Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc
HX
3037}
3038
1def9238
ED
3039static void qdisc_pkt_len_init(struct sk_buff *skb)
3040{
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
757b8b1d 3049 unsigned int hdr_len;
15e5a030 3050 u16 gso_segs = shinfo->gso_segs;
1def9238 3051
757b8b1d
ED
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
1def9238
ED
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3066 }
3067}
3068
bbd8a0d3
KK
3069static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072{
3073 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3074 struct sk_buff *to_free = NULL;
a2da570d 3075 bool contended;
bbd8a0d3
KK
3076 int rc;
3077
a2da570d 3078 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
f9eb8aea 3082 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3083 * often and dequeue packets faster.
79640a4c 3084 */
a2da570d 3085 contended = qdisc_is_running(q);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
bbd8a0d3
KK
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3091 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3094 qdisc_run_begin(q)) {
bbd8a0d3
KK
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
bfe0d029 3100
bfe0d029
ED
3101 qdisc_bstats_update(q, skb);
3102
55a93b3e 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
bbd8a0d3 3108 __qdisc_run(q);
79640a4c 3109 } else
bc135b23 3110 qdisc_run_end(q);
bbd8a0d3
KK
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
520ac30f 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
bbd8a0d3
KK
3122 }
3123 spin_unlock(root_lock);
520ac30f
ED
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
79640a4c
ED
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
bbd8a0d3
KK
3128 return rc;
3129}
3130
86f8515f 3131#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3132static void skb_update_prio(struct sk_buff *skb)
3133{
6977a79d 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3135
91c68ce2 3136 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
5bc1421e
NH
3143}
3144#else
3145#define skb_update_prio(skb)
3146#endif
3147
f60e5990 3148DEFINE_PER_CPU(int, xmit_recursion);
3149EXPORT_SYMBOL(xmit_recursion);
3150
95603e22
MM
3151/**
3152 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3155 * @skb: buffer to transmit
3156 */
0c4b51f0 3157int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3158{
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167}
3168EXPORT_SYMBOL(dev_loopback_xmit);
3169
1f211a1b
DB
3170#ifdef CONFIG_NET_EGRESS
3171static struct sk_buff *
3172sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173{
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3193 kfree_skb(skb);
3194 return NULL;
1f211a1b
DB
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3198 consume_skb(skb);
1f211a1b
DB
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210}
3211#endif /* CONFIG_NET_EGRESS */
3212
638b2a69
JP
3213static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214{
3215#ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238#else
3239 return -1;
3240#endif
3241}
3242
3243static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244{
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
004a5d01 3255 sk_fullsock(sk) &&
638b2a69
JP
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263}
3264
3265struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268{
3269 int queue_index = 0;
3270
3271#ifdef CONFIG_XPS
52bd2d62
ED
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276#endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292}
3293
d29f749e 3294/**
9d08dd3d 3295 * __dev_queue_xmit - transmit a buffer
d29f749e 3296 * @skb: buffer to transmit
9d08dd3d 3297 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
0a59f3a9 3320static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3321{
3322 struct net_device *dev = skb->dev;
dc2b4847 3323 struct netdev_queue *txq;
1da177e4
LT
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
6d1ccff6
ED
3327 skb_reset_mac_header(skb);
3328
e7fd2885
WB
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
4ec93edb
YH
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
1da177e4 3334 */
4ec93edb 3335 rcu_read_lock_bh();
1da177e4 3336
5bc1421e
NH
3337 skb_update_prio(skb);
3338
1f211a1b
DB
3339 qdisc_pkt_len_init(skb);
3340#ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342# ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348# endif
3349#endif
02875878
ED
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
f663dd9a 3358 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3359 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3360
cf66ba58 3361 trace_net_dev_queue(skb);
1da177e4 3362 if (q->enqueue) {
bbd8a0d3 3363 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3364 goto out;
1da177e4
LT
3365 }
3366
3367 /* The device has no queue. Common case for software devices:
3368 loopback, all the sorts of tunnels...
3369
932ff279
HX
3370 Really, it is unlikely that netif_tx_lock protection is necessary
3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3372 counters.)
3373 However, it is possible, that they rely on protection
3374 made by us here.
3375
3376 Check this and shot the lock. It is not prone from deadlocks.
3377 Either shot noqueue qdisc, it is even simpler 8)
3378 */
3379 if (dev->flags & IFF_UP) {
3380 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
c773e847 3382 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3383 if (unlikely(__this_cpu_read(xmit_recursion) >
3384 XMIT_RECURSION_LIMIT))
745e20f1
ED
3385 goto recursion_alert;
3386
1f59533f
JDB
3387 skb = validate_xmit_skb(skb, dev);
3388 if (!skb)
d21fd63e 3389 goto out;
1f59533f 3390
c773e847 3391 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3392
73466498 3393 if (!netif_xmit_stopped(txq)) {
745e20f1 3394 __this_cpu_inc(xmit_recursion);
ce93718f 3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3396 __this_cpu_dec(xmit_recursion);
572a9d7b 3397 if (dev_xmit_complete(rc)) {
c773e847 3398 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3399 goto out;
3400 }
3401 }
c773e847 3402 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 dev->name);
1da177e4
LT
3405 } else {
3406 /* Recursion is detected! It is possible,
745e20f1
ED
3407 * unfortunately
3408 */
3409recursion_alert:
e87cc472
JP
3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 dev->name);
1da177e4
LT
3412 }
3413 }
3414
3415 rc = -ENETDOWN;
d4828d85 3416 rcu_read_unlock_bh();
1da177e4 3417
015f0688 3418 atomic_long_inc(&dev->tx_dropped);
1f59533f 3419 kfree_skb_list(skb);
1da177e4
LT
3420 return rc;
3421out:
d4828d85 3422 rcu_read_unlock_bh();
1da177e4
LT
3423 return rc;
3424}
f663dd9a 3425
2b4aa3ce 3426int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3427{
3428 return __dev_queue_xmit(skb, NULL);
3429}
2b4aa3ce 3430EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3431
f663dd9a
JW
3432int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433{
3434 return __dev_queue_xmit(skb, accel_priv);
3435}
3436EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
1da177e4
LT
3438
3439/*=======================================================================
3440 Receiver routines
3441 =======================================================================*/
3442
6b2bedc3 3443int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3444EXPORT_SYMBOL(netdev_max_backlog);
3445
3b098e2d 3446int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3447int netdev_budget __read_mostly = 300;
3448int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3449
eecfd7c4
ED
3450/* Called with irq disabled */
3451static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453{
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456}
3457
bfb564e7
KK
3458#ifdef CONFIG_RPS
3459
3460/* One global table that all flow-based protocols share. */
6e3f7faf 3461struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3462EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3463u32 rps_cpu_mask __read_mostly;
3464EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3465
c5905afb 3466struct static_key rps_needed __read_mostly;
3df97ba8 3467EXPORT_SYMBOL(rps_needed);
adc9300e 3468
c445477d
BH
3469static struct rps_dev_flow *
3470set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 struct rps_dev_flow *rflow, u16 next_cpu)
3472{
a31196b0 3473 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3474#ifdef CONFIG_RFS_ACCEL
3475 struct netdev_rx_queue *rxqueue;
3476 struct rps_dev_flow_table *flow_table;
3477 struct rps_dev_flow *old_rflow;
3478 u32 flow_id;
3479 u16 rxq_index;
3480 int rc;
3481
3482 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3485 goto out;
3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 if (rxq_index == skb_get_rx_queue(skb))
3488 goto out;
3489
3490 rxqueue = dev->_rx + rxq_index;
3491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 if (!flow_table)
3493 goto out;
61b905da 3494 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 rxq_index, flow_id);
3497 if (rc < 0)
3498 goto out;
3499 old_rflow = rflow;
3500 rflow = &flow_table->flows[flow_id];
c445477d
BH
3501 rflow->filter = rc;
3502 if (old_rflow->filter == rflow->filter)
3503 old_rflow->filter = RPS_NO_FILTER;
3504 out:
3505#endif
3506 rflow->last_qtail =
09994d1b 3507 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3508 }
3509
09994d1b 3510 rflow->cpu = next_cpu;
c445477d
BH
3511 return rflow;
3512}
3513
bfb564e7
KK
3514/*
3515 * get_rps_cpu is called from netif_receive_skb and returns the target
3516 * CPU from the RPS map of the receiving queue for a given skb.
3517 * rcu_read_lock must be held on entry.
3518 */
3519static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 struct rps_dev_flow **rflowp)
3521{
567e4b79
ED
3522 const struct rps_sock_flow_table *sock_flow_table;
3523 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3524 struct rps_dev_flow_table *flow_table;
567e4b79 3525 struct rps_map *map;
bfb564e7 3526 int cpu = -1;
567e4b79 3527 u32 tcpu;
61b905da 3528 u32 hash;
bfb564e7
KK
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 u16 index = skb_get_rx_queue(skb);
567e4b79 3532
62fe0b40
BH
3533 if (unlikely(index >= dev->real_num_rx_queues)) {
3534 WARN_ONCE(dev->real_num_rx_queues > 1,
3535 "%s received packet on queue %u, but number "
3536 "of RX queues is %u\n",
3537 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3538 goto done;
3539 }
567e4b79
ED
3540 rxqueue += index;
3541 }
bfb564e7 3542
567e4b79
ED
3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3546 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3547 if (!flow_table && !map)
bfb564e7
KK
3548 goto done;
3549
2d47b459 3550 skb_reset_network_header(skb);
61b905da
TH
3551 hash = skb_get_hash(skb);
3552 if (!hash)
bfb564e7
KK
3553 goto done;
3554
fec5e652
TH
3555 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 if (flow_table && sock_flow_table) {
fec5e652 3557 struct rps_dev_flow *rflow;
567e4b79
ED
3558 u32 next_cpu;
3559 u32 ident;
3560
3561 /* First check into global flow table if there is a match */
3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 if ((ident ^ hash) & ~rps_cpu_mask)
3564 goto try_rps;
fec5e652 3565
567e4b79
ED
3566 next_cpu = ident & rps_cpu_mask;
3567
3568 /* OK, now we know there is a match,
3569 * we can look at the local (per receive queue) flow table
3570 */
61b905da 3571 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3572 tcpu = rflow->cpu;
3573
fec5e652
TH
3574 /*
3575 * If the desired CPU (where last recvmsg was done) is
3576 * different from current CPU (one in the rx-queue flow
3577 * table entry), switch if one of the following holds:
a31196b0 3578 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3579 * - Current CPU is offline.
3580 * - The current CPU's queue tail has advanced beyond the
3581 * last packet that was enqueued using this table entry.
3582 * This guarantees that all previous packets for the flow
3583 * have been dequeued, thus preserving in order delivery.
3584 */
3585 if (unlikely(tcpu != next_cpu) &&
a31196b0 3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3588 rflow->last_qtail)) >= 0)) {
3589 tcpu = next_cpu;
c445477d 3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3591 }
c445477d 3592
a31196b0 3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3594 *rflowp = rflow;
3595 cpu = tcpu;
3596 goto done;
3597 }
3598 }
3599
567e4b79
ED
3600try_rps:
3601
0a9627f2 3602 if (map) {
8fc54f68 3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3604 if (cpu_online(tcpu)) {
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610done:
0a9627f2
TH
3611 return cpu;
3612}
3613
c445477d
BH
3614#ifdef CONFIG_RFS_ACCEL
3615
3616/**
3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618 * @dev: Device on which the filter was set
3619 * @rxq_index: RX queue index
3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622 *
3623 * Drivers that implement ndo_rx_flow_steer() should periodically call
3624 * this function for each installed filter and remove the filters for
3625 * which it returns %true.
3626 */
3627bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 u32 flow_id, u16 filter_id)
3629{
3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 struct rps_dev_flow_table *flow_table;
3632 struct rps_dev_flow *rflow;
3633 bool expire = true;
a31196b0 3634 unsigned int cpu;
c445477d
BH
3635
3636 rcu_read_lock();
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 if (flow_table && flow_id <= flow_table->mask) {
3639 rflow = &flow_table->flows[flow_id];
3640 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 rflow->last_qtail) <
3644 (int)(10 * flow_table->mask)))
3645 expire = false;
3646 }
3647 rcu_read_unlock();
3648 return expire;
3649}
3650EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652#endif /* CONFIG_RFS_ACCEL */
3653
0a9627f2 3654/* Called from hardirq (IPI) context */
e36fa2f7 3655static void rps_trigger_softirq(void *data)
0a9627f2 3656{
e36fa2f7
ED
3657 struct softnet_data *sd = data;
3658
eecfd7c4 3659 ____napi_schedule(sd, &sd->backlog);
dee42870 3660 sd->received_rps++;
0a9627f2 3661}
e36fa2f7 3662
fec5e652 3663#endif /* CONFIG_RPS */
0a9627f2 3664
e36fa2f7
ED
3665/*
3666 * Check if this softnet_data structure is another cpu one
3667 * If yes, queue it to our IPI list and return 1
3668 * If no, return 0
3669 */
3670static int rps_ipi_queued(struct softnet_data *sd)
3671{
3672#ifdef CONFIG_RPS
903ceff7 3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3674
3675 if (sd != mysd) {
3676 sd->rps_ipi_next = mysd->rps_ipi_list;
3677 mysd->rps_ipi_list = sd;
3678
3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 return 1;
3681 }
3682#endif /* CONFIG_RPS */
3683 return 0;
3684}
3685
99bbc707
WB
3686#ifdef CONFIG_NET_FLOW_LIMIT
3687int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688#endif
3689
3690static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691{
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693 struct sd_flow_limit *fl;
3694 struct softnet_data *sd;
3695 unsigned int old_flow, new_flow;
3696
3697 if (qlen < (netdev_max_backlog >> 1))
3698 return false;
3699
903ceff7 3700 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3701
3702 rcu_read_lock();
3703 fl = rcu_dereference(sd->flow_limit);
3704 if (fl) {
3958afa1 3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3706 old_flow = fl->history[fl->history_head];
3707 fl->history[fl->history_head] = new_flow;
3708
3709 fl->history_head++;
3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712 if (likely(fl->buckets[old_flow]))
3713 fl->buckets[old_flow]--;
3714
3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 fl->count++;
3717 rcu_read_unlock();
3718 return true;
3719 }
3720 }
3721 rcu_read_unlock();
3722#endif
3723 return false;
3724}
3725
0a9627f2
TH
3726/*
3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728 * queue (may be a remote CPU queue).
3729 */
fec5e652
TH
3730static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 unsigned int *qtail)
0a9627f2 3732{
e36fa2f7 3733 struct softnet_data *sd;
0a9627f2 3734 unsigned long flags;
99bbc707 3735 unsigned int qlen;
0a9627f2 3736
e36fa2f7 3737 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3738
3739 local_irq_save(flags);
0a9627f2 3740
e36fa2f7 3741 rps_lock(sd);
e9e4dd32
JA
3742 if (!netif_running(skb->dev))
3743 goto drop;
99bbc707
WB
3744 qlen = skb_queue_len(&sd->input_pkt_queue);
3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3746 if (qlen) {
0a9627f2 3747enqueue:
e36fa2f7 3748 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3749 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3750 rps_unlock(sd);
152102c7 3751 local_irq_restore(flags);
0a9627f2
TH
3752 return NET_RX_SUCCESS;
3753 }
3754
ebda37c2
ED
3755 /* Schedule NAPI for backlog device
3756 * We can use non atomic operation since we own the queue lock
3757 */
3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3759 if (!rps_ipi_queued(sd))
eecfd7c4 3760 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3761 }
3762 goto enqueue;
3763 }
3764
e9e4dd32 3765drop:
dee42870 3766 sd->dropped++;
e36fa2f7 3767 rps_unlock(sd);
0a9627f2 3768
0a9627f2
TH
3769 local_irq_restore(flags);
3770
caf586e5 3771 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3772 kfree_skb(skb);
3773 return NET_RX_DROP;
3774}
1da177e4 3775
ae78dbfa 3776static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3777{
b0e28f1e 3778 int ret;
1da177e4 3779
588f0330 3780 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3781
cf66ba58 3782 trace_netif_rx(skb);
df334545 3783#ifdef CONFIG_RPS
c5905afb 3784 if (static_key_false(&rps_needed)) {
fec5e652 3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3786 int cpu;
3787
cece1945 3788 preempt_disable();
b0e28f1e 3789 rcu_read_lock();
fec5e652
TH
3790
3791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3792 if (cpu < 0)
3793 cpu = smp_processor_id();
fec5e652
TH
3794
3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
b0e28f1e 3797 rcu_read_unlock();
cece1945 3798 preempt_enable();
adc9300e
ED
3799 } else
3800#endif
fec5e652
TH
3801 {
3802 unsigned int qtail;
3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 put_cpu();
3805 }
b0e28f1e 3806 return ret;
1da177e4 3807}
ae78dbfa
BH
3808
3809/**
3810 * netif_rx - post buffer to the network code
3811 * @skb: buffer to post
3812 *
3813 * This function receives a packet from a device driver and queues it for
3814 * the upper (protocol) levels to process. It always succeeds. The buffer
3815 * may be dropped during processing for congestion control or by the
3816 * protocol layers.
3817 *
3818 * return values:
3819 * NET_RX_SUCCESS (no congestion)
3820 * NET_RX_DROP (packet was dropped)
3821 *
3822 */
3823
3824int netif_rx(struct sk_buff *skb)
3825{
3826 trace_netif_rx_entry(skb);
3827
3828 return netif_rx_internal(skb);
3829}
d1b19dff 3830EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3831
3832int netif_rx_ni(struct sk_buff *skb)
3833{
3834 int err;
3835
ae78dbfa
BH
3836 trace_netif_rx_ni_entry(skb);
3837
1da177e4 3838 preempt_disable();
ae78dbfa 3839 err = netif_rx_internal(skb);
1da177e4
LT
3840 if (local_softirq_pending())
3841 do_softirq();
3842 preempt_enable();
3843
3844 return err;
3845}
1da177e4
LT
3846EXPORT_SYMBOL(netif_rx_ni);
3847
09dd109d 3848static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3849{
903ceff7 3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3851
3852 if (sd->completion_queue) {
3853 struct sk_buff *clist;
3854
3855 local_irq_disable();
3856 clist = sd->completion_queue;
3857 sd->completion_queue = NULL;
3858 local_irq_enable();
3859
3860 while (clist) {
3861 struct sk_buff *skb = clist;
3862 clist = clist->next;
3863
547b792c 3864 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 trace_consume_skb(skb);
3867 else
3868 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3869
3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 __kfree_skb(skb);
3872 else
3873 __kfree_skb_defer(skb);
1da177e4 3874 }
15fad714
JDB
3875
3876 __kfree_skb_flush();
1da177e4
LT
3877 }
3878
3879 if (sd->output_queue) {
37437bb2 3880 struct Qdisc *head;
1da177e4
LT
3881
3882 local_irq_disable();
3883 head = sd->output_queue;
3884 sd->output_queue = NULL;
a9cbd588 3885 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3886 local_irq_enable();
3887
3888 while (head) {
37437bb2
DM
3889 struct Qdisc *q = head;
3890 spinlock_t *root_lock;
3891
1da177e4
LT
3892 head = head->next_sched;
3893
5fb66229 3894 root_lock = qdisc_lock(q);
3bcb846c
ED
3895 spin_lock(root_lock);
3896 /* We need to make sure head->next_sched is read
3897 * before clearing __QDISC_STATE_SCHED
3898 */
3899 smp_mb__before_atomic();
3900 clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 qdisc_run(q);
3902 spin_unlock(root_lock);
1da177e4
LT
3903 }
3904 }
3905}
3906
181402a5 3907#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3908/* This hook is defined here for ATM LANE */
3909int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 unsigned char *addr) __read_mostly;
4fb019a0 3911EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3912#endif
1da177e4 3913
1f211a1b
DB
3914static inline struct sk_buff *
3915sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 struct net_device *orig_dev)
f697c3e8 3917{
e7582bab 3918#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3919 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 struct tcf_result cl_res;
24824a09 3921
c9e99fd0
DB
3922 /* If there's at least one ingress present somewhere (so
3923 * we get here via enabled static key), remaining devices
3924 * that are not configured with an ingress qdisc will bail
d2788d34 3925 * out here.
c9e99fd0 3926 */
d2788d34 3927 if (!cl)
4577139b 3928 return skb;
f697c3e8
HX
3929 if (*pt_prev) {
3930 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 *pt_prev = NULL;
1da177e4
LT
3932 }
3933
3365495c 3934 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3935 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3936 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3937
3b3ae880 3938 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3939 case TC_ACT_OK:
3940 case TC_ACT_RECLASSIFY:
3941 skb->tc_index = TC_H_MIN(cl_res.classid);
3942 break;
3943 case TC_ACT_SHOT:
24ea591d 3944 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3945 kfree_skb(skb);
3946 return NULL;
d2788d34
DB
3947 case TC_ACT_STOLEN:
3948 case TC_ACT_QUEUED:
8a3a4c6e 3949 consume_skb(skb);
d2788d34 3950 return NULL;
27b29f63
AS
3951 case TC_ACT_REDIRECT:
3952 /* skb_mac_header check was done by cls/act_bpf, so
3953 * we can safely push the L2 header back before
3954 * redirecting to another netdev
3955 */
3956 __skb_push(skb, skb->mac_len);
3957 skb_do_redirect(skb);
3958 return NULL;
d2788d34
DB
3959 default:
3960 break;
f697c3e8 3961 }
e7582bab 3962#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3963 return skb;
3964}
1da177e4 3965
24b27fc4
MB
3966/**
3967 * netdev_is_rx_handler_busy - check if receive handler is registered
3968 * @dev: device to check
3969 *
3970 * Check if a receive handler is already registered for a given device.
