MIPS/BFD: Set the ISA bit in microMIPS LA25 stub references
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
b49e97c9 313 long min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 317 long max_unref_got_dynindx;
b49e97c9
TS
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
1bbce132
MR
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
b49e97c9
TS
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
861fb55a
DJ
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
b49e97c9
TS
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
b49e97c9
TS
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
b49e97c9
TS
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
7c5fcef7 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
1bbce132
MR
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
861fb55a 423
b49e97c9
TS
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
861fb55a 426
b49e97c9
TS
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
861fb55a 429
e6aea42d
MR
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 432 bfd_boolean use_rld_obj_head;
861fb55a 433
b4082c70
DD
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
861fb55a 436
b49e97c9 437 /* This is set if we see any mips16 stub sections. */
b34976b6 438 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
833794fc
MR
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
0a44bf69
RS
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
861fb55a 448
0e53d9da
AN
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
861fb55a 451
0a44bf69
RS
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
4e41d0d7 460 asection *sstubs;
a8028dd0 461 asection *sgot;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca
DD
915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1583 char *name;
1584 bfd_boolean res;
861fb55a 1585
df58fc94
RS
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
861fb55a 1589 /* Create a new symbol. */
e1fa0163 1590 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1591 bh = NULL;
e1fa0163
NC
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
861fb55a
DJ
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605}
1606
738e5348
RS
1607/* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611static bfd_boolean
1612mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615{
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
e1fa0163 1618 char *name;
738e5348
RS
1619 asection *s;
1620 bfd_vma value;
e1fa0163 1621 bfd_boolean res;
738e5348
RS
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
e1fa0163 1630 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1631 bh = NULL;
e1fa0163
NC
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
738e5348
RS
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646}
1647
1648/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651static bfd_boolean
1652section_allows_mips16_refs_p (asection *section)
1653{
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661}
1662
1663/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667static unsigned long
cb4437b8
MR
1668mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
502e814e 1670 const Elf_Internal_Rela *relocs,
738e5348
RS
1671 const Elf_Internal_Rela *relend)
1672{
cb4437b8 1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1674 const Elf_Internal_Rela *rel;
1675
cb4437b8
MR
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688}
b49e97c9
TS
1689
1690/* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
861fb55a
DJ
1693static void
1694mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
b49e97c9 1696{
738e5348
RS
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
b49e97c9
TS
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
eea6121a 1712 h->fn_stub->size = 0;
b49e97c9
TS
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1716 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1717 }
1718
1719 if (h->call_stub != NULL
30c09090 1720 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
eea6121a 1725 h->call_stub->size = 0;
b49e97c9
TS
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1729 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1730 }
1731
1732 if (h->call_fp_stub != NULL
30c09090 1733 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
eea6121a 1738 h->call_fp_stub->size = 0;
b49e97c9
TS
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1743 }
861fb55a
DJ
1744}
1745
1746/* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748static hashval_t
1749mips_elf_la25_stub_hash (const void *entry_)
1750{
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756}
1757
1758static int
1759mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760{
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769}
1770
1771/* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775bfd_boolean
1776_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779{
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1783 if (htab == NULL)
1784 return FALSE;
1785
861fb55a
DJ
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793}
1794
1795/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
861fb55a
DJ
1800
1801static bfd_boolean
1802mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803{
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812}
1813
8f0c309a
CLT
1814/* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817static bfd_vma
1818mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820{
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832}
1833
861fb55a
DJ
1834/* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838static bfd_boolean
1839mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841{
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1848 if (htab == NULL)
1849 return FALSE;
861fb55a
DJ
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
8f0c309a 1858 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879}
1880
1881/* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885static bfd_boolean
1886mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888{
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1893 if (htab == NULL)
1894 return FALSE;
861fb55a
DJ
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916}
1917
1918/* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921static bfd_boolean
1922mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924{
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
861fb55a
DJ
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1939 if (htab == NULL)
1940 return FALSE;
1941
861fb55a
DJ
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
8f0c309a
CLT
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
861fb55a
DJ
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970}
1971
1972/* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975static bfd_boolean
1976mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977{
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1981 if (!bfd_link_relocatable (hti->info))
861fb55a 1982 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1983
861fb55a
DJ
1984 if (mips_elf_local_pic_function_p (h))
1985 {
ba85c43e
NC
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
861fb55a
DJ
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
0e1862bb 1996 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
b34976b6 2007 return TRUE;
b49e97c9
TS
2008}
2009\f
d6f16593
MR
2010/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
738e5348
RS
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
d6f16593
MR
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
738e5348
RS
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
738e5348
RS
2098
2099static inline bfd_boolean
2100mips16_reloc_p (int r_type)
2101{
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
d0f13682
CLT
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2117 case R_MIPS16_PC16_S1:
738e5348
RS
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123}
2124
df58fc94
RS
2125/* Check if a microMIPS reloc. */
2126
2127static inline bfd_boolean
2128micromips_reloc_p (unsigned int r_type)
2129{
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131}
2132
2133/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137static inline bfd_boolean
2138micromips_reloc_shuffle_p (unsigned int r_type)
2139{
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143}
2144
738e5348
RS
2145static inline bfd_boolean
2146got16_reloc_p (int r_type)
2147{
df58fc94
RS
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2151}
2152
2153static inline bfd_boolean
2154call16_reloc_p (int r_type)
2155{
df58fc94
RS
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159}
2160
2161static inline bfd_boolean
2162got_disp_reloc_p (unsigned int r_type)
2163{
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165}
2166
2167static inline bfd_boolean
2168got_page_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171}
2172
df58fc94
RS
2173static inline bfd_boolean
2174got_lo16_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177}
2178
2179static inline bfd_boolean
2180call_hi16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183}
2184
2185static inline bfd_boolean
2186call_lo16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2189}
2190
2191static inline bfd_boolean
2192hi16_reloc_p (int r_type)
2193{
df58fc94
RS
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
7361da2c
AB
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
738e5348 2198}
d6f16593 2199
738e5348
RS
2200static inline bfd_boolean
2201lo16_reloc_p (int r_type)
2202{
df58fc94
RS
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
7361da2c
AB
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
738e5348
RS
2207}
2208
2209static inline bfd_boolean
2210mips16_call_reloc_p (int r_type)
2211{
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213}
d6f16593 2214
38a7df63
CF
2215static inline bfd_boolean
2216jal_reloc_p (int r_type)
2217{
df58fc94
RS
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221}
2222
99aefae6
MR
2223static inline bfd_boolean
2224b_reloc_p (int r_type)
2225{
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
c9775dde 2229 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2234}
2235
7361da2c
AB
2236static inline bfd_boolean
2237aligned_pcrel_reloc_p (int r_type)
2238{
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2241}
2242
9d862524
MR
2243static inline bfd_boolean
2244branch_reloc_p (int r_type)
2245{
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2251}
2252
c9775dde
MR
2253static inline bfd_boolean
2254mips16_branch_reloc_p (int r_type)
2255{
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2258}
2259
df58fc94
RS
2260static inline bfd_boolean
2261micromips_branch_reloc_p (int r_type)
2262{
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2267}
2268
2269static inline bfd_boolean
2270tls_gd_reloc_p (unsigned int r_type)
2271{
d0f13682
CLT
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2275}
2276
2277static inline bfd_boolean
2278tls_ldm_reloc_p (unsigned int r_type)
2279{
d0f13682
CLT
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2283}
2284
2285static inline bfd_boolean
2286tls_gottprel_reloc_p (unsigned int r_type)
2287{
d0f13682
CLT
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2291}
2292
d6f16593 2293void
df58fc94
RS
2294_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2296{
df58fc94 2297 bfd_vma first, second, val;
d6f16593 2298
df58fc94 2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2300 return;
2301
df58fc94
RS
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2310 else
df58fc94
RS
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2313 bfd_put_32 (abfd, val, data);
2314}
2315
2316void
df58fc94
RS
2317_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2319{
df58fc94 2320 bfd_vma first, second, val;
d6f16593 2321
df58fc94 2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2323 return;
2324
2325 val = bfd_get_32 (abfd, data);
df58fc94 2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2327 {
df58fc94
RS
2328 second = val & 0xffff;
2329 first = val >> 16;
2330 }
2331 else if (r_type != R_MIPS16_26)
2332 {
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2335 }
2336 else
2337 {
df58fc94
RS
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
d6f16593 2341 }
df58fc94
RS
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
d6f16593
MR
2344}
2345
b49e97c9 2346bfd_reloc_status_type
9719ad41
RS
2347_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2350{
2351 bfd_vma relocation;
a7ebbfdf 2352 bfd_signed_vma val;
30ac9238 2353 bfd_reloc_status_type status;
b49e97c9
TS
2354
2355 if (bfd_is_com_section (symbol->section))
2356 relocation = 0;
2357 else
2358 relocation = symbol->value;
2359
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2362
07515404 2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2364 return bfd_reloc_outofrange;
2365
b49e97c9 2366 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2367 val = reloc_entry->addend;
2368
30ac9238 2369 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2370
b49e97c9 2371 /* Adjust val for the final section location and GP value. If we
1049f94e 2372 are producing relocatable output, we don't want to do this for
b49e97c9 2373 an external symbol. */
1049f94e 2374 if (! relocatable
b49e97c9
TS
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2377
a7ebbfdf
TS
2378 if (reloc_entry->howto->partial_inplace)
2379 {
30ac9238
RS
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2381 (bfd_byte *) data
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2384 return status;
a7ebbfdf
TS
2385 }
2386 else
2387 reloc_entry->addend = val;
b49e97c9 2388
1049f94e 2389 if (relocatable)
b49e97c9 2390 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2391
2392 return bfd_reloc_ok;
2393}
2394
2395/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2398 INPUT_SECTION. */
2399
2400struct mips_hi16
2401{
2402 struct mips_hi16 *next;
2403 bfd_byte *data;
2404 asection *input_section;
2405 arelent rel;
2406};
2407
2408/* FIXME: This should not be a static variable. */
2409
2410static struct mips_hi16 *mips_hi16_list;
2411
2412/* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2415
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2420
2421bfd_reloc_status_type
2422_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2426{
2427 struct mips_hi16 *n;
2428
07515404 2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2430 return bfd_reloc_outofrange;
2431
2432 n = bfd_malloc (sizeof *n);
2433 if (n == NULL)
2434 return bfd_reloc_outofrange;
2435
2436 n->next = mips_hi16_list;
2437 n->data = data;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2440 mips_hi16_list = n;
2441
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2444
2445 return bfd_reloc_ok;
2446}
2447
738e5348 2448/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2451
2452bfd_reloc_status_type
2453_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2456{
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2463 error_message);
2464
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2467}
2468
2469/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2472
2473bfd_reloc_status_type
2474_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2477{
2478 bfd_vma vallo;
d6f16593 2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2480
07515404 2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2482 return bfd_reloc_outofrange;
2483
df58fc94 2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2485 location);
df58fc94
RS
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
d6f16593 2489
30ac9238
RS
2490 while (mips_hi16_list != NULL)
2491 {
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2494
2495 hi = mips_hi16_list;
2496
738e5348
RS
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2508
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2512
30ac9238
RS
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2515 error_message);
2516 if (ret != bfd_reloc_ok)
2517 return ret;
2518
2519 mips_hi16_list = hi->next;
2520 free (hi);
2521 }
2522
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2525 error_message);
2526}
2527
2528/* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2531
2532bfd_reloc_status_type
2533_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2537{
2538 bfd_signed_vma val;
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2541
2542 relocatable = (output_bfd != NULL);
2543
07515404 2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2545 return bfd_reloc_outofrange;
2546
2547 /* Build up the field adjustment in VAL. */
2548 val = 0;
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2550 {
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2556 }
2557
2558 if (!relocatable)
2559 {
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2564 {
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2568 }
2569 }
2570
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2577 else
2578 {
d6f16593
MR
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2580
30ac9238
RS
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2583
2584 /* Add VAL to the relocation field. */
df58fc94
RS
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2586 location);
30ac9238 2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2588 location);
df58fc94
RS
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2590 location);
d6f16593 2591
30ac9238
RS
2592 if (status != bfd_reloc_ok)
2593 return status;
2594 }
2595
2596 if (relocatable)
2597 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2598
2599 return bfd_reloc_ok;
2600}
2601\f
2602/* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2604
2605static void
9719ad41
RS
2606bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2607 Elf32_gptab *in)
b49e97c9
TS
2608{
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2611}
2612
2613static void
9719ad41
RS
2614bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
b49e97c9
TS
2616{
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2619}
2620
2621static void
9719ad41
RS
2622bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
b49e97c9
TS
2624{
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2631}
2632
2633static void
9719ad41
RS
2634bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
b49e97c9
TS
2636{
2637 unsigned long l;
2638
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2646}
b49e97c9
TS
2647\f
2648/* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2651
2652void
9719ad41
RS
2653bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2654 Elf32_RegInfo *in)
b49e97c9
TS
2655{
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2662}
2663
2664void
9719ad41
RS
2665bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
b49e97c9
TS
2667{
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674}
2675
2676/* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2681
2682void
9719ad41
RS
2683bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2685{
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2693}
2694
2695void
9719ad41
RS
2696bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
b49e97c9
TS
2698{
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2706}
2707
2708/* Swap in an options header. */
2709
2710void
9719ad41
RS
2711bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
b49e97c9
TS
2713{
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2718}
2719
2720/* Swap out an options header. */
2721
2722void
9719ad41
RS
2723bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
b49e97c9
TS
2725{
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2730}
351cdf24
MF
2731
2732/* Swap in an abiflags structure. */
2733
2734void
2735bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2738{
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2750}
2751
2752/* Swap out an abiflags structure. */
2753
2754void
2755bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2758{
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2770}
b49e97c9
TS
2771\f
2772/* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2774
2775static int
9719ad41 2776sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2777{
947216bf
AM
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
6870500c 2780 int diff;
b49e97c9 2781
947216bf
AM
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2784
6870500c
RS
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2786 if (diff != 0)
2787 return diff;
2788
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2790 return -1;
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2792 return 1;
2793 return 0;
b49e97c9
TS
2794}
2795
f4416af6
AO
2796/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2797
2798static int
7e3102a7
AM
2799sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2801{
7e3102a7 2802#ifdef BFD64
f4416af6
AO
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2805
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2810
6870500c
RS
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2812 return -1;
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2814 return 1;
2815
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2817 return -1;
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2819 return 1;
2820 return 0;
7e3102a7
AM
2821#else
2822 abort ();
2823#endif
f4416af6
AO
2824}
2825
2826
b49e97c9
TS
2827/* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2840
b34976b6 2841static bfd_boolean
9719ad41 2842mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2843{
9719ad41 2844 struct extsym_info *einfo = data;
b34976b6 2845 bfd_boolean strip;
b49e97c9
TS
2846 asection *sec, *output_section;
2847
b49e97c9 2848 if (h->root.indx == -2)
b34976b6 2849 strip = FALSE;
f5385ebf 2850 else if ((h->root.def_dynamic
77cfaee6
AM
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
b34976b6 2855 strip = TRUE;
b49e97c9
TS
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
b34976b6
AM
2860 FALSE, FALSE) == NULL))
2861 strip = TRUE;
b49e97c9 2862 else
b34976b6 2863 strip = FALSE;
b49e97c9
TS
2864
2865 if (strip)
b34976b6 2866 return TRUE;
b49e97c9
TS
2867
2868 if (h->esym.ifd == -2)
2869 {
2870 h->esym.jmptbl = 0;
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2877
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2880 {
2881 const char *name;
2882
2883 /* Use undefined class. Also, set class and type for some
2884 special symbols. */
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2888 {
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2892 }
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2894 {
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2899 }
4a14403c 2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2901 {
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
33bb52fb 2972 else
b49e97c9
TS
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2978
33bb52fb 2979 if (hd->needs_lazy_stub)
b49e97c9 2980 {
1bbce132
MR
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
1bbce132 2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
b49e97c9
TS
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
b34976b6
AM
3005 einfo->failed = TRUE;
3006 return FALSE;
b49e97c9
TS
3007 }
3008
b34976b6 3009 return TRUE;
b49e97c9
TS
3010}
3011
3012/* A comparison routine used to sort .gptab entries. */
3013
3014static int
9719ad41 3015gptab_compare (const void *p1, const void *p2)
b49e97c9 3016{
9719ad41
RS
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021}
3022\f
b15e6682 3023/* Functions to manage the got entry hash table. */
f4416af6
AO
3024
3025/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028static INLINE hashval_t
9719ad41 3029mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3030{
3031#ifdef BFD64
3032 return addr + (addr >> 32);
3033#else
3034 return addr;
3035#endif
3036}
3037
f4416af6 3038static hashval_t
d9bf376d 3039mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3040{
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
e641e783 3043 return (entry->symndx
9ab066b4
RS
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
f4416af6
AO
3050}
3051
3052static int
3dff0dd1 3053mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3054{
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
e641e783 3058 return (e1->symndx == e2->symndx
9ab066b4
RS
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3065}
c224138d 3066
13db6b44
RS
3067static hashval_t
3068mips_got_page_ref_hash (const void *ref_)
3069{
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077}
3078
3079static int
3080mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081{
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091}
3092
c224138d
RS
3093static hashval_t
3094mips_got_page_entry_hash (const void *entry_)
3095{
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3099 return entry->sec->id;
c224138d
RS
3100}
3101
3102static int
3103mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104{
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3109 return entry1->sec == entry2->sec;
c224138d 3110}
b15e6682 3111\f
3dff0dd1 3112/* Create and return a new mips_got_info structure. */
5334aa52
RS
3113
3114static struct mips_got_info *
3dff0dd1 3115mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3116{
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3dff0dd1
RS
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
13db6b44
RS
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
5334aa52
RS
3131 return NULL;
3132
3133 return g;
3134}
3135
ee227692
RS
3136/* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139static struct mips_got_info *
3140mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141{
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3dff0dd1 3149 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3150 return tdata->got;
3151}
3152
d7206569
RS
3153/* Record that ABFD should use output GOT G. */
3154
3155static void
3156mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157{
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
13db6b44
RS
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3170 }
3171 tdata->got = g;
3172}
3173
0a44bf69
RS
3174/* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
f4416af6
AO
3177
3178static asection *
0a44bf69 3179mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3180{
0a44bf69 3181 const char *dname;
f4416af6 3182 asection *sreloc;
0a44bf69 3183 bfd *dynobj;
f4416af6 3184
0a44bf69
RS
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3187 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3188 if (sreloc == NULL && create_p)
3189 {
3d4d4302
AM
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
f4416af6 3197 if (sreloc == NULL
f4416af6 3198 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3200 return NULL;
3201 }
3202 return sreloc;
3203}
3204
e641e783
RS
3205/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207static int
3208mips_elf_reloc_tls_type (unsigned int r_type)
3209{
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
9ab066b4 3219 return GOT_TLS_NONE;
e641e783
RS
3220}
3221
3222/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224static int
3225mips_tls_got_entries (unsigned int type)
3226{
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
9ab066b4 3236 case GOT_TLS_NONE:
e641e783
RS
3237 return 0;
3238 }
3239 abort ();
3240}
3241
0f20cc35
DJ
3242/* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246static int
3247mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249{
3250 int indx = 0;
0f20cc35
DJ
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
0e1862bb
L
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3256 indx = h->dynindx;
3257
0e1862bb 3258 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
e641e783 3265 return 0;
0f20cc35 3266
9ab066b4 3267 switch (tls_type)
0f20cc35 3268 {
e641e783
RS
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
0f20cc35 3271
e641e783
RS
3272 case GOT_TLS_IE:
3273 return 1;
0f20cc35 3274
e641e783 3275 case GOT_TLS_LDM:
0e1862bb 3276 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3277
e641e783
RS
3278 default:
3279 return 0;
3280 }
0f20cc35
DJ
3281}
3282
ab361d49
RS
3283/* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
0f20cc35 3285
ab361d49
RS
3286static void
3287mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
0f20cc35 3290{
9ab066b4 3291 if (entry->tls_type)
ab361d49 3292 {
9ab066b4
RS
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
0f20cc35
DJ
3302}
3303
0f20cc35
DJ
3304/* Output a simple dynamic relocation into SRELOC. */
3305
3306static void
3307mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
861fb55a 3309 unsigned long reloc_index,
0f20cc35
DJ
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313{
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
861fb55a 3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3333}
3334
3335/* Initialize a set of TLS GOT entries for one symbol. */
3336
3337static void
9ab066b4
RS
3338mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
0f20cc35
DJ
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342{
23cc69b6 3343 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3344 int indx;
3345 asection *sreloc, *sgot;
9ab066b4 3346 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3347 bfd_boolean need_relocs = FALSE;
3348
23cc69b6 3349 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3350 if (htab == NULL)
3351 return;
3352
23cc69b6 3353 sgot = htab->sgot;
0f20cc35
DJ
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
0e1862bb
L
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3364 indx = h->root.dynindx;
3365 }
3366
9ab066b4 3367 if (entry->tls_initialized)
0f20cc35
DJ
3368 return;
3369
0e1862bb 3370 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
0a44bf69 3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3384 got_offset = entry->gotidx;
0f20cc35 3385
9ab066b4 3386 switch (entry->tls_type)
0f20cc35 3387 {
e641e783
RS
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
861fb55a 3395 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3397 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3406 sgot->contents + got_offset2);
0f20cc35
DJ
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3411 sgot->contents + got_offset);
0f20cc35 3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3413 sgot->contents + got_offset2);
0f20cc35 3414 }
e641e783 3415 break;
0f20cc35 3416
e641e783
RS
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
0f20cc35
DJ
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3423 sgot->contents + got_offset);
0f20cc35
DJ
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3426 sgot->contents + got_offset);
0f20cc35
DJ
3427
3428 mips_elf_output_dynamic_relocation
861fb55a 3429 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3431 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3435 sgot->contents + got_offset);
3436 break;
0f20cc35 3437
e641e783 3438 case GOT_TLS_LDM:
0f20cc35
DJ
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
0e1862bb 3445 if (!bfd_link_pic (info))
0f20cc35
DJ
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
861fb55a 3450 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3453 break;
3454
3455 default:
3456 abort ();
0f20cc35
DJ
3457 }
3458
9ab066b4 3459 entry->tls_initialized = TRUE;
e641e783 3460}
0f20cc35 3461
0a44bf69
RS
3462/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466static bfd_vma
3467mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469{
1bbce132 3470 bfd_vma got_address, got_value;
0a44bf69
RS
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3474 BFD_ASSERT (htab != NULL);
3475
1bbce132
MR
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->sgotplt->output_section->vma
3481 + htab->sgotplt->output_offset
1bbce132
MR
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491}
3492
5c18022e 3493/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
b49e97c9
TS
3497
3498static bfd_vma
9719ad41 3499mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3500 bfd_vma value, unsigned long r_symndx,
0f20cc35 3501 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3502{
a8028dd0 3503 struct mips_elf_link_hash_table *htab;
b15e6682 3504 struct mips_got_entry *entry;
b49e97c9 3505
a8028dd0 3506 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3507 BFD_ASSERT (htab != NULL);
3508
a8028dd0
RS
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
0f20cc35 3511 if (!entry)
b15e6682 3512 return MINUS_ONE;
0f20cc35 3513
e641e783 3514 if (entry->tls_type)
9ab066b4
RS
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
b49e97c9
TS
3517}
3518
13fbec83 3519/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3520
3521static bfd_vma
13fbec83
RS
3522mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524{
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->sgot->size);
3546
3547 return got_index;
3548}
3549
3550/* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553static bfd_vma
3554mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3556{
a8028dd0 3557 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
b49e97c9 3561
a8028dd0 3562 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3563 BFD_ASSERT (htab != NULL);
3564
6c42ddb9
RS
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
f4416af6 3567
6c42ddb9
RS
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3571
6c42ddb9
RS
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
0f20cc35 3577
6c42ddb9
RS
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3580
6c42ddb9 3581 if (lookup.tls_type)
0f20cc35 3582 {
0f20cc35
DJ
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
9ab066b4 3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3593 }
6c42ddb9 3594 return gotidx;
b49e97c9
TS
3595}
3596
5c18022e
RS
3597/* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3601 offset of the GOT entry from VALUE. */
b49e97c9
TS
3602
3603static bfd_vma
9719ad41 3604mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3605 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3606{
91d6fa6a 3607 bfd_vma page, got_index;
b15e6682 3608 struct mips_got_entry *entry;
b49e97c9 3609
0a44bf69 3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3613
b15e6682
AO
3614 if (!entry)
3615 return MINUS_ONE;
143d77c5 3616
91d6fa6a 3617 got_index = entry->gotidx;
b49e97c9
TS
3618
3619 if (offsetp)
f4416af6 3620 *offsetp = value - entry->d.address;
b49e97c9 3621
91d6fa6a 3622 return got_index;
b49e97c9
TS
3623}
3624
738e5348 3625/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
b49e97c9
TS
3628
3629static bfd_vma
9719ad41 3630mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3631 bfd_vma value, bfd_boolean external)
b49e97c9 3632{
b15e6682 3633 struct mips_got_entry *entry;
b49e97c9 3634
0a44bf69
RS
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3639 if (! external)
0a44bf69 3640 value = mips_elf_high (value) << 16;
b49e97c9 3641
738e5348
RS
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
a8028dd0
RS
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
b15e6682
AO
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
b49e97c9
TS
3651}
3652
3653/* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656static bfd_vma
a8028dd0 3657mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3658 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3659{
a8028dd0 3660 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3661 asection *sgot;
3662 bfd_vma gp;
3663
a8028dd0 3664 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3665 BFD_ASSERT (htab != NULL);
3666
a8028dd0 3667 sgot = htab->sgot;
f4416af6 3668 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3670
91d6fa6a 3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3672}
3673
0a44bf69
RS
3674/* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
b49e97c9 3678
b15e6682 3679static struct mips_got_entry *
0a44bf69 3680mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3681 bfd *ibfd, bfd_vma value,
5c18022e 3682 unsigned long r_symndx,
0f20cc35
DJ
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
b49e97c9 3685{
ebc53538
RS
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
f4416af6 3688 struct mips_got_info *g;
0a44bf69 3689 struct mips_elf_link_hash_table *htab;
6c42ddb9 3690 bfd_vma gotidx;
0a44bf69
RS
3691
3692 htab = mips_elf_hash_table (info);
4dfe6ac6 3693 BFD_ASSERT (htab != NULL);
b15e6682 3694
d7206569 3695 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3696 if (g == NULL)
3697 {
d7206569 3698 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3699 BFD_ASSERT (g != NULL);
3700 }
b15e6682 3701
020d7251
RS
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3705
ebc53538
RS
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
df58fc94 3710 if (tls_ldm_reloc_p (r_type))
0f20cc35 3711 {
ebc53538
RS
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
0f20cc35
DJ
3714 }
3715 else if (h == NULL)
3716 {
ebc53538
RS
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
0f20cc35
DJ
3719 }
3720 else
ebc53538
RS
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
0f20cc35 3725
ebc53538
RS
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
0f20cc35 3728
6c42ddb9
RS
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3731
ebc53538 3732 return entry;
0f20cc35
DJ
3733 }
3734
ebc53538
RS
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
b15e6682 3740 return NULL;
143d77c5 3741
ebc53538
RS
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
b15e6682 3745
cb22ccf4 3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 (*_bfd_error_handler)
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
b15e6682 3752 return NULL;
b49e97c9
TS
3753 }
3754
ebc53538
RS
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
cb22ccf4
KCY
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
ebc53538
RS
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3771
5c18022e 3772 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
5c18022e 3776 asection *s;
91d6fa6a 3777 bfd_byte *rloc;
0a44bf69 3778 bfd_vma got_address;
0a44bf69
RS
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3781 got_address = (htab->sgot->output_section->vma
3782 + htab->sgot->output_offset
ebc53538 3783 + entry->gotidx);
0a44bf69 3784
91d6fa6a 3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3786 outrel.r_offset = got_address;
5c18022e
RS
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
91d6fa6a 3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3790 }
3791
ebc53538 3792 return entry;
b49e97c9
TS
3793}
3794
d4596a51
RS
3795/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800static bfd_size_type
3801count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802{
3803 bfd_size_type count;
3804
3805 count = 0;
0e1862bb
L
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820}
3821
b49e97c9 3822/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3823 appear towards the end. */
b49e97c9 3824
b34976b6 3825static bfd_boolean
d4596a51 3826mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3827{
a8028dd0 3828 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
b49e97c9 3831
d4596a51
RS
3832 if (elf_hash_table (info)->dynsymcount == 0)
3833 return TRUE;
3834
a8028dd0 3835 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3836 BFD_ASSERT (htab != NULL);
3837
a8028dd0 3838 g = htab->got_info;
d4596a51
RS
3839 if (g == NULL)
3840 return TRUE;
f4416af6 3841
b49e97c9 3842 hsd.low = NULL;
23cc69b6
RS
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3850 &hsd);
3851
3852 /* There should have been enough room in the symbol table to
44c410de 3853 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
b49e97c9
TS
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
d222d210 3862 htab->global_gotsym = hsd.low;
b49e97c9 3863
b34976b6 3864 return TRUE;
b49e97c9
TS
3865}
3866
3867/* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
b34976b6 3871static bfd_boolean
9719ad41 3872mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3873{
9719ad41 3874 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3875
b49e97c9
TS
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
b34976b6 3879 return TRUE;
b49e97c9 3880
634835ae 3881 switch (h->global_got_area)
f4416af6 3882 {
634835ae
RS
3883 case GGA_NONE:
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3885 break;
0f20cc35 3886
634835ae 3887 case GGA_NORMAL:
b49e97c9
TS
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3890 break;
3891
3892 case GGA_RELOC_ONLY:
634835ae
RS
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3896 break;
b49e97c9
TS
3897 }
3898
b34976b6 3899 return TRUE;
b49e97c9
TS
3900}
3901
ee227692
RS
3902/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3905
3906static bfd_boolean
3907mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3909{
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3914
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3917 g = htab->got_info;
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3919 if (!loc)
3920 return FALSE;
3921
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3924 if (!entry)
3925 {
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3927 if (!entry)
3928 return FALSE;
3929
9ab066b4 3930 lookup->tls_initialized = FALSE;
ee227692
RS
3931 lookup->gotidx = -1;
3932 *entry = *lookup;
3933 *loc = entry;
3934 }
3935
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3938 if (!g)
3939 return FALSE;
3940
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3942 if (!bfd_loc)
3943 return FALSE;
3944
3945 if (!*bfd_loc)
3946 *bfd_loc = entry;
3947 return TRUE;
3948}
3949
e641e783
RS
3950/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3952 using the GOT entry for calls. */
b49e97c9 3953
b34976b6 3954static bfd_boolean
9719ad41
RS
3955mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
e641e783 3957 bfd_boolean for_call, int r_type)
b49e97c9 3958{
a8028dd0 3959 struct mips_elf_link_hash_table *htab;
634835ae 3960 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
a8028dd0
RS
3963
3964 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3965 BFD_ASSERT (htab != NULL);
3966
634835ae 3967 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3968 if (!for_call)
3969 hmips->got_only_for_calls = FALSE;
f4416af6 3970
b49e97c9
TS
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3972 table. */
7c5fcef7
L
3973 if (h->dynindx == -1)
3974 {
3975 switch (ELF_ST_VISIBILITY (h->other))
3976 {
3977 case STV_INTERNAL:
3978 case STV_HIDDEN:
33bb52fb 3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3980 break;
3981 }
c152c796 3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3983 return FALSE;
7c5fcef7 3984 }
b49e97c9 3985
ee227692 3986 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3988 hmips->global_got_area = GGA_NORMAL;
86324f90 3989
f4416af6
AO
3990 entry.abfd = abfd;
3991 entry.symndx = -1;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3995}
f4416af6 3996
e641e783
RS
3997/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3999
4000static bfd_boolean
9719ad41 4001mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4002 struct bfd_link_info *info, int r_type)
f4416af6 4003{
a8028dd0
RS
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
ee227692 4006 struct mips_got_entry entry;
f4416af6 4007
a8028dd0 4008 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4009 BFD_ASSERT (htab != NULL);
4010
a8028dd0
RS
4011 g = htab->got_info;
4012 BFD_ASSERT (g != NULL);
4013
f4416af6
AO
4014 entry.abfd = abfd;
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
e641e783 4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4018 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4019}
c224138d 4020
13db6b44
RS
4021/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4023 to ABFD. */
c224138d
RS
4024
4025static bfd_boolean
13db6b44
RS
4026mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
c224138d 4029{
a8028dd0 4030 struct mips_elf_link_hash_table *htab;
ee227692 4031 struct mips_got_info *g1, *g2;
13db6b44 4032 struct mips_got_page_ref lookup, *entry;
ee227692 4033 void **loc, **bfd_loc;
c224138d 4034
a8028dd0 4035 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4036 BFD_ASSERT (htab != NULL);
4037
ee227692
RS
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
a8028dd0 4040
13db6b44
RS
4041 if (h)
4042 {
4043 lookup.symndx = -1;
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4045 }
4046 else
4047 {
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4050 }
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4053 if (loc == NULL)
4054 return FALSE;
4055
13db6b44 4056 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4057 if (!entry)
4058 {
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4060 if (!entry)
4061 return FALSE;
4062
13db6b44 4063 *entry = lookup;
c224138d
RS
4064 *loc = entry;
4065 }
4066
ee227692
RS
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4069 if (!g2)
4070 return FALSE;
4071
13db6b44 4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4073 if (!bfd_loc)
4074 return FALSE;
4075
4076 if (!*bfd_loc)
4077 *bfd_loc = entry;
4078
c224138d
RS
4079 return TRUE;
4080}
33bb52fb
RS
4081
4082/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083
4084static void
4085mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4086 unsigned int n)
4087{
4088 asection *s;
4089 struct mips_elf_link_hash_table *htab;
4090
4091 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4092 BFD_ASSERT (htab != NULL);
4093
33bb52fb
RS
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4096
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4099 else
4100 {
4101 if (s->size == 0)
4102 {
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 ++s->reloc_count;
4106 }
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4108 }
4109}
4110\f
476366af
RS
4111/* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4115
4116static int
4117mips_elf_check_recreate_got (void **entryp, void *data)
4118{
4119 struct mips_got_entry *entry;
476366af 4120 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4121
4122 entry = (struct mips_got_entry *) *entryp;
476366af 4123 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4124 if (entry->abfd != NULL && entry->symndx == -1)
4125 {
4126 struct mips_elf_link_hash_entry *h;
4127
4128 h = entry->d.h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4131 {
476366af 4132 arg->value = TRUE;
33bb52fb
RS
4133 return 0;
4134 }
4135 }
476366af 4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4137 return 1;
4138}
4139
476366af
RS
4140/* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4144
4145static int
4146mips_elf_recreate_got (void **entryp, void *data)
4147{
72e7511a 4148 struct mips_got_entry new_entry, *entry;
476366af 4149 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4150 void **slot;
4151
33bb52fb 4152 entry = (struct mips_got_entry *) *entryp;
476366af 4153 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4158 {
4159 struct mips_elf_link_hash_entry *h;
4160
72e7511a
RS
4161 new_entry = *entry;
4162 entry = &new_entry;
33bb52fb 4163 h = entry->d.h;
72e7511a 4164 do
634835ae
RS
4165 {
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4168 }
72e7511a
RS
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4171 entry->d.h = h;
4172 }
476366af 4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4174 if (slot == NULL)
4175 {
476366af 4176 arg->g = NULL;
33bb52fb
RS
4177 return 0;
4178 }
4179 if (*slot == NULL)
72e7511a
RS
4180 {
4181 if (entry == &new_entry)
4182 {
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4184 if (!entry)
4185 {
476366af 4186 arg->g = NULL;
72e7511a
RS
4187 return 0;
4188 }
4189 *entry = new_entry;
4190 }
4191 *slot = entry;
476366af 4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4193 }
33bb52fb
RS
4194 return 1;
4195}
4196
13db6b44
RS
4197/* Return the maximum number of GOT page entries required for RANGE. */
4198
4199static bfd_vma
4200mips_elf_pages_for_range (const struct mips_got_page_range *range)
4201{
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203}
4204
4205/* Record that G requires a page entry that can reach SEC + ADDEND. */
4206
4207static bfd_boolean
b75d42bc 4208mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4209 asection *sec, bfd_signed_vma addend)
4210{
b75d42bc 4211 struct mips_got_info *g = arg->g;
13db6b44
RS
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4215 void **loc;
4216
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4218 lookup.sec = sec;
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4220 if (loc == NULL)
4221 return FALSE;
4222
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4226 if (!entry)
4227 {
b75d42bc 4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4229 if (!entry)
4230 return FALSE;
4231
4232 entry->sec = sec;
4233 *loc = entry;
4234 }
4235
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4237 with ADDEND. */
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4241
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4245 range = *range_ptr;
4246 if (!range || addend < range->min_addend - 0xffff)
4247 {
b75d42bc 4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4249 if (!range)
4250 return FALSE;
4251
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4255
4256 *range_ptr = range;
4257 entry->num_pages++;
4258 g->page_gotno++;
4259 return TRUE;
4260 }
4261
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4264
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4269 {
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4271 {
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4275 }
4276 else
4277 range->max_addend = addend;
4278 }
4279
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4283 {
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4286 }
4287
4288 return TRUE;
4289}
4290
4291/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295
4296static bfd_boolean
4297mips_elf_resolve_got_page_ref (void **refp, void *data)
4298{
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4302 asection *sec;
4303 bfd_vma addend;
4304
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4308
4309 if (ref->symndx < 0)
4310 {
4311 struct mips_elf_link_hash_entry *h;
4312
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4314 h = ref->u.h;
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 return 1;
4317
4318 /* Ignore undefined symbols; we'll issue an error later if
4319 appropriate. */
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4323 return 1;
4324
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4327 }
4328 else
4329 {
4330 Elf_Internal_Sym *isym;
4331
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4334 ref->symndx);
4335 if (isym == NULL)
4336 {
4337 arg->g = NULL;
4338 return 0;
4339 }
4340
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4343 if (sec == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4354 {
4355 void *secinfo;
4356
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4361 else
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4364 }
4365 else
4366 addend = isym->st_value + ref->addend;
4367 }
b75d42bc 4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4369 {
4370 arg->g = NULL;
4371 return 0;
4372 }
4373 return 1;
4374}
4375
33bb52fb 4376/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
33bb52fb
RS
4380
4381static bfd_boolean
476366af
RS
4382mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
33bb52fb 4384{
476366af
RS
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4387
4388 oldg = *g;
33bb52fb 4389
476366af
RS
4390 tga.info = info;
4391 tga.g = g;
4392 tga.value = FALSE;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4394 if (tga.value)
33bb52fb 4395 {
476366af
RS
4396 *g = oldg;
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
33bb52fb
RS
4401 return FALSE;
4402
476366af
RS
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4404 if (!tga.g)
4405 return FALSE;
4406
4407 htab_delete (oldg.got_entries);
33bb52fb 4408 }
13db6b44
RS
4409
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4413 return FALSE;
4414
4415 tga.info = info;
4416 tga.g = g;
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4418
33bb52fb
RS
4419 return TRUE;
4420}
4421
c5d6fa44
RS
4422/* Return true if a GOT entry for H should live in the local rather than
4423 global GOT area. */
4424
4425static bfd_boolean
4426mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4428{
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4434 return TRUE;
4435
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 return TRUE;
4442
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
0e1862bb 4446 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4447 return TRUE;
4448
4449 return FALSE;
4450}
4451
6c42ddb9
RS
4452/* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4457
4458static int
d4596a51 4459mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4460{
020d7251 4461 struct bfd_link_info *info;
6ccf4795 4462 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4463 struct mips_got_info *g;
4464
020d7251 4465 info = (struct bfd_link_info *) data;
6ccf4795
RS
4466 htab = mips_elf_hash_table (info);
4467 g = htab->got_info;
d4596a51 4468 if (h->global_got_area != GGA_NONE)
33bb52fb 4469 {
020d7251 4470 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
6ccf4795
RS
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
1bbce132 4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
6c42ddb9 4484 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4485 {
6c42ddb9 4486 g->reloc_only_gotno++;
23cc69b6 4487 g->global_gotno++;
23cc69b6 4488 }
33bb52fb
RS
4489 }
4490 return 1;
4491}
f4416af6 4492\f
d7206569
RS
4493/* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4495
4496static int
d7206569 4497mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4498{
d7206569
RS
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
f4416af6 4502
d7206569
RS
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4506 if (!slot)
f4416af6 4507 {
d7206569
RS
4508 arg->g = NULL;
4509 return 0;
f4416af6 4510 }
d7206569 4511 if (!*slot)
c224138d 4512 {
d7206569
RS
4513 *slot = entry;
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4515 }
f4416af6
AO
4516 return 1;
4517}
4518
d7206569
RS
4519/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4521
4522static int
d7206569 4523mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4524{
d7206569
RS
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4527 void **slot;
c224138d 4528
d7206569
RS
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4532 if (!slot)
c224138d 4533 {
d7206569 4534 arg->g = NULL;
c224138d
RS
4535 return 0;
4536 }
d7206569
RS
4537 if (!*slot)
4538 {
4539 *slot = entry;
4540 arg->g->page_gotno += entry->num_pages;
4541 }
c224138d
RS
4542 return 1;
4543}
4544
d7206569
RS
4545/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4549 callback.) */
c224138d
RS
4550
4551static int
d7206569 4552mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4555{
d7206569 4556 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4557 unsigned int estimate;
4558
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4563
e2ece73c 4564 /* And conservatively estimate how many local and TLS entries
c224138d 4565 would be needed. */
e2ece73c
RS
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4568
17214937
RS
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
e2ece73c 4571 conservatively as well. */
17214937 4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4573 estimate += arg->global_count;
4574 else
4575 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4576
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4579 return -1;
4580
c224138d 4581 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4582 tga.info = arg->info;
4583 tga.g = to;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4585 if (!tga.g)
c224138d
RS
4586 return 0;
4587
d7206569
RS
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4589 if (!tga.g)
c224138d
RS
4590 return 0;
4591
d7206569 4592 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4593 return 1;
4594}
4595
d7206569 4596/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4602
d7206569
RS
4603static bfd_boolean
4604mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4606{
c224138d
RS
4607 unsigned int estimate;
4608 int result;
4609
476366af 4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4611 return FALSE;
4612
c224138d
RS
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4618
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
c224138d 4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4624
c224138d 4625 if (estimate <= arg->max_count)
f4416af6 4626 {
c224138d
RS
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4629 if (!arg->primary)
4630 {
d7206569
RS
4631 arg->primary = g;
4632 return TRUE;
c224138d 4633 }
f4416af6 4634
c224138d 4635 /* Try merging with the primary GOT. */
d7206569 4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4637 if (result >= 0)
4638 return result;
f4416af6 4639 }
c224138d 4640
f4416af6 4641 /* If we can merge with the last-created got, do it. */
c224138d 4642 if (arg->current)
f4416af6 4643 {
d7206569 4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4645 if (result >= 0)
4646 return result;
f4416af6 4647 }
c224138d 4648
f4416af6
AO
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
c224138d
RS
4652 g->next = arg->current;
4653 arg->current = g;
0f20cc35 4654
d7206569 4655 return TRUE;
0f20cc35
DJ
4656}
4657
72e7511a
RS
4658/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4661
4662static bfd_boolean
4663mips_elf_set_gotidx (void **entryp, long gotidx)
4664{
4665 struct mips_got_entry *entry;
4666
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4669 {
4670 struct mips_got_entry *new_entry;
4671
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4673 if (!new_entry)
4674 return FALSE;
4675
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4678 entry = new_entry;
4679 }
4680 entry->gotidx = gotidx;
4681 return TRUE;
4682}
4683
4684/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4687
4688static int
72e7511a 4689mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4690{
72e7511a
RS
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4693
4694 /* We're only interested in TLS symbols. */
72e7511a 4695 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4696 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4697 return 1;
4698
72e7511a 4699 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4701 {
6c42ddb9
RS
4702 arg->g = NULL;
4703 return 0;
f4416af6
AO
4704 }
4705
ead49a57 4706 /* Account for the entries we've just allocated. */
9ab066b4 4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4708 return 1;
4709}
4710
ab361d49
RS
4711/* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
f4416af6 4714
f4416af6 4715static int
ab361d49 4716mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4717{
ab361d49
RS
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
f4416af6 4720
ab361d49
RS
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4727 return 1;
4728}
4729
4730/* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
72e7511a 4733 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4734
4735static int
4736mips_elf_set_global_gotidx (void **entryp, void *data)
4737{
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4740
ab361d49
RS
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4746 {
cb22ccf4 4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4748 {
4749 arg->g = NULL;
4750 return 0;
4751 }
cb22ccf4 4752 arg->g->assigned_low_gotno += 1;
72e7511a 4753
0e1862bb 4754 if (bfd_link_pic (arg->info)
ab361d49
RS
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
f4416af6
AO
4759 }
4760
4761 return 1;
4762}
4763
33bb52fb
RS
4764/* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4767
0626d451 4768static int
33bb52fb 4769mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4770{
33bb52fb
RS
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
0626d451 4774
33bb52fb
RS
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4778 BFD_ASSERT (htab != NULL);
4779
0626d451
RS
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
33bb52fb 4782 && entry->d.h->needs_lazy_stub)
f4416af6 4783 {
33bb52fb
RS
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
f4416af6 4786 }
143d77c5 4787
f4416af6
AO
4788 return 1;
4789}
4790
f4416af6
AO
4791/* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 the primary GOT. */
4793static bfd_vma
9719ad41 4794mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4795{
d7206569 4796 if (!g->next)
f4416af6
AO
4797 return 0;
4798
d7206569 4799 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4800 if (! g)
4801 return 0;
4802
4803 BFD_ASSERT (g->next);
4804
4805 g = g->next;
143d77c5 4806
0f20cc35
DJ
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4809}
4810
4811/* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4813
4814static bfd_boolean
9719ad41 4815mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4816 asection *got, bfd_size_type pages)
f4416af6 4817{
a8028dd0 4818 struct mips_elf_link_hash_table *htab;
f4416af6 4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4820 struct mips_elf_traverse_got_arg tga;
a8028dd0 4821 struct mips_got_info *g, *gg;
33bb52fb 4822 unsigned int assign, needed_relocs;
d7206569 4823 bfd *dynobj, *ibfd;
f4416af6 4824
33bb52fb 4825 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4826 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4827 BFD_ASSERT (htab != NULL);
4828
a8028dd0 4829 g = htab->got_info;
f4416af6 4830
f4416af6
AO
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
f4416af6
AO
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
0a44bf69 4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4836 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4837 - htab->reserved_gotno);
c224138d 4838 got_per_bfd_arg.max_pages = pages;
0f20cc35 4839 /* The number of globals that will be included in the primary GOT.
