
2568 * High-order allocations do not necessarily loop after
2569 * direct reclaim and reclaim/compaction depends on compaction
2570 * being called after reclaim so call directly if necessary
2571 */
2572 page = __alloc_pages_direct_compact(gfp_mask, order,
2573 zonelist, high_zoneidx,
2574 nodemask,
2575 alloc_flags, preferred_zone,
66199712 2576 migratetype, sync_migration,
c67fe375 2577 &contended_compaction,
66199712
MG
2578 &deferred_compaction,
2579 &did_some_progress);
3e7d3449
MG
2580 if (page)
2581 goto got_pg;
1da177e4
LT
2582 }
2583
2584nopage:
a238ab5b 2585 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2586 return page;
1da177e4 2587got_pg:
b1eeab67
VN
2588 if (kmemcheck_enabled)
2589 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2590
072bb0aa 2591 return page;
1da177e4 2592}
11e33f6a
MG
2593
2594/*
2595 * This is the 'heart' of the zoned buddy allocator.
2596 */
2597struct page *
2598__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2599 struct zonelist *zonelist, nodemask_t *nodemask)
2600{
2601 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2602 struct zone *preferred_zone;
cc9a6c87 2603 struct page *page = NULL;
3dd28266 2604 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2605 unsigned int cpuset_mems_cookie;
d95ea5d1 2606 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2607 struct mem_cgroup *memcg = NULL;
11e33f6a 2608
dcce284a
BH
2609 gfp_mask &= gfp_allowed_mask;
2610
11e33f6a
MG
2611 lockdep_trace_alloc(gfp_mask);
2612
2613 might_sleep_if(gfp_mask & __GFP_WAIT);
2614
2615 if (should_fail_alloc_page(gfp_mask, order))
2616 return NULL;
2617
2618 /*
2619 * Check the zones suitable for the gfp_mask contain at least one
2620 * valid zone. It's possible to have an empty zonelist as a result
2621 * of GFP_THISNODE and a memoryless node
2622 */
2623 if (unlikely(!zonelist->_zonerefs->zone))
2624 return NULL;
2625
6a1a0d3b
GC
2626 /*
2627 * Will only have any effect when __GFP_KMEMCG is set. This is
2628 * verified in the (always inline) callee
2629 */
2630 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2631 return NULL;
2632
cc9a6c87
MG
2633retry_cpuset:
2634 cpuset_mems_cookie = get_mems_allowed();
2635
5117f45d 2636 /* The preferred zone is used for statistics later */
f33261d7
DR
2637 first_zones_zonelist(zonelist, high_zoneidx,
2638 nodemask ? : &cpuset_current_mems_allowed,
2639 &preferred_zone);
cc9a6c87
MG
2640 if (!preferred_zone)
2641 goto out;
5117f45d 2642
d95ea5d1
BZ
2643#ifdef CONFIG_CMA
2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2645 alloc_flags |= ALLOC_CMA;
2646#endif
5117f45d 2647 /* First allocation attempt */
11e33f6a 2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2649 zonelist, high_zoneidx, alloc_flags,
3dd28266 2650 preferred_zone, migratetype);
21caf2fc
ML
2651 if (unlikely(!page)) {
2652 /*
2653 * Runtime PM, block IO and its error handling path
2654 * can deadlock because I/O on the device might not
2655 * complete.
2656 */
2657 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2658 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2659 zonelist, high_zoneidx, nodemask,
3dd28266 2660 preferred_zone, migratetype);
21caf2fc 2661 }
11e33f6a 2662
4b4f278c 2663 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2664
2665out:
2666 /*
2667 * When updating a task's mems_allowed, it is possible to race with
2668 * parallel threads in such a way that an allocation can fail while
2669 * the mask is being updated. If a page allocation is about to fail,
2670 * check if the cpuset changed during allocation and if so, retry.
2671 */
2672 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2673 goto retry_cpuset;
2674
6a1a0d3b
GC
2675 memcg_kmem_commit_charge(page, memcg, order);
2676
11e33f6a 2677 return page;
1da177e4 2678}
d239171e 2679EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2680
2681/*
2682 * Common helper functions.
2683 */
920c7a5d 2684unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2685{
945a1113
AM
2686 struct page *page;
2687
2688 /*
2689 * __get_free_pages() returns a 32-bit address, which cannot represent
2690 * a highmem page
2691 */
2692 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2693
1da177e4
LT
2694 page = alloc_pages(gfp_mask, order);
2695 if (!page)
2696 return 0;
2697 return (unsigned long) page_address(page);
2698}
1da177e4
LT
2699EXPORT_SYMBOL(__get_free_pages);
2700
920c7a5d 2701unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2702{
945a1113 2703 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2704}
1da177e4
LT
2705EXPORT_SYMBOL(get_zeroed_page);
2706
920c7a5d 2707void __free_pages(struct page *page, unsigned int order)
1da177e4 2708{
b5810039 2709 if (put_page_testzero(page)) {
1da177e4 2710 if (order == 0)
fc91668e 2711 free_hot_cold_page(page, 0);
1da177e4
LT
2712 else
2713 __free_pages_ok(page, order);
2714 }
2715}
2716
2717EXPORT_SYMBOL(__free_pages);
2718
920c7a5d 2719void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2720{
2721 if (addr != 0) {
725d704e 2722 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2723 __free_pages(virt_to_page((void *)addr), order);
2724 }
2725}
2726
2727EXPORT_SYMBOL(free_pages);
2728
6a1a0d3b
GC
2729/*
2730 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2731 * pages allocated with __GFP_KMEMCG.
2732 *
2733 * Those pages are accounted to a particular memcg, embedded in the
2734 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2735 * for that information only to find out that it is NULL for users who have no
2736 * interest in that whatsoever, we provide these functions.
2737 *
2738 * The caller knows better which flags it relies on.
2739 */
2740void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2741{
2742 memcg_kmem_uncharge_pages(page, order);
2743 __free_pages(page, order);
2744}
2745
2746void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2747{
2748 if (addr != 0) {
2749 VM_BUG_ON(!virt_addr_valid((void *)addr));
2750 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2751 }
2752}
2753
ee85c2e1
AK
2754static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2755{
2756 if (addr) {
2757 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2758 unsigned long used = addr + PAGE_ALIGN(size);
2759
2760 split_page(virt_to_page((void *)addr), order);
2761 while (used < alloc_end) {
2762 free_page(used);
2763 used += PAGE_SIZE;
2764 }
2765 }
2766 return (void *)addr;
2767}
2768
2be0ffe2
TT
2769/**
2770 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2771 * @size: the number of bytes to allocate
2772 * @gfp_mask: GFP flags for the allocation
2773 *
2774 * This function is similar to alloc_pages(), except that it allocates the
2775 * minimum number of pages to satisfy the request. alloc_pages() can only
2776 * allocate memory in power-of-two pages.
2777 *
2778 * This function is also limited by MAX_ORDER.
2779 *
2780 * Memory allocated by this function must be released by free_pages_exact().
2781 */
2782void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2783{
2784 unsigned int order = get_order(size);
2785 unsigned long addr;
2786
2787 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2788 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2789}
2790EXPORT_SYMBOL(alloc_pages_exact);
2791
ee85c2e1
AK
2792/**
2793 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2794 * pages on a node.
b5e6ab58 2795 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2796 * @size: the number of bytes to allocate
2797 * @gfp_mask: GFP flags for the allocation
2798 *
2799 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2800 * back.
2801 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2802 * but is not exact.
2803 */
2804void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2805{
2806 unsigned order = get_order(size);
2807 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2808 if (!p)
2809 return NULL;
2810 return make_alloc_exact((unsigned long)page_address(p), order, size);
2811}
2812EXPORT_SYMBOL(alloc_pages_exact_nid);
2813
2be0ffe2
TT
2814/**
2815 * free_pages_exact - release memory allocated via alloc_pages_exact()
2816 * @virt: the value returned by alloc_pages_exact.
2817 * @size: size of allocation, same value as passed to alloc_pages_exact().
2818 *
2819 * Release the memory allocated by a previous call to alloc_pages_exact.
2820 */
2821void free_pages_exact(void *virt, size_t size)
2822{
2823 unsigned long addr = (unsigned long)virt;
2824 unsigned long end = addr + PAGE_ALIGN(size);
2825
2826 while (addr < end) {
2827 free_page(addr);
2828 addr += PAGE_SIZE;
2829 }
2830}
2831EXPORT_SYMBOL(free_pages_exact);
2832
e0fb5815
ZY
2833/**
2834 * nr_free_zone_pages - count number of pages beyond high watermark
2835 * @offset: The zone index of the highest zone
2836 *
2837 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2838 * high watermark within all zones at or below a given zone index. For each
2839 * zone, the number of pages is calculated as:
834405c3 2840 * managed_pages - high_pages
e0fb5815 2841 */
ebec3862 2842static unsigned long nr_free_zone_pages(int offset)
1da177e4 2843{
dd1a239f 2844 struct zoneref *z;
54a6eb5c
MG
2845 struct zone *zone;
2846
e310fd43 2847 /* Just pick one node, since fallback list is circular */
ebec3862 2848 unsigned long sum = 0;
1da177e4 2849
0e88460d 2850 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2851
54a6eb5c 2852 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2853 unsigned long size = zone->managed_pages;
41858966 2854 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2855 if (size > high)
2856 sum += size - high;
1da177e4
LT
2857 }
2858
2859 return sum;
2860}
2861
e0fb5815
ZY
2862/**
2863 * nr_free_buffer_pages - count number of pages beyond high watermark
2864 *
2865 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2866 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2867 */
ebec3862 2868unsigned long nr_free_buffer_pages(void)
1da177e4 2869{
af4ca457 2870 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2871}
c2f1a551 2872EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2873
e0fb5815
ZY
2874/**
2875 * nr_free_pagecache_pages - count number of pages beyond high watermark
2876 *
2877 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2878 * high watermark within all zones.
1da177e4 2879 */
ebec3862 2880unsigned long nr_free_pagecache_pages(void)
1da177e4 2881{
2a1e274a 2882 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2883}
08e0f6a9
CL
2884
2885static inline void show_node(struct zone *zone)
1da177e4 2886{
e5adfffc 2887 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2888 printk("Node %d ", zone_to_nid(zone));
1da177e4 2889}
1da177e4 2890
1da177e4
LT
2891void si_meminfo(struct sysinfo *val)
2892{
2893 val->totalram = totalram_pages;
2894 val->sharedram = 0;
d23ad423 2895 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2896 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2897 val->totalhigh = totalhigh_pages;
2898 val->freehigh = nr_free_highpages();
1da177e4
LT
2899 val->mem_unit = PAGE_SIZE;
2900}
2901
2902EXPORT_SYMBOL(si_meminfo);
2903
2904#ifdef CONFIG_NUMA
2905void si_meminfo_node(struct sysinfo *val, int nid)
2906{
2907 pg_data_t *pgdat = NODE_DATA(nid);
2908
2909 val->totalram = pgdat->node_present_pages;
d23ad423 2910 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2911#ifdef CONFIG_HIGHMEM
b40da049 2912 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2913 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2914 NR_FREE_PAGES);
98d2b0eb
CL
2915#else
2916 val->totalhigh = 0;
2917 val->freehigh = 0;
2918#endif
1da177e4
LT
2919 val->mem_unit = PAGE_SIZE;
2920}
2921#endif
2922
ddd588b5 2923/*
7bf02ea2
DR
2924 * Determine whether the node should be displayed or not, depending on whether
2925 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2926 */
7bf02ea2 2927bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2928{
2929 bool ret = false;
cc9a6c87 2930 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2931
2932 if (!(flags & SHOW_MEM_FILTER_NODES))
2933 goto out;
2934
cc9a6c87
MG
2935 do {
2936 cpuset_mems_cookie = get_mems_allowed();
2937 ret = !node_isset(nid, cpuset_current_mems_allowed);
2938 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2939out:
2940 return ret;
2941}
2942
1da177e4
LT
2943#define K(x) ((x) << (PAGE_SHIFT-10))
2944
377e4f16
RV
2945static void show_migration_types(unsigned char type)
2946{
2947 static const char types[MIGRATE_TYPES] = {
2948 [MIGRATE_UNMOVABLE] = 'U',
2949 [MIGRATE_RECLAIMABLE] = 'E',
2950 [MIGRATE_MOVABLE] = 'M',
2951 [MIGRATE_RESERVE] = 'R',
2952#ifdef CONFIG_CMA
2953 [MIGRATE_CMA] = 'C',
2954#endif
194159fb 2955#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2956 [MIGRATE_ISOLATE] = 'I',
194159fb 2957#endif
377e4f16
RV
2958 };
2959 char tmp[MIGRATE_TYPES + 1];
2960 char *p = tmp;
2961 int i;
2962
2963 for (i = 0; i < MIGRATE_TYPES; i++) {
2964 if (type & (1 << i))
2965 *p++ = types[i];
2966 }
2967
2968 *p = '\0';
2969 printk("(%s) ", tmp);
2970}
2971
1da177e4
LT
2972/*
2973 * Show free area list (used inside shift_scroll-lock stuff)
2974 * We also calculate the percentage fragmentation. We do this by counting the
2975 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2976 * Suppresses nodes that are not allowed by current's cpuset if
2977 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2978 */
7bf02ea2 2979void show_free_areas(unsigned int filter)
1da177e4 2980{
c7241913 2981 int cpu;
1da177e4
LT
2982 struct zone *zone;
2983
ee99c71c 2984 for_each_populated_zone(zone) {
7bf02ea2 2985 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2986 continue;
c7241913
JS
2987 show_node(zone);
2988 printk("%s per-cpu:\n", zone->name);
1da177e4 2989
6b482c67 2990 for_each_online_cpu(cpu) {
1da177e4
LT
2991 struct per_cpu_pageset *pageset;
2992
99dcc3e5 2993 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2994
3dfa5721
CL
2995 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2996 cpu, pageset->pcp.high,
2997 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2998 }
2999 }
3000
a731286d
KM
3001 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3002 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3003 " unevictable:%lu"
b76146ed 3004 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3005 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3006 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3007 " free_cma:%lu\n",
4f98a2fe 3008 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3009 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3010 global_page_state(NR_ISOLATED_ANON),
3011 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3012 global_page_state(NR_INACTIVE_FILE),
a731286d 3013 global_page_state(NR_ISOLATED_FILE),
7b854121 3014 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3015 global_page_state(NR_FILE_DIRTY),
ce866b34 3016 global_page_state(NR_WRITEBACK),
fd39fc85 3017 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3018 global_page_state(NR_FREE_PAGES),
3701b033
KM
3019 global_page_state(NR_SLAB_RECLAIMABLE),
3020 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3021 global_page_state(NR_FILE_MAPPED),
4b02108a 3022 global_page_state(NR_SHMEM),
a25700a5 3023 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3024 global_page_state(NR_BOUNCE),
3025 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3026
ee99c71c 3027 for_each_populated_zone(zone) {
1da177e4
LT
3028 int i;
3029
7bf02ea2 3030 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3031 continue;
1da177e4
LT
3032 show_node(zone);
3033 printk("%s"
3034 " free:%lukB"
3035 " min:%lukB"
3036 " low:%lukB"
3037 " high:%lukB"
4f98a2fe
RR
3038 " active_anon:%lukB"
3039 " inactive_anon:%lukB"
3040 " active_file:%lukB"
3041 " inactive_file:%lukB"
7b854121 3042 " unevictable:%lukB"
a731286d
KM
3043 " isolated(anon):%lukB"
3044 " isolated(file):%lukB"
1da177e4 3045 " present:%lukB"
9feedc9d 3046 " managed:%lukB"
4a0aa73f
KM
3047 " mlocked:%lukB"
3048 " dirty:%lukB"
3049 " writeback:%lukB"
3050 " mapped:%lukB"
4b02108a 3051 " shmem:%lukB"
4a0aa73f
KM
3052 " slab_reclaimable:%lukB"
3053 " slab_unreclaimable:%lukB"
c6a7f572 3054 " kernel_stack:%lukB"
4a0aa73f
KM
3055 " pagetables:%lukB"
3056 " unstable:%lukB"
3057 " bounce:%lukB"
d1ce749a 3058 " free_cma:%lukB"
4a0aa73f 3059 " writeback_tmp:%lukB"
1da177e4
LT
3060 " pages_scanned:%lu"
3061 " all_unreclaimable? %s"
3062 "\n",
3063 zone->name,
88f5acf8 3064 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3065 K(min_wmark_pages(zone)),
3066 K(low_wmark_pages(zone)),
3067 K(high_wmark_pages(zone)),
4f98a2fe
RR
3068 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3069 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3070 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3071 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3072 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3073 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3074 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3075 K(zone->present_pages),
9feedc9d 3076 K(zone->managed_pages),
4a0aa73f
KM
3077 K(zone_page_state(zone, NR_MLOCK)),
3078 K(zone_page_state(zone, NR_FILE_DIRTY)),
3079 K(zone_page_state(zone, NR_WRITEBACK)),
3080 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3081 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3082 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3083 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3084 zone_page_state(zone, NR_KERNEL_STACK) *
3085 THREAD_SIZE / 1024,
4a0aa73f
KM
3086 K(zone_page_state(zone, NR_PAGETABLE)),
3087 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3088 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3089 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3090 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3091 zone->pages_scanned,
93e4a89a 3092 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3093 );
3094 printk("lowmem_reserve[]:");
3095 for (i = 0; i < MAX_NR_ZONES; i++)
3096 printk(" %lu", zone->lowmem_reserve[i]);
3097 printk("\n");
3098 }
3099
ee99c71c 3100 for_each_populated_zone(zone) {
8f9de51a 3101 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3102 unsigned char types[MAX_ORDER];
1da177e4 3103
7bf02ea2 3104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3105 continue;
1da177e4
LT
3106 show_node(zone);
3107 printk("%s: ", zone->name);
1da177e4
LT
3108
3109 spin_lock_irqsave(&zone->lock, flags);
3110 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3111 struct free_area *area = &zone->free_area[order];
3112 int type;
3113
3114 nr[order] = area->nr_free;
8f9de51a 3115 total += nr[order] << order;
377e4f16
RV
3116
3117 types[order] = 0;
3118 for (type = 0; type < MIGRATE_TYPES; type++) {
3119 if (!list_empty(&area->free_list[type]))
3120 types[order] |= 1 << type;
3121 }
1da177e4
LT
3122 }
3123 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3124 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3125 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3126 if (nr[order])
3127 show_migration_types(types[order]);
3128 }
1da177e4
LT
3129 printk("= %lukB\n", K(total));
3130 }
3131
949f7ec5
DR
3132 hugetlb_show_meminfo();
3133
e6f3602d
LW
3134 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3135
1da177e4
LT
3136 show_swap_cache_info();
3137}
3138
19770b32
MG
3139static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3140{
3141 zoneref->zone = zone;
3142 zoneref->zone_idx = zone_idx(zone);
3143}
3144
1da177e4
LT
3145/*
3146 * Builds allocation fallback zone lists.