3971 * Return true if there one.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975bool netdev_is_rx_handler_busy(struct net_device *dev)
3976{
3977 ASSERT_RTNL();
3978 return dev && rtnl_dereference(dev->rx_handler);
3979}
3980EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
ab95bfe0
JP
3982/**
3983 * netdev_rx_handler_register - register receive handler
3984 * @dev: device to register a handler for
3985 * @rx_handler: receive handler to register
93e2c32b 3986 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3987 *
e227867f 3988 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3989 * called from __netif_receive_skb. A negative errno code is returned
3990 * on a failure.
3991 *
3992 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3993 *
3994 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3995 */
3996int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3997 rx_handler_func_t *rx_handler,
3998 void *rx_handler_data)
ab95bfe0
JP
3999{
4000 ASSERT_RTNL();
4001
4002 if (dev->rx_handler)
4003 return -EBUSY;
4004
00cfec37 4005 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4006 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4007 rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009 return 0;
4010}
4011EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013/**
4014 * netdev_rx_handler_unregister - unregister receive handler
4015 * @dev: device to unregister a handler from
4016 *
166ec369 4017 * Unregister a receive handler from a device.
ab95bfe0
JP
4018 *
4019 * The caller must hold the rtnl_mutex.
4020 */
4021void netdev_rx_handler_unregister(struct net_device *dev)
4022{
4023
4024 ASSERT_RTNL();
a9b3cd7f 4025 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4026 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027 * section has a guarantee to see a non NULL rx_handler_data
4028 * as well.
4029 */
4030 synchronize_net();
a9b3cd7f 4031 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4032}
4033EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
b4b9e355
MG
4035/*
4036 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037 * the special handling of PFMEMALLOC skbs.
4038 */
4039static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040{
4041 switch (skb->protocol) {
2b8837ae
JP
4042 case htons(ETH_P_ARP):
4043 case htons(ETH_P_IP):
4044 case htons(ETH_P_IPV6):
4045 case htons(ETH_P_8021Q):
4046 case htons(ETH_P_8021AD):
b4b9e355
MG
4047 return true;
4048 default:
4049 return false;
4050 }
4051}
4052
e687ad60
PN
4053static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054 int *ret, struct net_device *orig_dev)
4055{
e7582bab 4056#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4057 if (nf_hook_ingress_active(skb)) {
4058 if (*pt_prev) {
4059 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4060 *pt_prev = NULL;
4061 }
4062
4063 return nf_hook_ingress(skb);
4064 }
e7582bab 4065#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4066 return 0;
4067}
e687ad60 4068
9754e293 4069static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4070{
4071 struct packet_type *ptype, *pt_prev;
ab95bfe0 4072 rx_handler_func_t *rx_handler;
f2ccd8fa 4073 struct net_device *orig_dev;
8a4eb573 4074 bool deliver_exact = false;
1da177e4 4075 int ret = NET_RX_DROP;
252e3346 4076 __be16 type;
1da177e4 4077
588f0330 4078 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4079
cf66ba58 4080 trace_netif_receive_skb(skb);
9b22ea56 4081
cc9bd5ce 4082 orig_dev = skb->dev;
8f903c70 4083
c1d2bbe1 4084 skb_reset_network_header(skb);
fda55eca
ED
4085 if (!skb_transport_header_was_set(skb))
4086 skb_reset_transport_header(skb);
0b5c9db1 4087 skb_reset_mac_len(skb);
1da177e4
LT
4088
4089 pt_prev = NULL;
4090
63d8ea7f 4091another_round:
b6858177 4092 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4093
4094 __this_cpu_inc(softnet_data.processed);
4095
8ad227ff
PM
4096 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4097 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4098 skb = skb_vlan_untag(skb);
bcc6d479 4099 if (unlikely(!skb))
2c17d27c 4100 goto out;
bcc6d479
JP
4101 }
4102
1da177e4
LT
4103#ifdef CONFIG_NET_CLS_ACT
4104 if (skb->tc_verd & TC_NCLS) {
4105 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4106 goto ncls;
4107 }
4108#endif
4109
9754e293 4110 if (pfmemalloc)
b4b9e355
MG
4111 goto skip_taps;
4112
1da177e4 4113 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4114 if (pt_prev)
4115 ret = deliver_skb(skb, pt_prev, orig_dev);
4116 pt_prev = ptype;
4117 }
4118
4119 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4120 if (pt_prev)
4121 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 pt_prev = ptype;
1da177e4
LT
4123 }
4124
b4b9e355 4125skip_taps:
1cf51900 4126#ifdef CONFIG_NET_INGRESS
4577139b 4127 if (static_key_false(&ingress_needed)) {
1f211a1b 4128 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4129 if (!skb)
2c17d27c 4130 goto out;
e687ad60
PN
4131
4132 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4133 goto out;
4577139b 4134 }
1cf51900
PN
4135#endif
4136#ifdef CONFIG_NET_CLS_ACT
4577139b 4137 skb->tc_verd = 0;
1da177e4
LT
4138ncls:
4139#endif
9754e293 4140 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4141 goto drop;
4142
df8a39de 4143 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4144 if (pt_prev) {
4145 ret = deliver_skb(skb, pt_prev, orig_dev);
4146 pt_prev = NULL;
4147 }
48cc32d3 4148 if (vlan_do_receive(&skb))
2425717b
JF
4149 goto another_round;
4150 else if (unlikely(!skb))
2c17d27c 4151 goto out;
2425717b
JF
4152 }
4153
48cc32d3 4154 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4155 if (rx_handler) {
4156 if (pt_prev) {
4157 ret = deliver_skb(skb, pt_prev, orig_dev);
4158 pt_prev = NULL;
4159 }
8a4eb573
JP
4160 switch (rx_handler(&skb)) {
4161 case RX_HANDLER_CONSUMED:
3bc1b1ad 4162 ret = NET_RX_SUCCESS;
2c17d27c 4163 goto out;
8a4eb573 4164 case RX_HANDLER_ANOTHER:
63d8ea7f 4165 goto another_round;
8a4eb573
JP
4166 case RX_HANDLER_EXACT:
4167 deliver_exact = true;
4168 case RX_HANDLER_PASS:
4169 break;
4170 default:
4171 BUG();
4172 }
ab95bfe0 4173 }
1da177e4 4174
df8a39de
JP
4175 if (unlikely(skb_vlan_tag_present(skb))) {
4176 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4177 skb->pkt_type = PACKET_OTHERHOST;
4178 /* Note: we might in the future use prio bits
4179 * and set skb->priority like in vlan_do_receive()
4180 * For the time being, just ignore Priority Code Point
4181 */
4182 skb->vlan_tci = 0;
4183 }
48cc32d3 4184
7866a621
SN
4185 type = skb->protocol;
4186
63d8ea7f 4187 /* deliver only exact match when indicated */
7866a621
SN
4188 if (likely(!deliver_exact)) {
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &ptype_base[ntohs(type) &
4191 PTYPE_HASH_MASK]);
4192 }
1f3c8804 4193
7866a621
SN
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &orig_dev->ptype_specific);
4196
4197 if (unlikely(skb->dev != orig_dev)) {
4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 &skb->dev->ptype_specific);
1da177e4
LT
4200 }
4201
4202 if (pt_prev) {
1080e512 4203 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4204 goto drop;
1080e512
MT
4205 else
4206 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4207 } else {
b4b9e355 4208drop:
6e7333d3
JW
4209 if (!deliver_exact)
4210 atomic_long_inc(&skb->dev->rx_dropped);
4211 else
4212 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4213 kfree_skb(skb);
4214 /* Jamal, now you will not able to escape explaining
4215 * me how you were going to use this. :-)
4216 */
4217 ret = NET_RX_DROP;
4218 }
4219
2c17d27c 4220out:
9754e293
DM
4221 return ret;
4222}
4223
4224static int __netif_receive_skb(struct sk_buff *skb)
4225{
4226 int ret;
4227
4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229 unsigned long pflags = current->flags;
4230
4231 /*
4232 * PFMEMALLOC skbs are special, they should
4233 * - be delivered to SOCK_MEMALLOC sockets only
4234 * - stay away from userspace
4235 * - have bounded memory usage
4236 *
4237 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 * context down to all allocation sites.
4239 */
4240 current->flags |= PF_MEMALLOC;
4241 ret = __netif_receive_skb_core(skb, true);
4242 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243 } else
4244 ret = __netif_receive_skb_core(skb, false);
4245
1da177e4
LT
4246 return ret;
4247}
0a9627f2 4248
ae78dbfa 4249static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4250{
2c17d27c
JA
4251 int ret;
4252
588f0330 4253 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4254
c1f19b51
RC
4255 if (skb_defer_rx_timestamp(skb))
4256 return NET_RX_SUCCESS;
4257
2c17d27c
JA
4258 rcu_read_lock();
4259
df334545 4260#ifdef CONFIG_RPS
c5905afb 4261 if (static_key_false(&rps_needed)) {
3b098e2d 4262 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4263 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4264
3b098e2d
ED
4265 if (cpu >= 0) {
4266 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 rcu_read_unlock();
adc9300e 4268 return ret;
3b098e2d 4269 }
fec5e652 4270 }
1e94d72f 4271#endif
2c17d27c
JA
4272 ret = __netif_receive_skb(skb);
4273 rcu_read_unlock();
4274 return ret;
0a9627f2 4275}
ae78dbfa
BH
4276
4277/**
4278 * netif_receive_skb - process receive buffer from network
4279 * @skb: buffer to process
4280 *
4281 * netif_receive_skb() is the main receive data processing function.
4282 * It always succeeds. The buffer may be dropped during processing
4283 * for congestion control or by the protocol layers.
4284 *
4285 * This function may only be called from softirq context and interrupts
4286 * should be enabled.
4287 *
4288 * Return values (usually ignored):
4289 * NET_RX_SUCCESS: no congestion
4290 * NET_RX_DROP: packet was dropped
4291 */
04eb4489 4292int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4293{
4294 trace_netif_receive_skb_entry(skb);
4295
4296 return netif_receive_skb_internal(skb);
4297}
04eb4489 4298EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4299
41852497 4300DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4301
4302/* Network device is going away, flush any packets still pending */
4303static void flush_backlog(struct work_struct *work)
6e583ce5 4304{
6e583ce5 4305 struct sk_buff *skb, *tmp;
145dd5f9
PA
4306 struct softnet_data *sd;
4307
4308 local_bh_disable();
4309 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4310
145dd5f9 4311 local_irq_disable();
e36fa2f7 4312 rps_lock(sd);
6e7676c1 4313 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4314 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4315 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4316 kfree_skb(skb);
76cc8b13 4317 input_queue_head_incr(sd);
6e583ce5 4318 }
6e7676c1 4319 }
e36fa2f7 4320 rps_unlock(sd);
145dd5f9 4321 local_irq_enable();
6e7676c1
CG
4322
4323 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4324 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4325 __skb_unlink(skb, &sd->process_queue);
4326 kfree_skb(skb);
76cc8b13 4327 input_queue_head_incr(sd);
6e7676c1
CG
4328 }
4329 }
145dd5f9
PA
4330 local_bh_enable();
4331}
4332
41852497 4333static void flush_all_backlogs(void)
145dd5f9
PA
4334{
4335 unsigned int cpu;
4336
4337 get_online_cpus();
4338
41852497
ED
4339 for_each_online_cpu(cpu)
4340 queue_work_on(cpu, system_highpri_wq,
4341 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4342
4343 for_each_online_cpu(cpu)
41852497 4344 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4345
4346 put_online_cpus();
6e583ce5
SH
4347}
4348
d565b0a1
HX
4349static int napi_gro_complete(struct sk_buff *skb)
4350{
22061d80 4351 struct packet_offload *ptype;
d565b0a1 4352 __be16 type = skb->protocol;
22061d80 4353 struct list_head *head = &offload_base;
d565b0a1
HX
4354 int err = -ENOENT;
4355
c3c7c254
ED
4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
fc59f9a3
HX
4358 if (NAPI_GRO_CB(skb)->count == 1) {
4359 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4360 goto out;
fc59f9a3 4361 }
d565b0a1
HX
4362
4363 rcu_read_lock();
4364 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4365 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4366 continue;
4367
299603e8 4368 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4369 break;
4370 }
4371 rcu_read_unlock();
4372
4373 if (err) {
4374 WARN_ON(&ptype->list == head);
4375 kfree_skb(skb);
4376 return NET_RX_SUCCESS;
4377 }
4378
4379out:
ae78dbfa 4380 return netif_receive_skb_internal(skb);
d565b0a1
HX
4381}
4382
2e71a6f8
ED
4383/* napi->gro_list contains packets ordered by age.
4384 * youngest packets at the head of it.
4385 * Complete skbs in reverse order to reduce latencies.
4386 */
4387void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4388{
2e71a6f8 4389 struct sk_buff *skb, *prev = NULL;
d565b0a1 4390
2e71a6f8
ED
4391 /* scan list and build reverse chain */
4392 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393 skb->prev = prev;
4394 prev = skb;
4395 }
4396
4397 for (skb = prev; skb; skb = prev) {
d565b0a1 4398 skb->next = NULL;
2e71a6f8
ED
4399
4400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401 return;
4402
4403 prev = skb->prev;
d565b0a1 4404 napi_gro_complete(skb);
2e71a6f8 4405 napi->gro_count--;
d565b0a1
HX
4406 }
4407
4408 napi->gro_list = NULL;
4409}
86cac58b 4410EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4411
89c5fa33
ED
4412static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413{
4414 struct sk_buff *p;
4415 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4416 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4417
4418 for (p = napi->gro_list; p; p = p->next) {
4419 unsigned long diffs;
4420
0b4cec8c
TH
4421 NAPI_GRO_CB(p)->flush = 0;
4422
4423 if (hash != skb_get_hash_raw(p)) {
4424 NAPI_GRO_CB(p)->same_flow = 0;
4425 continue;
4426 }
4427
89c5fa33
ED
4428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4430 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4431 if (maclen == ETH_HLEN)
4432 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4433 skb_mac_header(skb));
89c5fa33
ED
4434 else if (!diffs)
4435 diffs = memcmp(skb_mac_header(p),
a50e233c 4436 skb_mac_header(skb),
89c5fa33
ED
4437 maclen);
4438 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4439 }
4440}
4441
299603e8
JC
4442static void skb_gro_reset_offset(struct sk_buff *skb)
4443{
4444 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445 const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447 NAPI_GRO_CB(skb)->data_offset = 0;
4448 NAPI_GRO_CB(skb)->frag0 = NULL;
4449 NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452 pinfo->nr_frags &&
4453 !PageHighMem(skb_frag_page(frag0))) {
4454 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4456 }
4457}
4458
a50e233c
ED
4459static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4460{
4461 struct skb_shared_info *pinfo = skb_shinfo(skb);
4462
4463 BUG_ON(skb->end - skb->tail < grow);
4464
4465 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4466
4467 skb->data_len -= grow;
4468 skb->tail += grow;
4469
4470 pinfo->frags[0].page_offset += grow;
4471 skb_frag_size_sub(&pinfo->frags[0], grow);
4472
4473 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4474 skb_frag_unref(skb, 0);
4475 memmove(pinfo->frags, pinfo->frags + 1,
4476 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4477 }
4478}
4479
bb728820 4480static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4481{
4482 struct sk_buff **pp = NULL;
22061d80 4483 struct packet_offload *ptype;
d565b0a1 4484 __be16 type = skb->protocol;
22061d80 4485 struct list_head *head = &offload_base;
0da2afd5 4486 int same_flow;
5b252f0c 4487 enum gro_result ret;
a50e233c 4488 int grow;
d565b0a1 4489
9c62a68d 4490 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4491 goto normal;
4492
5a212329 4493 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4494 goto normal;
4495
89c5fa33
ED
4496 gro_list_prepare(napi, skb);
4497
d565b0a1
HX
4498 rcu_read_lock();
4499 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4500 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4501 continue;
4502
86911732 4503 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4504 skb_reset_mac_len(skb);
d565b0a1
HX
4505 NAPI_GRO_CB(skb)->same_flow = 0;
4506 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4507 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4508 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4509 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4510 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4511 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4512
662880f4
TH
4513 /* Setup for GRO checksum validation */
4514 switch (skb->ip_summed) {
4515 case CHECKSUM_COMPLETE:
4516 NAPI_GRO_CB(skb)->csum = skb->csum;
4517 NAPI_GRO_CB(skb)->csum_valid = 1;
4518 NAPI_GRO_CB(skb)->csum_cnt = 0;
4519 break;
4520 case CHECKSUM_UNNECESSARY:
4521 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4522 NAPI_GRO_CB(skb)->csum_valid = 0;
4523 break;
4524 default:
4525 NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 NAPI_GRO_CB(skb)->csum_valid = 0;
4527 }
d565b0a1 4528
f191a1d1 4529 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4530 break;
4531 }
4532 rcu_read_unlock();
4533
4534 if (&ptype->list == head)
4535 goto normal;
4536
0da2afd5 4537 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4538 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4539
d565b0a1
HX
4540 if (pp) {
4541 struct sk_buff *nskb = *pp;
4542
4543 *pp = nskb->next;
4544 nskb->next = NULL;
4545 napi_gro_complete(nskb);
4ae5544f 4546 napi->gro_count--;
d565b0a1
HX
4547 }
4548
0da2afd5 4549 if (same_flow)
d565b0a1
HX
4550 goto ok;
4551
600adc18 4552 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4553 goto normal;
d565b0a1 4554
600adc18
ED
4555 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4556 struct sk_buff *nskb = napi->gro_list;
4557
4558 /* locate the end of the list to select the 'oldest' flow */
4559 while (nskb->next) {
4560 pp = &nskb->next;
4561 nskb = *pp;
4562 }
4563 *pp = NULL;
4564 nskb->next = NULL;
4565 napi_gro_complete(nskb);
4566 } else {
4567 napi->gro_count++;
4568 }
d565b0a1 4569 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4570 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4571 NAPI_GRO_CB(skb)->last = skb;
86911732 4572 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4573 skb->next = napi->gro_list;
4574 napi->gro_list = skb;
5d0d9be8 4575 ret = GRO_HELD;
d565b0a1 4576
ad0f9904 4577pull:
a50e233c
ED
4578 grow = skb_gro_offset(skb) - skb_headlen(skb);
4579 if (grow > 0)
4580 gro_pull_from_frag0(skb, grow);
d565b0a1 4581ok:
5d0d9be8 4582 return ret;
d565b0a1
HX
4583
4584normal:
ad0f9904
HX
4585 ret = GRO_NORMAL;
4586 goto pull;
5d38a079 4587}
96e93eab 4588
bf5a755f
JC
4589struct packet_offload *gro_find_receive_by_type(__be16 type)
4590{
4591 struct list_head *offload_head = &offload_base;
4592 struct packet_offload *ptype;
4593
4594 list_for_each_entry_rcu(ptype, offload_head, list) {
4595 if (ptype->type != type || !ptype->callbacks.gro_receive)
4596 continue;
4597 return ptype;
4598 }
4599 return NULL;
4600}
e27a2f83 4601EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4602
4603struct packet_offload *gro_find_complete_by_type(__be16 type)
4604{
4605 struct list_head *offload_head = &offload_base;
4606 struct packet_offload *ptype;
4607
4608 list_for_each_entry_rcu(ptype, offload_head, list) {
4609 if (ptype->type != type || !ptype->callbacks.gro_complete)
4610 continue;
4611 return ptype;
4612 }
4613 return NULL;
4614}
e27a2f83 4615EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4616
bb728820 4617static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4618{
5d0d9be8
HX
4619 switch (ret) {
4620 case GRO_NORMAL:
ae78dbfa 4621 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4622 ret = GRO_DROP;
4623 break;
5d38a079 4624
5d0d9be8 4625 case GRO_DROP:
5d38a079
HX
4626 kfree_skb(skb);
4627 break;
5b252f0c 4628
daa86548 4629 case GRO_MERGED_FREE:
ce87fc6c
JG
4630 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4631 skb_dst_drop(skb);
d7e8883c 4632 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4633 } else {
d7e8883c 4634 __kfree_skb(skb);
ce87fc6c 4635 }
daa86548
ED
4636 break;
4637
5b252f0c
BH
4638 case GRO_HELD:
4639 case GRO_MERGED:
4640 break;
5d38a079
HX
4641 }
4642
c7c4b3b6 4643 return ret;
5d0d9be8 4644}
5d0d9be8 4645
c7c4b3b6 4646gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4647{
93f93a44 4648 skb_mark_napi_id(skb, napi);
ae78dbfa 4649 trace_napi_gro_receive_entry(skb);
86911732 4650
a50e233c
ED
4651 skb_gro_reset_offset(skb);
4652
89c5fa33 4653 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4654}
4655EXPORT_SYMBOL(napi_gro_receive);
4656
d0c2b0d2 4657static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4658{
93a35f59
ED
4659 if (unlikely(skb->pfmemalloc)) {
4660 consume_skb(skb);
4661 return;
4662 }
96e93eab 4663 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4664 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4665 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4666 skb->vlan_tci = 0;
66c46d74 4667 skb->dev = napi->dev;
6d152e23 4668 skb->skb_iif = 0;
c3caf119
JC
4669 skb->encapsulation = 0;
4670 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4671 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4672
4673 napi->skb = skb;
4674}
96e93eab 4675
76620aaf 4676struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4677{
5d38a079 4678 struct sk_buff *skb = napi->skb;
5d38a079
HX
4679
4680 if (!skb) {
fd11a83d 4681 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4682 if (skb) {
4683 napi->skb = skb;
4684 skb_mark_napi_id(skb, napi);
4685 }
80595d59 4686 }
96e93eab
HX
4687 return skb;
4688}
76620aaf 4689EXPORT_SYMBOL(napi_get_frags);
96e93eab 4690
a50e233c
ED
4691static gro_result_t napi_frags_finish(struct napi_struct *napi,
4692 struct sk_buff *skb,
4693 gro_result_t ret)
96e93eab 4694{
5d0d9be8
HX
4695 switch (ret) {
4696 case GRO_NORMAL:
a50e233c
ED
4697 case GRO_HELD:
4698 __skb_push(skb, ETH_HLEN);
4699 skb->protocol = eth_type_trans(skb, skb->dev);
4700 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4701 ret = GRO_DROP;
86911732 4702 break;
5d38a079 4703
5d0d9be8 4704 case GRO_DROP:
5d0d9be8
HX
4705 case GRO_MERGED_FREE:
4706 napi_reuse_skb(napi, skb);
4707 break;
5b252f0c
BH
4708
4709 case GRO_MERGED:
4710 break;
5d0d9be8 4711 }
5d38a079 4712
c7c4b3b6 4713 return ret;
5d38a079 4714}
5d0d9be8 4715
a50e233c
ED
4716/* Upper GRO stack assumes network header starts at gro_offset=0
4717 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4718 * We copy ethernet header into skb->data to have a common layout.