ab361d49 4840 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4841 information. */
4842 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4843
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
c72f2fb2 4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4848 {
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4851 return FALSE;
4852 }
f4416af6 4853
0f20cc35 4854 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4855 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4856 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4857 else
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4860
4861 /* GG is now the master GOT, and G is the primary GOT. */
4862 gg = g;
4863 g = g->next;
4864
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4869 list. */
d7206569 4870 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4871
634835ae
RS
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
23cc69b6 4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4876 g->global_gotno = gg->global_gotno;
f4416af6 4877
ab361d49
RS
4878 tga.info = info;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4883
4884 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
0f20cc35 4899 gg->tls_gotno = 0;
f4416af6
AO
4900 assign = 0;
4901 gg->next = gg;
4902
4903 do
4904 {
4905 struct mips_got_info *gn;
4906
861fb55a 4907 assign += htab->reserved_gotno;
cb22ccf4 4908 g->assigned_low_gotno = assign;
c224138d
RS
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4911 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4913
ead49a57
RS
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4917 gn = g->next;
4918 g->next = gg->next;
4919 gg->next = g;
4920
0f20cc35
DJ
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4924 tga.g = g;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 if (!tga.g)
4928 return FALSE;
1fd20d70 4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4930
ead49a57 4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4932 g = gn;
0626d451 4933
33bb52fb
RS
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
0626d451 4936 if (g)
33bb52fb 4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4938 }
4939 while (g);
4940
59b08994 4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4942
4943 needed_relocs = 0;
33bb52fb
RS
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4945 {
4946 unsigned int save_assign;
4947
ab361d49
RS
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
cb22ccf4
KCY
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4952 tga.info = info;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4954 tga.g = g;
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4956 if (!tga.g)
4957 return FALSE;
cb22ccf4
KCY
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
72e7511a 4960
0e1862bb 4961 if (bfd_link_pic (info))
33bb52fb 4962 {
cb22ccf4
KCY
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
861fb55a 4967 + htab->reserved_gotno);
33bb52fb 4968 }
ab361d49 4969 needed_relocs += g->relocs;
33bb52fb 4970 }
ab361d49 4971 needed_relocs += g->relocs;
33bb52fb
RS
4972
4973 if (needed_relocs)
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4975 needed_relocs);
143d77c5 4976
f4416af6
AO
4977 return TRUE;
4978}
143d77c5 4979
b49e97c9
TS
4980\f
4981/* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4983
4984static const Elf_Internal_Rela *
9719ad41
RS
4985mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
b49e97c9 4988{
c000e262
TS
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4990
b49e97c9
TS
4991 while (relocation < relend)
4992 {
c000e262
TS
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4995 return relocation;
4996
4997 ++relocation;
4998 }
4999
5000 /* We didn't find it. */
b49e97c9
TS
5001 return NULL;
5002}
5003
020d7251 5004/* Return whether an input relocation is against a local symbol. */
b49e97c9 5005
b34976b6 5006static bfd_boolean
9719ad41
RS
5007mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
020d7251 5009 asection **local_sections)
b49e97c9
TS
5010{
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5013 size_t extsymoff;
5014
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5018
5019 if (r_symndx < extsymoff)
b34976b6 5020 return TRUE;
b49e97c9 5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5022 return TRUE;
b49e97c9 5023
b34976b6 5024 return FALSE;
b49e97c9
TS
5025}
5026\f
5027/* Sign-extend VALUE, which has the indicated number of BITS. */
5028
a7ebbfdf 5029bfd_vma
9719ad41 5030_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5031{
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5035
5036 return value;
5037}
5038
5039/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5040 range expressible by a signed number with the indicated number of
b49e97c9
TS
5041 BITS. */
5042
b34976b6 5043static bfd_boolean
9719ad41 5044mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5045{
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5047
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
b34976b6 5050 return TRUE;
b49e97c9
TS
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
b34976b6 5053 return TRUE;
b49e97c9
TS
5054
5055 /* All is well. */
b34976b6 5056 return FALSE;
b49e97c9
TS
5057}
5058
5059/* Calculate the %high function. */
5060
5061static bfd_vma
9719ad41 5062mips_elf_high (bfd_vma value)
b49e97c9
TS
5063{
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065}
5066
5067/* Calculate the %higher function. */
5068
5069static bfd_vma
9719ad41 5070mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5071{
5072#ifdef BFD64
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5074#else
5075 abort ();
c5ae1840 5076 return MINUS_ONE;
b49e97c9
TS
5077#endif
5078}
5079
5080/* Calculate the %highest function. */
5081
5082static bfd_vma
9719ad41 5083mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5084{
5085#ifdef BFD64
b15e6682 5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5087#else
5088 abort ();
c5ae1840 5089 return MINUS_ONE;
b49e97c9
TS
5090#endif
5091}
5092\f
5093/* Create the .compact_rel section. */
5094
b34976b6 5095static bfd_boolean
9719ad41
RS
5096mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5098{
5099 flagword flags;
5100 register asection *s;
5101
3d4d4302 5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5103 {
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 | SEC_READONLY);
5106
3d4d4302 5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5108 if (s == NULL
b49e97c9
TS
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5111 return FALSE;
b49e97c9 5112
eea6121a 5113 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5114 }
5115
b34976b6 5116 return TRUE;
b49e97c9
TS
5117}
5118
5119/* Create the .got section to hold the global offset table. */
5120
b34976b6 5121static bfd_boolean
23cc69b6 5122mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5123{
5124 flagword flags;
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
14a793b2 5127 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5128 struct mips_elf_link_hash_table *htab;
5129
5130 htab = mips_elf_hash_table (info);
4dfe6ac6 5131 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5132
5133 /* This function may be called more than once. */
23cc69b6
RS
5134 if (htab->sgot)
5135 return TRUE;
b49e97c9
TS
5136
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5139
72b4917c
TS
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
87e0a731 5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5143 if (s == NULL
72b4917c 5144 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5145 return FALSE;
a8028dd0 5146 htab->sgot = s;
b49e97c9
TS
5147
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
14a793b2 5151 bh = NULL;
b49e97c9
TS
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5155 return FALSE;
14a793b2
AM
5156
5157 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5158 h->non_elf = 0;
5159 h->def_regular = 1;
b49e97c9 5160 h->type = STT_OBJECT;
2f9efdfc 5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5162 elf_hash_table (info)->hgot = h;
b49e97c9 5163
0e1862bb 5164 if (bfd_link_pic (info)
c152c796 5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5166 return FALSE;
b49e97c9 5167
3dff0dd1 5168 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5171
861fb55a 5172 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5175 | SEC_HAS_CONTENTS
5176 | SEC_IN_MEMORY
5177 | SEC_LINKER_CREATED);
861fb55a
DJ
5178 if (s == NULL)
5179 return FALSE;
5180 htab->sgotplt = s;
0a44bf69 5181
b34976b6 5182 return TRUE;
b49e97c9 5183}
b49e97c9 5184\f
0a44bf69
RS
5185/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5188
5189static bfd_boolean
5190is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5191{
5192 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5193 && bfd_link_pic (info)
0a44bf69
RS
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196}
861fb55a
DJ
5197
5198/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5201 stub. */
5202
5203static bfd_boolean
8f0c309a
CLT
5204mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5206{
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5213 return FALSE;
5214
5215 switch (r_type)
5216 {
5217 case R_MIPS_26:
5218 case R_MIPS_PC16:
7361da2c
AB
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
df58fc94
RS
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5226 return TRUE;
5227
8f0c309a
CLT
5228 case R_MIPS16_26:
5229 return !target_is_16_bit_code_p;
5230
861fb55a
DJ
5231 default:
5232 return FALSE;
5233 }
5234}
0a44bf69 5235\f
b49e97c9
TS
5236/* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5239
5240 The result of the relocation calculation is stored in VALUEP.
38a7df63 5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5243
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5248
5249static bfd_reloc_status_type
9719ad41
RS
5250mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5257 const char **namep,
5258 bfd_boolean *cross_mode_jump_p,
9719ad41 5259 bfd_boolean save_addend)
b49e97c9
TS
5260{
5261 /* The eventual value we will return. */
5262 bfd_vma value;
5263 /* The address of the symbol against which the relocation is
5264 occurring. */
5265 bfd_vma symbol = 0;
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
0a61c8c2 5268 bfd_vma gp;
b49e97c9
TS
5269 /* The place (section offset or address) of the storage unit being
5270 relocated. */
5271 bfd_vma p;
5272 /* The value of GP used to create the relocatable object. */
0a61c8c2 5273 bfd_vma gp0;
b49e97c9
TS
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5279 located. */
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5282 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5283 symbol. */
b34976b6 5284 bfd_boolean local_p, was_local_p;
77434823
MR
5285 /* TRUE if the symbol referred to by this relocation is a section
5286 symbol. */
5287 bfd_boolean section_p = FALSE;
b34976b6
AM
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5293 Elf_Internal_Shdr *symtab_hdr;
5294 size_t extsymoff;
5295 unsigned long r_symndx;
5296 int r_type;
b34976b6 5297 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5298 relocation value. */
b34976b6
AM
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5302 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5303 struct mips_elf_link_hash_table *htab;
5304 bfd *dynobj;
5305
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
4dfe6ac6 5308 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5309
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5316
5317 /* Assume that there will be no overflow. */
b34976b6 5318 overflowed_p = FALSE;
b49e97c9
TS
5319
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5324 local_sections);
bce03d3d 5325 was_local_p = local_p;
b49e97c9
TS
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5328 else
5329 {
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5332 extsymoff = 0;
5333 }
5334
5335 /* Figure out the value of the symbol. */
5336 if (local_p)
5337 {
9d862524 5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5339 Elf_Internal_Sym *sym;
5340
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5343
77434823
MR
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5345
b49e97c9 5346 symbol = sec->output_section->vma + sec->output_offset;
77434823 5347 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5348 symbol += sym->st_value;
77434823 5349 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5350 {
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5352 addend -= symbol;
5353 addend += sec->output_section->vma + sec->output_offset;
5354 }
b49e97c9 5355
df58fc94
RS
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5358 ++symbol;
5359
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5363 sym->st_name);
ceab86af 5364 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5365 *namep = bfd_section_name (input_bfd, sec);
5366
9d862524
MR
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5370 {
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5373 }
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5377 {
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5380 }
5381 /* Otherwise just use the regular symbol annotation available. */
5382 else
5383 {
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5386 }
b49e97c9
TS
5387 }
5388 else
5389 {
560e09e9
NC
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5391
b49e97c9
TS
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5399
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5402
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
560e09e9 5405 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5406 && ! NEWABI_P (input_bfd))
5407 {
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5411 return bfd_reloc_notsupported;
5412
b34976b6 5413 gp_disp_p = TRUE;
b49e97c9 5414 }
bbe506e8
TS
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5419
5420
b49e97c9
TS
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5424 its defined. */
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5428 {
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5434 else
5435 symbol = h->root.root.u.def.value;
5436 }
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5441 addresses. */
5442 symbol = 0;
59c2e50f 5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 symbol = 0;
a4d0f181
TS
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5448 {
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5454 somehow as well. */
0e1862bb 5455 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 symbol = 0;
5458 }
5e2b0d47
NC
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5460 {
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5468 symbol = 0;
5469 }
b49e97c9
TS
5470 else
5471 {
1a72702b
AM
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
b49e97c9
TS
5478 }
5479
30c09090 5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5482 }
5483
738e5348
RS
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5486
5487 (a) the relocation is for a MIPS16 JAL;
5488
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5491
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
0e1862bb 5494 && !bfd_link_relocatable (info)
738e5348
RS
5495 && ((h != NULL
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5498 || (local_p
698600e4
AM
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5501 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5502 {
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5505 stub. */
5506 if (local_p)
8f0c309a 5507 {
698600e4 5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5509 value = 0;
5510 }
b49e97c9
TS
5511 else
5512 {
5513 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5514 if (h->la25_stub)
5515 {
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5520 }
5521 else
5522 {
5523 sec = h->fn_stub;
5524 value = 0;
5525 }
b49e97c9
TS
5526 }
5527
8f0c309a 5528 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
b49e97c9 5531 }
1bbce132
MR
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
0e1862bb 5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5538 || (local_p
698600e4
AM
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5542 {
b9d58d71 5543 if (local_p)
698600e4 5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5545 else
b49e97c9 5546 {
b9d58d71
TS
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5549 file. */
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5551 {
b9d58d71 5552 asection *o;
68ffbac6 5553
b9d58d71
TS
5554 sec = NULL;
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5556 {
b9d58d71
TS
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5558 {
5559 sec = h->call_fp_stub;
5560 break;
5561 }
b49e97c9 5562 }
b9d58d71
TS
5563 if (sec == NULL)
5564 sec = h->call_stub;
b49e97c9 5565 }
b9d58d71 5566 else if (h->call_stub != NULL)
b49e97c9 5567 sec = h->call_stub;
b9d58d71
TS
5568 else
5569 sec = h->call_fp_stub;
5570 }
b49e97c9 5571
eea6121a 5572 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5573 symbol = sec->output_section->vma + sec->output_offset;
5574 }
861fb55a
DJ
5575 /* If this is a direct call to a PIC function, redirect to the
5576 non-PIC stub. */
5577 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
c7318def
MR
5580 {
5581 symbol = (h->la25_stub->stub_section->output_section->vma
5582 + h->la25_stub->stub_section->output_offset
5583 + h->la25_stub->offset);
5584 if (ELF_ST_IS_MICROMIPS (h->root.other))
5585 symbol |= 1;
5586 }
1bbce132
MR
5587 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5588 entry is used if a standard PLT entry has also been made. In this
5589 case the symbol will have been set by mips_elf_set_plt_sym_value
5590 to point to the standard PLT entry, so redirect to the compressed
5591 one. */
54806ffa
MR
5592 else if ((mips16_branch_reloc_p (r_type)
5593 || micromips_branch_reloc_p (r_type))
0e1862bb 5594 && !bfd_link_relocatable (info)
1bbce132
MR
5595 && h != NULL
5596 && h->use_plt_entry
5597 && h->root.plt.plist->comp_offset != MINUS_ONE
5598 && h->root.plt.plist->mips_offset != MINUS_ONE)
5599 {
5600 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5601
5602 sec = htab->splt;
5603 symbol = (sec->output_section->vma
5604 + sec->output_offset
5605 + htab->plt_header_size
5606 + htab->plt_mips_offset
5607 + h->root.plt.plist->comp_offset
5608 + 1);
5609
5610 target_is_16_bit_code_p = !micromips_p;
5611 target_is_micromips_code_p = micromips_p;
5612 }
b49e97c9 5613
df58fc94 5614 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5615 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5616 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5617 {
5618 (*_bfd_error_handler)
5619 (_("MIPS16 and microMIPS functions cannot call each other"));
5620 return bfd_reloc_notsupported;
5621 }
5622
b49e97c9 5623 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5624 mode change. However, we can ignore calls to undefined weak symbols,
5625 which should never be executed at runtime. This exception is important
5626 because the assembly writer may have "known" that any definition of the
5627 symbol would be 16-bit code, and that direct jumps were therefore
5628 acceptable. */
0e1862bb 5629 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5630 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5631 && ((mips16_branch_reloc_p (r_type)
5632 && !target_is_16_bit_code_p)
5633 || (micromips_branch_reloc_p (r_type)
df58fc94 5634 && !target_is_micromips_code_p)
9d862524
MR
5635 || ((branch_reloc_p (r_type)
5636 || r_type == R_MIPS_JALR)
df58fc94
RS
5637 && (target_is_16_bit_code_p
5638 || target_is_micromips_code_p))));
b49e97c9 5639
c5d6fa44 5640 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5641
0a61c8c2
RS
5642 gp0 = _bfd_get_gp_value (input_bfd);
5643 gp = _bfd_get_gp_value (abfd);
23cc69b6 5644 if (htab->got_info)
a8028dd0 5645 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5646
5647 if (gnu_local_gp_p)
5648 symbol = gp;
5649
df58fc94
RS
5650 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5651 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5652 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5653 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5654 {
df58fc94
RS
5655 r_type = (micromips_reloc_p (r_type)
5656 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5657 addend = 0;
5658 }
5659
e77760d2 5660 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5661 to need it, get it now. */
b49e97c9
TS
5662 switch (r_type)
5663 {
738e5348
RS
5664 case R_MIPS16_CALL16:
5665 case R_MIPS16_GOT16:
b49e97c9
TS
5666 case R_MIPS_CALL16:
5667 case R_MIPS_GOT16:
5668 case R_MIPS_GOT_DISP:
5669 case R_MIPS_GOT_HI16:
5670 case R_MIPS_CALL_HI16:
5671 case R_MIPS_GOT_LO16:
5672 case R_MIPS_CALL_LO16:
df58fc94
RS
5673 case R_MICROMIPS_CALL16:
5674 case R_MICROMIPS_GOT16:
5675 case R_MICROMIPS_GOT_DISP:
5676 case R_MICROMIPS_GOT_HI16:
5677 case R_MICROMIPS_CALL_HI16:
5678 case R_MICROMIPS_GOT_LO16:
5679 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5680 case R_MIPS_TLS_GD:
5681 case R_MIPS_TLS_GOTTPREL:
5682 case R_MIPS_TLS_LDM:
d0f13682
CLT
5683 case R_MIPS16_TLS_GD:
5684 case R_MIPS16_TLS_GOTTPREL:
5685 case R_MIPS16_TLS_LDM:
df58fc94
RS
5686 case R_MICROMIPS_TLS_GD:
5687 case R_MICROMIPS_TLS_GOTTPREL:
5688 case R_MICROMIPS_TLS_LDM:
b49e97c9 5689 /* Find the index into the GOT where this value is located. */
df58fc94 5690 if (tls_ldm_reloc_p (r_type))
0f20cc35 5691 {
0a44bf69 5692 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5693 0, 0, NULL, r_type);
0f20cc35
DJ
5694 if (g == MINUS_ONE)
5695 return bfd_reloc_outofrange;
5696 }
5697 else if (!local_p)
b49e97c9 5698 {
0a44bf69
RS
5699 /* On VxWorks, CALL relocations should refer to the .got.plt
5700 entry, which is initialized to point at the PLT stub. */
5701 if (htab->is_vxworks
df58fc94
RS
5702 && (call_hi16_reloc_p (r_type)
5703 || call_lo16_reloc_p (r_type)
738e5348 5704 || call16_reloc_p (r_type)))
0a44bf69
RS
5705 {
5706 BFD_ASSERT (addend == 0);
5707 BFD_ASSERT (h->root.needs_plt);
5708 g = mips_elf_gotplt_index (info, &h->root);
5709 }
5710 else
b49e97c9 5711 {
020d7251 5712 BFD_ASSERT (addend == 0);
13fbec83
RS
5713 g = mips_elf_global_got_index (abfd, info, input_bfd,
5714 &h->root, r_type);
e641e783 5715 if (!TLS_RELOC_P (r_type)
020d7251
RS
5716 && !elf_hash_table (info)->dynamic_sections_created)
5717 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5718 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5719 }
5720 }
0a44bf69 5721 else if (!htab->is_vxworks
738e5348 5722 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5723 /* The calculation below does not involve "g". */
b49e97c9
TS
5724 break;
5725 else
5726 {
5c18022e 5727 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5728 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5729 if (g == MINUS_ONE)
5730 return bfd_reloc_outofrange;
5731 }
5732
5733 /* Convert GOT indices to actual offsets. */
a8028dd0 5734 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5735 break;
b49e97c9
TS
5736 }
5737
0a44bf69
RS
5738 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5739 symbols are resolved by the loader. Add them to .rela.dyn. */
5740 if (h != NULL && is_gott_symbol (info, &h->root))
5741 {
5742 Elf_Internal_Rela outrel;
5743 bfd_byte *loc;
5744 asection *s;
5745
5746 s = mips_elf_rel_dyn_section (info, FALSE);
5747 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5748
5749 outrel.r_offset = (input_section->output_section->vma
5750 + input_section->output_offset
5751 + relocation->r_offset);
5752 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5753 outrel.r_addend = addend;
5754 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5755
5756 /* If we've written this relocation for a readonly section,
5757 we need to set DF_TEXTREL again, so that we do not delete the
5758 DT_TEXTREL tag. */
5759 if (MIPS_ELF_READONLY_SECTION (input_section))
5760 info->flags |= DF_TEXTREL;
5761
0a44bf69
RS
5762 *valuep = 0;
5763 return bfd_reloc_ok;
5764 }
5765
b49e97c9
TS
5766 /* Figure out what kind of relocation is being performed. */
5767 switch (r_type)
5768 {
5769 case R_MIPS_NONE:
5770 return bfd_reloc_continue;
5771
5772 case R_MIPS_16:
c3eb94b4
MF
5773 if (howto->partial_inplace)
5774 addend = _bfd_mips_elf_sign_extend (addend, 16);
5775 value = symbol + addend;
b49e97c9
TS
5776 overflowed_p = mips_elf_overflow_p (value, 16);
5777 break;
5778
5779 case R_MIPS_32:
5780 case R_MIPS_REL32:
5781 case R_MIPS_64:
0e1862bb 5782 if ((bfd_link_pic (info)
861fb55a 5783 || (htab->root.dynamic_sections_created
b49e97c9 5784 && h != NULL
f5385ebf 5785 && h->root.def_dynamic
861fb55a
DJ
5786 && !h->root.def_regular
5787 && !h->has_static_relocs))
cf35638d 5788 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5789 && (h == NULL
5790 || h->root.root.type != bfd_link_hash_undefweak
5791 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5792 && (input_section->flags & SEC_ALLOC) != 0)
5793 {
861fb55a 5794 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5795 where the symbol will end up. So, we create a relocation
5796 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5797 linker. We must do the same for executable references to
5798 shared library symbols, unless we've decided to use copy
5799 relocs or PLTs instead. */
b49e97c9
TS
5800 value = addend;
5801 if (!mips_elf_create_dynamic_relocation (abfd,
5802 info,
5803 relocation,
5804 h,
5805 sec,
5806 symbol,
5807 &value,
5808 input_section))
5809 return bfd_reloc_undefined;
5810 }
5811 else
5812 {
5813 if (r_type != R_MIPS_REL32)
5814 value = symbol + addend;
5815 else
5816 value = addend;
5817 }
5818 value &= howto->dst_mask;
092dcd75
CD
5819 break;
5820
5821 case R_MIPS_PC32:
5822 value = symbol + addend - p;
5823 value &= howto->dst_mask;
b49e97c9
TS
5824 break;
5825
b49e97c9
TS
5826 case R_MIPS16_26:
5827 /* The calculation for R_MIPS16_26 is just the same as for an
5828 R_MIPS_26. It's only the storage of the relocated field into
5829 the output file that's different. That's handled in
5830 mips_elf_perform_relocation. So, we just fall through to the
5831 R_MIPS_26 case here. */
5832 case R_MIPS_26:
df58fc94
RS
5833 case R_MICROMIPS_26_S1:
5834 {
5835 unsigned int shift;
5836
df58fc94
RS
5837 /* Shift is 2, unusually, for microMIPS JALX. */
5838 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5839
77434823 5840 if (howto->partial_inplace && !section_p)
df58fc94 5841 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5842 else
5843 value = addend;
bc27bb05
MR
5844 value += symbol;
5845
9d862524
MR
5846 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5847 be the correct ISA mode selector except for weak undefined
5848 symbols. */
5849 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5850 && (*cross_mode_jump_p
5851 ? (value & 3) != (r_type == R_MIPS_26)
5852 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5853 return bfd_reloc_outofrange;
5854
5855 value >>= shift;
77434823 5856 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5857 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5858 value &= howto->dst_mask;
5859 }
b49e97c9
TS
5860 break;
5861
0f20cc35 5862 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5863 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5864 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5865 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5866 & howto->dst_mask);
5867 break;
5868
5869 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5870 case R_MIPS_TLS_DTPREL32:
5871 case R_MIPS_TLS_DTPREL64:
d0f13682 5872 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5873 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5874 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5875 break;
5876
5877 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5878 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5879 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5880 value = (mips_elf_high (addend + symbol - tprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5885 case R_MIPS_TLS_TPREL32:
5886 case R_MIPS_TLS_TPREL64:
5887 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5888 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5889 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5890 break;
5891
b49e97c9 5892 case R_MIPS_HI16:
d6f16593 5893 case R_MIPS16_HI16:
df58fc94 5894 case R_MICROMIPS_HI16:
b49e97c9
TS
5895 if (!gp_disp_p)
5896 {
5897 value = mips_elf_high (addend + symbol);
5898 value &= howto->dst_mask;
5899 }
5900 else
5901 {
d6f16593
MR
5902 /* For MIPS16 ABI code we generate this sequence
5903 0: li $v0,%hi(_gp_disp)
5904 4: addiupc $v1,%lo(_gp_disp)
5905 8: sll $v0,16
5906 12: addu $v0,$v1
5907 14: move $gp,$v0
5908 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5909 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5910 ADDIUPC clears the low two bits of the instruction address,
5911 so the base is ($t9 + 4) & ~3. */
d6f16593 5912 if (r_type == R_MIPS16_HI16)
888b9c01 5913 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5914 /* The microMIPS .cpload sequence uses the same assembly
5915 instructions as the traditional psABI version, but the
5916 incoming $t9 has the low bit set. */
5917 else if (r_type == R_MICROMIPS_HI16)
5918 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5919 else
5920 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5921 overflowed_p = mips_elf_overflow_p (value, 16);
5922 }
5923 break;
5924
5925 case R_MIPS_LO16:
d6f16593 5926 case R_MIPS16_LO16:
df58fc94
RS
5927 case R_MICROMIPS_LO16:
5928 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5929 if (!gp_disp_p)
5930 value = (symbol + addend) & howto->dst_mask;
5931 else
5932 {
d6f16593
MR
5933 /* See the comment for R_MIPS16_HI16 above for the reason
5934 for this conditional. */
5935 if (r_type == R_MIPS16_LO16)
888b9c01 5936 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5937 else if (r_type == R_MICROMIPS_LO16
5938 || r_type == R_MICROMIPS_HI0_LO16)
5939 value = addend + gp - p + 3;
d6f16593
MR
5940 else
5941 value = addend + gp - p + 4;
b49e97c9 5942 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5943 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5944 _gp_disp are normally generated from the .cpload
5945 pseudo-op. It generates code that normally looks like
5946 this:
5947
5948 lui $gp,%hi(_gp_disp)
5949 addiu $gp,$gp,%lo(_gp_disp)
5950 addu $gp,$gp,$t9
5951
5952 Here $t9 holds the address of the function being called,
5953 as required by the MIPS ELF ABI. The R_MIPS_LO16
5954 relocation can easily overflow in this situation, but the
5955 R_MIPS_HI16 relocation will handle the overflow.
5956 Therefore, we consider this a bug in the MIPS ABI, and do
5957 not check for overflow here. */
5958 }
5959 break;
5960
5961 case R_MIPS_LITERAL:
df58fc94 5962 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5963 /* Because we don't merge literal sections, we can handle this
5964 just like R_MIPS_GPREL16. In the long run, we should merge
5965 shared literals, and then we will need to additional work
5966 here. */
5967
5968 /* Fall through. */
5969
5970 case R_MIPS16_GPREL:
5971 /* The R_MIPS16_GPREL performs the same calculation as
5972 R_MIPS_GPREL16, but stores the relocated bits in a different
5973 order. We don't need to do anything special here; the
5974 differences are handled in mips_elf_perform_relocation. */
5975 case R_MIPS_GPREL16:
df58fc94
RS
5976 case R_MICROMIPS_GPREL7_S2:
5977 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5978 /* Only sign-extend the addend if it was extracted from the
5979 instruction. If the addend was separate, leave it alone,
5980 otherwise we may lose significant bits. */
5981 if (howto->partial_inplace)
a7ebbfdf 5982 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5983 value = symbol + addend - gp;
5984 /* If the symbol was local, any earlier relocatable links will
5985 have adjusted its addend with the gp offset, so compensate
5986 for that now. Don't do it for symbols forced local in this
5987 link, though, since they won't have had the gp offset applied
5988 to them before. */
5989 if (was_local_p)
5990 value += gp0;
538baf8b
AB
5991 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
5993 break;
5994
738e5348
RS
5995 case R_MIPS16_GOT16:
5996 case R_MIPS16_CALL16:
b49e97c9
TS
5997 case R_MIPS_GOT16:
5998 case R_MIPS_CALL16:
df58fc94
RS
5999 case R_MICROMIPS_GOT16:
6000 case R_MICROMIPS_CALL16:
0a44bf69 6001 /* VxWorks does not have separate local and global semantics for
738e5348 6002 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6003 if (!htab->is_vxworks && local_p)
b49e97c9 6004 {
5c18022e 6005 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6006 symbol + addend, !was_local_p);
b49e97c9
TS
6007 if (value == MINUS_ONE)
6008 return bfd_reloc_outofrange;
6009 value
a8028dd0 6010 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6011 overflowed_p = mips_elf_overflow_p (value, 16);
6012 break;
6013 }
6014
6015 /* Fall through. */
6016
0f20cc35
DJ
6017 case R_MIPS_TLS_GD:
6018 case R_MIPS_TLS_GOTTPREL:
6019 case R_MIPS_TLS_LDM:
b49e97c9 6020 case R_MIPS_GOT_DISP:
d0f13682
CLT
6021 case R_MIPS16_TLS_GD:
6022 case R_MIPS16_TLS_GOTTPREL:
6023 case R_MIPS16_TLS_LDM:
df58fc94
RS
6024 case R_MICROMIPS_TLS_GD:
6025 case R_MICROMIPS_TLS_GOTTPREL:
6026 case R_MICROMIPS_TLS_LDM:
6027 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6028 value = g;
6029 overflowed_p = mips_elf_overflow_p (value, 16);
6030 break;
6031
6032 case R_MIPS_GPREL32:
bce03d3d
AO
6033 value = (addend + symbol + gp0 - gp);
6034 if (!save_addend)
6035 value &= howto->dst_mask;
b49e97c9
TS
6036 break;
6037
6038 case R_MIPS_PC16:
bad36eac 6039 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6040 if (howto->partial_inplace)
6041 addend = _bfd_mips_elf_sign_extend (addend, 18);
6042
9d862524
MR
6043 /* No need to exclude weak undefined symbols here as they resolve
6044 to 0 and never set `*cross_mode_jump_p', so this alignment check
6045 will never trigger for them. */
6046 if (*cross_mode_jump_p
6047 ? ((symbol + addend) & 3) != 1
6048 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6049 return bfd_reloc_outofrange;
6050
6051 value = symbol + addend - p;
538baf8b
AB
6052 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6053 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6054 value >>= howto->rightshift;
6055 value &= howto->dst_mask;
b49e97c9
TS
6056 break;
6057
c9775dde
MR
6058 case R_MIPS16_PC16_S1:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 17);
6061
6062 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6063 && (*cross_mode_jump_p
6064 ? ((symbol + addend) & 3) != 0
6065 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6066 return bfd_reloc_outofrange;
6067
6068 value = symbol + addend - p;
6069 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 overflowed_p = mips_elf_overflow_p (value, 17);
6071 value >>= howto->rightshift;
6072 value &= howto->dst_mask;
6073 break;
6074
7361da2c
AB
6075 case R_MIPS_PC21_S2:
6076 if (howto->partial_inplace)
6077 addend = _bfd_mips_elf_sign_extend (addend, 23);
6078
6079 if ((symbol + addend) & 3)
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
538baf8b
AB
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_PC26_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 28);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
538baf8b
AB
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC18_S3:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 21);
6106
6107 if ((symbol + addend) & 7)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC19_S2:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 3)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - p;
538baf8b
AB
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PCHI16:
6132 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6133 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6134 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCLO16:
6139 if (howto->partial_inplace)
6140 addend = _bfd_mips_elf_sign_extend (addend, 16);
6141 value = symbol + addend - p;
6142 value &= howto->dst_mask;
6143 break;
6144
df58fc94 6145 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6148
6149 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6150 && (*cross_mode_jump_p
6151 ? ((symbol + addend + 2) & 3) != 0
6152 : ((symbol + addend + 2) & 1) == 0))
6153 return bfd_reloc_outofrange;
6154
c3eb94b4 6155 value = symbol + addend - p;
538baf8b
AB
6156 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6158 value >>= howto->rightshift;
6159 value &= howto->dst_mask;
6160 break;
6161
6162 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6163 if (howto->partial_inplace)
6164 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6165
6166 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6167 && (*cross_mode_jump_p
6168 ? ((symbol + addend + 2) & 3) != 0
6169 : ((symbol + addend + 2) & 1) == 0))
6170 return bfd_reloc_outofrange;
6171
c3eb94b4 6172 value = symbol + addend - p;
538baf8b
AB
6173 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6175 value >>= howto->rightshift;
6176 value &= howto->dst_mask;
6177 break;
6178
6179 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6180 if (howto->partial_inplace)
6181 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6182
6183 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6184 && (*cross_mode_jump_p
6185 ? ((symbol + addend) & 3) != 0
6186 : ((symbol + addend) & 1) == 0))
6187 return bfd_reloc_outofrange;
6188
c3eb94b4 6189 value = symbol + addend - p;
538baf8b
AB
6190 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6192 value >>= howto->rightshift;
6193 value &= howto->dst_mask;
6194 break;
6195
6196 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6197 if (howto->partial_inplace)
6198 addend = _bfd_mips_elf_sign_extend (addend, 25);
6199 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6200 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6201 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6202 value >>= howto->rightshift;
6203 value &= howto->dst_mask;
6204 break;
6205
b49e97c9
TS
6206 case R_MIPS_GOT_HI16:
6207 case R_MIPS_CALL_HI16:
df58fc94
RS
6208 case R_MICROMIPS_GOT_HI16:
6209 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6210 /* We're allowed to handle these two relocations identically.
6211 The dynamic linker is allowed to handle the CALL relocations
6212 differently by creating a lazy evaluation stub. */
6213 value = g;
6214 value = mips_elf_high (value);
6215 value &= howto->dst_mask;
6216 break;
6217
6218 case R_MIPS_GOT_LO16:
6219 case R_MIPS_CALL_LO16:
df58fc94
RS
6220 case R_MICROMIPS_GOT_LO16:
6221 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6222 value = g & howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_PAGE:
df58fc94 6226 case R_MICROMIPS_GOT_PAGE:
5c18022e 6227 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6228 if (value == MINUS_ONE)
6229 return bfd_reloc_outofrange;
a8028dd0 6230 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6231 overflowed_p = mips_elf_overflow_p (value, 16);
6232 break;
6233
6234 case R_MIPS_GOT_OFST:
df58fc94 6235 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6236 if (local_p)
5c18022e 6237 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6238 else
6239 value = addend;
b49e97c9
TS
6240 overflowed_p = mips_elf_overflow_p (value, 16);
6241 break;
6242
6243 case R_MIPS_SUB:
df58fc94 6244 case R_MICROMIPS_SUB:
b49e97c9
TS
6245 value = symbol - addend;
6246 value &= howto->dst_mask;
6247 break;
6248
6249 case R_MIPS_HIGHER:
df58fc94 6250 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6251 value = mips_elf_higher (addend + symbol);
6252 value &= howto->dst_mask;
6253 break;
6254
6255 case R_MIPS_HIGHEST:
df58fc94 6256 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6257 value = mips_elf_highest (addend + symbol);
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_SCN_DISP:
df58fc94 6262 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6263 value = symbol + addend - sec->output_offset;
6264 value &= howto->dst_mask;
6265 break;
6266
b49e97c9 6267 case R_MIPS_JALR:
df58fc94 6268 case R_MICROMIPS_JALR:
1367d393
ILT
6269 /* This relocation is only a hint. In some cases, we optimize
6270 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6271 when the symbol does not resolve locally. */
6272 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6273 return bfd_reloc_continue;
6274 value = symbol + addend;
6275 break;
b49e97c9 6276
1367d393 6277 case R_MIPS_PJUMP:
b49e97c9
TS
6278 case R_MIPS_GNU_VTINHERIT:
6279 case R_MIPS_GNU_VTENTRY:
6280 /* We don't do anything with these at present. */
6281 return bfd_reloc_continue;
6282
6283 default:
6284 /* An unrecognized relocation type. */
6285 return bfd_reloc_notsupported;
6286 }
6287
6288 /* Store the VALUE for our caller. */
6289 *valuep = value;
6290 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6291}
6292
6293/* Obtain the field relocated by RELOCATION. */
6294
6295static bfd_vma
9719ad41
RS
6296mips_elf_obtain_contents (reloc_howto_type *howto,
6297 const Elf_Internal_Rela *relocation,
6298 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6299{
6346d5ca 6300 bfd_vma x = 0;
b49e97c9 6301 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6302 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6303
6304 /* Obtain the bytes. */
6346d5ca
AM
6305 if (size != 0)
6306 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6307
b49e97c9
TS
6308 return x;
6309}
6310
6311/* It has been determined that the result of the RELOCATION is the
6312 VALUE. Use HOWTO to place VALUE into the output file at the
6313 appropriate position. The SECTION is the section to which the
68ffbac6 6314 relocation applies.
38a7df63 6315 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6316 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6317
b34976b6 6318 Returns FALSE if anything goes wrong. */
b49e97c9 6319
b34976b6 6320static bfd_boolean
9719ad41
RS
6321mips_elf_perform_relocation (struct bfd_link_info *info,
6322 reloc_howto_type *howto,
6323 const Elf_Internal_Rela *relocation,
6324 bfd_vma value, bfd *input_bfd,
6325 asection *input_section, bfd_byte *contents,
38a7df63 6326 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6327{
6328 bfd_vma x;
6329 bfd_byte *location;
6330 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6331 unsigned int size;
b49e97c9
TS
6332
6333 /* Figure out where the relocation is occurring. */
6334 location = contents + relocation->r_offset;
6335
df58fc94 6336 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6337
b49e97c9
TS
6338 /* Obtain the current value. */
6339 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6340
6341 /* Clear the field we are setting. */
6342 x &= ~howto->dst_mask;
6343
b49e97c9
TS
6344 /* Set the field. */
6345 x |= (value & howto->dst_mask);
6346
a6ebf616 6347 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6348 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6349 {
6350 bfd_vma opcode = x >> 26;
6351
6352 if (r_type == R_MIPS16_26 ? opcode == 0x7
6353 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6354 : opcode == 0x1d)
6355 {
6356 info->callbacks->einfo
6357 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6358 input_bfd, input_section, relocation->r_offset);
6359 return TRUE;
6360 }
6361 }
38a7df63 6362 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6363 {
b34976b6 6364 bfd_boolean ok;
b49e97c9
TS
6365 bfd_vma opcode = x >> 26;
6366 bfd_vma jalx_opcode;
6367
6368 /* Check to see if the opcode is already JAL or JALX. */
6369 if (r_type == R_MIPS16_26)
6370 {
6371 ok = ((opcode == 0x6) || (opcode == 0x7));
6372 jalx_opcode = 0x7;
6373 }
df58fc94
RS
6374 else if (r_type == R_MICROMIPS_26_S1)
6375 {
6376 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6377 jalx_opcode = 0x3c;
6378 }
b49e97c9
TS
6379 else
6380 {
6381 ok = ((opcode == 0x3) || (opcode == 0x1d));
6382 jalx_opcode = 0x1d;
6383 }
6384
3bdf9505
MR
6385 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6386 convert J or JALS to JALX. */
b49e97c9
TS
6387 if (!ok)
6388 {
5f68df25
MR
6389 info->callbacks->einfo
6390 (_("%X%H: Unsupported jump between ISA modes; "
6391 "consider recompiling with interlinking enabled\n"),
6392 input_bfd, input_section, relocation->r_offset);
6393 return TRUE;
b49e97c9
TS
6394 }
6395
6396 /* Make this the JALX opcode. */
6397 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6398 }
9d862524
MR
6399 else if (cross_mode_jump_p && b_reloc_p (r_type))
6400 {
a6ebf616
MR
6401 bfd_boolean ok = FALSE;
6402 bfd_vma opcode = x >> 16;
6403 bfd_vma jalx_opcode = 0;
6404 bfd_vma addr;
6405 bfd_vma dest;
6406
6407 if (r_type == R_MICROMIPS_PC16_S1)
6408 {
6409 ok = opcode == 0x4060;
6410 jalx_opcode = 0x3c;
6411 value <<= 1;
6412 }
6413 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6414 {
6415 ok = opcode == 0x411;
6416 jalx_opcode = 0x1d;
6417 value <<= 2;
6418 }
6419
6420 if (bfd_link_pic (info) || !ok)
6421 {
6422 info->callbacks->einfo
6423 (_("%X%H: Unsupported branch between ISA modes\n"),
6424 input_bfd, input_section, relocation->r_offset);
6425 return TRUE;
6426 }
6427
6428 addr = (input_section->output_section->vma
6429 + input_section->output_offset
6430 + relocation->r_offset
6431 + 4);
6432 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6433
6434 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6435 {
6436 info->callbacks->einfo
6437 (_("%X%H: Cannot convert branch between ISA modes "
6438 "to JALX: relocation out of range\n"),
6439 input_bfd, input_section, relocation->r_offset);
6440 return TRUE;
6441 }
6442
6443 /* Make this the JALX opcode. */
6444 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
9d862524 6445 }
b49e97c9 6446
38a7df63
CF
6447 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6448 range. */
0e1862bb 6449 if (!bfd_link_relocatable (info)
38a7df63 6450 && !cross_mode_jump_p
cd8d5a82
CF
6451 && ((JAL_TO_BAL_P (input_bfd)
6452 && r_type == R_MIPS_26
6453 && (x >> 26) == 0x3) /* jal addr */
6454 || (JALR_TO_BAL_P (input_bfd)
6455 && r_type == R_MIPS_JALR
38a7df63
CF
6456 && x == 0x0320f809) /* jalr t9 */
6457 || (JR_TO_B_P (input_bfd)
6458 && r_type == R_MIPS_JALR
6459 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6460 {
6461 bfd_vma addr;
6462 bfd_vma dest;
6463 bfd_signed_vma off;
6464
6465 addr = (input_section->output_section->vma
6466 + input_section->output_offset
6467 + relocation->r_offset
6468 + 4);
6469 if (r_type == R_MIPS_26)
6470 dest = (value << 2) | ((addr >> 28) << 28);
6471 else
6472 dest = value;
6473 off = dest - addr;
6474 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6475 {
6476 if (x == 0x03200008) /* jr t9 */
6477 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6478 else
6479 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6480 }
1367d393
ILT
6481 }
6482
b49e97c9 6483 /* Put the value into the output. */
6346d5ca
AM
6484 size = bfd_get_reloc_size (howto);
6485 if (size != 0)
6486 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6487
0e1862bb 6488 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6489 location);
d6f16593 6490
b34976b6 6491 return TRUE;
b49e97c9 6492}
b49e97c9 6493\f
b49e97c9
TS
6494/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6495 is the original relocation, which is now being transformed into a
6496 dynamic relocation. The ADDENDP is adjusted if necessary; the
6497 caller should store the result in place of the original addend. */
6498
b34976b6 6499static bfd_boolean
9719ad41
RS
6500mips_elf_create_dynamic_relocation (bfd *output_bfd,
6501 struct bfd_link_info *info,
6502 const Elf_Internal_Rela *rel,
6503 struct mips_elf_link_hash_entry *h,
6504 asection *sec, bfd_vma symbol,
6505 bfd_vma *addendp, asection *input_section)
b49e97c9 6506{
947216bf 6507 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6508 asection *sreloc;
6509 bfd *dynobj;
6510 int r_type;
5d41f0b6
RS
6511 long indx;
6512 bfd_boolean defined_p;
0a44bf69 6513 struct mips_elf_link_hash_table *htab;
b49e97c9 6514
0a44bf69 6515 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6516 BFD_ASSERT (htab != NULL);
6517
b49e97c9
TS
6518 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6519 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6520 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6521 BFD_ASSERT (sreloc != NULL);
6522 BFD_ASSERT (sreloc->contents != NULL);
6523 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6524 < sreloc->size);
b49e97c9 6525
b49e97c9
TS
6526 outrel[0].r_offset =
6527 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6528 if (ABI_64_P (output_bfd))
6529 {
6530 outrel[1].r_offset =
6531 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6532 outrel[2].r_offset =
6533 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6534 }
b49e97c9 6535
c5ae1840 6536 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6537 /* The relocation field has been deleted. */
5d41f0b6
RS
6538 return TRUE;
6539
6540 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6541 {
6542 /* The relocation field has been converted into a relative value of
6543 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6544 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6545 *addendp += symbol;
5d41f0b6 6546 return TRUE;
0d591ff7 6547 }
b49e97c9 6548
5d41f0b6
RS
6549 /* We must now calculate the dynamic symbol table index to use
6550 in the relocation. */
d4a77f3f 6551 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6552 {
020d7251 6553 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6554 indx = h->root.dynindx;
6555 if (SGI_COMPAT (output_bfd))
6556 defined_p = h->root.def_regular;
6557 else
6558 /* ??? glibc's ld.so just adds the final GOT entry to the
6559 relocation field. It therefore treats relocs against
6560 defined symbols in the same way as relocs against
6561 undefined symbols. */
6562 defined_p = FALSE;
6563 }
b49e97c9
TS
6564 else
6565 {
5d41f0b6
RS
6566 if (sec != NULL && bfd_is_abs_section (sec))
6567 indx = 0;
6568 else if (sec == NULL || sec->owner == NULL)
fdd07405 6569 {
5d41f0b6
RS
6570 bfd_set_error (bfd_error_bad_value);
6571 return FALSE;
b49e97c9
TS
6572 }
6573 else
6574 {
5d41f0b6 6575 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6576 if (indx == 0)
6577 {
6578 asection *osec = htab->root.text_index_section;
6579 indx = elf_section_data (osec)->dynindx;
6580 }
5d41f0b6
RS
6581 if (indx == 0)
6582 abort ();
b49e97c9
TS
6583 }
6584
5d41f0b6
RS
6585 /* Instead of generating a relocation using the section
6586 symbol, we may as well make it a fully relative
6587 relocation. We want to avoid generating relocations to
6588 local symbols because we used to generate them
6589 incorrectly, without adding the original symbol value,
6590 which is mandated by the ABI for section symbols. In
6591 order to give dynamic loaders and applications time to
6592 phase out the incorrect use, we refrain from emitting
6593 section-relative relocations. It's not like they're
6594 useful, after all. This should be a bit more efficient
6595 as well. */
6596 /* ??? Although this behavior is compatible with glibc's ld.so,
6597 the ABI says that relocations against STN_UNDEF should have
6598 a symbol value of 0. Irix rld honors this, so relocations
6599 against STN_UNDEF have no effect. */
6600 if (!SGI_COMPAT (output_bfd))
6601 indx = 0;
6602 defined_p = TRUE;
b49e97c9
TS
6603 }
6604
5d41f0b6
RS
6605 /* If the relocation was previously an absolute relocation and
6606 this symbol will not be referred to by the relocation, we must
6607 adjust it by the value we give it in the dynamic symbol table.
6608 Otherwise leave the job up to the dynamic linker. */
6609 if (defined_p && r_type != R_MIPS_REL32)
6610 *addendp += symbol;
6611
0a44bf69
RS
6612 if (htab->is_vxworks)
6613 /* VxWorks uses non-relative relocations for this. */
6614 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6615 else
6616 /* The relocation is always an REL32 relocation because we don't
6617 know where the shared library will wind up at load-time. */
6618 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6619 R_MIPS_REL32);
6620
5d41f0b6
RS
6621 /* For strict adherence to the ABI specification, we should
6622 generate a R_MIPS_64 relocation record by itself before the
6623 _REL32/_64 record as well, such that the addend is read in as
6624 a 64-bit value (REL32 is a 32-bit relocation, after all).
6625 However, since none of the existing ELF64 MIPS dynamic
6626 loaders seems to care, we don't waste space with these
6627 artificial relocations. If this turns out to not be true,
6628 mips_elf_allocate_dynamic_relocation() should be tweaked so
6629 as to make room for a pair of dynamic relocations per
6630 invocation if ABI_64_P, and here we should generate an
6631 additional relocation record with R_MIPS_64 by itself for a
6632 NULL symbol before this relocation record. */
6633 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6634 ABI_64_P (output_bfd)
6635 ? R_MIPS_64
6636 : R_MIPS_NONE);
6637 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6638
6639 /* Adjust the output offset of the relocation to reference the
6640 correct location in the output file. */
6641 outrel[0].r_offset += (input_section->output_section->vma
6642 + input_section->output_offset);
6643 outrel[1].r_offset += (input_section->output_section->vma
6644 + input_section->output_offset);
6645 outrel[2].r_offset += (input_section->output_section->vma
6646 + input_section->output_offset);
6647
b49e97c9
TS
6648 /* Put the relocation back out. We have to use the special
6649 relocation outputter in the 64-bit case since the 64-bit
6650 relocation format is non-standard. */
6651 if (ABI_64_P (output_bfd))
6652 {
6653 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6654 (output_bfd, &outrel[0],
6655 (sreloc->contents
6656 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6657 }
0a44bf69
RS
6658 else if (htab->is_vxworks)
6659 {
6660 /* VxWorks uses RELA rather than REL dynamic relocations. */
6661 outrel[0].r_addend = *addendp;
6662 bfd_elf32_swap_reloca_out
6663 (output_bfd, &outrel[0],
6664 (sreloc->contents
6665 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6666 }
b49e97c9 6667 else
947216bf
AM
6668 bfd_elf32_swap_reloc_out
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6671
b49e97c9
TS
6672 /* We've now added another relocation. */
6673 ++sreloc->reloc_count;
6674
6675 /* Make sure the output section is writable. The dynamic linker
6676 will be writing to it. */
6677 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6678 |= SHF_WRITE;
6679
6680 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6681 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6682 {
3d4d4302 6683 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6684 bfd_byte *cr;
6685
6686 if (scpt)
6687 {
6688 Elf32_crinfo cptrel;
6689
6690 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6691 cptrel.vaddr = (rel->r_offset
6692 + input_section->output_section->vma
6693 + input_section->output_offset);
6694 if (r_type == R_MIPS_REL32)
6695 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6696 else
6697 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6698 mips_elf_set_cr_dist2to (cptrel, 0);
6699 cptrel.konst = *addendp;
6700
6701 cr = (scpt->contents
6702 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6703 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6704 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6705 ((Elf32_External_crinfo *) cr
6706 + scpt->reloc_count));
6707 ++scpt->reloc_count;
6708 }
6709 }
6710
943284cc
DJ
6711 /* If we've written this relocation for a readonly section,
6712 we need to set DF_TEXTREL again, so that we do not delete the
6713 DT_TEXTREL tag. */
6714 if (MIPS_ELF_READONLY_SECTION (input_section))
6715 info->flags |= DF_TEXTREL;
6716
b34976b6 6717 return TRUE;
b49e97c9
TS
6718}
6719\f
b49e97c9
TS
6720/* Return the MACH for a MIPS e_flags value. */
6721
6722unsigned long
9719ad41 6723_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6724{
6725 switch (flags & EF_MIPS_MACH)
6726 {
6727 case E_MIPS_MACH_3900:
6728 return bfd_mach_mips3900;
6729
6730 case E_MIPS_MACH_4010:
6731 return bfd_mach_mips4010;
6732
6733 case E_MIPS_MACH_4100:
6734 return bfd_mach_mips4100;
6735
6736 case E_MIPS_MACH_4111:
6737 return bfd_mach_mips4111;
6738
00707a0e
RS
6739 case E_MIPS_MACH_4120:
6740 return bfd_mach_mips4120;
6741
b49e97c9
TS
6742 case E_MIPS_MACH_4650:
6743 return bfd_mach_mips4650;
6744
00707a0e
RS
6745 case E_MIPS_MACH_5400:
6746 return bfd_mach_mips5400;
6747
6748 case E_MIPS_MACH_5500:
6749 return bfd_mach_mips5500;
6750
e407c74b
NC
6751 case E_MIPS_MACH_5900:
6752 return bfd_mach_mips5900;
6753
0d2e43ed
ILT
6754 case E_MIPS_MACH_9000:
6755 return bfd_mach_mips9000;
6756
b49e97c9
TS
6757 case E_MIPS_MACH_SB1:
6758 return bfd_mach_mips_sb1;
6759
350cc38d
MS
6760 case E_MIPS_MACH_LS2E:
6761 return bfd_mach_mips_loongson_2e;
6762
6763 case E_MIPS_MACH_LS2F:
6764 return bfd_mach_mips_loongson_2f;
6765
fd503541
NC
6766 case E_MIPS_MACH_LS3A:
6767 return bfd_mach_mips_loongson_3a;
6768
2c629856
N
6769 case E_MIPS_MACH_OCTEON3:
6770 return bfd_mach_mips_octeon3;
6771
432233b3
AP
6772 case E_MIPS_MACH_OCTEON2:
6773 return bfd_mach_mips_octeon2;
6774
6f179bd0
AN
6775 case E_MIPS_MACH_OCTEON:
6776 return bfd_mach_mips_octeon;
6777
52b6b6b9
JM
6778 case E_MIPS_MACH_XLR:
6779 return bfd_mach_mips_xlr;
6780
b49e97c9
TS
6781 default:
6782 switch (flags & EF_MIPS_ARCH)
6783 {
6784 default:
6785 case E_MIPS_ARCH_1:
6786 return bfd_mach_mips3000;
b49e97c9
TS
6787
6788 case E_MIPS_ARCH_2:
6789 return bfd_mach_mips6000;
b49e97c9
TS
6790
6791 case E_MIPS_ARCH_3:
6792 return bfd_mach_mips4000;
b49e97c9
TS
6793
6794 case E_MIPS_ARCH_4:
6795 return bfd_mach_mips8000;
b49e97c9
TS
6796
6797 case E_MIPS_ARCH_5:
6798 return bfd_mach_mips5;
b49e97c9
TS
6799
6800 case E_MIPS_ARCH_32:
6801 return bfd_mach_mipsisa32;
b49e97c9
TS
6802
6803 case E_MIPS_ARCH_64:
6804 return bfd_mach_mipsisa64;
af7ee8bf
CD
6805
6806 case E_MIPS_ARCH_32R2:
6807 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6808
6809 case E_MIPS_ARCH_64R2:
6810 return bfd_mach_mipsisa64r2;
7361da2c
AB
6811
6812 case E_MIPS_ARCH_32R6:
6813 return bfd_mach_mipsisa32r6;
6814
6815 case E_MIPS_ARCH_64R6:
6816 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6817 }
6818 }
6819
6820 return 0;
6821}
6822
6823/* Return printable name for ABI. */
6824
6825static INLINE char *
9719ad41 6826elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6827{
6828 flagword flags;
6829
6830 flags = elf_elfheader (abfd)->e_flags;
6831 switch (flags & EF_MIPS_ABI)
6832 {
6833 case 0:
6834 if (ABI_N32_P (abfd))
6835 return "N32";
6836 else if (ABI_64_P (abfd))
6837 return "64";
6838 else
6839 return "none";
6840 case E_MIPS_ABI_O32:
6841 return "O32";
6842 case E_MIPS_ABI_O64:
6843 return "O64";
6844 case E_MIPS_ABI_EABI32:
6845 return "EABI32";
6846 case E_MIPS_ABI_EABI64:
6847 return "EABI64";
6848 default:
6849 return "unknown abi";
6850 }
6851}
6852\f
6853/* MIPS ELF uses two common sections. One is the usual one, and the
6854 other is for small objects. All the small objects are kept
6855 together, and then referenced via the gp pointer, which yields
6856 faster assembler code. This is what we use for the small common
6857 section. This approach is copied from ecoff.c. */
6858static asection mips_elf_scom_section;
6859static asymbol mips_elf_scom_symbol;
6860static asymbol *mips_elf_scom_symbol_ptr;
6861
6862/* MIPS ELF also uses an acommon section, which represents an
6863 allocated common symbol which may be overridden by a
6864 definition in a shared library. */
6865static asection mips_elf_acom_section;
6866static asymbol mips_elf_acom_symbol;
6867static asymbol *mips_elf_acom_symbol_ptr;
6868
738e5348 6869/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6870
6871void
9719ad41 6872_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6873{
6874 elf_symbol_type *elfsym;
6875
738e5348 6876 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6877 elfsym = (elf_symbol_type *) asym;
6878 switch (elfsym->internal_elf_sym.st_shndx)
6879 {
6880 case SHN_MIPS_ACOMMON:
6881 /* This section is used in a dynamically linked executable file.