1a93205b
CL
3147 *
3148 * Add all populated zones of a node to the zonelist.
1da177e4 3149 */
f0c0b2b8
KH
3150static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3151 int nr_zones, enum zone_type zone_type)
1da177e4 3152{
1a93205b
CL
3153 struct zone *zone;
3154
98d2b0eb 3155 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3156 zone_type++;
02a68a5e
CL
3157
3158 do {
2f6726e5 3159 zone_type--;
070f8032 3160 zone = pgdat->node_zones + zone_type;
1a93205b 3161 if (populated_zone(zone)) {
dd1a239f
MG
3162 zoneref_set_zone(zone,
3163 &zonelist->_zonerefs[nr_zones++]);
070f8032 3164 check_highest_zone(zone_type);
1da177e4 3165 }
02a68a5e 3166
2f6726e5 3167 } while (zone_type);
070f8032 3168 return nr_zones;
1da177e4
LT
3169}
3170
f0c0b2b8
KH
3171
3172/*
3173 * zonelist_order:
3174 * 0 = automatic detection of better ordering.
3175 * 1 = order by ([node] distance, -zonetype)
3176 * 2 = order by (-zonetype, [node] distance)
3177 *
3178 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3179 * the same zonelist. So only NUMA can configure this param.
3180 */
3181#define ZONELIST_ORDER_DEFAULT 0
3182#define ZONELIST_ORDER_NODE 1
3183#define ZONELIST_ORDER_ZONE 2
3184
3185/* zonelist order in the kernel.
3186 * set_zonelist_order() will set this to NODE or ZONE.
3187 */
3188static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3189static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3190
3191
1da177e4 3192#ifdef CONFIG_NUMA
f0c0b2b8
KH
3193/* The value user specified ....changed by config */
3194static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3195/* string for sysctl */
3196#define NUMA_ZONELIST_ORDER_LEN 16
3197char numa_zonelist_order[16] = "default";
3198
3199/*
3200 * interface for configure zonelist ordering.
3201 * command line option "numa_zonelist_order"
3202 * = "[dD]efault - default, automatic configuration.
3203 * = "[nN]ode - order by node locality, then by zone within node
3204 * = "[zZ]one - order by zone, then by locality within zone
3205 */
3206
3207static int __parse_numa_zonelist_order(char *s)
3208{
3209 if (*s == 'd' || *s == 'D') {
3210 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3211 } else if (*s == 'n' || *s == 'N') {
3212 user_zonelist_order = ZONELIST_ORDER_NODE;
3213 } else if (*s == 'z' || *s == 'Z') {
3214 user_zonelist_order = ZONELIST_ORDER_ZONE;
3215 } else {
3216 printk(KERN_WARNING
3217 "Ignoring invalid numa_zonelist_order value: "
3218 "%s\n", s);
3219 return -EINVAL;
3220 }
3221 return 0;
3222}
3223
3224static __init int setup_numa_zonelist_order(char *s)
3225{
ecb256f8
VL
3226 int ret;
3227
3228 if (!s)
3229 return 0;
3230
3231 ret = __parse_numa_zonelist_order(s);
3232 if (ret == 0)
3233 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3234
3235 return ret;
f0c0b2b8
KH
3236}
3237early_param("numa_zonelist_order", setup_numa_zonelist_order);
3238
3239/*
3240 * sysctl handler for numa_zonelist_order
3241 */
3242int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3243 void __user *buffer, size_t *length,
f0c0b2b8
KH
3244 loff_t *ppos)
3245{
3246 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3247 int ret;
443c6f14 3248 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3249
443c6f14 3250 mutex_lock(&zl_order_mutex);
dacbde09
CG
3251 if (write) {
3252 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3253 ret = -EINVAL;
3254 goto out;
3255 }
3256 strcpy(saved_string, (char *)table->data);
3257 }
8d65af78 3258 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3259 if (ret)
443c6f14 3260 goto out;
f0c0b2b8
KH
3261 if (write) {
3262 int oldval = user_zonelist_order;
dacbde09
CG
3263
3264 ret = __parse_numa_zonelist_order((char *)table->data);
3265 if (ret) {
f0c0b2b8
KH
3266 /*
3267 * bogus value. restore saved string
3268 */
dacbde09 3269 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3270 NUMA_ZONELIST_ORDER_LEN);
3271 user_zonelist_order = oldval;
4eaf3f64
HL
3272 } else if (oldval != user_zonelist_order) {
3273 mutex_lock(&zonelists_mutex);
9adb62a5 3274 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3275 mutex_unlock(&zonelists_mutex);
3276 }
f0c0b2b8 3277 }
443c6f14
AK
3278out:
3279 mutex_unlock(&zl_order_mutex);
3280 return ret;
f0c0b2b8
KH
3281}
3282
3283
62bc62a8 3284#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3285static int node_load[MAX_NUMNODES];
3286
1da177e4 3287/**
4dc3b16b 3288 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3289 * @node: node whose fallback list we're appending
3290 * @used_node_mask: nodemask_t of already used nodes
3291 *
3292 * We use a number of factors to determine which is the next node that should
3293 * appear on a given node's fallback list. The node should not have appeared
3294 * already in @node's fallback list, and it should be the next closest node
3295 * according to the distance array (which contains arbitrary distance values
3296 * from each node to each node in the system), and should also prefer nodes
3297 * with no CPUs, since presumably they'll have very little allocation pressure
3298 * on them otherwise.
3299 * It returns -1 if no node is found.
3300 */
f0c0b2b8 3301static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3302{
4cf808eb 3303 int n, val;
1da177e4 3304 int min_val = INT_MAX;
00ef2d2f 3305 int best_node = NUMA_NO_NODE;
a70f7302 3306 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3307
4cf808eb
LT
3308 /* Use the local node if we haven't already */
3309 if (!node_isset(node, *used_node_mask)) {
3310 node_set(node, *used_node_mask);
3311 return node;
3312 }
1da177e4 3313
4b0ef1fe 3314 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3315
3316 /* Don't want a node to appear more than once */
3317 if (node_isset(n, *used_node_mask))
3318 continue;
3319
1da177e4
LT
3320 /* Use the distance array to find the distance */
3321 val = node_distance(node, n);
3322
4cf808eb
LT
3323 /* Penalize nodes under us ("prefer the next node") */
3324 val += (n < node);
3325
1da177e4 3326 /* Give preference to headless and unused nodes */
a70f7302
RR
3327 tmp = cpumask_of_node(n);
3328 if (!cpumask_empty(tmp))
1da177e4
LT
3329 val += PENALTY_FOR_NODE_WITH_CPUS;
3330
3331 /* Slight preference for less loaded node */
3332 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3333 val += node_load[n];
3334
3335 if (val < min_val) {
3336 min_val = val;
3337 best_node = n;
3338 }
3339 }
3340
3341 if (best_node >= 0)
3342 node_set(best_node, *used_node_mask);
3343
3344 return best_node;
3345}
3346
f0c0b2b8
KH
3347
3348/*
3349 * Build zonelists ordered by node and zones within node.
3350 * This results in maximum locality--normal zone overflows into local
3351 * DMA zone, if any--but risks exhausting DMA zone.
3352 */
3353static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3354{
f0c0b2b8 3355 int j;
1da177e4 3356 struct zonelist *zonelist;
f0c0b2b8 3357
54a6eb5c 3358 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3359 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3360 ;
3361 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3362 MAX_NR_ZONES - 1);
dd1a239f
MG
3363 zonelist->_zonerefs[j].zone = NULL;
3364 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3365}
3366
523b9458
CL
3367/*
3368 * Build gfp_thisnode zonelists
3369 */
3370static void build_thisnode_zonelists(pg_data_t *pgdat)
3371{
523b9458
CL
3372 int j;
3373 struct zonelist *zonelist;
3374
54a6eb5c
MG
3375 zonelist = &pgdat->node_zonelists[1];
3376 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3377 zonelist->_zonerefs[j].zone = NULL;
3378 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3379}
3380
f0c0b2b8
KH
3381/*
3382 * Build zonelists ordered by zone and nodes within zones.
3383 * This results in conserving DMA zone[s] until all Normal memory is
3384 * exhausted, but results in overflowing to remote node while memory
3385 * may still exist in local DMA zone.
3386 */
3387static int node_order[MAX_NUMNODES];
3388
3389static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3390{
f0c0b2b8
KH
3391 int pos, j, node;
3392 int zone_type; /* needs to be signed */
3393 struct zone *z;
3394 struct zonelist *zonelist;
3395
54a6eb5c
MG
3396 zonelist = &pgdat->node_zonelists[0];
3397 pos = 0;
3398 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3399 for (j = 0; j < nr_nodes; j++) {
3400 node = node_order[j];
3401 z = &NODE_DATA(node)->node_zones[zone_type];
3402 if (populated_zone(z)) {
dd1a239f
MG
3403 zoneref_set_zone(z,
3404 &zonelist->_zonerefs[pos++]);
54a6eb5c 3405 check_highest_zone(zone_type);
f0c0b2b8
KH
3406 }
3407 }
f0c0b2b8 3408 }
dd1a239f
MG
3409 zonelist->_zonerefs[pos].zone = NULL;
3410 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3411}
3412
3413static int default_zonelist_order(void)
3414{
3415 int nid, zone_type;
3416 unsigned long low_kmem_size,total_size;
3417 struct zone *z;
3418 int average_size;
3419 /*
88393161 3420 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3421 * If they are really small and used heavily, the system can fall
3422 * into OOM very easily.
e325c90f 3423 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3424 */
3425 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3426 low_kmem_size = 0;
3427 total_size = 0;
3428 for_each_online_node(nid) {
3429 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3430 z = &NODE_DATA(nid)->node_zones[zone_type];
3431 if (populated_zone(z)) {
3432 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3433 low_kmem_size += z->managed_pages;
3434 total_size += z->managed_pages;
e325c90f
DR
3435 } else if (zone_type == ZONE_NORMAL) {
3436 /*
3437 * If any node has only lowmem, then node order
3438 * is preferred to allow kernel allocations
3439 * locally; otherwise, they can easily infringe
3440 * on other nodes when there is an abundance of
3441 * lowmem available to allocate from.
3442 */
3443 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3444 }
3445 }
3446 }
3447 if (!low_kmem_size || /* there are no DMA area. */
3448 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3449 return ZONELIST_ORDER_NODE;
3450 /*
3451 * look into each node's config.
3452 * If there is a node whose DMA/DMA32 memory is very big area on
3453 * local memory, NODE_ORDER may be suitable.
3454 */
37b07e41 3455 average_size = total_size /
4b0ef1fe 3456 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3457 for_each_online_node(nid) {
3458 low_kmem_size = 0;
3459 total_size = 0;
3460 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3461 z = &NODE_DATA(nid)->node_zones[zone_type];
3462 if (populated_zone(z)) {
3463 if (zone_type < ZONE_NORMAL)
3464 low_kmem_size += z->present_pages;
3465 total_size += z->present_pages;
3466 }
3467 }
3468 if (low_kmem_size &&
3469 total_size > average_size && /* ignore small node */
3470 low_kmem_size > total_size * 70/100)
3471 return ZONELIST_ORDER_NODE;
3472 }
3473 return ZONELIST_ORDER_ZONE;
3474}
3475
3476static void set_zonelist_order(void)
3477{
3478 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3479 current_zonelist_order = default_zonelist_order();
3480 else
3481 current_zonelist_order = user_zonelist_order;
3482}
3483
3484static void build_zonelists(pg_data_t *pgdat)
3485{
3486 int j, node, load;
3487 enum zone_type i;
1da177e4 3488 nodemask_t used_mask;
f0c0b2b8
KH
3489 int local_node, prev_node;
3490 struct zonelist *zonelist;
3491 int order = current_zonelist_order;
1da177e4
LT
3492
3493 /* initialize zonelists */
523b9458 3494 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3495 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3496 zonelist->_zonerefs[0].zone = NULL;
3497 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3498 }
3499
3500 /* NUMA-aware ordering of nodes */
3501 local_node = pgdat->node_id;
62bc62a8 3502 load = nr_online_nodes;
1da177e4
LT
3503 prev_node = local_node;
3504 nodes_clear(used_mask);
f0c0b2b8 3505
f0c0b2b8
KH
3506 memset(node_order, 0, sizeof(node_order));
3507 j = 0;
3508
1da177e4
LT
3509 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3510 /*
3511 * We don't want to pressure a particular node.