4719 */
4adb9c4a 4720static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4721{
4722 struct sk_buff *skb = napi->skb;
a50e233c
ED
4723 const struct ethhdr *eth;
4724 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4725
4726 napi->skb = NULL;
4727
a50e233c
ED
4728 skb_reset_mac_header(skb);
4729 skb_gro_reset_offset(skb);
4730
4731 eth = skb_gro_header_fast(skb, 0);
4732 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4733 eth = skb_gro_header_slow(skb, hlen, 0);
4734 if (unlikely(!eth)) {
4da46ceb
AC
4735 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4736 __func__, napi->dev->name);
a50e233c
ED
4737 napi_reuse_skb(napi, skb);
4738 return NULL;
4739 }
4740 } else {
4741 gro_pull_from_frag0(skb, hlen);
4742 NAPI_GRO_CB(skb)->frag0 += hlen;
4743 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4744 }
a50e233c
ED
4745 __skb_pull(skb, hlen);
4746
4747 /*
4748 * This works because the only protocols we care about don't require
4749 * special handling.
4750 * We'll fix it up properly in napi_frags_finish()
4751 */
4752 skb->protocol = eth->h_proto;
76620aaf 4753
76620aaf
HX
4754 return skb;
4755}
76620aaf 4756
c7c4b3b6 4757gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4758{
76620aaf 4759 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4760
4761 if (!skb)
c7c4b3b6 4762 return GRO_DROP;
5d0d9be8 4763
ae78dbfa
BH
4764 trace_napi_gro_frags_entry(skb);
4765
89c5fa33 4766 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4767}
5d38a079
HX
4768EXPORT_SYMBOL(napi_gro_frags);
4769
573e8fca
TH
4770/* Compute the checksum from gro_offset and return the folded value
4771 * after adding in any pseudo checksum.
4772 */
4773__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4774{
4775 __wsum wsum;
4776 __sum16 sum;
4777
4778 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4779
4780 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4781 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4782 if (likely(!sum)) {
4783 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4784 !skb->csum_complete_sw)
4785 netdev_rx_csum_fault(skb->dev);
4786 }
4787
4788 NAPI_GRO_CB(skb)->csum = wsum;
4789 NAPI_GRO_CB(skb)->csum_valid = 1;
4790
4791 return sum;
4792}
4793EXPORT_SYMBOL(__skb_gro_checksum_complete);
4794
e326bed2 4795/*
855abcf0 4796 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4797 * Note: called with local irq disabled, but exits with local irq enabled.
4798 */
4799static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4800{
4801#ifdef CONFIG_RPS
4802 struct softnet_data *remsd = sd->rps_ipi_list;
4803
4804 if (remsd) {
4805 sd->rps_ipi_list = NULL;
4806
4807 local_irq_enable();
4808
4809 /* Send pending IPI's to kick RPS processing on remote cpus. */
4810 while (remsd) {
4811 struct softnet_data *next = remsd->rps_ipi_next;
4812
4813 if (cpu_online(remsd->cpu))
c46fff2a 4814 smp_call_function_single_async(remsd->cpu,
fce8ad15 4815 &remsd->csd);
e326bed2
ED
4816 remsd = next;
4817 }
4818 } else
4819#endif
4820 local_irq_enable();
4821}
4822
d75b1ade
ED
4823static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4824{
4825#ifdef CONFIG_RPS
4826 return sd->rps_ipi_list != NULL;
4827#else
4828 return false;
4829#endif
4830}
4831
bea3348e 4832static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4833{
eecfd7c4 4834 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4835 bool again = true;
4836 int work = 0;
1da177e4 4837
e326bed2
ED
4838 /* Check if we have pending ipi, its better to send them now,
4839 * not waiting net_rx_action() end.
4840 */
d75b1ade 4841 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4842 local_irq_disable();
4843 net_rps_action_and_irq_enable(sd);
4844 }
d75b1ade 4845
bea3348e 4846 napi->weight = weight_p;
145dd5f9 4847 while (again) {
1da177e4 4848 struct sk_buff *skb;
6e7676c1
CG
4849
4850 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4851 rcu_read_lock();
6e7676c1 4852 __netif_receive_skb(skb);
2c17d27c 4853 rcu_read_unlock();
76cc8b13 4854 input_queue_head_incr(sd);
145dd5f9 4855 if (++work >= quota)
76cc8b13 4856 return work;
145dd5f9 4857
6e7676c1 4858 }
1da177e4 4859
145dd5f9 4860 local_irq_disable();
e36fa2f7 4861 rps_lock(sd);
11ef7a89 4862 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4863 /*
4864 * Inline a custom version of __napi_complete().
4865 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4866 * and NAPI_STATE_SCHED is the only possible flag set
4867 * on backlog.
4868 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4869 * and we dont need an smp_mb() memory barrier.
4870 */
eecfd7c4 4871 napi->state = 0;
145dd5f9
PA
4872 again = false;
4873 } else {
4874 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4875 &sd->process_queue);
bea3348e 4876 }
e36fa2f7 4877 rps_unlock(sd);
145dd5f9 4878 local_irq_enable();
6e7676c1 4879 }
1da177e4 4880
bea3348e
SH
4881 return work;
4882}
1da177e4 4883
bea3348e
SH
4884/**
4885 * __napi_schedule - schedule for receive
c4ea43c5 4886 * @n: entry to schedule
bea3348e 4887 *
bc9ad166
ED
4888 * The entry's receive function will be scheduled to run.
4889 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4890 */
b5606c2d 4891void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4892{
4893 unsigned long flags;
1da177e4 4894
bea3348e 4895 local_irq_save(flags);
903ceff7 4896 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4897 local_irq_restore(flags);
1da177e4 4898}
bea3348e
SH
4899EXPORT_SYMBOL(__napi_schedule);
4900
bc9ad166
ED
4901/**
4902 * __napi_schedule_irqoff - schedule for receive
4903 * @n: entry to schedule
4904 *
4905 * Variant of __napi_schedule() assuming hard irqs are masked
4906 */
4907void __napi_schedule_irqoff(struct napi_struct *n)
4908{
4909 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910}
4911EXPORT_SYMBOL(__napi_schedule_irqoff);
4912
d565b0a1
HX
4913void __napi_complete(struct napi_struct *n)
4914{
4915 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4916
d75b1ade 4917 list_del_init(&n->poll_list);
4e857c58 4918 smp_mb__before_atomic();
d565b0a1
HX
4919 clear_bit(NAPI_STATE_SCHED, &n->state);
4920}
4921EXPORT_SYMBOL(__napi_complete);
4922
3b47d303 4923void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4924{
4925 unsigned long flags;
4926
4927 /*
4928 * don't let napi dequeue from the cpu poll list
4929 * just in case its running on a different cpu
4930 */
4931 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4932 return;
4933
3b47d303
ED
4934 if (n->gro_list) {
4935 unsigned long timeout = 0;
d75b1ade 4936
3b47d303
ED
4937 if (work_done)
4938 timeout = n->dev->gro_flush_timeout;
4939
4940 if (timeout)
4941 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 HRTIMER_MODE_REL_PINNED);
4943 else
4944 napi_gro_flush(n, false);
4945 }
d75b1ade
ED
4946 if (likely(list_empty(&n->poll_list))) {
4947 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948 } else {
4949 /* If n->poll_list is not empty, we need to mask irqs */
4950 local_irq_save(flags);
4951 __napi_complete(n);
4952 local_irq_restore(flags);
4953 }
d565b0a1 4954}
3b47d303 4955EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4956
af12fa6e 4957/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4958static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4959{
4960 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4961 struct napi_struct *napi;
4962
4963 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4964 if (napi->napi_id == napi_id)
4965 return napi;
4966
4967 return NULL;
4968}
02d62e86
ED
4969
4970#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4971#define BUSY_POLL_BUDGET 8
02d62e86
ED
4972bool sk_busy_loop(struct sock *sk, int nonblock)
4973{
4974 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4975 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4976 struct napi_struct *napi;
4977 int rc = false;
4978
2a028ecb 4979 rcu_read_lock();
02d62e86
ED
4980
4981 napi = napi_by_id(sk->sk_napi_id);
4982 if (!napi)
4983 goto out;
4984
ce6aea93
ED
4985 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4986 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4987
4988 do {
ce6aea93 4989 rc = 0;
2a028ecb 4990 local_bh_disable();
ce6aea93
ED
4991 if (busy_poll) {
4992 rc = busy_poll(napi);
4993 } else if (napi_schedule_prep(napi)) {
4994 void *have = netpoll_poll_lock(napi);
4995
4996 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4997 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4998 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4999 if (rc == BUSY_POLL_BUDGET) {
5000 napi_complete_done(napi, rc);
5001 napi_schedule(napi);
5002 }
5003 }
5004 netpoll_poll_unlock(have);
5005 }
2a028ecb 5006 if (rc > 0)
02a1d6e7
ED
5007 __NET_ADD_STATS(sock_net(sk),
5008 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5009 local_bh_enable();
02d62e86
ED
5010
5011 if (rc == LL_FLUSH_FAILED)
5012 break; /* permanent failure */
5013
02d62e86 5014 cpu_relax();
02d62e86
ED
5015 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5016 !need_resched() && !busy_loop_timeout(end_time));
5017
5018 rc = !skb_queue_empty(&sk->sk_receive_queue);
5019out:
2a028ecb 5020 rcu_read_unlock();
02d62e86
ED
5021 return rc;
5022}
5023EXPORT_SYMBOL(sk_busy_loop);
5024
5025#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5026
5027void napi_hash_add(struct napi_struct *napi)
5028{
d64b5e85
ED
5029 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5030 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5031 return;
af12fa6e 5032
52bd2d62 5033 spin_lock(&napi_hash_lock);
af12fa6e 5034
52bd2d62
ED
5035 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5036 do {
5037 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5038 napi_gen_id = NR_CPUS + 1;
5039 } while (napi_by_id(napi_gen_id));
5040 napi->napi_id = napi_gen_id;
af12fa6e 5041
52bd2d62
ED
5042 hlist_add_head_rcu(&napi->napi_hash_node,
5043 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5044
52bd2d62 5045 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5046}
5047EXPORT_SYMBOL_GPL(napi_hash_add);
5048
5049/* Warning : caller is responsible to make sure rcu grace period
5050 * is respected before freeing memory containing @napi
5051 */
34cbe27e 5052bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5053{
34cbe27e
ED
5054 bool rcu_sync_needed = false;
5055
af12fa6e
ET
5056 spin_lock(&napi_hash_lock);
5057
34cbe27e
ED
5058 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5059 rcu_sync_needed = true;
af12fa6e 5060 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5061 }
af12fa6e 5062 spin_unlock(&napi_hash_lock);
34cbe27e 5063 return rcu_sync_needed;
af12fa6e
ET
5064}
5065EXPORT_SYMBOL_GPL(napi_hash_del);
5066
3b47d303
ED
5067static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5068{
5069 struct napi_struct *napi;
5070
5071 napi = container_of(timer, struct napi_struct, timer);
5072 if (napi->gro_list)
5073 napi_schedule(napi);
5074
5075 return HRTIMER_NORESTART;
5076}
5077
d565b0a1
HX
5078void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5079 int (*poll)(struct napi_struct *, int), int weight)
5080{
5081 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5082 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5083 napi->timer.function = napi_watchdog;
4ae5544f 5084 napi->gro_count = 0;
d565b0a1 5085 napi->gro_list = NULL;
5d38a079 5086 napi->skb = NULL;
d565b0a1 5087 napi->poll = poll;
82dc3c63
ED
5088 if (weight > NAPI_POLL_WEIGHT)
5089 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5090 weight, dev->name);
d565b0a1
HX
5091 napi->weight = weight;
5092 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5093 napi->dev = dev;
5d38a079 5094#ifdef CONFIG_NETPOLL
d565b0a1
HX
5095 spin_lock_init(&napi->poll_lock);
5096 napi->poll_owner = -1;
5097#endif
5098 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5099 napi_hash_add(napi);
d565b0a1
HX
5100}
5101EXPORT_SYMBOL(netif_napi_add);
5102
3b47d303
ED
5103void napi_disable(struct napi_struct *n)
5104{
5105 might_sleep();
5106 set_bit(NAPI_STATE_DISABLE, &n->state);
5107
5108 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5109 msleep(1);
2d8bff12
NH
5110 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5111 msleep(1);
3b47d303
ED
5112
5113 hrtimer_cancel(&n->timer);
5114
5115 clear_bit(NAPI_STATE_DISABLE, &n->state);
5116}
5117EXPORT_SYMBOL(napi_disable);
5118
93d05d4a 5119/* Must be called in process context */
d565b0a1
HX
5120void netif_napi_del(struct napi_struct *napi)
5121{
93d05d4a
ED
5122 might_sleep();
5123 if (napi_hash_del(napi))
5124 synchronize_net();
d7b06636 5125 list_del_init(&napi->dev_list);
76620aaf 5126 napi_free_frags(napi);
d565b0a1 5127
289dccbe 5128 kfree_skb_list(napi->gro_list);
d565b0a1 5129 napi->gro_list = NULL;
4ae5544f 5130 napi->gro_count = 0;
d565b0a1
HX
5131}
5132EXPORT_SYMBOL(netif_napi_del);
5133
726ce70e
HX
5134static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5135{
5136 void *have;
5137 int work, weight;
5138
5139 list_del_init(&n->poll_list);
5140
5141 have = netpoll_poll_lock(n);
5142
5143 weight = n->weight;
5144
5145 /* This NAPI_STATE_SCHED test is for avoiding a race
5146 * with netpoll's poll_napi(). Only the entity which
5147 * obtains the lock and sees NAPI_STATE_SCHED set will
5148 * actually make the ->poll() call. Therefore we avoid
5149 * accidentally calling ->poll() when NAPI is not scheduled.
5150 */
5151 work = 0;
5152 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5153 work = n->poll(n, weight);
1db19db7 5154 trace_napi_poll(n, work, weight);
726ce70e
HX
5155 }
5156
5157 WARN_ON_ONCE(work > weight);
5158
5159 if (likely(work < weight))
5160 goto out_unlock;
5161
5162 /* Drivers must not modify the NAPI state if they
5163 * consume the entire weight. In such cases this code
5164 * still "owns" the NAPI instance and therefore can
5165 * move the instance around on the list at-will.
5166 */
5167 if (unlikely(napi_disable_pending(n))) {
5168 napi_complete(n);
5169 goto out_unlock;
5170 }
5171
5172 if (n->gro_list) {
5173 /* flush too old packets
5174 * If HZ < 1000, flush all packets.
5175 */
5176 napi_gro_flush(n, HZ >= 1000);
5177 }
5178
001ce546
HX
5179 /* Some drivers may have called napi_schedule
5180 * prior to exhausting their budget.