6882 It is an allocated common section. The dynamic linker can
6883 either resolve these symbols to something in a shared
6884 library, or it can just leave them here. For our purposes,
6885 we can consider these symbols to be in a new section. */
6886 if (mips_elf_acom_section.name == NULL)
6887 {
6888 /* Initialize the acommon section. */
6889 mips_elf_acom_section.name = ".acommon";
6890 mips_elf_acom_section.flags = SEC_ALLOC;
6891 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6892 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6893 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6894 mips_elf_acom_symbol.name = ".acommon";
6895 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6896 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6897 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6898 }
6899 asym->section = &mips_elf_acom_section;
6900 break;
6901
6902 case SHN_COMMON:
6903 /* Common symbols less than the GP size are automatically
6904 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6905 if (asym->value > elf_gp_size (abfd)
b59eed79 6906 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6907 || IRIX_COMPAT (abfd) == ict_irix6)
6908 break;
6909 /* Fall through. */
6910 case SHN_MIPS_SCOMMON:
6911 if (mips_elf_scom_section.name == NULL)
6912 {
6913 /* Initialize the small common section. */
6914 mips_elf_scom_section.name = ".scommon";
6915 mips_elf_scom_section.flags = SEC_IS_COMMON;
6916 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6917 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6918 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6919 mips_elf_scom_symbol.name = ".scommon";
6920 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6921 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6922 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6923 }
6924 asym->section = &mips_elf_scom_section;
6925 asym->value = elfsym->internal_elf_sym.st_size;
6926 break;
6927
6928 case SHN_MIPS_SUNDEFINED:
6929 asym->section = bfd_und_section_ptr;
6930 break;
6931
b49e97c9 6932 case SHN_MIPS_TEXT:
00b4930b
TS
6933 {
6934 asection *section = bfd_get_section_by_name (abfd, ".text");
6935
00b4930b
TS
6936 if (section != NULL)
6937 {
6938 asym->section = section;
6939 /* MIPS_TEXT is a bit special, the address is not an offset
6940 to the base of the .text section. So substract the section
6941 base address to make it an offset. */
6942 asym->value -= section->vma;
6943 }
6944 }
b49e97c9
TS
6945 break;
6946
6947 case SHN_MIPS_DATA:
00b4930b
TS
6948 {
6949 asection *section = bfd_get_section_by_name (abfd, ".data");
6950
00b4930b
TS
6951 if (section != NULL)
6952 {
6953 asym->section = section;
6954 /* MIPS_DATA is a bit special, the address is not an offset
6955 to the base of the .data section. So substract the section
6956 base address to make it an offset. */
6957 asym->value -= section->vma;
6958 }
6959 }
b49e97c9 6960 break;
b49e97c9 6961 }
738e5348 6962
df58fc94
RS
6963 /* If this is an odd-valued function symbol, assume it's a MIPS16
6964 or microMIPS one. */
738e5348
RS
6965 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6966 && (asym->value & 1) != 0)
6967 {
6968 asym->value--;
e8faf7d1 6969 if (MICROMIPS_P (abfd))
df58fc94
RS
6970 elfsym->internal_elf_sym.st_other
6971 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6972 else
6973 elfsym->internal_elf_sym.st_other
6974 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6975 }
b49e97c9
TS
6976}
6977\f
8c946ed5
RS
6978/* Implement elf_backend_eh_frame_address_size. This differs from
6979 the default in the way it handles EABI64.
6980
6981 EABI64 was originally specified as an LP64 ABI, and that is what
6982 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6983 historically accepted the combination of -mabi=eabi and -mlong32,
6984 and this ILP32 variation has become semi-official over time.
6985 Both forms use elf32 and have pointer-sized FDE addresses.
6986
6987 If an EABI object was generated by GCC 4.0 or above, it will have
6988 an empty .gcc_compiled_longXX section, where XX is the size of longs
6989 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6990 have no special marking to distinguish them from LP64 objects.
6991
6992 We don't want users of the official LP64 ABI to be punished for the
6993 existence of the ILP32 variant, but at the same time, we don't want
6994 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6995 We therefore take the following approach:
6996
6997 - If ABFD contains a .gcc_compiled_longXX section, use it to
6998 determine the pointer size.
6999
7000 - Otherwise check the type of the first relocation. Assume that
7001 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7002
7003 - Otherwise punt.
7004
7005 The second check is enough to detect LP64 objects generated by pre-4.0
7006 compilers because, in the kind of output generated by those compilers,
7007 the first relocation will be associated with either a CIE personality
7008 routine or an FDE start address. Furthermore, the compilers never
7009 used a special (non-pointer) encoding for this ABI.
7010
7011 Checking the relocation type should also be safe because there is no
7012 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7013 did so. */
7014
7015unsigned int
7016_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7017{
7018 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7019 return 8;
7020 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7021 {
7022 bfd_boolean long32_p, long64_p;
7023
7024 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7025 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7026 if (long32_p && long64_p)
7027 return 0;
7028 if (long32_p)
7029 return 4;
7030 if (long64_p)
7031 return 8;
7032
7033 if (sec->reloc_count > 0
7034 && elf_section_data (sec)->relocs != NULL
7035 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7036 == R_MIPS_64))
7037 return 8;
7038
7039 return 0;
7040 }
7041 return 4;
7042}
7043\f
174fd7f9
RS
7044/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7045 relocations against two unnamed section symbols to resolve to the
7046 same address. For example, if we have code like:
7047
7048 lw $4,%got_disp(.data)($gp)
7049 lw $25,%got_disp(.text)($gp)
7050 jalr $25
7051
7052 then the linker will resolve both relocations to .data and the program
7053 will jump there rather than to .text.
7054
7055 We can work around this problem by giving names to local section symbols.
7056 This is also what the MIPSpro tools do. */
7057
7058bfd_boolean
7059_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7060{
7061 return SGI_COMPAT (abfd);
7062}
7063\f
b49e97c9
TS
7064/* Work over a section just before writing it out. This routine is
7065 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7066 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7067 a better way. */
7068
b34976b6 7069bfd_boolean
9719ad41 7070_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7071{
7072 if (hdr->sh_type == SHT_MIPS_REGINFO
7073 && hdr->sh_size > 0)
7074 {
7075 bfd_byte buf[4];
7076
7077 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7078 BFD_ASSERT (hdr->contents == NULL);
7079
7080 if (bfd_seek (abfd,
7081 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7082 SEEK_SET) != 0)
b34976b6 7083 return FALSE;
b49e97c9 7084 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7085 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7086 return FALSE;
b49e97c9
TS
7087 }
7088
7089 if (hdr->sh_type == SHT_MIPS_OPTIONS
7090 && hdr->bfd_section != NULL
f0abc2a1
AM
7091 && mips_elf_section_data (hdr->bfd_section) != NULL
7092 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7093 {
7094 bfd_byte *contents, *l, *lend;
7095
f0abc2a1
AM
7096 /* We stored the section contents in the tdata field in the
7097 set_section_contents routine. We save the section contents
7098 so that we don't have to read them again.
b49e97c9
TS
7099 At this point we know that elf_gp is set, so we can look
7100 through the section contents to see if there is an
7101 ODK_REGINFO structure. */
7102
f0abc2a1 7103 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7104 l = contents;
7105 lend = contents + hdr->sh_size;
7106 while (l + sizeof (Elf_External_Options) <= lend)
7107 {
7108 Elf_Internal_Options intopt;
7109
7110 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7111 &intopt);
1bc8074d
MR
7112 if (intopt.size < sizeof (Elf_External_Options))
7113 {
7114 (*_bfd_error_handler)
7115 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7116 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7117 break;
7118 }
b49e97c9
TS
7119 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7120 {
7121 bfd_byte buf[8];
7122
7123 if (bfd_seek (abfd,
7124 (hdr->sh_offset
7125 + (l - contents)
7126 + sizeof (Elf_External_Options)
7127 + (sizeof (Elf64_External_RegInfo) - 8)),
7128 SEEK_SET) != 0)
b34976b6 7129 return FALSE;
b49e97c9 7130 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7131 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7132 return FALSE;
b49e97c9
TS
7133 }
7134 else if (intopt.kind == ODK_REGINFO)
7135 {
7136 bfd_byte buf[4];
7137
7138 if (bfd_seek (abfd,
7139 (hdr->sh_offset
7140 + (l - contents)
7141 + sizeof (Elf_External_Options)
7142 + (sizeof (Elf32_External_RegInfo) - 4)),
7143 SEEK_SET) != 0)
b34976b6 7144 return FALSE;
b49e97c9 7145 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7146 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7147 return FALSE;
b49e97c9
TS
7148 }
7149 l += intopt.size;
7150 }
7151 }
7152
7153 if (hdr->bfd_section != NULL)
7154 {
7155 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7156
2d0f9ad9
JM
7157 /* .sbss is not handled specially here because the GNU/Linux
7158 prelinker can convert .sbss from NOBITS to PROGBITS and
7159 changing it back to NOBITS breaks the binary. The entry in
7160 _bfd_mips_elf_special_sections will ensure the correct flags
7161 are set on .sbss if BFD creates it without reading it from an
7162 input file, and without special handling here the flags set
7163 on it in an input file will be followed. */
b49e97c9
TS
7164 if (strcmp (name, ".sdata") == 0
7165 || strcmp (name, ".lit8") == 0
7166 || strcmp (name, ".lit4") == 0)
fd6f9d17 7167 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7168 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7169 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7170 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7171 hdr->sh_flags = 0;
b49e97c9
TS
7172 else if (strcmp (name, ".rtproc") == 0)
7173 {
7174 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7175 {
7176 unsigned int adjust;
7177
7178 adjust = hdr->sh_size % hdr->sh_addralign;
7179 if (adjust != 0)
7180 hdr->sh_size += hdr->sh_addralign - adjust;
7181 }
7182 }
7183 }
7184
b34976b6 7185 return TRUE;
b49e97c9
TS
7186}
7187
7188/* Handle a MIPS specific section when reading an object file. This
7189 is called when elfcode.h finds a section with an unknown type.
7190 This routine supports both the 32-bit and 64-bit ELF ABI.
7191
7192 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7193 how to. */
7194
b34976b6 7195bfd_boolean
6dc132d9
L
7196_bfd_mips_elf_section_from_shdr (bfd *abfd,
7197 Elf_Internal_Shdr *hdr,
7198 const char *name,
7199 int shindex)
b49e97c9
TS
7200{
7201 flagword flags = 0;
7202
7203 /* There ought to be a place to keep ELF backend specific flags, but
7204 at the moment there isn't one. We just keep track of the
7205 sections by their name, instead. Fortunately, the ABI gives
7206 suggested names for all the MIPS specific sections, so we will
7207 probably get away with this. */
7208 switch (hdr->sh_type)
7209 {
7210 case SHT_MIPS_LIBLIST:
7211 if (strcmp (name, ".liblist") != 0)
b34976b6 7212 return FALSE;
b49e97c9
TS
7213 break;
7214 case SHT_MIPS_MSYM:
7215 if (strcmp (name, ".msym") != 0)
b34976b6 7216 return FALSE;
b49e97c9
TS
7217 break;
7218 case SHT_MIPS_CONFLICT:
7219 if (strcmp (name, ".conflict") != 0)
b34976b6 7220 return FALSE;
b49e97c9
TS
7221 break;
7222 case SHT_MIPS_GPTAB:
0112cd26 7223 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7224 return FALSE;
b49e97c9
TS
7225 break;
7226 case SHT_MIPS_UCODE:
7227 if (strcmp (name, ".ucode") != 0)
b34976b6 7228 return FALSE;
b49e97c9
TS
7229 break;
7230 case SHT_MIPS_DEBUG:
7231 if (strcmp (name, ".mdebug") != 0)
b34976b6 7232 return FALSE;
b49e97c9
TS
7233 flags = SEC_DEBUGGING;
7234 break;
7235 case SHT_MIPS_REGINFO:
7236 if (strcmp (name, ".reginfo") != 0
7237 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7238 return FALSE;
b49e97c9
TS
7239 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7240 break;
7241 case SHT_MIPS_IFACE:
7242 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7243 return FALSE;
b49e97c9
TS
7244 break;
7245 case SHT_MIPS_CONTENT:
0112cd26 7246 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7247 return FALSE;
b49e97c9
TS
7248 break;
7249 case SHT_MIPS_OPTIONS:
cc2e31b9 7250 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7251 return FALSE;
b49e97c9 7252 break;
351cdf24
MF
7253 case SHT_MIPS_ABIFLAGS:
7254 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7255 return FALSE;
7256 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7257 break;
b49e97c9 7258 case SHT_MIPS_DWARF:
1b315056 7259 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7260 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7261 return FALSE;
b49e97c9
TS
7262 break;
7263 case SHT_MIPS_SYMBOL_LIB:
7264 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7265 return FALSE;
b49e97c9
TS
7266 break;
7267 case SHT_MIPS_EVENTS:
0112cd26
NC
7268 if (! CONST_STRNEQ (name, ".MIPS.events")
7269 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7270 return FALSE;
b49e97c9
TS
7271 break;
7272 default:
cc2e31b9 7273 break;
b49e97c9
TS
7274 }
7275
6dc132d9 7276 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7277 return FALSE;
b49e97c9
TS
7278
7279 if (flags)
7280 {
7281 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7282 (bfd_get_section_flags (abfd,
7283 hdr->bfd_section)
7284 | flags)))
b34976b6 7285 return FALSE;
b49e97c9
TS
7286 }
7287
351cdf24
MF
7288 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7289 {
7290 Elf_External_ABIFlags_v0 ext;
7291
7292 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7293 &ext, 0, sizeof ext))
7294 return FALSE;
7295 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7296 &mips_elf_tdata (abfd)->abiflags);
7297 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7298 return FALSE;
7299 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7300 }
7301
b49e97c9
TS
7302 /* FIXME: We should record sh_info for a .gptab section. */
7303
7304 /* For a .reginfo section, set the gp value in the tdata information
7305 from the contents of this section. We need the gp value while
7306 processing relocs, so we just get it now. The .reginfo section
7307 is not used in the 64-bit MIPS ELF ABI. */
7308 if (hdr->sh_type == SHT_MIPS_REGINFO)
7309 {
7310 Elf32_External_RegInfo ext;
7311 Elf32_RegInfo s;
7312
9719ad41
RS
7313 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7314 &ext, 0, sizeof ext))
b34976b6 7315 return FALSE;
b49e97c9
TS
7316 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7317 elf_gp (abfd) = s.ri_gp_value;
7318 }
7319
7320 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7321 set the gp value based on what we find. We may see both
7322 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7323 they should agree. */
7324 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7325 {
7326 bfd_byte *contents, *l, *lend;
7327
9719ad41 7328 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7329 if (contents == NULL)
b34976b6 7330 return FALSE;
b49e97c9 7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7332 0, hdr->sh_size))
b49e97c9
TS
7333 {
7334 free (contents);
b34976b6 7335 return FALSE;
b49e97c9
TS
7336 }
7337 l = contents;
7338 lend = contents + hdr->sh_size;
7339 while (l + sizeof (Elf_External_Options) <= lend)
7340 {
7341 Elf_Internal_Options intopt;
7342
7343 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7344 &intopt);
1bc8074d
MR
7345 if (intopt.size < sizeof (Elf_External_Options))
7346 {
7347 (*_bfd_error_handler)
7348 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7349 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7350 break;
7351 }
b49e97c9
TS
7352 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7353 {
7354 Elf64_Internal_RegInfo intreg;
7355
7356 bfd_mips_elf64_swap_reginfo_in
7357 (abfd,
7358 ((Elf64_External_RegInfo *)
7359 (l + sizeof (Elf_External_Options))),
7360 &intreg);
7361 elf_gp (abfd) = intreg.ri_gp_value;
7362 }
7363 else if (intopt.kind == ODK_REGINFO)
7364 {
7365 Elf32_RegInfo intreg;
7366
7367 bfd_mips_elf32_swap_reginfo_in
7368 (abfd,
7369 ((Elf32_External_RegInfo *)
7370 (l + sizeof (Elf_External_Options))),
7371 &intreg);
7372 elf_gp (abfd) = intreg.ri_gp_value;
7373 }
7374 l += intopt.size;
7375 }
7376 free (contents);
7377 }
7378
b34976b6 7379 return TRUE;
b49e97c9
TS
7380}
7381
7382/* Set the correct type for a MIPS ELF section. We do this by the
7383 section name, which is a hack, but ought to work. This routine is
7384 used by both the 32-bit and the 64-bit ABI. */
7385
b34976b6 7386bfd_boolean
9719ad41 7387_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7388{
0414f35b 7389 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7390
7391 if (strcmp (name, ".liblist") == 0)
7392 {
7393 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7394 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7395 /* The sh_link field is set in final_write_processing. */
7396 }
7397 else if (strcmp (name, ".conflict") == 0)
7398 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7399 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7400 {
7401 hdr->sh_type = SHT_MIPS_GPTAB;
7402 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7403 /* The sh_info field is set in final_write_processing. */
7404 }
7405 else if (strcmp (name, ".ucode") == 0)
7406 hdr->sh_type = SHT_MIPS_UCODE;
7407 else if (strcmp (name, ".mdebug") == 0)
7408 {
7409 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7410 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7411 entsize of 0. FIXME: Does this matter? */
7412 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7413 hdr->sh_entsize = 0;
7414 else
7415 hdr->sh_entsize = 1;
7416 }
7417 else if (strcmp (name, ".reginfo") == 0)
7418 {
7419 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7420 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7421 entsize of 0x18. FIXME: Does this matter? */
7422 if (SGI_COMPAT (abfd))
7423 {
7424 if ((abfd->flags & DYNAMIC) != 0)
7425 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7426 else
7427 hdr->sh_entsize = 1;
7428 }
7429 else
7430 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7431 }
7432 else if (SGI_COMPAT (abfd)
7433 && (strcmp (name, ".hash") == 0
7434 || strcmp (name, ".dynamic") == 0
7435 || strcmp (name, ".dynstr") == 0))
7436 {
7437 if (SGI_COMPAT (abfd))
7438 hdr->sh_entsize = 0;
7439#if 0
8dc1a139 7440 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7441 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7442#endif
7443 }
7444 else if (strcmp (name, ".got") == 0
7445 || strcmp (name, ".srdata") == 0
7446 || strcmp (name, ".sdata") == 0
7447 || strcmp (name, ".sbss") == 0
7448 || strcmp (name, ".lit4") == 0
7449 || strcmp (name, ".lit8") == 0)
7450 hdr->sh_flags |= SHF_MIPS_GPREL;
7451 else if (strcmp (name, ".MIPS.interfaces") == 0)
7452 {
7453 hdr->sh_type = SHT_MIPS_IFACE;
7454 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7455 }
0112cd26 7456 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7457 {
7458 hdr->sh_type = SHT_MIPS_CONTENT;
7459 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7460 /* The sh_info field is set in final_write_processing. */
7461 }
cc2e31b9 7462 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7463 {
7464 hdr->sh_type = SHT_MIPS_OPTIONS;
7465 hdr->sh_entsize = 1;
7466 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7467 }
351cdf24
MF
7468 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7469 {
7470 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7471 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7472 }
1b315056
CS
7473 else if (CONST_STRNEQ (name, ".debug_")
7474 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7475 {
7476 hdr->sh_type = SHT_MIPS_DWARF;
7477
7478 /* Irix facilities such as libexc expect a single .debug_frame
7479 per executable, the system ones have NOSTRIP set and the linker
7480 doesn't merge sections with different flags so ... */
7481 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7482 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7483 }
b49e97c9
TS
7484 else if (strcmp (name, ".MIPS.symlib") == 0)
7485 {
7486 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7487 /* The sh_link and sh_info fields are set in
7488 final_write_processing. */
7489 }
0112cd26
NC
7490 else if (CONST_STRNEQ (name, ".MIPS.events")
7491 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7492 {
7493 hdr->sh_type = SHT_MIPS_EVENTS;
7494 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7495 /* The sh_link field is set in final_write_processing. */
7496 }
7497 else if (strcmp (name, ".msym") == 0)
7498 {
7499 hdr->sh_type = SHT_MIPS_MSYM;
7500 hdr->sh_flags |= SHF_ALLOC;
7501 hdr->sh_entsize = 8;
7502 }
7503
7a79a000
TS
7504 /* The generic elf_fake_sections will set up REL_HDR using the default
7505 kind of relocations. We used to set up a second header for the
7506 non-default kind of relocations here, but only NewABI would use
7507 these, and the IRIX ld doesn't like resulting empty RELA sections.
7508 Thus we create those header only on demand now. */
b49e97c9 7509
b34976b6 7510 return TRUE;
b49e97c9
TS
7511}
7512
7513/* Given a BFD section, try to locate the corresponding ELF section
7514 index. This is used by both the 32-bit and the 64-bit ABI.
7515 Actually, it's not clear to me that the 64-bit ABI supports these,
7516 but for non-PIC objects we will certainly want support for at least
7517 the .scommon section. */
7518
b34976b6 7519bfd_boolean
9719ad41
RS
7520_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7521 asection *sec, int *retval)
b49e97c9
TS
7522{
7523 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7524 {
7525 *retval = SHN_MIPS_SCOMMON;
b34976b6 7526 return TRUE;
b49e97c9
TS
7527 }
7528 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7529 {
7530 *retval = SHN_MIPS_ACOMMON;
b34976b6 7531 return TRUE;
b49e97c9 7532 }
b34976b6 7533 return FALSE;
b49e97c9
TS
7534}
7535\f
7536/* Hook called by the linker routine which adds symbols from an object
7537 file. We must handle the special MIPS section numbers here. */
7538
b34976b6 7539bfd_boolean
9719ad41 7540_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7541 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7542 flagword *flagsp ATTRIBUTE_UNUSED,
7543 asection **secp, bfd_vma *valp)
b49e97c9
TS
7544{
7545 if (SGI_COMPAT (abfd)
7546 && (abfd->flags & DYNAMIC) != 0
7547 && strcmp (*namep, "_rld_new_interface") == 0)
7548 {
8dc1a139 7549 /* Skip IRIX5 rld entry name. */
b49e97c9 7550 *namep = NULL;
b34976b6 7551 return TRUE;
b49e97c9
TS
7552 }
7553
eedecc07
DD
7554 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7555 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7556 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7557 a magic symbol resolved by the linker, we ignore this bogus definition
7558 of _gp_disp. New ABI objects do not suffer from this problem so this
7559 is not done for them. */
7560 if (!NEWABI_P(abfd)
7561 && (sym->st_shndx == SHN_ABS)
7562 && (strcmp (*namep, "_gp_disp") == 0))
7563 {
7564 *namep = NULL;
7565 return TRUE;
7566 }
7567
b49e97c9
TS
7568 switch (sym->st_shndx)
7569 {
7570 case SHN_COMMON:
7571 /* Common symbols less than the GP size are automatically
7572 treated as SHN_MIPS_SCOMMON symbols. */
7573 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7574 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7575 || IRIX_COMPAT (abfd) == ict_irix6)
7576 break;
7577 /* Fall through. */
7578 case SHN_MIPS_SCOMMON:
7579 *secp = bfd_make_section_old_way (abfd, ".scommon");
7580 (*secp)->flags |= SEC_IS_COMMON;
7581 *valp = sym->st_size;
7582 break;
7583
7584 case SHN_MIPS_TEXT:
7585 /* This section is used in a shared object. */
698600e4 7586 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7587 {
7588 asymbol *elf_text_symbol;
7589 asection *elf_text_section;
7590 bfd_size_type amt = sizeof (asection);
7591
7592 elf_text_section = bfd_zalloc (abfd, amt);
7593 if (elf_text_section == NULL)
b34976b6 7594 return FALSE;
b49e97c9
TS
7595
7596 amt = sizeof (asymbol);
7597 elf_text_symbol = bfd_zalloc (abfd, amt);
7598 if (elf_text_symbol == NULL)
b34976b6 7599 return FALSE;
b49e97c9
TS
7600
7601 /* Initialize the section. */
7602
698600e4
AM
7603 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7604 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7605
7606 elf_text_section->symbol = elf_text_symbol;
698600e4 7607 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7608
7609 elf_text_section->name = ".text";
7610 elf_text_section->flags = SEC_NO_FLAGS;
7611 elf_text_section->output_section = NULL;
7612 elf_text_section->owner = abfd;
7613 elf_text_symbol->name = ".text";
7614 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7615 elf_text_symbol->section = elf_text_section;
7616 }
7617 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7618 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7619 so I took it out. */
698600e4 7620 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7621 break;
7622
7623 case SHN_MIPS_ACOMMON:
7624 /* Fall through. XXX Can we treat this as allocated data? */
7625 case SHN_MIPS_DATA:
7626 /* This section is used in a shared object. */
698600e4 7627 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7628 {
7629 asymbol *elf_data_symbol;
7630 asection *elf_data_section;
7631 bfd_size_type amt = sizeof (asection);
7632
7633 elf_data_section = bfd_zalloc (abfd, amt);
7634 if (elf_data_section == NULL)
b34976b6 7635 return FALSE;
b49e97c9
TS
7636
7637 amt = sizeof (asymbol);
7638 elf_data_symbol = bfd_zalloc (abfd, amt);
7639 if (elf_data_symbol == NULL)
b34976b6 7640 return FALSE;
b49e97c9
TS
7641
7642 /* Initialize the section. */
7643
698600e4
AM
7644 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7645 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7646
7647 elf_data_section->symbol = elf_data_symbol;
698600e4 7648 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7649
7650 elf_data_section->name = ".data";
7651 elf_data_section->flags = SEC_NO_FLAGS;
7652 elf_data_section->output_section = NULL;
7653 elf_data_section->owner = abfd;
7654 elf_data_symbol->name = ".data";
7655 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7656 elf_data_symbol->section = elf_data_section;
7657 }
7658 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7659 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7660 so I took it out. */
698600e4 7661 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7662 break;
7663
7664 case SHN_MIPS_SUNDEFINED:
7665 *secp = bfd_und_section_ptr;
7666 break;
7667 }
7668
7669 if (SGI_COMPAT (abfd)
0e1862bb 7670 && ! bfd_link_pic (info)
f13a99db 7671 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7672 && strcmp (*namep, "__rld_obj_head") == 0)
7673 {
7674 struct elf_link_hash_entry *h;
14a793b2 7675 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7676
7677 /* Mark __rld_obj_head as dynamic. */
14a793b2 7678 bh = NULL;
b49e97c9 7679 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7680 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7681 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7682 return FALSE;
14a793b2
AM
7683
7684 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7685 h->non_elf = 0;
7686 h->def_regular = 1;
b49e97c9
TS
7687 h->type = STT_OBJECT;
7688
c152c796 7689 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7690 return FALSE;
b49e97c9 7691
b34976b6 7692 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7693 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7694 }
7695
7696 /* If this is a mips16 text symbol, add 1 to the value to make it
7697 odd. This will cause something like .word SYM to come up with
7698 the right value when it is loaded into the PC. */
df58fc94 7699 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7700 ++*valp;
7701
b34976b6 7702 return TRUE;
b49e97c9
TS
7703}
7704
7705/* This hook function is called before the linker writes out a global
7706 symbol. We mark symbols as small common if appropriate. This is
7707 also where we undo the increment of the value for a mips16 symbol. */
7708
6e0b88f1 7709int
9719ad41
RS
7710_bfd_mips_elf_link_output_symbol_hook
7711 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7712 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7713 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7714{
7715 /* If we see a common symbol, which implies a relocatable link, then
7716 if a symbol was small common in an input file, mark it as small
7717 common in the output file. */
7718 if (sym->st_shndx == SHN_COMMON
7719 && strcmp (input_sec->name, ".scommon") == 0)
7720 sym->st_shndx = SHN_MIPS_SCOMMON;
7721
df58fc94 7722 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7723 sym->st_value &= ~1;
b49e97c9 7724
6e0b88f1 7725 return 1;
b49e97c9
TS
7726}
7727\f
7728/* Functions for the dynamic linker. */
7729
7730/* Create dynamic sections when linking against a dynamic object. */
7731
b34976b6 7732bfd_boolean
9719ad41 7733_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7734{
7735 struct elf_link_hash_entry *h;
14a793b2 7736 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7737 flagword flags;
7738 register asection *s;
7739 const char * const *namep;
0a44bf69 7740 struct mips_elf_link_hash_table *htab;
b49e97c9 7741
0a44bf69 7742 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7743 BFD_ASSERT (htab != NULL);
7744
b49e97c9
TS
7745 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7746 | SEC_LINKER_CREATED | SEC_READONLY);
7747
0a44bf69
RS
7748 /* The psABI requires a read-only .dynamic section, but the VxWorks
7749 EABI doesn't. */
7750 if (!htab->is_vxworks)
b49e97c9 7751 {
3d4d4302 7752 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7753 if (s != NULL)
7754 {
7755 if (! bfd_set_section_flags (abfd, s, flags))
7756 return FALSE;
7757 }
b49e97c9
TS
7758 }
7759
7760 /* We need to create .got section. */
23cc69b6 7761 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7762 return FALSE;
7763
0a44bf69 7764 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7765 return FALSE;
b49e97c9 7766
b49e97c9 7767 /* Create .stub section. */
3d4d4302
AM
7768 s = bfd_make_section_anyway_with_flags (abfd,
7769 MIPS_ELF_STUB_SECTION_NAME (abfd),
7770 flags | SEC_CODE);
4e41d0d7
RS
7771 if (s == NULL
7772 || ! bfd_set_section_alignment (abfd, s,
7773 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7774 return FALSE;
7775 htab->sstubs = s;
b49e97c9 7776
e6aea42d 7777 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7778 && bfd_link_executable (info)
3d4d4302 7779 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7780 {
3d4d4302
AM
7781 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7782 flags &~ (flagword) SEC_READONLY);
b49e97c9 7783 if (s == NULL
b49e97c9
TS
7784 || ! bfd_set_section_alignment (abfd, s,
7785 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7786 return FALSE;
b49e97c9
TS
7787 }
7788
7789 /* On IRIX5, we adjust add some additional symbols and change the
7790 alignments of several sections. There is no ABI documentation
7791 indicating that this is necessary on IRIX6, nor any evidence that
7792 the linker takes such action. */
7793 if (IRIX_COMPAT (abfd) == ict_irix5)
7794 {
7795 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7796 {
14a793b2 7797 bh = NULL;
b49e97c9 7798 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7799 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7800 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7801 return FALSE;
14a793b2
AM
7802
7803 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7804 h->non_elf = 0;
7805 h->def_regular = 1;
b49e97c9
TS
7806 h->type = STT_SECTION;
7807
c152c796 7808 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7809 return FALSE;
b49e97c9
TS
7810 }
7811
7812 /* We need to create a .compact_rel section. */
7813 if (SGI_COMPAT (abfd))
7814 {
7815 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7816 return FALSE;
b49e97c9
TS
7817 }
7818
44c410de 7819 /* Change alignments of some sections. */
3d4d4302 7820 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7821 if (s != NULL)
a253d456
NC
7822 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7823
3d4d4302 7824 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7825 if (s != NULL)
a253d456
NC
7826 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7827
3d4d4302 7828 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7829 if (s != NULL)
a253d456
NC
7830 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831
3d4d4302 7832 /* ??? */
b49e97c9
TS
7833 s = bfd_get_section_by_name (abfd, ".reginfo");
7834 if (s != NULL)
a253d456
NC
7835 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7836
3d4d4302 7837 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7838 if (s != NULL)
a253d456 7839 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7840 }
7841
0e1862bb 7842 if (bfd_link_executable (info))
b49e97c9 7843 {
14a793b2
AM
7844 const char *name;
7845
7846 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7847 bh = NULL;
7848 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7849 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7850 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7851 return FALSE;
14a793b2
AM
7852
7853 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7854 h->non_elf = 0;
7855 h->def_regular = 1;
b49e97c9
TS
7856 h->type = STT_SECTION;
7857
c152c796 7858 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7859 return FALSE;
b49e97c9
TS
7860
7861 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7862 {
7863 /* __rld_map is a four byte word located in the .data section
7864 and is filled in by the rtld to contain a pointer to
7865 the _r_debug structure. Its symbol value will be set in
7866 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7867 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7868 BFD_ASSERT (s != NULL);
14a793b2 7869
0abfb97a
L
7870 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7871 bh = NULL;
7872 if (!(_bfd_generic_link_add_one_symbol
7873 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7874 get_elf_backend_data (abfd)->collect, &bh)))
7875 return FALSE;
b49e97c9 7876
0abfb97a
L
7877 h = (struct elf_link_hash_entry *) bh;
7878 h->non_elf = 0;
7879 h->def_regular = 1;
7880 h->type = STT_OBJECT;
7881
7882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7883 return FALSE;
b4082c70 7884 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7885 }
7886 }
7887
861fb55a 7888 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7889 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7890 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7891 return FALSE;
7892
7893 /* Cache the sections created above. */
3d4d4302
AM
7894 htab->splt = bfd_get_linker_section (abfd, ".plt");
7895 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7896 if (htab->is_vxworks)
7897 {
3d4d4302
AM
7898 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7899 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7900 }
7901 else
3d4d4302 7902 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a 7903 if (!htab->sdynbss
0e1862bb 7904 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
861fb55a
DJ
7905 || !htab->srelplt
7906 || !htab->splt)
7907 abort ();
0a44bf69 7908
1bbce132
MR
7909 /* Do the usual VxWorks handling. */
7910 if (htab->is_vxworks
7911 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7912 return FALSE;
0a44bf69 7913
b34976b6 7914 return TRUE;
b49e97c9
TS
7915}
7916\f
c224138d
RS
7917/* Return true if relocation REL against section SEC is a REL rather than
7918 RELA relocation. RELOCS is the first relocation in the section and
7919 ABFD is the bfd that contains SEC. */
7920
7921static bfd_boolean
7922mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7923 const Elf_Internal_Rela *relocs,
7924 const Elf_Internal_Rela *rel)
7925{
7926 Elf_Internal_Shdr *rel_hdr;
7927 const struct elf_backend_data *bed;
7928
d4730f92
BS
7929 /* To determine which flavor of relocation this is, we depend on the
7930 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7931 rel_hdr = elf_section_data (sec)->rel.hdr;
7932 if (rel_hdr == NULL)
7933 return FALSE;
c224138d 7934 bed = get_elf_backend_data (abfd);
d4730f92
BS
7935 return ((size_t) (rel - relocs)
7936 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7937}
7938
7939/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7940 HOWTO is the relocation's howto and CONTENTS points to the contents
7941 of the section that REL is against. */
7942
7943static bfd_vma
7944mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7945 reloc_howto_type *howto, bfd_byte *contents)
7946{
7947 bfd_byte *location;
7948 unsigned int r_type;
7949 bfd_vma addend;
17c6c9d9 7950 bfd_vma bytes;
c224138d
RS
7951
7952 r_type = ELF_R_TYPE (abfd, rel->r_info);
7953 location = contents + rel->r_offset;
7954
7955 /* Get the addend, which is stored in the input file. */
df58fc94 7956 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7957 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7958 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7959
17c6c9d9
MR
7960 addend = bytes & howto->src_mask;
7961
7962 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7963 accordingly. */
7964 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7965 addend <<= 1;
7966
7967 return addend;
c224138d
RS
7968}
7969
7970/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7971 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7972 and update *ADDEND with the final addend. Return true on success
7973 or false if the LO16 could not be found. RELEND is the exclusive
7974 upper bound on the relocations for REL's section. */
7975
7976static bfd_boolean
7977mips_elf_add_lo16_rel_addend (bfd *abfd,
7978 const Elf_Internal_Rela *rel,
7979 const Elf_Internal_Rela *relend,
7980 bfd_byte *contents, bfd_vma *addend)
7981{
7982 unsigned int r_type, lo16_type;
7983 const Elf_Internal_Rela *lo16_relocation;
7984 reloc_howto_type *lo16_howto;
7985 bfd_vma l;
7986
7987 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7988 if (mips16_reloc_p (r_type))
c224138d 7989 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7990 else if (micromips_reloc_p (r_type))
7991 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7992 else if (r_type == R_MIPS_PCHI16)
7993 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7994 else
7995 lo16_type = R_MIPS_LO16;
7996
7997 /* The combined value is the sum of the HI16 addend, left-shifted by
7998 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7999 code does a `lui' of the HI16 value, and then an `addiu' of the
8000 LO16 value.)
8001
8002 Scan ahead to find a matching LO16 relocation.
8003
8004 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8005 be immediately following. However, for the IRIX6 ABI, the next
8006 relocation may be a composed relocation consisting of several
8007 relocations for the same address. In that case, the R_MIPS_LO16
8008 relocation may occur as one of these. We permit a similar
8009 extension in general, as that is useful for GCC.
8010
8011 In some cases GCC dead code elimination removes the LO16 but keeps
8012 the corresponding HI16. This is strictly speaking a violation of
8013 the ABI but not immediately harmful. */
8014 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8015 if (lo16_relocation == NULL)
8016 return FALSE;
8017
8018 /* Obtain the addend kept there. */
8019 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8020 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8021
8022 l <<= lo16_howto->rightshift;
8023 l = _bfd_mips_elf_sign_extend (l, 16);
8024
8025 *addend <<= 16;
8026 *addend += l;
8027 return TRUE;
8028}
8029
8030/* Try to read the contents of section SEC in bfd ABFD. Return true and
8031 store the contents in *CONTENTS on success. Assume that *CONTENTS
8032 already holds the contents if it is nonull on entry. */
8033
8034static bfd_boolean
8035mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8036{
8037 if (*contents)
8038 return TRUE;
8039
8040 /* Get cached copy if it exists. */
8041 if (elf_section_data (sec)->this_hdr.contents != NULL)
8042 {
8043 *contents = elf_section_data (sec)->this_hdr.contents;
8044 return TRUE;
8045 }
8046
8047 return bfd_malloc_and_get_section (abfd, sec, contents);
8048}
8049
1bbce132
MR
8050/* Make a new PLT record to keep internal data. */
8051
8052static struct plt_entry *
8053mips_elf_make_plt_record (bfd *abfd)
8054{
8055 struct plt_entry *entry;
8056
8057 entry = bfd_zalloc (abfd, sizeof (*entry));
8058 if (entry == NULL)
8059 return NULL;
8060
8061 entry->stub_offset = MINUS_ONE;
8062 entry->mips_offset = MINUS_ONE;
8063 entry->comp_offset = MINUS_ONE;
8064 entry->gotplt_index = MINUS_ONE;
8065 return entry;
8066}
8067
b49e97c9 8068/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8069 allocate space in the global offset table and record the need for
8070 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8071
b34976b6 8072bfd_boolean
9719ad41
RS
8073_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8074 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8075{
8076 const char *name;
8077 bfd *dynobj;
8078 Elf_Internal_Shdr *symtab_hdr;
8079 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8080 size_t extsymoff;
8081 const Elf_Internal_Rela *rel;
8082 const Elf_Internal_Rela *rel_end;
b49e97c9 8083 asection *sreloc;
9c5bfbb7 8084 const struct elf_backend_data *bed;
0a44bf69 8085 struct mips_elf_link_hash_table *htab;
c224138d
RS
8086 bfd_byte *contents;
8087 bfd_vma addend;
8088 reloc_howto_type *howto;
b49e97c9 8089
0e1862bb 8090 if (bfd_link_relocatable (info))
b34976b6 8091 return TRUE;
b49e97c9 8092
0a44bf69 8093 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8094 BFD_ASSERT (htab != NULL);
8095
b49e97c9
TS
8096 dynobj = elf_hash_table (info)->dynobj;
8097 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8098 sym_hashes = elf_sym_hashes (abfd);
8099 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8100
738e5348
RS
8101 bed = get_elf_backend_data (abfd);
8102 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8103
b49e97c9
TS
8104 /* Check for the mips16 stub sections. */
8105
8106 name = bfd_get_section_name (abfd, sec);
b9d58d71 8107 if (FN_STUB_P (name))
b49e97c9
TS
8108 {
8109 unsigned long r_symndx;
8110
8111 /* Look at the relocation information to figure out which symbol
8112 this is for. */
8113
cb4437b8 8114 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8115 if (r_symndx == 0)
8116 {
8117 (*_bfd_error_handler)
8118 (_("%B: Warning: cannot determine the target function for"
8119 " stub section `%s'"),
8120 abfd, name);
8121 bfd_set_error (bfd_error_bad_value);
8122 return FALSE;
8123 }
b49e97c9
TS
8124
8125 if (r_symndx < extsymoff
8126 || sym_hashes[r_symndx - extsymoff] == NULL)
8127 {
8128 asection *o;
8129
8130 /* This stub is for a local symbol. This stub will only be
8131 needed if there is some relocation in this BFD, other
8132 than a 16 bit function call, which refers to this symbol. */
8133 for (o = abfd->sections; o != NULL; o = o->next)
8134 {
8135 Elf_Internal_Rela *sec_relocs;
8136 const Elf_Internal_Rela *r, *rend;
8137
8138 /* We can ignore stub sections when looking for relocs. */
8139 if ((o->flags & SEC_RELOC) == 0
8140 || o->reloc_count == 0
738e5348 8141 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8142 continue;
8143
45d6a902 8144 sec_relocs
9719ad41 8145 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8146 info->keep_memory);
b49e97c9 8147 if (sec_relocs == NULL)
b34976b6 8148 return FALSE;
b49e97c9
TS
8149
8150 rend = sec_relocs + o->reloc_count;
8151 for (r = sec_relocs; r < rend; r++)
8152 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8153 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8154 break;
8155
6cdc0ccc 8156 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8157 free (sec_relocs);
8158
8159 if (r < rend)
8160 break;
8161 }
8162
8163 if (o == NULL)
8164 {
8165 /* There is no non-call reloc for this stub, so we do
8166 not need it. Since this function is called before
8167 the linker maps input sections to output sections, we
8168 can easily discard it by setting the SEC_EXCLUDE
8169 flag. */
8170 sec->flags |= SEC_EXCLUDE;
b34976b6 8171 return TRUE;
b49e97c9
TS
8172 }
8173
8174 /* Record this stub in an array of local symbol stubs for
8175 this BFD. */
698600e4 8176 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8177 {
8178 unsigned long symcount;
8179 asection **n;
8180 bfd_size_type amt;
8181
8182 if (elf_bad_symtab (abfd))
8183 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8184 else
8185 symcount = symtab_hdr->sh_info;
8186 amt = symcount * sizeof (asection *);
9719ad41 8187 n = bfd_zalloc (abfd, amt);
b49e97c9 8188 if (n == NULL)
b34976b6 8189 return FALSE;
698600e4 8190 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8191 }
8192
b9d58d71 8193 sec->flags |= SEC_KEEP;
698600e4 8194 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8195
8196 /* We don't need to set mips16_stubs_seen in this case.
8197 That flag is used to see whether we need to look through
8198 the global symbol table for stubs. We don't need to set
8199 it here, because we just have a local stub. */
8200 }
8201 else
8202 {
8203 struct mips_elf_link_hash_entry *h;
8204
8205 h = ((struct mips_elf_link_hash_entry *)
8206 sym_hashes[r_symndx - extsymoff]);
8207
973a3492
L
8208 while (h->root.root.type == bfd_link_hash_indirect
8209 || h->root.root.type == bfd_link_hash_warning)
8210 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8211
b49e97c9
TS
8212 /* H is the symbol this stub is for. */
8213
b9d58d71
TS
8214 /* If we already have an appropriate stub for this function, we
8215 don't need another one, so we can discard this one. Since
8216 this function is called before the linker maps input sections
8217 to output sections, we can easily discard it by setting the
8218 SEC_EXCLUDE flag. */
8219 if (h->fn_stub != NULL)
8220 {
8221 sec->flags |= SEC_EXCLUDE;
8222 return TRUE;
8223 }
8224
8225 sec->flags |= SEC_KEEP;
b49e97c9 8226 h->fn_stub = sec;
b34976b6 8227 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8228 }
8229 }
b9d58d71 8230 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8231 {
8232 unsigned long r_symndx;
8233 struct mips_elf_link_hash_entry *h;
8234 asection **loc;
8235
8236 /* Look at the relocation information to figure out which symbol
8237 this is for. */
8238
cb4437b8 8239 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8240 if (r_symndx == 0)
8241 {
8242 (*_bfd_error_handler)
8243 (_("%B: Warning: cannot determine the target function for"
8244 " stub section `%s'"),
8245 abfd, name);
8246 bfd_set_error (bfd_error_bad_value);
8247 return FALSE;
8248 }
b49e97c9
TS
8249
8250 if (r_symndx < extsymoff
8251 || sym_hashes[r_symndx - extsymoff] == NULL)
8252 {
b9d58d71 8253 asection *o;
b49e97c9 8254
b9d58d71
TS
8255 /* This stub is for a local symbol. This stub will only be
8256 needed if there is some relocation (R_MIPS16_26) in this BFD
8257 that refers to this symbol. */
8258 for (o = abfd->sections; o != NULL; o = o->next)
8259 {
8260 Elf_Internal_Rela *sec_relocs;
8261 const Elf_Internal_Rela *r, *rend;
8262
8263 /* We can ignore stub sections when looking for relocs. */
8264 if ((o->flags & SEC_RELOC) == 0
8265 || o->reloc_count == 0
738e5348 8266 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8267 continue;
8268
8269 sec_relocs
8270 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8271 info->keep_memory);
8272 if (sec_relocs == NULL)
8273 return FALSE;
8274
8275 rend = sec_relocs + o->reloc_count;
8276 for (r = sec_relocs; r < rend; r++)
8277 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8278 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8279 break;
8280
8281 if (elf_section_data (o)->relocs != sec_relocs)
8282 free (sec_relocs);
8283
8284 if (r < rend)
8285 break;
8286 }
8287
8288 if (o == NULL)
8289 {
8290 /* There is no non-call reloc for this stub, so we do
8291 not need it. Since this function is called before
8292 the linker maps input sections to output sections, we
8293 can easily discard it by setting the SEC_EXCLUDE
8294 flag. */
8295 sec->flags |= SEC_EXCLUDE;
8296 return TRUE;
8297 }
8298
8299 /* Record this stub in an array of local symbol call_stubs for
8300 this BFD. */
698600e4 8301 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8302 {
8303 unsigned long symcount;
8304 asection **n;
8305 bfd_size_type amt;
8306
8307 if (elf_bad_symtab (abfd))
8308 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8309 else
8310 symcount = symtab_hdr->sh_info;
8311 amt = symcount * sizeof (asection *);
8312 n = bfd_zalloc (abfd, amt);
8313 if (n == NULL)
8314 return FALSE;
698600e4 8315 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8316 }
b49e97c9 8317
b9d58d71 8318 sec->flags |= SEC_KEEP;
698600e4 8319 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8320
b9d58d71
TS
8321 /* We don't need to set mips16_stubs_seen in this case.