3512 * So adding penalty to the first node in same
3513 * distance group to make it round-robin.
3514 */
957f822a
DR
3515 if (node_distance(local_node, node) !=
3516 node_distance(local_node, prev_node))
f0c0b2b8
KH
3517 node_load[node] = load;
3518
1da177e4
LT
3519 prev_node = node;
3520 load--;
f0c0b2b8
KH
3521 if (order == ZONELIST_ORDER_NODE)
3522 build_zonelists_in_node_order(pgdat, node);
3523 else
3524 node_order[j++] = node; /* remember order */
3525 }
1da177e4 3526
f0c0b2b8
KH
3527 if (order == ZONELIST_ORDER_ZONE) {
3528 /* calculate node order -- i.e., DMA last! */
3529 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3530 }
523b9458
CL
3531
3532 build_thisnode_zonelists(pgdat);
1da177e4
LT
3533}
3534
9276b1bc 3535/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3536static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3537{
54a6eb5c
MG
3538 struct zonelist *zonelist;
3539 struct zonelist_cache *zlc;
dd1a239f 3540 struct zoneref *z;
9276b1bc 3541
54a6eb5c
MG
3542 zonelist = &pgdat->node_zonelists[0];
3543 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3544 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3545 for (z = zonelist->_zonerefs; z->zone; z++)
3546 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3547}
3548
7aac7898
LS
3549#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3550/*
3551 * Return node id of node used for "local" allocations.
3552 * I.e., first node id of first zone in arg node's generic zonelist.
3553 * Used for initializing percpu 'numa_mem', which is used primarily
3554 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3555 */
3556int local_memory_node(int node)
3557{
3558 struct zone *zone;
3559
3560 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3561 gfp_zone(GFP_KERNEL),
3562 NULL,
3563 &zone);
3564 return zone->node;
3565}
3566#endif
f0c0b2b8 3567
1da177e4
LT
3568#else /* CONFIG_NUMA */
3569
f0c0b2b8
KH
3570static void set_zonelist_order(void)
3571{
3572 current_zonelist_order = ZONELIST_ORDER_ZONE;
3573}
3574
3575static void build_zonelists(pg_data_t *pgdat)
1da177e4 3576{
19655d34 3577 int node, local_node;
54a6eb5c
MG
3578 enum zone_type j;
3579 struct zonelist *zonelist;
1da177e4
LT
3580
3581 local_node = pgdat->node_id;
1da177e4 3582
54a6eb5c
MG
3583 zonelist = &pgdat->node_zonelists[0];
3584 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3585
54a6eb5c
MG
3586 /*
3587 * Now we build the zonelist so that it contains the zones
3588 * of all the other nodes.
3589 * We don't want to pressure a particular node, so when
3590 * building the zones for node N, we make sure that the
3591 * zones coming right after the local ones are those from
3592 * node N+1 (modulo N)
3593 */
3594 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3595 if (!node_online(node))
3596 continue;
3597 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3598 MAX_NR_ZONES - 1);
1da177e4 3599 }
54a6eb5c
MG
3600 for (node = 0; node < local_node; node++) {
3601 if (!node_online(node))
3602 continue;
3603 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3604 MAX_NR_ZONES - 1);
3605 }
3606
dd1a239f
MG
3607 zonelist->_zonerefs[j].zone = NULL;
3608 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3609}
3610
9276b1bc 3611/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3612static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3613{
54a6eb5c 3614 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3615}
3616
1da177e4
LT
3617#endif /* CONFIG_NUMA */
3618
99dcc3e5
CL
3619/*
3620 * Boot pageset table. One per cpu which is going to be used for all
3621 * zones and all nodes. The parameters will be set in such a way
3622 * that an item put on a list will immediately be handed over to
3623 * the buddy list. This is safe since pageset manipulation is done
3624 * with interrupts disabled.
3625 *
3626 * The boot_pagesets must be kept even after bootup is complete for
3627 * unused processors and/or zones. They do play a role for bootstrapping
3628 * hotplugged processors.
3629 *
3630 * zoneinfo_show() and maybe other functions do
3631 * not check if the processor is online before following the pageset pointer.
3632 * Other parts of the kernel may not check if the zone is available.
3633 */
3634static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3635static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3636static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3637
4eaf3f64
HL
3638/*
3639 * Global mutex to protect against size modification of zonelists
3640 * as well as to serialize pageset setup for the new populated zone.
3641 */
3642DEFINE_MUTEX(zonelists_mutex);
3643
9b1a4d38 3644/* return values int ....just for stop_machine() */
4ed7e022 3645static int __build_all_zonelists(void *data)
1da177e4 3646{
6811378e 3647 int nid;
99dcc3e5 3648 int cpu;
9adb62a5 3649 pg_data_t *self = data;
9276b1bc 3650
7f9cfb31
BL
3651#ifdef CONFIG_NUMA
3652 memset(node_load, 0, sizeof(node_load));
3653#endif
9adb62a5
JL
3654
3655 if (self && !node_online(self->node_id)) {
3656 build_zonelists(self);
3657 build_zonelist_cache(self);
3658 }
3659
9276b1bc 3660 for_each_online_node(nid) {
7ea1530a
CL
3661 pg_data_t *pgdat = NODE_DATA(nid);
3662
3663 build_zonelists(pgdat);
3664 build_zonelist_cache(pgdat);
9276b1bc 3665 }
99dcc3e5
CL
3666
3667 /*
3668 * Initialize the boot_pagesets that are going to be used
3669 * for bootstrapping processors. The real pagesets for
3670 * each zone will be allocated later when the per cpu
3671 * allocator is available.
3672 *
3673 * boot_pagesets are used also for bootstrapping offline
3674 * cpus if the system is already booted because the pagesets
3675 * are needed to initialize allocators on a specific cpu too.
3676 * F.e. the percpu allocator needs the page allocator which
3677 * needs the percpu allocator in order to allocate its pagesets
3678 * (a chicken-egg dilemma).
3679 */
7aac7898 3680 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3681 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3682
7aac7898
LS
3683#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3684 /*
3685 * We now know the "local memory node" for each node--
3686 * i.e., the node of the first zone in the generic zonelist.
3687 * Set up numa_mem percpu variable for on-line cpus. During
3688 * boot, only the boot cpu should be on-line; we'll init the
3689 * secondary cpus' numa_mem as they come on-line. During
3690 * node/memory hotplug, we'll fixup all on-line cpus.
3691 */
3692 if (cpu_online(cpu))
3693 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3694#endif
3695 }
3696
6811378e
YG
3697 return 0;
3698}
3699
4eaf3f64
HL
3700/*
3701 * Called with zonelists_mutex held always
3702 * unless system_state == SYSTEM_BOOTING.
3703 */
9adb62a5 3704void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3705{
f0c0b2b8
KH
3706 set_zonelist_order();
3707
6811378e 3708 if (system_state == SYSTEM_BOOTING) {
423b41d7 3709 __build_all_zonelists(NULL);
68ad8df4 3710 mminit_verify_zonelist();
6811378e
YG
3711 cpuset_init_current_mems_allowed();
3712 } else {
e9959f0f 3713#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3714 if (zone)
3715 setup_zone_pageset(zone);
e9959f0f 3716#endif
dd1895e2
CS
3717 /* we have to stop all cpus to guarantee there is no user
3718 of zonelist */
9adb62a5 3719 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3720 /* cpuset refresh routine should be here */
3721 }
bd1e22b8 3722 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3723 /*
3724 * Disable grouping by mobility if the number of pages in the
3725 * system is too low to allow the mechanism to work. It would be
3726 * more accurate, but expensive to check per-zone. This check is
3727 * made on memory-hotadd so a system can start with mobility
3728 * disabled and enable it later
3729 */
d9c23400 3730 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3731 page_group_by_mobility_disabled = 1;
3732 else
3733 page_group_by_mobility_disabled = 0;
3734
3735 printk("Built %i zonelists in %s order, mobility grouping %s. "
3736 "Total pages: %ld\n",
62bc62a8 3737 nr_online_nodes,
f0c0b2b8 3738 zonelist_order_name[current_zonelist_order],
9ef9acb0 3739 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3740 vm_total_pages);
3741#ifdef CONFIG_NUMA
3742 printk("Policy zone: %s\n", zone_names[policy_zone]);
3743#endif
1da177e4
LT
3744}
3745
3746/*
3747 * Helper functions to size the waitqueue hash table.
3748 * Essentially these want to choose hash table sizes sufficiently
3749 * large so that collisions trying to wait on pages are rare.
3750 * But in fact, the number of active page waitqueues on typical
3751 * systems is ridiculously low, less than 200. So this is even
3752 * conservative, even though it seems large.
3753 *
3754 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3755 * waitqueues, i.e. the size of the waitq table given the number of pages.
3756 */
3757#define PAGES_PER_WAITQUEUE 256
3758
cca448fe 3759#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3760static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3761{
3762 unsigned long size = 1;
3763
3764 pages /= PAGES_PER_WAITQUEUE;
3765
3766 while (size < pages)
3767 size <<= 1;
3768
3769 /*
3770 * Once we have dozens or even hundreds of threads sleeping
3771 * on IO we've got bigger problems than wait queue collision.
3772 * Limit the size of the wait table to a reasonable size.
3773 */
3774 size = min(size, 4096UL);
3775
3776 return max(size, 4UL);
3777}
cca448fe
YG
3778#else
3779/*
3780 * A zone's size might be changed by hot-add, so it is not possible to determine
3781 * a suitable size for its wait_table. So we use the maximum size now.
3782 *
3783 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3784 *
3785 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3786 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3787 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3788 *
3789 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3790 * or more by the traditional way. (See above). It equals:
3791 *
3792 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3793 * ia64(16K page size) : = ( 8G + 4M)byte.
3794 * powerpc (64K page size) : = (32G +16M)byte.
3795 */
3796static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3797{
3798 return 4096UL;
3799}
3800#endif
1da177e4
LT
3801
3802/*
3803 * This is an integer logarithm so that shifts can be used later
3804 * to extract the more random high bits from the multiplicative
3805 * hash function before the remainder is taken.
3806 */
3807static inline unsigned long wait_table_bits(unsigned long size)
3808{
3809 return ffz(~size);
3810}
3811
3812#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3813
6d3163ce
AH
3814/*
3815 * Check if a pageblock contains reserved pages
3816 */
3817static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3818{
3819 unsigned long pfn;
3820
3821 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3822 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3823 return 1;
3824 }
3825 return 0;
3826}
3827
56fd56b8 3828/*
d9c23400 3829 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3830 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3831 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3832 * higher will lead to a bigger reserve which will get freed as contiguous
3833 * blocks as reclaim kicks in
3834 */
3835static void setup_zone_migrate_reserve(struct zone *zone)
3836{
6d3163ce 3837 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3838 struct page *page;
78986a67
MG
3839 unsigned long block_migratetype;
3840 int reserve;
56fd56b8 3841
d0215638
MH
3842 /*
3843 * Get the start pfn, end pfn and the number of blocks to reserve
3844 * We have to be careful to be aligned to pageblock_nr_pages to
3845 * make sure that we always check pfn_valid for the first page in
3846 * the block.
3847 */
56fd56b8 3848 start_pfn = zone->zone_start_pfn;
108bcc96 3849 end_pfn = zone_end_pfn(zone);
d0215638 3850 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3851 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3852 pageblock_order;
56fd56b8 3853
78986a67
MG
3854 /*
3855 * Reserve blocks are generally in place to help high-order atomic
3856 * allocations that are short-lived. A min_free_kbytes value that
3857 * would result in more than 2 reserve blocks for atomic allocations
3858 * is assumed to be in place to help anti-fragmentation for the
3859 * future allocation of hugepages at runtime.
3860 */
3861 reserve = min(2, reserve);
3862
d9c23400 3863 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3864 if (!pfn_valid(pfn))
3865 continue;
3866 page = pfn_to_page(pfn);
3867
344c790e
AL
3868 /* Watch out for overlapping nodes */
3869 if (page_to_nid(page) != zone_to_nid(zone))
3870 continue;
3871
56fd56b8
MG
3872 block_migratetype = get_pageblock_migratetype(page);
3873
938929f1
MG
3874 /* Only test what is necessary when the reserves are not met */
3875 if (reserve > 0) {
3876 /*
3877 * Blocks with reserved pages will never free, skip
3878 * them.
3879 */
3880 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3881 if (pageblock_is_reserved(pfn, block_end_pfn))
3882 continue;
56fd56b8 3883
938929f1
MG
3884 /* If this block is reserved, account for it */
3885 if (block_migratetype == MIGRATE_RESERVE) {
3886 reserve--;
3887 continue;
3888 }
3889
3890 /* Suitable for reserving if this block is movable */
3891 if (block_migratetype == MIGRATE_MOVABLE) {
3892 set_pageblock_migratetype(page,
3893 MIGRATE_RESERVE);
3894 move_freepages_block(zone, page,
3895 MIGRATE_RESERVE);
3896 reserve--;
3897 continue;
3898 }
56fd56b8
MG
3899 }
3900
3901 /*
3902 * If the reserve is met and this is a previous reserved block,
3903 * take it back
3904 */
3905 if (block_migratetype == MIGRATE_RESERVE) {
3906 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3907 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3908 }
3909 }
3910}
ac0e5b7a 3911
1da177e4
LT
3912/*
3913 * Initially all pages are reserved - free ones are freed
3914 * up by free_all_bootmem() once the early boot process is
3915 * done. Non-atomic initialization, single-pass.
3916 */
c09b4240 3917void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3918 unsigned long start_pfn, enum memmap_context context)
1da177e4 3919{
1da177e4 3920 struct page *page;
29751f69
AW
3921 unsigned long end_pfn = start_pfn + size;
3922 unsigned long pfn;
86051ca5 3923 struct zone *z;
1da177e4 3924
22b31eec
HD
3925 if (highest_memmap_pfn < end_pfn - 1)
3926 highest_memmap_pfn = end_pfn - 1;
3927
86051ca5 3928 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3929 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3930 /*
3931 * There can be holes in boot-time mem_map[]s
3932 * handed to this function. They do not
3933 * exist on hotplugged memory.