5181 */
5182 if (unlikely(!list_empty(&n->poll_list))) {
5183 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5184 n->dev ? n->dev->name : "backlog");
5185 goto out_unlock;
5186 }
5187
726ce70e
HX
5188 list_add_tail(&n->poll_list, repoll);
5189
5190out_unlock:
5191 netpoll_poll_unlock(have);
5192
5193 return work;
5194}
5195
09dd109d 5196static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5197{
903ceff7 5198 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5199 unsigned long time_limit = jiffies + 2;
51b0bded 5200 int budget = netdev_budget;
d75b1ade
ED
5201 LIST_HEAD(list);
5202 LIST_HEAD(repoll);
53fb95d3 5203
1da177e4 5204 local_irq_disable();
d75b1ade
ED
5205 list_splice_init(&sd->poll_list, &list);
5206 local_irq_enable();
1da177e4 5207
ceb8d5bf 5208 for (;;) {
bea3348e 5209 struct napi_struct *n;
1da177e4 5210
ceb8d5bf
HX
5211 if (list_empty(&list)) {
5212 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5213 return;
5214 break;
5215 }
5216
6bd373eb
HX
5217 n = list_first_entry(&list, struct napi_struct, poll_list);
5218 budget -= napi_poll(n, &repoll);
5219
d75b1ade 5220 /* If softirq window is exhausted then punt.
24f8b238
SH
5221 * Allow this to run for 2 jiffies since which will allow
5222 * an average latency of 1.5/HZ.
bea3348e 5223 */
ceb8d5bf
HX
5224 if (unlikely(budget <= 0 ||
5225 time_after_eq(jiffies, time_limit))) {
5226 sd->time_squeeze++;
5227 break;
5228 }
1da177e4 5229 }
d75b1ade 5230
795bb1c0 5231 __kfree_skb_flush();
d75b1ade
ED
5232 local_irq_disable();
5233
5234 list_splice_tail_init(&sd->poll_list, &list);
5235 list_splice_tail(&repoll, &list);
5236 list_splice(&list, &sd->poll_list);
5237 if (!list_empty(&sd->poll_list))
5238 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5239
e326bed2 5240 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5241}
5242
aa9d8560 5243struct netdev_adjacent {
9ff162a8 5244 struct net_device *dev;
5d261913
VF
5245
5246 /* upper master flag, there can only be one master device per list */
9ff162a8 5247 bool master;
5d261913 5248
5d261913
VF
5249 /* counter for the number of times this device was added to us */
5250 u16 ref_nr;
5251
402dae96
VF
5252 /* private field for the users */
5253 void *private;
5254
9ff162a8
JP
5255 struct list_head list;
5256 struct rcu_head rcu;
9ff162a8
JP
5257};
5258
6ea29da1 5259static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5260 struct list_head *adj_list)
9ff162a8 5261{
5d261913 5262 struct netdev_adjacent *adj;
5d261913 5263
2f268f12 5264 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5265 if (adj->dev == adj_dev)
5266 return adj;
9ff162a8
JP
5267 }
5268 return NULL;
5269}
5270
5271/**
5272 * netdev_has_upper_dev - Check if device is linked to an upper device
5273 * @dev: device
5274 * @upper_dev: upper device to check
5275 *
5276 * Find out if a device is linked to specified upper device and return true
5277 * in case it is. Note that this checks only immediate upper device,
5278 * not through a complete stack of devices. The caller must hold the RTNL lock.
5279 */
5280bool netdev_has_upper_dev(struct net_device *dev,
5281 struct net_device *upper_dev)
5282{
5283 ASSERT_RTNL();
5284
6ea29da1 5285 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5286}
5287EXPORT_SYMBOL(netdev_has_upper_dev);
5288
5289/**
5290 * netdev_has_any_upper_dev - Check if device is linked to some device
5291 * @dev: device
5292 *
5293 * Find out if a device is linked to an upper device and return true in case
5294 * it is. The caller must hold the RTNL lock.
5295 */
1d143d9f 5296static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5297{
5298 ASSERT_RTNL();
5299
2f268f12 5300 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5301}
9ff162a8
JP
5302
5303/**
5304 * netdev_master_upper_dev_get - Get master upper device
5305 * @dev: device
5306 *
5307 * Find a master upper device and return pointer to it or NULL in case
5308 * it's not there. The caller must hold the RTNL lock.
5309 */
5310struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5311{
aa9d8560 5312 struct netdev_adjacent *upper;
9ff162a8
JP
5313
5314 ASSERT_RTNL();
5315
2f268f12 5316 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5317 return NULL;
5318
2f268f12 5319 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5320 struct netdev_adjacent, list);
9ff162a8
JP
5321 if (likely(upper->master))
5322 return upper->dev;
5323 return NULL;
5324}
5325EXPORT_SYMBOL(netdev_master_upper_dev_get);
5326
b6ccba4c
VF
5327void *netdev_adjacent_get_private(struct list_head *adj_list)
5328{
5329 struct netdev_adjacent *adj;
5330
5331 adj = list_entry(adj_list, struct netdev_adjacent, list);
5332
5333 return adj->private;
5334}
5335EXPORT_SYMBOL(netdev_adjacent_get_private);
5336
44a40855
VY
5337/**
5338 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5339 * @dev: device
5340 * @iter: list_head ** of the current position
5341 *
5342 * Gets the next device from the dev's upper list, starting from iter
5343 * position. The caller must hold RCU read lock.
5344 */
5345struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5346 struct list_head **iter)
5347{
5348 struct netdev_adjacent *upper;
5349
5350 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5351
5352 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5353
5354 if (&upper->list == &dev->adj_list.upper)
5355 return NULL;
5356
5357 *iter = &upper->list;
5358
5359 return upper->dev;
5360}
5361EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5362
31088a11
VF
5363/**
5364 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5365 * @dev: device
5366 * @iter: list_head ** of the current position
5367 *
5368 * Gets the next device from the dev's upper list, starting from iter
5369 * position. The caller must hold RCU read lock.
5370 */
2f268f12
VF
5371struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5372 struct list_head **iter)
48311f46
VF
5373{
5374 struct netdev_adjacent *upper;
5375
85328240 5376 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5377
5378 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5379
2f268f12 5380 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5381 return NULL;
5382
5383 *iter = &upper->list;
5384
5385 return upper->dev;
5386}
2f268f12 5387EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5388
31088a11
VF
5389/**
5390 * netdev_lower_get_next_private - Get the next ->private from the
5391 * lower neighbour list
5392 * @dev: device
5393 * @iter: list_head ** of the current position
5394 *
5395 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5396 * list, starting from iter position. The caller must hold either hold the
5397 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5398 * list will remain unchanged.
31088a11
VF
5399 */
5400void *netdev_lower_get_next_private(struct net_device *dev,
5401 struct list_head **iter)
5402{
5403 struct netdev_adjacent *lower;
5404
5405 lower = list_entry(*iter, struct netdev_adjacent, list);
5406
5407 if (&lower->list == &dev->adj_list.lower)
5408 return NULL;
5409
6859e7df 5410 *iter = lower->list.next;
31088a11
VF
5411
5412 return lower->private;
5413}
5414EXPORT_SYMBOL(netdev_lower_get_next_private);
5415
5416/**
5417 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5418 * lower neighbour list, RCU
5419 * variant
5420 * @dev: device
5421 * @iter: list_head ** of the current position
5422 *
5423 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5424 * list, starting from iter position. The caller must hold RCU read lock.
5425 */
5426void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5427 struct list_head **iter)
5428{
5429 struct netdev_adjacent *lower;
5430
5431 WARN_ON_ONCE(!rcu_read_lock_held());
5432
5433 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5434
5435 if (&lower->list == &dev->adj_list.lower)
5436 return NULL;
5437
6859e7df 5438 *iter = &lower->list;
31088a11
VF
5439
5440 return lower->private;
5441}
5442EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5443
4085ebe8
VY
5444/**
5445 * netdev_lower_get_next - Get the next device from the lower neighbour
5446 * list
5447 * @dev: device
5448 * @iter: list_head ** of the current position
5449 *
5450 * Gets the next netdev_adjacent from the dev's lower neighbour
5451 * list, starting from iter position. The caller must hold RTNL lock or
5452 * its own locking that guarantees that the neighbour lower
b469139e 5453 * list will remain unchanged.
4085ebe8
VY
5454 */
5455void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5456{
5457 struct netdev_adjacent *lower;
5458
cfdd28be 5459 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5460
5461 if (&lower->list == &dev->adj_list.lower)
5462 return NULL;
5463
cfdd28be 5464 *iter = lower->list.next;
4085ebe8
VY
5465
5466 return lower->dev;
5467}
5468EXPORT_SYMBOL(netdev_lower_get_next);
5469
7ce856aa
JP
5470/**
5471 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5472 * @dev: device
5473 * @iter: list_head ** of the current position
5474 *
5475 * Gets the next netdev_adjacent from the dev's all lower neighbour
5476 * list, starting from iter position. The caller must hold RTNL lock or
5477 * its own locking that guarantees that the neighbour all lower
5478 * list will remain unchanged.
5479 */
5480struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5481{
5482 struct netdev_adjacent *lower;
5483
5484 lower = list_entry(*iter, struct netdev_adjacent, list);
5485
5486 if (&lower->list == &dev->all_adj_list.lower)
5487 return NULL;
5488
5489 *iter = lower->list.next;
5490
5491 return lower->dev;
5492}
5493EXPORT_SYMBOL(netdev_all_lower_get_next);
5494
5495/**
5496 * netdev_all_lower_get_next_rcu - Get the next device from all
5497 * lower neighbour list, RCU variant
5498 * @dev: device
5499 * @iter: list_head ** of the current position
5500 *
5501 * Gets the next netdev_adjacent from the dev's all lower neighbour
5502 * list, starting from iter position. The caller must hold RCU read lock.
5503 */
5504struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5505 struct list_head **iter)
5506{
5507 struct netdev_adjacent *lower;
5508
5509 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5510 struct netdev_adjacent, list);
5511
5512 return lower ? lower->dev : NULL;
5513}
5514EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5515
e001bfad 5516/**
5517 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5518 * lower neighbour list, RCU
5519 * variant
5520 * @dev: device
5521 *
5522 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5523 * list. The caller must hold RCU read lock.
5524 */
5525void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5526{
5527 struct netdev_adjacent *lower;
5528
5529 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5530 struct netdev_adjacent, list);
5531 if (lower)
5532 return lower->private;
5533 return NULL;
5534}
5535EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5536
9ff162a8
JP
5537/**
5538 * netdev_master_upper_dev_get_rcu - Get master upper device
5539 * @dev: device
5540 *
5541 * Find a master upper device and return pointer to it or NULL in case
5542 * it's not there. The caller must hold the RCU read lock.
5543 */
5544struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5545{
aa9d8560 5546 struct netdev_adjacent *upper;
9ff162a8 5547
2f268f12 5548 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5549 struct netdev_adjacent, list);
9ff162a8
JP
5550 if (upper && likely(upper->master))
5551 return upper->dev;
5552 return NULL;
5553}
5554EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5555
0a59f3a9 5556static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5557 struct net_device *adj_dev,
5558 struct list_head *dev_list)
5559{
5560 char linkname[IFNAMSIZ+7];
5561 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5562 "upper_%s" : "lower_%s", adj_dev->name);
5563 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5564 linkname);
5565}
0a59f3a9 5566static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5567 char *name,
5568 struct list_head *dev_list)
5569{
5570 char linkname[IFNAMSIZ+7];
5571 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5572 "upper_%s" : "lower_%s", name);
5573 sysfs_remove_link(&(dev->dev.kobj), linkname);
5574}
5575
7ce64c79
AF
5576static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5577 struct net_device *adj_dev,
5578 struct list_head *dev_list)
5579{
5580 return (dev_list == &dev->adj_list.upper ||
5581 dev_list == &dev->adj_list.lower) &&
5582 net_eq(dev_net(dev), dev_net(adj_dev));
5583}
3ee32707 5584
5d261913
VF
5585static int __netdev_adjacent_dev_insert(struct net_device *dev,
5586 struct net_device *adj_dev,
7863c054 5587 struct list_head *dev_list,
402dae96 5588 void *private, bool master)
5d261913
VF
5589{
5590 struct netdev_adjacent *adj;
842d67a7 5591 int ret;
5d261913 5592
6ea29da1 5593 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5594
5595 if (adj) {
5d261913
VF
5596 adj->ref_nr++;
5597 return 0;
5598 }
5599
5600 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5601 if (!adj)
5602 return -ENOMEM;
5603
5604 adj->dev = adj_dev;
5605 adj->master = master;
5d261913 5606 adj->ref_nr = 1;
402dae96 5607 adj->private = private;
5d261913 5608 dev_hold(adj_dev);
2f268f12
VF
5609
5610 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5611 adj_dev->name, dev->name, adj_dev->name);
5d261913 5612
7ce64c79 5613 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5614 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5615 if (ret)
5616 goto free_adj;
5617 }
5618
7863c054 5619 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5620 if (master) {
5621 ret = sysfs_create_link(&(dev->dev.kobj),
5622 &(adj_dev->dev.kobj), "master");
5623 if (ret)
5831d66e 5624 goto remove_symlinks;
842d67a7 5625
7863c054 5626 list_add_rcu(&adj->list, dev_list);
842d67a7 5627 } else {
7863c054 5628 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5629 }
5d261913
VF
5630
5631 return 0;
842d67a7 5632
5831d66e 5633remove_symlinks:
7ce64c79 5634 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5635 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5636free_adj:
5637 kfree(adj);
974daef7 5638 dev_put(adj_dev);
842d67a7
VF
5639
5640 return ret;
5d261913
VF
5641}
5642
1d143d9f 5643static void __netdev_adjacent_dev_remove(struct net_device *dev,
5644 struct net_device *adj_dev,
5645 struct list_head *dev_list)
5d261913
VF
5646{
5647 struct netdev_adjacent *adj;
5648
6ea29da1 5649 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5650
2f268f12
VF
5651 if (!adj) {
5652 pr_err("tried to remove device %s from %s\n",
5653 dev->name, adj_dev->name);
5d261913 5654 BUG();
2f268f12 5655 }
5d261913
VF
5656
5657 if (adj->ref_nr > 1) {
2f268f12
VF
5658 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5659 adj->ref_nr-1);
5d261913
VF
5660 adj->ref_nr--;
5661 return;
5662 }
5663
842d67a7
VF
5664 if (adj->master)
5665 sysfs_remove_link(&(dev->dev.kobj), "master");
5666
7ce64c79 5667 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5668 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5669
5d261913 5670 list_del_rcu(&adj->list);
2f268f12
VF
5671 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5672 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5673 dev_put(adj_dev);
5674 kfree_rcu(adj, rcu);
5675}
5676
1d143d9f 5677static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5678 struct net_device *upper_dev,
5679 struct list_head *up_list,
5680 struct list_head *down_list,
5681 void *private, bool master)
5d261913
VF
5682{
5683 int ret;
5684
402dae96
VF
5685 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5686 master);
5d261913
VF
5687 if (ret)
5688 return ret;
5689
402dae96
VF
5690 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5691 false);
5d261913 5692 if (ret) {
2f268f12 5693 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5694 return ret;
5695 }
5696
5697 return 0;
5698}
5699
1d143d9f 5700static int __netdev_adjacent_dev_link(struct net_device *dev,
5701 struct net_device *upper_dev)
5d261913 5702{
2f268f12
VF
5703 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5704 &dev->all_adj_list.upper,
5705 &upper_dev->all_adj_list.lower,
402dae96 5706 NULL, false);
5d261913
VF
5707}
5708
1d143d9f 5709static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5710 struct net_device *upper_dev,
5711 struct list_head *up_list,
5712 struct list_head *down_list)
5d261913 5713{
2f268f12
VF
5714 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5715 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5716}
5717
1d143d9f 5718static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5719 struct net_device *upper_dev)
5d261913 5720{
2f268f12
VF
5721 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5722 &dev->all_adj_list.upper,
5723 &upper_dev->all_adj_list.lower);
5724}
5725
1d143d9f 5726static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5727 struct net_device *upper_dev,
5728 void *private, bool master)
2f268f12
VF
5729{
5730 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5731
5732 if (ret)
5733 return ret;
5734
5735 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5736 &dev->adj_list.upper,
5737 &upper_dev->adj_list.lower,
402dae96 5738 private, master);
2f268f12
VF
5739 if (ret) {
5740 __netdev_adjacent_dev_unlink(dev, upper_dev);
5741 return ret;
5742 }
5743
5744 return 0;
5d261913
VF
5745}
5746
1d143d9f 5747static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5748 struct net_device *upper_dev)
2f268f12
VF
5749{
5750 __netdev_adjacent_dev_unlink(dev, upper_dev);
5751 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5752 &dev->adj_list.upper,
5753 &upper_dev->adj_list.lower);
5754}
5d261913 5755
9ff162a8 5756static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5757 struct net_device *upper_dev, bool master,
29bf24af 5758 void *upper_priv, void *upper_info)
9ff162a8 5759{
0e4ead9d 5760 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5761 struct netdev_adjacent *i, *j, *to_i, *to_j;
5762 int ret = 0;
9ff162a8
JP
5763
5764 ASSERT_RTNL();
5765
5766 if (dev == upper_dev)
5767 return -EBUSY;
5768
5769 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5770 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5771 return -EBUSY;
5772
6ea29da1 5773 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5774 return -EEXIST;
5775
5776 if (master && netdev_master_upper_dev_get(dev))
5777 return -EBUSY;
5778
0e4ead9d
JP
5779 changeupper_info.upper_dev = upper_dev;
5780 changeupper_info.master = master;
5781 changeupper_info.linking = true;
29bf24af 5782 changeupper_info.upper_info = upper_info;
0e4ead9d 5783
573c7ba0
JP
5784 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5785 &changeupper_info.info);
5786 ret = notifier_to_errno(ret);
5787 if (ret)
5788 return ret;
5789
6dffb044 5790 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5791 master);
5d261913
VF
5792 if (ret)
5793 return ret;
9ff162a8 5794
5d261913 5795 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5796 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5797 * versa, and don't forget the devices itself. All of these
5798 * links are non-neighbours.
5799 */
2f268f12
VF
5800 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5801 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5802 pr_debug("Interlinking %s with %s, non-neighbour\n",
5803 i->dev->name, j->dev->name);
5d261913
VF
5804 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5805 if (ret)
5806 goto rollback_mesh;
5807 }
5808 }
5809
5810 /* add dev to every upper_dev's upper device */
2f268f12
VF
5811 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5812 pr_debug("linking %s's upper device %s with %s\n",
5813 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5814 ret = __netdev_adjacent_dev_link(dev, i->dev);
5815 if (ret)
5816 goto rollback_upper_mesh;
5817 }
5818
5819 /* add upper_dev to every dev's lower device */
2f268f12
VF
5820 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5821 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5822 i->dev->name, upper_dev->name);
5d261913
VF
5823 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5824 if (ret)
5825 goto rollback_lower_mesh;
5826 }
9ff162a8 5827
b03804e7
IS
5828 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829 &changeupper_info.info);
5830 ret = notifier_to_errno(ret);
5831 if (ret)
5832 goto rollback_lower_mesh;
5833
9ff162a8 5834 return 0;
5d261913
VF
5835
5836rollback_lower_mesh:
5837 to_i = i;
2f268f12 5838 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5839 if (i == to_i)
5840 break;
5841 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5842 }
5843
5844 i = NULL;
5845
5846rollback_upper_mesh:
5847 to_i = i;
2f268f12 5848 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5849 if (i == to_i)
5850 break;
5851 __netdev_adjacent_dev_unlink(dev, i->dev);
5852 }
5853
5854 i = j = NULL;
5855
5856rollback_mesh:
5857 to_i = i;
5858 to_j = j;
2f268f12
VF
5859 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5860 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5861 if (i == to_i && j == to_j)
5862 break;
5863 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5864 }
5865 if (i == to_i)
5866 break;
5867 }
5868
2f268f12 5869 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5870
5871 return ret;
9ff162a8
JP
5872}
5873
5874/**
5875 * netdev_upper_dev_link - Add a link to the upper device
5876 * @dev: device
5877 * @upper_dev: new upper device
5878 *
5879 * Adds a link to device which is upper to this one. The caller must hold
5880 * the RTNL lock. On a failure a negative errno code is returned.
5881 * On success the reference counts are adjusted and the function
5882 * returns zero.