8322 That flag is used to see whether we need to look through
8323 the global symbol table for stubs. We don't need to set
8324 it here, because we just have a local stub. */
8325 }
b49e97c9 8326 else
b49e97c9 8327 {
b9d58d71
TS
8328 h = ((struct mips_elf_link_hash_entry *)
8329 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8330
b9d58d71 8331 /* H is the symbol this stub is for. */
68ffbac6 8332
b9d58d71
TS
8333 if (CALL_FP_STUB_P (name))
8334 loc = &h->call_fp_stub;
8335 else
8336 loc = &h->call_stub;
68ffbac6 8337
b9d58d71
TS
8338 /* If we already have an appropriate stub for this function, we
8339 don't need another one, so we can discard this one. Since
8340 this function is called before the linker maps input sections
8341 to output sections, we can easily discard it by setting the
8342 SEC_EXCLUDE flag. */
8343 if (*loc != NULL)
8344 {
8345 sec->flags |= SEC_EXCLUDE;
8346 return TRUE;
8347 }
b49e97c9 8348
b9d58d71
TS
8349 sec->flags |= SEC_KEEP;
8350 *loc = sec;
8351 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8352 }
b49e97c9
TS
8353 }
8354
b49e97c9 8355 sreloc = NULL;
c224138d 8356 contents = NULL;
b49e97c9
TS
8357 for (rel = relocs; rel < rel_end; ++rel)
8358 {
8359 unsigned long r_symndx;
8360 unsigned int r_type;
8361 struct elf_link_hash_entry *h;
861fb55a 8362 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8363 bfd_boolean call_reloc_p;
8364 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8365
8366 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8367 r_type = ELF_R_TYPE (abfd, rel->r_info);
8368
8369 if (r_symndx < extsymoff)
8370 h = NULL;
8371 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8372 {
8373 (*_bfd_error_handler)
d003868e
AM
8374 (_("%B: Malformed reloc detected for section %s"),
8375 abfd, name);
b49e97c9 8376 bfd_set_error (bfd_error_bad_value);
b34976b6 8377 return FALSE;
b49e97c9
TS
8378 }
8379 else
8380 {
8381 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8382 if (h != NULL)
8383 {
8384 while (h->root.type == bfd_link_hash_indirect
8385 || h->root.type == bfd_link_hash_warning)
8386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8387
8388 /* PR15323, ref flags aren't set for references in the
8389 same object. */
8390 h->root.non_ir_ref = 1;
8391 }
861fb55a 8392 }
b49e97c9 8393
861fb55a
DJ
8394 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8395 relocation into a dynamic one. */
8396 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8397
8398 /* Set CALL_RELOC_P to true if the relocation is for a call,
8399 and if pointer equality therefore doesn't matter. */
8400 call_reloc_p = FALSE;
8401
8402 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8403 into account when deciding how to define the symbol.
8404 Relocations in nonallocatable sections such as .pdr and
8405 .debug* should have no effect. */
8406 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8407
861fb55a
DJ
8408 switch (r_type)
8409 {
861fb55a
DJ
8410 case R_MIPS_CALL16:
8411 case R_MIPS_CALL_HI16:
8412 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 case R_MICROMIPS_CALL_HI16:
8416 case R_MICROMIPS_CALL_LO16:
8417 call_reloc_p = TRUE;
8418 /* Fall through. */
8419
8420 case R_MIPS_GOT16:
861fb55a
DJ
8421 case R_MIPS_GOT_HI16:
8422 case R_MIPS_GOT_LO16:
8423 case R_MIPS_GOT_PAGE:
8424 case R_MIPS_GOT_OFST:
8425 case R_MIPS_GOT_DISP:
8426 case R_MIPS_TLS_GOTTPREL:
8427 case R_MIPS_TLS_GD:
8428 case R_MIPS_TLS_LDM:
d0f13682 8429 case R_MIPS16_GOT16:
d0f13682
CLT
8430 case R_MIPS16_TLS_GOTTPREL:
8431 case R_MIPS16_TLS_GD:
8432 case R_MIPS16_TLS_LDM:
df58fc94 8433 case R_MICROMIPS_GOT16:
df58fc94
RS
8434 case R_MICROMIPS_GOT_HI16:
8435 case R_MICROMIPS_GOT_LO16:
8436 case R_MICROMIPS_GOT_PAGE:
8437 case R_MICROMIPS_GOT_OFST:
8438 case R_MICROMIPS_GOT_DISP:
8439 case R_MICROMIPS_TLS_GOTTPREL:
8440 case R_MICROMIPS_TLS_GD:
8441 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8442 if (dynobj == NULL)
8443 elf_hash_table (info)->dynobj = dynobj = abfd;
8444 if (!mips_elf_create_got_section (dynobj, info))
8445 return FALSE;
0e1862bb 8446 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8447 {
861fb55a
DJ
8448 (*_bfd_error_handler)
8449 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8450 abfd, (unsigned long) rel->r_offset);
8451 bfd_set_error (bfd_error_bad_value);
8452 return FALSE;
b49e97c9 8453 }
c5d6fa44 8454 can_make_dynamic_p = TRUE;
861fb55a 8455 break;
b49e97c9 8456
c5d6fa44 8457 case R_MIPS_NONE:
99da6b5f 8458 case R_MIPS_JALR:
df58fc94 8459 case R_MICROMIPS_JALR:
c5d6fa44
RS
8460 /* These relocations have empty fields and are purely there to
8461 provide link information. The symbol value doesn't matter. */
8462 constrain_symbol_p = FALSE;
8463 break;
8464
8465 case R_MIPS_GPREL16:
8466 case R_MIPS_GPREL32:
8467 case R_MIPS16_GPREL:
8468 case R_MICROMIPS_GPREL16:
8469 /* GP-relative relocations always resolve to a definition in a
8470 regular input file, ignoring the one-definition rule. This is
8471 important for the GP setup sequence in NewABI code, which
8472 always resolves to a local function even if other relocations
8473 against the symbol wouldn't. */
8474 constrain_symbol_p = FALSE;
99da6b5f
AN
8475 break;
8476
861fb55a
DJ
8477 case R_MIPS_32:
8478 case R_MIPS_REL32:
8479 case R_MIPS_64:
8480 /* In VxWorks executables, references to external symbols
8481 must be handled using copy relocs or PLT entries; it is not
8482 possible to convert this relocation into a dynamic one.
8483
8484 For executables that use PLTs and copy-relocs, we have a
8485 choice between converting the relocation into a dynamic
8486 one or using copy relocations or PLT entries. It is
8487 usually better to do the former, unless the relocation is
8488 against a read-only section. */
0e1862bb 8489 if ((bfd_link_pic (info)
861fb55a
DJ
8490 || (h != NULL
8491 && !htab->is_vxworks
8492 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8493 && !(!info->nocopyreloc
8494 && !PIC_OBJECT_P (abfd)
8495 && MIPS_ELF_READONLY_SECTION (sec))))
8496 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8497 {
861fb55a 8498 can_make_dynamic_p = TRUE;
b49e97c9
TS
8499 if (dynobj == NULL)
8500 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8501 }
c5d6fa44 8502 break;
b49e97c9 8503
861fb55a
DJ
8504 case R_MIPS_26:
8505 case R_MIPS_PC16:
7361da2c
AB
8506 case R_MIPS_PC21_S2:
8507 case R_MIPS_PC26_S2:
861fb55a 8508 case R_MIPS16_26:
c9775dde 8509 case R_MIPS16_PC16_S1:
df58fc94
RS
8510 case R_MICROMIPS_26_S1:
8511 case R_MICROMIPS_PC7_S1:
8512 case R_MICROMIPS_PC10_S1:
8513 case R_MICROMIPS_PC16_S1:
8514 case R_MICROMIPS_PC23_S2:
c5d6fa44 8515 call_reloc_p = TRUE;
861fb55a 8516 break;
b49e97c9
TS
8517 }
8518
0a44bf69
RS
8519 if (h)
8520 {
c5d6fa44
RS
8521 if (constrain_symbol_p)
8522 {
8523 if (!can_make_dynamic_p)
8524 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8525
8526 if (!call_reloc_p)
8527 h->pointer_equality_needed = 1;
8528
8529 /* We must not create a stub for a symbol that has
8530 relocations related to taking the function's address.
8531 This doesn't apply to VxWorks, where CALL relocs refer
8532 to a .got.plt entry instead of a normal .got entry. */
8533 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8534 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8535 }
8536
0a44bf69
RS
8537 /* Relocations against the special VxWorks __GOTT_BASE__ and
8538 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8539 room for them in .rela.dyn. */
8540 if (is_gott_symbol (info, h))
8541 {
8542 if (sreloc == NULL)
8543 {
8544 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8545 if (sreloc == NULL)
8546 return FALSE;
8547 }
8548 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8549 if (MIPS_ELF_READONLY_SECTION (sec))
8550 /* We tell the dynamic linker that there are
8551 relocations against the text segment. */
8552 info->flags |= DF_TEXTREL;
0a44bf69
RS
8553 }
8554 }
df58fc94
RS
8555 else if (call_lo16_reloc_p (r_type)
8556 || got_lo16_reloc_p (r_type)
8557 || got_disp_reloc_p (r_type)
738e5348 8558 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8559 {
8560 /* We may need a local GOT entry for this relocation. We
8561 don't count R_MIPS_GOT_PAGE because we can estimate the
8562 maximum number of pages needed by looking at the size of
738e5348
RS
8563 the segment. Similar comments apply to R_MIPS*_GOT16 and
8564 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8565 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8566 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8567 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8568 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8569 rel->r_addend, info, r_type))
f4416af6 8570 return FALSE;
b49e97c9
TS
8571 }
8572
8f0c309a
CLT
8573 if (h != NULL
8574 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8575 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8576 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8577
b49e97c9
TS
8578 switch (r_type)
8579 {
8580 case R_MIPS_CALL16:
738e5348 8581 case R_MIPS16_CALL16:
df58fc94 8582 case R_MICROMIPS_CALL16:
b49e97c9
TS
8583 if (h == NULL)
8584 {
8585 (*_bfd_error_handler)
d003868e
AM
8586 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8587 abfd, (unsigned long) rel->r_offset);
b49e97c9 8588 bfd_set_error (bfd_error_bad_value);
b34976b6 8589 return FALSE;
b49e97c9
TS
8590 }
8591 /* Fall through. */
8592
8593 case R_MIPS_CALL_HI16:
8594 case R_MIPS_CALL_LO16:
df58fc94
RS
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8597 if (h != NULL)
8598 {
6ccf4795
RS
8599 /* Make sure there is room in the regular GOT to hold the
8600 function's address. We may eliminate it in favour of
8601 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8602 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8603 r_type))
b34976b6 8604 return FALSE;
b49e97c9
TS
8605
8606 /* We need a stub, not a plt entry for the undefined
8607 function. But we record it as if it needs plt. See
c152c796 8608 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8609 h->needs_plt = 1;
b49e97c9
TS
8610 h->type = STT_FUNC;
8611 }
8612 break;
8613
0fdc1bf1 8614 case R_MIPS_GOT_PAGE:
df58fc94 8615 case R_MICROMIPS_GOT_PAGE:
738e5348 8616 case R_MIPS16_GOT16:
b49e97c9
TS
8617 case R_MIPS_GOT16:
8618 case R_MIPS_GOT_HI16:
8619 case R_MIPS_GOT_LO16:
df58fc94
RS
8620 case R_MICROMIPS_GOT16:
8621 case R_MICROMIPS_GOT_HI16:
8622 case R_MICROMIPS_GOT_LO16:
8623 if (!h || got_page_reloc_p (r_type))
c224138d 8624 {
3a3b6725
DJ
8625 /* This relocation needs (or may need, if h != NULL) a
8626 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8627 know for sure until we know whether the symbol is
8628 preemptible. */
c224138d
RS
8629 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8630 {
8631 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8632 return FALSE;
8633 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8634 addend = mips_elf_read_rel_addend (abfd, rel,
8635 howto, contents);
9684f078 8636 if (got16_reloc_p (r_type))
c224138d
RS
8637 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8638 contents, &addend);
8639 else
8640 addend <<= howto->rightshift;
8641 }
8642 else
8643 addend = rel->r_addend;
13db6b44
RS
8644 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8645 h, addend))
c224138d 8646 return FALSE;
13db6b44
RS
8647
8648 if (h)
8649 {
8650 struct mips_elf_link_hash_entry *hmips =
8651 (struct mips_elf_link_hash_entry *) h;
8652
8653 /* This symbol is definitely not overridable. */
8654 if (hmips->root.def_regular
0e1862bb 8655 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8656 && ! hmips->root.forced_local))
8657 h = NULL;
8658 }
c224138d 8659 }
13db6b44
RS
8660 /* If this is a global, overridable symbol, GOT_PAGE will
8661 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8662 /* Fall through. */
8663
b49e97c9 8664 case R_MIPS_GOT_DISP:
df58fc94 8665 case R_MICROMIPS_GOT_DISP:
6ccf4795 8666 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8667 FALSE, r_type))
b34976b6 8668 return FALSE;
b49e97c9
TS
8669 break;
8670
0f20cc35 8671 case R_MIPS_TLS_GOTTPREL:
d0f13682 8672 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8673 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8674 if (bfd_link_pic (info))
0f20cc35
DJ
8675 info->flags |= DF_STATIC_TLS;
8676 /* Fall through */
8677
8678 case R_MIPS_TLS_LDM:
d0f13682 8679 case R_MIPS16_TLS_LDM:
df58fc94
RS
8680 case R_MICROMIPS_TLS_LDM:
8681 if (tls_ldm_reloc_p (r_type))
0f20cc35 8682 {
cf35638d 8683 r_symndx = STN_UNDEF;
0f20cc35
DJ
8684 h = NULL;
8685 }
8686 /* Fall through */
8687
8688 case R_MIPS_TLS_GD:
d0f13682 8689 case R_MIPS16_TLS_GD:
df58fc94 8690 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8691 /* This symbol requires a global offset table entry, or two
8692 for TLS GD relocations. */
e641e783
RS
8693 if (h != NULL)
8694 {
8695 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8696 FALSE, r_type))
8697 return FALSE;
8698 }
8699 else
8700 {
8701 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8702 rel->r_addend,
8703 info, r_type))
8704 return FALSE;
8705 }
0f20cc35
DJ
8706 break;
8707
b49e97c9
TS
8708 case R_MIPS_32:
8709 case R_MIPS_REL32:
8710 case R_MIPS_64:
0a44bf69
RS
8711 /* In VxWorks executables, references to external symbols
8712 are handled using copy relocs or PLT stubs, so there's
8713 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8714 if (can_make_dynamic_p)
b49e97c9
TS
8715 {
8716 if (sreloc == NULL)
8717 {
0a44bf69 8718 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8719 if (sreloc == NULL)
f4416af6 8720 return FALSE;
b49e97c9 8721 }
0e1862bb 8722 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8723 {
8724 /* When creating a shared object, we must copy these
8725 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8726 relocs. Make room for this reloc in .rel(a).dyn. */
8727 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8728 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8729 /* We tell the dynamic linker that there are
8730 relocations against the text segment. */
8731 info->flags |= DF_TEXTREL;
8732 }
b49e97c9
TS
8733 else
8734 {
8735 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8736
9a59ad6b
DJ
8737 /* For a shared object, we must copy this relocation
8738 unless the symbol turns out to be undefined and
8739 weak with non-default visibility, in which case
8740 it will be left as zero.
8741
8742 We could elide R_MIPS_REL32 for locally binding symbols
8743 in shared libraries, but do not yet do so.
8744
8745 For an executable, we only need to copy this
8746 reloc if the symbol is defined in a dynamic
8747 object. */
b49e97c9
TS
8748 hmips = (struct mips_elf_link_hash_entry *) h;
8749 ++hmips->possibly_dynamic_relocs;
943284cc 8750 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8751 /* We need it to tell the dynamic linker if there
8752 are relocations against the text segment. */
8753 hmips->readonly_reloc = TRUE;
b49e97c9 8754 }
b49e97c9
TS
8755 }
8756
8757 if (SGI_COMPAT (abfd))
8758 mips_elf_hash_table (info)->compact_rel_size +=
8759 sizeof (Elf32_External_crinfo);
8760 break;
8761
8762 case R_MIPS_26:
8763 case R_MIPS_GPREL16:
8764 case R_MIPS_LITERAL:
8765 case R_MIPS_GPREL32:
df58fc94
RS
8766 case R_MICROMIPS_26_S1:
8767 case R_MICROMIPS_GPREL16:
8768 case R_MICROMIPS_LITERAL:
8769 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8770 if (SGI_COMPAT (abfd))
8771 mips_elf_hash_table (info)->compact_rel_size +=
8772 sizeof (Elf32_External_crinfo);
8773 break;
8774
8775 /* This relocation describes the C++ object vtable hierarchy.
8776 Reconstruct it for later use during GC. */
8777 case R_MIPS_GNU_VTINHERIT:
c152c796 8778 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8779 return FALSE;
b49e97c9
TS
8780 break;
8781
8782 /* This relocation describes which C++ vtable entries are actually
8783 used. Record for later use during GC. */
8784 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8785 BFD_ASSERT (h != NULL);
8786 if (h != NULL
8787 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8788 return FALSE;
b49e97c9
TS
8789 break;
8790
8791 default:
8792 break;
8793 }
8794
1bbce132
MR
8795 /* Record the need for a PLT entry. At this point we don't know
8796 yet if we are going to create a PLT in the first place, but
8797 we only record whether the relocation requires a standard MIPS
8798 or a compressed code entry anyway. If we don't make a PLT after
8799 all, then we'll just ignore these arrangements. Likewise if
8800 a PLT entry is not created because the symbol is satisfied
8801 locally. */
8802 if (h != NULL
54806ffa
MR
8803 && (branch_reloc_p (r_type)
8804 || mips16_branch_reloc_p (r_type)
8805 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8806 && !SYMBOL_CALLS_LOCAL (info, h))
8807 {
8808 if (h->plt.plist == NULL)
8809 h->plt.plist = mips_elf_make_plt_record (abfd);
8810 if (h->plt.plist == NULL)
8811 return FALSE;
8812
54806ffa 8813 if (branch_reloc_p (r_type))
1bbce132
MR
8814 h->plt.plist->need_mips = TRUE;
8815 else
8816 h->plt.plist->need_comp = TRUE;
8817 }
8818
738e5348
RS
8819 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8820 if there is one. We only need to handle global symbols here;
8821 we decide whether to keep or delete stubs for local symbols
8822 when processing the stub's relocations. */
b49e97c9 8823 if (h != NULL
738e5348
RS
8824 && !mips16_call_reloc_p (r_type)
8825 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8826 {
8827 struct mips_elf_link_hash_entry *mh;
8828
8829 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8830 mh->need_fn_stub = TRUE;
b49e97c9 8831 }
861fb55a
DJ
8832
8833 /* Refuse some position-dependent relocations when creating a
8834 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8835 not PIC, but we can create dynamic relocations and the result
8836 will be fine. Also do not refuse R_MIPS_LO16, which can be
8837 combined with R_MIPS_GOT16. */
0e1862bb 8838 if (bfd_link_pic (info))
861fb55a
DJ
8839 {
8840 switch (r_type)
8841 {
8842 case R_MIPS16_HI16:
8843 case R_MIPS_HI16:
8844 case R_MIPS_HIGHER:
8845 case R_MIPS_HIGHEST:
df58fc94
RS
8846 case R_MICROMIPS_HI16:
8847 case R_MICROMIPS_HIGHER:
8848 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8849 /* Don't refuse a high part relocation if it's against
8850 no symbol (e.g. part of a compound relocation). */
cf35638d 8851 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8852 break;
8853
8854 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8855 and has a special meaning. */
8856 if (!NEWABI_P (abfd) && h != NULL
8857 && strcmp (h->root.root.string, "_gp_disp") == 0)
8858 break;
8859
0fc1eb3c
RS
8860 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8861 if (is_gott_symbol (info, h))
8862 break;
8863
861fb55a
DJ
8864 /* FALLTHROUGH */
8865
8866 case R_MIPS16_26:
8867 case R_MIPS_26:
df58fc94 8868 case R_MICROMIPS_26_S1:
861fb55a
DJ
8869 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8870 (*_bfd_error_handler)
8871 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8872 abfd, howto->name,
8873 (h) ? h->root.root.string : "a local symbol");
8874 bfd_set_error (bfd_error_bad_value);
8875 return FALSE;
8876 default:
8877 break;
8878 }
8879 }
b49e97c9
TS
8880 }
8881
b34976b6 8882 return TRUE;
b49e97c9
TS
8883}
8884\f
d0647110 8885bfd_boolean
9719ad41
RS
8886_bfd_mips_relax_section (bfd *abfd, asection *sec,
8887 struct bfd_link_info *link_info,
8888 bfd_boolean *again)
d0647110
AO
8889{
8890 Elf_Internal_Rela *internal_relocs;
8891 Elf_Internal_Rela *irel, *irelend;
8892 Elf_Internal_Shdr *symtab_hdr;
8893 bfd_byte *contents = NULL;
d0647110
AO
8894 size_t extsymoff;
8895 bfd_boolean changed_contents = FALSE;
8896 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8897 Elf_Internal_Sym *isymbuf = NULL;
8898
8899 /* We are not currently changing any sizes, so only one pass. */
8900 *again = FALSE;
8901
0e1862bb 8902 if (bfd_link_relocatable (link_info))
d0647110
AO
8903 return TRUE;
8904
9719ad41 8905 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8906 link_info->keep_memory);
d0647110
AO
8907 if (internal_relocs == NULL)
8908 return TRUE;
8909
8910 irelend = internal_relocs + sec->reloc_count
8911 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8912 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8913 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8914
8915 for (irel = internal_relocs; irel < irelend; irel++)
8916 {
8917 bfd_vma symval;
8918 bfd_signed_vma sym_offset;
8919 unsigned int r_type;
8920 unsigned long r_symndx;
8921 asection *sym_sec;
8922 unsigned long instruction;
8923
8924 /* Turn jalr into bgezal, and jr into beq, if they're marked
8925 with a JALR relocation, that indicate where they jump to.
8926 This saves some pipeline bubbles. */
8927 r_type = ELF_R_TYPE (abfd, irel->r_info);
8928 if (r_type != R_MIPS_JALR)
8929 continue;
8930
8931 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8932 /* Compute the address of the jump target. */
8933 if (r_symndx >= extsymoff)
8934 {
8935 struct mips_elf_link_hash_entry *h
8936 = ((struct mips_elf_link_hash_entry *)
8937 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8938
8939 while (h->root.root.type == bfd_link_hash_indirect
8940 || h->root.root.type == bfd_link_hash_warning)
8941 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8942
d0647110
AO
8943 /* If a symbol is undefined, or if it may be overridden,
8944 skip it. */
8945 if (! ((h->root.root.type == bfd_link_hash_defined
8946 || h->root.root.type == bfd_link_hash_defweak)
8947 && h->root.root.u.def.section)
0e1862bb 8948 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8949 && !h->root.forced_local))
d0647110
AO
8950 continue;
8951
8952 sym_sec = h->root.root.u.def.section;
8953 if (sym_sec->output_section)
8954 symval = (h->root.root.u.def.value
8955 + sym_sec->output_section->vma
8956 + sym_sec->output_offset);
8957 else
8958 symval = h->root.root.u.def.value;
8959 }
8960 else
8961 {
8962 Elf_Internal_Sym *isym;
8963
8964 /* Read this BFD's symbols if we haven't done so already. */
8965 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8966 {
8967 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8968 if (isymbuf == NULL)
8969 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8970 symtab_hdr->sh_info, 0,
8971 NULL, NULL, NULL);
8972 if (isymbuf == NULL)
8973 goto relax_return;
8974 }
8975
8976 isym = isymbuf + r_symndx;
8977 if (isym->st_shndx == SHN_UNDEF)
8978 continue;
8979 else if (isym->st_shndx == SHN_ABS)
8980 sym_sec = bfd_abs_section_ptr;
8981 else if (isym->st_shndx == SHN_COMMON)
8982 sym_sec = bfd_com_section_ptr;
8983 else
8984 sym_sec
8985 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8986 symval = isym->st_value
8987 + sym_sec->output_section->vma
8988 + sym_sec->output_offset;
8989 }
8990
8991 /* Compute branch offset, from delay slot of the jump to the
8992 branch target. */
8993 sym_offset = (symval + irel->r_addend)
8994 - (sec_start + irel->r_offset + 4);
8995
8996 /* Branch offset must be properly aligned. */
8997 if ((sym_offset & 3) != 0)
8998 continue;
8999
9000 sym_offset >>= 2;
9001
9002 /* Check that it's in range. */
9003 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9004 continue;
143d77c5 9005
d0647110 9006 /* Get the section contents if we haven't done so already. */
c224138d
RS
9007 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9008 goto relax_return;
d0647110
AO
9009
9010 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9011
9012 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9013 if ((instruction & 0xfc1fffff) == 0x0000f809)
9014 instruction = 0x04110000;
9015 /* If it was jr <reg>, turn it into b <target>. */
9016 else if ((instruction & 0xfc1fffff) == 0x00000008)
9017 instruction = 0x10000000;
9018 else
9019 continue;
9020
9021 instruction |= (sym_offset & 0xffff);
9022 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9023 changed_contents = TRUE;
9024 }
9025
9026 if (contents != NULL
9027 && elf_section_data (sec)->this_hdr.contents != contents)
9028 {
9029 if (!changed_contents && !link_info->keep_memory)
9030 free (contents);
9031 else
9032 {
9033 /* Cache the section contents for elf_link_input_bfd. */
9034 elf_section_data (sec)->this_hdr.contents = contents;
9035 }
9036 }
9037 return TRUE;
9038
143d77c5 9039 relax_return:
eea6121a
AM
9040 if (contents != NULL
9041 && elf_section_data (sec)->this_hdr.contents != contents)
9042 free (contents);
d0647110
AO
9043 return FALSE;
9044}
9045\f
9a59ad6b
DJ
9046/* Allocate space for global sym dynamic relocs. */
9047
9048static bfd_boolean
9049allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9050{
9051 struct bfd_link_info *info = inf;
9052 bfd *dynobj;
9053 struct mips_elf_link_hash_entry *hmips;
9054 struct mips_elf_link_hash_table *htab;
9055
9056 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9057 BFD_ASSERT (htab != NULL);
9058
9a59ad6b
DJ
9059 dynobj = elf_hash_table (info)->dynobj;
9060 hmips = (struct mips_elf_link_hash_entry *) h;
9061
9062 /* VxWorks executables are handled elsewhere; we only need to
9063 allocate relocations in shared objects. */
0e1862bb 9064 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9065 return TRUE;
9066
7686d77d
AM
9067 /* Ignore indirect symbols. All relocations against such symbols
9068 will be redirected to the target symbol. */
9069 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9070 return TRUE;
9071
9a59ad6b
DJ
9072 /* If this symbol is defined in a dynamic object, or we are creating
9073 a shared library, we will need to copy any R_MIPS_32 or
9074 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9075 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9076 && hmips->possibly_dynamic_relocs != 0
9077 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9078 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9079 || bfd_link_pic (info)))
9a59ad6b
DJ
9080 {
9081 bfd_boolean do_copy = TRUE;
9082
9083 if (h->root.type == bfd_link_hash_undefweak)
9084 {
9085 /* Do not copy relocations for undefined weak symbols with
9086 non-default visibility. */
9087 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9088 do_copy = FALSE;
9089
9090 /* Make sure undefined weak symbols are output as a dynamic
9091 symbol in PIEs. */
9092 else if (h->dynindx == -1 && !h->forced_local)
9093 {
9094 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9095 return FALSE;
9096 }
9097 }
9098
9099 if (do_copy)
9100 {
aff469fa 9101 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9102 the SVR4 psABI requires it to have a dynamic symbol table
9103 index greater that DT_MIPS_GOTSYM if there are dynamic
9104 relocations against it.
9105
9106 VxWorks does not enforce the same mapping between the GOT
9107 and the symbol table, so the same requirement does not
9108 apply there. */
6ccf4795
RS
9109 if (!htab->is_vxworks)
9110 {
9111 if (hmips->global_got_area > GGA_RELOC_ONLY)
9112 hmips->global_got_area = GGA_RELOC_ONLY;
9113 hmips->got_only_for_calls = FALSE;
9114 }
aff469fa 9115
9a59ad6b
DJ
9116 mips_elf_allocate_dynamic_relocations
9117 (dynobj, info, hmips->possibly_dynamic_relocs);
9118 if (hmips->readonly_reloc)
9119 /* We tell the dynamic linker that there are relocations
9120 against the text segment. */
9121 info->flags |= DF_TEXTREL;
9122 }
9123 }
9124
9125 return TRUE;
9126}
9127
b49e97c9
TS
9128/* Adjust a symbol defined by a dynamic object and referenced by a
9129 regular object. The current definition is in some section of the
9130 dynamic object, but we're not including those sections. We have to
9131 change the definition to something the rest of the link can
9132 understand. */
9133
b34976b6 9134bfd_boolean
9719ad41
RS
9135_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9136 struct elf_link_hash_entry *h)
b49e97c9
TS
9137{
9138 bfd *dynobj;
9139 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9140 struct mips_elf_link_hash_table *htab;
b49e97c9 9141
5108fc1b 9142 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9143 BFD_ASSERT (htab != NULL);
9144
b49e97c9 9145 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9146 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9147
9148 /* Make sure we know what is going on here. */
9149 BFD_ASSERT (dynobj != NULL
f5385ebf 9150 && (h->needs_plt
f6e332e6 9151 || h->u.weakdef != NULL
f5385ebf
AM
9152 || (h->def_dynamic
9153 && h->ref_regular
9154 && !h->def_regular)));
b49e97c9 9155
b49e97c9 9156 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9157
861fb55a
DJ
9158 /* If there are call relocations against an externally-defined symbol,
9159 see whether we can create a MIPS lazy-binding stub for it. We can
9160 only do this if all references to the function are through call
9161 relocations, and in that case, the traditional lazy-binding stubs
9162 are much more efficient than PLT entries.
9163
9164 Traditional stubs are only available on SVR4 psABI-based systems;
9165 VxWorks always uses PLTs instead. */
9166 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9167 {
9168 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9169 return TRUE;
b49e97c9
TS
9170
9171 /* If this symbol is not defined in a regular file, then set
9172 the symbol to the stub location. This is required to make
9173 function pointers compare as equal between the normal
9174 executable and the shared library. */
f5385ebf 9175 if (!h->def_regular)
b49e97c9 9176 {
33bb52fb
RS
9177 hmips->needs_lazy_stub = TRUE;
9178 htab->lazy_stub_count++;
b34976b6 9179 return TRUE;
b49e97c9
TS
9180 }
9181 }
861fb55a
DJ
9182 /* As above, VxWorks requires PLT entries for externally-defined
9183 functions that are only accessed through call relocations.
b49e97c9 9184
861fb55a
DJ
9185 Both VxWorks and non-VxWorks targets also need PLT entries if there
9186 are static-only relocations against an externally-defined function.
9187 This can technically occur for shared libraries if there are
9188 branches to the symbol, although it is unlikely that this will be
9189 used in practice due to the short ranges involved. It can occur
9190 for any relative or absolute relocation in executables; in that
9191 case, the PLT entry becomes the function's canonical address. */
9192 else if (((h->needs_plt && !hmips->no_fn_stub)
9193 || (h->type == STT_FUNC && hmips->has_static_relocs))
9194 && htab->use_plts_and_copy_relocs
9195 && !SYMBOL_CALLS_LOCAL (info, h)
9196 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9197 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9198 {
1bbce132
MR
9199 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9200 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9201
9202 /* If this is the first symbol to need a PLT entry, then make some
9203 basic setup. Also work out PLT entry sizes. We'll need them
9204 for PLT offset calculations. */
9205 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a
DJ
9206 {
9207 BFD_ASSERT (htab->sgotplt->size == 0);
1bbce132 9208 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9209
861fb55a
DJ
9210 /* If we're using the PLT additions to the psABI, each PLT
9211 entry is 16 bytes and the PLT0 entry is 32 bytes.
9212 Encourage better cache usage by aligning. We do this
9213 lazily to avoid pessimizing traditional objects. */
9214 if (!htab->is_vxworks
9215 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9216 return FALSE;
0a44bf69 9217
861fb55a
DJ
9218 /* Make sure that .got.plt is word-aligned. We do this lazily
9219 for the same reason as above. */
9220 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9221 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9222 return FALSE;
0a44bf69 9223
861fb55a
DJ
9224 /* On non-VxWorks targets, the first two entries in .got.plt
9225 are reserved. */
9226 if (!htab->is_vxworks)
1bbce132
MR
9227 htab->plt_got_index
9228 += (get_elf_backend_data (dynobj)->got_header_size
9229 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9230
861fb55a
DJ
9231 /* On VxWorks, also allocate room for the header's
9232 .rela.plt.unloaded entries. */
0e1862bb 9233 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9234 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9235
9236 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9237 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9238 htab->plt_mips_entry_size
9239 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9240 else if (htab->is_vxworks)
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9243 else if (newabi_p)
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9246 else if (!micromips_p)
1bbce132
MR
9247 {
9248 htab->plt_mips_entry_size
9249 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9250 htab->plt_comp_entry_size
833794fc
MR
9251 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9252 }
9253 else if (htab->insn32)
9254 {
9255 htab->plt_mips_entry_size
9256 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9257 htab->plt_comp_entry_size
9258 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9259 }
9260 else
9261 {
9262 htab->plt_mips_entry_size
9263 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9264 htab->plt_comp_entry_size
833794fc 9265 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9266 }
0a44bf69
RS
9267 }
9268
1bbce132
MR
9269 if (h->plt.plist == NULL)
9270 h->plt.plist = mips_elf_make_plt_record (dynobj);
9271 if (h->plt.plist == NULL)
9272 return FALSE;
9273
9274 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9275 n32 or n64, so always use a standard entry there.
9276
9277 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9278 all MIPS16 calls will go via that stub, and there is no benefit
9279 to having a MIPS16 entry. And in the case of call_stub a
9280 standard entry actually has to be used as the stub ends with a J
9281 instruction. */
9282 if (newabi_p
9283 || htab->is_vxworks
9284 || hmips->call_stub
9285 || hmips->call_fp_stub)
9286 {
9287 h->plt.plist->need_mips = TRUE;
9288 h->plt.plist->need_comp = FALSE;
9289 }
9290
9291 /* Otherwise, if there are no direct calls to the function, we
9292 have a free choice of whether to use standard or compressed
9293 entries. Prefer microMIPS entries if the object is known to
9294 contain microMIPS code, so that it becomes possible to create
9295 pure microMIPS binaries. Prefer standard entries otherwise,
9296 because MIPS16 ones are no smaller and are usually slower. */
9297 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9298 {
9299 if (micromips_p)
9300 h->plt.plist->need_comp = TRUE;
9301 else
9302 h->plt.plist->need_mips = TRUE;
9303 }
9304
9305 if (h->plt.plist->need_mips)
9306 {
9307 h->plt.plist->mips_offset = htab->plt_mips_offset;
9308 htab->plt_mips_offset += htab->plt_mips_entry_size;
9309 }
9310 if (h->plt.plist->need_comp)
9311 {
9312 h->plt.plist->comp_offset = htab->plt_comp_offset;
9313 htab->plt_comp_offset += htab->plt_comp_entry_size;
9314 }
9315
9316 /* Reserve the corresponding .got.plt entry now too. */
9317 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9318
9319 /* If the output file has no definition of the symbol, set the
861fb55a 9320 symbol's value to the address of the stub. */
0e1862bb 9321 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9322 hmips->use_plt_entry = TRUE;
0a44bf69 9323
1bbce132 9324 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
861fb55a
DJ
9325 htab->srelplt->size += (htab->is_vxworks
9326 ? MIPS_ELF_RELA_SIZE (dynobj)
9327 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9328
9329 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9330 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9331 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9332
861fb55a
DJ
9333 /* All relocations against this symbol that could have been made
9334 dynamic will now refer to the PLT entry instead. */
9335 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9336
0a44bf69
RS
9337 return TRUE;
9338 }
9339
9340 /* If this is a weak symbol, and there is a real definition, the
9341 processor independent code will have arranged for us to see the
9342 real definition first, and we can just use the same value. */
9343 if (h->u.weakdef != NULL)
9344 {
9345 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9346 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9347 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9348 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9349 return TRUE;
9350 }
9351
861fb55a
DJ
9352 /* Otherwise, there is nothing further to do for symbols defined
9353 in regular objects. */
9354 if (h->def_regular)
0a44bf69
RS
9355 return TRUE;
9356
861fb55a
DJ
9357 /* There's also nothing more to do if we'll convert all relocations
9358 against this symbol into dynamic relocations. */
9359 if (!hmips->has_static_relocs)
9360 return TRUE;
9361
9362 /* We're now relying on copy relocations. Complain if we have
9363 some that we can't convert. */
0e1862bb 9364 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a
DJ
9365 {
9366 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9367 "dynamic symbol %s"),
9368 h->root.root.string);
9369 bfd_set_error (bfd_error_bad_value);
9370 return FALSE;
9371 }
9372
0a44bf69
RS
9373 /* We must allocate the symbol in our .dynbss section, which will
9374 become part of the .bss section of the executable. There will be
9375 an entry for this symbol in the .dynsym section. The dynamic
9376 object will contain position independent code, so all references
9377 from the dynamic object to this symbol will go through the global
9378 offset table. The dynamic linker will use the .dynsym entry to
9379 determine the address it must put in the global offset table, so
9380 both the dynamic object and the regular object will refer to the
9381 same memory location for the variable. */
9382
9383 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9384 {
861fb55a
DJ
9385 if (htab->is_vxworks)
9386 htab->srelbss->size += sizeof (Elf32_External_Rela);
9387 else
9388 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9389 h->needs_copy = 1;
9390 }
9391
861fb55a
DJ
9392 /* All relocations against this symbol that could have been made
9393 dynamic will now refer to the local copy instead. */
9394 hmips->possibly_dynamic_relocs = 0;
9395
6cabe1ea 9396 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
0a44bf69 9397}
b49e97c9
TS
9398\f
9399/* This function is called after all the input files have been read,
9400 and the input sections have been assigned to output sections. We
9401 check for any mips16 stub sections that we can discard. */
9402
b34976b6 9403bfd_boolean
9719ad41
RS
9404_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9405 struct bfd_link_info *info)
b49e97c9 9406{
351cdf24 9407 asection *sect;
0a44bf69 9408 struct mips_elf_link_hash_table *htab;
861fb55a 9409 struct mips_htab_traverse_info hti;
0a44bf69
RS
9410
9411 htab = mips_elf_hash_table (info);
4dfe6ac6 9412 BFD_ASSERT (htab != NULL);
f4416af6 9413
b49e97c9 9414 /* The .reginfo section has a fixed size. */
351cdf24
MF
9415 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9416 if (sect != NULL)
9417 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9418
9419 /* The .MIPS.abiflags section has a fixed size. */
9420 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9421 if (sect != NULL)
9422 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9423
861fb55a
DJ
9424 hti.info = info;
9425 hti.output_bfd = output_bfd;
9426 hti.error = FALSE;
9427 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9428 mips_elf_check_symbols, &hti);
9429 if (hti.error)
9430 return FALSE;
f4416af6 9431
33bb52fb
RS
9432 return TRUE;
9433}
9434
9435/* If the link uses a GOT, lay it out and work out its size. */
9436
9437static bfd_boolean
9438mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9439{
9440 bfd *dynobj;
9441 asection *s;
9442 struct mips_got_info *g;
33bb52fb
RS
9443 bfd_size_type loadable_size = 0;
9444 bfd_size_type page_gotno;
d7206569 9445 bfd *ibfd;
ab361d49 9446 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9447 struct mips_elf_link_hash_table *htab;
9448
9449 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9450 BFD_ASSERT (htab != NULL);
9451
a8028dd0 9452 s = htab->sgot;
f4416af6 9453 if (s == NULL)
b34976b6 9454 return TRUE;
b49e97c9 9455
33bb52fb 9456 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9457 g = htab->got_info;
9458
861fb55a
DJ
9459 /* Allocate room for the reserved entries. VxWorks always reserves
9460 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9461 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9462 if (htab->is_vxworks)
9463 htab->reserved_gotno = 3;
9464 else
9465 htab->reserved_gotno = 2;
9466 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9467 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9468
6c42ddb9
RS
9469 /* Decide which symbols need to go in the global part of the GOT and
9470 count the number of reloc-only GOT symbols. */
020d7251 9471 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9472
13db6b44
RS
9473 if (!mips_elf_resolve_final_got_entries (info, g))
9474 return FALSE;
9475
33bb52fb
RS
9476 /* Calculate the total loadable size of the output. That
9477 will give us the maximum number of GOT_PAGE entries
9478 required. */
c72f2fb2 9479 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9480 {
9481 asection *subsection;
5108fc1b 9482
d7206569 9483 for (subsection = ibfd->sections;
33bb52fb
RS
9484 subsection;
9485 subsection = subsection->next)
9486 {
9487 if ((subsection->flags & SEC_ALLOC) == 0)
9488 continue;
9489 loadable_size += ((subsection->size + 0xf)
9490 &~ (bfd_size_type) 0xf);
9491 }
9492 }
f4416af6 9493
0a44bf69 9494 if (htab->is_vxworks)
738e5348 9495 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9496 relocations against local symbols evaluate to "G", and the EABI does
9497 not include R_MIPS_GOT_PAGE. */
c224138d 9498 page_gotno = 0;
0a44bf69
RS
9499 else
9500 /* Assume there are two loadable segments consisting of contiguous
9501 sections. Is 5 enough? */
c224138d
RS
9502 page_gotno = (loadable_size >> 16) + 5;
9503
13db6b44 9504 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9505 conservative. */
9506 if (page_gotno > g->page_gotno)
9507 page_gotno = g->page_gotno;
f4416af6 9508
c224138d 9509 g->local_gotno += page_gotno;
cb22ccf4 9510 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9511
ab361d49
RS
9512 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9513 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9514 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9515
0a44bf69
RS
9516 /* VxWorks does not support multiple GOTs. It initializes $gp to
9517 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9518 dynamic loader. */
57093f5e 9519 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9520 {
a8028dd0 9521 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9522 return FALSE;
9523 }
9524 else
9525 {
d7206569
RS
9526 /* Record that all bfds use G. This also has the effect of freeing
9527 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9528 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9529 if (mips_elf_bfd_got (ibfd, FALSE))
9530 mips_elf_replace_bfd_got (ibfd, g);
9531 mips_elf_replace_bfd_got (output_bfd, g);
9532
33bb52fb 9533 /* Set up TLS entries. */
0f20cc35 9534 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9535 tga.info = info;
9536 tga.g = g;
9537 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9538 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9539 if (!tga.g)
9540 return FALSE;
1fd20d70
RS
9541 BFD_ASSERT (g->tls_assigned_gotno
9542 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9543
57093f5e 9544 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9545 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9546 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9547
33bb52fb 9548 /* Allocate room for the TLS relocations. */
ab361d49
RS
9549 if (g->relocs)
9550 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9551 }
b49e97c9 9552
b34976b6 9553 return TRUE;
b49e97c9
TS
9554}
9555
33bb52fb
RS
9556/* Estimate the size of the .MIPS.stubs section. */
9557
9558static void
9559mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9560{
9561 struct mips_elf_link_hash_table *htab;
9562 bfd_size_type dynsymcount;
9563
9564 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9565 BFD_ASSERT (htab != NULL);
9566
33bb52fb
RS
9567 if (htab->lazy_stub_count == 0)
9568 return;
9569
9570 /* IRIX rld assumes that a function stub isn't at the end of the .text
9571 section, so add a dummy entry to the end. */
9572 htab->lazy_stub_count++;
9573
9574 /* Get a worst-case estimate of the number of dynamic symbols needed.
9575 At this point, dynsymcount does not account for section symbols
9576 and count_section_dynsyms may overestimate the number that will
9577 be needed. */
9578 dynsymcount = (elf_hash_table (info)->dynsymcount
9579 + count_section_dynsyms (output_bfd, info));
9580
1bbce132
MR
9581 /* Determine the size of one stub entry. There's no disadvantage
9582 from using microMIPS code here, so for the sake of pure-microMIPS
9583 binaries we prefer it whenever there's any microMIPS code in
9584 output produced at all. This has a benefit of stubs being
833794fc
MR
9585 shorter by 4 bytes each too, unless in the insn32 mode. */
9586 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9587 htab->function_stub_size = (dynsymcount > 0x10000
9588 ? MIPS_FUNCTION_STUB_BIG_SIZE
9589 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9590 else if (htab->insn32)
9591 htab->function_stub_size = (dynsymcount > 0x10000
9592 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9593 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9594 else
9595 htab->function_stub_size = (dynsymcount > 0x10000
9596 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9597 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9598
9599 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9600}
9601
1bbce132
MR
9602/* A mips_elf_link_hash_traverse callback for which DATA points to a
9603 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9604 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9605
9606static bfd_boolean
af924177 9607mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9608{
1bbce132 9609 struct mips_htab_traverse_info *hti = data;
33bb52fb 9610 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9611 struct bfd_link_info *info;
9612 bfd *output_bfd;
9613
9614 info = hti->info;
9615 output_bfd = hti->output_bfd;
9616 htab = mips_elf_hash_table (info);
9617 BFD_ASSERT (htab != NULL);
33bb52fb 9618
33bb52fb
RS
9619 if (h->needs_lazy_stub)
9620 {
1bbce132
MR
9621 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9622 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9623 bfd_vma isa_bit = micromips_p;
9624
9625 BFD_ASSERT (htab->root.dynobj != NULL);
9626 if (h->root.plt.plist == NULL)
9627 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9628 if (h->root.plt.plist == NULL)
9629 {
9630 hti->error = TRUE;
9631 return FALSE;
9632 }
33bb52fb 9633 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9634 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9635 h->root.plt.plist->stub_offset = htab->sstubs->size;
9636 h->root.other = other;
33bb52fb
RS
9637 htab->sstubs->size += htab->function_stub_size;
9638 }
9639 return TRUE;
9640}
9641
9642/* Allocate offsets in the stubs section to each symbol that needs one.
9643 Set the final size of the .MIPS.stub section. */
9644
1bbce132 9645static bfd_boolean
33bb52fb
RS
9646mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9647{
1bbce132
MR
9648 bfd *output_bfd = info->output_bfd;
9649 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9650 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9651 bfd_vma isa_bit = micromips_p;
33bb52fb 9652 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9653 struct mips_htab_traverse_info hti;
9654 struct elf_link_hash_entry *h;
9655 bfd *dynobj;
33bb52fb
RS
9656
9657 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9658 BFD_ASSERT (htab != NULL);
9659
33bb52fb 9660 if (htab->lazy_stub_count == 0)
1bbce132 9661 return TRUE;
33bb52fb
RS
9662
9663 htab->sstubs->size = 0;
1bbce132
MR
9664 hti.info = info;
9665 hti.output_bfd = output_bfd;
9666 hti.error = FALSE;
9667 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9668 if (hti.error)
9669 return FALSE;
33bb52fb
RS
9670 htab->sstubs->size += htab->function_stub_size;
9671 BFD_ASSERT (htab->sstubs->size
9672 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9673
9674 dynobj = elf_hash_table (info)->dynobj;
9675 BFD_ASSERT (dynobj != NULL);
9676 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9677 if (h == NULL)
9678 return FALSE;
9679 h->root.u.def.value = isa_bit;
9680 h->other = other;
9681 h->type = STT_FUNC;
9682
9683 return TRUE;
9684}
9685
9686/* A mips_elf_link_hash_traverse callback for which DATA points to a
9687 bfd_link_info. If H uses the address of a PLT entry as the value
9688 of the symbol, then set the entry in the symbol table now. Prefer
9689 a standard MIPS PLT entry. */
9690
9691static bfd_boolean
9692mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9693{
9694 struct bfd_link_info *info = data;
9695 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9696 struct mips_elf_link_hash_table *htab;
9697 unsigned int other;
9698 bfd_vma isa_bit;
9699 bfd_vma val;
9700
9701 htab = mips_elf_hash_table (info);
9702 BFD_ASSERT (htab != NULL);
9703
9704 if (h->use_plt_entry)
9705 {
9706 BFD_ASSERT (h->root.plt.plist != NULL);
9707 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9708 || h->root.plt.plist->comp_offset != MINUS_ONE);
9709
9710 val = htab->plt_header_size;
9711 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9712 {
9713 isa_bit = 0;
9714 val += h->root.plt.plist->mips_offset;
9715 other = 0;
9716 }
9717 else
9718 {
9719 isa_bit = 1;
9720 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9721 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9722 }
9723 val += isa_bit;
9724 /* For VxWorks, point at the PLT load stub rather than the lazy
9725 resolution stub; this stub will become the canonical function
9726 address. */
9727 if (htab->is_vxworks)
9728 val += 8;
9729
9730 h->root.root.u.def.section = htab->splt;
9731 h->root.root.u.def.value = val;
9732 h->root.other = other;
9733 }
9734
9735 return TRUE;
33bb52fb
RS
9736}
9737
b49e97c9
TS
9738/* Set the sizes of the dynamic sections. */
9739
b34976b6 9740bfd_boolean
9719ad41
RS
9741_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9742 struct bfd_link_info *info)
b49e97c9
TS
9743{
9744 bfd *dynobj;
861fb55a 9745 asection *s, *sreldyn;
b34976b6 9746 bfd_boolean reltext;
0a44bf69 9747 struct mips_elf_link_hash_table *htab;
b49e97c9 9748
0a44bf69 9749 htab = mips_elf_hash_table (info);
4dfe6ac6 9750 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9751 dynobj = elf_hash_table (info)->dynobj;
9752 BFD_ASSERT (dynobj != NULL);
9753
9754 if (elf_hash_table (info)->dynamic_sections_created)
9755 {
9756 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9757 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9758 {
3d4d4302 9759 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9760 BFD_ASSERT (s != NULL);
eea6121a 9761 s->size
b49e97c9
TS
9762 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9763 s->contents
9764 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9765 }
861fb55a 9766
1bbce132
MR
9767 /* Figure out the size of the PLT header if we know that we
9768 are using it. For the sake of cache alignment always use
9769 a standard header whenever any standard entries are present
9770 even if microMIPS entries are present as well. This also
9771 lets the microMIPS header rely on the value of $v0 only set
9772 by microMIPS entries, for a small size reduction.
9773
9774 Set symbol table entry values for symbols that use the
9775 address of their PLT entry now that we can calculate it.