3934 */
3935 if (context == MEMMAP_EARLY) {
3936 if (!early_pfn_valid(pfn))
3937 continue;
3938 if (!early_pfn_in_nid(pfn, nid))
3939 continue;
3940 }
d41dee36
AW
3941 page = pfn_to_page(pfn);
3942 set_page_links(page, zone, nid, pfn);
708614e6 3943 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3944 init_page_count(page);
22b751c3
MG
3945 page_mapcount_reset(page);
3946 page_nid_reset_last(page);
1da177e4 3947 SetPageReserved(page);
b2a0ac88
MG
3948 /*
3949 * Mark the block movable so that blocks are reserved for
3950 * movable at startup. This will force kernel allocations
3951 * to reserve their blocks rather than leaking throughout
3952 * the address space during boot when many long-lived
56fd56b8
MG
3953 * kernel allocations are made. Later some blocks near
3954 * the start are marked MIGRATE_RESERVE by
3955 * setup_zone_migrate_reserve()
86051ca5
KH
3956 *
3957 * bitmap is created for zone's valid pfn range. but memmap
3958 * can be created for invalid pages (for alignment)
3959 * check here not to call set_pageblock_migratetype() against
3960 * pfn out of zone.
b2a0ac88 3961 */
86051ca5 3962 if ((z->zone_start_pfn <= pfn)
108bcc96 3963 && (pfn < zone_end_pfn(z))
86051ca5 3964 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3965 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3966
1da177e4
LT
3967 INIT_LIST_HEAD(&page->lru);
3968#ifdef WANT_PAGE_VIRTUAL
3969 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3970 if (!is_highmem_idx(zone))
3212c6be 3971 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3972#endif
1da177e4
LT
3973 }
3974}
3975
1e548deb 3976static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3977{
b2a0ac88
MG
3978 int order, t;
3979 for_each_migratetype_order(order, t) {
3980 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3981 zone->free_area[order].nr_free = 0;
3982 }
3983}
3984
3985#ifndef __HAVE_ARCH_MEMMAP_INIT
3986#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3987 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3988#endif
3989
4ed7e022 3990static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3991{
3a6be87f 3992#ifdef CONFIG_MMU
e7c8d5c9
CL
3993 int batch;
3994
3995 /*
3996 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3997 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3998 *
3999 * OK, so we don't know how big the cache is. So guess.
4000 */
b40da049 4001 batch = zone->managed_pages / 1024;
ba56e91c
SR
4002 if (batch * PAGE_SIZE > 512 * 1024)
4003 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4004 batch /= 4; /* We effectively *= 4 below */
4005 if (batch < 1)
4006 batch = 1;
4007
4008 /*
0ceaacc9
NP
4009 * Clamp the batch to a 2^n - 1 value. Having a power
4010 * of 2 value was found to be more likely to have
4011 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4012 *
0ceaacc9
NP
4013 * For example if 2 tasks are alternately allocating
4014 * batches of pages, one task can end up with a lot
4015 * of pages of one half of the possible page colors
4016 * and the other with pages of the other colors.
e7c8d5c9 4017 */
9155203a 4018 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4019
e7c8d5c9 4020 return batch;
3a6be87f
DH
4021
4022#else
4023 /* The deferral and batching of frees should be suppressed under NOMMU
4024 * conditions.
4025 *
4026 * The problem is that NOMMU needs to be able to allocate large chunks
4027 * of contiguous memory as there's no hardware page translation to
4028 * assemble apparent contiguous memory from discontiguous pages.
4029 *
4030 * Queueing large contiguous runs of pages for batching, however,
4031 * causes the pages to actually be freed in smaller chunks. As there
4032 * can be a significant delay between the individual batches being
4033 * recycled, this leads to the once large chunks of space being
4034 * fragmented and becoming unavailable for high-order allocations.
4035 */
4036 return 0;
4037#endif
e7c8d5c9
CL
4038}
4039
8d7a8fa9
CS
4040/*
4041 * pcp->high and pcp->batch values are related and dependent on one another:
4042 * ->batch must never be higher then ->high.
4043 * The following function updates them in a safe manner without read side
4044 * locking.
4045 *
4046 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4047 * those fields changing asynchronously (acording the the above rule).
4048 *
4049 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4050 * outside of boot time (or some other assurance that no concurrent updaters
4051 * exist).
4052 */
4053static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4054 unsigned long batch)
4055{
4056 /* start with a fail safe value for batch */
4057 pcp->batch = 1;
4058 smp_wmb();
4059
4060 /* Update high, then batch, in order */
4061 pcp->high = high;
4062 smp_wmb();
4063
4064 pcp->batch = batch;
4065}
4066
3664033c 4067/* a companion to pageset_set_high() */
4008bab7
CS
4068static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4069{
8d7a8fa9 4070 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4071}
4072
88c90dbc 4073static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4074{
4075 struct per_cpu_pages *pcp;
5f8dcc21 4076 int migratetype;
2caaad41 4077
1c6fe946
MD
4078 memset(p, 0, sizeof(*p));
4079
3dfa5721 4080 pcp = &p->pcp;
2caaad41 4081 pcp->count = 0;
5f8dcc21
MG
4082 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4083 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4084}
4085
88c90dbc
CS
4086static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4087{
4088 pageset_init(p);
4089 pageset_set_batch(p, batch);
4090}
4091
8ad4b1fb 4092/*
3664033c 4093 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4094 * to the value high for the pageset p.
4095 */
3664033c 4096static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4097 unsigned long high)
4098{
8d7a8fa9
CS
4099 unsigned long batch = max(1UL, high / 4);
4100 if ((high / 4) > (PAGE_SHIFT * 8))
4101 batch = PAGE_SHIFT * 8;
8ad4b1fb 4102
8d7a8fa9 4103 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4104}
4105
169f6c19
CS
4106static void __meminit pageset_set_high_and_batch(struct zone *zone,
4107 struct per_cpu_pageset *pcp)
56cef2b8 4108{
56cef2b8 4109 if (percpu_pagelist_fraction)
3664033c 4110 pageset_set_high(pcp,
56cef2b8
CS
4111 (zone->managed_pages /
4112 percpu_pagelist_fraction));
4113 else
4114 pageset_set_batch(pcp, zone_batchsize(zone));
4115}
4116
169f6c19
CS
4117static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4118{
4119 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4120
4121 pageset_init(pcp);
4122 pageset_set_high_and_batch(zone, pcp);
4123}
4124
4ed7e022 4125static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4126{
4127 int cpu;
319774e2 4128 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4129 for_each_possible_cpu(cpu)
4130 zone_pageset_init(zone, cpu);
319774e2
WF
4131}
4132
2caaad41 4133/*
99dcc3e5
CL
4134 * Allocate per cpu pagesets and initialize them.
4135 * Before this call only boot pagesets were available.
e7c8d5c9 4136 */
99dcc3e5 4137void __init setup_per_cpu_pageset(void)
e7c8d5c9 4138{
99dcc3e5 4139 struct zone *zone;
e7c8d5c9 4140
319774e2
WF
4141 for_each_populated_zone(zone)
4142 setup_zone_pageset(zone);
e7c8d5c9
CL
4143}
4144
577a32f6 4145static noinline __init_refok
cca448fe 4146int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4147{
4148 int i;
4149 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4150 size_t alloc_size;
ed8ece2e
DH
4151
4152 /*
4153 * The per-page waitqueue mechanism uses hashed waitqueues
4154 * per zone.
4155 */
02b694de
YG
4156 zone->wait_table_hash_nr_entries =
4157 wait_table_hash_nr_entries(zone_size_pages);
4158 zone->wait_table_bits =
4159 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4160 alloc_size = zone->wait_table_hash_nr_entries
4161 * sizeof(wait_queue_head_t);
4162
cd94b9db 4163 if (!slab_is_available()) {
cca448fe 4164 zone->wait_table = (wait_queue_head_t *)
8f389a99 4165 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4166 } else {
4167 /*
4168 * This case means that a zone whose size was 0 gets new memory
4169 * via memory hot-add.
4170 * But it may be the case that a new node was hot-added. In
4171 * this case vmalloc() will not be able to use this new node's
4172 * memory - this wait_table must be initialized to use this new
4173 * node itself as well.
4174 * To use this new node's memory, further consideration will be
4175 * necessary.
4176 */
8691f3a7 4177 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4178 }
4179 if (!zone->wait_table)
4180 return -ENOMEM;
ed8ece2e 4181
02b694de 4182 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4183 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4184
4185 return 0;
ed8ece2e
DH
4186}
4187
c09b4240 4188static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4189{
99dcc3e5
CL
4190 /*
4191 * per cpu subsystem is not up at this point. The following code
4192 * relies on the ability of the linker to provide the
4193 * offset of a (static) per cpu variable into the per cpu area.
4194 */
4195 zone->pageset = &boot_pageset;
ed8ece2e 4196
f5335c0f 4197 if (zone->present_pages)
99dcc3e5
CL
4198 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4199 zone->name, zone->present_pages,
4200 zone_batchsize(zone));
ed8ece2e
DH
4201}
4202
4ed7e022 4203int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4204 unsigned long zone_start_pfn,
a2f3aa02
DH
4205 unsigned long size,
4206 enum memmap_context context)
ed8ece2e
DH
4207{
4208 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4209 int ret;
4210 ret = zone_wait_table_init(zone, size);
4211 if (ret)
4212 return ret;
ed8ece2e
DH
4213 pgdat->nr_zones = zone_idx(zone) + 1;
4214
ed8ece2e
DH
4215 zone->zone_start_pfn = zone_start_pfn;
4216
708614e6
MG
4217 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4218 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4219 pgdat->node_id,
4220 (unsigned long)zone_idx(zone),
4221 zone_start_pfn, (zone_start_pfn + size));
4222
1e548deb 4223 zone_init_free_lists(zone);
718127cc
YG
4224
4225 return 0;
ed8ece2e
DH
4226}
4227
0ee332c1 4228#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4229#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4230/*
4231 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4232 * Architectures may implement their own version but if add_active_range()
4233 * was used and there are no special requirements, this is a convenient
4234 * alternative
4235 */
f2dbcfa7 4236int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4237{
c13291a5
TH
4238 unsigned long start_pfn, end_pfn;
4239 int i, nid;
7c243c71
RA
4240 /*
4241 * NOTE: The following SMP-unsafe globals are only used early in boot
4242 * when the kernel is running single-threaded.
4243 */
4244 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4245 static int __meminitdata last_nid;
4246
4247 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4248 return last_nid;
c713216d 4249
c13291a5 4250 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4251 if (start_pfn <= pfn && pfn < end_pfn) {
4252 last_start_pfn = start_pfn;
4253 last_end_pfn = end_pfn;
4254 last_nid = nid;
c13291a5 4255 return nid;
7c243c71 4256 }
cc2559bc
KH
4257 /* This is a memory hole */
4258 return -1;
c713216d
MG
4259}
4260#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4261
f2dbcfa7
KH
4262int __meminit early_pfn_to_nid(unsigned long pfn)
4263{
cc2559bc
KH
4264 int nid;
4265
4266 nid = __early_pfn_to_nid(pfn);
4267 if (nid >= 0)
4268 return nid;
4269 /* just returns 0 */
4270 return 0;
f2dbcfa7
KH
4271}
4272
cc2559bc
KH
4273#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4274bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4275{
4276 int nid;
4277
4278 nid = __early_pfn_to_nid(pfn);
4279 if (nid >= 0 && nid != node)
4280 return false;
4281 return true;
4282}
4283#endif
f2dbcfa7 4284
c713216d
MG
4285/**
4286 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4287 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4288 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4289 *
4290 * If an architecture guarantees that all ranges registered with
4291 * add_active_ranges() contain no holes and may be freed, this
4292 * this function may be used instead of calling free_bootmem() manually.
4293 */
c13291a5 4294void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4295{
c13291a5
TH
4296 unsigned long start_pfn, end_pfn;
4297 int i, this_nid;
edbe7d23 4298
c13291a5
TH
4299 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4300 start_pfn = min(start_pfn, max_low_pfn);
4301 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4302
c13291a5
TH
4303 if (start_pfn < end_pfn)
4304 free_bootmem_node(NODE_DATA(this_nid),
4305 PFN_PHYS(start_pfn),
4306 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4307 }
edbe7d23 4308}
edbe7d23 4309
c713216d
MG
4310/**
4311 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4312 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4313 *
4314 * If an architecture guarantees that all ranges registered with
4315 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4316 * function may be used instead of calling memory_present() manually.
c713216d
MG
4317 */
4318void __init sparse_memory_present_with_active_regions(int nid)
4319{
c13291a5
TH
4320 unsigned long start_pfn, end_pfn;
4321 int i, this_nid;
c713216d 4322
c13291a5
TH
4323 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4324 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4325}
4326
4327/**
4328 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4329 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4330 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4331 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4332 *
4333 * It returns the start and end page frame of a node based on information
4334 * provided by an arch calling add_active_range(). If called for a node
4335 * with no available memory, a warning is printed and the start and end
88ca3b94 4336 * PFNs will be 0.
c713216d 4337 */
a3142c8e 4338void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4339 unsigned long *start_pfn, unsigned long *end_pfn)
4340{
c13291a5 4341 unsigned long this_start_pfn, this_end_pfn;
c713216d 4342 int i;
c13291a5 4343
c713216d
MG
4344 *start_pfn = -1UL;
4345 *end_pfn = 0;
4346
c13291a5
TH
4347 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4348 *start_pfn = min(*start_pfn, this_start_pfn);
4349 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4350 }
4351
633c0666 4352 if (*start_pfn == -1UL)
c713216d 4353 *start_pfn = 0;
c713216d
MG
4354}
4355
2a1e274a
MG
4356/*
4357 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4358 * assumption is made that zones within a node are ordered in monotonic
4359 * increasing memory addresses so that the "highest" populated zone is used
4360 */
b69a7288 4361static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4362{
4363 int zone_index;
4364 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4365 if (zone_index == ZONE_MOVABLE)
4366 continue;
4367
4368 if (arch_zone_highest_possible_pfn[zone_index] >
4369 arch_zone_lowest_possible_pfn[zone_index])
4370 break;
4371 }
4372
4373 VM_BUG_ON(zone_index == -1);
4374 movable_zone = zone_index;
4375}
4376
4377/*
4378 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4379 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4380 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4381 * in each node depending on the size of each node and how evenly kernelcore
4382 * is distributed. This helper function adjusts the zone ranges
4383 * provided by the architecture for a given node by using the end of the
4384 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4385 * zones within a node are in order of monotonic increases memory addresses
4386 */
b69a7288 4387static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4388 unsigned long zone_type,
4389 unsigned long node_start_pfn,
4390 unsigned long node_end_pfn,
4391 unsigned long *zone_start_pfn,
4392 unsigned long *zone_end_pfn)
4393{
4394 /* Only adjust if ZONE_MOVABLE is on this node */
4395 if (zone_movable_pfn[nid]) {
4396 /* Size ZONE_MOVABLE */
4397 if (zone_type == ZONE_MOVABLE) {
4398 *zone_start_pfn = zone_movable_pfn[nid];
4399 *zone_end_pfn = min(node_end_pfn,
4400 arch_zone_highest_possible_pfn[movable_zone]);
4401
4402 /* Adjust for ZONE_MOVABLE starting within this range */
4403 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4404 *zone_end_pfn > zone_movable_pfn[nid]) {
4405 *zone_end_pfn = zone_movable_pfn[nid];
4406
4407 /* Check if this whole range is within ZONE_MOVABLE */
4408 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4409 *zone_start_pfn = *zone_end_pfn;
4410 }
4411}
4412
c713216d
MG
4413/*
4414 * Return the number of pages a zone spans in a node, including holes
4415 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4416 */
6ea6e688 4417static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4418 unsigned long zone_type,
4419 unsigned long *ignored)
4420{
4421 unsigned long node_start_pfn, node_end_pfn;
4422 unsigned long zone_start_pfn, zone_end_pfn;
4423
4424 /* Get the start and end of the node and zone */
4425 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4426 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4427 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4428 adjust_zone_range_for_zone_movable(nid, zone_type,
4429 node_start_pfn, node_end_pfn,
4430 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4431
4432 /* Check that this node has pages within the zone's required range */
4433 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4434 return 0;
4435
4436 /* Move the zone boundaries inside the node if necessary */
4437 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4438 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4439
4440 /* Return the spanned pages */
4441 return zone_end_pfn - zone_start_pfn;
4442}
4443
4444/*
4445 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4446 * then all holes in the requested range will be accounted for.