5883 */
5884int netdev_upper_dev_link(struct net_device *dev,
5885 struct net_device *upper_dev)
5886{
29bf24af 5887 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5888}
5889EXPORT_SYMBOL(netdev_upper_dev_link);
5890
5891/**
5892 * netdev_master_upper_dev_link - Add a master link to the upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
6dffb044 5895 * @upper_priv: upper device private
29bf24af 5896 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5897 *
5898 * Adds a link to device which is upper to this one. In this case, only
5899 * one master upper device can be linked, although other non-master devices
5900 * might be linked as well. The caller must hold the RTNL lock.
5901 * On a failure a negative errno code is returned. On success the reference
5902 * counts are adjusted and the function returns zero.
5903 */
5904int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5905 struct net_device *upper_dev,
29bf24af 5906 void *upper_priv, void *upper_info)
9ff162a8 5907{
29bf24af
JP
5908 return __netdev_upper_dev_link(dev, upper_dev, true,
5909 upper_priv, upper_info);
9ff162a8
JP
5910}
5911EXPORT_SYMBOL(netdev_master_upper_dev_link);
5912
5913/**
5914 * netdev_upper_dev_unlink - Removes a link to upper device
5915 * @dev: device
5916 * @upper_dev: new upper device
5917 *
5918 * Removes a link to device which is upper to this one. The caller must hold
5919 * the RTNL lock.
5920 */
5921void netdev_upper_dev_unlink(struct net_device *dev,
5922 struct net_device *upper_dev)
5923{
0e4ead9d 5924 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5925 struct netdev_adjacent *i, *j;
9ff162a8
JP
5926 ASSERT_RTNL();
5927
0e4ead9d
JP
5928 changeupper_info.upper_dev = upper_dev;
5929 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5930 changeupper_info.linking = false;
5931
573c7ba0
JP
5932 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5933 &changeupper_info.info);
5934
2f268f12 5935 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5936
5937 /* Here is the tricky part. We must remove all dev's lower
5938 * devices from all upper_dev's upper devices and vice
5939 * versa, to maintain the graph relationship.
5940 */
2f268f12
VF
5941 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5942 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5943 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5944
5945 /* remove also the devices itself from lower/upper device
5946 * list
5947 */
2f268f12 5948 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5949 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5950
2f268f12 5951 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5952 __netdev_adjacent_dev_unlink(dev, i->dev);
5953
0e4ead9d
JP
5954 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5955 &changeupper_info.info);
9ff162a8
JP
5956}
5957EXPORT_SYMBOL(netdev_upper_dev_unlink);
5958
61bd3857
MS
5959/**
5960 * netdev_bonding_info_change - Dispatch event about slave change
5961 * @dev: device
4a26e453 5962 * @bonding_info: info to dispatch
61bd3857
MS
5963 *
5964 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5965 * The caller must hold the RTNL lock.
5966 */
5967void netdev_bonding_info_change(struct net_device *dev,
5968 struct netdev_bonding_info *bonding_info)
5969{
5970 struct netdev_notifier_bonding_info info;
5971
5972 memcpy(&info.bonding_info, bonding_info,
5973 sizeof(struct netdev_bonding_info));
5974 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5975 &info.info);
5976}
5977EXPORT_SYMBOL(netdev_bonding_info_change);
5978
2ce1ee17 5979static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5980{
5981 struct netdev_adjacent *iter;
5982
5983 struct net *net = dev_net(dev);
5984
5985 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5986 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5987 continue;
5988 netdev_adjacent_sysfs_add(iter->dev, dev,
5989 &iter->dev->adj_list.lower);
5990 netdev_adjacent_sysfs_add(dev, iter->dev,
5991 &dev->adj_list.upper);
5992 }
5993
5994 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5995 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5996 continue;
5997 netdev_adjacent_sysfs_add(iter->dev, dev,
5998 &iter->dev->adj_list.upper);
5999 netdev_adjacent_sysfs_add(dev, iter->dev,
6000 &dev->adj_list.lower);
6001 }
6002}
6003
2ce1ee17 6004static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6005{
6006 struct netdev_adjacent *iter;
6007
6008 struct net *net = dev_net(dev);
6009
6010 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6011 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6012 continue;
6013 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6014 &iter->dev->adj_list.lower);
6015 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6016 &dev->adj_list.upper);
6017 }
6018
6019 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6020 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6021 continue;
6022 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6023 &iter->dev->adj_list.upper);
6024 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6025 &dev->adj_list.lower);
6026 }
6027}
6028
5bb025fa 6029void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6030{
5bb025fa 6031 struct netdev_adjacent *iter;
402dae96 6032
4c75431a
AF
6033 struct net *net = dev_net(dev);
6034
5bb025fa 6035 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6036 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6037 continue;
5bb025fa
VF
6038 netdev_adjacent_sysfs_del(iter->dev, oldname,
6039 &iter->dev->adj_list.lower);
6040 netdev_adjacent_sysfs_add(iter->dev, dev,
6041 &iter->dev->adj_list.lower);
6042 }
402dae96 6043
5bb025fa 6044 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6045 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6046 continue;
5bb025fa
VF
6047 netdev_adjacent_sysfs_del(iter->dev, oldname,
6048 &iter->dev->adj_list.upper);
6049 netdev_adjacent_sysfs_add(iter->dev, dev,
6050 &iter->dev->adj_list.upper);
6051 }
402dae96 6052}
402dae96
VF
6053
6054void *netdev_lower_dev_get_private(struct net_device *dev,
6055 struct net_device *lower_dev)
6056{
6057 struct netdev_adjacent *lower;
6058
6059 if (!lower_dev)
6060 return NULL;
6ea29da1 6061 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6062 if (!lower)
6063 return NULL;
6064
6065 return lower->private;
6066}
6067EXPORT_SYMBOL(netdev_lower_dev_get_private);
6068
4085ebe8 6069
952fcfd0 6070int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6071{
6072 struct net_device *lower = NULL;
6073 struct list_head *iter;
6074 int max_nest = -1;
6075 int nest;
6076
6077 ASSERT_RTNL();
6078
6079 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6080 nest = dev_get_nest_level(lower);
4085ebe8
VY
6081 if (max_nest < nest)
6082 max_nest = nest;
6083 }
6084
952fcfd0 6085 return max_nest + 1;
4085ebe8
VY
6086}
6087EXPORT_SYMBOL(dev_get_nest_level);
6088
04d48266
JP
6089/**
6090 * netdev_lower_change - Dispatch event about lower device state change
6091 * @lower_dev: device
6092 * @lower_state_info: state to dispatch
6093 *
6094 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6095 * The caller must hold the RTNL lock.
6096 */
6097void netdev_lower_state_changed(struct net_device *lower_dev,
6098 void *lower_state_info)
6099{
6100 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6101
6102 ASSERT_RTNL();
6103 changelowerstate_info.lower_state_info = lower_state_info;
6104 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6105 &changelowerstate_info.info);
6106}
6107EXPORT_SYMBOL(netdev_lower_state_changed);
6108
18bfb924
JP
6109int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6110 struct neighbour *n)
6111{
6112 struct net_device *lower_dev, *stop_dev;
6113 struct list_head *iter;
6114 int err;
6115
6116 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6117 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6118 continue;
6119 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6120 if (err) {
6121 stop_dev = lower_dev;
6122 goto rollback;
6123 }
6124 }
6125 return 0;
6126
6127rollback:
6128 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129 if (lower_dev == stop_dev)
6130 break;
6131 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6132 continue;
6133 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6134 }
6135 return err;
6136}
6137EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6138
6139void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6140 struct neighbour *n)
6141{
6142 struct net_device *lower_dev;
6143 struct list_head *iter;
6144
6145 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6147 continue;
6148 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6149 }
6150}
6151EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6152
b6c40d68
PM
6153static void dev_change_rx_flags(struct net_device *dev, int flags)
6154{
d314774c
SH
6155 const struct net_device_ops *ops = dev->netdev_ops;
6156
d2615bf4 6157 if (ops->ndo_change_rx_flags)
d314774c 6158 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6159}
6160
991fb3f7 6161static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6162{
b536db93 6163 unsigned int old_flags = dev->flags;
d04a48b0
EB
6164 kuid_t uid;
6165 kgid_t gid;
1da177e4 6166
24023451
PM
6167 ASSERT_RTNL();
6168
dad9b335
WC
6169 dev->flags |= IFF_PROMISC;
6170 dev->promiscuity += inc;
6171 if (dev->promiscuity == 0) {
6172 /*
6173 * Avoid overflow.
6174 * If inc causes overflow, untouch promisc and return error.
6175 */
6176 if (inc < 0)
6177 dev->flags &= ~IFF_PROMISC;
6178 else {
6179 dev->promiscuity -= inc;
7b6cd1ce
JP
6180 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6181 dev->name);
dad9b335
WC
6182 return -EOVERFLOW;
6183 }
6184 }
52609c0b 6185 if (dev->flags != old_flags) {
7b6cd1ce
JP
6186 pr_info("device %s %s promiscuous mode\n",
6187 dev->name,
6188 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6189 if (audit_enabled) {
6190 current_uid_gid(&uid, &gid);
7759db82
KHK
6191 audit_log(current->audit_context, GFP_ATOMIC,
6192 AUDIT_ANOM_PROMISCUOUS,
6193 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6194 dev->name, (dev->flags & IFF_PROMISC),
6195 (old_flags & IFF_PROMISC),
e1760bd5 6196 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6197 from_kuid(&init_user_ns, uid),
6198 from_kgid(&init_user_ns, gid),
7759db82 6199 audit_get_sessionid(current));
8192b0c4 6200 }
24023451 6201
b6c40d68 6202 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6203 }
991fb3f7
ND
6204 if (notify)
6205 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6206 return 0;
1da177e4
LT
6207}
6208
4417da66
PM
6209/**
6210 * dev_set_promiscuity - update promiscuity count on a device
6211 * @dev: device
6212 * @inc: modifier
6213 *
6214 * Add or remove promiscuity from a device. While the count in the device
6215 * remains above zero the interface remains promiscuous. Once it hits zero
6216 * the device reverts back to normal filtering operation. A negative inc
6217 * value is used to drop promiscuity on the device.
dad9b335 6218 * Return 0 if successful or a negative errno code on error.
4417da66 6219 */
dad9b335 6220int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6221{
b536db93 6222 unsigned int old_flags = dev->flags;
dad9b335 6223 int err;
4417da66 6224
991fb3f7 6225 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6226 if (err < 0)
dad9b335 6227 return err;
4417da66
PM
6228 if (dev->flags != old_flags)
6229 dev_set_rx_mode(dev);
dad9b335 6230 return err;
4417da66 6231}
d1b19dff 6232EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6233
991fb3f7 6234static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6235{
991fb3f7 6236 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6237
24023451
PM
6238 ASSERT_RTNL();
6239
1da177e4 6240 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6241 dev->allmulti += inc;
6242 if (dev->allmulti == 0) {
6243 /*
6244 * Avoid overflow.
6245 * If inc causes overflow, untouch allmulti and return error.
6246 */
6247 if (inc < 0)
6248 dev->flags &= ~IFF_ALLMULTI;
6249 else {
6250 dev->allmulti -= inc;
7b6cd1ce
JP
6251 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6252 dev->name);
dad9b335
WC
6253 return -EOVERFLOW;
6254 }
6255 }
24023451 6256 if (dev->flags ^ old_flags) {
b6c40d68 6257 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6258 dev_set_rx_mode(dev);
991fb3f7
ND
6259 if (notify)
6260 __dev_notify_flags(dev, old_flags,
6261 dev->gflags ^ old_gflags);
24023451 6262 }
dad9b335 6263 return 0;
4417da66 6264}
991fb3f7
ND
6265
6266/**
6267 * dev_set_allmulti - update allmulti count on a device
6268 * @dev: device
6269 * @inc: modifier
6270 *
6271 * Add or remove reception of all multicast frames to a device. While the
6272 * count in the device remains above zero the interface remains listening
6273 * to all interfaces. Once it hits zero the device reverts back to normal
6274 * filtering operation. A negative @inc value is used to drop the counter
6275 * when releasing a resource needing all multicasts.
6276 * Return 0 if successful or a negative errno code on error.
6277 */
6278
6279int dev_set_allmulti(struct net_device *dev, int inc)
6280{
6281 return __dev_set_allmulti(dev, inc, true);
6282}
d1b19dff 6283EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6284
6285/*
6286 * Upload unicast and multicast address lists to device and
6287 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6288 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6289 * are present.
6290 */
6291void __dev_set_rx_mode(struct net_device *dev)
6292{
d314774c
SH
6293 const struct net_device_ops *ops = dev->netdev_ops;
6294
4417da66
PM
6295 /* dev_open will call this function so the list will stay sane. */
6296 if (!(dev->flags&IFF_UP))
6297 return;
6298
6299 if (!netif_device_present(dev))
40b77c94 6300 return;
4417da66 6301
01789349 6302 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6303 /* Unicast addresses changes may only happen under the rtnl,
6304 * therefore calling __dev_set_promiscuity here is safe.
6305 */
32e7bfc4 6306 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6307 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6308 dev->uc_promisc = true;
32e7bfc4 6309 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6310 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6311 dev->uc_promisc = false;
4417da66 6312 }
4417da66 6313 }
01789349
JP
6314
6315 if (ops->ndo_set_rx_mode)
6316 ops->ndo_set_rx_mode(dev);
4417da66
PM
6317}
6318
6319void dev_set_rx_mode(struct net_device *dev)
6320{
b9e40857 6321 netif_addr_lock_bh(dev);
4417da66 6322 __dev_set_rx_mode(dev);
b9e40857 6323 netif_addr_unlock_bh(dev);
1da177e4
LT
6324}
6325
f0db275a
SH
6326/**
6327 * dev_get_flags - get flags reported to userspace
6328 * @dev: device
6329 *
6330 * Get the combination of flag bits exported through APIs to userspace.
6331 */
95c96174 6332unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6333{
95c96174 6334 unsigned int flags;
1da177e4
LT
6335
6336 flags = (dev->flags & ~(IFF_PROMISC |
6337 IFF_ALLMULTI |
b00055aa
SR
6338 IFF_RUNNING |
6339 IFF_LOWER_UP |
6340 IFF_DORMANT)) |
1da177e4
LT
6341 (dev->gflags & (IFF_PROMISC |
6342 IFF_ALLMULTI));
6343
b00055aa
SR
6344 if (netif_running(dev)) {
6345 if (netif_oper_up(dev))
6346 flags |= IFF_RUNNING;
6347 if (netif_carrier_ok(dev))
6348 flags |= IFF_LOWER_UP;
6349 if (netif_dormant(dev))
6350 flags |= IFF_DORMANT;
6351 }
1da177e4
LT
6352
6353 return flags;
6354}
d1b19dff 6355EXPORT_SYMBOL(dev_get_flags);
1da177e4 6356
bd380811 6357int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6358{
b536db93 6359 unsigned int old_flags = dev->flags;
bd380811 6360 int ret;
1da177e4 6361
24023451
PM
6362 ASSERT_RTNL();
6363
1da177e4
LT
6364 /*
6365 * Set the flags on our device.
6366 */
6367
6368 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6369 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6370 IFF_AUTOMEDIA)) |
6371 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6372 IFF_ALLMULTI));
6373
6374 /*
6375 * Load in the correct multicast list now the flags have changed.
6376 */
6377
b6c40d68
PM
6378 if ((old_flags ^ flags) & IFF_MULTICAST)
6379 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6380
4417da66 6381 dev_set_rx_mode(dev);
1da177e4
LT
6382
6383 /*
6384 * Have we downed the interface. We handle IFF_UP ourselves
6385 * according to user attempts to set it, rather than blindly
6386 * setting it.
6387 */
6388
6389 ret = 0;
d215d10f 6390 if ((old_flags ^ flags) & IFF_UP)
bd380811 6391 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6392
1da177e4 6393 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6394 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6395 unsigned int old_flags = dev->flags;
d1b19dff 6396
1da177e4 6397 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6398
6399 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6400 if (dev->flags != old_flags)
6401 dev_set_rx_mode(dev);
1da177e4
LT
6402 }
6403
6404 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6405 is important. Some (broken) drivers set IFF_PROMISC, when
6406 IFF_ALLMULTI is requested not asking us and not reporting.
6407 */
6408 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6409 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6410
1da177e4 6411 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6412 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6413 }
6414
bd380811
PM
6415 return ret;
6416}
6417
a528c219
ND
6418void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6419 unsigned int gchanges)
bd380811
PM
6420{
6421 unsigned int changes = dev->flags ^ old_flags;
6422
a528c219 6423 if (gchanges)
7f294054 6424 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6425
bd380811
PM
6426 if (changes & IFF_UP) {
6427 if (dev->flags & IFF_UP)
6428 call_netdevice_notifiers(NETDEV_UP, dev);
6429 else
6430 call_netdevice_notifiers(NETDEV_DOWN, dev);
6431 }
6432
6433 if (dev->flags & IFF_UP &&
be9efd36
JP
6434 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6435 struct netdev_notifier_change_info change_info;
6436
6437 change_info.flags_changed = changes;
6438 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6439 &change_info.info);
6440 }
bd380811
PM
6441}
6442
6443/**
6444 * dev_change_flags - change device settings
6445 * @dev: device
6446 * @flags: device state flags
6447 *
6448 * Change settings on device based state flags. The flags are
6449 * in the userspace exported format.
6450 */
b536db93 6451int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6452{
b536db93 6453 int ret;
991fb3f7 6454 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6455
6456 ret = __dev_change_flags(dev, flags);
6457 if (ret < 0)
6458 return ret;
6459
991fb3f7 6460 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6461 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6462 return ret;
6463}
d1b19dff 6464EXPORT_SYMBOL(dev_change_flags);
1da177e4 6465
2315dc91
VF
6466static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6467{
6468 const struct net_device_ops *ops = dev->netdev_ops;
6469
6470 if (ops->ndo_change_mtu)
6471 return ops->ndo_change_mtu(dev, new_mtu);
6472
6473 dev->mtu = new_mtu;
6474 return 0;
6475}
6476
f0db275a
SH
6477/**
6478 * dev_set_mtu - Change maximum transfer unit
6479 * @dev: device
6480 * @new_mtu: new transfer unit
6481 *
6482 * Change the maximum transfer size of the network device.
6483 */
1da177e4
LT
6484int dev_set_mtu(struct net_device *dev, int new_mtu)
6485{
2315dc91 6486 int err, orig_mtu;
1da177e4
LT
6487
6488 if (new_mtu == dev->mtu)
6489 return 0;
6490
6491 /* MTU must be positive. */
6492 if (new_mtu < 0)
6493 return -EINVAL;
6494
6495 if (!netif_device_present(dev))
6496 return -ENODEV;
6497
1d486bfb
VF
6498 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6499 err = notifier_to_errno(err);
6500 if (err)
6501 return err;
d314774c 6502
2315dc91
VF
6503 orig_mtu = dev->mtu;
6504 err = __dev_set_mtu(dev, new_mtu);
d314774c 6505
2315dc91
VF
6506 if (!err) {
6507 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6508 err = notifier_to_errno(err);
6509 if (err) {
6510 /* setting mtu back and notifying everyone again,
6511 * so that they have a chance to revert changes.