9776
9777 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9778 haven't already in _bfd_elf_create_dynamic_sections. */
9779 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9780 {
1bbce132
MR
9781 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9782 && !htab->plt_mips_offset);
9783 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9784 bfd_vma isa_bit = micromips_p;
861fb55a 9785 struct elf_link_hash_entry *h;
1bbce132 9786 bfd_vma size;
861fb55a
DJ
9787
9788 BFD_ASSERT (htab->use_plts_and_copy_relocs);
1bbce132
MR
9789 BFD_ASSERT (htab->sgotplt->size == 0);
9790 BFD_ASSERT (htab->splt->size == 0);
9791
0e1862bb 9792 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9793 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9794 else if (htab->is_vxworks)
9795 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9796 else if (ABI_64_P (output_bfd))
9797 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9798 else if (ABI_N32_P (output_bfd))
9799 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9800 else if (!micromips_p)
9801 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9802 else if (htab->insn32)
9803 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9804 else
9805 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9806
1bbce132
MR
9807 htab->plt_header_is_comp = micromips_p;
9808 htab->plt_header_size = size;
9809 htab->splt->size = (size
9810 + htab->plt_mips_offset
9811 + htab->plt_comp_offset);
9812 htab->sgotplt->size = (htab->plt_got_index
9813 * MIPS_ELF_GOT_SIZE (dynobj));
9814
9815 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9816
9817 if (htab->root.hplt == NULL)
9818 {
9819 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9820 "_PROCEDURE_LINKAGE_TABLE_");
9821 htab->root.hplt = h;
9822 if (h == NULL)
9823 return FALSE;
9824 }
9825
9826 h = htab->root.hplt;
9827 h->root.u.def.value = isa_bit;
9828 h->other = other;
861fb55a
DJ
9829 h->type = STT_FUNC;
9830 }
9831 }
4e41d0d7 9832
9a59ad6b 9833 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9834 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9835
33bb52fb
RS
9836 mips_elf_estimate_stub_size (output_bfd, info);
9837
9838 if (!mips_elf_lay_out_got (output_bfd, info))
9839 return FALSE;
9840
9841 mips_elf_lay_out_lazy_stubs (info);
9842
b49e97c9
TS
9843 /* The check_relocs and adjust_dynamic_symbol entry points have
9844 determined the sizes of the various dynamic sections. Allocate
9845 memory for them. */
b34976b6 9846 reltext = FALSE;
b49e97c9
TS
9847 for (s = dynobj->sections; s != NULL; s = s->next)
9848 {
9849 const char *name;
b49e97c9
TS
9850
9851 /* It's OK to base decisions on the section name, because none
9852 of the dynobj section names depend upon the input files. */
9853 name = bfd_get_section_name (dynobj, s);
9854
9855 if ((s->flags & SEC_LINKER_CREATED) == 0)
9856 continue;
9857
0112cd26 9858 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9859 {
c456f082 9860 if (s->size != 0)
b49e97c9
TS
9861 {
9862 const char *outname;
9863 asection *target;
9864
9865 /* If this relocation section applies to a read only
9866 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9867 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9868 assert a DT_TEXTREL entry rather than testing whether
9869 there exists a relocation to a read only section or
9870 not. */
9871 outname = bfd_get_section_name (output_bfd,
9872 s->output_section);
9873 target = bfd_get_section_by_name (output_bfd, outname + 4);
9874 if ((target != NULL
9875 && (target->flags & SEC_READONLY) != 0
9876 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9877 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9878 reltext = TRUE;
b49e97c9
TS
9879
9880 /* We use the reloc_count field as a counter if we need
9881 to copy relocs into the output file. */
0a44bf69 9882 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9883 s->reloc_count = 0;
f4416af6
AO
9884
9885 /* If combreloc is enabled, elf_link_sort_relocs() will
9886 sort relocations, but in a different way than we do,
9887 and before we're done creating relocations. Also, it
9888 will move them around between input sections'
9889 relocation's contents, so our sorting would be
9890 broken, so don't let it run. */
9891 info->combreloc = 0;
b49e97c9
TS
9892 }
9893 }
0e1862bb 9894 else if (bfd_link_executable (info)
b49e97c9 9895 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9896 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9897 {
5108fc1b 9898 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9899 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9900 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9901 }
9902 else if (SGI_COMPAT (output_bfd)
0112cd26 9903 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9904 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9905 else if (s == htab->splt)
9906 {
9907 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9908 room for an extra nop to fill the delay slot. This is
9909 for CPUs without load interlocking. */
9910 if (! LOAD_INTERLOCKS_P (output_bfd)
9911 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9912 s->size += 4;
9913 }
0112cd26 9914 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9915 && s != htab->sgot
0a44bf69 9916 && s != htab->sgotplt
861fb55a
DJ
9917 && s != htab->sstubs
9918 && s != htab->sdynbss)
b49e97c9
TS
9919 {
9920 /* It's not one of our sections, so don't allocate space. */
9921 continue;
9922 }
9923
c456f082 9924 if (s->size == 0)
b49e97c9 9925 {
8423293d 9926 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9927 continue;
9928 }
9929
c456f082
AM
9930 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9931 continue;
9932
b49e97c9 9933 /* Allocate memory for the section contents. */
eea6121a 9934 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9935 if (s->contents == NULL)
b49e97c9
TS
9936 {
9937 bfd_set_error (bfd_error_no_memory);
b34976b6 9938 return FALSE;
b49e97c9
TS
9939 }
9940 }
9941
9942 if (elf_hash_table (info)->dynamic_sections_created)
9943 {
9944 /* Add some entries to the .dynamic section. We fill in the
9945 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9946 must add the entries now so that we get the correct size for
5750dcec 9947 the .dynamic section. */
af5978fb
RS
9948
9949 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9950 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9951 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9952 may only look at the first one they see. */
0e1862bb 9953 if (!bfd_link_pic (info)
af5978fb
RS
9954 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9955 return FALSE;
b49e97c9 9956
0e1862bb 9957 if (bfd_link_executable (info)
a5499fa4
MF
9958 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9959 return FALSE;
9960
5750dcec
DJ
9961 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9962 used by the debugger. */
0e1862bb 9963 if (bfd_link_executable (info)
5750dcec
DJ
9964 && !SGI_COMPAT (output_bfd)
9965 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9966 return FALSE;
9967
0a44bf69 9968 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9969 info->flags |= DF_TEXTREL;
9970
9971 if ((info->flags & DF_TEXTREL) != 0)
9972 {
9973 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9974 return FALSE;
943284cc
DJ
9975
9976 /* Clear the DF_TEXTREL flag. It will be set again if we
9977 write out an actual text relocation; we may not, because
9978 at this point we do not know whether e.g. any .eh_frame
9979 absolute relocations have been converted to PC-relative. */
9980 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9981 }
9982
9983 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9984 return FALSE;
b49e97c9 9985
861fb55a 9986 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9987 if (htab->is_vxworks)
b49e97c9 9988 {
0a44bf69
RS
9989 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9990 use any of the DT_MIPS_* tags. */
861fb55a 9991 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9992 {
9993 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9994 return FALSE;
b49e97c9 9995
0a44bf69
RS
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9997 return FALSE;
b49e97c9 9998
0a44bf69
RS
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10000 return FALSE;
10001 }
b49e97c9 10002 }
0a44bf69
RS
10003 else
10004 {
861fb55a 10005 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10006 {
10007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10008 return FALSE;
b49e97c9 10009
0a44bf69
RS
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10011 return FALSE;
b49e97c9 10012
0a44bf69
RS
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10014 return FALSE;
10015 }
b49e97c9 10016
0a44bf69
RS
10017 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10018 return FALSE;
b49e97c9 10019
0a44bf69
RS
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10021 return FALSE;
b49e97c9 10022
0a44bf69
RS
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10024 return FALSE;
b49e97c9 10025
0a44bf69
RS
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10027 return FALSE;
b49e97c9 10028
0a44bf69
RS
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10030 return FALSE;
b49e97c9 10031
0a44bf69
RS
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10033 return FALSE;
b49e97c9 10034
0a44bf69
RS
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10036 return FALSE;
10037
10038 if (IRIX_COMPAT (dynobj) == ict_irix5
10039 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10040 return FALSE;
10041
10042 if (IRIX_COMPAT (dynobj) == ict_irix6
10043 && (bfd_get_section_by_name
af0edeb8 10044 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10045 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10046 return FALSE;
10047 }
861fb55a
DJ
10048 if (htab->splt->size > 0)
10049 {
10050 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10051 return FALSE;
10052
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10054 return FALSE;
10055
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10057 return FALSE;
10058
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10060 return FALSE;
10061 }
7a2b07ff
NS
10062 if (htab->is_vxworks
10063 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10064 return FALSE;
b49e97c9
TS
10065 }
10066
b34976b6 10067 return TRUE;
b49e97c9
TS
10068}
10069\f
81d43bff
RS
10070/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10071 Adjust its R_ADDEND field so that it is correct for the output file.
10072 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10073 and sections respectively; both use symbol indexes. */
10074
10075static void
10076mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10077 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10078 asection **local_sections, Elf_Internal_Rela *rel)
10079{
10080 unsigned int r_type, r_symndx;
10081 Elf_Internal_Sym *sym;
10082 asection *sec;
10083
020d7251 10084 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10085 {
10086 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10087 if (gprel16_reloc_p (r_type)
81d43bff 10088 || r_type == R_MIPS_GPREL32
df58fc94 10089 || literal_reloc_p (r_type))
81d43bff
RS
10090 {
10091 rel->r_addend += _bfd_get_gp_value (input_bfd);
10092 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10093 }
10094
10095 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10096 sym = local_syms + r_symndx;
10097
10098 /* Adjust REL's addend to account for section merging. */
0e1862bb 10099 if (!bfd_link_relocatable (info))
81d43bff
RS
10100 {
10101 sec = local_sections[r_symndx];
10102 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10103 }
10104
10105 /* This would normally be done by the rela_normal code in elflink.c. */
10106 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10107 rel->r_addend += local_sections[r_symndx]->output_offset;
10108 }
10109}
10110
545fd46b
MR
10111/* Handle relocations against symbols from removed linkonce sections,
10112 or sections discarded by a linker script. We use this wrapper around
10113 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10114 on 64-bit ELF targets. In this case for any relocation handled, which
10115 always be the first in a triplet, the remaining two have to be processed
10116 together with the first, even if they are R_MIPS_NONE. It is the symbol
10117 index referred by the first reloc that applies to all the three and the
10118 remaining two never refer to an object symbol. And it is the final
10119 relocation (the last non-null one) that determines the output field of
10120 the whole relocation so retrieve the corresponding howto structure for
10121 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10122
10123 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10124 and therefore requires to be pasted in a loop. It also defines a block
10125 and does not protect any of its arguments, hence the extra brackets. */
10126
10127static void
10128mips_reloc_against_discarded_section (bfd *output_bfd,
10129 struct bfd_link_info *info,
10130 bfd *input_bfd, asection *input_section,
10131 Elf_Internal_Rela **rel,
10132 const Elf_Internal_Rela **relend,
10133 bfd_boolean rel_reloc,
10134 reloc_howto_type *howto,
10135 bfd_byte *contents)
10136{
10137 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10138 int count = bed->s->int_rels_per_ext_rel;
10139 unsigned int r_type;
10140 int i;
10141
10142 for (i = count - 1; i > 0; i--)
10143 {
10144 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10145 if (r_type != R_MIPS_NONE)
10146 {
10147 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10148 break;
10149 }
10150 }
10151 do
10152 {
10153 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10154 (*rel), count, (*relend),
10155 howto, i, contents);
10156 }
10157 while (0);
10158}
10159
b49e97c9
TS
10160/* Relocate a MIPS ELF section. */
10161
b34976b6 10162bfd_boolean
9719ad41
RS
10163_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10164 bfd *input_bfd, asection *input_section,
10165 bfd_byte *contents, Elf_Internal_Rela *relocs,
10166 Elf_Internal_Sym *local_syms,
10167 asection **local_sections)
b49e97c9
TS
10168{
10169 Elf_Internal_Rela *rel;
10170 const Elf_Internal_Rela *relend;
10171 bfd_vma addend = 0;
b34976b6 10172 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 10173 const struct elf_backend_data *bed;
b49e97c9
TS
10174
10175 bed = get_elf_backend_data (output_bfd);
10176 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10177 for (rel = relocs; rel < relend; ++rel)
10178 {
10179 const char *name;
c9adbffe 10180 bfd_vma value = 0;
b49e97c9 10181 reloc_howto_type *howto;
ad3d9127 10182 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10183 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10184 REL relocation. */
b34976b6 10185 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10186 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10187 const char *msg;
ab96bf03
AM
10188 unsigned long r_symndx;
10189 asection *sec;
749b8d9d
L
10190 Elf_Internal_Shdr *symtab_hdr;
10191 struct elf_link_hash_entry *h;
d4730f92 10192 bfd_boolean rel_reloc;
b49e97c9 10193
d4730f92
BS
10194 rel_reloc = (NEWABI_P (input_bfd)
10195 && mips_elf_rel_relocation_p (input_bfd, input_section,
10196 relocs, rel));
b49e97c9 10197 /* Find the relocation howto for this relocation. */
d4730f92 10198 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10199
10200 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10201 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10202 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10203 {
10204 sec = local_sections[r_symndx];
10205 h = NULL;
10206 }
ab96bf03
AM
10207 else
10208 {
ab96bf03 10209 unsigned long extsymoff;
ab96bf03 10210
ab96bf03
AM
10211 extsymoff = 0;
10212 if (!elf_bad_symtab (input_bfd))
10213 extsymoff = symtab_hdr->sh_info;
10214 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10215 while (h->root.type == bfd_link_hash_indirect
10216 || h->root.type == bfd_link_hash_warning)
10217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10218
10219 sec = NULL;
10220 if (h->root.type == bfd_link_hash_defined
10221 || h->root.type == bfd_link_hash_defweak)
10222 sec = h->root.u.def.section;
10223 }
10224
dbaa2011 10225 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10226 {
10227 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10228 input_section, &rel, &relend,
10229 rel_reloc, howto, contents);
10230 continue;
10231 }
ab96bf03 10232
4a14403c 10233 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10234 {
10235 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10236 64-bit code, but make sure all their addresses are in the
10237 lowermost or uppermost 32-bit section of the 64-bit address
10238 space. Thus, when they use an R_MIPS_64 they mean what is
10239 usually meant by R_MIPS_32, with the exception that the
10240 stored value is sign-extended to 64 bits. */
b34976b6 10241 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10242
10243 /* On big-endian systems, we need to lie about the position
10244 of the reloc. */
10245 if (bfd_big_endian (input_bfd))
10246 rel->r_offset += 4;
10247 }
b49e97c9
TS
10248
10249 if (!use_saved_addend_p)
10250 {
b49e97c9
TS
10251 /* If these relocations were originally of the REL variety,
10252 we must pull the addend out of the field that will be
10253 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10254 RELA relocation. */
10255 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10256 relocs, rel))
b49e97c9 10257 {
b34976b6 10258 rela_relocation_p = FALSE;
c224138d
RS
10259 addend = mips_elf_read_rel_addend (input_bfd, rel,
10260 howto, contents);
738e5348
RS
10261 if (hi16_reloc_p (r_type)
10262 || (got16_reloc_p (r_type)
b49e97c9 10263 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10264 local_sections)))
b49e97c9 10265 {
c224138d
RS
10266 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10267 contents, &addend))
749b8d9d 10268 {
749b8d9d
L
10269 if (h)
10270 name = h->root.root.string;
10271 else
10272 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10273 local_syms + r_symndx,
10274 sec);
10275 (*_bfd_error_handler)
10276 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10277 input_bfd, input_section, name, howto->name,
10278 rel->r_offset);
749b8d9d 10279 }
b49e97c9 10280 }
30ac9238
RS
10281 else
10282 addend <<= howto->rightshift;
b49e97c9
TS
10283 }
10284 else
10285 addend = rel->r_addend;
81d43bff
RS
10286 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10287 local_syms, local_sections, rel);
b49e97c9
TS
10288 }
10289
0e1862bb 10290 if (bfd_link_relocatable (info))
b49e97c9 10291 {
4a14403c 10292 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10293 && bfd_big_endian (input_bfd))
10294 rel->r_offset -= 4;
10295
81d43bff 10296 if (!rela_relocation_p && rel->r_addend)
5a659663 10297 {
81d43bff 10298 addend += rel->r_addend;
738e5348 10299 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10300 addend = mips_elf_high (addend);
10301 else if (r_type == R_MIPS_HIGHER)
10302 addend = mips_elf_higher (addend);
10303 else if (r_type == R_MIPS_HIGHEST)
10304 addend = mips_elf_highest (addend);
30ac9238
RS
10305 else
10306 addend >>= howto->rightshift;
b49e97c9 10307
30ac9238
RS
10308 /* We use the source mask, rather than the destination
10309 mask because the place to which we are writing will be
10310 source of the addend in the final link. */
b49e97c9
TS
10311 addend &= howto->src_mask;
10312
5a659663 10313 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10314 /* See the comment above about using R_MIPS_64 in the 32-bit
10315 ABI. Here, we need to update the addend. It would be
10316 possible to get away with just using the R_MIPS_32 reloc
10317 but for endianness. */
10318 {
10319 bfd_vma sign_bits;
10320 bfd_vma low_bits;
10321 bfd_vma high_bits;
10322
10323 if (addend & ((bfd_vma) 1 << 31))
10324#ifdef BFD64
10325 sign_bits = ((bfd_vma) 1 << 32) - 1;
10326#else
10327 sign_bits = -1;
10328#endif
10329 else
10330 sign_bits = 0;
10331
10332 /* If we don't know that we have a 64-bit type,
10333 do two separate stores. */
10334 if (bfd_big_endian (input_bfd))
10335 {
10336 /* Store the sign-bits (which are most significant)
10337 first. */
10338 low_bits = sign_bits;
10339 high_bits = addend;
10340 }
10341 else
10342 {
10343 low_bits = addend;
10344 high_bits = sign_bits;
10345 }
10346 bfd_put_32 (input_bfd, low_bits,
10347 contents + rel->r_offset);
10348 bfd_put_32 (input_bfd, high_bits,
10349 contents + rel->r_offset + 4);
10350 continue;
10351 }
10352
10353 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10354 input_bfd, input_section,
b34976b6
AM
10355 contents, FALSE))
10356 return FALSE;
b49e97c9
TS
10357 }
10358
10359 /* Go on to the next relocation. */
10360 continue;
10361 }
10362
10363 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10364 relocations for the same offset. In that case we are
10365 supposed to treat the output of each relocation as the addend
10366 for the next. */
10367 if (rel + 1 < relend
10368 && rel->r_offset == rel[1].r_offset
10369 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10370 use_saved_addend_p = TRUE;
b49e97c9 10371 else
b34976b6 10372 use_saved_addend_p = FALSE;
b49e97c9
TS
10373
10374 /* Figure out what value we are supposed to relocate. */
10375 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10376 input_section, info, rel,
10377 addend, howto, local_syms,
10378 local_sections, &value,
38a7df63 10379 &name, &cross_mode_jump_p,
bce03d3d 10380 use_saved_addend_p))
b49e97c9
TS
10381 {
10382 case bfd_reloc_continue:
10383 /* There's nothing to do. */
10384 continue;
10385
10386 case bfd_reloc_undefined:
10387 /* mips_elf_calculate_relocation already called the
10388 undefined_symbol callback. There's no real point in
10389 trying to perform the relocation at this point, so we
10390 just skip ahead to the next relocation. */
10391 continue;
10392
10393 case bfd_reloc_notsupported:
10394 msg = _("internal error: unsupported relocation error");
10395 info->callbacks->warning
10396 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10397 return FALSE;
b49e97c9
TS
10398
10399 case bfd_reloc_overflow:
10400 if (use_saved_addend_p)
10401 /* Ignore overflow until we reach the last relocation for
10402 a given location. */
10403 ;
10404 else
10405 {
0e53d9da
AN
10406 struct mips_elf_link_hash_table *htab;
10407
10408 htab = mips_elf_hash_table (info);
4dfe6ac6 10409 BFD_ASSERT (htab != NULL);
b49e97c9 10410 BFD_ASSERT (name != NULL);
0e53d9da 10411 if (!htab->small_data_overflow_reported
9684f078 10412 && (gprel16_reloc_p (howto->type)
df58fc94 10413 || literal_reloc_p (howto->type)))
0e53d9da 10414 {
91d6fa6a
NC
10415 msg = _("small-data section exceeds 64KB;"
10416 " lower small-data size limit (see option -G)");
0e53d9da
AN
10417
10418 htab->small_data_overflow_reported = TRUE;
10419 (*info->callbacks->einfo) ("%P: %s\n", msg);
10420 }
1a72702b
AM
10421 (*info->callbacks->reloc_overflow)
10422 (info, NULL, name, howto->name, (bfd_vma) 0,
10423 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10424 }
10425 break;
10426
10427 case bfd_reloc_ok:
10428 break;
10429
df58fc94 10430 case bfd_reloc_outofrange:
7db9a74e 10431 msg = NULL;
df58fc94 10432 if (jal_reloc_p (howto->type))
9d862524
MR
10433 msg = (cross_mode_jump_p
10434 ? _("Cannot convert a jump to JALX "
10435 "for a non-word-aligned address")
10436 : (howto->type == R_MIPS16_26
10437 ? _("Jump to a non-word-aligned address")
10438 : _("Jump to a non-instruction-aligned address")));
99aefae6 10439 else if (b_reloc_p (howto->type))
a6ebf616
MR
10440 msg = (cross_mode_jump_p
10441 ? _("Cannot convert a branch to JALX "
10442 "for a non-word-aligned address")
10443 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10444 else if (aligned_pcrel_reloc_p (howto->type))
10445 msg = _("PC-relative load from unaligned address");
10446 if (msg)
df58fc94 10447 {
de341542 10448 info->callbacks->einfo
ed53407e
MR
10449 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10450 break;
7361da2c 10451 }
df58fc94
RS
10452 /* Fall through. */
10453
b49e97c9
TS
10454 default:
10455 abort ();
10456 break;
10457 }
10458
10459 /* If we've got another relocation for the address, keep going
10460 until we reach the last one. */
10461 if (use_saved_addend_p)
10462 {
10463 addend = value;
10464 continue;
10465 }
10466
4a14403c 10467 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10468 /* See the comment above about using R_MIPS_64 in the 32-bit
10469 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10470 that calculated the right value. Now, however, we
10471 sign-extend the 32-bit result to 64-bits, and store it as a
10472 64-bit value. We are especially generous here in that we
10473 go to extreme lengths to support this usage on systems with
10474 only a 32-bit VMA. */
10475 {
10476 bfd_vma sign_bits;
10477 bfd_vma low_bits;
10478 bfd_vma high_bits;
10479
10480 if (value & ((bfd_vma) 1 << 31))
10481#ifdef BFD64
10482 sign_bits = ((bfd_vma) 1 << 32) - 1;
10483#else
10484 sign_bits = -1;
10485#endif
10486 else
10487 sign_bits = 0;
10488
10489 /* If we don't know that we have a 64-bit type,
10490 do two separate stores. */
10491 if (bfd_big_endian (input_bfd))
10492 {
10493 /* Undo what we did above. */
10494 rel->r_offset -= 4;
10495 /* Store the sign-bits (which are most significant)
10496 first. */
10497 low_bits = sign_bits;
10498 high_bits = value;
10499 }
10500 else
10501 {
10502 low_bits = value;
10503 high_bits = sign_bits;
10504 }
10505 bfd_put_32 (input_bfd, low_bits,
10506 contents + rel->r_offset);
10507 bfd_put_32 (input_bfd, high_bits,
10508 contents + rel->r_offset + 4);
10509 continue;
10510 }
10511
10512 /* Actually perform the relocation. */
10513 if (! mips_elf_perform_relocation (info, howto, rel, value,
10514 input_bfd, input_section,
38a7df63 10515 contents, cross_mode_jump_p))
b34976b6 10516 return FALSE;
b49e97c9
TS
10517 }
10518
b34976b6 10519 return TRUE;
b49e97c9
TS
10520}
10521\f
861fb55a
DJ
10522/* A function that iterates over each entry in la25_stubs and fills
10523 in the code for each one. DATA points to a mips_htab_traverse_info. */
10524
10525static int
10526mips_elf_create_la25_stub (void **slot, void *data)
10527{
10528 struct mips_htab_traverse_info *hti;
10529 struct mips_elf_link_hash_table *htab;
10530 struct mips_elf_la25_stub *stub;
10531 asection *s;
10532 bfd_byte *loc;
10533 bfd_vma offset, target, target_high, target_low;
10534
10535 stub = (struct mips_elf_la25_stub *) *slot;
10536 hti = (struct mips_htab_traverse_info *) data;
10537 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10538 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10539
10540 /* Create the section contents, if we haven't already. */
10541 s = stub->stub_section;
10542 loc = s->contents;
10543 if (loc == NULL)
10544 {
10545 loc = bfd_malloc (s->size);
10546 if (loc == NULL)
10547 {
10548 hti->error = TRUE;
10549 return FALSE;
10550 }
10551 s->contents = loc;
10552 }
10553
10554 /* Work out where in the section this stub should go. */
10555 offset = stub->offset;
10556
10557 /* Work out the target address. */
8f0c309a
CLT
10558 target = mips_elf_get_la25_target (stub, &s);
10559 target += s->output_section->vma + s->output_offset;
10560
861fb55a
DJ
10561 target_high = ((target + 0x8000) >> 16) & 0xffff;
10562 target_low = (target & 0xffff);
10563
10564 if (stub->stub_section != htab->strampoline)
10565 {
df58fc94 10566 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10567 of the section and write the two instructions at the end. */
10568 memset (loc, 0, offset);
10569 loc += offset;
df58fc94
RS
10570 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10571 {
d21911ea
MR
10572 bfd_put_micromips_32 (hti->output_bfd,
10573 LA25_LUI_MICROMIPS (target_high),
10574 loc);
10575 bfd_put_micromips_32 (hti->output_bfd,
10576 LA25_ADDIU_MICROMIPS (target_low),
10577 loc + 4);
df58fc94
RS
10578 }
10579 else
10580 {
10581 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10582 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10583 }
861fb55a
DJ
10584 }
10585 else
10586 {
10587 /* This is trampoline. */
10588 loc += offset;
df58fc94
RS
10589 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10590 {
d21911ea
MR
10591 bfd_put_micromips_32 (hti->output_bfd,
10592 LA25_LUI_MICROMIPS (target_high), loc);
10593 bfd_put_micromips_32 (hti->output_bfd,
10594 LA25_J_MICROMIPS (target), loc + 4);
10595 bfd_put_micromips_32 (hti->output_bfd,
10596 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10597 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10598 }
10599 else
10600 {
10601 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10602 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10603 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10604 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10605 }
861fb55a
DJ
10606 }
10607 return TRUE;
10608}
10609
b49e97c9
TS
10610/* If NAME is one of the special IRIX6 symbols defined by the linker,
10611 adjust it appropriately now. */
10612
10613static void
9719ad41
RS
10614mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10615 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10616{
10617 /* The linker script takes care of providing names and values for
10618 these, but we must place them into the right sections. */
10619 static const char* const text_section_symbols[] = {
10620 "_ftext",
10621 "_etext",
10622 "__dso_displacement",
10623 "__elf_header",
10624 "__program_header_table",
10625 NULL
10626 };
10627
10628 static const char* const data_section_symbols[] = {
10629 "_fdata",
10630 "_edata",
10631 "_end",
10632 "_fbss",
10633 NULL
10634 };
10635
10636 const char* const *p;
10637 int i;
10638
10639 for (i = 0; i < 2; ++i)
10640 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10641 *p;
10642 ++p)
10643 if (strcmp (*p, name) == 0)
10644 {
10645 /* All of these symbols are given type STT_SECTION by the
10646 IRIX6 linker. */
10647 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10648 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10649
10650 /* The IRIX linker puts these symbols in special sections. */
10651 if (i == 0)
10652 sym->st_shndx = SHN_MIPS_TEXT;
10653 else
10654 sym->st_shndx = SHN_MIPS_DATA;
10655
10656 break;
10657 }
10658}
10659
10660/* Finish up dynamic symbol handling. We set the contents of various
10661 dynamic sections here. */
10662
b34976b6 10663bfd_boolean
9719ad41
RS
10664_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10665 struct bfd_link_info *info,
10666 struct elf_link_hash_entry *h,
10667 Elf_Internal_Sym *sym)
b49e97c9
TS
10668{
10669 bfd *dynobj;
b49e97c9 10670 asection *sgot;
f4416af6 10671 struct mips_got_info *g, *gg;
b49e97c9 10672 const char *name;
3d6746ca 10673 int idx;
5108fc1b 10674 struct mips_elf_link_hash_table *htab;
738e5348 10675 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10676
5108fc1b 10677 htab = mips_elf_hash_table (info);
4dfe6ac6 10678 BFD_ASSERT (htab != NULL);
b49e97c9 10679 dynobj = elf_hash_table (info)->dynobj;
738e5348 10680 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10681
861fb55a
DJ
10682 BFD_ASSERT (!htab->is_vxworks);
10683
1bbce132
MR
10684 if (h->plt.plist != NULL
10685 && (h->plt.plist->mips_offset != MINUS_ONE
10686 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10687 {
10688 /* We've decided to create a PLT entry for this symbol. */
10689 bfd_byte *loc;
1bbce132 10690 bfd_vma header_address, got_address;
861fb55a 10691 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10692 bfd_vma got_index;
10693 bfd_vma isa_bit;
10694
10695 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10696
10697 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10698 BFD_ASSERT (h->dynindx != -1);
10699 BFD_ASSERT (htab->splt != NULL);
1bbce132 10700 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10701 BFD_ASSERT (!h->def_regular);
10702
10703 /* Calculate the address of the PLT header. */
1bbce132 10704 isa_bit = htab->plt_header_is_comp;
861fb55a 10705 header_address = (htab->splt->output_section->vma
1bbce132 10706 + htab->splt->output_offset + isa_bit);
861fb55a
DJ
10707
10708 /* Calculate the address of the .got.plt entry. */
10709 got_address = (htab->sgotplt->output_section->vma
10710 + htab->sgotplt->output_offset
1bbce132
MR
10711 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10712
861fb55a
DJ
10713 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10714 got_address_low = got_address & 0xffff;
10715
10716 /* Initially point the .got.plt entry at the PLT header. */
1bbce132 10717 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10718 if (ABI_64_P (output_bfd))
10719 bfd_put_64 (output_bfd, header_address, loc);
10720 else
10721 bfd_put_32 (output_bfd, header_address, loc);
10722
1bbce132
MR
10723 /* Now handle the PLT itself. First the standard entry (the order
10724 does not matter, we just have to pick one). */
10725 if (h->plt.plist->mips_offset != MINUS_ONE)
10726 {
10727 const bfd_vma *plt_entry;
10728 bfd_vma plt_offset;
861fb55a 10729
1bbce132 10730 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10731
1bbce132 10732 BFD_ASSERT (plt_offset <= htab->splt->size);
6d30f5b2 10733
1bbce132
MR
10734 /* Find out where the .plt entry should go. */
10735 loc = htab->splt->contents + plt_offset;
10736
10737 /* Pick the load opcode. */
10738 load = MIPS_ELF_LOAD_WORD (output_bfd);
10739
10740 /* Fill in the PLT entry itself. */
7361da2c
AB
10741
10742 if (MIPSR6_P (output_bfd))
10743 plt_entry = mipsr6_exec_plt_entry;
10744 else
10745 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10746 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10747 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10748 loc + 4);
10749
10750 if (! LOAD_INTERLOCKS_P (output_bfd))
10751 {
10752 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10753 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10754 }
10755 else
10756 {
10757 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10758 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10759 loc + 12);
10760 }
6d30f5b2 10761 }
1bbce132
MR
10762
10763 /* Now the compressed entry. They come after any standard ones. */
10764 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10765 {
1bbce132
MR
10766 bfd_vma plt_offset;
10767
10768 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10769 + h->plt.plist->comp_offset);
10770
10771 BFD_ASSERT (plt_offset <= htab->splt->size);
10772
10773 /* Find out where the .plt entry should go. */
10774 loc = htab->splt->contents + plt_offset;
10775
10776 /* Fill in the PLT entry itself. */
833794fc
MR
10777 if (!MICROMIPS_P (output_bfd))
10778 {
10779 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10780
10781 bfd_put_16 (output_bfd, plt_entry[0], loc);
10782 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10783 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10784 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10785 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10786 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10787 bfd_put_32 (output_bfd, got_address, loc + 12);
10788 }
10789 else if (htab->insn32)
10790 {
10791 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10792
10793 bfd_put_16 (output_bfd, plt_entry[0], loc);
10794 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10795 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10796 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10797 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10798 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10799 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10800 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10801 }
10802 else
1bbce132
MR
10803 {
10804 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10805 bfd_signed_vma gotpc_offset;
10806 bfd_vma loc_address;
10807
10808 BFD_ASSERT (got_address % 4 == 0);
10809
10810 loc_address = (htab->splt->output_section->vma
10811 + htab->splt->output_offset + plt_offset);
10812 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10813
10814 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10815 if (gotpc_offset + 0x1000000 >= 0x2000000)
10816 {
10817 (*_bfd_error_handler)
10818 (_("%B: `%A' offset of %ld from `%A' "
10819 "beyond the range of ADDIUPC"),
10820 output_bfd,
10821 htab->sgotplt->output_section,
10822 htab->splt->output_section,
10823 (long) gotpc_offset);
10824 bfd_set_error (bfd_error_no_error);
10825 return FALSE;
10826 }
10827 bfd_put_16 (output_bfd,
10828 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10829 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10830 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10831 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10832 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10833 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10834 }
6d30f5b2 10835 }
861fb55a
DJ
10836
10837 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10838 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
1bbce132 10839 got_index - 2, h->dynindx,
861fb55a
DJ
10840 R_MIPS_JUMP_SLOT, got_address);
10841
10842 /* We distinguish between PLT entries and lazy-binding stubs by
10843 giving the former an st_other value of STO_MIPS_PLT. Set the
10844 flag and leave the value if there are any relocations in the
10845 binary where pointer equality matters. */
10846 sym->st_shndx = SHN_UNDEF;
10847 if (h->pointer_equality_needed)
1bbce132 10848 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10849 else
1bbce132
MR
10850 {
10851 sym->st_value = 0;
10852 sym->st_other = 0;
10853 }
861fb55a 10854 }
1bbce132
MR
10855
10856 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10857 {
861fb55a 10858 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10859 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10860 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10861 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10862 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10863 bfd_vma isa_bit = micromips_p;
10864 bfd_vma stub_big_size;
10865
833794fc 10866 if (!micromips_p)
1bbce132 10867 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10868 else if (htab->insn32)
10869 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10870 else
10871 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10872
10873 /* This symbol has a stub. Set it up. */
10874
10875 BFD_ASSERT (h->dynindx != -1);
10876
1bbce132 10877 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10878
10879 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10880 sign extension at runtime in the stub, resulting in a negative
10881 index value. */
10882 if (h->dynindx & ~0x7fffffff)
b34976b6 10883 return FALSE;
b49e97c9
TS
10884
10885 /* Fill the stub. */
1bbce132
MR
10886 if (micromips_p)
10887 {
10888 idx = 0;
10889 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10890 stub + idx);
10891 idx += 4;
833794fc
MR
10892 if (htab->insn32)
10893 {
10894 bfd_put_micromips_32 (output_bfd,
40fc1451 10895 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10896 idx += 4;
10897 }
10898 else
10899 {
10900 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10901 idx += 2;
10902 }
1bbce132
MR
10903 if (stub_size == stub_big_size)
10904 {
10905 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10906
10907 bfd_put_micromips_32 (output_bfd,
10908 STUB_LUI_MICROMIPS (dynindx_hi),
10909 stub + idx);
10910 idx += 4;
10911 }
833794fc
MR
10912 if (htab->insn32)
10913 {
10914 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10915 stub + idx);
10916 idx += 4;
10917 }
10918 else
10919 {
10920 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10921 idx += 2;
10922 }
1bbce132
MR
10923
10924 /* If a large stub is not required and sign extension is not a
10925 problem, then use legacy code in the stub. */
10926 if (stub_size == stub_big_size)
10927 bfd_put_micromips_32 (output_bfd,
10928 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10929 stub + idx);
10930 else if (h->dynindx & ~0x7fff)
10931 bfd_put_micromips_32 (output_bfd,
10932 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10933 stub + idx);
10934 else
10935 bfd_put_micromips_32 (output_bfd,
10936 STUB_LI16S_MICROMIPS (output_bfd,
10937 h->dynindx),
10938 stub + idx);
10939 }
3d6746ca 10940 else
1bbce132
MR
10941 {
10942 idx = 0;
10943 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10944 idx += 4;
40fc1451 10945 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10946 idx += 4;
10947 if (stub_size == stub_big_size)
10948 {
10949 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10950 stub + idx);
10951 idx += 4;
10952 }
10953 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10954 idx += 4;
10955
10956 /* If a large stub is not required and sign extension is not a
10957 problem, then use legacy code in the stub. */
10958 if (stub_size == stub_big_size)
10959 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10960 stub + idx);
10961 else if (h->dynindx & ~0x7fff)
10962 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10963 stub + idx);
10964 else
10965 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10966 stub + idx);
10967 }
5108fc1b 10968
1bbce132
MR
10969 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10970 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10971 stub, stub_size);
b49e97c9 10972
1bbce132 10973 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10974 only for the referenced symbol. */
10975 sym->st_shndx = SHN_UNDEF;
10976
10977 /* The run-time linker uses the st_value field of the symbol
10978 to reset the global offset table entry for this external
10979 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10980 sym->st_value = (htab->sstubs->output_section->vma
10981 + htab->sstubs->output_offset
1bbce132
MR
10982 + h->plt.plist->stub_offset
10983 + isa_bit);
10984 sym->st_other = other;
b49e97c9
TS
10985 }
10986
738e5348
RS
10987 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10988 refer to the stub, since only the stub uses the standard calling
10989 conventions. */
10990 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10991 {
10992 BFD_ASSERT (hmips->need_fn_stub);
10993 sym->st_value = (hmips->fn_stub->output_section->vma
10994 + hmips->fn_stub->output_offset);
10995 sym->st_size = hmips->fn_stub->size;
10996 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10997 }
10998
b49e97c9 10999 BFD_ASSERT (h->dynindx != -1
f5385ebf 11000 || h->forced_local);
b49e97c9 11001
23cc69b6 11002 sgot = htab->sgot;
a8028dd0 11003 g = htab->got_info;
b49e97c9
TS
11004 BFD_ASSERT (g != NULL);
11005
11006 /* Run through the global symbol table, creating GOT entries for all
11007 the symbols that need them. */
020d7251 11008 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11009 {
11010 bfd_vma offset;
11011 bfd_vma value;
11012
6eaa6adc 11013 value = sym->st_value;
13fbec83 11014 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11015 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11016 }
11017
e641e783 11018 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11019 {
11020 struct mips_got_entry e, *p;
0626d451 11021 bfd_vma entry;
f4416af6 11022 bfd_vma offset;
f4416af6
AO
11023
11024 gg = g;
11025
11026 e.abfd = output_bfd;
11027 e.symndx = -1;
738e5348 11028 e.d.h = hmips;
9ab066b4 11029 e.tls_type = GOT_TLS_NONE;
143d77c5 11030
f4416af6
AO
11031 for (g = g->next; g->next != gg; g = g->next)
11032 {
11033 if (g->got_entries
11034 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11035 &e)))
11036 {
11037 offset = p->gotidx;
6c42ddb9 11038 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0e1862bb 11039 if (bfd_link_pic (info)
0626d451
RS
11040 || (elf_hash_table (info)->dynamic_sections_created
11041 && p->d.h != NULL
f5385ebf
AM
11042 && p->d.h->root.def_dynamic
11043 && !p->d.h->root.def_regular))
0626d451
RS
11044 {
11045 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11046 the various compatibility problems, it's easier to mock
11047 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11048 mips_elf_create_dynamic_relocation to calculate the
11049 appropriate addend. */
11050 Elf_Internal_Rela rel[3];
11051
11052 memset (rel, 0, sizeof (rel));
11053 if (ABI_64_P (output_bfd))
11054 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11055 else
11056 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11057 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11058
11059 entry = 0;
11060 if (! (mips_elf_create_dynamic_relocation
11061 (output_bfd, info, rel,
11062 e.d.h, NULL, sym->st_value, &entry, sgot)))
11063 return FALSE;
11064 }
11065 else
11066 entry = sym->st_value;
11067 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11068 }
11069 }
11070 }
11071
b49e97c9
TS
11072 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11073 name = h->root.root.string;
9637f6ef 11074 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11075 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11076 sym->st_shndx = SHN_ABS;
11077 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11078 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11079 {
11080 sym->st_shndx = SHN_ABS;
11081 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11082 sym->st_value = 1;
11083 }
4a14403c 11084 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
11085 {
11086 sym->st_shndx = SHN_ABS;
11087 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11088 sym->st_value = elf_gp (output_bfd);
11089 }
11090 else if (SGI_COMPAT (output_bfd))
11091 {
11092 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11093 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11094 {
11095 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11096 sym->st_other = STO_PROTECTED;
11097 sym->st_value = 0;
11098 sym->st_shndx = SHN_MIPS_DATA;
11099 }
11100 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11101 {
11102 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11103 sym->st_other = STO_PROTECTED;
11104 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11105 sym->st_shndx = SHN_ABS;
11106 }
11107 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11108 {
11109 if (h->type == STT_FUNC)
11110 sym->st_shndx = SHN_MIPS_TEXT;
11111 else if (h->type == STT_OBJECT)
11112 sym->st_shndx = SHN_MIPS_DATA;
11113 }
11114 }
11115
861fb55a
DJ
11116 /* Emit a copy reloc, if needed. */
11117 if (h->needs_copy)
11118 {
11119 asection *s;
11120 bfd_vma symval;
11121
11122 BFD_ASSERT (h->dynindx != -1);
11123 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11124
11125 s = mips_elf_rel_dyn_section (info, FALSE);
11126 symval = (h->root.u.def.section->output_section->vma
11127 + h->root.u.def.section->output_offset
11128 + h->root.u.def.value);
11129 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11130 h->dynindx, R_MIPS_COPY, symval);
11131 }
11132
b49e97c9
TS
11133 /* Handle the IRIX6-specific symbols. */
11134 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11135 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11136
cbf8d970
MR
11137 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11138 to treat compressed symbols like any other. */
30c09090 11139 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11140 {
11141 BFD_ASSERT (sym->st_value & 1);
11142 sym->st_other -= STO_MIPS16;
11143 }
cbf8d970
MR
11144 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11145 {
11146 BFD_ASSERT (sym->st_value & 1);
11147 sym->st_other -= STO_MICROMIPS;
11148 }
b49e97c9 11149
b34976b6 11150 return TRUE;
b49e97c9
TS
11151}
11152
0a44bf69
RS
11153/* Likewise, for VxWorks. */
11154
11155bfd_boolean
11156_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11157 struct bfd_link_info *info,
11158 struct elf_link_hash_entry *h,
11159 Elf_Internal_Sym *sym)
11160{
11161 bfd *dynobj;
11162 asection *sgot;
11163 struct mips_got_info *g;
11164 struct mips_elf_link_hash_table *htab;
020d7251 11165 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11166
11167 htab = mips_elf_hash_table (info);
4dfe6ac6 11168 BFD_ASSERT (htab != NULL);
0a44bf69 11169 dynobj = elf_hash_table (info)->dynobj;
020d7251 11170 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11171
1bbce132 11172 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11173 {
6d79d2ed 11174 bfd_byte *loc;
1bbce132 11175 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11176 Elf_Internal_Rela rel;
11177 static const bfd_vma *plt_entry;
1bbce132
MR
11178 bfd_vma gotplt_index;
11179 bfd_vma plt_offset;
11180
11181 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11182 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11183
11184 BFD_ASSERT (h->dynindx != -1);
11185 BFD_ASSERT (htab->splt != NULL);
1bbce132
MR
11186 BFD_ASSERT (gotplt_index != MINUS_ONE);
11187 BFD_ASSERT (plt_offset <= htab->splt->size);
0a44bf69
RS
11188
11189 /* Calculate the address of the .plt entry. */
11190 plt_address = (htab->splt->output_section->vma
11191 + htab->splt->output_offset
1bbce132 11192 + plt_offset);
0a44bf69
RS
11193
11194 /* Calculate the address of the .got.plt entry. */
11195 got_address = (htab->sgotplt->output_section->vma
11196 + htab->sgotplt->output_offset
1bbce132 11197 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11198
11199 /* Calculate the offset of the .got.plt entry from
11200 _GLOBAL_OFFSET_TABLE_. */
11201 got_offset = mips_elf_gotplt_index (info, h);
11202
11203 /* Calculate the offset for the branch at the start of the PLT
11204 entry. The branch jumps to the beginning of .plt. */
1bbce132 11205 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11206
11207 /* Fill in the initial value of the .got.plt entry. */
11208 bfd_put_32 (output_bfd, plt_address,
1bbce132
MR
11209 (htab->sgotplt->contents
11210 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11211
11212 /* Find out where the .plt entry should go. */
1bbce132 11213 loc = htab->splt->contents + plt_offset;
0a44bf69 11214
0e1862bb 11215 if (bfd_link_pic (info))
0a44bf69
RS
11216 {
11217 plt_entry = mips_vxworks_shared_plt_entry;
11218 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11219 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11220 }
11221 else
11222 {
11223 bfd_vma got_address_high, got_address_low;
11224
11225 plt_entry = mips_vxworks_exec_plt_entry;
11226 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11227 got_address_low = got_address & 0xffff;
11228
11229 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11230 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11231 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11232 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11233 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11234 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11235 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11236 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11237
11238 loc = (htab->srelplt2->contents
1bbce132 11239 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11240
11241 /* Emit a relocation for the .got.plt entry. */
11242 rel.r_offset = got_address;
11243 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11244 rel.r_addend = plt_offset;
0a44bf69
RS
11245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11246
11247 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11248 loc += sizeof (Elf32_External_Rela);
11249 rel.r_offset = plt_address + 8;
11250 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11251 rel.r_addend = got_offset;
11252 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11253
11254 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11255 loc += sizeof (Elf32_External_Rela);
11256 rel.r_offset += 4;
11257 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11258 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259 }
11260
11261 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
1bbce132
MR
11262 loc = (htab->srelplt->contents
11263 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11264 rel.r_offset = got_address;
11265 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11266 rel.r_addend = 0;
11267 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11268
11269 if (!h->def_regular)
11270 sym->st_shndx = SHN_UNDEF;
11271 }
11272
11273 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11274
23cc69b6 11275 sgot = htab->sgot;
a8028dd0 11276 g = htab->got_info;
0a44bf69
RS
11277 BFD_ASSERT (g != NULL);
11278
11279 /* See if this symbol has an entry in the GOT. */
020d7251 11280 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11281 {
11282 bfd_vma offset;
11283 Elf_Internal_Rela outrel;
11284 bfd_byte *loc;
11285 asection *s;
11286
11287 /* Install the symbol value in the GOT. */
13fbec83 11288 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11289 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11290
11291 /* Add a dynamic relocation for it. */
11292 s = mips_elf_rel_dyn_section (info, FALSE);
11293 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11294 outrel.r_offset = (sgot->output_section->vma
11295 + sgot->output_offset
11296 + offset);
11297 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11298 outrel.r_addend = 0;
11299 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11300 }
11301
11302 /* Emit a copy reloc, if needed. */
11303 if (h->needs_copy)
11304 {
11305 Elf_Internal_Rela rel;
11306
11307 BFD_ASSERT (h->dynindx != -1);
11308
11309 rel.r_offset = (h->root.u.def.section->output_section->vma
11310 + h->root.u.def.section->output_offset
11311 + h->root.u.def.value);
11312 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11313 rel.r_addend = 0;
11314 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11315 htab->srelbss->contents
11316 + (htab->srelbss->reloc_count
11317 * sizeof (Elf32_External_Rela)));
11318 ++htab->srelbss->reloc_count;
11319 }
11320
df58fc94
RS
11321 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11322 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11323 sym->st_value &= ~1;
11324
11325 return TRUE;
11326}
11327
861fb55a
DJ
11328/* Write out a plt0 entry to the beginning of .plt. */
11329
1bbce132 11330static bfd_boolean
861fb55a
DJ
11331mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11332{
11333 bfd_byte *loc;
11334 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11335 static const bfd_vma *plt_entry;
11336 struct mips_elf_link_hash_table *htab;
11337
11338 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11339 BFD_ASSERT (htab != NULL);
11340
861fb55a
DJ
11341 if (ABI_64_P (output_bfd))
11342 plt_entry = mips_n64_exec_plt0_entry;
11343 else if (ABI_N32_P (output_bfd))
11344 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11345 else if (!htab->plt_header_is_comp)
861fb55a 11346 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11347 else if (htab->insn32)
11348 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11349 else
11350 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11351
11352 /* Calculate the value of .got.plt. */
11353 gotplt_value = (htab->sgotplt->output_section->vma
11354 + htab->sgotplt->output_offset);
11355 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11356 gotplt_value_low = gotplt_value & 0xffff;
11357
11358 /* The PLT sequence is not safe for N64 if .got.plt's address can
11359 not be loaded in two instructions. */
11360 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11361 || ~(gotplt_value | 0x7fffffff) == 0);
11362
11363 /* Install the PLT header. */
11364 loc = htab->splt->contents;
1bbce132
MR
11365 if (plt_entry == micromips_o32_exec_plt0_entry)
11366 {
11367 bfd_vma gotpc_offset;
11368 bfd_vma loc_address;
11369 size_t i;
11370
11371 BFD_ASSERT (gotplt_value % 4 == 0);
11372
11373 loc_address = (htab->splt->output_section->vma
11374 + htab->splt->output_offset);
11375 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11376
11377 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11378 if (gotpc_offset + 0x1000000 >= 0x2000000)
11379 {
11380 (*_bfd_error_handler)
11381 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11382 output_bfd,
11383 htab->sgotplt->output_section,
11384 htab->splt->output_section,
11385 (long) gotpc_offset);
11386 bfd_set_error (bfd_error_no_error);
11387 return FALSE;
11388 }
11389 bfd_put_16 (output_bfd,
11390 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11391 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11392 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11393 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11394 }
833794fc
MR
11395 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11396 {
11397 size_t i;
11398
11399 bfd_put_16 (output_bfd, plt_entry[0], loc);
11400 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11401 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11402 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11403 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11404 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11405 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11406 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11407 }
1bbce132
MR
11408 else
11409 {
11410 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11411 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11412 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11413 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11414 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11415 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11416 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11417 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11418 }
11419
11420 return TRUE;
861fb55a
DJ
11421}
11422
0a44bf69
RS
11423/* Install the PLT header for a VxWorks executable and finalize the
11424 contents of .rela.plt.unloaded. */
11425
11426static void
11427mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11428{
11429 Elf_Internal_Rela rela;
11430 bfd_byte *loc;
11431 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11432 static const bfd_vma *plt_entry;
11433 struct mips_elf_link_hash_table *htab;
11434
11435 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11436 BFD_ASSERT (htab != NULL);
11437
0a44bf69
RS
11438 plt_entry = mips_vxworks_exec_plt0_entry;
11439
11440 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11441 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11442 + htab->root.hgot->root.u.def.section->output_offset
11443 + htab->root.hgot->root.u.def.value);
11444
11445 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11446 got_value_low = got_value & 0xffff;
11447
11448 /* Calculate the address of the PLT header. */
11449 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11450
11451 /* Install the PLT header. */
11452 loc = htab->splt->contents;
11453 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11454 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11455 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11456 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11457 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11458 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11459
11460 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11461 loc = htab->srelplt2->contents;
11462 rela.r_offset = plt_address;
11463 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11464 rela.r_addend = 0;
11465 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11466 loc += sizeof (Elf32_External_Rela);
11467
11468 /* Output the relocation for the following addiu of
11469 %lo(_GLOBAL_OFFSET_TABLE_). */
11470 rela.r_offset += 4;
11471 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11472 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11473 loc += sizeof (Elf32_External_Rela);
11474
11475 /* Fix up the remaining relocations. They may have the wrong
11476 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11477 in which symbols were output. */
11478 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11479 {
11480 Elf_Internal_Rela rel;
11481
11482 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11483 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11484 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11485 loc += sizeof (Elf32_External_Rela);
11486
11487 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11488 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11490 loc += sizeof (Elf32_External_Rela);
11491
11492 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11493 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11494 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11495 loc += sizeof (Elf32_External_Rela);
11496 }
11497}
11498
11499/* Install the PLT header for a VxWorks shared library. */
11500
11501static void
11502mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11503{
11504 unsigned int i;
11505 struct mips_elf_link_hash_table *htab;
11506
11507 htab = mips_elf_hash_table (info);
4dfe6ac6 11508 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11509
11510 /* We just need to copy the entry byte-by-byte. */
11511 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11512 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11513 htab->splt->contents + i * 4);
11514}
11515
b49e97c9
TS
11516/* Finish up the dynamic sections. */
11517
b34976b6 11518bfd_boolean
9719ad41
RS
11519_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11520 struct bfd_link_info *info)
b49e97c9
TS
11521{
11522 bfd *dynobj;
11523 asection *sdyn;
11524 asection *sgot;
f4416af6 11525 struct mips_got_info *gg, *g;
0a44bf69 11526 struct mips_elf_link_hash_table *htab;
b49e97c9 11527
0a44bf69 11528 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11529 BFD_ASSERT (htab != NULL);
11530
b49e97c9
TS
11531 dynobj = elf_hash_table (info)->dynobj;
11532
3d4d4302 11533 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11534
23cc69b6
RS
11535 sgot = htab->sgot;
11536 gg = htab->got_info;
b49e97c9
TS
11537
11538 if (elf_hash_table (info)->dynamic_sections_created)
11539 {
11540 bfd_byte *b;
943284cc 11541 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11542
11543 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11544 BFD_ASSERT (gg != NULL);
11545
d7206569 11546 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11547 BFD_ASSERT (g != NULL);
11548
11549 for (b = sdyn->contents;
eea6121a 11550 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11551 b += MIPS_ELF_DYN_SIZE (dynobj))
11552 {
11553 Elf_Internal_Dyn dyn;
11554 const char *name;
11555 size_t elemsize;
11556 asection *s;
b34976b6 11557 bfd_boolean swap_out_p;
b49e97c9
TS
11558
11559 /* Read in the current dynamic entry. */
11560 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11561
11562 /* Assume that we're going to modify it and write it out. */
b34976b6 11563 swap_out_p = TRUE;
b49e97c9
TS
11564
11565 switch (dyn.d_tag)
11566 {
11567 case DT_RELENT:
b49e97c9
TS
11568 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11569 break;
11570
0a44bf69
RS
11571 case DT_RELAENT:
11572 BFD_ASSERT (htab->is_vxworks);
11573 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11574 break;
11575
b49e97c9
TS
11576 case DT_STRSZ:
11577 /* Rewrite DT_STRSZ. */
11578 dyn.d_un.d_val =
11579 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11580 break;
11581
11582 case DT_PLTGOT:
861fb55a
DJ
11583 s = htab->sgot;
11584 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11585 break;
11586
11587 case DT_MIPS_PLTGOT:
11588 s = htab->sgotplt;
11589 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11590 break;
11591
11592 case DT_MIPS_RLD_VERSION:
11593 dyn.d_un.d_val = 1; /* XXX */
11594 break;
11595
11596 case DT_MIPS_FLAGS:
11597 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11598 break;
11599
b49e97c9 11600 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11601 {
11602 time_t t;
11603 time (&t);
11604 dyn.d_un.d_val = t;
11605 }
b49e97c9
TS
11606 break;
11607
11608 case DT_MIPS_ICHECKSUM:
11609 /* XXX FIXME: */
b34976b6 11610 swap_out_p = FALSE;
b49e97c9
TS
11611 break;
11612
11613 case DT_MIPS_IVERSION:
11614 /* XXX FIXME: */
b34976b6 11615 swap_out_p = FALSE;
b49e97c9
TS
11616 break;
11617
11618 case DT_MIPS_BASE_ADDRESS:
11619 s = output_bfd->sections;
11620 BFD_ASSERT (s != NULL);
11621 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11622 break;
11623
11624 case DT_MIPS_LOCAL_GOTNO:
11625 dyn.d_un.d_val = g->local_gotno;
11626 break;
11627
11628 case DT_MIPS_UNREFEXTNO:
11629 /* The index into the dynamic symbol table which is the
11630 entry of the first external symbol that is not
11631 referenced within the same object. */
11632 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11633 break;
11634
11635 case DT_MIPS_GOTSYM:
d222d210 11636 if (htab->global_gotsym)
b49e97c9 11637 {
d222d210 11638 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11639 break;
11640 }
11641 /* In case if we don't have global got symbols we default
11642 to setting DT_MIPS_GOTSYM to the same value as
11643 DT_MIPS_SYMTABNO, so we just fall through. */
11644
11645 case DT_MIPS_SYMTABNO:
11646 name = ".dynsym";
11647 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11648 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11649
131e2f8e
MF
11650 if (s != NULL)
11651 dyn.d_un.d_val = s->size / elemsize;
11652 else
11653 dyn.d_un.d_val = 0;
b49e97c9
TS
11654 break;
11655
11656 case DT_MIPS_HIPAGENO:
861fb55a 11657 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11658 break;
11659
11660 case DT_MIPS_RLD_MAP:
b4082c70
DD
11661 {
11662 struct elf_link_hash_entry *h;
11663 h = mips_elf_hash_table (info)->rld_symbol;
11664 if (!h)
11665 {
11666 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11667 swap_out_p = FALSE;
11668 break;
11669 }
11670 s = h->root.u.def.section;
a5499fa4
MF
11671
11672 /* The MIPS_RLD_MAP tag stores the absolute address of the
11673 debug pointer. */
b4082c70
DD
11674 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11675 + h->root.u.def.value);
11676 }
b49e97c9
TS
11677 break;
11678
a5499fa4
MF
11679 case DT_MIPS_RLD_MAP_REL:
11680 {
11681 struct elf_link_hash_entry *h;
11682 bfd_vma dt_addr, rld_addr;
11683 h = mips_elf_hash_table (info)->rld_symbol;
11684 if (!h)
11685 {
11686 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11687 swap_out_p = FALSE;
11688 break;
11689 }
11690 s = h->root.u.def.section;
11691
11692 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11693 pointer, relative to the address of the tag. */
11694 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11695 + (b - sdyn->contents));
a5499fa4
MF
11696 rld_addr = (s->output_section->vma + s->output_offset
11697 + h->root.u.def.value);
11698 dyn.d_un.d_ptr = rld_addr - dt_addr;
11699 }
11700 break;
11701
b49e97c9
TS
11702 case DT_MIPS_OPTIONS:
11703 s = (bfd_get_section_by_name
11704 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11705 dyn.d_un.d_ptr = s->vma;
11706 break;
11707
0a44bf69
RS
11708 case DT_RELASZ:
11709 BFD_ASSERT (htab->is_vxworks);
11710 /* The count does not include the JUMP_SLOT relocations. */
11711 if (htab->srelplt)
11712 dyn.d_un.d_val -= htab->srelplt->size;
11713 break;
11714
11715 case DT_PLTREL:
861fb55a
DJ
11716 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11717 if (htab->is_vxworks)
11718 dyn.d_un.d_val = DT_RELA;
11719 else
11720 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11721 break;
11722
11723 case DT_PLTRELSZ:
861fb55a 11724 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
11725 dyn.d_un.d_val = htab->srelplt->size;
11726 break;
11727
11728 case DT_JMPREL:
861fb55a
DJ
11729 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11730 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
11731 + htab->srelplt->output_offset);
11732 break;
11733
943284cc
DJ
11734 case DT_TEXTREL:
11735 /* If we didn't need any text relocations after all, delete
11736 the dynamic tag. */
11737 if (!(info->flags & DF_TEXTREL))
11738 {
11739 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11740 swap_out_p = FALSE;
11741 }
11742 break;
11743
11744 case DT_FLAGS:
11745 /* If we didn't need any text relocations after all, clear
11746 DF_TEXTREL from DT_FLAGS. */
11747 if (!(info->flags & DF_TEXTREL))
11748 dyn.d_un.d_val &= ~DF_TEXTREL;
11749 else
11750 swap_out_p = FALSE;
11751 break;
11752
b49e97c9 11753 default:
b34976b6 11754 swap_out_p = FALSE;
7a2b07ff
NS
11755 if (htab->is_vxworks
11756 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11757 swap_out_p = TRUE;
b49e97c9
TS
11758 break;
11759 }
11760
943284cc 11761 if (swap_out_p || dyn_skipped)
b49e97c9 11762 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11763 (dynobj, &dyn, b - dyn_skipped);
11764
11765 if (dyn_to_skip)
11766 {
11767 dyn_skipped += dyn_to_skip;
11768 dyn_to_skip = 0;
11769 }
b49e97c9 11770 }
943284cc
DJ
11771
11772 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11773 if (dyn_skipped > 0)
11774 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11775 }
11776
b55fd4d4
DJ
11777 if (sgot != NULL && sgot->size > 0
11778 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11779 {
0a44bf69
RS
11780 if (htab->is_vxworks)
11781 {
11782 /* The first entry of the global offset table points to the
11783 ".dynamic" section. The second is initialized by the
11784 loader and contains the shared library identifier.