c713216d 4447 */
32996250 4448unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4449 unsigned long range_start_pfn,
4450 unsigned long range_end_pfn)
4451{
96e907d1
TH
4452 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4453 unsigned long start_pfn, end_pfn;
4454 int i;
c713216d 4455
96e907d1
TH
4456 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4457 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4458 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4459 nr_absent -= end_pfn - start_pfn;
c713216d 4460 }
96e907d1 4461 return nr_absent;
c713216d
MG
4462}
4463
4464/**
4465 * absent_pages_in_range - Return number of page frames in holes within a range
4466 * @start_pfn: The start PFN to start searching for holes
4467 * @end_pfn: The end PFN to stop searching for holes
4468 *
88ca3b94 4469 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4470 */
4471unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4472 unsigned long end_pfn)
4473{
4474 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4475}
4476
4477/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4478static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4479 unsigned long zone_type,
4480 unsigned long *ignored)
4481{
96e907d1
TH
4482 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4483 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4484 unsigned long node_start_pfn, node_end_pfn;
4485 unsigned long zone_start_pfn, zone_end_pfn;
4486
4487 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4488 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4489 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4490
2a1e274a
MG
4491 adjust_zone_range_for_zone_movable(nid, zone_type,
4492 node_start_pfn, node_end_pfn,
4493 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4494 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4495}
0e0b864e 4496
0ee332c1 4497#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4498static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4499 unsigned long zone_type,
4500 unsigned long *zones_size)
4501{
4502 return zones_size[zone_type];
4503}
4504
6ea6e688 4505static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4506 unsigned long zone_type,
4507 unsigned long *zholes_size)
4508{
4509 if (!zholes_size)
4510 return 0;
4511
4512 return zholes_size[zone_type];
4513}
20e6926d 4514
0ee332c1 4515#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4516
a3142c8e 4517static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4518 unsigned long *zones_size, unsigned long *zholes_size)
4519{
4520 unsigned long realtotalpages, totalpages = 0;
4521 enum zone_type i;
4522
4523 for (i = 0; i < MAX_NR_ZONES; i++)
4524 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4525 zones_size);
4526 pgdat->node_spanned_pages = totalpages;
4527
4528 realtotalpages = totalpages;
4529 for (i = 0; i < MAX_NR_ZONES; i++)
4530 realtotalpages -=
4531 zone_absent_pages_in_node(pgdat->node_id, i,
4532 zholes_size);
4533 pgdat->node_present_pages = realtotalpages;
4534 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4535 realtotalpages);
4536}
4537
835c134e
MG
4538#ifndef CONFIG_SPARSEMEM
4539/*
4540 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4541 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4542 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4543 * round what is now in bits to nearest long in bits, then return it in
4544 * bytes.
4545 */
7c45512d 4546static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4547{
4548 unsigned long usemapsize;
4549
7c45512d 4550 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4551 usemapsize = roundup(zonesize, pageblock_nr_pages);
4552 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4553 usemapsize *= NR_PAGEBLOCK_BITS;
4554 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4555
4556 return usemapsize / 8;
4557}
4558
4559static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4560 struct zone *zone,
4561 unsigned long zone_start_pfn,
4562 unsigned long zonesize)
835c134e 4563{
7c45512d 4564 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4565 zone->pageblock_flags = NULL;
58a01a45 4566 if (usemapsize)
8f389a99
YL
4567 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4568 usemapsize);
835c134e
MG
4569}
4570#else
7c45512d
LT
4571static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4572 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4573#endif /* CONFIG_SPARSEMEM */
4574
d9c23400 4575#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4576
d9c23400 4577/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4578void __init set_pageblock_order(void)
d9c23400 4579{
955c1cd7
AM
4580 unsigned int order;
4581
d9c23400
MG
4582 /* Check that pageblock_nr_pages has not already been setup */
4583 if (pageblock_order)
4584 return;
4585
955c1cd7
AM
4586 if (HPAGE_SHIFT > PAGE_SHIFT)
4587 order = HUGETLB_PAGE_ORDER;
4588 else
4589 order = MAX_ORDER - 1;
4590
d9c23400
MG
4591 /*
4592 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4593 * This value may be variable depending on boot parameters on IA64 and
4594 * powerpc.
d9c23400
MG
4595 */
4596 pageblock_order = order;
4597}
4598#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4599
ba72cb8c
MG
4600/*
4601 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4602 * is unused as pageblock_order is set at compile-time. See
4603 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4604 * the kernel config
ba72cb8c 4605 */
ca57df79 4606void __init set_pageblock_order(void)
ba72cb8c 4607{
ba72cb8c 4608}
d9c23400
MG
4609
4610#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4611
01cefaef
JL
4612static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4613 unsigned long present_pages)
4614{
4615 unsigned long pages = spanned_pages;
4616
4617 /*
4618 * Provide a more accurate estimation if there are holes within
4619 * the zone and SPARSEMEM is in use. If there are holes within the
4620 * zone, each populated memory region may cost us one or two extra
4621 * memmap pages due to alignment because memmap pages for each
4622 * populated regions may not naturally algined on page boundary.
4623 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4624 */
4625 if (spanned_pages > present_pages + (present_pages >> 4) &&
4626 IS_ENABLED(CONFIG_SPARSEMEM))
4627 pages = present_pages;
4628
4629 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4630}
4631
1da177e4
LT
4632/*
4633 * Set up the zone data structures:
4634 * - mark all pages reserved
4635 * - mark all memory queues empty
4636 * - clear the memory bitmaps
6527af5d
MK
4637 *
4638 * NOTE: pgdat should get zeroed by caller.
1da177e4 4639 */
b5a0e011 4640static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4641 unsigned long *zones_size, unsigned long *zholes_size)
4642{
2f1b6248 4643 enum zone_type j;
ed8ece2e 4644 int nid = pgdat->node_id;
1da177e4 4645 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4646 int ret;
1da177e4 4647
208d54e5 4648 pgdat_resize_init(pgdat);
8177a420
AA
4649#ifdef CONFIG_NUMA_BALANCING
4650 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4651 pgdat->numabalancing_migrate_nr_pages = 0;
4652 pgdat->numabalancing_migrate_next_window = jiffies;
4653#endif
1da177e4 4654 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4655 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4656 pgdat_page_cgroup_init(pgdat);
5f63b720 4657
1da177e4
LT
4658 for (j = 0; j < MAX_NR_ZONES; j++) {
4659 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4660 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4661
c713216d 4662 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4663 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4664 zholes_size);
1da177e4 4665
0e0b864e 4666 /*
9feedc9d 4667 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4668 * is used by this zone for memmap. This affects the watermark
4669 * and per-cpu initialisations
4670 */
01cefaef 4671 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4672 if (freesize >= memmap_pages) {
4673 freesize -= memmap_pages;
5594c8c8
YL
4674 if (memmap_pages)
4675 printk(KERN_DEBUG
4676 " %s zone: %lu pages used for memmap\n",
4677 zone_names[j], memmap_pages);
0e0b864e
MG
4678 } else
4679 printk(KERN_WARNING
9feedc9d
JL
4680 " %s zone: %lu pages exceeds freesize %lu\n",
4681 zone_names[j], memmap_pages, freesize);
0e0b864e 4682
6267276f 4683 /* Account for reserved pages */
9feedc9d
JL
4684 if (j == 0 && freesize > dma_reserve) {
4685 freesize -= dma_reserve;
d903ef9f 4686 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4687 zone_names[0], dma_reserve);
0e0b864e
MG
4688 }
4689
98d2b0eb 4690 if (!is_highmem_idx(j))
9feedc9d 4691 nr_kernel_pages += freesize;
01cefaef
JL
4692 /* Charge for highmem memmap if there are enough kernel pages */
4693 else if (nr_kernel_pages > memmap_pages * 2)
4694 nr_kernel_pages -= memmap_pages;
9feedc9d 4695 nr_all_pages += freesize;
1da177e4
LT
4696
4697 zone->spanned_pages = size;
306f2e9e 4698 zone->present_pages = realsize;
9feedc9d
JL
4699 /*
4700 * Set an approximate value for lowmem here, it will be adjusted
4701 * when the bootmem allocator frees pages into the buddy system.
4702 * And all highmem pages will be managed by the buddy system.
4703 */
4704 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4705#ifdef CONFIG_NUMA
d5f541ed 4706 zone->node = nid;
9feedc9d 4707 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4708 / 100;
9feedc9d 4709 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4710#endif
1da177e4
LT
4711 zone->name = zone_names[j];
4712 spin_lock_init(&zone->lock);
4713 spin_lock_init(&zone->lru_lock);
bdc8cb98 4714 zone_seqlock_init(zone);
1da177e4 4715 zone->zone_pgdat = pgdat;
1da177e4 4716
ed8ece2e 4717 zone_pcp_init(zone);
bea8c150 4718 lruvec_init(&zone->lruvec);
1da177e4
LT
4719 if (!size)
4720 continue;
4721
955c1cd7 4722 set_pageblock_order();
7c45512d 4723 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4724 ret = init_currently_empty_zone(zone, zone_start_pfn,
4725 size, MEMMAP_EARLY);
718127cc 4726 BUG_ON(ret);
76cdd58e 4727 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4728 zone_start_pfn += size;
1da177e4
LT
4729 }
4730}
4731
577a32f6 4732static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4733{
1da177e4
LT
4734 /* Skip empty nodes */
4735 if (!pgdat->node_spanned_pages)
4736 return;
4737
d41dee36 4738#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4739 /* ia64 gets its own node_mem_map, before this, without bootmem */
4740 if (!pgdat->node_mem_map) {
e984bb43 4741 unsigned long size, start, end;
d41dee36
AW
4742 struct page *map;
4743
e984bb43
BP
4744 /*
4745 * The zone's endpoints aren't required to be MAX_ORDER
4746 * aligned but the node_mem_map endpoints must be in order
4747 * for the buddy allocator to function correctly.
4748 */
4749 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4750 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4751 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4752 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4753 map = alloc_remap(pgdat->node_id, size);
4754 if (!map)
8f389a99 4755 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4756 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4757 }
12d810c1 4758#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4759 /*
4760 * With no DISCONTIG, the global mem_map is just set as node 0's
4761 */
c713216d 4762 if (pgdat == NODE_DATA(0)) {
1da177e4 4763 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4764#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4765 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4766 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4767#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4768 }
1da177e4 4769#endif
d41dee36 4770#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4771}
4772
9109fb7b
JW
4773void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4774 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4775{
9109fb7b
JW
4776 pg_data_t *pgdat = NODE_DATA(nid);
4777
88fdf75d 4778 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4779 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4780
1da177e4
LT
4781 pgdat->node_id = nid;
4782 pgdat->node_start_pfn = node_start_pfn;
957f822a 4783 init_zone_allows_reclaim(nid);
c713216d 4784 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4785
4786 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4787#ifdef CONFIG_FLAT_NODE_MEM_MAP
4788 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4789 nid, (unsigned long)pgdat,
4790 (unsigned long)pgdat->node_mem_map);
4791#endif
1da177e4
LT
4792
4793 free_area_init_core(pgdat, zones_size, zholes_size);
4794}
4795
0ee332c1 4796#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4797
4798#if MAX_NUMNODES > 1
4799/*
4800 * Figure out the number of possible node ids.
4801 */
f9872caf 4802void __init setup_nr_node_ids(void)
418508c1
MS
4803{
4804 unsigned int node;
4805 unsigned int highest = 0;
4806
4807 for_each_node_mask(node, node_possible_map)
4808 highest = node;
4809 nr_node_ids = highest + 1;
4810}
418508c1
MS
4811#endif
4812
1e01979c
TH
4813/**
4814 * node_map_pfn_alignment - determine the maximum internode alignment
4815 *
4816 * This function should be called after node map is populated and sorted.
4817 * It calculates the maximum power of two alignment which can distinguish
4818 * all the nodes.
4819 *
4820 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4821 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4822 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4823 * shifted, 1GiB is enough and this function will indicate so.
4824 *
4825 * This is used to test whether pfn -> nid mapping of the chosen memory
4826 * model has fine enough granularity to avoid incorrect mapping for the
4827 * populated node map.
4828 *
4829 * Returns the determined alignment in pfn's. 0 if there is no alignment
4830 * requirement (single node).
4831 */
4832unsigned long __init node_map_pfn_alignment(void)
4833{
4834 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4835 unsigned long start, end, mask;
1e01979c 4836 int last_nid = -1;
c13291a5 4837 int i, nid;
1e01979c 4838
c13291a5 4839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4840 if (!start || last_nid < 0 || last_nid == nid) {
4841 last_nid = nid;
4842 last_end = end;
4843 continue;
4844 }
4845
4846 /*
4847 * Start with a mask granular enough to pin-point to the
4848 * start pfn and tick off bits one-by-one until it becomes
4849 * too coarse to separate the current node from the last.
4850 */
4851 mask = ~((1 << __ffs(start)) - 1);
4852 while (mask && last_end <= (start & (mask << 1)))
4853 mask <<= 1;
4854
4855 /* accumulate all internode masks */
4856 accl_mask |= mask;
4857 }
4858
4859 /* convert mask to number of pages */
4860 return ~accl_mask + 1;
4861}
4862
a6af2bc3 4863/* Find the lowest pfn for a node */
b69a7288 4864static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4865{
a6af2bc3 4866 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4867 unsigned long start_pfn;
4868 int i;
1abbfb41 4869
c13291a5
TH
4870 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4871 min_pfn = min(min_pfn, start_pfn);
c713216d 4872
a6af2bc3
MG
4873 if (min_pfn == ULONG_MAX) {
4874 printk(KERN_WARNING
2bc0d261 4875 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4876 return 0;
4877 }
4878
4879 return min_pfn;
c713216d
MG
4880}
4881
4882/**
4883 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4884 *
4885 * It returns the minimum PFN based on information provided via
88ca3b94 4886 * add_active_range().
c713216d
MG
4887 */
4888unsigned long __init find_min_pfn_with_active_regions(void)
4889{
4890 return find_min_pfn_for_node(MAX_NUMNODES);
4891}
4892
37b07e41
LS
4893/*
4894 * early_calculate_totalpages()
4895 * Sum pages in active regions for movable zone.