6512 */
6513 __dev_set_mtu(dev, orig_mtu);
6514 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6515 }
6516 }
1da177e4
LT
6517 return err;
6518}
d1b19dff 6519EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6520
cbda10fa
VD
6521/**
6522 * dev_set_group - Change group this device belongs to
6523 * @dev: device
6524 * @new_group: group this device should belong to
6525 */
6526void dev_set_group(struct net_device *dev, int new_group)
6527{
6528 dev->group = new_group;
6529}
6530EXPORT_SYMBOL(dev_set_group);
6531
f0db275a
SH
6532/**
6533 * dev_set_mac_address - Change Media Access Control Address
6534 * @dev: device
6535 * @sa: new address
6536 *
6537 * Change the hardware (MAC) address of the device
6538 */
1da177e4
LT
6539int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6540{
d314774c 6541 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6542 int err;
6543
d314774c 6544 if (!ops->ndo_set_mac_address)
1da177e4
LT
6545 return -EOPNOTSUPP;
6546 if (sa->sa_family != dev->type)
6547 return -EINVAL;
6548 if (!netif_device_present(dev))
6549 return -ENODEV;
d314774c 6550 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6551 if (err)
6552 return err;
fbdeca2d 6553 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6554 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6555 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6556 return 0;
1da177e4 6557}
d1b19dff 6558EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6559
4bf84c35
JP
6560/**
6561 * dev_change_carrier - Change device carrier
6562 * @dev: device
691b3b7e 6563 * @new_carrier: new value
4bf84c35
JP
6564 *
6565 * Change device carrier
6566 */
6567int dev_change_carrier(struct net_device *dev, bool new_carrier)
6568{
6569 const struct net_device_ops *ops = dev->netdev_ops;
6570
6571 if (!ops->ndo_change_carrier)
6572 return -EOPNOTSUPP;
6573 if (!netif_device_present(dev))
6574 return -ENODEV;
6575 return ops->ndo_change_carrier(dev, new_carrier);
6576}
6577EXPORT_SYMBOL(dev_change_carrier);
6578
66b52b0d
JP
6579/**
6580 * dev_get_phys_port_id - Get device physical port ID
6581 * @dev: device
6582 * @ppid: port ID
6583 *
6584 * Get device physical port ID
6585 */
6586int dev_get_phys_port_id(struct net_device *dev,
02637fce 6587 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6588{
6589 const struct net_device_ops *ops = dev->netdev_ops;
6590
6591 if (!ops->ndo_get_phys_port_id)
6592 return -EOPNOTSUPP;
6593 return ops->ndo_get_phys_port_id(dev, ppid);
6594}
6595EXPORT_SYMBOL(dev_get_phys_port_id);
6596
db24a904
DA
6597/**
6598 * dev_get_phys_port_name - Get device physical port name
6599 * @dev: device
6600 * @name: port name
ed49e650 6601 * @len: limit of bytes to copy to name
db24a904
DA
6602 *
6603 * Get device physical port name
6604 */
6605int dev_get_phys_port_name(struct net_device *dev,
6606 char *name, size_t len)
6607{
6608 const struct net_device_ops *ops = dev->netdev_ops;
6609
6610 if (!ops->ndo_get_phys_port_name)
6611 return -EOPNOTSUPP;
6612 return ops->ndo_get_phys_port_name(dev, name, len);
6613}
6614EXPORT_SYMBOL(dev_get_phys_port_name);
6615
d746d707
AK
6616/**
6617 * dev_change_proto_down - update protocol port state information
6618 * @dev: device
6619 * @proto_down: new value
6620 *
6621 * This info can be used by switch drivers to set the phys state of the
6622 * port.
6623 */
6624int dev_change_proto_down(struct net_device *dev, bool proto_down)
6625{
6626 const struct net_device_ops *ops = dev->netdev_ops;
6627
6628 if (!ops->ndo_change_proto_down)
6629 return -EOPNOTSUPP;
6630 if (!netif_device_present(dev))
6631 return -ENODEV;
6632 return ops->ndo_change_proto_down(dev, proto_down);
6633}
6634EXPORT_SYMBOL(dev_change_proto_down);
6635
a7862b45
BB
6636/**
6637 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6638 * @dev: device
6639 * @fd: new program fd or negative value to clear
6640 *
6641 * Set or clear a bpf program for a device
6642 */
6643int dev_change_xdp_fd(struct net_device *dev, int fd)
6644{
6645 const struct net_device_ops *ops = dev->netdev_ops;
6646 struct bpf_prog *prog = NULL;
6647 struct netdev_xdp xdp = {};
6648 int err;
6649
6650 if (!ops->ndo_xdp)
6651 return -EOPNOTSUPP;
6652 if (fd >= 0) {
6653 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6654 if (IS_ERR(prog))
6655 return PTR_ERR(prog);
6656 }
6657
6658 xdp.command = XDP_SETUP_PROG;
6659 xdp.prog = prog;
6660 err = ops->ndo_xdp(dev, &xdp);
6661 if (err < 0 && prog)
6662 bpf_prog_put(prog);
6663
6664 return err;
6665}
6666EXPORT_SYMBOL(dev_change_xdp_fd);
6667
1da177e4
LT
6668/**
6669 * dev_new_index - allocate an ifindex
c4ea43c5 6670 * @net: the applicable net namespace
1da177e4
LT
6671 *
6672 * Returns a suitable unique value for a new device interface
6673 * number. The caller must hold the rtnl semaphore or the
6674 * dev_base_lock to be sure it remains unique.
6675 */
881d966b 6676static int dev_new_index(struct net *net)
1da177e4 6677{
aa79e66e 6678 int ifindex = net->ifindex;
1da177e4
LT
6679 for (;;) {
6680 if (++ifindex <= 0)
6681 ifindex = 1;
881d966b 6682 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6683 return net->ifindex = ifindex;
1da177e4
LT
6684 }
6685}
6686
1da177e4 6687/* Delayed registration/unregisteration */
3b5b34fd 6688static LIST_HEAD(net_todo_list);
200b916f 6689DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6690
6f05f629 6691static void net_set_todo(struct net_device *dev)
1da177e4 6692{
1da177e4 6693 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6694 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6695}
6696
9b5e383c 6697static void rollback_registered_many(struct list_head *head)
93ee31f1 6698{
e93737b0 6699 struct net_device *dev, *tmp;
5cde2829 6700 LIST_HEAD(close_head);
9b5e383c 6701
93ee31f1
DL
6702 BUG_ON(dev_boot_phase);
6703 ASSERT_RTNL();
6704
e93737b0 6705 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6706 /* Some devices call without registering
e93737b0
KK
6707 * for initialization unwind. Remove those
6708 * devices and proceed with the remaining.
9b5e383c
ED
6709 */
6710 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6711 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6712 dev->name, dev);
93ee31f1 6713
9b5e383c 6714 WARN_ON(1);
e93737b0
KK
6715 list_del(&dev->unreg_list);
6716 continue;
9b5e383c 6717 }
449f4544 6718 dev->dismantle = true;
9b5e383c 6719 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6720 }
93ee31f1 6721
44345724 6722 /* If device is running, close it first. */
5cde2829
EB
6723 list_for_each_entry(dev, head, unreg_list)
6724 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6725 dev_close_many(&close_head, true);
93ee31f1 6726
44345724 6727 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6728 /* And unlink it from device chain. */
6729 unlist_netdevice(dev);
93ee31f1 6730
9b5e383c
ED
6731 dev->reg_state = NETREG_UNREGISTERING;
6732 }
41852497 6733 flush_all_backlogs();
93ee31f1
DL
6734
6735 synchronize_net();
6736
9b5e383c 6737 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6738 struct sk_buff *skb = NULL;
6739
9b5e383c
ED
6740 /* Shutdown queueing discipline. */
6741 dev_shutdown(dev);
93ee31f1
DL
6742
6743
9b5e383c
ED
6744 /* Notify protocols, that we are about to destroy
6745 this device. They should clean all the things.
6746 */
6747 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6748
395eea6c
MB
6749 if (!dev->rtnl_link_ops ||
6750 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6751 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6752 GFP_KERNEL);
6753
9b5e383c
ED
6754 /*
6755 * Flush the unicast and multicast chains
6756 */
a748ee24 6757 dev_uc_flush(dev);
22bedad3 6758 dev_mc_flush(dev);
93ee31f1 6759
9b5e383c
ED
6760 if (dev->netdev_ops->ndo_uninit)
6761 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6762
395eea6c
MB
6763 if (skb)
6764 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6765
9ff162a8
JP
6766 /* Notifier chain MUST detach us all upper devices. */
6767 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6768
9b5e383c
ED
6769 /* Remove entries from kobject tree */
6770 netdev_unregister_kobject(dev);
024e9679
AD
6771#ifdef CONFIG_XPS
6772 /* Remove XPS queueing entries */
6773 netif_reset_xps_queues_gt(dev, 0);
6774#endif
9b5e383c 6775 }
93ee31f1 6776
850a545b 6777 synchronize_net();
395264d5 6778
a5ee1551 6779 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6780 dev_put(dev);
6781}
6782
6783static void rollback_registered(struct net_device *dev)
6784{
6785 LIST_HEAD(single);
6786
6787 list_add(&dev->unreg_list, &single);
6788 rollback_registered_many(&single);
ceaaec98 6789 list_del(&single);
93ee31f1
DL
6790}
6791
fd867d51
JW
6792static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6793 struct net_device *upper, netdev_features_t features)
6794{
6795 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6796 netdev_features_t feature;
5ba3f7d6 6797 int feature_bit;
fd867d51 6798
5ba3f7d6
JW
6799 for_each_netdev_feature(&upper_disables, feature_bit) {
6800 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6801 if (!(upper->wanted_features & feature)
6802 && (features & feature)) {
6803 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6804 &feature, upper->name);
6805 features &= ~feature;
6806 }
6807 }
6808
6809 return features;
6810}
6811
6812static void netdev_sync_lower_features(struct net_device *upper,
6813 struct net_device *lower, netdev_features_t features)
6814{
6815 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6816 netdev_features_t feature;
5ba3f7d6 6817 int feature_bit;
fd867d51 6818
5ba3f7d6
JW
6819 for_each_netdev_feature(&upper_disables, feature_bit) {
6820 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6821 if (!(features & feature) && (lower->features & feature)) {
6822 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6823 &feature, lower->name);
6824 lower->wanted_features &= ~feature;
6825 netdev_update_features(lower);
6826
6827 if (unlikely(lower->features & feature))
6828 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6829 &feature, lower->name);
6830 }
6831 }
6832}
6833
c8f44aff
MM
6834static netdev_features_t netdev_fix_features(struct net_device *dev,
6835 netdev_features_t features)
b63365a2 6836{
57422dc5
MM
6837 /* Fix illegal checksum combinations */
6838 if ((features & NETIF_F_HW_CSUM) &&
6839 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6840 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6841 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6842 }
6843
b63365a2 6844 /* TSO requires that SG is present as well. */
ea2d3688 6845 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6846 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6847 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6848 }
6849
ec5f0615
PS
6850 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6851 !(features & NETIF_F_IP_CSUM)) {
6852 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6853 features &= ~NETIF_F_TSO;
6854 features &= ~NETIF_F_TSO_ECN;
6855 }
6856
6857 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6858 !(features & NETIF_F_IPV6_CSUM)) {
6859 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6860 features &= ~NETIF_F_TSO6;
6861 }
6862
b1dc497b
AD
6863 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6864 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6865 features &= ~NETIF_F_TSO_MANGLEID;
6866
31d8b9e0
BH
6867 /* TSO ECN requires that TSO is present as well. */
6868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6869 features &= ~NETIF_F_TSO_ECN;
6870
212b573f
MM
6871 /* Software GSO depends on SG. */
6872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6874 features &= ~NETIF_F_GSO;
6875 }
6876
acd1130e 6877 /* UFO needs SG and checksumming */
b63365a2 6878 if (features & NETIF_F_UFO) {
79032644 6879 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6880 if (!(features & NETIF_F_HW_CSUM) &&
6881 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6882 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6883 netdev_dbg(dev,
acd1130e 6884 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6885 features &= ~NETIF_F_UFO;
6886 }
6887
6888 if (!(features & NETIF_F_SG)) {
6f404e44 6889 netdev_dbg(dev,
acd1130e 6890 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6891 features &= ~NETIF_F_UFO;
6892 }
6893 }
6894
802ab55a
AD
6895 /* GSO partial features require GSO partial be set */
6896 if ((features & dev->gso_partial_features) &&
6897 !(features & NETIF_F_GSO_PARTIAL)) {
6898 netdev_dbg(dev,
6899 "Dropping partially supported GSO features since no GSO partial.\n");
6900 features &= ~dev->gso_partial_features;
6901 }
6902
d0290214
JP
6903#ifdef CONFIG_NET_RX_BUSY_POLL
6904 if (dev->netdev_ops->ndo_busy_poll)
6905 features |= NETIF_F_BUSY_POLL;
6906 else
6907#endif
6908 features &= ~NETIF_F_BUSY_POLL;
6909
b63365a2
HX
6910 return features;
6911}
b63365a2 6912
6cb6a27c 6913int __netdev_update_features(struct net_device *dev)
5455c699 6914{
fd867d51 6915 struct net_device *upper, *lower;
c8f44aff 6916 netdev_features_t features;
fd867d51 6917 struct list_head *iter;
e7868a85 6918 int err = -1;
5455c699 6919
87267485
MM
6920 ASSERT_RTNL();
6921
5455c699
MM
6922 features = netdev_get_wanted_features(dev);
6923
6924 if (dev->netdev_ops->ndo_fix_features)
6925 features = dev->netdev_ops->ndo_fix_features(dev, features);
6926
6927 /* driver might be less strict about feature dependencies */
6928 features = netdev_fix_features(dev, features);
6929
fd867d51
JW
6930 /* some features can't be enabled if they're off an an upper device */
6931 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6932 features = netdev_sync_upper_features(dev, upper, features);
6933
5455c699 6934 if (dev->features == features)
e7868a85 6935 goto sync_lower;
5455c699 6936
c8f44aff
MM
6937 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6938 &dev->features, &features);
5455c699
MM
6939
6940 if (dev->netdev_ops->ndo_set_features)
6941 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6942 else
6943 err = 0;
5455c699 6944
6cb6a27c 6945 if (unlikely(err < 0)) {
5455c699 6946 netdev_err(dev,
c8f44aff
MM
6947 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6948 err, &features, &dev->features);
17b85d29
NA
6949 /* return non-0 since some features might have changed and
6950 * it's better to fire a spurious notification than miss it
6951 */
6952 return -1;
6cb6a27c
MM
6953 }
6954
e7868a85 6955sync_lower:
fd867d51
JW
6956 /* some features must be disabled on lower devices when disabled
6957 * on an upper device (think: bonding master or bridge)
6958 */
6959 netdev_for_each_lower_dev(dev, lower, iter)
6960 netdev_sync_lower_features(dev, lower, features);
6961
6cb6a27c
MM
6962 if (!err)
6963 dev->features = features;
6964
e7868a85 6965 return err < 0 ? 0 : 1;
6cb6a27c
MM
6966}
6967
afe12cc8
MM
6968/**
6969 * netdev_update_features - recalculate device features
6970 * @dev: the device to check
6971 *
6972 * Recalculate dev->features set and send notifications if it
6973 * has changed. Should be called after driver or hardware dependent
6974 * conditions might have changed that influence the features.
6975 */
6cb6a27c
MM
6976void netdev_update_features(struct net_device *dev)
6977{
6978 if (__netdev_update_features(dev))
6979 netdev_features_change(dev);
5455c699
MM
6980}
6981EXPORT_SYMBOL(netdev_update_features);
6982
afe12cc8
MM
6983/**
6984 * netdev_change_features - recalculate device features
6985 * @dev: the device to check
6986 *
6987 * Recalculate dev->features set and send notifications even
6988 * if they have not changed. Should be called instead of
6989 * netdev_update_features() if also dev->vlan_features might
6990 * have changed to allow the changes to be propagated to stacked
6991 * VLAN devices.
6992 */
6993void netdev_change_features(struct net_device *dev)
6994{
6995 __netdev_update_features(dev);
6996 netdev_features_change(dev);
6997}
6998EXPORT_SYMBOL(netdev_change_features);
6999
fc4a7489
PM
7000/**
7001 * netif_stacked_transfer_operstate - transfer operstate
7002 * @rootdev: the root or lower level device to transfer state from
7003 * @dev: the device to transfer operstate to
7004 *
7005 * Transfer operational state from root to device. This is normally
7006 * called when a stacking relationship exists between the root
7007 * device and the device(a leaf device).
7008 */
7009void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7010 struct net_device *dev)
7011{
7012 if (rootdev->operstate == IF_OPER_DORMANT)
7013 netif_dormant_on(dev);
7014 else
7015 netif_dormant_off(dev);
7016
7017 if (netif_carrier_ok(rootdev)) {
7018 if (!netif_carrier_ok(dev))
7019 netif_carrier_on(dev);
7020 } else {
7021 if (netif_carrier_ok(dev))
7022 netif_carrier_off(dev);
7023 }
7024}
7025EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7026
a953be53 7027#ifdef CONFIG_SYSFS
1b4bf461
ED
7028static int netif_alloc_rx_queues(struct net_device *dev)
7029{
1b4bf461 7030 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7031 struct netdev_rx_queue *rx;
10595902 7032 size_t sz = count * sizeof(*rx);
1b4bf461 7033
bd25fa7b 7034 BUG_ON(count < 1);
1b4bf461 7035
10595902
PG
7036 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7037 if (!rx) {
7038 rx = vzalloc(sz);
7039 if (!rx)
7040 return -ENOMEM;
7041 }
bd25fa7b
TH
7042 dev->_rx = rx;
7043
bd25fa7b 7044 for (i = 0; i < count; i++)
fe822240 7045 rx[i].dev = dev;
1b4bf461
ED
7046 return 0;
7047}
bf264145 7048#endif
1b4bf461 7049
aa942104
CG
7050static void netdev_init_one_queue(struct net_device *dev,
7051 struct netdev_queue *queue, void *_unused)
7052{
7053 /* Initialize queue lock */
7054 spin_lock_init(&queue->_xmit_lock);
7055 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7056 queue->xmit_lock_owner = -1;
b236da69 7057 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7058 queue->dev = dev;
114cf580
TH
7059#ifdef CONFIG_BQL
7060 dql_init(&queue->dql, HZ);
7061#endif
aa942104
CG
7062}
7063
60877a32
ED
7064static void netif_free_tx_queues(struct net_device *dev)
7065{
4cb28970 7066 kvfree(dev->_tx);
60877a32
ED
7067}
7068
e6484930
TH
7069static int netif_alloc_netdev_queues(struct net_device *dev)
7070{
7071 unsigned int count = dev->num_tx_queues;
7072 struct netdev_queue *tx;
60877a32 7073 size_t sz = count * sizeof(*tx);
e6484930 7074
d339727c
ED
7075 if (count < 1 || count > 0xffff)
7076 return -EINVAL;
62b5942a 7077
60877a32
ED
7078 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7079 if (!tx) {
7080 tx = vzalloc(sz);
7081 if (!tx)
7082 return -ENOMEM;
7083 }
e6484930 7084 dev->_tx = tx;
1d24eb48 7085
e6484930
TH
7086 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7087 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7088
7089 return 0;
e6484930
TH
7090}
7091
a2029240
DV
7092void netif_tx_stop_all_queues(struct net_device *dev)
7093{
7094 unsigned int i;
7095
7096 for (i = 0; i < dev->num_tx_queues; i++) {
7097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7098 netif_tx_stop_queue(txq);
7099 }
7100}
7101EXPORT_SYMBOL(netif_tx_stop_all_queues);
7102
1da177e4
LT
7103/**
7104 * register_netdevice - register a network device
7105 * @dev: device to register
7106 *
7107 * Take a completed network device structure and add it to the kernel
7108 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7109 * chain. 0 is returned on success. A negative errno code is returned
7110 * on a failure to set up the device, or if the name is a duplicate.
7111 *
7112 * Callers must hold the rtnl semaphore. You may want
7113 * register_netdev() instead of this.
7114 *
7115 * BUGS:
7116 * The locking appears insufficient to guarantee two parallel registers
7117 * will not get the same name.