11785 The third is also initialized by the loader and points
11786 to the lazy resolution stub. */
11787 MIPS_ELF_PUT_WORD (output_bfd,
11788 sdyn->output_offset + sdyn->output_section->vma,
11789 sgot->contents);
11790 MIPS_ELF_PUT_WORD (output_bfd, 0,
11791 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11792 MIPS_ELF_PUT_WORD (output_bfd, 0,
11793 sgot->contents
11794 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11795 }
11796 else
11797 {
11798 /* The first entry of the global offset table will be filled at
11799 runtime. The second entry will be used by some runtime loaders.
11800 This isn't the case of IRIX rld. */
11801 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11802 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11803 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11804 }
b49e97c9 11805
54938e2a
TS
11806 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11807 = MIPS_ELF_GOT_SIZE (output_bfd);
11808 }
b49e97c9 11809
f4416af6
AO
11810 /* Generate dynamic relocations for the non-primary gots. */
11811 if (gg != NULL && gg->next)
11812 {
11813 Elf_Internal_Rela rel[3];
11814 bfd_vma addend = 0;
11815
11816 memset (rel, 0, sizeof (rel));
11817 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11818
11819 for (g = gg->next; g->next != gg; g = g->next)
11820 {
91d6fa6a 11821 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11822 + g->next->tls_gotno;
f4416af6 11823
9719ad41 11824 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11825 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11826 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11827 sgot->contents
91d6fa6a 11828 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11829
0e1862bb 11830 if (! bfd_link_pic (info))
f4416af6
AO
11831 continue;
11832
cb22ccf4 11833 for (; got_index < g->local_gotno; got_index++)
f4416af6 11834 {
cb22ccf4
KCY
11835 if (got_index >= g->assigned_low_gotno
11836 && got_index <= g->assigned_high_gotno)
11837 continue;
11838
f4416af6 11839 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11840 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11841 if (!(mips_elf_create_dynamic_relocation
11842 (output_bfd, info, rel, NULL,
11843 bfd_abs_section_ptr,
11844 0, &addend, sgot)))
11845 return FALSE;
11846 BFD_ASSERT (addend == 0);
11847 }
11848 }
11849 }
11850
3133ddbf
DJ
11851 /* The generation of dynamic relocations for the non-primary gots
11852 adds more dynamic relocations. We cannot count them until
11853 here. */
11854
11855 if (elf_hash_table (info)->dynamic_sections_created)
11856 {
11857 bfd_byte *b;
11858 bfd_boolean swap_out_p;
11859
11860 BFD_ASSERT (sdyn != NULL);
11861
11862 for (b = sdyn->contents;
11863 b < sdyn->contents + sdyn->size;
11864 b += MIPS_ELF_DYN_SIZE (dynobj))
11865 {
11866 Elf_Internal_Dyn dyn;
11867 asection *s;
11868
11869 /* Read in the current dynamic entry. */
11870 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11871
11872 /* Assume that we're going to modify it and write it out. */
11873 swap_out_p = TRUE;
11874
11875 switch (dyn.d_tag)
11876 {
11877 case DT_RELSZ:
11878 /* Reduce DT_RELSZ to account for any relocations we
11879 decided not to make. This is for the n64 irix rld,
11880 which doesn't seem to apply any relocations if there
11881 are trailing null entries. */
0a44bf69 11882 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11883 dyn.d_un.d_val = (s->reloc_count
11884 * (ABI_64_P (output_bfd)
11885 ? sizeof (Elf64_Mips_External_Rel)
11886 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11887 /* Adjust the section size too. Tools like the prelinker
11888 can reasonably expect the values to the same. */
11889 elf_section_data (s->output_section)->this_hdr.sh_size
11890 = dyn.d_un.d_val;
3133ddbf
DJ
11891 break;
11892
11893 default:
11894 swap_out_p = FALSE;
11895 break;
11896 }
11897
11898 if (swap_out_p)
11899 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11900 (dynobj, &dyn, b);
11901 }
11902 }
11903
b49e97c9 11904 {
b49e97c9
TS
11905 asection *s;
11906 Elf32_compact_rel cpt;
11907
b49e97c9
TS
11908 if (SGI_COMPAT (output_bfd))
11909 {
11910 /* Write .compact_rel section out. */
3d4d4302 11911 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11912 if (s != NULL)
11913 {
11914 cpt.id1 = 1;
11915 cpt.num = s->reloc_count;
11916 cpt.id2 = 2;
11917 cpt.offset = (s->output_section->filepos
11918 + sizeof (Elf32_External_compact_rel));
11919 cpt.reserved0 = 0;
11920 cpt.reserved1 = 0;
11921 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11922 ((Elf32_External_compact_rel *)
11923 s->contents));
11924
11925 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11926 if (htab->sstubs != NULL)
b49e97c9
TS
11927 {
11928 file_ptr dummy_offset;
11929
4e41d0d7
RS
11930 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11931 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11932 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11933 htab->function_stub_size);
b49e97c9
TS
11934 }
11935 }
11936 }
11937
0a44bf69
RS
11938 /* The psABI says that the dynamic relocations must be sorted in
11939 increasing order of r_symndx. The VxWorks EABI doesn't require
11940 this, and because the code below handles REL rather than RELA
11941 relocations, using it for VxWorks would be outright harmful. */
11942 if (!htab->is_vxworks)
b49e97c9 11943 {
0a44bf69
RS
11944 s = mips_elf_rel_dyn_section (info, FALSE);
11945 if (s != NULL
11946 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11947 {
11948 reldyn_sorting_bfd = output_bfd;
b49e97c9 11949
0a44bf69
RS
11950 if (ABI_64_P (output_bfd))
11951 qsort ((Elf64_External_Rel *) s->contents + 1,
11952 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11953 sort_dynamic_relocs_64);
11954 else
11955 qsort ((Elf32_External_Rel *) s->contents + 1,
11956 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11957 sort_dynamic_relocs);
11958 }
b49e97c9 11959 }
b49e97c9
TS
11960 }
11961
861fb55a 11962 if (htab->splt && htab->splt->size > 0)
0a44bf69 11963 {
861fb55a
DJ
11964 if (htab->is_vxworks)
11965 {
0e1862bb 11966 if (bfd_link_pic (info))
861fb55a
DJ
11967 mips_vxworks_finish_shared_plt (output_bfd, info);
11968 else
11969 mips_vxworks_finish_exec_plt (output_bfd, info);
11970 }
0a44bf69 11971 else
861fb55a 11972 {
0e1862bb 11973 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11974 if (!mips_finish_exec_plt (output_bfd, info))
11975 return FALSE;
861fb55a 11976 }
0a44bf69 11977 }
b34976b6 11978 return TRUE;
b49e97c9
TS
11979}
11980
b49e97c9 11981
64543e1a
RS
11982/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11983
11984static void
9719ad41 11985mips_set_isa_flags (bfd *abfd)
b49e97c9 11986{
64543e1a 11987 flagword val;
b49e97c9
TS
11988
11989 switch (bfd_get_mach (abfd))
11990 {
11991 default:
11992 case bfd_mach_mips3000:
11993 val = E_MIPS_ARCH_1;
11994 break;
11995
11996 case bfd_mach_mips3900:
11997 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11998 break;
11999
12000 case bfd_mach_mips6000:
12001 val = E_MIPS_ARCH_2;
12002 break;
12003
12004 case bfd_mach_mips4000:
12005 case bfd_mach_mips4300:
12006 case bfd_mach_mips4400:
12007 case bfd_mach_mips4600:
12008 val = E_MIPS_ARCH_3;
12009 break;
12010
12011 case bfd_mach_mips4010:
12012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12013 break;
12014
12015 case bfd_mach_mips4100:
12016 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12017 break;
12018
12019 case bfd_mach_mips4111:
12020 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12021 break;
12022
00707a0e
RS
12023 case bfd_mach_mips4120:
12024 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12025 break;
12026
b49e97c9
TS
12027 case bfd_mach_mips4650:
12028 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12029 break;
12030
00707a0e
RS
12031 case bfd_mach_mips5400:
12032 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12033 break;
12034
12035 case bfd_mach_mips5500:
12036 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12037 break;
12038
e407c74b
NC
12039 case bfd_mach_mips5900:
12040 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12041 break;
12042
0d2e43ed
ILT
12043 case bfd_mach_mips9000:
12044 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12045 break;
12046
b49e97c9 12047 case bfd_mach_mips5000:
5a7ea749 12048 case bfd_mach_mips7000:
b49e97c9
TS
12049 case bfd_mach_mips8000:
12050 case bfd_mach_mips10000:
12051 case bfd_mach_mips12000:
3aa3176b
TS
12052 case bfd_mach_mips14000:
12053 case bfd_mach_mips16000:
b49e97c9
TS
12054 val = E_MIPS_ARCH_4;
12055 break;
12056
12057 case bfd_mach_mips5:
12058 val = E_MIPS_ARCH_5;
12059 break;
12060
350cc38d
MS
12061 case bfd_mach_mips_loongson_2e:
12062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12063 break;
12064
12065 case bfd_mach_mips_loongson_2f:
12066 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12067 break;
12068
b49e97c9
TS
12069 case bfd_mach_mips_sb1:
12070 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12071 break;
12072
d051516a 12073 case bfd_mach_mips_loongson_3a:
4ba154f5 12074 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
12075 break;
12076
6f179bd0 12077 case bfd_mach_mips_octeon:
dd6a37e7 12078 case bfd_mach_mips_octeonp:
6f179bd0
AN
12079 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12080 break;
12081
2c629856
N
12082 case bfd_mach_mips_octeon3:
12083 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12084 break;
12085
52b6b6b9
JM
12086 case bfd_mach_mips_xlr:
12087 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12088 break;
12089
432233b3
AP
12090 case bfd_mach_mips_octeon2:
12091 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12092 break;
12093
b49e97c9
TS
12094 case bfd_mach_mipsisa32:
12095 val = E_MIPS_ARCH_32;
12096 break;
12097
12098 case bfd_mach_mipsisa64:
12099 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12100 break;
12101
12102 case bfd_mach_mipsisa32r2:
ae52f483
AB
12103 case bfd_mach_mipsisa32r3:
12104 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12105 val = E_MIPS_ARCH_32R2;
12106 break;
5f74bc13
CD
12107
12108 case bfd_mach_mipsisa64r2:
ae52f483
AB
12109 case bfd_mach_mipsisa64r3:
12110 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12111 val = E_MIPS_ARCH_64R2;
12112 break;
7361da2c
AB
12113
12114 case bfd_mach_mipsisa32r6:
12115 val = E_MIPS_ARCH_32R6;
12116 break;
12117
12118 case bfd_mach_mipsisa64r6:
12119 val = E_MIPS_ARCH_64R6;
12120 break;
b49e97c9 12121 }
b49e97c9
TS
12122 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12123 elf_elfheader (abfd)->e_flags |= val;
12124
64543e1a
RS
12125}
12126
12127
28dbcedc
AM
12128/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12129 Don't do so for code sections. We want to keep ordering of HI16/LO16
12130 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12131 relocs to be sorted. */
12132
12133bfd_boolean
12134_bfd_mips_elf_sort_relocs_p (asection *sec)
12135{
12136 return (sec->flags & SEC_CODE) == 0;
12137}
12138
12139
64543e1a
RS
12140/* The final processing done just before writing out a MIPS ELF object
12141 file. This gets the MIPS architecture right based on the machine
12142 number. This is used by both the 32-bit and the 64-bit ABI. */
12143
12144void
9719ad41
RS
12145_bfd_mips_elf_final_write_processing (bfd *abfd,
12146 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12147{
12148 unsigned int i;
12149 Elf_Internal_Shdr **hdrpp;
12150 const char *name;
12151 asection *sec;
12152
12153 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12154 is nonzero. This is for compatibility with old objects, which used
12155 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12156 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12157 mips_set_isa_flags (abfd);
12158
b49e97c9
TS
12159 /* Set the sh_info field for .gptab sections and other appropriate
12160 info for each special section. */
12161 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12162 i < elf_numsections (abfd);
12163 i++, hdrpp++)
12164 {
12165 switch ((*hdrpp)->sh_type)
12166 {
12167 case SHT_MIPS_MSYM:
12168 case SHT_MIPS_LIBLIST:
12169 sec = bfd_get_section_by_name (abfd, ".dynstr");
12170 if (sec != NULL)
12171 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12172 break;
12173
12174 case SHT_MIPS_GPTAB:
12175 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12176 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12177 BFD_ASSERT (name != NULL
0112cd26 12178 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12179 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12180 BFD_ASSERT (sec != NULL);
12181 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12182 break;
12183
12184 case SHT_MIPS_CONTENT:
12185 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12186 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12187 BFD_ASSERT (name != NULL
0112cd26 12188 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12189 sec = bfd_get_section_by_name (abfd,
12190 name + sizeof ".MIPS.content" - 1);
12191 BFD_ASSERT (sec != NULL);
12192 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12193 break;
12194
12195 case SHT_MIPS_SYMBOL_LIB:
12196 sec = bfd_get_section_by_name (abfd, ".dynsym");
12197 if (sec != NULL)
12198 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12199 sec = bfd_get_section_by_name (abfd, ".liblist");
12200 if (sec != NULL)
12201 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12202 break;
12203
12204 case SHT_MIPS_EVENTS:
12205 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12206 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12207 BFD_ASSERT (name != NULL);
0112cd26 12208 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12209 sec = bfd_get_section_by_name (abfd,
12210 name + sizeof ".MIPS.events" - 1);
12211 else
12212 {
0112cd26 12213 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12214 sec = bfd_get_section_by_name (abfd,
12215 (name
12216 + sizeof ".MIPS.post_rel" - 1));
12217 }
12218 BFD_ASSERT (sec != NULL);
12219 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12220 break;
12221
12222 }
12223 }
12224}
12225\f
8dc1a139 12226/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12227 segments. */
12228
12229int
a6b96beb
AM
12230_bfd_mips_elf_additional_program_headers (bfd *abfd,
12231 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12232{
12233 asection *s;
12234 int ret = 0;
12235
12236 /* See if we need a PT_MIPS_REGINFO segment. */
12237 s = bfd_get_section_by_name (abfd, ".reginfo");
12238 if (s && (s->flags & SEC_LOAD))
12239 ++ret;
12240
351cdf24
MF
12241 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12242 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12243 ++ret;
12244
b49e97c9
TS
12245 /* See if we need a PT_MIPS_OPTIONS segment. */
12246 if (IRIX_COMPAT (abfd) == ict_irix6
12247 && bfd_get_section_by_name (abfd,
12248 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12249 ++ret;
12250
12251 /* See if we need a PT_MIPS_RTPROC segment. */
12252 if (IRIX_COMPAT (abfd) == ict_irix5
12253 && bfd_get_section_by_name (abfd, ".dynamic")
12254 && bfd_get_section_by_name (abfd, ".mdebug"))
12255 ++ret;
12256
98c904a8
RS
12257 /* Allocate a PT_NULL header in dynamic objects. See
12258 _bfd_mips_elf_modify_segment_map for details. */
12259 if (!SGI_COMPAT (abfd)
12260 && bfd_get_section_by_name (abfd, ".dynamic"))
12261 ++ret;
12262
b49e97c9
TS
12263 return ret;
12264}
12265
8dc1a139 12266/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12267
b34976b6 12268bfd_boolean
9719ad41 12269_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12270 struct bfd_link_info *info)
b49e97c9
TS
12271{
12272 asection *s;
12273 struct elf_segment_map *m, **pm;
12274 bfd_size_type amt;
12275
12276 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12277 segment. */
12278 s = bfd_get_section_by_name (abfd, ".reginfo");
12279 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12280 {
12bd6957 12281 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12282 if (m->p_type == PT_MIPS_REGINFO)
12283 break;
12284 if (m == NULL)
12285 {
12286 amt = sizeof *m;
9719ad41 12287 m = bfd_zalloc (abfd, amt);
b49e97c9 12288 if (m == NULL)
b34976b6 12289 return FALSE;
b49e97c9
TS
12290
12291 m->p_type = PT_MIPS_REGINFO;
12292 m->count = 1;
12293 m->sections[0] = s;
12294
12295 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12296 pm = &elf_seg_map (abfd);
b49e97c9
TS
12297 while (*pm != NULL
12298 && ((*pm)->p_type == PT_PHDR
12299 || (*pm)->p_type == PT_INTERP))
12300 pm = &(*pm)->next;
12301
12302 m->next = *pm;
12303 *pm = m;
12304 }
12305 }
12306
351cdf24
MF
12307 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12308 segment. */
12309 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12310 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12311 {
12312 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12313 if (m->p_type == PT_MIPS_ABIFLAGS)
12314 break;
12315 if (m == NULL)
12316 {
12317 amt = sizeof *m;
12318 m = bfd_zalloc (abfd, amt);
12319 if (m == NULL)
12320 return FALSE;
12321
12322 m->p_type = PT_MIPS_ABIFLAGS;
12323 m->count = 1;
12324 m->sections[0] = s;
12325
12326 /* We want to put it after the PHDR and INTERP segments. */
12327 pm = &elf_seg_map (abfd);
12328 while (*pm != NULL
12329 && ((*pm)->p_type == PT_PHDR
12330 || (*pm)->p_type == PT_INTERP))
12331 pm = &(*pm)->next;
12332
12333 m->next = *pm;
12334 *pm = m;
12335 }
12336 }
12337
b49e97c9
TS
12338 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12339 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12340 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12341 table. */
c1fd6598
AO
12342 if (NEWABI_P (abfd)
12343 /* On non-IRIX6 new abi, we'll have already created a segment
12344 for this section, so don't create another. I'm not sure this
12345 is not also the case for IRIX 6, but I can't test it right
12346 now. */
12347 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12348 {
12349 for (s = abfd->sections; s; s = s->next)
12350 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12351 break;
12352
12353 if (s)
12354 {
12355 struct elf_segment_map *options_segment;
12356
12bd6957 12357 pm = &elf_seg_map (abfd);
98a8deaf
RS
12358 while (*pm != NULL
12359 && ((*pm)->p_type == PT_PHDR
12360 || (*pm)->p_type == PT_INTERP))
12361 pm = &(*pm)->next;
b49e97c9 12362
8ded5a0f
AM
12363 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12364 {
12365 amt = sizeof (struct elf_segment_map);
12366 options_segment = bfd_zalloc (abfd, amt);
12367 options_segment->next = *pm;
12368 options_segment->p_type = PT_MIPS_OPTIONS;
12369 options_segment->p_flags = PF_R;
12370 options_segment->p_flags_valid = TRUE;
12371 options_segment->count = 1;
12372 options_segment->sections[0] = s;
12373 *pm = options_segment;
12374 }
b49e97c9
TS
12375 }
12376 }
12377 else
12378 {
12379 if (IRIX_COMPAT (abfd) == ict_irix5)
12380 {
12381 /* If there are .dynamic and .mdebug sections, we make a room
12382 for the RTPROC header. FIXME: Rewrite without section names. */
12383 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12384 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12385 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12386 {
12bd6957 12387 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12388 if (m->p_type == PT_MIPS_RTPROC)
12389 break;
12390 if (m == NULL)
12391 {
12392 amt = sizeof *m;
9719ad41 12393 m = bfd_zalloc (abfd, amt);
b49e97c9 12394 if (m == NULL)
b34976b6 12395 return FALSE;
b49e97c9
TS
12396
12397 m->p_type = PT_MIPS_RTPROC;
12398
12399 s = bfd_get_section_by_name (abfd, ".rtproc");
12400 if (s == NULL)
12401 {
12402 m->count = 0;
12403 m->p_flags = 0;
12404 m->p_flags_valid = 1;
12405 }
12406 else
12407 {
12408 m->count = 1;
12409 m->sections[0] = s;
12410 }
12411
12412 /* We want to put it after the DYNAMIC segment. */
12bd6957 12413 pm = &elf_seg_map (abfd);
b49e97c9
TS
12414 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12415 pm = &(*pm)->next;
12416 if (*pm != NULL)
12417 pm = &(*pm)->next;
12418
12419 m->next = *pm;
12420 *pm = m;
12421 }
12422 }
12423 }
8dc1a139 12424 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12425 .dynstr, .dynsym, and .hash sections, and everything in
12426 between. */
12bd6957 12427 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12428 pm = &(*pm)->next)
12429 if ((*pm)->p_type == PT_DYNAMIC)
12430 break;
12431 m = *pm;
f6f62d6f
RS
12432 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12433 glibc's dynamic linker has traditionally derived the number of
12434 tags from the p_filesz field, and sometimes allocates stack
12435 arrays of that size. An overly-big PT_DYNAMIC segment can
12436 be actively harmful in such cases. Making PT_DYNAMIC contain
12437 other sections can also make life hard for the prelinker,
12438 which might move one of the other sections to a different
12439 PT_LOAD segment. */
12440 if (SGI_COMPAT (abfd)
12441 && m != NULL
12442 && m->count == 1
12443 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12444 {
12445 static const char *sec_names[] =
12446 {
12447 ".dynamic", ".dynstr", ".dynsym", ".hash"
12448 };
12449 bfd_vma low, high;
12450 unsigned int i, c;
12451 struct elf_segment_map *n;
12452
792b4a53 12453 low = ~(bfd_vma) 0;
b49e97c9
TS
12454 high = 0;
12455 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12456 {
12457 s = bfd_get_section_by_name (abfd, sec_names[i]);
12458 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12459 {
12460 bfd_size_type sz;
12461
12462 if (low > s->vma)
12463 low = s->vma;
eea6121a 12464 sz = s->size;
b49e97c9
TS
12465 if (high < s->vma + sz)
12466 high = s->vma + sz;
12467 }
12468 }
12469
12470 c = 0;
12471 for (s = abfd->sections; s != NULL; s = s->next)
12472 if ((s->flags & SEC_LOAD) != 0
12473 && s->vma >= low
eea6121a 12474 && s->vma + s->size <= high)
b49e97c9
TS
12475 ++c;
12476
12477 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12478 n = bfd_zalloc (abfd, amt);
b49e97c9 12479 if (n == NULL)
b34976b6 12480 return FALSE;
b49e97c9
TS
12481 *n = *m;
12482 n->count = c;
12483
12484 i = 0;
12485 for (s = abfd->sections; s != NULL; s = s->next)
12486 {
12487 if ((s->flags & SEC_LOAD) != 0
12488 && s->vma >= low
eea6121a 12489 && s->vma + s->size <= high)
b49e97c9
TS
12490 {
12491 n->sections[i] = s;
12492 ++i;
12493 }
12494 }
12495
12496 *pm = n;
12497 }
12498 }
12499
98c904a8
RS
12500 /* Allocate a spare program header in dynamic objects so that tools
12501 like the prelinker can add an extra PT_LOAD entry.
12502
12503 If the prelinker needs to make room for a new PT_LOAD entry, its
12504 standard procedure is to move the first (read-only) sections into
12505 the new (writable) segment. However, the MIPS ABI requires
12506 .dynamic to be in a read-only segment, and the section will often
12507 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12508
12509 Although the prelinker could in principle move .dynamic to a
12510 writable segment, it seems better to allocate a spare program
12511 header instead, and avoid the need to move any sections.
12512 There is a long tradition of allocating spare dynamic tags,
12513 so allocating a spare program header seems like a natural
7c8b76cc
JM
12514 extension.
12515
12516 If INFO is NULL, we may be copying an already prelinked binary
12517 with objcopy or strip, so do not add this header. */
12518 if (info != NULL
12519 && !SGI_COMPAT (abfd)
98c904a8
RS
12520 && bfd_get_section_by_name (abfd, ".dynamic"))
12521 {
12bd6957 12522 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12523 if ((*pm)->p_type == PT_NULL)
12524 break;
12525 if (*pm == NULL)
12526 {
12527 m = bfd_zalloc (abfd, sizeof (*m));
12528 if (m == NULL)
12529 return FALSE;
12530
12531 m->p_type = PT_NULL;
12532 *pm = m;
12533 }
12534 }
12535
b34976b6 12536 return TRUE;
b49e97c9
TS
12537}
12538\f
12539/* Return the section that should be marked against GC for a given
12540 relocation. */
12541
12542asection *
9719ad41 12543_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12544 struct bfd_link_info *info,
9719ad41
RS
12545 Elf_Internal_Rela *rel,
12546 struct elf_link_hash_entry *h,
12547 Elf_Internal_Sym *sym)
b49e97c9
TS
12548{
12549 /* ??? Do mips16 stub sections need to be handled special? */
12550
12551 if (h != NULL)
07adf181
AM
12552 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12553 {
12554 case R_MIPS_GNU_VTINHERIT:
12555 case R_MIPS_GNU_VTENTRY:
12556 return NULL;
12557 }
b49e97c9 12558
07adf181 12559 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12560}
12561
12562/* Update the got entry reference counts for the section being removed. */
12563
b34976b6 12564bfd_boolean
9719ad41
RS
12565_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12566 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12567 asection *sec ATTRIBUTE_UNUSED,
12568 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12569{
12570#if 0
12571 Elf_Internal_Shdr *symtab_hdr;
12572 struct elf_link_hash_entry **sym_hashes;
12573 bfd_signed_vma *local_got_refcounts;
12574 const Elf_Internal_Rela *rel, *relend;
12575 unsigned long r_symndx;
12576 struct elf_link_hash_entry *h;
12577
0e1862bb 12578 if (bfd_link_relocatable (info))
7dda2462
TG
12579 return TRUE;
12580
b49e97c9
TS
12581 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12582 sym_hashes = elf_sym_hashes (abfd);
12583 local_got_refcounts = elf_local_got_refcounts (abfd);
12584
12585 relend = relocs + sec->reloc_count;
12586 for (rel = relocs; rel < relend; rel++)
12587 switch (ELF_R_TYPE (abfd, rel->r_info))
12588 {
738e5348
RS
12589 case R_MIPS16_GOT16:
12590 case R_MIPS16_CALL16:
b49e97c9
TS
12591 case R_MIPS_GOT16:
12592 case R_MIPS_CALL16:
12593 case R_MIPS_CALL_HI16:
12594 case R_MIPS_CALL_LO16:
12595 case R_MIPS_GOT_HI16:
12596 case R_MIPS_GOT_LO16:
4a14403c
TS
12597 case R_MIPS_GOT_DISP:
12598 case R_MIPS_GOT_PAGE:
12599 case R_MIPS_GOT_OFST:
df58fc94
RS
12600 case R_MICROMIPS_GOT16:
12601 case R_MICROMIPS_CALL16:
12602 case R_MICROMIPS_CALL_HI16:
12603 case R_MICROMIPS_CALL_LO16:
12604 case R_MICROMIPS_GOT_HI16:
12605 case R_MICROMIPS_GOT_LO16:
12606 case R_MICROMIPS_GOT_DISP:
12607 case R_MICROMIPS_GOT_PAGE:
12608 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12609 /* ??? It would seem that the existing MIPS code does no sort
12610 of reference counting or whatnot on its GOT and PLT entries,
12611 so it is not possible to garbage collect them at this time. */
12612 break;
12613
12614 default:
12615 break;
12616 }
12617#endif
12618
b34976b6 12619 return TRUE;
b49e97c9 12620}
351cdf24
MF
12621
12622/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12623
12624bfd_boolean
12625_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12626 elf_gc_mark_hook_fn gc_mark_hook)
12627{
12628 bfd *sub;
12629
12630 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12631
12632 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12633 {
12634 asection *o;
12635
12636 if (! is_mips_elf (sub))
12637 continue;
12638
12639 for (o = sub->sections; o != NULL; o = o->next)
12640 if (!o->gc_mark
12641 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12642 (bfd_get_section_name (sub, o)))
12643 {
12644 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12645 return FALSE;
12646 }
12647 }
12648
12649 return TRUE;
12650}
b49e97c9
TS
12651\f
12652/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12653 hiding the old indirect symbol. Process additional relocation
12654 information. Also called for weakdefs, in which case we just let
12655 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12656
12657void
fcfa13d2 12658_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12659 struct elf_link_hash_entry *dir,
12660 struct elf_link_hash_entry *ind)
b49e97c9
TS
12661{
12662 struct mips_elf_link_hash_entry *dirmips, *indmips;
12663
fcfa13d2 12664 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12665
861fb55a
DJ
12666 dirmips = (struct mips_elf_link_hash_entry *) dir;
12667 indmips = (struct mips_elf_link_hash_entry *) ind;
12668 /* Any absolute non-dynamic relocations against an indirect or weak
12669 definition will be against the target symbol. */
12670 if (indmips->has_static_relocs)
12671 dirmips->has_static_relocs = TRUE;
12672
b49e97c9
TS
12673 if (ind->root.type != bfd_link_hash_indirect)
12674 return;
12675
b49e97c9
TS
12676 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12677 if (indmips->readonly_reloc)
b34976b6 12678 dirmips->readonly_reloc = TRUE;
b49e97c9 12679 if (indmips->no_fn_stub)
b34976b6 12680 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12681 if (indmips->fn_stub)
12682 {
12683 dirmips->fn_stub = indmips->fn_stub;
12684 indmips->fn_stub = NULL;
12685 }
12686 if (indmips->need_fn_stub)
12687 {
12688 dirmips->need_fn_stub = TRUE;
12689 indmips->need_fn_stub = FALSE;
12690 }
12691 if (indmips->call_stub)
12692 {
12693 dirmips->call_stub = indmips->call_stub;
12694 indmips->call_stub = NULL;
12695 }
12696 if (indmips->call_fp_stub)
12697 {
12698 dirmips->call_fp_stub = indmips->call_fp_stub;
12699 indmips->call_fp_stub = NULL;
12700 }
634835ae
RS
12701 if (indmips->global_got_area < dirmips->global_got_area)
12702 dirmips->global_got_area = indmips->global_got_area;
12703 if (indmips->global_got_area < GGA_NONE)
12704 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12705 if (indmips->has_nonpic_branches)
12706 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12707}
b49e97c9 12708\f
d01414a5
TS
12709#define PDR_SIZE 32
12710
b34976b6 12711bfd_boolean
9719ad41
RS
12712_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12713 struct bfd_link_info *info)
d01414a5
TS
12714{
12715 asection *o;
b34976b6 12716 bfd_boolean ret = FALSE;
d01414a5
TS
12717 unsigned char *tdata;
12718 size_t i, skip;
12719
12720 o = bfd_get_section_by_name (abfd, ".pdr");
12721 if (! o)
b34976b6 12722 return FALSE;
eea6121a 12723 if (o->size == 0)
b34976b6 12724 return FALSE;
eea6121a 12725 if (o->size % PDR_SIZE != 0)
b34976b6 12726 return FALSE;
d01414a5
TS
12727 if (o->output_section != NULL
12728 && bfd_is_abs_section (o->output_section))
b34976b6 12729 return FALSE;
d01414a5 12730
eea6121a 12731 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12732 if (! tdata)
b34976b6 12733 return FALSE;
d01414a5 12734
9719ad41 12735 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12736 info->keep_memory);
d01414a5
TS
12737 if (!cookie->rels)
12738 {
12739 free (tdata);
b34976b6 12740 return FALSE;
d01414a5
TS
12741 }
12742
12743 cookie->rel = cookie->rels;
12744 cookie->relend = cookie->rels + o->reloc_count;
12745
eea6121a 12746 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12747 {
c152c796 12748 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12749 {
12750 tdata[i] = 1;
12751 skip ++;
12752 }
12753 }
12754
12755 if (skip != 0)
12756 {
f0abc2a1 12757 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12758 if (o->rawsize == 0)
12759 o->rawsize = o->size;
eea6121a 12760 o->size -= skip * PDR_SIZE;
b34976b6 12761 ret = TRUE;
d01414a5
TS
12762 }
12763 else
12764 free (tdata);
12765
12766 if (! info->keep_memory)
12767 free (cookie->rels);
12768
12769 return ret;
12770}
12771
b34976b6 12772bfd_boolean
9719ad41 12773_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12774{
12775 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12776 return TRUE;
12777 return FALSE;
53bfd6b4 12778}
d01414a5 12779
b34976b6 12780bfd_boolean
c7b8f16e
JB
12781_bfd_mips_elf_write_section (bfd *output_bfd,
12782 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12783 asection *sec, bfd_byte *contents)
d01414a5
TS
12784{
12785 bfd_byte *to, *from, *end;
12786 int i;
12787
12788 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12789 return FALSE;
d01414a5 12790
f0abc2a1 12791 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12792 return FALSE;
d01414a5
TS
12793
12794 to = contents;
eea6121a 12795 end = contents + sec->size;
d01414a5
TS
12796 for (from = contents, i = 0;
12797 from < end;
12798 from += PDR_SIZE, i++)
12799 {
f0abc2a1 12800 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12801 continue;
12802 if (to != from)
12803 memcpy (to, from, PDR_SIZE);
12804 to += PDR_SIZE;
12805 }
12806 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12807 sec->output_offset, sec->size);
b34976b6 12808 return TRUE;
d01414a5 12809}
53bfd6b4 12810\f
df58fc94
RS
12811/* microMIPS code retains local labels for linker relaxation. Omit them
12812 from output by default for clarity. */
12813
12814bfd_boolean
12815_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12816{
12817 return _bfd_elf_is_local_label_name (abfd, sym->name);
12818}
12819
b49e97c9
TS
12820/* MIPS ELF uses a special find_nearest_line routine in order the
12821 handle the ECOFF debugging information. */
12822
12823struct mips_elf_find_line
12824{
12825 struct ecoff_debug_info d;
12826 struct ecoff_find_line i;
12827};
12828
b34976b6 12829bfd_boolean
fb167eb2
AM
12830_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12831 asection *section, bfd_vma offset,
9719ad41
RS
12832 const char **filename_ptr,
12833 const char **functionname_ptr,
fb167eb2
AM
12834 unsigned int *line_ptr,
12835 unsigned int *discriminator_ptr)
b49e97c9
TS
12836{
12837 asection *msec;
12838
fb167eb2 12839 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12840 filename_ptr, functionname_ptr,
fb167eb2
AM
12841 line_ptr, discriminator_ptr,
12842 dwarf_debug_sections,
12843 ABI_64_P (abfd) ? 8 : 0,
12844 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12845 return TRUE;
b49e97c9 12846
fb167eb2 12847 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12848 filename_ptr, functionname_ptr,
fb167eb2 12849 line_ptr))
b34976b6 12850 return TRUE;
b49e97c9
TS
12851
12852 msec = bfd_get_section_by_name (abfd, ".mdebug");
12853 if (msec != NULL)
12854 {
12855 flagword origflags;
12856 struct mips_elf_find_line *fi;
12857 const struct ecoff_debug_swap * const swap =
12858 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12859
12860 /* If we are called during a link, mips_elf_final_link may have
12861 cleared the SEC_HAS_CONTENTS field. We force it back on here
12862 if appropriate (which it normally will be). */
12863 origflags = msec->flags;
12864 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12865 msec->flags |= SEC_HAS_CONTENTS;
12866
698600e4 12867 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12868 if (fi == NULL)
12869 {
12870 bfd_size_type external_fdr_size;
12871 char *fraw_src;
12872 char *fraw_end;
12873 struct fdr *fdr_ptr;
12874 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12875
9719ad41 12876 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12877 if (fi == NULL)
12878 {
12879 msec->flags = origflags;
b34976b6 12880 return FALSE;
b49e97c9
TS
12881 }
12882
12883 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12884 {
12885 msec->flags = origflags;
b34976b6 12886 return FALSE;
b49e97c9
TS
12887 }
12888
12889 /* Swap in the FDR information. */
12890 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12891 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12892 if (fi->d.fdr == NULL)
12893 {
12894 msec->flags = origflags;
b34976b6 12895 return FALSE;
b49e97c9
TS
12896 }
12897 external_fdr_size = swap->external_fdr_size;
12898 fdr_ptr = fi->d.fdr;
12899 fraw_src = (char *) fi->d.external_fdr;
12900 fraw_end = (fraw_src
12901 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12902 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12903 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12904
698600e4 12905 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12906
12907 /* Note that we don't bother to ever free this information.