4b0ef1fe 4896 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4897 */
484f51f8 4898static unsigned long __init early_calculate_totalpages(void)
7e63efef 4899{
7e63efef 4900 unsigned long totalpages = 0;
c13291a5
TH
4901 unsigned long start_pfn, end_pfn;
4902 int i, nid;
4903
4904 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4905 unsigned long pages = end_pfn - start_pfn;
7e63efef 4906
37b07e41
LS
4907 totalpages += pages;
4908 if (pages)
4b0ef1fe 4909 node_set_state(nid, N_MEMORY);
37b07e41
LS
4910 }
4911 return totalpages;
7e63efef
MG
4912}
4913
2a1e274a
MG
4914/*
4915 * Find the PFN the Movable zone begins in each node. Kernel memory
4916 * is spread evenly between nodes as long as the nodes have enough
4917 * memory. When they don't, some nodes will have more kernelcore than
4918 * others
4919 */
b224ef85 4920static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4921{
4922 int i, nid;
4923 unsigned long usable_startpfn;
4924 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4925 /* save the state before borrow the nodemask */
4b0ef1fe 4926 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4927 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4928 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4929
7e63efef
MG
4930 /*
4931 * If movablecore was specified, calculate what size of
4932 * kernelcore that corresponds so that memory usable for
4933 * any allocation type is evenly spread. If both kernelcore
4934 * and movablecore are specified, then the value of kernelcore
4935 * will be used for required_kernelcore if it's greater than
4936 * what movablecore would have allowed.
4937 */
4938 if (required_movablecore) {
7e63efef
MG
4939 unsigned long corepages;
4940
4941 /*
4942 * Round-up so that ZONE_MOVABLE is at least as large as what
4943 * was requested by the user
4944 */
4945 required_movablecore =
4946 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4947 corepages = totalpages - required_movablecore;
4948
4949 required_kernelcore = max(required_kernelcore, corepages);
4950 }
4951
20e6926d
YL
4952 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4953 if (!required_kernelcore)
66918dcd 4954 goto out;
2a1e274a
MG
4955
4956 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 4957 find_usable_zone_for_movable();
2a1e274a
MG
4958 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4959
4960restart:
4961 /* Spread kernelcore memory as evenly as possible throughout nodes */
4962 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4963 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4964 unsigned long start_pfn, end_pfn;
4965
2a1e274a
MG
4966 /*
4967 * Recalculate kernelcore_node if the division per node
4968 * now exceeds what is necessary to satisfy the requested
4969 * amount of memory for the kernel
4970 */
4971 if (required_kernelcore < kernelcore_node)
4972 kernelcore_node = required_kernelcore / usable_nodes;
4973
4974 /*
4975 * As the map is walked, we track how much memory is usable
4976 * by the kernel using kernelcore_remaining. When it is
4977 * 0, the rest of the node is usable by ZONE_MOVABLE
4978 */
4979 kernelcore_remaining = kernelcore_node;
4980
4981 /* Go through each range of PFNs within this node */
c13291a5 4982 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4983 unsigned long size_pages;
4984
c13291a5 4985 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4986 if (start_pfn >= end_pfn)
4987 continue;
4988
4989 /* Account for what is only usable for kernelcore */
4990 if (start_pfn < usable_startpfn) {
4991 unsigned long kernel_pages;
4992 kernel_pages = min(end_pfn, usable_startpfn)
4993 - start_pfn;
4994
4995 kernelcore_remaining -= min(kernel_pages,
4996 kernelcore_remaining);
4997 required_kernelcore -= min(kernel_pages,
4998 required_kernelcore);
4999
5000 /* Continue if range is now fully accounted */
5001 if (end_pfn <= usable_startpfn) {
5002
5003 /*
5004 * Push zone_movable_pfn to the end so
5005 * that if we have to rebalance
5006 * kernelcore across nodes, we will
5007 * not double account here
5008 */
5009 zone_movable_pfn[nid] = end_pfn;
5010 continue;
5011 }
5012 start_pfn = usable_startpfn;
5013 }
5014
5015 /*
5016 * The usable PFN range for ZONE_MOVABLE is from
5017 * start_pfn->end_pfn. Calculate size_pages as the
5018 * number of pages used as kernelcore
5019 */
5020 size_pages = end_pfn - start_pfn;
5021 if (size_pages > kernelcore_remaining)
5022 size_pages = kernelcore_remaining;
5023 zone_movable_pfn[nid] = start_pfn + size_pages;
5024
5025 /*
5026 * Some kernelcore has been met, update counts and
5027 * break if the kernelcore for this node has been
5028 * satisified
5029 */
5030 required_kernelcore -= min(required_kernelcore,
5031 size_pages);
5032 kernelcore_remaining -= size_pages;
5033 if (!kernelcore_remaining)
5034 break;
5035 }
5036 }
5037
5038 /*
5039 * If there is still required_kernelcore, we do another pass with one
5040 * less node in the count. This will push zone_movable_pfn[nid] further
5041 * along on the nodes that still have memory until kernelcore is
5042 * satisified
5043 */
5044 usable_nodes--;
5045 if (usable_nodes && required_kernelcore > usable_nodes)
5046 goto restart;
5047
5048 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5049 for (nid = 0; nid < MAX_NUMNODES; nid++)
5050 zone_movable_pfn[nid] =
5051 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5052
20e6926d 5053out:
66918dcd 5054 /* restore the node_state */
4b0ef1fe 5055 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5056}
5057
4b0ef1fe
LJ
5058/* Any regular or high memory on that node ? */
5059static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5060{
37b07e41
LS
5061 enum zone_type zone_type;
5062
4b0ef1fe
LJ
5063 if (N_MEMORY == N_NORMAL_MEMORY)
5064 return;
5065
5066 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5067 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5068 if (zone->present_pages) {
4b0ef1fe
LJ
5069 node_set_state(nid, N_HIGH_MEMORY);
5070 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5071 zone_type <= ZONE_NORMAL)
5072 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5073 break;
5074 }
37b07e41 5075 }
37b07e41
LS
5076}
5077
c713216d
MG
5078/**
5079 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5080 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5081 *
5082 * This will call free_area_init_node() for each active node in the system.
5083 * Using the page ranges provided by add_active_range(), the size of each
5084 * zone in each node and their holes is calculated. If the maximum PFN
5085 * between two adjacent zones match, it is assumed that the zone is empty.
5086 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5087 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5088 * starts where the previous one ended. For example, ZONE_DMA32 starts
5089 * at arch_max_dma_pfn.
5090 */
5091void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5092{
c13291a5
TH
5093 unsigned long start_pfn, end_pfn;
5094 int i, nid;
a6af2bc3 5095
c713216d
MG
5096 /* Record where the zone boundaries are */
5097 memset(arch_zone_lowest_possible_pfn, 0,
5098 sizeof(arch_zone_lowest_possible_pfn));
5099 memset(arch_zone_highest_possible_pfn, 0,
5100 sizeof(arch_zone_highest_possible_pfn));
5101 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5102 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5103 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5104 if (i == ZONE_MOVABLE)
5105 continue;
c713216d
MG
5106 arch_zone_lowest_possible_pfn[i] =
5107 arch_zone_highest_possible_pfn[i-1];
5108 arch_zone_highest_possible_pfn[i] =
5109 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5110 }
2a1e274a
MG
5111 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5112 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5113
5114 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5115 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5116 find_zone_movable_pfns_for_nodes();
c713216d 5117
c713216d 5118 /* Print out the zone ranges */
a62e2f4f 5119 printk("Zone ranges:\n");
2a1e274a
MG
5120 for (i = 0; i < MAX_NR_ZONES; i++) {
5121 if (i == ZONE_MOVABLE)
5122 continue;
155cbfc8 5123 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5124 if (arch_zone_lowest_possible_pfn[i] ==
5125 arch_zone_highest_possible_pfn[i])
155cbfc8 5126 printk(KERN_CONT "empty\n");
72f0ba02 5127 else
a62e2f4f
BH
5128 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5129 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5130 (arch_zone_highest_possible_pfn[i]
5131 << PAGE_SHIFT) - 1);
2a1e274a
MG
5132 }
5133
5134 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5135 printk("Movable zone start for each node\n");
2a1e274a
MG
5136 for (i = 0; i < MAX_NUMNODES; i++) {
5137 if (zone_movable_pfn[i])
a62e2f4f
BH
5138 printk(" Node %d: %#010lx\n", i,
5139 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5140 }
c713216d 5141
f2d52fe5 5142 /* Print out the early node map */
a62e2f4f 5143 printk("Early memory node ranges\n");
c13291a5 5144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5145 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5146 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5147
5148 /* Initialise every node */
708614e6 5149 mminit_verify_pageflags_layout();
8ef82866 5150 setup_nr_node_ids();
c713216d
MG
5151 for_each_online_node(nid) {
5152 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5153 free_area_init_node(nid, NULL,
c713216d 5154 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5155
5156 /* Any memory on that node */
5157 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5158 node_set_state(nid, N_MEMORY);
5159 check_for_memory(pgdat, nid);
c713216d
MG
5160 }
5161}
2a1e274a 5162
7e63efef 5163static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5164{
5165 unsigned long long coremem;
5166 if (!p)
5167 return -EINVAL;
5168
5169 coremem = memparse(p, &p);
7e63efef 5170 *core = coremem >> PAGE_SHIFT;
2a1e274a 5171
7e63efef 5172 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5173 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5174
5175 return 0;
5176}
ed7ed365 5177
7e63efef
MG
5178/*
5179 * kernelcore=size sets the amount of memory for use for allocations that
5180 * cannot be reclaimed or migrated.
5181 */
5182static int __init cmdline_parse_kernelcore(char *p)
5183{
5184 return cmdline_parse_core(p, &required_kernelcore);
5185}
5186
5187/*
5188 * movablecore=size sets the amount of memory for use for allocations that
5189 * can be reclaimed or migrated.
5190 */
5191static int __init cmdline_parse_movablecore(char *p)
5192{
5193 return cmdline_parse_core(p, &required_movablecore);
5194}
5195
ed7ed365 5196early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5197early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5198
0ee332c1 5199#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5200
c3d5f5f0
JL
5201void adjust_managed_page_count(struct page *page, long count)
5202{
5203 spin_lock(&managed_page_count_lock);
5204 page_zone(page)->managed_pages += count;
5205 totalram_pages += count;
3dcc0571
JL
5206#ifdef CONFIG_HIGHMEM
5207 if (PageHighMem(page))
5208 totalhigh_pages += count;
5209#endif
c3d5f5f0
JL
5210 spin_unlock(&managed_page_count_lock);
5211}
3dcc0571 5212EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5213
11199692 5214unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5215{
11199692
JL
5216 void *pos;
5217 unsigned long pages = 0;
69afade7 5218
11199692
JL
5219 start = (void *)PAGE_ALIGN((unsigned long)start);
5220 end = (void *)((unsigned long)end & PAGE_MASK);
5221 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5222 if ((unsigned int)poison <= 0xFF)
11199692
JL
5223 memset(pos, poison, PAGE_SIZE);
5224 free_reserved_page(virt_to_page(pos));
69afade7
JL
5225 }
5226
5227 if (pages && s)
11199692 5228 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5229 s, pages << (PAGE_SHIFT - 10), start, end);
5230
5231 return pages;
5232}
11199692 5233EXPORT_SYMBOL(free_reserved_area);
69afade7 5234
cfa11e08
JL
5235#ifdef CONFIG_HIGHMEM
5236void free_highmem_page(struct page *page)
5237{
5238 __free_reserved_page(page);
5239 totalram_pages++;
7b4b2a0d 5240 page_zone(page)->managed_pages++;
cfa11e08
JL
5241 totalhigh_pages++;
5242}
5243#endif
5244
0e0b864e 5245/**
88ca3b94
RD
5246 * set_dma_reserve - set the specified number of pages reserved in the first zone
5247 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5248 *
5249 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5250 * In the DMA zone, a significant percentage may be consumed by kernel image
5251 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5252 * function may optionally be used to account for unfreeable pages in the
5253 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5254 * smaller per-cpu batchsize.
0e0b864e
MG
5255 */
5256void __init set_dma_reserve(unsigned long new_dma_reserve)
5257{
5258 dma_reserve = new_dma_reserve;
5259}
5260
1da177e4
LT
5261void __init free_area_init(unsigned long *zones_size)
5262{
9109fb7b 5263 free_area_init_node(0, zones_size,
1da177e4
LT
5264 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5265}
1da177e4 5266
1da177e4
LT
5267static int page_alloc_cpu_notify(struct notifier_block *self,
5268 unsigned long action, void *hcpu)
5269{
5270 int cpu = (unsigned long)hcpu;
1da177e4 5271
8bb78442 5272 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5273 lru_add_drain_cpu(cpu);
9f8f2172
CL
5274 drain_pages(cpu);
5275
5276 /*
5277 * Spill the event counters of the dead processor
5278 * into the current processors event counters.
5279 * This artificially elevates the count of the current
5280 * processor.
5281 */
f8891e5e 5282 vm_events_fold_cpu(cpu);
9f8f2172
CL
5283
5284 /*
5285 * Zero the differential counters of the dead processor
5286 * so that the vm statistics are consistent.
5287 *
5288 * This is only okay since the processor is dead and cannot
5289 * race with what we are doing.
5290 */
2244b95a 5291 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5292 }
5293 return NOTIFY_OK;
5294}
1da177e4
LT
5295
5296void __init page_alloc_init(void)
5297{
5298 hotcpu_notifier(page_alloc_cpu_notify, 0);
5299}
5300
cb45b0e9
HA
5301/*
5302 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5303 * or min_free_kbytes changes.
5304 */
5305static void calculate_totalreserve_pages(void)
5306{
5307 struct pglist_data *pgdat;
5308 unsigned long reserve_pages = 0;
2f6726e5 5309 enum zone_type i, j;
cb45b0e9
HA
5310
5311 for_each_online_pgdat(pgdat) {
5312 for (i = 0; i < MAX_NR_ZONES; i++) {
5313 struct zone *zone = pgdat->node_zones + i;
5314 unsigned long max = 0;
5315
5316 /* Find valid and maximum lowmem_reserve in the zone */
5317 for (j = i; j < MAX_NR_ZONES; j++) {
5318 if (zone->lowmem_reserve[j] > max)
5319 max = zone->lowmem_reserve[j];
5320 }
5321
41858966
MG
5322 /* we treat the high watermark as reserved pages. */
5323 max += high_wmark_pages(zone);
cb45b0e9 5324
b40da049
JL
5325 if (max > zone->managed_pages)
5326 max = zone->managed_pages;
cb45b0e9 5327 reserve_pages += max;
ab8fabd4
JW
5328 /*
5329 * Lowmem reserves are not available to
5330 * GFP_HIGHUSER page cache allocations and
5331 * kswapd tries to balance zones to their high
5332 * watermark. As a result, neither should be
5333 * regarded as dirtyable memory, to prevent a
5334 * situation where reclaim has to clean pages
5335 * in order to balance the zones.
5336 */
5337 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5338 }
5339 }
ab8fabd4 5340 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5341 totalreserve_pages = reserve_pages;
5342}
5343
1da177e4
LT
5344/*
5345 * setup_per_zone_lowmem_reserve - called whenever
5346 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5347 * has a correct pages reserved value, so an adequate number of
5348 * pages are left in the zone after a successful __alloc_pages().