7118 */
7119
7120int register_netdevice(struct net_device *dev)
7121{
1da177e4 7122 int ret;
d314774c 7123 struct net *net = dev_net(dev);
1da177e4
LT
7124
7125 BUG_ON(dev_boot_phase);
7126 ASSERT_RTNL();
7127
b17a7c17
SH
7128 might_sleep();
7129
1da177e4
LT
7130 /* When net_device's are persistent, this will be fatal. */
7131 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7132 BUG_ON(!net);
1da177e4 7133
f1f28aa3 7134 spin_lock_init(&dev->addr_list_lock);
cf508b12 7135 netdev_set_addr_lockdep_class(dev);
1da177e4 7136
828de4f6 7137 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7138 if (ret < 0)
7139 goto out;
7140
1da177e4 7141 /* Init, if this function is available */
d314774c
SH
7142 if (dev->netdev_ops->ndo_init) {
7143 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7144 if (ret) {
7145 if (ret > 0)
7146 ret = -EIO;
90833aa4 7147 goto out;
1da177e4
LT
7148 }
7149 }
4ec93edb 7150
f646968f
PM
7151 if (((dev->hw_features | dev->features) &
7152 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7153 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7154 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7155 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7156 ret = -EINVAL;
7157 goto err_uninit;
7158 }
7159
9c7dafbf
PE
7160 ret = -EBUSY;
7161 if (!dev->ifindex)
7162 dev->ifindex = dev_new_index(net);
7163 else if (__dev_get_by_index(net, dev->ifindex))
7164 goto err_uninit;
7165
5455c699
MM
7166 /* Transfer changeable features to wanted_features and enable
7167 * software offloads (GSO and GRO).
7168 */
7169 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7170 dev->features |= NETIF_F_SOFT_FEATURES;
7171 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7172
cbc53e08 7173 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7174 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7175
7f348a60
AD
7176 /* If IPv4 TCP segmentation offload is supported we should also
7177 * allow the device to enable segmenting the frame with the option
7178 * of ignoring a static IP ID value. This doesn't enable the
7179 * feature itself but allows the user to enable it later.
7180 */
cbc53e08
AD
7181 if (dev->hw_features & NETIF_F_TSO)
7182 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7183 if (dev->vlan_features & NETIF_F_TSO)
7184 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7185 if (dev->mpls_features & NETIF_F_TSO)
7186 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7187 if (dev->hw_enc_features & NETIF_F_TSO)
7188 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7189
1180e7d6 7190 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7191 */
1180e7d6 7192 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7193
ee579677
PS
7194 /* Make NETIF_F_SG inheritable to tunnel devices.
7195 */
802ab55a 7196 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7197
0d89d203
SH
7198 /* Make NETIF_F_SG inheritable to MPLS.
7199 */
7200 dev->mpls_features |= NETIF_F_SG;
7201
7ffbe3fd
JB
7202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7203 ret = notifier_to_errno(ret);
7204 if (ret)
7205 goto err_uninit;
7206
8b41d188 7207 ret = netdev_register_kobject(dev);
b17a7c17 7208 if (ret)
7ce1b0ed 7209 goto err_uninit;
b17a7c17
SH
7210 dev->reg_state = NETREG_REGISTERED;
7211
6cb6a27c 7212 __netdev_update_features(dev);
8e9b59b2 7213
1da177e4
LT
7214 /*
7215 * Default initial state at registry is that the
7216 * device is present.
7217 */
7218
7219 set_bit(__LINK_STATE_PRESENT, &dev->state);
7220
8f4cccbb
BH
7221 linkwatch_init_dev(dev);
7222
1da177e4 7223 dev_init_scheduler(dev);
1da177e4 7224 dev_hold(dev);
ce286d32 7225 list_netdevice(dev);
7bf23575 7226 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7227
948b337e
JP
7228 /* If the device has permanent device address, driver should
7229 * set dev_addr and also addr_assign_type should be set to
7230 * NET_ADDR_PERM (default value).
7231 */
7232 if (dev->addr_assign_type == NET_ADDR_PERM)
7233 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7234
1da177e4 7235 /* Notify protocols, that a new device appeared. */
056925ab 7236 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7237 ret = notifier_to_errno(ret);
93ee31f1
DL
7238 if (ret) {
7239 rollback_registered(dev);
7240 dev->reg_state = NETREG_UNREGISTERED;
7241 }
d90a909e
EB
7242 /*
7243 * Prevent userspace races by waiting until the network
7244 * device is fully setup before sending notifications.
7245 */
a2835763
PM
7246 if (!dev->rtnl_link_ops ||
7247 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7249
7250out:
7251 return ret;
7ce1b0ed
HX
7252
7253err_uninit:
d314774c
SH
7254 if (dev->netdev_ops->ndo_uninit)
7255 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7256 goto out;
1da177e4 7257}
d1b19dff 7258EXPORT_SYMBOL(register_netdevice);
1da177e4 7259
937f1ba5
BH
7260/**
7261 * init_dummy_netdev - init a dummy network device for NAPI
7262 * @dev: device to init
7263 *
7264 * This takes a network device structure and initialize the minimum
7265 * amount of fields so it can be used to schedule NAPI polls without
7266 * registering a full blown interface. This is to be used by drivers
7267 * that need to tie several hardware interfaces to a single NAPI
7268 * poll scheduler due to HW limitations.
7269 */
7270int init_dummy_netdev(struct net_device *dev)
7271{
7272 /* Clear everything. Note we don't initialize spinlocks
7273 * are they aren't supposed to be taken by any of the
7274 * NAPI code and this dummy netdev is supposed to be
7275 * only ever used for NAPI polls
7276 */
7277 memset(dev, 0, sizeof(struct net_device));
7278
7279 /* make sure we BUG if trying to hit standard
7280 * register/unregister code path
7281 */
7282 dev->reg_state = NETREG_DUMMY;
7283
937f1ba5
BH
7284 /* NAPI wants this */
7285 INIT_LIST_HEAD(&dev->napi_list);
7286
7287 /* a dummy interface is started by default */
7288 set_bit(__LINK_STATE_PRESENT, &dev->state);
7289 set_bit(__LINK_STATE_START, &dev->state);
7290
29b4433d
ED
7291 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7292 * because users of this 'device' dont need to change
7293 * its refcount.
7294 */
7295
937f1ba5
BH
7296 return 0;
7297}
7298EXPORT_SYMBOL_GPL(init_dummy_netdev);
7299
7300
1da177e4
LT
7301/**
7302 * register_netdev - register a network device
7303 * @dev: device to register
7304 *
7305 * Take a completed network device structure and add it to the kernel
7306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7307 * chain. 0 is returned on success. A negative errno code is returned
7308 * on a failure to set up the device, or if the name is a duplicate.
7309 *
38b4da38 7310 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7311 * and expands the device name if you passed a format string to
7312 * alloc_netdev.
7313 */
7314int register_netdev(struct net_device *dev)
7315{
7316 int err;
7317
7318 rtnl_lock();
1da177e4 7319 err = register_netdevice(dev);
1da177e4
LT
7320 rtnl_unlock();
7321 return err;
7322}
7323EXPORT_SYMBOL(register_netdev);
7324
29b4433d
ED
7325int netdev_refcnt_read(const struct net_device *dev)
7326{
7327 int i, refcnt = 0;
7328
7329 for_each_possible_cpu(i)
7330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7331 return refcnt;
7332}
7333EXPORT_SYMBOL(netdev_refcnt_read);
7334
2c53040f 7335/**
1da177e4 7336 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7337 * @dev: target net_device
1da177e4
LT
7338 *
7339 * This is called when unregistering network devices.
7340 *
7341 * Any protocol or device that holds a reference should register
7342 * for netdevice notification, and cleanup and put back the
7343 * reference if they receive an UNREGISTER event.
7344 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7345 * call dev_put.
1da177e4
LT
7346 */
7347static void netdev_wait_allrefs(struct net_device *dev)
7348{
7349 unsigned long rebroadcast_time, warning_time;
29b4433d 7350 int refcnt;
1da177e4 7351
e014debe
ED
7352 linkwatch_forget_dev(dev);
7353
1da177e4 7354 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7355 refcnt = netdev_refcnt_read(dev);
7356
7357 while (refcnt != 0) {
1da177e4 7358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7359 rtnl_lock();
1da177e4
LT
7360
7361 /* Rebroadcast unregister notification */
056925ab 7362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7363
748e2d93 7364 __rtnl_unlock();
0115e8e3 7365 rcu_barrier();
748e2d93
ED
7366 rtnl_lock();
7367
0115e8e3 7368 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7369 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7370 &dev->state)) {
7371 /* We must not have linkwatch events
7372 * pending on unregister. If this
7373 * happens, we simply run the queue
7374 * unscheduled, resulting in a noop
7375 * for this device.
7376 */
7377 linkwatch_run_queue();
7378 }
7379
6756ae4b 7380 __rtnl_unlock();
1da177e4
LT
7381
7382 rebroadcast_time = jiffies;
7383 }
7384
7385 msleep(250);
7386
29b4433d
ED
7387 refcnt = netdev_refcnt_read(dev);
7388
1da177e4 7389 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7390 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7391 dev->name, refcnt);
1da177e4
LT
7392 warning_time = jiffies;
7393 }
7394 }
7395}
7396
7397/* The sequence is:
7398 *
7399 * rtnl_lock();
7400 * ...
7401 * register_netdevice(x1);
7402 * register_netdevice(x2);
7403 * ...
7404 * unregister_netdevice(y1);
7405 * unregister_netdevice(y2);
7406 * ...
7407 * rtnl_unlock();
7408 * free_netdev(y1);
7409 * free_netdev(y2);
7410 *
58ec3b4d 7411 * We are invoked by rtnl_unlock().
1da177e4 7412 * This allows us to deal with problems:
b17a7c17 7413 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7414 * without deadlocking with linkwatch via keventd.
7415 * 2) Since we run with the RTNL semaphore not held, we can sleep
7416 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7417 *
7418 * We must not return until all unregister events added during
7419 * the interval the lock was held have been completed.
1da177e4 7420 */
1da177e4
LT
7421void netdev_run_todo(void)
7422{
626ab0e6 7423 struct list_head list;
1da177e4 7424
1da177e4 7425 /* Snapshot list, allow later requests */
626ab0e6 7426 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7427
7428 __rtnl_unlock();
626ab0e6 7429
0115e8e3
ED
7430
7431 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7432 if (!list_empty(&list))
7433 rcu_barrier();
7434
1da177e4
LT
7435 while (!list_empty(&list)) {
7436 struct net_device *dev
e5e26d75 7437 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7438 list_del(&dev->todo_list);
7439
748e2d93 7440 rtnl_lock();
0115e8e3 7441 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7442 __rtnl_unlock();
0115e8e3 7443
b17a7c17 7444 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7445 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7446 dev->name, dev->reg_state);
7447 dump_stack();
7448 continue;
7449 }
1da177e4 7450
b17a7c17 7451 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7452
b17a7c17 7453 netdev_wait_allrefs(dev);
1da177e4 7454
b17a7c17 7455 /* paranoia */
29b4433d 7456 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7457 BUG_ON(!list_empty(&dev->ptype_all));
7458 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7459 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7460 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7461 WARN_ON(dev->dn_ptr);
1da177e4 7462
b17a7c17
SH
7463 if (dev->destructor)
7464 dev->destructor(dev);
9093bbb2 7465
50624c93
EB
7466 /* Report a network device has been unregistered */
7467 rtnl_lock();
7468 dev_net(dev)->dev_unreg_count--;
7469 __rtnl_unlock();
7470 wake_up(&netdev_unregistering_wq);
7471
9093bbb2
SH
7472 /* Free network device */
7473 kobject_put(&dev->dev.kobj);
1da177e4 7474 }
1da177e4
LT
7475}
7476
9256645a
JW
7477/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7478 * all the same fields in the same order as net_device_stats, with only
7479 * the type differing, but rtnl_link_stats64 may have additional fields
7480 * at the end for newer counters.
3cfde79c 7481 */
77a1abf5
ED
7482void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7483 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7484{
7485#if BITS_PER_LONG == 64
9256645a 7486 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7487 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7488 /* zero out counters that only exist in rtnl_link_stats64 */
7489 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7490 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7491#else
9256645a 7492 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7493 const unsigned long *src = (const unsigned long *)netdev_stats;
7494 u64 *dst = (u64 *)stats64;
7495
9256645a 7496 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7497 for (i = 0; i < n; i++)
7498 dst[i] = src[i];
9256645a
JW
7499 /* zero out counters that only exist in rtnl_link_stats64 */
7500 memset((char *)stats64 + n * sizeof(u64), 0,
7501 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7502#endif
7503}
77a1abf5 7504EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7505
eeda3fd6
SH
7506/**
7507 * dev_get_stats - get network device statistics
7508 * @dev: device to get statistics from
28172739 7509 * @storage: place to store stats
eeda3fd6 7510 *
d7753516
BH
7511 * Get network statistics from device. Return @storage.
7512 * The device driver may provide its own method by setting
7513 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7514 * otherwise the internal statistics structure is used.
eeda3fd6 7515 */
d7753516
BH
7516struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7517 struct rtnl_link_stats64 *storage)
7004bf25 7518{
eeda3fd6
SH
7519 const struct net_device_ops *ops = dev->netdev_ops;
7520
28172739
ED
7521 if (ops->ndo_get_stats64) {
7522 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7523 ops->ndo_get_stats64(dev, storage);
7524 } else if (ops->ndo_get_stats) {
3cfde79c 7525 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7526 } else {
7527 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7528 }
caf586e5 7529 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7530 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7531 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7532 return storage;
c45d286e 7533}
eeda3fd6 7534EXPORT_SYMBOL(dev_get_stats);
c45d286e 7535
24824a09 7536struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7537{
24824a09 7538 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7539
24824a09
ED
7540#ifdef CONFIG_NET_CLS_ACT
7541 if (queue)
7542 return queue;
7543 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7544 if (!queue)
7545 return NULL;
7546 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7547 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7548 queue->qdisc_sleeping = &noop_qdisc;
7549 rcu_assign_pointer(dev->ingress_queue, queue);
7550#endif
7551 return queue;
bb949fbd
DM
7552}
7553
2c60db03
ED
7554static const struct ethtool_ops default_ethtool_ops;
7555
d07d7507
SG
7556void netdev_set_default_ethtool_ops(struct net_device *dev,
7557 const struct ethtool_ops *ops)
7558{
7559 if (dev->ethtool_ops == &default_ethtool_ops)
7560 dev->ethtool_ops = ops;
7561}
7562EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7563
74d332c1
ED
7564void netdev_freemem(struct net_device *dev)
7565{
7566 char *addr = (char *)dev - dev->padded;
7567
4cb28970 7568 kvfree(addr);
74d332c1
ED
7569}
7570
1da177e4 7571/**
36909ea4 7572 * alloc_netdev_mqs - allocate network device
c835a677
TG
7573 * @sizeof_priv: size of private data to allocate space for
7574 * @name: device name format string
7575 * @name_assign_type: origin of device name
7576 * @setup: callback to initialize device
7577 * @txqs: the number of TX subqueues to allocate
7578 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7579 *
7580 * Allocates a struct net_device with private data area for driver use
90e51adf 7581 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7582 * for each queue on the device.
1da177e4 7583 */
36909ea4 7584struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7585 unsigned char name_assign_type,
36909ea4
TH
7586 void (*setup)(struct net_device *),
7587 unsigned int txqs, unsigned int rxqs)
1da177e4 7588{
1da177e4 7589 struct net_device *dev;
7943986c 7590 size_t alloc_size;
1ce8e7b5 7591 struct net_device *p;
1da177e4 7592
b6fe17d6
SH
7593 BUG_ON(strlen(name) >= sizeof(dev->name));
7594
36909ea4 7595 if (txqs < 1) {
7b6cd1ce 7596 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7597 return NULL;
7598 }
7599
a953be53 7600#ifdef CONFIG_SYSFS
36909ea4 7601 if (rxqs < 1) {
7b6cd1ce 7602 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7603 return NULL;
7604 }
7605#endif
7606
fd2ea0a7 7607 alloc_size = sizeof(struct net_device);
d1643d24
AD
7608 if (sizeof_priv) {
7609 /* ensure 32-byte alignment of private area */
1ce8e7b5 7610 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7611 alloc_size += sizeof_priv;
7612 }
7613 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7614 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7615
74d332c1
ED
7616 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7617 if (!p)
7618 p = vzalloc(alloc_size);
62b5942a 7619 if (!p)
1da177e4 7620 return NULL;
1da177e4 7621
1ce8e7b5 7622 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7623 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7624
29b4433d
ED
7625 dev->pcpu_refcnt = alloc_percpu(int);
7626 if (!dev->pcpu_refcnt)
74d332c1 7627 goto free_dev;
ab9c73cc 7628
ab9c73cc 7629 if (dev_addr_init(dev))
29b4433d 7630 goto free_pcpu;
ab9c73cc 7631
22bedad3 7632 dev_mc_init(dev);
a748ee24 7633 dev_uc_init(dev);
ccffad25 7634
c346dca1 7635 dev_net_set(dev, &init_net);
1da177e4 7636
8d3bdbd5 7637 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7638 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7639
8d3bdbd5
DM
7640 INIT_LIST_HEAD(&dev->napi_list);
7641 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7642 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7643 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7644 INIT_LIST_HEAD(&dev->adj_list.upper);
7645 INIT_LIST_HEAD(&dev->adj_list.lower);
7646 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7647 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7648 INIT_LIST_HEAD(&dev->ptype_all);
7649 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7650#ifdef CONFIG_NET_SCHED
7651 hash_init(dev->qdisc_hash);
7652#endif
02875878 7653 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7654 setup(dev);
7655
a813104d 7656 if (!dev->tx_queue_len) {
f84bb1ea 7657 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7658 dev->tx_queue_len = 1;
7659 }
906470c1 7660
36909ea4
TH
7661 dev->num_tx_queues = txqs;
7662 dev->real_num_tx_queues = txqs;
ed9af2e8 7663 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7664 goto free_all;
e8a0464c 7665
a953be53 7666#ifdef CONFIG_SYSFS
36909ea4
TH
7667 dev->num_rx_queues = rxqs;
7668 dev->real_num_rx_queues = rxqs;
fe822240 7669 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7670 goto free_all;
df334545 7671#endif
0a9627f2 7672
1da177e4 7673 strcpy(dev->name, name);
c835a677 7674 dev->name_assign_type = name_assign_type;
cbda10fa 7675 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7676 if (!dev->ethtool_ops)
7677 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7678
7679 nf_hook_ingress_init(dev);
7680
1da177e4 7681 return dev;
ab9c73cc 7682
8d3bdbd5
DM
7683free_all:
7684 free_netdev(dev);
7685 return NULL;
7686
29b4433d
ED
7687free_pcpu:
7688 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7689free_dev:
7690 netdev_freemem(dev);
ab9c73cc 7691 return NULL;
1da177e4 7692}
36909ea4 7693EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7694
7695/**
7696 * free_netdev - free network device
7697 * @dev: device
7698 *
4ec93edb
YH
7699 * This function does the last stage of destroying an allocated device
7700 * interface. The reference to the device object is released.
1da177e4 7701 * If this is the last reference then it will be freed.
93d05d4a 7702 * Must be called in process context.
1da177e4
LT
7703 */
7704void free_netdev(struct net_device *dev)
7705{
d565b0a1
HX
7706 struct napi_struct *p, *n;
7707
93d05d4a 7708 might_sleep();
60877a32 7709 netif_free_tx_queues(dev);
a953be53 7710#ifdef CONFIG_SYSFS
10595902 7711 kvfree(dev->_rx);
fe822240 7712#endif
e8a0464c 7713
33d480ce 7714 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7715
f001fde5
JP
7716 /* Flush device addresses */
7717 dev_addr_flush(dev);
7718
d565b0a1
HX
7719 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7720 netif_napi_del(p);
7721
29b4433d
ED
7722 free_percpu(dev->pcpu_refcnt);
7723 dev->pcpu_refcnt = NULL;
7724
3041a069 7725 /* Compatibility with error handling in drivers */
1da177e4 7726 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7727 netdev_freemem(dev);
1da177e4
LT
7728 return;
7729 }
7730
7731 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7732 dev->reg_state = NETREG_RELEASED;
7733
43cb76d9
GKH
7734 /* will free via device release */
7735 put_device(&dev->dev);
1da177e4 7736}
d1b19dff 7737EXPORT_SYMBOL(free_netdev);
4ec93edb 7738
f0db275a
SH
7739/**
7740 * synchronize_net - Synchronize with packet receive processing
7741 *
7742 * Wait for packets currently being received to be done.