12908 find_nearest_line is either called all the time, as in
12909 objdump -l, so the information should be saved, or it is
12910 rarely called, as in ld error messages, so the memory
12911 wasted is unimportant. Still, it would probably be a
12912 good idea for free_cached_info to throw it away. */
12913 }
12914
12915 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12916 &fi->i, filename_ptr, functionname_ptr,
12917 line_ptr))
12918 {
12919 msec->flags = origflags;
b34976b6 12920 return TRUE;
b49e97c9
TS
12921 }
12922
12923 msec->flags = origflags;
12924 }
12925
12926 /* Fall back on the generic ELF find_nearest_line routine. */
12927
fb167eb2 12928 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12929 filename_ptr, functionname_ptr,
fb167eb2 12930 line_ptr, discriminator_ptr);
b49e97c9 12931}
4ab527b0
FF
12932
12933bfd_boolean
12934_bfd_mips_elf_find_inliner_info (bfd *abfd,
12935 const char **filename_ptr,
12936 const char **functionname_ptr,
12937 unsigned int *line_ptr)
12938{
12939 bfd_boolean found;
12940 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12941 functionname_ptr, line_ptr,
12942 & elf_tdata (abfd)->dwarf2_find_line_info);
12943 return found;
12944}
12945
b49e97c9
TS
12946\f
12947/* When are writing out the .options or .MIPS.options section,
12948 remember the bytes we are writing out, so that we can install the
12949 GP value in the section_processing routine. */
12950
b34976b6 12951bfd_boolean
9719ad41
RS
12952_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12953 const void *location,
12954 file_ptr offset, bfd_size_type count)
b49e97c9 12955{
cc2e31b9 12956 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12957 {
12958 bfd_byte *c;
12959
12960 if (elf_section_data (section) == NULL)
12961 {
12962 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12963 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12964 if (elf_section_data (section) == NULL)
b34976b6 12965 return FALSE;
b49e97c9 12966 }
f0abc2a1 12967 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12968 if (c == NULL)
12969 {
eea6121a 12970 c = bfd_zalloc (abfd, section->size);
b49e97c9 12971 if (c == NULL)
b34976b6 12972 return FALSE;
f0abc2a1 12973 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12974 }
12975
9719ad41 12976 memcpy (c + offset, location, count);
b49e97c9
TS
12977 }
12978
12979 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12980 count);
12981}
12982
12983/* This is almost identical to bfd_generic_get_... except that some
12984 MIPS relocations need to be handled specially. Sigh. */
12985
12986bfd_byte *
9719ad41
RS
12987_bfd_elf_mips_get_relocated_section_contents
12988 (bfd *abfd,
12989 struct bfd_link_info *link_info,
12990 struct bfd_link_order *link_order,
12991 bfd_byte *data,
12992 bfd_boolean relocatable,
12993 asymbol **symbols)
b49e97c9
TS
12994{
12995 /* Get enough memory to hold the stuff */
12996 bfd *input_bfd = link_order->u.indirect.section->owner;
12997 asection *input_section = link_order->u.indirect.section;
eea6121a 12998 bfd_size_type sz;
b49e97c9
TS
12999
13000 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13001 arelent **reloc_vector = NULL;
13002 long reloc_count;
13003
13004 if (reloc_size < 0)
13005 goto error_return;
13006
9719ad41 13007 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13008 if (reloc_vector == NULL && reloc_size != 0)
13009 goto error_return;
13010
13011 /* read in the section */
eea6121a
AM
13012 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13013 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13014 goto error_return;
13015
b49e97c9
TS
13016 reloc_count = bfd_canonicalize_reloc (input_bfd,
13017 input_section,
13018 reloc_vector,
13019 symbols);
13020 if (reloc_count < 0)
13021 goto error_return;
13022
13023 if (reloc_count > 0)
13024 {
13025 arelent **parent;
13026 /* for mips */
13027 int gp_found;
13028 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13029
13030 {
13031 struct bfd_hash_entry *h;
13032 struct bfd_link_hash_entry *lh;
13033 /* Skip all this stuff if we aren't mixing formats. */
13034 if (abfd && input_bfd
13035 && abfd->xvec == input_bfd->xvec)
13036 lh = 0;
13037 else
13038 {
b34976b6 13039 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13040 lh = (struct bfd_link_hash_entry *) h;
13041 }
13042 lookup:
13043 if (lh)
13044 {
13045 switch (lh->type)
13046 {
13047 case bfd_link_hash_undefined:
13048 case bfd_link_hash_undefweak:
13049 case bfd_link_hash_common:
13050 gp_found = 0;
13051 break;
13052 case bfd_link_hash_defined:
13053 case bfd_link_hash_defweak:
13054 gp_found = 1;
13055 gp = lh->u.def.value;
13056 break;
13057 case bfd_link_hash_indirect:
13058 case bfd_link_hash_warning:
13059 lh = lh->u.i.link;
13060 /* @@FIXME ignoring warning for now */
13061 goto lookup;
13062 case bfd_link_hash_new:
13063 default:
13064 abort ();
13065 }
13066 }
13067 else
13068 gp_found = 0;
13069 }
13070 /* end mips */
9719ad41 13071 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13072 {
9719ad41 13073 char *error_message = NULL;
b49e97c9
TS
13074 bfd_reloc_status_type r;
13075
13076 /* Specific to MIPS: Deal with relocation types that require
13077 knowing the gp of the output bfd. */
13078 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13079
8236346f
EC
13080 /* If we've managed to find the gp and have a special
13081 function for the relocation then go ahead, else default
13082 to the generic handling. */
13083 if (gp_found
13084 && (*parent)->howto->special_function
13085 == _bfd_mips_elf32_gprel16_reloc)
13086 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13087 input_section, relocatable,
13088 data, gp);
13089 else
86324f90 13090 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13091 input_section,
13092 relocatable ? abfd : NULL,
13093 &error_message);
b49e97c9 13094
1049f94e 13095 if (relocatable)
b49e97c9
TS
13096 {
13097 asection *os = input_section->output_section;
13098
13099 /* A partial link, so keep the relocs */
13100 os->orelocation[os->reloc_count] = *parent;
13101 os->reloc_count++;
13102 }
13103
13104 if (r != bfd_reloc_ok)
13105 {
13106 switch (r)
13107 {
13108 case bfd_reloc_undefined:
1a72702b
AM
13109 (*link_info->callbacks->undefined_symbol)
13110 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13111 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13112 break;
13113 case bfd_reloc_dangerous:
9719ad41 13114 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13115 (*link_info->callbacks->reloc_dangerous)
13116 (link_info, error_message,
13117 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13118 break;
13119 case bfd_reloc_overflow:
1a72702b
AM
13120 (*link_info->callbacks->reloc_overflow)
13121 (link_info, NULL,
13122 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13123 (*parent)->howto->name, (*parent)->addend,
13124 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13125 break;
13126 case bfd_reloc_outofrange:
13127 default:
13128 abort ();
13129 break;
13130 }
13131
13132 }
13133 }
13134 }
13135 if (reloc_vector != NULL)
13136 free (reloc_vector);
13137 return data;
13138
13139error_return:
13140 if (reloc_vector != NULL)
13141 free (reloc_vector);
13142 return NULL;
13143}
13144\f
df58fc94
RS
13145static bfd_boolean
13146mips_elf_relax_delete_bytes (bfd *abfd,
13147 asection *sec, bfd_vma addr, int count)
13148{
13149 Elf_Internal_Shdr *symtab_hdr;
13150 unsigned int sec_shndx;
13151 bfd_byte *contents;
13152 Elf_Internal_Rela *irel, *irelend;
13153 Elf_Internal_Sym *isym;
13154 Elf_Internal_Sym *isymend;
13155 struct elf_link_hash_entry **sym_hashes;
13156 struct elf_link_hash_entry **end_hashes;
13157 struct elf_link_hash_entry **start_hashes;
13158 unsigned int symcount;
13159
13160 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13161 contents = elf_section_data (sec)->this_hdr.contents;
13162
13163 irel = elf_section_data (sec)->relocs;
13164 irelend = irel + sec->reloc_count;
13165
13166 /* Actually delete the bytes. */
13167 memmove (contents + addr, contents + addr + count,
13168 (size_t) (sec->size - addr - count));
13169 sec->size -= count;
13170
13171 /* Adjust all the relocs. */
13172 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13173 {
13174 /* Get the new reloc address. */
13175 if (irel->r_offset > addr)
13176 irel->r_offset -= count;
13177 }
13178
13179 BFD_ASSERT (addr % 2 == 0);
13180 BFD_ASSERT (count % 2 == 0);
13181
13182 /* Adjust the local symbols defined in this section. */
13183 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13184 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13185 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13186 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13187 isym->st_value -= count;
13188
13189 /* Now adjust the global symbols defined in this section. */
13190 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13191 - symtab_hdr->sh_info);
13192 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13193 end_hashes = sym_hashes + symcount;
13194
13195 for (; sym_hashes < end_hashes; sym_hashes++)
13196 {
13197 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13198
13199 if ((sym_hash->root.type == bfd_link_hash_defined
13200 || sym_hash->root.type == bfd_link_hash_defweak)
13201 && sym_hash->root.u.def.section == sec)
13202 {
2309ddf2 13203 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13204
df58fc94
RS
13205 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13206 value &= MINUS_TWO;
13207 if (value > addr)
13208 sym_hash->root.u.def.value -= count;
13209 }
13210 }
13211
13212 return TRUE;
13213}
13214
13215
13216/* Opcodes needed for microMIPS relaxation as found in
13217 opcodes/micromips-opc.c. */
13218
13219struct opcode_descriptor {
13220 unsigned long match;
13221 unsigned long mask;
13222};
13223
13224/* The $ra register aka $31. */
13225
13226#define RA 31
13227
13228/* 32-bit instruction format register fields. */
13229
13230#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13231#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13232
13233/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13234
13235#define OP16_VALID_REG(r) \
13236 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13237
13238
13239/* 32-bit and 16-bit branches. */
13240
13241static const struct opcode_descriptor b_insns_32[] = {
13242 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13243 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13244 { 0, 0 } /* End marker for find_match(). */
13245};
13246
13247static const struct opcode_descriptor bc_insn_32 =
13248 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13249
13250static const struct opcode_descriptor bz_insn_32 =
13251 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13252
13253static const struct opcode_descriptor bzal_insn_32 =
13254 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13255
13256static const struct opcode_descriptor beq_insn_32 =
13257 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13258
13259static const struct opcode_descriptor b_insn_16 =
13260 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13261
13262static const struct opcode_descriptor bz_insn_16 =
c088dedf 13263 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13264
13265
13266/* 32-bit and 16-bit branch EQ and NE zero. */
13267
13268/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13269 eq and second the ne. This convention is used when replacing a
13270 32-bit BEQ/BNE with the 16-bit version. */
13271
13272#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13273
13274static const struct opcode_descriptor bz_rs_insns_32[] = {
13275 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13276 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13277 { 0, 0 } /* End marker for find_match(). */
13278};
13279
13280static const struct opcode_descriptor bz_rt_insns_32[] = {
13281 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13282 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13283 { 0, 0 } /* End marker for find_match(). */
13284};
13285
13286static const struct opcode_descriptor bzc_insns_32[] = {
13287 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13288 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13289 { 0, 0 } /* End marker for find_match(). */
13290};
13291
13292static const struct opcode_descriptor bz_insns_16[] = {
13293 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13294 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13295 { 0, 0 } /* End marker for find_match(). */
13296};
13297
13298/* Switch between a 5-bit register index and its 3-bit shorthand. */
13299
e67f83e5 13300#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13301#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13302
13303
13304/* 32-bit instructions with a delay slot. */
13305
13306static const struct opcode_descriptor jal_insn_32_bd16 =
13307 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13308
13309static const struct opcode_descriptor jal_insn_32_bd32 =
13310 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13311
13312static const struct opcode_descriptor jal_x_insn_32_bd32 =
13313 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13314
13315static const struct opcode_descriptor j_insn_32 =
13316 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13317
13318static const struct opcode_descriptor jalr_insn_32 =
13319 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13320
13321/* This table can be compacted, because no opcode replacement is made. */
13322
13323static const struct opcode_descriptor ds_insns_32_bd16[] = {
13324 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13325
13326 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13327 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13328
13329 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13330 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13331 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13332 { 0, 0 } /* End marker for find_match(). */
13333};
13334
13335/* This table can be compacted, because no opcode replacement is made. */
13336
13337static const struct opcode_descriptor ds_insns_32_bd32[] = {
13338 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13339
13340 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13341 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13342 { 0, 0 } /* End marker for find_match(). */
13343};
13344
13345
13346/* 16-bit instructions with a delay slot. */
13347
13348static const struct opcode_descriptor jalr_insn_16_bd16 =
13349 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13350
13351static const struct opcode_descriptor jalr_insn_16_bd32 =
13352 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13353
13354static const struct opcode_descriptor jr_insn_16 =
13355 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13356
13357#define JR16_REG(opcode) ((opcode) & 0x1f)
13358
13359/* This table can be compacted, because no opcode replacement is made. */
13360
13361static const struct opcode_descriptor ds_insns_16_bd16[] = {
13362 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13363
13364 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13365 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13366 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13367 { 0, 0 } /* End marker for find_match(). */
13368};
13369
13370
13371/* LUI instruction. */
13372
13373static const struct opcode_descriptor lui_insn =
13374 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13375
13376
13377/* ADDIU instruction. */
13378
13379static const struct opcode_descriptor addiu_insn =
13380 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13381
13382static const struct opcode_descriptor addiupc_insn =
13383 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13384
13385#define ADDIUPC_REG_FIELD(r) \
13386 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13387
13388
13389/* Relaxable instructions in a JAL delay slot: MOVE. */
13390
13391/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13392 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13393#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13394#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13395
13396#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13397#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13398
13399static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13400 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13401 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13402 { 0, 0 } /* End marker for find_match(). */
13403};
13404
13405static const struct opcode_descriptor move_insn_16 =
13406 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13407
13408
13409/* NOP instructions. */
13410
13411static const struct opcode_descriptor nop_insn_32 =
13412 { /* "nop", "", */ 0x00000000, 0xffffffff };
13413
13414static const struct opcode_descriptor nop_insn_16 =
13415 { /* "nop", "", */ 0x0c00, 0xffff };
13416
13417
13418/* Instruction match support. */
13419
13420#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13421
13422static int
13423find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13424{
13425 unsigned long indx;
13426
13427 for (indx = 0; insn[indx].mask != 0; indx++)
13428 if (MATCH (opcode, insn[indx]))
13429 return indx;
13430
13431 return -1;
13432}
13433
13434
13435/* Branch and delay slot decoding support. */
13436
13437/* If PTR points to what *might* be a 16-bit branch or jump, then
13438 return the minimum length of its delay slot, otherwise return 0.
13439 Non-zero results are not definitive as we might be checking against
13440 the second half of another instruction. */
13441
13442static int
13443check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13444{
13445 unsigned long opcode;
13446 int bdsize;
13447
13448 opcode = bfd_get_16 (abfd, ptr);
13449 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13450 /* 16-bit branch/jump with a 32-bit delay slot. */
13451 bdsize = 4;
13452 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13453 || find_match (opcode, ds_insns_16_bd16) >= 0)
13454 /* 16-bit branch/jump with a 16-bit delay slot. */
13455 bdsize = 2;
13456 else
13457 /* No delay slot. */
13458 bdsize = 0;
13459
13460 return bdsize;
13461}
13462
13463/* If PTR points to what *might* be a 32-bit branch or jump, then
13464 return the minimum length of its delay slot, otherwise return 0.
13465 Non-zero results are not definitive as we might be checking against
13466 the second half of another instruction. */
13467
13468static int
13469check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13470{
13471 unsigned long opcode;
13472 int bdsize;
13473
d21911ea 13474 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13475 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13476 /* 32-bit branch/jump with a 32-bit delay slot. */
13477 bdsize = 4;
13478 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13479 /* 32-bit branch/jump with a 16-bit delay slot. */
13480 bdsize = 2;
13481 else
13482 /* No delay slot. */
13483 bdsize = 0;
13484
13485 return bdsize;
13486}
13487
13488/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13489 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13490
13491static bfd_boolean
13492check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13493{
13494 unsigned long opcode;
13495
13496 opcode = bfd_get_16 (abfd, ptr);
13497 if (MATCH (opcode, b_insn_16)
13498 /* B16 */
13499 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13500 /* JR16 */
13501 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13502 /* BEQZ16, BNEZ16 */
13503 || (MATCH (opcode, jalr_insn_16_bd32)
13504 /* JALR16 */
13505 && reg != JR16_REG (opcode) && reg != RA))
13506 return TRUE;
13507
13508 return FALSE;
13509}
13510
13511/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13512 then return TRUE, otherwise FALSE. */
13513
f41e5fcc 13514static bfd_boolean
df58fc94
RS
13515check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13516{
13517 unsigned long opcode;
13518
d21911ea 13519 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13520 if (MATCH (opcode, j_insn_32)
13521 /* J */
13522 || MATCH (opcode, bc_insn_32)
13523 /* BC1F, BC1T, BC2F, BC2T */
13524 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13525 /* JAL, JALX */
13526 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13527 /* BGEZ, BGTZ, BLEZ, BLTZ */
13528 || (MATCH (opcode, bzal_insn_32)
13529 /* BGEZAL, BLTZAL */
13530 && reg != OP32_SREG (opcode) && reg != RA)
13531 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13532 /* JALR, JALR.HB, BEQ, BNE */
13533 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13534 return TRUE;
13535
13536 return FALSE;
13537}
13538
80cab405
MR
13539/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13540 IRELEND) at OFFSET indicate that there must be a compact branch there,
13541 then return TRUE, otherwise FALSE. */
df58fc94
RS
13542
13543static bfd_boolean
80cab405
MR
13544check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13545 const Elf_Internal_Rela *internal_relocs,
13546 const Elf_Internal_Rela *irelend)
df58fc94 13547{
80cab405
MR
13548 const Elf_Internal_Rela *irel;
13549 unsigned long opcode;
13550
d21911ea 13551 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13552 if (find_match (opcode, bzc_insns_32) < 0)
13553 return FALSE;
df58fc94
RS
13554
13555 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13556 if (irel->r_offset == offset
13557 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13558 return TRUE;
13559
df58fc94
RS
13560 return FALSE;
13561}
80cab405
MR
13562
13563/* Bitsize checking. */
13564#define IS_BITSIZE(val, N) \
13565 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13566 - (1ULL << ((N) - 1))) == (val))
13567
df58fc94
RS
13568\f
13569bfd_boolean
13570_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13571 struct bfd_link_info *link_info,
13572 bfd_boolean *again)
13573{
833794fc 13574 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13575 Elf_Internal_Shdr *symtab_hdr;
13576 Elf_Internal_Rela *internal_relocs;
13577 Elf_Internal_Rela *irel, *irelend;
13578 bfd_byte *contents = NULL;
13579 Elf_Internal_Sym *isymbuf = NULL;
13580
13581 /* Assume nothing changes. */
13582 *again = FALSE;
13583
13584 /* We don't have to do anything for a relocatable link, if
13585 this section does not have relocs, or if this is not a
13586 code section. */
13587
0e1862bb 13588 if (bfd_link_relocatable (link_info)
df58fc94
RS
13589 || (sec->flags & SEC_RELOC) == 0
13590 || sec->reloc_count == 0
13591 || (sec->flags & SEC_CODE) == 0)
13592 return TRUE;
13593
13594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13595
13596 /* Get a copy of the native relocations. */
13597 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13598 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13599 link_info->keep_memory));
13600 if (internal_relocs == NULL)
13601 goto error_return;
13602
13603 /* Walk through them looking for relaxing opportunities. */
13604 irelend = internal_relocs + sec->reloc_count;
13605 for (irel = internal_relocs; irel < irelend; irel++)
13606 {
13607 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13608 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13609 bfd_boolean target_is_micromips_code_p;
13610 unsigned long opcode;
13611 bfd_vma symval;
13612 bfd_vma pcrval;
2309ddf2 13613 bfd_byte *ptr;
df58fc94
RS
13614 int fndopc;
13615
13616 /* The number of bytes to delete for relaxation and from where
13617 to delete these bytes starting at irel->r_offset. */
13618 int delcnt = 0;
13619 int deloff = 0;
13620
13621 /* If this isn't something that can be relaxed, then ignore
13622 this reloc. */
13623 if (r_type != R_MICROMIPS_HI16
13624 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13625 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13626 continue;
13627
13628 /* Get the section contents if we haven't done so already. */
13629 if (contents == NULL)
13630 {
13631 /* Get cached copy if it exists. */
13632 if (elf_section_data (sec)->this_hdr.contents != NULL)
13633 contents = elf_section_data (sec)->this_hdr.contents;
13634 /* Go get them off disk. */
13635 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13636 goto error_return;
13637 }
2309ddf2 13638 ptr = contents + irel->r_offset;
df58fc94
RS
13639
13640 /* Read this BFD's local symbols if we haven't done so already. */
13641 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13642 {
13643 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13644 if (isymbuf == NULL)
13645 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13646 symtab_hdr->sh_info, 0,
13647 NULL, NULL, NULL);
13648 if (isymbuf == NULL)
13649 goto error_return;
13650 }
13651
13652 /* Get the value of the symbol referred to by the reloc. */
13653 if (r_symndx < symtab_hdr->sh_info)
13654 {
13655 /* A local symbol. */
13656 Elf_Internal_Sym *isym;
13657 asection *sym_sec;
13658
13659 isym = isymbuf + r_symndx;
13660 if (isym->st_shndx == SHN_UNDEF)
13661 sym_sec = bfd_und_section_ptr;
13662 else if (isym->st_shndx == SHN_ABS)
13663 sym_sec = bfd_abs_section_ptr;
13664 else if (isym->st_shndx == SHN_COMMON)
13665 sym_sec = bfd_com_section_ptr;
13666 else
13667 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13668 symval = (isym->st_value
13669 + sym_sec->output_section->vma
13670 + sym_sec->output_offset);
13671 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13672 }
13673 else
13674 {
13675 unsigned long indx;
13676 struct elf_link_hash_entry *h;
13677
13678 /* An external symbol. */
13679 indx = r_symndx - symtab_hdr->sh_info;
13680 h = elf_sym_hashes (abfd)[indx];
13681 BFD_ASSERT (h != NULL);
13682
13683 if (h->root.type != bfd_link_hash_defined
13684 && h->root.type != bfd_link_hash_defweak)
13685 /* This appears to be a reference to an undefined
13686 symbol. Just ignore it -- it will be caught by the
13687 regular reloc processing. */
13688 continue;
13689
13690 symval = (h->root.u.def.value
13691 + h->root.u.def.section->output_section->vma
13692 + h->root.u.def.section->output_offset);
13693 target_is_micromips_code_p = (!h->needs_plt
13694 && ELF_ST_IS_MICROMIPS (h->other));
13695 }
13696
13697
13698 /* For simplicity of coding, we are going to modify the
13699 section contents, the section relocs, and the BFD symbol
13700 table. We must tell the rest of the code not to free up this
13701 information. It would be possible to instead create a table
13702 of changes which have to be made, as is done in coff-mips.c;
13703 that would be more work, but would require less memory when
13704 the linker is run. */
13705
13706 /* Only 32-bit instructions relaxed. */
13707 if (irel->r_offset + 4 > sec->size)
13708 continue;
13709
d21911ea 13710 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13711
13712 /* This is the pc-relative distance from the instruction the
13713 relocation is applied to, to the symbol referred. */
13714 pcrval = (symval
13715 - (sec->output_section->vma + sec->output_offset)
13716 - irel->r_offset);
13717
13718 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13719 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13720 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13721
13722 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13723
13724 where pcrval has first to be adjusted to apply against the LO16
13725 location (we make the adjustment later on, when we have figured
13726 out the offset). */
13727 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13728 {
80cab405 13729 bfd_boolean bzc = FALSE;
df58fc94
RS
13730 unsigned long nextopc;
13731 unsigned long reg;
13732 bfd_vma offset;
13733
13734 /* Give up if the previous reloc was a HI16 against this symbol
13735 too. */
13736 if (irel > internal_relocs
13737 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13738 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13739 continue;
13740
13741 /* Or if the next reloc is not a LO16 against this symbol. */
13742 if (irel + 1 >= irelend
13743 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13744 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13745 continue;
13746
13747 /* Or if the second next reloc is a LO16 against this symbol too. */
13748 if (irel + 2 >= irelend
13749 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13750 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13751 continue;
13752
80cab405
MR
13753 /* See if the LUI instruction *might* be in a branch delay slot.
13754 We check whether what looks like a 16-bit branch or jump is
13755 actually an immediate argument to a compact branch, and let
13756 it through if so. */
df58fc94 13757 if (irel->r_offset >= 2
2309ddf2 13758 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13759 && !(irel->r_offset >= 4
80cab405
MR
13760 && (bzc = check_relocated_bzc (abfd,
13761 ptr - 4, irel->r_offset - 4,
13762 internal_relocs, irelend))))
df58fc94
RS
13763 continue;
13764 if (irel->r_offset >= 4
80cab405 13765 && !bzc
2309ddf2 13766 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13767 continue;
13768
13769 reg = OP32_SREG (opcode);
13770
13771 /* We only relax adjacent instructions or ones separated with
13772 a branch or jump that has a delay slot. The branch or jump
13773 must not fiddle with the register used to hold the address.
13774 Subtract 4 for the LUI itself. */
13775 offset = irel[1].r_offset - irel[0].r_offset;
13776 switch (offset - 4)
13777 {
13778 case 0:
13779 break;
13780 case 2:
2309ddf2 13781 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13782 break;
13783 continue;
13784 case 4:
2309ddf2 13785 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13786 break;
13787 continue;
13788 default:
13789 continue;
13790 }
13791
d21911ea 13792 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13793
13794 /* Give up unless the same register is used with both
13795 relocations. */
13796 if (OP32_SREG (nextopc) != reg)
13797 continue;
13798
13799 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13800 and rounding up to take masking of the two LSBs into account. */
13801 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13802
13803 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13804 if (IS_BITSIZE (symval, 16))
13805 {
13806 /* Fix the relocation's type. */
13807 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13808
13809 /* Instructions using R_MICROMIPS_LO16 have the base or
13810 source register in bits 20:16. This register becomes $0
13811 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13812 nextopc &= ~0x001f0000;
13813 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13814 contents + irel[1].r_offset);
13815 }
13816
13817 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13818 We add 4 to take LUI deletion into account while checking
13819 the PC-relative distance. */
13820 else if (symval % 4 == 0
13821 && IS_BITSIZE (pcrval + 4, 25)
13822 && MATCH (nextopc, addiu_insn)
13823 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13824 && OP16_VALID_REG (OP32_TREG (nextopc)))
13825 {
13826 /* Fix the relocation's type. */
13827 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13828
13829 /* Replace ADDIU with the ADDIUPC version. */
13830 nextopc = (addiupc_insn.match
13831 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13832
d21911ea
MR
13833 bfd_put_micromips_32 (abfd, nextopc,
13834 contents + irel[1].r_offset);
df58fc94
RS
13835 }
13836
13837 /* Can't do anything, give up, sigh... */
13838 else
13839 continue;
13840
13841 /* Fix the relocation's type. */
13842 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13843
13844 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13845 delcnt = 4;
13846 deloff = 0;
13847 }
13848
13849 /* Compact branch relaxation -- due to the multitude of macros
13850 employed by the compiler/assembler, compact branches are not
13851 always generated. Obviously, this can/will be fixed elsewhere,
13852 but there is no drawback in double checking it here. */
13853 else if (r_type == R_MICROMIPS_PC16_S1
13854 && irel->r_offset + 5 < sec->size
13855 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13856 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13857 && ((!insn32
13858 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13859 nop_insn_16) ? 2 : 0))
13860 || (irel->r_offset + 7 < sec->size
13861 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13862 ptr + 4),
13863 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13864 {
13865 unsigned long reg;
13866
13867 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13868
13869 /* Replace BEQZ/BNEZ with the compact version. */
13870 opcode = (bzc_insns_32[fndopc].match
13871 | BZC32_REG_FIELD (reg)
13872 | (opcode & 0xffff)); /* Addend value. */
13873
d21911ea 13874 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13875
833794fc
MR
13876 /* Delete the delay slot NOP: two or four bytes from
13877 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13878 deloff = 4;
13879 }
13880
13881 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13882 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13883 else if (!insn32
13884 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13885 && IS_BITSIZE (pcrval - 2, 11)
13886 && find_match (opcode, b_insns_32) >= 0)
13887 {
13888 /* Fix the relocation's type. */
13889 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13890
a8685210 13891 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13892 bfd_put_16 (abfd,
13893 (b_insn_16.match
13894 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13895 ptr);
df58fc94
RS
13896
13897 /* Delete 2 bytes from irel->r_offset + 2. */
13898 delcnt = 2;
13899 deloff = 2;
13900 }
13901
13902 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13903 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13904 else if (!insn32
13905 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13906 && IS_BITSIZE (pcrval - 2, 8)
13907 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13908 && OP16_VALID_REG (OP32_SREG (opcode)))
13909 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13910 && OP16_VALID_REG (OP32_TREG (opcode)))))
13911 {
13912 unsigned long reg;
13913
13914 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13915
13916 /* Fix the relocation's type. */
13917 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13918
a8685210 13919 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13920 bfd_put_16 (abfd,
13921 (bz_insns_16[fndopc].match
13922 | BZ16_REG_FIELD (reg)
13923 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13924 ptr);
df58fc94
RS
13925
13926 /* Delete 2 bytes from irel->r_offset + 2. */
13927 delcnt = 2;
13928 deloff = 2;
13929 }
13930
13931 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13932 else if (!insn32
13933 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13934 && target_is_micromips_code_p
13935 && irel->r_offset + 7 < sec->size
13936 && MATCH (opcode, jal_insn_32_bd32))
13937 {
13938 unsigned long n32opc;
13939 bfd_boolean relaxed = FALSE;
13940
d21911ea 13941 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13942
13943 if (MATCH (n32opc, nop_insn_32))
13944 {
13945 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13946 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13947
13948 relaxed = TRUE;
13949 }
13950 else if (find_match (n32opc, move_insns_32) >= 0)
13951 {
13952 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13953 bfd_put_16 (abfd,
13954 (move_insn_16.match
13955 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13956 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13957 ptr + 4);
df58fc94
RS
13958
13959 relaxed = TRUE;
13960 }
13961 /* Other 32-bit instructions relaxable to 16-bit
13962 instructions will be handled here later. */
13963
13964 if (relaxed)
13965 {
13966 /* JAL with 32-bit delay slot that is changed to a JALS
13967 with 16-bit delay slot. */
d21911ea 13968 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13969
13970 /* Delete 2 bytes from irel->r_offset + 6. */
13971 delcnt = 2;
13972 deloff = 6;
13973 }
13974 }
13975
13976 if (delcnt != 0)
13977 {
13978 /* Note that we've changed the relocs, section contents, etc. */
13979 elf_section_data (sec)->relocs = internal_relocs;
13980 elf_section_data (sec)->this_hdr.contents = contents;
13981 symtab_hdr->contents = (unsigned char *) isymbuf;
13982
13983 /* Delete bytes depending on the delcnt and deloff. */
13984 if (!mips_elf_relax_delete_bytes (abfd, sec,
13985 irel->r_offset + deloff, delcnt))
13986 goto error_return;
13987
13988 /* That will change things, so we should relax again.
13989 Note that this is not required, and it may be slow. */
13990 *again = TRUE;
13991 }
13992 }
13993
13994 if (isymbuf != NULL
13995 && symtab_hdr->contents != (unsigned char *) isymbuf)
13996 {
13997 if (! link_info->keep_memory)
13998 free (isymbuf);
13999 else
14000 {
14001 /* Cache the symbols for elf_link_input_bfd. */
14002 symtab_hdr->contents = (unsigned char *) isymbuf;
14003 }
14004 }
14005
14006 if (contents != NULL
14007 && elf_section_data (sec)->this_hdr.contents != contents)
14008 {
14009 if (! link_info->keep_memory)
14010 free (contents);
14011 else
14012 {
14013 /* Cache the section contents for elf_link_input_bfd. */
14014 elf_section_data (sec)->this_hdr.contents = contents;
14015 }
14016 }
14017
14018 if (internal_relocs != NULL
14019 && elf_section_data (sec)->relocs != internal_relocs)
14020 free (internal_relocs);
14021
14022 return TRUE;
14023
14024 error_return:
14025 if (isymbuf != NULL
14026 && symtab_hdr->contents != (unsigned char *) isymbuf)
14027 free (isymbuf);
14028 if (contents != NULL
14029 && elf_section_data (sec)->this_hdr.contents != contents)
14030 free (contents);
14031 if (internal_relocs != NULL
14032 && elf_section_data (sec)->relocs != internal_relocs)
14033 free (internal_relocs);
14034
14035 return FALSE;
14036}
14037\f
b49e97c9
TS
14038/* Create a MIPS ELF linker hash table. */
14039
14040struct bfd_link_hash_table *
9719ad41 14041_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14042{
14043 struct mips_elf_link_hash_table *ret;
14044 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14045
7bf52ea2 14046 ret = bfd_zmalloc (amt);
9719ad41 14047 if (ret == NULL)
b49e97c9
TS
14048 return NULL;
14049
66eb6687
AM
14050 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14051 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14052 sizeof (struct mips_elf_link_hash_entry),
14053 MIPS_ELF_DATA))
b49e97c9 14054 {
e2d34d7d 14055 free (ret);
b49e97c9
TS
14056 return NULL;
14057 }
1bbce132
MR
14058 ret->root.init_plt_refcount.plist = NULL;
14059 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14060
b49e97c9
TS
14061 return &ret->root.root;
14062}
0a44bf69
RS
14063
14064/* Likewise, but indicate that the target is VxWorks. */
14065
14066struct bfd_link_hash_table *
14067_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14068{
14069 struct bfd_link_hash_table *ret;
14070
14071 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14072 if (ret)
14073 {
14074 struct mips_elf_link_hash_table *htab;
14075
14076 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14077 htab->use_plts_and_copy_relocs = TRUE;
14078 htab->is_vxworks = TRUE;
0a44bf69
RS
14079 }
14080 return ret;
14081}
861fb55a
DJ
14082
14083/* A function that the linker calls if we are allowed to use PLTs
14084 and copy relocs. */
14085
14086void
14087_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14088{
14089 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14090}
833794fc
MR
14091
14092/* A function that the linker calls to select between all or only
14093 32-bit microMIPS instructions. */
14094
14095void
14096_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14097{
14098 mips_elf_hash_table (info)->insn32 = on;
14099}
b49e97c9 14100\f
c97c330b
MF
14101/* Structure for saying that BFD machine EXTENSION extends BASE. */
14102
14103struct mips_mach_extension
14104{
14105 unsigned long extension, base;
14106};
14107
14108
14109/* An array describing how BFD machines relate to one another. The entries
14110 are ordered topologically with MIPS I extensions listed last. */
14111
14112static const struct mips_mach_extension mips_mach_extensions[] =
14113{
14114 /* MIPS64r2 extensions. */
14115 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14116 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14117 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14118 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14119 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14120
14121 /* MIPS64 extensions. */
14122 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14123 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14124 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14125
14126 /* MIPS V extensions. */
14127 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14128
14129 /* R10000 extensions. */
14130 { bfd_mach_mips12000, bfd_mach_mips10000 },
14131 { bfd_mach_mips14000, bfd_mach_mips10000 },
14132 { bfd_mach_mips16000, bfd_mach_mips10000 },
14133
14134 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14135 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14136 better to allow vr5400 and vr5500 code to be merged anyway, since
14137 many libraries will just use the core ISA. Perhaps we could add
14138 some sort of ASE flag if this ever proves a problem. */
14139 { bfd_mach_mips5500, bfd_mach_mips5400 },
14140 { bfd_mach_mips5400, bfd_mach_mips5000 },
14141
14142 /* MIPS IV extensions. */
14143 { bfd_mach_mips5, bfd_mach_mips8000 },
14144 { bfd_mach_mips10000, bfd_mach_mips8000 },
14145 { bfd_mach_mips5000, bfd_mach_mips8000 },
14146 { bfd_mach_mips7000, bfd_mach_mips8000 },
14147 { bfd_mach_mips9000, bfd_mach_mips8000 },
14148
14149 /* VR4100 extensions. */
14150 { bfd_mach_mips4120, bfd_mach_mips4100 },
14151 { bfd_mach_mips4111, bfd_mach_mips4100 },
14152
14153 /* MIPS III extensions. */
14154 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14155 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14156 { bfd_mach_mips8000, bfd_mach_mips4000 },
14157 { bfd_mach_mips4650, bfd_mach_mips4000 },
14158 { bfd_mach_mips4600, bfd_mach_mips4000 },
14159 { bfd_mach_mips4400, bfd_mach_mips4000 },
14160 { bfd_mach_mips4300, bfd_mach_mips4000 },
14161 { bfd_mach_mips4100, bfd_mach_mips4000 },
14162 { bfd_mach_mips4010, bfd_mach_mips4000 },
14163 { bfd_mach_mips5900, bfd_mach_mips4000 },
14164
14165 /* MIPS32 extensions. */
14166 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14167
14168 /* MIPS II extensions. */
14169 { bfd_mach_mips4000, bfd_mach_mips6000 },
14170 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14171
14172 /* MIPS I extensions. */
14173 { bfd_mach_mips6000, bfd_mach_mips3000 },
14174 { bfd_mach_mips3900, bfd_mach_mips3000 }
14175};
14176
14177/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14178
14179static bfd_boolean
14180mips_mach_extends_p (unsigned long base, unsigned long extension)
14181{
14182 size_t i;
14183
14184 if (extension == base)
14185 return TRUE;
14186
14187 if (base == bfd_mach_mipsisa32
14188 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14189 return TRUE;
14190
14191 if (base == bfd_mach_mipsisa32r2
14192 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14193 return TRUE;
14194
14195 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14196 if (extension == mips_mach_extensions[i].extension)
14197 {
14198 extension = mips_mach_extensions[i].base;
14199 if (extension == base)
14200 return TRUE;
14201 }
14202
14203 return FALSE;
14204}
14205
14206/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14207
14208static unsigned long
14209bfd_mips_isa_ext_mach (unsigned int isa_ext)
14210{
14211 switch (isa_ext)
14212 {
14213 case AFL_EXT_3900: return bfd_mach_mips3900;
14214 case AFL_EXT_4010: return bfd_mach_mips4010;
14215 case AFL_EXT_4100: return bfd_mach_mips4100;
14216 case AFL_EXT_4111: return bfd_mach_mips4111;
14217 case AFL_EXT_4120: return bfd_mach_mips4120;
14218 case AFL_EXT_4650: return bfd_mach_mips4650;
14219 case AFL_EXT_5400: return bfd_mach_mips5400;
14220 case AFL_EXT_5500: return bfd_mach_mips5500;
14221 case AFL_EXT_5900: return bfd_mach_mips5900;
14222 case AFL_EXT_10000: return bfd_mach_mips10000;
14223 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14224 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14225 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14226 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14227 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14228 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14229 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14230 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14231 default: return bfd_mach_mips3000;
14232 }
14233}
14234
351cdf24
MF
14235/* Return the .MIPS.abiflags value representing each ISA Extension. */
14236
14237unsigned int
14238bfd_mips_isa_ext (bfd *abfd)
14239{
14240 switch (bfd_get_mach (abfd))
14241 {
c97c330b
MF
14242 case bfd_mach_mips3900: return AFL_EXT_3900;
14243 case bfd_mach_mips4010: return AFL_EXT_4010;
14244 case bfd_mach_mips4100: return AFL_EXT_4100;
14245 case bfd_mach_mips4111: return AFL_EXT_4111;
14246 case bfd_mach_mips4120: return AFL_EXT_4120;
14247 case bfd_mach_mips4650: return AFL_EXT_4650;
14248 case bfd_mach_mips5400: return AFL_EXT_5400;
14249 case bfd_mach_mips5500: return AFL_EXT_5500;
14250 case bfd_mach_mips5900: return AFL_EXT_5900;
14251 case bfd_mach_mips10000: return AFL_EXT_10000;
14252 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14253 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14254 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14255 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14256 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14257 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14258 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14259 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14260 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14261 default: return 0;
14262 }
14263}
14264
14265/* Encode ISA level and revision as a single value. */
14266#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14267
14268/* Decode a single value into level and revision. */
14269#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14270#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14271
14272/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14273
14274static void
14275update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14276{
c97c330b 14277 int new_isa = 0;
351cdf24
MF
14278 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14279 {
c97c330b
MF
14280 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14281 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14282 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14283 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14284 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14285 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14286 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14287 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14288 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14289 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14290 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24
MF
14291 default:
14292 (*_bfd_error_handler)
14293 (_("%B: Unknown architecture %s"),
14294 abfd, bfd_printable_name (abfd));
14295 }
14296
c97c330b
MF
14297 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14298 {
14299 abiflags->isa_level = ISA_LEVEL (new_isa);
14300 abiflags->isa_rev = ISA_REV (new_isa);
14301 }
14302
14303 /* Update the isa_ext if ABFD describes a further extension. */
14304 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14305 bfd_get_mach (abfd)))
14306 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14307}
14308
14309/* Return true if the given ELF header flags describe a 32-bit binary. */
14310
14311static bfd_boolean
14312mips_32bit_flags_p (flagword flags)
14313{
14314 return ((flags & EF_MIPS_32BITMODE) != 0
14315 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14316 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14317 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14318 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14319 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14320 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14321 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14322}
14323
14324/* Infer the content of the ABI flags based on the elf header. */
14325
14326static void
14327infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14328{
14329 obj_attribute *in_attr;
14330
14331 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14332 update_mips_abiflags_isa (abfd, abiflags);
14333
14334 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14335 abiflags->gpr_size = AFL_REG_32;
14336 else
14337 abiflags->gpr_size = AFL_REG_64;
14338
14339 abiflags->cpr1_size = AFL_REG_NONE;
14340
14341 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14342 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14343
14344 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14345 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14346 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14347 && abiflags->gpr_size == AFL_REG_32))
14348 abiflags->cpr1_size = AFL_REG_32;
14349 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14350 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14351 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14352 abiflags->cpr1_size = AFL_REG_64;
14353
14354 abiflags->cpr2_size = AFL_REG_NONE;
14355
14356 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14357 abiflags->ases |= AFL_ASE_MDMX;
14358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14359 abiflags->ases |= AFL_ASE_MIPS16;
14360 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14361 abiflags->ases |= AFL_ASE_MICROMIPS;
14362
14363 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14364 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14365 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14366 && abiflags->isa_level >= 32
14367 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14368 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14369}
14370
b49e97c9
TS
14371/* We need to use a special link routine to handle the .reginfo and
14372 the .mdebug sections. We need to merge all instances of these
14373 sections together, not write them all out sequentially. */
14374
b34976b6 14375bfd_boolean
9719ad41 14376_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14377{
b49e97c9
TS
14378 asection *o;
14379 struct bfd_link_order *p;
14380 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14381 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14382 Elf32_RegInfo reginfo;
14383 struct ecoff_debug_info debug;
861fb55a 14384 struct mips_htab_traverse_info hti;
7a2a6943
NC
14385 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14386 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14387 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14388 void *mdebug_handle = NULL;
b49e97c9
TS
14389 asection *s;
14390 EXTR esym;
14391 unsigned int i;
14392 bfd_size_type amt;
0a44bf69 14393 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14394
14395 static const char * const secname[] =
14396 {
14397 ".text", ".init", ".fini", ".data",
14398 ".rodata", ".sdata", ".sbss", ".bss"
14399 };
14400 static const int sc[] =
14401 {
14402 scText, scInit, scFini, scData,
14403 scRData, scSData, scSBss, scBss
14404 };
14405
d4596a51
RS
14406 /* Sort the dynamic symbols so that those with GOT entries come after
14407 those without. */
0a44bf69 14408 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14409 BFD_ASSERT (htab != NULL);
14410
d4596a51
RS
14411 if (!mips_elf_sort_hash_table (abfd, info))
14412 return FALSE;
b49e97c9 14413
861fb55a
DJ
14414 /* Create any scheduled LA25 stubs. */
14415 hti.info = info;
14416 hti.output_bfd = abfd;
14417 hti.error = FALSE;
14418 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14419 if (hti.error)
14420 return FALSE;
14421
b49e97c9
TS
14422 /* Get a value for the GP register. */
14423 if (elf_gp (abfd) == 0)
14424 {
14425 struct bfd_link_hash_entry *h;
14426
b34976b6 14427 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14428 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14429 elf_gp (abfd) = (h->u.def.value
14430 + h->u.def.section->output_section->vma
14431 + h->u.def.section->output_offset);
0a44bf69
RS
14432 else if (htab->is_vxworks
14433 && (h = bfd_link_hash_lookup (info->hash,
14434 "_GLOBAL_OFFSET_TABLE_",
14435 FALSE, FALSE, TRUE))
14436 && h->type == bfd_link_hash_defined)
14437 elf_gp (abfd) = (h->u.def.section->output_section->vma
14438 + h->u.def.section->output_offset
14439 + h->u.def.value);
0e1862bb 14440 else if (bfd_link_relocatable (info))
b49e97c9
TS
14441 {
14442 bfd_vma lo = MINUS_ONE;
14443
14444 /* Find the GP-relative section with the lowest offset. */
9719ad41 14445 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14446 if (o->vma < lo
14447 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14448 lo = o->vma;
14449
14450 /* And calculate GP relative to that. */
0a44bf69 14451 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14452 }
14453 else
14454 {
14455 /* If the relocate_section function needs to do a reloc
14456 involving the GP value, it should make a reloc_dangerous
14457 callback to warn that GP is not defined. */
14458 }
14459 }
14460
14461 /* Go through the sections and collect the .reginfo and .mdebug
14462 information. */
351cdf24 14463 abiflags_sec = NULL;
b49e97c9
TS
14464 reginfo_sec = NULL;
14465 mdebug_sec = NULL;
14466 gptab_data_sec = NULL;
14467 gptab_bss_sec = NULL;
9719ad41 14468 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14469 {
351cdf24
MF
14470 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14471 {
14472 /* We have found the .MIPS.abiflags section in the output file.
14473 Look through all the link_orders comprising it and remove them.
14474 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14475 for (p = o->map_head.link_order; p != NULL; p = p->next)
14476 {
14477 asection *input_section;
14478
14479 if (p->type != bfd_indirect_link_order)
14480 {
14481 if (p->type == bfd_data_link_order)
14482 continue;
14483 abort ();
14484 }
14485
14486 input_section = p->u.indirect.section;
14487
14488 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14489 elf_link_input_bfd ignores this section. */
14490 input_section->flags &= ~SEC_HAS_CONTENTS;
14491 }
14492
14493 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14494 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14495
14496 /* Skip this section later on (I don't think this currently
14497 matters, but someday it might). */
14498 o->map_head.link_order = NULL;
14499
14500 abiflags_sec = o;
14501 }
14502
b49e97c9
TS
14503 if (strcmp (o->name, ".reginfo") == 0)
14504 {
14505 memset (&reginfo, 0, sizeof reginfo);
14506
14507 /* We have found the .reginfo section in the output file.
14508 Look through all the link_orders comprising it and merge
14509 the information together. */
8423293d 14510 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14511 {
14512 asection *input_section;
14513 bfd *input_bfd;
14514 Elf32_External_RegInfo ext;
14515 Elf32_RegInfo sub;
14516
14517 if (p->type != bfd_indirect_link_order)
14518 {
14519 if (p->type == bfd_data_link_order)
14520 continue;
14521 abort ();
14522 }
14523
14524 input_section = p->u.indirect.section;
14525 input_bfd = input_section->owner;
14526
b49e97c9 14527 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14528 &ext, 0, sizeof ext))
b34976b6 14529 return FALSE;
b49e97c9
TS
14530
14531 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14532
14533 reginfo.ri_gprmask |= sub.ri_gprmask;
14534 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14535 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14536 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14537 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14538
14539 /* ri_gp_value is set by the function
14540 mips_elf32_section_processing when the section is
14541 finally written out. */
14542
14543 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14544 elf_link_input_bfd ignores this section. */
14545 input_section->flags &= ~SEC_HAS_CONTENTS;
14546 }
14547
14548 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14549 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14550
14551 /* Skip this section later on (I don't think this currently
14552 matters, but someday it might). */
8423293d 14553 o->map_head.link_order = NULL;
b49e97c9
TS
14554
14555 reginfo_sec = o;
14556 }
14557
14558 if (strcmp (o->name, ".mdebug") == 0)
14559 {
14560 struct extsym_info einfo;
14561 bfd_vma last;
14562
14563 /* We have found the .mdebug section in the output file.