5349 */
5350static void setup_per_zone_lowmem_reserve(void)
5351{
5352 struct pglist_data *pgdat;
2f6726e5 5353 enum zone_type j, idx;
1da177e4 5354
ec936fc5 5355 for_each_online_pgdat(pgdat) {
1da177e4
LT
5356 for (j = 0; j < MAX_NR_ZONES; j++) {
5357 struct zone *zone = pgdat->node_zones + j;
b40da049 5358 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5359
5360 zone->lowmem_reserve[j] = 0;
5361
2f6726e5
CL
5362 idx = j;
5363 while (idx) {
1da177e4
LT
5364 struct zone *lower_zone;
5365
2f6726e5
CL
5366 idx--;
5367
1da177e4
LT
5368 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5369 sysctl_lowmem_reserve_ratio[idx] = 1;
5370
5371 lower_zone = pgdat->node_zones + idx;
b40da049 5372 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5373 sysctl_lowmem_reserve_ratio[idx];
b40da049 5374 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5375 }
5376 }
5377 }
cb45b0e9
HA
5378
5379 /* update totalreserve_pages */
5380 calculate_totalreserve_pages();
1da177e4
LT
5381}
5382
cfd3da1e 5383static void __setup_per_zone_wmarks(void)
1da177e4
LT
5384{
5385 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5386 unsigned long lowmem_pages = 0;
5387 struct zone *zone;
5388 unsigned long flags;
5389
5390 /* Calculate total number of !ZONE_HIGHMEM pages */
5391 for_each_zone(zone) {
5392 if (!is_highmem(zone))
b40da049 5393 lowmem_pages += zone->managed_pages;
1da177e4
LT
5394 }
5395
5396 for_each_zone(zone) {
ac924c60
AM
5397 u64 tmp;
5398
1125b4e3 5399 spin_lock_irqsave(&zone->lock, flags);
b40da049 5400 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5401 do_div(tmp, lowmem_pages);
1da177e4
LT
5402 if (is_highmem(zone)) {
5403 /*
669ed175
NP
5404 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5405 * need highmem pages, so cap pages_min to a small
5406 * value here.
5407 *
41858966 5408 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5409 * deltas controls asynch page reclaim, and so should
5410 * not be capped for highmem.
1da177e4 5411 */
90ae8d67 5412 unsigned long min_pages;
1da177e4 5413
b40da049 5414 min_pages = zone->managed_pages / 1024;
90ae8d67 5415 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5416 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5417 } else {
669ed175
NP
5418 /*
5419 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5420 * proportionate to the zone's size.
5421 */
41858966 5422 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5423 }
5424
41858966
MG
5425 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5426 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5427
56fd56b8 5428 setup_zone_migrate_reserve(zone);
1125b4e3 5429 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5430 }
cb45b0e9
HA
5431
5432 /* update totalreserve_pages */
5433 calculate_totalreserve_pages();
1da177e4
LT
5434}
5435
cfd3da1e
MG
5436/**
5437 * setup_per_zone_wmarks - called when min_free_kbytes changes
5438 * or when memory is hot-{added|removed}
5439 *
5440 * Ensures that the watermark[min,low,high] values for each zone are set
5441 * correctly with respect to min_free_kbytes.
5442 */
5443void setup_per_zone_wmarks(void)
5444{
5445 mutex_lock(&zonelists_mutex);
5446 __setup_per_zone_wmarks();
5447 mutex_unlock(&zonelists_mutex);
5448}
5449
55a4462a 5450/*
556adecb
RR
5451 * The inactive anon list should be small enough that the VM never has to
5452 * do too much work, but large enough that each inactive page has a chance
5453 * to be referenced again before it is swapped out.
5454 *
5455 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5456 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5457 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5458 * the anonymous pages are kept on the inactive list.
5459 *
5460 * total target max
5461 * memory ratio inactive anon
5462 * -------------------------------------
5463 * 10MB 1 5MB
5464 * 100MB 1 50MB
5465 * 1GB 3 250MB
5466 * 10GB 10 0.9GB
5467 * 100GB 31 3GB
5468 * 1TB 101 10GB
5469 * 10TB 320 32GB
5470 */
1b79acc9 5471static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5472{
96cb4df5 5473 unsigned int gb, ratio;
556adecb 5474
96cb4df5 5475 /* Zone size in gigabytes */
b40da049 5476 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5477 if (gb)
556adecb 5478 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5479 else
5480 ratio = 1;
556adecb 5481
96cb4df5
MK
5482 zone->inactive_ratio = ratio;
5483}
556adecb 5484
839a4fcc 5485static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5486{
5487 struct zone *zone;
5488
5489 for_each_zone(zone)
5490 calculate_zone_inactive_ratio(zone);
556adecb
RR
5491}
5492
1da177e4
LT
5493/*
5494 * Initialise min_free_kbytes.
5495 *
5496 * For small machines we want it small (128k min). For large machines
5497 * we want it large (64MB max). But it is not linear, because network
5498 * bandwidth does not increase linearly with machine size. We use
5499 *
5500 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5501 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5502 *
5503 * which yields
5504 *
5505 * 16MB: 512k
5506 * 32MB: 724k
5507 * 64MB: 1024k
5508 * 128MB: 1448k
5509 * 256MB: 2048k
5510 * 512MB: 2896k
5511 * 1024MB: 4096k
5512 * 2048MB: 5792k
5513 * 4096MB: 8192k
5514 * 8192MB: 11584k
5515 * 16384MB: 16384k
5516 */
1b79acc9 5517int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5518{
5519 unsigned long lowmem_kbytes;
5520
5521 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5522
5523 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5524 if (min_free_kbytes < 128)
5525 min_free_kbytes = 128;
5526 if (min_free_kbytes > 65536)
5527 min_free_kbytes = 65536;
bc75d33f 5528 setup_per_zone_wmarks();
a6cccdc3 5529 refresh_zone_stat_thresholds();
1da177e4 5530 setup_per_zone_lowmem_reserve();
556adecb 5531 setup_per_zone_inactive_ratio();
1da177e4
LT
5532 return 0;
5533}
bc75d33f 5534module_init(init_per_zone_wmark_min)
1da177e4
LT
5535
5536/*
5537 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5538 * that we can call two helper functions whenever min_free_kbytes
5539 * changes.
5540 */
5541int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5542 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5543{
8d65af78 5544 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5545 if (write)
bc75d33f 5546 setup_per_zone_wmarks();
1da177e4
LT
5547 return 0;
5548}
5549
9614634f
CL
5550#ifdef CONFIG_NUMA
5551int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5552 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5553{
5554 struct zone *zone;
5555 int rc;
5556
8d65af78 5557 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5558 if (rc)
5559 return rc;
5560
5561 for_each_zone(zone)
b40da049 5562 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5563 sysctl_min_unmapped_ratio) / 100;
5564 return 0;
5565}
0ff38490
CL
5566
5567int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5568 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5569{
5570 struct zone *zone;
5571 int rc;
5572
8d65af78 5573 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5574 if (rc)
5575 return rc;
5576
5577 for_each_zone(zone)
b40da049 5578 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5579 sysctl_min_slab_ratio) / 100;
5580 return 0;
5581}
9614634f
CL
5582#endif
5583
1da177e4
LT
5584/*
5585 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5586 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5587 * whenever sysctl_lowmem_reserve_ratio changes.
5588 *
5589 * The reserve ratio obviously has absolutely no relation with the
41858966 5590 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5591 * if in function of the boot time zone sizes.
5592 */
5593int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5594 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5595{
8d65af78 5596 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5597 setup_per_zone_lowmem_reserve();
5598 return 0;
5599}
5600
8ad4b1fb
RS
5601/*
5602 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5603 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5604 * can have before it gets flushed back to buddy allocator.
5605 */
8ad4b1fb 5606int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5607 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5608{
5609 struct zone *zone;
5610 unsigned int cpu;
5611 int ret;
5612
8d65af78 5613 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5614 if (!write || (ret < 0))
8ad4b1fb 5615 return ret;
c8e251fa
CS
5616
5617 mutex_lock(&pcp_batch_high_lock);
364df0eb 5618 for_each_populated_zone(zone) {
22a7f12b
CS
5619 unsigned long high;
5620 high = zone->managed_pages / percpu_pagelist_fraction;
5621 for_each_possible_cpu(cpu)
3664033c
CS
5622 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5623 high);
8ad4b1fb 5624 }
c8e251fa 5625 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5626 return 0;
5627}
5628
f034b5d4 5629int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5630
5631#ifdef CONFIG_NUMA
5632static int __init set_hashdist(char *str)
5633{
5634 if (!str)
5635 return 0;
5636 hashdist = simple_strtoul(str, &str, 0);
5637 return 1;
5638}
5639__setup("hashdist=", set_hashdist);
5640#endif
5641
5642/*
5643 * allocate a large system hash table from bootmem
5644 * - it is assumed that the hash table must contain an exact power-of-2
5645 * quantity of entries
5646 * - limit is the number of hash buckets, not the total allocation size
5647 */
5648void *__init alloc_large_system_hash(const char *tablename,
5649 unsigned long bucketsize,
5650 unsigned long numentries,
5651 int scale,
5652 int flags,
5653 unsigned int *_hash_shift,
5654 unsigned int *_hash_mask,
31fe62b9
TB
5655 unsigned long low_limit,
5656 unsigned long high_limit)
1da177e4 5657{
31fe62b9 5658 unsigned long long max = high_limit;
1da177e4
LT
5659 unsigned long log2qty, size;
5660 void *table = NULL;
5661
5662 /* allow the kernel cmdline to have a say */
5663 if (!numentries) {
5664 /* round applicable memory size up to nearest megabyte */
04903664 5665 numentries = nr_kernel_pages;
1da177e4
LT
5666 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5667 numentries >>= 20 - PAGE_SHIFT;
5668 numentries <<= 20 - PAGE_SHIFT;
5669
5670 /* limit to 1 bucket per 2^scale bytes of low memory */
5671 if (scale > PAGE_SHIFT)
5672 numentries >>= (scale - PAGE_SHIFT);
5673 else
5674 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5675
5676 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5677 if (unlikely(flags & HASH_SMALL)) {
5678 /* Makes no sense without HASH_EARLY */
5679 WARN_ON(!(flags & HASH_EARLY));
5680 if (!(numentries >> *_hash_shift)) {
5681 numentries = 1UL << *_hash_shift;
5682 BUG_ON(!numentries);
5683 }
5684 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5685 numentries = PAGE_SIZE / bucketsize;
1da177e4 5686 }
6e692ed3 5687 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5688
5689 /* limit allocation size to 1/16 total memory by default */
5690 if (max == 0) {
5691 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5692 do_div(max, bucketsize);
5693 }
074b8517 5694 max = min(max, 0x80000000ULL);
1da177e4 5695
31fe62b9
TB
5696 if (numentries < low_limit)
5697 numentries = low_limit;
1da177e4
LT
5698 if (numentries > max)
5699 numentries = max;
5700
f0d1b0b3 5701 log2qty = ilog2(numentries);
1da177e4
LT
5702
5703 do {
5704 size = bucketsize << log2qty;
5705 if (flags & HASH_EARLY)
74768ed8 5706 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5707 else if (hashdist)
5708 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5709 else {
1037b83b
ED
5710 /*
5711 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5712 * some pages at the end of hash table which
5713 * alloc_pages_exact() automatically does
1037b83b 5714 */
264ef8a9 5715 if (get_order(size) < MAX_ORDER) {
a1dd268c 5716 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5717 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5718 }
1da177e4
LT
5719 }
5720 } while (!table && size > PAGE_SIZE && --log2qty);
5721
5722 if (!table)
5723 panic("Failed to allocate %s hash table\n", tablename);
5724
f241e660 5725 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5726 tablename,
f241e660 5727 (1UL << log2qty),
f0d1b0b3 5728 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5729 size);
5730
5731 if (_hash_shift)
5732 *_hash_shift = log2qty;
5733 if (_hash_mask)
5734 *_hash_mask = (1 << log2qty) - 1;
5735
5736 return table;
5737}
a117e66e 5738
835c134e
MG
5739/* Return a pointer to the bitmap storing bits affecting a block of pages */
5740static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5741 unsigned long pfn)
5742{
5743#ifdef CONFIG_SPARSEMEM
5744 return __pfn_to_section(pfn)->pageblock_flags;
5745#else
5746 return zone->pageblock_flags;
5747#endif /* CONFIG_SPARSEMEM */
5748}
5749
5750static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5751{
5752#ifdef CONFIG_SPARSEMEM
5753 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5754 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5755#else
c060f943 5756 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5757 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5758#endif /* CONFIG_SPARSEMEM */
5759}
5760
5761/**
d9c23400 5762 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5763 * @page: The page within the block of interest
5764 * @start_bitidx: The first bit of interest to retrieve
5765 * @end_bitidx: The last bit of interest
5766 * returns pageblock_bits flags
5767 */
5768unsigned long get_pageblock_flags_group(struct page *page,
5769 int start_bitidx, int end_bitidx)
5770{
5771 struct zone *zone;
5772 unsigned long *bitmap;
5773 unsigned long pfn, bitidx;
5774 unsigned long flags = 0;
5775 unsigned long value = 1;
5776
5777 zone = page_zone(page);
5778 pfn = page_to_pfn(page);
5779 bitmap = get_pageblock_bitmap(zone, pfn);
5780 bitidx = pfn_to_bitidx(zone, pfn);
5781
5782 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5783 if (test_bit(bitidx + start_bitidx, bitmap))
5784 flags |= value;
6220ec78 5785
835c134e
MG
5786 return flags;
5787}
5788
5789/**
d9c23400 5790 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5791 * @page: The page within the block of interest
5792 * @start_bitidx: The first bit of interest
5793 * @end_bitidx: The last bit of interest
5794 * @flags: The flags to set
5795 */
5796void set_pageblock_flags_group(struct page *page, unsigned long flags,
5797 int start_bitidx, int end_bitidx)
5798{
5799 struct zone *zone;
5800 unsigned long *bitmap;
5801 unsigned long pfn, bitidx;
5802 unsigned long value = 1;
5803
5804 zone = page_zone(page);
5805 pfn = page_to_pfn(page);
5806 bitmap = get_pageblock_bitmap(zone, pfn);
5807 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5808 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5809
5810 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5811 if (flags & value)
5812 __set_bit(bitidx + start_bitidx, bitmap);
5813 else
5814 __clear_bit(bitidx + start_bitidx, bitmap);
5815}
a5d76b54
KH
5816
5817/*
80934513
MK
5818 * This function checks whether pageblock includes unmovable pages or not.
5819 * If @count is not zero, it is okay to include less @count unmovable pages
5820 *
5821 * PageLRU check wihtout isolation or lru_lock could race so that
5822 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5823 * expect this function should be exact.
a5d76b54 5824 */
b023f468
WC
5825bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5826 bool skip_hwpoisoned_pages)
49ac8255
KH
5827{
5828 unsigned long pfn, iter, found;
47118af0
MN
5829 int mt;
5830
49ac8255
KH
5831 /*
5832 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5833 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5834 */
5835 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5836 return false;
47118af0
MN
5837 mt = get_pageblock_migratetype(page);
5838 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5839 return false;
49ac8255
KH
5840
5841 pfn = page_to_pfn(page);
5842 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5843 unsigned long check = pfn + iter;
5844
29723fcc 5845 if (!pfn_valid_within(check))
49ac8255 5846 continue;
29723fcc 5847
49ac8255 5848 page = pfn_to_page(check);
97d255c8
MK
5849 /*
5850 * We can't use page_count without pin a page
5851 * because another CPU can free compound page.