7743 * Does not block later packets from starting.
7744 */
4ec93edb 7745void synchronize_net(void)
1da177e4
LT
7746{
7747 might_sleep();
be3fc413
ED
7748 if (rtnl_is_locked())
7749 synchronize_rcu_expedited();
7750 else
7751 synchronize_rcu();
1da177e4 7752}
d1b19dff 7753EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7754
7755/**
44a0873d 7756 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7757 * @dev: device
44a0873d 7758 * @head: list
6ebfbc06 7759 *
1da177e4 7760 * This function shuts down a device interface and removes it
d59b54b1 7761 * from the kernel tables.
44a0873d 7762 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7763 *
7764 * Callers must hold the rtnl semaphore. You may want
7765 * unregister_netdev() instead of this.
7766 */
7767
44a0873d 7768void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7769{
a6620712
HX
7770 ASSERT_RTNL();
7771
44a0873d 7772 if (head) {
9fdce099 7773 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7774 } else {
7775 rollback_registered(dev);
7776 /* Finish processing unregister after unlock */
7777 net_set_todo(dev);
7778 }
1da177e4 7779}
44a0873d 7780EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7781
9b5e383c
ED
7782/**
7783 * unregister_netdevice_many - unregister many devices
7784 * @head: list of devices
87757a91
ED
7785 *
7786 * Note: As most callers use a stack allocated list_head,
7787 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7788 */
7789void unregister_netdevice_many(struct list_head *head)
7790{
7791 struct net_device *dev;
7792
7793 if (!list_empty(head)) {
7794 rollback_registered_many(head);
7795 list_for_each_entry(dev, head, unreg_list)
7796 net_set_todo(dev);
87757a91 7797 list_del(head);
9b5e383c
ED
7798 }
7799}
63c8099d 7800EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7801
1da177e4
LT
7802/**
7803 * unregister_netdev - remove device from the kernel
7804 * @dev: device
7805 *
7806 * This function shuts down a device interface and removes it
d59b54b1 7807 * from the kernel tables.
1da177e4
LT
7808 *
7809 * This is just a wrapper for unregister_netdevice that takes
7810 * the rtnl semaphore. In general you want to use this and not
7811 * unregister_netdevice.
7812 */
7813void unregister_netdev(struct net_device *dev)
7814{
7815 rtnl_lock();
7816 unregister_netdevice(dev);
7817 rtnl_unlock();
7818}
1da177e4
LT
7819EXPORT_SYMBOL(unregister_netdev);
7820
ce286d32
EB
7821/**
7822 * dev_change_net_namespace - move device to different nethost namespace
7823 * @dev: device
7824 * @net: network namespace
7825 * @pat: If not NULL name pattern to try if the current device name
7826 * is already taken in the destination network namespace.
7827 *
7828 * This function shuts down a device interface and moves it
7829 * to a new network namespace. On success 0 is returned, on
7830 * a failure a netagive errno code is returned.
7831 *
7832 * Callers must hold the rtnl semaphore.
7833 */
7834
7835int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7836{
ce286d32
EB
7837 int err;
7838
7839 ASSERT_RTNL();
7840
7841 /* Don't allow namespace local devices to be moved. */
7842 err = -EINVAL;
7843 if (dev->features & NETIF_F_NETNS_LOCAL)
7844 goto out;
7845
7846 /* Ensure the device has been registrered */
ce286d32
EB
7847 if (dev->reg_state != NETREG_REGISTERED)
7848 goto out;
7849
7850 /* Get out if there is nothing todo */
7851 err = 0;
878628fb 7852 if (net_eq(dev_net(dev), net))
ce286d32
EB
7853 goto out;
7854
7855 /* Pick the destination device name, and ensure
7856 * we can use it in the destination network namespace.
7857 */
7858 err = -EEXIST;
d9031024 7859 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7860 /* We get here if we can't use the current device name */
7861 if (!pat)
7862 goto out;
828de4f6 7863 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7864 goto out;
7865 }
7866
7867 /*
7868 * And now a mini version of register_netdevice unregister_netdevice.
7869 */
7870
7871 /* If device is running close it first. */
9b772652 7872 dev_close(dev);
ce286d32
EB
7873
7874 /* And unlink it from device chain */
7875 err = -ENODEV;
7876 unlist_netdevice(dev);
7877
7878 synchronize_net();
7879
7880 /* Shutdown queueing discipline. */
7881 dev_shutdown(dev);
7882
7883 /* Notify protocols, that we are about to destroy
7884 this device. They should clean all the things.
3b27e105
DL
7885
7886 Note that dev->reg_state stays at NETREG_REGISTERED.
7887 This is wanted because this way 8021q and macvlan know
7888 the device is just moving and can keep their slaves up.
ce286d32
EB
7889 */
7890 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7891 rcu_barrier();
7892 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7893 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7894
7895 /*
7896 * Flush the unicast and multicast chains
7897 */
a748ee24 7898 dev_uc_flush(dev);
22bedad3 7899 dev_mc_flush(dev);
ce286d32 7900
4e66ae2e
SH
7901 /* Send a netdev-removed uevent to the old namespace */
7902 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7903 netdev_adjacent_del_links(dev);
4e66ae2e 7904
ce286d32 7905 /* Actually switch the network namespace */
c346dca1 7906 dev_net_set(dev, net);
ce286d32 7907
ce286d32 7908 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7909 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7910 dev->ifindex = dev_new_index(net);
ce286d32 7911
4e66ae2e
SH
7912 /* Send a netdev-add uevent to the new namespace */
7913 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7914 netdev_adjacent_add_links(dev);
4e66ae2e 7915
8b41d188 7916 /* Fixup kobjects */
a1b3f594 7917 err = device_rename(&dev->dev, dev->name);
8b41d188 7918 WARN_ON(err);
ce286d32
EB
7919
7920 /* Add the device back in the hashes */
7921 list_netdevice(dev);
7922
7923 /* Notify protocols, that a new device appeared. */
7924 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7925
d90a909e
EB
7926 /*
7927 * Prevent userspace races by waiting until the network
7928 * device is fully setup before sending notifications.
7929 */
7f294054 7930 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7931
ce286d32
EB
7932 synchronize_net();
7933 err = 0;
7934out:
7935 return err;
7936}
463d0183 7937EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7938
1da177e4
LT
7939static int dev_cpu_callback(struct notifier_block *nfb,
7940 unsigned long action,
7941 void *ocpu)
7942{
7943 struct sk_buff **list_skb;
1da177e4
LT
7944 struct sk_buff *skb;
7945 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7946 struct softnet_data *sd, *oldsd;
7947
8bb78442 7948 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7949 return NOTIFY_OK;
7950
7951 local_irq_disable();
7952 cpu = smp_processor_id();
7953 sd = &per_cpu(softnet_data, cpu);
7954 oldsd = &per_cpu(softnet_data, oldcpu);
7955
7956 /* Find end of our completion_queue. */
7957 list_skb = &sd->completion_queue;
7958 while (*list_skb)
7959 list_skb = &(*list_skb)->next;
7960 /* Append completion queue from offline CPU. */
7961 *list_skb = oldsd->completion_queue;
7962 oldsd->completion_queue = NULL;
7963
1da177e4 7964 /* Append output queue from offline CPU. */
a9cbd588
CG
7965 if (oldsd->output_queue) {
7966 *sd->output_queue_tailp = oldsd->output_queue;
7967 sd->output_queue_tailp = oldsd->output_queue_tailp;
7968 oldsd->output_queue = NULL;
7969 oldsd->output_queue_tailp = &oldsd->output_queue;
7970 }
ac64da0b
ED
7971 /* Append NAPI poll list from offline CPU, with one exception :
7972 * process_backlog() must be called by cpu owning percpu backlog.
7973 * We properly handle process_queue & input_pkt_queue later.
7974 */
7975 while (!list_empty(&oldsd->poll_list)) {
7976 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7977 struct napi_struct,
7978 poll_list);
7979
7980 list_del_init(&napi->poll_list);
7981 if (napi->poll == process_backlog)
7982 napi->state = 0;
7983 else
7984 ____napi_schedule(sd, napi);
264524d5 7985 }
1da177e4
LT
7986
7987 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7988 local_irq_enable();
7989
7990 /* Process offline CPU's input_pkt_queue */
76cc8b13 7991 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7992 netif_rx_ni(skb);
76cc8b13 7993 input_queue_head_incr(oldsd);
fec5e652 7994 }
ac64da0b 7995 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7996 netif_rx_ni(skb);
76cc8b13
TH
7997 input_queue_head_incr(oldsd);
7998 }
1da177e4
LT
7999
8000 return NOTIFY_OK;
8001}
1da177e4
LT
8002
8003
7f353bf2 8004/**
b63365a2
HX
8005 * netdev_increment_features - increment feature set by one
8006 * @all: current feature set
8007 * @one: new feature set
8008 * @mask: mask feature set
7f353bf2
HX
8009 *
8010 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8011 * @one to the master device with current feature set @all. Will not
8012 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8013 */
c8f44aff
MM
8014netdev_features_t netdev_increment_features(netdev_features_t all,
8015 netdev_features_t one, netdev_features_t mask)
b63365a2 8016{
c8cd0989 8017 if (mask & NETIF_F_HW_CSUM)
a188222b 8018 mask |= NETIF_F_CSUM_MASK;
1742f183 8019 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8020
a188222b 8021 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8022 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8023
1742f183 8024 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8025 if (all & NETIF_F_HW_CSUM)
8026 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8027
8028 return all;
8029}
b63365a2 8030EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8031
430f03cd 8032static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8033{
8034 int i;
8035 struct hlist_head *hash;
8036
8037 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8038 if (hash != NULL)
8039 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8040 INIT_HLIST_HEAD(&hash[i]);
8041
8042 return hash;
8043}
8044
881d966b 8045/* Initialize per network namespace state */
4665079c 8046static int __net_init netdev_init(struct net *net)
881d966b 8047{
734b6541
RM
8048 if (net != &init_net)
8049 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8050
30d97d35
PE
8051 net->dev_name_head = netdev_create_hash();
8052 if (net->dev_name_head == NULL)
8053 goto err_name;
881d966b 8054
30d97d35
PE
8055 net->dev_index_head = netdev_create_hash();
8056 if (net->dev_index_head == NULL)
8057 goto err_idx;
881d966b
EB
8058
8059 return 0;
30d97d35
PE
8060
8061err_idx:
8062 kfree(net->dev_name_head);
8063err_name:
8064 return -ENOMEM;
881d966b
EB
8065}
8066
f0db275a
SH
8067/**
8068 * netdev_drivername - network driver for the device
8069 * @dev: network device
f0db275a
SH
8070 *
8071 * Determine network driver for device.
8072 */
3019de12 8073const char *netdev_drivername(const struct net_device *dev)
6579e57b 8074{
cf04a4c7
SH
8075 const struct device_driver *driver;
8076 const struct device *parent;
3019de12 8077 const char *empty = "";
6579e57b
AV
8078
8079 parent = dev->dev.parent;
6579e57b 8080 if (!parent)
3019de12 8081 return empty;
6579e57b
AV
8082
8083 driver = parent->driver;
8084 if (driver && driver->name)
3019de12
DM
8085 return driver->name;
8086 return empty;
6579e57b
AV
8087}
8088
6ea754eb
JP
8089static void __netdev_printk(const char *level, const struct net_device *dev,
8090 struct va_format *vaf)
256df2f3 8091{
b004ff49 8092 if (dev && dev->dev.parent) {
6ea754eb
JP
8093 dev_printk_emit(level[1] - '0',
8094 dev->dev.parent,
8095 "%s %s %s%s: %pV",
8096 dev_driver_string(dev->dev.parent),
8097 dev_name(dev->dev.parent),
8098 netdev_name(dev), netdev_reg_state(dev),
8099 vaf);
b004ff49 8100 } else if (dev) {
6ea754eb
JP
8101 printk("%s%s%s: %pV",
8102 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8103 } else {
6ea754eb 8104 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8105 }
256df2f3
JP
8106}
8107
6ea754eb
JP
8108void netdev_printk(const char *level, const struct net_device *dev,
8109 const char *format, ...)
256df2f3
JP
8110{
8111 struct va_format vaf;
8112 va_list args;
256df2f3
JP
8113
8114 va_start(args, format);
8115
8116 vaf.fmt = format;
8117 vaf.va = &args;
8118
6ea754eb 8119 __netdev_printk(level, dev, &vaf);
b004ff49 8120
256df2f3 8121 va_end(args);
256df2f3
JP
8122}
8123EXPORT_SYMBOL(netdev_printk);
8124
8125#define define_netdev_printk_level(func, level) \
6ea754eb 8126void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8127{ \
256df2f3
JP
8128 struct va_format vaf; \
8129 va_list args; \
8130 \
8131 va_start(args, fmt); \
8132 \
8133 vaf.fmt = fmt; \
8134 vaf.va = &args; \
8135 \
6ea754eb 8136 __netdev_printk(level, dev, &vaf); \
b004ff49 8137 \
256df2f3 8138 va_end(args); \
256df2f3
JP
8139} \
8140EXPORT_SYMBOL(func);
8141
8142define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8143define_netdev_printk_level(netdev_alert, KERN_ALERT);
8144define_netdev_printk_level(netdev_crit, KERN_CRIT);
8145define_netdev_printk_level(netdev_err, KERN_ERR);
8146define_netdev_printk_level(netdev_warn, KERN_WARNING);
8147define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8148define_netdev_printk_level(netdev_info, KERN_INFO);
8149
4665079c 8150static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8151{
8152 kfree(net->dev_name_head);
8153 kfree(net->dev_index_head);
8154}
8155
022cbae6 8156static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8157 .init = netdev_init,
8158 .exit = netdev_exit,
8159};
8160
4665079c 8161static void __net_exit default_device_exit(struct net *net)
ce286d32 8162{
e008b5fc 8163 struct net_device *dev, *aux;
ce286d32 8164 /*
e008b5fc 8165 * Push all migratable network devices back to the
ce286d32
EB
8166 * initial network namespace
8167 */
8168 rtnl_lock();
e008b5fc 8169 for_each_netdev_safe(net, dev, aux) {
ce286d32 8170 int err;
aca51397 8171 char fb_name[IFNAMSIZ];
ce286d32
EB
8172
8173 /* Ignore unmoveable devices (i.e. loopback) */
8174 if (dev->features & NETIF_F_NETNS_LOCAL)
8175 continue;
8176
e008b5fc
EB
8177 /* Leave virtual devices for the generic cleanup */
8178 if (dev->rtnl_link_ops)
8179 continue;
d0c082ce 8180
25985edc 8181 /* Push remaining network devices to init_net */
aca51397
PE
8182 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8183 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8184 if (err) {
7b6cd1ce
JP
8185 pr_emerg("%s: failed to move %s to init_net: %d\n",
8186 __func__, dev->name, err);
aca51397 8187 BUG();
ce286d32
EB
8188 }
8189 }
8190 rtnl_unlock();
8191}
8192
50624c93
EB
8193static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8194{
8195 /* Return with the rtnl_lock held when there are no network
8196 * devices unregistering in any network namespace in net_list.
8197 */
8198 struct net *net;
8199 bool unregistering;
ff960a73 8200 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8201
ff960a73 8202 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8203 for (;;) {
50624c93
EB
8204 unregistering = false;
8205 rtnl_lock();
8206 list_for_each_entry(net, net_list, exit_list) {
8207 if (net->dev_unreg_count > 0) {
8208 unregistering = true;
8209 break;
8210 }
8211 }
8212 if (!unregistering)
8213 break;
8214 __rtnl_unlock();
ff960a73
PZ
8215
8216 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8217 }
ff960a73 8218 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8219}
8220
04dc7f6b
EB
8221static void __net_exit default_device_exit_batch(struct list_head *net_list)
8222{
8223 /* At exit all network devices most be removed from a network
b595076a 8224 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8225 * Do this across as many network namespaces as possible to
8226 * improve batching efficiency.
8227 */
8228 struct net_device *dev;
8229 struct net *net;
8230 LIST_HEAD(dev_kill_list);
8231
50624c93
EB
8232 /* To prevent network device cleanup code from dereferencing
8233 * loopback devices or network devices that have been freed
8234 * wait here for all pending unregistrations to complete,
8235 * before unregistring the loopback device and allowing the
8236 * network namespace be freed.
8237 *
8238 * The netdev todo list containing all network devices
8239 * unregistrations that happen in default_device_exit_batch
8240 * will run in the rtnl_unlock() at the end of
8241 * default_device_exit_batch.
8242 */
8243 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8244 list_for_each_entry(net, net_list, exit_list) {
8245 for_each_netdev_reverse(net, dev) {
b0ab2fab 8246 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8247 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8248 else
8249 unregister_netdevice_queue(dev, &dev_kill_list);
8250 }
8251 }
8252 unregister_netdevice_many(&dev_kill_list);
8253 rtnl_unlock();
8254}
8255
022cbae6 8256static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8257 .exit = default_device_exit,
04dc7f6b 8258 .exit_batch = default_device_exit_batch,
ce286d32
EB
8259};
8260
1da177e4
LT
8261/*
8262 * Initialize the DEV module. At boot time this walks the device list and
8263 * unhooks any devices that fail to initialise (normally hardware not
8264 * present) and leaves us with a valid list of present and active devices.
8265 *
8266 */
8267
8268/*
8269 * This is called single threaded during boot, so no need
8270 * to take the rtnl semaphore.
8271 */
8272static int __init net_dev_init(void)
8273{
8274 int i, rc = -ENOMEM;
8275
8276 BUG_ON(!dev_boot_phase);
8277
1da177e4
LT
8278 if (dev_proc_init())
8279 goto out;
8280
8b41d188 8281 if (netdev_kobject_init())
1da177e4
LT
8282 goto out;
8283
8284 INIT_LIST_HEAD(&ptype_all);
82d8a867 8285 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8286 INIT_LIST_HEAD(&ptype_base[i]);
8287
62532da9
VY
8288 INIT_LIST_HEAD(&offload_base);
8289
881d966b
EB
8290 if (register_pernet_subsys(&netdev_net_ops))
8291 goto out;
1da177e4
LT
8292
8293 /*
8294 * Initialise the packet receive queues.
8295 */
8296
6f912042 8297 for_each_possible_cpu(i) {
41852497 8298 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8299 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8300
41852497
ED
8301 INIT_WORK(flush, flush_backlog);
8302
e36fa2f7 8303 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8304 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8305 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8306 sd->output_queue_tailp = &sd->output_queue;
df334545 8307#ifdef CONFIG_RPS
e36fa2f7
ED
8308 sd->csd.func = rps_trigger_softirq;
8309 sd->csd.info = sd;
e36fa2f7 8310 sd->cpu = i;
1e94d72f 8311#endif
0a9627f2 8312
e36fa2f7
ED
8313 sd->backlog.poll = process_backlog;
8314 sd->backlog.weight = weight_p;
1da177e4
LT
8315 }
8316
1da177e4
LT
8317 dev_boot_phase = 0;
8318
505d4f73
EB
8319 /* The loopback device is special if any other network devices
8320 * is present in a network namespace the loopback device must
8321 * be present. Since we now dynamically allocate and free the
8322 * loopback device ensure this invariant is maintained by
8323 * keeping the loopback device as the first device on the
8324 * list of network devices. Ensuring the loopback devices
8325 * is the first device that appears and the last network device
8326 * that disappears.
8327 */
8328 if (register_pernet_device(&loopback_net_ops))
8329 goto out;
8330
8331 if (register_pernet_device(&default_device_ops))
8332 goto out;
8333
962cf36c
CM
8334 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8335 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8336
8337 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8338 dst_subsys_init();
1da177e4
LT
8339 rc = 0;
8340out:
8341 return rc;
8342}
8343
8344subsys_initcall(net_dev_init);
This page took 2.466495 seconds and 5 git commands to generate.