14564 Look through all the link_orders comprising it and merge
14565 the information together. */
14566 symhdr->magic = swap->sym_magic;
14567 /* FIXME: What should the version stamp be? */
14568 symhdr->vstamp = 0;
14569 symhdr->ilineMax = 0;
14570 symhdr->cbLine = 0;
14571 symhdr->idnMax = 0;
14572 symhdr->ipdMax = 0;
14573 symhdr->isymMax = 0;
14574 symhdr->ioptMax = 0;
14575 symhdr->iauxMax = 0;
14576 symhdr->issMax = 0;
14577 symhdr->issExtMax = 0;
14578 symhdr->ifdMax = 0;
14579 symhdr->crfd = 0;
14580 symhdr->iextMax = 0;
14581
14582 /* We accumulate the debugging information itself in the
14583 debug_info structure. */
14584 debug.line = NULL;
14585 debug.external_dnr = NULL;
14586 debug.external_pdr = NULL;
14587 debug.external_sym = NULL;
14588 debug.external_opt = NULL;
14589 debug.external_aux = NULL;
14590 debug.ss = NULL;
14591 debug.ssext = debug.ssext_end = NULL;
14592 debug.external_fdr = NULL;
14593 debug.external_rfd = NULL;
14594 debug.external_ext = debug.external_ext_end = NULL;
14595
14596 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14597 if (mdebug_handle == NULL)
b34976b6 14598 return FALSE;
b49e97c9
TS
14599
14600 esym.jmptbl = 0;
14601 esym.cobol_main = 0;
14602 esym.weakext = 0;
14603 esym.reserved = 0;
14604 esym.ifd = ifdNil;
14605 esym.asym.iss = issNil;
14606 esym.asym.st = stLocal;
14607 esym.asym.reserved = 0;
14608 esym.asym.index = indexNil;
14609 last = 0;
14610 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14611 {
14612 esym.asym.sc = sc[i];
14613 s = bfd_get_section_by_name (abfd, secname[i]);
14614 if (s != NULL)
14615 {
14616 esym.asym.value = s->vma;
eea6121a 14617 last = s->vma + s->size;
b49e97c9
TS
14618 }
14619 else
14620 esym.asym.value = last;
14621 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14622 secname[i], &esym))
b34976b6 14623 return FALSE;
b49e97c9
TS
14624 }
14625
8423293d 14626 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14627 {
14628 asection *input_section;
14629 bfd *input_bfd;
14630 const struct ecoff_debug_swap *input_swap;
14631 struct ecoff_debug_info input_debug;
14632 char *eraw_src;
14633 char *eraw_end;
14634
14635 if (p->type != bfd_indirect_link_order)
14636 {
14637 if (p->type == bfd_data_link_order)
14638 continue;
14639 abort ();
14640 }
14641
14642 input_section = p->u.indirect.section;
14643 input_bfd = input_section->owner;
14644
d5eaccd7 14645 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14646 {
14647 /* I don't know what a non MIPS ELF bfd would be
14648 doing with a .mdebug section, but I don't really
14649 want to deal with it. */
14650 continue;
14651 }
14652
14653 input_swap = (get_elf_backend_data (input_bfd)
14654 ->elf_backend_ecoff_debug_swap);
14655
eea6121a 14656 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14657
14658 /* The ECOFF linking code expects that we have already
14659 read in the debugging information and set up an
14660 ecoff_debug_info structure, so we do that now. */
14661 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14662 &input_debug))
b34976b6 14663 return FALSE;
b49e97c9
TS
14664
14665 if (! (bfd_ecoff_debug_accumulate
14666 (mdebug_handle, abfd, &debug, swap, input_bfd,
14667 &input_debug, input_swap, info)))
b34976b6 14668 return FALSE;
b49e97c9
TS
14669
14670 /* Loop through the external symbols. For each one with
14671 interesting information, try to find the symbol in
14672 the linker global hash table and save the information
14673 for the output external symbols. */
14674 eraw_src = input_debug.external_ext;
14675 eraw_end = (eraw_src
14676 + (input_debug.symbolic_header.iextMax
14677 * input_swap->external_ext_size));
14678 for (;
14679 eraw_src < eraw_end;
14680 eraw_src += input_swap->external_ext_size)
14681 {
14682 EXTR ext;
14683 const char *name;
14684 struct mips_elf_link_hash_entry *h;
14685
9719ad41 14686 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14687 if (ext.asym.sc == scNil
14688 || ext.asym.sc == scUndefined
14689 || ext.asym.sc == scSUndefined)
14690 continue;
14691
14692 name = input_debug.ssext + ext.asym.iss;
14693 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14694 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14695 if (h == NULL || h->esym.ifd != -2)
14696 continue;
14697
14698 if (ext.ifd != -1)
14699 {
14700 BFD_ASSERT (ext.ifd
14701 < input_debug.symbolic_header.ifdMax);
14702 ext.ifd = input_debug.ifdmap[ext.ifd];
14703 }
14704
14705 h->esym = ext;
14706 }
14707
14708 /* Free up the information we just read. */
14709 free (input_debug.line);
14710 free (input_debug.external_dnr);
14711 free (input_debug.external_pdr);
14712 free (input_debug.external_sym);
14713 free (input_debug.external_opt);
14714 free (input_debug.external_aux);
14715 free (input_debug.ss);
14716 free (input_debug.ssext);
14717 free (input_debug.external_fdr);
14718 free (input_debug.external_rfd);
14719 free (input_debug.external_ext);
14720
14721 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14722 elf_link_input_bfd ignores this section. */
14723 input_section->flags &= ~SEC_HAS_CONTENTS;
14724 }
14725
0e1862bb 14726 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14727 {
14728 /* Create .rtproc section. */
87e0a731 14729 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14730 if (rtproc_sec == NULL)
14731 {
14732 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14733 | SEC_LINKER_CREATED | SEC_READONLY);
14734
87e0a731
AM
14735 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14736 ".rtproc",
14737 flags);
b49e97c9 14738 if (rtproc_sec == NULL
b49e97c9 14739 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14740 return FALSE;
b49e97c9
TS
14741 }
14742
14743 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14744 info, rtproc_sec,
14745 &debug))
b34976b6 14746 return FALSE;
b49e97c9
TS
14747 }
14748
14749 /* Build the external symbol information. */
14750 einfo.abfd = abfd;
14751 einfo.info = info;
14752 einfo.debug = &debug;
14753 einfo.swap = swap;
b34976b6 14754 einfo.failed = FALSE;
b49e97c9 14755 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14756 mips_elf_output_extsym, &einfo);
b49e97c9 14757 if (einfo.failed)
b34976b6 14758 return FALSE;
b49e97c9
TS
14759
14760 /* Set the size of the .mdebug section. */
eea6121a 14761 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14762
14763 /* Skip this section later on (I don't think this currently
14764 matters, but someday it might). */
8423293d 14765 o->map_head.link_order = NULL;
b49e97c9
TS
14766
14767 mdebug_sec = o;
14768 }
14769
0112cd26 14770 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14771 {
14772 const char *subname;
14773 unsigned int c;
14774 Elf32_gptab *tab;
14775 Elf32_External_gptab *ext_tab;
14776 unsigned int j;
14777
14778 /* The .gptab.sdata and .gptab.sbss sections hold
14779 information describing how the small data area would
14780 change depending upon the -G switch. These sections
14781 not used in executables files. */
0e1862bb 14782 if (! bfd_link_relocatable (info))
b49e97c9 14783 {
8423293d 14784 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14785 {
14786 asection *input_section;
14787
14788 if (p->type != bfd_indirect_link_order)
14789 {
14790 if (p->type == bfd_data_link_order)
14791 continue;
14792 abort ();
14793 }
14794
14795 input_section = p->u.indirect.section;
14796
14797 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14798 elf_link_input_bfd ignores this section. */
14799 input_section->flags &= ~SEC_HAS_CONTENTS;
14800 }
14801
14802 /* Skip this section later on (I don't think this
14803 currently matters, but someday it might). */
8423293d 14804 o->map_head.link_order = NULL;
b49e97c9
TS
14805
14806 /* Really remove the section. */
5daa8fe7 14807 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14808 --abfd->section_count;
14809
14810 continue;
14811 }
14812
14813 /* There is one gptab for initialized data, and one for
14814 uninitialized data. */
14815 if (strcmp (o->name, ".gptab.sdata") == 0)
14816 gptab_data_sec = o;
14817 else if (strcmp (o->name, ".gptab.sbss") == 0)
14818 gptab_bss_sec = o;
14819 else
14820 {
14821 (*_bfd_error_handler)
14822 (_("%s: illegal section name `%s'"),
14823 bfd_get_filename (abfd), o->name);
14824 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14825 return FALSE;
b49e97c9
TS
14826 }
14827
14828 /* The linker script always combines .gptab.data and
14829 .gptab.sdata into .gptab.sdata, and likewise for
14830 .gptab.bss and .gptab.sbss. It is possible that there is
14831 no .sdata or .sbss section in the output file, in which
14832 case we must change the name of the output section. */
14833 subname = o->name + sizeof ".gptab" - 1;
14834 if (bfd_get_section_by_name (abfd, subname) == NULL)
14835 {
14836 if (o == gptab_data_sec)
14837 o->name = ".gptab.data";
14838 else
14839 o->name = ".gptab.bss";
14840 subname = o->name + sizeof ".gptab" - 1;
14841 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14842 }
14843
14844 /* Set up the first entry. */
14845 c = 1;
14846 amt = c * sizeof (Elf32_gptab);
9719ad41 14847 tab = bfd_malloc (amt);
b49e97c9 14848 if (tab == NULL)
b34976b6 14849 return FALSE;
b49e97c9
TS
14850 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14851 tab[0].gt_header.gt_unused = 0;
14852
14853 /* Combine the input sections. */
8423293d 14854 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14855 {
14856 asection *input_section;
14857 bfd *input_bfd;
14858 bfd_size_type size;
14859 unsigned long last;
14860 bfd_size_type gpentry;
14861
14862 if (p->type != bfd_indirect_link_order)
14863 {
14864 if (p->type == bfd_data_link_order)
14865 continue;
14866 abort ();
14867 }
14868
14869 input_section = p->u.indirect.section;
14870 input_bfd = input_section->owner;
14871
14872 /* Combine the gptab entries for this input section one
14873 by one. We know that the input gptab entries are
14874 sorted by ascending -G value. */
eea6121a 14875 size = input_section->size;
b49e97c9
TS
14876 last = 0;
14877 for (gpentry = sizeof (Elf32_External_gptab);
14878 gpentry < size;
14879 gpentry += sizeof (Elf32_External_gptab))
14880 {
14881 Elf32_External_gptab ext_gptab;
14882 Elf32_gptab int_gptab;
14883 unsigned long val;
14884 unsigned long add;
b34976b6 14885 bfd_boolean exact;
b49e97c9
TS
14886 unsigned int look;
14887
14888 if (! (bfd_get_section_contents
9719ad41
RS
14889 (input_bfd, input_section, &ext_gptab, gpentry,
14890 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14891 {
14892 free (tab);
b34976b6 14893 return FALSE;
b49e97c9
TS
14894 }
14895
14896 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14897 &int_gptab);
14898 val = int_gptab.gt_entry.gt_g_value;
14899 add = int_gptab.gt_entry.gt_bytes - last;
14900
b34976b6 14901 exact = FALSE;
b49e97c9
TS
14902 for (look = 1; look < c; look++)
14903 {
14904 if (tab[look].gt_entry.gt_g_value >= val)
14905 tab[look].gt_entry.gt_bytes += add;
14906
14907 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14908 exact = TRUE;
b49e97c9
TS
14909 }
14910
14911 if (! exact)
14912 {
14913 Elf32_gptab *new_tab;
14914 unsigned int max;
14915
14916 /* We need a new table entry. */
14917 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14918 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14919 if (new_tab == NULL)
14920 {
14921 free (tab);
b34976b6 14922 return FALSE;
b49e97c9
TS
14923 }
14924 tab = new_tab;
14925 tab[c].gt_entry.gt_g_value = val;
14926 tab[c].gt_entry.gt_bytes = add;
14927
14928 /* Merge in the size for the next smallest -G
14929 value, since that will be implied by this new
14930 value. */
14931 max = 0;
14932 for (look = 1; look < c; look++)
14933 {
14934 if (tab[look].gt_entry.gt_g_value < val
14935 && (max == 0
14936 || (tab[look].gt_entry.gt_g_value
14937 > tab[max].gt_entry.gt_g_value)))
14938 max = look;
14939 }
14940 if (max != 0)
14941 tab[c].gt_entry.gt_bytes +=
14942 tab[max].gt_entry.gt_bytes;
14943
14944 ++c;
14945 }
14946
14947 last = int_gptab.gt_entry.gt_bytes;
14948 }
14949
14950 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14951 elf_link_input_bfd ignores this section. */
14952 input_section->flags &= ~SEC_HAS_CONTENTS;
14953 }
14954
14955 /* The table must be sorted by -G value. */
14956 if (c > 2)
14957 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14958
14959 /* Swap out the table. */
14960 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14961 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14962 if (ext_tab == NULL)
14963 {
14964 free (tab);
b34976b6 14965 return FALSE;
b49e97c9
TS
14966 }
14967
14968 for (j = 0; j < c; j++)
14969 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14970 free (tab);
14971
eea6121a 14972 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14973 o->contents = (bfd_byte *) ext_tab;
14974
14975 /* Skip this section later on (I don't think this currently
14976 matters, but someday it might). */
8423293d 14977 o->map_head.link_order = NULL;
b49e97c9
TS
14978 }
14979 }
14980
14981 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14982 if (!bfd_elf_final_link (abfd, info))
b34976b6 14983 return FALSE;
b49e97c9
TS
14984
14985 /* Now write out the computed sections. */
14986
351cdf24
MF
14987 if (abiflags_sec != NULL)
14988 {
14989 Elf_External_ABIFlags_v0 ext;
14990 Elf_Internal_ABIFlags_v0 *abiflags;
14991
14992 abiflags = &mips_elf_tdata (abfd)->abiflags;
14993
14994 /* Set up the abiflags if no valid input sections were found. */
14995 if (!mips_elf_tdata (abfd)->abiflags_valid)
14996 {
14997 infer_mips_abiflags (abfd, abiflags);
14998 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14999 }
15000 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15001 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15002 return FALSE;
15003 }
15004
9719ad41 15005 if (reginfo_sec != NULL)
b49e97c9
TS
15006 {
15007 Elf32_External_RegInfo ext;
15008
15009 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15010 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15011 return FALSE;
b49e97c9
TS
15012 }
15013
9719ad41 15014 if (mdebug_sec != NULL)
b49e97c9
TS
15015 {
15016 BFD_ASSERT (abfd->output_has_begun);
15017 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15018 swap, info,
15019 mdebug_sec->filepos))
b34976b6 15020 return FALSE;
b49e97c9
TS
15021
15022 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15023 }
15024
9719ad41 15025 if (gptab_data_sec != NULL)
b49e97c9
TS
15026 {
15027 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15028 gptab_data_sec->contents,
eea6121a 15029 0, gptab_data_sec->size))
b34976b6 15030 return FALSE;
b49e97c9
TS
15031 }
15032
9719ad41 15033 if (gptab_bss_sec != NULL)
b49e97c9
TS
15034 {
15035 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15036 gptab_bss_sec->contents,
eea6121a 15037 0, gptab_bss_sec->size))
b34976b6 15038 return FALSE;
b49e97c9
TS
15039 }
15040
15041 if (SGI_COMPAT (abfd))
15042 {
15043 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15044 if (rtproc_sec != NULL)
15045 {
15046 if (! bfd_set_section_contents (abfd, rtproc_sec,
15047 rtproc_sec->contents,
eea6121a 15048 0, rtproc_sec->size))
b34976b6 15049 return FALSE;
b49e97c9
TS
15050 }
15051 }
15052
b34976b6 15053 return TRUE;
b49e97c9
TS
15054}
15055\f
b2e9744f
MR
15056/* Merge object file header flags from IBFD into OBFD. Raise an error
15057 if there are conflicting settings. */
15058
15059static bfd_boolean
15060mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
15061{
15062 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15063 flagword old_flags;
15064 flagword new_flags;
15065 bfd_boolean ok;
15066
15067 new_flags = elf_elfheader (ibfd)->e_flags;
15068 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15069 old_flags = elf_elfheader (obfd)->e_flags;
15070
15071 /* Check flag compatibility. */
15072
15073 new_flags &= ~EF_MIPS_NOREORDER;
15074 old_flags &= ~EF_MIPS_NOREORDER;
15075
15076 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15077 doesn't seem to matter. */
15078 new_flags &= ~EF_MIPS_XGOT;
15079 old_flags &= ~EF_MIPS_XGOT;
15080
15081 /* MIPSpro generates ucode info in n64 objects. Again, we should
15082 just be able to ignore this. */
15083 new_flags &= ~EF_MIPS_UCODE;
15084 old_flags &= ~EF_MIPS_UCODE;
15085
15086 /* DSOs should only be linked with CPIC code. */
15087 if ((ibfd->flags & DYNAMIC) != 0)
15088 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15089
15090 if (new_flags == old_flags)
15091 return TRUE;
15092
15093 ok = TRUE;
15094
15095 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15096 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15097 {
15098 (*_bfd_error_handler)
15099 (_("%B: warning: linking abicalls files with non-abicalls files"),
15100 ibfd);
15101 ok = TRUE;
15102 }
15103
15104 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15105 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15106 if (! (new_flags & EF_MIPS_PIC))
15107 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15108
15109 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15110 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15111
15112 /* Compare the ISAs. */
15113 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15114 {
15115 (*_bfd_error_handler)
15116 (_("%B: linking 32-bit code with 64-bit code"),
15117 ibfd);
15118 ok = FALSE;
15119 }
15120 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15121 {
15122 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15123 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15124 {
15125 /* Copy the architecture info from IBFD to OBFD. Also copy
15126 the 32-bit flag (if set) so that we continue to recognise
15127 OBFD as a 32-bit binary. */
15128 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15129 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15130 elf_elfheader (obfd)->e_flags
15131 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15132
15133 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15134 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15135
15136 /* Copy across the ABI flags if OBFD doesn't use them
15137 and if that was what caused us to treat IBFD as 32-bit. */
15138 if ((old_flags & EF_MIPS_ABI) == 0
15139 && mips_32bit_flags_p (new_flags)
15140 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15141 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15142 }
15143 else
15144 {
15145 /* The ISAs aren't compatible. */
15146 (*_bfd_error_handler)
15147 (_("%B: linking %s module with previous %s modules"),
15148 ibfd,
15149 bfd_printable_name (ibfd),
15150 bfd_printable_name (obfd));
15151 ok = FALSE;
15152 }
15153 }
15154
15155 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15156 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15157
15158 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15159 does set EI_CLASS differently from any 32-bit ABI. */
15160 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15161 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15162 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15163 {
15164 /* Only error if both are set (to different values). */
15165 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15166 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15167 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15168 {
15169 (*_bfd_error_handler)
15170 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15171 ibfd,
15172 elf_mips_abi_name (ibfd),
15173 elf_mips_abi_name (obfd));
15174 ok = FALSE;
15175 }
15176 new_flags &= ~EF_MIPS_ABI;
15177 old_flags &= ~EF_MIPS_ABI;
15178 }
15179
15180 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15181 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15182 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15183 {
15184 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15185 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15186 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15187 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15188 int micro_mis = old_m16 && new_micro;
15189 int m16_mis = old_micro && new_m16;
15190
15191 if (m16_mis || micro_mis)
15192 {
15193 (*_bfd_error_handler)
15194 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15195 ibfd,
15196 m16_mis ? "MIPS16" : "microMIPS",
15197 m16_mis ? "microMIPS" : "MIPS16");
15198 ok = FALSE;
15199 }
15200
15201 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15202
15203 new_flags &= ~ EF_MIPS_ARCH_ASE;
15204 old_flags &= ~ EF_MIPS_ARCH_ASE;
15205 }
15206
15207 /* Compare NaN encodings. */
15208 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15209 {
15210 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15211 ibfd,
15212 (new_flags & EF_MIPS_NAN2008
15213 ? "-mnan=2008" : "-mnan=legacy"),
15214 (old_flags & EF_MIPS_NAN2008
15215 ? "-mnan=2008" : "-mnan=legacy"));
15216 ok = FALSE;
15217 new_flags &= ~EF_MIPS_NAN2008;
15218 old_flags &= ~EF_MIPS_NAN2008;
15219 }
15220
15221 /* Compare FP64 state. */
15222 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15223 {
15224 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15225 ibfd,
15226 (new_flags & EF_MIPS_FP64
15227 ? "-mfp64" : "-mfp32"),
15228 (old_flags & EF_MIPS_FP64
15229 ? "-mfp64" : "-mfp32"));
15230 ok = FALSE;
15231 new_flags &= ~EF_MIPS_FP64;
15232 old_flags &= ~EF_MIPS_FP64;
15233 }
15234
15235 /* Warn about any other mismatches */
15236 if (new_flags != old_flags)
15237 {
15238 (*_bfd_error_handler)
15239 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15240 "(0x%lx)"),
15241 ibfd, (unsigned long) new_flags,
15242 (unsigned long) old_flags);
15243 ok = FALSE;
15244 }
15245
15246 return ok;
15247}
15248
2cf19d5c
JM
15249/* Merge object attributes from IBFD into OBFD. Raise an error if
15250 there are conflicting attributes. */
15251static bfd_boolean
15252mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15253{
15254 obj_attribute *in_attr;
15255 obj_attribute *out_attr;
6ae68ba3 15256 bfd *abi_fp_bfd;
b60bf9be 15257 bfd *abi_msa_bfd;
6ae68ba3
MR
15258
15259 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15260 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15261 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15262 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15263
b60bf9be
CF
15264 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15265 if (!abi_msa_bfd
15266 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15267 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15268
2cf19d5c
JM
15269 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15270 {
15271 /* This is the first object. Copy the attributes. */
15272 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15273
15274 /* Use the Tag_null value to indicate the attributes have been
15275 initialized. */
15276 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15277
15278 return TRUE;
15279 }
15280
15281 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15282 non-conflicting ones. */
2cf19d5c
JM
15283 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15284 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15285 {
757a636f 15286 int out_fp, in_fp;
6ae68ba3 15287
757a636f
RS
15288 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15289 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15290 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15291 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15292 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15293 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15294 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15295 || in_fp == Val_GNU_MIPS_ABI_FP_64
15296 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15297 {
15298 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15299 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15300 }
15301 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15302 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15303 || out_fp == Val_GNU_MIPS_ABI_FP_64
15304 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15305 /* Keep the current setting. */;
15306 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15307 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15308 {
15309 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15310 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15311 }
15312 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15313 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15314 /* Keep the current setting. */;
757a636f
RS
15315 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15316 {
15317 const char *out_string, *in_string;
6ae68ba3 15318
757a636f
RS
15319 out_string = _bfd_mips_fp_abi_string (out_fp);
15320 in_string = _bfd_mips_fp_abi_string (in_fp);
15321 /* First warn about cases involving unrecognised ABIs. */
15322 if (!out_string && !in_string)
15323 _bfd_error_handler
15324 (_("Warning: %B uses unknown floating point ABI %d "
15325 "(set by %B), %B uses unknown floating point ABI %d"),
15326 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15327 else if (!out_string)
15328 _bfd_error_handler
15329 (_("Warning: %B uses unknown floating point ABI %d "
15330 "(set by %B), %B uses %s"),
15331 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15332 else if (!in_string)
15333 _bfd_error_handler
15334 (_("Warning: %B uses %s (set by %B), "
15335 "%B uses unknown floating point ABI %d"),
15336 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15337 else
15338 {
15339 /* If one of the bfds is soft-float, the other must be
15340 hard-float. The exact choice of hard-float ABI isn't
15341 really relevant to the error message. */
15342 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15343 out_string = "-mhard-float";
15344 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15345 in_string = "-mhard-float";
15346 _bfd_error_handler
15347 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15348 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15349 }
15350 }
2cf19d5c
JM
15351 }
15352
b60bf9be
CF
15353 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15354 non-conflicting ones. */
15355 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15356 {
15357 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15358 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15359 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15360 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15361 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15362 {
15363 case Val_GNU_MIPS_ABI_MSA_128:
15364 _bfd_error_handler
15365 (_("Warning: %B uses %s (set by %B), "
15366 "%B uses unknown MSA ABI %d"),
15367 obfd, abi_msa_bfd, ibfd,
15368 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15369 break;
15370
15371 default:
15372 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15373 {
15374 case Val_GNU_MIPS_ABI_MSA_128:
15375 _bfd_error_handler
15376 (_("Warning: %B uses unknown MSA ABI %d "
15377 "(set by %B), %B uses %s"),
15378 obfd, abi_msa_bfd, ibfd,
15379 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15380 break;
15381
15382 default:
15383 _bfd_error_handler
15384 (_("Warning: %B uses unknown MSA ABI %d "
15385 "(set by %B), %B uses unknown MSA ABI %d"),
15386 obfd, abi_msa_bfd, ibfd,
15387 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15388 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15389 break;
15390 }
15391 }
15392 }
15393
2cf19d5c 15394 /* Merge Tag_compatibility attributes and any common GNU ones. */
43d223b5 15395 return _bfd_elf_merge_object_attributes (ibfd, obfd);
2cf19d5c
JM
15396}
15397
a3dc0a7f
MR
15398/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15399 there are conflicting settings. */
15400
15401static bfd_boolean
15402mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15403{
15404 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15405 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15406 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15407
15408 /* Update the output abiflags fp_abi using the computed fp_abi. */
15409 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15410
15411#define max(a, b) ((a) > (b) ? (a) : (b))
15412 /* Merge abiflags. */
15413 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15414 in_tdata->abiflags.isa_level);
15415 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15416 in_tdata->abiflags.isa_rev);
15417 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15418 in_tdata->abiflags.gpr_size);
15419 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15420 in_tdata->abiflags.cpr1_size);
15421 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15422 in_tdata->abiflags.cpr2_size);
15423#undef max
15424 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15425 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15426
15427 return TRUE;
15428}
15429
b49e97c9
TS
15430/* Merge backend specific data from an object file to the output
15431 object file when linking. */
15432
b34976b6 15433bfd_boolean
9719ad41 15434_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9 15435{
cf8502c1
MR
15436 struct mips_elf_obj_tdata *out_tdata;
15437 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15438 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15439 asection *sec;
d537eeb5 15440 bfd_boolean ok;
b49e97c9 15441
58238693 15442 /* Check if we have the same endianness. */
82e51918 15443 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
15444 {
15445 (*_bfd_error_handler)
d003868e
AM
15446 (_("%B: endianness incompatible with that of the selected emulation"),
15447 ibfd);
aa701218
AO
15448 return FALSE;
15449 }
b49e97c9 15450
d5eaccd7 15451 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15452 return TRUE;
b49e97c9 15453
cf8502c1
MR
15454 in_tdata = mips_elf_tdata (ibfd);
15455 out_tdata = mips_elf_tdata (obfd);
15456
aa701218
AO
15457 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15458 {
15459 (*_bfd_error_handler)
d003868e
AM
15460 (_("%B: ABI is incompatible with that of the selected emulation"),
15461 ibfd);
aa701218
AO
15462 return FALSE;
15463 }
15464
23ba6f18
MR
15465 /* Check to see if the input BFD actually contains any sections. If not,
15466 then it has no attributes, and its flags may not have been initialized
15467 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15468 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15469 {
15470 /* Ignore synthetic sections and empty .text, .data and .bss sections
15471 which are automatically generated by gas. Also ignore fake
15472 (s)common sections, since merely defining a common symbol does
15473 not affect compatibility. */
15474 if ((sec->flags & SEC_IS_COMMON) == 0
15475 && strcmp (sec->name, ".reginfo")
15476 && strcmp (sec->name, ".mdebug")
15477 && (sec->size != 0
15478 || (strcmp (sec->name, ".text")
15479 && strcmp (sec->name, ".data")
15480 && strcmp (sec->name, ".bss"))))
15481 {
15482 null_input_bfd = FALSE;
15483 break;
15484 }
15485 }
15486 if (null_input_bfd)
15487 return TRUE;
15488
28d45e28 15489 /* Populate abiflags using existing information. */
23ba6f18
MR
15490 if (in_tdata->abiflags_valid)
15491 {
15492 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15493 Elf_Internal_ABIFlags_v0 in_abiflags;
15494 Elf_Internal_ABIFlags_v0 abiflags;
15495
15496 /* Set up the FP ABI attribute from the abiflags if it is not already
15497 set. */
23ba6f18
MR
15498 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15499 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15500
351cdf24 15501 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15502 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15503
15504 /* It is not possible to infer the correct ISA revision
15505 for R3 or R5 so drop down to R2 for the checks. */
15506 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15507 in_abiflags.isa_rev = 2;
15508
c97c330b
MF
15509 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15510 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
351cdf24
MF
15511 (*_bfd_error_handler)
15512 (_("%B: warning: Inconsistent ISA between e_flags and "
15513 ".MIPS.abiflags"), ibfd);
15514 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15515 && in_abiflags.fp_abi != abiflags.fp_abi)
15516 (*_bfd_error_handler)
dcb1c796 15517 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15518 ".MIPS.abiflags"), ibfd);
15519 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15520 (*_bfd_error_handler)
15521 (_("%B: warning: Inconsistent ASEs between e_flags and "
15522 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15523 /* The isa_ext is allowed to be an extension of what can be inferred
15524 from e_flags. */
15525 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15526 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
351cdf24
MF
15527 (*_bfd_error_handler)
15528 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15529 ".MIPS.abiflags"), ibfd);
15530 if (in_abiflags.flags2 != 0)
15531 (*_bfd_error_handler)
15532 (_("%B: warning: Unexpected flag in the flags2 field of "
15533 ".MIPS.abiflags (0x%lx)"), ibfd,
15534 (unsigned long) in_abiflags.flags2);
15535 }
28d45e28
MR
15536 else
15537 {
15538 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15539 in_tdata->abiflags_valid = TRUE;
15540 }
15541
cf8502c1 15542 if (!out_tdata->abiflags_valid)
351cdf24
MF
15543 {
15544 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15545 out_tdata->abiflags = in_tdata->abiflags;
15546 out_tdata->abiflags_valid = TRUE;
351cdf24 15547 }
b49e97c9
TS
15548
15549 if (! elf_flags_init (obfd))
15550 {
b34976b6 15551 elf_flags_init (obfd) = TRUE;
351cdf24 15552 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15553 elf_elfheader (obfd)->e_ident[EI_CLASS]
15554 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15555
15556 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15557 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15558 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15559 bfd_get_mach (ibfd))))
b49e97c9
TS
15560 {
15561 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15562 bfd_get_mach (ibfd)))
b34976b6 15563 return FALSE;
351cdf24
MF
15564
15565 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15566 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15567 }
15568
d537eeb5 15569 ok = TRUE;
b49e97c9 15570 }
d537eeb5
MR
15571 else
15572 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15573
15574 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
b49e97c9 15575
a3dc0a7f 15576 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15577
d537eeb5 15578 if (!ok)
b49e97c9
TS
15579 {
15580 bfd_set_error (bfd_error_bad_value);
b34976b6 15581 return FALSE;
b49e97c9
TS
15582 }
15583
b34976b6 15584 return TRUE;
b49e97c9
TS
15585}
15586
15587/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15588
b34976b6 15589bfd_boolean
9719ad41 15590_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15591{
15592 BFD_ASSERT (!elf_flags_init (abfd)
15593 || elf_elfheader (abfd)->e_flags == flags);
15594
15595 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15596 elf_flags_init (abfd) = TRUE;
15597 return TRUE;
b49e97c9
TS
15598}
15599
ad9563d6
CM
15600char *
15601_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15602{
15603 switch (dtag)
15604 {
15605 default: return "";
15606 case DT_MIPS_RLD_VERSION:
15607 return "MIPS_RLD_VERSION";
15608 case DT_MIPS_TIME_STAMP:
15609 return "MIPS_TIME_STAMP";
15610 case DT_MIPS_ICHECKSUM:
15611 return "MIPS_ICHECKSUM";
15612 case DT_MIPS_IVERSION:
15613 return "MIPS_IVERSION";
15614 case DT_MIPS_FLAGS:
15615 return "MIPS_FLAGS";
15616 case DT_MIPS_BASE_ADDRESS:
15617 return "MIPS_BASE_ADDRESS";
15618 case DT_MIPS_MSYM:
15619 return "MIPS_MSYM";
15620 case DT_MIPS_CONFLICT:
15621 return "MIPS_CONFLICT";
15622 case DT_MIPS_LIBLIST:
15623 return "MIPS_LIBLIST";
15624 case DT_MIPS_LOCAL_GOTNO:
15625 return "MIPS_LOCAL_GOTNO";
15626 case DT_MIPS_CONFLICTNO:
15627 return "MIPS_CONFLICTNO";
15628 case DT_MIPS_LIBLISTNO:
15629 return "MIPS_LIBLISTNO";
15630 case DT_MIPS_SYMTABNO:
15631 return "MIPS_SYMTABNO";
15632 case DT_MIPS_UNREFEXTNO:
15633 return "MIPS_UNREFEXTNO";
15634 case DT_MIPS_GOTSYM:
15635 return "MIPS_GOTSYM";
15636 case DT_MIPS_HIPAGENO:
15637 return "MIPS_HIPAGENO";
15638 case DT_MIPS_RLD_MAP:
15639 return "MIPS_RLD_MAP";
a5499fa4
MF
15640 case DT_MIPS_RLD_MAP_REL:
15641 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15642 case DT_MIPS_DELTA_CLASS:
15643 return "MIPS_DELTA_CLASS";
15644 case DT_MIPS_DELTA_CLASS_NO:
15645 return "MIPS_DELTA_CLASS_NO";
15646 case DT_MIPS_DELTA_INSTANCE:
15647 return "MIPS_DELTA_INSTANCE";
15648 case DT_MIPS_DELTA_INSTANCE_NO:
15649 return "MIPS_DELTA_INSTANCE_NO";
15650 case DT_MIPS_DELTA_RELOC:
15651 return "MIPS_DELTA_RELOC";
15652 case DT_MIPS_DELTA_RELOC_NO:
15653 return "MIPS_DELTA_RELOC_NO";
15654 case DT_MIPS_DELTA_SYM:
15655 return "MIPS_DELTA_SYM";
15656 case DT_MIPS_DELTA_SYM_NO:
15657 return "MIPS_DELTA_SYM_NO";
15658 case DT_MIPS_DELTA_CLASSSYM:
15659 return "MIPS_DELTA_CLASSSYM";
15660 case DT_MIPS_DELTA_CLASSSYM_NO:
15661 return "MIPS_DELTA_CLASSSYM_NO";
15662 case DT_MIPS_CXX_FLAGS:
15663 return "MIPS_CXX_FLAGS";
15664 case DT_MIPS_PIXIE_INIT:
15665 return "MIPS_PIXIE_INIT";
15666 case DT_MIPS_SYMBOL_LIB:
15667 return "MIPS_SYMBOL_LIB";
15668 case DT_MIPS_LOCALPAGE_GOTIDX:
15669 return "MIPS_LOCALPAGE_GOTIDX";
15670 case DT_MIPS_LOCAL_GOTIDX:
15671 return "MIPS_LOCAL_GOTIDX";
15672 case DT_MIPS_HIDDEN_GOTIDX:
15673 return "MIPS_HIDDEN_GOTIDX";
15674 case DT_MIPS_PROTECTED_GOTIDX:
15675 return "MIPS_PROTECTED_GOT_IDX";
15676 case DT_MIPS_OPTIONS:
15677 return "MIPS_OPTIONS";
15678 case DT_MIPS_INTERFACE:
15679 return "MIPS_INTERFACE";
15680 case DT_MIPS_DYNSTR_ALIGN:
15681 return "DT_MIPS_DYNSTR_ALIGN";
15682 case DT_MIPS_INTERFACE_SIZE:
15683 return "DT_MIPS_INTERFACE_SIZE";
15684 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15685 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15686 case DT_MIPS_PERF_SUFFIX:
15687 return "DT_MIPS_PERF_SUFFIX";
15688 case DT_MIPS_COMPACT_SIZE:
15689 return "DT_MIPS_COMPACT_SIZE";
15690 case DT_MIPS_GP_VALUE:
15691 return "DT_MIPS_GP_VALUE";
15692 case DT_MIPS_AUX_DYNAMIC:
15693 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15694 case DT_MIPS_PLTGOT:
15695 return "DT_MIPS_PLTGOT";
15696 case DT_MIPS_RWPLT:
15697 return "DT_MIPS_RWPLT";
ad9563d6
CM
15698 }
15699}
15700
757a636f
RS
15701/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15702 not known. */
15703
15704const char *
15705_bfd_mips_fp_abi_string (int fp)
15706{
15707 switch (fp)
15708 {
15709 /* These strings aren't translated because they're simply
15710 option lists. */
15711 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15712 return "-mdouble-float";
15713
15714 case Val_GNU_MIPS_ABI_FP_SINGLE:
15715 return "-msingle-float";
15716
15717 case Val_GNU_MIPS_ABI_FP_SOFT:
15718 return "-msoft-float";
15719
351cdf24
MF
15720 case Val_GNU_MIPS_ABI_FP_OLD_64:
15721 return _("-mips32r2 -mfp64 (12 callee-saved)");
15722
15723 case Val_GNU_MIPS_ABI_FP_XX:
15724 return "-mfpxx";
15725
757a636f 15726 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15727 return "-mgp32 -mfp64";
15728
15729 case Val_GNU_MIPS_ABI_FP_64A:
15730 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15731
15732 default:
15733 return 0;
15734 }
15735}
15736
351cdf24
MF
15737static void
15738print_mips_ases (FILE *file, unsigned int mask)
15739{
15740 if (mask & AFL_ASE_DSP)
15741 fputs ("\n\tDSP ASE", file);
15742 if (mask & AFL_ASE_DSPR2)
15743 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15744 if (mask & AFL_ASE_DSPR3)
15745 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15746 if (mask & AFL_ASE_EVA)
15747 fputs ("\n\tEnhanced VA Scheme", file);
15748 if (mask & AFL_ASE_MCU)
15749 fputs ("\n\tMCU (MicroController) ASE", file);
15750 if (mask & AFL_ASE_MDMX)
15751 fputs ("\n\tMDMX ASE", file);
15752 if (mask & AFL_ASE_MIPS3D)
15753 fputs ("\n\tMIPS-3D ASE", file);
15754 if (mask & AFL_ASE_MT)
15755 fputs ("\n\tMT ASE", file);
15756 if (mask & AFL_ASE_SMARTMIPS)
15757 fputs ("\n\tSmartMIPS ASE", file);
15758 if (mask & AFL_ASE_VIRT)
15759 fputs ("\n\tVZ ASE", file);
15760 if (mask & AFL_ASE_MSA)
15761 fputs ("\n\tMSA ASE", file);
15762 if (mask & AFL_ASE_MIPS16)
15763 fputs ("\n\tMIPS16 ASE", file);
15764 if (mask & AFL_ASE_MICROMIPS)
15765 fputs ("\n\tMICROMIPS ASE", file);
15766 if (mask & AFL_ASE_XPA)
15767 fputs ("\n\tXPA ASE", file);
15768 if (mask == 0)
15769 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15770 else if ((mask & ~AFL_ASE_MASK) != 0)
15771 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15772}
15773
15774static void
15775print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15776{
15777 switch (isa_ext)
15778 {
15779 case 0:
15780 fputs (_("None"), file);
15781 break;
15782 case AFL_EXT_XLR:
15783 fputs ("RMI XLR", file);
15784 break;
2c629856
N
15785 case AFL_EXT_OCTEON3:
15786 fputs ("Cavium Networks Octeon3", file);
15787 break;
351cdf24
MF
15788 case AFL_EXT_OCTEON2:
15789 fputs ("Cavium Networks Octeon2", file);
15790 break;
15791 case AFL_EXT_OCTEONP:
15792 fputs ("Cavium Networks OcteonP", file);
15793 break;
15794 case AFL_EXT_LOONGSON_3A:
15795 fputs ("Loongson 3A", file);
15796 break;
15797 case AFL_EXT_OCTEON:
15798 fputs ("Cavium Networks Octeon", file);
15799 break;
15800 case AFL_EXT_5900:
15801 fputs ("Toshiba R5900", file);
15802 break;
15803 case AFL_EXT_4650:
15804 fputs ("MIPS R4650", file);
15805 break;
15806 case AFL_EXT_4010:
15807 fputs ("LSI R4010", file);
15808 break;
15809 case AFL_EXT_4100:
15810 fputs ("NEC VR4100", file);
15811 break;
15812 case AFL_EXT_3900:
15813 fputs ("Toshiba R3900", file);
15814 break;
15815 case AFL_EXT_10000:
15816 fputs ("MIPS R10000", file);
15817 break;
15818 case AFL_EXT_SB1:
15819 fputs ("Broadcom SB-1", file);
15820 break;
15821 case AFL_EXT_4111:
15822 fputs ("NEC VR4111/VR4181", file);
15823 break;
15824 case AFL_EXT_4120:
15825 fputs ("NEC VR4120", file);
15826 break;
15827 case AFL_EXT_5400:
15828 fputs ("NEC VR5400", file);
15829 break;
15830 case AFL_EXT_5500:
15831 fputs ("NEC VR5500", file);
15832 break;
15833 case AFL_EXT_LOONGSON_2E:
15834 fputs ("ST Microelectronics Loongson 2E", file);
15835 break;
15836 case AFL_EXT_LOONGSON_2F:
15837 fputs ("ST Microelectronics Loongson 2F", file);
15838 break;
15839 default:
00ac7aa0 15840 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15841 break;
15842 }
15843}
15844
15845static void
15846print_mips_fp_abi_value (FILE *file, int val)
15847{
15848 switch (val)
15849 {
15850 case Val_GNU_MIPS_ABI_FP_ANY:
15851 fprintf (file, _("Hard or soft float\n"));
15852 break;
15853 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15854 fprintf (file, _("Hard float (double precision)\n"));
15855 break;
15856 case Val_GNU_MIPS_ABI_FP_SINGLE:
15857 fprintf (file, _("Hard float (single precision)\n"));
15858 break;
15859 case Val_GNU_MIPS_ABI_FP_SOFT:
15860 fprintf (file, _("Soft float\n"));
15861 break;
15862 case Val_GNU_MIPS_ABI_FP_OLD_64:
15863 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15864 break;
15865 case Val_GNU_MIPS_ABI_FP_XX:
15866 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15867 break;
15868 case Val_GNU_MIPS_ABI_FP_64:
15869 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15870 break;
15871 case Val_GNU_MIPS_ABI_FP_64A:
15872 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15873 break;
15874 default:
15875 fprintf (file, "??? (%d)\n", val);
15876 break;
15877 }
15878}
15879
15880static int
15881get_mips_reg_size (int reg_size)
15882{
15883 return (reg_size == AFL_REG_NONE) ? 0
15884 : (reg_size == AFL_REG_32) ? 32
15885 : (reg_size == AFL_REG_64) ? 64
15886 : (reg_size == AFL_REG_128) ? 128
15887 : -1;
15888}
15889
b34976b6 15890bfd_boolean
9719ad41 15891_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15892{
9719ad41 15893 FILE *file = ptr;
b49e97c9
TS
15894
15895 BFD_ASSERT (abfd != NULL && ptr != NULL);
15896
15897 /* Print normal ELF private data. */
15898 _bfd_elf_print_private_bfd_data (abfd, ptr);
15899
15900 /* xgettext:c-format */
15901 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15902
15903 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15904 fprintf (file, _(" [abi=O32]"));
15905 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15906 fprintf (file, _(" [abi=O64]"));
15907 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15908 fprintf (file, _(" [abi=EABI32]"));
15909 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15910 fprintf (file, _(" [abi=EABI64]"));
15911 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15912 fprintf (file, _(" [abi unknown]"));
15913 else if (ABI_N32_P (abfd))
15914 fprintf (file, _(" [abi=N32]"));
15915 else if (ABI_64_P (abfd))
15916 fprintf (file, _(" [abi=64]"));
15917 else
15918 fprintf (file, _(" [no abi set]"));
15919
15920 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15921 fprintf (file, " [mips1]");
b49e97c9 15922 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15923 fprintf (file, " [mips2]");
b49e97c9 15924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15925 fprintf (file, " [mips3]");
b49e97c9 15926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15927 fprintf (file, " [mips4]");
b49e97c9 15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15929 fprintf (file, " [mips5]");
b49e97c9 15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15931 fprintf (file, " [mips32]");
b49e97c9 15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15933 fprintf (file, " [mips64]");
af7ee8bf 15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15935 fprintf (file, " [mips32r2]");
5f74bc13 15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15937 fprintf (file, " [mips64r2]");
7361da2c
AB
15938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15939 fprintf (file, " [mips32r6]");
15940 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15941 fprintf (file, " [mips64r6]");
b49e97c9
TS
15942 else
15943 fprintf (file, _(" [unknown ISA]"));
15944
40d32fc6 15945 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15946 fprintf (file, " [mdmx]");
40d32fc6
CD
15947
15948 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15949 fprintf (file, " [mips16]");
40d32fc6 15950
df58fc94
RS
15951 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15952 fprintf (file, " [micromips]");
15953
ba92f887
MR
15954 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15955 fprintf (file, " [nan2008]");
15956
5baf5e34 15957 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15958 fprintf (file, " [old fp64]");
5baf5e34 15959
b49e97c9 15960 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15961 fprintf (file, " [32bitmode]");
b49e97c9
TS
15962 else
15963 fprintf (file, _(" [not 32bitmode]"));
15964
c0e3f241 15965 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15966 fprintf (file, " [noreorder]");
c0e3f241
CD
15967
15968 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15969 fprintf (file, " [PIC]");
c0e3f241
CD
15970
15971 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15972 fprintf (file, " [CPIC]");
c0e3f241
CD
15973
15974 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15975 fprintf (file, " [XGOT]");
c0e3f241
CD
15976
15977 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15978 fprintf (file, " [UCODE]");
c0e3f241 15979
b49e97c9
TS
15980 fputc ('\n', file);
15981
351cdf24
MF
15982 if (mips_elf_tdata (abfd)->abiflags_valid)
15983 {
15984 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15985 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15986 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15987 if (abiflags->isa_rev > 1)
15988 fprintf (file, "r%d", abiflags->isa_rev);
15989 fprintf (file, "\nGPR size: %d",
15990 get_mips_reg_size (abiflags->gpr_size));
15991 fprintf (file, "\nCPR1 size: %d",
15992 get_mips_reg_size (abiflags->cpr1_size));
15993 fprintf (file, "\nCPR2 size: %d",
15994 get_mips_reg_size (abiflags->cpr2_size));
15995 fputs ("\nFP ABI: ", file);
15996 print_mips_fp_abi_value (file, abiflags->fp_abi);
15997 fputs ("ISA Extension: ", file);
15998 print_mips_isa_ext (file, abiflags->isa_ext);
15999 fputs ("\nASEs:", file);
16000 print_mips_ases (file, abiflags->ases);
16001 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16002 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16003 fputc ('\n', file);
16004 }
16005
b34976b6 16006 return TRUE;
b49e97c9 16007}
2f89ff8d 16008
b35d266b 16009const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16010{
0112cd26
NC
16011 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16012 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16013 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16014 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16015 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16016 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16017 { NULL, 0, 0, 0, 0 }
2f89ff8d 16018};
5e2b0d47 16019
8992f0d7
TS
16020/* Merge non visibility st_other attributes. Ensure that the
16021 STO_OPTIONAL flag is copied into h->other, even if this is not a
16022 definiton of the symbol. */
5e2b0d47
NC
16023void
16024_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16025 const Elf_Internal_Sym *isym,
16026 bfd_boolean definition,
16027 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16028{
8992f0d7
TS
16029 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16030 {
16031 unsigned char other;
16032
16033 other = (definition ? isym->st_other : h->other);
16034 other &= ~ELF_ST_VISIBILITY (-1);
16035 h->other = other | ELF_ST_VISIBILITY (h->other);
16036 }
16037
16038 if (!definition
5e2b0d47
NC
16039 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16040 h->other |= STO_OPTIONAL;
16041}
12ac1cf5
NC
16042
16043/* Decide whether an undefined symbol is special and can be ignored.
16044 This is the case for OPTIONAL symbols on IRIX. */
16045bfd_boolean
16046_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16047{
16048 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16049}
e0764319
NC
16050
16051bfd_boolean
16052_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16053{
16054 return (sym->st_shndx == SHN_COMMON
16055 || sym->st_shndx == SHN_MIPS_ACOMMON
16056 || sym->st_shndx == SHN_MIPS_SCOMMON);
16057}
861fb55a
DJ
16058
16059/* Return address for Ith PLT stub in section PLT, for relocation REL
16060 or (bfd_vma) -1 if it should not be included. */
16061
16062bfd_vma
16063_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16064 const arelent *rel ATTRIBUTE_UNUSED)
16065{
16066 return (plt->vma
16067 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16068 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16069}
16070
1bbce132
MR
16071/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16072 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16073 and .got.plt and also the slots may be of a different size each we walk
16074 the PLT manually fetching instructions and matching them against known
16075 patterns. To make things easier standard MIPS slots, if any, always come
16076 first. As we don't create proper ELF symbols we use the UDATA.I member
16077 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16078 with the ST_OTHER member of the ELF symbol. */
16079
16080long
16081_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16082 long symcount ATTRIBUTE_UNUSED,
16083 asymbol **syms ATTRIBUTE_UNUSED,
16084 long dynsymcount, asymbol **dynsyms,
16085 asymbol **ret)
16086{
16087 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16088 static const char microsuffix[] = "@micromipsplt";
16089 static const char m16suffix[] = "@mips16plt";
16090 static const char mipssuffix[] = "@plt";
16091
16092 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16093 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16094 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16095 Elf_Internal_Shdr *hdr;
16096 bfd_byte *plt_data;
16097 bfd_vma plt_offset;
16098 unsigned int other;
16099 bfd_vma entry_size;
16100 bfd_vma plt0_size;
16101 asection *relplt;
16102 bfd_vma opcode;
16103 asection *plt;
16104 asymbol *send;
16105 size_t size;
16106 char *names;
16107 long counti;
16108 arelent *p;
16109 asymbol *s;
16110 char *nend;
16111 long count;
16112 long pi;
16113 long i;
16114 long n;
16115
16116 *ret = NULL;
16117
16118 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16119 return 0;
16120
16121 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16122 if (relplt == NULL)
16123 return 0;
16124
16125 hdr = &elf_section_data (relplt)->this_hdr;
16126 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16127 return 0;
16128
16129 plt = bfd_get_section_by_name (abfd, ".plt");
16130 if (plt == NULL)
16131 return 0;
16132
16133 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16134 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16135 return -1;
16136 p = relplt->relocation;
16137
16138 /* Calculating the exact amount of space required for symbols would
16139 require two passes over the PLT, so just pessimise assuming two
16140 PLT slots per relocation. */
16141 count = relplt->size / hdr->sh_entsize;
16142 counti = count * bed->s->int_rels_per_ext_rel;
16143 size = 2 * count * sizeof (asymbol);
16144 size += count * (sizeof (mipssuffix) +
16145 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16146 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16147 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16148
16149 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16150 size += sizeof (asymbol) + sizeof (pltname);
16151
16152 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16153 return -1;
16154
16155 if (plt->size < 16)
16156 return -1;
16157
16158 s = *ret = bfd_malloc (size);
16159 if (s == NULL)
16160 return -1;
16161 send = s + 2 * count + 1;
16162
16163 names = (char *) send;
16164 nend = (char *) s + size;
16165 n = 0;
16166
16167 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16168 if (opcode == 0x3302fffe)
16169 {
16170 if (!micromips_p)
16171 return -1;
16172 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16173 other = STO_MICROMIPS;
16174 }
833794fc
MR
16175 else if (opcode == 0x0398c1d0)
16176 {
16177 if (!micromips_p)
16178 return -1;
16179 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16180 other = STO_MICROMIPS;
16181 }
1bbce132
MR
16182 else
16183 {
16184 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16185 other = 0;
16186 }
16187
16188 s->the_bfd = abfd;
16189 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16190 s->section = plt;
16191 s->value = 0;
16192 s->name = names;
16193 s->udata.i = other;
16194 memcpy (names, pltname, sizeof (pltname));
16195 names += sizeof (pltname);
16196 ++s, ++n;
16197
16198 pi = 0;
16199 for (plt_offset = plt0_size;
16200 plt_offset + 8 <= plt->size && s < send;
16201 plt_offset += entry_size)
16202 {
16203 bfd_vma gotplt_addr;
16204 const char *suffix;
16205 bfd_vma gotplt_hi;
16206 bfd_vma gotplt_lo;
16207 size_t suffixlen;
16208
16209 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16210
16211 /* Check if the second word matches the expected MIPS16 instruction. */
16212 if (opcode == 0x651aeb00)
16213 {
16214 if (micromips_p)
16215 return -1;
16216 /* Truncated table??? */
16217 if (plt_offset + 16 > plt->size)
16218 break;
16219 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16220 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16221 suffixlen = sizeof (m16suffix);
16222 suffix = m16suffix;
16223 other = STO_MIPS16;
16224 }
833794fc 16225 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16226 else if (opcode == 0xff220000)
16227 {
16228 if (!micromips_p)
16229 return -1;
16230 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16231 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16232 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16233 gotplt_lo <<= 2;
16234 gotplt_addr = gotplt_hi + gotplt_lo;
16235 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16236 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16237 suffixlen = sizeof (microsuffix);
16238 suffix = microsuffix;
16239 other = STO_MICROMIPS;
16240 }
833794fc
MR
16241 /* Likewise the expected microMIPS instruction (insn32 mode). */
16242 else if ((opcode & 0xffff0000) == 0xff2f0000)
16243 {
16244 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16245 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16246 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16247 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16248 gotplt_addr = gotplt_hi + gotplt_lo;
16249 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16250 suffixlen = sizeof (microsuffix);
16251 suffix = microsuffix;
16252 other = STO_MICROMIPS;
16253 }
1bbce132
MR
16254 /* Otherwise assume standard MIPS code. */
16255 else
16256 {
16257 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16258 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16259 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16260 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16261 gotplt_addr = gotplt_hi + gotplt_lo;
16262 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16263 suffixlen = sizeof (mipssuffix);
16264 suffix = mipssuffix;
16265 other = 0;
16266 }
16267 /* Truncated table??? */
16268 if (plt_offset + entry_size > plt->size)
16269 break;
16270
16271 for (i = 0;
16272 i < count && p[pi].address != gotplt_addr;
16273 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16274
16275 if (i < count)
16276 {
16277 size_t namelen;
16278 size_t len;
16279
16280 *s = **p[pi].sym_ptr_ptr;
16281 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16282 we are defining a symbol, ensure one of them is set. */
16283 if ((s->flags & BSF_LOCAL) == 0)
16284 s->flags |= BSF_GLOBAL;
16285 s->flags |= BSF_SYNTHETIC;
16286 s->section = plt;
16287 s->value = plt_offset;
16288 s->name = names;
16289 s->udata.i = other;
16290
16291 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16292 namelen = len + suffixlen;
16293 if (names + namelen > nend)
16294 break;
16295
16296 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16297 names += len;
16298 memcpy (names, suffix, suffixlen);
16299 names += suffixlen;
16300
16301 ++s, ++n;
16302 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16303 }
16304 }
16305
16306 free (plt_data);
16307
16308 return n;
16309}
16310
861fb55a
DJ
16311void
16312_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16313{
16314 struct mips_elf_link_hash_table *htab;
16315 Elf_Internal_Ehdr *i_ehdrp;
16316
16317 i_ehdrp = elf_elfheader (abfd);
16318 if (link_info)
16319 {
16320 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16321 BFD_ASSERT (htab != NULL);
16322
861fb55a
DJ
16323 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16324 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16325 }
0af03126
L
16326
16327 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16328
16329 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16330 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16331 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
17733f5b
FS
16332
16333 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16334 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
861fb55a 16335}
2f0c68f2
CM
16336
16337int
16338_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16339{
16340 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16341}
16342
16343/* Return the opcode for can't unwind. */
16344
16345int
16346_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16347{
16348 return COMPACT_EH_CANT_UNWIND_OPCODE;
16349}
This page took 2.030109 seconds and 4 git commands to generate.