5852 * This check already skips compound tails of THP
5853 * because their page->_count is zero at all time.
5854 */
5855 if (!atomic_read(&page->_count)) {
49ac8255
KH
5856 if (PageBuddy(page))
5857 iter += (1 << page_order(page)) - 1;
5858 continue;
5859 }
97d255c8 5860
b023f468
WC
5861 /*
5862 * The HWPoisoned page may be not in buddy system, and
5863 * page_count() is not 0.
5864 */
5865 if (skip_hwpoisoned_pages && PageHWPoison(page))
5866 continue;
5867
49ac8255
KH
5868 if (!PageLRU(page))
5869 found++;
5870 /*
5871 * If there are RECLAIMABLE pages, we need to check it.
5872 * But now, memory offline itself doesn't call shrink_slab()
5873 * and it still to be fixed.
5874 */
5875 /*
5876 * If the page is not RAM, page_count()should be 0.
5877 * we don't need more check. This is an _used_ not-movable page.
5878 *
5879 * The problematic thing here is PG_reserved pages. PG_reserved
5880 * is set to both of a memory hole page and a _used_ kernel
5881 * page at boot.
5882 */
5883 if (found > count)
80934513 5884 return true;
49ac8255 5885 }
80934513 5886 return false;
49ac8255
KH
5887}
5888
5889bool is_pageblock_removable_nolock(struct page *page)
5890{
656a0706
MH
5891 struct zone *zone;
5892 unsigned long pfn;
687875fb
MH
5893
5894 /*
5895 * We have to be careful here because we are iterating over memory
5896 * sections which are not zone aware so we might end up outside of
5897 * the zone but still within the section.
656a0706
MH
5898 * We have to take care about the node as well. If the node is offline
5899 * its NODE_DATA will be NULL - see page_zone.
687875fb 5900 */
656a0706
MH
5901 if (!node_online(page_to_nid(page)))
5902 return false;
5903
5904 zone = page_zone(page);
5905 pfn = page_to_pfn(page);
108bcc96 5906 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
5907 return false;
5908
b023f468 5909 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5910}
0c0e6195 5911
041d3a8c
MN
5912#ifdef CONFIG_CMA
5913
5914static unsigned long pfn_max_align_down(unsigned long pfn)
5915{
5916 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5917 pageblock_nr_pages) - 1);
5918}
5919
5920static unsigned long pfn_max_align_up(unsigned long pfn)
5921{
5922 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5923 pageblock_nr_pages));
5924}
5925
041d3a8c 5926/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5927static int __alloc_contig_migrate_range(struct compact_control *cc,
5928 unsigned long start, unsigned long end)
041d3a8c
MN
5929{
5930 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5931 unsigned long nr_reclaimed;
041d3a8c
MN
5932 unsigned long pfn = start;
5933 unsigned int tries = 0;
5934 int ret = 0;
5935
be49a6e1 5936 migrate_prep();
041d3a8c 5937
bb13ffeb 5938 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5939 if (fatal_signal_pending(current)) {
5940 ret = -EINTR;
5941 break;
5942 }
5943
bb13ffeb
MG
5944 if (list_empty(&cc->migratepages)) {
5945 cc->nr_migratepages = 0;
5946 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5947 pfn, end, true);
041d3a8c
MN
5948 if (!pfn) {
5949 ret = -EINTR;
5950 break;
5951 }
5952 tries = 0;
5953 } else if (++tries == 5) {
5954 ret = ret < 0 ? ret : -EBUSY;
5955 break;
5956 }
5957
beb51eaa
MK
5958 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5959 &cc->migratepages);
5960 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5961
9c620e2b
HD
5962 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5963 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 5964 }
2a6f5124
SP
5965 if (ret < 0) {
5966 putback_movable_pages(&cc->migratepages);
5967 return ret;
5968 }
5969 return 0;
041d3a8c
MN
5970}
5971
5972/**
5973 * alloc_contig_range() -- tries to allocate given range of pages
5974 * @start: start PFN to allocate
5975 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5976 * @migratetype: migratetype of the underlaying pageblocks (either
5977 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5978 * in range must have the same migratetype and it must
5979 * be either of the two.
041d3a8c
MN
5980 *
5981 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5982 * aligned, however it's the caller's responsibility to guarantee that
5983 * we are the only thread that changes migrate type of pageblocks the
5984 * pages fall in.
5985 *
5986 * The PFN range must belong to a single zone.
5987 *
5988 * Returns zero on success or negative error code. On success all
5989 * pages which PFN is in [start, end) are allocated for the caller and
5990 * need to be freed with free_contig_range().
5991 */
0815f3d8
MN
5992int alloc_contig_range(unsigned long start, unsigned long end,
5993 unsigned migratetype)
041d3a8c 5994{
041d3a8c
MN
5995 unsigned long outer_start, outer_end;
5996 int ret = 0, order;
5997
bb13ffeb
MG
5998 struct compact_control cc = {
5999 .nr_migratepages = 0,
6000 .order = -1,
6001 .zone = page_zone(pfn_to_page(start)),
6002 .sync = true,
6003 .ignore_skip_hint = true,
6004 };
6005 INIT_LIST_HEAD(&cc.migratepages);
6006
041d3a8c
MN
6007 /*
6008 * What we do here is we mark all pageblocks in range as
6009 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6010 * have different sizes, and due to the way page allocator
6011 * work, we align the range to biggest of the two pages so
6012 * that page allocator won't try to merge buddies from
6013 * different pageblocks and change MIGRATE_ISOLATE to some
6014 * other migration type.
6015 *
6016 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6017 * migrate the pages from an unaligned range (ie. pages that
6018 * we are interested in). This will put all the pages in
6019 * range back to page allocator as MIGRATE_ISOLATE.
6020 *
6021 * When this is done, we take the pages in range from page
6022 * allocator removing them from the buddy system. This way
6023 * page allocator will never consider using them.
6024 *
6025 * This lets us mark the pageblocks back as
6026 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6027 * aligned range but not in the unaligned, original range are
6028 * put back to page allocator so that buddy can use them.
6029 */
6030
6031 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6032 pfn_max_align_up(end), migratetype,
6033 false);
041d3a8c 6034 if (ret)
86a595f9 6035 return ret;
041d3a8c 6036
bb13ffeb 6037 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6038 if (ret)
6039 goto done;
6040
6041 /*
6042 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6043 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6044 * more, all pages in [start, end) are free in page allocator.
6045 * What we are going to do is to allocate all pages from
6046 * [start, end) (that is remove them from page allocator).
6047 *
6048 * The only problem is that pages at the beginning and at the
6049 * end of interesting range may be not aligned with pages that
6050 * page allocator holds, ie. they can be part of higher order
6051 * pages. Because of this, we reserve the bigger range and
6052 * once this is done free the pages we are not interested in.
6053 *
6054 * We don't have to hold zone->lock here because the pages are
6055 * isolated thus they won't get removed from buddy.
6056 */
6057
6058 lru_add_drain_all();
6059 drain_all_pages();
6060
6061 order = 0;
6062 outer_start = start;
6063 while (!PageBuddy(pfn_to_page(outer_start))) {
6064 if (++order >= MAX_ORDER) {
6065 ret = -EBUSY;
6066 goto done;
6067 }
6068 outer_start &= ~0UL << order;
6069 }
6070
6071 /* Make sure the range is really isolated. */
b023f468 6072 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6073 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6074 outer_start, end);
6075 ret = -EBUSY;
6076 goto done;
6077 }
6078
49f223a9
MS
6079
6080 /* Grab isolated pages from freelists. */
bb13ffeb 6081 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6082 if (!outer_end) {
6083 ret = -EBUSY;
6084 goto done;
6085 }
6086
6087 /* Free head and tail (if any) */
6088 if (start != outer_start)
6089 free_contig_range(outer_start, start - outer_start);
6090 if (end != outer_end)
6091 free_contig_range(end, outer_end - end);
6092
6093done:
6094 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6095 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6096 return ret;
6097}
6098
6099void free_contig_range(unsigned long pfn, unsigned nr_pages)
6100{
bcc2b02f
MS
6101 unsigned int count = 0;
6102
6103 for (; nr_pages--; pfn++) {
6104 struct page *page = pfn_to_page(pfn);
6105
6106 count += page_count(page) != 1;
6107 __free_page(page);
6108 }
6109 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6110}
6111#endif
6112
4ed7e022 6113#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6114/*
6115 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6116 * page high values need to be recalulated.
6117 */
4ed7e022
JL
6118void __meminit zone_pcp_update(struct zone *zone)
6119{
0a647f38 6120 unsigned cpu;
c8e251fa 6121 mutex_lock(&pcp_batch_high_lock);
0a647f38 6122 for_each_possible_cpu(cpu)
169f6c19
CS
6123 pageset_set_high_and_batch(zone,
6124 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6125 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6126}
6127#endif
6128
340175b7
JL
6129void zone_pcp_reset(struct zone *zone)
6130{
6131 unsigned long flags;
5a883813
MK
6132 int cpu;
6133 struct per_cpu_pageset *pset;
340175b7
JL
6134
6135 /* avoid races with drain_pages() */
6136 local_irq_save(flags);
6137 if (zone->pageset != &boot_pageset) {
5a883813
MK
6138 for_each_online_cpu(cpu) {
6139 pset = per_cpu_ptr(zone->pageset, cpu);
6140 drain_zonestat(zone, pset);
6141 }
340175b7
JL
6142 free_percpu(zone->pageset);
6143 zone->pageset = &boot_pageset;
6144 }
6145 local_irq_restore(flags);
6146}
6147
6dcd73d7 6148#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6149/*
6150 * All pages in the range must be isolated before calling this.
6151 */
6152void
6153__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6154{
6155 struct page *page;
6156 struct zone *zone;
6157 int order, i;
6158 unsigned long pfn;
6159 unsigned long flags;
6160 /* find the first valid pfn */
6161 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6162 if (pfn_valid(pfn))
6163 break;
6164 if (pfn == end_pfn)
6165 return;
6166 zone = page_zone(pfn_to_page(pfn));
6167 spin_lock_irqsave(&zone->lock, flags);
6168 pfn = start_pfn;
6169 while (pfn < end_pfn) {
6170 if (!pfn_valid(pfn)) {
6171 pfn++;
6172 continue;
6173 }
6174 page = pfn_to_page(pfn);
b023f468
WC
6175 /*
6176 * The HWPoisoned page may be not in buddy system, and
6177 * page_count() is not 0.
6178 */
6179 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6180 pfn++;
6181 SetPageReserved(page);
6182 continue;
6183 }
6184
0c0e6195
KH
6185 BUG_ON(page_count(page));
6186 BUG_ON(!PageBuddy(page));
6187 order = page_order(page);
6188#ifdef CONFIG_DEBUG_VM
6189 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6190 pfn, 1 << order, end_pfn);
6191#endif
6192 list_del(&page->lru);
6193 rmv_page_order(page);
6194 zone->free_area[order].nr_free--;
cea27eb2
WL
6195#ifdef CONFIG_HIGHMEM
6196 if (PageHighMem(page))
6197 totalhigh_pages -= 1 << order;
6198#endif
0c0e6195
KH
6199 for (i = 0; i < (1 << order); i++)
6200 SetPageReserved((page+i));
6201 pfn += (1 << order);
6202 }
6203 spin_unlock_irqrestore(&zone->lock, flags);
6204}
6205#endif
8d22ba1b
WF
6206
6207#ifdef CONFIG_MEMORY_FAILURE
6208bool is_free_buddy_page(struct page *page)
6209{
6210 struct zone *zone = page_zone(page);
6211 unsigned long pfn = page_to_pfn(page);
6212 unsigned long flags;
6213 int order;
6214
6215 spin_lock_irqsave(&zone->lock, flags);
6216 for (order = 0; order < MAX_ORDER; order++) {
6217 struct page *page_head = page - (pfn & ((1 << order) - 1));
6218
6219 if (PageBuddy(page_head) && page_order(page_head) >= order)
6220 break;
6221 }
6222 spin_unlock_irqrestore(&zone->lock, flags);
6223
6224 return order < MAX_ORDER;
6225}
6226#endif
718a3821 6227
51300cef 6228static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6229 {1UL << PG_locked, "locked" },
6230 {1UL << PG_error, "error" },
6231 {1UL << PG_referenced, "referenced" },
6232 {1UL << PG_uptodate, "uptodate" },
6233 {1UL << PG_dirty, "dirty" },
6234 {1UL << PG_lru, "lru" },
6235 {1UL << PG_active, "active" },
6236 {1UL << PG_slab, "slab" },
6237 {1UL << PG_owner_priv_1, "owner_priv_1" },
6238 {1UL << PG_arch_1, "arch_1" },
6239 {1UL << PG_reserved, "reserved" },
6240 {1UL << PG_private, "private" },
6241 {1UL << PG_private_2, "private_2" },
6242 {1UL << PG_writeback, "writeback" },
6243#ifdef CONFIG_PAGEFLAGS_EXTENDED
6244 {1UL << PG_head, "head" },
6245 {1UL << PG_tail, "tail" },
6246#else
6247 {1UL << PG_compound, "compound" },
6248#endif
6249 {1UL << PG_swapcache, "swapcache" },
6250 {1UL << PG_mappedtodisk, "mappedtodisk" },
6251 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6252 {1UL << PG_swapbacked, "swapbacked" },
6253 {1UL << PG_unevictable, "unevictable" },
6254#ifdef CONFIG_MMU
6255 {1UL << PG_mlocked, "mlocked" },
6256#endif
6257#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6258 {1UL << PG_uncached, "uncached" },
6259#endif
6260#ifdef CONFIG_MEMORY_FAILURE
6261 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6262#endif
6263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6264 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6265#endif
718a3821
WF
6266};
6267
6268static void dump_page_flags(unsigned long flags)
6269{
6270 const char *delim = "";
6271 unsigned long mask;
6272 int i;
6273
51300cef 6274 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6275
718a3821
WF
6276 printk(KERN_ALERT "page flags: %#lx(", flags);
6277
6278 /* remove zone id */
6279 flags &= (1UL << NR_PAGEFLAGS) - 1;
6280
51300cef 6281 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6282
6283 mask = pageflag_names[i].mask;
6284 if ((flags & mask) != mask)
6285 continue;
6286
6287 flags &= ~mask;
6288 printk("%s%s", delim, pageflag_names[i].name);
6289 delim = "|";
6290 }
6291
6292 /* check for left over flags */
6293 if (flags)
6294 printk("%s%#lx", delim, flags);
6295
6296 printk(")\n");
6297}
6298
6299void dump_page(struct page *page)
6300{
6301 printk(KERN_ALERT
6302 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6303 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6304 page->mapping, page->index);
6305 dump_page_flags(page->flags);
f212ad7c 6306 mem_cgroup_print_bad_page(page);
718a3821 6307}
This page took 1.42689 seconds and 5 git commands to generate.